1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, Joyent, Inc. All rights reserved. 24 */ 25 26 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 27 /* All Rights Reserved */ 28 29 /* 30 * University Copyright- Copyright (c) 1982, 1986, 1988 31 * The Regents of the University of California 32 * All Rights Reserved 33 * 34 * University Acknowledgment- Portions of this document are derived from 35 * software developed by the University of California, Berkeley, and its 36 * contributors. 37 */ 38 39 #include <sys/types.h> 40 #include <sys/t_lock.h> 41 #include <sys/param.h> 42 #include <sys/errno.h> 43 #include <sys/user.h> 44 #include <sys/fstyp.h> 45 #include <sys/kmem.h> 46 #include <sys/systm.h> 47 #include <sys/proc.h> 48 #include <sys/mount.h> 49 #include <sys/vfs.h> 50 #include <sys/vfs_opreg.h> 51 #include <sys/fem.h> 52 #include <sys/mntent.h> 53 #include <sys/stat.h> 54 #include <sys/statvfs.h> 55 #include <sys/statfs.h> 56 #include <sys/cred.h> 57 #include <sys/vnode.h> 58 #include <sys/rwstlock.h> 59 #include <sys/dnlc.h> 60 #include <sys/file.h> 61 #include <sys/time.h> 62 #include <sys/atomic.h> 63 #include <sys/cmn_err.h> 64 #include <sys/buf.h> 65 #include <sys/swap.h> 66 #include <sys/debug.h> 67 #include <sys/vnode.h> 68 #include <sys/modctl.h> 69 #include <sys/ddi.h> 70 #include <sys/pathname.h> 71 #include <sys/bootconf.h> 72 #include <sys/dumphdr.h> 73 #include <sys/dc_ki.h> 74 #include <sys/poll.h> 75 #include <sys/sunddi.h> 76 #include <sys/sysmacros.h> 77 #include <sys/zone.h> 78 #include <sys/policy.h> 79 #include <sys/ctfs.h> 80 #include <sys/objfs.h> 81 #include <sys/console.h> 82 #include <sys/reboot.h> 83 #include <sys/attr.h> 84 #include <sys/zio.h> 85 #include <sys/spa.h> 86 #include <sys/lofi.h> 87 #include <sys/bootprops.h> 88 89 #include <vm/page.h> 90 91 #include <fs/fs_subr.h> 92 /* Private interfaces to create vopstats-related data structures */ 93 extern void initialize_vopstats(vopstats_t *); 94 extern vopstats_t *get_fstype_vopstats(struct vfs *, struct vfssw *); 95 extern vsk_anchor_t *get_vskstat_anchor(struct vfs *); 96 97 static void vfs_clearmntopt_nolock(mntopts_t *, const char *, int); 98 static void vfs_setmntopt_nolock(mntopts_t *, const char *, 99 const char *, int, int); 100 static int vfs_optionisset_nolock(const mntopts_t *, const char *, char **); 101 static void vfs_freemnttab(struct vfs *); 102 static void vfs_freeopt(mntopt_t *); 103 static void vfs_swapopttbl_nolock(mntopts_t *, mntopts_t *); 104 static void vfs_swapopttbl(mntopts_t *, mntopts_t *); 105 static void vfs_copyopttbl_extend(const mntopts_t *, mntopts_t *, int); 106 static void vfs_createopttbl_extend(mntopts_t *, const char *, 107 const mntopts_t *); 108 static char **vfs_copycancelopt_extend(char **const, int); 109 static void vfs_freecancelopt(char **); 110 static void getrootfs(char **, char **); 111 static int getmacpath(dev_info_t *, void *); 112 static void vfs_mnttabvp_setup(void); 113 114 struct ipmnt { 115 struct ipmnt *mip_next; 116 dev_t mip_dev; 117 struct vfs *mip_vfsp; 118 }; 119 120 static kmutex_t vfs_miplist_mutex; 121 static struct ipmnt *vfs_miplist = NULL; 122 static struct ipmnt *vfs_miplist_end = NULL; 123 124 static kmem_cache_t *vfs_cache; /* Pointer to VFS kmem cache */ 125 126 /* 127 * VFS global data. 128 */ 129 vnode_t *rootdir; /* pointer to root inode vnode. */ 130 vnode_t *devicesdir; /* pointer to inode of devices root */ 131 vnode_t *devdir; /* pointer to inode of dev root */ 132 133 char *server_rootpath; /* root path for diskless clients */ 134 char *server_hostname; /* hostname of diskless server */ 135 136 static struct vfs root; 137 static struct vfs devices; 138 static struct vfs dev; 139 struct vfs *rootvfs = &root; /* pointer to root vfs; head of VFS list. */ 140 rvfs_t *rvfs_list; /* array of vfs ptrs for vfs hash list */ 141 int vfshsz = 512; /* # of heads/locks in vfs hash arrays */ 142 /* must be power of 2! */ 143 timespec_t vfs_mnttab_ctime; /* mnttab created time */ 144 timespec_t vfs_mnttab_mtime; /* mnttab last modified time */ 145 char *vfs_dummyfstype = "\0"; 146 struct pollhead vfs_pollhd; /* for mnttab pollers */ 147 struct vnode *vfs_mntdummyvp; /* to fake mnttab read/write for file events */ 148 int mntfstype; /* will be set once mnt fs is mounted */ 149 150 /* 151 * Table for generic options recognized in the VFS layer and acted 152 * on at this level before parsing file system specific options. 153 * The nosuid option is stronger than any of the devices and setuid 154 * options, so those are canceled when nosuid is seen. 155 * 156 * All options which are added here need to be added to the 157 * list of standard options in usr/src/cmd/fs.d/fslib.c as well. 158 */ 159 /* 160 * VFS Mount options table 161 */ 162 static char *ro_cancel[] = { MNTOPT_RW, NULL }; 163 static char *rw_cancel[] = { MNTOPT_RO, NULL }; 164 static char *suid_cancel[] = { MNTOPT_NOSUID, NULL }; 165 static char *nosuid_cancel[] = { MNTOPT_SUID, MNTOPT_DEVICES, MNTOPT_NODEVICES, 166 MNTOPT_NOSETUID, MNTOPT_SETUID, NULL }; 167 static char *devices_cancel[] = { MNTOPT_NODEVICES, NULL }; 168 static char *nodevices_cancel[] = { MNTOPT_DEVICES, NULL }; 169 static char *setuid_cancel[] = { MNTOPT_NOSETUID, NULL }; 170 static char *nosetuid_cancel[] = { MNTOPT_SETUID, NULL }; 171 static char *nbmand_cancel[] = { MNTOPT_NONBMAND, NULL }; 172 static char *nonbmand_cancel[] = { MNTOPT_NBMAND, NULL }; 173 static char *exec_cancel[] = { MNTOPT_NOEXEC, NULL }; 174 static char *noexec_cancel[] = { MNTOPT_EXEC, NULL }; 175 176 static const mntopt_t mntopts[] = { 177 /* 178 * option name cancel options default arg flags 179 */ 180 { MNTOPT_REMOUNT, NULL, NULL, 181 MO_NODISPLAY, (void *)0 }, 182 { MNTOPT_RO, ro_cancel, NULL, 0, 183 (void *)0 }, 184 { MNTOPT_RW, rw_cancel, NULL, 0, 185 (void *)0 }, 186 { MNTOPT_SUID, suid_cancel, NULL, 0, 187 (void *)0 }, 188 { MNTOPT_NOSUID, nosuid_cancel, NULL, 0, 189 (void *)0 }, 190 { MNTOPT_DEVICES, devices_cancel, NULL, 0, 191 (void *)0 }, 192 { MNTOPT_NODEVICES, nodevices_cancel, NULL, 0, 193 (void *)0 }, 194 { MNTOPT_SETUID, setuid_cancel, NULL, 0, 195 (void *)0 }, 196 { MNTOPT_NOSETUID, nosetuid_cancel, NULL, 0, 197 (void *)0 }, 198 { MNTOPT_NBMAND, nbmand_cancel, NULL, 0, 199 (void *)0 }, 200 { MNTOPT_NONBMAND, nonbmand_cancel, NULL, 0, 201 (void *)0 }, 202 { MNTOPT_EXEC, exec_cancel, NULL, 0, 203 (void *)0 }, 204 { MNTOPT_NOEXEC, noexec_cancel, NULL, 0, 205 (void *)0 }, 206 }; 207 208 const mntopts_t vfs_mntopts = { 209 sizeof (mntopts) / sizeof (mntopt_t), 210 (mntopt_t *)&mntopts[0] 211 }; 212 213 /* 214 * File system operation dispatch functions. 215 */ 216 217 int 218 fsop_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 219 { 220 return (*(vfsp)->vfs_op->vfs_mount)(vfsp, mvp, uap, cr); 221 } 222 223 int 224 fsop_unmount(vfs_t *vfsp, int flag, cred_t *cr) 225 { 226 return (*(vfsp)->vfs_op->vfs_unmount)(vfsp, flag, cr); 227 } 228 229 int 230 fsop_root(vfs_t *vfsp, vnode_t **vpp) 231 { 232 refstr_t *mntpt; 233 int ret = (*(vfsp)->vfs_op->vfs_root)(vfsp, vpp); 234 /* 235 * Make sure this root has a path. With lofs, it is possible to have 236 * a NULL mountpoint. 237 */ 238 if (ret == 0 && vfsp->vfs_mntpt != NULL && (*vpp)->v_path == NULL) { 239 mntpt = vfs_getmntpoint(vfsp); 240 vn_setpath_str(*vpp, refstr_value(mntpt), 241 strlen(refstr_value(mntpt))); 242 refstr_rele(mntpt); 243 } 244 245 return (ret); 246 } 247 248 int 249 fsop_statfs(vfs_t *vfsp, statvfs64_t *sp) 250 { 251 return (*(vfsp)->vfs_op->vfs_statvfs)(vfsp, sp); 252 } 253 254 int 255 fsop_sync(vfs_t *vfsp, short flag, cred_t *cr) 256 { 257 return (*(vfsp)->vfs_op->vfs_sync)(vfsp, flag, cr); 258 } 259 260 int 261 fsop_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) 262 { 263 /* 264 * In order to handle system attribute fids in a manner 265 * transparent to the underlying fs, we embed the fid for 266 * the sysattr parent object in the sysattr fid and tack on 267 * some extra bytes that only the sysattr layer knows about. 268 * 269 * This guarantees that sysattr fids are larger than other fids 270 * for this vfs. If the vfs supports the sysattr view interface 271 * (as indicated by VFSFT_SYSATTR_VIEWS), we cannot have a size 272 * collision with XATTR_FIDSZ. 273 */ 274 if (vfs_has_feature(vfsp, VFSFT_SYSATTR_VIEWS) && 275 fidp->fid_len == XATTR_FIDSZ) 276 return (xattr_dir_vget(vfsp, vpp, fidp)); 277 278 return (*(vfsp)->vfs_op->vfs_vget)(vfsp, vpp, fidp); 279 } 280 281 int 282 fsop_mountroot(vfs_t *vfsp, enum whymountroot reason) 283 { 284 return (*(vfsp)->vfs_op->vfs_mountroot)(vfsp, reason); 285 } 286 287 void 288 fsop_freefs(vfs_t *vfsp) 289 { 290 (*(vfsp)->vfs_op->vfs_freevfs)(vfsp); 291 } 292 293 int 294 fsop_vnstate(vfs_t *vfsp, vnode_t *vp, vntrans_t nstate) 295 { 296 return ((*(vfsp)->vfs_op->vfs_vnstate)(vfsp, vp, nstate)); 297 } 298 299 int 300 fsop_sync_by_kind(int fstype, short flag, cred_t *cr) 301 { 302 ASSERT((fstype >= 0) && (fstype < nfstype)); 303 304 if (ALLOCATED_VFSSW(&vfssw[fstype]) && VFS_INSTALLED(&vfssw[fstype])) 305 return (*vfssw[fstype].vsw_vfsops.vfs_sync) (NULL, flag, cr); 306 else 307 return (ENOTSUP); 308 } 309 310 /* 311 * File system initialization. vfs_setfsops() must be called from a file 312 * system's init routine. 313 */ 314 315 static int 316 fs_copyfsops(const fs_operation_def_t *template, vfsops_t *actual, 317 int *unused_ops) 318 { 319 static const fs_operation_trans_def_t vfs_ops_table[] = { 320 VFSNAME_MOUNT, offsetof(vfsops_t, vfs_mount), 321 fs_nosys, fs_nosys, 322 323 VFSNAME_UNMOUNT, offsetof(vfsops_t, vfs_unmount), 324 fs_nosys, fs_nosys, 325 326 VFSNAME_ROOT, offsetof(vfsops_t, vfs_root), 327 fs_nosys, fs_nosys, 328 329 VFSNAME_STATVFS, offsetof(vfsops_t, vfs_statvfs), 330 fs_nosys, fs_nosys, 331 332 VFSNAME_SYNC, offsetof(vfsops_t, vfs_sync), 333 (fs_generic_func_p) fs_sync, 334 (fs_generic_func_p) fs_sync, /* No errors allowed */ 335 336 VFSNAME_VGET, offsetof(vfsops_t, vfs_vget), 337 fs_nosys, fs_nosys, 338 339 VFSNAME_MOUNTROOT, offsetof(vfsops_t, vfs_mountroot), 340 fs_nosys, fs_nosys, 341 342 VFSNAME_FREEVFS, offsetof(vfsops_t, vfs_freevfs), 343 (fs_generic_func_p)fs_freevfs, 344 (fs_generic_func_p)fs_freevfs, /* Shouldn't fail */ 345 346 VFSNAME_VNSTATE, offsetof(vfsops_t, vfs_vnstate), 347 (fs_generic_func_p)fs_nosys, 348 (fs_generic_func_p)fs_nosys, 349 350 NULL, 0, NULL, NULL 351 }; 352 353 return (fs_build_vector(actual, unused_ops, vfs_ops_table, template)); 354 } 355 356 void 357 zfs_boot_init() { 358 359 if (strcmp(rootfs.bo_fstype, MNTTYPE_ZFS) == 0) 360 spa_boot_init(); 361 } 362 363 int 364 vfs_setfsops(int fstype, const fs_operation_def_t *template, vfsops_t **actual) 365 { 366 int error; 367 int unused_ops; 368 369 /* 370 * Verify that fstype refers to a valid fs. Note that 371 * 0 is valid since it's used to set "stray" ops. 372 */ 373 if ((fstype < 0) || (fstype >= nfstype)) 374 return (EINVAL); 375 376 if (!ALLOCATED_VFSSW(&vfssw[fstype])) 377 return (EINVAL); 378 379 /* Set up the operations vector. */ 380 381 error = fs_copyfsops(template, &vfssw[fstype].vsw_vfsops, &unused_ops); 382 383 if (error != 0) 384 return (error); 385 386 vfssw[fstype].vsw_flag |= VSW_INSTALLED; 387 388 if (actual != NULL) 389 *actual = &vfssw[fstype].vsw_vfsops; 390 391 #if DEBUG 392 if (unused_ops != 0) 393 cmn_err(CE_WARN, "vfs_setfsops: %s: %d operations supplied " 394 "but not used", vfssw[fstype].vsw_name, unused_ops); 395 #endif 396 397 return (0); 398 } 399 400 int 401 vfs_makefsops(const fs_operation_def_t *template, vfsops_t **actual) 402 { 403 int error; 404 int unused_ops; 405 406 *actual = (vfsops_t *)kmem_alloc(sizeof (vfsops_t), KM_SLEEP); 407 408 error = fs_copyfsops(template, *actual, &unused_ops); 409 if (error != 0) { 410 kmem_free(*actual, sizeof (vfsops_t)); 411 *actual = NULL; 412 return (error); 413 } 414 415 return (0); 416 } 417 418 /* 419 * Free a vfsops structure created as a result of vfs_makefsops(). 420 * NOTE: For a vfsops structure initialized by vfs_setfsops(), use 421 * vfs_freevfsops_by_type(). 422 */ 423 void 424 vfs_freevfsops(vfsops_t *vfsops) 425 { 426 kmem_free(vfsops, sizeof (vfsops_t)); 427 } 428 429 /* 430 * Since the vfsops structure is part of the vfssw table and wasn't 431 * really allocated, we're not really freeing anything. We keep 432 * the name for consistency with vfs_freevfsops(). We do, however, 433 * need to take care of a little bookkeeping. 434 * NOTE: For a vfsops structure created by vfs_setfsops(), use 435 * vfs_freevfsops_by_type(). 436 */ 437 int 438 vfs_freevfsops_by_type(int fstype) 439 { 440 441 /* Verify that fstype refers to a loaded fs (and not fsid 0). */ 442 if ((fstype <= 0) || (fstype >= nfstype)) 443 return (EINVAL); 444 445 WLOCK_VFSSW(); 446 if ((vfssw[fstype].vsw_flag & VSW_INSTALLED) == 0) { 447 WUNLOCK_VFSSW(); 448 return (EINVAL); 449 } 450 451 vfssw[fstype].vsw_flag &= ~VSW_INSTALLED; 452 WUNLOCK_VFSSW(); 453 454 return (0); 455 } 456 457 /* Support routines used to reference vfs_op */ 458 459 /* Set the operations vector for a vfs */ 460 void 461 vfs_setops(vfs_t *vfsp, vfsops_t *vfsops) 462 { 463 vfsops_t *op; 464 465 ASSERT(vfsp != NULL); 466 ASSERT(vfsops != NULL); 467 468 op = vfsp->vfs_op; 469 membar_consumer(); 470 if (vfsp->vfs_femhead == NULL && 471 atomic_cas_ptr(&vfsp->vfs_op, op, vfsops) == op) { 472 return; 473 } 474 fsem_setvfsops(vfsp, vfsops); 475 } 476 477 /* Retrieve the operations vector for a vfs */ 478 vfsops_t * 479 vfs_getops(vfs_t *vfsp) 480 { 481 vfsops_t *op; 482 483 ASSERT(vfsp != NULL); 484 485 op = vfsp->vfs_op; 486 membar_consumer(); 487 if (vfsp->vfs_femhead == NULL && op == vfsp->vfs_op) { 488 return (op); 489 } else { 490 return (fsem_getvfsops(vfsp)); 491 } 492 } 493 494 /* 495 * Returns non-zero (1) if the vfsops matches that of the vfs. 496 * Returns zero (0) if not. 497 */ 498 int 499 vfs_matchops(vfs_t *vfsp, vfsops_t *vfsops) 500 { 501 return (vfs_getops(vfsp) == vfsops); 502 } 503 504 /* 505 * Returns non-zero (1) if the file system has installed a non-default, 506 * non-error vfs_sync routine. Returns zero (0) otherwise. 507 */ 508 int 509 vfs_can_sync(vfs_t *vfsp) 510 { 511 /* vfs_sync() routine is not the default/error function */ 512 return (vfs_getops(vfsp)->vfs_sync != fs_sync); 513 } 514 515 /* 516 * Initialize a vfs structure. 517 */ 518 void 519 vfs_init(vfs_t *vfsp, vfsops_t *op, void *data) 520 { 521 /* Other initialization has been moved to vfs_alloc() */ 522 vfsp->vfs_count = 0; 523 vfsp->vfs_next = vfsp; 524 vfsp->vfs_prev = vfsp; 525 vfsp->vfs_zone_next = vfsp; 526 vfsp->vfs_zone_prev = vfsp; 527 vfsp->vfs_lofi_minor = 0; 528 sema_init(&vfsp->vfs_reflock, 1, NULL, SEMA_DEFAULT, NULL); 529 vfsimpl_setup(vfsp); 530 vfsp->vfs_data = (data); 531 vfs_setops((vfsp), (op)); 532 } 533 534 /* 535 * Allocate and initialize the vfs implementation private data 536 * structure, vfs_impl_t. 537 */ 538 void 539 vfsimpl_setup(vfs_t *vfsp) 540 { 541 int i; 542 543 if (vfsp->vfs_implp != NULL) { 544 return; 545 } 546 547 vfsp->vfs_implp = kmem_alloc(sizeof (vfs_impl_t), KM_SLEEP); 548 /* Note that these are #define'd in vfs.h */ 549 vfsp->vfs_vskap = NULL; 550 vfsp->vfs_fstypevsp = NULL; 551 552 /* Set size of counted array, then zero the array */ 553 vfsp->vfs_featureset[0] = VFS_FEATURE_MAXSZ - 1; 554 for (i = 1; i < VFS_FEATURE_MAXSZ; i++) { 555 vfsp->vfs_featureset[i] = 0; 556 } 557 } 558 559 /* 560 * Release the vfs_impl_t structure, if it exists. Some unbundled 561 * filesystems may not use the newer version of vfs and thus 562 * would not contain this implementation private data structure. 563 */ 564 void 565 vfsimpl_teardown(vfs_t *vfsp) 566 { 567 vfs_impl_t *vip = vfsp->vfs_implp; 568 569 if (vip == NULL) 570 return; 571 572 kmem_free(vfsp->vfs_implp, sizeof (vfs_impl_t)); 573 vfsp->vfs_implp = NULL; 574 } 575 576 /* 577 * VFS system calls: mount, umount, syssync, statfs, fstatfs, statvfs, 578 * fstatvfs, and sysfs moved to common/syscall. 579 */ 580 581 /* 582 * Update every mounted file system. We call the vfs_sync operation of 583 * each file system type, passing it a NULL vfsp to indicate that all 584 * mounted file systems of that type should be updated. 585 */ 586 void 587 vfs_sync(int flag) 588 { 589 struct vfssw *vswp; 590 RLOCK_VFSSW(); 591 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 592 if (ALLOCATED_VFSSW(vswp) && VFS_INSTALLED(vswp)) { 593 vfs_refvfssw(vswp); 594 RUNLOCK_VFSSW(); 595 (void) (*vswp->vsw_vfsops.vfs_sync)(NULL, flag, 596 CRED()); 597 vfs_unrefvfssw(vswp); 598 RLOCK_VFSSW(); 599 } 600 } 601 RUNLOCK_VFSSW(); 602 } 603 604 void 605 sync(void) 606 { 607 vfs_sync(0); 608 } 609 610 /* 611 * External routines. 612 */ 613 614 krwlock_t vfssw_lock; /* lock accesses to vfssw */ 615 616 /* 617 * Lock for accessing the vfs linked list. Initialized in vfs_mountroot(), 618 * but otherwise should be accessed only via vfs_list_lock() and 619 * vfs_list_unlock(). Also used to protect the timestamp for mods to the list. 620 */ 621 static krwlock_t vfslist; 622 623 /* 624 * Mount devfs on /devices. This is done right after root is mounted 625 * to provide device access support for the system 626 */ 627 static void 628 vfs_mountdevices(void) 629 { 630 struct vfssw *vsw; 631 struct vnode *mvp; 632 struct mounta mounta = { /* fake mounta for devfs_mount() */ 633 NULL, 634 NULL, 635 MS_SYSSPACE, 636 NULL, 637 NULL, 638 0, 639 NULL, 640 0 641 }; 642 643 /* 644 * _init devfs module to fill in the vfssw 645 */ 646 if (modload("fs", "devfs") == -1) 647 panic("Cannot _init devfs module"); 648 649 /* 650 * Hold vfs 651 */ 652 RLOCK_VFSSW(); 653 vsw = vfs_getvfsswbyname("devfs"); 654 VFS_INIT(&devices, &vsw->vsw_vfsops, NULL); 655 VFS_HOLD(&devices); 656 657 /* 658 * Locate mount point 659 */ 660 if (lookupname("/devices", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) 661 panic("Cannot find /devices"); 662 663 /* 664 * Perform the mount of /devices 665 */ 666 if (VFS_MOUNT(&devices, mvp, &mounta, CRED())) 667 panic("Cannot mount /devices"); 668 669 RUNLOCK_VFSSW(); 670 671 /* 672 * Set appropriate members and add to vfs list for mnttab display 673 */ 674 vfs_setresource(&devices, "/devices", 0); 675 vfs_setmntpoint(&devices, "/devices", 0); 676 677 /* 678 * Hold the root of /devices so it won't go away 679 */ 680 if (VFS_ROOT(&devices, &devicesdir)) 681 panic("vfs_mountdevices: not devices root"); 682 683 if (vfs_lock(&devices) != 0) { 684 VN_RELE(devicesdir); 685 cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /devices"); 686 return; 687 } 688 689 if (vn_vfswlock(mvp) != 0) { 690 vfs_unlock(&devices); 691 VN_RELE(devicesdir); 692 cmn_err(CE_NOTE, "Cannot acquire vfswlock of /devices"); 693 return; 694 } 695 696 vfs_add(mvp, &devices, 0); 697 vn_vfsunlock(mvp); 698 vfs_unlock(&devices); 699 VN_RELE(devicesdir); 700 } 701 702 /* 703 * mount the first instance of /dev to root and remain mounted 704 */ 705 static void 706 vfs_mountdev1(void) 707 { 708 struct vfssw *vsw; 709 struct vnode *mvp; 710 struct mounta mounta = { /* fake mounta for sdev_mount() */ 711 NULL, 712 NULL, 713 MS_SYSSPACE | MS_OVERLAY, 714 NULL, 715 NULL, 716 0, 717 NULL, 718 0 719 }; 720 721 /* 722 * _init dev module to fill in the vfssw 723 */ 724 if (modload("fs", "dev") == -1) 725 cmn_err(CE_PANIC, "Cannot _init dev module\n"); 726 727 /* 728 * Hold vfs 729 */ 730 RLOCK_VFSSW(); 731 vsw = vfs_getvfsswbyname("dev"); 732 VFS_INIT(&dev, &vsw->vsw_vfsops, NULL); 733 VFS_HOLD(&dev); 734 735 /* 736 * Locate mount point 737 */ 738 if (lookupname("/dev", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) 739 cmn_err(CE_PANIC, "Cannot find /dev\n"); 740 741 /* 742 * Perform the mount of /dev 743 */ 744 if (VFS_MOUNT(&dev, mvp, &mounta, CRED())) 745 cmn_err(CE_PANIC, "Cannot mount /dev 1\n"); 746 747 RUNLOCK_VFSSW(); 748 749 /* 750 * Set appropriate members and add to vfs list for mnttab display 751 */ 752 vfs_setresource(&dev, "/dev", 0); 753 vfs_setmntpoint(&dev, "/dev", 0); 754 755 /* 756 * Hold the root of /dev so it won't go away 757 */ 758 if (VFS_ROOT(&dev, &devdir)) 759 cmn_err(CE_PANIC, "vfs_mountdev1: not dev root"); 760 761 if (vfs_lock(&dev) != 0) { 762 VN_RELE(devdir); 763 cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /dev"); 764 return; 765 } 766 767 if (vn_vfswlock(mvp) != 0) { 768 vfs_unlock(&dev); 769 VN_RELE(devdir); 770 cmn_err(CE_NOTE, "Cannot acquire vfswlock of /dev"); 771 return; 772 } 773 774 vfs_add(mvp, &dev, 0); 775 vn_vfsunlock(mvp); 776 vfs_unlock(&dev); 777 VN_RELE(devdir); 778 } 779 780 /* 781 * Mount required filesystem. This is done right after root is mounted. 782 */ 783 static void 784 vfs_mountfs(char *module, char *spec, char *path) 785 { 786 struct vnode *mvp; 787 struct mounta mounta; 788 vfs_t *vfsp; 789 790 mounta.flags = MS_SYSSPACE | MS_DATA; 791 mounta.fstype = module; 792 mounta.spec = spec; 793 mounta.dir = path; 794 if (lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) { 795 cmn_err(CE_WARN, "Cannot find %s", path); 796 return; 797 } 798 if (domount(NULL, &mounta, mvp, CRED(), &vfsp)) 799 cmn_err(CE_WARN, "Cannot mount %s", path); 800 else 801 VFS_RELE(vfsp); 802 VN_RELE(mvp); 803 } 804 805 /* 806 * vfs_mountroot is called by main() to mount the root filesystem. 807 */ 808 void 809 vfs_mountroot(void) 810 { 811 struct vnode *rvp = NULL; 812 char *path; 813 size_t plen; 814 struct vfssw *vswp; 815 proc_t *p; 816 817 rw_init(&vfssw_lock, NULL, RW_DEFAULT, NULL); 818 rw_init(&vfslist, NULL, RW_DEFAULT, NULL); 819 820 /* 821 * Alloc the vfs hash bucket array and locks 822 */ 823 rvfs_list = kmem_zalloc(vfshsz * sizeof (rvfs_t), KM_SLEEP); 824 825 /* 826 * Call machine-dependent routine "rootconf" to choose a root 827 * file system type. 828 */ 829 if (rootconf()) 830 panic("vfs_mountroot: cannot mount root"); 831 /* 832 * Get vnode for '/'. Set up rootdir, u.u_rdir and u.u_cdir 833 * to point to it. These are used by lookuppn() so that it 834 * knows where to start from ('/' or '.'). 835 */ 836 vfs_setmntpoint(rootvfs, "/", 0); 837 if (VFS_ROOT(rootvfs, &rootdir)) 838 panic("vfs_mountroot: no root vnode"); 839 840 /* 841 * At this point, the process tree consists of p0 and possibly some 842 * direct children of p0. (i.e. there are no grandchildren) 843 * 844 * Walk through them all, setting their current directory. 845 */ 846 mutex_enter(&pidlock); 847 for (p = practive; p != NULL; p = p->p_next) { 848 ASSERT(p == &p0 || p->p_parent == &p0); 849 850 PTOU(p)->u_cdir = rootdir; 851 VN_HOLD(PTOU(p)->u_cdir); 852 PTOU(p)->u_rdir = NULL; 853 } 854 mutex_exit(&pidlock); 855 856 /* 857 * Setup the global zone's rootvp, now that it exists. 858 */ 859 global_zone->zone_rootvp = rootdir; 860 VN_HOLD(global_zone->zone_rootvp); 861 862 /* 863 * Notify the module code that it can begin using the 864 * root filesystem instead of the boot program's services. 865 */ 866 modrootloaded = 1; 867 868 /* 869 * Special handling for a ZFS root file system. 870 */ 871 zfs_boot_init(); 872 873 /* 874 * Set up mnttab information for root 875 */ 876 vfs_setresource(rootvfs, rootfs.bo_name, 0); 877 878 /* 879 * Notify cluster software that the root filesystem is available. 880 */ 881 clboot_mountroot(); 882 883 /* Now that we're all done with the root FS, set up its vopstats */ 884 if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) != NULL) { 885 /* Set flag for statistics collection */ 886 if (vswp->vsw_flag & VSW_STATS) { 887 initialize_vopstats(&rootvfs->vfs_vopstats); 888 rootvfs->vfs_flag |= VFS_STATS; 889 rootvfs->vfs_fstypevsp = 890 get_fstype_vopstats(rootvfs, vswp); 891 rootvfs->vfs_vskap = get_vskstat_anchor(rootvfs); 892 } 893 vfs_unrefvfssw(vswp); 894 } 895 896 /* 897 * Mount /devices, /dev instance 1, /system/contract, /etc/mnttab, 898 * /etc/svc/volatile, /etc/dfs/sharetab, /system/object, and /proc. 899 */ 900 vfs_mountdevices(); 901 vfs_mountdev1(); 902 903 vfs_mountfs("ctfs", "ctfs", CTFS_ROOT); 904 vfs_mountfs("proc", "/proc", "/proc"); 905 vfs_mountfs("mntfs", "/etc/mnttab", "/etc/mnttab"); 906 vfs_mountfs("tmpfs", "/etc/svc/volatile", "/etc/svc/volatile"); 907 vfs_mountfs("objfs", "objfs", OBJFS_ROOT); 908 909 if (getzoneid() == GLOBAL_ZONEID) { 910 vfs_mountfs("sharefs", "sharefs", "/etc/dfs/sharetab"); 911 } 912 913 #ifdef __sparc 914 /* 915 * This bit of magic can go away when we convert sparc to 916 * the new boot architecture based on ramdisk. 917 * 918 * Booting off a mirrored root volume: 919 * At this point, we have booted and mounted root on a 920 * single component of the mirror. Complete the boot 921 * by configuring SVM and converting the root to the 922 * dev_t of the mirrored root device. This dev_t conversion 923 * only works because the underlying device doesn't change. 924 */ 925 if (root_is_svm) { 926 if (svm_rootconf()) { 927 panic("vfs_mountroot: cannot remount root"); 928 } 929 930 /* 931 * mnttab should reflect the new root device 932 */ 933 vfs_lock_wait(rootvfs); 934 vfs_setresource(rootvfs, rootfs.bo_name, 0); 935 vfs_unlock(rootvfs); 936 } 937 #endif /* __sparc */ 938 939 if (strcmp(rootfs.bo_fstype, "zfs") != 0) { 940 /* 941 * Look up the root device via devfs so that a dv_node is 942 * created for it. The vnode is never VN_RELE()ed. 943 * We allocate more than MAXPATHLEN so that the 944 * buffer passed to i_ddi_prompath_to_devfspath() is 945 * exactly MAXPATHLEN (the function expects a buffer 946 * of that length). 947 */ 948 plen = strlen("/devices"); 949 path = kmem_alloc(plen + MAXPATHLEN, KM_SLEEP); 950 (void) strcpy(path, "/devices"); 951 952 if (i_ddi_prompath_to_devfspath(rootfs.bo_name, path + plen) 953 != DDI_SUCCESS || 954 lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &rvp)) { 955 956 /* NUL terminate in case "path" has garbage */ 957 path[plen + MAXPATHLEN - 1] = '\0'; 958 #ifdef DEBUG 959 cmn_err(CE_WARN, "!Cannot lookup root device: %s", 960 path); 961 #endif 962 } 963 kmem_free(path, plen + MAXPATHLEN); 964 } 965 966 vfs_mnttabvp_setup(); 967 } 968 969 /* 970 * Check to see if our "block device" is actually a file. If so, 971 * automatically add a lofi device, and keep track of this fact. 972 */ 973 static int 974 lofi_add(const char *fsname, struct vfs *vfsp, 975 mntopts_t *mntopts, struct mounta *uap) 976 { 977 int fromspace = (uap->flags & MS_SYSSPACE) ? 978 UIO_SYSSPACE : UIO_USERSPACE; 979 struct lofi_ioctl *li = NULL; 980 struct vnode *vp = NULL; 981 struct pathname pn = { NULL }; 982 ldi_ident_t ldi_id; 983 ldi_handle_t ldi_hdl; 984 vfssw_t *vfssw; 985 int minor; 986 int err = 0; 987 988 if ((vfssw = vfs_getvfssw(fsname)) == NULL) 989 return (0); 990 991 if (!(vfssw->vsw_flag & VSW_CANLOFI)) { 992 vfs_unrefvfssw(vfssw); 993 return (0); 994 } 995 996 vfs_unrefvfssw(vfssw); 997 vfssw = NULL; 998 999 if (pn_get(uap->spec, fromspace, &pn) != 0) 1000 return (0); 1001 1002 if (lookupname(uap->spec, fromspace, FOLLOW, NULL, &vp) != 0) 1003 goto out; 1004 1005 if (vp->v_type != VREG) 1006 goto out; 1007 1008 /* OK, this is a lofi mount. */ 1009 1010 if ((uap->flags & (MS_REMOUNT|MS_GLOBAL)) || 1011 vfs_optionisset_nolock(mntopts, MNTOPT_SUID, NULL) || 1012 vfs_optionisset_nolock(mntopts, MNTOPT_SETUID, NULL) || 1013 vfs_optionisset_nolock(mntopts, MNTOPT_DEVICES, NULL)) { 1014 err = EINVAL; 1015 goto out; 1016 } 1017 1018 ldi_id = ldi_ident_from_anon(); 1019 li = kmem_zalloc(sizeof (*li), KM_SLEEP); 1020 (void) strlcpy(li->li_filename, pn.pn_path, MAXPATHLEN); 1021 1022 err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE, kcred, 1023 &ldi_hdl, ldi_id); 1024 1025 if (err) 1026 goto out2; 1027 1028 err = ldi_ioctl(ldi_hdl, LOFI_MAP_FILE, (intptr_t)li, 1029 FREAD | FWRITE | FKIOCTL, kcred, &minor); 1030 1031 (void) ldi_close(ldi_hdl, FREAD | FWRITE, kcred); 1032 1033 if (!err) 1034 vfsp->vfs_lofi_minor = minor; 1035 1036 out2: 1037 ldi_ident_release(ldi_id); 1038 out: 1039 if (li != NULL) 1040 kmem_free(li, sizeof (*li)); 1041 if (vp != NULL) 1042 VN_RELE(vp); 1043 pn_free(&pn); 1044 return (err); 1045 } 1046 1047 static void 1048 lofi_remove(struct vfs *vfsp) 1049 { 1050 struct lofi_ioctl *li = NULL; 1051 ldi_ident_t ldi_id; 1052 ldi_handle_t ldi_hdl; 1053 int err; 1054 1055 if (vfsp->vfs_lofi_minor == 0) 1056 return; 1057 1058 ldi_id = ldi_ident_from_anon(); 1059 1060 li = kmem_zalloc(sizeof (*li), KM_SLEEP); 1061 li->li_minor = vfsp->vfs_lofi_minor; 1062 li->li_cleanup = B_TRUE; 1063 1064 err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE, kcred, 1065 &ldi_hdl, ldi_id); 1066 1067 if (err) 1068 goto out; 1069 1070 err = ldi_ioctl(ldi_hdl, LOFI_UNMAP_FILE_MINOR, (intptr_t)li, 1071 FREAD | FWRITE | FKIOCTL, kcred, NULL); 1072 1073 (void) ldi_close(ldi_hdl, FREAD | FWRITE, kcred); 1074 1075 if (!err) 1076 vfsp->vfs_lofi_minor = 0; 1077 1078 out: 1079 ldi_ident_release(ldi_id); 1080 if (li != NULL) 1081 kmem_free(li, sizeof (*li)); 1082 } 1083 1084 /* 1085 * Common mount code. Called from the system call entry point, from autofs, 1086 * nfsv4 trigger mounts, and from pxfs. 1087 * 1088 * Takes the effective file system type, mount arguments, the mount point 1089 * vnode, flags specifying whether the mount is a remount and whether it 1090 * should be entered into the vfs list, and credentials. Fills in its vfspp 1091 * parameter with the mounted file system instance's vfs. 1092 * 1093 * Note that the effective file system type is specified as a string. It may 1094 * be null, in which case it's determined from the mount arguments, and may 1095 * differ from the type specified in the mount arguments; this is a hook to 1096 * allow interposition when instantiating file system instances. 1097 * 1098 * The caller is responsible for releasing its own hold on the mount point 1099 * vp (this routine does its own hold when necessary). 1100 * Also note that for remounts, the mount point vp should be the vnode for 1101 * the root of the file system rather than the vnode that the file system 1102 * is mounted on top of. 1103 */ 1104 int 1105 domount(char *fsname, struct mounta *uap, vnode_t *vp, struct cred *credp, 1106 struct vfs **vfspp) 1107 { 1108 struct vfssw *vswp; 1109 vfsops_t *vfsops; 1110 struct vfs *vfsp; 1111 struct vnode *bvp; 1112 dev_t bdev = 0; 1113 mntopts_t mnt_mntopts; 1114 int error = 0; 1115 int copyout_error = 0; 1116 int ovflags; 1117 char *opts = uap->optptr; 1118 char *inargs = opts; 1119 int optlen = uap->optlen; 1120 int remount; 1121 int rdonly; 1122 int nbmand = 0; 1123 int delmip = 0; 1124 int addmip = 0; 1125 int splice = ((uap->flags & MS_NOSPLICE) == 0); 1126 int fromspace = (uap->flags & MS_SYSSPACE) ? 1127 UIO_SYSSPACE : UIO_USERSPACE; 1128 char *resource = NULL, *mountpt = NULL; 1129 refstr_t *oldresource, *oldmntpt; 1130 struct pathname pn, rpn; 1131 vsk_anchor_t *vskap; 1132 char fstname[FSTYPSZ]; 1133 zone_t *zone; 1134 1135 /* 1136 * The v_flag value for the mount point vp is permanently set 1137 * to VVFSLOCK so that no one bypasses the vn_vfs*locks routine 1138 * for mount point locking. 1139 */ 1140 mutex_enter(&vp->v_lock); 1141 vp->v_flag |= VVFSLOCK; 1142 mutex_exit(&vp->v_lock); 1143 1144 mnt_mntopts.mo_count = 0; 1145 /* 1146 * Find the ops vector to use to invoke the file system-specific mount 1147 * method. If the fsname argument is non-NULL, use it directly. 1148 * Otherwise, dig the file system type information out of the mount 1149 * arguments. 1150 * 1151 * A side effect is to hold the vfssw entry. 1152 * 1153 * Mount arguments can be specified in several ways, which are 1154 * distinguished by flag bit settings. The preferred way is to set 1155 * MS_OPTIONSTR, indicating an 8 argument mount with the file system 1156 * type supplied as a character string and the last two arguments 1157 * being a pointer to a character buffer and the size of the buffer. 1158 * On entry, the buffer holds a null terminated list of options; on 1159 * return, the string is the list of options the file system 1160 * recognized. If MS_DATA is set arguments five and six point to a 1161 * block of binary data which the file system interprets. 1162 * A further wrinkle is that some callers don't set MS_FSS and MS_DATA 1163 * consistently with these conventions. To handle them, we check to 1164 * see whether the pointer to the file system name has a numeric value 1165 * less than 256. If so, we treat it as an index. 1166 */ 1167 if (fsname != NULL) { 1168 if ((vswp = vfs_getvfssw(fsname)) == NULL) { 1169 return (EINVAL); 1170 } 1171 } else if (uap->flags & (MS_OPTIONSTR | MS_DATA | MS_FSS)) { 1172 size_t n; 1173 uint_t fstype; 1174 1175 fsname = fstname; 1176 1177 if ((fstype = (uintptr_t)uap->fstype) < 256) { 1178 RLOCK_VFSSW(); 1179 if (fstype == 0 || fstype >= nfstype || 1180 !ALLOCATED_VFSSW(&vfssw[fstype])) { 1181 RUNLOCK_VFSSW(); 1182 return (EINVAL); 1183 } 1184 (void) strcpy(fsname, vfssw[fstype].vsw_name); 1185 RUNLOCK_VFSSW(); 1186 if ((vswp = vfs_getvfssw(fsname)) == NULL) 1187 return (EINVAL); 1188 } else { 1189 /* 1190 * Handle either kernel or user address space. 1191 */ 1192 if (uap->flags & MS_SYSSPACE) { 1193 error = copystr(uap->fstype, fsname, 1194 FSTYPSZ, &n); 1195 } else { 1196 error = copyinstr(uap->fstype, fsname, 1197 FSTYPSZ, &n); 1198 } 1199 if (error) { 1200 if (error == ENAMETOOLONG) 1201 return (EINVAL); 1202 return (error); 1203 } 1204 if ((vswp = vfs_getvfssw(fsname)) == NULL) 1205 return (EINVAL); 1206 } 1207 } else { 1208 if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) == NULL) 1209 return (EINVAL); 1210 fsname = vswp->vsw_name; 1211 } 1212 if (!VFS_INSTALLED(vswp)) 1213 return (EINVAL); 1214 1215 if ((error = secpolicy_fs_allowed_mount(fsname)) != 0) { 1216 vfs_unrefvfssw(vswp); 1217 return (error); 1218 } 1219 1220 vfsops = &vswp->vsw_vfsops; 1221 1222 vfs_copyopttbl(&vswp->vsw_optproto, &mnt_mntopts); 1223 /* 1224 * Fetch mount options and parse them for generic vfs options 1225 */ 1226 if (uap->flags & MS_OPTIONSTR) { 1227 /* 1228 * Limit the buffer size 1229 */ 1230 if (optlen < 0 || optlen > MAX_MNTOPT_STR) { 1231 error = EINVAL; 1232 goto errout; 1233 } 1234 if ((uap->flags & MS_SYSSPACE) == 0) { 1235 inargs = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP); 1236 inargs[0] = '\0'; 1237 if (optlen) { 1238 error = copyinstr(opts, inargs, (size_t)optlen, 1239 NULL); 1240 if (error) { 1241 goto errout; 1242 } 1243 } 1244 } 1245 vfs_parsemntopts(&mnt_mntopts, inargs, 0); 1246 } 1247 /* 1248 * Flag bits override the options string. 1249 */ 1250 if (uap->flags & MS_REMOUNT) 1251 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_REMOUNT, NULL, 0, 0); 1252 if (uap->flags & MS_RDONLY) 1253 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_RO, NULL, 0, 0); 1254 if (uap->flags & MS_NOSUID) 1255 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0); 1256 1257 /* 1258 * Check if this is a remount; must be set in the option string and 1259 * the file system must support a remount option. 1260 */ 1261 if (remount = vfs_optionisset_nolock(&mnt_mntopts, 1262 MNTOPT_REMOUNT, NULL)) { 1263 if (!(vswp->vsw_flag & VSW_CANREMOUNT)) { 1264 error = ENOTSUP; 1265 goto errout; 1266 } 1267 uap->flags |= MS_REMOUNT; 1268 } 1269 1270 /* 1271 * uap->flags and vfs_optionisset() should agree. 1272 */ 1273 if (rdonly = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_RO, NULL)) { 1274 uap->flags |= MS_RDONLY; 1275 } 1276 if (vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL)) { 1277 uap->flags |= MS_NOSUID; 1278 } 1279 nbmand = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NBMAND, NULL); 1280 ASSERT(splice || !remount); 1281 /* 1282 * If we are splicing the fs into the namespace, 1283 * perform mount point checks. 1284 * 1285 * We want to resolve the path for the mount point to eliminate 1286 * '.' and ".." and symlinks in mount points; we can't do the 1287 * same for the resource string, since it would turn 1288 * "/dev/dsk/c0t0d0s0" into "/devices/pci@...". We need to do 1289 * this before grabbing vn_vfswlock(), because otherwise we 1290 * would deadlock with lookuppn(). 1291 */ 1292 if (splice) { 1293 ASSERT(vp->v_count > 0); 1294 1295 /* 1296 * Pick up mount point and device from appropriate space. 1297 */ 1298 if (pn_get(uap->spec, fromspace, &pn) == 0) { 1299 resource = kmem_alloc(pn.pn_pathlen + 1, 1300 KM_SLEEP); 1301 (void) strcpy(resource, pn.pn_path); 1302 pn_free(&pn); 1303 } 1304 /* 1305 * Do a lookupname prior to taking the 1306 * writelock. Mark this as completed if 1307 * successful for later cleanup and addition to 1308 * the mount in progress table. 1309 */ 1310 if ((uap->flags & MS_GLOBAL) == 0 && 1311 lookupname(uap->spec, fromspace, 1312 FOLLOW, NULL, &bvp) == 0) { 1313 addmip = 1; 1314 } 1315 1316 if ((error = pn_get(uap->dir, fromspace, &pn)) == 0) { 1317 pathname_t *pnp; 1318 1319 if (*pn.pn_path != '/') { 1320 error = EINVAL; 1321 pn_free(&pn); 1322 goto errout; 1323 } 1324 pn_alloc(&rpn); 1325 /* 1326 * Kludge to prevent autofs from deadlocking with 1327 * itself when it calls domount(). 1328 * 1329 * If autofs is calling, it is because it is doing 1330 * (autofs) mounts in the process of an NFS mount. A 1331 * lookuppn() here would cause us to block waiting for 1332 * said NFS mount to complete, which can't since this 1333 * is the thread that was supposed to doing it. 1334 */ 1335 if (fromspace == UIO_USERSPACE) { 1336 if ((error = lookuppn(&pn, &rpn, FOLLOW, NULL, 1337 NULL)) == 0) { 1338 pnp = &rpn; 1339 } else { 1340 /* 1341 * The file disappeared or otherwise 1342 * became inaccessible since we opened 1343 * it; might as well fail the mount 1344 * since the mount point is no longer 1345 * accessible. 1346 */ 1347 pn_free(&rpn); 1348 pn_free(&pn); 1349 goto errout; 1350 } 1351 } else { 1352 pnp = &pn; 1353 } 1354 mountpt = kmem_alloc(pnp->pn_pathlen + 1, KM_SLEEP); 1355 (void) strcpy(mountpt, pnp->pn_path); 1356 1357 /* 1358 * If the addition of the zone's rootpath 1359 * would push us over a total path length 1360 * of MAXPATHLEN, we fail the mount with 1361 * ENAMETOOLONG, which is what we would have 1362 * gotten if we were trying to perform the same 1363 * mount in the global zone. 1364 * 1365 * strlen() doesn't count the trailing 1366 * '\0', but zone_rootpathlen counts both a 1367 * trailing '/' and the terminating '\0'. 1368 */ 1369 if ((curproc->p_zone->zone_rootpathlen - 1 + 1370 strlen(mountpt)) > MAXPATHLEN || 1371 (resource != NULL && 1372 (curproc->p_zone->zone_rootpathlen - 1 + 1373 strlen(resource)) > MAXPATHLEN)) { 1374 error = ENAMETOOLONG; 1375 } 1376 1377 pn_free(&rpn); 1378 pn_free(&pn); 1379 } 1380 1381 if (error) 1382 goto errout; 1383 1384 /* 1385 * Prevent path name resolution from proceeding past 1386 * the mount point. 1387 */ 1388 if (vn_vfswlock(vp) != 0) { 1389 error = EBUSY; 1390 goto errout; 1391 } 1392 1393 /* 1394 * Verify that it's legitimate to establish a mount on 1395 * the prospective mount point. 1396 */ 1397 if (vn_mountedvfs(vp) != NULL) { 1398 /* 1399 * The mount point lock was obtained after some 1400 * other thread raced through and established a mount. 1401 */ 1402 vn_vfsunlock(vp); 1403 error = EBUSY; 1404 goto errout; 1405 } 1406 if (vp->v_flag & VNOMOUNT) { 1407 vn_vfsunlock(vp); 1408 error = EINVAL; 1409 goto errout; 1410 } 1411 } 1412 if ((uap->flags & (MS_DATA | MS_OPTIONSTR)) == 0) { 1413 uap->dataptr = NULL; 1414 uap->datalen = 0; 1415 } 1416 1417 /* 1418 * If this is a remount, we don't want to create a new VFS. 1419 * Instead, we pass the existing one with a remount flag. 1420 */ 1421 if (remount) { 1422 /* 1423 * Confirm that the mount point is the root vnode of the 1424 * file system that is being remounted. 1425 * This can happen if the user specifies a different 1426 * mount point directory pathname in the (re)mount command. 1427 * 1428 * Code below can only be reached if splice is true, so it's 1429 * safe to do vn_vfsunlock() here. 1430 */ 1431 if ((vp->v_flag & VROOT) == 0) { 1432 vn_vfsunlock(vp); 1433 error = ENOENT; 1434 goto errout; 1435 } 1436 /* 1437 * Disallow making file systems read-only unless file system 1438 * explicitly allows it in its vfssw. Ignore other flags. 1439 */ 1440 if (rdonly && vn_is_readonly(vp) == 0 && 1441 (vswp->vsw_flag & VSW_CANRWRO) == 0) { 1442 vn_vfsunlock(vp); 1443 error = EINVAL; 1444 goto errout; 1445 } 1446 /* 1447 * Disallow changing the NBMAND disposition of the file 1448 * system on remounts. 1449 */ 1450 if ((nbmand && ((vp->v_vfsp->vfs_flag & VFS_NBMAND) == 0)) || 1451 (!nbmand && (vp->v_vfsp->vfs_flag & VFS_NBMAND))) { 1452 vn_vfsunlock(vp); 1453 error = EINVAL; 1454 goto errout; 1455 } 1456 vfsp = vp->v_vfsp; 1457 ovflags = vfsp->vfs_flag; 1458 vfsp->vfs_flag |= VFS_REMOUNT; 1459 vfsp->vfs_flag &= ~VFS_RDONLY; 1460 } else { 1461 vfsp = vfs_alloc(KM_SLEEP); 1462 VFS_INIT(vfsp, vfsops, NULL); 1463 } 1464 1465 VFS_HOLD(vfsp); 1466 1467 if ((error = lofi_add(fsname, vfsp, &mnt_mntopts, uap)) != 0) { 1468 if (!remount) { 1469 if (splice) 1470 vn_vfsunlock(vp); 1471 vfs_free(vfsp); 1472 } else { 1473 vn_vfsunlock(vp); 1474 VFS_RELE(vfsp); 1475 } 1476 goto errout; 1477 } 1478 1479 /* 1480 * PRIV_SYS_MOUNT doesn't mean you can become root. 1481 */ 1482 if (vfsp->vfs_lofi_minor != 0) { 1483 uap->flags |= MS_NOSUID; 1484 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0); 1485 } 1486 1487 /* 1488 * The vfs_reflock is not used anymore the code below explicitly 1489 * holds it preventing others accesing it directly. 1490 */ 1491 if ((sema_tryp(&vfsp->vfs_reflock) == 0) && 1492 !(vfsp->vfs_flag & VFS_REMOUNT)) 1493 cmn_err(CE_WARN, 1494 "mount type %s couldn't get vfs_reflock", vswp->vsw_name); 1495 1496 /* 1497 * Lock the vfs. If this is a remount we want to avoid spurious umount 1498 * failures that happen as a side-effect of fsflush() and other mount 1499 * and unmount operations that might be going on simultaneously and 1500 * may have locked the vfs currently. To not return EBUSY immediately 1501 * here we use vfs_lock_wait() instead vfs_lock() for the remount case. 1502 */ 1503 if (!remount) { 1504 if (error = vfs_lock(vfsp)) { 1505 vfsp->vfs_flag = ovflags; 1506 1507 lofi_remove(vfsp); 1508 1509 if (splice) 1510 vn_vfsunlock(vp); 1511 vfs_free(vfsp); 1512 goto errout; 1513 } 1514 } else { 1515 vfs_lock_wait(vfsp); 1516 } 1517 1518 /* 1519 * Add device to mount in progress table, global mounts require special 1520 * handling. It is possible that we have already done the lookupname 1521 * on a spliced, non-global fs. If so, we don't want to do it again 1522 * since we cannot do a lookupname after taking the 1523 * wlock above. This case is for a non-spliced, non-global filesystem. 1524 */ 1525 if (!addmip) { 1526 if ((uap->flags & MS_GLOBAL) == 0 && 1527 lookupname(uap->spec, fromspace, FOLLOW, NULL, &bvp) == 0) { 1528 addmip = 1; 1529 } 1530 } 1531 1532 if (addmip) { 1533 vnode_t *lvp = NULL; 1534 1535 error = vfs_get_lofi(vfsp, &lvp); 1536 if (error > 0) { 1537 lofi_remove(vfsp); 1538 1539 if (splice) 1540 vn_vfsunlock(vp); 1541 vfs_unlock(vfsp); 1542 1543 if (remount) { 1544 VFS_RELE(vfsp); 1545 } else { 1546 vfs_free(vfsp); 1547 } 1548 1549 goto errout; 1550 } else if (error == -1) { 1551 bdev = bvp->v_rdev; 1552 VN_RELE(bvp); 1553 } else { 1554 bdev = lvp->v_rdev; 1555 VN_RELE(lvp); 1556 VN_RELE(bvp); 1557 } 1558 1559 vfs_addmip(bdev, vfsp); 1560 addmip = 0; 1561 delmip = 1; 1562 } 1563 /* 1564 * Invalidate cached entry for the mount point. 1565 */ 1566 if (splice) 1567 dnlc_purge_vp(vp); 1568 1569 /* 1570 * If have an option string but the filesystem doesn't supply a 1571 * prototype options table, create a table with the global 1572 * options and sufficient room to accept all the options in the 1573 * string. Then parse the passed in option string 1574 * accepting all the options in the string. This gives us an 1575 * option table with all the proper cancel properties for the 1576 * global options. 1577 * 1578 * Filesystems that supply a prototype options table are handled 1579 * earlier in this function. 1580 */ 1581 if (uap->flags & MS_OPTIONSTR) { 1582 if (!(vswp->vsw_flag & VSW_HASPROTO)) { 1583 mntopts_t tmp_mntopts; 1584 1585 tmp_mntopts.mo_count = 0; 1586 vfs_createopttbl_extend(&tmp_mntopts, inargs, 1587 &mnt_mntopts); 1588 vfs_parsemntopts(&tmp_mntopts, inargs, 1); 1589 vfs_swapopttbl_nolock(&mnt_mntopts, &tmp_mntopts); 1590 vfs_freeopttbl(&tmp_mntopts); 1591 } 1592 } 1593 1594 /* 1595 * Serialize with zone state transitions. 1596 * See vfs_list_add; zone mounted into is: 1597 * zone_find_by_path(refstr_value(vfsp->vfs_mntpt)) 1598 * not the zone doing the mount (curproc->p_zone), but if we're already 1599 * inside a NGZ, then we know what zone we are. 1600 */ 1601 if (INGLOBALZONE(curproc)) { 1602 zone = zone_find_by_path(mountpt); 1603 ASSERT(zone != NULL); 1604 } else { 1605 zone = curproc->p_zone; 1606 /* 1607 * zone_find_by_path does a hold, so do one here too so that 1608 * we can do a zone_rele after mount_completed. 1609 */ 1610 zone_hold(zone); 1611 } 1612 mount_in_progress(zone); 1613 /* 1614 * Instantiate (or reinstantiate) the file system. If appropriate, 1615 * splice it into the file system name space. 1616 * 1617 * We want VFS_MOUNT() to be able to override the vfs_resource 1618 * string if necessary (ie, mntfs), and also for a remount to 1619 * change the same (necessary when remounting '/' during boot). 1620 * So we set up vfs_mntpt and vfs_resource to what we think they 1621 * should be, then hand off control to VFS_MOUNT() which can 1622 * override this. 1623 * 1624 * For safety's sake, when changing vfs_resource or vfs_mntpt of 1625 * a vfs which is on the vfs list (i.e. during a remount), we must 1626 * never set those fields to NULL. Several bits of code make 1627 * assumptions that the fields are always valid. 1628 */ 1629 vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts); 1630 if (remount) { 1631 if ((oldresource = vfsp->vfs_resource) != NULL) 1632 refstr_hold(oldresource); 1633 if ((oldmntpt = vfsp->vfs_mntpt) != NULL) 1634 refstr_hold(oldmntpt); 1635 } 1636 vfs_setresource(vfsp, resource, 0); 1637 vfs_setmntpoint(vfsp, mountpt, 0); 1638 1639 /* 1640 * going to mount on this vnode, so notify. 1641 */ 1642 vnevent_mountedover(vp, NULL); 1643 error = VFS_MOUNT(vfsp, vp, uap, credp); 1644 1645 if (uap->flags & MS_RDONLY) 1646 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0); 1647 if (uap->flags & MS_NOSUID) 1648 vfs_setmntopt(vfsp, MNTOPT_NOSUID, NULL, 0); 1649 if (uap->flags & MS_GLOBAL) 1650 vfs_setmntopt(vfsp, MNTOPT_GLOBAL, NULL, 0); 1651 1652 if (error) { 1653 lofi_remove(vfsp); 1654 1655 if (remount) { 1656 /* put back pre-remount options */ 1657 vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts); 1658 vfs_setmntpoint(vfsp, refstr_value(oldmntpt), 1659 VFSSP_VERBATIM); 1660 if (oldmntpt) 1661 refstr_rele(oldmntpt); 1662 vfs_setresource(vfsp, refstr_value(oldresource), 1663 VFSSP_VERBATIM); 1664 if (oldresource) 1665 refstr_rele(oldresource); 1666 vfsp->vfs_flag = ovflags; 1667 vfs_unlock(vfsp); 1668 VFS_RELE(vfsp); 1669 } else { 1670 vfs_unlock(vfsp); 1671 vfs_freemnttab(vfsp); 1672 vfs_free(vfsp); 1673 } 1674 } else { 1675 /* 1676 * Set the mount time to now 1677 */ 1678 vfsp->vfs_mtime = ddi_get_time(); 1679 if (remount) { 1680 vfsp->vfs_flag &= ~VFS_REMOUNT; 1681 if (oldresource) 1682 refstr_rele(oldresource); 1683 if (oldmntpt) 1684 refstr_rele(oldmntpt); 1685 } else if (splice) { 1686 /* 1687 * Link vfsp into the name space at the mount 1688 * point. Vfs_add() is responsible for 1689 * holding the mount point which will be 1690 * released when vfs_remove() is called. 1691 */ 1692 vfs_add(vp, vfsp, uap->flags); 1693 } else { 1694 /* 1695 * Hold the reference to file system which is 1696 * not linked into the name space. 1697 */ 1698 vfsp->vfs_zone = NULL; 1699 VFS_HOLD(vfsp); 1700 vfsp->vfs_vnodecovered = NULL; 1701 } 1702 /* 1703 * Set flags for global options encountered 1704 */ 1705 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) 1706 vfsp->vfs_flag |= VFS_RDONLY; 1707 else 1708 vfsp->vfs_flag &= ~VFS_RDONLY; 1709 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 1710 vfsp->vfs_flag |= (VFS_NOSETUID|VFS_NODEVICES); 1711 } else { 1712 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) 1713 vfsp->vfs_flag |= VFS_NODEVICES; 1714 else 1715 vfsp->vfs_flag &= ~VFS_NODEVICES; 1716 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) 1717 vfsp->vfs_flag |= VFS_NOSETUID; 1718 else 1719 vfsp->vfs_flag &= ~VFS_NOSETUID; 1720 } 1721 if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) 1722 vfsp->vfs_flag |= VFS_NBMAND; 1723 else 1724 vfsp->vfs_flag &= ~VFS_NBMAND; 1725 1726 if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) 1727 vfsp->vfs_flag |= VFS_XATTR; 1728 else 1729 vfsp->vfs_flag &= ~VFS_XATTR; 1730 1731 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) 1732 vfsp->vfs_flag |= VFS_NOEXEC; 1733 else 1734 vfsp->vfs_flag &= ~VFS_NOEXEC; 1735 1736 /* 1737 * Now construct the output option string of options 1738 * we recognized. 1739 */ 1740 if (uap->flags & MS_OPTIONSTR) { 1741 vfs_list_read_lock(); 1742 copyout_error = vfs_buildoptionstr( 1743 &vfsp->vfs_mntopts, inargs, optlen); 1744 vfs_list_unlock(); 1745 if (copyout_error == 0 && 1746 (uap->flags & MS_SYSSPACE) == 0) { 1747 copyout_error = copyoutstr(inargs, opts, 1748 optlen, NULL); 1749 } 1750 } 1751 1752 /* 1753 * If this isn't a remount, set up the vopstats before 1754 * anyone can touch this. We only allow spliced file 1755 * systems (file systems which are in the namespace) to 1756 * have the VFS_STATS flag set. 1757 * NOTE: PxFS mounts the underlying file system with 1758 * MS_NOSPLICE set and copies those vfs_flags to its private 1759 * vfs structure. As a result, PxFS should never have 1760 * the VFS_STATS flag or else we might access the vfs 1761 * statistics-related fields prior to them being 1762 * properly initialized. 1763 */ 1764 if (!remount && (vswp->vsw_flag & VSW_STATS) && splice) { 1765 initialize_vopstats(&vfsp->vfs_vopstats); 1766 /* 1767 * We need to set vfs_vskap to NULL because there's 1768 * a chance it won't be set below. This is checked 1769 * in teardown_vopstats() so we can't have garbage. 1770 */ 1771 vfsp->vfs_vskap = NULL; 1772 vfsp->vfs_flag |= VFS_STATS; 1773 vfsp->vfs_fstypevsp = get_fstype_vopstats(vfsp, vswp); 1774 } 1775 1776 if (vswp->vsw_flag & VSW_XID) 1777 vfsp->vfs_flag |= VFS_XID; 1778 1779 vfs_unlock(vfsp); 1780 } 1781 mount_completed(zone); 1782 zone_rele(zone); 1783 if (splice) 1784 vn_vfsunlock(vp); 1785 1786 if ((error == 0) && (copyout_error == 0)) { 1787 if (!remount) { 1788 /* 1789 * Don't call get_vskstat_anchor() while holding 1790 * locks since it allocates memory and calls 1791 * VFS_STATVFS(). For NFS, the latter can generate 1792 * an over-the-wire call. 1793 */ 1794 vskap = get_vskstat_anchor(vfsp); 1795 /* Only take the lock if we have something to do */ 1796 if (vskap != NULL) { 1797 vfs_lock_wait(vfsp); 1798 if (vfsp->vfs_flag & VFS_STATS) { 1799 vfsp->vfs_vskap = vskap; 1800 } 1801 vfs_unlock(vfsp); 1802 } 1803 } 1804 /* Return vfsp to caller. */ 1805 *vfspp = vfsp; 1806 } 1807 errout: 1808 vfs_freeopttbl(&mnt_mntopts); 1809 if (resource != NULL) 1810 kmem_free(resource, strlen(resource) + 1); 1811 if (mountpt != NULL) 1812 kmem_free(mountpt, strlen(mountpt) + 1); 1813 /* 1814 * It is possible we errored prior to adding to mount in progress 1815 * table. Must free vnode we acquired with successful lookupname. 1816 */ 1817 if (addmip) 1818 VN_RELE(bvp); 1819 if (delmip) 1820 vfs_delmip(vfsp); 1821 ASSERT(vswp != NULL); 1822 vfs_unrefvfssw(vswp); 1823 if (inargs != opts) 1824 kmem_free(inargs, MAX_MNTOPT_STR); 1825 if (copyout_error) { 1826 lofi_remove(vfsp); 1827 VFS_RELE(vfsp); 1828 error = copyout_error; 1829 } 1830 return (error); 1831 } 1832 1833 static void 1834 vfs_setpath( 1835 struct vfs *vfsp, /* vfs being updated */ 1836 refstr_t **refp, /* Ref-count string to contain the new path */ 1837 const char *newpath, /* Path to add to refp (above) */ 1838 uint32_t flag) /* flag */ 1839 { 1840 size_t len; 1841 refstr_t *ref; 1842 zone_t *zone = curproc->p_zone; 1843 char *sp; 1844 int have_list_lock = 0; 1845 1846 ASSERT(!VFS_ON_LIST(vfsp) || vfs_lock_held(vfsp)); 1847 1848 /* 1849 * New path must be less than MAXPATHLEN because mntfs 1850 * will only display up to MAXPATHLEN bytes. This is currently 1851 * safe, because domount() uses pn_get(), and other callers 1852 * similarly cap the size to fewer than MAXPATHLEN bytes. 1853 */ 1854 1855 ASSERT(strlen(newpath) < MAXPATHLEN); 1856 1857 /* mntfs requires consistency while vfs list lock is held */ 1858 1859 if (VFS_ON_LIST(vfsp)) { 1860 have_list_lock = 1; 1861 vfs_list_lock(); 1862 } 1863 1864 if (*refp != NULL) 1865 refstr_rele(*refp); 1866 1867 /* 1868 * If we are in a non-global zone then we prefix the supplied path, 1869 * newpath, with the zone's root path, with two exceptions. The first 1870 * is where we have been explicitly directed to avoid doing so; this 1871 * will be the case following a failed remount, where the path supplied 1872 * will be a saved version which must now be restored. The second 1873 * exception is where newpath is not a pathname but a descriptive name, 1874 * e.g. "procfs". 1875 */ 1876 if (zone == global_zone || (flag & VFSSP_VERBATIM) || *newpath != '/') { 1877 ref = refstr_alloc(newpath); 1878 goto out; 1879 } 1880 1881 /* 1882 * Truncate the trailing '/' in the zoneroot, and merge 1883 * in the zone's rootpath with the "newpath" (resource 1884 * or mountpoint) passed in. 1885 * 1886 * The size of the required buffer is thus the size of 1887 * the buffer required for the passed-in newpath 1888 * (strlen(newpath) + 1), plus the size of the buffer 1889 * required to hold zone_rootpath (zone_rootpathlen) 1890 * minus one for one of the now-superfluous NUL 1891 * terminations, minus one for the trailing '/'. 1892 * 1893 * That gives us: 1894 * 1895 * (strlen(newpath) + 1) + zone_rootpathlen - 1 - 1 1896 * 1897 * Which is what we have below. 1898 */ 1899 1900 len = strlen(newpath) + zone->zone_rootpathlen - 1; 1901 sp = kmem_alloc(len, KM_SLEEP); 1902 1903 /* 1904 * Copy everything including the trailing slash, which 1905 * we then overwrite with the NUL character. 1906 */ 1907 1908 (void) strcpy(sp, zone->zone_rootpath); 1909 sp[zone->zone_rootpathlen - 2] = '\0'; 1910 (void) strcat(sp, newpath); 1911 1912 ref = refstr_alloc(sp); 1913 kmem_free(sp, len); 1914 out: 1915 *refp = ref; 1916 1917 if (have_list_lock) { 1918 vfs_mnttab_modtimeupd(); 1919 vfs_list_unlock(); 1920 } 1921 } 1922 1923 /* 1924 * Record a mounted resource name in a vfs structure. 1925 * If vfsp is already mounted, caller must hold the vfs lock. 1926 */ 1927 void 1928 vfs_setresource(struct vfs *vfsp, const char *resource, uint32_t flag) 1929 { 1930 if (resource == NULL || resource[0] == '\0') 1931 resource = VFS_NORESOURCE; 1932 vfs_setpath(vfsp, &vfsp->vfs_resource, resource, flag); 1933 } 1934 1935 /* 1936 * Record a mount point name in a vfs structure. 1937 * If vfsp is already mounted, caller must hold the vfs lock. 1938 */ 1939 void 1940 vfs_setmntpoint(struct vfs *vfsp, const char *mntpt, uint32_t flag) 1941 { 1942 if (mntpt == NULL || mntpt[0] == '\0') 1943 mntpt = VFS_NOMNTPT; 1944 vfs_setpath(vfsp, &vfsp->vfs_mntpt, mntpt, flag); 1945 } 1946 1947 /* Returns the vfs_resource. Caller must call refstr_rele() when finished. */ 1948 1949 refstr_t * 1950 vfs_getresource(const struct vfs *vfsp) 1951 { 1952 refstr_t *resource; 1953 1954 vfs_list_read_lock(); 1955 resource = vfsp->vfs_resource; 1956 refstr_hold(resource); 1957 vfs_list_unlock(); 1958 1959 return (resource); 1960 } 1961 1962 /* Returns the vfs_mntpt. Caller must call refstr_rele() when finished. */ 1963 1964 refstr_t * 1965 vfs_getmntpoint(const struct vfs *vfsp) 1966 { 1967 refstr_t *mntpt; 1968 1969 vfs_list_read_lock(); 1970 mntpt = vfsp->vfs_mntpt; 1971 refstr_hold(mntpt); 1972 vfs_list_unlock(); 1973 1974 return (mntpt); 1975 } 1976 1977 /* 1978 * Create an empty options table with enough empty slots to hold all 1979 * The options in the options string passed as an argument. 1980 * Potentially prepend another options table. 1981 * 1982 * Note: caller is responsible for locking the vfs list, if needed, 1983 * to protect mops. 1984 */ 1985 static void 1986 vfs_createopttbl_extend(mntopts_t *mops, const char *opts, 1987 const mntopts_t *mtmpl) 1988 { 1989 const char *s = opts; 1990 uint_t count; 1991 1992 if (opts == NULL || *opts == '\0') { 1993 count = 0; 1994 } else { 1995 count = 1; 1996 1997 /* 1998 * Count number of options in the string 1999 */ 2000 for (s = strchr(s, ','); s != NULL; s = strchr(s, ',')) { 2001 count++; 2002 s++; 2003 } 2004 } 2005 vfs_copyopttbl_extend(mtmpl, mops, count); 2006 } 2007 2008 /* 2009 * Create an empty options table with enough empty slots to hold all 2010 * The options in the options string passed as an argument. 2011 * 2012 * This function is *not* for general use by filesystems. 2013 * 2014 * Note: caller is responsible for locking the vfs list, if needed, 2015 * to protect mops. 2016 */ 2017 void 2018 vfs_createopttbl(mntopts_t *mops, const char *opts) 2019 { 2020 vfs_createopttbl_extend(mops, opts, NULL); 2021 } 2022 2023 2024 /* 2025 * Swap two mount options tables 2026 */ 2027 static void 2028 vfs_swapopttbl_nolock(mntopts_t *optbl1, mntopts_t *optbl2) 2029 { 2030 uint_t tmpcnt; 2031 mntopt_t *tmplist; 2032 2033 tmpcnt = optbl2->mo_count; 2034 tmplist = optbl2->mo_list; 2035 optbl2->mo_count = optbl1->mo_count; 2036 optbl2->mo_list = optbl1->mo_list; 2037 optbl1->mo_count = tmpcnt; 2038 optbl1->mo_list = tmplist; 2039 } 2040 2041 static void 2042 vfs_swapopttbl(mntopts_t *optbl1, mntopts_t *optbl2) 2043 { 2044 vfs_list_lock(); 2045 vfs_swapopttbl_nolock(optbl1, optbl2); 2046 vfs_mnttab_modtimeupd(); 2047 vfs_list_unlock(); 2048 } 2049 2050 static char ** 2051 vfs_copycancelopt_extend(char **const moc, int extend) 2052 { 2053 int i = 0; 2054 int j; 2055 char **result; 2056 2057 if (moc != NULL) { 2058 for (; moc[i] != NULL; i++) 2059 /* count number of options to cancel */; 2060 } 2061 2062 if (i + extend == 0) 2063 return (NULL); 2064 2065 result = kmem_alloc((i + extend + 1) * sizeof (char *), KM_SLEEP); 2066 2067 for (j = 0; j < i; j++) { 2068 result[j] = kmem_alloc(strlen(moc[j]) + 1, KM_SLEEP); 2069 (void) strcpy(result[j], moc[j]); 2070 } 2071 for (; j <= i + extend; j++) 2072 result[j] = NULL; 2073 2074 return (result); 2075 } 2076 2077 static void 2078 vfs_copyopt(const mntopt_t *s, mntopt_t *d) 2079 { 2080 char *sp, *dp; 2081 2082 d->mo_flags = s->mo_flags; 2083 d->mo_data = s->mo_data; 2084 sp = s->mo_name; 2085 if (sp != NULL) { 2086 dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP); 2087 (void) strcpy(dp, sp); 2088 d->mo_name = dp; 2089 } else { 2090 d->mo_name = NULL; /* should never happen */ 2091 } 2092 2093 d->mo_cancel = vfs_copycancelopt_extend(s->mo_cancel, 0); 2094 2095 sp = s->mo_arg; 2096 if (sp != NULL) { 2097 dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP); 2098 (void) strcpy(dp, sp); 2099 d->mo_arg = dp; 2100 } else { 2101 d->mo_arg = NULL; 2102 } 2103 } 2104 2105 /* 2106 * Copy a mount options table, possibly allocating some spare 2107 * slots at the end. It is permissible to copy_extend the NULL table. 2108 */ 2109 static void 2110 vfs_copyopttbl_extend(const mntopts_t *smo, mntopts_t *dmo, int extra) 2111 { 2112 uint_t i, count; 2113 mntopt_t *motbl; 2114 2115 /* 2116 * Clear out any existing stuff in the options table being initialized 2117 */ 2118 vfs_freeopttbl(dmo); 2119 count = (smo == NULL) ? 0 : smo->mo_count; 2120 if ((count + extra) == 0) /* nothing to do */ 2121 return; 2122 dmo->mo_count = count + extra; 2123 motbl = kmem_zalloc((count + extra) * sizeof (mntopt_t), KM_SLEEP); 2124 dmo->mo_list = motbl; 2125 for (i = 0; i < count; i++) { 2126 vfs_copyopt(&smo->mo_list[i], &motbl[i]); 2127 } 2128 for (i = count; i < count + extra; i++) { 2129 motbl[i].mo_flags = MO_EMPTY; 2130 } 2131 } 2132 2133 /* 2134 * Copy a mount options table. 2135 * 2136 * This function is *not* for general use by filesystems. 2137 * 2138 * Note: caller is responsible for locking the vfs list, if needed, 2139 * to protect smo and dmo. 2140 */ 2141 void 2142 vfs_copyopttbl(const mntopts_t *smo, mntopts_t *dmo) 2143 { 2144 vfs_copyopttbl_extend(smo, dmo, 0); 2145 } 2146 2147 static char ** 2148 vfs_mergecancelopts(const mntopt_t *mop1, const mntopt_t *mop2) 2149 { 2150 int c1 = 0; 2151 int c2 = 0; 2152 char **result; 2153 char **sp1, **sp2, **dp; 2154 2155 /* 2156 * First we count both lists of cancel options. 2157 * If either is NULL or has no elements, we return a copy of 2158 * the other. 2159 */ 2160 if (mop1->mo_cancel != NULL) { 2161 for (; mop1->mo_cancel[c1] != NULL; c1++) 2162 /* count cancel options in mop1 */; 2163 } 2164 2165 if (c1 == 0) 2166 return (vfs_copycancelopt_extend(mop2->mo_cancel, 0)); 2167 2168 if (mop2->mo_cancel != NULL) { 2169 for (; mop2->mo_cancel[c2] != NULL; c2++) 2170 /* count cancel options in mop2 */; 2171 } 2172 2173 result = vfs_copycancelopt_extend(mop1->mo_cancel, c2); 2174 2175 if (c2 == 0) 2176 return (result); 2177 2178 /* 2179 * When we get here, we've got two sets of cancel options; 2180 * we need to merge the two sets. We know that the result 2181 * array has "c1+c2+1" entries and in the end we might shrink 2182 * it. 2183 * Result now has a copy of the c1 entries from mop1; we'll 2184 * now lookup all the entries of mop2 in mop1 and copy it if 2185 * it is unique. 2186 * This operation is O(n^2) but it's only called once per 2187 * filesystem per duplicate option. This is a situation 2188 * which doesn't arise with the filesystems in ON and 2189 * n is generally 1. 2190 */ 2191 2192 dp = &result[c1]; 2193 for (sp2 = mop2->mo_cancel; *sp2 != NULL; sp2++) { 2194 for (sp1 = mop1->mo_cancel; *sp1 != NULL; sp1++) { 2195 if (strcmp(*sp1, *sp2) == 0) 2196 break; 2197 } 2198 if (*sp1 == NULL) { 2199 /* 2200 * Option *sp2 not found in mop1, so copy it. 2201 * The calls to vfs_copycancelopt_extend() 2202 * guarantee that there's enough room. 2203 */ 2204 *dp = kmem_alloc(strlen(*sp2) + 1, KM_SLEEP); 2205 (void) strcpy(*dp++, *sp2); 2206 } 2207 } 2208 if (dp != &result[c1+c2]) { 2209 size_t bytes = (dp - result + 1) * sizeof (char *); 2210 char **nres = kmem_alloc(bytes, KM_SLEEP); 2211 2212 bcopy(result, nres, bytes); 2213 kmem_free(result, (c1 + c2 + 1) * sizeof (char *)); 2214 result = nres; 2215 } 2216 return (result); 2217 } 2218 2219 /* 2220 * Merge two mount option tables (outer and inner) into one. This is very 2221 * similar to "merging" global variables and automatic variables in C. 2222 * 2223 * This isn't (and doesn't have to be) fast. 2224 * 2225 * This function is *not* for general use by filesystems. 2226 * 2227 * Note: caller is responsible for locking the vfs list, if needed, 2228 * to protect omo, imo & dmo. 2229 */ 2230 void 2231 vfs_mergeopttbl(const mntopts_t *omo, const mntopts_t *imo, mntopts_t *dmo) 2232 { 2233 uint_t i, count; 2234 mntopt_t *mop, *motbl; 2235 uint_t freeidx; 2236 2237 /* 2238 * First determine how much space we need to allocate. 2239 */ 2240 count = omo->mo_count; 2241 for (i = 0; i < imo->mo_count; i++) { 2242 if (imo->mo_list[i].mo_flags & MO_EMPTY) 2243 continue; 2244 if (vfs_hasopt(omo, imo->mo_list[i].mo_name) == NULL) 2245 count++; 2246 } 2247 ASSERT(count >= omo->mo_count && 2248 count <= omo->mo_count + imo->mo_count); 2249 motbl = kmem_alloc(count * sizeof (mntopt_t), KM_SLEEP); 2250 for (i = 0; i < omo->mo_count; i++) 2251 vfs_copyopt(&omo->mo_list[i], &motbl[i]); 2252 freeidx = omo->mo_count; 2253 for (i = 0; i < imo->mo_count; i++) { 2254 if (imo->mo_list[i].mo_flags & MO_EMPTY) 2255 continue; 2256 if ((mop = vfs_hasopt(omo, imo->mo_list[i].mo_name)) != NULL) { 2257 char **newcanp; 2258 uint_t index = mop - omo->mo_list; 2259 2260 newcanp = vfs_mergecancelopts(mop, &motbl[index]); 2261 2262 vfs_freeopt(&motbl[index]); 2263 vfs_copyopt(&imo->mo_list[i], &motbl[index]); 2264 2265 vfs_freecancelopt(motbl[index].mo_cancel); 2266 motbl[index].mo_cancel = newcanp; 2267 } else { 2268 /* 2269 * If it's a new option, just copy it over to the first 2270 * free location. 2271 */ 2272 vfs_copyopt(&imo->mo_list[i], &motbl[freeidx++]); 2273 } 2274 } 2275 dmo->mo_count = count; 2276 dmo->mo_list = motbl; 2277 } 2278 2279 /* 2280 * Functions to set and clear mount options in a mount options table. 2281 */ 2282 2283 /* 2284 * Clear a mount option, if it exists. 2285 * 2286 * The update_mnttab arg indicates whether mops is part of a vfs that is on 2287 * the vfs list. 2288 */ 2289 static void 2290 vfs_clearmntopt_nolock(mntopts_t *mops, const char *opt, int update_mnttab) 2291 { 2292 struct mntopt *mop; 2293 uint_t i, count; 2294 2295 ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist)); 2296 2297 count = mops->mo_count; 2298 for (i = 0; i < count; i++) { 2299 mop = &mops->mo_list[i]; 2300 2301 if (mop->mo_flags & MO_EMPTY) 2302 continue; 2303 if (strcmp(opt, mop->mo_name)) 2304 continue; 2305 mop->mo_flags &= ~MO_SET; 2306 if (mop->mo_arg != NULL) { 2307 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2308 } 2309 mop->mo_arg = NULL; 2310 if (update_mnttab) 2311 vfs_mnttab_modtimeupd(); 2312 break; 2313 } 2314 } 2315 2316 void 2317 vfs_clearmntopt(struct vfs *vfsp, const char *opt) 2318 { 2319 int gotlock = 0; 2320 2321 if (VFS_ON_LIST(vfsp)) { 2322 gotlock = 1; 2323 vfs_list_lock(); 2324 } 2325 vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, opt, gotlock); 2326 if (gotlock) 2327 vfs_list_unlock(); 2328 } 2329 2330 2331 /* 2332 * Set a mount option on. If it's not found in the table, it's silently 2333 * ignored. If the option has MO_IGNORE set, it is still set unless the 2334 * VFS_NOFORCEOPT bit is set in the flags. Also, VFS_DISPLAY/VFS_NODISPLAY flag 2335 * bits can be used to toggle the MO_NODISPLAY bit for the option. 2336 * If the VFS_CREATEOPT flag bit is set then the first option slot with 2337 * MO_EMPTY set is created as the option passed in. 2338 * 2339 * The update_mnttab arg indicates whether mops is part of a vfs that is on 2340 * the vfs list. 2341 */ 2342 static void 2343 vfs_setmntopt_nolock(mntopts_t *mops, const char *opt, 2344 const char *arg, int flags, int update_mnttab) 2345 { 2346 mntopt_t *mop; 2347 uint_t i, count; 2348 char *sp; 2349 2350 ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist)); 2351 2352 if (flags & VFS_CREATEOPT) { 2353 if (vfs_hasopt(mops, opt) != NULL) { 2354 flags &= ~VFS_CREATEOPT; 2355 } 2356 } 2357 count = mops->mo_count; 2358 for (i = 0; i < count; i++) { 2359 mop = &mops->mo_list[i]; 2360 2361 if (mop->mo_flags & MO_EMPTY) { 2362 if ((flags & VFS_CREATEOPT) == 0) 2363 continue; 2364 sp = kmem_alloc(strlen(opt) + 1, KM_SLEEP); 2365 (void) strcpy(sp, opt); 2366 mop->mo_name = sp; 2367 if (arg != NULL) 2368 mop->mo_flags = MO_HASVALUE; 2369 else 2370 mop->mo_flags = 0; 2371 } else if (strcmp(opt, mop->mo_name)) { 2372 continue; 2373 } 2374 if ((mop->mo_flags & MO_IGNORE) && (flags & VFS_NOFORCEOPT)) 2375 break; 2376 if (arg != NULL && (mop->mo_flags & MO_HASVALUE) != 0) { 2377 sp = kmem_alloc(strlen(arg) + 1, KM_SLEEP); 2378 (void) strcpy(sp, arg); 2379 } else { 2380 sp = NULL; 2381 } 2382 if (mop->mo_arg != NULL) 2383 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2384 mop->mo_arg = sp; 2385 if (flags & VFS_DISPLAY) 2386 mop->mo_flags &= ~MO_NODISPLAY; 2387 if (flags & VFS_NODISPLAY) 2388 mop->mo_flags |= MO_NODISPLAY; 2389 mop->mo_flags |= MO_SET; 2390 if (mop->mo_cancel != NULL) { 2391 char **cp; 2392 2393 for (cp = mop->mo_cancel; *cp != NULL; cp++) 2394 vfs_clearmntopt_nolock(mops, *cp, 0); 2395 } 2396 if (update_mnttab) 2397 vfs_mnttab_modtimeupd(); 2398 break; 2399 } 2400 } 2401 2402 void 2403 vfs_setmntopt(struct vfs *vfsp, const char *opt, const char *arg, int flags) 2404 { 2405 int gotlock = 0; 2406 2407 if (VFS_ON_LIST(vfsp)) { 2408 gotlock = 1; 2409 vfs_list_lock(); 2410 } 2411 vfs_setmntopt_nolock(&vfsp->vfs_mntopts, opt, arg, flags, gotlock); 2412 if (gotlock) 2413 vfs_list_unlock(); 2414 } 2415 2416 2417 /* 2418 * Add a "tag" option to a mounted file system's options list. 2419 * 2420 * Note: caller is responsible for locking the vfs list, if needed, 2421 * to protect mops. 2422 */ 2423 static mntopt_t * 2424 vfs_addtag(mntopts_t *mops, const char *tag) 2425 { 2426 uint_t count; 2427 mntopt_t *mop, *motbl; 2428 2429 count = mops->mo_count + 1; 2430 motbl = kmem_zalloc(count * sizeof (mntopt_t), KM_SLEEP); 2431 if (mops->mo_count) { 2432 size_t len = (count - 1) * sizeof (mntopt_t); 2433 2434 bcopy(mops->mo_list, motbl, len); 2435 kmem_free(mops->mo_list, len); 2436 } 2437 mops->mo_count = count; 2438 mops->mo_list = motbl; 2439 mop = &motbl[count - 1]; 2440 mop->mo_flags = MO_TAG; 2441 mop->mo_name = kmem_alloc(strlen(tag) + 1, KM_SLEEP); 2442 (void) strcpy(mop->mo_name, tag); 2443 return (mop); 2444 } 2445 2446 /* 2447 * Allow users to set arbitrary "tags" in a vfs's mount options. 2448 * Broader use within the kernel is discouraged. 2449 */ 2450 int 2451 vfs_settag(uint_t major, uint_t minor, const char *mntpt, const char *tag, 2452 cred_t *cr) 2453 { 2454 vfs_t *vfsp; 2455 mntopts_t *mops; 2456 mntopt_t *mop; 2457 int found = 0; 2458 dev_t dev = makedevice(major, minor); 2459 int err = 0; 2460 char *buf = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP); 2461 2462 /* 2463 * Find the desired mounted file system 2464 */ 2465 vfs_list_lock(); 2466 vfsp = rootvfs; 2467 do { 2468 if (vfsp->vfs_dev == dev && 2469 strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) { 2470 found = 1; 2471 break; 2472 } 2473 vfsp = vfsp->vfs_next; 2474 } while (vfsp != rootvfs); 2475 2476 if (!found) { 2477 err = EINVAL; 2478 goto out; 2479 } 2480 err = secpolicy_fs_config(cr, vfsp); 2481 if (err != 0) 2482 goto out; 2483 2484 mops = &vfsp->vfs_mntopts; 2485 /* 2486 * Add tag if it doesn't already exist 2487 */ 2488 if ((mop = vfs_hasopt(mops, tag)) == NULL) { 2489 int len; 2490 2491 (void) vfs_buildoptionstr(mops, buf, MAX_MNTOPT_STR); 2492 len = strlen(buf); 2493 if (len + strlen(tag) + 2 > MAX_MNTOPT_STR) { 2494 err = ENAMETOOLONG; 2495 goto out; 2496 } 2497 mop = vfs_addtag(mops, tag); 2498 } 2499 if ((mop->mo_flags & MO_TAG) == 0) { 2500 err = EINVAL; 2501 goto out; 2502 } 2503 vfs_setmntopt_nolock(mops, tag, NULL, 0, 1); 2504 out: 2505 vfs_list_unlock(); 2506 kmem_free(buf, MAX_MNTOPT_STR); 2507 return (err); 2508 } 2509 2510 /* 2511 * Allow users to remove arbitrary "tags" in a vfs's mount options. 2512 * Broader use within the kernel is discouraged. 2513 */ 2514 int 2515 vfs_clrtag(uint_t major, uint_t minor, const char *mntpt, const char *tag, 2516 cred_t *cr) 2517 { 2518 vfs_t *vfsp; 2519 mntopt_t *mop; 2520 int found = 0; 2521 dev_t dev = makedevice(major, minor); 2522 int err = 0; 2523 2524 /* 2525 * Find the desired mounted file system 2526 */ 2527 vfs_list_lock(); 2528 vfsp = rootvfs; 2529 do { 2530 if (vfsp->vfs_dev == dev && 2531 strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) { 2532 found = 1; 2533 break; 2534 } 2535 vfsp = vfsp->vfs_next; 2536 } while (vfsp != rootvfs); 2537 2538 if (!found) { 2539 err = EINVAL; 2540 goto out; 2541 } 2542 err = secpolicy_fs_config(cr, vfsp); 2543 if (err != 0) 2544 goto out; 2545 2546 if ((mop = vfs_hasopt(&vfsp->vfs_mntopts, tag)) == NULL) { 2547 err = EINVAL; 2548 goto out; 2549 } 2550 if ((mop->mo_flags & MO_TAG) == 0) { 2551 err = EINVAL; 2552 goto out; 2553 } 2554 vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, tag, 1); 2555 out: 2556 vfs_list_unlock(); 2557 return (err); 2558 } 2559 2560 /* 2561 * Function to parse an option string and fill in a mount options table. 2562 * Unknown options are silently ignored. The input option string is modified 2563 * by replacing separators with nulls. If the create flag is set, options 2564 * not found in the table are just added on the fly. The table must have 2565 * an option slot marked MO_EMPTY to add an option on the fly. 2566 * 2567 * This function is *not* for general use by filesystems. 2568 * 2569 * Note: caller is responsible for locking the vfs list, if needed, 2570 * to protect mops.. 2571 */ 2572 void 2573 vfs_parsemntopts(mntopts_t *mops, char *osp, int create) 2574 { 2575 char *s = osp, *p, *nextop, *valp, *cp, *ep; 2576 int setflg = VFS_NOFORCEOPT; 2577 2578 if (osp == NULL) 2579 return; 2580 while (*s != '\0') { 2581 p = strchr(s, ','); /* find next option */ 2582 if (p == NULL) { 2583 cp = NULL; 2584 p = s + strlen(s); 2585 } else { 2586 cp = p; /* save location of comma */ 2587 *p++ = '\0'; /* mark end and point to next option */ 2588 } 2589 nextop = p; 2590 p = strchr(s, '='); /* look for value */ 2591 if (p == NULL) { 2592 valp = NULL; /* no value supplied */ 2593 } else { 2594 ep = p; /* save location of equals */ 2595 *p++ = '\0'; /* end option and point to value */ 2596 valp = p; 2597 } 2598 /* 2599 * set option into options table 2600 */ 2601 if (create) 2602 setflg |= VFS_CREATEOPT; 2603 vfs_setmntopt_nolock(mops, s, valp, setflg, 0); 2604 if (cp != NULL) 2605 *cp = ','; /* restore the comma */ 2606 if (valp != NULL) 2607 *ep = '='; /* restore the equals */ 2608 s = nextop; 2609 } 2610 } 2611 2612 /* 2613 * Function to inquire if an option exists in a mount options table. 2614 * Returns a pointer to the option if it exists, else NULL. 2615 * 2616 * This function is *not* for general use by filesystems. 2617 * 2618 * Note: caller is responsible for locking the vfs list, if needed, 2619 * to protect mops. 2620 */ 2621 struct mntopt * 2622 vfs_hasopt(const mntopts_t *mops, const char *opt) 2623 { 2624 struct mntopt *mop; 2625 uint_t i, count; 2626 2627 count = mops->mo_count; 2628 for (i = 0; i < count; i++) { 2629 mop = &mops->mo_list[i]; 2630 2631 if (mop->mo_flags & MO_EMPTY) 2632 continue; 2633 if (strcmp(opt, mop->mo_name) == 0) 2634 return (mop); 2635 } 2636 return (NULL); 2637 } 2638 2639 /* 2640 * Function to inquire if an option is set in a mount options table. 2641 * Returns non-zero if set and fills in the arg pointer with a pointer to 2642 * the argument string or NULL if there is no argument string. 2643 */ 2644 static int 2645 vfs_optionisset_nolock(const mntopts_t *mops, const char *opt, char **argp) 2646 { 2647 struct mntopt *mop; 2648 uint_t i, count; 2649 2650 count = mops->mo_count; 2651 for (i = 0; i < count; i++) { 2652 mop = &mops->mo_list[i]; 2653 2654 if (mop->mo_flags & MO_EMPTY) 2655 continue; 2656 if (strcmp(opt, mop->mo_name)) 2657 continue; 2658 if ((mop->mo_flags & MO_SET) == 0) 2659 return (0); 2660 if (argp != NULL && (mop->mo_flags & MO_HASVALUE) != 0) 2661 *argp = mop->mo_arg; 2662 return (1); 2663 } 2664 return (0); 2665 } 2666 2667 2668 int 2669 vfs_optionisset(const struct vfs *vfsp, const char *opt, char **argp) 2670 { 2671 int ret; 2672 2673 vfs_list_read_lock(); 2674 ret = vfs_optionisset_nolock(&vfsp->vfs_mntopts, opt, argp); 2675 vfs_list_unlock(); 2676 return (ret); 2677 } 2678 2679 2680 /* 2681 * Construct a comma separated string of the options set in the given 2682 * mount table, return the string in the given buffer. Return non-zero if 2683 * the buffer would overflow. 2684 * 2685 * This function is *not* for general use by filesystems. 2686 * 2687 * Note: caller is responsible for locking the vfs list, if needed, 2688 * to protect mp. 2689 */ 2690 int 2691 vfs_buildoptionstr(const mntopts_t *mp, char *buf, int len) 2692 { 2693 char *cp; 2694 uint_t i; 2695 2696 buf[0] = '\0'; 2697 cp = buf; 2698 for (i = 0; i < mp->mo_count; i++) { 2699 struct mntopt *mop; 2700 2701 mop = &mp->mo_list[i]; 2702 if (mop->mo_flags & MO_SET) { 2703 int optlen, comma = 0; 2704 2705 if (buf[0] != '\0') 2706 comma = 1; 2707 optlen = strlen(mop->mo_name); 2708 if (strlen(buf) + comma + optlen + 1 > len) 2709 goto err; 2710 if (comma) 2711 *cp++ = ','; 2712 (void) strcpy(cp, mop->mo_name); 2713 cp += optlen; 2714 /* 2715 * Append option value if there is one 2716 */ 2717 if (mop->mo_arg != NULL) { 2718 int arglen; 2719 2720 arglen = strlen(mop->mo_arg); 2721 if (strlen(buf) + arglen + 2 > len) 2722 goto err; 2723 *cp++ = '='; 2724 (void) strcpy(cp, mop->mo_arg); 2725 cp += arglen; 2726 } 2727 } 2728 } 2729 return (0); 2730 err: 2731 return (EOVERFLOW); 2732 } 2733 2734 static void 2735 vfs_freecancelopt(char **moc) 2736 { 2737 if (moc != NULL) { 2738 int ccnt = 0; 2739 char **cp; 2740 2741 for (cp = moc; *cp != NULL; cp++) { 2742 kmem_free(*cp, strlen(*cp) + 1); 2743 ccnt++; 2744 } 2745 kmem_free(moc, (ccnt + 1) * sizeof (char *)); 2746 } 2747 } 2748 2749 static void 2750 vfs_freeopt(mntopt_t *mop) 2751 { 2752 if (mop->mo_name != NULL) 2753 kmem_free(mop->mo_name, strlen(mop->mo_name) + 1); 2754 2755 vfs_freecancelopt(mop->mo_cancel); 2756 2757 if (mop->mo_arg != NULL) 2758 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2759 } 2760 2761 /* 2762 * Free a mount options table 2763 * 2764 * This function is *not* for general use by filesystems. 2765 * 2766 * Note: caller is responsible for locking the vfs list, if needed, 2767 * to protect mp. 2768 */ 2769 void 2770 vfs_freeopttbl(mntopts_t *mp) 2771 { 2772 uint_t i, count; 2773 2774 count = mp->mo_count; 2775 for (i = 0; i < count; i++) { 2776 vfs_freeopt(&mp->mo_list[i]); 2777 } 2778 if (count) { 2779 kmem_free(mp->mo_list, sizeof (mntopt_t) * count); 2780 mp->mo_count = 0; 2781 mp->mo_list = NULL; 2782 } 2783 } 2784 2785 2786 /* ARGSUSED */ 2787 static int 2788 vfs_mntdummyread(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred, 2789 caller_context_t *ct) 2790 { 2791 return (0); 2792 } 2793 2794 /* ARGSUSED */ 2795 static int 2796 vfs_mntdummywrite(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred, 2797 caller_context_t *ct) 2798 { 2799 return (0); 2800 } 2801 2802 /* 2803 * The dummy vnode is currently used only by file events notification 2804 * module which is just interested in the timestamps. 2805 */ 2806 /* ARGSUSED */ 2807 static int 2808 vfs_mntdummygetattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2809 caller_context_t *ct) 2810 { 2811 bzero(vap, sizeof (vattr_t)); 2812 vap->va_type = VREG; 2813 vap->va_nlink = 1; 2814 vap->va_ctime = vfs_mnttab_ctime; 2815 /* 2816 * it is ok to just copy mtime as the time will be monotonically 2817 * increasing. 2818 */ 2819 vap->va_mtime = vfs_mnttab_mtime; 2820 vap->va_atime = vap->va_mtime; 2821 return (0); 2822 } 2823 2824 static void 2825 vfs_mnttabvp_setup(void) 2826 { 2827 vnode_t *tvp; 2828 vnodeops_t *vfs_mntdummyvnops; 2829 const fs_operation_def_t mnt_dummyvnodeops_template[] = { 2830 VOPNAME_READ, { .vop_read = vfs_mntdummyread }, 2831 VOPNAME_WRITE, { .vop_write = vfs_mntdummywrite }, 2832 VOPNAME_GETATTR, { .vop_getattr = vfs_mntdummygetattr }, 2833 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 2834 NULL, NULL 2835 }; 2836 2837 if (vn_make_ops("mnttab", mnt_dummyvnodeops_template, 2838 &vfs_mntdummyvnops) != 0) { 2839 cmn_err(CE_WARN, "vfs_mnttabvp_setup: vn_make_ops failed"); 2840 /* Shouldn't happen, but not bad enough to panic */ 2841 return; 2842 } 2843 2844 /* 2845 * A global dummy vnode is allocated to represent mntfs files. 2846 * The mntfs file (/etc/mnttab) can be monitored for file events 2847 * and receive an event when mnttab changes. Dummy VOP calls 2848 * will be made on this vnode. The file events notification module 2849 * intercepts this vnode and delivers relevant events. 2850 */ 2851 tvp = vn_alloc(KM_SLEEP); 2852 tvp->v_flag = VNOMOUNT|VNOMAP|VNOSWAP|VNOCACHE; 2853 vn_setops(tvp, vfs_mntdummyvnops); 2854 tvp->v_type = VREG; 2855 /* 2856 * The mnt dummy ops do not reference v_data. 2857 * No other module intercepting this vnode should either. 2858 * Just set it to point to itself. 2859 */ 2860 tvp->v_data = (caddr_t)tvp; 2861 tvp->v_vfsp = rootvfs; 2862 vfs_mntdummyvp = tvp; 2863 } 2864 2865 /* 2866 * performs fake read/write ops 2867 */ 2868 static void 2869 vfs_mnttab_rwop(int rw) 2870 { 2871 struct uio uio; 2872 struct iovec iov; 2873 char buf[1]; 2874 2875 if (vfs_mntdummyvp == NULL) 2876 return; 2877 2878 bzero(&uio, sizeof (uio)); 2879 bzero(&iov, sizeof (iov)); 2880 iov.iov_base = buf; 2881 iov.iov_len = 0; 2882 uio.uio_iov = &iov; 2883 uio.uio_iovcnt = 1; 2884 uio.uio_loffset = 0; 2885 uio.uio_segflg = UIO_SYSSPACE; 2886 uio.uio_resid = 0; 2887 if (rw) { 2888 (void) VOP_WRITE(vfs_mntdummyvp, &uio, 0, kcred, NULL); 2889 } else { 2890 (void) VOP_READ(vfs_mntdummyvp, &uio, 0, kcred, NULL); 2891 } 2892 } 2893 2894 /* 2895 * Generate a write operation. 2896 */ 2897 void 2898 vfs_mnttab_writeop(void) 2899 { 2900 vfs_mnttab_rwop(1); 2901 } 2902 2903 /* 2904 * Generate a read operation. 2905 */ 2906 void 2907 vfs_mnttab_readop(void) 2908 { 2909 vfs_mnttab_rwop(0); 2910 } 2911 2912 /* 2913 * Free any mnttab information recorded in the vfs struct. 2914 * The vfs must not be on the vfs list. 2915 */ 2916 static void 2917 vfs_freemnttab(struct vfs *vfsp) 2918 { 2919 ASSERT(!VFS_ON_LIST(vfsp)); 2920 2921 /* 2922 * Free device and mount point information 2923 */ 2924 if (vfsp->vfs_mntpt != NULL) { 2925 refstr_rele(vfsp->vfs_mntpt); 2926 vfsp->vfs_mntpt = NULL; 2927 } 2928 if (vfsp->vfs_resource != NULL) { 2929 refstr_rele(vfsp->vfs_resource); 2930 vfsp->vfs_resource = NULL; 2931 } 2932 /* 2933 * Now free mount options information 2934 */ 2935 vfs_freeopttbl(&vfsp->vfs_mntopts); 2936 } 2937 2938 /* 2939 * Return the last mnttab modification time 2940 */ 2941 void 2942 vfs_mnttab_modtime(timespec_t *ts) 2943 { 2944 ASSERT(RW_LOCK_HELD(&vfslist)); 2945 *ts = vfs_mnttab_mtime; 2946 } 2947 2948 /* 2949 * See if mnttab is changed 2950 */ 2951 void 2952 vfs_mnttab_poll(timespec_t *old, struct pollhead **phpp) 2953 { 2954 int changed; 2955 2956 *phpp = (struct pollhead *)NULL; 2957 2958 /* 2959 * Note: don't grab vfs list lock before accessing vfs_mnttab_mtime. 2960 * Can lead to deadlock against vfs_mnttab_modtimeupd(). It is safe 2961 * to not grab the vfs list lock because tv_sec is monotonically 2962 * increasing. 2963 */ 2964 2965 changed = (old->tv_nsec != vfs_mnttab_mtime.tv_nsec) || 2966 (old->tv_sec != vfs_mnttab_mtime.tv_sec); 2967 if (!changed) { 2968 *phpp = &vfs_pollhd; 2969 } 2970 } 2971 2972 /* Provide a unique and monotonically-increasing timestamp. */ 2973 void 2974 vfs_mono_time(timespec_t *ts) 2975 { 2976 static volatile hrtime_t hrt; /* The saved time. */ 2977 hrtime_t newhrt, oldhrt; /* For effecting the CAS. */ 2978 timespec_t newts; 2979 2980 /* 2981 * Try gethrestime() first, but be prepared to fabricate a sensible 2982 * answer at the first sign of any trouble. 2983 */ 2984 gethrestime(&newts); 2985 newhrt = ts2hrt(&newts); 2986 for (;;) { 2987 oldhrt = hrt; 2988 if (newhrt <= hrt) 2989 newhrt = hrt + 1; 2990 if (atomic_cas_64((uint64_t *)&hrt, oldhrt, newhrt) == oldhrt) 2991 break; 2992 } 2993 hrt2ts(newhrt, ts); 2994 } 2995 2996 /* 2997 * Update the mnttab modification time and wake up any waiters for 2998 * mnttab changes 2999 */ 3000 void 3001 vfs_mnttab_modtimeupd() 3002 { 3003 hrtime_t oldhrt, newhrt; 3004 3005 ASSERT(RW_WRITE_HELD(&vfslist)); 3006 oldhrt = ts2hrt(&vfs_mnttab_mtime); 3007 gethrestime(&vfs_mnttab_mtime); 3008 newhrt = ts2hrt(&vfs_mnttab_mtime); 3009 if (oldhrt == (hrtime_t)0) 3010 vfs_mnttab_ctime = vfs_mnttab_mtime; 3011 /* 3012 * Attempt to provide unique mtime (like uniqtime but not). 3013 */ 3014 if (newhrt == oldhrt) { 3015 newhrt++; 3016 hrt2ts(newhrt, &vfs_mnttab_mtime); 3017 } 3018 pollwakeup(&vfs_pollhd, (short)POLLRDBAND); 3019 vfs_mnttab_writeop(); 3020 } 3021 3022 int 3023 dounmount(struct vfs *vfsp, int flag, cred_t *cr) 3024 { 3025 vnode_t *coveredvp; 3026 int error; 3027 extern void teardown_vopstats(vfs_t *); 3028 3029 /* 3030 * Get covered vnode. This will be NULL if the vfs is not linked 3031 * into the file system name space (i.e., domount() with MNT_NOSPICE). 3032 */ 3033 coveredvp = vfsp->vfs_vnodecovered; 3034 ASSERT(coveredvp == NULL || vn_vfswlock_held(coveredvp)); 3035 3036 /* 3037 * Purge all dnlc entries for this vfs. 3038 */ 3039 (void) dnlc_purge_vfsp(vfsp, 0); 3040 3041 /* For forcible umount, skip VFS_SYNC() since it may hang */ 3042 if ((flag & MS_FORCE) == 0) 3043 (void) VFS_SYNC(vfsp, 0, cr); 3044 3045 /* 3046 * Lock the vfs to maintain fs status quo during unmount. This 3047 * has to be done after the sync because ufs_update tries to acquire 3048 * the vfs_reflock. 3049 */ 3050 vfs_lock_wait(vfsp); 3051 3052 if (error = VFS_UNMOUNT(vfsp, flag, cr)) { 3053 vfs_unlock(vfsp); 3054 if (coveredvp != NULL) 3055 vn_vfsunlock(coveredvp); 3056 } else if (coveredvp != NULL) { 3057 teardown_vopstats(vfsp); 3058 /* 3059 * vfs_remove() will do a VN_RELE(vfsp->vfs_vnodecovered) 3060 * when it frees vfsp so we do a VN_HOLD() so we can 3061 * continue to use coveredvp afterwards. 3062 */ 3063 VN_HOLD(coveredvp); 3064 vfs_remove(vfsp); 3065 vn_vfsunlock(coveredvp); 3066 VN_RELE(coveredvp); 3067 } else { 3068 teardown_vopstats(vfsp); 3069 /* 3070 * Release the reference to vfs that is not linked 3071 * into the name space. 3072 */ 3073 vfs_unlock(vfsp); 3074 VFS_RELE(vfsp); 3075 } 3076 return (error); 3077 } 3078 3079 3080 /* 3081 * Vfs_unmountall() is called by uadmin() to unmount all 3082 * mounted file systems (except the root file system) during shutdown. 3083 * It follows the existing locking protocol when traversing the vfs list 3084 * to sync and unmount vfses. Even though there should be no 3085 * other thread running while the system is shutting down, it is prudent 3086 * to still follow the locking protocol. 3087 */ 3088 void 3089 vfs_unmountall(void) 3090 { 3091 struct vfs *vfsp; 3092 struct vfs *prev_vfsp = NULL; 3093 int error; 3094 3095 /* 3096 * Toss all dnlc entries now so that the per-vfs sync 3097 * and unmount operations don't have to slog through 3098 * a bunch of uninteresting vnodes over and over again. 3099 */ 3100 dnlc_purge(); 3101 3102 vfs_list_lock(); 3103 for (vfsp = rootvfs->vfs_prev; vfsp != rootvfs; vfsp = prev_vfsp) { 3104 prev_vfsp = vfsp->vfs_prev; 3105 3106 if (vfs_lock(vfsp) != 0) 3107 continue; 3108 error = vn_vfswlock(vfsp->vfs_vnodecovered); 3109 vfs_unlock(vfsp); 3110 if (error) 3111 continue; 3112 3113 vfs_list_unlock(); 3114 3115 (void) VFS_SYNC(vfsp, SYNC_CLOSE, CRED()); 3116 (void) dounmount(vfsp, 0, CRED()); 3117 3118 /* 3119 * Since we dropped the vfslist lock above we must 3120 * verify that next_vfsp still exists, else start over. 3121 */ 3122 vfs_list_lock(); 3123 for (vfsp = rootvfs->vfs_prev; 3124 vfsp != rootvfs; vfsp = vfsp->vfs_prev) 3125 if (vfsp == prev_vfsp) 3126 break; 3127 if (vfsp == rootvfs && prev_vfsp != rootvfs) 3128 prev_vfsp = rootvfs->vfs_prev; 3129 } 3130 vfs_list_unlock(); 3131 } 3132 3133 /* 3134 * Called to add an entry to the end of the vfs mount in progress list 3135 */ 3136 void 3137 vfs_addmip(dev_t dev, struct vfs *vfsp) 3138 { 3139 struct ipmnt *mipp; 3140 3141 mipp = (struct ipmnt *)kmem_alloc(sizeof (struct ipmnt), KM_SLEEP); 3142 mipp->mip_next = NULL; 3143 mipp->mip_dev = dev; 3144 mipp->mip_vfsp = vfsp; 3145 mutex_enter(&vfs_miplist_mutex); 3146 if (vfs_miplist_end != NULL) 3147 vfs_miplist_end->mip_next = mipp; 3148 else 3149 vfs_miplist = mipp; 3150 vfs_miplist_end = mipp; 3151 mutex_exit(&vfs_miplist_mutex); 3152 } 3153 3154 /* 3155 * Called to remove an entry from the mount in progress list 3156 * Either because the mount completed or it failed. 3157 */ 3158 void 3159 vfs_delmip(struct vfs *vfsp) 3160 { 3161 struct ipmnt *mipp, *mipprev; 3162 3163 mutex_enter(&vfs_miplist_mutex); 3164 mipprev = NULL; 3165 for (mipp = vfs_miplist; 3166 mipp && mipp->mip_vfsp != vfsp; mipp = mipp->mip_next) { 3167 mipprev = mipp; 3168 } 3169 if (mipp == NULL) 3170 return; /* shouldn't happen */ 3171 if (mipp == vfs_miplist_end) 3172 vfs_miplist_end = mipprev; 3173 if (mipprev == NULL) 3174 vfs_miplist = mipp->mip_next; 3175 else 3176 mipprev->mip_next = mipp->mip_next; 3177 mutex_exit(&vfs_miplist_mutex); 3178 kmem_free(mipp, sizeof (struct ipmnt)); 3179 } 3180 3181 /* 3182 * vfs_add is called by a specific filesystem's mount routine to add 3183 * the new vfs into the vfs list/hash and to cover the mounted-on vnode. 3184 * The vfs should already have been locked by the caller. 3185 * 3186 * coveredvp is NULL if this is the root. 3187 */ 3188 void 3189 vfs_add(vnode_t *coveredvp, struct vfs *vfsp, int mflag) 3190 { 3191 int newflag; 3192 3193 ASSERT(vfs_lock_held(vfsp)); 3194 VFS_HOLD(vfsp); 3195 newflag = vfsp->vfs_flag; 3196 if (mflag & MS_RDONLY) 3197 newflag |= VFS_RDONLY; 3198 else 3199 newflag &= ~VFS_RDONLY; 3200 if (mflag & MS_NOSUID) 3201 newflag |= (VFS_NOSETUID|VFS_NODEVICES); 3202 else 3203 newflag &= ~(VFS_NOSETUID|VFS_NODEVICES); 3204 if (mflag & MS_NOMNTTAB) 3205 newflag |= VFS_NOMNTTAB; 3206 else 3207 newflag &= ~VFS_NOMNTTAB; 3208 3209 if (coveredvp != NULL) { 3210 ASSERT(vn_vfswlock_held(coveredvp)); 3211 coveredvp->v_vfsmountedhere = vfsp; 3212 VN_HOLD(coveredvp); 3213 } 3214 vfsp->vfs_vnodecovered = coveredvp; 3215 vfsp->vfs_flag = newflag; 3216 3217 vfs_list_add(vfsp); 3218 } 3219 3220 /* 3221 * Remove a vfs from the vfs list, null out the pointer from the 3222 * covered vnode to the vfs (v_vfsmountedhere), and null out the pointer 3223 * from the vfs to the covered vnode (vfs_vnodecovered). Release the 3224 * reference to the vfs and to the covered vnode. 3225 * 3226 * Called from dounmount after it's confirmed with the file system 3227 * that the unmount is legal. 3228 */ 3229 void 3230 vfs_remove(struct vfs *vfsp) 3231 { 3232 vnode_t *vp; 3233 3234 ASSERT(vfs_lock_held(vfsp)); 3235 3236 /* 3237 * Can't unmount root. Should never happen because fs will 3238 * be busy. 3239 */ 3240 if (vfsp == rootvfs) 3241 panic("vfs_remove: unmounting root"); 3242 3243 vfs_list_remove(vfsp); 3244 3245 /* 3246 * Unhook from the file system name space. 3247 */ 3248 vp = vfsp->vfs_vnodecovered; 3249 ASSERT(vn_vfswlock_held(vp)); 3250 vp->v_vfsmountedhere = NULL; 3251 vfsp->vfs_vnodecovered = NULL; 3252 VN_RELE(vp); 3253 3254 /* 3255 * Release lock and wakeup anybody waiting. 3256 */ 3257 vfs_unlock(vfsp); 3258 VFS_RELE(vfsp); 3259 } 3260 3261 /* 3262 * Lock a filesystem to prevent access to it while mounting, 3263 * unmounting and syncing. Return EBUSY immediately if lock 3264 * can't be acquired. 3265 */ 3266 int 3267 vfs_lock(vfs_t *vfsp) 3268 { 3269 vn_vfslocks_entry_t *vpvfsentry; 3270 3271 vpvfsentry = vn_vfslocks_getlock(vfsp); 3272 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_WRITER)) 3273 return (0); 3274 3275 vn_vfslocks_rele(vpvfsentry); 3276 return (EBUSY); 3277 } 3278 3279 int 3280 vfs_rlock(vfs_t *vfsp) 3281 { 3282 vn_vfslocks_entry_t *vpvfsentry; 3283 3284 vpvfsentry = vn_vfslocks_getlock(vfsp); 3285 3286 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_READER)) 3287 return (0); 3288 3289 vn_vfslocks_rele(vpvfsentry); 3290 return (EBUSY); 3291 } 3292 3293 void 3294 vfs_lock_wait(vfs_t *vfsp) 3295 { 3296 vn_vfslocks_entry_t *vpvfsentry; 3297 3298 vpvfsentry = vn_vfslocks_getlock(vfsp); 3299 rwst_enter(&vpvfsentry->ve_lock, RW_WRITER); 3300 } 3301 3302 void 3303 vfs_rlock_wait(vfs_t *vfsp) 3304 { 3305 vn_vfslocks_entry_t *vpvfsentry; 3306 3307 vpvfsentry = vn_vfslocks_getlock(vfsp); 3308 rwst_enter(&vpvfsentry->ve_lock, RW_READER); 3309 } 3310 3311 /* 3312 * Unlock a locked filesystem. 3313 */ 3314 void 3315 vfs_unlock(vfs_t *vfsp) 3316 { 3317 vn_vfslocks_entry_t *vpvfsentry; 3318 3319 /* 3320 * vfs_unlock will mimic sema_v behaviour to fix 4748018. 3321 * And these changes should remain for the patch changes as it is. 3322 */ 3323 if (panicstr) 3324 return; 3325 3326 /* 3327 * ve_refcount needs to be dropped twice here. 3328 * 1. To release refernce after a call to vfs_locks_getlock() 3329 * 2. To release the reference from the locking routines like 3330 * vfs_rlock_wait/vfs_wlock_wait/vfs_wlock etc,. 3331 */ 3332 3333 vpvfsentry = vn_vfslocks_getlock(vfsp); 3334 vn_vfslocks_rele(vpvfsentry); 3335 3336 rwst_exit(&vpvfsentry->ve_lock); 3337 vn_vfslocks_rele(vpvfsentry); 3338 } 3339 3340 /* 3341 * Utility routine that allows a filesystem to construct its 3342 * fsid in "the usual way" - by munging some underlying dev_t and 3343 * the filesystem type number into the 64-bit fsid. Note that 3344 * this implicitly relies on dev_t persistence to make filesystem 3345 * id's persistent. 3346 * 3347 * There's nothing to prevent an individual fs from constructing its 3348 * fsid in a different way, and indeed they should. 3349 * 3350 * Since we want fsids to be 32-bit quantities (so that they can be 3351 * exported identically by either 32-bit or 64-bit APIs, as well as 3352 * the fact that fsid's are "known" to NFS), we compress the device 3353 * number given down to 32-bits, and panic if that isn't possible. 3354 */ 3355 void 3356 vfs_make_fsid(fsid_t *fsi, dev_t dev, int val) 3357 { 3358 if (!cmpldev((dev32_t *)&fsi->val[0], dev)) 3359 panic("device number too big for fsid!"); 3360 fsi->val[1] = val; 3361 } 3362 3363 int 3364 vfs_lock_held(vfs_t *vfsp) 3365 { 3366 int held; 3367 vn_vfslocks_entry_t *vpvfsentry; 3368 3369 /* 3370 * vfs_lock_held will mimic sema_held behaviour 3371 * if panicstr is set. And these changes should remain 3372 * for the patch changes as it is. 3373 */ 3374 if (panicstr) 3375 return (1); 3376 3377 vpvfsentry = vn_vfslocks_getlock(vfsp); 3378 held = rwst_lock_held(&vpvfsentry->ve_lock, RW_WRITER); 3379 3380 vn_vfslocks_rele(vpvfsentry); 3381 return (held); 3382 } 3383 3384 struct _kthread * 3385 vfs_lock_owner(vfs_t *vfsp) 3386 { 3387 struct _kthread *owner; 3388 vn_vfslocks_entry_t *vpvfsentry; 3389 3390 /* 3391 * vfs_wlock_held will mimic sema_held behaviour 3392 * if panicstr is set. And these changes should remain 3393 * for the patch changes as it is. 3394 */ 3395 if (panicstr) 3396 return (NULL); 3397 3398 vpvfsentry = vn_vfslocks_getlock(vfsp); 3399 owner = rwst_owner(&vpvfsentry->ve_lock); 3400 3401 vn_vfslocks_rele(vpvfsentry); 3402 return (owner); 3403 } 3404 3405 /* 3406 * vfs list locking. 3407 * 3408 * Rather than manipulate the vfslist lock directly, we abstract into lock 3409 * and unlock routines to allow the locking implementation to be changed for 3410 * clustering. 3411 * 3412 * Whenever the vfs list is modified through its hash links, the overall list 3413 * lock must be obtained before locking the relevant hash bucket. But to see 3414 * whether a given vfs is on the list, it suffices to obtain the lock for the 3415 * hash bucket without getting the overall list lock. (See getvfs() below.) 3416 */ 3417 3418 void 3419 vfs_list_lock() 3420 { 3421 rw_enter(&vfslist, RW_WRITER); 3422 } 3423 3424 void 3425 vfs_list_read_lock() 3426 { 3427 rw_enter(&vfslist, RW_READER); 3428 } 3429 3430 void 3431 vfs_list_unlock() 3432 { 3433 rw_exit(&vfslist); 3434 } 3435 3436 /* 3437 * Low level worker routines for adding entries to and removing entries from 3438 * the vfs list. 3439 */ 3440 3441 static void 3442 vfs_hash_add(struct vfs *vfsp, int insert_at_head) 3443 { 3444 int vhno; 3445 struct vfs **hp; 3446 dev_t dev; 3447 3448 ASSERT(RW_WRITE_HELD(&vfslist)); 3449 3450 dev = expldev(vfsp->vfs_fsid.val[0]); 3451 vhno = VFSHASH(getmajor(dev), getminor(dev)); 3452 3453 mutex_enter(&rvfs_list[vhno].rvfs_lock); 3454 3455 /* 3456 * Link into the hash table, inserting it at the end, so that LOFS 3457 * with the same fsid as UFS (or other) file systems will not hide the 3458 * UFS. 3459 */ 3460 if (insert_at_head) { 3461 vfsp->vfs_hash = rvfs_list[vhno].rvfs_head; 3462 rvfs_list[vhno].rvfs_head = vfsp; 3463 } else { 3464 for (hp = &rvfs_list[vhno].rvfs_head; *hp != NULL; 3465 hp = &(*hp)->vfs_hash) 3466 continue; 3467 /* 3468 * hp now contains the address of the pointer to update 3469 * to effect the insertion. 3470 */ 3471 vfsp->vfs_hash = NULL; 3472 *hp = vfsp; 3473 } 3474 3475 rvfs_list[vhno].rvfs_len++; 3476 mutex_exit(&rvfs_list[vhno].rvfs_lock); 3477 } 3478 3479 3480 static void 3481 vfs_hash_remove(struct vfs *vfsp) 3482 { 3483 int vhno; 3484 struct vfs *tvfsp; 3485 dev_t dev; 3486 3487 ASSERT(RW_WRITE_HELD(&vfslist)); 3488 3489 dev = expldev(vfsp->vfs_fsid.val[0]); 3490 vhno = VFSHASH(getmajor(dev), getminor(dev)); 3491 3492 mutex_enter(&rvfs_list[vhno].rvfs_lock); 3493 3494 /* 3495 * Remove from hash. 3496 */ 3497 if (rvfs_list[vhno].rvfs_head == vfsp) { 3498 rvfs_list[vhno].rvfs_head = vfsp->vfs_hash; 3499 rvfs_list[vhno].rvfs_len--; 3500 goto foundit; 3501 } 3502 for (tvfsp = rvfs_list[vhno].rvfs_head; tvfsp != NULL; 3503 tvfsp = tvfsp->vfs_hash) { 3504 if (tvfsp->vfs_hash == vfsp) { 3505 tvfsp->vfs_hash = vfsp->vfs_hash; 3506 rvfs_list[vhno].rvfs_len--; 3507 goto foundit; 3508 } 3509 } 3510 cmn_err(CE_WARN, "vfs_list_remove: vfs not found in hash"); 3511 3512 foundit: 3513 3514 mutex_exit(&rvfs_list[vhno].rvfs_lock); 3515 } 3516 3517 3518 void 3519 vfs_list_add(struct vfs *vfsp) 3520 { 3521 zone_t *zone; 3522 3523 /* 3524 * Typically, the vfs_t will have been created on behalf of the file 3525 * system in vfs_init, where it will have been provided with a 3526 * vfs_impl_t. This, however, might be lacking if the vfs_t was created 3527 * by an unbundled file system. We therefore check for such an example 3528 * before stamping the vfs_t with its creation time for the benefit of 3529 * mntfs. 3530 */ 3531 if (vfsp->vfs_implp == NULL) 3532 vfsimpl_setup(vfsp); 3533 vfs_mono_time(&vfsp->vfs_hrctime); 3534 3535 /* 3536 * The zone that owns the mount is the one that performed the mount. 3537 * Note that this isn't necessarily the same as the zone mounted into. 3538 * The corresponding zone_rele_ref() will be done when the vfs_t 3539 * is being free'd. 3540 */ 3541 vfsp->vfs_zone = curproc->p_zone; 3542 zone_init_ref(&vfsp->vfs_implp->vi_zone_ref); 3543 zone_hold_ref(vfsp->vfs_zone, &vfsp->vfs_implp->vi_zone_ref, 3544 ZONE_REF_VFS); 3545 3546 /* 3547 * Find the zone mounted into, and put this mount on its vfs list. 3548 */ 3549 zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt)); 3550 ASSERT(zone != NULL); 3551 /* 3552 * Special casing for the root vfs. This structure is allocated 3553 * statically and hooked onto rootvfs at link time. During the 3554 * vfs_mountroot call at system startup time, the root file system's 3555 * VFS_MOUNTROOT routine will call vfs_add with this root vfs struct 3556 * as argument. The code below must detect and handle this special 3557 * case. The only apparent justification for this special casing is 3558 * to ensure that the root file system appears at the head of the 3559 * list. 3560 * 3561 * XXX: I'm assuming that it's ok to do normal list locking when 3562 * adding the entry for the root file system (this used to be 3563 * done with no locks held). 3564 */ 3565 vfs_list_lock(); 3566 /* 3567 * Link into the vfs list proper. 3568 */ 3569 if (vfsp == &root) { 3570 /* 3571 * Assert: This vfs is already on the list as its first entry. 3572 * Thus, there's nothing to do. 3573 */ 3574 ASSERT(rootvfs == vfsp); 3575 /* 3576 * Add it to the head of the global zone's vfslist. 3577 */ 3578 ASSERT(zone == global_zone); 3579 ASSERT(zone->zone_vfslist == NULL); 3580 zone->zone_vfslist = vfsp; 3581 } else { 3582 /* 3583 * Link to end of list using vfs_prev (as rootvfs is now a 3584 * doubly linked circular list) so list is in mount order for 3585 * mnttab use. 3586 */ 3587 rootvfs->vfs_prev->vfs_next = vfsp; 3588 vfsp->vfs_prev = rootvfs->vfs_prev; 3589 rootvfs->vfs_prev = vfsp; 3590 vfsp->vfs_next = rootvfs; 3591 3592 /* 3593 * Do it again for the zone-private list (which may be NULL). 3594 */ 3595 if (zone->zone_vfslist == NULL) { 3596 ASSERT(zone != global_zone); 3597 zone->zone_vfslist = vfsp; 3598 } else { 3599 zone->zone_vfslist->vfs_zone_prev->vfs_zone_next = vfsp; 3600 vfsp->vfs_zone_prev = zone->zone_vfslist->vfs_zone_prev; 3601 zone->zone_vfslist->vfs_zone_prev = vfsp; 3602 vfsp->vfs_zone_next = zone->zone_vfslist; 3603 } 3604 } 3605 3606 /* 3607 * Link into the hash table, inserting it at the end, so that LOFS 3608 * with the same fsid as UFS (or other) file systems will not hide 3609 * the UFS. 3610 */ 3611 vfs_hash_add(vfsp, 0); 3612 3613 /* 3614 * update the mnttab modification time 3615 */ 3616 vfs_mnttab_modtimeupd(); 3617 vfs_list_unlock(); 3618 zone_rele(zone); 3619 } 3620 3621 void 3622 vfs_list_remove(struct vfs *vfsp) 3623 { 3624 zone_t *zone; 3625 3626 zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt)); 3627 ASSERT(zone != NULL); 3628 /* 3629 * Callers are responsible for preventing attempts to unmount the 3630 * root. 3631 */ 3632 ASSERT(vfsp != rootvfs); 3633 3634 vfs_list_lock(); 3635 3636 /* 3637 * Remove from hash. 3638 */ 3639 vfs_hash_remove(vfsp); 3640 3641 /* 3642 * Remove from vfs list. 3643 */ 3644 vfsp->vfs_prev->vfs_next = vfsp->vfs_next; 3645 vfsp->vfs_next->vfs_prev = vfsp->vfs_prev; 3646 vfsp->vfs_next = vfsp->vfs_prev = NULL; 3647 3648 /* 3649 * Remove from zone-specific vfs list. 3650 */ 3651 if (zone->zone_vfslist == vfsp) 3652 zone->zone_vfslist = vfsp->vfs_zone_next; 3653 3654 if (vfsp->vfs_zone_next == vfsp) { 3655 ASSERT(vfsp->vfs_zone_prev == vfsp); 3656 ASSERT(zone->zone_vfslist == vfsp); 3657 zone->zone_vfslist = NULL; 3658 } 3659 3660 vfsp->vfs_zone_prev->vfs_zone_next = vfsp->vfs_zone_next; 3661 vfsp->vfs_zone_next->vfs_zone_prev = vfsp->vfs_zone_prev; 3662 vfsp->vfs_zone_next = vfsp->vfs_zone_prev = NULL; 3663 3664 /* 3665 * update the mnttab modification time 3666 */ 3667 vfs_mnttab_modtimeupd(); 3668 vfs_list_unlock(); 3669 zone_rele(zone); 3670 } 3671 3672 struct vfs * 3673 getvfs(fsid_t *fsid) 3674 { 3675 struct vfs *vfsp; 3676 int val0 = fsid->val[0]; 3677 int val1 = fsid->val[1]; 3678 dev_t dev = expldev(val0); 3679 int vhno = VFSHASH(getmajor(dev), getminor(dev)); 3680 kmutex_t *hmp = &rvfs_list[vhno].rvfs_lock; 3681 3682 mutex_enter(hmp); 3683 for (vfsp = rvfs_list[vhno].rvfs_head; vfsp; vfsp = vfsp->vfs_hash) { 3684 if (vfsp->vfs_fsid.val[0] == val0 && 3685 vfsp->vfs_fsid.val[1] == val1) { 3686 VFS_HOLD(vfsp); 3687 mutex_exit(hmp); 3688 return (vfsp); 3689 } 3690 } 3691 mutex_exit(hmp); 3692 return (NULL); 3693 } 3694 3695 /* 3696 * Search the vfs mount in progress list for a specified device/vfs entry. 3697 * Returns 0 if the first entry in the list that the device matches has the 3698 * given vfs pointer as well. If the device matches but a different vfs 3699 * pointer is encountered in the list before the given vfs pointer then 3700 * a 1 is returned. 3701 */ 3702 3703 int 3704 vfs_devmounting(dev_t dev, struct vfs *vfsp) 3705 { 3706 int retval = 0; 3707 struct ipmnt *mipp; 3708 3709 mutex_enter(&vfs_miplist_mutex); 3710 for (mipp = vfs_miplist; mipp != NULL; mipp = mipp->mip_next) { 3711 if (mipp->mip_dev == dev) { 3712 if (mipp->mip_vfsp != vfsp) 3713 retval = 1; 3714 break; 3715 } 3716 } 3717 mutex_exit(&vfs_miplist_mutex); 3718 return (retval); 3719 } 3720 3721 /* 3722 * Search the vfs list for a specified device. Returns 1, if entry is found 3723 * or 0 if no suitable entry is found. 3724 */ 3725 3726 int 3727 vfs_devismounted(dev_t dev) 3728 { 3729 struct vfs *vfsp; 3730 int found; 3731 3732 vfs_list_read_lock(); 3733 vfsp = rootvfs; 3734 found = 0; 3735 do { 3736 if (vfsp->vfs_dev == dev) { 3737 found = 1; 3738 break; 3739 } 3740 vfsp = vfsp->vfs_next; 3741 } while (vfsp != rootvfs); 3742 3743 vfs_list_unlock(); 3744 return (found); 3745 } 3746 3747 /* 3748 * Search the vfs list for a specified device. Returns a pointer to it 3749 * or NULL if no suitable entry is found. The caller of this routine 3750 * is responsible for releasing the returned vfs pointer. 3751 */ 3752 struct vfs * 3753 vfs_dev2vfsp(dev_t dev) 3754 { 3755 struct vfs *vfsp; 3756 int found; 3757 3758 vfs_list_read_lock(); 3759 vfsp = rootvfs; 3760 found = 0; 3761 do { 3762 /* 3763 * The following could be made more efficient by making 3764 * the entire loop use vfs_zone_next if the call is from 3765 * a zone. The only callers, however, ustat(2) and 3766 * umount2(2), don't seem to justify the added 3767 * complexity at present. 3768 */ 3769 if (vfsp->vfs_dev == dev && 3770 ZONE_PATH_VISIBLE(refstr_value(vfsp->vfs_mntpt), 3771 curproc->p_zone)) { 3772 VFS_HOLD(vfsp); 3773 found = 1; 3774 break; 3775 } 3776 vfsp = vfsp->vfs_next; 3777 } while (vfsp != rootvfs); 3778 vfs_list_unlock(); 3779 return (found ? vfsp: NULL); 3780 } 3781 3782 /* 3783 * Search the vfs list for a specified mntpoint. Returns a pointer to it 3784 * or NULL if no suitable entry is found. The caller of this routine 3785 * is responsible for releasing the returned vfs pointer. 3786 * 3787 * Note that if multiple mntpoints match, the last one matching is 3788 * returned in an attempt to return the "top" mount when overlay 3789 * mounts are covering the same mount point. This is accomplished by starting 3790 * at the end of the list and working our way backwards, stopping at the first 3791 * matching mount. 3792 */ 3793 struct vfs * 3794 vfs_mntpoint2vfsp(const char *mp) 3795 { 3796 struct vfs *vfsp; 3797 struct vfs *retvfsp = NULL; 3798 zone_t *zone = curproc->p_zone; 3799 struct vfs *list; 3800 3801 vfs_list_read_lock(); 3802 if (getzoneid() == GLOBAL_ZONEID) { 3803 /* 3804 * The global zone may see filesystems in any zone. 3805 */ 3806 vfsp = rootvfs->vfs_prev; 3807 do { 3808 if (strcmp(refstr_value(vfsp->vfs_mntpt), mp) == 0) { 3809 retvfsp = vfsp; 3810 break; 3811 } 3812 vfsp = vfsp->vfs_prev; 3813 } while (vfsp != rootvfs->vfs_prev); 3814 } else if ((list = zone->zone_vfslist) != NULL) { 3815 const char *mntpt; 3816 3817 vfsp = list->vfs_zone_prev; 3818 do { 3819 mntpt = refstr_value(vfsp->vfs_mntpt); 3820 mntpt = ZONE_PATH_TRANSLATE(mntpt, zone); 3821 if (strcmp(mntpt, mp) == 0) { 3822 retvfsp = vfsp; 3823 break; 3824 } 3825 vfsp = vfsp->vfs_zone_prev; 3826 } while (vfsp != list->vfs_zone_prev); 3827 } 3828 if (retvfsp) 3829 VFS_HOLD(retvfsp); 3830 vfs_list_unlock(); 3831 return (retvfsp); 3832 } 3833 3834 /* 3835 * Search the vfs list for a specified vfsops. 3836 * if vfs entry is found then return 1, else 0. 3837 */ 3838 int 3839 vfs_opsinuse(vfsops_t *ops) 3840 { 3841 struct vfs *vfsp; 3842 int found; 3843 3844 vfs_list_read_lock(); 3845 vfsp = rootvfs; 3846 found = 0; 3847 do { 3848 if (vfs_getops(vfsp) == ops) { 3849 found = 1; 3850 break; 3851 } 3852 vfsp = vfsp->vfs_next; 3853 } while (vfsp != rootvfs); 3854 vfs_list_unlock(); 3855 return (found); 3856 } 3857 3858 /* 3859 * Allocate an entry in vfssw for a file system type 3860 */ 3861 struct vfssw * 3862 allocate_vfssw(const char *type) 3863 { 3864 struct vfssw *vswp; 3865 3866 if (type[0] == '\0' || strlen(type) + 1 > _ST_FSTYPSZ) { 3867 /* 3868 * The vfssw table uses the empty string to identify an 3869 * available entry; we cannot add any type which has 3870 * a leading NUL. The string length is limited to 3871 * the size of the st_fstype array in struct stat. 3872 */ 3873 return (NULL); 3874 } 3875 3876 ASSERT(VFSSW_WRITE_LOCKED()); 3877 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) 3878 if (!ALLOCATED_VFSSW(vswp)) { 3879 vswp->vsw_name = kmem_alloc(strlen(type) + 1, KM_SLEEP); 3880 (void) strcpy(vswp->vsw_name, type); 3881 ASSERT(vswp->vsw_count == 0); 3882 vswp->vsw_count = 1; 3883 mutex_init(&vswp->vsw_lock, NULL, MUTEX_DEFAULT, NULL); 3884 return (vswp); 3885 } 3886 return (NULL); 3887 } 3888 3889 /* 3890 * Impose additional layer of translation between vfstype names 3891 * and module names in the filesystem. 3892 */ 3893 static const char * 3894 vfs_to_modname(const char *vfstype) 3895 { 3896 if (strcmp(vfstype, "proc") == 0) { 3897 vfstype = "procfs"; 3898 } else if (strcmp(vfstype, "fd") == 0) { 3899 vfstype = "fdfs"; 3900 } else if (strncmp(vfstype, "nfs", 3) == 0) { 3901 vfstype = "nfs"; 3902 } 3903 3904 return (vfstype); 3905 } 3906 3907 /* 3908 * Find a vfssw entry given a file system type name. 3909 * Try to autoload the filesystem if it's not found. 3910 * If it's installed, return the vfssw locked to prevent unloading. 3911 */ 3912 struct vfssw * 3913 vfs_getvfssw(const char *type) 3914 { 3915 struct vfssw *vswp; 3916 const char *modname; 3917 3918 RLOCK_VFSSW(); 3919 vswp = vfs_getvfsswbyname(type); 3920 modname = vfs_to_modname(type); 3921 3922 if (rootdir == NULL) { 3923 /* 3924 * If we haven't yet loaded the root file system, then our 3925 * _init won't be called until later. Allocate vfssw entry, 3926 * because mod_installfs won't be called. 3927 */ 3928 if (vswp == NULL) { 3929 RUNLOCK_VFSSW(); 3930 WLOCK_VFSSW(); 3931 if ((vswp = vfs_getvfsswbyname(type)) == NULL) { 3932 if ((vswp = allocate_vfssw(type)) == NULL) { 3933 WUNLOCK_VFSSW(); 3934 return (NULL); 3935 } 3936 } 3937 WUNLOCK_VFSSW(); 3938 RLOCK_VFSSW(); 3939 } 3940 if (!VFS_INSTALLED(vswp)) { 3941 RUNLOCK_VFSSW(); 3942 (void) modloadonly("fs", modname); 3943 } else 3944 RUNLOCK_VFSSW(); 3945 return (vswp); 3946 } 3947 3948 /* 3949 * Try to load the filesystem. Before calling modload(), we drop 3950 * our lock on the VFS switch table, and pick it up after the 3951 * module is loaded. However, there is a potential race: the 3952 * module could be unloaded after the call to modload() completes 3953 * but before we pick up the lock and drive on. Therefore, 3954 * we keep reloading the module until we've loaded the module 3955 * _and_ we have the lock on the VFS switch table. 3956 */ 3957 while (vswp == NULL || !VFS_INSTALLED(vswp)) { 3958 RUNLOCK_VFSSW(); 3959 if (modload("fs", modname) == -1) 3960 return (NULL); 3961 RLOCK_VFSSW(); 3962 if (vswp == NULL) 3963 if ((vswp = vfs_getvfsswbyname(type)) == NULL) 3964 break; 3965 } 3966 RUNLOCK_VFSSW(); 3967 3968 return (vswp); 3969 } 3970 3971 /* 3972 * Find a vfssw entry given a file system type name. 3973 */ 3974 struct vfssw * 3975 vfs_getvfsswbyname(const char *type) 3976 { 3977 struct vfssw *vswp; 3978 3979 ASSERT(VFSSW_LOCKED()); 3980 if (type == NULL || *type == '\0') 3981 return (NULL); 3982 3983 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 3984 if (strcmp(type, vswp->vsw_name) == 0) { 3985 vfs_refvfssw(vswp); 3986 return (vswp); 3987 } 3988 } 3989 3990 return (NULL); 3991 } 3992 3993 /* 3994 * Find a vfssw entry given a set of vfsops. 3995 */ 3996 struct vfssw * 3997 vfs_getvfsswbyvfsops(vfsops_t *vfsops) 3998 { 3999 struct vfssw *vswp; 4000 4001 RLOCK_VFSSW(); 4002 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 4003 if (ALLOCATED_VFSSW(vswp) && &vswp->vsw_vfsops == vfsops) { 4004 vfs_refvfssw(vswp); 4005 RUNLOCK_VFSSW(); 4006 return (vswp); 4007 } 4008 } 4009 RUNLOCK_VFSSW(); 4010 4011 return (NULL); 4012 } 4013 4014 /* 4015 * Reference a vfssw entry. 4016 */ 4017 void 4018 vfs_refvfssw(struct vfssw *vswp) 4019 { 4020 4021 mutex_enter(&vswp->vsw_lock); 4022 vswp->vsw_count++; 4023 mutex_exit(&vswp->vsw_lock); 4024 } 4025 4026 /* 4027 * Unreference a vfssw entry. 4028 */ 4029 void 4030 vfs_unrefvfssw(struct vfssw *vswp) 4031 { 4032 4033 mutex_enter(&vswp->vsw_lock); 4034 vswp->vsw_count--; 4035 mutex_exit(&vswp->vsw_lock); 4036 } 4037 4038 int sync_timeout = 30; /* timeout for syncing a page during panic */ 4039 int sync_timeleft; /* portion of sync_timeout remaining */ 4040 4041 static int sync_retries = 20; /* number of retries when not making progress */ 4042 static int sync_triesleft; /* portion of sync_retries remaining */ 4043 4044 static pgcnt_t old_pgcnt, new_pgcnt; 4045 static int new_bufcnt, old_bufcnt; 4046 4047 /* 4048 * Sync all of the mounted filesystems, and then wait for the actual i/o to 4049 * complete. We wait by counting the number of dirty pages and buffers, 4050 * pushing them out using bio_busy() and page_busy(), and then counting again. 4051 * This routine is used during both the uadmin A_SHUTDOWN code as well as 4052 * the SYNC phase of the panic code (see comments in panic.c). It should only 4053 * be used after some higher-level mechanism has quiesced the system so that 4054 * new writes are not being initiated while we are waiting for completion. 4055 * 4056 * To ensure finite running time, our algorithm uses two timeout mechanisms: 4057 * sync_timeleft (a timer implemented by the omnipresent deadman() cyclic), and 4058 * sync_triesleft (a progress counter used by the vfs_syncall() loop below). 4059 * Together these ensure that syncing completes if our i/o paths are stuck. 4060 * The counters are declared above so they can be found easily in the debugger. 4061 * 4062 * The sync_timeleft counter is reset by bio_busy() and page_busy() using the 4063 * vfs_syncprogress() subroutine whenever we make progress through the lists of 4064 * pages and buffers. It is decremented and expired by the deadman() cyclic. 4065 * When vfs_syncall() decides it is done, we disable the deadman() counter by 4066 * setting sync_timeleft to zero. This timer guards against vfs_syncall() 4067 * deadlocking or hanging inside of a broken filesystem or driver routine. 4068 * 4069 * The sync_triesleft counter is updated by vfs_syncall() itself. If we make 4070 * sync_retries consecutive calls to bio_busy() and page_busy() without 4071 * decreasing either the number of dirty buffers or dirty pages below the 4072 * lowest count we have seen so far, we give up and return from vfs_syncall(). 4073 * 4074 * Each loop iteration ends with a call to delay() one second to allow time for 4075 * i/o completion and to permit the user time to read our progress messages. 4076 */ 4077 void 4078 vfs_syncall(void) 4079 { 4080 if (rootdir == NULL && !modrootloaded) 4081 return; /* panic during boot - no filesystems yet */ 4082 4083 printf("syncing file systems..."); 4084 vfs_syncprogress(); 4085 sync(); 4086 4087 vfs_syncprogress(); 4088 sync_triesleft = sync_retries; 4089 4090 old_bufcnt = new_bufcnt = INT_MAX; 4091 old_pgcnt = new_pgcnt = ULONG_MAX; 4092 4093 while (sync_triesleft > 0) { 4094 old_bufcnt = MIN(old_bufcnt, new_bufcnt); 4095 old_pgcnt = MIN(old_pgcnt, new_pgcnt); 4096 4097 new_bufcnt = bio_busy(B_TRUE); 4098 new_pgcnt = page_busy(B_TRUE); 4099 vfs_syncprogress(); 4100 4101 if (new_bufcnt == 0 && new_pgcnt == 0) 4102 break; 4103 4104 if (new_bufcnt < old_bufcnt || new_pgcnt < old_pgcnt) 4105 sync_triesleft = sync_retries; 4106 else 4107 sync_triesleft--; 4108 4109 if (new_bufcnt) 4110 printf(" [%d]", new_bufcnt); 4111 if (new_pgcnt) 4112 printf(" %lu", new_pgcnt); 4113 4114 delay(hz); 4115 } 4116 4117 if (new_bufcnt != 0 || new_pgcnt != 0) 4118 printf(" done (not all i/o completed)\n"); 4119 else 4120 printf(" done\n"); 4121 4122 sync_timeleft = 0; 4123 delay(hz); 4124 } 4125 4126 /* 4127 * If we are in the middle of the sync phase of panic, reset sync_timeleft to 4128 * sync_timeout to indicate that we are making progress and the deadman() 4129 * omnipresent cyclic should not yet time us out. Note that it is safe to 4130 * store to sync_timeleft here since the deadman() is firing at high-level 4131 * on top of us. If we are racing with the deadman(), either the deadman() 4132 * will decrement the old value and then we will reset it, or we will 4133 * reset it and then the deadman() will immediately decrement it. In either 4134 * case, correct behavior results. 4135 */ 4136 void 4137 vfs_syncprogress(void) 4138 { 4139 if (panicstr) 4140 sync_timeleft = sync_timeout; 4141 } 4142 4143 /* 4144 * Map VFS flags to statvfs flags. These shouldn't really be separate 4145 * flags at all. 4146 */ 4147 uint_t 4148 vf_to_stf(uint_t vf) 4149 { 4150 uint_t stf = 0; 4151 4152 if (vf & VFS_RDONLY) 4153 stf |= ST_RDONLY; 4154 if (vf & VFS_NOSETUID) 4155 stf |= ST_NOSUID; 4156 if (vf & VFS_NOTRUNC) 4157 stf |= ST_NOTRUNC; 4158 4159 return (stf); 4160 } 4161 4162 /* 4163 * Entries for (illegal) fstype 0. 4164 */ 4165 /* ARGSUSED */ 4166 int 4167 vfsstray_sync(struct vfs *vfsp, short arg, struct cred *cr) 4168 { 4169 cmn_err(CE_PANIC, "stray vfs operation"); 4170 return (0); 4171 } 4172 4173 /* 4174 * Entries for (illegal) fstype 0. 4175 */ 4176 int 4177 vfsstray(void) 4178 { 4179 cmn_err(CE_PANIC, "stray vfs operation"); 4180 return (0); 4181 } 4182 4183 /* 4184 * Support for dealing with forced UFS unmount and its interaction with 4185 * LOFS. Could be used by any filesystem. 4186 * See bug 1203132. 4187 */ 4188 int 4189 vfs_EIO(void) 4190 { 4191 return (EIO); 4192 } 4193 4194 /* 4195 * We've gotta define the op for sync separately, since the compiler gets 4196 * confused if we mix and match ANSI and normal style prototypes when 4197 * a "short" argument is present and spits out a warning. 4198 */ 4199 /*ARGSUSED*/ 4200 int 4201 vfs_EIO_sync(struct vfs *vfsp, short arg, struct cred *cr) 4202 { 4203 return (EIO); 4204 } 4205 4206 vfs_t EIO_vfs; 4207 vfsops_t *EIO_vfsops; 4208 4209 /* 4210 * Called from startup() to initialize all loaded vfs's 4211 */ 4212 void 4213 vfsinit(void) 4214 { 4215 struct vfssw *vswp; 4216 int error; 4217 extern int vopstats_enabled; 4218 extern void vopstats_startup(); 4219 4220 static const fs_operation_def_t EIO_vfsops_template[] = { 4221 VFSNAME_MOUNT, { .error = vfs_EIO }, 4222 VFSNAME_UNMOUNT, { .error = vfs_EIO }, 4223 VFSNAME_ROOT, { .error = vfs_EIO }, 4224 VFSNAME_STATVFS, { .error = vfs_EIO }, 4225 VFSNAME_SYNC, { .vfs_sync = vfs_EIO_sync }, 4226 VFSNAME_VGET, { .error = vfs_EIO }, 4227 VFSNAME_MOUNTROOT, { .error = vfs_EIO }, 4228 VFSNAME_FREEVFS, { .error = vfs_EIO }, 4229 VFSNAME_VNSTATE, { .error = vfs_EIO }, 4230 NULL, NULL 4231 }; 4232 4233 static const fs_operation_def_t stray_vfsops_template[] = { 4234 VFSNAME_MOUNT, { .error = vfsstray }, 4235 VFSNAME_UNMOUNT, { .error = vfsstray }, 4236 VFSNAME_ROOT, { .error = vfsstray }, 4237 VFSNAME_STATVFS, { .error = vfsstray }, 4238 VFSNAME_SYNC, { .vfs_sync = vfsstray_sync }, 4239 VFSNAME_VGET, { .error = vfsstray }, 4240 VFSNAME_MOUNTROOT, { .error = vfsstray }, 4241 VFSNAME_FREEVFS, { .error = vfsstray }, 4242 VFSNAME_VNSTATE, { .error = vfsstray }, 4243 NULL, NULL 4244 }; 4245 4246 /* Create vfs cache */ 4247 vfs_cache = kmem_cache_create("vfs_cache", sizeof (struct vfs), 4248 sizeof (uintptr_t), NULL, NULL, NULL, NULL, NULL, 0); 4249 4250 /* Initialize the vnode cache (file systems may use it during init). */ 4251 vn_create_cache(); 4252 4253 /* Setup event monitor framework */ 4254 fem_init(); 4255 4256 /* Initialize the dummy stray file system type. */ 4257 error = vfs_setfsops(0, stray_vfsops_template, NULL); 4258 4259 /* Initialize the dummy EIO file system. */ 4260 error = vfs_makefsops(EIO_vfsops_template, &EIO_vfsops); 4261 if (error != 0) { 4262 cmn_err(CE_WARN, "vfsinit: bad EIO vfs ops template"); 4263 /* Shouldn't happen, but not bad enough to panic */ 4264 } 4265 4266 VFS_INIT(&EIO_vfs, EIO_vfsops, (caddr_t)NULL); 4267 4268 /* 4269 * Default EIO_vfs.vfs_flag to VFS_UNMOUNTED so a lookup 4270 * on this vfs can immediately notice it's invalid. 4271 */ 4272 EIO_vfs.vfs_flag |= VFS_UNMOUNTED; 4273 4274 /* 4275 * Call the init routines of non-loadable filesystems only. 4276 * Filesystems which are loaded as separate modules will be 4277 * initialized by the module loading code instead. 4278 */ 4279 4280 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 4281 RLOCK_VFSSW(); 4282 if (vswp->vsw_init != NULL) 4283 (*vswp->vsw_init)(vswp - vfssw, vswp->vsw_name); 4284 RUNLOCK_VFSSW(); 4285 } 4286 4287 vopstats_startup(); 4288 4289 if (vopstats_enabled) { 4290 /* EIO_vfs can collect stats, but we don't retrieve them */ 4291 initialize_vopstats(&EIO_vfs.vfs_vopstats); 4292 EIO_vfs.vfs_fstypevsp = NULL; 4293 EIO_vfs.vfs_vskap = NULL; 4294 EIO_vfs.vfs_flag |= VFS_STATS; 4295 } 4296 4297 xattr_init(); 4298 4299 reparse_point_init(); 4300 } 4301 4302 vfs_t * 4303 vfs_alloc(int kmflag) 4304 { 4305 vfs_t *vfsp; 4306 4307 vfsp = kmem_cache_alloc(vfs_cache, kmflag); 4308 4309 /* 4310 * Do the simplest initialization here. 4311 * Everything else gets done in vfs_init() 4312 */ 4313 bzero(vfsp, sizeof (vfs_t)); 4314 return (vfsp); 4315 } 4316 4317 void 4318 vfs_free(vfs_t *vfsp) 4319 { 4320 /* 4321 * One would be tempted to assert that "vfsp->vfs_count == 0". 4322 * The problem is that this gets called out of domount() with 4323 * a partially initialized vfs and a vfs_count of 1. This is 4324 * also called from vfs_rele() with a vfs_count of 0. We can't 4325 * call VFS_RELE() from domount() if VFS_MOUNT() hasn't successfully 4326 * returned. This is because VFS_MOUNT() fully initializes the 4327 * vfs structure and its associated data. VFS_RELE() will call 4328 * VFS_FREEVFS() which may panic the system if the data structures 4329 * aren't fully initialized from a successful VFS_MOUNT()). 4330 */ 4331 4332 /* If FEM was in use, make sure everything gets cleaned up */ 4333 if (vfsp->vfs_femhead) { 4334 ASSERT(vfsp->vfs_femhead->femh_list == NULL); 4335 mutex_destroy(&vfsp->vfs_femhead->femh_lock); 4336 kmem_free(vfsp->vfs_femhead, sizeof (*(vfsp->vfs_femhead))); 4337 vfsp->vfs_femhead = NULL; 4338 } 4339 4340 if (vfsp->vfs_implp) 4341 vfsimpl_teardown(vfsp); 4342 sema_destroy(&vfsp->vfs_reflock); 4343 kmem_cache_free(vfs_cache, vfsp); 4344 } 4345 4346 /* 4347 * Increments the vfs reference count by one atomically. 4348 */ 4349 void 4350 vfs_hold(vfs_t *vfsp) 4351 { 4352 atomic_inc_32(&vfsp->vfs_count); 4353 ASSERT(vfsp->vfs_count != 0); 4354 } 4355 4356 /* 4357 * Decrements the vfs reference count by one atomically. When 4358 * vfs reference count becomes zero, it calls the file system 4359 * specific vfs_freevfs() to free up the resources. 4360 */ 4361 void 4362 vfs_rele(vfs_t *vfsp) 4363 { 4364 ASSERT(vfsp->vfs_count != 0); 4365 if (atomic_dec_32_nv(&vfsp->vfs_count) == 0) { 4366 VFS_FREEVFS(vfsp); 4367 lofi_remove(vfsp); 4368 if (vfsp->vfs_zone) 4369 zone_rele_ref(&vfsp->vfs_implp->vi_zone_ref, 4370 ZONE_REF_VFS); 4371 vfs_freemnttab(vfsp); 4372 vfs_free(vfsp); 4373 } 4374 } 4375 4376 /* 4377 * Generic operations vector support. 4378 * 4379 * This is used to build operations vectors for both the vfs and vnode. 4380 * It's normally called only when a file system is loaded. 4381 * 4382 * There are many possible algorithms for this, including the following: 4383 * 4384 * (1) scan the list of known operations; for each, see if the file system 4385 * includes an entry for it, and fill it in as appropriate. 4386 * 4387 * (2) set up defaults for all known operations. scan the list of ops 4388 * supplied by the file system; for each which is both supplied and 4389 * known, fill it in. 4390 * 4391 * (3) sort the lists of known ops & supplied ops; scan the list, filling 4392 * in entries as we go. 4393 * 4394 * we choose (1) for simplicity, and because performance isn't critical here. 4395 * note that (2) could be sped up using a precomputed hash table on known ops. 4396 * (3) could be faster than either, but only if the lists were very large or 4397 * supplied in sorted order. 4398 * 4399 */ 4400 4401 int 4402 fs_build_vector(void *vector, int *unused_ops, 4403 const fs_operation_trans_def_t *translation, 4404 const fs_operation_def_t *operations) 4405 { 4406 int i, num_trans, num_ops, used; 4407 4408 /* 4409 * Count the number of translations and the number of supplied 4410 * operations. 4411 */ 4412 4413 { 4414 const fs_operation_trans_def_t *p; 4415 4416 for (num_trans = 0, p = translation; 4417 p->name != NULL; 4418 num_trans++, p++) 4419 ; 4420 } 4421 4422 { 4423 const fs_operation_def_t *p; 4424 4425 for (num_ops = 0, p = operations; 4426 p->name != NULL; 4427 num_ops++, p++) 4428 ; 4429 } 4430 4431 /* Walk through each operation known to our caller. There will be */ 4432 /* one entry in the supplied "translation table" for each. */ 4433 4434 used = 0; 4435 4436 for (i = 0; i < num_trans; i++) { 4437 int j, found; 4438 char *curname; 4439 fs_generic_func_p result; 4440 fs_generic_func_p *location; 4441 4442 curname = translation[i].name; 4443 4444 /* Look for a matching operation in the list supplied by the */ 4445 /* file system. */ 4446 4447 found = 0; 4448 4449 for (j = 0; j < num_ops; j++) { 4450 if (strcmp(operations[j].name, curname) == 0) { 4451 used++; 4452 found = 1; 4453 break; 4454 } 4455 } 4456 4457 /* 4458 * If the file system is using a "placeholder" for default 4459 * or error functions, grab the appropriate function out of 4460 * the translation table. If the file system didn't supply 4461 * this operation at all, use the default function. 4462 */ 4463 4464 if (found) { 4465 result = operations[j].func.fs_generic; 4466 if (result == fs_default) { 4467 result = translation[i].defaultFunc; 4468 } else if (result == fs_error) { 4469 result = translation[i].errorFunc; 4470 } else if (result == NULL) { 4471 /* Null values are PROHIBITED */ 4472 return (EINVAL); 4473 } 4474 } else { 4475 result = translation[i].defaultFunc; 4476 } 4477 4478 /* Now store the function into the operations vector. */ 4479 4480 location = (fs_generic_func_p *) 4481 (((char *)vector) + translation[i].offset); 4482 4483 *location = result; 4484 } 4485 4486 *unused_ops = num_ops - used; 4487 4488 return (0); 4489 } 4490 4491 /* Placeholder functions, should never be called. */ 4492 4493 int 4494 fs_error(void) 4495 { 4496 cmn_err(CE_PANIC, "fs_error called"); 4497 return (0); 4498 } 4499 4500 int 4501 fs_default(void) 4502 { 4503 cmn_err(CE_PANIC, "fs_default called"); 4504 return (0); 4505 } 4506 4507 #ifdef __sparc 4508 4509 /* 4510 * Part of the implementation of booting off a mirrored root 4511 * involves a change of dev_t for the root device. To 4512 * accomplish this, first remove the existing hash table 4513 * entry for the root device, convert to the new dev_t, 4514 * then re-insert in the hash table at the head of the list. 4515 */ 4516 void 4517 vfs_root_redev(vfs_t *vfsp, dev_t ndev, int fstype) 4518 { 4519 vfs_list_lock(); 4520 4521 vfs_hash_remove(vfsp); 4522 4523 vfsp->vfs_dev = ndev; 4524 vfs_make_fsid(&vfsp->vfs_fsid, ndev, fstype); 4525 4526 vfs_hash_add(vfsp, 1); 4527 4528 vfs_list_unlock(); 4529 } 4530 4531 #else /* x86 NEWBOOT */ 4532 4533 #if defined(__x86) 4534 extern int hvmboot_rootconf(); 4535 #endif /* __x86 */ 4536 4537 extern ib_boot_prop_t *iscsiboot_prop; 4538 4539 int 4540 rootconf() 4541 { 4542 int error; 4543 struct vfssw *vsw; 4544 extern void pm_init(); 4545 char *fstyp, *fsmod; 4546 int ret = -1; 4547 4548 getrootfs(&fstyp, &fsmod); 4549 4550 #if defined(__x86) 4551 /* 4552 * hvmboot_rootconf() is defined in the hvm_bootstrap misc module, 4553 * which lives in /platform/i86hvm, and hence is only available when 4554 * booted in an x86 hvm environment. If the hvm_bootstrap misc module 4555 * is not available then the modstub for this function will return 0. 4556 * If the hvm_bootstrap misc module is available it will be loaded 4557 * and hvmboot_rootconf() will be invoked. 4558 */ 4559 if (error = hvmboot_rootconf()) 4560 return (error); 4561 #endif /* __x86 */ 4562 4563 if (error = clboot_rootconf()) 4564 return (error); 4565 4566 if (modload("fs", fsmod) == -1) 4567 panic("Cannot _init %s module", fsmod); 4568 4569 RLOCK_VFSSW(); 4570 vsw = vfs_getvfsswbyname(fstyp); 4571 RUNLOCK_VFSSW(); 4572 if (vsw == NULL) { 4573 cmn_err(CE_CONT, "Cannot find %s filesystem\n", fstyp); 4574 return (ENXIO); 4575 } 4576 VFS_INIT(rootvfs, &vsw->vsw_vfsops, 0); 4577 VFS_HOLD(rootvfs); 4578 4579 /* always mount readonly first */ 4580 rootvfs->vfs_flag |= VFS_RDONLY; 4581 4582 pm_init(); 4583 4584 if (netboot && iscsiboot_prop) { 4585 cmn_err(CE_WARN, "NFS boot and iSCSI boot" 4586 " shouldn't happen in the same time"); 4587 return (EINVAL); 4588 } 4589 4590 if (netboot || iscsiboot_prop) { 4591 ret = strplumb(); 4592 if (ret != 0) { 4593 cmn_err(CE_WARN, "Cannot plumb network device %d", ret); 4594 return (EFAULT); 4595 } 4596 } 4597 4598 if ((ret == 0) && iscsiboot_prop) { 4599 ret = modload("drv", "iscsi"); 4600 /* -1 indicates fail */ 4601 if (ret == -1) { 4602 cmn_err(CE_WARN, "Failed to load iscsi module"); 4603 iscsi_boot_prop_free(); 4604 return (EINVAL); 4605 } else { 4606 if (!i_ddi_attach_pseudo_node("iscsi")) { 4607 cmn_err(CE_WARN, 4608 "Failed to attach iscsi driver"); 4609 iscsi_boot_prop_free(); 4610 return (ENODEV); 4611 } 4612 } 4613 } 4614 4615 error = VFS_MOUNTROOT(rootvfs, ROOT_INIT); 4616 vfs_unrefvfssw(vsw); 4617 rootdev = rootvfs->vfs_dev; 4618 4619 if (error) 4620 cmn_err(CE_CONT, "Cannot mount root on %s fstype %s\n", 4621 rootfs.bo_name, fstyp); 4622 else 4623 cmn_err(CE_CONT, "?root on %s fstype %s\n", 4624 rootfs.bo_name, fstyp); 4625 return (error); 4626 } 4627 4628 /* 4629 * XXX this is called by nfs only and should probably be removed 4630 * If booted with ASKNAME, prompt on the console for a filesystem 4631 * name and return it. 4632 */ 4633 void 4634 getfsname(char *askfor, char *name, size_t namelen) 4635 { 4636 if (boothowto & RB_ASKNAME) { 4637 printf("%s name: ", askfor); 4638 console_gets(name, namelen); 4639 } 4640 } 4641 4642 /* 4643 * Init the root filesystem type (rootfs.bo_fstype) from the "fstype" 4644 * property. 4645 * 4646 * Filesystem types starting with the prefix "nfs" are diskless clients; 4647 * init the root filename name (rootfs.bo_name), too. 4648 * 4649 * If we are booting via NFS we currently have these options: 4650 * nfs - dynamically choose NFS V2, V3, or V4 (default) 4651 * nfs2 - force NFS V2 4652 * nfs3 - force NFS V3 4653 * nfs4 - force NFS V4 4654 * Because we need to maintain backward compatibility with the naming 4655 * convention that the NFS V2 filesystem name is "nfs" (see vfs_conf.c) 4656 * we need to map "nfs" => "nfsdyn" and "nfs2" => "nfs". The dynamic 4657 * nfs module will map the type back to either "nfs", "nfs3", or "nfs4". 4658 * This is only for root filesystems, all other uses such as cachefs 4659 * will expect that "nfs" == NFS V2. 4660 */ 4661 static void 4662 getrootfs(char **fstypp, char **fsmodp) 4663 { 4664 extern char *strplumb_get_netdev_path(void); 4665 char *propstr = NULL; 4666 4667 /* 4668 * Check fstype property; for diskless it should be one of "nfs", 4669 * "nfs2", "nfs3" or "nfs4". 4670 */ 4671 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4672 DDI_PROP_DONTPASS, "fstype", &propstr) 4673 == DDI_SUCCESS) { 4674 (void) strncpy(rootfs.bo_fstype, propstr, BO_MAXFSNAME); 4675 ddi_prop_free(propstr); 4676 4677 /* 4678 * if the boot property 'fstype' is not set, but 'zfs-bootfs' is set, 4679 * assume the type of this root filesystem is 'zfs'. 4680 */ 4681 } else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4682 DDI_PROP_DONTPASS, "zfs-bootfs", &propstr) 4683 == DDI_SUCCESS) { 4684 (void) strncpy(rootfs.bo_fstype, "zfs", BO_MAXFSNAME); 4685 ddi_prop_free(propstr); 4686 } 4687 4688 if (strncmp(rootfs.bo_fstype, "nfs", 3) != 0) { 4689 *fstypp = *fsmodp = rootfs.bo_fstype; 4690 return; 4691 } 4692 4693 ++netboot; 4694 4695 if (strcmp(rootfs.bo_fstype, "nfs2") == 0) 4696 (void) strcpy(rootfs.bo_fstype, "nfs"); 4697 else if (strcmp(rootfs.bo_fstype, "nfs") == 0) 4698 (void) strcpy(rootfs.bo_fstype, "nfsdyn"); 4699 4700 /* 4701 * check if path to network interface is specified in bootpath 4702 * or by a hypervisor domain configuration file. 4703 * XXPV - enable strlumb_get_netdev_path() 4704 */ 4705 if (ddi_prop_exists(DDI_DEV_T_ANY, ddi_root_node(), DDI_PROP_DONTPASS, 4706 "xpv-nfsroot")) { 4707 (void) strcpy(rootfs.bo_name, "/xpvd/xnf@0"); 4708 } else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4709 DDI_PROP_DONTPASS, "bootpath", &propstr) 4710 == DDI_SUCCESS) { 4711 (void) strncpy(rootfs.bo_name, propstr, BO_MAXOBJNAME); 4712 ddi_prop_free(propstr); 4713 } else { 4714 /* attempt to determine netdev_path via boot_mac address */ 4715 netdev_path = strplumb_get_netdev_path(); 4716 if (netdev_path == NULL) 4717 panic("cannot find boot network interface"); 4718 (void) strncpy(rootfs.bo_name, netdev_path, BO_MAXOBJNAME); 4719 } 4720 *fstypp = rootfs.bo_fstype; 4721 *fsmodp = "nfs"; 4722 } 4723 #endif 4724 4725 /* 4726 * VFS feature routines 4727 */ 4728 4729 #define VFTINDEX(feature) (((feature) >> 32) & 0xFFFFFFFF) 4730 #define VFTBITS(feature) ((feature) & 0xFFFFFFFFLL) 4731 4732 /* Register a feature in the vfs */ 4733 void 4734 vfs_set_feature(vfs_t *vfsp, vfs_feature_t feature) 4735 { 4736 /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */ 4737 if (vfsp->vfs_implp == NULL) 4738 return; 4739 4740 vfsp->vfs_featureset[VFTINDEX(feature)] |= VFTBITS(feature); 4741 } 4742 4743 void 4744 vfs_clear_feature(vfs_t *vfsp, vfs_feature_t feature) 4745 { 4746 /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */ 4747 if (vfsp->vfs_implp == NULL) 4748 return; 4749 vfsp->vfs_featureset[VFTINDEX(feature)] &= VFTBITS(~feature); 4750 } 4751 4752 /* 4753 * Query a vfs for a feature. 4754 * Returns 1 if feature is present, 0 if not 4755 */ 4756 int 4757 vfs_has_feature(vfs_t *vfsp, vfs_feature_t feature) 4758 { 4759 int ret = 0; 4760 4761 /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */ 4762 if (vfsp->vfs_implp == NULL) 4763 return (ret); 4764 4765 if (vfsp->vfs_featureset[VFTINDEX(feature)] & VFTBITS(feature)) 4766 ret = 1; 4767 4768 return (ret); 4769 } 4770 4771 /* 4772 * Propagate feature set from one vfs to another 4773 */ 4774 void 4775 vfs_propagate_features(vfs_t *from, vfs_t *to) 4776 { 4777 int i; 4778 4779 if (to->vfs_implp == NULL || from->vfs_implp == NULL) 4780 return; 4781 4782 for (i = 1; i <= to->vfs_featureset[0]; i++) { 4783 to->vfs_featureset[i] = from->vfs_featureset[i]; 4784 } 4785 } 4786 4787 #define LOFINODE_PATH "/dev/lofi/%d" 4788 4789 /* 4790 * Return the vnode for the lofi node if there's a lofi mount in place. 4791 * Returns -1 when there's no lofi node, 0 on success, and > 0 on 4792 * failure. 4793 */ 4794 int 4795 vfs_get_lofi(vfs_t *vfsp, vnode_t **vpp) 4796 { 4797 char *path = NULL; 4798 int strsize; 4799 int err; 4800 4801 if (vfsp->vfs_lofi_minor == 0) { 4802 *vpp = NULL; 4803 return (-1); 4804 } 4805 4806 strsize = snprintf(NULL, 0, LOFINODE_PATH, vfsp->vfs_lofi_minor); 4807 path = kmem_alloc(strsize + 1, KM_SLEEP); 4808 (void) snprintf(path, strsize + 1, LOFINODE_PATH, vfsp->vfs_lofi_minor); 4809 4810 /* 4811 * We may be inside a zone, so we need to use the /dev path, but 4812 * it's created asynchronously, so we wait here. 4813 */ 4814 for (;;) { 4815 err = lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, vpp); 4816 4817 if (err != ENOENT) 4818 break; 4819 4820 if ((err = delay_sig(hz / 8)) == EINTR) 4821 break; 4822 } 4823 4824 if (err) 4825 *vpp = NULL; 4826 4827 kmem_free(path, strsize + 1); 4828 return (err); 4829 }