1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, Joyent, Inc. All rights reserved. 24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved. 25 * Copyright (c) 2014 by Saso Kiselkov. All rights reserved. 26 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 27 */ 28 29 /* 30 * DVA-based Adjustable Replacement Cache 31 * 32 * While much of the theory of operation used here is 33 * based on the self-tuning, low overhead replacement cache 34 * presented by Megiddo and Modha at FAST 2003, there are some 35 * significant differences: 36 * 37 * 1. The Megiddo and Modha model assumes any page is evictable. 38 * Pages in its cache cannot be "locked" into memory. This makes 39 * the eviction algorithm simple: evict the last page in the list. 40 * This also make the performance characteristics easy to reason 41 * about. Our cache is not so simple. At any given moment, some 42 * subset of the blocks in the cache are un-evictable because we 43 * have handed out a reference to them. Blocks are only evictable 44 * when there are no external references active. This makes 45 * eviction far more problematic: we choose to evict the evictable 46 * blocks that are the "lowest" in the list. 47 * 48 * There are times when it is not possible to evict the requested 49 * space. In these circumstances we are unable to adjust the cache 50 * size. To prevent the cache growing unbounded at these times we 51 * implement a "cache throttle" that slows the flow of new data 52 * into the cache until we can make space available. 53 * 54 * 2. The Megiddo and Modha model assumes a fixed cache size. 55 * Pages are evicted when the cache is full and there is a cache 56 * miss. Our model has a variable sized cache. It grows with 57 * high use, but also tries to react to memory pressure from the 58 * operating system: decreasing its size when system memory is 59 * tight. 60 * 61 * 3. The Megiddo and Modha model assumes a fixed page size. All 62 * elements of the cache are therefore exactly the same size. So 63 * when adjusting the cache size following a cache miss, its simply 64 * a matter of choosing a single page to evict. In our model, we 65 * have variable sized cache blocks (rangeing from 512 bytes to 66 * 128K bytes). We therefore choose a set of blocks to evict to make 67 * space for a cache miss that approximates as closely as possible 68 * the space used by the new block. 69 * 70 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 71 * by N. Megiddo & D. Modha, FAST 2003 72 */ 73 74 /* 75 * The locking model: 76 * 77 * A new reference to a cache buffer can be obtained in two 78 * ways: 1) via a hash table lookup using the DVA as a key, 79 * or 2) via one of the ARC lists. The arc_read() interface 80 * uses method 1, while the internal arc algorithms for 81 * adjusting the cache use method 2. We therefore provide two 82 * types of locks: 1) the hash table lock array, and 2) the 83 * arc list locks. 84 * 85 * Buffers do not have their own mutexes, rather they rely on the 86 * hash table mutexes for the bulk of their protection (i.e. most 87 * fields in the arc_buf_hdr_t are protected by these mutexes). 88 * 89 * buf_hash_find() returns the appropriate mutex (held) when it 90 * locates the requested buffer in the hash table. It returns 91 * NULL for the mutex if the buffer was not in the table. 92 * 93 * buf_hash_remove() expects the appropriate hash mutex to be 94 * already held before it is invoked. 95 * 96 * Each arc state also has a mutex which is used to protect the 97 * buffer list associated with the state. When attempting to 98 * obtain a hash table lock while holding an arc list lock you 99 * must use: mutex_tryenter() to avoid deadlock. Also note that 100 * the active state mutex must be held before the ghost state mutex. 101 * 102 * Arc buffers may have an associated eviction callback function. 103 * This function will be invoked prior to removing the buffer (e.g. 104 * in arc_do_user_evicts()). Note however that the data associated 105 * with the buffer may be evicted prior to the callback. The callback 106 * must be made with *no locks held* (to prevent deadlock). Additionally, 107 * the users of callbacks must ensure that their private data is 108 * protected from simultaneous callbacks from arc_clear_callback() 109 * and arc_do_user_evicts(). 110 * 111 * Note that the majority of the performance stats are manipulated 112 * with atomic operations. 113 * 114 * The L2ARC uses the l2ad_mtx on each vdev for the following: 115 * 116 * - L2ARC buflist creation 117 * - L2ARC buflist eviction 118 * - L2ARC write completion, which walks L2ARC buflists 119 * - ARC header destruction, as it removes from L2ARC buflists 120 * - ARC header release, as it removes from L2ARC buflists 121 */ 122 123 #include <sys/spa.h> 124 #include <sys/zio.h> 125 #include <sys/zio_compress.h> 126 #include <sys/zfs_context.h> 127 #include <sys/arc.h> 128 #include <sys/refcount.h> 129 #include <sys/vdev.h> 130 #include <sys/vdev_impl.h> 131 #include <sys/dsl_pool.h> 132 #include <sys/multilist.h> 133 #ifdef _KERNEL 134 #include <sys/vmsystm.h> 135 #include <vm/anon.h> 136 #include <sys/fs/swapnode.h> 137 #include <sys/dnlc.h> 138 #endif 139 #include <sys/callb.h> 140 #include <sys/kstat.h> 141 #include <zfs_fletcher.h> 142 143 #ifndef _KERNEL 144 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */ 145 boolean_t arc_watch = B_FALSE; 146 int arc_procfd; 147 #endif 148 149 static kmutex_t arc_reclaim_lock; 150 static kcondvar_t arc_reclaim_thread_cv; 151 static boolean_t arc_reclaim_thread_exit; 152 static kcondvar_t arc_reclaim_waiters_cv; 153 154 static kmutex_t arc_user_evicts_lock; 155 static kcondvar_t arc_user_evicts_cv; 156 static boolean_t arc_user_evicts_thread_exit; 157 158 uint_t arc_reduce_dnlc_percent = 3; 159 160 /* 161 * The number of headers to evict in arc_evict_state_impl() before 162 * dropping the sublist lock and evicting from another sublist. A lower 163 * value means we're more likely to evict the "correct" header (i.e. the 164 * oldest header in the arc state), but comes with higher overhead 165 * (i.e. more invocations of arc_evict_state_impl()). 166 */ 167 int zfs_arc_evict_batch_limit = 10; 168 169 /* 170 * The number of sublists used for each of the arc state lists. If this 171 * is not set to a suitable value by the user, it will be configured to 172 * the number of CPUs on the system in arc_init(). 173 */ 174 int zfs_arc_num_sublists_per_state = 0; 175 176 /* number of seconds before growing cache again */ 177 static int arc_grow_retry = 60; 178 179 /* shift of arc_c for calculating overflow limit in arc_get_data_buf */ 180 int zfs_arc_overflow_shift = 8; 181 182 /* shift of arc_c for calculating both min and max arc_p */ 183 static int arc_p_min_shift = 4; 184 185 /* log2(fraction of arc to reclaim) */ 186 static int arc_shrink_shift = 7; 187 188 /* 189 * log2(fraction of ARC which must be free to allow growing). 190 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory, 191 * when reading a new block into the ARC, we will evict an equal-sized block 192 * from the ARC. 193 * 194 * This must be less than arc_shrink_shift, so that when we shrink the ARC, 195 * we will still not allow it to grow. 196 */ 197 int arc_no_grow_shift = 5; 198 199 200 /* 201 * minimum lifespan of a prefetch block in clock ticks 202 * (initialized in arc_init()) 203 */ 204 static int arc_min_prefetch_lifespan; 205 206 /* 207 * If this percent of memory is free, don't throttle. 208 */ 209 int arc_lotsfree_percent = 10; 210 211 static int arc_dead; 212 213 /* 214 * The arc has filled available memory and has now warmed up. 215 */ 216 static boolean_t arc_warm; 217 218 /* 219 * These tunables are for performance analysis. 220 */ 221 uint64_t zfs_arc_max; 222 uint64_t zfs_arc_min; 223 uint64_t zfs_arc_meta_limit = 0; 224 uint64_t zfs_arc_meta_min = 0; 225 int zfs_arc_grow_retry = 0; 226 int zfs_arc_shrink_shift = 0; 227 int zfs_arc_p_min_shift = 0; 228 int zfs_disable_dup_eviction = 0; 229 int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */ 230 231 /* 232 * Note that buffers can be in one of 6 states: 233 * ARC_anon - anonymous (discussed below) 234 * ARC_mru - recently used, currently cached 235 * ARC_mru_ghost - recentely used, no longer in cache 236 * ARC_mfu - frequently used, currently cached 237 * ARC_mfu_ghost - frequently used, no longer in cache 238 * ARC_l2c_only - exists in L2ARC but not other states 239 * When there are no active references to the buffer, they are 240 * are linked onto a list in one of these arc states. These are 241 * the only buffers that can be evicted or deleted. Within each 242 * state there are multiple lists, one for meta-data and one for 243 * non-meta-data. Meta-data (indirect blocks, blocks of dnodes, 244 * etc.) is tracked separately so that it can be managed more 245 * explicitly: favored over data, limited explicitly. 246 * 247 * Anonymous buffers are buffers that are not associated with 248 * a DVA. These are buffers that hold dirty block copies 249 * before they are written to stable storage. By definition, 250 * they are "ref'd" and are considered part of arc_mru 251 * that cannot be freed. Generally, they will aquire a DVA 252 * as they are written and migrate onto the arc_mru list. 253 * 254 * The ARC_l2c_only state is for buffers that are in the second 255 * level ARC but no longer in any of the ARC_m* lists. The second 256 * level ARC itself may also contain buffers that are in any of 257 * the ARC_m* states - meaning that a buffer can exist in two 258 * places. The reason for the ARC_l2c_only state is to keep the 259 * buffer header in the hash table, so that reads that hit the 260 * second level ARC benefit from these fast lookups. 261 */ 262 263 typedef struct arc_state { 264 /* 265 * list of evictable buffers 266 */ 267 multilist_t arcs_list[ARC_BUFC_NUMTYPES]; 268 /* 269 * total amount of evictable data in this state 270 */ 271 uint64_t arcs_lsize[ARC_BUFC_NUMTYPES]; 272 /* 273 * total amount of data in this state; this includes: evictable, 274 * non-evictable, ARC_BUFC_DATA, and ARC_BUFC_METADATA. 275 */ 276 refcount_t arcs_size; 277 } arc_state_t; 278 279 /* The 6 states: */ 280 static arc_state_t ARC_anon; 281 static arc_state_t ARC_mru; 282 static arc_state_t ARC_mru_ghost; 283 static arc_state_t ARC_mfu; 284 static arc_state_t ARC_mfu_ghost; 285 static arc_state_t ARC_l2c_only; 286 287 typedef struct arc_stats { 288 kstat_named_t arcstat_hits; 289 kstat_named_t arcstat_misses; 290 kstat_named_t arcstat_demand_data_hits; 291 kstat_named_t arcstat_demand_data_misses; 292 kstat_named_t arcstat_demand_metadata_hits; 293 kstat_named_t arcstat_demand_metadata_misses; 294 kstat_named_t arcstat_prefetch_data_hits; 295 kstat_named_t arcstat_prefetch_data_misses; 296 kstat_named_t arcstat_prefetch_metadata_hits; 297 kstat_named_t arcstat_prefetch_metadata_misses; 298 kstat_named_t arcstat_mru_hits; 299 kstat_named_t arcstat_mru_ghost_hits; 300 kstat_named_t arcstat_mfu_hits; 301 kstat_named_t arcstat_mfu_ghost_hits; 302 kstat_named_t arcstat_deleted; 303 /* 304 * Number of buffers that could not be evicted because the hash lock 305 * was held by another thread. The lock may not necessarily be held 306 * by something using the same buffer, since hash locks are shared 307 * by multiple buffers. 308 */ 309 kstat_named_t arcstat_mutex_miss; 310 /* 311 * Number of buffers skipped because they have I/O in progress, are 312 * indrect prefetch buffers that have not lived long enough, or are 313 * not from the spa we're trying to evict from. 314 */ 315 kstat_named_t arcstat_evict_skip; 316 /* 317 * Number of times arc_evict_state() was unable to evict enough 318 * buffers to reach it's target amount. 319 */ 320 kstat_named_t arcstat_evict_not_enough; 321 kstat_named_t arcstat_evict_l2_cached; 322 kstat_named_t arcstat_evict_l2_eligible; 323 kstat_named_t arcstat_evict_l2_ineligible; 324 kstat_named_t arcstat_evict_l2_skip; 325 kstat_named_t arcstat_hash_elements; 326 kstat_named_t arcstat_hash_elements_max; 327 kstat_named_t arcstat_hash_collisions; 328 kstat_named_t arcstat_hash_chains; 329 kstat_named_t arcstat_hash_chain_max; 330 kstat_named_t arcstat_p; 331 kstat_named_t arcstat_c; 332 kstat_named_t arcstat_c_min; 333 kstat_named_t arcstat_c_max; 334 kstat_named_t arcstat_size; 335 /* 336 * Number of bytes consumed by internal ARC structures necessary 337 * for tracking purposes; these structures are not actually 338 * backed by ARC buffers. This includes arc_buf_hdr_t structures 339 * (allocated via arc_buf_hdr_t_full and arc_buf_hdr_t_l2only 340 * caches), and arc_buf_t structures (allocated via arc_buf_t 341 * cache). 342 */ 343 kstat_named_t arcstat_hdr_size; 344 /* 345 * Number of bytes consumed by ARC buffers of type equal to 346 * ARC_BUFC_DATA. This is generally consumed by buffers backing 347 * on disk user data (e.g. plain file contents). 348 */ 349 kstat_named_t arcstat_data_size; 350 /* 351 * Number of bytes consumed by ARC buffers of type equal to 352 * ARC_BUFC_METADATA. This is generally consumed by buffers 353 * backing on disk data that is used for internal ZFS 354 * structures (e.g. ZAP, dnode, indirect blocks, etc). 355 */ 356 kstat_named_t arcstat_metadata_size; 357 /* 358 * Number of bytes consumed by various buffers and structures 359 * not actually backed with ARC buffers. This includes bonus 360 * buffers (allocated directly via zio_buf_* functions), 361 * dmu_buf_impl_t structures (allocated via dmu_buf_impl_t 362 * cache), and dnode_t structures (allocated via dnode_t cache). 363 */ 364 kstat_named_t arcstat_other_size; 365 /* 366 * Total number of bytes consumed by ARC buffers residing in the 367 * arc_anon state. This includes *all* buffers in the arc_anon 368 * state; e.g. data, metadata, evictable, and unevictable buffers 369 * are all included in this value. 370 */ 371 kstat_named_t arcstat_anon_size; 372 /* 373 * Number of bytes consumed by ARC buffers that meet the 374 * following criteria: backing buffers of type ARC_BUFC_DATA, 375 * residing in the arc_anon state, and are eligible for eviction 376 * (e.g. have no outstanding holds on the buffer). 377 */ 378 kstat_named_t arcstat_anon_evictable_data; 379 /* 380 * Number of bytes consumed by ARC buffers that meet the 381 * following criteria: backing buffers of type ARC_BUFC_METADATA, 382 * residing in the arc_anon state, and are eligible for eviction 383 * (e.g. have no outstanding holds on the buffer). 384 */ 385 kstat_named_t arcstat_anon_evictable_metadata; 386 /* 387 * Total number of bytes consumed by ARC buffers residing in the 388 * arc_mru state. This includes *all* buffers in the arc_mru 389 * state; e.g. data, metadata, evictable, and unevictable buffers 390 * are all included in this value. 391 */ 392 kstat_named_t arcstat_mru_size; 393 /* 394 * Number of bytes consumed by ARC buffers that meet the 395 * following criteria: backing buffers of type ARC_BUFC_DATA, 396 * residing in the arc_mru state, and are eligible for eviction 397 * (e.g. have no outstanding holds on the buffer). 398 */ 399 kstat_named_t arcstat_mru_evictable_data; 400 /* 401 * Number of bytes consumed by ARC buffers that meet the 402 * following criteria: backing buffers of type ARC_BUFC_METADATA, 403 * residing in the arc_mru state, and are eligible for eviction 404 * (e.g. have no outstanding holds on the buffer). 405 */ 406 kstat_named_t arcstat_mru_evictable_metadata; 407 /* 408 * Total number of bytes that *would have been* consumed by ARC 409 * buffers in the arc_mru_ghost state. The key thing to note 410 * here, is the fact that this size doesn't actually indicate 411 * RAM consumption. The ghost lists only consist of headers and 412 * don't actually have ARC buffers linked off of these headers. 413 * Thus, *if* the headers had associated ARC buffers, these 414 * buffers *would have* consumed this number of bytes. 415 */ 416 kstat_named_t arcstat_mru_ghost_size; 417 /* 418 * Number of bytes that *would have been* consumed by ARC 419 * buffers that are eligible for eviction, of type 420 * ARC_BUFC_DATA, and linked off the arc_mru_ghost state. 421 */ 422 kstat_named_t arcstat_mru_ghost_evictable_data; 423 /* 424 * Number of bytes that *would have been* consumed by ARC 425 * buffers that are eligible for eviction, of type 426 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state. 427 */ 428 kstat_named_t arcstat_mru_ghost_evictable_metadata; 429 /* 430 * Total number of bytes consumed by ARC buffers residing in the 431 * arc_mfu state. This includes *all* buffers in the arc_mfu 432 * state; e.g. data, metadata, evictable, and unevictable buffers 433 * are all included in this value. 434 */ 435 kstat_named_t arcstat_mfu_size; 436 /* 437 * Number of bytes consumed by ARC buffers that are eligible for 438 * eviction, of type ARC_BUFC_DATA, and reside in the arc_mfu 439 * state. 440 */ 441 kstat_named_t arcstat_mfu_evictable_data; 442 /* 443 * Number of bytes consumed by ARC buffers that are eligible for 444 * eviction, of type ARC_BUFC_METADATA, and reside in the 445 * arc_mfu state. 446 */ 447 kstat_named_t arcstat_mfu_evictable_metadata; 448 /* 449 * Total number of bytes that *would have been* consumed by ARC 450 * buffers in the arc_mfu_ghost state. See the comment above 451 * arcstat_mru_ghost_size for more details. 452 */ 453 kstat_named_t arcstat_mfu_ghost_size; 454 /* 455 * Number of bytes that *would have been* consumed by ARC 456 * buffers that are eligible for eviction, of type 457 * ARC_BUFC_DATA, and linked off the arc_mfu_ghost state. 458 */ 459 kstat_named_t arcstat_mfu_ghost_evictable_data; 460 /* 461 * Number of bytes that *would have been* consumed by ARC 462 * buffers that are eligible for eviction, of type 463 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state. 464 */ 465 kstat_named_t arcstat_mfu_ghost_evictable_metadata; 466 kstat_named_t arcstat_l2_hits; 467 kstat_named_t arcstat_l2_misses; 468 kstat_named_t arcstat_l2_feeds; 469 kstat_named_t arcstat_l2_rw_clash; 470 kstat_named_t arcstat_l2_read_bytes; 471 kstat_named_t arcstat_l2_write_bytes; 472 kstat_named_t arcstat_l2_writes_sent; 473 kstat_named_t arcstat_l2_writes_done; 474 kstat_named_t arcstat_l2_writes_error; 475 kstat_named_t arcstat_l2_writes_lock_retry; 476 kstat_named_t arcstat_l2_evict_lock_retry; 477 kstat_named_t arcstat_l2_evict_reading; 478 kstat_named_t arcstat_l2_evict_l1cached; 479 kstat_named_t arcstat_l2_free_on_write; 480 kstat_named_t arcstat_l2_cdata_free_on_write; 481 kstat_named_t arcstat_l2_abort_lowmem; 482 kstat_named_t arcstat_l2_cksum_bad; 483 kstat_named_t arcstat_l2_io_error; 484 kstat_named_t arcstat_l2_size; 485 kstat_named_t arcstat_l2_asize; 486 kstat_named_t arcstat_l2_hdr_size; 487 kstat_named_t arcstat_l2_compress_successes; 488 kstat_named_t arcstat_l2_compress_zeros; 489 kstat_named_t arcstat_l2_compress_failures; 490 kstat_named_t arcstat_memory_throttle_count; 491 kstat_named_t arcstat_duplicate_buffers; 492 kstat_named_t arcstat_duplicate_buffers_size; 493 kstat_named_t arcstat_duplicate_reads; 494 kstat_named_t arcstat_meta_used; 495 kstat_named_t arcstat_meta_limit; 496 kstat_named_t arcstat_meta_max; 497 kstat_named_t arcstat_meta_min; 498 } arc_stats_t; 499 500 static arc_stats_t arc_stats = { 501 { "hits", KSTAT_DATA_UINT64 }, 502 { "misses", KSTAT_DATA_UINT64 }, 503 { "demand_data_hits", KSTAT_DATA_UINT64 }, 504 { "demand_data_misses", KSTAT_DATA_UINT64 }, 505 { "demand_metadata_hits", KSTAT_DATA_UINT64 }, 506 { "demand_metadata_misses", KSTAT_DATA_UINT64 }, 507 { "prefetch_data_hits", KSTAT_DATA_UINT64 }, 508 { "prefetch_data_misses", KSTAT_DATA_UINT64 }, 509 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 }, 510 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 }, 511 { "mru_hits", KSTAT_DATA_UINT64 }, 512 { "mru_ghost_hits", KSTAT_DATA_UINT64 }, 513 { "mfu_hits", KSTAT_DATA_UINT64 }, 514 { "mfu_ghost_hits", KSTAT_DATA_UINT64 }, 515 { "deleted", KSTAT_DATA_UINT64 }, 516 { "mutex_miss", KSTAT_DATA_UINT64 }, 517 { "evict_skip", KSTAT_DATA_UINT64 }, 518 { "evict_not_enough", KSTAT_DATA_UINT64 }, 519 { "evict_l2_cached", KSTAT_DATA_UINT64 }, 520 { "evict_l2_eligible", KSTAT_DATA_UINT64 }, 521 { "evict_l2_ineligible", KSTAT_DATA_UINT64 }, 522 { "evict_l2_skip", KSTAT_DATA_UINT64 }, 523 { "hash_elements", KSTAT_DATA_UINT64 }, 524 { "hash_elements_max", KSTAT_DATA_UINT64 }, 525 { "hash_collisions", KSTAT_DATA_UINT64 }, 526 { "hash_chains", KSTAT_DATA_UINT64 }, 527 { "hash_chain_max", KSTAT_DATA_UINT64 }, 528 { "p", KSTAT_DATA_UINT64 }, 529 { "c", KSTAT_DATA_UINT64 }, 530 { "c_min", KSTAT_DATA_UINT64 }, 531 { "c_max", KSTAT_DATA_UINT64 }, 532 { "size", KSTAT_DATA_UINT64 }, 533 { "hdr_size", KSTAT_DATA_UINT64 }, 534 { "data_size", KSTAT_DATA_UINT64 }, 535 { "metadata_size", KSTAT_DATA_UINT64 }, 536 { "other_size", KSTAT_DATA_UINT64 }, 537 { "anon_size", KSTAT_DATA_UINT64 }, 538 { "anon_evictable_data", KSTAT_DATA_UINT64 }, 539 { "anon_evictable_metadata", KSTAT_DATA_UINT64 }, 540 { "mru_size", KSTAT_DATA_UINT64 }, 541 { "mru_evictable_data", KSTAT_DATA_UINT64 }, 542 { "mru_evictable_metadata", KSTAT_DATA_UINT64 }, 543 { "mru_ghost_size", KSTAT_DATA_UINT64 }, 544 { "mru_ghost_evictable_data", KSTAT_DATA_UINT64 }, 545 { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 }, 546 { "mfu_size", KSTAT_DATA_UINT64 }, 547 { "mfu_evictable_data", KSTAT_DATA_UINT64 }, 548 { "mfu_evictable_metadata", KSTAT_DATA_UINT64 }, 549 { "mfu_ghost_size", KSTAT_DATA_UINT64 }, 550 { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64 }, 551 { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 }, 552 { "l2_hits", KSTAT_DATA_UINT64 }, 553 { "l2_misses", KSTAT_DATA_UINT64 }, 554 { "l2_feeds", KSTAT_DATA_UINT64 }, 555 { "l2_rw_clash", KSTAT_DATA_UINT64 }, 556 { "l2_read_bytes", KSTAT_DATA_UINT64 }, 557 { "l2_write_bytes", KSTAT_DATA_UINT64 }, 558 { "l2_writes_sent", KSTAT_DATA_UINT64 }, 559 { "l2_writes_done", KSTAT_DATA_UINT64 }, 560 { "l2_writes_error", KSTAT_DATA_UINT64 }, 561 { "l2_writes_lock_retry", KSTAT_DATA_UINT64 }, 562 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 }, 563 { "l2_evict_reading", KSTAT_DATA_UINT64 }, 564 { "l2_evict_l1cached", KSTAT_DATA_UINT64 }, 565 { "l2_free_on_write", KSTAT_DATA_UINT64 }, 566 { "l2_cdata_free_on_write", KSTAT_DATA_UINT64 }, 567 { "l2_abort_lowmem", KSTAT_DATA_UINT64 }, 568 { "l2_cksum_bad", KSTAT_DATA_UINT64 }, 569 { "l2_io_error", KSTAT_DATA_UINT64 }, 570 { "l2_size", KSTAT_DATA_UINT64 }, 571 { "l2_asize", KSTAT_DATA_UINT64 }, 572 { "l2_hdr_size", KSTAT_DATA_UINT64 }, 573 { "l2_compress_successes", KSTAT_DATA_UINT64 }, 574 { "l2_compress_zeros", KSTAT_DATA_UINT64 }, 575 { "l2_compress_failures", KSTAT_DATA_UINT64 }, 576 { "memory_throttle_count", KSTAT_DATA_UINT64 }, 577 { "duplicate_buffers", KSTAT_DATA_UINT64 }, 578 { "duplicate_buffers_size", KSTAT_DATA_UINT64 }, 579 { "duplicate_reads", KSTAT_DATA_UINT64 }, 580 { "arc_meta_used", KSTAT_DATA_UINT64 }, 581 { "arc_meta_limit", KSTAT_DATA_UINT64 }, 582 { "arc_meta_max", KSTAT_DATA_UINT64 }, 583 { "arc_meta_min", KSTAT_DATA_UINT64 } 584 }; 585 586 #define ARCSTAT(stat) (arc_stats.stat.value.ui64) 587 588 #define ARCSTAT_INCR(stat, val) \ 589 atomic_add_64(&arc_stats.stat.value.ui64, (val)) 590 591 #define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1) 592 #define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1) 593 594 #define ARCSTAT_MAX(stat, val) { \ 595 uint64_t m; \ 596 while ((val) > (m = arc_stats.stat.value.ui64) && \ 597 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \ 598 continue; \ 599 } 600 601 #define ARCSTAT_MAXSTAT(stat) \ 602 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64) 603 604 /* 605 * We define a macro to allow ARC hits/misses to be easily broken down by 606 * two separate conditions, giving a total of four different subtypes for 607 * each of hits and misses (so eight statistics total). 608 */ 609 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \ 610 if (cond1) { \ 611 if (cond2) { \ 612 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \ 613 } else { \ 614 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \ 615 } \ 616 } else { \ 617 if (cond2) { \ 618 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \ 619 } else { \ 620 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\ 621 } \ 622 } 623 624 kstat_t *arc_ksp; 625 static arc_state_t *arc_anon; 626 static arc_state_t *arc_mru; 627 static arc_state_t *arc_mru_ghost; 628 static arc_state_t *arc_mfu; 629 static arc_state_t *arc_mfu_ghost; 630 static arc_state_t *arc_l2c_only; 631 632 /* 633 * There are several ARC variables that are critical to export as kstats -- 634 * but we don't want to have to grovel around in the kstat whenever we wish to 635 * manipulate them. For these variables, we therefore define them to be in 636 * terms of the statistic variable. This assures that we are not introducing 637 * the possibility of inconsistency by having shadow copies of the variables, 638 * while still allowing the code to be readable. 639 */ 640 #define arc_size ARCSTAT(arcstat_size) /* actual total arc size */ 641 #define arc_p ARCSTAT(arcstat_p) /* target size of MRU */ 642 #define arc_c ARCSTAT(arcstat_c) /* target size of cache */ 643 #define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */ 644 #define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */ 645 #define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */ 646 #define arc_meta_min ARCSTAT(arcstat_meta_min) /* min size for metadata */ 647 #define arc_meta_used ARCSTAT(arcstat_meta_used) /* size of metadata */ 648 #define arc_meta_max ARCSTAT(arcstat_meta_max) /* max size of metadata */ 649 650 #define L2ARC_IS_VALID_COMPRESS(_c_) \ 651 ((_c_) == ZIO_COMPRESS_LZ4 || (_c_) == ZIO_COMPRESS_EMPTY) 652 653 static int arc_no_grow; /* Don't try to grow cache size */ 654 static uint64_t arc_tempreserve; 655 static uint64_t arc_loaned_bytes; 656 657 typedef struct arc_callback arc_callback_t; 658 659 struct arc_callback { 660 void *acb_private; 661 arc_done_func_t *acb_done; 662 arc_buf_t *acb_buf; 663 zio_t *acb_zio_dummy; 664 arc_callback_t *acb_next; 665 }; 666 667 typedef struct arc_write_callback arc_write_callback_t; 668 669 struct arc_write_callback { 670 void *awcb_private; 671 arc_done_func_t *awcb_ready; 672 arc_done_func_t *awcb_physdone; 673 arc_done_func_t *awcb_done; 674 arc_buf_t *awcb_buf; 675 }; 676 677 /* 678 * ARC buffers are separated into multiple structs as a memory saving measure: 679 * - Common fields struct, always defined, and embedded within it: 680 * - L2-only fields, always allocated but undefined when not in L2ARC 681 * - L1-only fields, only allocated when in L1ARC 682 * 683 * Buffer in L1 Buffer only in L2 684 * +------------------------+ +------------------------+ 685 * | arc_buf_hdr_t | | arc_buf_hdr_t | 686 * | | | | 687 * | | | | 688 * | | | | 689 * +------------------------+ +------------------------+ 690 * | l2arc_buf_hdr_t | | l2arc_buf_hdr_t | 691 * | (undefined if L1-only) | | | 692 * +------------------------+ +------------------------+ 693 * | l1arc_buf_hdr_t | 694 * | | 695 * | | 696 * | | 697 * | | 698 * +------------------------+ 699 * 700 * Because it's possible for the L2ARC to become extremely large, we can wind 701 * up eating a lot of memory in L2ARC buffer headers, so the size of a header 702 * is minimized by only allocating the fields necessary for an L1-cached buffer 703 * when a header is actually in the L1 cache. The sub-headers (l1arc_buf_hdr and 704 * l2arc_buf_hdr) are embedded rather than allocated separately to save a couple 705 * words in pointers. arc_hdr_realloc() is used to switch a header between 706 * these two allocation states. 707 */ 708 typedef struct l1arc_buf_hdr { 709 kmutex_t b_freeze_lock; 710 #ifdef ZFS_DEBUG 711 /* 712 * used for debugging wtih kmem_flags - by allocating and freeing 713 * b_thawed when the buffer is thawed, we get a record of the stack 714 * trace that thawed it. 715 */ 716 void *b_thawed; 717 #endif 718 719 arc_buf_t *b_buf; 720 uint32_t b_datacnt; 721 /* for waiting on writes to complete */ 722 kcondvar_t b_cv; 723 724 /* protected by arc state mutex */ 725 arc_state_t *b_state; 726 multilist_node_t b_arc_node; 727 728 /* updated atomically */ 729 clock_t b_arc_access; 730 731 /* self protecting */ 732 refcount_t b_refcnt; 733 734 arc_callback_t *b_acb; 735 /* temporary buffer holder for in-flight compressed data */ 736 void *b_tmp_cdata; 737 } l1arc_buf_hdr_t; 738 739 typedef struct l2arc_dev l2arc_dev_t; 740 741 typedef struct l2arc_buf_hdr { 742 /* protected by arc_buf_hdr mutex */ 743 l2arc_dev_t *b_dev; /* L2ARC device */ 744 uint64_t b_daddr; /* disk address, offset byte */ 745 /* real alloc'd buffer size depending on b_compress applied */ 746 int32_t b_asize; 747 uint8_t b_compress; 748 749 list_node_t b_l2node; 750 } l2arc_buf_hdr_t; 751 752 struct arc_buf_hdr { 753 /* protected by hash lock */ 754 dva_t b_dva; 755 uint64_t b_birth; 756 /* 757 * Even though this checksum is only set/verified when a buffer is in 758 * the L1 cache, it needs to be in the set of common fields because it 759 * must be preserved from the time before a buffer is written out to 760 * L2ARC until after it is read back in. 761 */ 762 zio_cksum_t *b_freeze_cksum; 763 764 arc_buf_hdr_t *b_hash_next; 765 arc_flags_t b_flags; 766 767 /* immutable */ 768 int32_t b_size; 769 uint64_t b_spa; 770 771 /* L2ARC fields. Undefined when not in L2ARC. */ 772 l2arc_buf_hdr_t b_l2hdr; 773 /* L1ARC fields. Undefined when in l2arc_only state */ 774 l1arc_buf_hdr_t b_l1hdr; 775 }; 776 777 static arc_buf_t *arc_eviction_list; 778 static arc_buf_hdr_t arc_eviction_hdr; 779 780 #define GHOST_STATE(state) \ 781 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \ 782 (state) == arc_l2c_only) 783 784 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE) 785 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) 786 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR) 787 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH) 788 #define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FLAG_FREED_IN_READ) 789 #define HDR_BUF_AVAILABLE(hdr) ((hdr)->b_flags & ARC_FLAG_BUF_AVAILABLE) 790 791 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE) 792 #define HDR_L2COMPRESS(hdr) ((hdr)->b_flags & ARC_FLAG_L2COMPRESS) 793 #define HDR_L2_READING(hdr) \ 794 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \ 795 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)) 796 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING) 797 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED) 798 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD) 799 800 #define HDR_ISTYPE_METADATA(hdr) \ 801 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA) 802 #define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr)) 803 804 #define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR) 805 #define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR) 806 807 /* 808 * Other sizes 809 */ 810 811 #define HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t)) 812 #define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr)) 813 814 /* 815 * Hash table routines 816 */ 817 818 #define HT_LOCK_PAD 64 819 820 struct ht_lock { 821 kmutex_t ht_lock; 822 #ifdef _KERNEL 823 unsigned char pad[(HT_LOCK_PAD - sizeof (kmutex_t))]; 824 #endif 825 }; 826 827 #define BUF_LOCKS 256 828 typedef struct buf_hash_table { 829 uint64_t ht_mask; 830 arc_buf_hdr_t **ht_table; 831 struct ht_lock ht_locks[BUF_LOCKS]; 832 } buf_hash_table_t; 833 834 static buf_hash_table_t buf_hash_table; 835 836 #define BUF_HASH_INDEX(spa, dva, birth) \ 837 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 838 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) 839 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock)) 840 #define HDR_LOCK(hdr) \ 841 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth))) 842 843 uint64_t zfs_crc64_table[256]; 844 845 /* 846 * Level 2 ARC 847 */ 848 849 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */ 850 #define L2ARC_HEADROOM 2 /* num of writes */ 851 /* 852 * If we discover during ARC scan any buffers to be compressed, we boost 853 * our headroom for the next scanning cycle by this percentage multiple. 854 */ 855 #define L2ARC_HEADROOM_BOOST 200 856 #define L2ARC_FEED_SECS 1 /* caching interval secs */ 857 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */ 858 859 /* 860 * Used to distinguish headers that are being process by 861 * l2arc_write_buffers(), but have yet to be assigned to a l2arc disk 862 * address. This can happen when the header is added to the l2arc's list 863 * of buffers to write in the first stage of l2arc_write_buffers(), but 864 * has not yet been written out which happens in the second stage of 865 * l2arc_write_buffers(). 866 */ 867 #define L2ARC_ADDR_UNSET ((uint64_t)(-1)) 868 869 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent) 870 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done) 871 872 /* L2ARC Performance Tunables */ 873 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* default max write size */ 874 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra write during warmup */ 875 uint64_t l2arc_headroom = L2ARC_HEADROOM; /* number of dev writes */ 876 uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST; 877 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */ 878 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval milliseconds */ 879 boolean_t l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */ 880 boolean_t l2arc_feed_again = B_TRUE; /* turbo warmup */ 881 boolean_t l2arc_norw = B_TRUE; /* no reads during writes */ 882 883 /* 884 * L2ARC Internals 885 */ 886 struct l2arc_dev { 887 vdev_t *l2ad_vdev; /* vdev */ 888 spa_t *l2ad_spa; /* spa */ 889 uint64_t l2ad_hand; /* next write location */ 890 uint64_t l2ad_start; /* first addr on device */ 891 uint64_t l2ad_end; /* last addr on device */ 892 boolean_t l2ad_first; /* first sweep through */ 893 boolean_t l2ad_writing; /* currently writing */ 894 kmutex_t l2ad_mtx; /* lock for buffer list */ 895 list_t l2ad_buflist; /* buffer list */ 896 list_node_t l2ad_node; /* device list node */ 897 refcount_t l2ad_alloc; /* allocated bytes */ 898 }; 899 900 static list_t L2ARC_dev_list; /* device list */ 901 static list_t *l2arc_dev_list; /* device list pointer */ 902 static kmutex_t l2arc_dev_mtx; /* device list mutex */ 903 static l2arc_dev_t *l2arc_dev_last; /* last device used */ 904 static list_t L2ARC_free_on_write; /* free after write buf list */ 905 static list_t *l2arc_free_on_write; /* free after write list ptr */ 906 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */ 907 static uint64_t l2arc_ndev; /* number of devices */ 908 909 typedef struct l2arc_read_callback { 910 arc_buf_t *l2rcb_buf; /* read buffer */ 911 spa_t *l2rcb_spa; /* spa */ 912 blkptr_t l2rcb_bp; /* original blkptr */ 913 zbookmark_phys_t l2rcb_zb; /* original bookmark */ 914 int l2rcb_flags; /* original flags */ 915 enum zio_compress l2rcb_compress; /* applied compress */ 916 } l2arc_read_callback_t; 917 918 typedef struct l2arc_write_callback { 919 l2arc_dev_t *l2wcb_dev; /* device info */ 920 arc_buf_hdr_t *l2wcb_head; /* head of write buflist */ 921 } l2arc_write_callback_t; 922 923 typedef struct l2arc_data_free { 924 /* protected by l2arc_free_on_write_mtx */ 925 void *l2df_data; 926 size_t l2df_size; 927 void (*l2df_func)(void *, size_t); 928 list_node_t l2df_list_node; 929 } l2arc_data_free_t; 930 931 static kmutex_t l2arc_feed_thr_lock; 932 static kcondvar_t l2arc_feed_thr_cv; 933 static uint8_t l2arc_thread_exit; 934 935 static void arc_get_data_buf(arc_buf_t *); 936 static void arc_access(arc_buf_hdr_t *, kmutex_t *); 937 static boolean_t arc_is_overflowing(); 938 static void arc_buf_watch(arc_buf_t *); 939 940 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *); 941 static uint32_t arc_bufc_to_flags(arc_buf_contents_t); 942 943 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *); 944 static void l2arc_read_done(zio_t *); 945 946 static boolean_t l2arc_compress_buf(arc_buf_hdr_t *); 947 static void l2arc_decompress_zio(zio_t *, arc_buf_hdr_t *, enum zio_compress); 948 static void l2arc_release_cdata_buf(arc_buf_hdr_t *); 949 950 static uint64_t 951 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth) 952 { 953 uint8_t *vdva = (uint8_t *)dva; 954 uint64_t crc = -1ULL; 955 int i; 956 957 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 958 959 for (i = 0; i < sizeof (dva_t); i++) 960 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF]; 961 962 crc ^= (spa>>8) ^ birth; 963 964 return (crc); 965 } 966 967 #define BUF_EMPTY(buf) \ 968 ((buf)->b_dva.dva_word[0] == 0 && \ 969 (buf)->b_dva.dva_word[1] == 0) 970 971 #define BUF_EQUAL(spa, dva, birth, buf) \ 972 ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 973 ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 974 ((buf)->b_birth == birth) && ((buf)->b_spa == spa) 975 976 static void 977 buf_discard_identity(arc_buf_hdr_t *hdr) 978 { 979 hdr->b_dva.dva_word[0] = 0; 980 hdr->b_dva.dva_word[1] = 0; 981 hdr->b_birth = 0; 982 } 983 984 static arc_buf_hdr_t * 985 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp) 986 { 987 const dva_t *dva = BP_IDENTITY(bp); 988 uint64_t birth = BP_PHYSICAL_BIRTH(bp); 989 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 990 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 991 arc_buf_hdr_t *hdr; 992 993 mutex_enter(hash_lock); 994 for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL; 995 hdr = hdr->b_hash_next) { 996 if (BUF_EQUAL(spa, dva, birth, hdr)) { 997 *lockp = hash_lock; 998 return (hdr); 999 } 1000 } 1001 mutex_exit(hash_lock); 1002 *lockp = NULL; 1003 return (NULL); 1004 } 1005 1006 /* 1007 * Insert an entry into the hash table. If there is already an element 1008 * equal to elem in the hash table, then the already existing element 1009 * will be returned and the new element will not be inserted. 1010 * Otherwise returns NULL. 1011 * If lockp == NULL, the caller is assumed to already hold the hash lock. 1012 */ 1013 static arc_buf_hdr_t * 1014 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp) 1015 { 1016 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); 1017 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 1018 arc_buf_hdr_t *fhdr; 1019 uint32_t i; 1020 1021 ASSERT(!DVA_IS_EMPTY(&hdr->b_dva)); 1022 ASSERT(hdr->b_birth != 0); 1023 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 1024 1025 if (lockp != NULL) { 1026 *lockp = hash_lock; 1027 mutex_enter(hash_lock); 1028 } else { 1029 ASSERT(MUTEX_HELD(hash_lock)); 1030 } 1031 1032 for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL; 1033 fhdr = fhdr->b_hash_next, i++) { 1034 if (BUF_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr)) 1035 return (fhdr); 1036 } 1037 1038 hdr->b_hash_next = buf_hash_table.ht_table[idx]; 1039 buf_hash_table.ht_table[idx] = hdr; 1040 hdr->b_flags |= ARC_FLAG_IN_HASH_TABLE; 1041 1042 /* collect some hash table performance data */ 1043 if (i > 0) { 1044 ARCSTAT_BUMP(arcstat_hash_collisions); 1045 if (i == 1) 1046 ARCSTAT_BUMP(arcstat_hash_chains); 1047 1048 ARCSTAT_MAX(arcstat_hash_chain_max, i); 1049 } 1050 1051 ARCSTAT_BUMP(arcstat_hash_elements); 1052 ARCSTAT_MAXSTAT(arcstat_hash_elements); 1053 1054 return (NULL); 1055 } 1056 1057 static void 1058 buf_hash_remove(arc_buf_hdr_t *hdr) 1059 { 1060 arc_buf_hdr_t *fhdr, **hdrp; 1061 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); 1062 1063 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 1064 ASSERT(HDR_IN_HASH_TABLE(hdr)); 1065 1066 hdrp = &buf_hash_table.ht_table[idx]; 1067 while ((fhdr = *hdrp) != hdr) { 1068 ASSERT(fhdr != NULL); 1069 hdrp = &fhdr->b_hash_next; 1070 } 1071 *hdrp = hdr->b_hash_next; 1072 hdr->b_hash_next = NULL; 1073 hdr->b_flags &= ~ARC_FLAG_IN_HASH_TABLE; 1074 1075 /* collect some hash table performance data */ 1076 ARCSTAT_BUMPDOWN(arcstat_hash_elements); 1077 1078 if (buf_hash_table.ht_table[idx] && 1079 buf_hash_table.ht_table[idx]->b_hash_next == NULL) 1080 ARCSTAT_BUMPDOWN(arcstat_hash_chains); 1081 } 1082 1083 /* 1084 * Global data structures and functions for the buf kmem cache. 1085 */ 1086 static kmem_cache_t *hdr_full_cache; 1087 static kmem_cache_t *hdr_l2only_cache; 1088 static kmem_cache_t *buf_cache; 1089 1090 static void 1091 buf_fini(void) 1092 { 1093 int i; 1094 1095 kmem_free(buf_hash_table.ht_table, 1096 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 1097 for (i = 0; i < BUF_LOCKS; i++) 1098 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock); 1099 kmem_cache_destroy(hdr_full_cache); 1100 kmem_cache_destroy(hdr_l2only_cache); 1101 kmem_cache_destroy(buf_cache); 1102 } 1103 1104 /* 1105 * Constructor callback - called when the cache is empty 1106 * and a new buf is requested. 1107 */ 1108 /* ARGSUSED */ 1109 static int 1110 hdr_full_cons(void *vbuf, void *unused, int kmflag) 1111 { 1112 arc_buf_hdr_t *hdr = vbuf; 1113 1114 bzero(hdr, HDR_FULL_SIZE); 1115 cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL); 1116 refcount_create(&hdr->b_l1hdr.b_refcnt); 1117 mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL); 1118 multilist_link_init(&hdr->b_l1hdr.b_arc_node); 1119 arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS); 1120 1121 return (0); 1122 } 1123 1124 /* ARGSUSED */ 1125 static int 1126 hdr_l2only_cons(void *vbuf, void *unused, int kmflag) 1127 { 1128 arc_buf_hdr_t *hdr = vbuf; 1129 1130 bzero(hdr, HDR_L2ONLY_SIZE); 1131 arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS); 1132 1133 return (0); 1134 } 1135 1136 /* ARGSUSED */ 1137 static int 1138 buf_cons(void *vbuf, void *unused, int kmflag) 1139 { 1140 arc_buf_t *buf = vbuf; 1141 1142 bzero(buf, sizeof (arc_buf_t)); 1143 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL); 1144 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS); 1145 1146 return (0); 1147 } 1148 1149 /* 1150 * Destructor callback - called when a cached buf is 1151 * no longer required. 1152 */ 1153 /* ARGSUSED */ 1154 static void 1155 hdr_full_dest(void *vbuf, void *unused) 1156 { 1157 arc_buf_hdr_t *hdr = vbuf; 1158 1159 ASSERT(BUF_EMPTY(hdr)); 1160 cv_destroy(&hdr->b_l1hdr.b_cv); 1161 refcount_destroy(&hdr->b_l1hdr.b_refcnt); 1162 mutex_destroy(&hdr->b_l1hdr.b_freeze_lock); 1163 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 1164 arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS); 1165 } 1166 1167 /* ARGSUSED */ 1168 static void 1169 hdr_l2only_dest(void *vbuf, void *unused) 1170 { 1171 arc_buf_hdr_t *hdr = vbuf; 1172 1173 ASSERT(BUF_EMPTY(hdr)); 1174 arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS); 1175 } 1176 1177 /* ARGSUSED */ 1178 static void 1179 buf_dest(void *vbuf, void *unused) 1180 { 1181 arc_buf_t *buf = vbuf; 1182 1183 mutex_destroy(&buf->b_evict_lock); 1184 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS); 1185 } 1186 1187 /* 1188 * Reclaim callback -- invoked when memory is low. 1189 */ 1190 /* ARGSUSED */ 1191 static void 1192 hdr_recl(void *unused) 1193 { 1194 dprintf("hdr_recl called\n"); 1195 /* 1196 * umem calls the reclaim func when we destroy the buf cache, 1197 * which is after we do arc_fini(). 1198 */ 1199 if (!arc_dead) 1200 cv_signal(&arc_reclaim_thread_cv); 1201 } 1202 1203 static void 1204 buf_init(void) 1205 { 1206 uint64_t *ct; 1207 uint64_t hsize = 1ULL << 12; 1208 int i, j; 1209 1210 /* 1211 * The hash table is big enough to fill all of physical memory 1212 * with an average block size of zfs_arc_average_blocksize (default 8K). 1213 * By default, the table will take up 1214 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers). 1215 */ 1216 while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE) 1217 hsize <<= 1; 1218 retry: 1219 buf_hash_table.ht_mask = hsize - 1; 1220 buf_hash_table.ht_table = 1221 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); 1222 if (buf_hash_table.ht_table == NULL) { 1223 ASSERT(hsize > (1ULL << 8)); 1224 hsize >>= 1; 1225 goto retry; 1226 } 1227 1228 hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE, 1229 0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0); 1230 hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only", 1231 HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl, 1232 NULL, NULL, 0); 1233 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 1234 0, buf_cons, buf_dest, NULL, NULL, NULL, 0); 1235 1236 for (i = 0; i < 256; i++) 1237 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 1238 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 1239 1240 for (i = 0; i < BUF_LOCKS; i++) { 1241 mutex_init(&buf_hash_table.ht_locks[i].ht_lock, 1242 NULL, MUTEX_DEFAULT, NULL); 1243 } 1244 } 1245 1246 /* 1247 * Transition between the two allocation states for the arc_buf_hdr struct. 1248 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without 1249 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller 1250 * version is used when a cache buffer is only in the L2ARC in order to reduce 1251 * memory usage. 1252 */ 1253 static arc_buf_hdr_t * 1254 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new) 1255 { 1256 ASSERT(HDR_HAS_L2HDR(hdr)); 1257 1258 arc_buf_hdr_t *nhdr; 1259 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; 1260 1261 ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) || 1262 (old == hdr_l2only_cache && new == hdr_full_cache)); 1263 1264 nhdr = kmem_cache_alloc(new, KM_PUSHPAGE); 1265 1266 ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); 1267 buf_hash_remove(hdr); 1268 1269 bcopy(hdr, nhdr, HDR_L2ONLY_SIZE); 1270 1271 if (new == hdr_full_cache) { 1272 nhdr->b_flags |= ARC_FLAG_HAS_L1HDR; 1273 /* 1274 * arc_access and arc_change_state need to be aware that a 1275 * header has just come out of L2ARC, so we set its state to 1276 * l2c_only even though it's about to change. 1277 */ 1278 nhdr->b_l1hdr.b_state = arc_l2c_only; 1279 1280 /* Verify previous threads set to NULL before freeing */ 1281 ASSERT3P(nhdr->b_l1hdr.b_tmp_cdata, ==, NULL); 1282 } else { 1283 ASSERT(hdr->b_l1hdr.b_buf == NULL); 1284 ASSERT0(hdr->b_l1hdr.b_datacnt); 1285 1286 /* 1287 * If we've reached here, We must have been called from 1288 * arc_evict_hdr(), as such we should have already been 1289 * removed from any ghost list we were previously on 1290 * (which protects us from racing with arc_evict_state), 1291 * thus no locking is needed during this check. 1292 */ 1293 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 1294 1295 /* 1296 * A buffer must not be moved into the arc_l2c_only 1297 * state if it's not finished being written out to the 1298 * l2arc device. Otherwise, the b_l1hdr.b_tmp_cdata field 1299 * might try to be accessed, even though it was removed. 1300 */ 1301 VERIFY(!HDR_L2_WRITING(hdr)); 1302 VERIFY3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL); 1303 1304 #ifdef ZFS_DEBUG 1305 if (hdr->b_l1hdr.b_thawed != NULL) { 1306 kmem_free(hdr->b_l1hdr.b_thawed, 1); 1307 hdr->b_l1hdr.b_thawed = NULL; 1308 } 1309 #endif 1310 1311 nhdr->b_flags &= ~ARC_FLAG_HAS_L1HDR; 1312 } 1313 /* 1314 * The header has been reallocated so we need to re-insert it into any 1315 * lists it was on. 1316 */ 1317 (void) buf_hash_insert(nhdr, NULL); 1318 1319 ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node)); 1320 1321 mutex_enter(&dev->l2ad_mtx); 1322 1323 /* 1324 * We must place the realloc'ed header back into the list at 1325 * the same spot. Otherwise, if it's placed earlier in the list, 1326 * l2arc_write_buffers() could find it during the function's 1327 * write phase, and try to write it out to the l2arc. 1328 */ 1329 list_insert_after(&dev->l2ad_buflist, hdr, nhdr); 1330 list_remove(&dev->l2ad_buflist, hdr); 1331 1332 mutex_exit(&dev->l2ad_mtx); 1333 1334 /* 1335 * Since we're using the pointer address as the tag when 1336 * incrementing and decrementing the l2ad_alloc refcount, we 1337 * must remove the old pointer (that we're about to destroy) and 1338 * add the new pointer to the refcount. Otherwise we'd remove 1339 * the wrong pointer address when calling arc_hdr_destroy() later. 1340 */ 1341 1342 (void) refcount_remove_many(&dev->l2ad_alloc, 1343 hdr->b_l2hdr.b_asize, hdr); 1344 1345 (void) refcount_add_many(&dev->l2ad_alloc, 1346 nhdr->b_l2hdr.b_asize, nhdr); 1347 1348 buf_discard_identity(hdr); 1349 hdr->b_freeze_cksum = NULL; 1350 kmem_cache_free(old, hdr); 1351 1352 return (nhdr); 1353 } 1354 1355 1356 #define ARC_MINTIME (hz>>4) /* 62 ms */ 1357 1358 static void 1359 arc_cksum_verify(arc_buf_t *buf) 1360 { 1361 zio_cksum_t zc; 1362 1363 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1364 return; 1365 1366 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock); 1367 if (buf->b_hdr->b_freeze_cksum == NULL || HDR_IO_ERROR(buf->b_hdr)) { 1368 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock); 1369 return; 1370 } 1371 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc); 1372 if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc)) 1373 panic("buffer modified while frozen!"); 1374 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock); 1375 } 1376 1377 static int 1378 arc_cksum_equal(arc_buf_t *buf) 1379 { 1380 zio_cksum_t zc; 1381 int equal; 1382 1383 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock); 1384 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc); 1385 equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc); 1386 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock); 1387 1388 return (equal); 1389 } 1390 1391 static void 1392 arc_cksum_compute(arc_buf_t *buf, boolean_t force) 1393 { 1394 if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY)) 1395 return; 1396 1397 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock); 1398 if (buf->b_hdr->b_freeze_cksum != NULL) { 1399 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock); 1400 return; 1401 } 1402 buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP); 1403 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, 1404 buf->b_hdr->b_freeze_cksum); 1405 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock); 1406 arc_buf_watch(buf); 1407 } 1408 1409 #ifndef _KERNEL 1410 typedef struct procctl { 1411 long cmd; 1412 prwatch_t prwatch; 1413 } procctl_t; 1414 #endif 1415 1416 /* ARGSUSED */ 1417 static void 1418 arc_buf_unwatch(arc_buf_t *buf) 1419 { 1420 #ifndef _KERNEL 1421 if (arc_watch) { 1422 int result; 1423 procctl_t ctl; 1424 ctl.cmd = PCWATCH; 1425 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data; 1426 ctl.prwatch.pr_size = 0; 1427 ctl.prwatch.pr_wflags = 0; 1428 result = write(arc_procfd, &ctl, sizeof (ctl)); 1429 ASSERT3U(result, ==, sizeof (ctl)); 1430 } 1431 #endif 1432 } 1433 1434 /* ARGSUSED */ 1435 static void 1436 arc_buf_watch(arc_buf_t *buf) 1437 { 1438 #ifndef _KERNEL 1439 if (arc_watch) { 1440 int result; 1441 procctl_t ctl; 1442 ctl.cmd = PCWATCH; 1443 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data; 1444 ctl.prwatch.pr_size = buf->b_hdr->b_size; 1445 ctl.prwatch.pr_wflags = WA_WRITE; 1446 result = write(arc_procfd, &ctl, sizeof (ctl)); 1447 ASSERT3U(result, ==, sizeof (ctl)); 1448 } 1449 #endif 1450 } 1451 1452 static arc_buf_contents_t 1453 arc_buf_type(arc_buf_hdr_t *hdr) 1454 { 1455 if (HDR_ISTYPE_METADATA(hdr)) { 1456 return (ARC_BUFC_METADATA); 1457 } else { 1458 return (ARC_BUFC_DATA); 1459 } 1460 } 1461 1462 static uint32_t 1463 arc_bufc_to_flags(arc_buf_contents_t type) 1464 { 1465 switch (type) { 1466 case ARC_BUFC_DATA: 1467 /* metadata field is 0 if buffer contains normal data */ 1468 return (0); 1469 case ARC_BUFC_METADATA: 1470 return (ARC_FLAG_BUFC_METADATA); 1471 default: 1472 break; 1473 } 1474 panic("undefined ARC buffer type!"); 1475 return ((uint32_t)-1); 1476 } 1477 1478 void 1479 arc_buf_thaw(arc_buf_t *buf) 1480 { 1481 if (zfs_flags & ZFS_DEBUG_MODIFY) { 1482 if (buf->b_hdr->b_l1hdr.b_state != arc_anon) 1483 panic("modifying non-anon buffer!"); 1484 if (HDR_IO_IN_PROGRESS(buf->b_hdr)) 1485 panic("modifying buffer while i/o in progress!"); 1486 arc_cksum_verify(buf); 1487 } 1488 1489 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock); 1490 if (buf->b_hdr->b_freeze_cksum != NULL) { 1491 kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 1492 buf->b_hdr->b_freeze_cksum = NULL; 1493 } 1494 1495 #ifdef ZFS_DEBUG 1496 if (zfs_flags & ZFS_DEBUG_MODIFY) { 1497 if (buf->b_hdr->b_l1hdr.b_thawed != NULL) 1498 kmem_free(buf->b_hdr->b_l1hdr.b_thawed, 1); 1499 buf->b_hdr->b_l1hdr.b_thawed = kmem_alloc(1, KM_SLEEP); 1500 } 1501 #endif 1502 1503 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock); 1504 1505 arc_buf_unwatch(buf); 1506 } 1507 1508 void 1509 arc_buf_freeze(arc_buf_t *buf) 1510 { 1511 kmutex_t *hash_lock; 1512 1513 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1514 return; 1515 1516 hash_lock = HDR_LOCK(buf->b_hdr); 1517 mutex_enter(hash_lock); 1518 1519 ASSERT(buf->b_hdr->b_freeze_cksum != NULL || 1520 buf->b_hdr->b_l1hdr.b_state == arc_anon); 1521 arc_cksum_compute(buf, B_FALSE); 1522 mutex_exit(hash_lock); 1523 1524 } 1525 1526 static void 1527 add_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag) 1528 { 1529 ASSERT(HDR_HAS_L1HDR(hdr)); 1530 ASSERT(MUTEX_HELD(hash_lock)); 1531 arc_state_t *state = hdr->b_l1hdr.b_state; 1532 1533 if ((refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) && 1534 (state != arc_anon)) { 1535 /* We don't use the L2-only state list. */ 1536 if (state != arc_l2c_only) { 1537 arc_buf_contents_t type = arc_buf_type(hdr); 1538 uint64_t delta = hdr->b_size * hdr->b_l1hdr.b_datacnt; 1539 multilist_t *list = &state->arcs_list[type]; 1540 uint64_t *size = &state->arcs_lsize[type]; 1541 1542 multilist_remove(list, hdr); 1543 1544 if (GHOST_STATE(state)) { 1545 ASSERT0(hdr->b_l1hdr.b_datacnt); 1546 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 1547 delta = hdr->b_size; 1548 } 1549 ASSERT(delta > 0); 1550 ASSERT3U(*size, >=, delta); 1551 atomic_add_64(size, -delta); 1552 } 1553 /* remove the prefetch flag if we get a reference */ 1554 hdr->b_flags &= ~ARC_FLAG_PREFETCH; 1555 } 1556 } 1557 1558 static int 1559 remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag) 1560 { 1561 int cnt; 1562 arc_state_t *state = hdr->b_l1hdr.b_state; 1563 1564 ASSERT(HDR_HAS_L1HDR(hdr)); 1565 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock)); 1566 ASSERT(!GHOST_STATE(state)); 1567 1568 /* 1569 * arc_l2c_only counts as a ghost state so we don't need to explicitly 1570 * check to prevent usage of the arc_l2c_only list. 1571 */ 1572 if (((cnt = refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) && 1573 (state != arc_anon)) { 1574 arc_buf_contents_t type = arc_buf_type(hdr); 1575 multilist_t *list = &state->arcs_list[type]; 1576 uint64_t *size = &state->arcs_lsize[type]; 1577 1578 multilist_insert(list, hdr); 1579 1580 ASSERT(hdr->b_l1hdr.b_datacnt > 0); 1581 atomic_add_64(size, hdr->b_size * 1582 hdr->b_l1hdr.b_datacnt); 1583 } 1584 return (cnt); 1585 } 1586 1587 /* 1588 * Move the supplied buffer to the indicated state. The hash lock 1589 * for the buffer must be held by the caller. 1590 */ 1591 static void 1592 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr, 1593 kmutex_t *hash_lock) 1594 { 1595 arc_state_t *old_state; 1596 int64_t refcnt; 1597 uint32_t datacnt; 1598 uint64_t from_delta, to_delta; 1599 arc_buf_contents_t buftype = arc_buf_type(hdr); 1600 1601 /* 1602 * We almost always have an L1 hdr here, since we call arc_hdr_realloc() 1603 * in arc_read() when bringing a buffer out of the L2ARC. However, the 1604 * L1 hdr doesn't always exist when we change state to arc_anon before 1605 * destroying a header, in which case reallocating to add the L1 hdr is 1606 * pointless. 1607 */ 1608 if (HDR_HAS_L1HDR(hdr)) { 1609 old_state = hdr->b_l1hdr.b_state; 1610 refcnt = refcount_count(&hdr->b_l1hdr.b_refcnt); 1611 datacnt = hdr->b_l1hdr.b_datacnt; 1612 } else { 1613 old_state = arc_l2c_only; 1614 refcnt = 0; 1615 datacnt = 0; 1616 } 1617 1618 ASSERT(MUTEX_HELD(hash_lock)); 1619 ASSERT3P(new_state, !=, old_state); 1620 ASSERT(refcnt == 0 || datacnt > 0); 1621 ASSERT(!GHOST_STATE(new_state) || datacnt == 0); 1622 ASSERT(old_state != arc_anon || datacnt <= 1); 1623 1624 from_delta = to_delta = datacnt * hdr->b_size; 1625 1626 /* 1627 * If this buffer is evictable, transfer it from the 1628 * old state list to the new state list. 1629 */ 1630 if (refcnt == 0) { 1631 if (old_state != arc_anon && old_state != arc_l2c_only) { 1632 uint64_t *size = &old_state->arcs_lsize[buftype]; 1633 1634 ASSERT(HDR_HAS_L1HDR(hdr)); 1635 multilist_remove(&old_state->arcs_list[buftype], hdr); 1636 1637 /* 1638 * If prefetching out of the ghost cache, 1639 * we will have a non-zero datacnt. 1640 */ 1641 if (GHOST_STATE(old_state) && datacnt == 0) { 1642 /* ghost elements have a ghost size */ 1643 ASSERT(hdr->b_l1hdr.b_buf == NULL); 1644 from_delta = hdr->b_size; 1645 } 1646 ASSERT3U(*size, >=, from_delta); 1647 atomic_add_64(size, -from_delta); 1648 } 1649 if (new_state != arc_anon && new_state != arc_l2c_only) { 1650 uint64_t *size = &new_state->arcs_lsize[buftype]; 1651 1652 /* 1653 * An L1 header always exists here, since if we're 1654 * moving to some L1-cached state (i.e. not l2c_only or 1655 * anonymous), we realloc the header to add an L1hdr 1656 * beforehand. 1657 */ 1658 ASSERT(HDR_HAS_L1HDR(hdr)); 1659 multilist_insert(&new_state->arcs_list[buftype], hdr); 1660 1661 /* ghost elements have a ghost size */ 1662 if (GHOST_STATE(new_state)) { 1663 ASSERT0(datacnt); 1664 ASSERT(hdr->b_l1hdr.b_buf == NULL); 1665 to_delta = hdr->b_size; 1666 } 1667 atomic_add_64(size, to_delta); 1668 } 1669 } 1670 1671 ASSERT(!BUF_EMPTY(hdr)); 1672 if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr)) 1673 buf_hash_remove(hdr); 1674 1675 /* adjust state sizes (ignore arc_l2c_only) */ 1676 1677 if (to_delta && new_state != arc_l2c_only) { 1678 ASSERT(HDR_HAS_L1HDR(hdr)); 1679 if (GHOST_STATE(new_state)) { 1680 ASSERT0(datacnt); 1681 1682 /* 1683 * We moving a header to a ghost state, we first 1684 * remove all arc buffers. Thus, we'll have a 1685 * datacnt of zero, and no arc buffer to use for 1686 * the reference. As a result, we use the arc 1687 * header pointer for the reference. 1688 */ 1689 (void) refcount_add_many(&new_state->arcs_size, 1690 hdr->b_size, hdr); 1691 } else { 1692 ASSERT3U(datacnt, !=, 0); 1693 1694 /* 1695 * Each individual buffer holds a unique reference, 1696 * thus we must remove each of these references one 1697 * at a time. 1698 */ 1699 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 1700 buf = buf->b_next) { 1701 (void) refcount_add_many(&new_state->arcs_size, 1702 hdr->b_size, buf); 1703 } 1704 } 1705 } 1706 1707 if (from_delta && old_state != arc_l2c_only) { 1708 ASSERT(HDR_HAS_L1HDR(hdr)); 1709 if (GHOST_STATE(old_state)) { 1710 /* 1711 * When moving a header off of a ghost state, 1712 * there's the possibility for datacnt to be 1713 * non-zero. This is because we first add the 1714 * arc buffer to the header prior to changing 1715 * the header's state. Since we used the header 1716 * for the reference when putting the header on 1717 * the ghost state, we must balance that and use 1718 * the header when removing off the ghost state 1719 * (even though datacnt is non zero). 1720 */ 1721 1722 IMPLY(datacnt == 0, new_state == arc_anon || 1723 new_state == arc_l2c_only); 1724 1725 (void) refcount_remove_many(&old_state->arcs_size, 1726 hdr->b_size, hdr); 1727 } else { 1728 ASSERT3P(datacnt, !=, 0); 1729 1730 /* 1731 * Each individual buffer holds a unique reference, 1732 * thus we must remove each of these references one 1733 * at a time. 1734 */ 1735 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 1736 buf = buf->b_next) { 1737 (void) refcount_remove_many( 1738 &old_state->arcs_size, hdr->b_size, buf); 1739 } 1740 } 1741 } 1742 1743 if (HDR_HAS_L1HDR(hdr)) 1744 hdr->b_l1hdr.b_state = new_state; 1745 1746 /* 1747 * L2 headers should never be on the L2 state list since they don't 1748 * have L1 headers allocated. 1749 */ 1750 ASSERT(multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]) && 1751 multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA])); 1752 } 1753 1754 void 1755 arc_space_consume(uint64_t space, arc_space_type_t type) 1756 { 1757 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 1758 1759 switch (type) { 1760 case ARC_SPACE_DATA: 1761 ARCSTAT_INCR(arcstat_data_size, space); 1762 break; 1763 case ARC_SPACE_META: 1764 ARCSTAT_INCR(arcstat_metadata_size, space); 1765 break; 1766 case ARC_SPACE_OTHER: 1767 ARCSTAT_INCR(arcstat_other_size, space); 1768 break; 1769 case ARC_SPACE_HDRS: 1770 ARCSTAT_INCR(arcstat_hdr_size, space); 1771 break; 1772 case ARC_SPACE_L2HDRS: 1773 ARCSTAT_INCR(arcstat_l2_hdr_size, space); 1774 break; 1775 } 1776 1777 if (type != ARC_SPACE_DATA) 1778 ARCSTAT_INCR(arcstat_meta_used, space); 1779 1780 atomic_add_64(&arc_size, space); 1781 } 1782 1783 void 1784 arc_space_return(uint64_t space, arc_space_type_t type) 1785 { 1786 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 1787 1788 switch (type) { 1789 case ARC_SPACE_DATA: 1790 ARCSTAT_INCR(arcstat_data_size, -space); 1791 break; 1792 case ARC_SPACE_META: 1793 ARCSTAT_INCR(arcstat_metadata_size, -space); 1794 break; 1795 case ARC_SPACE_OTHER: 1796 ARCSTAT_INCR(arcstat_other_size, -space); 1797 break; 1798 case ARC_SPACE_HDRS: 1799 ARCSTAT_INCR(arcstat_hdr_size, -space); 1800 break; 1801 case ARC_SPACE_L2HDRS: 1802 ARCSTAT_INCR(arcstat_l2_hdr_size, -space); 1803 break; 1804 } 1805 1806 if (type != ARC_SPACE_DATA) { 1807 ASSERT(arc_meta_used >= space); 1808 if (arc_meta_max < arc_meta_used) 1809 arc_meta_max = arc_meta_used; 1810 ARCSTAT_INCR(arcstat_meta_used, -space); 1811 } 1812 1813 ASSERT(arc_size >= space); 1814 atomic_add_64(&arc_size, -space); 1815 } 1816 1817 arc_buf_t * 1818 arc_buf_alloc(spa_t *spa, int32_t size, void *tag, arc_buf_contents_t type) 1819 { 1820 arc_buf_hdr_t *hdr; 1821 arc_buf_t *buf; 1822 1823 ASSERT3U(size, >, 0); 1824 hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE); 1825 ASSERT(BUF_EMPTY(hdr)); 1826 ASSERT3P(hdr->b_freeze_cksum, ==, NULL); 1827 hdr->b_size = size; 1828 hdr->b_spa = spa_load_guid(spa); 1829 1830 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 1831 buf->b_hdr = hdr; 1832 buf->b_data = NULL; 1833 buf->b_efunc = NULL; 1834 buf->b_private = NULL; 1835 buf->b_next = NULL; 1836 1837 hdr->b_flags = arc_bufc_to_flags(type); 1838 hdr->b_flags |= ARC_FLAG_HAS_L1HDR; 1839 1840 hdr->b_l1hdr.b_buf = buf; 1841 hdr->b_l1hdr.b_state = arc_anon; 1842 hdr->b_l1hdr.b_arc_access = 0; 1843 hdr->b_l1hdr.b_datacnt = 1; 1844 hdr->b_l1hdr.b_tmp_cdata = NULL; 1845 1846 arc_get_data_buf(buf); 1847 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 1848 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag); 1849 1850 return (buf); 1851 } 1852 1853 static char *arc_onloan_tag = "onloan"; 1854 1855 /* 1856 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in 1857 * flight data by arc_tempreserve_space() until they are "returned". Loaned 1858 * buffers must be returned to the arc before they can be used by the DMU or 1859 * freed. 1860 */ 1861 arc_buf_t * 1862 arc_loan_buf(spa_t *spa, int size) 1863 { 1864 arc_buf_t *buf; 1865 1866 buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA); 1867 1868 atomic_add_64(&arc_loaned_bytes, size); 1869 return (buf); 1870 } 1871 1872 /* 1873 * Return a loaned arc buffer to the arc. 1874 */ 1875 void 1876 arc_return_buf(arc_buf_t *buf, void *tag) 1877 { 1878 arc_buf_hdr_t *hdr = buf->b_hdr; 1879 1880 ASSERT(buf->b_data != NULL); 1881 ASSERT(HDR_HAS_L1HDR(hdr)); 1882 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag); 1883 (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag); 1884 1885 atomic_add_64(&arc_loaned_bytes, -hdr->b_size); 1886 } 1887 1888 /* Detach an arc_buf from a dbuf (tag) */ 1889 void 1890 arc_loan_inuse_buf(arc_buf_t *buf, void *tag) 1891 { 1892 arc_buf_hdr_t *hdr = buf->b_hdr; 1893 1894 ASSERT(buf->b_data != NULL); 1895 ASSERT(HDR_HAS_L1HDR(hdr)); 1896 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag); 1897 (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, tag); 1898 buf->b_efunc = NULL; 1899 buf->b_private = NULL; 1900 1901 atomic_add_64(&arc_loaned_bytes, hdr->b_size); 1902 } 1903 1904 static arc_buf_t * 1905 arc_buf_clone(arc_buf_t *from) 1906 { 1907 arc_buf_t *buf; 1908 arc_buf_hdr_t *hdr = from->b_hdr; 1909 uint64_t size = hdr->b_size; 1910 1911 ASSERT(HDR_HAS_L1HDR(hdr)); 1912 ASSERT(hdr->b_l1hdr.b_state != arc_anon); 1913 1914 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 1915 buf->b_hdr = hdr; 1916 buf->b_data = NULL; 1917 buf->b_efunc = NULL; 1918 buf->b_private = NULL; 1919 buf->b_next = hdr->b_l1hdr.b_buf; 1920 hdr->b_l1hdr.b_buf = buf; 1921 arc_get_data_buf(buf); 1922 bcopy(from->b_data, buf->b_data, size); 1923 1924 /* 1925 * This buffer already exists in the arc so create a duplicate 1926 * copy for the caller. If the buffer is associated with user data 1927 * then track the size and number of duplicates. These stats will be 1928 * updated as duplicate buffers are created and destroyed. 1929 */ 1930 if (HDR_ISTYPE_DATA(hdr)) { 1931 ARCSTAT_BUMP(arcstat_duplicate_buffers); 1932 ARCSTAT_INCR(arcstat_duplicate_buffers_size, size); 1933 } 1934 hdr->b_l1hdr.b_datacnt += 1; 1935 return (buf); 1936 } 1937 1938 void 1939 arc_buf_add_ref(arc_buf_t *buf, void* tag) 1940 { 1941 arc_buf_hdr_t *hdr; 1942 kmutex_t *hash_lock; 1943 1944 /* 1945 * Check to see if this buffer is evicted. Callers 1946 * must verify b_data != NULL to know if the add_ref 1947 * was successful. 1948 */ 1949 mutex_enter(&buf->b_evict_lock); 1950 if (buf->b_data == NULL) { 1951 mutex_exit(&buf->b_evict_lock); 1952 return; 1953 } 1954 hash_lock = HDR_LOCK(buf->b_hdr); 1955 mutex_enter(hash_lock); 1956 hdr = buf->b_hdr; 1957 ASSERT(HDR_HAS_L1HDR(hdr)); 1958 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 1959 mutex_exit(&buf->b_evict_lock); 1960 1961 ASSERT(hdr->b_l1hdr.b_state == arc_mru || 1962 hdr->b_l1hdr.b_state == arc_mfu); 1963 1964 add_reference(hdr, hash_lock, tag); 1965 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 1966 arc_access(hdr, hash_lock); 1967 mutex_exit(hash_lock); 1968 ARCSTAT_BUMP(arcstat_hits); 1969 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr), 1970 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), 1971 data, metadata, hits); 1972 } 1973 1974 static void 1975 arc_buf_free_on_write(void *data, size_t size, 1976 void (*free_func)(void *, size_t)) 1977 { 1978 l2arc_data_free_t *df; 1979 1980 df = kmem_alloc(sizeof (*df), KM_SLEEP); 1981 df->l2df_data = data; 1982 df->l2df_size = size; 1983 df->l2df_func = free_func; 1984 mutex_enter(&l2arc_free_on_write_mtx); 1985 list_insert_head(l2arc_free_on_write, df); 1986 mutex_exit(&l2arc_free_on_write_mtx); 1987 } 1988 1989 /* 1990 * Free the arc data buffer. If it is an l2arc write in progress, 1991 * the buffer is placed on l2arc_free_on_write to be freed later. 1992 */ 1993 static void 1994 arc_buf_data_free(arc_buf_t *buf, void (*free_func)(void *, size_t)) 1995 { 1996 arc_buf_hdr_t *hdr = buf->b_hdr; 1997 1998 if (HDR_L2_WRITING(hdr)) { 1999 arc_buf_free_on_write(buf->b_data, hdr->b_size, free_func); 2000 ARCSTAT_BUMP(arcstat_l2_free_on_write); 2001 } else { 2002 free_func(buf->b_data, hdr->b_size); 2003 } 2004 } 2005 2006 static void 2007 arc_buf_l2_cdata_free(arc_buf_hdr_t *hdr) 2008 { 2009 ASSERT(HDR_HAS_L2HDR(hdr)); 2010 ASSERT(MUTEX_HELD(&hdr->b_l2hdr.b_dev->l2ad_mtx)); 2011 2012 /* 2013 * The b_tmp_cdata field is linked off of the b_l1hdr, so if 2014 * that doesn't exist, the header is in the arc_l2c_only state, 2015 * and there isn't anything to free (it's already been freed). 2016 */ 2017 if (!HDR_HAS_L1HDR(hdr)) 2018 return; 2019 2020 /* 2021 * The header isn't being written to the l2arc device, thus it 2022 * shouldn't have a b_tmp_cdata to free. 2023 */ 2024 if (!HDR_L2_WRITING(hdr)) { 2025 ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL); 2026 return; 2027 } 2028 2029 /* 2030 * The header does not have compression enabled. This can be due 2031 * to the buffer not being compressible, or because we're 2032 * freeing the buffer before the second phase of 2033 * l2arc_write_buffer() has started (which does the compression 2034 * step). In either case, b_tmp_cdata does not point to a 2035 * separately compressed buffer, so there's nothing to free (it 2036 * points to the same buffer as the arc_buf_t's b_data field). 2037 */ 2038 if (hdr->b_l2hdr.b_compress == ZIO_COMPRESS_OFF) { 2039 hdr->b_l1hdr.b_tmp_cdata = NULL; 2040 return; 2041 } 2042 2043 /* 2044 * There's nothing to free since the buffer was all zero's and 2045 * compressed to a zero length buffer. 2046 */ 2047 if (hdr->b_l2hdr.b_compress == ZIO_COMPRESS_EMPTY) { 2048 ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL); 2049 return; 2050 } 2051 2052 ASSERT(L2ARC_IS_VALID_COMPRESS(hdr->b_l2hdr.b_compress)); 2053 2054 arc_buf_free_on_write(hdr->b_l1hdr.b_tmp_cdata, 2055 hdr->b_size, zio_data_buf_free); 2056 2057 ARCSTAT_BUMP(arcstat_l2_cdata_free_on_write); 2058 hdr->b_l1hdr.b_tmp_cdata = NULL; 2059 } 2060 2061 /* 2062 * Free up buf->b_data and if 'remove' is set, then pull the 2063 * arc_buf_t off of the the arc_buf_hdr_t's list and free it. 2064 */ 2065 static void 2066 arc_buf_destroy(arc_buf_t *buf, boolean_t remove) 2067 { 2068 arc_buf_t **bufp; 2069 2070 /* free up data associated with the buf */ 2071 if (buf->b_data != NULL) { 2072 arc_state_t *state = buf->b_hdr->b_l1hdr.b_state; 2073 uint64_t size = buf->b_hdr->b_size; 2074 arc_buf_contents_t type = arc_buf_type(buf->b_hdr); 2075 2076 arc_cksum_verify(buf); 2077 arc_buf_unwatch(buf); 2078 2079 if (type == ARC_BUFC_METADATA) { 2080 arc_buf_data_free(buf, zio_buf_free); 2081 arc_space_return(size, ARC_SPACE_META); 2082 } else { 2083 ASSERT(type == ARC_BUFC_DATA); 2084 arc_buf_data_free(buf, zio_data_buf_free); 2085 arc_space_return(size, ARC_SPACE_DATA); 2086 } 2087 2088 /* protected by hash lock, if in the hash table */ 2089 if (multilist_link_active(&buf->b_hdr->b_l1hdr.b_arc_node)) { 2090 uint64_t *cnt = &state->arcs_lsize[type]; 2091 2092 ASSERT(refcount_is_zero( 2093 &buf->b_hdr->b_l1hdr.b_refcnt)); 2094 ASSERT(state != arc_anon && state != arc_l2c_only); 2095 2096 ASSERT3U(*cnt, >=, size); 2097 atomic_add_64(cnt, -size); 2098 } 2099 2100 (void) refcount_remove_many(&state->arcs_size, size, buf); 2101 buf->b_data = NULL; 2102 2103 /* 2104 * If we're destroying a duplicate buffer make sure 2105 * that the appropriate statistics are updated. 2106 */ 2107 if (buf->b_hdr->b_l1hdr.b_datacnt > 1 && 2108 HDR_ISTYPE_DATA(buf->b_hdr)) { 2109 ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers); 2110 ARCSTAT_INCR(arcstat_duplicate_buffers_size, -size); 2111 } 2112 ASSERT(buf->b_hdr->b_l1hdr.b_datacnt > 0); 2113 buf->b_hdr->b_l1hdr.b_datacnt -= 1; 2114 } 2115 2116 /* only remove the buf if requested */ 2117 if (!remove) 2118 return; 2119 2120 /* remove the buf from the hdr list */ 2121 for (bufp = &buf->b_hdr->b_l1hdr.b_buf; *bufp != buf; 2122 bufp = &(*bufp)->b_next) 2123 continue; 2124 *bufp = buf->b_next; 2125 buf->b_next = NULL; 2126 2127 ASSERT(buf->b_efunc == NULL); 2128 2129 /* clean up the buf */ 2130 buf->b_hdr = NULL; 2131 kmem_cache_free(buf_cache, buf); 2132 } 2133 2134 static void 2135 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr) 2136 { 2137 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr; 2138 l2arc_dev_t *dev = l2hdr->b_dev; 2139 2140 ASSERT(MUTEX_HELD(&dev->l2ad_mtx)); 2141 ASSERT(HDR_HAS_L2HDR(hdr)); 2142 2143 list_remove(&dev->l2ad_buflist, hdr); 2144 2145 /* 2146 * We don't want to leak the b_tmp_cdata buffer that was 2147 * allocated in l2arc_write_buffers() 2148 */ 2149 arc_buf_l2_cdata_free(hdr); 2150 2151 /* 2152 * If the l2hdr's b_daddr is equal to L2ARC_ADDR_UNSET, then 2153 * this header is being processed by l2arc_write_buffers() (i.e. 2154 * it's in the first stage of l2arc_write_buffers()). 2155 * Re-affirming that truth here, just to serve as a reminder. If 2156 * b_daddr does not equal L2ARC_ADDR_UNSET, then the header may or 2157 * may not have its HDR_L2_WRITING flag set. (the write may have 2158 * completed, in which case HDR_L2_WRITING will be false and the 2159 * b_daddr field will point to the address of the buffer on disk). 2160 */ 2161 IMPLY(l2hdr->b_daddr == L2ARC_ADDR_UNSET, HDR_L2_WRITING(hdr)); 2162 2163 /* 2164 * If b_daddr is equal to L2ARC_ADDR_UNSET, we're racing with 2165 * l2arc_write_buffers(). Since we've just removed this header 2166 * from the l2arc buffer list, this header will never reach the 2167 * second stage of l2arc_write_buffers(), which increments the 2168 * accounting stats for this header. Thus, we must be careful 2169 * not to decrement them for this header either. 2170 */ 2171 if (l2hdr->b_daddr != L2ARC_ADDR_UNSET) { 2172 ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize); 2173 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size); 2174 2175 vdev_space_update(dev->l2ad_vdev, 2176 -l2hdr->b_asize, 0, 0); 2177 2178 (void) refcount_remove_many(&dev->l2ad_alloc, 2179 l2hdr->b_asize, hdr); 2180 } 2181 2182 hdr->b_flags &= ~ARC_FLAG_HAS_L2HDR; 2183 } 2184 2185 static void 2186 arc_hdr_destroy(arc_buf_hdr_t *hdr) 2187 { 2188 if (HDR_HAS_L1HDR(hdr)) { 2189 ASSERT(hdr->b_l1hdr.b_buf == NULL || 2190 hdr->b_l1hdr.b_datacnt > 0); 2191 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2192 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 2193 } 2194 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 2195 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 2196 2197 if (HDR_HAS_L2HDR(hdr)) { 2198 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; 2199 boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx); 2200 2201 if (!buflist_held) 2202 mutex_enter(&dev->l2ad_mtx); 2203 2204 /* 2205 * Even though we checked this conditional above, we 2206 * need to check this again now that we have the 2207 * l2ad_mtx. This is because we could be racing with 2208 * another thread calling l2arc_evict() which might have 2209 * destroyed this header's L2 portion as we were waiting 2210 * to acquire the l2ad_mtx. If that happens, we don't 2211 * want to re-destroy the header's L2 portion. 2212 */ 2213 if (HDR_HAS_L2HDR(hdr)) 2214 arc_hdr_l2hdr_destroy(hdr); 2215 2216 if (!buflist_held) 2217 mutex_exit(&dev->l2ad_mtx); 2218 } 2219 2220 if (!BUF_EMPTY(hdr)) 2221 buf_discard_identity(hdr); 2222 2223 if (hdr->b_freeze_cksum != NULL) { 2224 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 2225 hdr->b_freeze_cksum = NULL; 2226 } 2227 2228 if (HDR_HAS_L1HDR(hdr)) { 2229 while (hdr->b_l1hdr.b_buf) { 2230 arc_buf_t *buf = hdr->b_l1hdr.b_buf; 2231 2232 if (buf->b_efunc != NULL) { 2233 mutex_enter(&arc_user_evicts_lock); 2234 mutex_enter(&buf->b_evict_lock); 2235 ASSERT(buf->b_hdr != NULL); 2236 arc_buf_destroy(hdr->b_l1hdr.b_buf, FALSE); 2237 hdr->b_l1hdr.b_buf = buf->b_next; 2238 buf->b_hdr = &arc_eviction_hdr; 2239 buf->b_next = arc_eviction_list; 2240 arc_eviction_list = buf; 2241 mutex_exit(&buf->b_evict_lock); 2242 cv_signal(&arc_user_evicts_cv); 2243 mutex_exit(&arc_user_evicts_lock); 2244 } else { 2245 arc_buf_destroy(hdr->b_l1hdr.b_buf, TRUE); 2246 } 2247 } 2248 #ifdef ZFS_DEBUG 2249 if (hdr->b_l1hdr.b_thawed != NULL) { 2250 kmem_free(hdr->b_l1hdr.b_thawed, 1); 2251 hdr->b_l1hdr.b_thawed = NULL; 2252 } 2253 #endif 2254 } 2255 2256 ASSERT3P(hdr->b_hash_next, ==, NULL); 2257 if (HDR_HAS_L1HDR(hdr)) { 2258 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 2259 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 2260 kmem_cache_free(hdr_full_cache, hdr); 2261 } else { 2262 kmem_cache_free(hdr_l2only_cache, hdr); 2263 } 2264 } 2265 2266 void 2267 arc_buf_free(arc_buf_t *buf, void *tag) 2268 { 2269 arc_buf_hdr_t *hdr = buf->b_hdr; 2270 int hashed = hdr->b_l1hdr.b_state != arc_anon; 2271 2272 ASSERT(buf->b_efunc == NULL); 2273 ASSERT(buf->b_data != NULL); 2274 2275 if (hashed) { 2276 kmutex_t *hash_lock = HDR_LOCK(hdr); 2277 2278 mutex_enter(hash_lock); 2279 hdr = buf->b_hdr; 2280 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 2281 2282 (void) remove_reference(hdr, hash_lock, tag); 2283 if (hdr->b_l1hdr.b_datacnt > 1) { 2284 arc_buf_destroy(buf, TRUE); 2285 } else { 2286 ASSERT(buf == hdr->b_l1hdr.b_buf); 2287 ASSERT(buf->b_efunc == NULL); 2288 hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE; 2289 } 2290 mutex_exit(hash_lock); 2291 } else if (HDR_IO_IN_PROGRESS(hdr)) { 2292 int destroy_hdr; 2293 /* 2294 * We are in the middle of an async write. Don't destroy 2295 * this buffer unless the write completes before we finish 2296 * decrementing the reference count. 2297 */ 2298 mutex_enter(&arc_user_evicts_lock); 2299 (void) remove_reference(hdr, NULL, tag); 2300 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2301 destroy_hdr = !HDR_IO_IN_PROGRESS(hdr); 2302 mutex_exit(&arc_user_evicts_lock); 2303 if (destroy_hdr) 2304 arc_hdr_destroy(hdr); 2305 } else { 2306 if (remove_reference(hdr, NULL, tag) > 0) 2307 arc_buf_destroy(buf, TRUE); 2308 else 2309 arc_hdr_destroy(hdr); 2310 } 2311 } 2312 2313 boolean_t 2314 arc_buf_remove_ref(arc_buf_t *buf, void* tag) 2315 { 2316 arc_buf_hdr_t *hdr = buf->b_hdr; 2317 kmutex_t *hash_lock = HDR_LOCK(hdr); 2318 boolean_t no_callback = (buf->b_efunc == NULL); 2319 2320 if (hdr->b_l1hdr.b_state == arc_anon) { 2321 ASSERT(hdr->b_l1hdr.b_datacnt == 1); 2322 arc_buf_free(buf, tag); 2323 return (no_callback); 2324 } 2325 2326 mutex_enter(hash_lock); 2327 hdr = buf->b_hdr; 2328 ASSERT(hdr->b_l1hdr.b_datacnt > 0); 2329 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 2330 ASSERT(hdr->b_l1hdr.b_state != arc_anon); 2331 ASSERT(buf->b_data != NULL); 2332 2333 (void) remove_reference(hdr, hash_lock, tag); 2334 if (hdr->b_l1hdr.b_datacnt > 1) { 2335 if (no_callback) 2336 arc_buf_destroy(buf, TRUE); 2337 } else if (no_callback) { 2338 ASSERT(hdr->b_l1hdr.b_buf == buf && buf->b_next == NULL); 2339 ASSERT(buf->b_efunc == NULL); 2340 hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE; 2341 } 2342 ASSERT(no_callback || hdr->b_l1hdr.b_datacnt > 1 || 2343 refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2344 mutex_exit(hash_lock); 2345 return (no_callback); 2346 } 2347 2348 int32_t 2349 arc_buf_size(arc_buf_t *buf) 2350 { 2351 return (buf->b_hdr->b_size); 2352 } 2353 2354 /* 2355 * Called from the DMU to determine if the current buffer should be 2356 * evicted. In order to ensure proper locking, the eviction must be initiated 2357 * from the DMU. Return true if the buffer is associated with user data and 2358 * duplicate buffers still exist. 2359 */ 2360 boolean_t 2361 arc_buf_eviction_needed(arc_buf_t *buf) 2362 { 2363 arc_buf_hdr_t *hdr; 2364 boolean_t evict_needed = B_FALSE; 2365 2366 if (zfs_disable_dup_eviction) 2367 return (B_FALSE); 2368 2369 mutex_enter(&buf->b_evict_lock); 2370 hdr = buf->b_hdr; 2371 if (hdr == NULL) { 2372 /* 2373 * We are in arc_do_user_evicts(); let that function 2374 * perform the eviction. 2375 */ 2376 ASSERT(buf->b_data == NULL); 2377 mutex_exit(&buf->b_evict_lock); 2378 return (B_FALSE); 2379 } else if (buf->b_data == NULL) { 2380 /* 2381 * We have already been added to the arc eviction list; 2382 * recommend eviction. 2383 */ 2384 ASSERT3P(hdr, ==, &arc_eviction_hdr); 2385 mutex_exit(&buf->b_evict_lock); 2386 return (B_TRUE); 2387 } 2388 2389 if (hdr->b_l1hdr.b_datacnt > 1 && HDR_ISTYPE_DATA(hdr)) 2390 evict_needed = B_TRUE; 2391 2392 mutex_exit(&buf->b_evict_lock); 2393 return (evict_needed); 2394 } 2395 2396 /* 2397 * Evict the arc_buf_hdr that is provided as a parameter. The resultant 2398 * state of the header is dependent on it's state prior to entering this 2399 * function. The following transitions are possible: 2400 * 2401 * - arc_mru -> arc_mru_ghost 2402 * - arc_mfu -> arc_mfu_ghost 2403 * - arc_mru_ghost -> arc_l2c_only 2404 * - arc_mru_ghost -> deleted 2405 * - arc_mfu_ghost -> arc_l2c_only 2406 * - arc_mfu_ghost -> deleted 2407 */ 2408 static int64_t 2409 arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock) 2410 { 2411 arc_state_t *evicted_state, *state; 2412 int64_t bytes_evicted = 0; 2413 2414 ASSERT(MUTEX_HELD(hash_lock)); 2415 ASSERT(HDR_HAS_L1HDR(hdr)); 2416 2417 state = hdr->b_l1hdr.b_state; 2418 if (GHOST_STATE(state)) { 2419 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 2420 ASSERT(hdr->b_l1hdr.b_buf == NULL); 2421 2422 /* 2423 * l2arc_write_buffers() relies on a header's L1 portion 2424 * (i.e. it's b_tmp_cdata field) during it's write phase. 2425 * Thus, we cannot push a header onto the arc_l2c_only 2426 * state (removing it's L1 piece) until the header is 2427 * done being written to the l2arc. 2428 */ 2429 if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) { 2430 ARCSTAT_BUMP(arcstat_evict_l2_skip); 2431 return (bytes_evicted); 2432 } 2433 2434 ARCSTAT_BUMP(arcstat_deleted); 2435 bytes_evicted += hdr->b_size; 2436 2437 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr); 2438 2439 if (HDR_HAS_L2HDR(hdr)) { 2440 /* 2441 * This buffer is cached on the 2nd Level ARC; 2442 * don't destroy the header. 2443 */ 2444 arc_change_state(arc_l2c_only, hdr, hash_lock); 2445 /* 2446 * dropping from L1+L2 cached to L2-only, 2447 * realloc to remove the L1 header. 2448 */ 2449 hdr = arc_hdr_realloc(hdr, hdr_full_cache, 2450 hdr_l2only_cache); 2451 } else { 2452 arc_change_state(arc_anon, hdr, hash_lock); 2453 arc_hdr_destroy(hdr); 2454 } 2455 return (bytes_evicted); 2456 } 2457 2458 ASSERT(state == arc_mru || state == arc_mfu); 2459 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 2460 2461 /* prefetch buffers have a minimum lifespan */ 2462 if (HDR_IO_IN_PROGRESS(hdr) || 2463 ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) && 2464 ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access < 2465 arc_min_prefetch_lifespan)) { 2466 ARCSTAT_BUMP(arcstat_evict_skip); 2467 return (bytes_evicted); 2468 } 2469 2470 ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt)); 2471 ASSERT3U(hdr->b_l1hdr.b_datacnt, >, 0); 2472 while (hdr->b_l1hdr.b_buf) { 2473 arc_buf_t *buf = hdr->b_l1hdr.b_buf; 2474 if (!mutex_tryenter(&buf->b_evict_lock)) { 2475 ARCSTAT_BUMP(arcstat_mutex_miss); 2476 break; 2477 } 2478 if (buf->b_data != NULL) 2479 bytes_evicted += hdr->b_size; 2480 if (buf->b_efunc != NULL) { 2481 mutex_enter(&arc_user_evicts_lock); 2482 arc_buf_destroy(buf, FALSE); 2483 hdr->b_l1hdr.b_buf = buf->b_next; 2484 buf->b_hdr = &arc_eviction_hdr; 2485 buf->b_next = arc_eviction_list; 2486 arc_eviction_list = buf; 2487 cv_signal(&arc_user_evicts_cv); 2488 mutex_exit(&arc_user_evicts_lock); 2489 mutex_exit(&buf->b_evict_lock); 2490 } else { 2491 mutex_exit(&buf->b_evict_lock); 2492 arc_buf_destroy(buf, TRUE); 2493 } 2494 } 2495 2496 if (HDR_HAS_L2HDR(hdr)) { 2497 ARCSTAT_INCR(arcstat_evict_l2_cached, hdr->b_size); 2498 } else { 2499 if (l2arc_write_eligible(hdr->b_spa, hdr)) 2500 ARCSTAT_INCR(arcstat_evict_l2_eligible, hdr->b_size); 2501 else 2502 ARCSTAT_INCR(arcstat_evict_l2_ineligible, hdr->b_size); 2503 } 2504 2505 if (hdr->b_l1hdr.b_datacnt == 0) { 2506 arc_change_state(evicted_state, hdr, hash_lock); 2507 ASSERT(HDR_IN_HASH_TABLE(hdr)); 2508 hdr->b_flags |= ARC_FLAG_IN_HASH_TABLE; 2509 hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE; 2510 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr); 2511 } 2512 2513 return (bytes_evicted); 2514 } 2515 2516 static uint64_t 2517 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker, 2518 uint64_t spa, int64_t bytes) 2519 { 2520 multilist_sublist_t *mls; 2521 uint64_t bytes_evicted = 0; 2522 arc_buf_hdr_t *hdr; 2523 kmutex_t *hash_lock; 2524 int evict_count = 0; 2525 2526 ASSERT3P(marker, !=, NULL); 2527 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL); 2528 2529 mls = multilist_sublist_lock(ml, idx); 2530 2531 for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL; 2532 hdr = multilist_sublist_prev(mls, marker)) { 2533 if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) || 2534 (evict_count >= zfs_arc_evict_batch_limit)) 2535 break; 2536 2537 /* 2538 * To keep our iteration location, move the marker 2539 * forward. Since we're not holding hdr's hash lock, we 2540 * must be very careful and not remove 'hdr' from the 2541 * sublist. Otherwise, other consumers might mistake the 2542 * 'hdr' as not being on a sublist when they call the 2543 * multilist_link_active() function (they all rely on 2544 * the hash lock protecting concurrent insertions and 2545 * removals). multilist_sublist_move_forward() was 2546 * specifically implemented to ensure this is the case 2547 * (only 'marker' will be removed and re-inserted). 2548 */ 2549 multilist_sublist_move_forward(mls, marker); 2550 2551 /* 2552 * The only case where the b_spa field should ever be 2553 * zero, is the marker headers inserted by 2554 * arc_evict_state(). It's possible for multiple threads 2555 * to be calling arc_evict_state() concurrently (e.g. 2556 * dsl_pool_close() and zio_inject_fault()), so we must 2557 * skip any markers we see from these other threads. 2558 */ 2559 if (hdr->b_spa == 0) 2560 continue; 2561 2562 /* we're only interested in evicting buffers of a certain spa */ 2563 if (spa != 0 && hdr->b_spa != spa) { 2564 ARCSTAT_BUMP(arcstat_evict_skip); 2565 continue; 2566 } 2567 2568 hash_lock = HDR_LOCK(hdr); 2569 2570 /* 2571 * We aren't calling this function from any code path 2572 * that would already be holding a hash lock, so we're 2573 * asserting on this assumption to be defensive in case 2574 * this ever changes. Without this check, it would be 2575 * possible to incorrectly increment arcstat_mutex_miss 2576 * below (e.g. if the code changed such that we called 2577 * this function with a hash lock held). 2578 */ 2579 ASSERT(!MUTEX_HELD(hash_lock)); 2580 2581 if (mutex_tryenter(hash_lock)) { 2582 uint64_t evicted = arc_evict_hdr(hdr, hash_lock); 2583 mutex_exit(hash_lock); 2584 2585 bytes_evicted += evicted; 2586 2587 /* 2588 * If evicted is zero, arc_evict_hdr() must have 2589 * decided to skip this header, don't increment 2590 * evict_count in this case. 2591 */ 2592 if (evicted != 0) 2593 evict_count++; 2594 2595 /* 2596 * If arc_size isn't overflowing, signal any 2597 * threads that might happen to be waiting. 2598 * 2599 * For each header evicted, we wake up a single 2600 * thread. If we used cv_broadcast, we could 2601 * wake up "too many" threads causing arc_size 2602 * to significantly overflow arc_c; since 2603 * arc_get_data_buf() doesn't check for overflow 2604 * when it's woken up (it doesn't because it's 2605 * possible for the ARC to be overflowing while 2606 * full of un-evictable buffers, and the 2607 * function should proceed in this case). 2608 * 2609 * If threads are left sleeping, due to not 2610 * using cv_broadcast, they will be woken up 2611 * just before arc_reclaim_thread() sleeps. 2612 */ 2613 mutex_enter(&arc_reclaim_lock); 2614 if (!arc_is_overflowing()) 2615 cv_signal(&arc_reclaim_waiters_cv); 2616 mutex_exit(&arc_reclaim_lock); 2617 } else { 2618 ARCSTAT_BUMP(arcstat_mutex_miss); 2619 } 2620 } 2621 2622 multilist_sublist_unlock(mls); 2623 2624 return (bytes_evicted); 2625 } 2626 2627 /* 2628 * Evict buffers from the given arc state, until we've removed the 2629 * specified number of bytes. Move the removed buffers to the 2630 * appropriate evict state. 2631 * 2632 * This function makes a "best effort". It skips over any buffers 2633 * it can't get a hash_lock on, and so, may not catch all candidates. 2634 * It may also return without evicting as much space as requested. 2635 * 2636 * If bytes is specified using the special value ARC_EVICT_ALL, this 2637 * will evict all available (i.e. unlocked and evictable) buffers from 2638 * the given arc state; which is used by arc_flush(). 2639 */ 2640 static uint64_t 2641 arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes, 2642 arc_buf_contents_t type) 2643 { 2644 uint64_t total_evicted = 0; 2645 multilist_t *ml = &state->arcs_list[type]; 2646 int num_sublists; 2647 arc_buf_hdr_t **markers; 2648 2649 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL); 2650 2651 num_sublists = multilist_get_num_sublists(ml); 2652 2653 /* 2654 * If we've tried to evict from each sublist, made some 2655 * progress, but still have not hit the target number of bytes 2656 * to evict, we want to keep trying. The markers allow us to 2657 * pick up where we left off for each individual sublist, rather 2658 * than starting from the tail each time. 2659 */ 2660 markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP); 2661 for (int i = 0; i < num_sublists; i++) { 2662 markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP); 2663 2664 /* 2665 * A b_spa of 0 is used to indicate that this header is 2666 * a marker. This fact is used in arc_adjust_type() and 2667 * arc_evict_state_impl(). 2668 */ 2669 markers[i]->b_spa = 0; 2670 2671 multilist_sublist_t *mls = multilist_sublist_lock(ml, i); 2672 multilist_sublist_insert_tail(mls, markers[i]); 2673 multilist_sublist_unlock(mls); 2674 } 2675 2676 /* 2677 * While we haven't hit our target number of bytes to evict, or 2678 * we're evicting all available buffers. 2679 */ 2680 while (total_evicted < bytes || bytes == ARC_EVICT_ALL) { 2681 /* 2682 * Start eviction using a randomly selected sublist, 2683 * this is to try and evenly balance eviction across all 2684 * sublists. Always starting at the same sublist 2685 * (e.g. index 0) would cause evictions to favor certain 2686 * sublists over others. 2687 */ 2688 int sublist_idx = multilist_get_random_index(ml); 2689 uint64_t scan_evicted = 0; 2690 2691 for (int i = 0; i < num_sublists; i++) { 2692 uint64_t bytes_remaining; 2693 uint64_t bytes_evicted; 2694 2695 if (bytes == ARC_EVICT_ALL) 2696 bytes_remaining = ARC_EVICT_ALL; 2697 else if (total_evicted < bytes) 2698 bytes_remaining = bytes - total_evicted; 2699 else 2700 break; 2701 2702 bytes_evicted = arc_evict_state_impl(ml, sublist_idx, 2703 markers[sublist_idx], spa, bytes_remaining); 2704 2705 scan_evicted += bytes_evicted; 2706 total_evicted += bytes_evicted; 2707 2708 /* we've reached the end, wrap to the beginning */ 2709 if (++sublist_idx >= num_sublists) 2710 sublist_idx = 0; 2711 } 2712 2713 /* 2714 * If we didn't evict anything during this scan, we have 2715 * no reason to believe we'll evict more during another 2716 * scan, so break the loop. 2717 */ 2718 if (scan_evicted == 0) { 2719 /* This isn't possible, let's make that obvious */ 2720 ASSERT3S(bytes, !=, 0); 2721 2722 /* 2723 * When bytes is ARC_EVICT_ALL, the only way to 2724 * break the loop is when scan_evicted is zero. 2725 * In that case, we actually have evicted enough, 2726 * so we don't want to increment the kstat. 2727 */ 2728 if (bytes != ARC_EVICT_ALL) { 2729 ASSERT3S(total_evicted, <, bytes); 2730 ARCSTAT_BUMP(arcstat_evict_not_enough); 2731 } 2732 2733 break; 2734 } 2735 } 2736 2737 for (int i = 0; i < num_sublists; i++) { 2738 multilist_sublist_t *mls = multilist_sublist_lock(ml, i); 2739 multilist_sublist_remove(mls, markers[i]); 2740 multilist_sublist_unlock(mls); 2741 2742 kmem_cache_free(hdr_full_cache, markers[i]); 2743 } 2744 kmem_free(markers, sizeof (*markers) * num_sublists); 2745 2746 return (total_evicted); 2747 } 2748 2749 /* 2750 * Flush all "evictable" data of the given type from the arc state 2751 * specified. This will not evict any "active" buffers (i.e. referenced). 2752 * 2753 * When 'retry' is set to FALSE, the function will make a single pass 2754 * over the state and evict any buffers that it can. Since it doesn't 2755 * continually retry the eviction, it might end up leaving some buffers 2756 * in the ARC due to lock misses. 2757 * 2758 * When 'retry' is set to TRUE, the function will continually retry the 2759 * eviction until *all* evictable buffers have been removed from the 2760 * state. As a result, if concurrent insertions into the state are 2761 * allowed (e.g. if the ARC isn't shutting down), this function might 2762 * wind up in an infinite loop, continually trying to evict buffers. 2763 */ 2764 static uint64_t 2765 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type, 2766 boolean_t retry) 2767 { 2768 uint64_t evicted = 0; 2769 2770 while (state->arcs_lsize[type] != 0) { 2771 evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type); 2772 2773 if (!retry) 2774 break; 2775 } 2776 2777 return (evicted); 2778 } 2779 2780 /* 2781 * Evict the specified number of bytes from the state specified, 2782 * restricting eviction to the spa and type given. This function 2783 * prevents us from trying to evict more from a state's list than 2784 * is "evictable", and to skip evicting altogether when passed a 2785 * negative value for "bytes". In contrast, arc_evict_state() will 2786 * evict everything it can, when passed a negative value for "bytes". 2787 */ 2788 static uint64_t 2789 arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes, 2790 arc_buf_contents_t type) 2791 { 2792 int64_t delta; 2793 2794 if (bytes > 0 && state->arcs_lsize[type] > 0) { 2795 delta = MIN(state->arcs_lsize[type], bytes); 2796 return (arc_evict_state(state, spa, delta, type)); 2797 } 2798 2799 return (0); 2800 } 2801 2802 /* 2803 * Evict metadata buffers from the cache, such that arc_meta_used is 2804 * capped by the arc_meta_limit tunable. 2805 */ 2806 static uint64_t 2807 arc_adjust_meta(void) 2808 { 2809 uint64_t total_evicted = 0; 2810 int64_t target; 2811 2812 /* 2813 * If we're over the meta limit, we want to evict enough 2814 * metadata to get back under the meta limit. We don't want to 2815 * evict so much that we drop the MRU below arc_p, though. If 2816 * we're over the meta limit more than we're over arc_p, we 2817 * evict some from the MRU here, and some from the MFU below. 2818 */ 2819 target = MIN((int64_t)(arc_meta_used - arc_meta_limit), 2820 (int64_t)(refcount_count(&arc_anon->arcs_size) + 2821 refcount_count(&arc_mru->arcs_size) - arc_p)); 2822 2823 total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 2824 2825 /* 2826 * Similar to the above, we want to evict enough bytes to get us 2827 * below the meta limit, but not so much as to drop us below the 2828 * space alloted to the MFU (which is defined as arc_c - arc_p). 2829 */ 2830 target = MIN((int64_t)(arc_meta_used - arc_meta_limit), 2831 (int64_t)(refcount_count(&arc_mfu->arcs_size) - (arc_c - arc_p))); 2832 2833 total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 2834 2835 return (total_evicted); 2836 } 2837 2838 /* 2839 * Return the type of the oldest buffer in the given arc state 2840 * 2841 * This function will select a random sublist of type ARC_BUFC_DATA and 2842 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist 2843 * is compared, and the type which contains the "older" buffer will be 2844 * returned. 2845 */ 2846 static arc_buf_contents_t 2847 arc_adjust_type(arc_state_t *state) 2848 { 2849 multilist_t *data_ml = &state->arcs_list[ARC_BUFC_DATA]; 2850 multilist_t *meta_ml = &state->arcs_list[ARC_BUFC_METADATA]; 2851 int data_idx = multilist_get_random_index(data_ml); 2852 int meta_idx = multilist_get_random_index(meta_ml); 2853 multilist_sublist_t *data_mls; 2854 multilist_sublist_t *meta_mls; 2855 arc_buf_contents_t type; 2856 arc_buf_hdr_t *data_hdr; 2857 arc_buf_hdr_t *meta_hdr; 2858 2859 /* 2860 * We keep the sublist lock until we're finished, to prevent 2861 * the headers from being destroyed via arc_evict_state(). 2862 */ 2863 data_mls = multilist_sublist_lock(data_ml, data_idx); 2864 meta_mls = multilist_sublist_lock(meta_ml, meta_idx); 2865 2866 /* 2867 * These two loops are to ensure we skip any markers that 2868 * might be at the tail of the lists due to arc_evict_state(). 2869 */ 2870 2871 for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL; 2872 data_hdr = multilist_sublist_prev(data_mls, data_hdr)) { 2873 if (data_hdr->b_spa != 0) 2874 break; 2875 } 2876 2877 for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL; 2878 meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) { 2879 if (meta_hdr->b_spa != 0) 2880 break; 2881 } 2882 2883 if (data_hdr == NULL && meta_hdr == NULL) { 2884 type = ARC_BUFC_DATA; 2885 } else if (data_hdr == NULL) { 2886 ASSERT3P(meta_hdr, !=, NULL); 2887 type = ARC_BUFC_METADATA; 2888 } else if (meta_hdr == NULL) { 2889 ASSERT3P(data_hdr, !=, NULL); 2890 type = ARC_BUFC_DATA; 2891 } else { 2892 ASSERT3P(data_hdr, !=, NULL); 2893 ASSERT3P(meta_hdr, !=, NULL); 2894 2895 /* The headers can't be on the sublist without an L1 header */ 2896 ASSERT(HDR_HAS_L1HDR(data_hdr)); 2897 ASSERT(HDR_HAS_L1HDR(meta_hdr)); 2898 2899 if (data_hdr->b_l1hdr.b_arc_access < 2900 meta_hdr->b_l1hdr.b_arc_access) { 2901 type = ARC_BUFC_DATA; 2902 } else { 2903 type = ARC_BUFC_METADATA; 2904 } 2905 } 2906 2907 multilist_sublist_unlock(meta_mls); 2908 multilist_sublist_unlock(data_mls); 2909 2910 return (type); 2911 } 2912 2913 /* 2914 * Evict buffers from the cache, such that arc_size is capped by arc_c. 2915 */ 2916 static uint64_t 2917 arc_adjust(void) 2918 { 2919 uint64_t total_evicted = 0; 2920 uint64_t bytes; 2921 int64_t target; 2922 2923 /* 2924 * If we're over arc_meta_limit, we want to correct that before 2925 * potentially evicting data buffers below. 2926 */ 2927 total_evicted += arc_adjust_meta(); 2928 2929 /* 2930 * Adjust MRU size 2931 * 2932 * If we're over the target cache size, we want to evict enough 2933 * from the list to get back to our target size. We don't want 2934 * to evict too much from the MRU, such that it drops below 2935 * arc_p. So, if we're over our target cache size more than 2936 * the MRU is over arc_p, we'll evict enough to get back to 2937 * arc_p here, and then evict more from the MFU below. 2938 */ 2939 target = MIN((int64_t)(arc_size - arc_c), 2940 (int64_t)(refcount_count(&arc_anon->arcs_size) + 2941 refcount_count(&arc_mru->arcs_size) + arc_meta_used - arc_p)); 2942 2943 /* 2944 * If we're below arc_meta_min, always prefer to evict data. 2945 * Otherwise, try to satisfy the requested number of bytes to 2946 * evict from the type which contains older buffers; in an 2947 * effort to keep newer buffers in the cache regardless of their 2948 * type. If we cannot satisfy the number of bytes from this 2949 * type, spill over into the next type. 2950 */ 2951 if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA && 2952 arc_meta_used > arc_meta_min) { 2953 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 2954 total_evicted += bytes; 2955 2956 /* 2957 * If we couldn't evict our target number of bytes from 2958 * metadata, we try to get the rest from data. 2959 */ 2960 target -= bytes; 2961 2962 total_evicted += 2963 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA); 2964 } else { 2965 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA); 2966 total_evicted += bytes; 2967 2968 /* 2969 * If we couldn't evict our target number of bytes from 2970 * data, we try to get the rest from metadata. 2971 */ 2972 target -= bytes; 2973 2974 total_evicted += 2975 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 2976 } 2977 2978 /* 2979 * Adjust MFU size 2980 * 2981 * Now that we've tried to evict enough from the MRU to get its 2982 * size back to arc_p, if we're still above the target cache 2983 * size, we evict the rest from the MFU. 2984 */ 2985 target = arc_size - arc_c; 2986 2987 if (arc_adjust_type(arc_mfu) == ARC_BUFC_METADATA && 2988 arc_meta_used > arc_meta_min) { 2989 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 2990 total_evicted += bytes; 2991 2992 /* 2993 * If we couldn't evict our target number of bytes from 2994 * metadata, we try to get the rest from data. 2995 */ 2996 target -= bytes; 2997 2998 total_evicted += 2999 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA); 3000 } else { 3001 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA); 3002 total_evicted += bytes; 3003 3004 /* 3005 * If we couldn't evict our target number of bytes from 3006 * data, we try to get the rest from data. 3007 */ 3008 target -= bytes; 3009 3010 total_evicted += 3011 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 3012 } 3013 3014 /* 3015 * Adjust ghost lists 3016 * 3017 * In addition to the above, the ARC also defines target values 3018 * for the ghost lists. The sum of the mru list and mru ghost 3019 * list should never exceed the target size of the cache, and 3020 * the sum of the mru list, mfu list, mru ghost list, and mfu 3021 * ghost list should never exceed twice the target size of the 3022 * cache. The following logic enforces these limits on the ghost 3023 * caches, and evicts from them as needed. 3024 */ 3025 target = refcount_count(&arc_mru->arcs_size) + 3026 refcount_count(&arc_mru_ghost->arcs_size) - arc_c; 3027 3028 bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA); 3029 total_evicted += bytes; 3030 3031 target -= bytes; 3032 3033 total_evicted += 3034 arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA); 3035 3036 /* 3037 * We assume the sum of the mru list and mfu list is less than 3038 * or equal to arc_c (we enforced this above), which means we 3039 * can use the simpler of the two equations below: 3040 * 3041 * mru + mfu + mru ghost + mfu ghost <= 2 * arc_c 3042 * mru ghost + mfu ghost <= arc_c 3043 */ 3044 target = refcount_count(&arc_mru_ghost->arcs_size) + 3045 refcount_count(&arc_mfu_ghost->arcs_size) - arc_c; 3046 3047 bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA); 3048 total_evicted += bytes; 3049 3050 target -= bytes; 3051 3052 total_evicted += 3053 arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA); 3054 3055 return (total_evicted); 3056 } 3057 3058 static void 3059 arc_do_user_evicts(void) 3060 { 3061 mutex_enter(&arc_user_evicts_lock); 3062 while (arc_eviction_list != NULL) { 3063 arc_buf_t *buf = arc_eviction_list; 3064 arc_eviction_list = buf->b_next; 3065 mutex_enter(&buf->b_evict_lock); 3066 buf->b_hdr = NULL; 3067 mutex_exit(&buf->b_evict_lock); 3068 mutex_exit(&arc_user_evicts_lock); 3069 3070 if (buf->b_efunc != NULL) 3071 VERIFY0(buf->b_efunc(buf->b_private)); 3072 3073 buf->b_efunc = NULL; 3074 buf->b_private = NULL; 3075 kmem_cache_free(buf_cache, buf); 3076 mutex_enter(&arc_user_evicts_lock); 3077 } 3078 mutex_exit(&arc_user_evicts_lock); 3079 } 3080 3081 void 3082 arc_flush(spa_t *spa, boolean_t retry) 3083 { 3084 uint64_t guid = 0; 3085 3086 /* 3087 * If retry is TRUE, a spa must not be specified since we have 3088 * no good way to determine if all of a spa's buffers have been 3089 * evicted from an arc state. 3090 */ 3091 ASSERT(!retry || spa == 0); 3092 3093 if (spa != NULL) 3094 guid = spa_load_guid(spa); 3095 3096 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry); 3097 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry); 3098 3099 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry); 3100 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry); 3101 3102 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry); 3103 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry); 3104 3105 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry); 3106 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry); 3107 3108 arc_do_user_evicts(); 3109 ASSERT(spa || arc_eviction_list == NULL); 3110 } 3111 3112 void 3113 arc_shrink(int64_t to_free) 3114 { 3115 if (arc_c > arc_c_min) { 3116 3117 if (arc_c > arc_c_min + to_free) 3118 atomic_add_64(&arc_c, -to_free); 3119 else 3120 arc_c = arc_c_min; 3121 3122 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift)); 3123 if (arc_c > arc_size) 3124 arc_c = MAX(arc_size, arc_c_min); 3125 if (arc_p > arc_c) 3126 arc_p = (arc_c >> 1); 3127 ASSERT(arc_c >= arc_c_min); 3128 ASSERT((int64_t)arc_p >= 0); 3129 } 3130 3131 if (arc_size > arc_c) 3132 (void) arc_adjust(); 3133 } 3134 3135 typedef enum free_memory_reason_t { 3136 FMR_UNKNOWN, 3137 FMR_NEEDFREE, 3138 FMR_LOTSFREE, 3139 FMR_SWAPFS_MINFREE, 3140 FMR_PAGES_PP_MAXIMUM, 3141 FMR_HEAP_ARENA, 3142 FMR_ZIO_ARENA, 3143 } free_memory_reason_t; 3144 3145 int64_t last_free_memory; 3146 free_memory_reason_t last_free_reason; 3147 3148 /* 3149 * Additional reserve of pages for pp_reserve. 3150 */ 3151 int64_t arc_pages_pp_reserve = 64; 3152 3153 /* 3154 * Additional reserve of pages for swapfs. 3155 */ 3156 int64_t arc_swapfs_reserve = 64; 3157 3158 /* 3159 * Return the amount of memory that can be consumed before reclaim will be 3160 * needed. Positive if there is sufficient free memory, negative indicates 3161 * the amount of memory that needs to be freed up. 3162 */ 3163 static int64_t 3164 arc_available_memory(void) 3165 { 3166 int64_t lowest = INT64_MAX; 3167 int64_t n; 3168 free_memory_reason_t r = FMR_UNKNOWN; 3169 3170 #ifdef _KERNEL 3171 if (needfree > 0) { 3172 n = PAGESIZE * (-needfree); 3173 if (n < lowest) { 3174 lowest = n; 3175 r = FMR_NEEDFREE; 3176 } 3177 } 3178 3179 /* 3180 * check that we're out of range of the pageout scanner. It starts to 3181 * schedule paging if freemem is less than lotsfree and needfree. 3182 * lotsfree is the high-water mark for pageout, and needfree is the 3183 * number of needed free pages. We add extra pages here to make sure 3184 * the scanner doesn't start up while we're freeing memory. 3185 */ 3186 n = PAGESIZE * (freemem - lotsfree - needfree - desfree); 3187 if (n < lowest) { 3188 lowest = n; 3189 r = FMR_LOTSFREE; 3190 } 3191 3192 /* 3193 * check to make sure that swapfs has enough space so that anon 3194 * reservations can still succeed. anon_resvmem() checks that the 3195 * availrmem is greater than swapfs_minfree, and the number of reserved 3196 * swap pages. We also add a bit of extra here just to prevent 3197 * circumstances from getting really dire. 3198 */ 3199 n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve - 3200 desfree - arc_swapfs_reserve); 3201 if (n < lowest) { 3202 lowest = n; 3203 r = FMR_SWAPFS_MINFREE; 3204 } 3205 3206 3207 /* 3208 * Check that we have enough availrmem that memory locking (e.g., via 3209 * mlock(3C) or memcntl(2)) can still succeed. (pages_pp_maximum 3210 * stores the number of pages that cannot be locked; when availrmem 3211 * drops below pages_pp_maximum, page locking mechanisms such as 3212 * page_pp_lock() will fail.) 3213 */ 3214 n = PAGESIZE * (availrmem - pages_pp_maximum - 3215 arc_pages_pp_reserve); 3216 if (n < lowest) { 3217 lowest = n; 3218 r = FMR_PAGES_PP_MAXIMUM; 3219 } 3220 3221 #if defined(__i386) 3222 /* 3223 * If we're on an i386 platform, it's possible that we'll exhaust the 3224 * kernel heap space before we ever run out of available physical 3225 * memory. Most checks of the size of the heap_area compare against 3226 * tune.t_minarmem, which is the minimum available real memory that we 3227 * can have in the system. However, this is generally fixed at 25 pages 3228 * which is so low that it's useless. In this comparison, we seek to 3229 * calculate the total heap-size, and reclaim if more than 3/4ths of the 3230 * heap is allocated. (Or, in the calculation, if less than 1/4th is 3231 * free) 3232 */ 3233 n = vmem_size(heap_arena, VMEM_FREE) - 3234 (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2); 3235 if (n < lowest) { 3236 lowest = n; 3237 r = FMR_HEAP_ARENA; 3238 } 3239 #endif 3240 3241 /* 3242 * If zio data pages are being allocated out of a separate heap segment, 3243 * then enforce that the size of available vmem for this arena remains 3244 * above about 1/16th free. 3245 * 3246 * Note: The 1/16th arena free requirement was put in place 3247 * to aggressively evict memory from the arc in order to avoid 3248 * memory fragmentation issues. 3249 */ 3250 if (zio_arena != NULL) { 3251 n = vmem_size(zio_arena, VMEM_FREE) - 3252 (vmem_size(zio_arena, VMEM_ALLOC) >> 4); 3253 if (n < lowest) { 3254 lowest = n; 3255 r = FMR_ZIO_ARENA; 3256 } 3257 } 3258 #else 3259 /* Every 100 calls, free a small amount */ 3260 if (spa_get_random(100) == 0) 3261 lowest = -1024; 3262 #endif 3263 3264 last_free_memory = lowest; 3265 last_free_reason = r; 3266 3267 return (lowest); 3268 } 3269 3270 3271 /* 3272 * Determine if the system is under memory pressure and is asking 3273 * to reclaim memory. A return value of TRUE indicates that the system 3274 * is under memory pressure and that the arc should adjust accordingly. 3275 */ 3276 static boolean_t 3277 arc_reclaim_needed(void) 3278 { 3279 return (arc_available_memory() < 0); 3280 } 3281 3282 static void 3283 arc_kmem_reap_now(void) 3284 { 3285 size_t i; 3286 kmem_cache_t *prev_cache = NULL; 3287 kmem_cache_t *prev_data_cache = NULL; 3288 extern kmem_cache_t *zio_buf_cache[]; 3289 extern kmem_cache_t *zio_data_buf_cache[]; 3290 extern kmem_cache_t *range_seg_cache; 3291 3292 #ifdef _KERNEL 3293 if (arc_meta_used >= arc_meta_limit) { 3294 /* 3295 * We are exceeding our meta-data cache limit. 3296 * Purge some DNLC entries to release holds on meta-data. 3297 */ 3298 dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent); 3299 } 3300 #if defined(__i386) 3301 /* 3302 * Reclaim unused memory from all kmem caches. 3303 */ 3304 kmem_reap(); 3305 #endif 3306 #endif 3307 3308 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 3309 if (zio_buf_cache[i] != prev_cache) { 3310 prev_cache = zio_buf_cache[i]; 3311 kmem_cache_reap_now(zio_buf_cache[i]); 3312 } 3313 if (zio_data_buf_cache[i] != prev_data_cache) { 3314 prev_data_cache = zio_data_buf_cache[i]; 3315 kmem_cache_reap_now(zio_data_buf_cache[i]); 3316 } 3317 } 3318 kmem_cache_reap_now(buf_cache); 3319 kmem_cache_reap_now(hdr_full_cache); 3320 kmem_cache_reap_now(hdr_l2only_cache); 3321 kmem_cache_reap_now(range_seg_cache); 3322 3323 if (zio_arena != NULL) { 3324 /* 3325 * Ask the vmem arena to reclaim unused memory from its 3326 * quantum caches. 3327 */ 3328 vmem_qcache_reap(zio_arena); 3329 } 3330 } 3331 3332 /* 3333 * Threads can block in arc_get_data_buf() waiting for this thread to evict 3334 * enough data and signal them to proceed. When this happens, the threads in 3335 * arc_get_data_buf() are sleeping while holding the hash lock for their 3336 * particular arc header. Thus, we must be careful to never sleep on a 3337 * hash lock in this thread. This is to prevent the following deadlock: 3338 * 3339 * - Thread A sleeps on CV in arc_get_data_buf() holding hash lock "L", 3340 * waiting for the reclaim thread to signal it. 3341 * 3342 * - arc_reclaim_thread() tries to acquire hash lock "L" using mutex_enter, 3343 * fails, and goes to sleep forever. 3344 * 3345 * This possible deadlock is avoided by always acquiring a hash lock 3346 * using mutex_tryenter() from arc_reclaim_thread(). 3347 */ 3348 static void 3349 arc_reclaim_thread(void) 3350 { 3351 clock_t growtime = 0; 3352 callb_cpr_t cpr; 3353 3354 CALLB_CPR_INIT(&cpr, &arc_reclaim_lock, callb_generic_cpr, FTAG); 3355 3356 mutex_enter(&arc_reclaim_lock); 3357 while (!arc_reclaim_thread_exit) { 3358 int64_t free_memory = arc_available_memory(); 3359 uint64_t evicted = 0; 3360 3361 mutex_exit(&arc_reclaim_lock); 3362 3363 if (free_memory < 0) { 3364 3365 arc_no_grow = B_TRUE; 3366 arc_warm = B_TRUE; 3367 3368 /* 3369 * Wait at least zfs_grow_retry (default 60) seconds 3370 * before considering growing. 3371 */ 3372 growtime = ddi_get_lbolt() + (arc_grow_retry * hz); 3373 3374 arc_kmem_reap_now(); 3375 3376 /* 3377 * If we are still low on memory, shrink the ARC 3378 * so that we have arc_shrink_min free space. 3379 */ 3380 free_memory = arc_available_memory(); 3381 3382 int64_t to_free = 3383 (arc_c >> arc_shrink_shift) - free_memory; 3384 if (to_free > 0) { 3385 #ifdef _KERNEL 3386 to_free = MAX(to_free, ptob(needfree)); 3387 #endif 3388 arc_shrink(to_free); 3389 } 3390 } else if (free_memory < arc_c >> arc_no_grow_shift) { 3391 arc_no_grow = B_TRUE; 3392 } else if (ddi_get_lbolt() >= growtime) { 3393 arc_no_grow = B_FALSE; 3394 } 3395 3396 evicted = arc_adjust(); 3397 3398 mutex_enter(&arc_reclaim_lock); 3399 3400 /* 3401 * If evicted is zero, we couldn't evict anything via 3402 * arc_adjust(). This could be due to hash lock 3403 * collisions, but more likely due to the majority of 3404 * arc buffers being unevictable. Therefore, even if 3405 * arc_size is above arc_c, another pass is unlikely to 3406 * be helpful and could potentially cause us to enter an 3407 * infinite loop. 3408 */ 3409 if (arc_size <= arc_c || evicted == 0) { 3410 /* 3411 * We're either no longer overflowing, or we 3412 * can't evict anything more, so we should wake 3413 * up any threads before we go to sleep. 3414 */ 3415 cv_broadcast(&arc_reclaim_waiters_cv); 3416 3417 /* 3418 * Block until signaled, or after one second (we 3419 * might need to perform arc_kmem_reap_now() 3420 * even if we aren't being signalled) 3421 */ 3422 CALLB_CPR_SAFE_BEGIN(&cpr); 3423 (void) cv_timedwait(&arc_reclaim_thread_cv, 3424 &arc_reclaim_lock, ddi_get_lbolt() + hz); 3425 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_lock); 3426 } 3427 } 3428 3429 arc_reclaim_thread_exit = FALSE; 3430 cv_broadcast(&arc_reclaim_thread_cv); 3431 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_lock */ 3432 thread_exit(); 3433 } 3434 3435 static void 3436 arc_user_evicts_thread(void) 3437 { 3438 callb_cpr_t cpr; 3439 3440 CALLB_CPR_INIT(&cpr, &arc_user_evicts_lock, callb_generic_cpr, FTAG); 3441 3442 mutex_enter(&arc_user_evicts_lock); 3443 while (!arc_user_evicts_thread_exit) { 3444 mutex_exit(&arc_user_evicts_lock); 3445 3446 arc_do_user_evicts(); 3447 3448 /* 3449 * This is necessary in order for the mdb ::arc dcmd to 3450 * show up to date information. Since the ::arc command 3451 * does not call the kstat's update function, without 3452 * this call, the command may show stale stats for the 3453 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even 3454 * with this change, the data might be up to 1 second 3455 * out of date; but that should suffice. The arc_state_t 3456 * structures can be queried directly if more accurate 3457 * information is needed. 3458 */ 3459 if (arc_ksp != NULL) 3460 arc_ksp->ks_update(arc_ksp, KSTAT_READ); 3461 3462 mutex_enter(&arc_user_evicts_lock); 3463 3464 /* 3465 * Block until signaled, or after one second (we need to 3466 * call the arc's kstat update function regularly). 3467 */ 3468 CALLB_CPR_SAFE_BEGIN(&cpr); 3469 (void) cv_timedwait(&arc_user_evicts_cv, 3470 &arc_user_evicts_lock, ddi_get_lbolt() + hz); 3471 CALLB_CPR_SAFE_END(&cpr, &arc_user_evicts_lock); 3472 } 3473 3474 arc_user_evicts_thread_exit = FALSE; 3475 cv_broadcast(&arc_user_evicts_cv); 3476 CALLB_CPR_EXIT(&cpr); /* drops arc_user_evicts_lock */ 3477 thread_exit(); 3478 } 3479 3480 /* 3481 * Adapt arc info given the number of bytes we are trying to add and 3482 * the state that we are comming from. This function is only called 3483 * when we are adding new content to the cache. 3484 */ 3485 static void 3486 arc_adapt(int bytes, arc_state_t *state) 3487 { 3488 int mult; 3489 uint64_t arc_p_min = (arc_c >> arc_p_min_shift); 3490 int64_t mrug_size = refcount_count(&arc_mru_ghost->arcs_size); 3491 int64_t mfug_size = refcount_count(&arc_mfu_ghost->arcs_size); 3492 3493 if (state == arc_l2c_only) 3494 return; 3495 3496 ASSERT(bytes > 0); 3497 /* 3498 * Adapt the target size of the MRU list: 3499 * - if we just hit in the MRU ghost list, then increase 3500 * the target size of the MRU list. 3501 * - if we just hit in the MFU ghost list, then increase 3502 * the target size of the MFU list by decreasing the 3503 * target size of the MRU list. 3504 */ 3505 if (state == arc_mru_ghost) { 3506 mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size); 3507 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */ 3508 3509 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult); 3510 } else if (state == arc_mfu_ghost) { 3511 uint64_t delta; 3512 3513 mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size); 3514 mult = MIN(mult, 10); 3515 3516 delta = MIN(bytes * mult, arc_p); 3517 arc_p = MAX(arc_p_min, arc_p - delta); 3518 } 3519 ASSERT((int64_t)arc_p >= 0); 3520 3521 if (arc_reclaim_needed()) { 3522 cv_signal(&arc_reclaim_thread_cv); 3523 return; 3524 } 3525 3526 if (arc_no_grow) 3527 return; 3528 3529 if (arc_c >= arc_c_max) 3530 return; 3531 3532 /* 3533 * If we're within (2 * maxblocksize) bytes of the target 3534 * cache size, increment the target cache size 3535 */ 3536 if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) { 3537 atomic_add_64(&arc_c, (int64_t)bytes); 3538 if (arc_c > arc_c_max) 3539 arc_c = arc_c_max; 3540 else if (state == arc_anon) 3541 atomic_add_64(&arc_p, (int64_t)bytes); 3542 if (arc_p > arc_c) 3543 arc_p = arc_c; 3544 } 3545 ASSERT((int64_t)arc_p >= 0); 3546 } 3547 3548 /* 3549 * Check if arc_size has grown past our upper threshold, determined by 3550 * zfs_arc_overflow_shift. 3551 */ 3552 static boolean_t 3553 arc_is_overflowing(void) 3554 { 3555 /* Always allow at least one block of overflow */ 3556 uint64_t overflow = MAX(SPA_MAXBLOCKSIZE, 3557 arc_c >> zfs_arc_overflow_shift); 3558 3559 return (arc_size >= arc_c + overflow); 3560 } 3561 3562 /* 3563 * The buffer, supplied as the first argument, needs a data block. If we 3564 * are hitting the hard limit for the cache size, we must sleep, waiting 3565 * for the eviction thread to catch up. If we're past the target size 3566 * but below the hard limit, we'll only signal the reclaim thread and 3567 * continue on. 3568 */ 3569 static void 3570 arc_get_data_buf(arc_buf_t *buf) 3571 { 3572 arc_state_t *state = buf->b_hdr->b_l1hdr.b_state; 3573 uint64_t size = buf->b_hdr->b_size; 3574 arc_buf_contents_t type = arc_buf_type(buf->b_hdr); 3575 3576 arc_adapt(size, state); 3577 3578 /* 3579 * If arc_size is currently overflowing, and has grown past our 3580 * upper limit, we must be adding data faster than the evict 3581 * thread can evict. Thus, to ensure we don't compound the 3582 * problem by adding more data and forcing arc_size to grow even 3583 * further past it's target size, we halt and wait for the 3584 * eviction thread to catch up. 3585 * 3586 * It's also possible that the reclaim thread is unable to evict 3587 * enough buffers to get arc_size below the overflow limit (e.g. 3588 * due to buffers being un-evictable, or hash lock collisions). 3589 * In this case, we want to proceed regardless if we're 3590 * overflowing; thus we don't use a while loop here. 3591 */ 3592 if (arc_is_overflowing()) { 3593 mutex_enter(&arc_reclaim_lock); 3594 3595 /* 3596 * Now that we've acquired the lock, we may no longer be 3597 * over the overflow limit, lets check. 3598 * 3599 * We're ignoring the case of spurious wake ups. If that 3600 * were to happen, it'd let this thread consume an ARC 3601 * buffer before it should have (i.e. before we're under 3602 * the overflow limit and were signalled by the reclaim 3603 * thread). As long as that is a rare occurrence, it 3604 * shouldn't cause any harm. 3605 */ 3606 if (arc_is_overflowing()) { 3607 cv_signal(&arc_reclaim_thread_cv); 3608 cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock); 3609 } 3610 3611 mutex_exit(&arc_reclaim_lock); 3612 } 3613 3614 if (type == ARC_BUFC_METADATA) { 3615 buf->b_data = zio_buf_alloc(size); 3616 arc_space_consume(size, ARC_SPACE_META); 3617 } else { 3618 ASSERT(type == ARC_BUFC_DATA); 3619 buf->b_data = zio_data_buf_alloc(size); 3620 arc_space_consume(size, ARC_SPACE_DATA); 3621 } 3622 3623 /* 3624 * Update the state size. Note that ghost states have a 3625 * "ghost size" and so don't need to be updated. 3626 */ 3627 if (!GHOST_STATE(buf->b_hdr->b_l1hdr.b_state)) { 3628 arc_buf_hdr_t *hdr = buf->b_hdr; 3629 arc_state_t *state = hdr->b_l1hdr.b_state; 3630 3631 (void) refcount_add_many(&state->arcs_size, size, buf); 3632 3633 /* 3634 * If this is reached via arc_read, the link is 3635 * protected by the hash lock. If reached via 3636 * arc_buf_alloc, the header should not be accessed by 3637 * any other thread. And, if reached via arc_read_done, 3638 * the hash lock will protect it if it's found in the 3639 * hash table; otherwise no other thread should be 3640 * trying to [add|remove]_reference it. 3641 */ 3642 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 3643 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 3644 atomic_add_64(&hdr->b_l1hdr.b_state->arcs_lsize[type], 3645 size); 3646 } 3647 /* 3648 * If we are growing the cache, and we are adding anonymous 3649 * data, and we have outgrown arc_p, update arc_p 3650 */ 3651 if (arc_size < arc_c && hdr->b_l1hdr.b_state == arc_anon && 3652 (refcount_count(&arc_anon->arcs_size) + 3653 refcount_count(&arc_mru->arcs_size) > arc_p)) 3654 arc_p = MIN(arc_c, arc_p + size); 3655 } 3656 } 3657 3658 /* 3659 * This routine is called whenever a buffer is accessed. 3660 * NOTE: the hash lock is dropped in this function. 3661 */ 3662 static void 3663 arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock) 3664 { 3665 clock_t now; 3666 3667 ASSERT(MUTEX_HELD(hash_lock)); 3668 ASSERT(HDR_HAS_L1HDR(hdr)); 3669 3670 if (hdr->b_l1hdr.b_state == arc_anon) { 3671 /* 3672 * This buffer is not in the cache, and does not 3673 * appear in our "ghost" list. Add the new buffer 3674 * to the MRU state. 3675 */ 3676 3677 ASSERT0(hdr->b_l1hdr.b_arc_access); 3678 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 3679 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 3680 arc_change_state(arc_mru, hdr, hash_lock); 3681 3682 } else if (hdr->b_l1hdr.b_state == arc_mru) { 3683 now = ddi_get_lbolt(); 3684 3685 /* 3686 * If this buffer is here because of a prefetch, then either: 3687 * - clear the flag if this is a "referencing" read 3688 * (any subsequent access will bump this into the MFU state). 3689 * or 3690 * - move the buffer to the head of the list if this is 3691 * another prefetch (to make it less likely to be evicted). 3692 */ 3693 if (HDR_PREFETCH(hdr)) { 3694 if (refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) { 3695 /* link protected by hash lock */ 3696 ASSERT(multilist_link_active( 3697 &hdr->b_l1hdr.b_arc_node)); 3698 } else { 3699 hdr->b_flags &= ~ARC_FLAG_PREFETCH; 3700 ARCSTAT_BUMP(arcstat_mru_hits); 3701 } 3702 hdr->b_l1hdr.b_arc_access = now; 3703 return; 3704 } 3705 3706 /* 3707 * This buffer has been "accessed" only once so far, 3708 * but it is still in the cache. Move it to the MFU 3709 * state. 3710 */ 3711 if (now > hdr->b_l1hdr.b_arc_access + ARC_MINTIME) { 3712 /* 3713 * More than 125ms have passed since we 3714 * instantiated this buffer. Move it to the 3715 * most frequently used state. 3716 */ 3717 hdr->b_l1hdr.b_arc_access = now; 3718 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 3719 arc_change_state(arc_mfu, hdr, hash_lock); 3720 } 3721 ARCSTAT_BUMP(arcstat_mru_hits); 3722 } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) { 3723 arc_state_t *new_state; 3724 /* 3725 * This buffer has been "accessed" recently, but 3726 * was evicted from the cache. Move it to the 3727 * MFU state. 3728 */ 3729 3730 if (HDR_PREFETCH(hdr)) { 3731 new_state = arc_mru; 3732 if (refcount_count(&hdr->b_l1hdr.b_refcnt) > 0) 3733 hdr->b_flags &= ~ARC_FLAG_PREFETCH; 3734 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 3735 } else { 3736 new_state = arc_mfu; 3737 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 3738 } 3739 3740 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 3741 arc_change_state(new_state, hdr, hash_lock); 3742 3743 ARCSTAT_BUMP(arcstat_mru_ghost_hits); 3744 } else if (hdr->b_l1hdr.b_state == arc_mfu) { 3745 /* 3746 * This buffer has been accessed more than once and is 3747 * still in the cache. Keep it in the MFU state. 3748 * 3749 * NOTE: an add_reference() that occurred when we did 3750 * the arc_read() will have kicked this off the list. 3751 * If it was a prefetch, we will explicitly move it to 3752 * the head of the list now. 3753 */ 3754 if ((HDR_PREFETCH(hdr)) != 0) { 3755 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 3756 /* link protected by hash_lock */ 3757 ASSERT(multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3758 } 3759 ARCSTAT_BUMP(arcstat_mfu_hits); 3760 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 3761 } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) { 3762 arc_state_t *new_state = arc_mfu; 3763 /* 3764 * This buffer has been accessed more than once but has 3765 * been evicted from the cache. Move it back to the 3766 * MFU state. 3767 */ 3768 3769 if (HDR_PREFETCH(hdr)) { 3770 /* 3771 * This is a prefetch access... 3772 * move this block back to the MRU state. 3773 */ 3774 ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt)); 3775 new_state = arc_mru; 3776 } 3777 3778 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 3779 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 3780 arc_change_state(new_state, hdr, hash_lock); 3781 3782 ARCSTAT_BUMP(arcstat_mfu_ghost_hits); 3783 } else if (hdr->b_l1hdr.b_state == arc_l2c_only) { 3784 /* 3785 * This buffer is on the 2nd Level ARC. 3786 */ 3787 3788 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 3789 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 3790 arc_change_state(arc_mfu, hdr, hash_lock); 3791 } else { 3792 ASSERT(!"invalid arc state"); 3793 } 3794 } 3795 3796 /* a generic arc_done_func_t which you can use */ 3797 /* ARGSUSED */ 3798 void 3799 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg) 3800 { 3801 if (zio == NULL || zio->io_error == 0) 3802 bcopy(buf->b_data, arg, buf->b_hdr->b_size); 3803 VERIFY(arc_buf_remove_ref(buf, arg)); 3804 } 3805 3806 /* a generic arc_done_func_t */ 3807 void 3808 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg) 3809 { 3810 arc_buf_t **bufp = arg; 3811 if (zio && zio->io_error) { 3812 VERIFY(arc_buf_remove_ref(buf, arg)); 3813 *bufp = NULL; 3814 } else { 3815 *bufp = buf; 3816 ASSERT(buf->b_data); 3817 } 3818 } 3819 3820 static void 3821 arc_read_done(zio_t *zio) 3822 { 3823 arc_buf_hdr_t *hdr; 3824 arc_buf_t *buf; 3825 arc_buf_t *abuf; /* buffer we're assigning to callback */ 3826 kmutex_t *hash_lock = NULL; 3827 arc_callback_t *callback_list, *acb; 3828 int freeable = FALSE; 3829 3830 buf = zio->io_private; 3831 hdr = buf->b_hdr; 3832 3833 /* 3834 * The hdr was inserted into hash-table and removed from lists 3835 * prior to starting I/O. We should find this header, since 3836 * it's in the hash table, and it should be legit since it's 3837 * not possible to evict it during the I/O. The only possible 3838 * reason for it not to be found is if we were freed during the 3839 * read. 3840 */ 3841 if (HDR_IN_HASH_TABLE(hdr)) { 3842 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp)); 3843 ASSERT3U(hdr->b_dva.dva_word[0], ==, 3844 BP_IDENTITY(zio->io_bp)->dva_word[0]); 3845 ASSERT3U(hdr->b_dva.dva_word[1], ==, 3846 BP_IDENTITY(zio->io_bp)->dva_word[1]); 3847 3848 arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp, 3849 &hash_lock); 3850 3851 ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && 3852 hash_lock == NULL) || 3853 (found == hdr && 3854 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) || 3855 (found == hdr && HDR_L2_READING(hdr))); 3856 } 3857 3858 hdr->b_flags &= ~ARC_FLAG_L2_EVICTED; 3859 if (l2arc_noprefetch && HDR_PREFETCH(hdr)) 3860 hdr->b_flags &= ~ARC_FLAG_L2CACHE; 3861 3862 /* byteswap if necessary */ 3863 callback_list = hdr->b_l1hdr.b_acb; 3864 ASSERT(callback_list != NULL); 3865 if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) { 3866 dmu_object_byteswap_t bswap = 3867 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp)); 3868 arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ? 3869 byteswap_uint64_array : 3870 dmu_ot_byteswap[bswap].ob_func; 3871 func(buf->b_data, hdr->b_size); 3872 } 3873 3874 arc_cksum_compute(buf, B_FALSE); 3875 arc_buf_watch(buf); 3876 3877 if (hash_lock && zio->io_error == 0 && 3878 hdr->b_l1hdr.b_state == arc_anon) { 3879 /* 3880 * Only call arc_access on anonymous buffers. This is because 3881 * if we've issued an I/O for an evicted buffer, we've already 3882 * called arc_access (to prevent any simultaneous readers from 3883 * getting confused). 3884 */ 3885 arc_access(hdr, hash_lock); 3886 } 3887 3888 /* create copies of the data buffer for the callers */ 3889 abuf = buf; 3890 for (acb = callback_list; acb; acb = acb->acb_next) { 3891 if (acb->acb_done) { 3892 if (abuf == NULL) { 3893 ARCSTAT_BUMP(arcstat_duplicate_reads); 3894 abuf = arc_buf_clone(buf); 3895 } 3896 acb->acb_buf = abuf; 3897 abuf = NULL; 3898 } 3899 } 3900 hdr->b_l1hdr.b_acb = NULL; 3901 hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS; 3902 ASSERT(!HDR_BUF_AVAILABLE(hdr)); 3903 if (abuf == buf) { 3904 ASSERT(buf->b_efunc == NULL); 3905 ASSERT(hdr->b_l1hdr.b_datacnt == 1); 3906 hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE; 3907 } 3908 3909 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt) || 3910 callback_list != NULL); 3911 3912 if (zio->io_error != 0) { 3913 hdr->b_flags |= ARC_FLAG_IO_ERROR; 3914 if (hdr->b_l1hdr.b_state != arc_anon) 3915 arc_change_state(arc_anon, hdr, hash_lock); 3916 if (HDR_IN_HASH_TABLE(hdr)) 3917 buf_hash_remove(hdr); 3918 freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt); 3919 } 3920 3921 /* 3922 * Broadcast before we drop the hash_lock to avoid the possibility 3923 * that the hdr (and hence the cv) might be freed before we get to 3924 * the cv_broadcast(). 3925 */ 3926 cv_broadcast(&hdr->b_l1hdr.b_cv); 3927 3928 if (hash_lock != NULL) { 3929 mutex_exit(hash_lock); 3930 } else { 3931 /* 3932 * This block was freed while we waited for the read to 3933 * complete. It has been removed from the hash table and 3934 * moved to the anonymous state (so that it won't show up 3935 * in the cache). 3936 */ 3937 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 3938 freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt); 3939 } 3940 3941 /* execute each callback and free its structure */ 3942 while ((acb = callback_list) != NULL) { 3943 if (acb->acb_done) 3944 acb->acb_done(zio, acb->acb_buf, acb->acb_private); 3945 3946 if (acb->acb_zio_dummy != NULL) { 3947 acb->acb_zio_dummy->io_error = zio->io_error; 3948 zio_nowait(acb->acb_zio_dummy); 3949 } 3950 3951 callback_list = acb->acb_next; 3952 kmem_free(acb, sizeof (arc_callback_t)); 3953 } 3954 3955 if (freeable) 3956 arc_hdr_destroy(hdr); 3957 } 3958 3959 /* 3960 * "Read" the block at the specified DVA (in bp) via the 3961 * cache. If the block is found in the cache, invoke the provided 3962 * callback immediately and return. Note that the `zio' parameter 3963 * in the callback will be NULL in this case, since no IO was 3964 * required. If the block is not in the cache pass the read request 3965 * on to the spa with a substitute callback function, so that the 3966 * requested block will be added to the cache. 3967 * 3968 * If a read request arrives for a block that has a read in-progress, 3969 * either wait for the in-progress read to complete (and return the 3970 * results); or, if this is a read with a "done" func, add a record 3971 * to the read to invoke the "done" func when the read completes, 3972 * and return; or just return. 3973 * 3974 * arc_read_done() will invoke all the requested "done" functions 3975 * for readers of this block. 3976 */ 3977 int 3978 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done, 3979 void *private, zio_priority_t priority, int zio_flags, 3980 arc_flags_t *arc_flags, const zbookmark_phys_t *zb) 3981 { 3982 arc_buf_hdr_t *hdr = NULL; 3983 arc_buf_t *buf = NULL; 3984 kmutex_t *hash_lock = NULL; 3985 zio_t *rzio; 3986 uint64_t guid = spa_load_guid(spa); 3987 3988 ASSERT(!BP_IS_EMBEDDED(bp) || 3989 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA); 3990 3991 top: 3992 if (!BP_IS_EMBEDDED(bp)) { 3993 /* 3994 * Embedded BP's have no DVA and require no I/O to "read". 3995 * Create an anonymous arc buf to back it. 3996 */ 3997 hdr = buf_hash_find(guid, bp, &hash_lock); 3998 } 3999 4000 if (hdr != NULL && HDR_HAS_L1HDR(hdr) && hdr->b_l1hdr.b_datacnt > 0) { 4001 4002 *arc_flags |= ARC_FLAG_CACHED; 4003 4004 if (HDR_IO_IN_PROGRESS(hdr)) { 4005 4006 if (*arc_flags & ARC_FLAG_WAIT) { 4007 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock); 4008 mutex_exit(hash_lock); 4009 goto top; 4010 } 4011 ASSERT(*arc_flags & ARC_FLAG_NOWAIT); 4012 4013 if (done) { 4014 arc_callback_t *acb = NULL; 4015 4016 acb = kmem_zalloc(sizeof (arc_callback_t), 4017 KM_SLEEP); 4018 acb->acb_done = done; 4019 acb->acb_private = private; 4020 if (pio != NULL) 4021 acb->acb_zio_dummy = zio_null(pio, 4022 spa, NULL, NULL, NULL, zio_flags); 4023 4024 ASSERT(acb->acb_done != NULL); 4025 acb->acb_next = hdr->b_l1hdr.b_acb; 4026 hdr->b_l1hdr.b_acb = acb; 4027 add_reference(hdr, hash_lock, private); 4028 mutex_exit(hash_lock); 4029 return (0); 4030 } 4031 mutex_exit(hash_lock); 4032 return (0); 4033 } 4034 4035 ASSERT(hdr->b_l1hdr.b_state == arc_mru || 4036 hdr->b_l1hdr.b_state == arc_mfu); 4037 4038 if (done) { 4039 add_reference(hdr, hash_lock, private); 4040 /* 4041 * If this block is already in use, create a new 4042 * copy of the data so that we will be guaranteed 4043 * that arc_release() will always succeed. 4044 */ 4045 buf = hdr->b_l1hdr.b_buf; 4046 ASSERT(buf); 4047 ASSERT(buf->b_data); 4048 if (HDR_BUF_AVAILABLE(hdr)) { 4049 ASSERT(buf->b_efunc == NULL); 4050 hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE; 4051 } else { 4052 buf = arc_buf_clone(buf); 4053 } 4054 4055 } else if (*arc_flags & ARC_FLAG_PREFETCH && 4056 refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) { 4057 hdr->b_flags |= ARC_FLAG_PREFETCH; 4058 } 4059 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 4060 arc_access(hdr, hash_lock); 4061 if (*arc_flags & ARC_FLAG_L2CACHE) 4062 hdr->b_flags |= ARC_FLAG_L2CACHE; 4063 if (*arc_flags & ARC_FLAG_L2COMPRESS) 4064 hdr->b_flags |= ARC_FLAG_L2COMPRESS; 4065 mutex_exit(hash_lock); 4066 ARCSTAT_BUMP(arcstat_hits); 4067 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr), 4068 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), 4069 data, metadata, hits); 4070 4071 if (done) 4072 done(NULL, buf, private); 4073 } else { 4074 uint64_t size = BP_GET_LSIZE(bp); 4075 arc_callback_t *acb; 4076 vdev_t *vd = NULL; 4077 uint64_t addr = 0; 4078 boolean_t devw = B_FALSE; 4079 enum zio_compress b_compress = ZIO_COMPRESS_OFF; 4080 int32_t b_asize = 0; 4081 4082 if (hdr == NULL) { 4083 /* this block is not in the cache */ 4084 arc_buf_hdr_t *exists = NULL; 4085 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp); 4086 buf = arc_buf_alloc(spa, size, private, type); 4087 hdr = buf->b_hdr; 4088 if (!BP_IS_EMBEDDED(bp)) { 4089 hdr->b_dva = *BP_IDENTITY(bp); 4090 hdr->b_birth = BP_PHYSICAL_BIRTH(bp); 4091 exists = buf_hash_insert(hdr, &hash_lock); 4092 } 4093 if (exists != NULL) { 4094 /* somebody beat us to the hash insert */ 4095 mutex_exit(hash_lock); 4096 buf_discard_identity(hdr); 4097 (void) arc_buf_remove_ref(buf, private); 4098 goto top; /* restart the IO request */ 4099 } 4100 4101 /* if this is a prefetch, we don't have a reference */ 4102 if (*arc_flags & ARC_FLAG_PREFETCH) { 4103 (void) remove_reference(hdr, hash_lock, 4104 private); 4105 hdr->b_flags |= ARC_FLAG_PREFETCH; 4106 } 4107 if (*arc_flags & ARC_FLAG_L2CACHE) 4108 hdr->b_flags |= ARC_FLAG_L2CACHE; 4109 if (*arc_flags & ARC_FLAG_L2COMPRESS) 4110 hdr->b_flags |= ARC_FLAG_L2COMPRESS; 4111 if (BP_GET_LEVEL(bp) > 0) 4112 hdr->b_flags |= ARC_FLAG_INDIRECT; 4113 } else { 4114 /* 4115 * This block is in the ghost cache. If it was L2-only 4116 * (and thus didn't have an L1 hdr), we realloc the 4117 * header to add an L1 hdr. 4118 */ 4119 if (!HDR_HAS_L1HDR(hdr)) { 4120 hdr = arc_hdr_realloc(hdr, hdr_l2only_cache, 4121 hdr_full_cache); 4122 } 4123 4124 ASSERT(GHOST_STATE(hdr->b_l1hdr.b_state)); 4125 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 4126 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 4127 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 4128 4129 /* if this is a prefetch, we don't have a reference */ 4130 if (*arc_flags & ARC_FLAG_PREFETCH) 4131 hdr->b_flags |= ARC_FLAG_PREFETCH; 4132 else 4133 add_reference(hdr, hash_lock, private); 4134 if (*arc_flags & ARC_FLAG_L2CACHE) 4135 hdr->b_flags |= ARC_FLAG_L2CACHE; 4136 if (*arc_flags & ARC_FLAG_L2COMPRESS) 4137 hdr->b_flags |= ARC_FLAG_L2COMPRESS; 4138 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 4139 buf->b_hdr = hdr; 4140 buf->b_data = NULL; 4141 buf->b_efunc = NULL; 4142 buf->b_private = NULL; 4143 buf->b_next = NULL; 4144 hdr->b_l1hdr.b_buf = buf; 4145 ASSERT0(hdr->b_l1hdr.b_datacnt); 4146 hdr->b_l1hdr.b_datacnt = 1; 4147 arc_get_data_buf(buf); 4148 arc_access(hdr, hash_lock); 4149 } 4150 4151 ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state)); 4152 4153 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 4154 acb->acb_done = done; 4155 acb->acb_private = private; 4156 4157 ASSERT(hdr->b_l1hdr.b_acb == NULL); 4158 hdr->b_l1hdr.b_acb = acb; 4159 hdr->b_flags |= ARC_FLAG_IO_IN_PROGRESS; 4160 4161 if (HDR_HAS_L2HDR(hdr) && 4162 (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) { 4163 devw = hdr->b_l2hdr.b_dev->l2ad_writing; 4164 addr = hdr->b_l2hdr.b_daddr; 4165 b_compress = hdr->b_l2hdr.b_compress; 4166 b_asize = hdr->b_l2hdr.b_asize; 4167 /* 4168 * Lock out device removal. 4169 */ 4170 if (vdev_is_dead(vd) || 4171 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER)) 4172 vd = NULL; 4173 } 4174 4175 if (hash_lock != NULL) 4176 mutex_exit(hash_lock); 4177 4178 /* 4179 * At this point, we have a level 1 cache miss. Try again in 4180 * L2ARC if possible. 4181 */ 4182 ASSERT3U(hdr->b_size, ==, size); 4183 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp, 4184 uint64_t, size, zbookmark_phys_t *, zb); 4185 ARCSTAT_BUMP(arcstat_misses); 4186 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr), 4187 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), 4188 data, metadata, misses); 4189 4190 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) { 4191 /* 4192 * Read from the L2ARC if the following are true: 4193 * 1. The L2ARC vdev was previously cached. 4194 * 2. This buffer still has L2ARC metadata. 4195 * 3. This buffer isn't currently writing to the L2ARC. 4196 * 4. The L2ARC entry wasn't evicted, which may 4197 * also have invalidated the vdev. 4198 * 5. This isn't prefetch and l2arc_noprefetch is set. 4199 */ 4200 if (HDR_HAS_L2HDR(hdr) && 4201 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) && 4202 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) { 4203 l2arc_read_callback_t *cb; 4204 4205 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr); 4206 ARCSTAT_BUMP(arcstat_l2_hits); 4207 4208 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), 4209 KM_SLEEP); 4210 cb->l2rcb_buf = buf; 4211 cb->l2rcb_spa = spa; 4212 cb->l2rcb_bp = *bp; 4213 cb->l2rcb_zb = *zb; 4214 cb->l2rcb_flags = zio_flags; 4215 cb->l2rcb_compress = b_compress; 4216 4217 ASSERT(addr >= VDEV_LABEL_START_SIZE && 4218 addr + size < vd->vdev_psize - 4219 VDEV_LABEL_END_SIZE); 4220 4221 /* 4222 * l2arc read. The SCL_L2ARC lock will be 4223 * released by l2arc_read_done(). 4224 * Issue a null zio if the underlying buffer 4225 * was squashed to zero size by compression. 4226 */ 4227 if (b_compress == ZIO_COMPRESS_EMPTY) { 4228 rzio = zio_null(pio, spa, vd, 4229 l2arc_read_done, cb, 4230 zio_flags | ZIO_FLAG_DONT_CACHE | 4231 ZIO_FLAG_CANFAIL | 4232 ZIO_FLAG_DONT_PROPAGATE | 4233 ZIO_FLAG_DONT_RETRY); 4234 } else { 4235 rzio = zio_read_phys(pio, vd, addr, 4236 b_asize, buf->b_data, 4237 ZIO_CHECKSUM_OFF, 4238 l2arc_read_done, cb, priority, 4239 zio_flags | ZIO_FLAG_DONT_CACHE | 4240 ZIO_FLAG_CANFAIL | 4241 ZIO_FLAG_DONT_PROPAGATE | 4242 ZIO_FLAG_DONT_RETRY, B_FALSE); 4243 } 4244 DTRACE_PROBE2(l2arc__read, vdev_t *, vd, 4245 zio_t *, rzio); 4246 ARCSTAT_INCR(arcstat_l2_read_bytes, b_asize); 4247 4248 if (*arc_flags & ARC_FLAG_NOWAIT) { 4249 zio_nowait(rzio); 4250 return (0); 4251 } 4252 4253 ASSERT(*arc_flags & ARC_FLAG_WAIT); 4254 if (zio_wait(rzio) == 0) 4255 return (0); 4256 4257 /* l2arc read error; goto zio_read() */ 4258 } else { 4259 DTRACE_PROBE1(l2arc__miss, 4260 arc_buf_hdr_t *, hdr); 4261 ARCSTAT_BUMP(arcstat_l2_misses); 4262 if (HDR_L2_WRITING(hdr)) 4263 ARCSTAT_BUMP(arcstat_l2_rw_clash); 4264 spa_config_exit(spa, SCL_L2ARC, vd); 4265 } 4266 } else { 4267 if (vd != NULL) 4268 spa_config_exit(spa, SCL_L2ARC, vd); 4269 if (l2arc_ndev != 0) { 4270 DTRACE_PROBE1(l2arc__miss, 4271 arc_buf_hdr_t *, hdr); 4272 ARCSTAT_BUMP(arcstat_l2_misses); 4273 } 4274 } 4275 4276 rzio = zio_read(pio, spa, bp, buf->b_data, size, 4277 arc_read_done, buf, priority, zio_flags, zb); 4278 4279 if (*arc_flags & ARC_FLAG_WAIT) 4280 return (zio_wait(rzio)); 4281 4282 ASSERT(*arc_flags & ARC_FLAG_NOWAIT); 4283 zio_nowait(rzio); 4284 } 4285 return (0); 4286 } 4287 4288 void 4289 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private) 4290 { 4291 ASSERT(buf->b_hdr != NULL); 4292 ASSERT(buf->b_hdr->b_l1hdr.b_state != arc_anon); 4293 ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt) || 4294 func == NULL); 4295 ASSERT(buf->b_efunc == NULL); 4296 ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr)); 4297 4298 buf->b_efunc = func; 4299 buf->b_private = private; 4300 } 4301 4302 /* 4303 * Notify the arc that a block was freed, and thus will never be used again. 4304 */ 4305 void 4306 arc_freed(spa_t *spa, const blkptr_t *bp) 4307 { 4308 arc_buf_hdr_t *hdr; 4309 kmutex_t *hash_lock; 4310 uint64_t guid = spa_load_guid(spa); 4311 4312 ASSERT(!BP_IS_EMBEDDED(bp)); 4313 4314 hdr = buf_hash_find(guid, bp, &hash_lock); 4315 if (hdr == NULL) 4316 return; 4317 if (HDR_BUF_AVAILABLE(hdr)) { 4318 arc_buf_t *buf = hdr->b_l1hdr.b_buf; 4319 add_reference(hdr, hash_lock, FTAG); 4320 hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE; 4321 mutex_exit(hash_lock); 4322 4323 arc_release(buf, FTAG); 4324 (void) arc_buf_remove_ref(buf, FTAG); 4325 } else { 4326 mutex_exit(hash_lock); 4327 } 4328 4329 } 4330 4331 /* 4332 * Clear the user eviction callback set by arc_set_callback(), first calling 4333 * it if it exists. Because the presence of a callback keeps an arc_buf cached 4334 * clearing the callback may result in the arc_buf being destroyed. However, 4335 * it will not result in the *last* arc_buf being destroyed, hence the data 4336 * will remain cached in the ARC. We make a copy of the arc buffer here so 4337 * that we can process the callback without holding any locks. 4338 * 4339 * It's possible that the callback is already in the process of being cleared 4340 * by another thread. In this case we can not clear the callback. 4341 * 4342 * Returns B_TRUE if the callback was successfully called and cleared. 4343 */ 4344 boolean_t 4345 arc_clear_callback(arc_buf_t *buf) 4346 { 4347 arc_buf_hdr_t *hdr; 4348 kmutex_t *hash_lock; 4349 arc_evict_func_t *efunc = buf->b_efunc; 4350 void *private = buf->b_private; 4351 4352 mutex_enter(&buf->b_evict_lock); 4353 hdr = buf->b_hdr; 4354 if (hdr == NULL) { 4355 /* 4356 * We are in arc_do_user_evicts(). 4357 */ 4358 ASSERT(buf->b_data == NULL); 4359 mutex_exit(&buf->b_evict_lock); 4360 return (B_FALSE); 4361 } else if (buf->b_data == NULL) { 4362 /* 4363 * We are on the eviction list; process this buffer now 4364 * but let arc_do_user_evicts() do the reaping. 4365 */ 4366 buf->b_efunc = NULL; 4367 mutex_exit(&buf->b_evict_lock); 4368 VERIFY0(efunc(private)); 4369 return (B_TRUE); 4370 } 4371 hash_lock = HDR_LOCK(hdr); 4372 mutex_enter(hash_lock); 4373 hdr = buf->b_hdr; 4374 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 4375 4376 ASSERT3U(refcount_count(&hdr->b_l1hdr.b_refcnt), <, 4377 hdr->b_l1hdr.b_datacnt); 4378 ASSERT(hdr->b_l1hdr.b_state == arc_mru || 4379 hdr->b_l1hdr.b_state == arc_mfu); 4380 4381 buf->b_efunc = NULL; 4382 buf->b_private = NULL; 4383 4384 if (hdr->b_l1hdr.b_datacnt > 1) { 4385 mutex_exit(&buf->b_evict_lock); 4386 arc_buf_destroy(buf, TRUE); 4387 } else { 4388 ASSERT(buf == hdr->b_l1hdr.b_buf); 4389 hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE; 4390 mutex_exit(&buf->b_evict_lock); 4391 } 4392 4393 mutex_exit(hash_lock); 4394 VERIFY0(efunc(private)); 4395 return (B_TRUE); 4396 } 4397 4398 /* 4399 * Release this buffer from the cache, making it an anonymous buffer. This 4400 * must be done after a read and prior to modifying the buffer contents. 4401 * If the buffer has more than one reference, we must make 4402 * a new hdr for the buffer. 4403 */ 4404 void 4405 arc_release(arc_buf_t *buf, void *tag) 4406 { 4407 arc_buf_hdr_t *hdr = buf->b_hdr; 4408 4409 /* 4410 * It would be nice to assert that if it's DMU metadata (level > 4411 * 0 || it's the dnode file), then it must be syncing context. 4412 * But we don't know that information at this level. 4413 */ 4414 4415 mutex_enter(&buf->b_evict_lock); 4416 4417 ASSERT(HDR_HAS_L1HDR(hdr)); 4418 4419 /* 4420 * We don't grab the hash lock prior to this check, because if 4421 * the buffer's header is in the arc_anon state, it won't be 4422 * linked into the hash table. 4423 */ 4424 if (hdr->b_l1hdr.b_state == arc_anon) { 4425 mutex_exit(&buf->b_evict_lock); 4426 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 4427 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 4428 ASSERT(!HDR_HAS_L2HDR(hdr)); 4429 ASSERT(BUF_EMPTY(hdr)); 4430 4431 ASSERT3U(hdr->b_l1hdr.b_datacnt, ==, 1); 4432 ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1); 4433 ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node)); 4434 4435 ASSERT3P(buf->b_efunc, ==, NULL); 4436 ASSERT3P(buf->b_private, ==, NULL); 4437 4438 hdr->b_l1hdr.b_arc_access = 0; 4439 arc_buf_thaw(buf); 4440 4441 return; 4442 } 4443 4444 kmutex_t *hash_lock = HDR_LOCK(hdr); 4445 mutex_enter(hash_lock); 4446 4447 /* 4448 * This assignment is only valid as long as the hash_lock is 4449 * held, we must be careful not to reference state or the 4450 * b_state field after dropping the lock. 4451 */ 4452 arc_state_t *state = hdr->b_l1hdr.b_state; 4453 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 4454 ASSERT3P(state, !=, arc_anon); 4455 4456 /* this buffer is not on any list */ 4457 ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) > 0); 4458 4459 if (HDR_HAS_L2HDR(hdr)) { 4460 mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx); 4461 4462 /* 4463 * We have to recheck this conditional again now that 4464 * we're holding the l2ad_mtx to prevent a race with 4465 * another thread which might be concurrently calling 4466 * l2arc_evict(). In that case, l2arc_evict() might have 4467 * destroyed the header's L2 portion as we were waiting 4468 * to acquire the l2ad_mtx. 4469 */ 4470 if (HDR_HAS_L2HDR(hdr)) 4471 arc_hdr_l2hdr_destroy(hdr); 4472 4473 mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx); 4474 } 4475 4476 /* 4477 * Do we have more than one buf? 4478 */ 4479 if (hdr->b_l1hdr.b_datacnt > 1) { 4480 arc_buf_hdr_t *nhdr; 4481 arc_buf_t **bufp; 4482 uint64_t blksz = hdr->b_size; 4483 uint64_t spa = hdr->b_spa; 4484 arc_buf_contents_t type = arc_buf_type(hdr); 4485 uint32_t flags = hdr->b_flags; 4486 4487 ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL); 4488 /* 4489 * Pull the data off of this hdr and attach it to 4490 * a new anonymous hdr. 4491 */ 4492 (void) remove_reference(hdr, hash_lock, tag); 4493 bufp = &hdr->b_l1hdr.b_buf; 4494 while (*bufp != buf) 4495 bufp = &(*bufp)->b_next; 4496 *bufp = buf->b_next; 4497 buf->b_next = NULL; 4498 4499 ASSERT3P(state, !=, arc_l2c_only); 4500 4501 (void) refcount_remove_many( 4502 &state->arcs_size, hdr->b_size, buf); 4503 4504 if (refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) { 4505 ASSERT3P(state, !=, arc_l2c_only); 4506 uint64_t *size = &state->arcs_lsize[type]; 4507 ASSERT3U(*size, >=, hdr->b_size); 4508 atomic_add_64(size, -hdr->b_size); 4509 } 4510 4511 /* 4512 * We're releasing a duplicate user data buffer, update 4513 * our statistics accordingly. 4514 */ 4515 if (HDR_ISTYPE_DATA(hdr)) { 4516 ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers); 4517 ARCSTAT_INCR(arcstat_duplicate_buffers_size, 4518 -hdr->b_size); 4519 } 4520 hdr->b_l1hdr.b_datacnt -= 1; 4521 arc_cksum_verify(buf); 4522 arc_buf_unwatch(buf); 4523 4524 mutex_exit(hash_lock); 4525 4526 nhdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE); 4527 nhdr->b_size = blksz; 4528 nhdr->b_spa = spa; 4529 4530 nhdr->b_flags = flags & ARC_FLAG_L2_WRITING; 4531 nhdr->b_flags |= arc_bufc_to_flags(type); 4532 nhdr->b_flags |= ARC_FLAG_HAS_L1HDR; 4533 4534 nhdr->b_l1hdr.b_buf = buf; 4535 nhdr->b_l1hdr.b_datacnt = 1; 4536 nhdr->b_l1hdr.b_state = arc_anon; 4537 nhdr->b_l1hdr.b_arc_access = 0; 4538 nhdr->b_l1hdr.b_tmp_cdata = NULL; 4539 nhdr->b_freeze_cksum = NULL; 4540 4541 (void) refcount_add(&nhdr->b_l1hdr.b_refcnt, tag); 4542 buf->b_hdr = nhdr; 4543 mutex_exit(&buf->b_evict_lock); 4544 (void) refcount_add_many(&arc_anon->arcs_size, blksz, buf); 4545 } else { 4546 mutex_exit(&buf->b_evict_lock); 4547 ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) == 1); 4548 /* protected by hash lock, or hdr is on arc_anon */ 4549 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 4550 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 4551 arc_change_state(arc_anon, hdr, hash_lock); 4552 hdr->b_l1hdr.b_arc_access = 0; 4553 mutex_exit(hash_lock); 4554 4555 buf_discard_identity(hdr); 4556 arc_buf_thaw(buf); 4557 } 4558 buf->b_efunc = NULL; 4559 buf->b_private = NULL; 4560 } 4561 4562 int 4563 arc_released(arc_buf_t *buf) 4564 { 4565 int released; 4566 4567 mutex_enter(&buf->b_evict_lock); 4568 released = (buf->b_data != NULL && 4569 buf->b_hdr->b_l1hdr.b_state == arc_anon); 4570 mutex_exit(&buf->b_evict_lock); 4571 return (released); 4572 } 4573 4574 #ifdef ZFS_DEBUG 4575 int 4576 arc_referenced(arc_buf_t *buf) 4577 { 4578 int referenced; 4579 4580 mutex_enter(&buf->b_evict_lock); 4581 referenced = (refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt)); 4582 mutex_exit(&buf->b_evict_lock); 4583 return (referenced); 4584 } 4585 #endif 4586 4587 static void 4588 arc_write_ready(zio_t *zio) 4589 { 4590 arc_write_callback_t *callback = zio->io_private; 4591 arc_buf_t *buf = callback->awcb_buf; 4592 arc_buf_hdr_t *hdr = buf->b_hdr; 4593 4594 ASSERT(HDR_HAS_L1HDR(hdr)); 4595 ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt)); 4596 ASSERT(hdr->b_l1hdr.b_datacnt > 0); 4597 callback->awcb_ready(zio, buf, callback->awcb_private); 4598 4599 /* 4600 * If the IO is already in progress, then this is a re-write 4601 * attempt, so we need to thaw and re-compute the cksum. 4602 * It is the responsibility of the callback to handle the 4603 * accounting for any re-write attempt. 4604 */ 4605 if (HDR_IO_IN_PROGRESS(hdr)) { 4606 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 4607 if (hdr->b_freeze_cksum != NULL) { 4608 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 4609 hdr->b_freeze_cksum = NULL; 4610 } 4611 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 4612 } 4613 arc_cksum_compute(buf, B_FALSE); 4614 hdr->b_flags |= ARC_FLAG_IO_IN_PROGRESS; 4615 } 4616 4617 /* 4618 * The SPA calls this callback for each physical write that happens on behalf 4619 * of a logical write. See the comment in dbuf_write_physdone() for details. 4620 */ 4621 static void 4622 arc_write_physdone(zio_t *zio) 4623 { 4624 arc_write_callback_t *cb = zio->io_private; 4625 if (cb->awcb_physdone != NULL) 4626 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private); 4627 } 4628 4629 static void 4630 arc_write_done(zio_t *zio) 4631 { 4632 arc_write_callback_t *callback = zio->io_private; 4633 arc_buf_t *buf = callback->awcb_buf; 4634 arc_buf_hdr_t *hdr = buf->b_hdr; 4635 4636 ASSERT(hdr->b_l1hdr.b_acb == NULL); 4637 4638 if (zio->io_error == 0) { 4639 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) { 4640 buf_discard_identity(hdr); 4641 } else { 4642 hdr->b_dva = *BP_IDENTITY(zio->io_bp); 4643 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp); 4644 } 4645 } else { 4646 ASSERT(BUF_EMPTY(hdr)); 4647 } 4648 4649 /* 4650 * If the block to be written was all-zero or compressed enough to be 4651 * embedded in the BP, no write was performed so there will be no 4652 * dva/birth/checksum. The buffer must therefore remain anonymous 4653 * (and uncached). 4654 */ 4655 if (!BUF_EMPTY(hdr)) { 4656 arc_buf_hdr_t *exists; 4657 kmutex_t *hash_lock; 4658 4659 ASSERT(zio->io_error == 0); 4660 4661 arc_cksum_verify(buf); 4662 4663 exists = buf_hash_insert(hdr, &hash_lock); 4664 if (exists != NULL) { 4665 /* 4666 * This can only happen if we overwrite for 4667 * sync-to-convergence, because we remove 4668 * buffers from the hash table when we arc_free(). 4669 */ 4670 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) { 4671 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 4672 panic("bad overwrite, hdr=%p exists=%p", 4673 (void *)hdr, (void *)exists); 4674 ASSERT(refcount_is_zero( 4675 &exists->b_l1hdr.b_refcnt)); 4676 arc_change_state(arc_anon, exists, hash_lock); 4677 mutex_exit(hash_lock); 4678 arc_hdr_destroy(exists); 4679 exists = buf_hash_insert(hdr, &hash_lock); 4680 ASSERT3P(exists, ==, NULL); 4681 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) { 4682 /* nopwrite */ 4683 ASSERT(zio->io_prop.zp_nopwrite); 4684 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 4685 panic("bad nopwrite, hdr=%p exists=%p", 4686 (void *)hdr, (void *)exists); 4687 } else { 4688 /* Dedup */ 4689 ASSERT(hdr->b_l1hdr.b_datacnt == 1); 4690 ASSERT(hdr->b_l1hdr.b_state == arc_anon); 4691 ASSERT(BP_GET_DEDUP(zio->io_bp)); 4692 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 4693 } 4694 } 4695 hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS; 4696 /* if it's not anon, we are doing a scrub */ 4697 if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon) 4698 arc_access(hdr, hash_lock); 4699 mutex_exit(hash_lock); 4700 } else { 4701 hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS; 4702 } 4703 4704 ASSERT(!refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 4705 callback->awcb_done(zio, buf, callback->awcb_private); 4706 4707 kmem_free(callback, sizeof (arc_write_callback_t)); 4708 } 4709 4710 zio_t * 4711 arc_write(zio_t *pio, spa_t *spa, uint64_t txg, 4712 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, boolean_t l2arc_compress, 4713 const zio_prop_t *zp, arc_done_func_t *ready, arc_done_func_t *physdone, 4714 arc_done_func_t *done, void *private, zio_priority_t priority, 4715 int zio_flags, const zbookmark_phys_t *zb) 4716 { 4717 arc_buf_hdr_t *hdr = buf->b_hdr; 4718 arc_write_callback_t *callback; 4719 zio_t *zio; 4720 4721 ASSERT(ready != NULL); 4722 ASSERT(done != NULL); 4723 ASSERT(!HDR_IO_ERROR(hdr)); 4724 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 4725 ASSERT(hdr->b_l1hdr.b_acb == NULL); 4726 ASSERT(hdr->b_l1hdr.b_datacnt > 0); 4727 if (l2arc) 4728 hdr->b_flags |= ARC_FLAG_L2CACHE; 4729 if (l2arc_compress) 4730 hdr->b_flags |= ARC_FLAG_L2COMPRESS; 4731 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP); 4732 callback->awcb_ready = ready; 4733 callback->awcb_physdone = physdone; 4734 callback->awcb_done = done; 4735 callback->awcb_private = private; 4736 callback->awcb_buf = buf; 4737 4738 zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp, 4739 arc_write_ready, arc_write_physdone, arc_write_done, callback, 4740 priority, zio_flags, zb); 4741 4742 return (zio); 4743 } 4744 4745 static int 4746 arc_memory_throttle(uint64_t reserve, uint64_t txg) 4747 { 4748 #ifdef _KERNEL 4749 uint64_t available_memory = ptob(freemem); 4750 static uint64_t page_load = 0; 4751 static uint64_t last_txg = 0; 4752 4753 #if defined(__i386) 4754 available_memory = 4755 MIN(available_memory, vmem_size(heap_arena, VMEM_FREE)); 4756 #endif 4757 4758 if (freemem > physmem * arc_lotsfree_percent / 100) 4759 return (0); 4760 4761 if (txg > last_txg) { 4762 last_txg = txg; 4763 page_load = 0; 4764 } 4765 /* 4766 * If we are in pageout, we know that memory is already tight, 4767 * the arc is already going to be evicting, so we just want to 4768 * continue to let page writes occur as quickly as possible. 4769 */ 4770 if (curproc == proc_pageout) { 4771 if (page_load > MAX(ptob(minfree), available_memory) / 4) 4772 return (SET_ERROR(ERESTART)); 4773 /* Note: reserve is inflated, so we deflate */ 4774 page_load += reserve / 8; 4775 return (0); 4776 } else if (page_load > 0 && arc_reclaim_needed()) { 4777 /* memory is low, delay before restarting */ 4778 ARCSTAT_INCR(arcstat_memory_throttle_count, 1); 4779 return (SET_ERROR(EAGAIN)); 4780 } 4781 page_load = 0; 4782 #endif 4783 return (0); 4784 } 4785 4786 void 4787 arc_tempreserve_clear(uint64_t reserve) 4788 { 4789 atomic_add_64(&arc_tempreserve, -reserve); 4790 ASSERT((int64_t)arc_tempreserve >= 0); 4791 } 4792 4793 int 4794 arc_tempreserve_space(uint64_t reserve, uint64_t txg) 4795 { 4796 int error; 4797 uint64_t anon_size; 4798 4799 if (reserve > arc_c/4 && !arc_no_grow) 4800 arc_c = MIN(arc_c_max, reserve * 4); 4801 if (reserve > arc_c) 4802 return (SET_ERROR(ENOMEM)); 4803 4804 /* 4805 * Don't count loaned bufs as in flight dirty data to prevent long 4806 * network delays from blocking transactions that are ready to be 4807 * assigned to a txg. 4808 */ 4809 anon_size = MAX((int64_t)(refcount_count(&arc_anon->arcs_size) - 4810 arc_loaned_bytes), 0); 4811 4812 /* 4813 * Writes will, almost always, require additional memory allocations 4814 * in order to compress/encrypt/etc the data. We therefore need to 4815 * make sure that there is sufficient available memory for this. 4816 */ 4817 error = arc_memory_throttle(reserve, txg); 4818 if (error != 0) 4819 return (error); 4820 4821 /* 4822 * Throttle writes when the amount of dirty data in the cache 4823 * gets too large. We try to keep the cache less than half full 4824 * of dirty blocks so that our sync times don't grow too large. 4825 * Note: if two requests come in concurrently, we might let them 4826 * both succeed, when one of them should fail. Not a huge deal. 4827 */ 4828 4829 if (reserve + arc_tempreserve + anon_size > arc_c / 2 && 4830 anon_size > arc_c / 4) { 4831 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK " 4832 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n", 4833 arc_tempreserve>>10, 4834 arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10, 4835 arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10, 4836 reserve>>10, arc_c>>10); 4837 return (SET_ERROR(ERESTART)); 4838 } 4839 atomic_add_64(&arc_tempreserve, reserve); 4840 return (0); 4841 } 4842 4843 static void 4844 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size, 4845 kstat_named_t *evict_data, kstat_named_t *evict_metadata) 4846 { 4847 size->value.ui64 = refcount_count(&state->arcs_size); 4848 evict_data->value.ui64 = state->arcs_lsize[ARC_BUFC_DATA]; 4849 evict_metadata->value.ui64 = state->arcs_lsize[ARC_BUFC_METADATA]; 4850 } 4851 4852 static int 4853 arc_kstat_update(kstat_t *ksp, int rw) 4854 { 4855 arc_stats_t *as = ksp->ks_data; 4856 4857 if (rw == KSTAT_WRITE) { 4858 return (EACCES); 4859 } else { 4860 arc_kstat_update_state(arc_anon, 4861 &as->arcstat_anon_size, 4862 &as->arcstat_anon_evictable_data, 4863 &as->arcstat_anon_evictable_metadata); 4864 arc_kstat_update_state(arc_mru, 4865 &as->arcstat_mru_size, 4866 &as->arcstat_mru_evictable_data, 4867 &as->arcstat_mru_evictable_metadata); 4868 arc_kstat_update_state(arc_mru_ghost, 4869 &as->arcstat_mru_ghost_size, 4870 &as->arcstat_mru_ghost_evictable_data, 4871 &as->arcstat_mru_ghost_evictable_metadata); 4872 arc_kstat_update_state(arc_mfu, 4873 &as->arcstat_mfu_size, 4874 &as->arcstat_mfu_evictable_data, 4875 &as->arcstat_mfu_evictable_metadata); 4876 arc_kstat_update_state(arc_mfu_ghost, 4877 &as->arcstat_mfu_ghost_size, 4878 &as->arcstat_mfu_ghost_evictable_data, 4879 &as->arcstat_mfu_ghost_evictable_metadata); 4880 } 4881 4882 return (0); 4883 } 4884 4885 /* 4886 * This function *must* return indices evenly distributed between all 4887 * sublists of the multilist. This is needed due to how the ARC eviction 4888 * code is laid out; arc_evict_state() assumes ARC buffers are evenly 4889 * distributed between all sublists and uses this assumption when 4890 * deciding which sublist to evict from and how much to evict from it. 4891 */ 4892 unsigned int 4893 arc_state_multilist_index_func(multilist_t *ml, void *obj) 4894 { 4895 arc_buf_hdr_t *hdr = obj; 4896 4897 /* 4898 * We rely on b_dva to generate evenly distributed index 4899 * numbers using buf_hash below. So, as an added precaution, 4900 * let's make sure we never add empty buffers to the arc lists. 4901 */ 4902 ASSERT(!BUF_EMPTY(hdr)); 4903 4904 /* 4905 * The assumption here, is the hash value for a given 4906 * arc_buf_hdr_t will remain constant throughout it's lifetime 4907 * (i.e. it's b_spa, b_dva, and b_birth fields don't change). 4908 * Thus, we don't need to store the header's sublist index 4909 * on insertion, as this index can be recalculated on removal. 4910 * 4911 * Also, the low order bits of the hash value are thought to be 4912 * distributed evenly. Otherwise, in the case that the multilist 4913 * has a power of two number of sublists, each sublists' usage 4914 * would not be evenly distributed. 4915 */ 4916 return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) % 4917 multilist_get_num_sublists(ml)); 4918 } 4919 4920 void 4921 arc_init(void) 4922 { 4923 /* 4924 * allmem is "all memory that we could possibly use". 4925 */ 4926 #ifdef _KERNEL 4927 uint64_t allmem = ptob(physmem - swapfs_minfree); 4928 #else 4929 uint64_t allmem = (physmem * PAGESIZE) / 2; 4930 #endif 4931 4932 mutex_init(&arc_reclaim_lock, NULL, MUTEX_DEFAULT, NULL); 4933 cv_init(&arc_reclaim_thread_cv, NULL, CV_DEFAULT, NULL); 4934 cv_init(&arc_reclaim_waiters_cv, NULL, CV_DEFAULT, NULL); 4935 4936 mutex_init(&arc_user_evicts_lock, NULL, MUTEX_DEFAULT, NULL); 4937 cv_init(&arc_user_evicts_cv, NULL, CV_DEFAULT, NULL); 4938 4939 /* Convert seconds to clock ticks */ 4940 arc_min_prefetch_lifespan = 1 * hz; 4941 4942 /* Start out with 1/8 of all memory */ 4943 arc_c = allmem / 8; 4944 4945 #ifdef _KERNEL 4946 /* 4947 * On architectures where the physical memory can be larger 4948 * than the addressable space (intel in 32-bit mode), we may 4949 * need to limit the cache to 1/8 of VM size. 4950 */ 4951 arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8); 4952 #endif 4953 4954 /* set min cache to 1/32 of all memory, or 64MB, whichever is more */ 4955 arc_c_min = MAX(allmem / 32, 64 << 20); 4956 /* set max to 3/4 of all memory, or all but 1GB, whichever is more */ 4957 if (allmem >= 1 << 30) 4958 arc_c_max = allmem - (1 << 30); 4959 else 4960 arc_c_max = arc_c_min; 4961 arc_c_max = MAX(allmem * 3 / 4, arc_c_max); 4962 4963 /* 4964 * Allow the tunables to override our calculations if they are 4965 * reasonable (ie. over 64MB) 4966 */ 4967 if (zfs_arc_max > 64 << 20 && zfs_arc_max < allmem) 4968 arc_c_max = zfs_arc_max; 4969 if (zfs_arc_min > 64 << 20 && zfs_arc_min <= arc_c_max) 4970 arc_c_min = zfs_arc_min; 4971 4972 arc_c = arc_c_max; 4973 arc_p = (arc_c >> 1); 4974 4975 /* limit meta-data to 1/4 of the arc capacity */ 4976 arc_meta_limit = arc_c_max / 4; 4977 4978 /* Allow the tunable to override if it is reasonable */ 4979 if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max) 4980 arc_meta_limit = zfs_arc_meta_limit; 4981 4982 if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0) 4983 arc_c_min = arc_meta_limit / 2; 4984 4985 if (zfs_arc_meta_min > 0) { 4986 arc_meta_min = zfs_arc_meta_min; 4987 } else { 4988 arc_meta_min = arc_c_min / 2; 4989 } 4990 4991 if (zfs_arc_grow_retry > 0) 4992 arc_grow_retry = zfs_arc_grow_retry; 4993 4994 if (zfs_arc_shrink_shift > 0) 4995 arc_shrink_shift = zfs_arc_shrink_shift; 4996 4997 /* 4998 * Ensure that arc_no_grow_shift is less than arc_shrink_shift. 4999 */ 5000 if (arc_no_grow_shift >= arc_shrink_shift) 5001 arc_no_grow_shift = arc_shrink_shift - 1; 5002 5003 if (zfs_arc_p_min_shift > 0) 5004 arc_p_min_shift = zfs_arc_p_min_shift; 5005 5006 if (zfs_arc_num_sublists_per_state < 1) 5007 zfs_arc_num_sublists_per_state = MAX(boot_ncpus, 1); 5008 5009 /* if kmem_flags are set, lets try to use less memory */ 5010 if (kmem_debugging()) 5011 arc_c = arc_c / 2; 5012 if (arc_c < arc_c_min) 5013 arc_c = arc_c_min; 5014 5015 arc_anon = &ARC_anon; 5016 arc_mru = &ARC_mru; 5017 arc_mru_ghost = &ARC_mru_ghost; 5018 arc_mfu = &ARC_mfu; 5019 arc_mfu_ghost = &ARC_mfu_ghost; 5020 arc_l2c_only = &ARC_l2c_only; 5021 arc_size = 0; 5022 5023 multilist_create(&arc_mru->arcs_list[ARC_BUFC_METADATA], 5024 sizeof (arc_buf_hdr_t), 5025 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5026 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); 5027 multilist_create(&arc_mru->arcs_list[ARC_BUFC_DATA], 5028 sizeof (arc_buf_hdr_t), 5029 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5030 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); 5031 multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA], 5032 sizeof (arc_buf_hdr_t), 5033 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5034 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); 5035 multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA], 5036 sizeof (arc_buf_hdr_t), 5037 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5038 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); 5039 multilist_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA], 5040 sizeof (arc_buf_hdr_t), 5041 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5042 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); 5043 multilist_create(&arc_mfu->arcs_list[ARC_BUFC_DATA], 5044 sizeof (arc_buf_hdr_t), 5045 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5046 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); 5047 multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA], 5048 sizeof (arc_buf_hdr_t), 5049 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5050 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); 5051 multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA], 5052 sizeof (arc_buf_hdr_t), 5053 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5054 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); 5055 multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA], 5056 sizeof (arc_buf_hdr_t), 5057 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5058 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); 5059 multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA], 5060 sizeof (arc_buf_hdr_t), 5061 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5062 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); 5063 5064 refcount_create(&arc_anon->arcs_size); 5065 refcount_create(&arc_mru->arcs_size); 5066 refcount_create(&arc_mru_ghost->arcs_size); 5067 refcount_create(&arc_mfu->arcs_size); 5068 refcount_create(&arc_mfu_ghost->arcs_size); 5069 refcount_create(&arc_l2c_only->arcs_size); 5070 5071 buf_init(); 5072 5073 arc_reclaim_thread_exit = FALSE; 5074 arc_user_evicts_thread_exit = FALSE; 5075 arc_eviction_list = NULL; 5076 bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t)); 5077 5078 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED, 5079 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 5080 5081 if (arc_ksp != NULL) { 5082 arc_ksp->ks_data = &arc_stats; 5083 arc_ksp->ks_update = arc_kstat_update; 5084 kstat_install(arc_ksp); 5085 } 5086 5087 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0, 5088 TS_RUN, minclsyspri); 5089 5090 (void) thread_create(NULL, 0, arc_user_evicts_thread, NULL, 0, &p0, 5091 TS_RUN, minclsyspri); 5092 5093 arc_dead = FALSE; 5094 arc_warm = B_FALSE; 5095 5096 /* 5097 * Calculate maximum amount of dirty data per pool. 5098 * 5099 * If it has been set by /etc/system, take that. 5100 * Otherwise, use a percentage of physical memory defined by 5101 * zfs_dirty_data_max_percent (default 10%) with a cap at 5102 * zfs_dirty_data_max_max (default 4GB). 5103 */ 5104 if (zfs_dirty_data_max == 0) { 5105 zfs_dirty_data_max = physmem * PAGESIZE * 5106 zfs_dirty_data_max_percent / 100; 5107 zfs_dirty_data_max = MIN(zfs_dirty_data_max, 5108 zfs_dirty_data_max_max); 5109 } 5110 } 5111 5112 void 5113 arc_fini(void) 5114 { 5115 mutex_enter(&arc_reclaim_lock); 5116 arc_reclaim_thread_exit = TRUE; 5117 /* 5118 * The reclaim thread will set arc_reclaim_thread_exit back to 5119 * FALSE when it is finished exiting; we're waiting for that. 5120 */ 5121 while (arc_reclaim_thread_exit) { 5122 cv_signal(&arc_reclaim_thread_cv); 5123 cv_wait(&arc_reclaim_thread_cv, &arc_reclaim_lock); 5124 } 5125 mutex_exit(&arc_reclaim_lock); 5126 5127 mutex_enter(&arc_user_evicts_lock); 5128 arc_user_evicts_thread_exit = TRUE; 5129 /* 5130 * The user evicts thread will set arc_user_evicts_thread_exit 5131 * to FALSE when it is finished exiting; we're waiting for that. 5132 */ 5133 while (arc_user_evicts_thread_exit) { 5134 cv_signal(&arc_user_evicts_cv); 5135 cv_wait(&arc_user_evicts_cv, &arc_user_evicts_lock); 5136 } 5137 mutex_exit(&arc_user_evicts_lock); 5138 5139 /* Use TRUE to ensure *all* buffers are evicted */ 5140 arc_flush(NULL, TRUE); 5141 5142 arc_dead = TRUE; 5143 5144 if (arc_ksp != NULL) { 5145 kstat_delete(arc_ksp); 5146 arc_ksp = NULL; 5147 } 5148 5149 mutex_destroy(&arc_reclaim_lock); 5150 cv_destroy(&arc_reclaim_thread_cv); 5151 cv_destroy(&arc_reclaim_waiters_cv); 5152 5153 mutex_destroy(&arc_user_evicts_lock); 5154 cv_destroy(&arc_user_evicts_cv); 5155 5156 refcount_destroy(&arc_anon->arcs_size); 5157 refcount_destroy(&arc_mru->arcs_size); 5158 refcount_destroy(&arc_mru_ghost->arcs_size); 5159 refcount_destroy(&arc_mfu->arcs_size); 5160 refcount_destroy(&arc_mfu_ghost->arcs_size); 5161 refcount_destroy(&arc_l2c_only->arcs_size); 5162 5163 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]); 5164 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]); 5165 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]); 5166 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]); 5167 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]); 5168 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]); 5169 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]); 5170 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]); 5171 5172 buf_fini(); 5173 5174 ASSERT0(arc_loaned_bytes); 5175 } 5176 5177 /* 5178 * Level 2 ARC 5179 * 5180 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk. 5181 * It uses dedicated storage devices to hold cached data, which are populated 5182 * using large infrequent writes. The main role of this cache is to boost 5183 * the performance of random read workloads. The intended L2ARC devices 5184 * include short-stroked disks, solid state disks, and other media with 5185 * substantially faster read latency than disk. 5186 * 5187 * +-----------------------+ 5188 * | ARC | 5189 * +-----------------------+ 5190 * | ^ ^ 5191 * | | | 5192 * l2arc_feed_thread() arc_read() 5193 * | | | 5194 * | l2arc read | 5195 * V | | 5196 * +---------------+ | 5197 * | L2ARC | | 5198 * +---------------+ | 5199 * | ^ | 5200 * l2arc_write() | | 5201 * | | | 5202 * V | | 5203 * +-------+ +-------+ 5204 * | vdev | | vdev | 5205 * | cache | | cache | 5206 * +-------+ +-------+ 5207 * +=========+ .-----. 5208 * : L2ARC : |-_____-| 5209 * : devices : | Disks | 5210 * +=========+ `-_____-' 5211 * 5212 * Read requests are satisfied from the following sources, in order: 5213 * 5214 * 1) ARC 5215 * 2) vdev cache of L2ARC devices 5216 * 3) L2ARC devices 5217 * 4) vdev cache of disks 5218 * 5) disks 5219 * 5220 * Some L2ARC device types exhibit extremely slow write performance. 5221 * To accommodate for this there are some significant differences between 5222 * the L2ARC and traditional cache design: 5223 * 5224 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from 5225 * the ARC behave as usual, freeing buffers and placing headers on ghost 5226 * lists. The ARC does not send buffers to the L2ARC during eviction as 5227 * this would add inflated write latencies for all ARC memory pressure. 5228 * 5229 * 2. The L2ARC attempts to cache data from the ARC before it is evicted. 5230 * It does this by periodically scanning buffers from the eviction-end of 5231 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are 5232 * not already there. It scans until a headroom of buffers is satisfied, 5233 * which itself is a buffer for ARC eviction. If a compressible buffer is 5234 * found during scanning and selected for writing to an L2ARC device, we 5235 * temporarily boost scanning headroom during the next scan cycle to make 5236 * sure we adapt to compression effects (which might significantly reduce 5237 * the data volume we write to L2ARC). The thread that does this is 5238 * l2arc_feed_thread(), illustrated below; example sizes are included to 5239 * provide a better sense of ratio than this diagram: 5240 * 5241 * head --> tail 5242 * +---------------------+----------+ 5243 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC 5244 * +---------------------+----------+ | o L2ARC eligible 5245 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer 5246 * +---------------------+----------+ | 5247 * 15.9 Gbytes ^ 32 Mbytes | 5248 * headroom | 5249 * l2arc_feed_thread() 5250 * | 5251 * l2arc write hand <--[oooo]--' 5252 * | 8 Mbyte 5253 * | write max 5254 * V 5255 * +==============================+ 5256 * L2ARC dev |####|#|###|###| |####| ... | 5257 * +==============================+ 5258 * 32 Gbytes 5259 * 5260 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of 5261 * evicted, then the L2ARC has cached a buffer much sooner than it probably 5262 * needed to, potentially wasting L2ARC device bandwidth and storage. It is 5263 * safe to say that this is an uncommon case, since buffers at the end of 5264 * the ARC lists have moved there due to inactivity. 5265 * 5266 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom, 5267 * then the L2ARC simply misses copying some buffers. This serves as a 5268 * pressure valve to prevent heavy read workloads from both stalling the ARC 5269 * with waits and clogging the L2ARC with writes. This also helps prevent 5270 * the potential for the L2ARC to churn if it attempts to cache content too 5271 * quickly, such as during backups of the entire pool. 5272 * 5273 * 5. After system boot and before the ARC has filled main memory, there are 5274 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru 5275 * lists can remain mostly static. Instead of searching from tail of these 5276 * lists as pictured, the l2arc_feed_thread() will search from the list heads 5277 * for eligible buffers, greatly increasing its chance of finding them. 5278 * 5279 * The L2ARC device write speed is also boosted during this time so that 5280 * the L2ARC warms up faster. Since there have been no ARC evictions yet, 5281 * there are no L2ARC reads, and no fear of degrading read performance 5282 * through increased writes. 5283 * 5284 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that 5285 * the vdev queue can aggregate them into larger and fewer writes. Each 5286 * device is written to in a rotor fashion, sweeping writes through 5287 * available space then repeating. 5288 * 5289 * 7. The L2ARC does not store dirty content. It never needs to flush 5290 * write buffers back to disk based storage. 5291 * 5292 * 8. If an ARC buffer is written (and dirtied) which also exists in the 5293 * L2ARC, the now stale L2ARC buffer is immediately dropped. 5294 * 5295 * The performance of the L2ARC can be tweaked by a number of tunables, which 5296 * may be necessary for different workloads: 5297 * 5298 * l2arc_write_max max write bytes per interval 5299 * l2arc_write_boost extra write bytes during device warmup 5300 * l2arc_noprefetch skip caching prefetched buffers 5301 * l2arc_headroom number of max device writes to precache 5302 * l2arc_headroom_boost when we find compressed buffers during ARC 5303 * scanning, we multiply headroom by this 5304 * percentage factor for the next scan cycle, 5305 * since more compressed buffers are likely to 5306 * be present 5307 * l2arc_feed_secs seconds between L2ARC writing 5308 * 5309 * Tunables may be removed or added as future performance improvements are 5310 * integrated, and also may become zpool properties. 5311 * 5312 * There are three key functions that control how the L2ARC warms up: 5313 * 5314 * l2arc_write_eligible() check if a buffer is eligible to cache 5315 * l2arc_write_size() calculate how much to write 5316 * l2arc_write_interval() calculate sleep delay between writes 5317 * 5318 * These three functions determine what to write, how much, and how quickly 5319 * to send writes. 5320 */ 5321 5322 static boolean_t 5323 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr) 5324 { 5325 /* 5326 * A buffer is *not* eligible for the L2ARC if it: 5327 * 1. belongs to a different spa. 5328 * 2. is already cached on the L2ARC. 5329 * 3. has an I/O in progress (it may be an incomplete read). 5330 * 4. is flagged not eligible (zfs property). 5331 */ 5332 if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) || 5333 HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr)) 5334 return (B_FALSE); 5335 5336 return (B_TRUE); 5337 } 5338 5339 static uint64_t 5340 l2arc_write_size(void) 5341 { 5342 uint64_t size; 5343 5344 /* 5345 * Make sure our globals have meaningful values in case the user 5346 * altered them. 5347 */ 5348 size = l2arc_write_max; 5349 if (size == 0) { 5350 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must " 5351 "be greater than zero, resetting it to the default (%d)", 5352 L2ARC_WRITE_SIZE); 5353 size = l2arc_write_max = L2ARC_WRITE_SIZE; 5354 } 5355 5356 if (arc_warm == B_FALSE) 5357 size += l2arc_write_boost; 5358 5359 return (size); 5360 5361 } 5362 5363 static clock_t 5364 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote) 5365 { 5366 clock_t interval, next, now; 5367 5368 /* 5369 * If the ARC lists are busy, increase our write rate; if the 5370 * lists are stale, idle back. This is achieved by checking 5371 * how much we previously wrote - if it was more than half of 5372 * what we wanted, schedule the next write much sooner. 5373 */ 5374 if (l2arc_feed_again && wrote > (wanted / 2)) 5375 interval = (hz * l2arc_feed_min_ms) / 1000; 5376 else 5377 interval = hz * l2arc_feed_secs; 5378 5379 now = ddi_get_lbolt(); 5380 next = MAX(now, MIN(now + interval, began + interval)); 5381 5382 return (next); 5383 } 5384 5385 /* 5386 * Cycle through L2ARC devices. This is how L2ARC load balances. 5387 * If a device is returned, this also returns holding the spa config lock. 5388 */ 5389 static l2arc_dev_t * 5390 l2arc_dev_get_next(void) 5391 { 5392 l2arc_dev_t *first, *next = NULL; 5393 5394 /* 5395 * Lock out the removal of spas (spa_namespace_lock), then removal 5396 * of cache devices (l2arc_dev_mtx). Once a device has been selected, 5397 * both locks will be dropped and a spa config lock held instead. 5398 */ 5399 mutex_enter(&spa_namespace_lock); 5400 mutex_enter(&l2arc_dev_mtx); 5401 5402 /* if there are no vdevs, there is nothing to do */ 5403 if (l2arc_ndev == 0) 5404 goto out; 5405 5406 first = NULL; 5407 next = l2arc_dev_last; 5408 do { 5409 /* loop around the list looking for a non-faulted vdev */ 5410 if (next == NULL) { 5411 next = list_head(l2arc_dev_list); 5412 } else { 5413 next = list_next(l2arc_dev_list, next); 5414 if (next == NULL) 5415 next = list_head(l2arc_dev_list); 5416 } 5417 5418 /* if we have come back to the start, bail out */ 5419 if (first == NULL) 5420 first = next; 5421 else if (next == first) 5422 break; 5423 5424 } while (vdev_is_dead(next->l2ad_vdev)); 5425 5426 /* if we were unable to find any usable vdevs, return NULL */ 5427 if (vdev_is_dead(next->l2ad_vdev)) 5428 next = NULL; 5429 5430 l2arc_dev_last = next; 5431 5432 out: 5433 mutex_exit(&l2arc_dev_mtx); 5434 5435 /* 5436 * Grab the config lock to prevent the 'next' device from being 5437 * removed while we are writing to it. 5438 */ 5439 if (next != NULL) 5440 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER); 5441 mutex_exit(&spa_namespace_lock); 5442 5443 return (next); 5444 } 5445 5446 /* 5447 * Free buffers that were tagged for destruction. 5448 */ 5449 static void 5450 l2arc_do_free_on_write() 5451 { 5452 list_t *buflist; 5453 l2arc_data_free_t *df, *df_prev; 5454 5455 mutex_enter(&l2arc_free_on_write_mtx); 5456 buflist = l2arc_free_on_write; 5457 5458 for (df = list_tail(buflist); df; df = df_prev) { 5459 df_prev = list_prev(buflist, df); 5460 ASSERT(df->l2df_data != NULL); 5461 ASSERT(df->l2df_func != NULL); 5462 df->l2df_func(df->l2df_data, df->l2df_size); 5463 list_remove(buflist, df); 5464 kmem_free(df, sizeof (l2arc_data_free_t)); 5465 } 5466 5467 mutex_exit(&l2arc_free_on_write_mtx); 5468 } 5469 5470 /* 5471 * A write to a cache device has completed. Update all headers to allow 5472 * reads from these buffers to begin. 5473 */ 5474 static void 5475 l2arc_write_done(zio_t *zio) 5476 { 5477 l2arc_write_callback_t *cb; 5478 l2arc_dev_t *dev; 5479 list_t *buflist; 5480 arc_buf_hdr_t *head, *hdr, *hdr_prev; 5481 kmutex_t *hash_lock; 5482 int64_t bytes_dropped = 0; 5483 5484 cb = zio->io_private; 5485 ASSERT(cb != NULL); 5486 dev = cb->l2wcb_dev; 5487 ASSERT(dev != NULL); 5488 head = cb->l2wcb_head; 5489 ASSERT(head != NULL); 5490 buflist = &dev->l2ad_buflist; 5491 ASSERT(buflist != NULL); 5492 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio, 5493 l2arc_write_callback_t *, cb); 5494 5495 if (zio->io_error != 0) 5496 ARCSTAT_BUMP(arcstat_l2_writes_error); 5497 5498 /* 5499 * All writes completed, or an error was hit. 5500 */ 5501 top: 5502 mutex_enter(&dev->l2ad_mtx); 5503 for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) { 5504 hdr_prev = list_prev(buflist, hdr); 5505 5506 hash_lock = HDR_LOCK(hdr); 5507 5508 /* 5509 * We cannot use mutex_enter or else we can deadlock 5510 * with l2arc_write_buffers (due to swapping the order 5511 * the hash lock and l2ad_mtx are taken). 5512 */ 5513 if (!mutex_tryenter(hash_lock)) { 5514 /* 5515 * Missed the hash lock. We must retry so we 5516 * don't leave the ARC_FLAG_L2_WRITING bit set. 5517 */ 5518 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry); 5519 5520 /* 5521 * We don't want to rescan the headers we've 5522 * already marked as having been written out, so 5523 * we reinsert the head node so we can pick up 5524 * where we left off. 5525 */ 5526 list_remove(buflist, head); 5527 list_insert_after(buflist, hdr, head); 5528 5529 mutex_exit(&dev->l2ad_mtx); 5530 5531 /* 5532 * We wait for the hash lock to become available 5533 * to try and prevent busy waiting, and increase 5534 * the chance we'll be able to acquire the lock 5535 * the next time around. 5536 */ 5537 mutex_enter(hash_lock); 5538 mutex_exit(hash_lock); 5539 goto top; 5540 } 5541 5542 /* 5543 * We could not have been moved into the arc_l2c_only 5544 * state while in-flight due to our ARC_FLAG_L2_WRITING 5545 * bit being set. Let's just ensure that's being enforced. 5546 */ 5547 ASSERT(HDR_HAS_L1HDR(hdr)); 5548 5549 /* 5550 * We may have allocated a buffer for L2ARC compression, 5551 * we must release it to avoid leaking this data. 5552 */ 5553 l2arc_release_cdata_buf(hdr); 5554 5555 if (zio->io_error != 0) { 5556 /* 5557 * Error - drop L2ARC entry. 5558 */ 5559 list_remove(buflist, hdr); 5560 hdr->b_flags &= ~ARC_FLAG_HAS_L2HDR; 5561 5562 ARCSTAT_INCR(arcstat_l2_asize, -hdr->b_l2hdr.b_asize); 5563 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size); 5564 5565 bytes_dropped += hdr->b_l2hdr.b_asize; 5566 (void) refcount_remove_many(&dev->l2ad_alloc, 5567 hdr->b_l2hdr.b_asize, hdr); 5568 } 5569 5570 /* 5571 * Allow ARC to begin reads and ghost list evictions to 5572 * this L2ARC entry. 5573 */ 5574 hdr->b_flags &= ~ARC_FLAG_L2_WRITING; 5575 5576 mutex_exit(hash_lock); 5577 } 5578 5579 atomic_inc_64(&l2arc_writes_done); 5580 list_remove(buflist, head); 5581 ASSERT(!HDR_HAS_L1HDR(head)); 5582 kmem_cache_free(hdr_l2only_cache, head); 5583 mutex_exit(&dev->l2ad_mtx); 5584 5585 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0); 5586 5587 l2arc_do_free_on_write(); 5588 5589 kmem_free(cb, sizeof (l2arc_write_callback_t)); 5590 } 5591 5592 /* 5593 * A read to a cache device completed. Validate buffer contents before 5594 * handing over to the regular ARC routines. 5595 */ 5596 static void 5597 l2arc_read_done(zio_t *zio) 5598 { 5599 l2arc_read_callback_t *cb; 5600 arc_buf_hdr_t *hdr; 5601 arc_buf_t *buf; 5602 kmutex_t *hash_lock; 5603 int equal; 5604 5605 ASSERT(zio->io_vd != NULL); 5606 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE); 5607 5608 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd); 5609 5610 cb = zio->io_private; 5611 ASSERT(cb != NULL); 5612 buf = cb->l2rcb_buf; 5613 ASSERT(buf != NULL); 5614 5615 hash_lock = HDR_LOCK(buf->b_hdr); 5616 mutex_enter(hash_lock); 5617 hdr = buf->b_hdr; 5618 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 5619 5620 /* 5621 * If the buffer was compressed, decompress it first. 5622 */ 5623 if (cb->l2rcb_compress != ZIO_COMPRESS_OFF) 5624 l2arc_decompress_zio(zio, hdr, cb->l2rcb_compress); 5625 ASSERT(zio->io_data != NULL); 5626 ASSERT3U(zio->io_size, ==, hdr->b_size); 5627 ASSERT3U(BP_GET_LSIZE(&cb->l2rcb_bp), ==, hdr->b_size); 5628 5629 /* 5630 * Check this survived the L2ARC journey. 5631 */ 5632 equal = arc_cksum_equal(buf); 5633 if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) { 5634 mutex_exit(hash_lock); 5635 zio->io_private = buf; 5636 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */ 5637 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */ 5638 arc_read_done(zio); 5639 } else { 5640 mutex_exit(hash_lock); 5641 /* 5642 * Buffer didn't survive caching. Increment stats and 5643 * reissue to the original storage device. 5644 */ 5645 if (zio->io_error != 0) { 5646 ARCSTAT_BUMP(arcstat_l2_io_error); 5647 } else { 5648 zio->io_error = SET_ERROR(EIO); 5649 } 5650 if (!equal) 5651 ARCSTAT_BUMP(arcstat_l2_cksum_bad); 5652 5653 /* 5654 * If there's no waiter, issue an async i/o to the primary 5655 * storage now. If there *is* a waiter, the caller must 5656 * issue the i/o in a context where it's OK to block. 5657 */ 5658 if (zio->io_waiter == NULL) { 5659 zio_t *pio = zio_unique_parent(zio); 5660 5661 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL); 5662 5663 zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp, 5664 buf->b_data, hdr->b_size, arc_read_done, buf, 5665 zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb)); 5666 } 5667 } 5668 5669 kmem_free(cb, sizeof (l2arc_read_callback_t)); 5670 } 5671 5672 /* 5673 * This is the list priority from which the L2ARC will search for pages to 5674 * cache. This is used within loops (0..3) to cycle through lists in the 5675 * desired order. This order can have a significant effect on cache 5676 * performance. 5677 * 5678 * Currently the metadata lists are hit first, MFU then MRU, followed by 5679 * the data lists. This function returns a locked list, and also returns 5680 * the lock pointer. 5681 */ 5682 static multilist_sublist_t * 5683 l2arc_sublist_lock(int list_num) 5684 { 5685 multilist_t *ml = NULL; 5686 unsigned int idx; 5687 5688 ASSERT(list_num >= 0 && list_num <= 3); 5689 5690 switch (list_num) { 5691 case 0: 5692 ml = &arc_mfu->arcs_list[ARC_BUFC_METADATA]; 5693 break; 5694 case 1: 5695 ml = &arc_mru->arcs_list[ARC_BUFC_METADATA]; 5696 break; 5697 case 2: 5698 ml = &arc_mfu->arcs_list[ARC_BUFC_DATA]; 5699 break; 5700 case 3: 5701 ml = &arc_mru->arcs_list[ARC_BUFC_DATA]; 5702 break; 5703 } 5704 5705 /* 5706 * Return a randomly-selected sublist. This is acceptable 5707 * because the caller feeds only a little bit of data for each 5708 * call (8MB). Subsequent calls will result in different 5709 * sublists being selected. 5710 */ 5711 idx = multilist_get_random_index(ml); 5712 return (multilist_sublist_lock(ml, idx)); 5713 } 5714 5715 /* 5716 * Evict buffers from the device write hand to the distance specified in 5717 * bytes. This distance may span populated buffers, it may span nothing. 5718 * This is clearing a region on the L2ARC device ready for writing. 5719 * If the 'all' boolean is set, every buffer is evicted. 5720 */ 5721 static void 5722 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all) 5723 { 5724 list_t *buflist; 5725 arc_buf_hdr_t *hdr, *hdr_prev; 5726 kmutex_t *hash_lock; 5727 uint64_t taddr; 5728 5729 buflist = &dev->l2ad_buflist; 5730 5731 if (!all && dev->l2ad_first) { 5732 /* 5733 * This is the first sweep through the device. There is 5734 * nothing to evict. 5735 */ 5736 return; 5737 } 5738 5739 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) { 5740 /* 5741 * When nearing the end of the device, evict to the end 5742 * before the device write hand jumps to the start. 5743 */ 5744 taddr = dev->l2ad_end; 5745 } else { 5746 taddr = dev->l2ad_hand + distance; 5747 } 5748 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist, 5749 uint64_t, taddr, boolean_t, all); 5750 5751 top: 5752 mutex_enter(&dev->l2ad_mtx); 5753 for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) { 5754 hdr_prev = list_prev(buflist, hdr); 5755 5756 hash_lock = HDR_LOCK(hdr); 5757 5758 /* 5759 * We cannot use mutex_enter or else we can deadlock 5760 * with l2arc_write_buffers (due to swapping the order 5761 * the hash lock and l2ad_mtx are taken). 5762 */ 5763 if (!mutex_tryenter(hash_lock)) { 5764 /* 5765 * Missed the hash lock. Retry. 5766 */ 5767 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry); 5768 mutex_exit(&dev->l2ad_mtx); 5769 mutex_enter(hash_lock); 5770 mutex_exit(hash_lock); 5771 goto top; 5772 } 5773 5774 if (HDR_L2_WRITE_HEAD(hdr)) { 5775 /* 5776 * We hit a write head node. Leave it for 5777 * l2arc_write_done(). 5778 */ 5779 list_remove(buflist, hdr); 5780 mutex_exit(hash_lock); 5781 continue; 5782 } 5783 5784 if (!all && HDR_HAS_L2HDR(hdr) && 5785 (hdr->b_l2hdr.b_daddr > taddr || 5786 hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) { 5787 /* 5788 * We've evicted to the target address, 5789 * or the end of the device. 5790 */ 5791 mutex_exit(hash_lock); 5792 break; 5793 } 5794 5795 ASSERT(HDR_HAS_L2HDR(hdr)); 5796 if (!HDR_HAS_L1HDR(hdr)) { 5797 ASSERT(!HDR_L2_READING(hdr)); 5798 /* 5799 * This doesn't exist in the ARC. Destroy. 5800 * arc_hdr_destroy() will call list_remove() 5801 * and decrement arcstat_l2_size. 5802 */ 5803 arc_change_state(arc_anon, hdr, hash_lock); 5804 arc_hdr_destroy(hdr); 5805 } else { 5806 ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only); 5807 ARCSTAT_BUMP(arcstat_l2_evict_l1cached); 5808 /* 5809 * Invalidate issued or about to be issued 5810 * reads, since we may be about to write 5811 * over this location. 5812 */ 5813 if (HDR_L2_READING(hdr)) { 5814 ARCSTAT_BUMP(arcstat_l2_evict_reading); 5815 hdr->b_flags |= ARC_FLAG_L2_EVICTED; 5816 } 5817 5818 /* Ensure this header has finished being written */ 5819 ASSERT(!HDR_L2_WRITING(hdr)); 5820 ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL); 5821 5822 arc_hdr_l2hdr_destroy(hdr); 5823 } 5824 mutex_exit(hash_lock); 5825 } 5826 mutex_exit(&dev->l2ad_mtx); 5827 } 5828 5829 /* 5830 * Find and write ARC buffers to the L2ARC device. 5831 * 5832 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid 5833 * for reading until they have completed writing. 5834 * The headroom_boost is an in-out parameter used to maintain headroom boost 5835 * state between calls to this function. 5836 * 5837 * Returns the number of bytes actually written (which may be smaller than 5838 * the delta by which the device hand has changed due to alignment). 5839 */ 5840 static uint64_t 5841 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz, 5842 boolean_t *headroom_boost) 5843 { 5844 arc_buf_hdr_t *hdr, *hdr_prev, *head; 5845 uint64_t write_asize, write_psize, write_sz, headroom, 5846 buf_compress_minsz; 5847 void *buf_data; 5848 boolean_t full; 5849 l2arc_write_callback_t *cb; 5850 zio_t *pio, *wzio; 5851 uint64_t guid = spa_load_guid(spa); 5852 const boolean_t do_headroom_boost = *headroom_boost; 5853 5854 ASSERT(dev->l2ad_vdev != NULL); 5855 5856 /* Lower the flag now, we might want to raise it again later. */ 5857 *headroom_boost = B_FALSE; 5858 5859 pio = NULL; 5860 write_sz = write_asize = write_psize = 0; 5861 full = B_FALSE; 5862 head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE); 5863 head->b_flags |= ARC_FLAG_L2_WRITE_HEAD; 5864 head->b_flags |= ARC_FLAG_HAS_L2HDR; 5865 5866 /* 5867 * We will want to try to compress buffers that are at least 2x the 5868 * device sector size. 5869 */ 5870 buf_compress_minsz = 2 << dev->l2ad_vdev->vdev_ashift; 5871 5872 /* 5873 * Copy buffers for L2ARC writing. 5874 */ 5875 for (int try = 0; try <= 3; try++) { 5876 multilist_sublist_t *mls = l2arc_sublist_lock(try); 5877 uint64_t passed_sz = 0; 5878 5879 /* 5880 * L2ARC fast warmup. 5881 * 5882 * Until the ARC is warm and starts to evict, read from the 5883 * head of the ARC lists rather than the tail. 5884 */ 5885 if (arc_warm == B_FALSE) 5886 hdr = multilist_sublist_head(mls); 5887 else 5888 hdr = multilist_sublist_tail(mls); 5889 5890 headroom = target_sz * l2arc_headroom; 5891 if (do_headroom_boost) 5892 headroom = (headroom * l2arc_headroom_boost) / 100; 5893 5894 for (; hdr; hdr = hdr_prev) { 5895 kmutex_t *hash_lock; 5896 uint64_t buf_sz; 5897 5898 if (arc_warm == B_FALSE) 5899 hdr_prev = multilist_sublist_next(mls, hdr); 5900 else 5901 hdr_prev = multilist_sublist_prev(mls, hdr); 5902 5903 hash_lock = HDR_LOCK(hdr); 5904 if (!mutex_tryenter(hash_lock)) { 5905 /* 5906 * Skip this buffer rather than waiting. 5907 */ 5908 continue; 5909 } 5910 5911 passed_sz += hdr->b_size; 5912 if (passed_sz > headroom) { 5913 /* 5914 * Searched too far. 5915 */ 5916 mutex_exit(hash_lock); 5917 break; 5918 } 5919 5920 if (!l2arc_write_eligible(guid, hdr)) { 5921 mutex_exit(hash_lock); 5922 continue; 5923 } 5924 5925 if ((write_sz + hdr->b_size) > target_sz) { 5926 full = B_TRUE; 5927 mutex_exit(hash_lock); 5928 break; 5929 } 5930 5931 if (pio == NULL) { 5932 /* 5933 * Insert a dummy header on the buflist so 5934 * l2arc_write_done() can find where the 5935 * write buffers begin without searching. 5936 */ 5937 mutex_enter(&dev->l2ad_mtx); 5938 list_insert_head(&dev->l2ad_buflist, head); 5939 mutex_exit(&dev->l2ad_mtx); 5940 5941 cb = kmem_alloc( 5942 sizeof (l2arc_write_callback_t), KM_SLEEP); 5943 cb->l2wcb_dev = dev; 5944 cb->l2wcb_head = head; 5945 pio = zio_root(spa, l2arc_write_done, cb, 5946 ZIO_FLAG_CANFAIL); 5947 } 5948 5949 /* 5950 * Create and add a new L2ARC header. 5951 */ 5952 hdr->b_l2hdr.b_dev = dev; 5953 hdr->b_flags |= ARC_FLAG_L2_WRITING; 5954 /* 5955 * Temporarily stash the data buffer in b_tmp_cdata. 5956 * The subsequent write step will pick it up from 5957 * there. This is because can't access b_l1hdr.b_buf 5958 * without holding the hash_lock, which we in turn 5959 * can't access without holding the ARC list locks 5960 * (which we want to avoid during compression/writing). 5961 */ 5962 hdr->b_l2hdr.b_compress = ZIO_COMPRESS_OFF; 5963 hdr->b_l2hdr.b_asize = hdr->b_size; 5964 hdr->b_l1hdr.b_tmp_cdata = hdr->b_l1hdr.b_buf->b_data; 5965 5966 /* 5967 * Explicitly set the b_daddr field to a known 5968 * value which means "invalid address". This 5969 * enables us to differentiate which stage of 5970 * l2arc_write_buffers() the particular header 5971 * is in (e.g. this loop, or the one below). 5972 * ARC_FLAG_L2_WRITING is not enough to make 5973 * this distinction, and we need to know in 5974 * order to do proper l2arc vdev accounting in 5975 * arc_release() and arc_hdr_destroy(). 5976 * 5977 * Note, we can't use a new flag to distinguish 5978 * the two stages because we don't hold the 5979 * header's hash_lock below, in the second stage 5980 * of this function. Thus, we can't simply 5981 * change the b_flags field to denote that the 5982 * IO has been sent. We can change the b_daddr 5983 * field of the L2 portion, though, since we'll 5984 * be holding the l2ad_mtx; which is why we're 5985 * using it to denote the header's state change. 5986 */ 5987 hdr->b_l2hdr.b_daddr = L2ARC_ADDR_UNSET; 5988 5989 buf_sz = hdr->b_size; 5990 hdr->b_flags |= ARC_FLAG_HAS_L2HDR; 5991 5992 mutex_enter(&dev->l2ad_mtx); 5993 list_insert_head(&dev->l2ad_buflist, hdr); 5994 mutex_exit(&dev->l2ad_mtx); 5995 5996 /* 5997 * Compute and store the buffer cksum before 5998 * writing. On debug the cksum is verified first. 5999 */ 6000 arc_cksum_verify(hdr->b_l1hdr.b_buf); 6001 arc_cksum_compute(hdr->b_l1hdr.b_buf, B_TRUE); 6002 6003 mutex_exit(hash_lock); 6004 6005 write_sz += buf_sz; 6006 } 6007 6008 multilist_sublist_unlock(mls); 6009 6010 if (full == B_TRUE) 6011 break; 6012 } 6013 6014 /* No buffers selected for writing? */ 6015 if (pio == NULL) { 6016 ASSERT0(write_sz); 6017 ASSERT(!HDR_HAS_L1HDR(head)); 6018 kmem_cache_free(hdr_l2only_cache, head); 6019 return (0); 6020 } 6021 6022 mutex_enter(&dev->l2ad_mtx); 6023 6024 /* 6025 * Now start writing the buffers. We're starting at the write head 6026 * and work backwards, retracing the course of the buffer selector 6027 * loop above. 6028 */ 6029 for (hdr = list_prev(&dev->l2ad_buflist, head); hdr; 6030 hdr = list_prev(&dev->l2ad_buflist, hdr)) { 6031 uint64_t buf_sz; 6032 6033 /* 6034 * We rely on the L1 portion of the header below, so 6035 * it's invalid for this header to have been evicted out 6036 * of the ghost cache, prior to being written out. The 6037 * ARC_FLAG_L2_WRITING bit ensures this won't happen. 6038 */ 6039 ASSERT(HDR_HAS_L1HDR(hdr)); 6040 6041 /* 6042 * We shouldn't need to lock the buffer here, since we flagged 6043 * it as ARC_FLAG_L2_WRITING in the previous step, but we must 6044 * take care to only access its L2 cache parameters. In 6045 * particular, hdr->l1hdr.b_buf may be invalid by now due to 6046 * ARC eviction. 6047 */ 6048 hdr->b_l2hdr.b_daddr = dev->l2ad_hand; 6049 6050 if ((HDR_L2COMPRESS(hdr)) && 6051 hdr->b_l2hdr.b_asize >= buf_compress_minsz) { 6052 if (l2arc_compress_buf(hdr)) { 6053 /* 6054 * If compression succeeded, enable headroom 6055 * boost on the next scan cycle. 6056 */ 6057 *headroom_boost = B_TRUE; 6058 } 6059 } 6060 6061 /* 6062 * Pick up the buffer data we had previously stashed away 6063 * (and now potentially also compressed). 6064 */ 6065 buf_data = hdr->b_l1hdr.b_tmp_cdata; 6066 buf_sz = hdr->b_l2hdr.b_asize; 6067 6068 /* 6069 * We need to do this regardless if buf_sz is zero or 6070 * not, otherwise, when this l2hdr is evicted we'll 6071 * remove a reference that was never added. 6072 */ 6073 (void) refcount_add_many(&dev->l2ad_alloc, buf_sz, hdr); 6074 6075 /* Compression may have squashed the buffer to zero length. */ 6076 if (buf_sz != 0) { 6077 uint64_t buf_p_sz; 6078 6079 wzio = zio_write_phys(pio, dev->l2ad_vdev, 6080 dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF, 6081 NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE, 6082 ZIO_FLAG_CANFAIL, B_FALSE); 6083 6084 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, 6085 zio_t *, wzio); 6086 (void) zio_nowait(wzio); 6087 6088 write_asize += buf_sz; 6089 6090 /* 6091 * Keep the clock hand suitably device-aligned. 6092 */ 6093 buf_p_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz); 6094 write_psize += buf_p_sz; 6095 dev->l2ad_hand += buf_p_sz; 6096 } 6097 } 6098 6099 mutex_exit(&dev->l2ad_mtx); 6100 6101 ASSERT3U(write_asize, <=, target_sz); 6102 ARCSTAT_BUMP(arcstat_l2_writes_sent); 6103 ARCSTAT_INCR(arcstat_l2_write_bytes, write_asize); 6104 ARCSTAT_INCR(arcstat_l2_size, write_sz); 6105 ARCSTAT_INCR(arcstat_l2_asize, write_asize); 6106 vdev_space_update(dev->l2ad_vdev, write_asize, 0, 0); 6107 6108 /* 6109 * Bump device hand to the device start if it is approaching the end. 6110 * l2arc_evict() will already have evicted ahead for this case. 6111 */ 6112 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) { 6113 dev->l2ad_hand = dev->l2ad_start; 6114 dev->l2ad_first = B_FALSE; 6115 } 6116 6117 dev->l2ad_writing = B_TRUE; 6118 (void) zio_wait(pio); 6119 dev->l2ad_writing = B_FALSE; 6120 6121 return (write_asize); 6122 } 6123 6124 /* 6125 * Compresses an L2ARC buffer. 6126 * The data to be compressed must be prefilled in l1hdr.b_tmp_cdata and its 6127 * size in l2hdr->b_asize. This routine tries to compress the data and 6128 * depending on the compression result there are three possible outcomes: 6129 * *) The buffer was incompressible. The original l2hdr contents were left 6130 * untouched and are ready for writing to an L2 device. 6131 * *) The buffer was all-zeros, so there is no need to write it to an L2 6132 * device. To indicate this situation b_tmp_cdata is NULL'ed, b_asize is 6133 * set to zero and b_compress is set to ZIO_COMPRESS_EMPTY. 6134 * *) Compression succeeded and b_tmp_cdata was replaced with a temporary 6135 * data buffer which holds the compressed data to be written, and b_asize 6136 * tells us how much data there is. b_compress is set to the appropriate 6137 * compression algorithm. Once writing is done, invoke 6138 * l2arc_release_cdata_buf on this l2hdr to free this temporary buffer. 6139 * 6140 * Returns B_TRUE if compression succeeded, or B_FALSE if it didn't (the 6141 * buffer was incompressible). 6142 */ 6143 static boolean_t 6144 l2arc_compress_buf(arc_buf_hdr_t *hdr) 6145 { 6146 void *cdata; 6147 size_t csize, len, rounded; 6148 ASSERT(HDR_HAS_L2HDR(hdr)); 6149 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr; 6150 6151 ASSERT(HDR_HAS_L1HDR(hdr)); 6152 ASSERT(l2hdr->b_compress == ZIO_COMPRESS_OFF); 6153 ASSERT(hdr->b_l1hdr.b_tmp_cdata != NULL); 6154 6155 len = l2hdr->b_asize; 6156 cdata = zio_data_buf_alloc(len); 6157 ASSERT3P(cdata, !=, NULL); 6158 csize = zio_compress_data(ZIO_COMPRESS_LZ4, hdr->b_l1hdr.b_tmp_cdata, 6159 cdata, l2hdr->b_asize); 6160 6161 rounded = P2ROUNDUP(csize, (size_t)SPA_MINBLOCKSIZE); 6162 if (rounded > csize) { 6163 bzero((char *)cdata + csize, rounded - csize); 6164 csize = rounded; 6165 } 6166 6167 if (csize == 0) { 6168 /* zero block, indicate that there's nothing to write */ 6169 zio_data_buf_free(cdata, len); 6170 l2hdr->b_compress = ZIO_COMPRESS_EMPTY; 6171 l2hdr->b_asize = 0; 6172 hdr->b_l1hdr.b_tmp_cdata = NULL; 6173 ARCSTAT_BUMP(arcstat_l2_compress_zeros); 6174 return (B_TRUE); 6175 } else if (csize > 0 && csize < len) { 6176 /* 6177 * Compression succeeded, we'll keep the cdata around for 6178 * writing and release it afterwards. 6179 */ 6180 l2hdr->b_compress = ZIO_COMPRESS_LZ4; 6181 l2hdr->b_asize = csize; 6182 hdr->b_l1hdr.b_tmp_cdata = cdata; 6183 ARCSTAT_BUMP(arcstat_l2_compress_successes); 6184 return (B_TRUE); 6185 } else { 6186 /* 6187 * Compression failed, release the compressed buffer. 6188 * l2hdr will be left unmodified. 6189 */ 6190 zio_data_buf_free(cdata, len); 6191 ARCSTAT_BUMP(arcstat_l2_compress_failures); 6192 return (B_FALSE); 6193 } 6194 } 6195 6196 /* 6197 * Decompresses a zio read back from an l2arc device. On success, the 6198 * underlying zio's io_data buffer is overwritten by the uncompressed 6199 * version. On decompression error (corrupt compressed stream), the 6200 * zio->io_error value is set to signal an I/O error. 6201 * 6202 * Please note that the compressed data stream is not checksummed, so 6203 * if the underlying device is experiencing data corruption, we may feed 6204 * corrupt data to the decompressor, so the decompressor needs to be 6205 * able to handle this situation (LZ4 does). 6206 */ 6207 static void 6208 l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr, enum zio_compress c) 6209 { 6210 ASSERT(L2ARC_IS_VALID_COMPRESS(c)); 6211 6212 if (zio->io_error != 0) { 6213 /* 6214 * An io error has occured, just restore the original io 6215 * size in preparation for a main pool read. 6216 */ 6217 zio->io_orig_size = zio->io_size = hdr->b_size; 6218 return; 6219 } 6220 6221 if (c == ZIO_COMPRESS_EMPTY) { 6222 /* 6223 * An empty buffer results in a null zio, which means we 6224 * need to fill its io_data after we're done restoring the 6225 * buffer's contents. 6226 */ 6227 ASSERT(hdr->b_l1hdr.b_buf != NULL); 6228 bzero(hdr->b_l1hdr.b_buf->b_data, hdr->b_size); 6229 zio->io_data = zio->io_orig_data = hdr->b_l1hdr.b_buf->b_data; 6230 } else { 6231 ASSERT(zio->io_data != NULL); 6232 /* 6233 * We copy the compressed data from the start of the arc buffer 6234 * (the zio_read will have pulled in only what we need, the 6235 * rest is garbage which we will overwrite at decompression) 6236 * and then decompress back to the ARC data buffer. This way we 6237 * can minimize copying by simply decompressing back over the 6238 * original compressed data (rather than decompressing to an 6239 * aux buffer and then copying back the uncompressed buffer, 6240 * which is likely to be much larger). 6241 */ 6242 uint64_t csize; 6243 void *cdata; 6244 6245 csize = zio->io_size; 6246 cdata = zio_data_buf_alloc(csize); 6247 bcopy(zio->io_data, cdata, csize); 6248 if (zio_decompress_data(c, cdata, zio->io_data, csize, 6249 hdr->b_size) != 0) 6250 zio->io_error = EIO; 6251 zio_data_buf_free(cdata, csize); 6252 } 6253 6254 /* Restore the expected uncompressed IO size. */ 6255 zio->io_orig_size = zio->io_size = hdr->b_size; 6256 } 6257 6258 /* 6259 * Releases the temporary b_tmp_cdata buffer in an l2arc header structure. 6260 * This buffer serves as a temporary holder of compressed data while 6261 * the buffer entry is being written to an l2arc device. Once that is 6262 * done, we can dispose of it. 6263 */ 6264 static void 6265 l2arc_release_cdata_buf(arc_buf_hdr_t *hdr) 6266 { 6267 ASSERT(HDR_HAS_L2HDR(hdr)); 6268 enum zio_compress comp = hdr->b_l2hdr.b_compress; 6269 6270 ASSERT(HDR_HAS_L1HDR(hdr)); 6271 ASSERT(comp == ZIO_COMPRESS_OFF || L2ARC_IS_VALID_COMPRESS(comp)); 6272 6273 if (comp == ZIO_COMPRESS_OFF) { 6274 /* 6275 * In this case, b_tmp_cdata points to the same buffer 6276 * as the arc_buf_t's b_data field. We don't want to 6277 * free it, since the arc_buf_t will handle that. 6278 */ 6279 hdr->b_l1hdr.b_tmp_cdata = NULL; 6280 } else if (comp == ZIO_COMPRESS_EMPTY) { 6281 /* 6282 * In this case, b_tmp_cdata was compressed to an empty 6283 * buffer, thus there's nothing to free and b_tmp_cdata 6284 * should have been set to NULL in l2arc_write_buffers(). 6285 */ 6286 ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL); 6287 } else { 6288 /* 6289 * If the data was compressed, then we've allocated a 6290 * temporary buffer for it, so now we need to release it. 6291 */ 6292 ASSERT(hdr->b_l1hdr.b_tmp_cdata != NULL); 6293 zio_data_buf_free(hdr->b_l1hdr.b_tmp_cdata, 6294 hdr->b_size); 6295 hdr->b_l1hdr.b_tmp_cdata = NULL; 6296 } 6297 6298 } 6299 6300 /* 6301 * This thread feeds the L2ARC at regular intervals. This is the beating 6302 * heart of the L2ARC. 6303 */ 6304 static void 6305 l2arc_feed_thread(void) 6306 { 6307 callb_cpr_t cpr; 6308 l2arc_dev_t *dev; 6309 spa_t *spa; 6310 uint64_t size, wrote; 6311 clock_t begin, next = ddi_get_lbolt(); 6312 boolean_t headroom_boost = B_FALSE; 6313 6314 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG); 6315 6316 mutex_enter(&l2arc_feed_thr_lock); 6317 6318 while (l2arc_thread_exit == 0) { 6319 CALLB_CPR_SAFE_BEGIN(&cpr); 6320 (void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock, 6321 next); 6322 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock); 6323 next = ddi_get_lbolt() + hz; 6324 6325 /* 6326 * Quick check for L2ARC devices. 6327 */ 6328 mutex_enter(&l2arc_dev_mtx); 6329 if (l2arc_ndev == 0) { 6330 mutex_exit(&l2arc_dev_mtx); 6331 continue; 6332 } 6333 mutex_exit(&l2arc_dev_mtx); 6334 begin = ddi_get_lbolt(); 6335 6336 /* 6337 * This selects the next l2arc device to write to, and in 6338 * doing so the next spa to feed from: dev->l2ad_spa. This 6339 * will return NULL if there are now no l2arc devices or if 6340 * they are all faulted. 6341 * 6342 * If a device is returned, its spa's config lock is also 6343 * held to prevent device removal. l2arc_dev_get_next() 6344 * will grab and release l2arc_dev_mtx. 6345 */ 6346 if ((dev = l2arc_dev_get_next()) == NULL) 6347 continue; 6348 6349 spa = dev->l2ad_spa; 6350 ASSERT(spa != NULL); 6351 6352 /* 6353 * If the pool is read-only then force the feed thread to 6354 * sleep a little longer. 6355 */ 6356 if (!spa_writeable(spa)) { 6357 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz; 6358 spa_config_exit(spa, SCL_L2ARC, dev); 6359 continue; 6360 } 6361 6362 /* 6363 * Avoid contributing to memory pressure. 6364 */ 6365 if (arc_reclaim_needed()) { 6366 ARCSTAT_BUMP(arcstat_l2_abort_lowmem); 6367 spa_config_exit(spa, SCL_L2ARC, dev); 6368 continue; 6369 } 6370 6371 ARCSTAT_BUMP(arcstat_l2_feeds); 6372 6373 size = l2arc_write_size(); 6374 6375 /* 6376 * Evict L2ARC buffers that will be overwritten. 6377 */ 6378 l2arc_evict(dev, size, B_FALSE); 6379 6380 /* 6381 * Write ARC buffers. 6382 */ 6383 wrote = l2arc_write_buffers(spa, dev, size, &headroom_boost); 6384 6385 /* 6386 * Calculate interval between writes. 6387 */ 6388 next = l2arc_write_interval(begin, size, wrote); 6389 spa_config_exit(spa, SCL_L2ARC, dev); 6390 } 6391 6392 l2arc_thread_exit = 0; 6393 cv_broadcast(&l2arc_feed_thr_cv); 6394 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */ 6395 thread_exit(); 6396 } 6397 6398 boolean_t 6399 l2arc_vdev_present(vdev_t *vd) 6400 { 6401 l2arc_dev_t *dev; 6402 6403 mutex_enter(&l2arc_dev_mtx); 6404 for (dev = list_head(l2arc_dev_list); dev != NULL; 6405 dev = list_next(l2arc_dev_list, dev)) { 6406 if (dev->l2ad_vdev == vd) 6407 break; 6408 } 6409 mutex_exit(&l2arc_dev_mtx); 6410 6411 return (dev != NULL); 6412 } 6413 6414 /* 6415 * Add a vdev for use by the L2ARC. By this point the spa has already 6416 * validated the vdev and opened it. 6417 */ 6418 void 6419 l2arc_add_vdev(spa_t *spa, vdev_t *vd) 6420 { 6421 l2arc_dev_t *adddev; 6422 6423 ASSERT(!l2arc_vdev_present(vd)); 6424 6425 /* 6426 * Create a new l2arc device entry. 6427 */ 6428 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP); 6429 adddev->l2ad_spa = spa; 6430 adddev->l2ad_vdev = vd; 6431 adddev->l2ad_start = VDEV_LABEL_START_SIZE; 6432 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd); 6433 adddev->l2ad_hand = adddev->l2ad_start; 6434 adddev->l2ad_first = B_TRUE; 6435 adddev->l2ad_writing = B_FALSE; 6436 6437 mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL); 6438 /* 6439 * This is a list of all ARC buffers that are still valid on the 6440 * device. 6441 */ 6442 list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t), 6443 offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node)); 6444 6445 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand); 6446 refcount_create(&adddev->l2ad_alloc); 6447 6448 /* 6449 * Add device to global list 6450 */ 6451 mutex_enter(&l2arc_dev_mtx); 6452 list_insert_head(l2arc_dev_list, adddev); 6453 atomic_inc_64(&l2arc_ndev); 6454 mutex_exit(&l2arc_dev_mtx); 6455 } 6456 6457 /* 6458 * Remove a vdev from the L2ARC. 6459 */ 6460 void 6461 l2arc_remove_vdev(vdev_t *vd) 6462 { 6463 l2arc_dev_t *dev, *nextdev, *remdev = NULL; 6464 6465 /* 6466 * Find the device by vdev 6467 */ 6468 mutex_enter(&l2arc_dev_mtx); 6469 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) { 6470 nextdev = list_next(l2arc_dev_list, dev); 6471 if (vd == dev->l2ad_vdev) { 6472 remdev = dev; 6473 break; 6474 } 6475 } 6476 ASSERT(remdev != NULL); 6477 6478 /* 6479 * Remove device from global list 6480 */ 6481 list_remove(l2arc_dev_list, remdev); 6482 l2arc_dev_last = NULL; /* may have been invalidated */ 6483 atomic_dec_64(&l2arc_ndev); 6484 mutex_exit(&l2arc_dev_mtx); 6485 6486 /* 6487 * Clear all buflists and ARC references. L2ARC device flush. 6488 */ 6489 l2arc_evict(remdev, 0, B_TRUE); 6490 list_destroy(&remdev->l2ad_buflist); 6491 mutex_destroy(&remdev->l2ad_mtx); 6492 refcount_destroy(&remdev->l2ad_alloc); 6493 kmem_free(remdev, sizeof (l2arc_dev_t)); 6494 } 6495 6496 void 6497 l2arc_init(void) 6498 { 6499 l2arc_thread_exit = 0; 6500 l2arc_ndev = 0; 6501 l2arc_writes_sent = 0; 6502 l2arc_writes_done = 0; 6503 6504 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL); 6505 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL); 6506 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 6507 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL); 6508 6509 l2arc_dev_list = &L2ARC_dev_list; 6510 l2arc_free_on_write = &L2ARC_free_on_write; 6511 list_create(l2arc_dev_list, sizeof (l2arc_dev_t), 6512 offsetof(l2arc_dev_t, l2ad_node)); 6513 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t), 6514 offsetof(l2arc_data_free_t, l2df_list_node)); 6515 } 6516 6517 void 6518 l2arc_fini(void) 6519 { 6520 /* 6521 * This is called from dmu_fini(), which is called from spa_fini(); 6522 * Because of this, we can assume that all l2arc devices have 6523 * already been removed when the pools themselves were removed. 6524 */ 6525 6526 l2arc_do_free_on_write(); 6527 6528 mutex_destroy(&l2arc_feed_thr_lock); 6529 cv_destroy(&l2arc_feed_thr_cv); 6530 mutex_destroy(&l2arc_dev_mtx); 6531 mutex_destroy(&l2arc_free_on_write_mtx); 6532 6533 list_destroy(l2arc_dev_list); 6534 list_destroy(l2arc_free_on_write); 6535 } 6536 6537 void 6538 l2arc_start(void) 6539 { 6540 if (!(spa_mode_global & FWRITE)) 6541 return; 6542 6543 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0, 6544 TS_RUN, minclsyspri); 6545 } 6546 6547 void 6548 l2arc_stop(void) 6549 { 6550 if (!(spa_mode_global & FWRITE)) 6551 return; 6552 6553 mutex_enter(&l2arc_feed_thr_lock); 6554 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */ 6555 l2arc_thread_exit = 1; 6556 while (l2arc_thread_exit != 0) 6557 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock); 6558 mutex_exit(&l2arc_feed_thr_lock); 6559 }