1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, Joyent, Inc. All rights reserved. 24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved. 25 * Copyright (c) 2014 by Saso Kiselkov. All rights reserved. 26 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 27 */ 28 29 /* 30 * DVA-based Adjustable Replacement Cache 31 * 32 * While much of the theory of operation used here is 33 * based on the self-tuning, low overhead replacement cache 34 * presented by Megiddo and Modha at FAST 2003, there are some 35 * significant differences: 36 * 37 * 1. The Megiddo and Modha model assumes any page is evictable. 38 * Pages in its cache cannot be "locked" into memory. This makes 39 * the eviction algorithm simple: evict the last page in the list. 40 * This also make the performance characteristics easy to reason 41 * about. Our cache is not so simple. At any given moment, some 42 * subset of the blocks in the cache are un-evictable because we 43 * have handed out a reference to them. Blocks are only evictable 44 * when there are no external references active. This makes 45 * eviction far more problematic: we choose to evict the evictable 46 * blocks that are the "lowest" in the list. 47 * 48 * There are times when it is not possible to evict the requested 49 * space. In these circumstances we are unable to adjust the cache 50 * size. To prevent the cache growing unbounded at these times we 51 * implement a "cache throttle" that slows the flow of new data 52 * into the cache until we can make space available. 53 * 54 * 2. The Megiddo and Modha model assumes a fixed cache size. 55 * Pages are evicted when the cache is full and there is a cache 56 * miss. Our model has a variable sized cache. It grows with 57 * high use, but also tries to react to memory pressure from the 58 * operating system: decreasing its size when system memory is 59 * tight. 60 * 61 * 3. The Megiddo and Modha model assumes a fixed page size. All 62 * elements of the cache are therefore exactly the same size. So 63 * when adjusting the cache size following a cache miss, its simply 64 * a matter of choosing a single page to evict. In our model, we 65 * have variable sized cache blocks (rangeing from 512 bytes to 66 * 128K bytes). We therefore choose a set of blocks to evict to make 67 * space for a cache miss that approximates as closely as possible 68 * the space used by the new block. 69 * 70 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 71 * by N. Megiddo & D. Modha, FAST 2003 72 */ 73 74 /* 75 * The locking model: 76 * 77 * A new reference to a cache buffer can be obtained in two 78 * ways: 1) via a hash table lookup using the DVA as a key, 79 * or 2) via one of the ARC lists. The arc_read() interface 80 * uses method 1, while the internal arc algorithms for 81 * adjusting the cache use method 2. We therefore provide two 82 * types of locks: 1) the hash table lock array, and 2) the 83 * arc list locks. 84 * 85 * Buffers do not have their own mutexes, rather they rely on the 86 * hash table mutexes for the bulk of their protection (i.e. most 87 * fields in the arc_buf_hdr_t are protected by these mutexes). 88 * 89 * buf_hash_find() returns the appropriate mutex (held) when it 90 * locates the requested buffer in the hash table. It returns 91 * NULL for the mutex if the buffer was not in the table. 92 * 93 * buf_hash_remove() expects the appropriate hash mutex to be 94 * already held before it is invoked. 95 * 96 * Each arc state also has a mutex which is used to protect the 97 * buffer list associated with the state. When attempting to 98 * obtain a hash table lock while holding an arc list lock you 99 * must use: mutex_tryenter() to avoid deadlock. Also note that 100 * the active state mutex must be held before the ghost state mutex. 101 * 102 * Arc buffers may have an associated eviction callback function. 103 * This function will be invoked prior to removing the buffer (e.g. 104 * in arc_do_user_evicts()). Note however that the data associated 105 * with the buffer may be evicted prior to the callback. The callback 106 * must be made with *no locks held* (to prevent deadlock). Additionally, 107 * the users of callbacks must ensure that their private data is 108 * protected from simultaneous callbacks from arc_clear_callback() 109 * and arc_do_user_evicts(). 110 * 111 * Note that the majority of the performance stats are manipulated 112 * with atomic operations. 113 * 114 * The L2ARC uses the l2ad_mtx on each vdev for the following: 115 * 116 * - L2ARC buflist creation 117 * - L2ARC buflist eviction 118 * - L2ARC write completion, which walks L2ARC buflists 119 * - ARC header destruction, as it removes from L2ARC buflists 120 * - ARC header release, as it removes from L2ARC buflists 121 */ 122 123 #include <sys/spa.h> 124 #include <sys/zio.h> 125 #include <sys/zio_compress.h> 126 #include <sys/zfs_context.h> 127 #include <sys/arc.h> 128 #include <sys/refcount.h> 129 #include <sys/vdev.h> 130 #include <sys/vdev_impl.h> 131 #include <sys/dsl_pool.h> 132 #include <sys/multilist.h> 133 #ifdef _KERNEL 134 #include <sys/vmsystm.h> 135 #include <vm/anon.h> 136 #include <sys/fs/swapnode.h> 137 #include <sys/dnlc.h> 138 #endif 139 #include <sys/callb.h> 140 #include <sys/kstat.h> 141 #include <zfs_fletcher.h> 142 143 #ifndef _KERNEL 144 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */ 145 boolean_t arc_watch = B_FALSE; 146 int arc_procfd; 147 #endif 148 149 static kmutex_t arc_reclaim_lock; 150 static kcondvar_t arc_reclaim_thread_cv; 151 static boolean_t arc_reclaim_thread_exit; 152 static kcondvar_t arc_reclaim_waiters_cv; 153 154 static kmutex_t arc_user_evicts_lock; 155 static kcondvar_t arc_user_evicts_cv; 156 static boolean_t arc_user_evicts_thread_exit; 157 158 uint_t arc_reduce_dnlc_percent = 3; 159 160 /* 161 * The number of headers to evict in arc_evict_state_impl() before 162 * dropping the sublist lock and evicting from another sublist. A lower 163 * value means we're more likely to evict the "correct" header (i.e. the 164 * oldest header in the arc state), but comes with higher overhead 165 * (i.e. more invocations of arc_evict_state_impl()). 166 */ 167 int zfs_arc_evict_batch_limit = 10; 168 169 /* 170 * The number of sublists used for each of the arc state lists. If this 171 * is not set to a suitable value by the user, it will be configured to 172 * the number of CPUs on the system in arc_init(). 173 */ 174 int zfs_arc_num_sublists_per_state = 0; 175 176 /* number of seconds before growing cache again */ 177 static int arc_grow_retry = 60; 178 179 /* shift of arc_c for calculating overflow limit in arc_get_data_buf */ 180 int zfs_arc_overflow_shift = 8; 181 182 /* shift of arc_c for calculating both min and max arc_p */ 183 static int arc_p_min_shift = 4; 184 185 /* log2(fraction of arc to reclaim) */ 186 static int arc_shrink_shift = 7; 187 188 /* 189 * log2(fraction of ARC which must be free to allow growing). 190 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory, 191 * when reading a new block into the ARC, we will evict an equal-sized block 192 * from the ARC. 193 * 194 * This must be less than arc_shrink_shift, so that when we shrink the ARC, 195 * we will still not allow it to grow. 196 */ 197 int arc_no_grow_shift = 5; 198 199 200 /* 201 * minimum lifespan of a prefetch block in clock ticks 202 * (initialized in arc_init()) 203 */ 204 static int arc_min_prefetch_lifespan; 205 206 /* 207 * If this percent of memory is free, don't throttle. 208 */ 209 int arc_lotsfree_percent = 10; 210 211 static int arc_dead; 212 213 /* 214 * The arc has filled available memory and has now warmed up. 215 */ 216 static boolean_t arc_warm; 217 218 /* 219 * These tunables are for performance analysis. 220 */ 221 uint64_t zfs_arc_max; 222 uint64_t zfs_arc_min; 223 uint64_t zfs_arc_meta_limit = 0; 224 uint64_t zfs_arc_meta_min = 0; 225 int zfs_arc_grow_retry = 0; 226 int zfs_arc_shrink_shift = 0; 227 int zfs_arc_p_min_shift = 0; 228 int zfs_disable_dup_eviction = 0; 229 int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */ 230 231 /* 232 * Note that buffers can be in one of 6 states: 233 * ARC_anon - anonymous (discussed below) 234 * ARC_mru - recently used, currently cached 235 * ARC_mru_ghost - recentely used, no longer in cache 236 * ARC_mfu - frequently used, currently cached 237 * ARC_mfu_ghost - frequently used, no longer in cache 238 * ARC_l2c_only - exists in L2ARC but not other states 239 * When there are no active references to the buffer, they are 240 * are linked onto a list in one of these arc states. These are 241 * the only buffers that can be evicted or deleted. Within each 242 * state there are multiple lists, one for meta-data and one for 243 * non-meta-data. Meta-data (indirect blocks, blocks of dnodes, 244 * etc.) is tracked separately so that it can be managed more 245 * explicitly: favored over data, limited explicitly. 246 * 247 * Anonymous buffers are buffers that are not associated with 248 * a DVA. These are buffers that hold dirty block copies 249 * before they are written to stable storage. By definition, 250 * they are "ref'd" and are considered part of arc_mru 251 * that cannot be freed. Generally, they will aquire a DVA 252 * as they are written and migrate onto the arc_mru list. 253 * 254 * The ARC_l2c_only state is for buffers that are in the second 255 * level ARC but no longer in any of the ARC_m* lists. The second 256 * level ARC itself may also contain buffers that are in any of 257 * the ARC_m* states - meaning that a buffer can exist in two 258 * places. The reason for the ARC_l2c_only state is to keep the 259 * buffer header in the hash table, so that reads that hit the 260 * second level ARC benefit from these fast lookups. 261 */ 262 263 typedef struct arc_state { 264 /* 265 * list of evictable buffers 266 */ 267 multilist_t arcs_list[ARC_BUFC_NUMTYPES]; 268 /* 269 * total amount of evictable data in this state 270 */ 271 uint64_t arcs_lsize[ARC_BUFC_NUMTYPES]; 272 /* 273 * total amount of data in this state; this includes: evictable, 274 * non-evictable, ARC_BUFC_DATA, and ARC_BUFC_METADATA. 275 */ 276 refcount_t arcs_size; 277 } arc_state_t; 278 279 /* The 6 states: */ 280 static arc_state_t ARC_anon; 281 static arc_state_t ARC_mru; 282 static arc_state_t ARC_mru_ghost; 283 static arc_state_t ARC_mfu; 284 static arc_state_t ARC_mfu_ghost; 285 static arc_state_t ARC_l2c_only; 286 287 typedef struct arc_stats { 288 kstat_named_t arcstat_hits; 289 kstat_named_t arcstat_misses; 290 kstat_named_t arcstat_demand_data_hits; 291 kstat_named_t arcstat_demand_data_misses; 292 kstat_named_t arcstat_demand_metadata_hits; 293 kstat_named_t arcstat_demand_metadata_misses; 294 kstat_named_t arcstat_prefetch_data_hits; 295 kstat_named_t arcstat_prefetch_data_misses; 296 kstat_named_t arcstat_prefetch_metadata_hits; 297 kstat_named_t arcstat_prefetch_metadata_misses; 298 kstat_named_t arcstat_mru_hits; 299 kstat_named_t arcstat_mru_ghost_hits; 300 kstat_named_t arcstat_mfu_hits; 301 kstat_named_t arcstat_mfu_ghost_hits; 302 kstat_named_t arcstat_deleted; 303 /* 304 * Number of buffers that could not be evicted because the hash lock 305 * was held by another thread. The lock may not necessarily be held 306 * by something using the same buffer, since hash locks are shared 307 * by multiple buffers. 308 */ 309 kstat_named_t arcstat_mutex_miss; 310 /* 311 * Number of buffers skipped because they have I/O in progress, are 312 * indrect prefetch buffers that have not lived long enough, or are 313 * not from the spa we're trying to evict from. 314 */ 315 kstat_named_t arcstat_evict_skip; 316 /* 317 * Number of times arc_evict_state() was unable to evict enough 318 * buffers to reach it's target amount. 319 */ 320 kstat_named_t arcstat_evict_not_enough; 321 kstat_named_t arcstat_evict_l2_cached; 322 kstat_named_t arcstat_evict_l2_eligible; 323 kstat_named_t arcstat_evict_l2_ineligible; 324 kstat_named_t arcstat_evict_l2_skip; 325 kstat_named_t arcstat_hash_elements; 326 kstat_named_t arcstat_hash_elements_max; 327 kstat_named_t arcstat_hash_collisions; 328 kstat_named_t arcstat_hash_chains; 329 kstat_named_t arcstat_hash_chain_max; 330 kstat_named_t arcstat_p; 331 kstat_named_t arcstat_c; 332 kstat_named_t arcstat_c_min; 333 kstat_named_t arcstat_c_max; 334 kstat_named_t arcstat_size; 335 /* 336 * Number of bytes consumed by internal ARC structures necessary 337 * for tracking purposes; these structures are not actually 338 * backed by ARC buffers. This includes arc_buf_hdr_t structures 339 * (allocated via arc_buf_hdr_t_full and arc_buf_hdr_t_l2only 340 * caches), and arc_buf_t structures (allocated via arc_buf_t 341 * cache). 342 */ 343 kstat_named_t arcstat_hdr_size; 344 /* 345 * Number of bytes consumed by ARC buffers of type equal to 346 * ARC_BUFC_DATA. This is generally consumed by buffers backing 347 * on disk user data (e.g. plain file contents). 348 */ 349 kstat_named_t arcstat_data_size; 350 /* 351 * Number of bytes consumed by ARC buffers of type equal to 352 * ARC_BUFC_METADATA. This is generally consumed by buffers 353 * backing on disk data that is used for internal ZFS 354 * structures (e.g. ZAP, dnode, indirect blocks, etc). 355 */ 356 kstat_named_t arcstat_metadata_size; 357 /* 358 * Number of bytes consumed by various buffers and structures 359 * not actually backed with ARC buffers. This includes bonus 360 * buffers (allocated directly via zio_buf_* functions), 361 * dmu_buf_impl_t structures (allocated via dmu_buf_impl_t 362 * cache), and dnode_t structures (allocated via dnode_t cache). 363 */ 364 kstat_named_t arcstat_other_size; 365 /* 366 * Total number of bytes consumed by ARC buffers residing in the 367 * arc_anon state. This includes *all* buffers in the arc_anon 368 * state; e.g. data, metadata, evictable, and unevictable buffers 369 * are all included in this value. 370 */ 371 kstat_named_t arcstat_anon_size; 372 /* 373 * Number of bytes consumed by ARC buffers that meet the 374 * following criteria: backing buffers of type ARC_BUFC_DATA, 375 * residing in the arc_anon state, and are eligible for eviction 376 * (e.g. have no outstanding holds on the buffer). 377 */ 378 kstat_named_t arcstat_anon_evictable_data; 379 /* 380 * Number of bytes consumed by ARC buffers that meet the 381 * following criteria: backing buffers of type ARC_BUFC_METADATA, 382 * residing in the arc_anon state, and are eligible for eviction 383 * (e.g. have no outstanding holds on the buffer). 384 */ 385 kstat_named_t arcstat_anon_evictable_metadata; 386 /* 387 * Total number of bytes consumed by ARC buffers residing in the 388 * arc_mru state. This includes *all* buffers in the arc_mru 389 * state; e.g. data, metadata, evictable, and unevictable buffers 390 * are all included in this value. 391 */ 392 kstat_named_t arcstat_mru_size; 393 /* 394 * Number of bytes consumed by ARC buffers that meet the 395 * following criteria: backing buffers of type ARC_BUFC_DATA, 396 * residing in the arc_mru state, and are eligible for eviction 397 * (e.g. have no outstanding holds on the buffer). 398 */ 399 kstat_named_t arcstat_mru_evictable_data; 400 /* 401 * Number of bytes consumed by ARC buffers that meet the 402 * following criteria: backing buffers of type ARC_BUFC_METADATA, 403 * residing in the arc_mru state, and are eligible for eviction 404 * (e.g. have no outstanding holds on the buffer). 405 */ 406 kstat_named_t arcstat_mru_evictable_metadata; 407 /* 408 * Total number of bytes that *would have been* consumed by ARC 409 * buffers in the arc_mru_ghost state. The key thing to note 410 * here, is the fact that this size doesn't actually indicate 411 * RAM consumption. The ghost lists only consist of headers and 412 * don't actually have ARC buffers linked off of these headers. 413 * Thus, *if* the headers had associated ARC buffers, these 414 * buffers *would have* consumed this number of bytes. 415 */ 416 kstat_named_t arcstat_mru_ghost_size; 417 /* 418 * Number of bytes that *would have been* consumed by ARC 419 * buffers that are eligible for eviction, of type 420 * ARC_BUFC_DATA, and linked off the arc_mru_ghost state. 421 */ 422 kstat_named_t arcstat_mru_ghost_evictable_data; 423 /* 424 * Number of bytes that *would have been* consumed by ARC 425 * buffers that are eligible for eviction, of type 426 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state. 427 */ 428 kstat_named_t arcstat_mru_ghost_evictable_metadata; 429 /* 430 * Total number of bytes consumed by ARC buffers residing in the 431 * arc_mfu state. This includes *all* buffers in the arc_mfu 432 * state; e.g. data, metadata, evictable, and unevictable buffers 433 * are all included in this value. 434 */ 435 kstat_named_t arcstat_mfu_size; 436 /* 437 * Number of bytes consumed by ARC buffers that are eligible for 438 * eviction, of type ARC_BUFC_DATA, and reside in the arc_mfu 439 * state. 440 */ 441 kstat_named_t arcstat_mfu_evictable_data; 442 /* 443 * Number of bytes consumed by ARC buffers that are eligible for 444 * eviction, of type ARC_BUFC_METADATA, and reside in the 445 * arc_mfu state. 446 */ 447 kstat_named_t arcstat_mfu_evictable_metadata; 448 /* 449 * Total number of bytes that *would have been* consumed by ARC 450 * buffers in the arc_mfu_ghost state. See the comment above 451 * arcstat_mru_ghost_size for more details. 452 */ 453 kstat_named_t arcstat_mfu_ghost_size; 454 /* 455 * Number of bytes that *would have been* consumed by ARC 456 * buffers that are eligible for eviction, of type 457 * ARC_BUFC_DATA, and linked off the arc_mfu_ghost state. 458 */ 459 kstat_named_t arcstat_mfu_ghost_evictable_data; 460 /* 461 * Number of bytes that *would have been* consumed by ARC 462 * buffers that are eligible for eviction, of type 463 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state. 464 */ 465 kstat_named_t arcstat_mfu_ghost_evictable_metadata; 466 kstat_named_t arcstat_l2_hits; 467 kstat_named_t arcstat_l2_misses; 468 kstat_named_t arcstat_l2_feeds; 469 kstat_named_t arcstat_l2_rw_clash; 470 kstat_named_t arcstat_l2_read_bytes; 471 kstat_named_t arcstat_l2_write_bytes; 472 kstat_named_t arcstat_l2_writes_sent; 473 kstat_named_t arcstat_l2_writes_done; 474 kstat_named_t arcstat_l2_writes_error; 475 kstat_named_t arcstat_l2_writes_lock_retry; 476 kstat_named_t arcstat_l2_evict_lock_retry; 477 kstat_named_t arcstat_l2_evict_reading; 478 kstat_named_t arcstat_l2_evict_l1cached; 479 kstat_named_t arcstat_l2_free_on_write; 480 kstat_named_t arcstat_l2_cdata_free_on_write; 481 kstat_named_t arcstat_l2_abort_lowmem; 482 kstat_named_t arcstat_l2_cksum_bad; 483 kstat_named_t arcstat_l2_io_error; 484 kstat_named_t arcstat_l2_size; 485 kstat_named_t arcstat_l2_asize; 486 kstat_named_t arcstat_l2_hdr_size; 487 kstat_named_t arcstat_l2_compress_successes; 488 kstat_named_t arcstat_l2_compress_zeros; 489 kstat_named_t arcstat_l2_compress_failures; 490 kstat_named_t arcstat_memory_throttle_count; 491 kstat_named_t arcstat_duplicate_buffers; 492 kstat_named_t arcstat_duplicate_buffers_size; 493 kstat_named_t arcstat_duplicate_reads; 494 kstat_named_t arcstat_meta_used; 495 kstat_named_t arcstat_meta_limit; 496 kstat_named_t arcstat_meta_max; 497 kstat_named_t arcstat_meta_min; 498 } arc_stats_t; 499 500 static arc_stats_t arc_stats = { 501 { "hits", KSTAT_DATA_UINT64 }, 502 { "misses", KSTAT_DATA_UINT64 }, 503 { "demand_data_hits", KSTAT_DATA_UINT64 }, 504 { "demand_data_misses", KSTAT_DATA_UINT64 }, 505 { "demand_metadata_hits", KSTAT_DATA_UINT64 }, 506 { "demand_metadata_misses", KSTAT_DATA_UINT64 }, 507 { "prefetch_data_hits", KSTAT_DATA_UINT64 }, 508 { "prefetch_data_misses", KSTAT_DATA_UINT64 }, 509 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 }, 510 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 }, 511 { "mru_hits", KSTAT_DATA_UINT64 }, 512 { "mru_ghost_hits", KSTAT_DATA_UINT64 }, 513 { "mfu_hits", KSTAT_DATA_UINT64 }, 514 { "mfu_ghost_hits", KSTAT_DATA_UINT64 }, 515 { "deleted", KSTAT_DATA_UINT64 }, 516 { "mutex_miss", KSTAT_DATA_UINT64 }, 517 { "evict_skip", KSTAT_DATA_UINT64 }, 518 { "evict_not_enough", KSTAT_DATA_UINT64 }, 519 { "evict_l2_cached", KSTAT_DATA_UINT64 }, 520 { "evict_l2_eligible", KSTAT_DATA_UINT64 }, 521 { "evict_l2_ineligible", KSTAT_DATA_UINT64 }, 522 { "evict_l2_skip", KSTAT_DATA_UINT64 }, 523 { "hash_elements", KSTAT_DATA_UINT64 }, 524 { "hash_elements_max", KSTAT_DATA_UINT64 }, 525 { "hash_collisions", KSTAT_DATA_UINT64 }, 526 { "hash_chains", KSTAT_DATA_UINT64 }, 527 { "hash_chain_max", KSTAT_DATA_UINT64 }, 528 { "p", KSTAT_DATA_UINT64 }, 529 { "c", KSTAT_DATA_UINT64 }, 530 { "c_min", KSTAT_DATA_UINT64 }, 531 { "c_max", KSTAT_DATA_UINT64 }, 532 { "size", KSTAT_DATA_UINT64 }, 533 { "hdr_size", KSTAT_DATA_UINT64 }, 534 { "data_size", KSTAT_DATA_UINT64 }, 535 { "metadata_size", KSTAT_DATA_UINT64 }, 536 { "other_size", KSTAT_DATA_UINT64 }, 537 { "anon_size", KSTAT_DATA_UINT64 }, 538 { "anon_evictable_data", KSTAT_DATA_UINT64 }, 539 { "anon_evictable_metadata", KSTAT_DATA_UINT64 }, 540 { "mru_size", KSTAT_DATA_UINT64 }, 541 { "mru_evictable_data", KSTAT_DATA_UINT64 }, 542 { "mru_evictable_metadata", KSTAT_DATA_UINT64 }, 543 { "mru_ghost_size", KSTAT_DATA_UINT64 }, 544 { "mru_ghost_evictable_data", KSTAT_DATA_UINT64 }, 545 { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 }, 546 { "mfu_size", KSTAT_DATA_UINT64 }, 547 { "mfu_evictable_data", KSTAT_DATA_UINT64 }, 548 { "mfu_evictable_metadata", KSTAT_DATA_UINT64 }, 549 { "mfu_ghost_size", KSTAT_DATA_UINT64 }, 550 { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64 }, 551 { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 }, 552 { "l2_hits", KSTAT_DATA_UINT64 }, 553 { "l2_misses", KSTAT_DATA_UINT64 }, 554 { "l2_feeds", KSTAT_DATA_UINT64 }, 555 { "l2_rw_clash", KSTAT_DATA_UINT64 }, 556 { "l2_read_bytes", KSTAT_DATA_UINT64 }, 557 { "l2_write_bytes", KSTAT_DATA_UINT64 }, 558 { "l2_writes_sent", KSTAT_DATA_UINT64 }, 559 { "l2_writes_done", KSTAT_DATA_UINT64 }, 560 { "l2_writes_error", KSTAT_DATA_UINT64 }, 561 { "l2_writes_lock_retry", KSTAT_DATA_UINT64 }, 562 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 }, 563 { "l2_evict_reading", KSTAT_DATA_UINT64 }, 564 { "l2_evict_l1cached", KSTAT_DATA_UINT64 }, 565 { "l2_free_on_write", KSTAT_DATA_UINT64 }, 566 { "l2_cdata_free_on_write", KSTAT_DATA_UINT64 }, 567 { "l2_abort_lowmem", KSTAT_DATA_UINT64 }, 568 { "l2_cksum_bad", KSTAT_DATA_UINT64 }, 569 { "l2_io_error", KSTAT_DATA_UINT64 }, 570 { "l2_size", KSTAT_DATA_UINT64 }, 571 { "l2_asize", KSTAT_DATA_UINT64 }, 572 { "l2_hdr_size", KSTAT_DATA_UINT64 }, 573 { "l2_compress_successes", KSTAT_DATA_UINT64 }, 574 { "l2_compress_zeros", KSTAT_DATA_UINT64 }, 575 { "l2_compress_failures", KSTAT_DATA_UINT64 }, 576 { "memory_throttle_count", KSTAT_DATA_UINT64 }, 577 { "duplicate_buffers", KSTAT_DATA_UINT64 }, 578 { "duplicate_buffers_size", KSTAT_DATA_UINT64 }, 579 { "duplicate_reads", KSTAT_DATA_UINT64 }, 580 { "arc_meta_used", KSTAT_DATA_UINT64 }, 581 { "arc_meta_limit", KSTAT_DATA_UINT64 }, 582 { "arc_meta_max", KSTAT_DATA_UINT64 }, 583 { "arc_meta_min", KSTAT_DATA_UINT64 } 584 }; 585 586 #define ARCSTAT(stat) (arc_stats.stat.value.ui64) 587 588 #define ARCSTAT_INCR(stat, val) \ 589 atomic_add_64(&arc_stats.stat.value.ui64, (val)) 590 591 #define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1) 592 #define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1) 593 594 #define ARCSTAT_MAX(stat, val) { \ 595 uint64_t m; \ 596 while ((val) > (m = arc_stats.stat.value.ui64) && \ 597 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \ 598 continue; \ 599 } 600 601 #define ARCSTAT_MAXSTAT(stat) \ 602 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64) 603 604 /* 605 * We define a macro to allow ARC hits/misses to be easily broken down by 606 * two separate conditions, giving a total of four different subtypes for 607 * each of hits and misses (so eight statistics total). 608 */ 609 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \ 610 if (cond1) { \ 611 if (cond2) { \ 612 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \ 613 } else { \ 614 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \ 615 } \ 616 } else { \ 617 if (cond2) { \ 618 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \ 619 } else { \ 620 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\ 621 } \ 622 } 623 624 kstat_t *arc_ksp; 625 static arc_state_t *arc_anon; 626 static arc_state_t *arc_mru; 627 static arc_state_t *arc_mru_ghost; 628 static arc_state_t *arc_mfu; 629 static arc_state_t *arc_mfu_ghost; 630 static arc_state_t *arc_l2c_only; 631 632 /* 633 * There are several ARC variables that are critical to export as kstats -- 634 * but we don't want to have to grovel around in the kstat whenever we wish to 635 * manipulate them. For these variables, we therefore define them to be in 636 * terms of the statistic variable. This assures that we are not introducing 637 * the possibility of inconsistency by having shadow copies of the variables, 638 * while still allowing the code to be readable. 639 */ 640 #define arc_size ARCSTAT(arcstat_size) /* actual total arc size */ 641 #define arc_p ARCSTAT(arcstat_p) /* target size of MRU */ 642 #define arc_c ARCSTAT(arcstat_c) /* target size of cache */ 643 #define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */ 644 #define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */ 645 #define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */ 646 #define arc_meta_min ARCSTAT(arcstat_meta_min) /* min size for metadata */ 647 #define arc_meta_used ARCSTAT(arcstat_meta_used) /* size of metadata */ 648 #define arc_meta_max ARCSTAT(arcstat_meta_max) /* max size of metadata */ 649 650 #define L2ARC_IS_VALID_COMPRESS(_c_) \ 651 ((_c_) == ZIO_COMPRESS_LZ4 || (_c_) == ZIO_COMPRESS_EMPTY) 652 653 static int arc_no_grow; /* Don't try to grow cache size */ 654 static uint64_t arc_tempreserve; 655 static uint64_t arc_loaned_bytes; 656 657 typedef struct arc_callback arc_callback_t; 658 659 struct arc_callback { 660 void *acb_private; 661 arc_done_func_t *acb_done; 662 arc_buf_t *acb_buf; 663 zio_t *acb_zio_dummy; 664 arc_callback_t *acb_next; 665 }; 666 667 typedef struct arc_write_callback arc_write_callback_t; 668 669 struct arc_write_callback { 670 void *awcb_private; 671 arc_done_func_t *awcb_ready; 672 arc_done_func_t *awcb_physdone; 673 arc_done_func_t *awcb_done; 674 arc_buf_t *awcb_buf; 675 }; 676 677 /* 678 * ARC buffers are separated into multiple structs as a memory saving measure: 679 * - Common fields struct, always defined, and embedded within it: 680 * - L2-only fields, always allocated but undefined when not in L2ARC 681 * - L1-only fields, only allocated when in L1ARC 682 * 683 * Buffer in L1 Buffer only in L2 684 * +------------------------+ +------------------------+ 685 * | arc_buf_hdr_t | | arc_buf_hdr_t | 686 * | | | | 687 * | | | | 688 * | | | | 689 * +------------------------+ +------------------------+ 690 * | l2arc_buf_hdr_t | | l2arc_buf_hdr_t | 691 * | (undefined if L1-only) | | | 692 * +------------------------+ +------------------------+ 693 * | l1arc_buf_hdr_t | 694 * | | 695 * | | 696 * | | 697 * | | 698 * +------------------------+ 699 * 700 * Because it's possible for the L2ARC to become extremely large, we can wind 701 * up eating a lot of memory in L2ARC buffer headers, so the size of a header 702 * is minimized by only allocating the fields necessary for an L1-cached buffer 703 * when a header is actually in the L1 cache. The sub-headers (l1arc_buf_hdr and 704 * l2arc_buf_hdr) are embedded rather than allocated separately to save a couple 705 * words in pointers. arc_hdr_realloc() is used to switch a header between 706 * these two allocation states. 707 */ 708 typedef struct l1arc_buf_hdr { 709 kmutex_t b_freeze_lock; 710 #ifdef ZFS_DEBUG 711 /* 712 * used for debugging wtih kmem_flags - by allocating and freeing 713 * b_thawed when the buffer is thawed, we get a record of the stack 714 * trace that thawed it. 715 */ 716 void *b_thawed; 717 #endif 718 719 arc_buf_t *b_buf; 720 uint32_t b_datacnt; 721 /* for waiting on writes to complete */ 722 kcondvar_t b_cv; 723 724 /* protected by arc state mutex */ 725 arc_state_t *b_state; 726 multilist_node_t b_arc_node; 727 728 /* updated atomically */ 729 clock_t b_arc_access; 730 731 /* self protecting */ 732 refcount_t b_refcnt; 733 734 arc_callback_t *b_acb; 735 /* temporary buffer holder for in-flight compressed data */ 736 void *b_tmp_cdata; 737 } l1arc_buf_hdr_t; 738 739 typedef struct l2arc_dev l2arc_dev_t; 740 741 typedef struct l2arc_buf_hdr { 742 /* protected by arc_buf_hdr mutex */ 743 l2arc_dev_t *b_dev; /* L2ARC device */ 744 uint64_t b_daddr; /* disk address, offset byte */ 745 /* real alloc'd buffer size depending on b_compress applied */ 746 int32_t b_asize; 747 uint8_t b_compress; 748 749 list_node_t b_l2node; 750 } l2arc_buf_hdr_t; 751 752 struct arc_buf_hdr { 753 /* protected by hash lock */ 754 dva_t b_dva; 755 uint64_t b_birth; 756 /* 757 * Even though this checksum is only set/verified when a buffer is in 758 * the L1 cache, it needs to be in the set of common fields because it 759 * must be preserved from the time before a buffer is written out to 760 * L2ARC until after it is read back in. 761 */ 762 zio_cksum_t *b_freeze_cksum; 763 764 arc_buf_hdr_t *b_hash_next; 765 arc_flags_t b_flags; 766 767 /* immutable */ 768 int32_t b_size; 769 uint64_t b_spa; 770 771 /* L2ARC fields. Undefined when not in L2ARC. */ 772 l2arc_buf_hdr_t b_l2hdr; 773 /* L1ARC fields. Undefined when in l2arc_only state */ 774 l1arc_buf_hdr_t b_l1hdr; 775 }; 776 777 static arc_buf_t *arc_eviction_list; 778 static arc_buf_hdr_t arc_eviction_hdr; 779 780 #define GHOST_STATE(state) \ 781 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \ 782 (state) == arc_l2c_only) 783 784 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE) 785 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) 786 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR) 787 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH) 788 #define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FLAG_FREED_IN_READ) 789 #define HDR_BUF_AVAILABLE(hdr) ((hdr)->b_flags & ARC_FLAG_BUF_AVAILABLE) 790 791 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE) 792 #define HDR_L2COMPRESS(hdr) ((hdr)->b_flags & ARC_FLAG_L2COMPRESS) 793 #define HDR_L2_READING(hdr) \ 794 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \ 795 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)) 796 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING) 797 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED) 798 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD) 799 800 #define HDR_ISTYPE_METADATA(hdr) \ 801 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA) 802 #define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr)) 803 804 #define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR) 805 #define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR) 806 807 /* 808 * Other sizes 809 */ 810 811 #define HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t)) 812 #define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr)) 813 814 /* 815 * Hash table routines 816 */ 817 818 #define HT_LOCK_PAD 64 819 820 struct ht_lock { 821 kmutex_t ht_lock; 822 #ifdef _KERNEL 823 unsigned char pad[(HT_LOCK_PAD - sizeof (kmutex_t))]; 824 #endif 825 }; 826 827 #define BUF_LOCKS 256 828 typedef struct buf_hash_table { 829 uint64_t ht_mask; 830 arc_buf_hdr_t **ht_table; 831 struct ht_lock ht_locks[BUF_LOCKS]; 832 } buf_hash_table_t; 833 834 static buf_hash_table_t buf_hash_table; 835 836 #define BUF_HASH_INDEX(spa, dva, birth) \ 837 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 838 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) 839 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock)) 840 #define HDR_LOCK(hdr) \ 841 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth))) 842 843 uint64_t zfs_crc64_table[256]; 844 845 /* 846 * Level 2 ARC 847 */ 848 849 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */ 850 #define L2ARC_HEADROOM 2 /* num of writes */ 851 /* 852 * If we discover during ARC scan any buffers to be compressed, we boost 853 * our headroom for the next scanning cycle by this percentage multiple. 854 */ 855 #define L2ARC_HEADROOM_BOOST 200 856 #define L2ARC_FEED_SECS 1 /* caching interval secs */ 857 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */ 858 859 /* 860 * Used to distinguish headers that are being process by 861 * l2arc_write_buffers(), but have yet to be assigned to a l2arc disk 862 * address. This can happen when the header is added to the l2arc's list 863 * of buffers to write in the first stage of l2arc_write_buffers(), but 864 * has not yet been written out which happens in the second stage of 865 * l2arc_write_buffers(). 866 */ 867 #define L2ARC_ADDR_UNSET ((uint64_t)(-1)) 868 869 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent) 870 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done) 871 872 /* L2ARC Performance Tunables */ 873 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* default max write size */ 874 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra write during warmup */ 875 uint64_t l2arc_headroom = L2ARC_HEADROOM; /* number of dev writes */ 876 uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST; 877 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */ 878 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval milliseconds */ 879 boolean_t l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */ 880 boolean_t l2arc_feed_again = B_TRUE; /* turbo warmup */ 881 boolean_t l2arc_norw = B_TRUE; /* no reads during writes */ 882 883 /* 884 * L2ARC Internals 885 */ 886 struct l2arc_dev { 887 vdev_t *l2ad_vdev; /* vdev */ 888 spa_t *l2ad_spa; /* spa */ 889 uint64_t l2ad_hand; /* next write location */ 890 uint64_t l2ad_start; /* first addr on device */ 891 uint64_t l2ad_end; /* last addr on device */ 892 boolean_t l2ad_first; /* first sweep through */ 893 boolean_t l2ad_writing; /* currently writing */ 894 kmutex_t l2ad_mtx; /* lock for buffer list */ 895 list_t l2ad_buflist; /* buffer list */ 896 list_node_t l2ad_node; /* device list node */ 897 refcount_t l2ad_alloc; /* allocated bytes */ 898 }; 899 900 static list_t L2ARC_dev_list; /* device list */ 901 static list_t *l2arc_dev_list; /* device list pointer */ 902 static kmutex_t l2arc_dev_mtx; /* device list mutex */ 903 static l2arc_dev_t *l2arc_dev_last; /* last device used */ 904 static list_t L2ARC_free_on_write; /* free after write buf list */ 905 static list_t *l2arc_free_on_write; /* free after write list ptr */ 906 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */ 907 static uint64_t l2arc_ndev; /* number of devices */ 908 909 typedef struct l2arc_read_callback { 910 arc_buf_t *l2rcb_buf; /* read buffer */ 911 spa_t *l2rcb_spa; /* spa */ 912 blkptr_t l2rcb_bp; /* original blkptr */ 913 zbookmark_phys_t l2rcb_zb; /* original bookmark */ 914 int l2rcb_flags; /* original flags */ 915 enum zio_compress l2rcb_compress; /* applied compress */ 916 } l2arc_read_callback_t; 917 918 typedef struct l2arc_write_callback { 919 l2arc_dev_t *l2wcb_dev; /* device info */ 920 arc_buf_hdr_t *l2wcb_head; /* head of write buflist */ 921 } l2arc_write_callback_t; 922 923 typedef struct l2arc_data_free { 924 /* protected by l2arc_free_on_write_mtx */ 925 void *l2df_data; 926 size_t l2df_size; 927 void (*l2df_func)(void *, size_t); 928 list_node_t l2df_list_node; 929 } l2arc_data_free_t; 930 931 static kmutex_t l2arc_feed_thr_lock; 932 static kcondvar_t l2arc_feed_thr_cv; 933 static uint8_t l2arc_thread_exit; 934 935 static void arc_get_data_buf(arc_buf_t *); 936 static void arc_access(arc_buf_hdr_t *, kmutex_t *); 937 static boolean_t arc_is_overflowing(); 938 static void arc_buf_watch(arc_buf_t *); 939 940 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *); 941 static uint32_t arc_bufc_to_flags(arc_buf_contents_t); 942 943 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *); 944 static void l2arc_read_done(zio_t *); 945 946 static boolean_t l2arc_compress_buf(arc_buf_hdr_t *); 947 static void l2arc_decompress_zio(zio_t *, arc_buf_hdr_t *, enum zio_compress); 948 static void l2arc_release_cdata_buf(arc_buf_hdr_t *); 949 950 static uint64_t 951 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth) 952 { 953 uint8_t *vdva = (uint8_t *)dva; 954 uint64_t crc = -1ULL; 955 int i; 956 957 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 958 959 for (i = 0; i < sizeof (dva_t); i++) 960 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF]; 961 962 crc ^= (spa>>8) ^ birth; 963 964 return (crc); 965 } 966 967 #define BUF_EMPTY(buf) \ 968 ((buf)->b_dva.dva_word[0] == 0 && \ 969 (buf)->b_dva.dva_word[1] == 0) 970 971 #define BUF_EQUAL(spa, dva, birth, buf) \ 972 ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 973 ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 974 ((buf)->b_birth == birth) && ((buf)->b_spa == spa) 975 976 static void 977 buf_discard_identity(arc_buf_hdr_t *hdr) 978 { 979 hdr->b_dva.dva_word[0] = 0; 980 hdr->b_dva.dva_word[1] = 0; 981 hdr->b_birth = 0; 982 } 983 984 static arc_buf_hdr_t * 985 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp) 986 { 987 const dva_t *dva = BP_IDENTITY(bp); 988 uint64_t birth = BP_PHYSICAL_BIRTH(bp); 989 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 990 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 991 arc_buf_hdr_t *hdr; 992 993 mutex_enter(hash_lock); 994 for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL; 995 hdr = hdr->b_hash_next) { 996 if (BUF_EQUAL(spa, dva, birth, hdr)) { 997 *lockp = hash_lock; 998 return (hdr); 999 } 1000 } 1001 mutex_exit(hash_lock); 1002 *lockp = NULL; 1003 return (NULL); 1004 } 1005 1006 /* 1007 * Insert an entry into the hash table. If there is already an element 1008 * equal to elem in the hash table, then the already existing element 1009 * will be returned and the new element will not be inserted. 1010 * Otherwise returns NULL. 1011 * If lockp == NULL, the caller is assumed to already hold the hash lock. 1012 */ 1013 static arc_buf_hdr_t * 1014 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp) 1015 { 1016 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); 1017 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 1018 arc_buf_hdr_t *fhdr; 1019 uint32_t i; 1020 1021 ASSERT(!DVA_IS_EMPTY(&hdr->b_dva)); 1022 ASSERT(hdr->b_birth != 0); 1023 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 1024 1025 if (lockp != NULL) { 1026 *lockp = hash_lock; 1027 mutex_enter(hash_lock); 1028 } else { 1029 ASSERT(MUTEX_HELD(hash_lock)); 1030 } 1031 1032 for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL; 1033 fhdr = fhdr->b_hash_next, i++) { 1034 if (BUF_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr)) 1035 return (fhdr); 1036 } 1037 1038 hdr->b_hash_next = buf_hash_table.ht_table[idx]; 1039 buf_hash_table.ht_table[idx] = hdr; 1040 hdr->b_flags |= ARC_FLAG_IN_HASH_TABLE; 1041 1042 /* collect some hash table performance data */ 1043 if (i > 0) { 1044 ARCSTAT_BUMP(arcstat_hash_collisions); 1045 if (i == 1) 1046 ARCSTAT_BUMP(arcstat_hash_chains); 1047 1048 ARCSTAT_MAX(arcstat_hash_chain_max, i); 1049 } 1050 1051 ARCSTAT_BUMP(arcstat_hash_elements); 1052 ARCSTAT_MAXSTAT(arcstat_hash_elements); 1053 1054 return (NULL); 1055 } 1056 1057 static void 1058 buf_hash_remove(arc_buf_hdr_t *hdr) 1059 { 1060 arc_buf_hdr_t *fhdr, **hdrp; 1061 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); 1062 1063 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 1064 ASSERT(HDR_IN_HASH_TABLE(hdr)); 1065 1066 hdrp = &buf_hash_table.ht_table[idx]; 1067 while ((fhdr = *hdrp) != hdr) { 1068 ASSERT(fhdr != NULL); 1069 hdrp = &fhdr->b_hash_next; 1070 } 1071 *hdrp = hdr->b_hash_next; 1072 hdr->b_hash_next = NULL; 1073 hdr->b_flags &= ~ARC_FLAG_IN_HASH_TABLE; 1074 1075 /* collect some hash table performance data */ 1076 ARCSTAT_BUMPDOWN(arcstat_hash_elements); 1077 1078 if (buf_hash_table.ht_table[idx] && 1079 buf_hash_table.ht_table[idx]->b_hash_next == NULL) 1080 ARCSTAT_BUMPDOWN(arcstat_hash_chains); 1081 } 1082 1083 /* 1084 * Global data structures and functions for the buf kmem cache. 1085 */ 1086 static kmem_cache_t *hdr_full_cache; 1087 static kmem_cache_t *hdr_l2only_cache; 1088 static kmem_cache_t *buf_cache; 1089 1090 static void 1091 buf_fini(void) 1092 { 1093 int i; 1094 1095 kmem_free(buf_hash_table.ht_table, 1096 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 1097 for (i = 0; i < BUF_LOCKS; i++) 1098 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock); 1099 kmem_cache_destroy(hdr_full_cache); 1100 kmem_cache_destroy(hdr_l2only_cache); 1101 kmem_cache_destroy(buf_cache); 1102 } 1103 1104 /* 1105 * Constructor callback - called when the cache is empty 1106 * and a new buf is requested. 1107 */ 1108 /* ARGSUSED */ 1109 static int 1110 hdr_full_cons(void *vbuf, void *unused, int kmflag) 1111 { 1112 arc_buf_hdr_t *hdr = vbuf; 1113 1114 bzero(hdr, HDR_FULL_SIZE); 1115 cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL); 1116 refcount_create(&hdr->b_l1hdr.b_refcnt); 1117 mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL); 1118 multilist_link_init(&hdr->b_l1hdr.b_arc_node); 1119 arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS); 1120 1121 return (0); 1122 } 1123 1124 /* ARGSUSED */ 1125 static int 1126 hdr_l2only_cons(void *vbuf, void *unused, int kmflag) 1127 { 1128 arc_buf_hdr_t *hdr = vbuf; 1129 1130 bzero(hdr, HDR_L2ONLY_SIZE); 1131 arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS); 1132 1133 return (0); 1134 } 1135 1136 /* ARGSUSED */ 1137 static int 1138 buf_cons(void *vbuf, void *unused, int kmflag) 1139 { 1140 arc_buf_t *buf = vbuf; 1141 1142 bzero(buf, sizeof (arc_buf_t)); 1143 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL); 1144 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS); 1145 1146 return (0); 1147 } 1148 1149 /* 1150 * Destructor callback - called when a cached buf is 1151 * no longer required. 1152 */ 1153 /* ARGSUSED */ 1154 static void 1155 hdr_full_dest(void *vbuf, void *unused) 1156 { 1157 arc_buf_hdr_t *hdr = vbuf; 1158 1159 ASSERT(BUF_EMPTY(hdr)); 1160 cv_destroy(&hdr->b_l1hdr.b_cv); 1161 refcount_destroy(&hdr->b_l1hdr.b_refcnt); 1162 mutex_destroy(&hdr->b_l1hdr.b_freeze_lock); 1163 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 1164 arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS); 1165 } 1166 1167 /* ARGSUSED */ 1168 static void 1169 hdr_l2only_dest(void *vbuf, void *unused) 1170 { 1171 arc_buf_hdr_t *hdr = vbuf; 1172 1173 ASSERT(BUF_EMPTY(hdr)); 1174 arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS); 1175 } 1176 1177 /* ARGSUSED */ 1178 static void 1179 buf_dest(void *vbuf, void *unused) 1180 { 1181 arc_buf_t *buf = vbuf; 1182 1183 mutex_destroy(&buf->b_evict_lock); 1184 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS); 1185 } 1186 1187 /* 1188 * Reclaim callback -- invoked when memory is low. 1189 */ 1190 /* ARGSUSED */ 1191 static void 1192 hdr_recl(void *unused) 1193 { 1194 dprintf("hdr_recl called\n"); 1195 /* 1196 * umem calls the reclaim func when we destroy the buf cache, 1197 * which is after we do arc_fini(). 1198 */ 1199 if (!arc_dead) 1200 cv_signal(&arc_reclaim_thread_cv); 1201 } 1202 1203 static void 1204 buf_init(void) 1205 { 1206 uint64_t *ct; 1207 uint64_t hsize = 1ULL << 12; 1208 int i, j; 1209 1210 /* 1211 * The hash table is big enough to fill all of physical memory 1212 * with an average block size of zfs_arc_average_blocksize (default 8K). 1213 * By default, the table will take up 1214 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers). 1215 */ 1216 while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE) 1217 hsize <<= 1; 1218 retry: 1219 buf_hash_table.ht_mask = hsize - 1; 1220 buf_hash_table.ht_table = 1221 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); 1222 if (buf_hash_table.ht_table == NULL) { 1223 ASSERT(hsize > (1ULL << 8)); 1224 hsize >>= 1; 1225 goto retry; 1226 } 1227 1228 hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE, 1229 0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0); 1230 hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only", 1231 HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl, 1232 NULL, NULL, 0); 1233 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 1234 0, buf_cons, buf_dest, NULL, NULL, NULL, 0); 1235 1236 for (i = 0; i < 256; i++) 1237 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 1238 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 1239 1240 for (i = 0; i < BUF_LOCKS; i++) { 1241 mutex_init(&buf_hash_table.ht_locks[i].ht_lock, 1242 NULL, MUTEX_DEFAULT, NULL); 1243 } 1244 } 1245 1246 /* 1247 * Transition between the two allocation states for the arc_buf_hdr struct. 1248 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without 1249 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller 1250 * version is used when a cache buffer is only in the L2ARC in order to reduce 1251 * memory usage. 1252 */ 1253 static arc_buf_hdr_t * 1254 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new) 1255 { 1256 ASSERT(HDR_HAS_L2HDR(hdr)); 1257 1258 arc_buf_hdr_t *nhdr; 1259 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; 1260 1261 ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) || 1262 (old == hdr_l2only_cache && new == hdr_full_cache)); 1263 1264 nhdr = kmem_cache_alloc(new, KM_PUSHPAGE); 1265 1266 ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); 1267 buf_hash_remove(hdr); 1268 1269 bcopy(hdr, nhdr, HDR_L2ONLY_SIZE); 1270 1271 if (new == hdr_full_cache) { 1272 nhdr->b_flags |= ARC_FLAG_HAS_L1HDR; 1273 /* 1274 * arc_access and arc_change_state need to be aware that a 1275 * header has just come out of L2ARC, so we set its state to 1276 * l2c_only even though it's about to change. 1277 */ 1278 nhdr->b_l1hdr.b_state = arc_l2c_only; 1279 1280 /* Verify previous threads set to NULL before freeing */ 1281 ASSERT3P(nhdr->b_l1hdr.b_tmp_cdata, ==, NULL); 1282 } else { 1283 ASSERT(hdr->b_l1hdr.b_buf == NULL); 1284 ASSERT0(hdr->b_l1hdr.b_datacnt); 1285 1286 /* 1287 * If we've reached here, We must have been called from 1288 * arc_evict_hdr(), as such we should have already been 1289 * removed from any ghost list we were previously on 1290 * (which protects us from racing with arc_evict_state), 1291 * thus no locking is needed during this check. 1292 */ 1293 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 1294 1295 /* 1296 * A buffer must not be moved into the arc_l2c_only 1297 * state if it's not finished being written out to the 1298 * l2arc device. Otherwise, the b_l1hdr.b_tmp_cdata field 1299 * might try to be accessed, even though it was removed. 1300 */ 1301 VERIFY(!HDR_L2_WRITING(hdr)); 1302 VERIFY3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL); 1303 1304 #ifdef ZFS_DEBUG 1305 if (hdr->b_l1hdr.b_thawed != NULL) 1306 kmem_free(hdr->b_l1hdr.b_thawed, 1); 1307 hdr->b_l1hdr.b_thawed = NULL; 1308 #endif 1309 1310 nhdr->b_flags &= ~ARC_FLAG_HAS_L1HDR; 1311 } 1312 /* 1313 * The header has been reallocated so we need to re-insert it into any 1314 * lists it was on. 1315 */ 1316 (void) buf_hash_insert(nhdr, NULL); 1317 1318 ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node)); 1319 1320 mutex_enter(&dev->l2ad_mtx); 1321 1322 /* 1323 * We must place the realloc'ed header back into the list at 1324 * the same spot. Otherwise, if it's placed earlier in the list, 1325 * l2arc_write_buffers() could find it during the function's 1326 * write phase, and try to write it out to the l2arc. 1327 */ 1328 list_insert_after(&dev->l2ad_buflist, hdr, nhdr); 1329 list_remove(&dev->l2ad_buflist, hdr); 1330 1331 mutex_exit(&dev->l2ad_mtx); 1332 1333 /* 1334 * Since we're using the pointer address as the tag when 1335 * incrementing and decrementing the l2ad_alloc refcount, we 1336 * must remove the old pointer (that we're about to destroy) and 1337 * add the new pointer to the refcount. Otherwise we'd remove 1338 * the wrong pointer address when calling arc_hdr_destroy() later. 1339 */ 1340 1341 (void) refcount_remove_many(&dev->l2ad_alloc, 1342 hdr->b_l2hdr.b_asize, hdr); 1343 1344 (void) refcount_add_many(&dev->l2ad_alloc, 1345 nhdr->b_l2hdr.b_asize, nhdr); 1346 1347 buf_discard_identity(hdr); 1348 hdr->b_freeze_cksum = NULL; 1349 kmem_cache_free(old, hdr); 1350 1351 return (nhdr); 1352 } 1353 1354 1355 #define ARC_MINTIME (hz>>4) /* 62 ms */ 1356 1357 static void 1358 arc_cksum_verify(arc_buf_t *buf) 1359 { 1360 zio_cksum_t zc; 1361 1362 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1363 return; 1364 1365 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock); 1366 if (buf->b_hdr->b_freeze_cksum == NULL || HDR_IO_ERROR(buf->b_hdr)) { 1367 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock); 1368 return; 1369 } 1370 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc); 1371 if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc)) 1372 panic("buffer modified while frozen!"); 1373 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock); 1374 } 1375 1376 static int 1377 arc_cksum_equal(arc_buf_t *buf) 1378 { 1379 zio_cksum_t zc; 1380 int equal; 1381 1382 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock); 1383 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc); 1384 equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc); 1385 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock); 1386 1387 return (equal); 1388 } 1389 1390 static void 1391 arc_cksum_compute(arc_buf_t *buf, boolean_t force) 1392 { 1393 if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY)) 1394 return; 1395 1396 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock); 1397 if (buf->b_hdr->b_freeze_cksum != NULL) { 1398 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock); 1399 return; 1400 } 1401 buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP); 1402 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, 1403 buf->b_hdr->b_freeze_cksum); 1404 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock); 1405 arc_buf_watch(buf); 1406 } 1407 1408 #ifndef _KERNEL 1409 typedef struct procctl { 1410 long cmd; 1411 prwatch_t prwatch; 1412 } procctl_t; 1413 #endif 1414 1415 /* ARGSUSED */ 1416 static void 1417 arc_buf_unwatch(arc_buf_t *buf) 1418 { 1419 #ifndef _KERNEL 1420 if (arc_watch) { 1421 int result; 1422 procctl_t ctl; 1423 ctl.cmd = PCWATCH; 1424 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data; 1425 ctl.prwatch.pr_size = 0; 1426 ctl.prwatch.pr_wflags = 0; 1427 result = write(arc_procfd, &ctl, sizeof (ctl)); 1428 ASSERT3U(result, ==, sizeof (ctl)); 1429 } 1430 #endif 1431 } 1432 1433 /* ARGSUSED */ 1434 static void 1435 arc_buf_watch(arc_buf_t *buf) 1436 { 1437 #ifndef _KERNEL 1438 if (arc_watch) { 1439 int result; 1440 procctl_t ctl; 1441 ctl.cmd = PCWATCH; 1442 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data; 1443 ctl.prwatch.pr_size = buf->b_hdr->b_size; 1444 ctl.prwatch.pr_wflags = WA_WRITE; 1445 result = write(arc_procfd, &ctl, sizeof (ctl)); 1446 ASSERT3U(result, ==, sizeof (ctl)); 1447 } 1448 #endif 1449 } 1450 1451 static arc_buf_contents_t 1452 arc_buf_type(arc_buf_hdr_t *hdr) 1453 { 1454 if (HDR_ISTYPE_METADATA(hdr)) { 1455 return (ARC_BUFC_METADATA); 1456 } else { 1457 return (ARC_BUFC_DATA); 1458 } 1459 } 1460 1461 static uint32_t 1462 arc_bufc_to_flags(arc_buf_contents_t type) 1463 { 1464 switch (type) { 1465 case ARC_BUFC_DATA: 1466 /* metadata field is 0 if buffer contains normal data */ 1467 return (0); 1468 case ARC_BUFC_METADATA: 1469 return (ARC_FLAG_BUFC_METADATA); 1470 default: 1471 break; 1472 } 1473 panic("undefined ARC buffer type!"); 1474 return ((uint32_t)-1); 1475 } 1476 1477 void 1478 arc_buf_thaw(arc_buf_t *buf) 1479 { 1480 if (zfs_flags & ZFS_DEBUG_MODIFY) { 1481 if (buf->b_hdr->b_l1hdr.b_state != arc_anon) 1482 panic("modifying non-anon buffer!"); 1483 if (HDR_IO_IN_PROGRESS(buf->b_hdr)) 1484 panic("modifying buffer while i/o in progress!"); 1485 arc_cksum_verify(buf); 1486 } 1487 1488 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock); 1489 if (buf->b_hdr->b_freeze_cksum != NULL) { 1490 kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 1491 buf->b_hdr->b_freeze_cksum = NULL; 1492 } 1493 1494 #ifdef ZFS_DEBUG 1495 if (zfs_flags & ZFS_DEBUG_MODIFY) { 1496 if (buf->b_hdr->b_l1hdr.b_thawed != NULL) 1497 kmem_free(buf->b_hdr->b_l1hdr.b_thawed, 1); 1498 buf->b_hdr->b_l1hdr.b_thawed = kmem_alloc(1, KM_SLEEP); 1499 } 1500 #endif 1501 1502 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock); 1503 1504 arc_buf_unwatch(buf); 1505 } 1506 1507 void 1508 arc_buf_freeze(arc_buf_t *buf) 1509 { 1510 kmutex_t *hash_lock; 1511 1512 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1513 return; 1514 1515 hash_lock = HDR_LOCK(buf->b_hdr); 1516 mutex_enter(hash_lock); 1517 1518 ASSERT(buf->b_hdr->b_freeze_cksum != NULL || 1519 buf->b_hdr->b_l1hdr.b_state == arc_anon); 1520 arc_cksum_compute(buf, B_FALSE); 1521 mutex_exit(hash_lock); 1522 1523 } 1524 1525 static void 1526 add_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag) 1527 { 1528 ASSERT(HDR_HAS_L1HDR(hdr)); 1529 ASSERT(MUTEX_HELD(hash_lock)); 1530 arc_state_t *state = hdr->b_l1hdr.b_state; 1531 1532 if ((refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) && 1533 (state != arc_anon)) { 1534 /* We don't use the L2-only state list. */ 1535 if (state != arc_l2c_only) { 1536 arc_buf_contents_t type = arc_buf_type(hdr); 1537 uint64_t delta = hdr->b_size * hdr->b_l1hdr.b_datacnt; 1538 multilist_t *list = &state->arcs_list[type]; 1539 uint64_t *size = &state->arcs_lsize[type]; 1540 1541 multilist_remove(list, hdr); 1542 1543 if (GHOST_STATE(state)) { 1544 ASSERT0(hdr->b_l1hdr.b_datacnt); 1545 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 1546 delta = hdr->b_size; 1547 } 1548 ASSERT(delta > 0); 1549 ASSERT3U(*size, >=, delta); 1550 atomic_add_64(size, -delta); 1551 } 1552 /* remove the prefetch flag if we get a reference */ 1553 hdr->b_flags &= ~ARC_FLAG_PREFETCH; 1554 } 1555 } 1556 1557 static int 1558 remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag) 1559 { 1560 int cnt; 1561 arc_state_t *state = hdr->b_l1hdr.b_state; 1562 1563 ASSERT(HDR_HAS_L1HDR(hdr)); 1564 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock)); 1565 ASSERT(!GHOST_STATE(state)); 1566 1567 /* 1568 * arc_l2c_only counts as a ghost state so we don't need to explicitly 1569 * check to prevent usage of the arc_l2c_only list. 1570 */ 1571 if (((cnt = refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) && 1572 (state != arc_anon)) { 1573 arc_buf_contents_t type = arc_buf_type(hdr); 1574 multilist_t *list = &state->arcs_list[type]; 1575 uint64_t *size = &state->arcs_lsize[type]; 1576 1577 multilist_insert(list, hdr); 1578 1579 ASSERT(hdr->b_l1hdr.b_datacnt > 0); 1580 atomic_add_64(size, hdr->b_size * 1581 hdr->b_l1hdr.b_datacnt); 1582 } 1583 return (cnt); 1584 } 1585 1586 /* 1587 * Move the supplied buffer to the indicated state. The hash lock 1588 * for the buffer must be held by the caller. 1589 */ 1590 static void 1591 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr, 1592 kmutex_t *hash_lock) 1593 { 1594 arc_state_t *old_state; 1595 int64_t refcnt; 1596 uint32_t datacnt; 1597 uint64_t from_delta, to_delta; 1598 arc_buf_contents_t buftype = arc_buf_type(hdr); 1599 1600 /* 1601 * We almost always have an L1 hdr here, since we call arc_hdr_realloc() 1602 * in arc_read() when bringing a buffer out of the L2ARC. However, the 1603 * L1 hdr doesn't always exist when we change state to arc_anon before 1604 * destroying a header, in which case reallocating to add the L1 hdr is 1605 * pointless. 1606 */ 1607 if (HDR_HAS_L1HDR(hdr)) { 1608 old_state = hdr->b_l1hdr.b_state; 1609 refcnt = refcount_count(&hdr->b_l1hdr.b_refcnt); 1610 datacnt = hdr->b_l1hdr.b_datacnt; 1611 } else { 1612 old_state = arc_l2c_only; 1613 refcnt = 0; 1614 datacnt = 0; 1615 } 1616 1617 ASSERT(MUTEX_HELD(hash_lock)); 1618 ASSERT3P(new_state, !=, old_state); 1619 ASSERT(refcnt == 0 || datacnt > 0); 1620 ASSERT(!GHOST_STATE(new_state) || datacnt == 0); 1621 ASSERT(old_state != arc_anon || datacnt <= 1); 1622 1623 from_delta = to_delta = datacnt * hdr->b_size; 1624 1625 /* 1626 * If this buffer is evictable, transfer it from the 1627 * old state list to the new state list. 1628 */ 1629 if (refcnt == 0) { 1630 if (old_state != arc_anon && old_state != arc_l2c_only) { 1631 uint64_t *size = &old_state->arcs_lsize[buftype]; 1632 1633 ASSERT(HDR_HAS_L1HDR(hdr)); 1634 multilist_remove(&old_state->arcs_list[buftype], hdr); 1635 1636 /* 1637 * If prefetching out of the ghost cache, 1638 * we will have a non-zero datacnt. 1639 */ 1640 if (GHOST_STATE(old_state) && datacnt == 0) { 1641 /* ghost elements have a ghost size */ 1642 ASSERT(hdr->b_l1hdr.b_buf == NULL); 1643 from_delta = hdr->b_size; 1644 } 1645 ASSERT3U(*size, >=, from_delta); 1646 atomic_add_64(size, -from_delta); 1647 } 1648 if (new_state != arc_anon && new_state != arc_l2c_only) { 1649 uint64_t *size = &new_state->arcs_lsize[buftype]; 1650 1651 /* 1652 * An L1 header always exists here, since if we're 1653 * moving to some L1-cached state (i.e. not l2c_only or 1654 * anonymous), we realloc the header to add an L1hdr 1655 * beforehand. 1656 */ 1657 ASSERT(HDR_HAS_L1HDR(hdr)); 1658 multilist_insert(&new_state->arcs_list[buftype], hdr); 1659 1660 /* ghost elements have a ghost size */ 1661 if (GHOST_STATE(new_state)) { 1662 ASSERT0(datacnt); 1663 ASSERT(hdr->b_l1hdr.b_buf == NULL); 1664 to_delta = hdr->b_size; 1665 } 1666 atomic_add_64(size, to_delta); 1667 } 1668 } 1669 1670 ASSERT(!BUF_EMPTY(hdr)); 1671 if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr)) 1672 buf_hash_remove(hdr); 1673 1674 /* adjust state sizes (ignore arc_l2c_only) */ 1675 1676 if (to_delta && new_state != arc_l2c_only) { 1677 ASSERT(HDR_HAS_L1HDR(hdr)); 1678 if (GHOST_STATE(new_state)) { 1679 ASSERT0(datacnt); 1680 1681 /* 1682 * We moving a header to a ghost state, we first 1683 * remove all arc buffers. Thus, we'll have a 1684 * datacnt of zero, and no arc buffer to use for 1685 * the reference. As a result, we use the arc 1686 * header pointer for the reference. 1687 */ 1688 (void) refcount_add_many(&new_state->arcs_size, 1689 hdr->b_size, hdr); 1690 } else { 1691 ASSERT3U(datacnt, !=, 0); 1692 1693 /* 1694 * Each individual buffer holds a unique reference, 1695 * thus we must remove each of these references one 1696 * at a time. 1697 */ 1698 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 1699 buf = buf->b_next) { 1700 (void) refcount_add_many(&new_state->arcs_size, 1701 hdr->b_size, buf); 1702 } 1703 } 1704 } 1705 1706 if (from_delta && old_state != arc_l2c_only) { 1707 ASSERT(HDR_HAS_L1HDR(hdr)); 1708 if (GHOST_STATE(old_state)) { 1709 /* 1710 * When moving a header off of a ghost state, 1711 * there's the possibility for datacnt to be 1712 * non-zero. This is because we first add the 1713 * arc buffer to the header prior to changing 1714 * the header's state. Since we used the header 1715 * for the reference when putting the header on 1716 * the ghost state, we must balance that and use 1717 * the header when removing off the ghost state 1718 * (even though datacnt is non zero). 1719 */ 1720 1721 IMPLY(datacnt == 0, new_state == arc_anon || 1722 new_state == arc_l2c_only); 1723 1724 (void) refcount_remove_many(&old_state->arcs_size, 1725 hdr->b_size, hdr); 1726 } else { 1727 ASSERT3P(datacnt, !=, 0); 1728 1729 /* 1730 * Each individual buffer holds a unique reference, 1731 * thus we must remove each of these references one 1732 * at a time. 1733 */ 1734 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 1735 buf = buf->b_next) { 1736 (void) refcount_remove_many( 1737 &old_state->arcs_size, hdr->b_size, buf); 1738 } 1739 } 1740 } 1741 1742 if (HDR_HAS_L1HDR(hdr)) 1743 hdr->b_l1hdr.b_state = new_state; 1744 1745 /* 1746 * L2 headers should never be on the L2 state list since they don't 1747 * have L1 headers allocated. 1748 */ 1749 ASSERT(multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]) && 1750 multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA])); 1751 } 1752 1753 void 1754 arc_space_consume(uint64_t space, arc_space_type_t type) 1755 { 1756 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 1757 1758 switch (type) { 1759 case ARC_SPACE_DATA: 1760 ARCSTAT_INCR(arcstat_data_size, space); 1761 break; 1762 case ARC_SPACE_META: 1763 ARCSTAT_INCR(arcstat_metadata_size, space); 1764 break; 1765 case ARC_SPACE_OTHER: 1766 ARCSTAT_INCR(arcstat_other_size, space); 1767 break; 1768 case ARC_SPACE_HDRS: 1769 ARCSTAT_INCR(arcstat_hdr_size, space); 1770 break; 1771 case ARC_SPACE_L2HDRS: 1772 ARCSTAT_INCR(arcstat_l2_hdr_size, space); 1773 break; 1774 } 1775 1776 if (type != ARC_SPACE_DATA) 1777 ARCSTAT_INCR(arcstat_meta_used, space); 1778 1779 atomic_add_64(&arc_size, space); 1780 } 1781 1782 void 1783 arc_space_return(uint64_t space, arc_space_type_t type) 1784 { 1785 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 1786 1787 switch (type) { 1788 case ARC_SPACE_DATA: 1789 ARCSTAT_INCR(arcstat_data_size, -space); 1790 break; 1791 case ARC_SPACE_META: 1792 ARCSTAT_INCR(arcstat_metadata_size, -space); 1793 break; 1794 case ARC_SPACE_OTHER: 1795 ARCSTAT_INCR(arcstat_other_size, -space); 1796 break; 1797 case ARC_SPACE_HDRS: 1798 ARCSTAT_INCR(arcstat_hdr_size, -space); 1799 break; 1800 case ARC_SPACE_L2HDRS: 1801 ARCSTAT_INCR(arcstat_l2_hdr_size, -space); 1802 break; 1803 } 1804 1805 if (type != ARC_SPACE_DATA) { 1806 ASSERT(arc_meta_used >= space); 1807 if (arc_meta_max < arc_meta_used) 1808 arc_meta_max = arc_meta_used; 1809 ARCSTAT_INCR(arcstat_meta_used, -space); 1810 } 1811 1812 ASSERT(arc_size >= space); 1813 atomic_add_64(&arc_size, -space); 1814 } 1815 1816 arc_buf_t * 1817 arc_buf_alloc(spa_t *spa, int32_t size, void *tag, arc_buf_contents_t type) 1818 { 1819 arc_buf_hdr_t *hdr; 1820 arc_buf_t *buf; 1821 1822 ASSERT3U(size, >, 0); 1823 hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE); 1824 ASSERT(BUF_EMPTY(hdr)); 1825 ASSERT3P(hdr->b_freeze_cksum, ==, NULL); 1826 hdr->b_size = size; 1827 hdr->b_spa = spa_load_guid(spa); 1828 1829 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 1830 buf->b_hdr = hdr; 1831 buf->b_data = NULL; 1832 buf->b_efunc = NULL; 1833 buf->b_private = NULL; 1834 buf->b_next = NULL; 1835 1836 hdr->b_flags = arc_bufc_to_flags(type); 1837 hdr->b_flags |= ARC_FLAG_HAS_L1HDR; 1838 1839 hdr->b_l1hdr.b_buf = buf; 1840 hdr->b_l1hdr.b_state = arc_anon; 1841 hdr->b_l1hdr.b_arc_access = 0; 1842 hdr->b_l1hdr.b_datacnt = 1; 1843 hdr->b_l1hdr.b_tmp_cdata = NULL; 1844 1845 arc_get_data_buf(buf); 1846 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 1847 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag); 1848 1849 return (buf); 1850 } 1851 1852 static char *arc_onloan_tag = "onloan"; 1853 1854 /* 1855 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in 1856 * flight data by arc_tempreserve_space() until they are "returned". Loaned 1857 * buffers must be returned to the arc before they can be used by the DMU or 1858 * freed. 1859 */ 1860 arc_buf_t * 1861 arc_loan_buf(spa_t *spa, int size) 1862 { 1863 arc_buf_t *buf; 1864 1865 buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA); 1866 1867 atomic_add_64(&arc_loaned_bytes, size); 1868 return (buf); 1869 } 1870 1871 /* 1872 * Return a loaned arc buffer to the arc. 1873 */ 1874 void 1875 arc_return_buf(arc_buf_t *buf, void *tag) 1876 { 1877 arc_buf_hdr_t *hdr = buf->b_hdr; 1878 1879 ASSERT(buf->b_data != NULL); 1880 ASSERT(HDR_HAS_L1HDR(hdr)); 1881 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag); 1882 (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag); 1883 1884 atomic_add_64(&arc_loaned_bytes, -hdr->b_size); 1885 } 1886 1887 /* Detach an arc_buf from a dbuf (tag) */ 1888 void 1889 arc_loan_inuse_buf(arc_buf_t *buf, void *tag) 1890 { 1891 arc_buf_hdr_t *hdr = buf->b_hdr; 1892 1893 ASSERT(buf->b_data != NULL); 1894 ASSERT(HDR_HAS_L1HDR(hdr)); 1895 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag); 1896 (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, tag); 1897 buf->b_efunc = NULL; 1898 buf->b_private = NULL; 1899 1900 atomic_add_64(&arc_loaned_bytes, hdr->b_size); 1901 } 1902 1903 static arc_buf_t * 1904 arc_buf_clone(arc_buf_t *from) 1905 { 1906 arc_buf_t *buf; 1907 arc_buf_hdr_t *hdr = from->b_hdr; 1908 uint64_t size = hdr->b_size; 1909 1910 ASSERT(HDR_HAS_L1HDR(hdr)); 1911 ASSERT(hdr->b_l1hdr.b_state != arc_anon); 1912 1913 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 1914 buf->b_hdr = hdr; 1915 buf->b_data = NULL; 1916 buf->b_efunc = NULL; 1917 buf->b_private = NULL; 1918 buf->b_next = hdr->b_l1hdr.b_buf; 1919 hdr->b_l1hdr.b_buf = buf; 1920 arc_get_data_buf(buf); 1921 bcopy(from->b_data, buf->b_data, size); 1922 1923 /* 1924 * This buffer already exists in the arc so create a duplicate 1925 * copy for the caller. If the buffer is associated with user data 1926 * then track the size and number of duplicates. These stats will be 1927 * updated as duplicate buffers are created and destroyed. 1928 */ 1929 if (HDR_ISTYPE_DATA(hdr)) { 1930 ARCSTAT_BUMP(arcstat_duplicate_buffers); 1931 ARCSTAT_INCR(arcstat_duplicate_buffers_size, size); 1932 } 1933 hdr->b_l1hdr.b_datacnt += 1; 1934 return (buf); 1935 } 1936 1937 void 1938 arc_buf_add_ref(arc_buf_t *buf, void* tag) 1939 { 1940 arc_buf_hdr_t *hdr; 1941 kmutex_t *hash_lock; 1942 1943 /* 1944 * Check to see if this buffer is evicted. Callers 1945 * must verify b_data != NULL to know if the add_ref 1946 * was successful. 1947 */ 1948 mutex_enter(&buf->b_evict_lock); 1949 if (buf->b_data == NULL) { 1950 mutex_exit(&buf->b_evict_lock); 1951 return; 1952 } 1953 hash_lock = HDR_LOCK(buf->b_hdr); 1954 mutex_enter(hash_lock); 1955 hdr = buf->b_hdr; 1956 ASSERT(HDR_HAS_L1HDR(hdr)); 1957 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 1958 mutex_exit(&buf->b_evict_lock); 1959 1960 ASSERT(hdr->b_l1hdr.b_state == arc_mru || 1961 hdr->b_l1hdr.b_state == arc_mfu); 1962 1963 add_reference(hdr, hash_lock, tag); 1964 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 1965 arc_access(hdr, hash_lock); 1966 mutex_exit(hash_lock); 1967 ARCSTAT_BUMP(arcstat_hits); 1968 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr), 1969 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), 1970 data, metadata, hits); 1971 } 1972 1973 static void 1974 arc_buf_free_on_write(void *data, size_t size, 1975 void (*free_func)(void *, size_t)) 1976 { 1977 l2arc_data_free_t *df; 1978 1979 df = kmem_alloc(sizeof (*df), KM_SLEEP); 1980 df->l2df_data = data; 1981 df->l2df_size = size; 1982 df->l2df_func = free_func; 1983 mutex_enter(&l2arc_free_on_write_mtx); 1984 list_insert_head(l2arc_free_on_write, df); 1985 mutex_exit(&l2arc_free_on_write_mtx); 1986 } 1987 1988 /* 1989 * Free the arc data buffer. If it is an l2arc write in progress, 1990 * the buffer is placed on l2arc_free_on_write to be freed later. 1991 */ 1992 static void 1993 arc_buf_data_free(arc_buf_t *buf, void (*free_func)(void *, size_t)) 1994 { 1995 arc_buf_hdr_t *hdr = buf->b_hdr; 1996 1997 if (HDR_L2_WRITING(hdr)) { 1998 arc_buf_free_on_write(buf->b_data, hdr->b_size, free_func); 1999 ARCSTAT_BUMP(arcstat_l2_free_on_write); 2000 } else { 2001 free_func(buf->b_data, hdr->b_size); 2002 } 2003 } 2004 2005 static void 2006 arc_buf_l2_cdata_free(arc_buf_hdr_t *hdr) 2007 { 2008 ASSERT(HDR_HAS_L2HDR(hdr)); 2009 ASSERT(MUTEX_HELD(&hdr->b_l2hdr.b_dev->l2ad_mtx)); 2010 2011 /* 2012 * The b_tmp_cdata field is linked off of the b_l1hdr, so if 2013 * that doesn't exist, the header is in the arc_l2c_only state, 2014 * and there isn't anything to free (it's already been freed). 2015 */ 2016 if (!HDR_HAS_L1HDR(hdr)) 2017 return; 2018 2019 /* 2020 * The header isn't being written to the l2arc device, thus it 2021 * shouldn't have a b_tmp_cdata to free. 2022 */ 2023 if (!HDR_L2_WRITING(hdr)) { 2024 ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL); 2025 return; 2026 } 2027 2028 /* 2029 * The header does not have compression enabled. This can be due 2030 * to the buffer not being compressible, or because we're 2031 * freeing the buffer before the second phase of 2032 * l2arc_write_buffer() has started (which does the compression 2033 * step). In either case, b_tmp_cdata does not point to a 2034 * separately compressed buffer, so there's nothing to free (it 2035 * points to the same buffer as the arc_buf_t's b_data field). 2036 */ 2037 if (hdr->b_l2hdr.b_compress == ZIO_COMPRESS_OFF) { 2038 hdr->b_l1hdr.b_tmp_cdata = NULL; 2039 return; 2040 } 2041 2042 /* 2043 * There's nothing to free since the buffer was all zero's and 2044 * compressed to a zero length buffer. 2045 */ 2046 if (hdr->b_l2hdr.b_compress == ZIO_COMPRESS_EMPTY) { 2047 ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL); 2048 return; 2049 } 2050 2051 ASSERT(L2ARC_IS_VALID_COMPRESS(hdr->b_l2hdr.b_compress)); 2052 2053 arc_buf_free_on_write(hdr->b_l1hdr.b_tmp_cdata, 2054 hdr->b_size, zio_data_buf_free); 2055 2056 ARCSTAT_BUMP(arcstat_l2_cdata_free_on_write); 2057 hdr->b_l1hdr.b_tmp_cdata = NULL; 2058 } 2059 2060 /* 2061 * Free up buf->b_data and if 'remove' is set, then pull the 2062 * arc_buf_t off of the the arc_buf_hdr_t's list and free it. 2063 */ 2064 static void 2065 arc_buf_destroy(arc_buf_t *buf, boolean_t remove) 2066 { 2067 arc_buf_t **bufp; 2068 2069 /* free up data associated with the buf */ 2070 if (buf->b_data != NULL) { 2071 arc_state_t *state = buf->b_hdr->b_l1hdr.b_state; 2072 uint64_t size = buf->b_hdr->b_size; 2073 arc_buf_contents_t type = arc_buf_type(buf->b_hdr); 2074 2075 arc_cksum_verify(buf); 2076 arc_buf_unwatch(buf); 2077 2078 if (type == ARC_BUFC_METADATA) { 2079 arc_buf_data_free(buf, zio_buf_free); 2080 arc_space_return(size, ARC_SPACE_META); 2081 } else { 2082 ASSERT(type == ARC_BUFC_DATA); 2083 arc_buf_data_free(buf, zio_data_buf_free); 2084 arc_space_return(size, ARC_SPACE_DATA); 2085 } 2086 2087 /* protected by hash lock, if in the hash table */ 2088 if (multilist_link_active(&buf->b_hdr->b_l1hdr.b_arc_node)) { 2089 uint64_t *cnt = &state->arcs_lsize[type]; 2090 2091 ASSERT(refcount_is_zero( 2092 &buf->b_hdr->b_l1hdr.b_refcnt)); 2093 ASSERT(state != arc_anon && state != arc_l2c_only); 2094 2095 ASSERT3U(*cnt, >=, size); 2096 atomic_add_64(cnt, -size); 2097 } 2098 2099 (void) refcount_remove_many(&state->arcs_size, size, buf); 2100 buf->b_data = NULL; 2101 2102 /* 2103 * If we're destroying a duplicate buffer make sure 2104 * that the appropriate statistics are updated. 2105 */ 2106 if (buf->b_hdr->b_l1hdr.b_datacnt > 1 && 2107 HDR_ISTYPE_DATA(buf->b_hdr)) { 2108 ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers); 2109 ARCSTAT_INCR(arcstat_duplicate_buffers_size, -size); 2110 } 2111 ASSERT(buf->b_hdr->b_l1hdr.b_datacnt > 0); 2112 buf->b_hdr->b_l1hdr.b_datacnt -= 1; 2113 } 2114 2115 /* only remove the buf if requested */ 2116 if (!remove) 2117 return; 2118 2119 /* remove the buf from the hdr list */ 2120 for (bufp = &buf->b_hdr->b_l1hdr.b_buf; *bufp != buf; 2121 bufp = &(*bufp)->b_next) 2122 continue; 2123 *bufp = buf->b_next; 2124 buf->b_next = NULL; 2125 2126 ASSERT(buf->b_efunc == NULL); 2127 2128 /* clean up the buf */ 2129 buf->b_hdr = NULL; 2130 kmem_cache_free(buf_cache, buf); 2131 } 2132 2133 static void 2134 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr) 2135 { 2136 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr; 2137 l2arc_dev_t *dev = l2hdr->b_dev; 2138 2139 ASSERT(MUTEX_HELD(&dev->l2ad_mtx)); 2140 ASSERT(HDR_HAS_L2HDR(hdr)); 2141 2142 list_remove(&dev->l2ad_buflist, hdr); 2143 2144 /* 2145 * We don't want to leak the b_tmp_cdata buffer that was 2146 * allocated in l2arc_write_buffers() 2147 */ 2148 arc_buf_l2_cdata_free(hdr); 2149 2150 /* 2151 * If the l2hdr's b_daddr is equal to L2ARC_ADDR_UNSET, then 2152 * this header is being processed by l2arc_write_buffers() (i.e. 2153 * it's in the first stage of l2arc_write_buffers()). 2154 * Re-affirming that truth here, just to serve as a reminder. If 2155 * b_daddr does not equal L2ARC_ADDR_UNSET, then the header may or 2156 * may not have its HDR_L2_WRITING flag set. (the write may have 2157 * completed, in which case HDR_L2_WRITING will be false and the 2158 * b_daddr field will point to the address of the buffer on disk). 2159 */ 2160 IMPLY(l2hdr->b_daddr == L2ARC_ADDR_UNSET, HDR_L2_WRITING(hdr)); 2161 2162 /* 2163 * If b_daddr is equal to L2ARC_ADDR_UNSET, we're racing with 2164 * l2arc_write_buffers(). Since we've just removed this header 2165 * from the l2arc buffer list, this header will never reach the 2166 * second stage of l2arc_write_buffers(), which increments the 2167 * accounting stats for this header. Thus, we must be careful 2168 * not to decrement them for this header either. 2169 */ 2170 if (l2hdr->b_daddr != L2ARC_ADDR_UNSET) { 2171 ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize); 2172 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size); 2173 2174 vdev_space_update(dev->l2ad_vdev, 2175 -l2hdr->b_asize, 0, 0); 2176 2177 (void) refcount_remove_many(&dev->l2ad_alloc, 2178 l2hdr->b_asize, hdr); 2179 } 2180 2181 hdr->b_flags &= ~ARC_FLAG_HAS_L2HDR; 2182 } 2183 2184 static void 2185 arc_hdr_destroy(arc_buf_hdr_t *hdr) 2186 { 2187 if (HDR_HAS_L1HDR(hdr)) { 2188 ASSERT(hdr->b_l1hdr.b_buf == NULL || 2189 hdr->b_l1hdr.b_datacnt > 0); 2190 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2191 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 2192 } 2193 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 2194 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 2195 2196 if (HDR_HAS_L2HDR(hdr)) { 2197 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; 2198 boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx); 2199 2200 if (!buflist_held) 2201 mutex_enter(&dev->l2ad_mtx); 2202 2203 /* 2204 * Even though we checked this conditional above, we 2205 * need to check this again now that we have the 2206 * l2ad_mtx. This is because we could be racing with 2207 * another thread calling l2arc_evict() which might have 2208 * destroyed this header's L2 portion as we were waiting 2209 * to acquire the l2ad_mtx. If that happens, we don't 2210 * want to re-destroy the header's L2 portion. 2211 */ 2212 if (HDR_HAS_L2HDR(hdr)) 2213 arc_hdr_l2hdr_destroy(hdr); 2214 2215 if (!buflist_held) 2216 mutex_exit(&dev->l2ad_mtx); 2217 } 2218 2219 if (!BUF_EMPTY(hdr)) 2220 buf_discard_identity(hdr); 2221 2222 if (hdr->b_freeze_cksum != NULL) { 2223 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 2224 hdr->b_freeze_cksum = NULL; 2225 } 2226 2227 if (HDR_HAS_L1HDR(hdr)) { 2228 while (hdr->b_l1hdr.b_buf) { 2229 arc_buf_t *buf = hdr->b_l1hdr.b_buf; 2230 2231 if (buf->b_efunc != NULL) { 2232 mutex_enter(&arc_user_evicts_lock); 2233 mutex_enter(&buf->b_evict_lock); 2234 ASSERT(buf->b_hdr != NULL); 2235 arc_buf_destroy(hdr->b_l1hdr.b_buf, FALSE); 2236 hdr->b_l1hdr.b_buf = buf->b_next; 2237 buf->b_hdr = &arc_eviction_hdr; 2238 buf->b_next = arc_eviction_list; 2239 arc_eviction_list = buf; 2240 mutex_exit(&buf->b_evict_lock); 2241 cv_signal(&arc_user_evicts_cv); 2242 mutex_exit(&arc_user_evicts_lock); 2243 } else { 2244 arc_buf_destroy(hdr->b_l1hdr.b_buf, TRUE); 2245 } 2246 } 2247 #ifdef ZFS_DEBUG 2248 if (hdr->b_l1hdr.b_thawed != NULL) { 2249 kmem_free(hdr->b_l1hdr.b_thawed, 1); 2250 hdr->b_l1hdr.b_thawed = NULL; 2251 } 2252 #endif 2253 } 2254 2255 ASSERT3P(hdr->b_hash_next, ==, NULL); 2256 if (HDR_HAS_L1HDR(hdr)) { 2257 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 2258 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 2259 kmem_cache_free(hdr_full_cache, hdr); 2260 } else { 2261 kmem_cache_free(hdr_l2only_cache, hdr); 2262 } 2263 } 2264 2265 void 2266 arc_buf_free(arc_buf_t *buf, void *tag) 2267 { 2268 arc_buf_hdr_t *hdr = buf->b_hdr; 2269 int hashed = hdr->b_l1hdr.b_state != arc_anon; 2270 2271 ASSERT(buf->b_efunc == NULL); 2272 ASSERT(buf->b_data != NULL); 2273 2274 if (hashed) { 2275 kmutex_t *hash_lock = HDR_LOCK(hdr); 2276 2277 mutex_enter(hash_lock); 2278 hdr = buf->b_hdr; 2279 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 2280 2281 (void) remove_reference(hdr, hash_lock, tag); 2282 if (hdr->b_l1hdr.b_datacnt > 1) { 2283 arc_buf_destroy(buf, TRUE); 2284 } else { 2285 ASSERT(buf == hdr->b_l1hdr.b_buf); 2286 ASSERT(buf->b_efunc == NULL); 2287 hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE; 2288 } 2289 mutex_exit(hash_lock); 2290 } else if (HDR_IO_IN_PROGRESS(hdr)) { 2291 int destroy_hdr; 2292 /* 2293 * We are in the middle of an async write. Don't destroy 2294 * this buffer unless the write completes before we finish 2295 * decrementing the reference count. 2296 */ 2297 mutex_enter(&arc_user_evicts_lock); 2298 (void) remove_reference(hdr, NULL, tag); 2299 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2300 destroy_hdr = !HDR_IO_IN_PROGRESS(hdr); 2301 mutex_exit(&arc_user_evicts_lock); 2302 if (destroy_hdr) 2303 arc_hdr_destroy(hdr); 2304 } else { 2305 if (remove_reference(hdr, NULL, tag) > 0) 2306 arc_buf_destroy(buf, TRUE); 2307 else 2308 arc_hdr_destroy(hdr); 2309 } 2310 } 2311 2312 boolean_t 2313 arc_buf_remove_ref(arc_buf_t *buf, void* tag) 2314 { 2315 arc_buf_hdr_t *hdr = buf->b_hdr; 2316 kmutex_t *hash_lock = HDR_LOCK(hdr); 2317 boolean_t no_callback = (buf->b_efunc == NULL); 2318 2319 if (hdr->b_l1hdr.b_state == arc_anon) { 2320 ASSERT(hdr->b_l1hdr.b_datacnt == 1); 2321 arc_buf_free(buf, tag); 2322 return (no_callback); 2323 } 2324 2325 mutex_enter(hash_lock); 2326 hdr = buf->b_hdr; 2327 ASSERT(hdr->b_l1hdr.b_datacnt > 0); 2328 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 2329 ASSERT(hdr->b_l1hdr.b_state != arc_anon); 2330 ASSERT(buf->b_data != NULL); 2331 2332 (void) remove_reference(hdr, hash_lock, tag); 2333 if (hdr->b_l1hdr.b_datacnt > 1) { 2334 if (no_callback) 2335 arc_buf_destroy(buf, TRUE); 2336 } else if (no_callback) { 2337 ASSERT(hdr->b_l1hdr.b_buf == buf && buf->b_next == NULL); 2338 ASSERT(buf->b_efunc == NULL); 2339 hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE; 2340 } 2341 ASSERT(no_callback || hdr->b_l1hdr.b_datacnt > 1 || 2342 refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2343 mutex_exit(hash_lock); 2344 return (no_callback); 2345 } 2346 2347 int32_t 2348 arc_buf_size(arc_buf_t *buf) 2349 { 2350 return (buf->b_hdr->b_size); 2351 } 2352 2353 /* 2354 * Called from the DMU to determine if the current buffer should be 2355 * evicted. In order to ensure proper locking, the eviction must be initiated 2356 * from the DMU. Return true if the buffer is associated with user data and 2357 * duplicate buffers still exist. 2358 */ 2359 boolean_t 2360 arc_buf_eviction_needed(arc_buf_t *buf) 2361 { 2362 arc_buf_hdr_t *hdr; 2363 boolean_t evict_needed = B_FALSE; 2364 2365 if (zfs_disable_dup_eviction) 2366 return (B_FALSE); 2367 2368 mutex_enter(&buf->b_evict_lock); 2369 hdr = buf->b_hdr; 2370 if (hdr == NULL) { 2371 /* 2372 * We are in arc_do_user_evicts(); let that function 2373 * perform the eviction. 2374 */ 2375 ASSERT(buf->b_data == NULL); 2376 mutex_exit(&buf->b_evict_lock); 2377 return (B_FALSE); 2378 } else if (buf->b_data == NULL) { 2379 /* 2380 * We have already been added to the arc eviction list; 2381 * recommend eviction. 2382 */ 2383 ASSERT3P(hdr, ==, &arc_eviction_hdr); 2384 mutex_exit(&buf->b_evict_lock); 2385 return (B_TRUE); 2386 } 2387 2388 if (hdr->b_l1hdr.b_datacnt > 1 && HDR_ISTYPE_DATA(hdr)) 2389 evict_needed = B_TRUE; 2390 2391 mutex_exit(&buf->b_evict_lock); 2392 return (evict_needed); 2393 } 2394 2395 /* 2396 * Evict the arc_buf_hdr that is provided as a parameter. The resultant 2397 * state of the header is dependent on it's state prior to entering this 2398 * function. The following transitions are possible: 2399 * 2400 * - arc_mru -> arc_mru_ghost 2401 * - arc_mfu -> arc_mfu_ghost 2402 * - arc_mru_ghost -> arc_l2c_only 2403 * - arc_mru_ghost -> deleted 2404 * - arc_mfu_ghost -> arc_l2c_only 2405 * - arc_mfu_ghost -> deleted 2406 */ 2407 static int64_t 2408 arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock) 2409 { 2410 arc_state_t *evicted_state, *state; 2411 int64_t bytes_evicted = 0; 2412 2413 ASSERT(MUTEX_HELD(hash_lock)); 2414 ASSERT(HDR_HAS_L1HDR(hdr)); 2415 2416 state = hdr->b_l1hdr.b_state; 2417 if (GHOST_STATE(state)) { 2418 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 2419 ASSERT(hdr->b_l1hdr.b_buf == NULL); 2420 2421 /* 2422 * l2arc_write_buffers() relies on a header's L1 portion 2423 * (i.e. it's b_tmp_cdata field) during it's write phase. 2424 * Thus, we cannot push a header onto the arc_l2c_only 2425 * state (removing it's L1 piece) until the header is 2426 * done being written to the l2arc. 2427 */ 2428 if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) { 2429 ARCSTAT_BUMP(arcstat_evict_l2_skip); 2430 return (bytes_evicted); 2431 } 2432 2433 ARCSTAT_BUMP(arcstat_deleted); 2434 bytes_evicted += hdr->b_size; 2435 2436 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr); 2437 2438 if (HDR_HAS_L2HDR(hdr)) { 2439 /* 2440 * This buffer is cached on the 2nd Level ARC; 2441 * don't destroy the header. 2442 */ 2443 arc_change_state(arc_l2c_only, hdr, hash_lock); 2444 /* 2445 * dropping from L1+L2 cached to L2-only, 2446 * realloc to remove the L1 header. 2447 */ 2448 hdr = arc_hdr_realloc(hdr, hdr_full_cache, 2449 hdr_l2only_cache); 2450 } else { 2451 arc_change_state(arc_anon, hdr, hash_lock); 2452 arc_hdr_destroy(hdr); 2453 } 2454 return (bytes_evicted); 2455 } 2456 2457 ASSERT(state == arc_mru || state == arc_mfu); 2458 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 2459 2460 /* prefetch buffers have a minimum lifespan */ 2461 if (HDR_IO_IN_PROGRESS(hdr) || 2462 ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) && 2463 ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access < 2464 arc_min_prefetch_lifespan)) { 2465 ARCSTAT_BUMP(arcstat_evict_skip); 2466 return (bytes_evicted); 2467 } 2468 2469 ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt)); 2470 ASSERT3U(hdr->b_l1hdr.b_datacnt, >, 0); 2471 while (hdr->b_l1hdr.b_buf) { 2472 arc_buf_t *buf = hdr->b_l1hdr.b_buf; 2473 if (!mutex_tryenter(&buf->b_evict_lock)) { 2474 ARCSTAT_BUMP(arcstat_mutex_miss); 2475 break; 2476 } 2477 if (buf->b_data != NULL) 2478 bytes_evicted += hdr->b_size; 2479 if (buf->b_efunc != NULL) { 2480 mutex_enter(&arc_user_evicts_lock); 2481 arc_buf_destroy(buf, FALSE); 2482 hdr->b_l1hdr.b_buf = buf->b_next; 2483 buf->b_hdr = &arc_eviction_hdr; 2484 buf->b_next = arc_eviction_list; 2485 arc_eviction_list = buf; 2486 cv_signal(&arc_user_evicts_cv); 2487 mutex_exit(&arc_user_evicts_lock); 2488 mutex_exit(&buf->b_evict_lock); 2489 } else { 2490 mutex_exit(&buf->b_evict_lock); 2491 arc_buf_destroy(buf, TRUE); 2492 } 2493 } 2494 2495 if (HDR_HAS_L2HDR(hdr)) { 2496 ARCSTAT_INCR(arcstat_evict_l2_cached, hdr->b_size); 2497 } else { 2498 if (l2arc_write_eligible(hdr->b_spa, hdr)) 2499 ARCSTAT_INCR(arcstat_evict_l2_eligible, hdr->b_size); 2500 else 2501 ARCSTAT_INCR(arcstat_evict_l2_ineligible, hdr->b_size); 2502 } 2503 2504 if (hdr->b_l1hdr.b_datacnt == 0) { 2505 arc_change_state(evicted_state, hdr, hash_lock); 2506 ASSERT(HDR_IN_HASH_TABLE(hdr)); 2507 hdr->b_flags |= ARC_FLAG_IN_HASH_TABLE; 2508 hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE; 2509 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr); 2510 } 2511 2512 return (bytes_evicted); 2513 } 2514 2515 static uint64_t 2516 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker, 2517 uint64_t spa, int64_t bytes) 2518 { 2519 multilist_sublist_t *mls; 2520 uint64_t bytes_evicted = 0; 2521 arc_buf_hdr_t *hdr; 2522 kmutex_t *hash_lock; 2523 int evict_count = 0; 2524 2525 ASSERT3P(marker, !=, NULL); 2526 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL); 2527 2528 mls = multilist_sublist_lock(ml, idx); 2529 2530 for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL; 2531 hdr = multilist_sublist_prev(mls, marker)) { 2532 if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) || 2533 (evict_count >= zfs_arc_evict_batch_limit)) 2534 break; 2535 2536 /* 2537 * To keep our iteration location, move the marker 2538 * forward. Since we're not holding hdr's hash lock, we 2539 * must be very careful and not remove 'hdr' from the 2540 * sublist. Otherwise, other consumers might mistake the 2541 * 'hdr' as not being on a sublist when they call the 2542 * multilist_link_active() function (they all rely on 2543 * the hash lock protecting concurrent insertions and 2544 * removals). multilist_sublist_move_forward() was 2545 * specifically implemented to ensure this is the case 2546 * (only 'marker' will be removed and re-inserted). 2547 */ 2548 multilist_sublist_move_forward(mls, marker); 2549 2550 /* 2551 * The only case where the b_spa field should ever be 2552 * zero, is the marker headers inserted by 2553 * arc_evict_state(). It's possible for multiple threads 2554 * to be calling arc_evict_state() concurrently (e.g. 2555 * dsl_pool_close() and zio_inject_fault()), so we must 2556 * skip any markers we see from these other threads. 2557 */ 2558 if (hdr->b_spa == 0) 2559 continue; 2560 2561 /* we're only interested in evicting buffers of a certain spa */ 2562 if (spa != 0 && hdr->b_spa != spa) { 2563 ARCSTAT_BUMP(arcstat_evict_skip); 2564 continue; 2565 } 2566 2567 hash_lock = HDR_LOCK(hdr); 2568 2569 /* 2570 * We aren't calling this function from any code path 2571 * that would already be holding a hash lock, so we're 2572 * asserting on this assumption to be defensive in case 2573 * this ever changes. Without this check, it would be 2574 * possible to incorrectly increment arcstat_mutex_miss 2575 * below (e.g. if the code changed such that we called 2576 * this function with a hash lock held). 2577 */ 2578 ASSERT(!MUTEX_HELD(hash_lock)); 2579 2580 if (mutex_tryenter(hash_lock)) { 2581 uint64_t evicted = arc_evict_hdr(hdr, hash_lock); 2582 mutex_exit(hash_lock); 2583 2584 bytes_evicted += evicted; 2585 2586 /* 2587 * If evicted is zero, arc_evict_hdr() must have 2588 * decided to skip this header, don't increment 2589 * evict_count in this case. 2590 */ 2591 if (evicted != 0) 2592 evict_count++; 2593 2594 /* 2595 * If arc_size isn't overflowing, signal any 2596 * threads that might happen to be waiting. 2597 * 2598 * For each header evicted, we wake up a single 2599 * thread. If we used cv_broadcast, we could 2600 * wake up "too many" threads causing arc_size 2601 * to significantly overflow arc_c; since 2602 * arc_get_data_buf() doesn't check for overflow 2603 * when it's woken up (it doesn't because it's 2604 * possible for the ARC to be overflowing while 2605 * full of un-evictable buffers, and the 2606 * function should proceed in this case). 2607 * 2608 * If threads are left sleeping, due to not 2609 * using cv_broadcast, they will be woken up 2610 * just before arc_reclaim_thread() sleeps. 2611 */ 2612 mutex_enter(&arc_reclaim_lock); 2613 if (!arc_is_overflowing()) 2614 cv_signal(&arc_reclaim_waiters_cv); 2615 mutex_exit(&arc_reclaim_lock); 2616 } else { 2617 ARCSTAT_BUMP(arcstat_mutex_miss); 2618 } 2619 } 2620 2621 multilist_sublist_unlock(mls); 2622 2623 return (bytes_evicted); 2624 } 2625 2626 /* 2627 * Evict buffers from the given arc state, until we've removed the 2628 * specified number of bytes. Move the removed buffers to the 2629 * appropriate evict state. 2630 * 2631 * This function makes a "best effort". It skips over any buffers 2632 * it can't get a hash_lock on, and so, may not catch all candidates. 2633 * It may also return without evicting as much space as requested. 2634 * 2635 * If bytes is specified using the special value ARC_EVICT_ALL, this 2636 * will evict all available (i.e. unlocked and evictable) buffers from 2637 * the given arc state; which is used by arc_flush(). 2638 */ 2639 static uint64_t 2640 arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes, 2641 arc_buf_contents_t type) 2642 { 2643 uint64_t total_evicted = 0; 2644 multilist_t *ml = &state->arcs_list[type]; 2645 int num_sublists; 2646 arc_buf_hdr_t **markers; 2647 2648 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL); 2649 2650 num_sublists = multilist_get_num_sublists(ml); 2651 2652 /* 2653 * If we've tried to evict from each sublist, made some 2654 * progress, but still have not hit the target number of bytes 2655 * to evict, we want to keep trying. The markers allow us to 2656 * pick up where we left off for each individual sublist, rather 2657 * than starting from the tail each time. 2658 */ 2659 markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP); 2660 for (int i = 0; i < num_sublists; i++) { 2661 markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP); 2662 2663 /* 2664 * A b_spa of 0 is used to indicate that this header is 2665 * a marker. This fact is used in arc_adjust_type() and 2666 * arc_evict_state_impl(). 2667 */ 2668 markers[i]->b_spa = 0; 2669 2670 multilist_sublist_t *mls = multilist_sublist_lock(ml, i); 2671 multilist_sublist_insert_tail(mls, markers[i]); 2672 multilist_sublist_unlock(mls); 2673 } 2674 2675 /* 2676 * While we haven't hit our target number of bytes to evict, or 2677 * we're evicting all available buffers. 2678 */ 2679 while (total_evicted < bytes || bytes == ARC_EVICT_ALL) { 2680 /* 2681 * Start eviction using a randomly selected sublist, 2682 * this is to try and evenly balance eviction across all 2683 * sublists. Always starting at the same sublist 2684 * (e.g. index 0) would cause evictions to favor certain 2685 * sublists over others. 2686 */ 2687 int sublist_idx = multilist_get_random_index(ml); 2688 uint64_t scan_evicted = 0; 2689 2690 for (int i = 0; i < num_sublists; i++) { 2691 uint64_t bytes_remaining; 2692 uint64_t bytes_evicted; 2693 2694 if (bytes == ARC_EVICT_ALL) 2695 bytes_remaining = ARC_EVICT_ALL; 2696 else if (total_evicted < bytes) 2697 bytes_remaining = bytes - total_evicted; 2698 else 2699 break; 2700 2701 bytes_evicted = arc_evict_state_impl(ml, sublist_idx, 2702 markers[sublist_idx], spa, bytes_remaining); 2703 2704 scan_evicted += bytes_evicted; 2705 total_evicted += bytes_evicted; 2706 2707 /* we've reached the end, wrap to the beginning */ 2708 if (++sublist_idx >= num_sublists) 2709 sublist_idx = 0; 2710 } 2711 2712 /* 2713 * If we didn't evict anything during this scan, we have 2714 * no reason to believe we'll evict more during another 2715 * scan, so break the loop. 2716 */ 2717 if (scan_evicted == 0) { 2718 /* This isn't possible, let's make that obvious */ 2719 ASSERT3S(bytes, !=, 0); 2720 2721 /* 2722 * When bytes is ARC_EVICT_ALL, the only way to 2723 * break the loop is when scan_evicted is zero. 2724 * In that case, we actually have evicted enough, 2725 * so we don't want to increment the kstat. 2726 */ 2727 if (bytes != ARC_EVICT_ALL) { 2728 ASSERT3S(total_evicted, <, bytes); 2729 ARCSTAT_BUMP(arcstat_evict_not_enough); 2730 } 2731 2732 break; 2733 } 2734 } 2735 2736 for (int i = 0; i < num_sublists; i++) { 2737 multilist_sublist_t *mls = multilist_sublist_lock(ml, i); 2738 multilist_sublist_remove(mls, markers[i]); 2739 multilist_sublist_unlock(mls); 2740 2741 kmem_cache_free(hdr_full_cache, markers[i]); 2742 } 2743 kmem_free(markers, sizeof (*markers) * num_sublists); 2744 2745 return (total_evicted); 2746 } 2747 2748 /* 2749 * Flush all "evictable" data of the given type from the arc state 2750 * specified. This will not evict any "active" buffers (i.e. referenced). 2751 * 2752 * When 'retry' is set to FALSE, the function will make a single pass 2753 * over the state and evict any buffers that it can. Since it doesn't 2754 * continually retry the eviction, it might end up leaving some buffers 2755 * in the ARC due to lock misses. 2756 * 2757 * When 'retry' is set to TRUE, the function will continually retry the 2758 * eviction until *all* evictable buffers have been removed from the 2759 * state. As a result, if concurrent insertions into the state are 2760 * allowed (e.g. if the ARC isn't shutting down), this function might 2761 * wind up in an infinite loop, continually trying to evict buffers. 2762 */ 2763 static uint64_t 2764 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type, 2765 boolean_t retry) 2766 { 2767 uint64_t evicted = 0; 2768 2769 while (state->arcs_lsize[type] != 0) { 2770 evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type); 2771 2772 if (!retry) 2773 break; 2774 } 2775 2776 return (evicted); 2777 } 2778 2779 /* 2780 * Evict the specified number of bytes from the state specified, 2781 * restricting eviction to the spa and type given. This function 2782 * prevents us from trying to evict more from a state's list than 2783 * is "evictable", and to skip evicting altogether when passed a 2784 * negative value for "bytes". In contrast, arc_evict_state() will 2785 * evict everything it can, when passed a negative value for "bytes". 2786 */ 2787 static uint64_t 2788 arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes, 2789 arc_buf_contents_t type) 2790 { 2791 int64_t delta; 2792 2793 if (bytes > 0 && state->arcs_lsize[type] > 0) { 2794 delta = MIN(state->arcs_lsize[type], bytes); 2795 return (arc_evict_state(state, spa, delta, type)); 2796 } 2797 2798 return (0); 2799 } 2800 2801 /* 2802 * Evict metadata buffers from the cache, such that arc_meta_used is 2803 * capped by the arc_meta_limit tunable. 2804 */ 2805 static uint64_t 2806 arc_adjust_meta(void) 2807 { 2808 uint64_t total_evicted = 0; 2809 int64_t target; 2810 2811 /* 2812 * If we're over the meta limit, we want to evict enough 2813 * metadata to get back under the meta limit. We don't want to 2814 * evict so much that we drop the MRU below arc_p, though. If 2815 * we're over the meta limit more than we're over arc_p, we 2816 * evict some from the MRU here, and some from the MFU below. 2817 */ 2818 target = MIN((int64_t)(arc_meta_used - arc_meta_limit), 2819 (int64_t)(refcount_count(&arc_anon->arcs_size) + 2820 refcount_count(&arc_mru->arcs_size) - arc_p)); 2821 2822 total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 2823 2824 /* 2825 * Similar to the above, we want to evict enough bytes to get us 2826 * below the meta limit, but not so much as to drop us below the 2827 * space alloted to the MFU (which is defined as arc_c - arc_p). 2828 */ 2829 target = MIN((int64_t)(arc_meta_used - arc_meta_limit), 2830 (int64_t)(refcount_count(&arc_mfu->arcs_size) - (arc_c - arc_p))); 2831 2832 total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 2833 2834 return (total_evicted); 2835 } 2836 2837 /* 2838 * Return the type of the oldest buffer in the given arc state 2839 * 2840 * This function will select a random sublist of type ARC_BUFC_DATA and 2841 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist 2842 * is compared, and the type which contains the "older" buffer will be 2843 * returned. 2844 */ 2845 static arc_buf_contents_t 2846 arc_adjust_type(arc_state_t *state) 2847 { 2848 multilist_t *data_ml = &state->arcs_list[ARC_BUFC_DATA]; 2849 multilist_t *meta_ml = &state->arcs_list[ARC_BUFC_METADATA]; 2850 int data_idx = multilist_get_random_index(data_ml); 2851 int meta_idx = multilist_get_random_index(meta_ml); 2852 multilist_sublist_t *data_mls; 2853 multilist_sublist_t *meta_mls; 2854 arc_buf_contents_t type; 2855 arc_buf_hdr_t *data_hdr; 2856 arc_buf_hdr_t *meta_hdr; 2857 2858 /* 2859 * We keep the sublist lock until we're finished, to prevent 2860 * the headers from being destroyed via arc_evict_state(). 2861 */ 2862 data_mls = multilist_sublist_lock(data_ml, data_idx); 2863 meta_mls = multilist_sublist_lock(meta_ml, meta_idx); 2864 2865 /* 2866 * These two loops are to ensure we skip any markers that 2867 * might be at the tail of the lists due to arc_evict_state(). 2868 */ 2869 2870 for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL; 2871 data_hdr = multilist_sublist_prev(data_mls, data_hdr)) { 2872 if (data_hdr->b_spa != 0) 2873 break; 2874 } 2875 2876 for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL; 2877 meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) { 2878 if (meta_hdr->b_spa != 0) 2879 break; 2880 } 2881 2882 if (data_hdr == NULL && meta_hdr == NULL) { 2883 type = ARC_BUFC_DATA; 2884 } else if (data_hdr == NULL) { 2885 ASSERT3P(meta_hdr, !=, NULL); 2886 type = ARC_BUFC_METADATA; 2887 } else if (meta_hdr == NULL) { 2888 ASSERT3P(data_hdr, !=, NULL); 2889 type = ARC_BUFC_DATA; 2890 } else { 2891 ASSERT3P(data_hdr, !=, NULL); 2892 ASSERT3P(meta_hdr, !=, NULL); 2893 2894 /* The headers can't be on the sublist without an L1 header */ 2895 ASSERT(HDR_HAS_L1HDR(data_hdr)); 2896 ASSERT(HDR_HAS_L1HDR(meta_hdr)); 2897 2898 if (data_hdr->b_l1hdr.b_arc_access < 2899 meta_hdr->b_l1hdr.b_arc_access) { 2900 type = ARC_BUFC_DATA; 2901 } else { 2902 type = ARC_BUFC_METADATA; 2903 } 2904 } 2905 2906 multilist_sublist_unlock(meta_mls); 2907 multilist_sublist_unlock(data_mls); 2908 2909 return (type); 2910 } 2911 2912 /* 2913 * Evict buffers from the cache, such that arc_size is capped by arc_c. 2914 */ 2915 static uint64_t 2916 arc_adjust(void) 2917 { 2918 uint64_t total_evicted = 0; 2919 uint64_t bytes; 2920 int64_t target; 2921 2922 /* 2923 * If we're over arc_meta_limit, we want to correct that before 2924 * potentially evicting data buffers below. 2925 */ 2926 total_evicted += arc_adjust_meta(); 2927 2928 /* 2929 * Adjust MRU size 2930 * 2931 * If we're over the target cache size, we want to evict enough 2932 * from the list to get back to our target size. We don't want 2933 * to evict too much from the MRU, such that it drops below 2934 * arc_p. So, if we're over our target cache size more than 2935 * the MRU is over arc_p, we'll evict enough to get back to 2936 * arc_p here, and then evict more from the MFU below. 2937 */ 2938 target = MIN((int64_t)(arc_size - arc_c), 2939 (int64_t)(refcount_count(&arc_anon->arcs_size) + 2940 refcount_count(&arc_mru->arcs_size) + arc_meta_used - arc_p)); 2941 2942 /* 2943 * If we're below arc_meta_min, always prefer to evict data. 2944 * Otherwise, try to satisfy the requested number of bytes to 2945 * evict from the type which contains older buffers; in an 2946 * effort to keep newer buffers in the cache regardless of their 2947 * type. If we cannot satisfy the number of bytes from this 2948 * type, spill over into the next type. 2949 */ 2950 if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA && 2951 arc_meta_used > arc_meta_min) { 2952 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 2953 total_evicted += bytes; 2954 2955 /* 2956 * If we couldn't evict our target number of bytes from 2957 * metadata, we try to get the rest from data. 2958 */ 2959 target -= bytes; 2960 2961 total_evicted += 2962 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA); 2963 } else { 2964 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA); 2965 total_evicted += bytes; 2966 2967 /* 2968 * If we couldn't evict our target number of bytes from 2969 * data, we try to get the rest from metadata. 2970 */ 2971 target -= bytes; 2972 2973 total_evicted += 2974 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 2975 } 2976 2977 /* 2978 * Adjust MFU size 2979 * 2980 * Now that we've tried to evict enough from the MRU to get its 2981 * size back to arc_p, if we're still above the target cache 2982 * size, we evict the rest from the MFU. 2983 */ 2984 target = arc_size - arc_c; 2985 2986 if (arc_adjust_type(arc_mfu) == ARC_BUFC_METADATA && 2987 arc_meta_used > arc_meta_min) { 2988 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 2989 total_evicted += bytes; 2990 2991 /* 2992 * If we couldn't evict our target number of bytes from 2993 * metadata, we try to get the rest from data. 2994 */ 2995 target -= bytes; 2996 2997 total_evicted += 2998 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA); 2999 } else { 3000 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA); 3001 total_evicted += bytes; 3002 3003 /* 3004 * If we couldn't evict our target number of bytes from 3005 * data, we try to get the rest from data. 3006 */ 3007 target -= bytes; 3008 3009 total_evicted += 3010 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 3011 } 3012 3013 /* 3014 * Adjust ghost lists 3015 * 3016 * In addition to the above, the ARC also defines target values 3017 * for the ghost lists. The sum of the mru list and mru ghost 3018 * list should never exceed the target size of the cache, and 3019 * the sum of the mru list, mfu list, mru ghost list, and mfu 3020 * ghost list should never exceed twice the target size of the 3021 * cache. The following logic enforces these limits on the ghost 3022 * caches, and evicts from them as needed. 3023 */ 3024 target = refcount_count(&arc_mru->arcs_size) + 3025 refcount_count(&arc_mru_ghost->arcs_size) - arc_c; 3026 3027 bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA); 3028 total_evicted += bytes; 3029 3030 target -= bytes; 3031 3032 total_evicted += 3033 arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA); 3034 3035 /* 3036 * We assume the sum of the mru list and mfu list is less than 3037 * or equal to arc_c (we enforced this above), which means we 3038 * can use the simpler of the two equations below: 3039 * 3040 * mru + mfu + mru ghost + mfu ghost <= 2 * arc_c 3041 * mru ghost + mfu ghost <= arc_c 3042 */ 3043 target = refcount_count(&arc_mru_ghost->arcs_size) + 3044 refcount_count(&arc_mfu_ghost->arcs_size) - arc_c; 3045 3046 bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA); 3047 total_evicted += bytes; 3048 3049 target -= bytes; 3050 3051 total_evicted += 3052 arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA); 3053 3054 return (total_evicted); 3055 } 3056 3057 static void 3058 arc_do_user_evicts(void) 3059 { 3060 mutex_enter(&arc_user_evicts_lock); 3061 while (arc_eviction_list != NULL) { 3062 arc_buf_t *buf = arc_eviction_list; 3063 arc_eviction_list = buf->b_next; 3064 mutex_enter(&buf->b_evict_lock); 3065 buf->b_hdr = NULL; 3066 mutex_exit(&buf->b_evict_lock); 3067 mutex_exit(&arc_user_evicts_lock); 3068 3069 if (buf->b_efunc != NULL) 3070 VERIFY0(buf->b_efunc(buf->b_private)); 3071 3072 buf->b_efunc = NULL; 3073 buf->b_private = NULL; 3074 kmem_cache_free(buf_cache, buf); 3075 mutex_enter(&arc_user_evicts_lock); 3076 } 3077 mutex_exit(&arc_user_evicts_lock); 3078 } 3079 3080 void 3081 arc_flush(spa_t *spa, boolean_t retry) 3082 { 3083 uint64_t guid = 0; 3084 3085 /* 3086 * If retry is TRUE, a spa must not be specified since we have 3087 * no good way to determine if all of a spa's buffers have been 3088 * evicted from an arc state. 3089 */ 3090 ASSERT(!retry || spa == 0); 3091 3092 if (spa != NULL) 3093 guid = spa_load_guid(spa); 3094 3095 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry); 3096 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry); 3097 3098 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry); 3099 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry); 3100 3101 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry); 3102 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry); 3103 3104 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry); 3105 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry); 3106 3107 arc_do_user_evicts(); 3108 ASSERT(spa || arc_eviction_list == NULL); 3109 } 3110 3111 void 3112 arc_shrink(int64_t to_free) 3113 { 3114 if (arc_c > arc_c_min) { 3115 3116 if (arc_c > arc_c_min + to_free) 3117 atomic_add_64(&arc_c, -to_free); 3118 else 3119 arc_c = arc_c_min; 3120 3121 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift)); 3122 if (arc_c > arc_size) 3123 arc_c = MAX(arc_size, arc_c_min); 3124 if (arc_p > arc_c) 3125 arc_p = (arc_c >> 1); 3126 ASSERT(arc_c >= arc_c_min); 3127 ASSERT((int64_t)arc_p >= 0); 3128 } 3129 3130 if (arc_size > arc_c) 3131 (void) arc_adjust(); 3132 } 3133 3134 typedef enum free_memory_reason_t { 3135 FMR_UNKNOWN, 3136 FMR_NEEDFREE, 3137 FMR_LOTSFREE, 3138 FMR_SWAPFS_MINFREE, 3139 FMR_PAGES_PP_MAXIMUM, 3140 FMR_HEAP_ARENA, 3141 FMR_ZIO_ARENA, 3142 } free_memory_reason_t; 3143 3144 int64_t last_free_memory; 3145 free_memory_reason_t last_free_reason; 3146 3147 /* 3148 * Additional reserve of pages for pp_reserve. 3149 */ 3150 int64_t arc_pages_pp_reserve = 64; 3151 3152 /* 3153 * Additional reserve of pages for swapfs. 3154 */ 3155 int64_t arc_swapfs_reserve = 64; 3156 3157 /* 3158 * Return the amount of memory that can be consumed before reclaim will be 3159 * needed. Positive if there is sufficient free memory, negative indicates 3160 * the amount of memory that needs to be freed up. 3161 */ 3162 static int64_t 3163 arc_available_memory(void) 3164 { 3165 int64_t lowest = INT64_MAX; 3166 int64_t n; 3167 free_memory_reason_t r = FMR_UNKNOWN; 3168 3169 #ifdef _KERNEL 3170 if (needfree > 0) { 3171 n = PAGESIZE * (-needfree); 3172 if (n < lowest) { 3173 lowest = n; 3174 r = FMR_NEEDFREE; 3175 } 3176 } 3177 3178 /* 3179 * check that we're out of range of the pageout scanner. It starts to 3180 * schedule paging if freemem is less than lotsfree and needfree. 3181 * lotsfree is the high-water mark for pageout, and needfree is the 3182 * number of needed free pages. We add extra pages here to make sure 3183 * the scanner doesn't start up while we're freeing memory. 3184 */ 3185 n = PAGESIZE * (freemem - lotsfree - needfree - desfree); 3186 if (n < lowest) { 3187 lowest = n; 3188 r = FMR_LOTSFREE; 3189 } 3190 3191 /* 3192 * check to make sure that swapfs has enough space so that anon 3193 * reservations can still succeed. anon_resvmem() checks that the 3194 * availrmem is greater than swapfs_minfree, and the number of reserved 3195 * swap pages. We also add a bit of extra here just to prevent 3196 * circumstances from getting really dire. 3197 */ 3198 n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve - 3199 desfree - arc_swapfs_reserve); 3200 if (n < lowest) { 3201 lowest = n; 3202 r = FMR_SWAPFS_MINFREE; 3203 } 3204 3205 3206 /* 3207 * Check that we have enough availrmem that memory locking (e.g., via 3208 * mlock(3C) or memcntl(2)) can still succeed. (pages_pp_maximum 3209 * stores the number of pages that cannot be locked; when availrmem 3210 * drops below pages_pp_maximum, page locking mechanisms such as 3211 * page_pp_lock() will fail.) 3212 */ 3213 n = PAGESIZE * (availrmem - pages_pp_maximum - 3214 arc_pages_pp_reserve); 3215 if (n < lowest) { 3216 lowest = n; 3217 r = FMR_PAGES_PP_MAXIMUM; 3218 } 3219 3220 #if defined(__i386) 3221 /* 3222 * If we're on an i386 platform, it's possible that we'll exhaust the 3223 * kernel heap space before we ever run out of available physical 3224 * memory. Most checks of the size of the heap_area compare against 3225 * tune.t_minarmem, which is the minimum available real memory that we 3226 * can have in the system. However, this is generally fixed at 25 pages 3227 * which is so low that it's useless. In this comparison, we seek to 3228 * calculate the total heap-size, and reclaim if more than 3/4ths of the 3229 * heap is allocated. (Or, in the calculation, if less than 1/4th is 3230 * free) 3231 */ 3232 n = vmem_size(heap_arena, VMEM_FREE) - 3233 (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2); 3234 if (n < lowest) { 3235 lowest = n; 3236 r = FMR_HEAP_ARENA; 3237 } 3238 #endif 3239 3240 /* 3241 * If zio data pages are being allocated out of a separate heap segment, 3242 * then enforce that the size of available vmem for this arena remains 3243 * above about 1/16th free. 3244 * 3245 * Note: The 1/16th arena free requirement was put in place 3246 * to aggressively evict memory from the arc in order to avoid 3247 * memory fragmentation issues. 3248 */ 3249 if (zio_arena != NULL) { 3250 n = vmem_size(zio_arena, VMEM_FREE) - 3251 (vmem_size(zio_arena, VMEM_ALLOC) >> 4); 3252 if (n < lowest) { 3253 lowest = n; 3254 r = FMR_ZIO_ARENA; 3255 } 3256 } 3257 #else 3258 /* Every 100 calls, free a small amount */ 3259 if (spa_get_random(100) == 0) 3260 lowest = -1024; 3261 #endif 3262 3263 last_free_memory = lowest; 3264 last_free_reason = r; 3265 3266 return (lowest); 3267 } 3268 3269 3270 /* 3271 * Determine if the system is under memory pressure and is asking 3272 * to reclaim memory. A return value of TRUE indicates that the system 3273 * is under memory pressure and that the arc should adjust accordingly. 3274 */ 3275 static boolean_t 3276 arc_reclaim_needed(void) 3277 { 3278 return (arc_available_memory() < 0); 3279 } 3280 3281 static void 3282 arc_kmem_reap_now(void) 3283 { 3284 size_t i; 3285 kmem_cache_t *prev_cache = NULL; 3286 kmem_cache_t *prev_data_cache = NULL; 3287 extern kmem_cache_t *zio_buf_cache[]; 3288 extern kmem_cache_t *zio_data_buf_cache[]; 3289 extern kmem_cache_t *range_seg_cache; 3290 3291 #ifdef _KERNEL 3292 if (arc_meta_used >= arc_meta_limit) { 3293 /* 3294 * We are exceeding our meta-data cache limit. 3295 * Purge some DNLC entries to release holds on meta-data. 3296 */ 3297 dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent); 3298 } 3299 #if defined(__i386) 3300 /* 3301 * Reclaim unused memory from all kmem caches. 3302 */ 3303 kmem_reap(); 3304 #endif 3305 #endif 3306 3307 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 3308 if (zio_buf_cache[i] != prev_cache) { 3309 prev_cache = zio_buf_cache[i]; 3310 kmem_cache_reap_now(zio_buf_cache[i]); 3311 } 3312 if (zio_data_buf_cache[i] != prev_data_cache) { 3313 prev_data_cache = zio_data_buf_cache[i]; 3314 kmem_cache_reap_now(zio_data_buf_cache[i]); 3315 } 3316 } 3317 kmem_cache_reap_now(buf_cache); 3318 kmem_cache_reap_now(hdr_full_cache); 3319 kmem_cache_reap_now(hdr_l2only_cache); 3320 kmem_cache_reap_now(range_seg_cache); 3321 3322 if (zio_arena != NULL) { 3323 /* 3324 * Ask the vmem arena to reclaim unused memory from its 3325 * quantum caches. 3326 */ 3327 vmem_qcache_reap(zio_arena); 3328 } 3329 } 3330 3331 /* 3332 * Threads can block in arc_get_data_buf() waiting for this thread to evict 3333 * enough data and signal them to proceed. When this happens, the threads in 3334 * arc_get_data_buf() are sleeping while holding the hash lock for their 3335 * particular arc header. Thus, we must be careful to never sleep on a 3336 * hash lock in this thread. This is to prevent the following deadlock: 3337 * 3338 * - Thread A sleeps on CV in arc_get_data_buf() holding hash lock "L", 3339 * waiting for the reclaim thread to signal it. 3340 * 3341 * - arc_reclaim_thread() tries to acquire hash lock "L" using mutex_enter, 3342 * fails, and goes to sleep forever. 3343 * 3344 * This possible deadlock is avoided by always acquiring a hash lock 3345 * using mutex_tryenter() from arc_reclaim_thread(). 3346 */ 3347 static void 3348 arc_reclaim_thread(void) 3349 { 3350 clock_t growtime = 0; 3351 callb_cpr_t cpr; 3352 3353 CALLB_CPR_INIT(&cpr, &arc_reclaim_lock, callb_generic_cpr, FTAG); 3354 3355 mutex_enter(&arc_reclaim_lock); 3356 while (!arc_reclaim_thread_exit) { 3357 int64_t free_memory = arc_available_memory(); 3358 uint64_t evicted = 0; 3359 3360 mutex_exit(&arc_reclaim_lock); 3361 3362 if (free_memory < 0) { 3363 3364 arc_no_grow = B_TRUE; 3365 arc_warm = B_TRUE; 3366 3367 /* 3368 * Wait at least zfs_grow_retry (default 60) seconds 3369 * before considering growing. 3370 */ 3371 growtime = ddi_get_lbolt() + (arc_grow_retry * hz); 3372 3373 arc_kmem_reap_now(); 3374 3375 /* 3376 * If we are still low on memory, shrink the ARC 3377 * so that we have arc_shrink_min free space. 3378 */ 3379 free_memory = arc_available_memory(); 3380 3381 int64_t to_free = 3382 (arc_c >> arc_shrink_shift) - free_memory; 3383 if (to_free > 0) { 3384 #ifdef _KERNEL 3385 to_free = MAX(to_free, ptob(needfree)); 3386 #endif 3387 arc_shrink(to_free); 3388 } 3389 } else if (free_memory < arc_c >> arc_no_grow_shift) { 3390 arc_no_grow = B_TRUE; 3391 } else if (ddi_get_lbolt() >= growtime) { 3392 arc_no_grow = B_FALSE; 3393 } 3394 3395 evicted = arc_adjust(); 3396 3397 mutex_enter(&arc_reclaim_lock); 3398 3399 /* 3400 * If evicted is zero, we couldn't evict anything via 3401 * arc_adjust(). This could be due to hash lock 3402 * collisions, but more likely due to the majority of 3403 * arc buffers being unevictable. Therefore, even if 3404 * arc_size is above arc_c, another pass is unlikely to 3405 * be helpful and could potentially cause us to enter an 3406 * infinite loop. 3407 */ 3408 if (arc_size <= arc_c || evicted == 0) { 3409 /* 3410 * We're either no longer overflowing, or we 3411 * can't evict anything more, so we should wake 3412 * up any threads before we go to sleep. 3413 */ 3414 cv_broadcast(&arc_reclaim_waiters_cv); 3415 3416 /* 3417 * Block until signaled, or after one second (we 3418 * might need to perform arc_kmem_reap_now() 3419 * even if we aren't being signalled) 3420 */ 3421 CALLB_CPR_SAFE_BEGIN(&cpr); 3422 (void) cv_timedwait(&arc_reclaim_thread_cv, 3423 &arc_reclaim_lock, ddi_get_lbolt() + hz); 3424 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_lock); 3425 } 3426 } 3427 3428 arc_reclaim_thread_exit = FALSE; 3429 cv_broadcast(&arc_reclaim_thread_cv); 3430 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_lock */ 3431 thread_exit(); 3432 } 3433 3434 static void 3435 arc_user_evicts_thread(void) 3436 { 3437 callb_cpr_t cpr; 3438 3439 CALLB_CPR_INIT(&cpr, &arc_user_evicts_lock, callb_generic_cpr, FTAG); 3440 3441 mutex_enter(&arc_user_evicts_lock); 3442 while (!arc_user_evicts_thread_exit) { 3443 mutex_exit(&arc_user_evicts_lock); 3444 3445 arc_do_user_evicts(); 3446 3447 /* 3448 * This is necessary in order for the mdb ::arc dcmd to 3449 * show up to date information. Since the ::arc command 3450 * does not call the kstat's update function, without 3451 * this call, the command may show stale stats for the 3452 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even 3453 * with this change, the data might be up to 1 second 3454 * out of date; but that should suffice. The arc_state_t 3455 * structures can be queried directly if more accurate 3456 * information is needed. 3457 */ 3458 if (arc_ksp != NULL) 3459 arc_ksp->ks_update(arc_ksp, KSTAT_READ); 3460 3461 mutex_enter(&arc_user_evicts_lock); 3462 3463 /* 3464 * Block until signaled, or after one second (we need to 3465 * call the arc's kstat update function regularly). 3466 */ 3467 CALLB_CPR_SAFE_BEGIN(&cpr); 3468 (void) cv_timedwait(&arc_user_evicts_cv, 3469 &arc_user_evicts_lock, ddi_get_lbolt() + hz); 3470 CALLB_CPR_SAFE_END(&cpr, &arc_user_evicts_lock); 3471 } 3472 3473 arc_user_evicts_thread_exit = FALSE; 3474 cv_broadcast(&arc_user_evicts_cv); 3475 CALLB_CPR_EXIT(&cpr); /* drops arc_user_evicts_lock */ 3476 thread_exit(); 3477 } 3478 3479 /* 3480 * Adapt arc info given the number of bytes we are trying to add and 3481 * the state that we are comming from. This function is only called 3482 * when we are adding new content to the cache. 3483 */ 3484 static void 3485 arc_adapt(int bytes, arc_state_t *state) 3486 { 3487 int mult; 3488 uint64_t arc_p_min = (arc_c >> arc_p_min_shift); 3489 int64_t mrug_size = refcount_count(&arc_mru_ghost->arcs_size); 3490 int64_t mfug_size = refcount_count(&arc_mfu_ghost->arcs_size); 3491 3492 if (state == arc_l2c_only) 3493 return; 3494 3495 ASSERT(bytes > 0); 3496 /* 3497 * Adapt the target size of the MRU list: 3498 * - if we just hit in the MRU ghost list, then increase 3499 * the target size of the MRU list. 3500 * - if we just hit in the MFU ghost list, then increase 3501 * the target size of the MFU list by decreasing the 3502 * target size of the MRU list. 3503 */ 3504 if (state == arc_mru_ghost) { 3505 mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size); 3506 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */ 3507 3508 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult); 3509 } else if (state == arc_mfu_ghost) { 3510 uint64_t delta; 3511 3512 mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size); 3513 mult = MIN(mult, 10); 3514 3515 delta = MIN(bytes * mult, arc_p); 3516 arc_p = MAX(arc_p_min, arc_p - delta); 3517 } 3518 ASSERT((int64_t)arc_p >= 0); 3519 3520 if (arc_reclaim_needed()) { 3521 cv_signal(&arc_reclaim_thread_cv); 3522 return; 3523 } 3524 3525 if (arc_no_grow) 3526 return; 3527 3528 if (arc_c >= arc_c_max) 3529 return; 3530 3531 /* 3532 * If we're within (2 * maxblocksize) bytes of the target 3533 * cache size, increment the target cache size 3534 */ 3535 if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) { 3536 atomic_add_64(&arc_c, (int64_t)bytes); 3537 if (arc_c > arc_c_max) 3538 arc_c = arc_c_max; 3539 else if (state == arc_anon) 3540 atomic_add_64(&arc_p, (int64_t)bytes); 3541 if (arc_p > arc_c) 3542 arc_p = arc_c; 3543 } 3544 ASSERT((int64_t)arc_p >= 0); 3545 } 3546 3547 /* 3548 * Check if arc_size has grown past our upper threshold, determined by 3549 * zfs_arc_overflow_shift. 3550 */ 3551 static boolean_t 3552 arc_is_overflowing(void) 3553 { 3554 /* Always allow at least one block of overflow */ 3555 uint64_t overflow = MAX(SPA_MAXBLOCKSIZE, 3556 arc_c >> zfs_arc_overflow_shift); 3557 3558 return (arc_size >= arc_c + overflow); 3559 } 3560 3561 /* 3562 * The buffer, supplied as the first argument, needs a data block. If we 3563 * are hitting the hard limit for the cache size, we must sleep, waiting 3564 * for the eviction thread to catch up. If we're past the target size 3565 * but below the hard limit, we'll only signal the reclaim thread and 3566 * continue on. 3567 */ 3568 static void 3569 arc_get_data_buf(arc_buf_t *buf) 3570 { 3571 arc_state_t *state = buf->b_hdr->b_l1hdr.b_state; 3572 uint64_t size = buf->b_hdr->b_size; 3573 arc_buf_contents_t type = arc_buf_type(buf->b_hdr); 3574 3575 arc_adapt(size, state); 3576 3577 /* 3578 * If arc_size is currently overflowing, and has grown past our 3579 * upper limit, we must be adding data faster than the evict 3580 * thread can evict. Thus, to ensure we don't compound the 3581 * problem by adding more data and forcing arc_size to grow even 3582 * further past it's target size, we halt and wait for the 3583 * eviction thread to catch up. 3584 * 3585 * It's also possible that the reclaim thread is unable to evict 3586 * enough buffers to get arc_size below the overflow limit (e.g. 3587 * due to buffers being un-evictable, or hash lock collisions). 3588 * In this case, we want to proceed regardless if we're 3589 * overflowing; thus we don't use a while loop here. 3590 */ 3591 if (arc_is_overflowing()) { 3592 mutex_enter(&arc_reclaim_lock); 3593 3594 /* 3595 * Now that we've acquired the lock, we may no longer be 3596 * over the overflow limit, lets check. 3597 * 3598 * We're ignoring the case of spurious wake ups. If that 3599 * were to happen, it'd let this thread consume an ARC 3600 * buffer before it should have (i.e. before we're under 3601 * the overflow limit and were signalled by the reclaim 3602 * thread). As long as that is a rare occurrence, it 3603 * shouldn't cause any harm. 3604 */ 3605 if (arc_is_overflowing()) { 3606 cv_signal(&arc_reclaim_thread_cv); 3607 cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock); 3608 } 3609 3610 mutex_exit(&arc_reclaim_lock); 3611 } 3612 3613 if (type == ARC_BUFC_METADATA) { 3614 buf->b_data = zio_buf_alloc(size); 3615 arc_space_consume(size, ARC_SPACE_META); 3616 } else { 3617 ASSERT(type == ARC_BUFC_DATA); 3618 buf->b_data = zio_data_buf_alloc(size); 3619 arc_space_consume(size, ARC_SPACE_DATA); 3620 } 3621 3622 /* 3623 * Update the state size. Note that ghost states have a 3624 * "ghost size" and so don't need to be updated. 3625 */ 3626 if (!GHOST_STATE(buf->b_hdr->b_l1hdr.b_state)) { 3627 arc_buf_hdr_t *hdr = buf->b_hdr; 3628 arc_state_t *state = hdr->b_l1hdr.b_state; 3629 3630 (void) refcount_add_many(&state->arcs_size, size, buf); 3631 3632 /* 3633 * If this is reached via arc_read, the link is 3634 * protected by the hash lock. If reached via 3635 * arc_buf_alloc, the header should not be accessed by 3636 * any other thread. And, if reached via arc_read_done, 3637 * the hash lock will protect it if it's found in the 3638 * hash table; otherwise no other thread should be 3639 * trying to [add|remove]_reference it. 3640 */ 3641 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 3642 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 3643 atomic_add_64(&hdr->b_l1hdr.b_state->arcs_lsize[type], 3644 size); 3645 } 3646 /* 3647 * If we are growing the cache, and we are adding anonymous 3648 * data, and we have outgrown arc_p, update arc_p 3649 */ 3650 if (arc_size < arc_c && hdr->b_l1hdr.b_state == arc_anon && 3651 (refcount_count(&arc_anon->arcs_size) + 3652 refcount_count(&arc_mru->arcs_size) > arc_p)) 3653 arc_p = MIN(arc_c, arc_p + size); 3654 } 3655 } 3656 3657 /* 3658 * This routine is called whenever a buffer is accessed. 3659 * NOTE: the hash lock is dropped in this function. 3660 */ 3661 static void 3662 arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock) 3663 { 3664 clock_t now; 3665 3666 ASSERT(MUTEX_HELD(hash_lock)); 3667 ASSERT(HDR_HAS_L1HDR(hdr)); 3668 3669 if (hdr->b_l1hdr.b_state == arc_anon) { 3670 /* 3671 * This buffer is not in the cache, and does not 3672 * appear in our "ghost" list. Add the new buffer 3673 * to the MRU state. 3674 */ 3675 3676 ASSERT0(hdr->b_l1hdr.b_arc_access); 3677 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 3678 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 3679 arc_change_state(arc_mru, hdr, hash_lock); 3680 3681 } else if (hdr->b_l1hdr.b_state == arc_mru) { 3682 now = ddi_get_lbolt(); 3683 3684 /* 3685 * If this buffer is here because of a prefetch, then either: 3686 * - clear the flag if this is a "referencing" read 3687 * (any subsequent access will bump this into the MFU state). 3688 * or 3689 * - move the buffer to the head of the list if this is 3690 * another prefetch (to make it less likely to be evicted). 3691 */ 3692 if (HDR_PREFETCH(hdr)) { 3693 if (refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) { 3694 /* link protected by hash lock */ 3695 ASSERT(multilist_link_active( 3696 &hdr->b_l1hdr.b_arc_node)); 3697 } else { 3698 hdr->b_flags &= ~ARC_FLAG_PREFETCH; 3699 ARCSTAT_BUMP(arcstat_mru_hits); 3700 } 3701 hdr->b_l1hdr.b_arc_access = now; 3702 return; 3703 } 3704 3705 /* 3706 * This buffer has been "accessed" only once so far, 3707 * but it is still in the cache. Move it to the MFU 3708 * state. 3709 */ 3710 if (now > hdr->b_l1hdr.b_arc_access + ARC_MINTIME) { 3711 /* 3712 * More than 125ms have passed since we 3713 * instantiated this buffer. Move it to the 3714 * most frequently used state. 3715 */ 3716 hdr->b_l1hdr.b_arc_access = now; 3717 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 3718 arc_change_state(arc_mfu, hdr, hash_lock); 3719 } 3720 ARCSTAT_BUMP(arcstat_mru_hits); 3721 } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) { 3722 arc_state_t *new_state; 3723 /* 3724 * This buffer has been "accessed" recently, but 3725 * was evicted from the cache. Move it to the 3726 * MFU state. 3727 */ 3728 3729 if (HDR_PREFETCH(hdr)) { 3730 new_state = arc_mru; 3731 if (refcount_count(&hdr->b_l1hdr.b_refcnt) > 0) 3732 hdr->b_flags &= ~ARC_FLAG_PREFETCH; 3733 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 3734 } else { 3735 new_state = arc_mfu; 3736 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 3737 } 3738 3739 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 3740 arc_change_state(new_state, hdr, hash_lock); 3741 3742 ARCSTAT_BUMP(arcstat_mru_ghost_hits); 3743 } else if (hdr->b_l1hdr.b_state == arc_mfu) { 3744 /* 3745 * This buffer has been accessed more than once and is 3746 * still in the cache. Keep it in the MFU state. 3747 * 3748 * NOTE: an add_reference() that occurred when we did 3749 * the arc_read() will have kicked this off the list. 3750 * If it was a prefetch, we will explicitly move it to 3751 * the head of the list now. 3752 */ 3753 if ((HDR_PREFETCH(hdr)) != 0) { 3754 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 3755 /* link protected by hash_lock */ 3756 ASSERT(multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3757 } 3758 ARCSTAT_BUMP(arcstat_mfu_hits); 3759 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 3760 } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) { 3761 arc_state_t *new_state = arc_mfu; 3762 /* 3763 * This buffer has been accessed more than once but has 3764 * been evicted from the cache. Move it back to the 3765 * MFU state. 3766 */ 3767 3768 if (HDR_PREFETCH(hdr)) { 3769 /* 3770 * This is a prefetch access... 3771 * move this block back to the MRU state. 3772 */ 3773 ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt)); 3774 new_state = arc_mru; 3775 } 3776 3777 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 3778 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 3779 arc_change_state(new_state, hdr, hash_lock); 3780 3781 ARCSTAT_BUMP(arcstat_mfu_ghost_hits); 3782 } else if (hdr->b_l1hdr.b_state == arc_l2c_only) { 3783 /* 3784 * This buffer is on the 2nd Level ARC. 3785 */ 3786 3787 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 3788 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 3789 arc_change_state(arc_mfu, hdr, hash_lock); 3790 } else { 3791 ASSERT(!"invalid arc state"); 3792 } 3793 } 3794 3795 /* a generic arc_done_func_t which you can use */ 3796 /* ARGSUSED */ 3797 void 3798 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg) 3799 { 3800 if (zio == NULL || zio->io_error == 0) 3801 bcopy(buf->b_data, arg, buf->b_hdr->b_size); 3802 VERIFY(arc_buf_remove_ref(buf, arg)); 3803 } 3804 3805 /* a generic arc_done_func_t */ 3806 void 3807 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg) 3808 { 3809 arc_buf_t **bufp = arg; 3810 if (zio && zio->io_error) { 3811 VERIFY(arc_buf_remove_ref(buf, arg)); 3812 *bufp = NULL; 3813 } else { 3814 *bufp = buf; 3815 ASSERT(buf->b_data); 3816 } 3817 } 3818 3819 static void 3820 arc_read_done(zio_t *zio) 3821 { 3822 arc_buf_hdr_t *hdr; 3823 arc_buf_t *buf; 3824 arc_buf_t *abuf; /* buffer we're assigning to callback */ 3825 kmutex_t *hash_lock = NULL; 3826 arc_callback_t *callback_list, *acb; 3827 int freeable = FALSE; 3828 3829 buf = zio->io_private; 3830 hdr = buf->b_hdr; 3831 3832 /* 3833 * The hdr was inserted into hash-table and removed from lists 3834 * prior to starting I/O. We should find this header, since 3835 * it's in the hash table, and it should be legit since it's 3836 * not possible to evict it during the I/O. The only possible 3837 * reason for it not to be found is if we were freed during the 3838 * read. 3839 */ 3840 if (HDR_IN_HASH_TABLE(hdr)) { 3841 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp)); 3842 ASSERT3U(hdr->b_dva.dva_word[0], ==, 3843 BP_IDENTITY(zio->io_bp)->dva_word[0]); 3844 ASSERT3U(hdr->b_dva.dva_word[1], ==, 3845 BP_IDENTITY(zio->io_bp)->dva_word[1]); 3846 3847 arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp, 3848 &hash_lock); 3849 3850 ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && 3851 hash_lock == NULL) || 3852 (found == hdr && 3853 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) || 3854 (found == hdr && HDR_L2_READING(hdr))); 3855 } 3856 3857 hdr->b_flags &= ~ARC_FLAG_L2_EVICTED; 3858 if (l2arc_noprefetch && HDR_PREFETCH(hdr)) 3859 hdr->b_flags &= ~ARC_FLAG_L2CACHE; 3860 3861 /* byteswap if necessary */ 3862 callback_list = hdr->b_l1hdr.b_acb; 3863 ASSERT(callback_list != NULL); 3864 if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) { 3865 dmu_object_byteswap_t bswap = 3866 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp)); 3867 arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ? 3868 byteswap_uint64_array : 3869 dmu_ot_byteswap[bswap].ob_func; 3870 func(buf->b_data, hdr->b_size); 3871 } 3872 3873 arc_cksum_compute(buf, B_FALSE); 3874 arc_buf_watch(buf); 3875 3876 if (hash_lock && zio->io_error == 0 && 3877 hdr->b_l1hdr.b_state == arc_anon) { 3878 /* 3879 * Only call arc_access on anonymous buffers. This is because 3880 * if we've issued an I/O for an evicted buffer, we've already 3881 * called arc_access (to prevent any simultaneous readers from 3882 * getting confused). 3883 */ 3884 arc_access(hdr, hash_lock); 3885 } 3886 3887 /* create copies of the data buffer for the callers */ 3888 abuf = buf; 3889 for (acb = callback_list; acb; acb = acb->acb_next) { 3890 if (acb->acb_done) { 3891 if (abuf == NULL) { 3892 ARCSTAT_BUMP(arcstat_duplicate_reads); 3893 abuf = arc_buf_clone(buf); 3894 } 3895 acb->acb_buf = abuf; 3896 abuf = NULL; 3897 } 3898 } 3899 hdr->b_l1hdr.b_acb = NULL; 3900 hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS; 3901 ASSERT(!HDR_BUF_AVAILABLE(hdr)); 3902 if (abuf == buf) { 3903 ASSERT(buf->b_efunc == NULL); 3904 ASSERT(hdr->b_l1hdr.b_datacnt == 1); 3905 hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE; 3906 } 3907 3908 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt) || 3909 callback_list != NULL); 3910 3911 if (zio->io_error != 0) { 3912 hdr->b_flags |= ARC_FLAG_IO_ERROR; 3913 if (hdr->b_l1hdr.b_state != arc_anon) 3914 arc_change_state(arc_anon, hdr, hash_lock); 3915 if (HDR_IN_HASH_TABLE(hdr)) 3916 buf_hash_remove(hdr); 3917 freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt); 3918 } 3919 3920 /* 3921 * Broadcast before we drop the hash_lock to avoid the possibility 3922 * that the hdr (and hence the cv) might be freed before we get to 3923 * the cv_broadcast(). 3924 */ 3925 cv_broadcast(&hdr->b_l1hdr.b_cv); 3926 3927 if (hash_lock != NULL) { 3928 mutex_exit(hash_lock); 3929 } else { 3930 /* 3931 * This block was freed while we waited for the read to 3932 * complete. It has been removed from the hash table and 3933 * moved to the anonymous state (so that it won't show up 3934 * in the cache). 3935 */ 3936 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 3937 freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt); 3938 } 3939 3940 /* execute each callback and free its structure */ 3941 while ((acb = callback_list) != NULL) { 3942 if (acb->acb_done) 3943 acb->acb_done(zio, acb->acb_buf, acb->acb_private); 3944 3945 if (acb->acb_zio_dummy != NULL) { 3946 acb->acb_zio_dummy->io_error = zio->io_error; 3947 zio_nowait(acb->acb_zio_dummy); 3948 } 3949 3950 callback_list = acb->acb_next; 3951 kmem_free(acb, sizeof (arc_callback_t)); 3952 } 3953 3954 if (freeable) 3955 arc_hdr_destroy(hdr); 3956 } 3957 3958 /* 3959 * "Read" the block at the specified DVA (in bp) via the 3960 * cache. If the block is found in the cache, invoke the provided 3961 * callback immediately and return. Note that the `zio' parameter 3962 * in the callback will be NULL in this case, since no IO was 3963 * required. If the block is not in the cache pass the read request 3964 * on to the spa with a substitute callback function, so that the 3965 * requested block will be added to the cache. 3966 * 3967 * If a read request arrives for a block that has a read in-progress, 3968 * either wait for the in-progress read to complete (and return the 3969 * results); or, if this is a read with a "done" func, add a record 3970 * to the read to invoke the "done" func when the read completes, 3971 * and return; or just return. 3972 * 3973 * arc_read_done() will invoke all the requested "done" functions 3974 * for readers of this block. 3975 */ 3976 int 3977 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done, 3978 void *private, zio_priority_t priority, int zio_flags, 3979 arc_flags_t *arc_flags, const zbookmark_phys_t *zb) 3980 { 3981 arc_buf_hdr_t *hdr = NULL; 3982 arc_buf_t *buf = NULL; 3983 kmutex_t *hash_lock = NULL; 3984 zio_t *rzio; 3985 uint64_t guid = spa_load_guid(spa); 3986 3987 ASSERT(!BP_IS_EMBEDDED(bp) || 3988 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA); 3989 3990 top: 3991 if (!BP_IS_EMBEDDED(bp)) { 3992 /* 3993 * Embedded BP's have no DVA and require no I/O to "read". 3994 * Create an anonymous arc buf to back it. 3995 */ 3996 hdr = buf_hash_find(guid, bp, &hash_lock); 3997 } 3998 3999 if (hdr != NULL && HDR_HAS_L1HDR(hdr) && hdr->b_l1hdr.b_datacnt > 0) { 4000 4001 *arc_flags |= ARC_FLAG_CACHED; 4002 4003 if (HDR_IO_IN_PROGRESS(hdr)) { 4004 4005 if (*arc_flags & ARC_FLAG_WAIT) { 4006 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock); 4007 mutex_exit(hash_lock); 4008 goto top; 4009 } 4010 ASSERT(*arc_flags & ARC_FLAG_NOWAIT); 4011 4012 if (done) { 4013 arc_callback_t *acb = NULL; 4014 4015 acb = kmem_zalloc(sizeof (arc_callback_t), 4016 KM_SLEEP); 4017 acb->acb_done = done; 4018 acb->acb_private = private; 4019 if (pio != NULL) 4020 acb->acb_zio_dummy = zio_null(pio, 4021 spa, NULL, NULL, NULL, zio_flags); 4022 4023 ASSERT(acb->acb_done != NULL); 4024 acb->acb_next = hdr->b_l1hdr.b_acb; 4025 hdr->b_l1hdr.b_acb = acb; 4026 add_reference(hdr, hash_lock, private); 4027 mutex_exit(hash_lock); 4028 return (0); 4029 } 4030 mutex_exit(hash_lock); 4031 return (0); 4032 } 4033 4034 ASSERT(hdr->b_l1hdr.b_state == arc_mru || 4035 hdr->b_l1hdr.b_state == arc_mfu); 4036 4037 if (done) { 4038 add_reference(hdr, hash_lock, private); 4039 /* 4040 * If this block is already in use, create a new 4041 * copy of the data so that we will be guaranteed 4042 * that arc_release() will always succeed. 4043 */ 4044 buf = hdr->b_l1hdr.b_buf; 4045 ASSERT(buf); 4046 ASSERT(buf->b_data); 4047 if (HDR_BUF_AVAILABLE(hdr)) { 4048 ASSERT(buf->b_efunc == NULL); 4049 hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE; 4050 } else { 4051 buf = arc_buf_clone(buf); 4052 } 4053 4054 } else if (*arc_flags & ARC_FLAG_PREFETCH && 4055 refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) { 4056 hdr->b_flags |= ARC_FLAG_PREFETCH; 4057 } 4058 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 4059 arc_access(hdr, hash_lock); 4060 if (*arc_flags & ARC_FLAG_L2CACHE) 4061 hdr->b_flags |= ARC_FLAG_L2CACHE; 4062 if (*arc_flags & ARC_FLAG_L2COMPRESS) 4063 hdr->b_flags |= ARC_FLAG_L2COMPRESS; 4064 mutex_exit(hash_lock); 4065 ARCSTAT_BUMP(arcstat_hits); 4066 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr), 4067 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), 4068 data, metadata, hits); 4069 4070 if (done) 4071 done(NULL, buf, private); 4072 } else { 4073 uint64_t size = BP_GET_LSIZE(bp); 4074 arc_callback_t *acb; 4075 vdev_t *vd = NULL; 4076 uint64_t addr = 0; 4077 boolean_t devw = B_FALSE; 4078 enum zio_compress b_compress = ZIO_COMPRESS_OFF; 4079 int32_t b_asize = 0; 4080 4081 if (hdr == NULL) { 4082 /* this block is not in the cache */ 4083 arc_buf_hdr_t *exists = NULL; 4084 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp); 4085 buf = arc_buf_alloc(spa, size, private, type); 4086 hdr = buf->b_hdr; 4087 if (!BP_IS_EMBEDDED(bp)) { 4088 hdr->b_dva = *BP_IDENTITY(bp); 4089 hdr->b_birth = BP_PHYSICAL_BIRTH(bp); 4090 exists = buf_hash_insert(hdr, &hash_lock); 4091 } 4092 if (exists != NULL) { 4093 /* somebody beat us to the hash insert */ 4094 mutex_exit(hash_lock); 4095 buf_discard_identity(hdr); 4096 (void) arc_buf_remove_ref(buf, private); 4097 goto top; /* restart the IO request */ 4098 } 4099 4100 /* if this is a prefetch, we don't have a reference */ 4101 if (*arc_flags & ARC_FLAG_PREFETCH) { 4102 (void) remove_reference(hdr, hash_lock, 4103 private); 4104 hdr->b_flags |= ARC_FLAG_PREFETCH; 4105 } 4106 if (*arc_flags & ARC_FLAG_L2CACHE) 4107 hdr->b_flags |= ARC_FLAG_L2CACHE; 4108 if (*arc_flags & ARC_FLAG_L2COMPRESS) 4109 hdr->b_flags |= ARC_FLAG_L2COMPRESS; 4110 if (BP_GET_LEVEL(bp) > 0) 4111 hdr->b_flags |= ARC_FLAG_INDIRECT; 4112 } else { 4113 /* 4114 * This block is in the ghost cache. If it was L2-only 4115 * (and thus didn't have an L1 hdr), we realloc the 4116 * header to add an L1 hdr. 4117 */ 4118 if (!HDR_HAS_L1HDR(hdr)) { 4119 hdr = arc_hdr_realloc(hdr, hdr_l2only_cache, 4120 hdr_full_cache); 4121 } 4122 4123 ASSERT(GHOST_STATE(hdr->b_l1hdr.b_state)); 4124 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 4125 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 4126 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 4127 4128 /* if this is a prefetch, we don't have a reference */ 4129 if (*arc_flags & ARC_FLAG_PREFETCH) 4130 hdr->b_flags |= ARC_FLAG_PREFETCH; 4131 else 4132 add_reference(hdr, hash_lock, private); 4133 if (*arc_flags & ARC_FLAG_L2CACHE) 4134 hdr->b_flags |= ARC_FLAG_L2CACHE; 4135 if (*arc_flags & ARC_FLAG_L2COMPRESS) 4136 hdr->b_flags |= ARC_FLAG_L2COMPRESS; 4137 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 4138 buf->b_hdr = hdr; 4139 buf->b_data = NULL; 4140 buf->b_efunc = NULL; 4141 buf->b_private = NULL; 4142 buf->b_next = NULL; 4143 hdr->b_l1hdr.b_buf = buf; 4144 ASSERT0(hdr->b_l1hdr.b_datacnt); 4145 hdr->b_l1hdr.b_datacnt = 1; 4146 arc_get_data_buf(buf); 4147 arc_access(hdr, hash_lock); 4148 } 4149 4150 ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state)); 4151 4152 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 4153 acb->acb_done = done; 4154 acb->acb_private = private; 4155 4156 ASSERT(hdr->b_l1hdr.b_acb == NULL); 4157 hdr->b_l1hdr.b_acb = acb; 4158 hdr->b_flags |= ARC_FLAG_IO_IN_PROGRESS; 4159 4160 if (HDR_HAS_L2HDR(hdr) && 4161 (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) { 4162 devw = hdr->b_l2hdr.b_dev->l2ad_writing; 4163 addr = hdr->b_l2hdr.b_daddr; 4164 b_compress = hdr->b_l2hdr.b_compress; 4165 b_asize = hdr->b_l2hdr.b_asize; 4166 /* 4167 * Lock out device removal. 4168 */ 4169 if (vdev_is_dead(vd) || 4170 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER)) 4171 vd = NULL; 4172 } 4173 4174 if (hash_lock != NULL) 4175 mutex_exit(hash_lock); 4176 4177 /* 4178 * At this point, we have a level 1 cache miss. Try again in 4179 * L2ARC if possible. 4180 */ 4181 ASSERT3U(hdr->b_size, ==, size); 4182 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp, 4183 uint64_t, size, zbookmark_phys_t *, zb); 4184 ARCSTAT_BUMP(arcstat_misses); 4185 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr), 4186 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), 4187 data, metadata, misses); 4188 4189 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) { 4190 /* 4191 * Read from the L2ARC if the following are true: 4192 * 1. The L2ARC vdev was previously cached. 4193 * 2. This buffer still has L2ARC metadata. 4194 * 3. This buffer isn't currently writing to the L2ARC. 4195 * 4. The L2ARC entry wasn't evicted, which may 4196 * also have invalidated the vdev. 4197 * 5. This isn't prefetch and l2arc_noprefetch is set. 4198 */ 4199 if (HDR_HAS_L2HDR(hdr) && 4200 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) && 4201 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) { 4202 l2arc_read_callback_t *cb; 4203 4204 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr); 4205 ARCSTAT_BUMP(arcstat_l2_hits); 4206 4207 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), 4208 KM_SLEEP); 4209 cb->l2rcb_buf = buf; 4210 cb->l2rcb_spa = spa; 4211 cb->l2rcb_bp = *bp; 4212 cb->l2rcb_zb = *zb; 4213 cb->l2rcb_flags = zio_flags; 4214 cb->l2rcb_compress = b_compress; 4215 4216 ASSERT(addr >= VDEV_LABEL_START_SIZE && 4217 addr + size < vd->vdev_psize - 4218 VDEV_LABEL_END_SIZE); 4219 4220 /* 4221 * l2arc read. The SCL_L2ARC lock will be 4222 * released by l2arc_read_done(). 4223 * Issue a null zio if the underlying buffer 4224 * was squashed to zero size by compression. 4225 */ 4226 if (b_compress == ZIO_COMPRESS_EMPTY) { 4227 rzio = zio_null(pio, spa, vd, 4228 l2arc_read_done, cb, 4229 zio_flags | ZIO_FLAG_DONT_CACHE | 4230 ZIO_FLAG_CANFAIL | 4231 ZIO_FLAG_DONT_PROPAGATE | 4232 ZIO_FLAG_DONT_RETRY); 4233 } else { 4234 rzio = zio_read_phys(pio, vd, addr, 4235 b_asize, buf->b_data, 4236 ZIO_CHECKSUM_OFF, 4237 l2arc_read_done, cb, priority, 4238 zio_flags | ZIO_FLAG_DONT_CACHE | 4239 ZIO_FLAG_CANFAIL | 4240 ZIO_FLAG_DONT_PROPAGATE | 4241 ZIO_FLAG_DONT_RETRY, B_FALSE); 4242 } 4243 DTRACE_PROBE2(l2arc__read, vdev_t *, vd, 4244 zio_t *, rzio); 4245 ARCSTAT_INCR(arcstat_l2_read_bytes, b_asize); 4246 4247 if (*arc_flags & ARC_FLAG_NOWAIT) { 4248 zio_nowait(rzio); 4249 return (0); 4250 } 4251 4252 ASSERT(*arc_flags & ARC_FLAG_WAIT); 4253 if (zio_wait(rzio) == 0) 4254 return (0); 4255 4256 /* l2arc read error; goto zio_read() */ 4257 } else { 4258 DTRACE_PROBE1(l2arc__miss, 4259 arc_buf_hdr_t *, hdr); 4260 ARCSTAT_BUMP(arcstat_l2_misses); 4261 if (HDR_L2_WRITING(hdr)) 4262 ARCSTAT_BUMP(arcstat_l2_rw_clash); 4263 spa_config_exit(spa, SCL_L2ARC, vd); 4264 } 4265 } else { 4266 if (vd != NULL) 4267 spa_config_exit(spa, SCL_L2ARC, vd); 4268 if (l2arc_ndev != 0) { 4269 DTRACE_PROBE1(l2arc__miss, 4270 arc_buf_hdr_t *, hdr); 4271 ARCSTAT_BUMP(arcstat_l2_misses); 4272 } 4273 } 4274 4275 rzio = zio_read(pio, spa, bp, buf->b_data, size, 4276 arc_read_done, buf, priority, zio_flags, zb); 4277 4278 if (*arc_flags & ARC_FLAG_WAIT) 4279 return (zio_wait(rzio)); 4280 4281 ASSERT(*arc_flags & ARC_FLAG_NOWAIT); 4282 zio_nowait(rzio); 4283 } 4284 return (0); 4285 } 4286 4287 void 4288 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private) 4289 { 4290 ASSERT(buf->b_hdr != NULL); 4291 ASSERT(buf->b_hdr->b_l1hdr.b_state != arc_anon); 4292 ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt) || 4293 func == NULL); 4294 ASSERT(buf->b_efunc == NULL); 4295 ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr)); 4296 4297 buf->b_efunc = func; 4298 buf->b_private = private; 4299 } 4300 4301 /* 4302 * Notify the arc that a block was freed, and thus will never be used again. 4303 */ 4304 void 4305 arc_freed(spa_t *spa, const blkptr_t *bp) 4306 { 4307 arc_buf_hdr_t *hdr; 4308 kmutex_t *hash_lock; 4309 uint64_t guid = spa_load_guid(spa); 4310 4311 ASSERT(!BP_IS_EMBEDDED(bp)); 4312 4313 hdr = buf_hash_find(guid, bp, &hash_lock); 4314 if (hdr == NULL) 4315 return; 4316 if (HDR_BUF_AVAILABLE(hdr)) { 4317 arc_buf_t *buf = hdr->b_l1hdr.b_buf; 4318 add_reference(hdr, hash_lock, FTAG); 4319 hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE; 4320 mutex_exit(hash_lock); 4321 4322 arc_release(buf, FTAG); 4323 (void) arc_buf_remove_ref(buf, FTAG); 4324 } else { 4325 mutex_exit(hash_lock); 4326 } 4327 4328 } 4329 4330 /* 4331 * Clear the user eviction callback set by arc_set_callback(), first calling 4332 * it if it exists. Because the presence of a callback keeps an arc_buf cached 4333 * clearing the callback may result in the arc_buf being destroyed. However, 4334 * it will not result in the *last* arc_buf being destroyed, hence the data 4335 * will remain cached in the ARC. We make a copy of the arc buffer here so 4336 * that we can process the callback without holding any locks. 4337 * 4338 * It's possible that the callback is already in the process of being cleared 4339 * by another thread. In this case we can not clear the callback. 4340 * 4341 * Returns B_TRUE if the callback was successfully called and cleared. 4342 */ 4343 boolean_t 4344 arc_clear_callback(arc_buf_t *buf) 4345 { 4346 arc_buf_hdr_t *hdr; 4347 kmutex_t *hash_lock; 4348 arc_evict_func_t *efunc = buf->b_efunc; 4349 void *private = buf->b_private; 4350 4351 mutex_enter(&buf->b_evict_lock); 4352 hdr = buf->b_hdr; 4353 if (hdr == NULL) { 4354 /* 4355 * We are in arc_do_user_evicts(). 4356 */ 4357 ASSERT(buf->b_data == NULL); 4358 mutex_exit(&buf->b_evict_lock); 4359 return (B_FALSE); 4360 } else if (buf->b_data == NULL) { 4361 /* 4362 * We are on the eviction list; process this buffer now 4363 * but let arc_do_user_evicts() do the reaping. 4364 */ 4365 buf->b_efunc = NULL; 4366 mutex_exit(&buf->b_evict_lock); 4367 VERIFY0(efunc(private)); 4368 return (B_TRUE); 4369 } 4370 hash_lock = HDR_LOCK(hdr); 4371 mutex_enter(hash_lock); 4372 hdr = buf->b_hdr; 4373 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 4374 4375 ASSERT3U(refcount_count(&hdr->b_l1hdr.b_refcnt), <, 4376 hdr->b_l1hdr.b_datacnt); 4377 ASSERT(hdr->b_l1hdr.b_state == arc_mru || 4378 hdr->b_l1hdr.b_state == arc_mfu); 4379 4380 buf->b_efunc = NULL; 4381 buf->b_private = NULL; 4382 4383 if (hdr->b_l1hdr.b_datacnt > 1) { 4384 mutex_exit(&buf->b_evict_lock); 4385 arc_buf_destroy(buf, TRUE); 4386 } else { 4387 ASSERT(buf == hdr->b_l1hdr.b_buf); 4388 hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE; 4389 mutex_exit(&buf->b_evict_lock); 4390 } 4391 4392 mutex_exit(hash_lock); 4393 VERIFY0(efunc(private)); 4394 return (B_TRUE); 4395 } 4396 4397 /* 4398 * Release this buffer from the cache, making it an anonymous buffer. This 4399 * must be done after a read and prior to modifying the buffer contents. 4400 * If the buffer has more than one reference, we must make 4401 * a new hdr for the buffer. 4402 */ 4403 void 4404 arc_release(arc_buf_t *buf, void *tag) 4405 { 4406 arc_buf_hdr_t *hdr = buf->b_hdr; 4407 4408 /* 4409 * It would be nice to assert that if it's DMU metadata (level > 4410 * 0 || it's the dnode file), then it must be syncing context. 4411 * But we don't know that information at this level. 4412 */ 4413 4414 mutex_enter(&buf->b_evict_lock); 4415 4416 ASSERT(HDR_HAS_L1HDR(hdr)); 4417 4418 /* 4419 * We don't grab the hash lock prior to this check, because if 4420 * the buffer's header is in the arc_anon state, it won't be 4421 * linked into the hash table. 4422 */ 4423 if (hdr->b_l1hdr.b_state == arc_anon) { 4424 mutex_exit(&buf->b_evict_lock); 4425 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 4426 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 4427 ASSERT(!HDR_HAS_L2HDR(hdr)); 4428 ASSERT(BUF_EMPTY(hdr)); 4429 4430 ASSERT3U(hdr->b_l1hdr.b_datacnt, ==, 1); 4431 ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1); 4432 ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node)); 4433 4434 ASSERT3P(buf->b_efunc, ==, NULL); 4435 ASSERT3P(buf->b_private, ==, NULL); 4436 4437 hdr->b_l1hdr.b_arc_access = 0; 4438 arc_buf_thaw(buf); 4439 4440 return; 4441 } 4442 4443 kmutex_t *hash_lock = HDR_LOCK(hdr); 4444 mutex_enter(hash_lock); 4445 4446 /* 4447 * This assignment is only valid as long as the hash_lock is 4448 * held, we must be careful not to reference state or the 4449 * b_state field after dropping the lock. 4450 */ 4451 arc_state_t *state = hdr->b_l1hdr.b_state; 4452 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 4453 ASSERT3P(state, !=, arc_anon); 4454 4455 /* this buffer is not on any list */ 4456 ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) > 0); 4457 4458 if (HDR_HAS_L2HDR(hdr)) { 4459 mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx); 4460 4461 /* 4462 * We have to recheck this conditional again now that 4463 * we're holding the l2ad_mtx to prevent a race with 4464 * another thread which might be concurrently calling 4465 * l2arc_evict(). In that case, l2arc_evict() might have 4466 * destroyed the header's L2 portion as we were waiting 4467 * to acquire the l2ad_mtx. 4468 */ 4469 if (HDR_HAS_L2HDR(hdr)) 4470 arc_hdr_l2hdr_destroy(hdr); 4471 4472 mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx); 4473 } 4474 4475 /* 4476 * Do we have more than one buf? 4477 */ 4478 if (hdr->b_l1hdr.b_datacnt > 1) { 4479 arc_buf_hdr_t *nhdr; 4480 arc_buf_t **bufp; 4481 uint64_t blksz = hdr->b_size; 4482 uint64_t spa = hdr->b_spa; 4483 arc_buf_contents_t type = arc_buf_type(hdr); 4484 uint32_t flags = hdr->b_flags; 4485 4486 ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL); 4487 /* 4488 * Pull the data off of this hdr and attach it to 4489 * a new anonymous hdr. 4490 */ 4491 (void) remove_reference(hdr, hash_lock, tag); 4492 bufp = &hdr->b_l1hdr.b_buf; 4493 while (*bufp != buf) 4494 bufp = &(*bufp)->b_next; 4495 *bufp = buf->b_next; 4496 buf->b_next = NULL; 4497 4498 ASSERT3P(state, !=, arc_l2c_only); 4499 4500 (void) refcount_remove_many( 4501 &state->arcs_size, hdr->b_size, buf); 4502 4503 if (refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) { 4504 ASSERT3P(state, !=, arc_l2c_only); 4505 uint64_t *size = &state->arcs_lsize[type]; 4506 ASSERT3U(*size, >=, hdr->b_size); 4507 atomic_add_64(size, -hdr->b_size); 4508 } 4509 4510 /* 4511 * We're releasing a duplicate user data buffer, update 4512 * our statistics accordingly. 4513 */ 4514 if (HDR_ISTYPE_DATA(hdr)) { 4515 ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers); 4516 ARCSTAT_INCR(arcstat_duplicate_buffers_size, 4517 -hdr->b_size); 4518 } 4519 hdr->b_l1hdr.b_datacnt -= 1; 4520 arc_cksum_verify(buf); 4521 arc_buf_unwatch(buf); 4522 4523 mutex_exit(hash_lock); 4524 4525 nhdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE); 4526 nhdr->b_size = blksz; 4527 nhdr->b_spa = spa; 4528 4529 nhdr->b_flags = flags & ARC_FLAG_L2_WRITING; 4530 nhdr->b_flags |= arc_bufc_to_flags(type); 4531 nhdr->b_flags |= ARC_FLAG_HAS_L1HDR; 4532 4533 nhdr->b_l1hdr.b_buf = buf; 4534 nhdr->b_l1hdr.b_datacnt = 1; 4535 nhdr->b_l1hdr.b_state = arc_anon; 4536 nhdr->b_l1hdr.b_arc_access = 0; 4537 nhdr->b_l1hdr.b_tmp_cdata = NULL; 4538 nhdr->b_freeze_cksum = NULL; 4539 4540 (void) refcount_add(&nhdr->b_l1hdr.b_refcnt, tag); 4541 buf->b_hdr = nhdr; 4542 mutex_exit(&buf->b_evict_lock); 4543 (void) refcount_add_many(&arc_anon->arcs_size, blksz, buf); 4544 } else { 4545 mutex_exit(&buf->b_evict_lock); 4546 ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) == 1); 4547 /* protected by hash lock, or hdr is on arc_anon */ 4548 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 4549 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 4550 arc_change_state(arc_anon, hdr, hash_lock); 4551 hdr->b_l1hdr.b_arc_access = 0; 4552 mutex_exit(hash_lock); 4553 4554 buf_discard_identity(hdr); 4555 arc_buf_thaw(buf); 4556 } 4557 buf->b_efunc = NULL; 4558 buf->b_private = NULL; 4559 } 4560 4561 int 4562 arc_released(arc_buf_t *buf) 4563 { 4564 int released; 4565 4566 mutex_enter(&buf->b_evict_lock); 4567 released = (buf->b_data != NULL && 4568 buf->b_hdr->b_l1hdr.b_state == arc_anon); 4569 mutex_exit(&buf->b_evict_lock); 4570 return (released); 4571 } 4572 4573 #ifdef ZFS_DEBUG 4574 int 4575 arc_referenced(arc_buf_t *buf) 4576 { 4577 int referenced; 4578 4579 mutex_enter(&buf->b_evict_lock); 4580 referenced = (refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt)); 4581 mutex_exit(&buf->b_evict_lock); 4582 return (referenced); 4583 } 4584 #endif 4585 4586 static void 4587 arc_write_ready(zio_t *zio) 4588 { 4589 arc_write_callback_t *callback = zio->io_private; 4590 arc_buf_t *buf = callback->awcb_buf; 4591 arc_buf_hdr_t *hdr = buf->b_hdr; 4592 4593 ASSERT(HDR_HAS_L1HDR(hdr)); 4594 ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt)); 4595 ASSERT(hdr->b_l1hdr.b_datacnt > 0); 4596 callback->awcb_ready(zio, buf, callback->awcb_private); 4597 4598 /* 4599 * If the IO is already in progress, then this is a re-write 4600 * attempt, so we need to thaw and re-compute the cksum. 4601 * It is the responsibility of the callback to handle the 4602 * accounting for any re-write attempt. 4603 */ 4604 if (HDR_IO_IN_PROGRESS(hdr)) { 4605 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 4606 if (hdr->b_freeze_cksum != NULL) { 4607 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 4608 hdr->b_freeze_cksum = NULL; 4609 } 4610 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 4611 } 4612 arc_cksum_compute(buf, B_FALSE); 4613 hdr->b_flags |= ARC_FLAG_IO_IN_PROGRESS; 4614 } 4615 4616 /* 4617 * The SPA calls this callback for each physical write that happens on behalf 4618 * of a logical write. See the comment in dbuf_write_physdone() for details. 4619 */ 4620 static void 4621 arc_write_physdone(zio_t *zio) 4622 { 4623 arc_write_callback_t *cb = zio->io_private; 4624 if (cb->awcb_physdone != NULL) 4625 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private); 4626 } 4627 4628 static void 4629 arc_write_done(zio_t *zio) 4630 { 4631 arc_write_callback_t *callback = zio->io_private; 4632 arc_buf_t *buf = callback->awcb_buf; 4633 arc_buf_hdr_t *hdr = buf->b_hdr; 4634 4635 ASSERT(hdr->b_l1hdr.b_acb == NULL); 4636 4637 if (zio->io_error == 0) { 4638 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) { 4639 buf_discard_identity(hdr); 4640 } else { 4641 hdr->b_dva = *BP_IDENTITY(zio->io_bp); 4642 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp); 4643 } 4644 } else { 4645 ASSERT(BUF_EMPTY(hdr)); 4646 } 4647 4648 /* 4649 * If the block to be written was all-zero or compressed enough to be 4650 * embedded in the BP, no write was performed so there will be no 4651 * dva/birth/checksum. The buffer must therefore remain anonymous 4652 * (and uncached). 4653 */ 4654 if (!BUF_EMPTY(hdr)) { 4655 arc_buf_hdr_t *exists; 4656 kmutex_t *hash_lock; 4657 4658 ASSERT(zio->io_error == 0); 4659 4660 arc_cksum_verify(buf); 4661 4662 exists = buf_hash_insert(hdr, &hash_lock); 4663 if (exists != NULL) { 4664 /* 4665 * This can only happen if we overwrite for 4666 * sync-to-convergence, because we remove 4667 * buffers from the hash table when we arc_free(). 4668 */ 4669 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) { 4670 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 4671 panic("bad overwrite, hdr=%p exists=%p", 4672 (void *)hdr, (void *)exists); 4673 ASSERT(refcount_is_zero( 4674 &exists->b_l1hdr.b_refcnt)); 4675 arc_change_state(arc_anon, exists, hash_lock); 4676 mutex_exit(hash_lock); 4677 arc_hdr_destroy(exists); 4678 exists = buf_hash_insert(hdr, &hash_lock); 4679 ASSERT3P(exists, ==, NULL); 4680 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) { 4681 /* nopwrite */ 4682 ASSERT(zio->io_prop.zp_nopwrite); 4683 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 4684 panic("bad nopwrite, hdr=%p exists=%p", 4685 (void *)hdr, (void *)exists); 4686 } else { 4687 /* Dedup */ 4688 ASSERT(hdr->b_l1hdr.b_datacnt == 1); 4689 ASSERT(hdr->b_l1hdr.b_state == arc_anon); 4690 ASSERT(BP_GET_DEDUP(zio->io_bp)); 4691 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 4692 } 4693 } 4694 hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS; 4695 /* if it's not anon, we are doing a scrub */ 4696 if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon) 4697 arc_access(hdr, hash_lock); 4698 mutex_exit(hash_lock); 4699 } else { 4700 hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS; 4701 } 4702 4703 ASSERT(!refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 4704 callback->awcb_done(zio, buf, callback->awcb_private); 4705 4706 kmem_free(callback, sizeof (arc_write_callback_t)); 4707 } 4708 4709 zio_t * 4710 arc_write(zio_t *pio, spa_t *spa, uint64_t txg, 4711 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, boolean_t l2arc_compress, 4712 const zio_prop_t *zp, arc_done_func_t *ready, arc_done_func_t *physdone, 4713 arc_done_func_t *done, void *private, zio_priority_t priority, 4714 int zio_flags, const zbookmark_phys_t *zb) 4715 { 4716 arc_buf_hdr_t *hdr = buf->b_hdr; 4717 arc_write_callback_t *callback; 4718 zio_t *zio; 4719 4720 ASSERT(ready != NULL); 4721 ASSERT(done != NULL); 4722 ASSERT(!HDR_IO_ERROR(hdr)); 4723 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 4724 ASSERT(hdr->b_l1hdr.b_acb == NULL); 4725 ASSERT(hdr->b_l1hdr.b_datacnt > 0); 4726 if (l2arc) 4727 hdr->b_flags |= ARC_FLAG_L2CACHE; 4728 if (l2arc_compress) 4729 hdr->b_flags |= ARC_FLAG_L2COMPRESS; 4730 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP); 4731 callback->awcb_ready = ready; 4732 callback->awcb_physdone = physdone; 4733 callback->awcb_done = done; 4734 callback->awcb_private = private; 4735 callback->awcb_buf = buf; 4736 4737 zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp, 4738 arc_write_ready, arc_write_physdone, arc_write_done, callback, 4739 priority, zio_flags, zb); 4740 4741 return (zio); 4742 } 4743 4744 static int 4745 arc_memory_throttle(uint64_t reserve, uint64_t txg) 4746 { 4747 #ifdef _KERNEL 4748 uint64_t available_memory = ptob(freemem); 4749 static uint64_t page_load = 0; 4750 static uint64_t last_txg = 0; 4751 4752 #if defined(__i386) 4753 available_memory = 4754 MIN(available_memory, vmem_size(heap_arena, VMEM_FREE)); 4755 #endif 4756 4757 if (freemem > physmem * arc_lotsfree_percent / 100) 4758 return (0); 4759 4760 if (txg > last_txg) { 4761 last_txg = txg; 4762 page_load = 0; 4763 } 4764 /* 4765 * If we are in pageout, we know that memory is already tight, 4766 * the arc is already going to be evicting, so we just want to 4767 * continue to let page writes occur as quickly as possible. 4768 */ 4769 if (curproc == proc_pageout) { 4770 if (page_load > MAX(ptob(minfree), available_memory) / 4) 4771 return (SET_ERROR(ERESTART)); 4772 /* Note: reserve is inflated, so we deflate */ 4773 page_load += reserve / 8; 4774 return (0); 4775 } else if (page_load > 0 && arc_reclaim_needed()) { 4776 /* memory is low, delay before restarting */ 4777 ARCSTAT_INCR(arcstat_memory_throttle_count, 1); 4778 return (SET_ERROR(EAGAIN)); 4779 } 4780 page_load = 0; 4781 #endif 4782 return (0); 4783 } 4784 4785 void 4786 arc_tempreserve_clear(uint64_t reserve) 4787 { 4788 atomic_add_64(&arc_tempreserve, -reserve); 4789 ASSERT((int64_t)arc_tempreserve >= 0); 4790 } 4791 4792 int 4793 arc_tempreserve_space(uint64_t reserve, uint64_t txg) 4794 { 4795 int error; 4796 uint64_t anon_size; 4797 4798 if (reserve > arc_c/4 && !arc_no_grow) 4799 arc_c = MIN(arc_c_max, reserve * 4); 4800 if (reserve > arc_c) 4801 return (SET_ERROR(ENOMEM)); 4802 4803 /* 4804 * Don't count loaned bufs as in flight dirty data to prevent long 4805 * network delays from blocking transactions that are ready to be 4806 * assigned to a txg. 4807 */ 4808 anon_size = MAX((int64_t)(refcount_count(&arc_anon->arcs_size) - 4809 arc_loaned_bytes), 0); 4810 4811 /* 4812 * Writes will, almost always, require additional memory allocations 4813 * in order to compress/encrypt/etc the data. We therefore need to 4814 * make sure that there is sufficient available memory for this. 4815 */ 4816 error = arc_memory_throttle(reserve, txg); 4817 if (error != 0) 4818 return (error); 4819 4820 /* 4821 * Throttle writes when the amount of dirty data in the cache 4822 * gets too large. We try to keep the cache less than half full 4823 * of dirty blocks so that our sync times don't grow too large. 4824 * Note: if two requests come in concurrently, we might let them 4825 * both succeed, when one of them should fail. Not a huge deal. 4826 */ 4827 4828 if (reserve + arc_tempreserve + anon_size > arc_c / 2 && 4829 anon_size > arc_c / 4) { 4830 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK " 4831 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n", 4832 arc_tempreserve>>10, 4833 arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10, 4834 arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10, 4835 reserve>>10, arc_c>>10); 4836 return (SET_ERROR(ERESTART)); 4837 } 4838 atomic_add_64(&arc_tempreserve, reserve); 4839 return (0); 4840 } 4841 4842 static void 4843 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size, 4844 kstat_named_t *evict_data, kstat_named_t *evict_metadata) 4845 { 4846 size->value.ui64 = refcount_count(&state->arcs_size); 4847 evict_data->value.ui64 = state->arcs_lsize[ARC_BUFC_DATA]; 4848 evict_metadata->value.ui64 = state->arcs_lsize[ARC_BUFC_METADATA]; 4849 } 4850 4851 static int 4852 arc_kstat_update(kstat_t *ksp, int rw) 4853 { 4854 arc_stats_t *as = ksp->ks_data; 4855 4856 if (rw == KSTAT_WRITE) { 4857 return (EACCES); 4858 } else { 4859 arc_kstat_update_state(arc_anon, 4860 &as->arcstat_anon_size, 4861 &as->arcstat_anon_evictable_data, 4862 &as->arcstat_anon_evictable_metadata); 4863 arc_kstat_update_state(arc_mru, 4864 &as->arcstat_mru_size, 4865 &as->arcstat_mru_evictable_data, 4866 &as->arcstat_mru_evictable_metadata); 4867 arc_kstat_update_state(arc_mru_ghost, 4868 &as->arcstat_mru_ghost_size, 4869 &as->arcstat_mru_ghost_evictable_data, 4870 &as->arcstat_mru_ghost_evictable_metadata); 4871 arc_kstat_update_state(arc_mfu, 4872 &as->arcstat_mfu_size, 4873 &as->arcstat_mfu_evictable_data, 4874 &as->arcstat_mfu_evictable_metadata); 4875 arc_kstat_update_state(arc_mfu_ghost, 4876 &as->arcstat_mfu_ghost_size, 4877 &as->arcstat_mfu_ghost_evictable_data, 4878 &as->arcstat_mfu_ghost_evictable_metadata); 4879 } 4880 4881 return (0); 4882 } 4883 4884 /* 4885 * This function *must* return indices evenly distributed between all 4886 * sublists of the multilist. This is needed due to how the ARC eviction 4887 * code is laid out; arc_evict_state() assumes ARC buffers are evenly 4888 * distributed between all sublists and uses this assumption when 4889 * deciding which sublist to evict from and how much to evict from it. 4890 */ 4891 unsigned int 4892 arc_state_multilist_index_func(multilist_t *ml, void *obj) 4893 { 4894 arc_buf_hdr_t *hdr = obj; 4895 4896 /* 4897 * We rely on b_dva to generate evenly distributed index 4898 * numbers using buf_hash below. So, as an added precaution, 4899 * let's make sure we never add empty buffers to the arc lists. 4900 */ 4901 ASSERT(!BUF_EMPTY(hdr)); 4902 4903 /* 4904 * The assumption here, is the hash value for a given 4905 * arc_buf_hdr_t will remain constant throughout it's lifetime 4906 * (i.e. it's b_spa, b_dva, and b_birth fields don't change). 4907 * Thus, we don't need to store the header's sublist index 4908 * on insertion, as this index can be recalculated on removal. 4909 * 4910 * Also, the low order bits of the hash value are thought to be 4911 * distributed evenly. Otherwise, in the case that the multilist 4912 * has a power of two number of sublists, each sublists' usage 4913 * would not be evenly distributed. 4914 */ 4915 return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) % 4916 multilist_get_num_sublists(ml)); 4917 } 4918 4919 void 4920 arc_init(void) 4921 { 4922 /* 4923 * allmem is "all memory that we could possibly use". 4924 */ 4925 #ifdef _KERNEL 4926 uint64_t allmem = ptob(physmem - swapfs_minfree); 4927 #else 4928 uint64_t allmem = (physmem * PAGESIZE) / 2; 4929 #endif 4930 4931 mutex_init(&arc_reclaim_lock, NULL, MUTEX_DEFAULT, NULL); 4932 cv_init(&arc_reclaim_thread_cv, NULL, CV_DEFAULT, NULL); 4933 cv_init(&arc_reclaim_waiters_cv, NULL, CV_DEFAULT, NULL); 4934 4935 mutex_init(&arc_user_evicts_lock, NULL, MUTEX_DEFAULT, NULL); 4936 cv_init(&arc_user_evicts_cv, NULL, CV_DEFAULT, NULL); 4937 4938 /* Convert seconds to clock ticks */ 4939 arc_min_prefetch_lifespan = 1 * hz; 4940 4941 /* Start out with 1/8 of all memory */ 4942 arc_c = allmem / 8; 4943 4944 #ifdef _KERNEL 4945 /* 4946 * On architectures where the physical memory can be larger 4947 * than the addressable space (intel in 32-bit mode), we may 4948 * need to limit the cache to 1/8 of VM size. 4949 */ 4950 arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8); 4951 #endif 4952 4953 /* set min cache to 1/32 of all memory, or 64MB, whichever is more */ 4954 arc_c_min = MAX(allmem / 32, 64 << 20); 4955 /* set max to 3/4 of all memory, or all but 1GB, whichever is more */ 4956 if (allmem >= 1 << 30) 4957 arc_c_max = allmem - (1 << 30); 4958 else 4959 arc_c_max = arc_c_min; 4960 arc_c_max = MAX(allmem * 3 / 4, arc_c_max); 4961 4962 /* 4963 * Allow the tunables to override our calculations if they are 4964 * reasonable (ie. over 64MB) 4965 */ 4966 if (zfs_arc_max > 64 << 20 && zfs_arc_max < allmem) 4967 arc_c_max = zfs_arc_max; 4968 if (zfs_arc_min > 64 << 20 && zfs_arc_min <= arc_c_max) 4969 arc_c_min = zfs_arc_min; 4970 4971 arc_c = arc_c_max; 4972 arc_p = (arc_c >> 1); 4973 4974 /* limit meta-data to 1/4 of the arc capacity */ 4975 arc_meta_limit = arc_c_max / 4; 4976 4977 /* Allow the tunable to override if it is reasonable */ 4978 if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max) 4979 arc_meta_limit = zfs_arc_meta_limit; 4980 4981 if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0) 4982 arc_c_min = arc_meta_limit / 2; 4983 4984 if (zfs_arc_meta_min > 0) { 4985 arc_meta_min = zfs_arc_meta_min; 4986 } else { 4987 arc_meta_min = arc_c_min / 2; 4988 } 4989 4990 if (zfs_arc_grow_retry > 0) 4991 arc_grow_retry = zfs_arc_grow_retry; 4992 4993 if (zfs_arc_shrink_shift > 0) 4994 arc_shrink_shift = zfs_arc_shrink_shift; 4995 4996 /* 4997 * Ensure that arc_no_grow_shift is less than arc_shrink_shift. 4998 */ 4999 if (arc_no_grow_shift >= arc_shrink_shift) 5000 arc_no_grow_shift = arc_shrink_shift - 1; 5001 5002 if (zfs_arc_p_min_shift > 0) 5003 arc_p_min_shift = zfs_arc_p_min_shift; 5004 5005 if (zfs_arc_num_sublists_per_state < 1) 5006 zfs_arc_num_sublists_per_state = MAX(boot_ncpus, 1); 5007 5008 /* if kmem_flags are set, lets try to use less memory */ 5009 if (kmem_debugging()) 5010 arc_c = arc_c / 2; 5011 if (arc_c < arc_c_min) 5012 arc_c = arc_c_min; 5013 5014 arc_anon = &ARC_anon; 5015 arc_mru = &ARC_mru; 5016 arc_mru_ghost = &ARC_mru_ghost; 5017 arc_mfu = &ARC_mfu; 5018 arc_mfu_ghost = &ARC_mfu_ghost; 5019 arc_l2c_only = &ARC_l2c_only; 5020 arc_size = 0; 5021 5022 multilist_create(&arc_mru->arcs_list[ARC_BUFC_METADATA], 5023 sizeof (arc_buf_hdr_t), 5024 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5025 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); 5026 multilist_create(&arc_mru->arcs_list[ARC_BUFC_DATA], 5027 sizeof (arc_buf_hdr_t), 5028 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5029 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); 5030 multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA], 5031 sizeof (arc_buf_hdr_t), 5032 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5033 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); 5034 multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA], 5035 sizeof (arc_buf_hdr_t), 5036 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5037 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); 5038 multilist_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA], 5039 sizeof (arc_buf_hdr_t), 5040 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5041 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); 5042 multilist_create(&arc_mfu->arcs_list[ARC_BUFC_DATA], 5043 sizeof (arc_buf_hdr_t), 5044 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5045 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); 5046 multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA], 5047 sizeof (arc_buf_hdr_t), 5048 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5049 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); 5050 multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA], 5051 sizeof (arc_buf_hdr_t), 5052 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5053 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); 5054 multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA], 5055 sizeof (arc_buf_hdr_t), 5056 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5057 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); 5058 multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA], 5059 sizeof (arc_buf_hdr_t), 5060 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5061 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); 5062 5063 refcount_create(&arc_anon->arcs_size); 5064 refcount_create(&arc_mru->arcs_size); 5065 refcount_create(&arc_mru_ghost->arcs_size); 5066 refcount_create(&arc_mfu->arcs_size); 5067 refcount_create(&arc_mfu_ghost->arcs_size); 5068 refcount_create(&arc_l2c_only->arcs_size); 5069 5070 buf_init(); 5071 5072 arc_reclaim_thread_exit = FALSE; 5073 arc_user_evicts_thread_exit = FALSE; 5074 arc_eviction_list = NULL; 5075 bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t)); 5076 5077 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED, 5078 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 5079 5080 if (arc_ksp != NULL) { 5081 arc_ksp->ks_data = &arc_stats; 5082 arc_ksp->ks_update = arc_kstat_update; 5083 kstat_install(arc_ksp); 5084 } 5085 5086 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0, 5087 TS_RUN, minclsyspri); 5088 5089 (void) thread_create(NULL, 0, arc_user_evicts_thread, NULL, 0, &p0, 5090 TS_RUN, minclsyspri); 5091 5092 arc_dead = FALSE; 5093 arc_warm = B_FALSE; 5094 5095 /* 5096 * Calculate maximum amount of dirty data per pool. 5097 * 5098 * If it has been set by /etc/system, take that. 5099 * Otherwise, use a percentage of physical memory defined by 5100 * zfs_dirty_data_max_percent (default 10%) with a cap at 5101 * zfs_dirty_data_max_max (default 4GB). 5102 */ 5103 if (zfs_dirty_data_max == 0) { 5104 zfs_dirty_data_max = physmem * PAGESIZE * 5105 zfs_dirty_data_max_percent / 100; 5106 zfs_dirty_data_max = MIN(zfs_dirty_data_max, 5107 zfs_dirty_data_max_max); 5108 } 5109 } 5110 5111 void 5112 arc_fini(void) 5113 { 5114 mutex_enter(&arc_reclaim_lock); 5115 arc_reclaim_thread_exit = TRUE; 5116 /* 5117 * The reclaim thread will set arc_reclaim_thread_exit back to 5118 * FALSE when it is finished exiting; we're waiting for that. 5119 */ 5120 while (arc_reclaim_thread_exit) { 5121 cv_signal(&arc_reclaim_thread_cv); 5122 cv_wait(&arc_reclaim_thread_cv, &arc_reclaim_lock); 5123 } 5124 mutex_exit(&arc_reclaim_lock); 5125 5126 mutex_enter(&arc_user_evicts_lock); 5127 arc_user_evicts_thread_exit = TRUE; 5128 /* 5129 * The user evicts thread will set arc_user_evicts_thread_exit 5130 * to FALSE when it is finished exiting; we're waiting for that. 5131 */ 5132 while (arc_user_evicts_thread_exit) { 5133 cv_signal(&arc_user_evicts_cv); 5134 cv_wait(&arc_user_evicts_cv, &arc_user_evicts_lock); 5135 } 5136 mutex_exit(&arc_user_evicts_lock); 5137 5138 /* Use TRUE to ensure *all* buffers are evicted */ 5139 arc_flush(NULL, TRUE); 5140 5141 arc_dead = TRUE; 5142 5143 if (arc_ksp != NULL) { 5144 kstat_delete(arc_ksp); 5145 arc_ksp = NULL; 5146 } 5147 5148 mutex_destroy(&arc_reclaim_lock); 5149 cv_destroy(&arc_reclaim_thread_cv); 5150 cv_destroy(&arc_reclaim_waiters_cv); 5151 5152 mutex_destroy(&arc_user_evicts_lock); 5153 cv_destroy(&arc_user_evicts_cv); 5154 5155 refcount_destroy(&arc_anon->arcs_size); 5156 refcount_destroy(&arc_mru->arcs_size); 5157 refcount_destroy(&arc_mru_ghost->arcs_size); 5158 refcount_destroy(&arc_mfu->arcs_size); 5159 refcount_destroy(&arc_mfu_ghost->arcs_size); 5160 refcount_destroy(&arc_l2c_only->arcs_size); 5161 5162 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]); 5163 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]); 5164 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]); 5165 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]); 5166 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]); 5167 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]); 5168 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]); 5169 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]); 5170 5171 buf_fini(); 5172 5173 ASSERT0(arc_loaned_bytes); 5174 } 5175 5176 /* 5177 * Level 2 ARC 5178 * 5179 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk. 5180 * It uses dedicated storage devices to hold cached data, which are populated 5181 * using large infrequent writes. The main role of this cache is to boost 5182 * the performance of random read workloads. The intended L2ARC devices 5183 * include short-stroked disks, solid state disks, and other media with 5184 * substantially faster read latency than disk. 5185 * 5186 * +-----------------------+ 5187 * | ARC | 5188 * +-----------------------+ 5189 * | ^ ^ 5190 * | | | 5191 * l2arc_feed_thread() arc_read() 5192 * | | | 5193 * | l2arc read | 5194 * V | | 5195 * +---------------+ | 5196 * | L2ARC | | 5197 * +---------------+ | 5198 * | ^ | 5199 * l2arc_write() | | 5200 * | | | 5201 * V | | 5202 * +-------+ +-------+ 5203 * | vdev | | vdev | 5204 * | cache | | cache | 5205 * +-------+ +-------+ 5206 * +=========+ .-----. 5207 * : L2ARC : |-_____-| 5208 * : devices : | Disks | 5209 * +=========+ `-_____-' 5210 * 5211 * Read requests are satisfied from the following sources, in order: 5212 * 5213 * 1) ARC 5214 * 2) vdev cache of L2ARC devices 5215 * 3) L2ARC devices 5216 * 4) vdev cache of disks 5217 * 5) disks 5218 * 5219 * Some L2ARC device types exhibit extremely slow write performance. 5220 * To accommodate for this there are some significant differences between 5221 * the L2ARC and traditional cache design: 5222 * 5223 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from 5224 * the ARC behave as usual, freeing buffers and placing headers on ghost 5225 * lists. The ARC does not send buffers to the L2ARC during eviction as 5226 * this would add inflated write latencies for all ARC memory pressure. 5227 * 5228 * 2. The L2ARC attempts to cache data from the ARC before it is evicted. 5229 * It does this by periodically scanning buffers from the eviction-end of 5230 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are 5231 * not already there. It scans until a headroom of buffers is satisfied, 5232 * which itself is a buffer for ARC eviction. If a compressible buffer is 5233 * found during scanning and selected for writing to an L2ARC device, we 5234 * temporarily boost scanning headroom during the next scan cycle to make 5235 * sure we adapt to compression effects (which might significantly reduce 5236 * the data volume we write to L2ARC). The thread that does this is 5237 * l2arc_feed_thread(), illustrated below; example sizes are included to 5238 * provide a better sense of ratio than this diagram: 5239 * 5240 * head --> tail 5241 * +---------------------+----------+ 5242 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC 5243 * +---------------------+----------+ | o L2ARC eligible 5244 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer 5245 * +---------------------+----------+ | 5246 * 15.9 Gbytes ^ 32 Mbytes | 5247 * headroom | 5248 * l2arc_feed_thread() 5249 * | 5250 * l2arc write hand <--[oooo]--' 5251 * | 8 Mbyte 5252 * | write max 5253 * V 5254 * +==============================+ 5255 * L2ARC dev |####|#|###|###| |####| ... | 5256 * +==============================+ 5257 * 32 Gbytes 5258 * 5259 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of 5260 * evicted, then the L2ARC has cached a buffer much sooner than it probably 5261 * needed to, potentially wasting L2ARC device bandwidth and storage. It is 5262 * safe to say that this is an uncommon case, since buffers at the end of 5263 * the ARC lists have moved there due to inactivity. 5264 * 5265 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom, 5266 * then the L2ARC simply misses copying some buffers. This serves as a 5267 * pressure valve to prevent heavy read workloads from both stalling the ARC 5268 * with waits and clogging the L2ARC with writes. This also helps prevent 5269 * the potential for the L2ARC to churn if it attempts to cache content too 5270 * quickly, such as during backups of the entire pool. 5271 * 5272 * 5. After system boot and before the ARC has filled main memory, there are 5273 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru 5274 * lists can remain mostly static. Instead of searching from tail of these 5275 * lists as pictured, the l2arc_feed_thread() will search from the list heads 5276 * for eligible buffers, greatly increasing its chance of finding them. 5277 * 5278 * The L2ARC device write speed is also boosted during this time so that 5279 * the L2ARC warms up faster. Since there have been no ARC evictions yet, 5280 * there are no L2ARC reads, and no fear of degrading read performance 5281 * through increased writes. 5282 * 5283 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that 5284 * the vdev queue can aggregate them into larger and fewer writes. Each 5285 * device is written to in a rotor fashion, sweeping writes through 5286 * available space then repeating. 5287 * 5288 * 7. The L2ARC does not store dirty content. It never needs to flush 5289 * write buffers back to disk based storage. 5290 * 5291 * 8. If an ARC buffer is written (and dirtied) which also exists in the 5292 * L2ARC, the now stale L2ARC buffer is immediately dropped. 5293 * 5294 * The performance of the L2ARC can be tweaked by a number of tunables, which 5295 * may be necessary for different workloads: 5296 * 5297 * l2arc_write_max max write bytes per interval 5298 * l2arc_write_boost extra write bytes during device warmup 5299 * l2arc_noprefetch skip caching prefetched buffers 5300 * l2arc_headroom number of max device writes to precache 5301 * l2arc_headroom_boost when we find compressed buffers during ARC 5302 * scanning, we multiply headroom by this 5303 * percentage factor for the next scan cycle, 5304 * since more compressed buffers are likely to 5305 * be present 5306 * l2arc_feed_secs seconds between L2ARC writing 5307 * 5308 * Tunables may be removed or added as future performance improvements are 5309 * integrated, and also may become zpool properties. 5310 * 5311 * There are three key functions that control how the L2ARC warms up: 5312 * 5313 * l2arc_write_eligible() check if a buffer is eligible to cache 5314 * l2arc_write_size() calculate how much to write 5315 * l2arc_write_interval() calculate sleep delay between writes 5316 * 5317 * These three functions determine what to write, how much, and how quickly 5318 * to send writes. 5319 */ 5320 5321 static boolean_t 5322 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr) 5323 { 5324 /* 5325 * A buffer is *not* eligible for the L2ARC if it: 5326 * 1. belongs to a different spa. 5327 * 2. is already cached on the L2ARC. 5328 * 3. has an I/O in progress (it may be an incomplete read). 5329 * 4. is flagged not eligible (zfs property). 5330 */ 5331 if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) || 5332 HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr)) 5333 return (B_FALSE); 5334 5335 return (B_TRUE); 5336 } 5337 5338 static uint64_t 5339 l2arc_write_size(void) 5340 { 5341 uint64_t size; 5342 5343 /* 5344 * Make sure our globals have meaningful values in case the user 5345 * altered them. 5346 */ 5347 size = l2arc_write_max; 5348 if (size == 0) { 5349 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must " 5350 "be greater than zero, resetting it to the default (%d)", 5351 L2ARC_WRITE_SIZE); 5352 size = l2arc_write_max = L2ARC_WRITE_SIZE; 5353 } 5354 5355 if (arc_warm == B_FALSE) 5356 size += l2arc_write_boost; 5357 5358 return (size); 5359 5360 } 5361 5362 static clock_t 5363 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote) 5364 { 5365 clock_t interval, next, now; 5366 5367 /* 5368 * If the ARC lists are busy, increase our write rate; if the 5369 * lists are stale, idle back. This is achieved by checking 5370 * how much we previously wrote - if it was more than half of 5371 * what we wanted, schedule the next write much sooner. 5372 */ 5373 if (l2arc_feed_again && wrote > (wanted / 2)) 5374 interval = (hz * l2arc_feed_min_ms) / 1000; 5375 else 5376 interval = hz * l2arc_feed_secs; 5377 5378 now = ddi_get_lbolt(); 5379 next = MAX(now, MIN(now + interval, began + interval)); 5380 5381 return (next); 5382 } 5383 5384 /* 5385 * Cycle through L2ARC devices. This is how L2ARC load balances. 5386 * If a device is returned, this also returns holding the spa config lock. 5387 */ 5388 static l2arc_dev_t * 5389 l2arc_dev_get_next(void) 5390 { 5391 l2arc_dev_t *first, *next = NULL; 5392 5393 /* 5394 * Lock out the removal of spas (spa_namespace_lock), then removal 5395 * of cache devices (l2arc_dev_mtx). Once a device has been selected, 5396 * both locks will be dropped and a spa config lock held instead. 5397 */ 5398 mutex_enter(&spa_namespace_lock); 5399 mutex_enter(&l2arc_dev_mtx); 5400 5401 /* if there are no vdevs, there is nothing to do */ 5402 if (l2arc_ndev == 0) 5403 goto out; 5404 5405 first = NULL; 5406 next = l2arc_dev_last; 5407 do { 5408 /* loop around the list looking for a non-faulted vdev */ 5409 if (next == NULL) { 5410 next = list_head(l2arc_dev_list); 5411 } else { 5412 next = list_next(l2arc_dev_list, next); 5413 if (next == NULL) 5414 next = list_head(l2arc_dev_list); 5415 } 5416 5417 /* if we have come back to the start, bail out */ 5418 if (first == NULL) 5419 first = next; 5420 else if (next == first) 5421 break; 5422 5423 } while (vdev_is_dead(next->l2ad_vdev)); 5424 5425 /* if we were unable to find any usable vdevs, return NULL */ 5426 if (vdev_is_dead(next->l2ad_vdev)) 5427 next = NULL; 5428 5429 l2arc_dev_last = next; 5430 5431 out: 5432 mutex_exit(&l2arc_dev_mtx); 5433 5434 /* 5435 * Grab the config lock to prevent the 'next' device from being 5436 * removed while we are writing to it. 5437 */ 5438 if (next != NULL) 5439 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER); 5440 mutex_exit(&spa_namespace_lock); 5441 5442 return (next); 5443 } 5444 5445 /* 5446 * Free buffers that were tagged for destruction. 5447 */ 5448 static void 5449 l2arc_do_free_on_write() 5450 { 5451 list_t *buflist; 5452 l2arc_data_free_t *df, *df_prev; 5453 5454 mutex_enter(&l2arc_free_on_write_mtx); 5455 buflist = l2arc_free_on_write; 5456 5457 for (df = list_tail(buflist); df; df = df_prev) { 5458 df_prev = list_prev(buflist, df); 5459 ASSERT(df->l2df_data != NULL); 5460 ASSERT(df->l2df_func != NULL); 5461 df->l2df_func(df->l2df_data, df->l2df_size); 5462 list_remove(buflist, df); 5463 kmem_free(df, sizeof (l2arc_data_free_t)); 5464 } 5465 5466 mutex_exit(&l2arc_free_on_write_mtx); 5467 } 5468 5469 /* 5470 * A write to a cache device has completed. Update all headers to allow 5471 * reads from these buffers to begin. 5472 */ 5473 static void 5474 l2arc_write_done(zio_t *zio) 5475 { 5476 l2arc_write_callback_t *cb; 5477 l2arc_dev_t *dev; 5478 list_t *buflist; 5479 arc_buf_hdr_t *head, *hdr, *hdr_prev; 5480 kmutex_t *hash_lock; 5481 int64_t bytes_dropped = 0; 5482 5483 cb = zio->io_private; 5484 ASSERT(cb != NULL); 5485 dev = cb->l2wcb_dev; 5486 ASSERT(dev != NULL); 5487 head = cb->l2wcb_head; 5488 ASSERT(head != NULL); 5489 buflist = &dev->l2ad_buflist; 5490 ASSERT(buflist != NULL); 5491 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio, 5492 l2arc_write_callback_t *, cb); 5493 5494 if (zio->io_error != 0) 5495 ARCSTAT_BUMP(arcstat_l2_writes_error); 5496 5497 /* 5498 * All writes completed, or an error was hit. 5499 */ 5500 top: 5501 mutex_enter(&dev->l2ad_mtx); 5502 for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) { 5503 hdr_prev = list_prev(buflist, hdr); 5504 5505 hash_lock = HDR_LOCK(hdr); 5506 5507 /* 5508 * We cannot use mutex_enter or else we can deadlock 5509 * with l2arc_write_buffers (due to swapping the order 5510 * the hash lock and l2ad_mtx are taken). 5511 */ 5512 if (!mutex_tryenter(hash_lock)) { 5513 /* 5514 * Missed the hash lock. We must retry so we 5515 * don't leave the ARC_FLAG_L2_WRITING bit set. 5516 */ 5517 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry); 5518 5519 /* 5520 * We don't want to rescan the headers we've 5521 * already marked as having been written out, so 5522 * we reinsert the head node so we can pick up 5523 * where we left off. 5524 */ 5525 list_remove(buflist, head); 5526 list_insert_after(buflist, hdr, head); 5527 5528 mutex_exit(&dev->l2ad_mtx); 5529 5530 /* 5531 * We wait for the hash lock to become available 5532 * to try and prevent busy waiting, and increase 5533 * the chance we'll be able to acquire the lock 5534 * the next time around. 5535 */ 5536 mutex_enter(hash_lock); 5537 mutex_exit(hash_lock); 5538 goto top; 5539 } 5540 5541 /* 5542 * We could not have been moved into the arc_l2c_only 5543 * state while in-flight due to our ARC_FLAG_L2_WRITING 5544 * bit being set. Let's just ensure that's being enforced. 5545 */ 5546 ASSERT(HDR_HAS_L1HDR(hdr)); 5547 5548 /* 5549 * We may have allocated a buffer for L2ARC compression, 5550 * we must release it to avoid leaking this data. 5551 */ 5552 l2arc_release_cdata_buf(hdr); 5553 5554 if (zio->io_error != 0) { 5555 /* 5556 * Error - drop L2ARC entry. 5557 */ 5558 list_remove(buflist, hdr); 5559 hdr->b_flags &= ~ARC_FLAG_HAS_L2HDR; 5560 5561 ARCSTAT_INCR(arcstat_l2_asize, -hdr->b_l2hdr.b_asize); 5562 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size); 5563 5564 bytes_dropped += hdr->b_l2hdr.b_asize; 5565 (void) refcount_remove_many(&dev->l2ad_alloc, 5566 hdr->b_l2hdr.b_asize, hdr); 5567 } 5568 5569 /* 5570 * Allow ARC to begin reads and ghost list evictions to 5571 * this L2ARC entry. 5572 */ 5573 hdr->b_flags &= ~ARC_FLAG_L2_WRITING; 5574 5575 mutex_exit(hash_lock); 5576 } 5577 5578 atomic_inc_64(&l2arc_writes_done); 5579 list_remove(buflist, head); 5580 ASSERT(!HDR_HAS_L1HDR(head)); 5581 kmem_cache_free(hdr_l2only_cache, head); 5582 mutex_exit(&dev->l2ad_mtx); 5583 5584 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0); 5585 5586 l2arc_do_free_on_write(); 5587 5588 kmem_free(cb, sizeof (l2arc_write_callback_t)); 5589 } 5590 5591 /* 5592 * A read to a cache device completed. Validate buffer contents before 5593 * handing over to the regular ARC routines. 5594 */ 5595 static void 5596 l2arc_read_done(zio_t *zio) 5597 { 5598 l2arc_read_callback_t *cb; 5599 arc_buf_hdr_t *hdr; 5600 arc_buf_t *buf; 5601 kmutex_t *hash_lock; 5602 int equal; 5603 5604 ASSERT(zio->io_vd != NULL); 5605 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE); 5606 5607 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd); 5608 5609 cb = zio->io_private; 5610 ASSERT(cb != NULL); 5611 buf = cb->l2rcb_buf; 5612 ASSERT(buf != NULL); 5613 5614 hash_lock = HDR_LOCK(buf->b_hdr); 5615 mutex_enter(hash_lock); 5616 hdr = buf->b_hdr; 5617 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 5618 5619 /* 5620 * If the buffer was compressed, decompress it first. 5621 */ 5622 if (cb->l2rcb_compress != ZIO_COMPRESS_OFF) 5623 l2arc_decompress_zio(zio, hdr, cb->l2rcb_compress); 5624 ASSERT(zio->io_data != NULL); 5625 ASSERT3U(zio->io_size, ==, hdr->b_size); 5626 ASSERT3U(BP_GET_LSIZE(&cb->l2rcb_bp), ==, hdr->b_size); 5627 5628 /* 5629 * Check this survived the L2ARC journey. 5630 */ 5631 equal = arc_cksum_equal(buf); 5632 if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) { 5633 mutex_exit(hash_lock); 5634 zio->io_private = buf; 5635 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */ 5636 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */ 5637 arc_read_done(zio); 5638 } else { 5639 mutex_exit(hash_lock); 5640 /* 5641 * Buffer didn't survive caching. Increment stats and 5642 * reissue to the original storage device. 5643 */ 5644 if (zio->io_error != 0) { 5645 ARCSTAT_BUMP(arcstat_l2_io_error); 5646 } else { 5647 zio->io_error = SET_ERROR(EIO); 5648 } 5649 if (!equal) 5650 ARCSTAT_BUMP(arcstat_l2_cksum_bad); 5651 5652 /* 5653 * If there's no waiter, issue an async i/o to the primary 5654 * storage now. If there *is* a waiter, the caller must 5655 * issue the i/o in a context where it's OK to block. 5656 */ 5657 if (zio->io_waiter == NULL) { 5658 zio_t *pio = zio_unique_parent(zio); 5659 5660 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL); 5661 5662 zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp, 5663 buf->b_data, hdr->b_size, arc_read_done, buf, 5664 zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb)); 5665 } 5666 } 5667 5668 kmem_free(cb, sizeof (l2arc_read_callback_t)); 5669 } 5670 5671 /* 5672 * This is the list priority from which the L2ARC will search for pages to 5673 * cache. This is used within loops (0..3) to cycle through lists in the 5674 * desired order. This order can have a significant effect on cache 5675 * performance. 5676 * 5677 * Currently the metadata lists are hit first, MFU then MRU, followed by 5678 * the data lists. This function returns a locked list, and also returns 5679 * the lock pointer. 5680 */ 5681 static multilist_sublist_t * 5682 l2arc_sublist_lock(int list_num) 5683 { 5684 multilist_t *ml = NULL; 5685 unsigned int idx; 5686 5687 ASSERT(list_num >= 0 && list_num <= 3); 5688 5689 switch (list_num) { 5690 case 0: 5691 ml = &arc_mfu->arcs_list[ARC_BUFC_METADATA]; 5692 break; 5693 case 1: 5694 ml = &arc_mru->arcs_list[ARC_BUFC_METADATA]; 5695 break; 5696 case 2: 5697 ml = &arc_mfu->arcs_list[ARC_BUFC_DATA]; 5698 break; 5699 case 3: 5700 ml = &arc_mru->arcs_list[ARC_BUFC_DATA]; 5701 break; 5702 } 5703 5704 /* 5705 * Return a randomly-selected sublist. This is acceptable 5706 * because the caller feeds only a little bit of data for each 5707 * call (8MB). Subsequent calls will result in different 5708 * sublists being selected. 5709 */ 5710 idx = multilist_get_random_index(ml); 5711 return (multilist_sublist_lock(ml, idx)); 5712 } 5713 5714 /* 5715 * Evict buffers from the device write hand to the distance specified in 5716 * bytes. This distance may span populated buffers, it may span nothing. 5717 * This is clearing a region on the L2ARC device ready for writing. 5718 * If the 'all' boolean is set, every buffer is evicted. 5719 */ 5720 static void 5721 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all) 5722 { 5723 list_t *buflist; 5724 arc_buf_hdr_t *hdr, *hdr_prev; 5725 kmutex_t *hash_lock; 5726 uint64_t taddr; 5727 5728 buflist = &dev->l2ad_buflist; 5729 5730 if (!all && dev->l2ad_first) { 5731 /* 5732 * This is the first sweep through the device. There is 5733 * nothing to evict. 5734 */ 5735 return; 5736 } 5737 5738 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) { 5739 /* 5740 * When nearing the end of the device, evict to the end 5741 * before the device write hand jumps to the start. 5742 */ 5743 taddr = dev->l2ad_end; 5744 } else { 5745 taddr = dev->l2ad_hand + distance; 5746 } 5747 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist, 5748 uint64_t, taddr, boolean_t, all); 5749 5750 top: 5751 mutex_enter(&dev->l2ad_mtx); 5752 for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) { 5753 hdr_prev = list_prev(buflist, hdr); 5754 5755 hash_lock = HDR_LOCK(hdr); 5756 5757 /* 5758 * We cannot use mutex_enter or else we can deadlock 5759 * with l2arc_write_buffers (due to swapping the order 5760 * the hash lock and l2ad_mtx are taken). 5761 */ 5762 if (!mutex_tryenter(hash_lock)) { 5763 /* 5764 * Missed the hash lock. Retry. 5765 */ 5766 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry); 5767 mutex_exit(&dev->l2ad_mtx); 5768 mutex_enter(hash_lock); 5769 mutex_exit(hash_lock); 5770 goto top; 5771 } 5772 5773 if (HDR_L2_WRITE_HEAD(hdr)) { 5774 /* 5775 * We hit a write head node. Leave it for 5776 * l2arc_write_done(). 5777 */ 5778 list_remove(buflist, hdr); 5779 mutex_exit(hash_lock); 5780 continue; 5781 } 5782 5783 if (!all && HDR_HAS_L2HDR(hdr) && 5784 (hdr->b_l2hdr.b_daddr > taddr || 5785 hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) { 5786 /* 5787 * We've evicted to the target address, 5788 * or the end of the device. 5789 */ 5790 mutex_exit(hash_lock); 5791 break; 5792 } 5793 5794 ASSERT(HDR_HAS_L2HDR(hdr)); 5795 if (!HDR_HAS_L1HDR(hdr)) { 5796 ASSERT(!HDR_L2_READING(hdr)); 5797 /* 5798 * This doesn't exist in the ARC. Destroy. 5799 * arc_hdr_destroy() will call list_remove() 5800 * and decrement arcstat_l2_size. 5801 */ 5802 arc_change_state(arc_anon, hdr, hash_lock); 5803 arc_hdr_destroy(hdr); 5804 } else { 5805 ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only); 5806 ARCSTAT_BUMP(arcstat_l2_evict_l1cached); 5807 /* 5808 * Invalidate issued or about to be issued 5809 * reads, since we may be about to write 5810 * over this location. 5811 */ 5812 if (HDR_L2_READING(hdr)) { 5813 ARCSTAT_BUMP(arcstat_l2_evict_reading); 5814 hdr->b_flags |= ARC_FLAG_L2_EVICTED; 5815 } 5816 5817 /* Ensure this header has finished being written */ 5818 ASSERT(!HDR_L2_WRITING(hdr)); 5819 ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL); 5820 5821 arc_hdr_l2hdr_destroy(hdr); 5822 } 5823 mutex_exit(hash_lock); 5824 } 5825 mutex_exit(&dev->l2ad_mtx); 5826 } 5827 5828 /* 5829 * Find and write ARC buffers to the L2ARC device. 5830 * 5831 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid 5832 * for reading until they have completed writing. 5833 * The headroom_boost is an in-out parameter used to maintain headroom boost 5834 * state between calls to this function. 5835 * 5836 * Returns the number of bytes actually written (which may be smaller than 5837 * the delta by which the device hand has changed due to alignment). 5838 */ 5839 static uint64_t 5840 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz, 5841 boolean_t *headroom_boost) 5842 { 5843 arc_buf_hdr_t *hdr, *hdr_prev, *head; 5844 uint64_t write_asize, write_psize, write_sz, headroom, 5845 buf_compress_minsz; 5846 void *buf_data; 5847 boolean_t full; 5848 l2arc_write_callback_t *cb; 5849 zio_t *pio, *wzio; 5850 uint64_t guid = spa_load_guid(spa); 5851 const boolean_t do_headroom_boost = *headroom_boost; 5852 5853 ASSERT(dev->l2ad_vdev != NULL); 5854 5855 /* Lower the flag now, we might want to raise it again later. */ 5856 *headroom_boost = B_FALSE; 5857 5858 pio = NULL; 5859 write_sz = write_asize = write_psize = 0; 5860 full = B_FALSE; 5861 head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE); 5862 head->b_flags |= ARC_FLAG_L2_WRITE_HEAD; 5863 head->b_flags |= ARC_FLAG_HAS_L2HDR; 5864 5865 /* 5866 * We will want to try to compress buffers that are at least 2x the 5867 * device sector size. 5868 */ 5869 buf_compress_minsz = 2 << dev->l2ad_vdev->vdev_ashift; 5870 5871 /* 5872 * Copy buffers for L2ARC writing. 5873 */ 5874 for (int try = 0; try <= 3; try++) { 5875 multilist_sublist_t *mls = l2arc_sublist_lock(try); 5876 uint64_t passed_sz = 0; 5877 5878 /* 5879 * L2ARC fast warmup. 5880 * 5881 * Until the ARC is warm and starts to evict, read from the 5882 * head of the ARC lists rather than the tail. 5883 */ 5884 if (arc_warm == B_FALSE) 5885 hdr = multilist_sublist_head(mls); 5886 else 5887 hdr = multilist_sublist_tail(mls); 5888 5889 headroom = target_sz * l2arc_headroom; 5890 if (do_headroom_boost) 5891 headroom = (headroom * l2arc_headroom_boost) / 100; 5892 5893 for (; hdr; hdr = hdr_prev) { 5894 kmutex_t *hash_lock; 5895 uint64_t buf_sz; 5896 5897 if (arc_warm == B_FALSE) 5898 hdr_prev = multilist_sublist_next(mls, hdr); 5899 else 5900 hdr_prev = multilist_sublist_prev(mls, hdr); 5901 5902 hash_lock = HDR_LOCK(hdr); 5903 if (!mutex_tryenter(hash_lock)) { 5904 /* 5905 * Skip this buffer rather than waiting. 5906 */ 5907 continue; 5908 } 5909 5910 passed_sz += hdr->b_size; 5911 if (passed_sz > headroom) { 5912 /* 5913 * Searched too far. 5914 */ 5915 mutex_exit(hash_lock); 5916 break; 5917 } 5918 5919 if (!l2arc_write_eligible(guid, hdr)) { 5920 mutex_exit(hash_lock); 5921 continue; 5922 } 5923 5924 if ((write_sz + hdr->b_size) > target_sz) { 5925 full = B_TRUE; 5926 mutex_exit(hash_lock); 5927 break; 5928 } 5929 5930 if (pio == NULL) { 5931 /* 5932 * Insert a dummy header on the buflist so 5933 * l2arc_write_done() can find where the 5934 * write buffers begin without searching. 5935 */ 5936 mutex_enter(&dev->l2ad_mtx); 5937 list_insert_head(&dev->l2ad_buflist, head); 5938 mutex_exit(&dev->l2ad_mtx); 5939 5940 cb = kmem_alloc( 5941 sizeof (l2arc_write_callback_t), KM_SLEEP); 5942 cb->l2wcb_dev = dev; 5943 cb->l2wcb_head = head; 5944 pio = zio_root(spa, l2arc_write_done, cb, 5945 ZIO_FLAG_CANFAIL); 5946 } 5947 5948 /* 5949 * Create and add a new L2ARC header. 5950 */ 5951 hdr->b_l2hdr.b_dev = dev; 5952 hdr->b_flags |= ARC_FLAG_L2_WRITING; 5953 /* 5954 * Temporarily stash the data buffer in b_tmp_cdata. 5955 * The subsequent write step will pick it up from 5956 * there. This is because can't access b_l1hdr.b_buf 5957 * without holding the hash_lock, which we in turn 5958 * can't access without holding the ARC list locks 5959 * (which we want to avoid during compression/writing). 5960 */ 5961 hdr->b_l2hdr.b_compress = ZIO_COMPRESS_OFF; 5962 hdr->b_l2hdr.b_asize = hdr->b_size; 5963 hdr->b_l1hdr.b_tmp_cdata = hdr->b_l1hdr.b_buf->b_data; 5964 5965 /* 5966 * Explicitly set the b_daddr field to a known 5967 * value which means "invalid address". This 5968 * enables us to differentiate which stage of 5969 * l2arc_write_buffers() the particular header 5970 * is in (e.g. this loop, or the one below). 5971 * ARC_FLAG_L2_WRITING is not enough to make 5972 * this distinction, and we need to know in 5973 * order to do proper l2arc vdev accounting in 5974 * arc_release() and arc_hdr_destroy(). 5975 * 5976 * Note, we can't use a new flag to distinguish 5977 * the two stages because we don't hold the 5978 * header's hash_lock below, in the second stage 5979 * of this function. Thus, we can't simply 5980 * change the b_flags field to denote that the 5981 * IO has been sent. We can change the b_daddr 5982 * field of the L2 portion, though, since we'll 5983 * be holding the l2ad_mtx; which is why we're 5984 * using it to denote the header's state change. 5985 */ 5986 hdr->b_l2hdr.b_daddr = L2ARC_ADDR_UNSET; 5987 5988 buf_sz = hdr->b_size; 5989 hdr->b_flags |= ARC_FLAG_HAS_L2HDR; 5990 5991 mutex_enter(&dev->l2ad_mtx); 5992 list_insert_head(&dev->l2ad_buflist, hdr); 5993 mutex_exit(&dev->l2ad_mtx); 5994 5995 /* 5996 * Compute and store the buffer cksum before 5997 * writing. On debug the cksum is verified first. 5998 */ 5999 arc_cksum_verify(hdr->b_l1hdr.b_buf); 6000 arc_cksum_compute(hdr->b_l1hdr.b_buf, B_TRUE); 6001 6002 mutex_exit(hash_lock); 6003 6004 write_sz += buf_sz; 6005 } 6006 6007 multilist_sublist_unlock(mls); 6008 6009 if (full == B_TRUE) 6010 break; 6011 } 6012 6013 /* No buffers selected for writing? */ 6014 if (pio == NULL) { 6015 ASSERT0(write_sz); 6016 ASSERT(!HDR_HAS_L1HDR(head)); 6017 kmem_cache_free(hdr_l2only_cache, head); 6018 return (0); 6019 } 6020 6021 mutex_enter(&dev->l2ad_mtx); 6022 6023 /* 6024 * Now start writing the buffers. We're starting at the write head 6025 * and work backwards, retracing the course of the buffer selector 6026 * loop above. 6027 */ 6028 for (hdr = list_prev(&dev->l2ad_buflist, head); hdr; 6029 hdr = list_prev(&dev->l2ad_buflist, hdr)) { 6030 uint64_t buf_sz; 6031 6032 /* 6033 * We rely on the L1 portion of the header below, so 6034 * it's invalid for this header to have been evicted out 6035 * of the ghost cache, prior to being written out. The 6036 * ARC_FLAG_L2_WRITING bit ensures this won't happen. 6037 */ 6038 ASSERT(HDR_HAS_L1HDR(hdr)); 6039 6040 /* 6041 * We shouldn't need to lock the buffer here, since we flagged 6042 * it as ARC_FLAG_L2_WRITING in the previous step, but we must 6043 * take care to only access its L2 cache parameters. In 6044 * particular, hdr->l1hdr.b_buf may be invalid by now due to 6045 * ARC eviction. 6046 */ 6047 hdr->b_l2hdr.b_daddr = dev->l2ad_hand; 6048 6049 if ((HDR_L2COMPRESS(hdr)) && 6050 hdr->b_l2hdr.b_asize >= buf_compress_minsz) { 6051 if (l2arc_compress_buf(hdr)) { 6052 /* 6053 * If compression succeeded, enable headroom 6054 * boost on the next scan cycle. 6055 */ 6056 *headroom_boost = B_TRUE; 6057 } 6058 } 6059 6060 /* 6061 * Pick up the buffer data we had previously stashed away 6062 * (and now potentially also compressed). 6063 */ 6064 buf_data = hdr->b_l1hdr.b_tmp_cdata; 6065 buf_sz = hdr->b_l2hdr.b_asize; 6066 6067 /* 6068 * We need to do this regardless if buf_sz is zero or 6069 * not, otherwise, when this l2hdr is evicted we'll 6070 * remove a reference that was never added. 6071 */ 6072 (void) refcount_add_many(&dev->l2ad_alloc, buf_sz, hdr); 6073 6074 /* Compression may have squashed the buffer to zero length. */ 6075 if (buf_sz != 0) { 6076 uint64_t buf_p_sz; 6077 6078 wzio = zio_write_phys(pio, dev->l2ad_vdev, 6079 dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF, 6080 NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE, 6081 ZIO_FLAG_CANFAIL, B_FALSE); 6082 6083 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, 6084 zio_t *, wzio); 6085 (void) zio_nowait(wzio); 6086 6087 write_asize += buf_sz; 6088 6089 /* 6090 * Keep the clock hand suitably device-aligned. 6091 */ 6092 buf_p_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz); 6093 write_psize += buf_p_sz; 6094 dev->l2ad_hand += buf_p_sz; 6095 } 6096 } 6097 6098 mutex_exit(&dev->l2ad_mtx); 6099 6100 ASSERT3U(write_asize, <=, target_sz); 6101 ARCSTAT_BUMP(arcstat_l2_writes_sent); 6102 ARCSTAT_INCR(arcstat_l2_write_bytes, write_asize); 6103 ARCSTAT_INCR(arcstat_l2_size, write_sz); 6104 ARCSTAT_INCR(arcstat_l2_asize, write_asize); 6105 vdev_space_update(dev->l2ad_vdev, write_asize, 0, 0); 6106 6107 /* 6108 * Bump device hand to the device start if it is approaching the end. 6109 * l2arc_evict() will already have evicted ahead for this case. 6110 */ 6111 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) { 6112 dev->l2ad_hand = dev->l2ad_start; 6113 dev->l2ad_first = B_FALSE; 6114 } 6115 6116 dev->l2ad_writing = B_TRUE; 6117 (void) zio_wait(pio); 6118 dev->l2ad_writing = B_FALSE; 6119 6120 return (write_asize); 6121 } 6122 6123 /* 6124 * Compresses an L2ARC buffer. 6125 * The data to be compressed must be prefilled in l1hdr.b_tmp_cdata and its 6126 * size in l2hdr->b_asize. This routine tries to compress the data and 6127 * depending on the compression result there are three possible outcomes: 6128 * *) The buffer was incompressible. The original l2hdr contents were left 6129 * untouched and are ready for writing to an L2 device. 6130 * *) The buffer was all-zeros, so there is no need to write it to an L2 6131 * device. To indicate this situation b_tmp_cdata is NULL'ed, b_asize is 6132 * set to zero and b_compress is set to ZIO_COMPRESS_EMPTY. 6133 * *) Compression succeeded and b_tmp_cdata was replaced with a temporary 6134 * data buffer which holds the compressed data to be written, and b_asize 6135 * tells us how much data there is. b_compress is set to the appropriate 6136 * compression algorithm. Once writing is done, invoke 6137 * l2arc_release_cdata_buf on this l2hdr to free this temporary buffer. 6138 * 6139 * Returns B_TRUE if compression succeeded, or B_FALSE if it didn't (the 6140 * buffer was incompressible). 6141 */ 6142 static boolean_t 6143 l2arc_compress_buf(arc_buf_hdr_t *hdr) 6144 { 6145 void *cdata; 6146 size_t csize, len, rounded; 6147 ASSERT(HDR_HAS_L2HDR(hdr)); 6148 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr; 6149 6150 ASSERT(HDR_HAS_L1HDR(hdr)); 6151 ASSERT(l2hdr->b_compress == ZIO_COMPRESS_OFF); 6152 ASSERT(hdr->b_l1hdr.b_tmp_cdata != NULL); 6153 6154 len = l2hdr->b_asize; 6155 cdata = zio_data_buf_alloc(len); 6156 ASSERT3P(cdata, !=, NULL); 6157 csize = zio_compress_data(ZIO_COMPRESS_LZ4, hdr->b_l1hdr.b_tmp_cdata, 6158 cdata, l2hdr->b_asize); 6159 6160 rounded = P2ROUNDUP(csize, (size_t)SPA_MINBLOCKSIZE); 6161 if (rounded > csize) { 6162 bzero((char *)cdata + csize, rounded - csize); 6163 csize = rounded; 6164 } 6165 6166 if (csize == 0) { 6167 /* zero block, indicate that there's nothing to write */ 6168 zio_data_buf_free(cdata, len); 6169 l2hdr->b_compress = ZIO_COMPRESS_EMPTY; 6170 l2hdr->b_asize = 0; 6171 hdr->b_l1hdr.b_tmp_cdata = NULL; 6172 ARCSTAT_BUMP(arcstat_l2_compress_zeros); 6173 return (B_TRUE); 6174 } else if (csize > 0 && csize < len) { 6175 /* 6176 * Compression succeeded, we'll keep the cdata around for 6177 * writing and release it afterwards. 6178 */ 6179 l2hdr->b_compress = ZIO_COMPRESS_LZ4; 6180 l2hdr->b_asize = csize; 6181 hdr->b_l1hdr.b_tmp_cdata = cdata; 6182 ARCSTAT_BUMP(arcstat_l2_compress_successes); 6183 return (B_TRUE); 6184 } else { 6185 /* 6186 * Compression failed, release the compressed buffer. 6187 * l2hdr will be left unmodified. 6188 */ 6189 zio_data_buf_free(cdata, len); 6190 ARCSTAT_BUMP(arcstat_l2_compress_failures); 6191 return (B_FALSE); 6192 } 6193 } 6194 6195 /* 6196 * Decompresses a zio read back from an l2arc device. On success, the 6197 * underlying zio's io_data buffer is overwritten by the uncompressed 6198 * version. On decompression error (corrupt compressed stream), the 6199 * zio->io_error value is set to signal an I/O error. 6200 * 6201 * Please note that the compressed data stream is not checksummed, so 6202 * if the underlying device is experiencing data corruption, we may feed 6203 * corrupt data to the decompressor, so the decompressor needs to be 6204 * able to handle this situation (LZ4 does). 6205 */ 6206 static void 6207 l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr, enum zio_compress c) 6208 { 6209 ASSERT(L2ARC_IS_VALID_COMPRESS(c)); 6210 6211 if (zio->io_error != 0) { 6212 /* 6213 * An io error has occured, just restore the original io 6214 * size in preparation for a main pool read. 6215 */ 6216 zio->io_orig_size = zio->io_size = hdr->b_size; 6217 return; 6218 } 6219 6220 if (c == ZIO_COMPRESS_EMPTY) { 6221 /* 6222 * An empty buffer results in a null zio, which means we 6223 * need to fill its io_data after we're done restoring the 6224 * buffer's contents. 6225 */ 6226 ASSERT(hdr->b_l1hdr.b_buf != NULL); 6227 bzero(hdr->b_l1hdr.b_buf->b_data, hdr->b_size); 6228 zio->io_data = zio->io_orig_data = hdr->b_l1hdr.b_buf->b_data; 6229 } else { 6230 ASSERT(zio->io_data != NULL); 6231 /* 6232 * We copy the compressed data from the start of the arc buffer 6233 * (the zio_read will have pulled in only what we need, the 6234 * rest is garbage which we will overwrite at decompression) 6235 * and then decompress back to the ARC data buffer. This way we 6236 * can minimize copying by simply decompressing back over the 6237 * original compressed data (rather than decompressing to an 6238 * aux buffer and then copying back the uncompressed buffer, 6239 * which is likely to be much larger). 6240 */ 6241 uint64_t csize; 6242 void *cdata; 6243 6244 csize = zio->io_size; 6245 cdata = zio_data_buf_alloc(csize); 6246 bcopy(zio->io_data, cdata, csize); 6247 if (zio_decompress_data(c, cdata, zio->io_data, csize, 6248 hdr->b_size) != 0) 6249 zio->io_error = EIO; 6250 zio_data_buf_free(cdata, csize); 6251 } 6252 6253 /* Restore the expected uncompressed IO size. */ 6254 zio->io_orig_size = zio->io_size = hdr->b_size; 6255 } 6256 6257 /* 6258 * Releases the temporary b_tmp_cdata buffer in an l2arc header structure. 6259 * This buffer serves as a temporary holder of compressed data while 6260 * the buffer entry is being written to an l2arc device. Once that is 6261 * done, we can dispose of it. 6262 */ 6263 static void 6264 l2arc_release_cdata_buf(arc_buf_hdr_t *hdr) 6265 { 6266 ASSERT(HDR_HAS_L2HDR(hdr)); 6267 enum zio_compress comp = hdr->b_l2hdr.b_compress; 6268 6269 ASSERT(HDR_HAS_L1HDR(hdr)); 6270 ASSERT(comp == ZIO_COMPRESS_OFF || L2ARC_IS_VALID_COMPRESS(comp)); 6271 6272 if (comp == ZIO_COMPRESS_OFF) { 6273 /* 6274 * In this case, b_tmp_cdata points to the same buffer 6275 * as the arc_buf_t's b_data field. We don't want to 6276 * free it, since the arc_buf_t will handle that. 6277 */ 6278 hdr->b_l1hdr.b_tmp_cdata = NULL; 6279 } else if (comp == ZIO_COMPRESS_EMPTY) { 6280 /* 6281 * In this case, b_tmp_cdata was compressed to an empty 6282 * buffer, thus there's nothing to free and b_tmp_cdata 6283 * should have been set to NULL in l2arc_write_buffers(). 6284 */ 6285 ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL); 6286 } else { 6287 /* 6288 * If the data was compressed, then we've allocated a 6289 * temporary buffer for it, so now we need to release it. 6290 */ 6291 ASSERT(hdr->b_l1hdr.b_tmp_cdata != NULL); 6292 zio_data_buf_free(hdr->b_l1hdr.b_tmp_cdata, 6293 hdr->b_size); 6294 hdr->b_l1hdr.b_tmp_cdata = NULL; 6295 } 6296 6297 } 6298 6299 /* 6300 * This thread feeds the L2ARC at regular intervals. This is the beating 6301 * heart of the L2ARC. 6302 */ 6303 static void 6304 l2arc_feed_thread(void) 6305 { 6306 callb_cpr_t cpr; 6307 l2arc_dev_t *dev; 6308 spa_t *spa; 6309 uint64_t size, wrote; 6310 clock_t begin, next = ddi_get_lbolt(); 6311 boolean_t headroom_boost = B_FALSE; 6312 6313 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG); 6314 6315 mutex_enter(&l2arc_feed_thr_lock); 6316 6317 while (l2arc_thread_exit == 0) { 6318 CALLB_CPR_SAFE_BEGIN(&cpr); 6319 (void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock, 6320 next); 6321 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock); 6322 next = ddi_get_lbolt() + hz; 6323 6324 /* 6325 * Quick check for L2ARC devices. 6326 */ 6327 mutex_enter(&l2arc_dev_mtx); 6328 if (l2arc_ndev == 0) { 6329 mutex_exit(&l2arc_dev_mtx); 6330 continue; 6331 } 6332 mutex_exit(&l2arc_dev_mtx); 6333 begin = ddi_get_lbolt(); 6334 6335 /* 6336 * This selects the next l2arc device to write to, and in 6337 * doing so the next spa to feed from: dev->l2ad_spa. This 6338 * will return NULL if there are now no l2arc devices or if 6339 * they are all faulted. 6340 * 6341 * If a device is returned, its spa's config lock is also 6342 * held to prevent device removal. l2arc_dev_get_next() 6343 * will grab and release l2arc_dev_mtx. 6344 */ 6345 if ((dev = l2arc_dev_get_next()) == NULL) 6346 continue; 6347 6348 spa = dev->l2ad_spa; 6349 ASSERT(spa != NULL); 6350 6351 /* 6352 * If the pool is read-only then force the feed thread to 6353 * sleep a little longer. 6354 */ 6355 if (!spa_writeable(spa)) { 6356 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz; 6357 spa_config_exit(spa, SCL_L2ARC, dev); 6358 continue; 6359 } 6360 6361 /* 6362 * Avoid contributing to memory pressure. 6363 */ 6364 if (arc_reclaim_needed()) { 6365 ARCSTAT_BUMP(arcstat_l2_abort_lowmem); 6366 spa_config_exit(spa, SCL_L2ARC, dev); 6367 continue; 6368 } 6369 6370 ARCSTAT_BUMP(arcstat_l2_feeds); 6371 6372 size = l2arc_write_size(); 6373 6374 /* 6375 * Evict L2ARC buffers that will be overwritten. 6376 */ 6377 l2arc_evict(dev, size, B_FALSE); 6378 6379 /* 6380 * Write ARC buffers. 6381 */ 6382 wrote = l2arc_write_buffers(spa, dev, size, &headroom_boost); 6383 6384 /* 6385 * Calculate interval between writes. 6386 */ 6387 next = l2arc_write_interval(begin, size, wrote); 6388 spa_config_exit(spa, SCL_L2ARC, dev); 6389 } 6390 6391 l2arc_thread_exit = 0; 6392 cv_broadcast(&l2arc_feed_thr_cv); 6393 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */ 6394 thread_exit(); 6395 } 6396 6397 boolean_t 6398 l2arc_vdev_present(vdev_t *vd) 6399 { 6400 l2arc_dev_t *dev; 6401 6402 mutex_enter(&l2arc_dev_mtx); 6403 for (dev = list_head(l2arc_dev_list); dev != NULL; 6404 dev = list_next(l2arc_dev_list, dev)) { 6405 if (dev->l2ad_vdev == vd) 6406 break; 6407 } 6408 mutex_exit(&l2arc_dev_mtx); 6409 6410 return (dev != NULL); 6411 } 6412 6413 /* 6414 * Add a vdev for use by the L2ARC. By this point the spa has already 6415 * validated the vdev and opened it. 6416 */ 6417 void 6418 l2arc_add_vdev(spa_t *spa, vdev_t *vd) 6419 { 6420 l2arc_dev_t *adddev; 6421 6422 ASSERT(!l2arc_vdev_present(vd)); 6423 6424 /* 6425 * Create a new l2arc device entry. 6426 */ 6427 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP); 6428 adddev->l2ad_spa = spa; 6429 adddev->l2ad_vdev = vd; 6430 adddev->l2ad_start = VDEV_LABEL_START_SIZE; 6431 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd); 6432 adddev->l2ad_hand = adddev->l2ad_start; 6433 adddev->l2ad_first = B_TRUE; 6434 adddev->l2ad_writing = B_FALSE; 6435 6436 mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL); 6437 /* 6438 * This is a list of all ARC buffers that are still valid on the 6439 * device. 6440 */ 6441 list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t), 6442 offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node)); 6443 6444 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand); 6445 refcount_create(&adddev->l2ad_alloc); 6446 6447 /* 6448 * Add device to global list 6449 */ 6450 mutex_enter(&l2arc_dev_mtx); 6451 list_insert_head(l2arc_dev_list, adddev); 6452 atomic_inc_64(&l2arc_ndev); 6453 mutex_exit(&l2arc_dev_mtx); 6454 } 6455 6456 /* 6457 * Remove a vdev from the L2ARC. 6458 */ 6459 void 6460 l2arc_remove_vdev(vdev_t *vd) 6461 { 6462 l2arc_dev_t *dev, *nextdev, *remdev = NULL; 6463 6464 /* 6465 * Find the device by vdev 6466 */ 6467 mutex_enter(&l2arc_dev_mtx); 6468 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) { 6469 nextdev = list_next(l2arc_dev_list, dev); 6470 if (vd == dev->l2ad_vdev) { 6471 remdev = dev; 6472 break; 6473 } 6474 } 6475 ASSERT(remdev != NULL); 6476 6477 /* 6478 * Remove device from global list 6479 */ 6480 list_remove(l2arc_dev_list, remdev); 6481 l2arc_dev_last = NULL; /* may have been invalidated */ 6482 atomic_dec_64(&l2arc_ndev); 6483 mutex_exit(&l2arc_dev_mtx); 6484 6485 /* 6486 * Clear all buflists and ARC references. L2ARC device flush. 6487 */ 6488 l2arc_evict(remdev, 0, B_TRUE); 6489 list_destroy(&remdev->l2ad_buflist); 6490 mutex_destroy(&remdev->l2ad_mtx); 6491 refcount_destroy(&remdev->l2ad_alloc); 6492 kmem_free(remdev, sizeof (l2arc_dev_t)); 6493 } 6494 6495 void 6496 l2arc_init(void) 6497 { 6498 l2arc_thread_exit = 0; 6499 l2arc_ndev = 0; 6500 l2arc_writes_sent = 0; 6501 l2arc_writes_done = 0; 6502 6503 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL); 6504 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL); 6505 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 6506 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL); 6507 6508 l2arc_dev_list = &L2ARC_dev_list; 6509 l2arc_free_on_write = &L2ARC_free_on_write; 6510 list_create(l2arc_dev_list, sizeof (l2arc_dev_t), 6511 offsetof(l2arc_dev_t, l2ad_node)); 6512 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t), 6513 offsetof(l2arc_data_free_t, l2df_list_node)); 6514 } 6515 6516 void 6517 l2arc_fini(void) 6518 { 6519 /* 6520 * This is called from dmu_fini(), which is called from spa_fini(); 6521 * Because of this, we can assume that all l2arc devices have 6522 * already been removed when the pools themselves were removed. 6523 */ 6524 6525 l2arc_do_free_on_write(); 6526 6527 mutex_destroy(&l2arc_feed_thr_lock); 6528 cv_destroy(&l2arc_feed_thr_cv); 6529 mutex_destroy(&l2arc_dev_mtx); 6530 mutex_destroy(&l2arc_free_on_write_mtx); 6531 6532 list_destroy(l2arc_dev_list); 6533 list_destroy(l2arc_free_on_write); 6534 } 6535 6536 void 6537 l2arc_start(void) 6538 { 6539 if (!(spa_mode_global & FWRITE)) 6540 return; 6541 6542 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0, 6543 TS_RUN, minclsyspri); 6544 } 6545 6546 void 6547 l2arc_stop(void) 6548 { 6549 if (!(spa_mode_global & FWRITE)) 6550 return; 6551 6552 mutex_enter(&l2arc_feed_thr_lock); 6553 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */ 6554 l2arc_thread_exit = 1; 6555 while (l2arc_thread_exit != 0) 6556 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock); 6557 mutex_exit(&l2arc_feed_thr_lock); 6558 }