Print this page
5981 Deadlock in dmu_objset_find_dp
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/uts/common/fs/zfs/dsl_pool.c
+++ new/usr/src/uts/common/fs/zfs/dsl_pool.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21 /*
22 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 23 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
24 24 * Copyright (c) 2013 Steven Hartland. All rights reserved.
25 25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26 26 */
27 27
28 28 #include <sys/dsl_pool.h>
29 29 #include <sys/dsl_dataset.h>
30 30 #include <sys/dsl_prop.h>
31 31 #include <sys/dsl_dir.h>
32 32 #include <sys/dsl_synctask.h>
33 33 #include <sys/dsl_scan.h>
34 34 #include <sys/dnode.h>
35 35 #include <sys/dmu_tx.h>
36 36 #include <sys/dmu_objset.h>
37 37 #include <sys/arc.h>
38 38 #include <sys/zap.h>
39 39 #include <sys/zio.h>
40 40 #include <sys/zfs_context.h>
41 41 #include <sys/fs/zfs.h>
42 42 #include <sys/zfs_znode.h>
43 43 #include <sys/spa_impl.h>
44 44 #include <sys/dsl_deadlist.h>
45 45 #include <sys/bptree.h>
46 46 #include <sys/zfeature.h>
47 47 #include <sys/zil_impl.h>
48 48 #include <sys/dsl_userhold.h>
49 49
50 50 /*
51 51 * ZFS Write Throttle
52 52 * ------------------
53 53 *
54 54 * ZFS must limit the rate of incoming writes to the rate at which it is able
55 55 * to sync data modifications to the backend storage. Throttling by too much
56 56 * creates an artificial limit; throttling by too little can only be sustained
57 57 * for short periods and would lead to highly lumpy performance. On a per-pool
58 58 * basis, ZFS tracks the amount of modified (dirty) data. As operations change
59 59 * data, the amount of dirty data increases; as ZFS syncs out data, the amount
60 60 * of dirty data decreases. When the amount of dirty data exceeds a
61 61 * predetermined threshold further modifications are blocked until the amount
62 62 * of dirty data decreases (as data is synced out).
63 63 *
64 64 * The limit on dirty data is tunable, and should be adjusted according to
65 65 * both the IO capacity and available memory of the system. The larger the
66 66 * window, the more ZFS is able to aggregate and amortize metadata (and data)
67 67 * changes. However, memory is a limited resource, and allowing for more dirty
68 68 * data comes at the cost of keeping other useful data in memory (for example
69 69 * ZFS data cached by the ARC).
70 70 *
71 71 * Implementation
72 72 *
73 73 * As buffers are modified dsl_pool_willuse_space() increments both the per-
74 74 * txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of
75 75 * dirty space used; dsl_pool_dirty_space() decrements those values as data
76 76 * is synced out from dsl_pool_sync(). While only the poolwide value is
77 77 * relevant, the per-txg value is useful for debugging. The tunable
78 78 * zfs_dirty_data_max determines the dirty space limit. Once that value is
79 79 * exceeded, new writes are halted until space frees up.
80 80 *
81 81 * The zfs_dirty_data_sync tunable dictates the threshold at which we
82 82 * ensure that there is a txg syncing (see the comment in txg.c for a full
83 83 * description of transaction group stages).
84 84 *
85 85 * The IO scheduler uses both the dirty space limit and current amount of
86 86 * dirty data as inputs. Those values affect the number of concurrent IOs ZFS
87 87 * issues. See the comment in vdev_queue.c for details of the IO scheduler.
88 88 *
89 89 * The delay is also calculated based on the amount of dirty data. See the
90 90 * comment above dmu_tx_delay() for details.
91 91 */
92 92
93 93 /*
94 94 * zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory,
95 95 * capped at zfs_dirty_data_max_max. It can also be overridden in /etc/system.
96 96 */
97 97 uint64_t zfs_dirty_data_max;
98 98 uint64_t zfs_dirty_data_max_max = 4ULL * 1024 * 1024 * 1024;
99 99 int zfs_dirty_data_max_percent = 10;
100 100
101 101 /*
102 102 * If there is at least this much dirty data, push out a txg.
103 103 */
104 104 uint64_t zfs_dirty_data_sync = 64 * 1024 * 1024;
105 105
106 106 /*
107 107 * Once there is this amount of dirty data, the dmu_tx_delay() will kick in
108 108 * and delay each transaction.
109 109 * This value should be >= zfs_vdev_async_write_active_max_dirty_percent.
110 110 */
111 111 int zfs_delay_min_dirty_percent = 60;
112 112
113 113 /*
114 114 * This controls how quickly the delay approaches infinity.
115 115 * Larger values cause it to delay more for a given amount of dirty data.
116 116 * Therefore larger values will cause there to be less dirty data for a
117 117 * given throughput.
118 118 *
119 119 * For the smoothest delay, this value should be about 1 billion divided
120 120 * by the maximum number of operations per second. This will smoothly
121 121 * handle between 10x and 1/10th this number.
122 122 *
123 123 * Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the
124 124 * multiply in dmu_tx_delay().
125 125 */
126 126 uint64_t zfs_delay_scale = 1000 * 1000 * 1000 / 2000;
127 127
128 128
129 129 hrtime_t zfs_throttle_delay = MSEC2NSEC(10);
130 130 hrtime_t zfs_throttle_resolution = MSEC2NSEC(10);
131 131
132 132 int
133 133 dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp)
134 134 {
135 135 uint64_t obj;
136 136 int err;
137 137
138 138 err = zap_lookup(dp->dp_meta_objset,
139 139 dsl_dir_phys(dp->dp_root_dir)->dd_child_dir_zapobj,
140 140 name, sizeof (obj), 1, &obj);
141 141 if (err)
142 142 return (err);
143 143
144 144 return (dsl_dir_hold_obj(dp, obj, name, dp, ddp));
145 145 }
146 146
147 147 static dsl_pool_t *
148 148 dsl_pool_open_impl(spa_t *spa, uint64_t txg)
149 149 {
150 150 dsl_pool_t *dp;
151 151 blkptr_t *bp = spa_get_rootblkptr(spa);
152 152
153 153 dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP);
154 154 dp->dp_spa = spa;
155 155 dp->dp_meta_rootbp = *bp;
156 156 rrw_init(&dp->dp_config_rwlock, B_TRUE);
157 157 txg_init(dp, txg);
158 158
159 159 txg_list_create(&dp->dp_dirty_datasets,
160 160 offsetof(dsl_dataset_t, ds_dirty_link));
161 161 txg_list_create(&dp->dp_dirty_zilogs,
162 162 offsetof(zilog_t, zl_dirty_link));
163 163 txg_list_create(&dp->dp_dirty_dirs,
164 164 offsetof(dsl_dir_t, dd_dirty_link));
165 165 txg_list_create(&dp->dp_sync_tasks,
166 166 offsetof(dsl_sync_task_t, dst_node));
167 167
168 168 mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL);
169 169 cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL);
170 170
171 171 dp->dp_vnrele_taskq = taskq_create("zfs_vn_rele_taskq", 1, minclsyspri,
172 172 1, 4, 0);
173 173
174 174 return (dp);
175 175 }
176 176
177 177 int
178 178 dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp)
179 179 {
180 180 int err;
181 181 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
182 182
183 183 err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp,
184 184 &dp->dp_meta_objset);
185 185 if (err != 0)
186 186 dsl_pool_close(dp);
187 187 else
188 188 *dpp = dp;
189 189
190 190 return (err);
191 191 }
192 192
193 193 int
194 194 dsl_pool_open(dsl_pool_t *dp)
195 195 {
196 196 int err;
197 197 dsl_dir_t *dd;
198 198 dsl_dataset_t *ds;
199 199 uint64_t obj;
200 200
201 201 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
202 202 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
203 203 DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1,
204 204 &dp->dp_root_dir_obj);
205 205 if (err)
206 206 goto out;
207 207
208 208 err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
209 209 NULL, dp, &dp->dp_root_dir);
210 210 if (err)
211 211 goto out;
212 212
213 213 err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir);
214 214 if (err)
215 215 goto out;
216 216
217 217 if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) {
218 218 err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd);
219 219 if (err)
220 220 goto out;
221 221 err = dsl_dataset_hold_obj(dp,
222 222 dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds);
223 223 if (err == 0) {
224 224 err = dsl_dataset_hold_obj(dp,
225 225 dsl_dataset_phys(ds)->ds_prev_snap_obj, dp,
226 226 &dp->dp_origin_snap);
227 227 dsl_dataset_rele(ds, FTAG);
228 228 }
229 229 dsl_dir_rele(dd, dp);
230 230 if (err)
231 231 goto out;
232 232 }
233 233
234 234 if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
235 235 err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME,
236 236 &dp->dp_free_dir);
237 237 if (err)
238 238 goto out;
239 239
240 240 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
241 241 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj);
242 242 if (err)
243 243 goto out;
244 244 VERIFY0(bpobj_open(&dp->dp_free_bpobj,
245 245 dp->dp_meta_objset, obj));
246 246 }
247 247
248 248 /*
249 249 * Note: errors ignored, because the leak dir will not exist if we
250 250 * have not encountered a leak yet.
251 251 */
252 252 (void) dsl_pool_open_special_dir(dp, LEAK_DIR_NAME,
253 253 &dp->dp_leak_dir);
254 254
255 255 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY)) {
256 256 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
257 257 DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1,
258 258 &dp->dp_bptree_obj);
259 259 if (err != 0)
260 260 goto out;
261 261 }
262 262
263 263 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMPTY_BPOBJ)) {
264 264 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
265 265 DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1,
266 266 &dp->dp_empty_bpobj);
267 267 if (err != 0)
268 268 goto out;
269 269 }
270 270
271 271 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
272 272 DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1,
273 273 &dp->dp_tmp_userrefs_obj);
274 274 if (err == ENOENT)
275 275 err = 0;
276 276 if (err)
277 277 goto out;
278 278
279 279 err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg);
280 280
281 281 out:
282 282 rrw_exit(&dp->dp_config_rwlock, FTAG);
283 283 return (err);
284 284 }
285 285
286 286 void
287 287 dsl_pool_close(dsl_pool_t *dp)
288 288 {
289 289 /*
290 290 * Drop our references from dsl_pool_open().
291 291 *
292 292 * Since we held the origin_snap from "syncing" context (which
293 293 * includes pool-opening context), it actually only got a "ref"
294 294 * and not a hold, so just drop that here.
295 295 */
296 296 if (dp->dp_origin_snap)
297 297 dsl_dataset_rele(dp->dp_origin_snap, dp);
298 298 if (dp->dp_mos_dir)
299 299 dsl_dir_rele(dp->dp_mos_dir, dp);
300 300 if (dp->dp_free_dir)
301 301 dsl_dir_rele(dp->dp_free_dir, dp);
302 302 if (dp->dp_leak_dir)
303 303 dsl_dir_rele(dp->dp_leak_dir, dp);
304 304 if (dp->dp_root_dir)
305 305 dsl_dir_rele(dp->dp_root_dir, dp);
306 306
307 307 bpobj_close(&dp->dp_free_bpobj);
308 308
309 309 /* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */
310 310 if (dp->dp_meta_objset)
311 311 dmu_objset_evict(dp->dp_meta_objset);
312 312
313 313 txg_list_destroy(&dp->dp_dirty_datasets);
314 314 txg_list_destroy(&dp->dp_dirty_zilogs);
315 315 txg_list_destroy(&dp->dp_sync_tasks);
316 316 txg_list_destroy(&dp->dp_dirty_dirs);
317 317
318 318 /*
319 319 * We can't set retry to TRUE since we're explicitly specifying
320 320 * a spa to flush. This is good enough; any missed buffers for
321 321 * this spa won't cause trouble, and they'll eventually fall
322 322 * out of the ARC just like any other unused buffer.
323 323 */
324 324 arc_flush(dp->dp_spa, FALSE);
325 325
326 326 txg_fini(dp);
327 327 dsl_scan_fini(dp);
328 328 dmu_buf_user_evict_wait();
329 329
330 330 rrw_destroy(&dp->dp_config_rwlock);
331 331 mutex_destroy(&dp->dp_lock);
332 332 taskq_destroy(dp->dp_vnrele_taskq);
333 333 if (dp->dp_blkstats)
334 334 kmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
335 335 kmem_free(dp, sizeof (dsl_pool_t));
336 336 }
337 337
338 338 dsl_pool_t *
339 339 dsl_pool_create(spa_t *spa, nvlist_t *zplprops, uint64_t txg)
340 340 {
341 341 int err;
342 342 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
343 343 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
344 344 objset_t *os;
345 345 dsl_dataset_t *ds;
346 346 uint64_t obj;
347 347
348 348 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
349 349
350 350 /* create and open the MOS (meta-objset) */
351 351 dp->dp_meta_objset = dmu_objset_create_impl(spa,
352 352 NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx);
353 353
354 354 /* create the pool directory */
355 355 err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
356 356 DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx);
357 357 ASSERT0(err);
358 358
359 359 /* Initialize scan structures */
360 360 VERIFY0(dsl_scan_init(dp, txg));
361 361
362 362 /* create and open the root dir */
363 363 dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx);
364 364 VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
365 365 NULL, dp, &dp->dp_root_dir));
366 366
367 367 /* create and open the meta-objset dir */
368 368 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx);
369 369 VERIFY0(dsl_pool_open_special_dir(dp,
370 370 MOS_DIR_NAME, &dp->dp_mos_dir));
371 371
372 372 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
373 373 /* create and open the free dir */
374 374 (void) dsl_dir_create_sync(dp, dp->dp_root_dir,
375 375 FREE_DIR_NAME, tx);
376 376 VERIFY0(dsl_pool_open_special_dir(dp,
377 377 FREE_DIR_NAME, &dp->dp_free_dir));
378 378
379 379 /* create and open the free_bplist */
380 380 obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx);
381 381 VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
382 382 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0);
383 383 VERIFY0(bpobj_open(&dp->dp_free_bpobj,
384 384 dp->dp_meta_objset, obj));
385 385 }
386 386
387 387 if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB)
388 388 dsl_pool_create_origin(dp, tx);
389 389
390 390 /* create the root dataset */
391 391 obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, 0, tx);
392 392
393 393 /* create the root objset */
394 394 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, &ds));
395 395 os = dmu_objset_create_impl(dp->dp_spa, ds,
396 396 dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx);
397 397 #ifdef _KERNEL
398 398 zfs_create_fs(os, kcred, zplprops, tx);
399 399 #endif
400 400 dsl_dataset_rele(ds, FTAG);
401 401
402 402 dmu_tx_commit(tx);
403 403
404 404 rrw_exit(&dp->dp_config_rwlock, FTAG);
405 405
406 406 return (dp);
407 407 }
408 408
409 409 /*
410 410 * Account for the meta-objset space in its placeholder dsl_dir.
411 411 */
412 412 void
413 413 dsl_pool_mos_diduse_space(dsl_pool_t *dp,
414 414 int64_t used, int64_t comp, int64_t uncomp)
415 415 {
416 416 ASSERT3U(comp, ==, uncomp); /* it's all metadata */
417 417 mutex_enter(&dp->dp_lock);
418 418 dp->dp_mos_used_delta += used;
419 419 dp->dp_mos_compressed_delta += comp;
420 420 dp->dp_mos_uncompressed_delta += uncomp;
421 421 mutex_exit(&dp->dp_lock);
422 422 }
423 423
424 424 static int
425 425 deadlist_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
426 426 {
427 427 dsl_deadlist_t *dl = arg;
428 428 dsl_deadlist_insert(dl, bp, tx);
429 429 return (0);
430 430 }
431 431
432 432 static void
433 433 dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx)
434 434 {
435 435 zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
436 436 dmu_objset_sync(dp->dp_meta_objset, zio, tx);
437 437 VERIFY0(zio_wait(zio));
438 438 dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", "");
439 439 spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
440 440 }
441 441
442 442 static void
443 443 dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta)
444 444 {
445 445 ASSERT(MUTEX_HELD(&dp->dp_lock));
446 446
447 447 if (delta < 0)
448 448 ASSERT3U(-delta, <=, dp->dp_dirty_total);
449 449
450 450 dp->dp_dirty_total += delta;
451 451
452 452 /*
453 453 * Note: we signal even when increasing dp_dirty_total.
454 454 * This ensures forward progress -- each thread wakes the next waiter.
455 455 */
456 456 if (dp->dp_dirty_total <= zfs_dirty_data_max)
457 457 cv_signal(&dp->dp_spaceavail_cv);
458 458 }
459 459
460 460 void
461 461 dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
462 462 {
463 463 zio_t *zio;
464 464 dmu_tx_t *tx;
465 465 dsl_dir_t *dd;
466 466 dsl_dataset_t *ds;
467 467 objset_t *mos = dp->dp_meta_objset;
468 468 list_t synced_datasets;
469 469
470 470 list_create(&synced_datasets, sizeof (dsl_dataset_t),
471 471 offsetof(dsl_dataset_t, ds_synced_link));
472 472
473 473 tx = dmu_tx_create_assigned(dp, txg);
474 474
475 475 /*
476 476 * Write out all dirty blocks of dirty datasets.
477 477 */
478 478 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
479 479 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
480 480 /*
481 481 * We must not sync any non-MOS datasets twice, because
482 482 * we may have taken a snapshot of them. However, we
483 483 * may sync newly-created datasets on pass 2.
484 484 */
485 485 ASSERT(!list_link_active(&ds->ds_synced_link));
486 486 list_insert_tail(&synced_datasets, ds);
487 487 dsl_dataset_sync(ds, zio, tx);
488 488 }
489 489 VERIFY0(zio_wait(zio));
490 490
491 491 /*
492 492 * We have written all of the accounted dirty data, so our
493 493 * dp_space_towrite should now be zero. However, some seldom-used
494 494 * code paths do not adhere to this (e.g. dbuf_undirty(), also
495 495 * rounding error in dbuf_write_physdone).
496 496 * Shore up the accounting of any dirtied space now.
497 497 */
498 498 dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg);
499 499
500 500 /*
501 501 * After the data blocks have been written (ensured by the zio_wait()
502 502 * above), update the user/group space accounting.
503 503 */
504 504 for (ds = list_head(&synced_datasets); ds != NULL;
505 505 ds = list_next(&synced_datasets, ds)) {
506 506 dmu_objset_do_userquota_updates(ds->ds_objset, tx);
507 507 }
508 508
509 509 /*
510 510 * Sync the datasets again to push out the changes due to
511 511 * userspace updates. This must be done before we process the
512 512 * sync tasks, so that any snapshots will have the correct
513 513 * user accounting information (and we won't get confused
514 514 * about which blocks are part of the snapshot).
515 515 */
516 516 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
517 517 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
518 518 ASSERT(list_link_active(&ds->ds_synced_link));
519 519 dmu_buf_rele(ds->ds_dbuf, ds);
520 520 dsl_dataset_sync(ds, zio, tx);
521 521 }
522 522 VERIFY0(zio_wait(zio));
523 523
524 524 /*
525 525 * Now that the datasets have been completely synced, we can
526 526 * clean up our in-memory structures accumulated while syncing:
527 527 *
528 528 * - move dead blocks from the pending deadlist to the on-disk deadlist
529 529 * - release hold from dsl_dataset_dirty()
530 530 */
531 531 while ((ds = list_remove_head(&synced_datasets)) != NULL) {
532 532 objset_t *os = ds->ds_objset;
533 533 bplist_iterate(&ds->ds_pending_deadlist,
534 534 deadlist_enqueue_cb, &ds->ds_deadlist, tx);
535 535 ASSERT(!dmu_objset_is_dirty(os, txg));
536 536 dmu_buf_rele(ds->ds_dbuf, ds);
537 537 }
538 538 while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) {
539 539 dsl_dir_sync(dd, tx);
540 540 }
541 541
542 542 /*
543 543 * The MOS's space is accounted for in the pool/$MOS
544 544 * (dp_mos_dir). We can't modify the mos while we're syncing
545 545 * it, so we remember the deltas and apply them here.
546 546 */
547 547 if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 ||
548 548 dp->dp_mos_uncompressed_delta != 0) {
549 549 dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD,
550 550 dp->dp_mos_used_delta,
551 551 dp->dp_mos_compressed_delta,
552 552 dp->dp_mos_uncompressed_delta, tx);
553 553 dp->dp_mos_used_delta = 0;
554 554 dp->dp_mos_compressed_delta = 0;
555 555 dp->dp_mos_uncompressed_delta = 0;
556 556 }
557 557
558 558 if (list_head(&mos->os_dirty_dnodes[txg & TXG_MASK]) != NULL ||
559 559 list_head(&mos->os_free_dnodes[txg & TXG_MASK]) != NULL) {
560 560 dsl_pool_sync_mos(dp, tx);
561 561 }
562 562
563 563 /*
564 564 * If we modify a dataset in the same txg that we want to destroy it,
565 565 * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it.
566 566 * dsl_dir_destroy_check() will fail if there are unexpected holds.
567 567 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf
568 568 * and clearing the hold on it) before we process the sync_tasks.
569 569 * The MOS data dirtied by the sync_tasks will be synced on the next
570 570 * pass.
571 571 */
572 572 if (!txg_list_empty(&dp->dp_sync_tasks, txg)) {
573 573 dsl_sync_task_t *dst;
574 574 /*
575 575 * No more sync tasks should have been added while we
576 576 * were syncing.
577 577 */
578 578 ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
579 579 while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL)
580 580 dsl_sync_task_sync(dst, tx);
581 581 }
582 582
583 583 dmu_tx_commit(tx);
584 584
585 585 DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg);
586 586 }
587 587
588 588 void
589 589 dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg)
590 590 {
591 591 zilog_t *zilog;
592 592
593 593 while (zilog = txg_list_remove(&dp->dp_dirty_zilogs, txg)) {
594 594 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
595 595 zil_clean(zilog, txg);
596 596 ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg));
597 597 dmu_buf_rele(ds->ds_dbuf, zilog);
598 598 }
599 599 ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg));
600 600 }
601 601
602 602 /*
603 603 * TRUE if the current thread is the tx_sync_thread or if we
604 604 * are being called from SPA context during pool initialization.
605 605 */
606 606 int
607 607 dsl_pool_sync_context(dsl_pool_t *dp)
608 608 {
609 609 return (curthread == dp->dp_tx.tx_sync_thread ||
610 610 spa_is_initializing(dp->dp_spa));
611 611 }
612 612
613 613 uint64_t
614 614 dsl_pool_adjustedsize(dsl_pool_t *dp, boolean_t netfree)
615 615 {
616 616 uint64_t space, resv;
617 617
618 618 /*
619 619 * If we're trying to assess whether it's OK to do a free,
620 620 * cut the reservation in half to allow forward progress
621 621 * (e.g. make it possible to rm(1) files from a full pool).
622 622 */
623 623 space = spa_get_dspace(dp->dp_spa);
624 624 resv = spa_get_slop_space(dp->dp_spa);
625 625 if (netfree)
626 626 resv >>= 1;
627 627
628 628 return (space - resv);
629 629 }
630 630
631 631 boolean_t
632 632 dsl_pool_need_dirty_delay(dsl_pool_t *dp)
633 633 {
634 634 uint64_t delay_min_bytes =
635 635 zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
636 636 boolean_t rv;
637 637
638 638 mutex_enter(&dp->dp_lock);
639 639 if (dp->dp_dirty_total > zfs_dirty_data_sync)
640 640 txg_kick(dp);
641 641 rv = (dp->dp_dirty_total > delay_min_bytes);
642 642 mutex_exit(&dp->dp_lock);
643 643 return (rv);
644 644 }
645 645
646 646 void
647 647 dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx)
648 648 {
649 649 if (space > 0) {
650 650 mutex_enter(&dp->dp_lock);
651 651 dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space;
652 652 dsl_pool_dirty_delta(dp, space);
653 653 mutex_exit(&dp->dp_lock);
654 654 }
655 655 }
656 656
657 657 void
658 658 dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg)
659 659 {
660 660 ASSERT3S(space, >=, 0);
661 661 if (space == 0)
662 662 return;
663 663 mutex_enter(&dp->dp_lock);
664 664 if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) {
665 665 /* XXX writing something we didn't dirty? */
666 666 space = dp->dp_dirty_pertxg[txg & TXG_MASK];
667 667 }
668 668 ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space);
669 669 dp->dp_dirty_pertxg[txg & TXG_MASK] -= space;
670 670 ASSERT3U(dp->dp_dirty_total, >=, space);
671 671 dsl_pool_dirty_delta(dp, -space);
672 672 mutex_exit(&dp->dp_lock);
673 673 }
674 674
675 675 /* ARGSUSED */
676 676 static int
677 677 upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
678 678 {
679 679 dmu_tx_t *tx = arg;
680 680 dsl_dataset_t *ds, *prev = NULL;
681 681 int err;
682 682
683 683 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
684 684 if (err)
685 685 return (err);
686 686
687 687 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
688 688 err = dsl_dataset_hold_obj(dp,
689 689 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
690 690 if (err) {
691 691 dsl_dataset_rele(ds, FTAG);
692 692 return (err);
693 693 }
694 694
695 695 if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object)
696 696 break;
697 697 dsl_dataset_rele(ds, FTAG);
698 698 ds = prev;
699 699 prev = NULL;
700 700 }
701 701
702 702 if (prev == NULL) {
703 703 prev = dp->dp_origin_snap;
704 704
705 705 /*
706 706 * The $ORIGIN can't have any data, or the accounting
707 707 * will be wrong.
708 708 */
709 709 ASSERT0(dsl_dataset_phys(prev)->ds_bp.blk_birth);
710 710
711 711 /* The origin doesn't get attached to itself */
712 712 if (ds->ds_object == prev->ds_object) {
713 713 dsl_dataset_rele(ds, FTAG);
714 714 return (0);
715 715 }
716 716
717 717 dmu_buf_will_dirty(ds->ds_dbuf, tx);
718 718 dsl_dataset_phys(ds)->ds_prev_snap_obj = prev->ds_object;
719 719 dsl_dataset_phys(ds)->ds_prev_snap_txg =
720 720 dsl_dataset_phys(prev)->ds_creation_txg;
721 721
722 722 dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
723 723 dsl_dir_phys(ds->ds_dir)->dd_origin_obj = prev->ds_object;
724 724
725 725 dmu_buf_will_dirty(prev->ds_dbuf, tx);
726 726 dsl_dataset_phys(prev)->ds_num_children++;
727 727
728 728 if (dsl_dataset_phys(ds)->ds_next_snap_obj == 0) {
729 729 ASSERT(ds->ds_prev == NULL);
730 730 VERIFY0(dsl_dataset_hold_obj(dp,
731 731 dsl_dataset_phys(ds)->ds_prev_snap_obj,
732 732 ds, &ds->ds_prev));
733 733 }
734 734 }
735 735
736 736 ASSERT3U(dsl_dir_phys(ds->ds_dir)->dd_origin_obj, ==, prev->ds_object);
737 737 ASSERT3U(dsl_dataset_phys(ds)->ds_prev_snap_obj, ==, prev->ds_object);
738 738
739 739 if (dsl_dataset_phys(prev)->ds_next_clones_obj == 0) {
740 740 dmu_buf_will_dirty(prev->ds_dbuf, tx);
741 741 dsl_dataset_phys(prev)->ds_next_clones_obj =
742 742 zap_create(dp->dp_meta_objset,
743 743 DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx);
744 744 }
745 745 VERIFY0(zap_add_int(dp->dp_meta_objset,
746 746 dsl_dataset_phys(prev)->ds_next_clones_obj, ds->ds_object, tx));
747 747
748 748 dsl_dataset_rele(ds, FTAG);
749 749 if (prev != dp->dp_origin_snap)
750 750 dsl_dataset_rele(prev, FTAG);
751 751 return (0);
752 752 }
753 753
754 754 void
755 755 dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx)
756 756 {
757 757 ASSERT(dmu_tx_is_syncing(tx));
758 758 ASSERT(dp->dp_origin_snap != NULL);
759 759
760 760 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb,
761 761 tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
762 762 }
763 763
764 764 /* ARGSUSED */
765 765 static int
766 766 upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
767 767 {
768 768 dmu_tx_t *tx = arg;
769 769 objset_t *mos = dp->dp_meta_objset;
770 770
771 771 if (dsl_dir_phys(ds->ds_dir)->dd_origin_obj != 0) {
772 772 dsl_dataset_t *origin;
773 773
774 774 VERIFY0(dsl_dataset_hold_obj(dp,
775 775 dsl_dir_phys(ds->ds_dir)->dd_origin_obj, FTAG, &origin));
776 776
777 777 if (dsl_dir_phys(origin->ds_dir)->dd_clones == 0) {
778 778 dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx);
779 779 dsl_dir_phys(origin->ds_dir)->dd_clones =
780 780 zap_create(mos, DMU_OT_DSL_CLONES, DMU_OT_NONE,
781 781 0, tx);
782 782 }
783 783
784 784 VERIFY0(zap_add_int(dp->dp_meta_objset,
785 785 dsl_dir_phys(origin->ds_dir)->dd_clones,
786 786 ds->ds_object, tx));
787 787
788 788 dsl_dataset_rele(origin, FTAG);
789 789 }
790 790 return (0);
791 791 }
792 792
793 793 void
794 794 dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx)
795 795 {
796 796 ASSERT(dmu_tx_is_syncing(tx));
797 797 uint64_t obj;
798 798
799 799 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx);
800 800 VERIFY0(dsl_pool_open_special_dir(dp,
801 801 FREE_DIR_NAME, &dp->dp_free_dir));
802 802
803 803 /*
804 804 * We can't use bpobj_alloc(), because spa_version() still
805 805 * returns the old version, and we need a new-version bpobj with
806 806 * subobj support. So call dmu_object_alloc() directly.
807 807 */
808 808 obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ,
809 809 SPA_OLD_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx);
810 810 VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
811 811 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
812 812 VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj));
813 813
814 814 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
815 815 upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
816 816 }
817 817
818 818 void
819 819 dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx)
820 820 {
821 821 uint64_t dsobj;
822 822 dsl_dataset_t *ds;
823 823
824 824 ASSERT(dmu_tx_is_syncing(tx));
825 825 ASSERT(dp->dp_origin_snap == NULL);
826 826 ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER));
827 827
828 828 /* create the origin dir, ds, & snap-ds */
829 829 dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME,
830 830 NULL, 0, kcred, tx);
831 831 VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
832 832 dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx);
833 833 VERIFY0(dsl_dataset_hold_obj(dp, dsl_dataset_phys(ds)->ds_prev_snap_obj,
834 834 dp, &dp->dp_origin_snap));
835 835 dsl_dataset_rele(ds, FTAG);
836 836 }
837 837
838 838 taskq_t *
839 839 dsl_pool_vnrele_taskq(dsl_pool_t *dp)
840 840 {
841 841 return (dp->dp_vnrele_taskq);
842 842 }
843 843
844 844 /*
845 845 * Walk through the pool-wide zap object of temporary snapshot user holds
846 846 * and release them.
847 847 */
848 848 void
849 849 dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp)
850 850 {
851 851 zap_attribute_t za;
852 852 zap_cursor_t zc;
853 853 objset_t *mos = dp->dp_meta_objset;
854 854 uint64_t zapobj = dp->dp_tmp_userrefs_obj;
855 855 nvlist_t *holds;
856 856
857 857 if (zapobj == 0)
858 858 return;
859 859 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
860 860
861 861 holds = fnvlist_alloc();
862 862
863 863 for (zap_cursor_init(&zc, mos, zapobj);
864 864 zap_cursor_retrieve(&zc, &za) == 0;
865 865 zap_cursor_advance(&zc)) {
866 866 char *htag;
867 867 nvlist_t *tags;
868 868
869 869 htag = strchr(za.za_name, '-');
870 870 *htag = '\0';
871 871 ++htag;
872 872 if (nvlist_lookup_nvlist(holds, za.za_name, &tags) != 0) {
873 873 tags = fnvlist_alloc();
874 874 fnvlist_add_boolean(tags, htag);
875 875 fnvlist_add_nvlist(holds, za.za_name, tags);
876 876 fnvlist_free(tags);
877 877 } else {
878 878 fnvlist_add_boolean(tags, htag);
879 879 }
880 880 }
881 881 dsl_dataset_user_release_tmp(dp, holds);
882 882 fnvlist_free(holds);
883 883 zap_cursor_fini(&zc);
884 884 }
885 885
886 886 /*
887 887 * Create the pool-wide zap object for storing temporary snapshot holds.
888 888 */
889 889 void
890 890 dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx)
891 891 {
892 892 objset_t *mos = dp->dp_meta_objset;
893 893
894 894 ASSERT(dp->dp_tmp_userrefs_obj == 0);
895 895 ASSERT(dmu_tx_is_syncing(tx));
896 896
897 897 dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS,
898 898 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx);
899 899 }
900 900
901 901 static int
902 902 dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj,
903 903 const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding)
904 904 {
905 905 objset_t *mos = dp->dp_meta_objset;
906 906 uint64_t zapobj = dp->dp_tmp_userrefs_obj;
907 907 char *name;
908 908 int error;
909 909
910 910 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
911 911 ASSERT(dmu_tx_is_syncing(tx));
912 912
913 913 /*
914 914 * If the pool was created prior to SPA_VERSION_USERREFS, the
915 915 * zap object for temporary holds might not exist yet.
916 916 */
917 917 if (zapobj == 0) {
918 918 if (holding) {
919 919 dsl_pool_user_hold_create_obj(dp, tx);
920 920 zapobj = dp->dp_tmp_userrefs_obj;
921 921 } else {
922 922 return (SET_ERROR(ENOENT));
923 923 }
924 924 }
925 925
926 926 name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag);
927 927 if (holding)
928 928 error = zap_add(mos, zapobj, name, 8, 1, &now, tx);
929 929 else
930 930 error = zap_remove(mos, zapobj, name, tx);
931 931 strfree(name);
932 932
933 933 return (error);
934 934 }
935 935
936 936 /*
937 937 * Add a temporary hold for the given dataset object and tag.
938 938 */
939 939 int
940 940 dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
941 941 uint64_t now, dmu_tx_t *tx)
942 942 {
943 943 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE));
944 944 }
945 945
946 946 /*
947 947 * Release a temporary hold for the given dataset object and tag.
948 948 */
949 949 int
950 950 dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
951 951 dmu_tx_t *tx)
952 952 {
953 953 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, NULL,
954 954 tx, B_FALSE));
955 955 }
956 956
957 957 /*
958 958 * DSL Pool Configuration Lock
959 959 *
960 960 * The dp_config_rwlock protects against changes to DSL state (e.g. dataset
961 961 * creation / destruction / rename / property setting). It must be held for
962 962 * read to hold a dataset or dsl_dir. I.e. you must call
963 963 * dsl_pool_config_enter() or dsl_pool_hold() before calling
964 964 * dsl_{dataset,dir}_hold{_obj}. In most circumstances, the dp_config_rwlock
965 965 * must be held continuously until all datasets and dsl_dirs are released.
966 966 *
967 967 * The only exception to this rule is that if a "long hold" is placed on
968 968 * a dataset, then the dp_config_rwlock may be dropped while the dataset
969 969 * is still held. The long hold will prevent the dataset from being
970 970 * destroyed -- the destroy will fail with EBUSY. A long hold can be
971 971 * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset
972 972 * (by calling dsl_{dataset,objset}_{try}own{_obj}).
973 973 *
974 974 * Legitimate long-holders (including owners) should be long-running, cancelable
975 975 * tasks that should cause "zfs destroy" to fail. This includes DMU
976 976 * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open),
977 977 * "zfs send", and "zfs diff". There are several other long-holders whose
978 978 * uses are suboptimal (e.g. "zfs promote", and zil_suspend()).
979 979 *
980 980 * The usual formula for long-holding would be:
981 981 * dsl_pool_hold()
982 982 * dsl_dataset_hold()
983 983 * ... perform checks ...
984 984 * dsl_dataset_long_hold()
985 985 * dsl_pool_rele()
986 986 * ... perform long-running task ...
987 987 * dsl_dataset_long_rele()
988 988 * dsl_dataset_rele()
989 989 *
990 990 * Note that when the long hold is released, the dataset is still held but
991 991 * the pool is not held. The dataset may change arbitrarily during this time
992 992 * (e.g. it could be destroyed). Therefore you shouldn't do anything to the
993 993 * dataset except release it.
994 994 *
995 995 * User-initiated operations (e.g. ioctls, zfs_ioc_*()) are either read-only
996 996 * or modifying operations.
997 997 *
998 998 * Modifying operations should generally use dsl_sync_task(). The synctask
999 999 * infrastructure enforces proper locking strategy with respect to the
1000 1000 * dp_config_rwlock. See the comment above dsl_sync_task() for details.
1001 1001 *
1002 1002 * Read-only operations will manually hold the pool, then the dataset, obtain
1003 1003 * information from the dataset, then release the pool and dataset.
1004 1004 * dmu_objset_{hold,rele}() are convenience routines that also do the pool
1005 1005 * hold/rele.
1006 1006 */
1007 1007
1008 1008 int
1009 1009 dsl_pool_hold(const char *name, void *tag, dsl_pool_t **dp)
1010 1010 {
1011 1011 spa_t *spa;
1012 1012 int error;
1013 1013
1014 1014 error = spa_open(name, &spa, tag);
1015 1015 if (error == 0) {
1016 1016 *dp = spa_get_dsl(spa);
1017 1017 dsl_pool_config_enter(*dp, tag);
1018 1018 }
1019 1019 return (error);
1020 1020 }
1021 1021
1022 1022 void
1023 1023 dsl_pool_rele(dsl_pool_t *dp, void *tag)
1024 1024 {
1025 1025 dsl_pool_config_exit(dp, tag);
1026 1026 spa_close(dp->dp_spa, tag);
1027 1027 }
1028 1028
1029 1029 void
1030 1030 dsl_pool_config_enter(dsl_pool_t *dp, void *tag)
1031 1031 {
1032 1032 /*
1033 1033 * We use a "reentrant" reader-writer lock, but not reentrantly.
1034 1034 *
1035 1035 * The rrwlock can (with the track_all flag) track all reading threads,
1036 1036 * which is very useful for debugging which code path failed to release
1037 1037 * the lock, and for verifying that the *current* thread does hold
1038 1038 * the lock.
↓ open down ↓ |
1038 lines elided |
↑ open up ↑ |
1039 1039 *
1040 1040 * (Unlike a rwlock, which knows that N threads hold it for
1041 1041 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE
1042 1042 * if any thread holds it for read, even if this thread doesn't).
1043 1043 */
1044 1044 ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1045 1045 rrw_enter(&dp->dp_config_rwlock, RW_READER, tag);
1046 1046 }
1047 1047
1048 1048 void
1049 +dsl_pool_config_enter_prio(dsl_pool_t *dp, void *tag)
1050 +{
1051 + ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1052 + rrw_enter_read_prio(&dp->dp_config_rwlock, tag);
1053 +}
1054 +
1055 +void
1049 1056 dsl_pool_config_exit(dsl_pool_t *dp, void *tag)
1050 1057 {
1051 1058 rrw_exit(&dp->dp_config_rwlock, tag);
1052 1059 }
1053 1060
1054 1061 boolean_t
1055 1062 dsl_pool_config_held(dsl_pool_t *dp)
1056 1063 {
1057 1064 return (RRW_LOCK_HELD(&dp->dp_config_rwlock));
1058 1065 }
1059 1066
1060 1067 boolean_t
1061 1068 dsl_pool_config_held_writer(dsl_pool_t *dp)
1062 1069 {
1063 1070 return (RRW_WRITE_HELD(&dp->dp_config_rwlock));
1064 1071 }
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX