1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  23  * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
  24  */
  25 
  26 /* Portions Copyright 2010 Robert Milkowski */
  27 
  28 #include <sys/zfs_context.h>
  29 #include <sys/spa.h>
  30 #include <sys/dmu.h>
  31 #include <sys/zap.h>
  32 #include <sys/arc.h>
  33 #include <sys/stat.h>
  34 #include <sys/resource.h>
  35 #include <sys/zil.h>
  36 #include <sys/zil_impl.h>
  37 #include <sys/dsl_dataset.h>
  38 #include <sys/vdev_impl.h>
  39 #include <sys/dmu_tx.h>
  40 #include <sys/dsl_pool.h>
  41 
  42 /*
  43  * The zfs intent log (ZIL) saves transaction records of system calls
  44  * that change the file system in memory with enough information
  45  * to be able to replay them. These are stored in memory until
  46  * either the DMU transaction group (txg) commits them to the stable pool
  47  * and they can be discarded, or they are flushed to the stable log
  48  * (also in the pool) due to a fsync, O_DSYNC or other synchronous
  49  * requirement. In the event of a panic or power fail then those log
  50  * records (transactions) are replayed.
  51  *
  52  * There is one ZIL per file system. Its on-disk (pool) format consists
  53  * of 3 parts:
  54  *
  55  *      - ZIL header
  56  *      - ZIL blocks
  57  *      - ZIL records
  58  *
  59  * A log record holds a system call transaction. Log blocks can
  60  * hold many log records and the blocks are chained together.
  61  * Each ZIL block contains a block pointer (blkptr_t) to the next
  62  * ZIL block in the chain. The ZIL header points to the first
  63  * block in the chain. Note there is not a fixed place in the pool
  64  * to hold blocks. They are dynamically allocated and freed as
  65  * needed from the blocks available. Figure X shows the ZIL structure:
  66  */
  67 
  68 /*
  69  * Disable intent logging replay.  This global ZIL switch affects all pools.
  70  */
  71 int zil_replay_disable = 0;
  72 
  73 /*
  74  * Tunable parameter for debugging or performance analysis.  Setting
  75  * zfs_nocacheflush will cause corruption on power loss if a volatile
  76  * out-of-order write cache is enabled.
  77  */
  78 boolean_t zfs_nocacheflush = B_FALSE;
  79 
  80 static kmem_cache_t *zil_lwb_cache;
  81 
  82 static void zil_async_to_sync(zilog_t *zilog, uint64_t foid);
  83 
  84 #define LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
  85     sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
  86 
  87 
  88 /*
  89  * ziltest is by and large an ugly hack, but very useful in
  90  * checking replay without tedious work.
  91  * When running ziltest we want to keep all itx's and so maintain
  92  * a single list in the zl_itxg[] that uses a high txg: ZILTEST_TXG
  93  * We subtract TXG_CONCURRENT_STATES to allow for common code.
  94  */
  95 #define ZILTEST_TXG (UINT64_MAX - TXG_CONCURRENT_STATES)
  96 
  97 static int
  98 zil_bp_compare(const void *x1, const void *x2)
  99 {
 100         const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
 101         const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
 102 
 103         if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2))
 104                 return (-1);
 105         if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2))
 106                 return (1);
 107 
 108         if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2))
 109                 return (-1);
 110         if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2))
 111                 return (1);
 112 
 113         return (0);
 114 }
 115 
 116 static void
 117 zil_bp_tree_init(zilog_t *zilog)
 118 {
 119         avl_create(&zilog->zl_bp_tree, zil_bp_compare,
 120             sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
 121 }
 122 
 123 static void
 124 zil_bp_tree_fini(zilog_t *zilog)
 125 {
 126         avl_tree_t *t = &zilog->zl_bp_tree;
 127         zil_bp_node_t *zn;
 128         void *cookie = NULL;
 129 
 130         while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
 131                 kmem_free(zn, sizeof (zil_bp_node_t));
 132 
 133         avl_destroy(t);
 134 }
 135 
 136 int
 137 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
 138 {
 139         avl_tree_t *t = &zilog->zl_bp_tree;
 140         const dva_t *dva;
 141         zil_bp_node_t *zn;
 142         avl_index_t where;
 143 
 144         if (BP_IS_EMBEDDED(bp))
 145                 return (0);
 146 
 147         dva = BP_IDENTITY(bp);
 148 
 149         if (avl_find(t, dva, &where) != NULL)
 150                 return (SET_ERROR(EEXIST));
 151 
 152         zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
 153         zn->zn_dva = *dva;
 154         avl_insert(t, zn, where);
 155 
 156         return (0);
 157 }
 158 
 159 static zil_header_t *
 160 zil_header_in_syncing_context(zilog_t *zilog)
 161 {
 162         return ((zil_header_t *)zilog->zl_header);
 163 }
 164 
 165 static void
 166 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
 167 {
 168         zio_cksum_t *zc = &bp->blk_cksum;
 169 
 170         zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL);
 171         zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL);
 172         zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
 173         zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
 174 }
 175 
 176 /*
 177  * Read a log block and make sure it's valid.
 178  */
 179 static int
 180 zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst,
 181     char **end)
 182 {
 183         enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
 184         arc_flags_t aflags = ARC_FLAG_WAIT;
 185         arc_buf_t *abuf = NULL;
 186         zbookmark_phys_t zb;
 187         int error;
 188 
 189         if (zilog->zl_header->zh_claim_txg == 0)
 190                 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
 191 
 192         if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
 193                 zio_flags |= ZIO_FLAG_SPECULATIVE;
 194 
 195         SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
 196             ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
 197 
 198         error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
 199             ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
 200 
 201         if (error == 0) {
 202                 zio_cksum_t cksum = bp->blk_cksum;
 203 
 204                 /*
 205                  * Validate the checksummed log block.
 206                  *
 207                  * Sequence numbers should be... sequential.  The checksum
 208                  * verifier for the next block should be bp's checksum plus 1.
 209                  *
 210                  * Also check the log chain linkage and size used.
 211                  */
 212                 cksum.zc_word[ZIL_ZC_SEQ]++;
 213 
 214                 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
 215                         zil_chain_t *zilc = abuf->b_data;
 216                         char *lr = (char *)(zilc + 1);
 217                         uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
 218 
 219                         if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
 220                             sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
 221                                 error = SET_ERROR(ECKSUM);
 222                         } else {
 223                                 ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE);
 224                                 bcopy(lr, dst, len);
 225                                 *end = (char *)dst + len;
 226                                 *nbp = zilc->zc_next_blk;
 227                         }
 228                 } else {
 229                         char *lr = abuf->b_data;
 230                         uint64_t size = BP_GET_LSIZE(bp);
 231                         zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
 232 
 233                         if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
 234                             sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
 235                             (zilc->zc_nused > (size - sizeof (*zilc)))) {
 236                                 error = SET_ERROR(ECKSUM);
 237                         } else {
 238                                 ASSERT3U(zilc->zc_nused, <=,
 239                                     SPA_OLD_MAXBLOCKSIZE);
 240                                 bcopy(lr, dst, zilc->zc_nused);
 241                                 *end = (char *)dst + zilc->zc_nused;
 242                                 *nbp = zilc->zc_next_blk;
 243                         }
 244                 }
 245 
 246                 VERIFY(arc_buf_remove_ref(abuf, &abuf));
 247         }
 248 
 249         return (error);
 250 }
 251 
 252 /*
 253  * Read a TX_WRITE log data block.
 254  */
 255 static int
 256 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
 257 {
 258         enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
 259         const blkptr_t *bp = &lr->lr_blkptr;
 260         arc_flags_t aflags = ARC_FLAG_WAIT;
 261         arc_buf_t *abuf = NULL;
 262         zbookmark_phys_t zb;
 263         int error;
 264 
 265         if (BP_IS_HOLE(bp)) {
 266                 if (wbuf != NULL)
 267                         bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length));
 268                 return (0);
 269         }
 270 
 271         if (zilog->zl_header->zh_claim_txg == 0)
 272                 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
 273 
 274         SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
 275             ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
 276 
 277         error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
 278             ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
 279 
 280         if (error == 0) {
 281                 if (wbuf != NULL)
 282                         bcopy(abuf->b_data, wbuf, arc_buf_size(abuf));
 283                 (void) arc_buf_remove_ref(abuf, &abuf);
 284         }
 285 
 286         return (error);
 287 }
 288 
 289 /*
 290  * Parse the intent log, and call parse_func for each valid record within.
 291  */
 292 int
 293 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
 294     zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg)
 295 {
 296         const zil_header_t *zh = zilog->zl_header;
 297         boolean_t claimed = !!zh->zh_claim_txg;
 298         uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
 299         uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
 300         uint64_t max_blk_seq = 0;
 301         uint64_t max_lr_seq = 0;
 302         uint64_t blk_count = 0;
 303         uint64_t lr_count = 0;
 304         blkptr_t blk, next_blk;
 305         char *lrbuf, *lrp;
 306         int error = 0;
 307 
 308         /*
 309          * Old logs didn't record the maximum zh_claim_lr_seq.
 310          */
 311         if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
 312                 claim_lr_seq = UINT64_MAX;
 313 
 314         /*
 315          * Starting at the block pointed to by zh_log we read the log chain.
 316          * For each block in the chain we strongly check that block to
 317          * ensure its validity.  We stop when an invalid block is found.
 318          * For each block pointer in the chain we call parse_blk_func().
 319          * For each record in each valid block we call parse_lr_func().
 320          * If the log has been claimed, stop if we encounter a sequence
 321          * number greater than the highest claimed sequence number.
 322          */
 323         lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE);
 324         zil_bp_tree_init(zilog);
 325 
 326         for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
 327                 uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
 328                 int reclen;
 329                 char *end;
 330 
 331                 if (blk_seq > claim_blk_seq)
 332                         break;
 333                 if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0)
 334                         break;
 335                 ASSERT3U(max_blk_seq, <, blk_seq);
 336                 max_blk_seq = blk_seq;
 337                 blk_count++;
 338 
 339                 if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
 340                         break;
 341 
 342                 error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end);
 343                 if (error != 0)
 344                         break;
 345 
 346                 for (lrp = lrbuf; lrp < end; lrp += reclen) {
 347                         lr_t *lr = (lr_t *)lrp;
 348                         reclen = lr->lrc_reclen;
 349                         ASSERT3U(reclen, >=, sizeof (lr_t));
 350                         if (lr->lrc_seq > claim_lr_seq)
 351                                 goto done;
 352                         if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0)
 353                                 goto done;
 354                         ASSERT3U(max_lr_seq, <, lr->lrc_seq);
 355                         max_lr_seq = lr->lrc_seq;
 356                         lr_count++;
 357                 }
 358         }
 359 done:
 360         zilog->zl_parse_error = error;
 361         zilog->zl_parse_blk_seq = max_blk_seq;
 362         zilog->zl_parse_lr_seq = max_lr_seq;
 363         zilog->zl_parse_blk_count = blk_count;
 364         zilog->zl_parse_lr_count = lr_count;
 365 
 366         ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
 367             (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq));
 368 
 369         zil_bp_tree_fini(zilog);
 370         zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE);
 371 
 372         return (error);
 373 }
 374 
 375 static int
 376 zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
 377 {
 378         /*
 379          * Claim log block if not already committed and not already claimed.
 380          * If tx == NULL, just verify that the block is claimable.
 381          */
 382         if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
 383             zil_bp_tree_add(zilog, bp) != 0)
 384                 return (0);
 385 
 386         return (zio_wait(zio_claim(NULL, zilog->zl_spa,
 387             tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
 388             ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
 389 }
 390 
 391 static int
 392 zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
 393 {
 394         lr_write_t *lr = (lr_write_t *)lrc;
 395         int error;
 396 
 397         if (lrc->lrc_txtype != TX_WRITE)
 398                 return (0);
 399 
 400         /*
 401          * If the block is not readable, don't claim it.  This can happen
 402          * in normal operation when a log block is written to disk before
 403          * some of the dmu_sync() blocks it points to.  In this case, the
 404          * transaction cannot have been committed to anyone (we would have
 405          * waited for all writes to be stable first), so it is semantically
 406          * correct to declare this the end of the log.
 407          */
 408         if (lr->lr_blkptr.blk_birth >= first_txg &&
 409             (error = zil_read_log_data(zilog, lr, NULL)) != 0)
 410                 return (error);
 411         return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
 412 }
 413 
 414 /* ARGSUSED */
 415 static int
 416 zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg)
 417 {
 418         zio_free_zil(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
 419 
 420         return (0);
 421 }
 422 
 423 static int
 424 zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg)
 425 {
 426         lr_write_t *lr = (lr_write_t *)lrc;
 427         blkptr_t *bp = &lr->lr_blkptr;
 428 
 429         /*
 430          * If we previously claimed it, we need to free it.
 431          */
 432         if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
 433             bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
 434             !BP_IS_HOLE(bp))
 435                 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
 436 
 437         return (0);
 438 }
 439 
 440 static lwb_t *
 441 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, uint64_t txg)
 442 {
 443         lwb_t *lwb;
 444 
 445         lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
 446         lwb->lwb_zilog = zilog;
 447         lwb->lwb_blk = *bp;
 448         lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
 449         lwb->lwb_max_txg = txg;
 450         lwb->lwb_zio = NULL;
 451         lwb->lwb_tx = NULL;
 452         if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
 453                 lwb->lwb_nused = sizeof (zil_chain_t);
 454                 lwb->lwb_sz = BP_GET_LSIZE(bp);
 455         } else {
 456                 lwb->lwb_nused = 0;
 457                 lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
 458         }
 459 
 460         mutex_enter(&zilog->zl_lock);
 461         list_insert_tail(&zilog->zl_lwb_list, lwb);
 462         mutex_exit(&zilog->zl_lock);
 463 
 464         return (lwb);
 465 }
 466 
 467 /*
 468  * Called when we create in-memory log transactions so that we know
 469  * to cleanup the itxs at the end of spa_sync().
 470  */
 471 void
 472 zilog_dirty(zilog_t *zilog, uint64_t txg)
 473 {
 474         dsl_pool_t *dp = zilog->zl_dmu_pool;
 475         dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
 476 
 477         if (ds->ds_is_snapshot)
 478                 panic("dirtying snapshot!");
 479 
 480         if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
 481                 /* up the hold count until we can be written out */
 482                 dmu_buf_add_ref(ds->ds_dbuf, zilog);
 483         }
 484 }
 485 
 486 boolean_t
 487 zilog_is_dirty(zilog_t *zilog)
 488 {
 489         dsl_pool_t *dp = zilog->zl_dmu_pool;
 490 
 491         for (int t = 0; t < TXG_SIZE; t++) {
 492                 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
 493                         return (B_TRUE);
 494         }
 495         return (B_FALSE);
 496 }
 497 
 498 /*
 499  * Create an on-disk intent log.
 500  */
 501 static lwb_t *
 502 zil_create(zilog_t *zilog)
 503 {
 504         const zil_header_t *zh = zilog->zl_header;
 505         lwb_t *lwb = NULL;
 506         uint64_t txg = 0;
 507         dmu_tx_t *tx = NULL;
 508         blkptr_t blk;
 509         int error = 0;
 510 
 511         /*
 512          * Wait for any previous destroy to complete.
 513          */
 514         txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
 515 
 516         ASSERT(zh->zh_claim_txg == 0);
 517         ASSERT(zh->zh_replay_seq == 0);
 518 
 519         blk = zh->zh_log;
 520 
 521         /*
 522          * Allocate an initial log block if:
 523          *    - there isn't one already
 524          *    - the existing block is the wrong endianess
 525          */
 526         if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
 527                 tx = dmu_tx_create(zilog->zl_os);
 528                 VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
 529                 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
 530                 txg = dmu_tx_get_txg(tx);
 531 
 532                 if (!BP_IS_HOLE(&blk)) {
 533                         zio_free_zil(zilog->zl_spa, txg, &blk);
 534                         BP_ZERO(&blk);
 535                 }
 536 
 537                 error = zio_alloc_zil(zilog->zl_spa, txg, &blk, NULL,
 538                     ZIL_MIN_BLKSZ, zilog->zl_logbias == ZFS_LOGBIAS_LATENCY);
 539 
 540                 if (error == 0)
 541                         zil_init_log_chain(zilog, &blk);
 542         }
 543 
 544         /*
 545          * Allocate a log write buffer (lwb) for the first log block.
 546          */
 547         if (error == 0)
 548                 lwb = zil_alloc_lwb(zilog, &blk, txg);
 549 
 550         /*
 551          * If we just allocated the first log block, commit our transaction
 552          * and wait for zil_sync() to stuff the block poiner into zh_log.
 553          * (zh is part of the MOS, so we cannot modify it in open context.)
 554          */
 555         if (tx != NULL) {
 556                 dmu_tx_commit(tx);
 557                 txg_wait_synced(zilog->zl_dmu_pool, txg);
 558         }
 559 
 560         ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
 561 
 562         return (lwb);
 563 }
 564 
 565 /*
 566  * In one tx, free all log blocks and clear the log header.
 567  * If keep_first is set, then we're replaying a log with no content.
 568  * We want to keep the first block, however, so that the first
 569  * synchronous transaction doesn't require a txg_wait_synced()
 570  * in zil_create().  We don't need to txg_wait_synced() here either
 571  * when keep_first is set, because both zil_create() and zil_destroy()
 572  * will wait for any in-progress destroys to complete.
 573  */
 574 void
 575 zil_destroy(zilog_t *zilog, boolean_t keep_first)
 576 {
 577         const zil_header_t *zh = zilog->zl_header;
 578         lwb_t *lwb;
 579         dmu_tx_t *tx;
 580         uint64_t txg;
 581 
 582         /*
 583          * Wait for any previous destroy to complete.
 584          */
 585         txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
 586 
 587         zilog->zl_old_header = *zh;          /* debugging aid */
 588 
 589         if (BP_IS_HOLE(&zh->zh_log))
 590                 return;
 591 
 592         tx = dmu_tx_create(zilog->zl_os);
 593         VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
 594         dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
 595         txg = dmu_tx_get_txg(tx);
 596 
 597         mutex_enter(&zilog->zl_lock);
 598 
 599         ASSERT3U(zilog->zl_destroy_txg, <, txg);
 600         zilog->zl_destroy_txg = txg;
 601         zilog->zl_keep_first = keep_first;
 602 
 603         if (!list_is_empty(&zilog->zl_lwb_list)) {
 604                 ASSERT(zh->zh_claim_txg == 0);
 605                 VERIFY(!keep_first);
 606                 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
 607                         list_remove(&zilog->zl_lwb_list, lwb);
 608                         if (lwb->lwb_buf != NULL)
 609                                 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
 610                         zio_free_zil(zilog->zl_spa, txg, &lwb->lwb_blk);
 611                         kmem_cache_free(zil_lwb_cache, lwb);
 612                 }
 613         } else if (!keep_first) {
 614                 zil_destroy_sync(zilog, tx);
 615         }
 616         mutex_exit(&zilog->zl_lock);
 617 
 618         dmu_tx_commit(tx);
 619 }
 620 
 621 void
 622 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
 623 {
 624         ASSERT(list_is_empty(&zilog->zl_lwb_list));
 625         (void) zil_parse(zilog, zil_free_log_block,
 626             zil_free_log_record, tx, zilog->zl_header->zh_claim_txg);
 627 }
 628 
 629 int
 630 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
 631 {
 632         dmu_tx_t *tx = txarg;
 633         uint64_t first_txg = dmu_tx_get_txg(tx);
 634         zilog_t *zilog;
 635         zil_header_t *zh;
 636         objset_t *os;
 637         int error;
 638 
 639         error = dmu_objset_own_obj(dp, ds->ds_object,
 640             DMU_OST_ANY, B_FALSE, FTAG, &os);
 641         if (error != 0) {
 642                 /*
 643                  * EBUSY indicates that the objset is inconsistent, in which
 644                  * case it can not have a ZIL.
 645                  */
 646                 if (error != EBUSY) {
 647                         cmn_err(CE_WARN, "can't open objset for %llu, error %u",
 648                             (unsigned long long)ds->ds_object, error);
 649                 }
 650                 return (0);
 651         }
 652 
 653         zilog = dmu_objset_zil(os);
 654         zh = zil_header_in_syncing_context(zilog);
 655 
 656         if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR) {
 657                 if (!BP_IS_HOLE(&zh->zh_log))
 658                         zio_free_zil(zilog->zl_spa, first_txg, &zh->zh_log);
 659                 BP_ZERO(&zh->zh_log);
 660                 dsl_dataset_dirty(dmu_objset_ds(os), tx);
 661                 dmu_objset_disown(os, FTAG);
 662                 return (0);
 663         }
 664 
 665         /*
 666          * Claim all log blocks if we haven't already done so, and remember
 667          * the highest claimed sequence number.  This ensures that if we can
 668          * read only part of the log now (e.g. due to a missing device),
 669          * but we can read the entire log later, we will not try to replay
 670          * or destroy beyond the last block we successfully claimed.
 671          */
 672         ASSERT3U(zh->zh_claim_txg, <=, first_txg);
 673         if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
 674                 (void) zil_parse(zilog, zil_claim_log_block,
 675                     zil_claim_log_record, tx, first_txg);
 676                 zh->zh_claim_txg = first_txg;
 677                 zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
 678                 zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
 679                 if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
 680                         zh->zh_flags |= ZIL_REPLAY_NEEDED;
 681                 zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
 682                 dsl_dataset_dirty(dmu_objset_ds(os), tx);
 683         }
 684 
 685         ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
 686         dmu_objset_disown(os, FTAG);
 687         return (0);
 688 }
 689 
 690 /*
 691  * Check the log by walking the log chain.
 692  * Checksum errors are ok as they indicate the end of the chain.
 693  * Any other error (no device or read failure) returns an error.
 694  */
 695 /* ARGSUSED */
 696 int
 697 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
 698 {
 699         zilog_t *zilog;
 700         objset_t *os;
 701         blkptr_t *bp;
 702         int error;
 703 
 704         ASSERT(tx == NULL);
 705 
 706         error = dmu_objset_from_ds(ds, &os);
 707         if (error != 0) {
 708                 cmn_err(CE_WARN, "can't open objset %llu, error %d",
 709                     (unsigned long long)ds->ds_object, error);
 710                 return (0);
 711         }
 712 
 713         zilog = dmu_objset_zil(os);
 714         bp = (blkptr_t *)&zilog->zl_header->zh_log;
 715 
 716         /*
 717          * Check the first block and determine if it's on a log device
 718          * which may have been removed or faulted prior to loading this
 719          * pool.  If so, there's no point in checking the rest of the log
 720          * as its content should have already been synced to the pool.
 721          */
 722         if (!BP_IS_HOLE(bp)) {
 723                 vdev_t *vd;
 724                 boolean_t valid = B_TRUE;
 725 
 726                 spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
 727                 vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
 728                 if (vd->vdev_islog && vdev_is_dead(vd))
 729                         valid = vdev_log_state_valid(vd);
 730                 spa_config_exit(os->os_spa, SCL_STATE, FTAG);
 731 
 732                 if (!valid)
 733                         return (0);
 734         }
 735 
 736         /*
 737          * Because tx == NULL, zil_claim_log_block() will not actually claim
 738          * any blocks, but just determine whether it is possible to do so.
 739          * In addition to checking the log chain, zil_claim_log_block()
 740          * will invoke zio_claim() with a done func of spa_claim_notify(),
 741          * which will update spa_max_claim_txg.  See spa_load() for details.
 742          */
 743         error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
 744             zilog->zl_header->zh_claim_txg ? -1ULL : spa_first_txg(os->os_spa));
 745 
 746         return ((error == ECKSUM || error == ENOENT) ? 0 : error);
 747 }
 748 
 749 static int
 750 zil_vdev_compare(const void *x1, const void *x2)
 751 {
 752         const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
 753         const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
 754 
 755         if (v1 < v2)
 756                 return (-1);
 757         if (v1 > v2)
 758                 return (1);
 759 
 760         return (0);
 761 }
 762 
 763 void
 764 zil_add_block(zilog_t *zilog, const blkptr_t *bp)
 765 {
 766         avl_tree_t *t = &zilog->zl_vdev_tree;
 767         avl_index_t where;
 768         zil_vdev_node_t *zv, zvsearch;
 769         int ndvas = BP_GET_NDVAS(bp);
 770         int i;
 771 
 772         if (zfs_nocacheflush)
 773                 return;
 774 
 775         ASSERT(zilog->zl_writer);
 776 
 777         /*
 778          * Even though we're zl_writer, we still need a lock because the
 779          * zl_get_data() callbacks may have dmu_sync() done callbacks
 780          * that will run concurrently.
 781          */
 782         mutex_enter(&zilog->zl_vdev_lock);
 783         for (i = 0; i < ndvas; i++) {
 784                 zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
 785                 if (avl_find(t, &zvsearch, &where) == NULL) {
 786                         zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
 787                         zv->zv_vdev = zvsearch.zv_vdev;
 788                         avl_insert(t, zv, where);
 789                 }
 790         }
 791         mutex_exit(&zilog->zl_vdev_lock);
 792 }
 793 
 794 static void
 795 zil_flush_vdevs(zilog_t *zilog)
 796 {
 797         spa_t *spa = zilog->zl_spa;
 798         avl_tree_t *t = &zilog->zl_vdev_tree;
 799         void *cookie = NULL;
 800         zil_vdev_node_t *zv;
 801         zio_t *zio;
 802 
 803         ASSERT(zilog->zl_writer);
 804 
 805         /*
 806          * We don't need zl_vdev_lock here because we're the zl_writer,
 807          * and all zl_get_data() callbacks are done.
 808          */
 809         if (avl_numnodes(t) == 0)
 810                 return;
 811 
 812         spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
 813 
 814         zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
 815 
 816         while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
 817                 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
 818                 if (vd != NULL)
 819                         zio_flush(zio, vd);
 820                 kmem_free(zv, sizeof (*zv));
 821         }
 822 
 823         /*
 824          * Wait for all the flushes to complete.  Not all devices actually
 825          * support the DKIOCFLUSHWRITECACHE ioctl, so it's OK if it fails.
 826          */
 827         (void) zio_wait(zio);
 828 
 829         spa_config_exit(spa, SCL_STATE, FTAG);
 830 }
 831 
 832 /*
 833  * Function called when a log block write completes
 834  */
 835 static void
 836 zil_lwb_write_done(zio_t *zio)
 837 {
 838         lwb_t *lwb = zio->io_private;
 839         zilog_t *zilog = lwb->lwb_zilog;
 840         dmu_tx_t *tx = lwb->lwb_tx;
 841 
 842         ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
 843         ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
 844         ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
 845         ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
 846         ASSERT(!BP_IS_GANG(zio->io_bp));
 847         ASSERT(!BP_IS_HOLE(zio->io_bp));
 848         ASSERT(BP_GET_FILL(zio->io_bp) == 0);
 849 
 850         /*
 851          * Ensure the lwb buffer pointer is cleared before releasing
 852          * the txg. If we have had an allocation failure and
 853          * the txg is waiting to sync then we want want zil_sync()
 854          * to remove the lwb so that it's not picked up as the next new
 855          * one in zil_commit_writer(). zil_sync() will only remove
 856          * the lwb if lwb_buf is null.
 857          */
 858         zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
 859         mutex_enter(&zilog->zl_lock);
 860         lwb->lwb_buf = NULL;
 861         lwb->lwb_tx = NULL;
 862         mutex_exit(&zilog->zl_lock);
 863 
 864         /*
 865          * Now that we've written this log block, we have a stable pointer
 866          * to the next block in the chain, so it's OK to let the txg in
 867          * which we allocated the next block sync.
 868          */
 869         dmu_tx_commit(tx);
 870 }
 871 
 872 /*
 873  * Initialize the io for a log block.
 874  */
 875 static void
 876 zil_lwb_write_init(zilog_t *zilog, lwb_t *lwb)
 877 {
 878         zbookmark_phys_t zb;
 879 
 880         SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
 881             ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
 882             lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
 883 
 884         if (zilog->zl_root_zio == NULL) {
 885                 zilog->zl_root_zio = zio_root(zilog->zl_spa, NULL, NULL,
 886                     ZIO_FLAG_CANFAIL);
 887         }
 888         if (lwb->lwb_zio == NULL) {
 889                 lwb->lwb_zio = zio_rewrite(zilog->zl_root_zio, zilog->zl_spa,
 890                     0, &lwb->lwb_blk, lwb->lwb_buf, BP_GET_LSIZE(&lwb->lwb_blk),
 891                     zil_lwb_write_done, lwb, ZIO_PRIORITY_SYNC_WRITE,
 892                     ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE, &zb);
 893         }
 894 }
 895 
 896 /*
 897  * Define a limited set of intent log block sizes.
 898  *
 899  * These must be a multiple of 4KB. Note only the amount used (again
 900  * aligned to 4KB) actually gets written. However, we can't always just
 901  * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted.
 902  */
 903 uint64_t zil_block_buckets[] = {
 904     4096,               /* non TX_WRITE */
 905     8192+4096,          /* data base */
 906     32*1024 + 4096,     /* NFS writes */
 907     UINT64_MAX
 908 };
 909 
 910 /*
 911  * Use the slog as long as the logbias is 'latency' and the current commit size
 912  * is less than the limit or the total list size is less than 2X the limit.
 913  * Limit checking is disabled by setting zil_slog_limit to UINT64_MAX.
 914  */
 915 uint64_t zil_slog_limit = 1024 * 1024;
 916 #define USE_SLOG(zilog) (((zilog)->zl_logbias == ZFS_LOGBIAS_LATENCY) && \
 917         (((zilog)->zl_cur_used < zil_slog_limit) || \
 918         ((zilog)->zl_itx_list_sz < (zil_slog_limit << 1))))
 919 
 920 /*
 921  * Start a log block write and advance to the next log block.
 922  * Calls are serialized.
 923  */
 924 static lwb_t *
 925 zil_lwb_write_start(zilog_t *zilog, lwb_t *lwb)
 926 {
 927         lwb_t *nlwb = NULL;
 928         zil_chain_t *zilc;
 929         spa_t *spa = zilog->zl_spa;
 930         blkptr_t *bp;
 931         dmu_tx_t *tx;
 932         uint64_t txg;
 933         uint64_t zil_blksz, wsz;
 934         int i, error;
 935 
 936         if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
 937                 zilc = (zil_chain_t *)lwb->lwb_buf;
 938                 bp = &zilc->zc_next_blk;
 939         } else {
 940                 zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
 941                 bp = &zilc->zc_next_blk;
 942         }
 943 
 944         ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
 945 
 946         /*
 947          * Allocate the next block and save its address in this block
 948          * before writing it in order to establish the log chain.
 949          * Note that if the allocation of nlwb synced before we wrote
 950          * the block that points at it (lwb), we'd leak it if we crashed.
 951          * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done().
 952          * We dirty the dataset to ensure that zil_sync() will be called
 953          * to clean up in the event of allocation failure or I/O failure.
 954          */
 955         tx = dmu_tx_create(zilog->zl_os);
 956         VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
 957         dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
 958         txg = dmu_tx_get_txg(tx);
 959 
 960         lwb->lwb_tx = tx;
 961 
 962         /*
 963          * Log blocks are pre-allocated. Here we select the size of the next
 964          * block, based on size used in the last block.
 965          * - first find the smallest bucket that will fit the block from a
 966          *   limited set of block sizes. This is because it's faster to write
 967          *   blocks allocated from the same metaslab as they are adjacent or
 968          *   close.
 969          * - next find the maximum from the new suggested size and an array of
 970          *   previous sizes. This lessens a picket fence effect of wrongly
 971          *   guesssing the size if we have a stream of say 2k, 64k, 2k, 64k
 972          *   requests.
 973          *
 974          * Note we only write what is used, but we can't just allocate
 975          * the maximum block size because we can exhaust the available
 976          * pool log space.
 977          */
 978         zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
 979         for (i = 0; zil_blksz > zil_block_buckets[i]; i++)
 980                 continue;
 981         zil_blksz = zil_block_buckets[i];
 982         if (zil_blksz == UINT64_MAX)
 983                 zil_blksz = SPA_OLD_MAXBLOCKSIZE;
 984         zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
 985         for (i = 0; i < ZIL_PREV_BLKS; i++)
 986                 zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
 987         zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
 988 
 989         BP_ZERO(bp);
 990         /* pass the old blkptr in order to spread log blocks across devs */
 991         error = zio_alloc_zil(spa, txg, bp, &lwb->lwb_blk, zil_blksz,
 992             USE_SLOG(zilog));
 993         if (error == 0) {
 994                 ASSERT3U(bp->blk_birth, ==, txg);
 995                 bp->blk_cksum = lwb->lwb_blk.blk_cksum;
 996                 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
 997 
 998                 /*
 999                  * Allocate a new log write buffer (lwb).
1000                  */
1001                 nlwb = zil_alloc_lwb(zilog, bp, txg);
1002 
1003                 /* Record the block for later vdev flushing */
1004                 zil_add_block(zilog, &lwb->lwb_blk);
1005         }
1006 
1007         if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1008                 /* For Slim ZIL only write what is used. */
1009                 wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
1010                 ASSERT3U(wsz, <=, lwb->lwb_sz);
1011                 zio_shrink(lwb->lwb_zio, wsz);
1012 
1013         } else {
1014                 wsz = lwb->lwb_sz;
1015         }
1016 
1017         zilc->zc_pad = 0;
1018         zilc->zc_nused = lwb->lwb_nused;
1019         zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1020 
1021         /*
1022          * clear unused data for security
1023          */
1024         bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused);
1025 
1026         zio_nowait(lwb->lwb_zio); /* Kick off the write for the old log block */
1027 
1028         /*
1029          * If there was an allocation failure then nlwb will be null which
1030          * forces a txg_wait_synced().
1031          */
1032         return (nlwb);
1033 }
1034 
1035 static lwb_t *
1036 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
1037 {
1038         lr_t *lrc = &itx->itx_lr; /* common log record */
1039         lr_write_t *lrw = (lr_write_t *)lrc;
1040         char *lr_buf;
1041         uint64_t txg = lrc->lrc_txg;
1042         uint64_t reclen = lrc->lrc_reclen;
1043         uint64_t dlen = 0;
1044 
1045         if (lwb == NULL)
1046                 return (NULL);
1047 
1048         ASSERT(lwb->lwb_buf != NULL);
1049         ASSERT(zilog_is_dirty(zilog) ||
1050             spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
1051 
1052         if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY)
1053                 dlen = P2ROUNDUP_TYPED(
1054                     lrw->lr_length, sizeof (uint64_t), uint64_t);
1055 
1056         zilog->zl_cur_used += (reclen + dlen);
1057 
1058         zil_lwb_write_init(zilog, lwb);
1059 
1060         /*
1061          * If this record won't fit in the current log block, start a new one.
1062          */
1063         if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) {
1064                 lwb = zil_lwb_write_start(zilog, lwb);
1065                 if (lwb == NULL)
1066                         return (NULL);
1067                 zil_lwb_write_init(zilog, lwb);
1068                 ASSERT(LWB_EMPTY(lwb));
1069                 if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) {
1070                         txg_wait_synced(zilog->zl_dmu_pool, txg);
1071                         return (lwb);
1072                 }
1073         }
1074 
1075         lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1076         bcopy(lrc, lr_buf, reclen);
1077         lrc = (lr_t *)lr_buf;
1078         lrw = (lr_write_t *)lrc;
1079 
1080         /*
1081          * If it's a write, fetch the data or get its blkptr as appropriate.
1082          */
1083         if (lrc->lrc_txtype == TX_WRITE) {
1084                 if (txg > spa_freeze_txg(zilog->zl_spa))
1085                         txg_wait_synced(zilog->zl_dmu_pool, txg);
1086                 if (itx->itx_wr_state != WR_COPIED) {
1087                         char *dbuf;
1088                         int error;
1089 
1090                         if (dlen) {
1091                                 ASSERT(itx->itx_wr_state == WR_NEED_COPY);
1092                                 dbuf = lr_buf + reclen;
1093                                 lrw->lr_common.lrc_reclen += dlen;
1094                         } else {
1095                                 ASSERT(itx->itx_wr_state == WR_INDIRECT);
1096                                 dbuf = NULL;
1097                         }
1098                         error = zilog->zl_get_data(
1099                             itx->itx_private, lrw, dbuf, lwb->lwb_zio);
1100                         if (error == EIO) {
1101                                 txg_wait_synced(zilog->zl_dmu_pool, txg);
1102                                 return (lwb);
1103                         }
1104                         if (error != 0) {
1105                                 ASSERT(error == ENOENT || error == EEXIST ||
1106                                     error == EALREADY);
1107                                 return (lwb);
1108                         }
1109                 }
1110         }
1111 
1112         /*
1113          * We're actually making an entry, so update lrc_seq to be the
1114          * log record sequence number.  Note that this is generally not
1115          * equal to the itx sequence number because not all transactions
1116          * are synchronous, and sometimes spa_sync() gets there first.
1117          */
1118         lrc->lrc_seq = ++zilog->zl_lr_seq; /* we are single threaded */
1119         lwb->lwb_nused += reclen + dlen;
1120         lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1121         ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
1122         ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
1123 
1124         return (lwb);
1125 }
1126 
1127 itx_t *
1128 zil_itx_create(uint64_t txtype, size_t lrsize)
1129 {
1130         itx_t *itx;
1131 
1132         lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t);
1133 
1134         itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP);
1135         itx->itx_lr.lrc_txtype = txtype;
1136         itx->itx_lr.lrc_reclen = lrsize;
1137         itx->itx_sod = lrsize; /* if write & WR_NEED_COPY will be increased */
1138         itx->itx_lr.lrc_seq = 0;     /* defensive */
1139         itx->itx_sync = B_TRUE;              /* default is synchronous */
1140 
1141         return (itx);
1142 }
1143 
1144 void
1145 zil_itx_destroy(itx_t *itx)
1146 {
1147         kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen);
1148 }
1149 
1150 /*
1151  * Free up the sync and async itxs. The itxs_t has already been detached
1152  * so no locks are needed.
1153  */
1154 static void
1155 zil_itxg_clean(itxs_t *itxs)
1156 {
1157         itx_t *itx;
1158         list_t *list;
1159         avl_tree_t *t;
1160         void *cookie;
1161         itx_async_node_t *ian;
1162 
1163         list = &itxs->i_sync_list;
1164         while ((itx = list_head(list)) != NULL) {
1165                 list_remove(list, itx);
1166                 kmem_free(itx, offsetof(itx_t, itx_lr) +
1167                     itx->itx_lr.lrc_reclen);
1168         }
1169 
1170         cookie = NULL;
1171         t = &itxs->i_async_tree;
1172         while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1173                 list = &ian->ia_list;
1174                 while ((itx = list_head(list)) != NULL) {
1175                         list_remove(list, itx);
1176                         kmem_free(itx, offsetof(itx_t, itx_lr) +
1177                             itx->itx_lr.lrc_reclen);
1178                 }
1179                 list_destroy(list);
1180                 kmem_free(ian, sizeof (itx_async_node_t));
1181         }
1182         avl_destroy(t);
1183 
1184         kmem_free(itxs, sizeof (itxs_t));
1185 }
1186 
1187 static int
1188 zil_aitx_compare(const void *x1, const void *x2)
1189 {
1190         const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
1191         const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
1192 
1193         if (o1 < o2)
1194                 return (-1);
1195         if (o1 > o2)
1196                 return (1);
1197 
1198         return (0);
1199 }
1200 
1201 /*
1202  * Remove all async itx with the given oid.
1203  */
1204 static void
1205 zil_remove_async(zilog_t *zilog, uint64_t oid)
1206 {
1207         uint64_t otxg, txg;
1208         itx_async_node_t *ian;
1209         avl_tree_t *t;
1210         avl_index_t where;
1211         list_t clean_list;
1212         itx_t *itx;
1213 
1214         ASSERT(oid != 0);
1215         list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
1216 
1217         if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1218                 otxg = ZILTEST_TXG;
1219         else
1220                 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1221 
1222         for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1223                 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1224 
1225                 mutex_enter(&itxg->itxg_lock);
1226                 if (itxg->itxg_txg != txg) {
1227                         mutex_exit(&itxg->itxg_lock);
1228                         continue;
1229                 }
1230 
1231                 /*
1232                  * Locate the object node and append its list.
1233                  */
1234                 t = &itxg->itxg_itxs->i_async_tree;
1235                 ian = avl_find(t, &oid, &where);
1236                 if (ian != NULL)
1237                         list_move_tail(&clean_list, &ian->ia_list);
1238                 mutex_exit(&itxg->itxg_lock);
1239         }
1240         while ((itx = list_head(&clean_list)) != NULL) {
1241                 list_remove(&clean_list, itx);
1242                 kmem_free(itx, offsetof(itx_t, itx_lr) +
1243                     itx->itx_lr.lrc_reclen);
1244         }
1245         list_destroy(&clean_list);
1246 }
1247 
1248 void
1249 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
1250 {
1251         uint64_t txg;
1252         itxg_t *itxg;
1253         itxs_t *itxs, *clean = NULL;
1254 
1255         /*
1256          * Object ids can be re-instantiated in the next txg so
1257          * remove any async transactions to avoid future leaks.
1258          * This can happen if a fsync occurs on the re-instantiated
1259          * object for a WR_INDIRECT or WR_NEED_COPY write, which gets
1260          * the new file data and flushes a write record for the old object.
1261          */
1262         if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE)
1263                 zil_remove_async(zilog, itx->itx_oid);
1264 
1265         /*
1266          * Ensure the data of a renamed file is committed before the rename.
1267          */
1268         if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
1269                 zil_async_to_sync(zilog, itx->itx_oid);
1270 
1271         if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
1272                 txg = ZILTEST_TXG;
1273         else
1274                 txg = dmu_tx_get_txg(tx);
1275 
1276         itxg = &zilog->zl_itxg[txg & TXG_MASK];
1277         mutex_enter(&itxg->itxg_lock);
1278         itxs = itxg->itxg_itxs;
1279         if (itxg->itxg_txg != txg) {
1280                 if (itxs != NULL) {
1281                         /*
1282                          * The zil_clean callback hasn't got around to cleaning
1283                          * this itxg. Save the itxs for release below.
1284                          * This should be rare.
1285                          */
1286                         atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod);
1287                         itxg->itxg_sod = 0;
1288                         clean = itxg->itxg_itxs;
1289                 }
1290                 ASSERT(itxg->itxg_sod == 0);
1291                 itxg->itxg_txg = txg;
1292                 itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), KM_SLEEP);
1293 
1294                 list_create(&itxs->i_sync_list, sizeof (itx_t),
1295                     offsetof(itx_t, itx_node));
1296                 avl_create(&itxs->i_async_tree, zil_aitx_compare,
1297                     sizeof (itx_async_node_t),
1298                     offsetof(itx_async_node_t, ia_node));
1299         }
1300         if (itx->itx_sync) {
1301                 list_insert_tail(&itxs->i_sync_list, itx);
1302                 atomic_add_64(&zilog->zl_itx_list_sz, itx->itx_sod);
1303                 itxg->itxg_sod += itx->itx_sod;
1304         } else {
1305                 avl_tree_t *t = &itxs->i_async_tree;
1306                 uint64_t foid = ((lr_ooo_t *)&itx->itx_lr)->lr_foid;
1307                 itx_async_node_t *ian;
1308                 avl_index_t where;
1309 
1310                 ian = avl_find(t, &foid, &where);
1311                 if (ian == NULL) {
1312                         ian = kmem_alloc(sizeof (itx_async_node_t), KM_SLEEP);
1313                         list_create(&ian->ia_list, sizeof (itx_t),
1314                             offsetof(itx_t, itx_node));
1315                         ian->ia_foid = foid;
1316                         avl_insert(t, ian, where);
1317                 }
1318                 list_insert_tail(&ian->ia_list, itx);
1319         }
1320 
1321         itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
1322         zilog_dirty(zilog, txg);
1323         mutex_exit(&itxg->itxg_lock);
1324 
1325         /* Release the old itxs now we've dropped the lock */
1326         if (clean != NULL)
1327                 zil_itxg_clean(clean);
1328 }
1329 
1330 /*
1331  * If there are any in-memory intent log transactions which have now been
1332  * synced then start up a taskq to free them. We should only do this after we
1333  * have written out the uberblocks (i.e. txg has been comitted) so that
1334  * don't inadvertently clean out in-memory log records that would be required
1335  * by zil_commit().
1336  */
1337 void
1338 zil_clean(zilog_t *zilog, uint64_t synced_txg)
1339 {
1340         itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
1341         itxs_t *clean_me;
1342 
1343         mutex_enter(&itxg->itxg_lock);
1344         if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
1345                 mutex_exit(&itxg->itxg_lock);
1346                 return;
1347         }
1348         ASSERT3U(itxg->itxg_txg, <=, synced_txg);
1349         ASSERT(itxg->itxg_txg != 0);
1350         ASSERT(zilog->zl_clean_taskq != NULL);
1351         atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod);
1352         itxg->itxg_sod = 0;
1353         clean_me = itxg->itxg_itxs;
1354         itxg->itxg_itxs = NULL;
1355         itxg->itxg_txg = 0;
1356         mutex_exit(&itxg->itxg_lock);
1357         /*
1358          * Preferably start a task queue to free up the old itxs but
1359          * if taskq_dispatch can't allocate resources to do that then
1360          * free it in-line. This should be rare. Note, using TQ_SLEEP
1361          * created a bad performance problem.
1362          */
1363         if (taskq_dispatch(zilog->zl_clean_taskq,
1364             (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == NULL)
1365                 zil_itxg_clean(clean_me);
1366 }
1367 
1368 /*
1369  * Get the list of itxs to commit into zl_itx_commit_list.
1370  */
1371 static void
1372 zil_get_commit_list(zilog_t *zilog)
1373 {
1374         uint64_t otxg, txg;
1375         list_t *commit_list = &zilog->zl_itx_commit_list;
1376         uint64_t push_sod = 0;
1377 
1378         if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1379                 otxg = ZILTEST_TXG;
1380         else
1381                 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1382 
1383         for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1384                 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1385 
1386                 mutex_enter(&itxg->itxg_lock);
1387                 if (itxg->itxg_txg != txg) {
1388                         mutex_exit(&itxg->itxg_lock);
1389                         continue;
1390                 }
1391 
1392                 list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
1393                 push_sod += itxg->itxg_sod;
1394                 itxg->itxg_sod = 0;
1395 
1396                 mutex_exit(&itxg->itxg_lock);
1397         }
1398         atomic_add_64(&zilog->zl_itx_list_sz, -push_sod);
1399 }
1400 
1401 /*
1402  * Move the async itxs for a specified object to commit into sync lists.
1403  */
1404 static void
1405 zil_async_to_sync(zilog_t *zilog, uint64_t foid)
1406 {
1407         uint64_t otxg, txg;
1408         itx_async_node_t *ian;
1409         avl_tree_t *t;
1410         avl_index_t where;
1411 
1412         if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1413                 otxg = ZILTEST_TXG;
1414         else
1415                 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1416 
1417         for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1418                 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1419 
1420                 mutex_enter(&itxg->itxg_lock);
1421                 if (itxg->itxg_txg != txg) {
1422                         mutex_exit(&itxg->itxg_lock);
1423                         continue;
1424                 }
1425 
1426                 /*
1427                  * If a foid is specified then find that node and append its
1428                  * list. Otherwise walk the tree appending all the lists
1429                  * to the sync list. We add to the end rather than the
1430                  * beginning to ensure the create has happened.
1431                  */
1432                 t = &itxg->itxg_itxs->i_async_tree;
1433                 if (foid != 0) {
1434                         ian = avl_find(t, &foid, &where);
1435                         if (ian != NULL) {
1436                                 list_move_tail(&itxg->itxg_itxs->i_sync_list,
1437                                     &ian->ia_list);
1438                         }
1439                 } else {
1440                         void *cookie = NULL;
1441 
1442                         while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1443                                 list_move_tail(&itxg->itxg_itxs->i_sync_list,
1444                                     &ian->ia_list);
1445                                 list_destroy(&ian->ia_list);
1446                                 kmem_free(ian, sizeof (itx_async_node_t));
1447                         }
1448                 }
1449                 mutex_exit(&itxg->itxg_lock);
1450         }
1451 }
1452 
1453 static void
1454 zil_commit_writer(zilog_t *zilog)
1455 {
1456         uint64_t txg;
1457         itx_t *itx;
1458         lwb_t *lwb;
1459         spa_t *spa = zilog->zl_spa;
1460         int error = 0;
1461 
1462         ASSERT(zilog->zl_root_zio == NULL);
1463 
1464         mutex_exit(&zilog->zl_lock);
1465 
1466         zil_get_commit_list(zilog);
1467 
1468         /*
1469          * Return if there's nothing to commit before we dirty the fs by
1470          * calling zil_create().
1471          */
1472         if (list_head(&zilog->zl_itx_commit_list) == NULL) {
1473                 mutex_enter(&zilog->zl_lock);
1474                 return;
1475         }
1476 
1477         if (zilog->zl_suspend) {
1478                 lwb = NULL;
1479         } else {
1480                 lwb = list_tail(&zilog->zl_lwb_list);
1481                 if (lwb == NULL)
1482                         lwb = zil_create(zilog);
1483         }
1484 
1485         DTRACE_PROBE1(zil__cw1, zilog_t *, zilog);
1486         while (itx = list_head(&zilog->zl_itx_commit_list)) {
1487                 txg = itx->itx_lr.lrc_txg;
1488                 ASSERT(txg);
1489 
1490                 if (txg > spa_last_synced_txg(spa) || txg > spa_freeze_txg(spa))
1491                         lwb = zil_lwb_commit(zilog, itx, lwb);
1492                 list_remove(&zilog->zl_itx_commit_list, itx);
1493                 kmem_free(itx, offsetof(itx_t, itx_lr)
1494                     + itx->itx_lr.lrc_reclen);
1495         }
1496         DTRACE_PROBE1(zil__cw2, zilog_t *, zilog);
1497 
1498         /* write the last block out */
1499         if (lwb != NULL && lwb->lwb_zio != NULL)
1500                 lwb = zil_lwb_write_start(zilog, lwb);
1501 
1502         zilog->zl_cur_used = 0;
1503 
1504         /*
1505          * Wait if necessary for the log blocks to be on stable storage.
1506          */
1507         if (zilog->zl_root_zio) {
1508                 error = zio_wait(zilog->zl_root_zio);
1509                 zilog->zl_root_zio = NULL;
1510                 zil_flush_vdevs(zilog);
1511         }
1512 
1513         if (error || lwb == NULL)
1514                 txg_wait_synced(zilog->zl_dmu_pool, 0);
1515 
1516         mutex_enter(&zilog->zl_lock);
1517 
1518         /*
1519          * Remember the highest committed log sequence number for ztest.
1520          * We only update this value when all the log writes succeeded,
1521          * because ztest wants to ASSERT that it got the whole log chain.
1522          */
1523         if (error == 0 && lwb != NULL)
1524                 zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1525 }
1526 
1527 /*
1528  * Commit zfs transactions to stable storage.
1529  * If foid is 0 push out all transactions, otherwise push only those
1530  * for that object or might reference that object.
1531  *
1532  * itxs are committed in batches. In a heavily stressed zil there will be
1533  * a commit writer thread who is writing out a bunch of itxs to the log
1534  * for a set of committing threads (cthreads) in the same batch as the writer.
1535  * Those cthreads are all waiting on the same cv for that batch.
1536  *
1537  * There will also be a different and growing batch of threads that are
1538  * waiting to commit (qthreads). When the committing batch completes
1539  * a transition occurs such that the cthreads exit and the qthreads become
1540  * cthreads. One of the new cthreads becomes the writer thread for the
1541  * batch. Any new threads arriving become new qthreads.
1542  *
1543  * Only 2 condition variables are needed and there's no transition
1544  * between the two cvs needed. They just flip-flop between qthreads
1545  * and cthreads.
1546  *
1547  * Using this scheme we can efficiently wakeup up only those threads
1548  * that have been committed.
1549  */
1550 void
1551 zil_commit(zilog_t *zilog, uint64_t foid)
1552 {
1553         uint64_t mybatch;
1554 
1555         if (zilog->zl_sync == ZFS_SYNC_DISABLED)
1556                 return;
1557 
1558         /* move the async itxs for the foid to the sync queues */
1559         zil_async_to_sync(zilog, foid);
1560 
1561         mutex_enter(&zilog->zl_lock);
1562         mybatch = zilog->zl_next_batch;
1563         while (zilog->zl_writer) {
1564                 cv_wait(&zilog->zl_cv_batch[mybatch & 1], &zilog->zl_lock);
1565                 if (mybatch <= zilog->zl_com_batch) {
1566                         mutex_exit(&zilog->zl_lock);
1567                         return;
1568                 }
1569         }
1570 
1571         zilog->zl_next_batch++;
1572         zilog->zl_writer = B_TRUE;
1573         zil_commit_writer(zilog);
1574         zilog->zl_com_batch = mybatch;
1575         zilog->zl_writer = B_FALSE;
1576         mutex_exit(&zilog->zl_lock);
1577 
1578         /* wake up one thread to become the next writer */
1579         cv_signal(&zilog->zl_cv_batch[(mybatch+1) & 1]);
1580 
1581         /* wake up all threads waiting for this batch to be committed */
1582         cv_broadcast(&zilog->zl_cv_batch[mybatch & 1]);
1583 }
1584 
1585 /*
1586  * Called in syncing context to free committed log blocks and update log header.
1587  */
1588 void
1589 zil_sync(zilog_t *zilog, dmu_tx_t *tx)
1590 {
1591         zil_header_t *zh = zil_header_in_syncing_context(zilog);
1592         uint64_t txg = dmu_tx_get_txg(tx);
1593         spa_t *spa = zilog->zl_spa;
1594         uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
1595         lwb_t *lwb;
1596 
1597         /*
1598          * We don't zero out zl_destroy_txg, so make sure we don't try
1599          * to destroy it twice.
1600          */
1601         if (spa_sync_pass(spa) != 1)
1602                 return;
1603 
1604         mutex_enter(&zilog->zl_lock);
1605 
1606         ASSERT(zilog->zl_stop_sync == 0);
1607 
1608         if (*replayed_seq != 0) {
1609                 ASSERT(zh->zh_replay_seq < *replayed_seq);
1610                 zh->zh_replay_seq = *replayed_seq;
1611                 *replayed_seq = 0;
1612         }
1613 
1614         if (zilog->zl_destroy_txg == txg) {
1615                 blkptr_t blk = zh->zh_log;
1616 
1617                 ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
1618 
1619                 bzero(zh, sizeof (zil_header_t));
1620                 bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq));
1621 
1622                 if (zilog->zl_keep_first) {
1623                         /*
1624                          * If this block was part of log chain that couldn't
1625                          * be claimed because a device was missing during
1626                          * zil_claim(), but that device later returns,
1627                          * then this block could erroneously appear valid.
1628                          * To guard against this, assign a new GUID to the new
1629                          * log chain so it doesn't matter what blk points to.
1630                          */
1631                         zil_init_log_chain(zilog, &blk);
1632                         zh->zh_log = blk;
1633                 }
1634         }
1635 
1636         while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
1637                 zh->zh_log = lwb->lwb_blk;
1638                 if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
1639                         break;
1640                 list_remove(&zilog->zl_lwb_list, lwb);
1641                 zio_free_zil(spa, txg, &lwb->lwb_blk);
1642                 kmem_cache_free(zil_lwb_cache, lwb);
1643 
1644                 /*
1645                  * If we don't have anything left in the lwb list then
1646                  * we've had an allocation failure and we need to zero
1647                  * out the zil_header blkptr so that we don't end
1648                  * up freeing the same block twice.
1649                  */
1650                 if (list_head(&zilog->zl_lwb_list) == NULL)
1651                         BP_ZERO(&zh->zh_log);
1652         }
1653         mutex_exit(&zilog->zl_lock);
1654 }
1655 
1656 void
1657 zil_init(void)
1658 {
1659         zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
1660             sizeof (struct lwb), 0, NULL, NULL, NULL, NULL, NULL, 0);
1661 }
1662 
1663 void
1664 zil_fini(void)
1665 {
1666         kmem_cache_destroy(zil_lwb_cache);
1667 }
1668 
1669 void
1670 zil_set_sync(zilog_t *zilog, uint64_t sync)
1671 {
1672         zilog->zl_sync = sync;
1673 }
1674 
1675 void
1676 zil_set_logbias(zilog_t *zilog, uint64_t logbias)
1677 {
1678         zilog->zl_logbias = logbias;
1679 }
1680 
1681 zilog_t *
1682 zil_alloc(objset_t *os, zil_header_t *zh_phys)
1683 {
1684         zilog_t *zilog;
1685 
1686         zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
1687 
1688         zilog->zl_header = zh_phys;
1689         zilog->zl_os = os;
1690         zilog->zl_spa = dmu_objset_spa(os);
1691         zilog->zl_dmu_pool = dmu_objset_pool(os);
1692         zilog->zl_destroy_txg = TXG_INITIAL - 1;
1693         zilog->zl_logbias = dmu_objset_logbias(os);
1694         zilog->zl_sync = dmu_objset_syncprop(os);
1695         zilog->zl_next_batch = 1;
1696 
1697         mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
1698 
1699         for (int i = 0; i < TXG_SIZE; i++) {
1700                 mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
1701                     MUTEX_DEFAULT, NULL);
1702         }
1703 
1704         list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
1705             offsetof(lwb_t, lwb_node));
1706 
1707         list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
1708             offsetof(itx_t, itx_node));
1709 
1710         mutex_init(&zilog->zl_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
1711 
1712         avl_create(&zilog->zl_vdev_tree, zil_vdev_compare,
1713             sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
1714 
1715         cv_init(&zilog->zl_cv_writer, NULL, CV_DEFAULT, NULL);
1716         cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
1717         cv_init(&zilog->zl_cv_batch[0], NULL, CV_DEFAULT, NULL);
1718         cv_init(&zilog->zl_cv_batch[1], NULL, CV_DEFAULT, NULL);
1719 
1720         return (zilog);
1721 }
1722 
1723 void
1724 zil_free(zilog_t *zilog)
1725 {
1726         zilog->zl_stop_sync = 1;
1727 
1728         ASSERT0(zilog->zl_suspend);
1729         ASSERT0(zilog->zl_suspending);
1730 
1731         ASSERT(list_is_empty(&zilog->zl_lwb_list));
1732         list_destroy(&zilog->zl_lwb_list);
1733 
1734         avl_destroy(&zilog->zl_vdev_tree);
1735         mutex_destroy(&zilog->zl_vdev_lock);
1736 
1737         ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
1738         list_destroy(&zilog->zl_itx_commit_list);
1739 
1740         for (int i = 0; i < TXG_SIZE; i++) {
1741                 /*
1742                  * It's possible for an itx to be generated that doesn't dirty
1743                  * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
1744                  * callback to remove the entry. We remove those here.
1745                  *
1746                  * Also free up the ziltest itxs.
1747                  */
1748                 if (zilog->zl_itxg[i].itxg_itxs)
1749                         zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
1750                 mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
1751         }
1752 
1753         mutex_destroy(&zilog->zl_lock);
1754 
1755         cv_destroy(&zilog->zl_cv_writer);
1756         cv_destroy(&zilog->zl_cv_suspend);
1757         cv_destroy(&zilog->zl_cv_batch[0]);
1758         cv_destroy(&zilog->zl_cv_batch[1]);
1759 
1760         kmem_free(zilog, sizeof (zilog_t));
1761 }
1762 
1763 /*
1764  * Open an intent log.
1765  */
1766 zilog_t *
1767 zil_open(objset_t *os, zil_get_data_t *get_data)
1768 {
1769         zilog_t *zilog = dmu_objset_zil(os);
1770 
1771         ASSERT(zilog->zl_clean_taskq == NULL);
1772         ASSERT(zilog->zl_get_data == NULL);
1773         ASSERT(list_is_empty(&zilog->zl_lwb_list));
1774 
1775         zilog->zl_get_data = get_data;
1776         zilog->zl_clean_taskq = taskq_create("zil_clean", 1, minclsyspri,
1777             2, 2, TASKQ_PREPOPULATE);
1778 
1779         return (zilog);
1780 }
1781 
1782 /*
1783  * Close an intent log.
1784  */
1785 void
1786 zil_close(zilog_t *zilog)
1787 {
1788         lwb_t *lwb;
1789         uint64_t txg = 0;
1790 
1791         zil_commit(zilog, 0); /* commit all itx */
1792 
1793         /*
1794          * The lwb_max_txg for the stubby lwb will reflect the last activity
1795          * for the zil.  After a txg_wait_synced() on the txg we know all the
1796          * callbacks have occurred that may clean the zil.  Only then can we
1797          * destroy the zl_clean_taskq.
1798          */
1799         mutex_enter(&zilog->zl_lock);
1800         lwb = list_tail(&zilog->zl_lwb_list);
1801         if (lwb != NULL)
1802                 txg = lwb->lwb_max_txg;
1803         mutex_exit(&zilog->zl_lock);
1804         if (txg)
1805                 txg_wait_synced(zilog->zl_dmu_pool, txg);
1806         ASSERT(!zilog_is_dirty(zilog));
1807 
1808         taskq_destroy(zilog->zl_clean_taskq);
1809         zilog->zl_clean_taskq = NULL;
1810         zilog->zl_get_data = NULL;
1811 
1812         /*
1813          * We should have only one LWB left on the list; remove it now.
1814          */
1815         mutex_enter(&zilog->zl_lock);
1816         lwb = list_head(&zilog->zl_lwb_list);
1817         if (lwb != NULL) {
1818                 ASSERT(lwb == list_tail(&zilog->zl_lwb_list));
1819                 list_remove(&zilog->zl_lwb_list, lwb);
1820                 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1821                 kmem_cache_free(zil_lwb_cache, lwb);
1822         }
1823         mutex_exit(&zilog->zl_lock);
1824 }
1825 
1826 static char *suspend_tag = "zil suspending";
1827 
1828 /*
1829  * Suspend an intent log.  While in suspended mode, we still honor
1830  * synchronous semantics, but we rely on txg_wait_synced() to do it.
1831  * On old version pools, we suspend the log briefly when taking a
1832  * snapshot so that it will have an empty intent log.
1833  *
1834  * Long holds are not really intended to be used the way we do here --
1835  * held for such a short time.  A concurrent caller of dsl_dataset_long_held()
1836  * could fail.  Therefore we take pains to only put a long hold if it is
1837  * actually necessary.  Fortunately, it will only be necessary if the
1838  * objset is currently mounted (or the ZVOL equivalent).  In that case it
1839  * will already have a long hold, so we are not really making things any worse.
1840  *
1841  * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
1842  * zvol_state_t), and use their mechanism to prevent their hold from being
1843  * dropped (e.g. VFS_HOLD()).  However, that would be even more pain for
1844  * very little gain.
1845  *
1846  * if cookiep == NULL, this does both the suspend & resume.
1847  * Otherwise, it returns with the dataset "long held", and the cookie
1848  * should be passed into zil_resume().
1849  */
1850 int
1851 zil_suspend(const char *osname, void **cookiep)
1852 {
1853         objset_t *os;
1854         zilog_t *zilog;
1855         const zil_header_t *zh;
1856         int error;
1857 
1858         error = dmu_objset_hold(osname, suspend_tag, &os);
1859         if (error != 0)
1860                 return (error);
1861         zilog = dmu_objset_zil(os);
1862 
1863         mutex_enter(&zilog->zl_lock);
1864         zh = zilog->zl_header;
1865 
1866         if (zh->zh_flags & ZIL_REPLAY_NEEDED) {          /* unplayed log */
1867                 mutex_exit(&zilog->zl_lock);
1868                 dmu_objset_rele(os, suspend_tag);
1869                 return (SET_ERROR(EBUSY));
1870         }
1871 
1872         /*
1873          * Don't put a long hold in the cases where we can avoid it.  This
1874          * is when there is no cookie so we are doing a suspend & resume
1875          * (i.e. called from zil_vdev_offline()), and there's nothing to do
1876          * for the suspend because it's already suspended, or there's no ZIL.
1877          */
1878         if (cookiep == NULL && !zilog->zl_suspending &&
1879             (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
1880                 mutex_exit(&zilog->zl_lock);
1881                 dmu_objset_rele(os, suspend_tag);
1882                 return (0);
1883         }
1884 
1885         dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
1886         dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
1887 
1888         zilog->zl_suspend++;
1889 
1890         if (zilog->zl_suspend > 1) {
1891                 /*
1892                  * Someone else is already suspending it.
1893                  * Just wait for them to finish.
1894                  */
1895 
1896                 while (zilog->zl_suspending)
1897                         cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
1898                 mutex_exit(&zilog->zl_lock);
1899 
1900                 if (cookiep == NULL)
1901                         zil_resume(os);
1902                 else
1903                         *cookiep = os;
1904                 return (0);
1905         }
1906 
1907         /*
1908          * If there is no pointer to an on-disk block, this ZIL must not
1909          * be active (e.g. filesystem not mounted), so there's nothing
1910          * to clean up.
1911          */
1912         if (BP_IS_HOLE(&zh->zh_log)) {
1913                 ASSERT(cookiep != NULL); /* fast path already handled */
1914 
1915                 *cookiep = os;
1916                 mutex_exit(&zilog->zl_lock);
1917                 return (0);
1918         }
1919 
1920         zilog->zl_suspending = B_TRUE;
1921         mutex_exit(&zilog->zl_lock);
1922 
1923         zil_commit(zilog, 0);
1924 
1925         zil_destroy(zilog, B_FALSE);
1926 
1927         mutex_enter(&zilog->zl_lock);
1928         zilog->zl_suspending = B_FALSE;
1929         cv_broadcast(&zilog->zl_cv_suspend);
1930         mutex_exit(&zilog->zl_lock);
1931 
1932         if (cookiep == NULL)
1933                 zil_resume(os);
1934         else
1935                 *cookiep = os;
1936         return (0);
1937 }
1938 
1939 void
1940 zil_resume(void *cookie)
1941 {
1942         objset_t *os = cookie;
1943         zilog_t *zilog = dmu_objset_zil(os);
1944 
1945         mutex_enter(&zilog->zl_lock);
1946         ASSERT(zilog->zl_suspend != 0);
1947         zilog->zl_suspend--;
1948         mutex_exit(&zilog->zl_lock);
1949         dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
1950         dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
1951 }
1952 
1953 typedef struct zil_replay_arg {
1954         zil_replay_func_t **zr_replay;
1955         void            *zr_arg;
1956         boolean_t       zr_byteswap;
1957         char            *zr_lr;
1958 } zil_replay_arg_t;
1959 
1960 static int
1961 zil_replay_error(zilog_t *zilog, lr_t *lr, int error)
1962 {
1963         char name[MAXNAMELEN];
1964 
1965         zilog->zl_replaying_seq--;   /* didn't actually replay this one */
1966 
1967         dmu_objset_name(zilog->zl_os, name);
1968 
1969         cmn_err(CE_WARN, "ZFS replay transaction error %d, "
1970             "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
1971             (u_longlong_t)lr->lrc_seq,
1972             (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
1973             (lr->lrc_txtype & TX_CI) ? "CI" : "");
1974 
1975         return (error);
1976 }
1977 
1978 static int
1979 zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg)
1980 {
1981         zil_replay_arg_t *zr = zra;
1982         const zil_header_t *zh = zilog->zl_header;
1983         uint64_t reclen = lr->lrc_reclen;
1984         uint64_t txtype = lr->lrc_txtype;
1985         int error = 0;
1986 
1987         zilog->zl_replaying_seq = lr->lrc_seq;
1988 
1989         if (lr->lrc_seq <= zh->zh_replay_seq)  /* already replayed */
1990                 return (0);
1991 
1992         if (lr->lrc_txg < claim_txg)              /* already committed */
1993                 return (0);
1994 
1995         /* Strip case-insensitive bit, still present in log record */
1996         txtype &= ~TX_CI;
1997 
1998         if (txtype == 0 || txtype >= TX_MAX_TYPE)
1999                 return (zil_replay_error(zilog, lr, EINVAL));
2000 
2001         /*
2002          * If this record type can be logged out of order, the object
2003          * (lr_foid) may no longer exist.  That's legitimate, not an error.
2004          */
2005         if (TX_OOO(txtype)) {
2006                 error = dmu_object_info(zilog->zl_os,
2007                     ((lr_ooo_t *)lr)->lr_foid, NULL);
2008                 if (error == ENOENT || error == EEXIST)
2009                         return (0);
2010         }
2011 
2012         /*
2013          * Make a copy of the data so we can revise and extend it.
2014          */
2015         bcopy(lr, zr->zr_lr, reclen);
2016 
2017         /*
2018          * If this is a TX_WRITE with a blkptr, suck in the data.
2019          */
2020         if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
2021                 error = zil_read_log_data(zilog, (lr_write_t *)lr,
2022                     zr->zr_lr + reclen);
2023                 if (error != 0)
2024                         return (zil_replay_error(zilog, lr, error));
2025         }
2026 
2027         /*
2028          * The log block containing this lr may have been byteswapped
2029          * so that we can easily examine common fields like lrc_txtype.
2030          * However, the log is a mix of different record types, and only the
2031          * replay vectors know how to byteswap their records.  Therefore, if
2032          * the lr was byteswapped, undo it before invoking the replay vector.
2033          */
2034         if (zr->zr_byteswap)
2035                 byteswap_uint64_array(zr->zr_lr, reclen);
2036 
2037         /*
2038          * We must now do two things atomically: replay this log record,
2039          * and update the log header sequence number to reflect the fact that
2040          * we did so. At the end of each replay function the sequence number
2041          * is updated if we are in replay mode.
2042          */
2043         error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
2044         if (error != 0) {
2045                 /*
2046                  * The DMU's dnode layer doesn't see removes until the txg
2047                  * commits, so a subsequent claim can spuriously fail with
2048                  * EEXIST. So if we receive any error we try syncing out
2049                  * any removes then retry the transaction.  Note that we
2050                  * specify B_FALSE for byteswap now, so we don't do it twice.
2051                  */
2052                 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
2053                 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
2054                 if (error != 0)
2055                         return (zil_replay_error(zilog, lr, error));
2056         }
2057         return (0);
2058 }
2059 
2060 /* ARGSUSED */
2061 static int
2062 zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
2063 {
2064         zilog->zl_replay_blks++;
2065 
2066         return (0);
2067 }
2068 
2069 /*
2070  * If this dataset has a non-empty intent log, replay it and destroy it.
2071  */
2072 void
2073 zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE])
2074 {
2075         zilog_t *zilog = dmu_objset_zil(os);
2076         const zil_header_t *zh = zilog->zl_header;
2077         zil_replay_arg_t zr;
2078 
2079         if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
2080                 zil_destroy(zilog, B_TRUE);
2081                 return;
2082         }
2083 
2084         zr.zr_replay = replay_func;
2085         zr.zr_arg = arg;
2086         zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
2087         zr.zr_lr = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
2088 
2089         /*
2090          * Wait for in-progress removes to sync before starting replay.
2091          */
2092         txg_wait_synced(zilog->zl_dmu_pool, 0);
2093 
2094         zilog->zl_replay = B_TRUE;
2095         zilog->zl_replay_time = ddi_get_lbolt();
2096         ASSERT(zilog->zl_replay_blks == 0);
2097         (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
2098             zh->zh_claim_txg);
2099         kmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
2100 
2101         zil_destroy(zilog, B_FALSE);
2102         txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
2103         zilog->zl_replay = B_FALSE;
2104 }
2105 
2106 boolean_t
2107 zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
2108 {
2109         if (zilog->zl_sync == ZFS_SYNC_DISABLED)
2110                 return (B_TRUE);
2111 
2112         if (zilog->zl_replay) {
2113                 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
2114                 zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
2115                     zilog->zl_replaying_seq;
2116                 return (B_TRUE);
2117         }
2118 
2119         return (B_FALSE);
2120 }
2121 
2122 /* ARGSUSED */
2123 int
2124 zil_vdev_offline(const char *osname, void *arg)
2125 {
2126         int error;
2127 
2128         error = zil_suspend(osname, NULL);
2129         if (error != 0)
2130                 return (SET_ERROR(EEXIST));
2131         return (0);
2132 }