1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  23  * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
  24  */
  25 
  26 /* Portions Copyright 2010 Robert Milkowski */
  27 
  28 #include <sys/zfs_context.h>
  29 #include <sys/spa.h>
  30 #include <sys/dmu.h>
  31 #include <sys/zap.h>
  32 #include <sys/arc.h>
  33 #include <sys/stat.h>
  34 #include <sys/resource.h>
  35 #include <sys/zil.h>
  36 #include <sys/zil_impl.h>
  37 #include <sys/dsl_dataset.h>
  38 #include <sys/vdev_impl.h>
  39 #include <sys/dmu_tx.h>
  40 #include <sys/dsl_pool.h>
  41 
  42 /*
  43  * The zfs intent log (ZIL) saves transaction records of system calls
  44  * that change the file system in memory with enough information
  45  * to be able to replay them. These are stored in memory until
  46  * either the DMU transaction group (txg) commits them to the stable pool
  47  * and they can be discarded, or they are flushed to the stable log
  48  * (also in the pool) due to a fsync, O_DSYNC or other synchronous
  49  * requirement. In the event of a panic or power fail then those log
  50  * records (transactions) are replayed.
  51  *
  52  * There is one ZIL per file system. Its on-disk (pool) format consists
  53  * of 3 parts:
  54  *
  55  *      - ZIL header
  56  *      - ZIL blocks
  57  *      - ZIL records
  58  *
  59  * A log record holds a system call transaction. Log blocks can
  60  * hold many log records and the blocks are chained together.
  61  * Each ZIL block contains a block pointer (blkptr_t) to the next
  62  * ZIL block in the chain. The ZIL header points to the first
  63  * block in the chain. Note there is not a fixed place in the pool
  64  * to hold blocks. They are dynamically allocated and freed as
  65  * needed from the blocks available. Figure X shows the ZIL structure:
  66  */
  67 
  68 /*
  69  * Disable intent logging replay.  This global ZIL switch affects all pools.
  70  */
  71 int zil_replay_disable = 0;
  72 
  73 /*
  74  * Tunable parameter for debugging or performance analysis.  Setting
  75  * zfs_nocacheflush will cause corruption on power loss if a volatile
  76  * out-of-order write cache is enabled.
  77  */
  78 boolean_t zfs_nocacheflush = B_FALSE;
  79 
  80 static kmem_cache_t *zil_lwb_cache;
  81 
  82 static void zil_async_to_sync(zilog_t *zilog, uint64_t foid);
  83 
  84 #define LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
  85     sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
  86 
  87 
  88 /*
  89  * ziltest is by and large an ugly hack, but very useful in
  90  * checking replay without tedious work.
  91  * When running ziltest we want to keep all itx's and so maintain
  92  * a single list in the zl_itxg[] that uses a high txg: ZILTEST_TXG
  93  * We subtract TXG_CONCURRENT_STATES to allow for common code.
  94  */
  95 #define ZILTEST_TXG (UINT64_MAX - TXG_CONCURRENT_STATES)
  96 
  97 static int
  98 zil_bp_compare(const void *x1, const void *x2)
  99 {
 100         const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
 101         const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
 102 
 103         if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2))
 104                 return (-1);
 105         if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2))
 106                 return (1);
 107 
 108         if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2))
 109                 return (-1);
 110         if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2))
 111                 return (1);
 112 
 113         return (0);
 114 }
 115 
 116 static void
 117 zil_bp_tree_init(zilog_t *zilog)
 118 {
 119         avl_create(&zilog->zl_bp_tree, zil_bp_compare,
 120             sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
 121 }
 122 
 123 static void
 124 zil_bp_tree_fini(zilog_t *zilog)
 125 {
 126         avl_tree_t *t = &zilog->zl_bp_tree;
 127         zil_bp_node_t *zn;
 128         void *cookie = NULL;
 129 
 130         while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
 131                 kmem_free(zn, sizeof (zil_bp_node_t));
 132 
 133         avl_destroy(t);
 134 }
 135 
 136 int
 137 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
 138 {
 139         avl_tree_t *t = &zilog->zl_bp_tree;
 140         const dva_t *dva;
 141         zil_bp_node_t *zn;
 142         avl_index_t where;
 143 
 144         if (BP_IS_EMBEDDED(bp))
 145                 return (0);
 146 
 147         dva = BP_IDENTITY(bp);
 148 
 149         if (avl_find(t, dva, &where) != NULL)
 150                 return (SET_ERROR(EEXIST));
 151 
 152         zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
 153         zn->zn_dva = *dva;
 154         avl_insert(t, zn, where);
 155 
 156         return (0);
 157 }
 158 
 159 static zil_header_t *
 160 zil_header_in_syncing_context(zilog_t *zilog)
 161 {
 162         return ((zil_header_t *)zilog->zl_header);
 163 }
 164 
 165 static void
 166 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
 167 {
 168         zio_cksum_t *zc = &bp->blk_cksum;
 169 
 170         zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL);
 171         zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL);
 172         zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
 173         zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
 174 }
 175 
 176 /*
 177  * Read a log block and make sure it's valid.
 178  */
 179 static int
 180 zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst,
 181     char **end)
 182 {
 183         enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
 184         arc_flags_t aflags = ARC_FLAG_WAIT;
 185         arc_buf_t *abuf = NULL;
 186         zbookmark_phys_t zb;
 187         int error;
 188 
 189         if (zilog->zl_header->zh_claim_txg == 0)
 190                 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
 191 
 192         if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
 193                 zio_flags |= ZIO_FLAG_SPECULATIVE;
 194 
 195         SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
 196             ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
 197 
 198         error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
 199             ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
 200 
 201         if (error == 0) {
 202                 zio_cksum_t cksum = bp->blk_cksum;
 203 
 204                 /*
 205                  * Validate the checksummed log block.
 206                  *
 207                  * Sequence numbers should be... sequential.  The checksum
 208                  * verifier for the next block should be bp's checksum plus 1.
 209                  *
 210                  * Also check the log chain linkage and size used.
 211                  */
 212                 cksum.zc_word[ZIL_ZC_SEQ]++;
 213 
 214                 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
 215                         zil_chain_t *zilc = abuf->b_data;
 216                         char *lr = (char *)(zilc + 1);
 217                         uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
 218 
 219                         if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
 220                             sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
 221                                 error = SET_ERROR(ECKSUM);
 222                         } else {
 223                                 ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE);
 224                                 bcopy(lr, dst, len);
 225                                 *end = (char *)dst + len;
 226                                 *nbp = zilc->zc_next_blk;
 227                         }
 228                 } else {
 229                         char *lr = abuf->b_data;
 230                         uint64_t size = BP_GET_LSIZE(bp);
 231                         zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
 232 
 233                         if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
 234                             sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
 235                             (zilc->zc_nused > (size - sizeof (*zilc)))) {
 236                                 error = SET_ERROR(ECKSUM);
 237                         } else {
 238                                 ASSERT3U(zilc->zc_nused, <=,
 239                                     SPA_OLD_MAXBLOCKSIZE);
 240                                 bcopy(lr, dst, zilc->zc_nused);
 241                                 *end = (char *)dst + zilc->zc_nused;
 242                                 *nbp = zilc->zc_next_blk;
 243                         }
 244                 }
 245 
 246                 VERIFY(arc_buf_remove_ref(abuf, &abuf));
 247         }
 248 
 249         return (error);
 250 }
 251 
 252 /*
 253  * Read a TX_WRITE log data block.
 254  */
 255 static int
 256 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
 257 {
 258         enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
 259         const blkptr_t *bp = &lr->lr_blkptr;
 260         arc_flags_t aflags = ARC_FLAG_WAIT;
 261         arc_buf_t *abuf = NULL;
 262         zbookmark_phys_t zb;
 263         int error;
 264 
 265         if (BP_IS_HOLE(bp)) {
 266                 if (wbuf != NULL)
 267                         bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length));
 268                 return (0);
 269         }
 270 
 271         if (zilog->zl_header->zh_claim_txg == 0)
 272                 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
 273 
 274         SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
 275             ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
 276 
 277         error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
 278             ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
 279 
 280         if (error == 0) {
 281                 if (wbuf != NULL)
 282                         bcopy(abuf->b_data, wbuf, arc_buf_size(abuf));
 283                 (void) arc_buf_remove_ref(abuf, &abuf);
 284         }
 285 
 286         return (error);
 287 }
 288 
 289 /*
 290  * Parse the intent log, and call parse_func for each valid record within.
 291  */
 292 int
 293 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
 294     zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg)
 295 {
 296         const zil_header_t *zh = zilog->zl_header;
 297         boolean_t claimed = !!zh->zh_claim_txg;
 298         uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
 299         uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
 300         uint64_t max_blk_seq = 0;
 301         uint64_t max_lr_seq = 0;
 302         uint64_t blk_count = 0;
 303         uint64_t lr_count = 0;
 304         blkptr_t blk, next_blk;
 305         char *lrbuf, *lrp;
 306         int error = 0;
 307 
 308         /*
 309          * Old logs didn't record the maximum zh_claim_lr_seq.
 310          */
 311         if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
 312                 claim_lr_seq = UINT64_MAX;
 313 
 314         /*
 315          * Starting at the block pointed to by zh_log we read the log chain.
 316          * For each block in the chain we strongly check that block to
 317          * ensure its validity.  We stop when an invalid block is found.
 318          * For each block pointer in the chain we call parse_blk_func().
 319          * For each record in each valid block we call parse_lr_func().
 320          * If the log has been claimed, stop if we encounter a sequence
 321          * number greater than the highest claimed sequence number.
 322          */
 323         lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE);
 324         zil_bp_tree_init(zilog);
 325 
 326         for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
 327                 uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
 328                 int reclen;
 329                 char *end;
 330 
 331                 if (blk_seq > claim_blk_seq)
 332                         break;
 333                 if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0)
 334                         break;
 335                 ASSERT3U(max_blk_seq, <, blk_seq);
 336                 max_blk_seq = blk_seq;
 337                 blk_count++;
 338 
 339                 if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
 340                         break;
 341 
 342                 error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end);
 343                 if (error != 0)
 344                         break;
 345 
 346                 for (lrp = lrbuf; lrp < end; lrp += reclen) {
 347                         lr_t *lr = (lr_t *)lrp;
 348                         reclen = lr->lrc_reclen;
 349                         ASSERT3U(reclen, >=, sizeof (lr_t));
 350                         if (lr->lrc_seq > claim_lr_seq)
 351                                 goto done;
 352                         if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0)
 353                                 goto done;
 354                         ASSERT3U(max_lr_seq, <, lr->lrc_seq);
 355                         max_lr_seq = lr->lrc_seq;
 356                         lr_count++;
 357                 }
 358         }
 359 done:
 360         zilog->zl_parse_error = error;
 361         zilog->zl_parse_blk_seq = max_blk_seq;
 362         zilog->zl_parse_lr_seq = max_lr_seq;
 363         zilog->zl_parse_blk_count = blk_count;
 364         zilog->zl_parse_lr_count = lr_count;
 365 
 366         ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
 367             (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq));
 368 
 369         zil_bp_tree_fini(zilog);
 370         zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE);
 371 
 372         return (error);
 373 }
 374 
 375 static int
 376 zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
 377 {
 378         /*
 379          * Claim log block if not already committed and not already claimed.
 380          * If tx == NULL, just verify that the block is claimable.
 381          */
 382         if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
 383             zil_bp_tree_add(zilog, bp) != 0)
 384                 return (0);
 385 
 386         return (zio_wait(zio_claim(NULL, zilog->zl_spa,
 387             tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
 388             ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
 389 }
 390 
 391 static int
 392 zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
 393 {
 394         lr_write_t *lr = (lr_write_t *)lrc;
 395         int error;
 396 
 397         if (lrc->lrc_txtype != TX_WRITE)
 398                 return (0);
 399 
 400         /*
 401          * If the block is not readable, don't claim it.  This can happen
 402          * in normal operation when a log block is written to disk before
 403          * some of the dmu_sync() blocks it points to.  In this case, the
 404          * transaction cannot have been committed to anyone (we would have
 405          * waited for all writes to be stable first), so it is semantically
 406          * correct to declare this the end of the log.
 407          */
 408         if (lr->lr_blkptr.blk_birth >= first_txg &&
 409             (error = zil_read_log_data(zilog, lr, NULL)) != 0)
 410                 return (error);
 411         return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
 412 }
 413 
 414 /* ARGSUSED */
 415 static int
 416 zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg)
 417 {
 418         zio_free_zil(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
 419 
 420         return (0);
 421 }
 422 
 423 static int
 424 zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg)
 425 {
 426         lr_write_t *lr = (lr_write_t *)lrc;
 427         blkptr_t *bp = &lr->lr_blkptr;
 428 
 429         /*
 430          * If we previously claimed it, we need to free it.
 431          */
 432         if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
 433             bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
 434             !BP_IS_HOLE(bp))
 435                 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
 436 
 437         return (0);
 438 }
 439 
 440 static lwb_t *
 441 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, uint64_t txg)
 442 {
 443         lwb_t *lwb;
 444 
 445         lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
 446         lwb->lwb_zilog = zilog;
 447         lwb->lwb_blk = *bp;
 448         lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
 449         lwb->lwb_max_txg = txg;
 450         lwb->lwb_zio = NULL;
 451         lwb->lwb_tx = NULL;
 452         if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
 453                 lwb->lwb_nused = sizeof (zil_chain_t);
 454                 lwb->lwb_sz = BP_GET_LSIZE(bp);
 455         } else {
 456                 lwb->lwb_nused = 0;
 457                 lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
 458         }
 459 
 460         mutex_enter(&zilog->zl_lock);
 461         list_insert_tail(&zilog->zl_lwb_list, lwb);
 462         mutex_exit(&zilog->zl_lock);
 463 
 464         return (lwb);
 465 }
 466 
 467 /*
 468  * Called when we create in-memory log transactions so that we know
 469  * to cleanup the itxs at the end of spa_sync().
 470  */
 471 void
 472 zilog_dirty(zilog_t *zilog, uint64_t txg)
 473 {
 474         dsl_pool_t *dp = zilog->zl_dmu_pool;
 475         dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
 476 
 477         if (ds->ds_is_snapshot)
 478                 panic("dirtying snapshot!");
 479 
 480         if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
 481                 /* up the hold count until we can be written out */
 482                 dmu_buf_add_ref(ds->ds_dbuf, zilog);
 483         }
 484 }
 485 
 486 boolean_t
 487 zilog_is_dirty(zilog_t *zilog)
 488 {
 489         dsl_pool_t *dp = zilog->zl_dmu_pool;
 490 
 491         for (int t = 0; t < TXG_SIZE; t++) {
 492                 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
 493                         return (B_TRUE);
 494         }
 495         return (B_FALSE);
 496 }
 497 
 498 /*
 499  * Create an on-disk intent log.
 500  */
 501 static lwb_t *
 502 zil_create(zilog_t *zilog)
 503 {
 504         const zil_header_t *zh = zilog->zl_header;
 505         lwb_t *lwb = NULL;
 506         uint64_t txg = 0;
 507         dmu_tx_t *tx = NULL;
 508         blkptr_t blk;
 509         int error = 0;
 510 
 511         /*
 512          * Wait for any previous destroy to complete.
 513          */
 514         txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
 515 
 516         ASSERT(zh->zh_claim_txg == 0);
 517         ASSERT(zh->zh_replay_seq == 0);
 518 
 519         blk = zh->zh_log;
 520 
 521         /*
 522          * Allocate an initial log block if:
 523          *    - there isn't one already
 524          *    - the existing block is the wrong endianess
 525          */
 526         if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
 527                 tx = dmu_tx_create(zilog->zl_os);
 528                 VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
 529                 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
 530                 txg = dmu_tx_get_txg(tx);
 531 
 532                 if (!BP_IS_HOLE(&blk)) {
 533                         zio_free_zil(zilog->zl_spa, txg, &blk);
 534                         BP_ZERO(&blk);
 535                 }
 536 
 537                 error = zio_alloc_zil(zilog->zl_spa, txg, &blk, NULL,
 538                     ZIL_MIN_BLKSZ, zilog->zl_logbias == ZFS_LOGBIAS_LATENCY);
 539 
 540                 if (error == 0)
 541                         zil_init_log_chain(zilog, &blk);
 542         }
 543 
 544         /*
 545          * Allocate a log write buffer (lwb) for the first log block.
 546          */
 547         if (error == 0)
 548                 lwb = zil_alloc_lwb(zilog, &blk, txg);
 549 
 550         /*
 551          * If we just allocated the first log block, commit our transaction
 552          * and wait for zil_sync() to stuff the block poiner into zh_log.
 553          * (zh is part of the MOS, so we cannot modify it in open context.)
 554          */
 555         if (tx != NULL) {
 556                 dmu_tx_commit(tx);
 557                 txg_wait_synced(zilog->zl_dmu_pool, txg);
 558         }
 559 
 560         ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
 561 
 562         return (lwb);
 563 }
 564 
 565 /*
 566  * In one tx, free all log blocks and clear the log header.
 567  * If keep_first is set, then we're replaying a log with no content.
 568  * We want to keep the first block, however, so that the first
 569  * synchronous transaction doesn't require a txg_wait_synced()
 570  * in zil_create().  We don't need to txg_wait_synced() here either
 571  * when keep_first is set, because both zil_create() and zil_destroy()
 572  * will wait for any in-progress destroys to complete.
 573  */
 574 void
 575 zil_destroy(zilog_t *zilog, boolean_t keep_first)
 576 {
 577         const zil_header_t *zh = zilog->zl_header;
 578         lwb_t *lwb;
 579         dmu_tx_t *tx;
 580         uint64_t txg;
 581 
 582         /*
 583          * Wait for any previous destroy to complete.
 584          */
 585         txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
 586 
 587         zilog->zl_old_header = *zh;          /* debugging aid */
 588 
 589         if (BP_IS_HOLE(&zh->zh_log))
 590                 return;
 591 
 592         tx = dmu_tx_create(zilog->zl_os);
 593         VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
 594         dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
 595         txg = dmu_tx_get_txg(tx);
 596 
 597         mutex_enter(&zilog->zl_lock);
 598 
 599         ASSERT3U(zilog->zl_destroy_txg, <, txg);
 600         zilog->zl_destroy_txg = txg;
 601         zilog->zl_keep_first = keep_first;
 602 
 603         if (!list_is_empty(&zilog->zl_lwb_list)) {
 604                 ASSERT(zh->zh_claim_txg == 0);
 605                 VERIFY(!keep_first);
 606                 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
 607                         list_remove(&zilog->zl_lwb_list, lwb);
 608                         if (lwb->lwb_buf != NULL)
 609                                 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
 610                         zio_free_zil(zilog->zl_spa, txg, &lwb->lwb_blk);
 611                         kmem_cache_free(zil_lwb_cache, lwb);
 612                 }
 613         } else if (!keep_first) {
 614                 zil_destroy_sync(zilog, tx);
 615         }
 616         mutex_exit(&zilog->zl_lock);
 617 
 618         dmu_tx_commit(tx);
 619 }
 620 
 621 void
 622 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
 623 {
 624         ASSERT(list_is_empty(&zilog->zl_lwb_list));
 625         (void) zil_parse(zilog, zil_free_log_block,
 626             zil_free_log_record, tx, zilog->zl_header->zh_claim_txg);
 627 }
 628 
 629 int
 630 zil_claim(const char *osname, void *txarg)
 631 {
 632         dmu_tx_t *tx = txarg;
 633         uint64_t first_txg = dmu_tx_get_txg(tx);
 634         zilog_t *zilog;
 635         zil_header_t *zh;
 636         objset_t *os;
 637         int error;
 638 
 639         error = dmu_objset_own(osname, DMU_OST_ANY, B_FALSE, FTAG, &os);
 640         if (error != 0) {
 641                 /*
 642                  * EBUSY indicates that the objset is inconsistent, in which
 643                  * case it can not have a ZIL.
 644                  */
 645                 if (error != EBUSY) {
 646                         cmn_err(CE_WARN, "can't open objset for %s, error %u",
 647                             osname, error);
 648                 }
 649                 return (0);
 650         }
 651 
 652         zilog = dmu_objset_zil(os);
 653         zh = zil_header_in_syncing_context(zilog);
 654 
 655         if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR) {
 656                 if (!BP_IS_HOLE(&zh->zh_log))
 657                         zio_free_zil(zilog->zl_spa, first_txg, &zh->zh_log);
 658                 BP_ZERO(&zh->zh_log);
 659                 dsl_dataset_dirty(dmu_objset_ds(os), tx);
 660                 dmu_objset_disown(os, FTAG);
 661                 return (0);
 662         }
 663 
 664         /*
 665          * Claim all log blocks if we haven't already done so, and remember
 666          * the highest claimed sequence number.  This ensures that if we can
 667          * read only part of the log now (e.g. due to a missing device),
 668          * but we can read the entire log later, we will not try to replay
 669          * or destroy beyond the last block we successfully claimed.
 670          */
 671         ASSERT3U(zh->zh_claim_txg, <=, first_txg);
 672         if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
 673                 (void) zil_parse(zilog, zil_claim_log_block,
 674                     zil_claim_log_record, tx, first_txg);
 675                 zh->zh_claim_txg = first_txg;
 676                 zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
 677                 zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
 678                 if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
 679                         zh->zh_flags |= ZIL_REPLAY_NEEDED;
 680                 zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
 681                 dsl_dataset_dirty(dmu_objset_ds(os), tx);
 682         }
 683 
 684         ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
 685         dmu_objset_disown(os, FTAG);
 686         return (0);
 687 }
 688 
 689 /*
 690  * Check the log by walking the log chain.
 691  * Checksum errors are ok as they indicate the end of the chain.
 692  * Any other error (no device or read failure) returns an error.
 693  */
 694 int
 695 zil_check_log_chain(const char *osname, void *tx)
 696 {
 697         zilog_t *zilog;
 698         objset_t *os;
 699         blkptr_t *bp;
 700         int error;
 701 
 702         ASSERT(tx == NULL);
 703 
 704         error = dmu_objset_hold(osname, FTAG, &os);
 705         if (error != 0) {
 706                 cmn_err(CE_WARN, "can't open objset for %s", osname);
 707                 return (0);
 708         }
 709 
 710         zilog = dmu_objset_zil(os);
 711         bp = (blkptr_t *)&zilog->zl_header->zh_log;
 712 
 713         /*
 714          * Check the first block and determine if it's on a log device
 715          * which may have been removed or faulted prior to loading this
 716          * pool.  If so, there's no point in checking the rest of the log
 717          * as its content should have already been synced to the pool.
 718          */
 719         if (!BP_IS_HOLE(bp)) {
 720                 vdev_t *vd;
 721                 boolean_t valid = B_TRUE;
 722 
 723                 spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
 724                 vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
 725                 if (vd->vdev_islog && vdev_is_dead(vd))
 726                         valid = vdev_log_state_valid(vd);
 727                 spa_config_exit(os->os_spa, SCL_STATE, FTAG);
 728 
 729                 if (!valid) {
 730                         dmu_objset_rele(os, FTAG);
 731                         return (0);
 732                 }
 733         }
 734 
 735         /*
 736          * Because tx == NULL, zil_claim_log_block() will not actually claim
 737          * any blocks, but just determine whether it is possible to do so.
 738          * In addition to checking the log chain, zil_claim_log_block()
 739          * will invoke zio_claim() with a done func of spa_claim_notify(),
 740          * which will update spa_max_claim_txg.  See spa_load() for details.
 741          */
 742         error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
 743             zilog->zl_header->zh_claim_txg ? -1ULL : spa_first_txg(os->os_spa));
 744 
 745         dmu_objset_rele(os, FTAG);
 746 
 747         return ((error == ECKSUM || error == ENOENT) ? 0 : error);
 748 }
 749 
 750 static int
 751 zil_vdev_compare(const void *x1, const void *x2)
 752 {
 753         const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
 754         const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
 755 
 756         if (v1 < v2)
 757                 return (-1);
 758         if (v1 > v2)
 759                 return (1);
 760 
 761         return (0);
 762 }
 763 
 764 void
 765 zil_add_block(zilog_t *zilog, const blkptr_t *bp)
 766 {
 767         avl_tree_t *t = &zilog->zl_vdev_tree;
 768         avl_index_t where;
 769         zil_vdev_node_t *zv, zvsearch;
 770         int ndvas = BP_GET_NDVAS(bp);
 771         int i;
 772 
 773         if (zfs_nocacheflush)
 774                 return;
 775 
 776         ASSERT(zilog->zl_writer);
 777 
 778         /*
 779          * Even though we're zl_writer, we still need a lock because the
 780          * zl_get_data() callbacks may have dmu_sync() done callbacks
 781          * that will run concurrently.
 782          */
 783         mutex_enter(&zilog->zl_vdev_lock);
 784         for (i = 0; i < ndvas; i++) {
 785                 zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
 786                 if (avl_find(t, &zvsearch, &where) == NULL) {
 787                         zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
 788                         zv->zv_vdev = zvsearch.zv_vdev;
 789                         avl_insert(t, zv, where);
 790                 }
 791         }
 792         mutex_exit(&zilog->zl_vdev_lock);
 793 }
 794 
 795 static void
 796 zil_flush_vdevs(zilog_t *zilog)
 797 {
 798         spa_t *spa = zilog->zl_spa;
 799         avl_tree_t *t = &zilog->zl_vdev_tree;
 800         void *cookie = NULL;
 801         zil_vdev_node_t *zv;
 802         zio_t *zio;
 803 
 804         ASSERT(zilog->zl_writer);
 805 
 806         /*
 807          * We don't need zl_vdev_lock here because we're the zl_writer,
 808          * and all zl_get_data() callbacks are done.
 809          */
 810         if (avl_numnodes(t) == 0)
 811                 return;
 812 
 813         spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
 814 
 815         zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
 816 
 817         while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
 818                 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
 819                 if (vd != NULL)
 820                         zio_flush(zio, vd);
 821                 kmem_free(zv, sizeof (*zv));
 822         }
 823 
 824         /*
 825          * Wait for all the flushes to complete.  Not all devices actually
 826          * support the DKIOCFLUSHWRITECACHE ioctl, so it's OK if it fails.
 827          */
 828         (void) zio_wait(zio);
 829 
 830         spa_config_exit(spa, SCL_STATE, FTAG);
 831 }
 832 
 833 /*
 834  * Function called when a log block write completes
 835  */
 836 static void
 837 zil_lwb_write_done(zio_t *zio)
 838 {
 839         lwb_t *lwb = zio->io_private;
 840         zilog_t *zilog = lwb->lwb_zilog;
 841         dmu_tx_t *tx = lwb->lwb_tx;
 842 
 843         ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
 844         ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
 845         ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
 846         ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
 847         ASSERT(!BP_IS_GANG(zio->io_bp));
 848         ASSERT(!BP_IS_HOLE(zio->io_bp));
 849         ASSERT(BP_GET_FILL(zio->io_bp) == 0);
 850 
 851         /*
 852          * Ensure the lwb buffer pointer is cleared before releasing
 853          * the txg. If we have had an allocation failure and
 854          * the txg is waiting to sync then we want want zil_sync()
 855          * to remove the lwb so that it's not picked up as the next new
 856          * one in zil_commit_writer(). zil_sync() will only remove
 857          * the lwb if lwb_buf is null.
 858          */
 859         zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
 860         mutex_enter(&zilog->zl_lock);
 861         lwb->lwb_buf = NULL;
 862         lwb->lwb_tx = NULL;
 863         mutex_exit(&zilog->zl_lock);
 864 
 865         /*
 866          * Now that we've written this log block, we have a stable pointer
 867          * to the next block in the chain, so it's OK to let the txg in
 868          * which we allocated the next block sync.
 869          */
 870         dmu_tx_commit(tx);
 871 }
 872 
 873 /*
 874  * Initialize the io for a log block.
 875  */
 876 static void
 877 zil_lwb_write_init(zilog_t *zilog, lwb_t *lwb)
 878 {
 879         zbookmark_phys_t zb;
 880 
 881         SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
 882             ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
 883             lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
 884 
 885         if (zilog->zl_root_zio == NULL) {
 886                 zilog->zl_root_zio = zio_root(zilog->zl_spa, NULL, NULL,
 887                     ZIO_FLAG_CANFAIL);
 888         }
 889         if (lwb->lwb_zio == NULL) {
 890                 lwb->lwb_zio = zio_rewrite(zilog->zl_root_zio, zilog->zl_spa,
 891                     0, &lwb->lwb_blk, lwb->lwb_buf, BP_GET_LSIZE(&lwb->lwb_blk),
 892                     zil_lwb_write_done, lwb, ZIO_PRIORITY_SYNC_WRITE,
 893                     ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE, &zb);
 894         }
 895 }
 896 
 897 /*
 898  * Define a limited set of intent log block sizes.
 899  *
 900  * These must be a multiple of 4KB. Note only the amount used (again
 901  * aligned to 4KB) actually gets written. However, we can't always just
 902  * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted.
 903  */
 904 uint64_t zil_block_buckets[] = {
 905     4096,               /* non TX_WRITE */
 906     8192+4096,          /* data base */
 907     32*1024 + 4096,     /* NFS writes */
 908     UINT64_MAX
 909 };
 910 
 911 /*
 912  * Use the slog as long as the logbias is 'latency' and the current commit size
 913  * is less than the limit or the total list size is less than 2X the limit.
 914  * Limit checking is disabled by setting zil_slog_limit to UINT64_MAX.
 915  */
 916 uint64_t zil_slog_limit = 1024 * 1024;
 917 #define USE_SLOG(zilog) (((zilog)->zl_logbias == ZFS_LOGBIAS_LATENCY) && \
 918         (((zilog)->zl_cur_used < zil_slog_limit) || \
 919         ((zilog)->zl_itx_list_sz < (zil_slog_limit << 1))))
 920 
 921 /*
 922  * Start a log block write and advance to the next log block.
 923  * Calls are serialized.
 924  */
 925 static lwb_t *
 926 zil_lwb_write_start(zilog_t *zilog, lwb_t *lwb)
 927 {
 928         lwb_t *nlwb = NULL;
 929         zil_chain_t *zilc;
 930         spa_t *spa = zilog->zl_spa;
 931         blkptr_t *bp;
 932         dmu_tx_t *tx;
 933         uint64_t txg;
 934         uint64_t zil_blksz, wsz;
 935         int i, error;
 936 
 937         if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
 938                 zilc = (zil_chain_t *)lwb->lwb_buf;
 939                 bp = &zilc->zc_next_blk;
 940         } else {
 941                 zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
 942                 bp = &zilc->zc_next_blk;
 943         }
 944 
 945         ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
 946 
 947         /*
 948          * Allocate the next block and save its address in this block
 949          * before writing it in order to establish the log chain.
 950          * Note that if the allocation of nlwb synced before we wrote
 951          * the block that points at it (lwb), we'd leak it if we crashed.
 952          * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done().
 953          * We dirty the dataset to ensure that zil_sync() will be called
 954          * to clean up in the event of allocation failure or I/O failure.
 955          */
 956         tx = dmu_tx_create(zilog->zl_os);
 957         VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
 958         dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
 959         txg = dmu_tx_get_txg(tx);
 960 
 961         lwb->lwb_tx = tx;
 962 
 963         /*
 964          * Log blocks are pre-allocated. Here we select the size of the next
 965          * block, based on size used in the last block.
 966          * - first find the smallest bucket that will fit the block from a
 967          *   limited set of block sizes. This is because it's faster to write
 968          *   blocks allocated from the same metaslab as they are adjacent or
 969          *   close.
 970          * - next find the maximum from the new suggested size and an array of
 971          *   previous sizes. This lessens a picket fence effect of wrongly
 972          *   guesssing the size if we have a stream of say 2k, 64k, 2k, 64k
 973          *   requests.
 974          *
 975          * Note we only write what is used, but we can't just allocate
 976          * the maximum block size because we can exhaust the available
 977          * pool log space.
 978          */
 979         zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
 980         for (i = 0; zil_blksz > zil_block_buckets[i]; i++)
 981                 continue;
 982         zil_blksz = zil_block_buckets[i];
 983         if (zil_blksz == UINT64_MAX)
 984                 zil_blksz = SPA_OLD_MAXBLOCKSIZE;
 985         zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
 986         for (i = 0; i < ZIL_PREV_BLKS; i++)
 987                 zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
 988         zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
 989 
 990         BP_ZERO(bp);
 991         /* pass the old blkptr in order to spread log blocks across devs */
 992         error = zio_alloc_zil(spa, txg, bp, &lwb->lwb_blk, zil_blksz,
 993             USE_SLOG(zilog));
 994         if (error == 0) {
 995                 ASSERT3U(bp->blk_birth, ==, txg);
 996                 bp->blk_cksum = lwb->lwb_blk.blk_cksum;
 997                 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
 998 
 999                 /*
1000                  * Allocate a new log write buffer (lwb).
1001                  */
1002                 nlwb = zil_alloc_lwb(zilog, bp, txg);
1003 
1004                 /* Record the block for later vdev flushing */
1005                 zil_add_block(zilog, &lwb->lwb_blk);
1006         }
1007 
1008         if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1009                 /* For Slim ZIL only write what is used. */
1010                 wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
1011                 ASSERT3U(wsz, <=, lwb->lwb_sz);
1012                 zio_shrink(lwb->lwb_zio, wsz);
1013 
1014         } else {
1015                 wsz = lwb->lwb_sz;
1016         }
1017 
1018         zilc->zc_pad = 0;
1019         zilc->zc_nused = lwb->lwb_nused;
1020         zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1021 
1022         /*
1023          * clear unused data for security
1024          */
1025         bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused);
1026 
1027         zio_nowait(lwb->lwb_zio); /* Kick off the write for the old log block */
1028 
1029         /*
1030          * If there was an allocation failure then nlwb will be null which
1031          * forces a txg_wait_synced().
1032          */
1033         return (nlwb);
1034 }
1035 
1036 static lwb_t *
1037 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
1038 {
1039         lr_t *lrc = &itx->itx_lr; /* common log record */
1040         lr_write_t *lrw = (lr_write_t *)lrc;
1041         char *lr_buf;
1042         uint64_t txg = lrc->lrc_txg;
1043         uint64_t reclen = lrc->lrc_reclen;
1044         uint64_t dlen = 0;
1045 
1046         if (lwb == NULL)
1047                 return (NULL);
1048 
1049         ASSERT(lwb->lwb_buf != NULL);
1050         ASSERT(zilog_is_dirty(zilog) ||
1051             spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
1052 
1053         if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY)
1054                 dlen = P2ROUNDUP_TYPED(
1055                     lrw->lr_length, sizeof (uint64_t), uint64_t);
1056 
1057         zilog->zl_cur_used += (reclen + dlen);
1058 
1059         zil_lwb_write_init(zilog, lwb);
1060 
1061         /*
1062          * If this record won't fit in the current log block, start a new one.
1063          */
1064         if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) {
1065                 lwb = zil_lwb_write_start(zilog, lwb);
1066                 if (lwb == NULL)
1067                         return (NULL);
1068                 zil_lwb_write_init(zilog, lwb);
1069                 ASSERT(LWB_EMPTY(lwb));
1070                 if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) {
1071                         txg_wait_synced(zilog->zl_dmu_pool, txg);
1072                         return (lwb);
1073                 }
1074         }
1075 
1076         lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1077         bcopy(lrc, lr_buf, reclen);
1078         lrc = (lr_t *)lr_buf;
1079         lrw = (lr_write_t *)lrc;
1080 
1081         /*
1082          * If it's a write, fetch the data or get its blkptr as appropriate.
1083          */
1084         if (lrc->lrc_txtype == TX_WRITE) {
1085                 if (txg > spa_freeze_txg(zilog->zl_spa))
1086                         txg_wait_synced(zilog->zl_dmu_pool, txg);
1087                 if (itx->itx_wr_state != WR_COPIED) {
1088                         char *dbuf;
1089                         int error;
1090 
1091                         if (dlen) {
1092                                 ASSERT(itx->itx_wr_state == WR_NEED_COPY);
1093                                 dbuf = lr_buf + reclen;
1094                                 lrw->lr_common.lrc_reclen += dlen;
1095                         } else {
1096                                 ASSERT(itx->itx_wr_state == WR_INDIRECT);
1097                                 dbuf = NULL;
1098                         }
1099                         error = zilog->zl_get_data(
1100                             itx->itx_private, lrw, dbuf, lwb->lwb_zio);
1101                         if (error == EIO) {
1102                                 txg_wait_synced(zilog->zl_dmu_pool, txg);
1103                                 return (lwb);
1104                         }
1105                         if (error != 0) {
1106                                 ASSERT(error == ENOENT || error == EEXIST ||
1107                                     error == EALREADY);
1108                                 return (lwb);
1109                         }
1110                 }
1111         }
1112 
1113         /*
1114          * We're actually making an entry, so update lrc_seq to be the
1115          * log record sequence number.  Note that this is generally not
1116          * equal to the itx sequence number because not all transactions
1117          * are synchronous, and sometimes spa_sync() gets there first.
1118          */
1119         lrc->lrc_seq = ++zilog->zl_lr_seq; /* we are single threaded */
1120         lwb->lwb_nused += reclen + dlen;
1121         lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1122         ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
1123         ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
1124 
1125         return (lwb);
1126 }
1127 
1128 itx_t *
1129 zil_itx_create(uint64_t txtype, size_t lrsize)
1130 {
1131         itx_t *itx;
1132 
1133         lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t);
1134 
1135         itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP);
1136         itx->itx_lr.lrc_txtype = txtype;
1137         itx->itx_lr.lrc_reclen = lrsize;
1138         itx->itx_sod = lrsize; /* if write & WR_NEED_COPY will be increased */
1139         itx->itx_lr.lrc_seq = 0;     /* defensive */
1140         itx->itx_sync = B_TRUE;              /* default is synchronous */
1141 
1142         return (itx);
1143 }
1144 
1145 void
1146 zil_itx_destroy(itx_t *itx)
1147 {
1148         kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen);
1149 }
1150 
1151 /*
1152  * Free up the sync and async itxs. The itxs_t has already been detached
1153  * so no locks are needed.
1154  */
1155 static void
1156 zil_itxg_clean(itxs_t *itxs)
1157 {
1158         itx_t *itx;
1159         list_t *list;
1160         avl_tree_t *t;
1161         void *cookie;
1162         itx_async_node_t *ian;
1163 
1164         list = &itxs->i_sync_list;
1165         while ((itx = list_head(list)) != NULL) {
1166                 list_remove(list, itx);
1167                 kmem_free(itx, offsetof(itx_t, itx_lr) +
1168                     itx->itx_lr.lrc_reclen);
1169         }
1170 
1171         cookie = NULL;
1172         t = &itxs->i_async_tree;
1173         while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1174                 list = &ian->ia_list;
1175                 while ((itx = list_head(list)) != NULL) {
1176                         list_remove(list, itx);
1177                         kmem_free(itx, offsetof(itx_t, itx_lr) +
1178                             itx->itx_lr.lrc_reclen);
1179                 }
1180                 list_destroy(list);
1181                 kmem_free(ian, sizeof (itx_async_node_t));
1182         }
1183         avl_destroy(t);
1184 
1185         kmem_free(itxs, sizeof (itxs_t));
1186 }
1187 
1188 static int
1189 zil_aitx_compare(const void *x1, const void *x2)
1190 {
1191         const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
1192         const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
1193 
1194         if (o1 < o2)
1195                 return (-1);
1196         if (o1 > o2)
1197                 return (1);
1198 
1199         return (0);
1200 }
1201 
1202 /*
1203  * Remove all async itx with the given oid.
1204  */
1205 static void
1206 zil_remove_async(zilog_t *zilog, uint64_t oid)
1207 {
1208         uint64_t otxg, txg;
1209         itx_async_node_t *ian;
1210         avl_tree_t *t;
1211         avl_index_t where;
1212         list_t clean_list;
1213         itx_t *itx;
1214 
1215         ASSERT(oid != 0);
1216         list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
1217 
1218         if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1219                 otxg = ZILTEST_TXG;
1220         else
1221                 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1222 
1223         for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1224                 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1225 
1226                 mutex_enter(&itxg->itxg_lock);
1227                 if (itxg->itxg_txg != txg) {
1228                         mutex_exit(&itxg->itxg_lock);
1229                         continue;
1230                 }
1231 
1232                 /*
1233                  * Locate the object node and append its list.
1234                  */
1235                 t = &itxg->itxg_itxs->i_async_tree;
1236                 ian = avl_find(t, &oid, &where);
1237                 if (ian != NULL)
1238                         list_move_tail(&clean_list, &ian->ia_list);
1239                 mutex_exit(&itxg->itxg_lock);
1240         }
1241         while ((itx = list_head(&clean_list)) != NULL) {
1242                 list_remove(&clean_list, itx);
1243                 kmem_free(itx, offsetof(itx_t, itx_lr) +
1244                     itx->itx_lr.lrc_reclen);
1245         }
1246         list_destroy(&clean_list);
1247 }
1248 
1249 void
1250 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
1251 {
1252         uint64_t txg;
1253         itxg_t *itxg;
1254         itxs_t *itxs, *clean = NULL;
1255 
1256         /*
1257          * Object ids can be re-instantiated in the next txg so
1258          * remove any async transactions to avoid future leaks.
1259          * This can happen if a fsync occurs on the re-instantiated
1260          * object for a WR_INDIRECT or WR_NEED_COPY write, which gets
1261          * the new file data and flushes a write record for the old object.
1262          */
1263         if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE)
1264                 zil_remove_async(zilog, itx->itx_oid);
1265 
1266         /*
1267          * Ensure the data of a renamed file is committed before the rename.
1268          */
1269         if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
1270                 zil_async_to_sync(zilog, itx->itx_oid);
1271 
1272         if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
1273                 txg = ZILTEST_TXG;
1274         else
1275                 txg = dmu_tx_get_txg(tx);
1276 
1277         itxg = &zilog->zl_itxg[txg & TXG_MASK];
1278         mutex_enter(&itxg->itxg_lock);
1279         itxs = itxg->itxg_itxs;
1280         if (itxg->itxg_txg != txg) {
1281                 if (itxs != NULL) {
1282                         /*
1283                          * The zil_clean callback hasn't got around to cleaning
1284                          * this itxg. Save the itxs for release below.
1285                          * This should be rare.
1286                          */
1287                         atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod);
1288                         itxg->itxg_sod = 0;
1289                         clean = itxg->itxg_itxs;
1290                 }
1291                 ASSERT(itxg->itxg_sod == 0);
1292                 itxg->itxg_txg = txg;
1293                 itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), KM_SLEEP);
1294 
1295                 list_create(&itxs->i_sync_list, sizeof (itx_t),
1296                     offsetof(itx_t, itx_node));
1297                 avl_create(&itxs->i_async_tree, zil_aitx_compare,
1298                     sizeof (itx_async_node_t),
1299                     offsetof(itx_async_node_t, ia_node));
1300         }
1301         if (itx->itx_sync) {
1302                 list_insert_tail(&itxs->i_sync_list, itx);
1303                 atomic_add_64(&zilog->zl_itx_list_sz, itx->itx_sod);
1304                 itxg->itxg_sod += itx->itx_sod;
1305         } else {
1306                 avl_tree_t *t = &itxs->i_async_tree;
1307                 uint64_t foid = ((lr_ooo_t *)&itx->itx_lr)->lr_foid;
1308                 itx_async_node_t *ian;
1309                 avl_index_t where;
1310 
1311                 ian = avl_find(t, &foid, &where);
1312                 if (ian == NULL) {
1313                         ian = kmem_alloc(sizeof (itx_async_node_t), KM_SLEEP);
1314                         list_create(&ian->ia_list, sizeof (itx_t),
1315                             offsetof(itx_t, itx_node));
1316                         ian->ia_foid = foid;
1317                         avl_insert(t, ian, where);
1318                 }
1319                 list_insert_tail(&ian->ia_list, itx);
1320         }
1321 
1322         itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
1323         zilog_dirty(zilog, txg);
1324         mutex_exit(&itxg->itxg_lock);
1325 
1326         /* Release the old itxs now we've dropped the lock */
1327         if (clean != NULL)
1328                 zil_itxg_clean(clean);
1329 }
1330 
1331 /*
1332  * If there are any in-memory intent log transactions which have now been
1333  * synced then start up a taskq to free them. We should only do this after we
1334  * have written out the uberblocks (i.e. txg has been comitted) so that
1335  * don't inadvertently clean out in-memory log records that would be required
1336  * by zil_commit().
1337  */
1338 void
1339 zil_clean(zilog_t *zilog, uint64_t synced_txg)
1340 {
1341         itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
1342         itxs_t *clean_me;
1343 
1344         mutex_enter(&itxg->itxg_lock);
1345         if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
1346                 mutex_exit(&itxg->itxg_lock);
1347                 return;
1348         }
1349         ASSERT3U(itxg->itxg_txg, <=, synced_txg);
1350         ASSERT(itxg->itxg_txg != 0);
1351         ASSERT(zilog->zl_clean_taskq != NULL);
1352         atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod);
1353         itxg->itxg_sod = 0;
1354         clean_me = itxg->itxg_itxs;
1355         itxg->itxg_itxs = NULL;
1356         itxg->itxg_txg = 0;
1357         mutex_exit(&itxg->itxg_lock);
1358         /*
1359          * Preferably start a task queue to free up the old itxs but
1360          * if taskq_dispatch can't allocate resources to do that then
1361          * free it in-line. This should be rare. Note, using TQ_SLEEP
1362          * created a bad performance problem.
1363          */
1364         if (taskq_dispatch(zilog->zl_clean_taskq,
1365             (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == NULL)
1366                 zil_itxg_clean(clean_me);
1367 }
1368 
1369 /*
1370  * Get the list of itxs to commit into zl_itx_commit_list.
1371  */
1372 static void
1373 zil_get_commit_list(zilog_t *zilog)
1374 {
1375         uint64_t otxg, txg;
1376         list_t *commit_list = &zilog->zl_itx_commit_list;
1377         uint64_t push_sod = 0;
1378 
1379         if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1380                 otxg = ZILTEST_TXG;
1381         else
1382                 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1383 
1384         for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1385                 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1386 
1387                 mutex_enter(&itxg->itxg_lock);
1388                 if (itxg->itxg_txg != txg) {
1389                         mutex_exit(&itxg->itxg_lock);
1390                         continue;
1391                 }
1392 
1393                 list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
1394                 push_sod += itxg->itxg_sod;
1395                 itxg->itxg_sod = 0;
1396 
1397                 mutex_exit(&itxg->itxg_lock);
1398         }
1399         atomic_add_64(&zilog->zl_itx_list_sz, -push_sod);
1400 }
1401 
1402 /*
1403  * Move the async itxs for a specified object to commit into sync lists.
1404  */
1405 static void
1406 zil_async_to_sync(zilog_t *zilog, uint64_t foid)
1407 {
1408         uint64_t otxg, txg;
1409         itx_async_node_t *ian;
1410         avl_tree_t *t;
1411         avl_index_t where;
1412 
1413         if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1414                 otxg = ZILTEST_TXG;
1415         else
1416                 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1417 
1418         for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1419                 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1420 
1421                 mutex_enter(&itxg->itxg_lock);
1422                 if (itxg->itxg_txg != txg) {
1423                         mutex_exit(&itxg->itxg_lock);
1424                         continue;
1425                 }
1426 
1427                 /*
1428                  * If a foid is specified then find that node and append its
1429                  * list. Otherwise walk the tree appending all the lists
1430                  * to the sync list. We add to the end rather than the
1431                  * beginning to ensure the create has happened.
1432                  */
1433                 t = &itxg->itxg_itxs->i_async_tree;
1434                 if (foid != 0) {
1435                         ian = avl_find(t, &foid, &where);
1436                         if (ian != NULL) {
1437                                 list_move_tail(&itxg->itxg_itxs->i_sync_list,
1438                                     &ian->ia_list);
1439                         }
1440                 } else {
1441                         void *cookie = NULL;
1442 
1443                         while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1444                                 list_move_tail(&itxg->itxg_itxs->i_sync_list,
1445                                     &ian->ia_list);
1446                                 list_destroy(&ian->ia_list);
1447                                 kmem_free(ian, sizeof (itx_async_node_t));
1448                         }
1449                 }
1450                 mutex_exit(&itxg->itxg_lock);
1451         }
1452 }
1453 
1454 static void
1455 zil_commit_writer(zilog_t *zilog)
1456 {
1457         uint64_t txg;
1458         itx_t *itx;
1459         lwb_t *lwb;
1460         spa_t *spa = zilog->zl_spa;
1461         int error = 0;
1462 
1463         ASSERT(zilog->zl_root_zio == NULL);
1464 
1465         mutex_exit(&zilog->zl_lock);
1466 
1467         zil_get_commit_list(zilog);
1468 
1469         /*
1470          * Return if there's nothing to commit before we dirty the fs by
1471          * calling zil_create().
1472          */
1473         if (list_head(&zilog->zl_itx_commit_list) == NULL) {
1474                 mutex_enter(&zilog->zl_lock);
1475                 return;
1476         }
1477 
1478         if (zilog->zl_suspend) {
1479                 lwb = NULL;
1480         } else {
1481                 lwb = list_tail(&zilog->zl_lwb_list);
1482                 if (lwb == NULL)
1483                         lwb = zil_create(zilog);
1484         }
1485 
1486         DTRACE_PROBE1(zil__cw1, zilog_t *, zilog);
1487         while (itx = list_head(&zilog->zl_itx_commit_list)) {
1488                 txg = itx->itx_lr.lrc_txg;
1489                 ASSERT(txg);
1490 
1491                 if (txg > spa_last_synced_txg(spa) || txg > spa_freeze_txg(spa))
1492                         lwb = zil_lwb_commit(zilog, itx, lwb);
1493                 list_remove(&zilog->zl_itx_commit_list, itx);
1494                 kmem_free(itx, offsetof(itx_t, itx_lr)
1495                     + itx->itx_lr.lrc_reclen);
1496         }
1497         DTRACE_PROBE1(zil__cw2, zilog_t *, zilog);
1498 
1499         /* write the last block out */
1500         if (lwb != NULL && lwb->lwb_zio != NULL)
1501                 lwb = zil_lwb_write_start(zilog, lwb);
1502 
1503         zilog->zl_cur_used = 0;
1504 
1505         /*
1506          * Wait if necessary for the log blocks to be on stable storage.
1507          */
1508         if (zilog->zl_root_zio) {
1509                 error = zio_wait(zilog->zl_root_zio);
1510                 zilog->zl_root_zio = NULL;
1511                 zil_flush_vdevs(zilog);
1512         }
1513 
1514         if (error || lwb == NULL)
1515                 txg_wait_synced(zilog->zl_dmu_pool, 0);
1516 
1517         mutex_enter(&zilog->zl_lock);
1518 
1519         /*
1520          * Remember the highest committed log sequence number for ztest.
1521          * We only update this value when all the log writes succeeded,
1522          * because ztest wants to ASSERT that it got the whole log chain.
1523          */
1524         if (error == 0 && lwb != NULL)
1525                 zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1526 }
1527 
1528 /*
1529  * Commit zfs transactions to stable storage.
1530  * If foid is 0 push out all transactions, otherwise push only those
1531  * for that object or might reference that object.
1532  *
1533  * itxs are committed in batches. In a heavily stressed zil there will be
1534  * a commit writer thread who is writing out a bunch of itxs to the log
1535  * for a set of committing threads (cthreads) in the same batch as the writer.
1536  * Those cthreads are all waiting on the same cv for that batch.
1537  *
1538  * There will also be a different and growing batch of threads that are
1539  * waiting to commit (qthreads). When the committing batch completes
1540  * a transition occurs such that the cthreads exit and the qthreads become
1541  * cthreads. One of the new cthreads becomes the writer thread for the
1542  * batch. Any new threads arriving become new qthreads.
1543  *
1544  * Only 2 condition variables are needed and there's no transition
1545  * between the two cvs needed. They just flip-flop between qthreads
1546  * and cthreads.
1547  *
1548  * Using this scheme we can efficiently wakeup up only those threads
1549  * that have been committed.
1550  */
1551 void
1552 zil_commit(zilog_t *zilog, uint64_t foid)
1553 {
1554         uint64_t mybatch;
1555 
1556         if (zilog->zl_sync == ZFS_SYNC_DISABLED)
1557                 return;
1558 
1559         /* move the async itxs for the foid to the sync queues */
1560         zil_async_to_sync(zilog, foid);
1561 
1562         mutex_enter(&zilog->zl_lock);
1563         mybatch = zilog->zl_next_batch;
1564         while (zilog->zl_writer) {
1565                 cv_wait(&zilog->zl_cv_batch[mybatch & 1], &zilog->zl_lock);
1566                 if (mybatch <= zilog->zl_com_batch) {
1567                         mutex_exit(&zilog->zl_lock);
1568                         return;
1569                 }
1570         }
1571 
1572         zilog->zl_next_batch++;
1573         zilog->zl_writer = B_TRUE;
1574         zil_commit_writer(zilog);
1575         zilog->zl_com_batch = mybatch;
1576         zilog->zl_writer = B_FALSE;
1577         mutex_exit(&zilog->zl_lock);
1578 
1579         /* wake up one thread to become the next writer */
1580         cv_signal(&zilog->zl_cv_batch[(mybatch+1) & 1]);
1581 
1582         /* wake up all threads waiting for this batch to be committed */
1583         cv_broadcast(&zilog->zl_cv_batch[mybatch & 1]);
1584 }
1585 
1586 /*
1587  * Called in syncing context to free committed log blocks and update log header.
1588  */
1589 void
1590 zil_sync(zilog_t *zilog, dmu_tx_t *tx)
1591 {
1592         zil_header_t *zh = zil_header_in_syncing_context(zilog);
1593         uint64_t txg = dmu_tx_get_txg(tx);
1594         spa_t *spa = zilog->zl_spa;
1595         uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
1596         lwb_t *lwb;
1597 
1598         /*
1599          * We don't zero out zl_destroy_txg, so make sure we don't try
1600          * to destroy it twice.
1601          */
1602         if (spa_sync_pass(spa) != 1)
1603                 return;
1604 
1605         mutex_enter(&zilog->zl_lock);
1606 
1607         ASSERT(zilog->zl_stop_sync == 0);
1608 
1609         if (*replayed_seq != 0) {
1610                 ASSERT(zh->zh_replay_seq < *replayed_seq);
1611                 zh->zh_replay_seq = *replayed_seq;
1612                 *replayed_seq = 0;
1613         }
1614 
1615         if (zilog->zl_destroy_txg == txg) {
1616                 blkptr_t blk = zh->zh_log;
1617 
1618                 ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
1619 
1620                 bzero(zh, sizeof (zil_header_t));
1621                 bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq));
1622 
1623                 if (zilog->zl_keep_first) {
1624                         /*
1625                          * If this block was part of log chain that couldn't
1626                          * be claimed because a device was missing during
1627                          * zil_claim(), but that device later returns,
1628                          * then this block could erroneously appear valid.
1629                          * To guard against this, assign a new GUID to the new
1630                          * log chain so it doesn't matter what blk points to.
1631                          */
1632                         zil_init_log_chain(zilog, &blk);
1633                         zh->zh_log = blk;
1634                 }
1635         }
1636 
1637         while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
1638                 zh->zh_log = lwb->lwb_blk;
1639                 if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
1640                         break;
1641                 list_remove(&zilog->zl_lwb_list, lwb);
1642                 zio_free_zil(spa, txg, &lwb->lwb_blk);
1643                 kmem_cache_free(zil_lwb_cache, lwb);
1644 
1645                 /*
1646                  * If we don't have anything left in the lwb list then
1647                  * we've had an allocation failure and we need to zero
1648                  * out the zil_header blkptr so that we don't end
1649                  * up freeing the same block twice.
1650                  */
1651                 if (list_head(&zilog->zl_lwb_list) == NULL)
1652                         BP_ZERO(&zh->zh_log);
1653         }
1654         mutex_exit(&zilog->zl_lock);
1655 }
1656 
1657 void
1658 zil_init(void)
1659 {
1660         zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
1661             sizeof (struct lwb), 0, NULL, NULL, NULL, NULL, NULL, 0);
1662 }
1663 
1664 void
1665 zil_fini(void)
1666 {
1667         kmem_cache_destroy(zil_lwb_cache);
1668 }
1669 
1670 void
1671 zil_set_sync(zilog_t *zilog, uint64_t sync)
1672 {
1673         zilog->zl_sync = sync;
1674 }
1675 
1676 void
1677 zil_set_logbias(zilog_t *zilog, uint64_t logbias)
1678 {
1679         zilog->zl_logbias = logbias;
1680 }
1681 
1682 zilog_t *
1683 zil_alloc(objset_t *os, zil_header_t *zh_phys)
1684 {
1685         zilog_t *zilog;
1686 
1687         zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
1688 
1689         zilog->zl_header = zh_phys;
1690         zilog->zl_os = os;
1691         zilog->zl_spa = dmu_objset_spa(os);
1692         zilog->zl_dmu_pool = dmu_objset_pool(os);
1693         zilog->zl_destroy_txg = TXG_INITIAL - 1;
1694         zilog->zl_logbias = dmu_objset_logbias(os);
1695         zilog->zl_sync = dmu_objset_syncprop(os);
1696         zilog->zl_next_batch = 1;
1697 
1698         mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
1699 
1700         for (int i = 0; i < TXG_SIZE; i++) {
1701                 mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
1702                     MUTEX_DEFAULT, NULL);
1703         }
1704 
1705         list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
1706             offsetof(lwb_t, lwb_node));
1707 
1708         list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
1709             offsetof(itx_t, itx_node));
1710 
1711         mutex_init(&zilog->zl_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
1712 
1713         avl_create(&zilog->zl_vdev_tree, zil_vdev_compare,
1714             sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
1715 
1716         cv_init(&zilog->zl_cv_writer, NULL, CV_DEFAULT, NULL);
1717         cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
1718         cv_init(&zilog->zl_cv_batch[0], NULL, CV_DEFAULT, NULL);
1719         cv_init(&zilog->zl_cv_batch[1], NULL, CV_DEFAULT, NULL);
1720 
1721         return (zilog);
1722 }
1723 
1724 void
1725 zil_free(zilog_t *zilog)
1726 {
1727         zilog->zl_stop_sync = 1;
1728 
1729         ASSERT0(zilog->zl_suspend);
1730         ASSERT0(zilog->zl_suspending);
1731 
1732         ASSERT(list_is_empty(&zilog->zl_lwb_list));
1733         list_destroy(&zilog->zl_lwb_list);
1734 
1735         avl_destroy(&zilog->zl_vdev_tree);
1736         mutex_destroy(&zilog->zl_vdev_lock);
1737 
1738         ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
1739         list_destroy(&zilog->zl_itx_commit_list);
1740 
1741         for (int i = 0; i < TXG_SIZE; i++) {
1742                 /*
1743                  * It's possible for an itx to be generated that doesn't dirty
1744                  * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
1745                  * callback to remove the entry. We remove those here.
1746                  *
1747                  * Also free up the ziltest itxs.
1748                  */
1749                 if (zilog->zl_itxg[i].itxg_itxs)
1750                         zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
1751                 mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
1752         }
1753 
1754         mutex_destroy(&zilog->zl_lock);
1755 
1756         cv_destroy(&zilog->zl_cv_writer);
1757         cv_destroy(&zilog->zl_cv_suspend);
1758         cv_destroy(&zilog->zl_cv_batch[0]);
1759         cv_destroy(&zilog->zl_cv_batch[1]);
1760 
1761         kmem_free(zilog, sizeof (zilog_t));
1762 }
1763 
1764 /*
1765  * Open an intent log.
1766  */
1767 zilog_t *
1768 zil_open(objset_t *os, zil_get_data_t *get_data)
1769 {
1770         zilog_t *zilog = dmu_objset_zil(os);
1771 
1772         ASSERT(zilog->zl_clean_taskq == NULL);
1773         ASSERT(zilog->zl_get_data == NULL);
1774         ASSERT(list_is_empty(&zilog->zl_lwb_list));
1775 
1776         zilog->zl_get_data = get_data;
1777         zilog->zl_clean_taskq = taskq_create("zil_clean", 1, minclsyspri,
1778             2, 2, TASKQ_PREPOPULATE);
1779 
1780         return (zilog);
1781 }
1782 
1783 /*
1784  * Close an intent log.
1785  */
1786 void
1787 zil_close(zilog_t *zilog)
1788 {
1789         lwb_t *lwb;
1790         uint64_t txg = 0;
1791 
1792         zil_commit(zilog, 0); /* commit all itx */
1793 
1794         /*
1795          * The lwb_max_txg for the stubby lwb will reflect the last activity
1796          * for the zil.  After a txg_wait_synced() on the txg we know all the
1797          * callbacks have occurred that may clean the zil.  Only then can we
1798          * destroy the zl_clean_taskq.
1799          */
1800         mutex_enter(&zilog->zl_lock);
1801         lwb = list_tail(&zilog->zl_lwb_list);
1802         if (lwb != NULL)
1803                 txg = lwb->lwb_max_txg;
1804         mutex_exit(&zilog->zl_lock);
1805         if (txg)
1806                 txg_wait_synced(zilog->zl_dmu_pool, txg);
1807         ASSERT(!zilog_is_dirty(zilog));
1808 
1809         taskq_destroy(zilog->zl_clean_taskq);
1810         zilog->zl_clean_taskq = NULL;
1811         zilog->zl_get_data = NULL;
1812 
1813         /*
1814          * We should have only one LWB left on the list; remove it now.
1815          */
1816         mutex_enter(&zilog->zl_lock);
1817         lwb = list_head(&zilog->zl_lwb_list);
1818         if (lwb != NULL) {
1819                 ASSERT(lwb == list_tail(&zilog->zl_lwb_list));
1820                 list_remove(&zilog->zl_lwb_list, lwb);
1821                 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1822                 kmem_cache_free(zil_lwb_cache, lwb);
1823         }
1824         mutex_exit(&zilog->zl_lock);
1825 }
1826 
1827 static char *suspend_tag = "zil suspending";
1828 
1829 /*
1830  * Suspend an intent log.  While in suspended mode, we still honor
1831  * synchronous semantics, but we rely on txg_wait_synced() to do it.
1832  * On old version pools, we suspend the log briefly when taking a
1833  * snapshot so that it will have an empty intent log.
1834  *
1835  * Long holds are not really intended to be used the way we do here --
1836  * held for such a short time.  A concurrent caller of dsl_dataset_long_held()
1837  * could fail.  Therefore we take pains to only put a long hold if it is
1838  * actually necessary.  Fortunately, it will only be necessary if the
1839  * objset is currently mounted (or the ZVOL equivalent).  In that case it
1840  * will already have a long hold, so we are not really making things any worse.
1841  *
1842  * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
1843  * zvol_state_t), and use their mechanism to prevent their hold from being
1844  * dropped (e.g. VFS_HOLD()).  However, that would be even more pain for
1845  * very little gain.
1846  *
1847  * if cookiep == NULL, this does both the suspend & resume.
1848  * Otherwise, it returns with the dataset "long held", and the cookie
1849  * should be passed into zil_resume().
1850  */
1851 int
1852 zil_suspend(const char *osname, void **cookiep)
1853 {
1854         objset_t *os;
1855         zilog_t *zilog;
1856         const zil_header_t *zh;
1857         int error;
1858 
1859         error = dmu_objset_hold(osname, suspend_tag, &os);
1860         if (error != 0)
1861                 return (error);
1862         zilog = dmu_objset_zil(os);
1863 
1864         mutex_enter(&zilog->zl_lock);
1865         zh = zilog->zl_header;
1866 
1867         if (zh->zh_flags & ZIL_REPLAY_NEEDED) {          /* unplayed log */
1868                 mutex_exit(&zilog->zl_lock);
1869                 dmu_objset_rele(os, suspend_tag);
1870                 return (SET_ERROR(EBUSY));
1871         }
1872 
1873         /*
1874          * Don't put a long hold in the cases where we can avoid it.  This
1875          * is when there is no cookie so we are doing a suspend & resume
1876          * (i.e. called from zil_vdev_offline()), and there's nothing to do
1877          * for the suspend because it's already suspended, or there's no ZIL.
1878          */
1879         if (cookiep == NULL && !zilog->zl_suspending &&
1880             (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
1881                 mutex_exit(&zilog->zl_lock);
1882                 dmu_objset_rele(os, suspend_tag);
1883                 return (0);
1884         }
1885 
1886         dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
1887         dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
1888 
1889         zilog->zl_suspend++;
1890 
1891         if (zilog->zl_suspend > 1) {
1892                 /*
1893                  * Someone else is already suspending it.
1894                  * Just wait for them to finish.
1895                  */
1896 
1897                 while (zilog->zl_suspending)
1898                         cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
1899                 mutex_exit(&zilog->zl_lock);
1900 
1901                 if (cookiep == NULL)
1902                         zil_resume(os);
1903                 else
1904                         *cookiep = os;
1905                 return (0);
1906         }
1907 
1908         /*
1909          * If there is no pointer to an on-disk block, this ZIL must not
1910          * be active (e.g. filesystem not mounted), so there's nothing
1911          * to clean up.
1912          */
1913         if (BP_IS_HOLE(&zh->zh_log)) {
1914                 ASSERT(cookiep != NULL); /* fast path already handled */
1915 
1916                 *cookiep = os;
1917                 mutex_exit(&zilog->zl_lock);
1918                 return (0);
1919         }
1920 
1921         zilog->zl_suspending = B_TRUE;
1922         mutex_exit(&zilog->zl_lock);
1923 
1924         zil_commit(zilog, 0);
1925 
1926         zil_destroy(zilog, B_FALSE);
1927 
1928         mutex_enter(&zilog->zl_lock);
1929         zilog->zl_suspending = B_FALSE;
1930         cv_broadcast(&zilog->zl_cv_suspend);
1931         mutex_exit(&zilog->zl_lock);
1932 
1933         if (cookiep == NULL)
1934                 zil_resume(os);
1935         else
1936                 *cookiep = os;
1937         return (0);
1938 }
1939 
1940 void
1941 zil_resume(void *cookie)
1942 {
1943         objset_t *os = cookie;
1944         zilog_t *zilog = dmu_objset_zil(os);
1945 
1946         mutex_enter(&zilog->zl_lock);
1947         ASSERT(zilog->zl_suspend != 0);
1948         zilog->zl_suspend--;
1949         mutex_exit(&zilog->zl_lock);
1950         dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
1951         dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
1952 }
1953 
1954 typedef struct zil_replay_arg {
1955         zil_replay_func_t **zr_replay;
1956         void            *zr_arg;
1957         boolean_t       zr_byteswap;
1958         char            *zr_lr;
1959 } zil_replay_arg_t;
1960 
1961 static int
1962 zil_replay_error(zilog_t *zilog, lr_t *lr, int error)
1963 {
1964         char name[MAXNAMELEN];
1965 
1966         zilog->zl_replaying_seq--;   /* didn't actually replay this one */
1967 
1968         dmu_objset_name(zilog->zl_os, name);
1969 
1970         cmn_err(CE_WARN, "ZFS replay transaction error %d, "
1971             "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
1972             (u_longlong_t)lr->lrc_seq,
1973             (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
1974             (lr->lrc_txtype & TX_CI) ? "CI" : "");
1975 
1976         return (error);
1977 }
1978 
1979 static int
1980 zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg)
1981 {
1982         zil_replay_arg_t *zr = zra;
1983         const zil_header_t *zh = zilog->zl_header;
1984         uint64_t reclen = lr->lrc_reclen;
1985         uint64_t txtype = lr->lrc_txtype;
1986         int error = 0;
1987 
1988         zilog->zl_replaying_seq = lr->lrc_seq;
1989 
1990         if (lr->lrc_seq <= zh->zh_replay_seq)  /* already replayed */
1991                 return (0);
1992 
1993         if (lr->lrc_txg < claim_txg)              /* already committed */
1994                 return (0);
1995 
1996         /* Strip case-insensitive bit, still present in log record */
1997         txtype &= ~TX_CI;
1998 
1999         if (txtype == 0 || txtype >= TX_MAX_TYPE)
2000                 return (zil_replay_error(zilog, lr, EINVAL));
2001 
2002         /*
2003          * If this record type can be logged out of order, the object
2004          * (lr_foid) may no longer exist.  That's legitimate, not an error.
2005          */
2006         if (TX_OOO(txtype)) {
2007                 error = dmu_object_info(zilog->zl_os,
2008                     ((lr_ooo_t *)lr)->lr_foid, NULL);
2009                 if (error == ENOENT || error == EEXIST)
2010                         return (0);
2011         }
2012 
2013         /*
2014          * Make a copy of the data so we can revise and extend it.
2015          */
2016         bcopy(lr, zr->zr_lr, reclen);
2017 
2018         /*
2019          * If this is a TX_WRITE with a blkptr, suck in the data.
2020          */
2021         if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
2022                 error = zil_read_log_data(zilog, (lr_write_t *)lr,
2023                     zr->zr_lr + reclen);
2024                 if (error != 0)
2025                         return (zil_replay_error(zilog, lr, error));
2026         }
2027 
2028         /*
2029          * The log block containing this lr may have been byteswapped
2030          * so that we can easily examine common fields like lrc_txtype.
2031          * However, the log is a mix of different record types, and only the
2032          * replay vectors know how to byteswap their records.  Therefore, if
2033          * the lr was byteswapped, undo it before invoking the replay vector.
2034          */
2035         if (zr->zr_byteswap)
2036                 byteswap_uint64_array(zr->zr_lr, reclen);
2037 
2038         /*
2039          * We must now do two things atomically: replay this log record,
2040          * and update the log header sequence number to reflect the fact that
2041          * we did so. At the end of each replay function the sequence number
2042          * is updated if we are in replay mode.
2043          */
2044         error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
2045         if (error != 0) {
2046                 /*
2047                  * The DMU's dnode layer doesn't see removes until the txg
2048                  * commits, so a subsequent claim can spuriously fail with
2049                  * EEXIST. So if we receive any error we try syncing out
2050                  * any removes then retry the transaction.  Note that we
2051                  * specify B_FALSE for byteswap now, so we don't do it twice.
2052                  */
2053                 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
2054                 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
2055                 if (error != 0)
2056                         return (zil_replay_error(zilog, lr, error));
2057         }
2058         return (0);
2059 }
2060 
2061 /* ARGSUSED */
2062 static int
2063 zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
2064 {
2065         zilog->zl_replay_blks++;
2066 
2067         return (0);
2068 }
2069 
2070 /*
2071  * If this dataset has a non-empty intent log, replay it and destroy it.
2072  */
2073 void
2074 zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE])
2075 {
2076         zilog_t *zilog = dmu_objset_zil(os);
2077         const zil_header_t *zh = zilog->zl_header;
2078         zil_replay_arg_t zr;
2079 
2080         if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
2081                 zil_destroy(zilog, B_TRUE);
2082                 return;
2083         }
2084 
2085         zr.zr_replay = replay_func;
2086         zr.zr_arg = arg;
2087         zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
2088         zr.zr_lr = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
2089 
2090         /*
2091          * Wait for in-progress removes to sync before starting replay.
2092          */
2093         txg_wait_synced(zilog->zl_dmu_pool, 0);
2094 
2095         zilog->zl_replay = B_TRUE;
2096         zilog->zl_replay_time = ddi_get_lbolt();
2097         ASSERT(zilog->zl_replay_blks == 0);
2098         (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
2099             zh->zh_claim_txg);
2100         kmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
2101 
2102         zil_destroy(zilog, B_FALSE);
2103         txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
2104         zilog->zl_replay = B_FALSE;
2105 }
2106 
2107 boolean_t
2108 zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
2109 {
2110         if (zilog->zl_sync == ZFS_SYNC_DISABLED)
2111                 return (B_TRUE);
2112 
2113         if (zilog->zl_replay) {
2114                 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
2115                 zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
2116                     zilog->zl_replaying_seq;
2117                 return (B_TRUE);
2118         }
2119 
2120         return (B_FALSE);
2121 }
2122 
2123 /* ARGSUSED */
2124 int
2125 zil_vdev_offline(const char *osname, void *arg)
2126 {
2127         int error;
2128 
2129         error = zil_suspend(osname, NULL);
2130         if (error != 0)
2131                 return (SET_ERROR(EEXIST));
2132         return (0);
2133 }