1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2014 by Delphix. All rights reserved. 25 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 26 */ 27 28 #include <sys/zfs_context.h> 29 #include <sys/fm/fs/zfs.h> 30 #include <sys/spa.h> 31 #include <sys/spa_impl.h> 32 #include <sys/dmu.h> 33 #include <sys/dmu_tx.h> 34 #include <sys/vdev_impl.h> 35 #include <sys/uberblock_impl.h> 36 #include <sys/metaslab.h> 37 #include <sys/metaslab_impl.h> 38 #include <sys/space_map.h> 39 #include <sys/space_reftree.h> 40 #include <sys/zio.h> 41 #include <sys/zap.h> 42 #include <sys/fs/zfs.h> 43 #include <sys/arc.h> 44 #include <sys/zil.h> 45 #include <sys/dsl_scan.h> 46 47 /* 48 * Virtual device management. 49 */ 50 51 static vdev_ops_t *vdev_ops_table[] = { 52 &vdev_root_ops, 53 &vdev_raidz_ops, 54 &vdev_mirror_ops, 55 &vdev_replacing_ops, 56 &vdev_spare_ops, 57 &vdev_disk_ops, 58 &vdev_file_ops, 59 &vdev_missing_ops, 60 &vdev_hole_ops, 61 NULL 62 }; 63 64 /* maximum scrub/resilver I/O queue per leaf vdev */ 65 int zfs_scrub_limit = 10; 66 67 /* 68 * When a vdev is added, it will be divided into approximately (but no 69 * more than) this number of metaslabs. 70 */ 71 int metaslabs_per_vdev = 200; 72 73 /* 74 * Given a vdev type, return the appropriate ops vector. 75 */ 76 static vdev_ops_t * 77 vdev_getops(const char *type) 78 { 79 vdev_ops_t *ops, **opspp; 80 81 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 82 if (strcmp(ops->vdev_op_type, type) == 0) 83 break; 84 85 return (ops); 86 } 87 88 /* 89 * Default asize function: return the MAX of psize with the asize of 90 * all children. This is what's used by anything other than RAID-Z. 91 */ 92 uint64_t 93 vdev_default_asize(vdev_t *vd, uint64_t psize) 94 { 95 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 96 uint64_t csize; 97 98 for (int c = 0; c < vd->vdev_children; c++) { 99 csize = vdev_psize_to_asize(vd->vdev_child[c], psize); 100 asize = MAX(asize, csize); 101 } 102 103 return (asize); 104 } 105 106 /* 107 * Get the minimum allocatable size. We define the allocatable size as 108 * the vdev's asize rounded to the nearest metaslab. This allows us to 109 * replace or attach devices which don't have the same physical size but 110 * can still satisfy the same number of allocations. 111 */ 112 uint64_t 113 vdev_get_min_asize(vdev_t *vd) 114 { 115 vdev_t *pvd = vd->vdev_parent; 116 117 /* 118 * If our parent is NULL (inactive spare or cache) or is the root, 119 * just return our own asize. 120 */ 121 if (pvd == NULL) 122 return (vd->vdev_asize); 123 124 /* 125 * The top-level vdev just returns the allocatable size rounded 126 * to the nearest metaslab. 127 */ 128 if (vd == vd->vdev_top) 129 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift)); 130 131 /* 132 * The allocatable space for a raidz vdev is N * sizeof(smallest child), 133 * so each child must provide at least 1/Nth of its asize. 134 */ 135 if (pvd->vdev_ops == &vdev_raidz_ops) 136 return (pvd->vdev_min_asize / pvd->vdev_children); 137 138 return (pvd->vdev_min_asize); 139 } 140 141 void 142 vdev_set_min_asize(vdev_t *vd) 143 { 144 vd->vdev_min_asize = vdev_get_min_asize(vd); 145 146 for (int c = 0; c < vd->vdev_children; c++) 147 vdev_set_min_asize(vd->vdev_child[c]); 148 } 149 150 vdev_t * 151 vdev_lookup_top(spa_t *spa, uint64_t vdev) 152 { 153 vdev_t *rvd = spa->spa_root_vdev; 154 155 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 156 157 if (vdev < rvd->vdev_children) { 158 ASSERT(rvd->vdev_child[vdev] != NULL); 159 return (rvd->vdev_child[vdev]); 160 } 161 162 return (NULL); 163 } 164 165 vdev_t * 166 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 167 { 168 vdev_t *mvd; 169 170 if (vd->vdev_guid == guid) 171 return (vd); 172 173 for (int c = 0; c < vd->vdev_children; c++) 174 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 175 NULL) 176 return (mvd); 177 178 return (NULL); 179 } 180 181 static int 182 vdev_count_leaves_impl(vdev_t *vd) 183 { 184 int n = 0; 185 186 if (vd->vdev_ops->vdev_op_leaf) 187 return (1); 188 189 for (int c = 0; c < vd->vdev_children; c++) 190 n += vdev_count_leaves_impl(vd->vdev_child[c]); 191 192 return (n); 193 } 194 195 int 196 vdev_count_leaves(spa_t *spa) 197 { 198 return (vdev_count_leaves_impl(spa->spa_root_vdev)); 199 } 200 201 void 202 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 203 { 204 size_t oldsize, newsize; 205 uint64_t id = cvd->vdev_id; 206 vdev_t **newchild; 207 208 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 209 ASSERT(cvd->vdev_parent == NULL); 210 211 cvd->vdev_parent = pvd; 212 213 if (pvd == NULL) 214 return; 215 216 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 217 218 oldsize = pvd->vdev_children * sizeof (vdev_t *); 219 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 220 newsize = pvd->vdev_children * sizeof (vdev_t *); 221 222 newchild = kmem_zalloc(newsize, KM_SLEEP); 223 if (pvd->vdev_child != NULL) { 224 bcopy(pvd->vdev_child, newchild, oldsize); 225 kmem_free(pvd->vdev_child, oldsize); 226 } 227 228 pvd->vdev_child = newchild; 229 pvd->vdev_child[id] = cvd; 230 231 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 232 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 233 234 /* 235 * Walk up all ancestors to update guid sum. 236 */ 237 for (; pvd != NULL; pvd = pvd->vdev_parent) 238 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 239 } 240 241 void 242 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 243 { 244 int c; 245 uint_t id = cvd->vdev_id; 246 247 ASSERT(cvd->vdev_parent == pvd); 248 249 if (pvd == NULL) 250 return; 251 252 ASSERT(id < pvd->vdev_children); 253 ASSERT(pvd->vdev_child[id] == cvd); 254 255 pvd->vdev_child[id] = NULL; 256 cvd->vdev_parent = NULL; 257 258 for (c = 0; c < pvd->vdev_children; c++) 259 if (pvd->vdev_child[c]) 260 break; 261 262 if (c == pvd->vdev_children) { 263 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 264 pvd->vdev_child = NULL; 265 pvd->vdev_children = 0; 266 } 267 268 /* 269 * Walk up all ancestors to update guid sum. 270 */ 271 for (; pvd != NULL; pvd = pvd->vdev_parent) 272 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 273 } 274 275 /* 276 * Remove any holes in the child array. 277 */ 278 void 279 vdev_compact_children(vdev_t *pvd) 280 { 281 vdev_t **newchild, *cvd; 282 int oldc = pvd->vdev_children; 283 int newc; 284 285 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 286 287 for (int c = newc = 0; c < oldc; c++) 288 if (pvd->vdev_child[c]) 289 newc++; 290 291 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP); 292 293 for (int c = newc = 0; c < oldc; c++) { 294 if ((cvd = pvd->vdev_child[c]) != NULL) { 295 newchild[newc] = cvd; 296 cvd->vdev_id = newc++; 297 } 298 } 299 300 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 301 pvd->vdev_child = newchild; 302 pvd->vdev_children = newc; 303 } 304 305 /* 306 * Allocate and minimally initialize a vdev_t. 307 */ 308 vdev_t * 309 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 310 { 311 vdev_t *vd; 312 313 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 314 315 if (spa->spa_root_vdev == NULL) { 316 ASSERT(ops == &vdev_root_ops); 317 spa->spa_root_vdev = vd; 318 spa->spa_load_guid = spa_generate_guid(NULL); 319 } 320 321 if (guid == 0 && ops != &vdev_hole_ops) { 322 if (spa->spa_root_vdev == vd) { 323 /* 324 * The root vdev's guid will also be the pool guid, 325 * which must be unique among all pools. 326 */ 327 guid = spa_generate_guid(NULL); 328 } else { 329 /* 330 * Any other vdev's guid must be unique within the pool. 331 */ 332 guid = spa_generate_guid(spa); 333 } 334 ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 335 } 336 337 vd->vdev_spa = spa; 338 vd->vdev_id = id; 339 vd->vdev_guid = guid; 340 vd->vdev_guid_sum = guid; 341 vd->vdev_ops = ops; 342 vd->vdev_state = VDEV_STATE_CLOSED; 343 vd->vdev_ishole = (ops == &vdev_hole_ops); 344 345 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL); 346 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); 347 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL); 348 for (int t = 0; t < DTL_TYPES; t++) { 349 vd->vdev_dtl[t] = range_tree_create(NULL, NULL, 350 &vd->vdev_dtl_lock); 351 } 352 txg_list_create(&vd->vdev_ms_list, 353 offsetof(struct metaslab, ms_txg_node)); 354 txg_list_create(&vd->vdev_dtl_list, 355 offsetof(struct vdev, vdev_dtl_node)); 356 vd->vdev_stat.vs_timestamp = gethrtime(); 357 vdev_queue_init(vd); 358 vdev_cache_init(vd); 359 360 return (vd); 361 } 362 363 /* 364 * Allocate a new vdev. The 'alloctype' is used to control whether we are 365 * creating a new vdev or loading an existing one - the behavior is slightly 366 * different for each case. 367 */ 368 int 369 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 370 int alloctype) 371 { 372 vdev_ops_t *ops; 373 char *type; 374 uint64_t guid = 0, islog, nparity; 375 vdev_t *vd; 376 377 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 378 379 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 380 return (SET_ERROR(EINVAL)); 381 382 if ((ops = vdev_getops(type)) == NULL) 383 return (SET_ERROR(EINVAL)); 384 385 /* 386 * If this is a load, get the vdev guid from the nvlist. 387 * Otherwise, vdev_alloc_common() will generate one for us. 388 */ 389 if (alloctype == VDEV_ALLOC_LOAD) { 390 uint64_t label_id; 391 392 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 393 label_id != id) 394 return (SET_ERROR(EINVAL)); 395 396 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 397 return (SET_ERROR(EINVAL)); 398 } else if (alloctype == VDEV_ALLOC_SPARE) { 399 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 400 return (SET_ERROR(EINVAL)); 401 } else if (alloctype == VDEV_ALLOC_L2CACHE) { 402 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 403 return (SET_ERROR(EINVAL)); 404 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) { 405 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 406 return (SET_ERROR(EINVAL)); 407 } 408 409 /* 410 * The first allocated vdev must be of type 'root'. 411 */ 412 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 413 return (SET_ERROR(EINVAL)); 414 415 /* 416 * Determine whether we're a log vdev. 417 */ 418 islog = 0; 419 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); 420 if (islog && spa_version(spa) < SPA_VERSION_SLOGS) 421 return (SET_ERROR(ENOTSUP)); 422 423 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES) 424 return (SET_ERROR(ENOTSUP)); 425 426 /* 427 * Set the nparity property for RAID-Z vdevs. 428 */ 429 nparity = -1ULL; 430 if (ops == &vdev_raidz_ops) { 431 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, 432 &nparity) == 0) { 433 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY) 434 return (SET_ERROR(EINVAL)); 435 /* 436 * Previous versions could only support 1 or 2 parity 437 * device. 438 */ 439 if (nparity > 1 && 440 spa_version(spa) < SPA_VERSION_RAIDZ2) 441 return (SET_ERROR(ENOTSUP)); 442 if (nparity > 2 && 443 spa_version(spa) < SPA_VERSION_RAIDZ3) 444 return (SET_ERROR(ENOTSUP)); 445 } else { 446 /* 447 * We require the parity to be specified for SPAs that 448 * support multiple parity levels. 449 */ 450 if (spa_version(spa) >= SPA_VERSION_RAIDZ2) 451 return (SET_ERROR(EINVAL)); 452 /* 453 * Otherwise, we default to 1 parity device for RAID-Z. 454 */ 455 nparity = 1; 456 } 457 } else { 458 nparity = 0; 459 } 460 ASSERT(nparity != -1ULL); 461 462 vd = vdev_alloc_common(spa, id, guid, ops); 463 464 vd->vdev_islog = islog; 465 vd->vdev_nparity = nparity; 466 467 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0) 468 vd->vdev_path = spa_strdup(vd->vdev_path); 469 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0) 470 vd->vdev_devid = spa_strdup(vd->vdev_devid); 471 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, 472 &vd->vdev_physpath) == 0) 473 vd->vdev_physpath = spa_strdup(vd->vdev_physpath); 474 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0) 475 vd->vdev_fru = spa_strdup(vd->vdev_fru); 476 477 /* 478 * Set the whole_disk property. If it's not specified, leave the value 479 * as -1. 480 */ 481 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 482 &vd->vdev_wholedisk) != 0) 483 vd->vdev_wholedisk = -1ULL; 484 485 /* 486 * Look for the 'not present' flag. This will only be set if the device 487 * was not present at the time of import. 488 */ 489 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 490 &vd->vdev_not_present); 491 492 /* 493 * Get the alignment requirement. 494 */ 495 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift); 496 497 /* 498 * Retrieve the vdev creation time. 499 */ 500 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, 501 &vd->vdev_crtxg); 502 503 /* 504 * If we're a top-level vdev, try to load the allocation parameters. 505 */ 506 if (parent && !parent->vdev_parent && 507 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 508 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 509 &vd->vdev_ms_array); 510 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 511 &vd->vdev_ms_shift); 512 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 513 &vd->vdev_asize); 514 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING, 515 &vd->vdev_removing); 516 } 517 518 if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) { 519 ASSERT(alloctype == VDEV_ALLOC_LOAD || 520 alloctype == VDEV_ALLOC_ADD || 521 alloctype == VDEV_ALLOC_SPLIT || 522 alloctype == VDEV_ALLOC_ROOTPOOL); 523 vd->vdev_mg = metaslab_group_create(islog ? 524 spa_log_class(spa) : spa_normal_class(spa), vd); 525 } 526 527 /* 528 * If we're a leaf vdev, try to load the DTL object and other state. 529 */ 530 if (vd->vdev_ops->vdev_op_leaf && 531 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE || 532 alloctype == VDEV_ALLOC_ROOTPOOL)) { 533 if (alloctype == VDEV_ALLOC_LOAD) { 534 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 535 &vd->vdev_dtl_object); 536 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, 537 &vd->vdev_unspare); 538 } 539 540 if (alloctype == VDEV_ALLOC_ROOTPOOL) { 541 uint64_t spare = 0; 542 543 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 544 &spare) == 0 && spare) 545 spa_spare_add(vd); 546 } 547 548 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 549 &vd->vdev_offline); 550 551 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG, 552 &vd->vdev_resilver_txg); 553 554 /* 555 * When importing a pool, we want to ignore the persistent fault 556 * state, as the diagnosis made on another system may not be 557 * valid in the current context. Local vdevs will 558 * remain in the faulted state. 559 */ 560 if (spa_load_state(spa) == SPA_LOAD_OPEN) { 561 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, 562 &vd->vdev_faulted); 563 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, 564 &vd->vdev_degraded); 565 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, 566 &vd->vdev_removed); 567 568 if (vd->vdev_faulted || vd->vdev_degraded) { 569 char *aux; 570 571 vd->vdev_label_aux = 572 VDEV_AUX_ERR_EXCEEDED; 573 if (nvlist_lookup_string(nv, 574 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 && 575 strcmp(aux, "external") == 0) 576 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 577 } 578 } 579 } 580 581 /* 582 * Add ourselves to the parent's list of children. 583 */ 584 vdev_add_child(parent, vd); 585 586 *vdp = vd; 587 588 return (0); 589 } 590 591 void 592 vdev_free(vdev_t *vd) 593 { 594 spa_t *spa = vd->vdev_spa; 595 596 /* 597 * vdev_free() implies closing the vdev first. This is simpler than 598 * trying to ensure complicated semantics for all callers. 599 */ 600 vdev_close(vd); 601 602 ASSERT(!list_link_active(&vd->vdev_config_dirty_node)); 603 ASSERT(!list_link_active(&vd->vdev_state_dirty_node)); 604 605 /* 606 * Free all children. 607 */ 608 for (int c = 0; c < vd->vdev_children; c++) 609 vdev_free(vd->vdev_child[c]); 610 611 ASSERT(vd->vdev_child == NULL); 612 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 613 614 /* 615 * Discard allocation state. 616 */ 617 if (vd->vdev_mg != NULL) { 618 vdev_metaslab_fini(vd); 619 metaslab_group_destroy(vd->vdev_mg); 620 } 621 622 ASSERT0(vd->vdev_stat.vs_space); 623 ASSERT0(vd->vdev_stat.vs_dspace); 624 ASSERT0(vd->vdev_stat.vs_alloc); 625 626 /* 627 * Remove this vdev from its parent's child list. 628 */ 629 vdev_remove_child(vd->vdev_parent, vd); 630 631 ASSERT(vd->vdev_parent == NULL); 632 633 /* 634 * Clean up vdev structure. 635 */ 636 vdev_queue_fini(vd); 637 vdev_cache_fini(vd); 638 639 if (vd->vdev_path) 640 spa_strfree(vd->vdev_path); 641 if (vd->vdev_devid) 642 spa_strfree(vd->vdev_devid); 643 if (vd->vdev_physpath) 644 spa_strfree(vd->vdev_physpath); 645 if (vd->vdev_fru) 646 spa_strfree(vd->vdev_fru); 647 648 if (vd->vdev_isspare) 649 spa_spare_remove(vd); 650 if (vd->vdev_isl2cache) 651 spa_l2cache_remove(vd); 652 653 txg_list_destroy(&vd->vdev_ms_list); 654 txg_list_destroy(&vd->vdev_dtl_list); 655 656 mutex_enter(&vd->vdev_dtl_lock); 657 space_map_close(vd->vdev_dtl_sm); 658 for (int t = 0; t < DTL_TYPES; t++) { 659 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL); 660 range_tree_destroy(vd->vdev_dtl[t]); 661 } 662 mutex_exit(&vd->vdev_dtl_lock); 663 664 mutex_destroy(&vd->vdev_dtl_lock); 665 mutex_destroy(&vd->vdev_stat_lock); 666 mutex_destroy(&vd->vdev_probe_lock); 667 668 if (vd == spa->spa_root_vdev) 669 spa->spa_root_vdev = NULL; 670 671 kmem_free(vd, sizeof (vdev_t)); 672 } 673 674 /* 675 * Transfer top-level vdev state from svd to tvd. 676 */ 677 static void 678 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 679 { 680 spa_t *spa = svd->vdev_spa; 681 metaslab_t *msp; 682 vdev_t *vd; 683 int t; 684 685 ASSERT(tvd == tvd->vdev_top); 686 687 tvd->vdev_ms_array = svd->vdev_ms_array; 688 tvd->vdev_ms_shift = svd->vdev_ms_shift; 689 tvd->vdev_ms_count = svd->vdev_ms_count; 690 691 svd->vdev_ms_array = 0; 692 svd->vdev_ms_shift = 0; 693 svd->vdev_ms_count = 0; 694 695 if (tvd->vdev_mg) 696 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg); 697 tvd->vdev_mg = svd->vdev_mg; 698 tvd->vdev_ms = svd->vdev_ms; 699 700 svd->vdev_mg = NULL; 701 svd->vdev_ms = NULL; 702 703 if (tvd->vdev_mg != NULL) 704 tvd->vdev_mg->mg_vd = tvd; 705 706 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 707 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 708 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 709 710 svd->vdev_stat.vs_alloc = 0; 711 svd->vdev_stat.vs_space = 0; 712 svd->vdev_stat.vs_dspace = 0; 713 714 for (t = 0; t < TXG_SIZE; t++) { 715 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 716 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 717 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 718 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 719 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 720 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 721 } 722 723 if (list_link_active(&svd->vdev_config_dirty_node)) { 724 vdev_config_clean(svd); 725 vdev_config_dirty(tvd); 726 } 727 728 if (list_link_active(&svd->vdev_state_dirty_node)) { 729 vdev_state_clean(svd); 730 vdev_state_dirty(tvd); 731 } 732 733 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 734 svd->vdev_deflate_ratio = 0; 735 736 tvd->vdev_islog = svd->vdev_islog; 737 svd->vdev_islog = 0; 738 } 739 740 static void 741 vdev_top_update(vdev_t *tvd, vdev_t *vd) 742 { 743 if (vd == NULL) 744 return; 745 746 vd->vdev_top = tvd; 747 748 for (int c = 0; c < vd->vdev_children; c++) 749 vdev_top_update(tvd, vd->vdev_child[c]); 750 } 751 752 /* 753 * Add a mirror/replacing vdev above an existing vdev. 754 */ 755 vdev_t * 756 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 757 { 758 spa_t *spa = cvd->vdev_spa; 759 vdev_t *pvd = cvd->vdev_parent; 760 vdev_t *mvd; 761 762 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 763 764 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 765 766 mvd->vdev_asize = cvd->vdev_asize; 767 mvd->vdev_min_asize = cvd->vdev_min_asize; 768 mvd->vdev_max_asize = cvd->vdev_max_asize; 769 mvd->vdev_ashift = cvd->vdev_ashift; 770 mvd->vdev_state = cvd->vdev_state; 771 mvd->vdev_crtxg = cvd->vdev_crtxg; 772 773 vdev_remove_child(pvd, cvd); 774 vdev_add_child(pvd, mvd); 775 cvd->vdev_id = mvd->vdev_children; 776 vdev_add_child(mvd, cvd); 777 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 778 779 if (mvd == mvd->vdev_top) 780 vdev_top_transfer(cvd, mvd); 781 782 return (mvd); 783 } 784 785 /* 786 * Remove a 1-way mirror/replacing vdev from the tree. 787 */ 788 void 789 vdev_remove_parent(vdev_t *cvd) 790 { 791 vdev_t *mvd = cvd->vdev_parent; 792 vdev_t *pvd = mvd->vdev_parent; 793 794 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 795 796 ASSERT(mvd->vdev_children == 1); 797 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 798 mvd->vdev_ops == &vdev_replacing_ops || 799 mvd->vdev_ops == &vdev_spare_ops); 800 cvd->vdev_ashift = mvd->vdev_ashift; 801 802 vdev_remove_child(mvd, cvd); 803 vdev_remove_child(pvd, mvd); 804 805 /* 806 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid. 807 * Otherwise, we could have detached an offline device, and when we 808 * go to import the pool we'll think we have two top-level vdevs, 809 * instead of a different version of the same top-level vdev. 810 */ 811 if (mvd->vdev_top == mvd) { 812 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid; 813 cvd->vdev_orig_guid = cvd->vdev_guid; 814 cvd->vdev_guid += guid_delta; 815 cvd->vdev_guid_sum += guid_delta; 816 } 817 cvd->vdev_id = mvd->vdev_id; 818 vdev_add_child(pvd, cvd); 819 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 820 821 if (cvd == cvd->vdev_top) 822 vdev_top_transfer(mvd, cvd); 823 824 ASSERT(mvd->vdev_children == 0); 825 vdev_free(mvd); 826 } 827 828 int 829 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 830 { 831 spa_t *spa = vd->vdev_spa; 832 objset_t *mos = spa->spa_meta_objset; 833 uint64_t m; 834 uint64_t oldc = vd->vdev_ms_count; 835 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 836 metaslab_t **mspp; 837 int error; 838 839 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 840 841 /* 842 * This vdev is not being allocated from yet or is a hole. 843 */ 844 if (vd->vdev_ms_shift == 0) 845 return (0); 846 847 ASSERT(!vd->vdev_ishole); 848 849 /* 850 * Compute the raidz-deflation ratio. Note, we hard-code 851 * in 128k (1 << 17) because it is the "typical" blocksize. 852 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change, 853 * otherwise it would inconsistently account for existing bp's. 854 */ 855 vd->vdev_deflate_ratio = (1 << 17) / 856 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT); 857 858 ASSERT(oldc <= newc); 859 860 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 861 862 if (oldc != 0) { 863 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp)); 864 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 865 } 866 867 vd->vdev_ms = mspp; 868 vd->vdev_ms_count = newc; 869 870 for (m = oldc; m < newc; m++) { 871 uint64_t object = 0; 872 873 if (txg == 0) { 874 error = dmu_read(mos, vd->vdev_ms_array, 875 m * sizeof (uint64_t), sizeof (uint64_t), &object, 876 DMU_READ_PREFETCH); 877 if (error) 878 return (error); 879 } 880 881 error = metaslab_init(vd->vdev_mg, m, object, txg, 882 &(vd->vdev_ms[m])); 883 if (error) 884 return (error); 885 } 886 887 if (txg == 0) 888 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER); 889 890 /* 891 * If the vdev is being removed we don't activate 892 * the metaslabs since we want to ensure that no new 893 * allocations are performed on this device. 894 */ 895 if (oldc == 0 && !vd->vdev_removing) 896 metaslab_group_activate(vd->vdev_mg); 897 898 if (txg == 0) 899 spa_config_exit(spa, SCL_ALLOC, FTAG); 900 901 return (0); 902 } 903 904 void 905 vdev_metaslab_fini(vdev_t *vd) 906 { 907 uint64_t m; 908 uint64_t count = vd->vdev_ms_count; 909 910 if (vd->vdev_ms != NULL) { 911 metaslab_group_passivate(vd->vdev_mg); 912 for (m = 0; m < count; m++) { 913 metaslab_t *msp = vd->vdev_ms[m]; 914 915 if (msp != NULL) 916 metaslab_fini(msp); 917 } 918 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 919 vd->vdev_ms = NULL; 920 } 921 } 922 923 typedef struct vdev_probe_stats { 924 boolean_t vps_readable; 925 boolean_t vps_writeable; 926 int vps_flags; 927 } vdev_probe_stats_t; 928 929 static void 930 vdev_probe_done(zio_t *zio) 931 { 932 spa_t *spa = zio->io_spa; 933 vdev_t *vd = zio->io_vd; 934 vdev_probe_stats_t *vps = zio->io_private; 935 936 ASSERT(vd->vdev_probe_zio != NULL); 937 938 if (zio->io_type == ZIO_TYPE_READ) { 939 if (zio->io_error == 0) 940 vps->vps_readable = 1; 941 if (zio->io_error == 0 && spa_writeable(spa)) { 942 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd, 943 zio->io_offset, zio->io_size, zio->io_data, 944 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 945 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE)); 946 } else { 947 zio_buf_free(zio->io_data, zio->io_size); 948 } 949 } else if (zio->io_type == ZIO_TYPE_WRITE) { 950 if (zio->io_error == 0) 951 vps->vps_writeable = 1; 952 zio_buf_free(zio->io_data, zio->io_size); 953 } else if (zio->io_type == ZIO_TYPE_NULL) { 954 zio_t *pio; 955 956 vd->vdev_cant_read |= !vps->vps_readable; 957 vd->vdev_cant_write |= !vps->vps_writeable; 958 959 if (vdev_readable(vd) && 960 (vdev_writeable(vd) || !spa_writeable(spa))) { 961 zio->io_error = 0; 962 } else { 963 ASSERT(zio->io_error != 0); 964 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE, 965 spa, vd, NULL, 0, 0); 966 zio->io_error = SET_ERROR(ENXIO); 967 } 968 969 mutex_enter(&vd->vdev_probe_lock); 970 ASSERT(vd->vdev_probe_zio == zio); 971 vd->vdev_probe_zio = NULL; 972 mutex_exit(&vd->vdev_probe_lock); 973 974 while ((pio = zio_walk_parents(zio)) != NULL) 975 if (!vdev_accessible(vd, pio)) 976 pio->io_error = SET_ERROR(ENXIO); 977 978 kmem_free(vps, sizeof (*vps)); 979 } 980 } 981 982 /* 983 * Determine whether this device is accessible. 984 * 985 * Read and write to several known locations: the pad regions of each 986 * vdev label but the first, which we leave alone in case it contains 987 * a VTOC. 988 */ 989 zio_t * 990 vdev_probe(vdev_t *vd, zio_t *zio) 991 { 992 spa_t *spa = vd->vdev_spa; 993 vdev_probe_stats_t *vps = NULL; 994 zio_t *pio; 995 996 ASSERT(vd->vdev_ops->vdev_op_leaf); 997 998 /* 999 * Don't probe the probe. 1000 */ 1001 if (zio && (zio->io_flags & ZIO_FLAG_PROBE)) 1002 return (NULL); 1003 1004 /* 1005 * To prevent 'probe storms' when a device fails, we create 1006 * just one probe i/o at a time. All zios that want to probe 1007 * this vdev will become parents of the probe io. 1008 */ 1009 mutex_enter(&vd->vdev_probe_lock); 1010 1011 if ((pio = vd->vdev_probe_zio) == NULL) { 1012 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP); 1013 1014 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE | 1015 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE | 1016 ZIO_FLAG_TRYHARD; 1017 1018 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) { 1019 /* 1020 * vdev_cant_read and vdev_cant_write can only 1021 * transition from TRUE to FALSE when we have the 1022 * SCL_ZIO lock as writer; otherwise they can only 1023 * transition from FALSE to TRUE. This ensures that 1024 * any zio looking at these values can assume that 1025 * failures persist for the life of the I/O. That's 1026 * important because when a device has intermittent 1027 * connectivity problems, we want to ensure that 1028 * they're ascribed to the device (ENXIO) and not 1029 * the zio (EIO). 1030 * 1031 * Since we hold SCL_ZIO as writer here, clear both 1032 * values so the probe can reevaluate from first 1033 * principles. 1034 */ 1035 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER; 1036 vd->vdev_cant_read = B_FALSE; 1037 vd->vdev_cant_write = B_FALSE; 1038 } 1039 1040 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd, 1041 vdev_probe_done, vps, 1042 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE); 1043 1044 /* 1045 * We can't change the vdev state in this context, so we 1046 * kick off an async task to do it on our behalf. 1047 */ 1048 if (zio != NULL) { 1049 vd->vdev_probe_wanted = B_TRUE; 1050 spa_async_request(spa, SPA_ASYNC_PROBE); 1051 } 1052 } 1053 1054 if (zio != NULL) 1055 zio_add_child(zio, pio); 1056 1057 mutex_exit(&vd->vdev_probe_lock); 1058 1059 if (vps == NULL) { 1060 ASSERT(zio != NULL); 1061 return (NULL); 1062 } 1063 1064 for (int l = 1; l < VDEV_LABELS; l++) { 1065 zio_nowait(zio_read_phys(pio, vd, 1066 vdev_label_offset(vd->vdev_psize, l, 1067 offsetof(vdev_label_t, vl_pad2)), 1068 VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE), 1069 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1070 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE)); 1071 } 1072 1073 if (zio == NULL) 1074 return (pio); 1075 1076 zio_nowait(pio); 1077 return (NULL); 1078 } 1079 1080 static void 1081 vdev_open_child(void *arg) 1082 { 1083 vdev_t *vd = arg; 1084 1085 vd->vdev_open_thread = curthread; 1086 vd->vdev_open_error = vdev_open(vd); 1087 vd->vdev_open_thread = NULL; 1088 } 1089 1090 boolean_t 1091 vdev_uses_zvols(vdev_t *vd) 1092 { 1093 if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR, 1094 strlen(ZVOL_DIR)) == 0) 1095 return (B_TRUE); 1096 for (int c = 0; c < vd->vdev_children; c++) 1097 if (vdev_uses_zvols(vd->vdev_child[c])) 1098 return (B_TRUE); 1099 return (B_FALSE); 1100 } 1101 1102 void 1103 vdev_open_children(vdev_t *vd) 1104 { 1105 taskq_t *tq; 1106 int children = vd->vdev_children; 1107 1108 /* 1109 * in order to handle pools on top of zvols, do the opens 1110 * in a single thread so that the same thread holds the 1111 * spa_namespace_lock 1112 */ 1113 if (vdev_uses_zvols(vd)) { 1114 for (int c = 0; c < children; c++) 1115 vd->vdev_child[c]->vdev_open_error = 1116 vdev_open(vd->vdev_child[c]); 1117 return; 1118 } 1119 tq = taskq_create("vdev_open", children, minclsyspri, 1120 children, children, TASKQ_PREPOPULATE); 1121 1122 for (int c = 0; c < children; c++) 1123 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c], 1124 TQ_SLEEP) != NULL); 1125 1126 taskq_destroy(tq); 1127 } 1128 1129 /* 1130 * Prepare a virtual device for access. 1131 */ 1132 int 1133 vdev_open(vdev_t *vd) 1134 { 1135 spa_t *spa = vd->vdev_spa; 1136 int error; 1137 uint64_t osize = 0; 1138 uint64_t max_osize = 0; 1139 uint64_t asize, max_asize, psize; 1140 uint64_t ashift = 0; 1141 1142 ASSERT(vd->vdev_open_thread == curthread || 1143 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1144 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 1145 vd->vdev_state == VDEV_STATE_CANT_OPEN || 1146 vd->vdev_state == VDEV_STATE_OFFLINE); 1147 1148 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1149 vd->vdev_cant_read = B_FALSE; 1150 vd->vdev_cant_write = B_FALSE; 1151 vd->vdev_min_asize = vdev_get_min_asize(vd); 1152 1153 /* 1154 * If this vdev is not removed, check its fault status. If it's 1155 * faulted, bail out of the open. 1156 */ 1157 if (!vd->vdev_removed && vd->vdev_faulted) { 1158 ASSERT(vd->vdev_children == 0); 1159 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1160 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1161 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1162 vd->vdev_label_aux); 1163 return (SET_ERROR(ENXIO)); 1164 } else if (vd->vdev_offline) { 1165 ASSERT(vd->vdev_children == 0); 1166 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 1167 return (SET_ERROR(ENXIO)); 1168 } 1169 1170 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift); 1171 1172 /* 1173 * Reset the vdev_reopening flag so that we actually close 1174 * the vdev on error. 1175 */ 1176 vd->vdev_reopening = B_FALSE; 1177 if (zio_injection_enabled && error == 0) 1178 error = zio_handle_device_injection(vd, NULL, ENXIO); 1179 1180 if (error) { 1181 if (vd->vdev_removed && 1182 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) 1183 vd->vdev_removed = B_FALSE; 1184 1185 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1186 vd->vdev_stat.vs_aux); 1187 return (error); 1188 } 1189 1190 vd->vdev_removed = B_FALSE; 1191 1192 /* 1193 * Recheck the faulted flag now that we have confirmed that 1194 * the vdev is accessible. If we're faulted, bail. 1195 */ 1196 if (vd->vdev_faulted) { 1197 ASSERT(vd->vdev_children == 0); 1198 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1199 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1200 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1201 vd->vdev_label_aux); 1202 return (SET_ERROR(ENXIO)); 1203 } 1204 1205 if (vd->vdev_degraded) { 1206 ASSERT(vd->vdev_children == 0); 1207 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1208 VDEV_AUX_ERR_EXCEEDED); 1209 } else { 1210 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0); 1211 } 1212 1213 /* 1214 * For hole or missing vdevs we just return success. 1215 */ 1216 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) 1217 return (0); 1218 1219 for (int c = 0; c < vd->vdev_children; c++) { 1220 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 1221 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1222 VDEV_AUX_NONE); 1223 break; 1224 } 1225 } 1226 1227 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); 1228 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t)); 1229 1230 if (vd->vdev_children == 0) { 1231 if (osize < SPA_MINDEVSIZE) { 1232 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1233 VDEV_AUX_TOO_SMALL); 1234 return (SET_ERROR(EOVERFLOW)); 1235 } 1236 psize = osize; 1237 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 1238 max_asize = max_osize - (VDEV_LABEL_START_SIZE + 1239 VDEV_LABEL_END_SIZE); 1240 } else { 1241 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 1242 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 1243 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1244 VDEV_AUX_TOO_SMALL); 1245 return (SET_ERROR(EOVERFLOW)); 1246 } 1247 psize = 0; 1248 asize = osize; 1249 max_asize = max_osize; 1250 } 1251 1252 vd->vdev_psize = psize; 1253 1254 /* 1255 * Make sure the allocatable size hasn't shrunk. 1256 */ 1257 if (asize < vd->vdev_min_asize) { 1258 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1259 VDEV_AUX_BAD_LABEL); 1260 return (SET_ERROR(EINVAL)); 1261 } 1262 1263 if (vd->vdev_asize == 0) { 1264 /* 1265 * This is the first-ever open, so use the computed values. 1266 * For testing purposes, a higher ashift can be requested. 1267 */ 1268 vd->vdev_asize = asize; 1269 vd->vdev_max_asize = max_asize; 1270 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift); 1271 } else { 1272 /* 1273 * Detect if the alignment requirement has increased. 1274 * We don't want to make the pool unavailable, just 1275 * issue a warning instead. 1276 */ 1277 if (ashift > vd->vdev_top->vdev_ashift && 1278 vd->vdev_ops->vdev_op_leaf) { 1279 cmn_err(CE_WARN, 1280 "Disk, '%s', has a block alignment that is " 1281 "larger than the pool's alignment\n", 1282 vd->vdev_path); 1283 } 1284 vd->vdev_max_asize = max_asize; 1285 } 1286 1287 /* 1288 * If all children are healthy and the asize has increased, 1289 * then we've experienced dynamic LUN growth. If automatic 1290 * expansion is enabled then use the additional space. 1291 */ 1292 if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize && 1293 (vd->vdev_expanding || spa->spa_autoexpand)) 1294 vd->vdev_asize = asize; 1295 1296 vdev_set_min_asize(vd); 1297 1298 /* 1299 * Ensure we can issue some IO before declaring the 1300 * vdev open for business. 1301 */ 1302 if (vd->vdev_ops->vdev_op_leaf && 1303 (error = zio_wait(vdev_probe(vd, NULL))) != 0) { 1304 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1305 VDEV_AUX_ERR_EXCEEDED); 1306 return (error); 1307 } 1308 1309 /* 1310 * If a leaf vdev has a DTL, and seems healthy, then kick off a 1311 * resilver. But don't do this if we are doing a reopen for a scrub, 1312 * since this would just restart the scrub we are already doing. 1313 */ 1314 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen && 1315 vdev_resilver_needed(vd, NULL, NULL)) 1316 spa_async_request(spa, SPA_ASYNC_RESILVER); 1317 1318 return (0); 1319 } 1320 1321 /* 1322 * Called once the vdevs are all opened, this routine validates the label 1323 * contents. This needs to be done before vdev_load() so that we don't 1324 * inadvertently do repair I/Os to the wrong device. 1325 * 1326 * If 'strict' is false ignore the spa guid check. This is necessary because 1327 * if the machine crashed during a re-guid the new guid might have been written 1328 * to all of the vdev labels, but not the cached config. The strict check 1329 * will be performed when the pool is opened again using the mos config. 1330 * 1331 * This function will only return failure if one of the vdevs indicates that it 1332 * has since been destroyed or exported. This is only possible if 1333 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 1334 * will be updated but the function will return 0. 1335 */ 1336 int 1337 vdev_validate(vdev_t *vd, boolean_t strict) 1338 { 1339 spa_t *spa = vd->vdev_spa; 1340 nvlist_t *label; 1341 uint64_t guid = 0, top_guid; 1342 uint64_t state; 1343 1344 for (int c = 0; c < vd->vdev_children; c++) 1345 if (vdev_validate(vd->vdev_child[c], strict) != 0) 1346 return (SET_ERROR(EBADF)); 1347 1348 /* 1349 * If the device has already failed, or was marked offline, don't do 1350 * any further validation. Otherwise, label I/O will fail and we will 1351 * overwrite the previous state. 1352 */ 1353 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { 1354 uint64_t aux_guid = 0; 1355 nvlist_t *nvl; 1356 uint64_t txg = spa_last_synced_txg(spa) != 0 ? 1357 spa_last_synced_txg(spa) : -1ULL; 1358 1359 if ((label = vdev_label_read_config(vd, txg)) == NULL) { 1360 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1361 VDEV_AUX_BAD_LABEL); 1362 return (0); 1363 } 1364 1365 /* 1366 * Determine if this vdev has been split off into another 1367 * pool. If so, then refuse to open it. 1368 */ 1369 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID, 1370 &aux_guid) == 0 && aux_guid == spa_guid(spa)) { 1371 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1372 VDEV_AUX_SPLIT_POOL); 1373 nvlist_free(label); 1374 return (0); 1375 } 1376 1377 if (strict && (nvlist_lookup_uint64(label, 1378 ZPOOL_CONFIG_POOL_GUID, &guid) != 0 || 1379 guid != spa_guid(spa))) { 1380 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1381 VDEV_AUX_CORRUPT_DATA); 1382 nvlist_free(label); 1383 return (0); 1384 } 1385 1386 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl) 1387 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID, 1388 &aux_guid) != 0) 1389 aux_guid = 0; 1390 1391 /* 1392 * If this vdev just became a top-level vdev because its 1393 * sibling was detached, it will have adopted the parent's 1394 * vdev guid -- but the label may or may not be on disk yet. 1395 * Fortunately, either version of the label will have the 1396 * same top guid, so if we're a top-level vdev, we can 1397 * safely compare to that instead. 1398 * 1399 * If we split this vdev off instead, then we also check the 1400 * original pool's guid. We don't want to consider the vdev 1401 * corrupt if it is partway through a split operation. 1402 */ 1403 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 1404 &guid) != 0 || 1405 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, 1406 &top_guid) != 0 || 1407 ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) && 1408 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) { 1409 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1410 VDEV_AUX_CORRUPT_DATA); 1411 nvlist_free(label); 1412 return (0); 1413 } 1414 1415 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 1416 &state) != 0) { 1417 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1418 VDEV_AUX_CORRUPT_DATA); 1419 nvlist_free(label); 1420 return (0); 1421 } 1422 1423 nvlist_free(label); 1424 1425 /* 1426 * If this is a verbatim import, no need to check the 1427 * state of the pool. 1428 */ 1429 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) && 1430 spa_load_state(spa) == SPA_LOAD_OPEN && 1431 state != POOL_STATE_ACTIVE) 1432 return (SET_ERROR(EBADF)); 1433 1434 /* 1435 * If we were able to open and validate a vdev that was 1436 * previously marked permanently unavailable, clear that state 1437 * now. 1438 */ 1439 if (vd->vdev_not_present) 1440 vd->vdev_not_present = 0; 1441 } 1442 1443 return (0); 1444 } 1445 1446 /* 1447 * Close a virtual device. 1448 */ 1449 void 1450 vdev_close(vdev_t *vd) 1451 { 1452 spa_t *spa = vd->vdev_spa; 1453 vdev_t *pvd = vd->vdev_parent; 1454 1455 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1456 1457 /* 1458 * If our parent is reopening, then we are as well, unless we are 1459 * going offline. 1460 */ 1461 if (pvd != NULL && pvd->vdev_reopening) 1462 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline); 1463 1464 vd->vdev_ops->vdev_op_close(vd); 1465 1466 vdev_cache_purge(vd); 1467 1468 /* 1469 * We record the previous state before we close it, so that if we are 1470 * doing a reopen(), we don't generate FMA ereports if we notice that 1471 * it's still faulted. 1472 */ 1473 vd->vdev_prevstate = vd->vdev_state; 1474 1475 if (vd->vdev_offline) 1476 vd->vdev_state = VDEV_STATE_OFFLINE; 1477 else 1478 vd->vdev_state = VDEV_STATE_CLOSED; 1479 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1480 } 1481 1482 void 1483 vdev_hold(vdev_t *vd) 1484 { 1485 spa_t *spa = vd->vdev_spa; 1486 1487 ASSERT(spa_is_root(spa)); 1488 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 1489 return; 1490 1491 for (int c = 0; c < vd->vdev_children; c++) 1492 vdev_hold(vd->vdev_child[c]); 1493 1494 if (vd->vdev_ops->vdev_op_leaf) 1495 vd->vdev_ops->vdev_op_hold(vd); 1496 } 1497 1498 void 1499 vdev_rele(vdev_t *vd) 1500 { 1501 spa_t *spa = vd->vdev_spa; 1502 1503 ASSERT(spa_is_root(spa)); 1504 for (int c = 0; c < vd->vdev_children; c++) 1505 vdev_rele(vd->vdev_child[c]); 1506 1507 if (vd->vdev_ops->vdev_op_leaf) 1508 vd->vdev_ops->vdev_op_rele(vd); 1509 } 1510 1511 /* 1512 * Reopen all interior vdevs and any unopened leaves. We don't actually 1513 * reopen leaf vdevs which had previously been opened as they might deadlock 1514 * on the spa_config_lock. Instead we only obtain the leaf's physical size. 1515 * If the leaf has never been opened then open it, as usual. 1516 */ 1517 void 1518 vdev_reopen(vdev_t *vd) 1519 { 1520 spa_t *spa = vd->vdev_spa; 1521 1522 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1523 1524 /* set the reopening flag unless we're taking the vdev offline */ 1525 vd->vdev_reopening = !vd->vdev_offline; 1526 vdev_close(vd); 1527 (void) vdev_open(vd); 1528 1529 /* 1530 * Call vdev_validate() here to make sure we have the same device. 1531 * Otherwise, a device with an invalid label could be successfully 1532 * opened in response to vdev_reopen(). 1533 */ 1534 if (vd->vdev_aux) { 1535 (void) vdev_validate_aux(vd); 1536 if (vdev_readable(vd) && vdev_writeable(vd) && 1537 vd->vdev_aux == &spa->spa_l2cache && 1538 !l2arc_vdev_present(vd)) 1539 l2arc_add_vdev(spa, vd); 1540 } else { 1541 (void) vdev_validate(vd, B_TRUE); 1542 } 1543 1544 /* 1545 * Reassess parent vdev's health. 1546 */ 1547 vdev_propagate_state(vd); 1548 } 1549 1550 int 1551 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 1552 { 1553 int error; 1554 1555 /* 1556 * Normally, partial opens (e.g. of a mirror) are allowed. 1557 * For a create, however, we want to fail the request if 1558 * there are any components we can't open. 1559 */ 1560 error = vdev_open(vd); 1561 1562 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 1563 vdev_close(vd); 1564 return (error ? error : ENXIO); 1565 } 1566 1567 /* 1568 * Recursively load DTLs and initialize all labels. 1569 */ 1570 if ((error = vdev_dtl_load(vd)) != 0 || 1571 (error = vdev_label_init(vd, txg, isreplacing ? 1572 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { 1573 vdev_close(vd); 1574 return (error); 1575 } 1576 1577 return (0); 1578 } 1579 1580 void 1581 vdev_metaslab_set_size(vdev_t *vd) 1582 { 1583 /* 1584 * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev. 1585 */ 1586 vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev); 1587 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT); 1588 } 1589 1590 void 1591 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 1592 { 1593 ASSERT(vd == vd->vdev_top); 1594 ASSERT(!vd->vdev_ishole); 1595 ASSERT(ISP2(flags)); 1596 ASSERT(spa_writeable(vd->vdev_spa)); 1597 1598 if (flags & VDD_METASLAB) 1599 (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 1600 1601 if (flags & VDD_DTL) 1602 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 1603 1604 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 1605 } 1606 1607 void 1608 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg) 1609 { 1610 for (int c = 0; c < vd->vdev_children; c++) 1611 vdev_dirty_leaves(vd->vdev_child[c], flags, txg); 1612 1613 if (vd->vdev_ops->vdev_op_leaf) 1614 vdev_dirty(vd->vdev_top, flags, vd, txg); 1615 } 1616 1617 /* 1618 * DTLs. 1619 * 1620 * A vdev's DTL (dirty time log) is the set of transaction groups for which 1621 * the vdev has less than perfect replication. There are four kinds of DTL: 1622 * 1623 * DTL_MISSING: txgs for which the vdev has no valid copies of the data 1624 * 1625 * DTL_PARTIAL: txgs for which data is available, but not fully replicated 1626 * 1627 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon 1628 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of 1629 * txgs that was scrubbed. 1630 * 1631 * DTL_OUTAGE: txgs which cannot currently be read, whether due to 1632 * persistent errors or just some device being offline. 1633 * Unlike the other three, the DTL_OUTAGE map is not generally 1634 * maintained; it's only computed when needed, typically to 1635 * determine whether a device can be detached. 1636 * 1637 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device 1638 * either has the data or it doesn't. 1639 * 1640 * For interior vdevs such as mirror and RAID-Z the picture is more complex. 1641 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because 1642 * if any child is less than fully replicated, then so is its parent. 1643 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs, 1644 * comprising only those txgs which appear in 'maxfaults' or more children; 1645 * those are the txgs we don't have enough replication to read. For example, 1646 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2); 1647 * thus, its DTL_MISSING consists of the set of txgs that appear in more than 1648 * two child DTL_MISSING maps. 1649 * 1650 * It should be clear from the above that to compute the DTLs and outage maps 1651 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps. 1652 * Therefore, that is all we keep on disk. When loading the pool, or after 1653 * a configuration change, we generate all other DTLs from first principles. 1654 */ 1655 void 1656 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1657 { 1658 range_tree_t *rt = vd->vdev_dtl[t]; 1659 1660 ASSERT(t < DTL_TYPES); 1661 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1662 ASSERT(spa_writeable(vd->vdev_spa)); 1663 1664 mutex_enter(rt->rt_lock); 1665 if (!range_tree_contains(rt, txg, size)) 1666 range_tree_add(rt, txg, size); 1667 mutex_exit(rt->rt_lock); 1668 } 1669 1670 boolean_t 1671 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1672 { 1673 range_tree_t *rt = vd->vdev_dtl[t]; 1674 boolean_t dirty = B_FALSE; 1675 1676 ASSERT(t < DTL_TYPES); 1677 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1678 1679 mutex_enter(rt->rt_lock); 1680 if (range_tree_space(rt) != 0) 1681 dirty = range_tree_contains(rt, txg, size); 1682 mutex_exit(rt->rt_lock); 1683 1684 return (dirty); 1685 } 1686 1687 boolean_t 1688 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t) 1689 { 1690 range_tree_t *rt = vd->vdev_dtl[t]; 1691 boolean_t empty; 1692 1693 mutex_enter(rt->rt_lock); 1694 empty = (range_tree_space(rt) == 0); 1695 mutex_exit(rt->rt_lock); 1696 1697 return (empty); 1698 } 1699 1700 /* 1701 * Returns the lowest txg in the DTL range. 1702 */ 1703 static uint64_t 1704 vdev_dtl_min(vdev_t *vd) 1705 { 1706 range_seg_t *rs; 1707 1708 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 1709 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 1710 ASSERT0(vd->vdev_children); 1711 1712 rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root); 1713 return (rs->rs_start - 1); 1714 } 1715 1716 /* 1717 * Returns the highest txg in the DTL. 1718 */ 1719 static uint64_t 1720 vdev_dtl_max(vdev_t *vd) 1721 { 1722 range_seg_t *rs; 1723 1724 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 1725 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 1726 ASSERT0(vd->vdev_children); 1727 1728 rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root); 1729 return (rs->rs_end); 1730 } 1731 1732 /* 1733 * Determine if a resilvering vdev should remove any DTL entries from 1734 * its range. If the vdev was resilvering for the entire duration of the 1735 * scan then it should excise that range from its DTLs. Otherwise, this 1736 * vdev is considered partially resilvered and should leave its DTL 1737 * entries intact. The comment in vdev_dtl_reassess() describes how we 1738 * excise the DTLs. 1739 */ 1740 static boolean_t 1741 vdev_dtl_should_excise(vdev_t *vd) 1742 { 1743 spa_t *spa = vd->vdev_spa; 1744 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 1745 1746 ASSERT0(scn->scn_phys.scn_errors); 1747 ASSERT0(vd->vdev_children); 1748 1749 if (vd->vdev_resilver_txg == 0 || 1750 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0) 1751 return (B_TRUE); 1752 1753 /* 1754 * When a resilver is initiated the scan will assign the scn_max_txg 1755 * value to the highest txg value that exists in all DTLs. If this 1756 * device's max DTL is not part of this scan (i.e. it is not in 1757 * the range (scn_min_txg, scn_max_txg] then it is not eligible 1758 * for excision. 1759 */ 1760 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) { 1761 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd)); 1762 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg); 1763 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg); 1764 return (B_TRUE); 1765 } 1766 return (B_FALSE); 1767 } 1768 1769 /* 1770 * Reassess DTLs after a config change or scrub completion. 1771 */ 1772 void 1773 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done) 1774 { 1775 spa_t *spa = vd->vdev_spa; 1776 avl_tree_t reftree; 1777 int minref; 1778 1779 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 1780 1781 for (int c = 0; c < vd->vdev_children; c++) 1782 vdev_dtl_reassess(vd->vdev_child[c], txg, 1783 scrub_txg, scrub_done); 1784 1785 if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux) 1786 return; 1787 1788 if (vd->vdev_ops->vdev_op_leaf) { 1789 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 1790 1791 mutex_enter(&vd->vdev_dtl_lock); 1792 1793 /* 1794 * If we've completed a scan cleanly then determine 1795 * if this vdev should remove any DTLs. We only want to 1796 * excise regions on vdevs that were available during 1797 * the entire duration of this scan. 1798 */ 1799 if (scrub_txg != 0 && 1800 (spa->spa_scrub_started || 1801 (scn != NULL && scn->scn_phys.scn_errors == 0)) && 1802 vdev_dtl_should_excise(vd)) { 1803 /* 1804 * We completed a scrub up to scrub_txg. If we 1805 * did it without rebooting, then the scrub dtl 1806 * will be valid, so excise the old region and 1807 * fold in the scrub dtl. Otherwise, leave the 1808 * dtl as-is if there was an error. 1809 * 1810 * There's little trick here: to excise the beginning 1811 * of the DTL_MISSING map, we put it into a reference 1812 * tree and then add a segment with refcnt -1 that 1813 * covers the range [0, scrub_txg). This means 1814 * that each txg in that range has refcnt -1 or 0. 1815 * We then add DTL_SCRUB with a refcnt of 2, so that 1816 * entries in the range [0, scrub_txg) will have a 1817 * positive refcnt -- either 1 or 2. We then convert 1818 * the reference tree into the new DTL_MISSING map. 1819 */ 1820 space_reftree_create(&reftree); 1821 space_reftree_add_map(&reftree, 1822 vd->vdev_dtl[DTL_MISSING], 1); 1823 space_reftree_add_seg(&reftree, 0, scrub_txg, -1); 1824 space_reftree_add_map(&reftree, 1825 vd->vdev_dtl[DTL_SCRUB], 2); 1826 space_reftree_generate_map(&reftree, 1827 vd->vdev_dtl[DTL_MISSING], 1); 1828 space_reftree_destroy(&reftree); 1829 } 1830 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL); 1831 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 1832 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]); 1833 if (scrub_done) 1834 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL); 1835 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL); 1836 if (!vdev_readable(vd)) 1837 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL); 1838 else 1839 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 1840 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]); 1841 1842 /* 1843 * If the vdev was resilvering and no longer has any 1844 * DTLs then reset its resilvering flag. 1845 */ 1846 if (vd->vdev_resilver_txg != 0 && 1847 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 && 1848 range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0) 1849 vd->vdev_resilver_txg = 0; 1850 1851 mutex_exit(&vd->vdev_dtl_lock); 1852 1853 if (txg != 0) 1854 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 1855 return; 1856 } 1857 1858 mutex_enter(&vd->vdev_dtl_lock); 1859 for (int t = 0; t < DTL_TYPES; t++) { 1860 /* account for child's outage in parent's missing map */ 1861 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t; 1862 if (t == DTL_SCRUB) 1863 continue; /* leaf vdevs only */ 1864 if (t == DTL_PARTIAL) 1865 minref = 1; /* i.e. non-zero */ 1866 else if (vd->vdev_nparity != 0) 1867 minref = vd->vdev_nparity + 1; /* RAID-Z */ 1868 else 1869 minref = vd->vdev_children; /* any kind of mirror */ 1870 space_reftree_create(&reftree); 1871 for (int c = 0; c < vd->vdev_children; c++) { 1872 vdev_t *cvd = vd->vdev_child[c]; 1873 mutex_enter(&cvd->vdev_dtl_lock); 1874 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1); 1875 mutex_exit(&cvd->vdev_dtl_lock); 1876 } 1877 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref); 1878 space_reftree_destroy(&reftree); 1879 } 1880 mutex_exit(&vd->vdev_dtl_lock); 1881 } 1882 1883 int 1884 vdev_dtl_load(vdev_t *vd) 1885 { 1886 spa_t *spa = vd->vdev_spa; 1887 objset_t *mos = spa->spa_meta_objset; 1888 int error = 0; 1889 1890 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) { 1891 ASSERT(!vd->vdev_ishole); 1892 1893 error = space_map_open(&vd->vdev_dtl_sm, mos, 1894 vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock); 1895 if (error) 1896 return (error); 1897 ASSERT(vd->vdev_dtl_sm != NULL); 1898 1899 mutex_enter(&vd->vdev_dtl_lock); 1900 1901 /* 1902 * Now that we've opened the space_map we need to update 1903 * the in-core DTL. 1904 */ 1905 space_map_update(vd->vdev_dtl_sm); 1906 1907 error = space_map_load(vd->vdev_dtl_sm, 1908 vd->vdev_dtl[DTL_MISSING], SM_ALLOC); 1909 mutex_exit(&vd->vdev_dtl_lock); 1910 1911 return (error); 1912 } 1913 1914 for (int c = 0; c < vd->vdev_children; c++) { 1915 error = vdev_dtl_load(vd->vdev_child[c]); 1916 if (error != 0) 1917 break; 1918 } 1919 1920 return (error); 1921 } 1922 1923 void 1924 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 1925 { 1926 spa_t *spa = vd->vdev_spa; 1927 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING]; 1928 objset_t *mos = spa->spa_meta_objset; 1929 range_tree_t *rtsync; 1930 kmutex_t rtlock; 1931 dmu_tx_t *tx; 1932 uint64_t object = space_map_object(vd->vdev_dtl_sm); 1933 1934 ASSERT(!vd->vdev_ishole); 1935 ASSERT(vd->vdev_ops->vdev_op_leaf); 1936 1937 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 1938 1939 if (vd->vdev_detached || vd->vdev_top->vdev_removing) { 1940 mutex_enter(&vd->vdev_dtl_lock); 1941 space_map_free(vd->vdev_dtl_sm, tx); 1942 space_map_close(vd->vdev_dtl_sm); 1943 vd->vdev_dtl_sm = NULL; 1944 mutex_exit(&vd->vdev_dtl_lock); 1945 dmu_tx_commit(tx); 1946 return; 1947 } 1948 1949 if (vd->vdev_dtl_sm == NULL) { 1950 uint64_t new_object; 1951 1952 new_object = space_map_alloc(mos, tx); 1953 VERIFY3U(new_object, !=, 0); 1954 1955 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object, 1956 0, -1ULL, 0, &vd->vdev_dtl_lock)); 1957 ASSERT(vd->vdev_dtl_sm != NULL); 1958 } 1959 1960 mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL); 1961 1962 rtsync = range_tree_create(NULL, NULL, &rtlock); 1963 1964 mutex_enter(&rtlock); 1965 1966 mutex_enter(&vd->vdev_dtl_lock); 1967 range_tree_walk(rt, range_tree_add, rtsync); 1968 mutex_exit(&vd->vdev_dtl_lock); 1969 1970 space_map_truncate(vd->vdev_dtl_sm, tx); 1971 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx); 1972 range_tree_vacate(rtsync, NULL, NULL); 1973 1974 range_tree_destroy(rtsync); 1975 1976 mutex_exit(&rtlock); 1977 mutex_destroy(&rtlock); 1978 1979 /* 1980 * If the object for the space map has changed then dirty 1981 * the top level so that we update the config. 1982 */ 1983 if (object != space_map_object(vd->vdev_dtl_sm)) { 1984 zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, " 1985 "new object %llu", txg, spa_name(spa), object, 1986 space_map_object(vd->vdev_dtl_sm)); 1987 vdev_config_dirty(vd->vdev_top); 1988 } 1989 1990 dmu_tx_commit(tx); 1991 1992 mutex_enter(&vd->vdev_dtl_lock); 1993 space_map_update(vd->vdev_dtl_sm); 1994 mutex_exit(&vd->vdev_dtl_lock); 1995 } 1996 1997 /* 1998 * Determine whether the specified vdev can be offlined/detached/removed 1999 * without losing data. 2000 */ 2001 boolean_t 2002 vdev_dtl_required(vdev_t *vd) 2003 { 2004 spa_t *spa = vd->vdev_spa; 2005 vdev_t *tvd = vd->vdev_top; 2006 uint8_t cant_read = vd->vdev_cant_read; 2007 boolean_t required; 2008 2009 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2010 2011 if (vd == spa->spa_root_vdev || vd == tvd) 2012 return (B_TRUE); 2013 2014 /* 2015 * Temporarily mark the device as unreadable, and then determine 2016 * whether this results in any DTL outages in the top-level vdev. 2017 * If not, we can safely offline/detach/remove the device. 2018 */ 2019 vd->vdev_cant_read = B_TRUE; 2020 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 2021 required = !vdev_dtl_empty(tvd, DTL_OUTAGE); 2022 vd->vdev_cant_read = cant_read; 2023 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 2024 2025 if (!required && zio_injection_enabled) 2026 required = !!zio_handle_device_injection(vd, NULL, ECHILD); 2027 2028 return (required); 2029 } 2030 2031 /* 2032 * Determine if resilver is needed, and if so the txg range. 2033 */ 2034 boolean_t 2035 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp) 2036 { 2037 boolean_t needed = B_FALSE; 2038 uint64_t thismin = UINT64_MAX; 2039 uint64_t thismax = 0; 2040 2041 if (vd->vdev_children == 0) { 2042 mutex_enter(&vd->vdev_dtl_lock); 2043 if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 && 2044 vdev_writeable(vd)) { 2045 2046 thismin = vdev_dtl_min(vd); 2047 thismax = vdev_dtl_max(vd); 2048 needed = B_TRUE; 2049 } 2050 mutex_exit(&vd->vdev_dtl_lock); 2051 } else { 2052 for (int c = 0; c < vd->vdev_children; c++) { 2053 vdev_t *cvd = vd->vdev_child[c]; 2054 uint64_t cmin, cmax; 2055 2056 if (vdev_resilver_needed(cvd, &cmin, &cmax)) { 2057 thismin = MIN(thismin, cmin); 2058 thismax = MAX(thismax, cmax); 2059 needed = B_TRUE; 2060 } 2061 } 2062 } 2063 2064 if (needed && minp) { 2065 *minp = thismin; 2066 *maxp = thismax; 2067 } 2068 return (needed); 2069 } 2070 2071 void 2072 vdev_load(vdev_t *vd) 2073 { 2074 /* 2075 * Recursively load all children. 2076 */ 2077 for (int c = 0; c < vd->vdev_children; c++) 2078 vdev_load(vd->vdev_child[c]); 2079 2080 /* 2081 * If this is a top-level vdev, initialize its metaslabs. 2082 */ 2083 if (vd == vd->vdev_top && !vd->vdev_ishole && 2084 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 || 2085 vdev_metaslab_init(vd, 0) != 0)) 2086 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2087 VDEV_AUX_CORRUPT_DATA); 2088 2089 /* 2090 * If this is a leaf vdev, load its DTL. 2091 */ 2092 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0) 2093 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2094 VDEV_AUX_CORRUPT_DATA); 2095 } 2096 2097 /* 2098 * The special vdev case is used for hot spares and l2cache devices. Its 2099 * sole purpose it to set the vdev state for the associated vdev. To do this, 2100 * we make sure that we can open the underlying device, then try to read the 2101 * label, and make sure that the label is sane and that it hasn't been 2102 * repurposed to another pool. 2103 */ 2104 int 2105 vdev_validate_aux(vdev_t *vd) 2106 { 2107 nvlist_t *label; 2108 uint64_t guid, version; 2109 uint64_t state; 2110 2111 if (!vdev_readable(vd)) 2112 return (0); 2113 2114 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) { 2115 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2116 VDEV_AUX_CORRUPT_DATA); 2117 return (-1); 2118 } 2119 2120 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 2121 !SPA_VERSION_IS_SUPPORTED(version) || 2122 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 2123 guid != vd->vdev_guid || 2124 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 2125 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2126 VDEV_AUX_CORRUPT_DATA); 2127 nvlist_free(label); 2128 return (-1); 2129 } 2130 2131 /* 2132 * We don't actually check the pool state here. If it's in fact in 2133 * use by another pool, we update this fact on the fly when requested. 2134 */ 2135 nvlist_free(label); 2136 return (0); 2137 } 2138 2139 void 2140 vdev_remove(vdev_t *vd, uint64_t txg) 2141 { 2142 spa_t *spa = vd->vdev_spa; 2143 objset_t *mos = spa->spa_meta_objset; 2144 dmu_tx_t *tx; 2145 2146 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 2147 2148 if (vd->vdev_ms != NULL) { 2149 metaslab_group_t *mg = vd->vdev_mg; 2150 2151 metaslab_group_histogram_verify(mg); 2152 metaslab_class_histogram_verify(mg->mg_class); 2153 2154 for (int m = 0; m < vd->vdev_ms_count; m++) { 2155 metaslab_t *msp = vd->vdev_ms[m]; 2156 2157 if (msp == NULL || msp->ms_sm == NULL) 2158 continue; 2159 2160 mutex_enter(&msp->ms_lock); 2161 /* 2162 * If the metaslab was not loaded when the vdev 2163 * was removed then the histogram accounting may 2164 * not be accurate. Update the histogram information 2165 * here so that we ensure that the metaslab group 2166 * and metaslab class are up-to-date. 2167 */ 2168 metaslab_group_histogram_remove(mg, msp); 2169 2170 VERIFY0(space_map_allocated(msp->ms_sm)); 2171 space_map_free(msp->ms_sm, tx); 2172 space_map_close(msp->ms_sm); 2173 msp->ms_sm = NULL; 2174 mutex_exit(&msp->ms_lock); 2175 } 2176 2177 metaslab_group_histogram_verify(mg); 2178 metaslab_class_histogram_verify(mg->mg_class); 2179 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) 2180 ASSERT0(mg->mg_histogram[i]); 2181 2182 } 2183 2184 if (vd->vdev_ms_array) { 2185 (void) dmu_object_free(mos, vd->vdev_ms_array, tx); 2186 vd->vdev_ms_array = 0; 2187 } 2188 dmu_tx_commit(tx); 2189 } 2190 2191 void 2192 vdev_sync_done(vdev_t *vd, uint64_t txg) 2193 { 2194 metaslab_t *msp; 2195 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg)); 2196 2197 ASSERT(!vd->vdev_ishole); 2198 2199 while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 2200 metaslab_sync_done(msp, txg); 2201 2202 if (reassess) 2203 metaslab_sync_reassess(vd->vdev_mg); 2204 } 2205 2206 void 2207 vdev_sync(vdev_t *vd, uint64_t txg) 2208 { 2209 spa_t *spa = vd->vdev_spa; 2210 vdev_t *lvd; 2211 metaslab_t *msp; 2212 dmu_tx_t *tx; 2213 2214 ASSERT(!vd->vdev_ishole); 2215 2216 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) { 2217 ASSERT(vd == vd->vdev_top); 2218 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 2219 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 2220 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 2221 ASSERT(vd->vdev_ms_array != 0); 2222 vdev_config_dirty(vd); 2223 dmu_tx_commit(tx); 2224 } 2225 2226 /* 2227 * Remove the metadata associated with this vdev once it's empty. 2228 */ 2229 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) 2230 vdev_remove(vd, txg); 2231 2232 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 2233 metaslab_sync(msp, txg); 2234 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 2235 } 2236 2237 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 2238 vdev_dtl_sync(lvd, txg); 2239 2240 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 2241 } 2242 2243 uint64_t 2244 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 2245 { 2246 return (vd->vdev_ops->vdev_op_asize(vd, psize)); 2247 } 2248 2249 /* 2250 * Mark the given vdev faulted. A faulted vdev behaves as if the device could 2251 * not be opened, and no I/O is attempted. 2252 */ 2253 int 2254 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux) 2255 { 2256 vdev_t *vd, *tvd; 2257 2258 spa_vdev_state_enter(spa, SCL_NONE); 2259 2260 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2261 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2262 2263 if (!vd->vdev_ops->vdev_op_leaf) 2264 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2265 2266 tvd = vd->vdev_top; 2267 2268 /* 2269 * We don't directly use the aux state here, but if we do a 2270 * vdev_reopen(), we need this value to be present to remember why we 2271 * were faulted. 2272 */ 2273 vd->vdev_label_aux = aux; 2274 2275 /* 2276 * Faulted state takes precedence over degraded. 2277 */ 2278 vd->vdev_delayed_close = B_FALSE; 2279 vd->vdev_faulted = 1ULL; 2280 vd->vdev_degraded = 0ULL; 2281 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux); 2282 2283 /* 2284 * If this device has the only valid copy of the data, then 2285 * back off and simply mark the vdev as degraded instead. 2286 */ 2287 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) { 2288 vd->vdev_degraded = 1ULL; 2289 vd->vdev_faulted = 0ULL; 2290 2291 /* 2292 * If we reopen the device and it's not dead, only then do we 2293 * mark it degraded. 2294 */ 2295 vdev_reopen(tvd); 2296 2297 if (vdev_readable(vd)) 2298 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux); 2299 } 2300 2301 return (spa_vdev_state_exit(spa, vd, 0)); 2302 } 2303 2304 /* 2305 * Mark the given vdev degraded. A degraded vdev is purely an indication to the 2306 * user that something is wrong. The vdev continues to operate as normal as far 2307 * as I/O is concerned. 2308 */ 2309 int 2310 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux) 2311 { 2312 vdev_t *vd; 2313 2314 spa_vdev_state_enter(spa, SCL_NONE); 2315 2316 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2317 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2318 2319 if (!vd->vdev_ops->vdev_op_leaf) 2320 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2321 2322 /* 2323 * If the vdev is already faulted, then don't do anything. 2324 */ 2325 if (vd->vdev_faulted || vd->vdev_degraded) 2326 return (spa_vdev_state_exit(spa, NULL, 0)); 2327 2328 vd->vdev_degraded = 1ULL; 2329 if (!vdev_is_dead(vd)) 2330 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 2331 aux); 2332 2333 return (spa_vdev_state_exit(spa, vd, 0)); 2334 } 2335 2336 /* 2337 * Online the given vdev. 2338 * 2339 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached 2340 * spare device should be detached when the device finishes resilvering. 2341 * Second, the online should be treated like a 'test' online case, so no FMA 2342 * events are generated if the device fails to open. 2343 */ 2344 int 2345 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate) 2346 { 2347 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev; 2348 2349 spa_vdev_state_enter(spa, SCL_NONE); 2350 2351 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2352 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2353 2354 if (!vd->vdev_ops->vdev_op_leaf) 2355 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2356 2357 tvd = vd->vdev_top; 2358 vd->vdev_offline = B_FALSE; 2359 vd->vdev_tmpoffline = B_FALSE; 2360 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE); 2361 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT); 2362 2363 /* XXX - L2ARC 1.0 does not support expansion */ 2364 if (!vd->vdev_aux) { 2365 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2366 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND); 2367 } 2368 2369 vdev_reopen(tvd); 2370 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; 2371 2372 if (!vd->vdev_aux) { 2373 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2374 pvd->vdev_expanding = B_FALSE; 2375 } 2376 2377 if (newstate) 2378 *newstate = vd->vdev_state; 2379 if ((flags & ZFS_ONLINE_UNSPARE) && 2380 !vdev_is_dead(vd) && vd->vdev_parent && 2381 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 2382 vd->vdev_parent->vdev_child[0] == vd) 2383 vd->vdev_unspare = B_TRUE; 2384 2385 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) { 2386 2387 /* XXX - L2ARC 1.0 does not support expansion */ 2388 if (vd->vdev_aux) 2389 return (spa_vdev_state_exit(spa, vd, ENOTSUP)); 2390 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2391 } 2392 return (spa_vdev_state_exit(spa, vd, 0)); 2393 } 2394 2395 static int 2396 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags) 2397 { 2398 vdev_t *vd, *tvd; 2399 int error = 0; 2400 uint64_t generation; 2401 metaslab_group_t *mg; 2402 2403 top: 2404 spa_vdev_state_enter(spa, SCL_ALLOC); 2405 2406 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2407 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2408 2409 if (!vd->vdev_ops->vdev_op_leaf) 2410 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2411 2412 tvd = vd->vdev_top; 2413 mg = tvd->vdev_mg; 2414 generation = spa->spa_config_generation + 1; 2415 2416 /* 2417 * If the device isn't already offline, try to offline it. 2418 */ 2419 if (!vd->vdev_offline) { 2420 /* 2421 * If this device has the only valid copy of some data, 2422 * don't allow it to be offlined. Log devices are always 2423 * expendable. 2424 */ 2425 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 2426 vdev_dtl_required(vd)) 2427 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 2428 2429 /* 2430 * If the top-level is a slog and it has had allocations 2431 * then proceed. We check that the vdev's metaslab group 2432 * is not NULL since it's possible that we may have just 2433 * added this vdev but not yet initialized its metaslabs. 2434 */ 2435 if (tvd->vdev_islog && mg != NULL) { 2436 /* 2437 * Prevent any future allocations. 2438 */ 2439 metaslab_group_passivate(mg); 2440 (void) spa_vdev_state_exit(spa, vd, 0); 2441 2442 error = spa_offline_log(spa); 2443 2444 spa_vdev_state_enter(spa, SCL_ALLOC); 2445 2446 /* 2447 * Check to see if the config has changed. 2448 */ 2449 if (error || generation != spa->spa_config_generation) { 2450 metaslab_group_activate(mg); 2451 if (error) 2452 return (spa_vdev_state_exit(spa, 2453 vd, error)); 2454 (void) spa_vdev_state_exit(spa, vd, 0); 2455 goto top; 2456 } 2457 ASSERT0(tvd->vdev_stat.vs_alloc); 2458 } 2459 2460 /* 2461 * Offline this device and reopen its top-level vdev. 2462 * If the top-level vdev is a log device then just offline 2463 * it. Otherwise, if this action results in the top-level 2464 * vdev becoming unusable, undo it and fail the request. 2465 */ 2466 vd->vdev_offline = B_TRUE; 2467 vdev_reopen(tvd); 2468 2469 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 2470 vdev_is_dead(tvd)) { 2471 vd->vdev_offline = B_FALSE; 2472 vdev_reopen(tvd); 2473 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 2474 } 2475 2476 /* 2477 * Add the device back into the metaslab rotor so that 2478 * once we online the device it's open for business. 2479 */ 2480 if (tvd->vdev_islog && mg != NULL) 2481 metaslab_group_activate(mg); 2482 } 2483 2484 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY); 2485 2486 return (spa_vdev_state_exit(spa, vd, 0)); 2487 } 2488 2489 int 2490 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) 2491 { 2492 int error; 2493 2494 mutex_enter(&spa->spa_vdev_top_lock); 2495 error = vdev_offline_locked(spa, guid, flags); 2496 mutex_exit(&spa->spa_vdev_top_lock); 2497 2498 return (error); 2499 } 2500 2501 /* 2502 * Clear the error counts associated with this vdev. Unlike vdev_online() and 2503 * vdev_offline(), we assume the spa config is locked. We also clear all 2504 * children. If 'vd' is NULL, then the user wants to clear all vdevs. 2505 */ 2506 void 2507 vdev_clear(spa_t *spa, vdev_t *vd) 2508 { 2509 vdev_t *rvd = spa->spa_root_vdev; 2510 2511 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2512 2513 if (vd == NULL) 2514 vd = rvd; 2515 2516 vd->vdev_stat.vs_read_errors = 0; 2517 vd->vdev_stat.vs_write_errors = 0; 2518 vd->vdev_stat.vs_checksum_errors = 0; 2519 2520 for (int c = 0; c < vd->vdev_children; c++) 2521 vdev_clear(spa, vd->vdev_child[c]); 2522 2523 /* 2524 * If we're in the FAULTED state or have experienced failed I/O, then 2525 * clear the persistent state and attempt to reopen the device. We 2526 * also mark the vdev config dirty, so that the new faulted state is 2527 * written out to disk. 2528 */ 2529 if (vd->vdev_faulted || vd->vdev_degraded || 2530 !vdev_readable(vd) || !vdev_writeable(vd)) { 2531 2532 /* 2533 * When reopening in reponse to a clear event, it may be due to 2534 * a fmadm repair request. In this case, if the device is 2535 * still broken, we want to still post the ereport again. 2536 */ 2537 vd->vdev_forcefault = B_TRUE; 2538 2539 vd->vdev_faulted = vd->vdev_degraded = 0ULL; 2540 vd->vdev_cant_read = B_FALSE; 2541 vd->vdev_cant_write = B_FALSE; 2542 2543 vdev_reopen(vd == rvd ? rvd : vd->vdev_top); 2544 2545 vd->vdev_forcefault = B_FALSE; 2546 2547 if (vd != rvd && vdev_writeable(vd->vdev_top)) 2548 vdev_state_dirty(vd->vdev_top); 2549 2550 if (vd->vdev_aux == NULL && !vdev_is_dead(vd)) 2551 spa_async_request(spa, SPA_ASYNC_RESILVER); 2552 2553 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR); 2554 } 2555 2556 /* 2557 * When clearing a FMA-diagnosed fault, we always want to 2558 * unspare the device, as we assume that the original spare was 2559 * done in response to the FMA fault. 2560 */ 2561 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL && 2562 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 2563 vd->vdev_parent->vdev_child[0] == vd) 2564 vd->vdev_unspare = B_TRUE; 2565 } 2566 2567 boolean_t 2568 vdev_is_dead(vdev_t *vd) 2569 { 2570 /* 2571 * Holes and missing devices are always considered "dead". 2572 * This simplifies the code since we don't have to check for 2573 * these types of devices in the various code paths. 2574 * Instead we rely on the fact that we skip over dead devices 2575 * before issuing I/O to them. 2576 */ 2577 return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole || 2578 vd->vdev_ops == &vdev_missing_ops); 2579 } 2580 2581 boolean_t 2582 vdev_readable(vdev_t *vd) 2583 { 2584 return (!vdev_is_dead(vd) && !vd->vdev_cant_read); 2585 } 2586 2587 boolean_t 2588 vdev_writeable(vdev_t *vd) 2589 { 2590 return (!vdev_is_dead(vd) && !vd->vdev_cant_write); 2591 } 2592 2593 boolean_t 2594 vdev_allocatable(vdev_t *vd) 2595 { 2596 uint64_t state = vd->vdev_state; 2597 2598 /* 2599 * We currently allow allocations from vdevs which may be in the 2600 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device 2601 * fails to reopen then we'll catch it later when we're holding 2602 * the proper locks. Note that we have to get the vdev state 2603 * in a local variable because although it changes atomically, 2604 * we're asking two separate questions about it. 2605 */ 2606 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) && 2607 !vd->vdev_cant_write && !vd->vdev_ishole); 2608 } 2609 2610 boolean_t 2611 vdev_accessible(vdev_t *vd, zio_t *zio) 2612 { 2613 ASSERT(zio->io_vd == vd); 2614 2615 if (vdev_is_dead(vd) || vd->vdev_remove_wanted) 2616 return (B_FALSE); 2617 2618 if (zio->io_type == ZIO_TYPE_READ) 2619 return (!vd->vdev_cant_read); 2620 2621 if (zio->io_type == ZIO_TYPE_WRITE) 2622 return (!vd->vdev_cant_write); 2623 2624 return (B_TRUE); 2625 } 2626 2627 /* 2628 * Get statistics for the given vdev. 2629 */ 2630 void 2631 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 2632 { 2633 spa_t *spa = vd->vdev_spa; 2634 vdev_t *rvd = spa->spa_root_vdev; 2635 2636 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 2637 2638 mutex_enter(&vd->vdev_stat_lock); 2639 bcopy(&vd->vdev_stat, vs, sizeof (*vs)); 2640 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 2641 vs->vs_state = vd->vdev_state; 2642 vs->vs_rsize = vdev_get_min_asize(vd); 2643 if (vd->vdev_ops->vdev_op_leaf) 2644 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; 2645 vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize; 2646 if (vd->vdev_aux == NULL && vd == vd->vdev_top && !vd->vdev_ishole) { 2647 vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation; 2648 } 2649 2650 /* 2651 * If we're getting stats on the root vdev, aggregate the I/O counts 2652 * over all top-level vdevs (i.e. the direct children of the root). 2653 */ 2654 if (vd == rvd) { 2655 for (int c = 0; c < rvd->vdev_children; c++) { 2656 vdev_t *cvd = rvd->vdev_child[c]; 2657 vdev_stat_t *cvs = &cvd->vdev_stat; 2658 2659 for (int t = 0; t < ZIO_TYPES; t++) { 2660 vs->vs_ops[t] += cvs->vs_ops[t]; 2661 vs->vs_bytes[t] += cvs->vs_bytes[t]; 2662 } 2663 cvs->vs_scan_removing = cvd->vdev_removing; 2664 } 2665 } 2666 mutex_exit(&vd->vdev_stat_lock); 2667 } 2668 2669 void 2670 vdev_clear_stats(vdev_t *vd) 2671 { 2672 mutex_enter(&vd->vdev_stat_lock); 2673 vd->vdev_stat.vs_space = 0; 2674 vd->vdev_stat.vs_dspace = 0; 2675 vd->vdev_stat.vs_alloc = 0; 2676 mutex_exit(&vd->vdev_stat_lock); 2677 } 2678 2679 void 2680 vdev_scan_stat_init(vdev_t *vd) 2681 { 2682 vdev_stat_t *vs = &vd->vdev_stat; 2683 2684 for (int c = 0; c < vd->vdev_children; c++) 2685 vdev_scan_stat_init(vd->vdev_child[c]); 2686 2687 mutex_enter(&vd->vdev_stat_lock); 2688 vs->vs_scan_processed = 0; 2689 mutex_exit(&vd->vdev_stat_lock); 2690 } 2691 2692 void 2693 vdev_stat_update(zio_t *zio, uint64_t psize) 2694 { 2695 spa_t *spa = zio->io_spa; 2696 vdev_t *rvd = spa->spa_root_vdev; 2697 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd; 2698 vdev_t *pvd; 2699 uint64_t txg = zio->io_txg; 2700 vdev_stat_t *vs = &vd->vdev_stat; 2701 zio_type_t type = zio->io_type; 2702 int flags = zio->io_flags; 2703 2704 /* 2705 * If this i/o is a gang leader, it didn't do any actual work. 2706 */ 2707 if (zio->io_gang_tree) 2708 return; 2709 2710 if (zio->io_error == 0) { 2711 /* 2712 * If this is a root i/o, don't count it -- we've already 2713 * counted the top-level vdevs, and vdev_get_stats() will 2714 * aggregate them when asked. This reduces contention on 2715 * the root vdev_stat_lock and implicitly handles blocks 2716 * that compress away to holes, for which there is no i/o. 2717 * (Holes never create vdev children, so all the counters 2718 * remain zero, which is what we want.) 2719 * 2720 * Note: this only applies to successful i/o (io_error == 0) 2721 * because unlike i/o counts, errors are not additive. 2722 * When reading a ditto block, for example, failure of 2723 * one top-level vdev does not imply a root-level error. 2724 */ 2725 if (vd == rvd) 2726 return; 2727 2728 ASSERT(vd == zio->io_vd); 2729 2730 if (flags & ZIO_FLAG_IO_BYPASS) 2731 return; 2732 2733 mutex_enter(&vd->vdev_stat_lock); 2734 2735 if (flags & ZIO_FLAG_IO_REPAIR) { 2736 if (flags & ZIO_FLAG_SCAN_THREAD) { 2737 dsl_scan_phys_t *scn_phys = 2738 &spa->spa_dsl_pool->dp_scan->scn_phys; 2739 uint64_t *processed = &scn_phys->scn_processed; 2740 2741 /* XXX cleanup? */ 2742 if (vd->vdev_ops->vdev_op_leaf) 2743 atomic_add_64(processed, psize); 2744 vs->vs_scan_processed += psize; 2745 } 2746 2747 if (flags & ZIO_FLAG_SELF_HEAL) 2748 vs->vs_self_healed += psize; 2749 } 2750 2751 vs->vs_ops[type]++; 2752 vs->vs_bytes[type] += psize; 2753 2754 mutex_exit(&vd->vdev_stat_lock); 2755 return; 2756 } 2757 2758 if (flags & ZIO_FLAG_SPECULATIVE) 2759 return; 2760 2761 /* 2762 * If this is an I/O error that is going to be retried, then ignore the 2763 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as 2764 * hard errors, when in reality they can happen for any number of 2765 * innocuous reasons (bus resets, MPxIO link failure, etc). 2766 */ 2767 if (zio->io_error == EIO && 2768 !(zio->io_flags & ZIO_FLAG_IO_RETRY)) 2769 return; 2770 2771 /* 2772 * Intent logs writes won't propagate their error to the root 2773 * I/O so don't mark these types of failures as pool-level 2774 * errors. 2775 */ 2776 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 2777 return; 2778 2779 mutex_enter(&vd->vdev_stat_lock); 2780 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) { 2781 if (zio->io_error == ECKSUM) 2782 vs->vs_checksum_errors++; 2783 else 2784 vs->vs_read_errors++; 2785 } 2786 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd)) 2787 vs->vs_write_errors++; 2788 mutex_exit(&vd->vdev_stat_lock); 2789 2790 if (type == ZIO_TYPE_WRITE && txg != 0 && 2791 (!(flags & ZIO_FLAG_IO_REPAIR) || 2792 (flags & ZIO_FLAG_SCAN_THREAD) || 2793 spa->spa_claiming)) { 2794 /* 2795 * This is either a normal write (not a repair), or it's 2796 * a repair induced by the scrub thread, or it's a repair 2797 * made by zil_claim() during spa_load() in the first txg. 2798 * In the normal case, we commit the DTL change in the same 2799 * txg as the block was born. In the scrub-induced repair 2800 * case, we know that scrubs run in first-pass syncing context, 2801 * so we commit the DTL change in spa_syncing_txg(spa). 2802 * In the zil_claim() case, we commit in spa_first_txg(spa). 2803 * 2804 * We currently do not make DTL entries for failed spontaneous 2805 * self-healing writes triggered by normal (non-scrubbing) 2806 * reads, because we have no transactional context in which to 2807 * do so -- and it's not clear that it'd be desirable anyway. 2808 */ 2809 if (vd->vdev_ops->vdev_op_leaf) { 2810 uint64_t commit_txg = txg; 2811 if (flags & ZIO_FLAG_SCAN_THREAD) { 2812 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 2813 ASSERT(spa_sync_pass(spa) == 1); 2814 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1); 2815 commit_txg = spa_syncing_txg(spa); 2816 } else if (spa->spa_claiming) { 2817 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 2818 commit_txg = spa_first_txg(spa); 2819 } 2820 ASSERT(commit_txg >= spa_syncing_txg(spa)); 2821 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1)) 2822 return; 2823 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2824 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1); 2825 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg); 2826 } 2827 if (vd != rvd) 2828 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1); 2829 } 2830 } 2831 2832 /* 2833 * Update the in-core space usage stats for this vdev, its metaslab class, 2834 * and the root vdev. 2835 */ 2836 void 2837 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta, 2838 int64_t space_delta) 2839 { 2840 int64_t dspace_delta = space_delta; 2841 spa_t *spa = vd->vdev_spa; 2842 vdev_t *rvd = spa->spa_root_vdev; 2843 metaslab_group_t *mg = vd->vdev_mg; 2844 metaslab_class_t *mc = mg ? mg->mg_class : NULL; 2845 2846 ASSERT(vd == vd->vdev_top); 2847 2848 /* 2849 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion 2850 * factor. We must calculate this here and not at the root vdev 2851 * because the root vdev's psize-to-asize is simply the max of its 2852 * childrens', thus not accurate enough for us. 2853 */ 2854 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0); 2855 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache); 2856 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) * 2857 vd->vdev_deflate_ratio; 2858 2859 mutex_enter(&vd->vdev_stat_lock); 2860 vd->vdev_stat.vs_alloc += alloc_delta; 2861 vd->vdev_stat.vs_space += space_delta; 2862 vd->vdev_stat.vs_dspace += dspace_delta; 2863 mutex_exit(&vd->vdev_stat_lock); 2864 2865 if (mc == spa_normal_class(spa)) { 2866 mutex_enter(&rvd->vdev_stat_lock); 2867 rvd->vdev_stat.vs_alloc += alloc_delta; 2868 rvd->vdev_stat.vs_space += space_delta; 2869 rvd->vdev_stat.vs_dspace += dspace_delta; 2870 mutex_exit(&rvd->vdev_stat_lock); 2871 } 2872 2873 if (mc != NULL) { 2874 ASSERT(rvd == vd->vdev_parent); 2875 ASSERT(vd->vdev_ms_count != 0); 2876 2877 metaslab_class_space_update(mc, 2878 alloc_delta, defer_delta, space_delta, dspace_delta); 2879 } 2880 } 2881 2882 /* 2883 * Mark a top-level vdev's config as dirty, placing it on the dirty list 2884 * so that it will be written out next time the vdev configuration is synced. 2885 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 2886 */ 2887 void 2888 vdev_config_dirty(vdev_t *vd) 2889 { 2890 spa_t *spa = vd->vdev_spa; 2891 vdev_t *rvd = spa->spa_root_vdev; 2892 int c; 2893 2894 ASSERT(spa_writeable(spa)); 2895 2896 /* 2897 * If this is an aux vdev (as with l2cache and spare devices), then we 2898 * update the vdev config manually and set the sync flag. 2899 */ 2900 if (vd->vdev_aux != NULL) { 2901 spa_aux_vdev_t *sav = vd->vdev_aux; 2902 nvlist_t **aux; 2903 uint_t naux; 2904 2905 for (c = 0; c < sav->sav_count; c++) { 2906 if (sav->sav_vdevs[c] == vd) 2907 break; 2908 } 2909 2910 if (c == sav->sav_count) { 2911 /* 2912 * We're being removed. There's nothing more to do. 2913 */ 2914 ASSERT(sav->sav_sync == B_TRUE); 2915 return; 2916 } 2917 2918 sav->sav_sync = B_TRUE; 2919 2920 if (nvlist_lookup_nvlist_array(sav->sav_config, 2921 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) { 2922 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 2923 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0); 2924 } 2925 2926 ASSERT(c < naux); 2927 2928 /* 2929 * Setting the nvlist in the middle if the array is a little 2930 * sketchy, but it will work. 2931 */ 2932 nvlist_free(aux[c]); 2933 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0); 2934 2935 return; 2936 } 2937 2938 /* 2939 * The dirty list is protected by the SCL_CONFIG lock. The caller 2940 * must either hold SCL_CONFIG as writer, or must be the sync thread 2941 * (which holds SCL_CONFIG as reader). There's only one sync thread, 2942 * so this is sufficient to ensure mutual exclusion. 2943 */ 2944 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 2945 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2946 spa_config_held(spa, SCL_CONFIG, RW_READER))); 2947 2948 if (vd == rvd) { 2949 for (c = 0; c < rvd->vdev_children; c++) 2950 vdev_config_dirty(rvd->vdev_child[c]); 2951 } else { 2952 ASSERT(vd == vd->vdev_top); 2953 2954 if (!list_link_active(&vd->vdev_config_dirty_node) && 2955 !vd->vdev_ishole) 2956 list_insert_head(&spa->spa_config_dirty_list, vd); 2957 } 2958 } 2959 2960 void 2961 vdev_config_clean(vdev_t *vd) 2962 { 2963 spa_t *spa = vd->vdev_spa; 2964 2965 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 2966 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2967 spa_config_held(spa, SCL_CONFIG, RW_READER))); 2968 2969 ASSERT(list_link_active(&vd->vdev_config_dirty_node)); 2970 list_remove(&spa->spa_config_dirty_list, vd); 2971 } 2972 2973 /* 2974 * Mark a top-level vdev's state as dirty, so that the next pass of 2975 * spa_sync() can convert this into vdev_config_dirty(). We distinguish 2976 * the state changes from larger config changes because they require 2977 * much less locking, and are often needed for administrative actions. 2978 */ 2979 void 2980 vdev_state_dirty(vdev_t *vd) 2981 { 2982 spa_t *spa = vd->vdev_spa; 2983 2984 ASSERT(spa_writeable(spa)); 2985 ASSERT(vd == vd->vdev_top); 2986 2987 /* 2988 * The state list is protected by the SCL_STATE lock. The caller 2989 * must either hold SCL_STATE as writer, or must be the sync thread 2990 * (which holds SCL_STATE as reader). There's only one sync thread, 2991 * so this is sufficient to ensure mutual exclusion. 2992 */ 2993 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 2994 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2995 spa_config_held(spa, SCL_STATE, RW_READER))); 2996 2997 if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole) 2998 list_insert_head(&spa->spa_state_dirty_list, vd); 2999 } 3000 3001 void 3002 vdev_state_clean(vdev_t *vd) 3003 { 3004 spa_t *spa = vd->vdev_spa; 3005 3006 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 3007 (dsl_pool_sync_context(spa_get_dsl(spa)) && 3008 spa_config_held(spa, SCL_STATE, RW_READER))); 3009 3010 ASSERT(list_link_active(&vd->vdev_state_dirty_node)); 3011 list_remove(&spa->spa_state_dirty_list, vd); 3012 } 3013 3014 /* 3015 * Propagate vdev state up from children to parent. 3016 */ 3017 void 3018 vdev_propagate_state(vdev_t *vd) 3019 { 3020 spa_t *spa = vd->vdev_spa; 3021 vdev_t *rvd = spa->spa_root_vdev; 3022 int degraded = 0, faulted = 0; 3023 int corrupted = 0; 3024 vdev_t *child; 3025 3026 if (vd->vdev_children > 0) { 3027 for (int c = 0; c < vd->vdev_children; c++) { 3028 child = vd->vdev_child[c]; 3029 3030 /* 3031 * Don't factor holes into the decision. 3032 */ 3033 if (child->vdev_ishole) 3034 continue; 3035 3036 if (!vdev_readable(child) || 3037 (!vdev_writeable(child) && spa_writeable(spa))) { 3038 /* 3039 * Root special: if there is a top-level log 3040 * device, treat the root vdev as if it were 3041 * degraded. 3042 */ 3043 if (child->vdev_islog && vd == rvd) 3044 degraded++; 3045 else 3046 faulted++; 3047 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) { 3048 degraded++; 3049 } 3050 3051 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 3052 corrupted++; 3053 } 3054 3055 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 3056 3057 /* 3058 * Root special: if there is a top-level vdev that cannot be 3059 * opened due to corrupted metadata, then propagate the root 3060 * vdev's aux state as 'corrupt' rather than 'insufficient 3061 * replicas'. 3062 */ 3063 if (corrupted && vd == rvd && 3064 rvd->vdev_state == VDEV_STATE_CANT_OPEN) 3065 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 3066 VDEV_AUX_CORRUPT_DATA); 3067 } 3068 3069 if (vd->vdev_parent) 3070 vdev_propagate_state(vd->vdev_parent); 3071 } 3072 3073 /* 3074 * Set a vdev's state. If this is during an open, we don't update the parent 3075 * state, because we're in the process of opening children depth-first. 3076 * Otherwise, we propagate the change to the parent. 3077 * 3078 * If this routine places a device in a faulted state, an appropriate ereport is 3079 * generated. 3080 */ 3081 void 3082 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 3083 { 3084 uint64_t save_state; 3085 spa_t *spa = vd->vdev_spa; 3086 3087 if (state == vd->vdev_state) { 3088 vd->vdev_stat.vs_aux = aux; 3089 return; 3090 } 3091 3092 save_state = vd->vdev_state; 3093 3094 vd->vdev_state = state; 3095 vd->vdev_stat.vs_aux = aux; 3096 3097 /* 3098 * If we are setting the vdev state to anything but an open state, then 3099 * always close the underlying device unless the device has requested 3100 * a delayed close (i.e. we're about to remove or fault the device). 3101 * Otherwise, we keep accessible but invalid devices open forever. 3102 * We don't call vdev_close() itself, because that implies some extra 3103 * checks (offline, etc) that we don't want here. This is limited to 3104 * leaf devices, because otherwise closing the device will affect other 3105 * children. 3106 */ 3107 if (!vd->vdev_delayed_close && vdev_is_dead(vd) && 3108 vd->vdev_ops->vdev_op_leaf) 3109 vd->vdev_ops->vdev_op_close(vd); 3110 3111 /* 3112 * If we have brought this vdev back into service, we need 3113 * to notify fmd so that it can gracefully repair any outstanding 3114 * cases due to a missing device. We do this in all cases, even those 3115 * that probably don't correlate to a repaired fault. This is sure to 3116 * catch all cases, and we let the zfs-retire agent sort it out. If 3117 * this is a transient state it's OK, as the retire agent will 3118 * double-check the state of the vdev before repairing it. 3119 */ 3120 if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf && 3121 vd->vdev_prevstate != state) 3122 zfs_post_state_change(spa, vd); 3123 3124 if (vd->vdev_removed && 3125 state == VDEV_STATE_CANT_OPEN && 3126 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { 3127 /* 3128 * If the previous state is set to VDEV_STATE_REMOVED, then this 3129 * device was previously marked removed and someone attempted to 3130 * reopen it. If this failed due to a nonexistent device, then 3131 * keep the device in the REMOVED state. We also let this be if 3132 * it is one of our special test online cases, which is only 3133 * attempting to online the device and shouldn't generate an FMA 3134 * fault. 3135 */ 3136 vd->vdev_state = VDEV_STATE_REMOVED; 3137 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 3138 } else if (state == VDEV_STATE_REMOVED) { 3139 vd->vdev_removed = B_TRUE; 3140 } else if (state == VDEV_STATE_CANT_OPEN) { 3141 /* 3142 * If we fail to open a vdev during an import or recovery, we 3143 * mark it as "not available", which signifies that it was 3144 * never there to begin with. Failure to open such a device 3145 * is not considered an error. 3146 */ 3147 if ((spa_load_state(spa) == SPA_LOAD_IMPORT || 3148 spa_load_state(spa) == SPA_LOAD_RECOVER) && 3149 vd->vdev_ops->vdev_op_leaf) 3150 vd->vdev_not_present = 1; 3151 3152 /* 3153 * Post the appropriate ereport. If the 'prevstate' field is 3154 * set to something other than VDEV_STATE_UNKNOWN, it indicates 3155 * that this is part of a vdev_reopen(). In this case, we don't 3156 * want to post the ereport if the device was already in the 3157 * CANT_OPEN state beforehand. 3158 * 3159 * If the 'checkremove' flag is set, then this is an attempt to 3160 * online the device in response to an insertion event. If we 3161 * hit this case, then we have detected an insertion event for a 3162 * faulted or offline device that wasn't in the removed state. 3163 * In this scenario, we don't post an ereport because we are 3164 * about to replace the device, or attempt an online with 3165 * vdev_forcefault, which will generate the fault for us. 3166 */ 3167 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && 3168 !vd->vdev_not_present && !vd->vdev_checkremove && 3169 vd != spa->spa_root_vdev) { 3170 const char *class; 3171 3172 switch (aux) { 3173 case VDEV_AUX_OPEN_FAILED: 3174 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 3175 break; 3176 case VDEV_AUX_CORRUPT_DATA: 3177 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 3178 break; 3179 case VDEV_AUX_NO_REPLICAS: 3180 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 3181 break; 3182 case VDEV_AUX_BAD_GUID_SUM: 3183 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 3184 break; 3185 case VDEV_AUX_TOO_SMALL: 3186 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 3187 break; 3188 case VDEV_AUX_BAD_LABEL: 3189 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 3190 break; 3191 default: 3192 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 3193 } 3194 3195 zfs_ereport_post(class, spa, vd, NULL, save_state, 0); 3196 } 3197 3198 /* Erase any notion of persistent removed state */ 3199 vd->vdev_removed = B_FALSE; 3200 } else { 3201 vd->vdev_removed = B_FALSE; 3202 } 3203 3204 if (!isopen && vd->vdev_parent) 3205 vdev_propagate_state(vd->vdev_parent); 3206 } 3207 3208 /* 3209 * Check the vdev configuration to ensure that it's capable of supporting 3210 * a root pool. Currently, we do not support RAID-Z or partial configuration. 3211 * In addition, only a single top-level vdev is allowed and none of the leaves 3212 * can be wholedisks. 3213 */ 3214 boolean_t 3215 vdev_is_bootable(vdev_t *vd) 3216 { 3217 if (!vd->vdev_ops->vdev_op_leaf) { 3218 char *vdev_type = vd->vdev_ops->vdev_op_type; 3219 3220 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 && 3221 vd->vdev_children > 1) { 3222 return (B_FALSE); 3223 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 || 3224 strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) { 3225 return (B_FALSE); 3226 } 3227 } 3228 3229 for (int c = 0; c < vd->vdev_children; c++) { 3230 if (!vdev_is_bootable(vd->vdev_child[c])) 3231 return (B_FALSE); 3232 } 3233 return (B_TRUE); 3234 } 3235 3236 /* 3237 * Load the state from the original vdev tree (ovd) which 3238 * we've retrieved from the MOS config object. If the original 3239 * vdev was offline or faulted then we transfer that state to the 3240 * device in the current vdev tree (nvd). 3241 */ 3242 void 3243 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd) 3244 { 3245 spa_t *spa = nvd->vdev_spa; 3246 3247 ASSERT(nvd->vdev_top->vdev_islog); 3248 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 3249 ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid); 3250 3251 for (int c = 0; c < nvd->vdev_children; c++) 3252 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]); 3253 3254 if (nvd->vdev_ops->vdev_op_leaf) { 3255 /* 3256 * Restore the persistent vdev state 3257 */ 3258 nvd->vdev_offline = ovd->vdev_offline; 3259 nvd->vdev_faulted = ovd->vdev_faulted; 3260 nvd->vdev_degraded = ovd->vdev_degraded; 3261 nvd->vdev_removed = ovd->vdev_removed; 3262 } 3263 } 3264 3265 /* 3266 * Determine if a log device has valid content. If the vdev was 3267 * removed or faulted in the MOS config then we know that 3268 * the content on the log device has already been written to the pool. 3269 */ 3270 boolean_t 3271 vdev_log_state_valid(vdev_t *vd) 3272 { 3273 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted && 3274 !vd->vdev_removed) 3275 return (B_TRUE); 3276 3277 for (int c = 0; c < vd->vdev_children; c++) 3278 if (vdev_log_state_valid(vd->vdev_child[c])) 3279 return (B_TRUE); 3280 3281 return (B_FALSE); 3282 } 3283 3284 /* 3285 * Expand a vdev if possible. 3286 */ 3287 void 3288 vdev_expand(vdev_t *vd, uint64_t txg) 3289 { 3290 ASSERT(vd->vdev_top == vd); 3291 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3292 3293 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) { 3294 VERIFY(vdev_metaslab_init(vd, txg) == 0); 3295 vdev_config_dirty(vd); 3296 } 3297 } 3298 3299 /* 3300 * Split a vdev. 3301 */ 3302 void 3303 vdev_split(vdev_t *vd) 3304 { 3305 vdev_t *cvd, *pvd = vd->vdev_parent; 3306 3307 vdev_remove_child(pvd, vd); 3308 vdev_compact_children(pvd); 3309 3310 cvd = pvd->vdev_child[0]; 3311 if (pvd->vdev_children == 1) { 3312 vdev_remove_parent(cvd); 3313 cvd->vdev_splitting = B_TRUE; 3314 } 3315 vdev_propagate_state(cvd); 3316 } 3317 3318 void 3319 vdev_deadman(vdev_t *vd) 3320 { 3321 for (int c = 0; c < vd->vdev_children; c++) { 3322 vdev_t *cvd = vd->vdev_child[c]; 3323 3324 vdev_deadman(cvd); 3325 } 3326 3327 if (vd->vdev_ops->vdev_op_leaf) { 3328 vdev_queue_t *vq = &vd->vdev_queue; 3329 3330 mutex_enter(&vq->vq_lock); 3331 if (avl_numnodes(&vq->vq_active_tree) > 0) { 3332 spa_t *spa = vd->vdev_spa; 3333 zio_t *fio; 3334 uint64_t delta; 3335 3336 /* 3337 * Look at the head of all the pending queues, 3338 * if any I/O has been outstanding for longer than 3339 * the spa_deadman_synctime we panic the system. 3340 */ 3341 fio = avl_first(&vq->vq_active_tree); 3342 delta = gethrtime() - fio->io_timestamp; 3343 if (delta > spa_deadman_synctime(spa)) { 3344 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, " 3345 "delta %lluns, last io %lluns", 3346 fio->io_timestamp, delta, 3347 vq->vq_io_complete_ts); 3348 fm_panic("I/O to pool '%s' appears to be " 3349 "hung.", spa_name(spa)); 3350 } 3351 } 3352 mutex_exit(&vq->vq_lock); 3353 } 3354 }