1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  24  * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
  25  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
  26  */
  27 
  28 #include <sys/zfs_context.h>
  29 #include <sys/fm/fs/zfs.h>
  30 #include <sys/spa.h>
  31 #include <sys/spa_impl.h>
  32 #include <sys/dmu.h>
  33 #include <sys/dmu_tx.h>
  34 #include <sys/vdev_impl.h>
  35 #include <sys/uberblock_impl.h>
  36 #include <sys/metaslab.h>
  37 #include <sys/metaslab_impl.h>
  38 #include <sys/space_map.h>
  39 #include <sys/space_reftree.h>
  40 #include <sys/zio.h>
  41 #include <sys/zap.h>
  42 #include <sys/fs/zfs.h>
  43 #include <sys/arc.h>
  44 #include <sys/zil.h>
  45 #include <sys/dsl_scan.h>
  46 
  47 /*
  48  * Virtual device management.
  49  */
  50 
  51 static vdev_ops_t *vdev_ops_table[] = {
  52         &vdev_root_ops,
  53         &vdev_raidz_ops,
  54         &vdev_mirror_ops,
  55         &vdev_replacing_ops,
  56         &vdev_spare_ops,
  57         &vdev_disk_ops,
  58         &vdev_file_ops,
  59         &vdev_missing_ops,
  60         &vdev_hole_ops,
  61         NULL
  62 };
  63 
  64 /* maximum scrub/resilver I/O queue per leaf vdev */
  65 int zfs_scrub_limit = 10;
  66 
  67 /*
  68  * When a vdev is added, it will be divided into approximately (but no
  69  * more than) this number of metaslabs.
  70  */
  71 int metaslabs_per_vdev = 200;
  72 
  73 /*
  74  * Given a vdev type, return the appropriate ops vector.
  75  */
  76 static vdev_ops_t *
  77 vdev_getops(const char *type)
  78 {
  79         vdev_ops_t *ops, **opspp;
  80 
  81         for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
  82                 if (strcmp(ops->vdev_op_type, type) == 0)
  83                         break;
  84 
  85         return (ops);
  86 }
  87 
  88 /*
  89  * Default asize function: return the MAX of psize with the asize of
  90  * all children.  This is what's used by anything other than RAID-Z.
  91  */
  92 uint64_t
  93 vdev_default_asize(vdev_t *vd, uint64_t psize)
  94 {
  95         uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
  96         uint64_t csize;
  97 
  98         for (int c = 0; c < vd->vdev_children; c++) {
  99                 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
 100                 asize = MAX(asize, csize);
 101         }
 102 
 103         return (asize);
 104 }
 105 
 106 /*
 107  * Get the minimum allocatable size. We define the allocatable size as
 108  * the vdev's asize rounded to the nearest metaslab. This allows us to
 109  * replace or attach devices which don't have the same physical size but
 110  * can still satisfy the same number of allocations.
 111  */
 112 uint64_t
 113 vdev_get_min_asize(vdev_t *vd)
 114 {
 115         vdev_t *pvd = vd->vdev_parent;
 116 
 117         /*
 118          * If our parent is NULL (inactive spare or cache) or is the root,
 119          * just return our own asize.
 120          */
 121         if (pvd == NULL)
 122                 return (vd->vdev_asize);
 123 
 124         /*
 125          * The top-level vdev just returns the allocatable size rounded
 126          * to the nearest metaslab.
 127          */
 128         if (vd == vd->vdev_top)
 129                 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
 130 
 131         /*
 132          * The allocatable space for a raidz vdev is N * sizeof(smallest child),
 133          * so each child must provide at least 1/Nth of its asize.
 134          */
 135         if (pvd->vdev_ops == &vdev_raidz_ops)
 136                 return (pvd->vdev_min_asize / pvd->vdev_children);
 137 
 138         return (pvd->vdev_min_asize);
 139 }
 140 
 141 void
 142 vdev_set_min_asize(vdev_t *vd)
 143 {
 144         vd->vdev_min_asize = vdev_get_min_asize(vd);
 145 
 146         for (int c = 0; c < vd->vdev_children; c++)
 147                 vdev_set_min_asize(vd->vdev_child[c]);
 148 }
 149 
 150 vdev_t *
 151 vdev_lookup_top(spa_t *spa, uint64_t vdev)
 152 {
 153         vdev_t *rvd = spa->spa_root_vdev;
 154 
 155         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
 156 
 157         if (vdev < rvd->vdev_children) {
 158                 ASSERT(rvd->vdev_child[vdev] != NULL);
 159                 return (rvd->vdev_child[vdev]);
 160         }
 161 
 162         return (NULL);
 163 }
 164 
 165 vdev_t *
 166 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
 167 {
 168         vdev_t *mvd;
 169 
 170         if (vd->vdev_guid == guid)
 171                 return (vd);
 172 
 173         for (int c = 0; c < vd->vdev_children; c++)
 174                 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
 175                     NULL)
 176                         return (mvd);
 177 
 178         return (NULL);
 179 }
 180 
 181 void
 182 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
 183 {
 184         size_t oldsize, newsize;
 185         uint64_t id = cvd->vdev_id;
 186         vdev_t **newchild;
 187 
 188         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
 189         ASSERT(cvd->vdev_parent == NULL);
 190 
 191         cvd->vdev_parent = pvd;
 192 
 193         if (pvd == NULL)
 194                 return;
 195 
 196         ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
 197 
 198         oldsize = pvd->vdev_children * sizeof (vdev_t *);
 199         pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
 200         newsize = pvd->vdev_children * sizeof (vdev_t *);
 201 
 202         newchild = kmem_zalloc(newsize, KM_SLEEP);
 203         if (pvd->vdev_child != NULL) {
 204                 bcopy(pvd->vdev_child, newchild, oldsize);
 205                 kmem_free(pvd->vdev_child, oldsize);
 206         }
 207 
 208         pvd->vdev_child = newchild;
 209         pvd->vdev_child[id] = cvd;
 210 
 211         cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
 212         ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
 213 
 214         /*
 215          * Walk up all ancestors to update guid sum.
 216          */
 217         for (; pvd != NULL; pvd = pvd->vdev_parent)
 218                 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
 219 }
 220 
 221 void
 222 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
 223 {
 224         int c;
 225         uint_t id = cvd->vdev_id;
 226 
 227         ASSERT(cvd->vdev_parent == pvd);
 228 
 229         if (pvd == NULL)
 230                 return;
 231 
 232         ASSERT(id < pvd->vdev_children);
 233         ASSERT(pvd->vdev_child[id] == cvd);
 234 
 235         pvd->vdev_child[id] = NULL;
 236         cvd->vdev_parent = NULL;
 237 
 238         for (c = 0; c < pvd->vdev_children; c++)
 239                 if (pvd->vdev_child[c])
 240                         break;
 241 
 242         if (c == pvd->vdev_children) {
 243                 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
 244                 pvd->vdev_child = NULL;
 245                 pvd->vdev_children = 0;
 246         }
 247 
 248         /*
 249          * Walk up all ancestors to update guid sum.
 250          */
 251         for (; pvd != NULL; pvd = pvd->vdev_parent)
 252                 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
 253 }
 254 
 255 /*
 256  * Remove any holes in the child array.
 257  */
 258 void
 259 vdev_compact_children(vdev_t *pvd)
 260 {
 261         vdev_t **newchild, *cvd;
 262         int oldc = pvd->vdev_children;
 263         int newc;
 264 
 265         ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
 266 
 267         for (int c = newc = 0; c < oldc; c++)
 268                 if (pvd->vdev_child[c])
 269                         newc++;
 270 
 271         newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
 272 
 273         for (int c = newc = 0; c < oldc; c++) {
 274                 if ((cvd = pvd->vdev_child[c]) != NULL) {
 275                         newchild[newc] = cvd;
 276                         cvd->vdev_id = newc++;
 277                 }
 278         }
 279 
 280         kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
 281         pvd->vdev_child = newchild;
 282         pvd->vdev_children = newc;
 283 }
 284 
 285 /*
 286  * Allocate and minimally initialize a vdev_t.
 287  */
 288 vdev_t *
 289 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
 290 {
 291         vdev_t *vd;
 292 
 293         vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
 294 
 295         if (spa->spa_root_vdev == NULL) {
 296                 ASSERT(ops == &vdev_root_ops);
 297                 spa->spa_root_vdev = vd;
 298                 spa->spa_load_guid = spa_generate_guid(NULL);
 299         }
 300 
 301         if (guid == 0 && ops != &vdev_hole_ops) {
 302                 if (spa->spa_root_vdev == vd) {
 303                         /*
 304                          * The root vdev's guid will also be the pool guid,
 305                          * which must be unique among all pools.
 306                          */
 307                         guid = spa_generate_guid(NULL);
 308                 } else {
 309                         /*
 310                          * Any other vdev's guid must be unique within the pool.
 311                          */
 312                         guid = spa_generate_guid(spa);
 313                 }
 314                 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
 315         }
 316 
 317         vd->vdev_spa = spa;
 318         vd->vdev_id = id;
 319         vd->vdev_guid = guid;
 320         vd->vdev_guid_sum = guid;
 321         vd->vdev_ops = ops;
 322         vd->vdev_state = VDEV_STATE_CLOSED;
 323         vd->vdev_ishole = (ops == &vdev_hole_ops);
 324 
 325         mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
 326         mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
 327         mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
 328         for (int t = 0; t < DTL_TYPES; t++) {
 329                 vd->vdev_dtl[t] = range_tree_create(NULL, NULL,
 330                     &vd->vdev_dtl_lock);
 331         }
 332         txg_list_create(&vd->vdev_ms_list,
 333             offsetof(struct metaslab, ms_txg_node));
 334         txg_list_create(&vd->vdev_dtl_list,
 335             offsetof(struct vdev, vdev_dtl_node));
 336         vd->vdev_stat.vs_timestamp = gethrtime();
 337         vdev_queue_init(vd);
 338         vdev_cache_init(vd);
 339 
 340         return (vd);
 341 }
 342 
 343 /*
 344  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
 345  * creating a new vdev or loading an existing one - the behavior is slightly
 346  * different for each case.
 347  */
 348 int
 349 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
 350     int alloctype)
 351 {
 352         vdev_ops_t *ops;
 353         char *type;
 354         uint64_t guid = 0, islog, nparity;
 355         vdev_t *vd;
 356 
 357         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
 358 
 359         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
 360                 return (SET_ERROR(EINVAL));
 361 
 362         if ((ops = vdev_getops(type)) == NULL)
 363                 return (SET_ERROR(EINVAL));
 364 
 365         /*
 366          * If this is a load, get the vdev guid from the nvlist.
 367          * Otherwise, vdev_alloc_common() will generate one for us.
 368          */
 369         if (alloctype == VDEV_ALLOC_LOAD) {
 370                 uint64_t label_id;
 371 
 372                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
 373                     label_id != id)
 374                         return (SET_ERROR(EINVAL));
 375 
 376                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
 377                         return (SET_ERROR(EINVAL));
 378         } else if (alloctype == VDEV_ALLOC_SPARE) {
 379                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
 380                         return (SET_ERROR(EINVAL));
 381         } else if (alloctype == VDEV_ALLOC_L2CACHE) {
 382                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
 383                         return (SET_ERROR(EINVAL));
 384         } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
 385                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
 386                         return (SET_ERROR(EINVAL));
 387         }
 388 
 389         /*
 390          * The first allocated vdev must be of type 'root'.
 391          */
 392         if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
 393                 return (SET_ERROR(EINVAL));
 394 
 395         /*
 396          * Determine whether we're a log vdev.
 397          */
 398         islog = 0;
 399         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
 400         if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
 401                 return (SET_ERROR(ENOTSUP));
 402 
 403         if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
 404                 return (SET_ERROR(ENOTSUP));
 405 
 406         /*
 407          * Set the nparity property for RAID-Z vdevs.
 408          */
 409         nparity = -1ULL;
 410         if (ops == &vdev_raidz_ops) {
 411                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
 412                     &nparity) == 0) {
 413                         if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
 414                                 return (SET_ERROR(EINVAL));
 415                         /*
 416                          * Previous versions could only support 1 or 2 parity
 417                          * device.
 418                          */
 419                         if (nparity > 1 &&
 420                             spa_version(spa) < SPA_VERSION_RAIDZ2)
 421                                 return (SET_ERROR(ENOTSUP));
 422                         if (nparity > 2 &&
 423                             spa_version(spa) < SPA_VERSION_RAIDZ3)
 424                                 return (SET_ERROR(ENOTSUP));
 425                 } else {
 426                         /*
 427                          * We require the parity to be specified for SPAs that
 428                          * support multiple parity levels.
 429                          */
 430                         if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
 431                                 return (SET_ERROR(EINVAL));
 432                         /*
 433                          * Otherwise, we default to 1 parity device for RAID-Z.
 434                          */
 435                         nparity = 1;
 436                 }
 437         } else {
 438                 nparity = 0;
 439         }
 440         ASSERT(nparity != -1ULL);
 441 
 442         vd = vdev_alloc_common(spa, id, guid, ops);
 443 
 444         vd->vdev_islog = islog;
 445         vd->vdev_nparity = nparity;
 446 
 447         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
 448                 vd->vdev_path = spa_strdup(vd->vdev_path);
 449         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
 450                 vd->vdev_devid = spa_strdup(vd->vdev_devid);
 451         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
 452             &vd->vdev_physpath) == 0)
 453                 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
 454         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
 455                 vd->vdev_fru = spa_strdup(vd->vdev_fru);
 456 
 457         /*
 458          * Set the whole_disk property.  If it's not specified, leave the value
 459          * as -1.
 460          */
 461         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
 462             &vd->vdev_wholedisk) != 0)
 463                 vd->vdev_wholedisk = -1ULL;
 464 
 465         /*
 466          * Look for the 'not present' flag.  This will only be set if the device
 467          * was not present at the time of import.
 468          */
 469         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
 470             &vd->vdev_not_present);
 471 
 472         /*
 473          * Get the alignment requirement.
 474          */
 475         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
 476 
 477         /*
 478          * Retrieve the vdev creation time.
 479          */
 480         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
 481             &vd->vdev_crtxg);
 482 
 483         /*
 484          * If we're a top-level vdev, try to load the allocation parameters.
 485          */
 486         if (parent && !parent->vdev_parent &&
 487             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
 488                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
 489                     &vd->vdev_ms_array);
 490                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
 491                     &vd->vdev_ms_shift);
 492                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
 493                     &vd->vdev_asize);
 494                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
 495                     &vd->vdev_removing);
 496         }
 497 
 498         if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
 499                 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
 500                     alloctype == VDEV_ALLOC_ADD ||
 501                     alloctype == VDEV_ALLOC_SPLIT ||
 502                     alloctype == VDEV_ALLOC_ROOTPOOL);
 503                 vd->vdev_mg = metaslab_group_create(islog ?
 504                     spa_log_class(spa) : spa_normal_class(spa), vd);
 505         }
 506 
 507         /*
 508          * If we're a leaf vdev, try to load the DTL object and other state.
 509          */
 510         if (vd->vdev_ops->vdev_op_leaf &&
 511             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
 512             alloctype == VDEV_ALLOC_ROOTPOOL)) {
 513                 if (alloctype == VDEV_ALLOC_LOAD) {
 514                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
 515                             &vd->vdev_dtl_object);
 516                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
 517                             &vd->vdev_unspare);
 518                 }
 519 
 520                 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
 521                         uint64_t spare = 0;
 522 
 523                         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
 524                             &spare) == 0 && spare)
 525                                 spa_spare_add(vd);
 526                 }
 527 
 528                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
 529                     &vd->vdev_offline);
 530 
 531                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
 532                     &vd->vdev_resilver_txg);
 533 
 534                 /*
 535                  * When importing a pool, we want to ignore the persistent fault
 536                  * state, as the diagnosis made on another system may not be
 537                  * valid in the current context.  Local vdevs will
 538                  * remain in the faulted state.
 539                  */
 540                 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
 541                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
 542                             &vd->vdev_faulted);
 543                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
 544                             &vd->vdev_degraded);
 545                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
 546                             &vd->vdev_removed);
 547 
 548                         if (vd->vdev_faulted || vd->vdev_degraded) {
 549                                 char *aux;
 550 
 551                                 vd->vdev_label_aux =
 552                                     VDEV_AUX_ERR_EXCEEDED;
 553                                 if (nvlist_lookup_string(nv,
 554                                     ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
 555                                     strcmp(aux, "external") == 0)
 556                                         vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
 557                         }
 558                 }
 559         }
 560 
 561         /*
 562          * Add ourselves to the parent's list of children.
 563          */
 564         vdev_add_child(parent, vd);
 565 
 566         *vdp = vd;
 567 
 568         return (0);
 569 }
 570 
 571 void
 572 vdev_free(vdev_t *vd)
 573 {
 574         spa_t *spa = vd->vdev_spa;
 575 
 576         /*
 577          * vdev_free() implies closing the vdev first.  This is simpler than
 578          * trying to ensure complicated semantics for all callers.
 579          */
 580         vdev_close(vd);
 581 
 582         ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
 583         ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
 584 
 585         /*
 586          * Free all children.
 587          */
 588         for (int c = 0; c < vd->vdev_children; c++)
 589                 vdev_free(vd->vdev_child[c]);
 590 
 591         ASSERT(vd->vdev_child == NULL);
 592         ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
 593 
 594         /*
 595          * Discard allocation state.
 596          */
 597         if (vd->vdev_mg != NULL) {
 598                 vdev_metaslab_fini(vd);
 599                 metaslab_group_destroy(vd->vdev_mg);
 600         }
 601 
 602         ASSERT0(vd->vdev_stat.vs_space);
 603         ASSERT0(vd->vdev_stat.vs_dspace);
 604         ASSERT0(vd->vdev_stat.vs_alloc);
 605 
 606         /*
 607          * Remove this vdev from its parent's child list.
 608          */
 609         vdev_remove_child(vd->vdev_parent, vd);
 610 
 611         ASSERT(vd->vdev_parent == NULL);
 612 
 613         /*
 614          * Clean up vdev structure.
 615          */
 616         vdev_queue_fini(vd);
 617         vdev_cache_fini(vd);
 618 
 619         if (vd->vdev_path)
 620                 spa_strfree(vd->vdev_path);
 621         if (vd->vdev_devid)
 622                 spa_strfree(vd->vdev_devid);
 623         if (vd->vdev_physpath)
 624                 spa_strfree(vd->vdev_physpath);
 625         if (vd->vdev_fru)
 626                 spa_strfree(vd->vdev_fru);
 627 
 628         if (vd->vdev_isspare)
 629                 spa_spare_remove(vd);
 630         if (vd->vdev_isl2cache)
 631                 spa_l2cache_remove(vd);
 632 
 633         txg_list_destroy(&vd->vdev_ms_list);
 634         txg_list_destroy(&vd->vdev_dtl_list);
 635 
 636         mutex_enter(&vd->vdev_dtl_lock);
 637         space_map_close(vd->vdev_dtl_sm);
 638         for (int t = 0; t < DTL_TYPES; t++) {
 639                 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
 640                 range_tree_destroy(vd->vdev_dtl[t]);
 641         }
 642         mutex_exit(&vd->vdev_dtl_lock);
 643 
 644         mutex_destroy(&vd->vdev_dtl_lock);
 645         mutex_destroy(&vd->vdev_stat_lock);
 646         mutex_destroy(&vd->vdev_probe_lock);
 647 
 648         if (vd == spa->spa_root_vdev)
 649                 spa->spa_root_vdev = NULL;
 650 
 651         kmem_free(vd, sizeof (vdev_t));
 652 }
 653 
 654 /*
 655  * Transfer top-level vdev state from svd to tvd.
 656  */
 657 static void
 658 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
 659 {
 660         spa_t *spa = svd->vdev_spa;
 661         metaslab_t *msp;
 662         vdev_t *vd;
 663         int t;
 664 
 665         ASSERT(tvd == tvd->vdev_top);
 666 
 667         tvd->vdev_ms_array = svd->vdev_ms_array;
 668         tvd->vdev_ms_shift = svd->vdev_ms_shift;
 669         tvd->vdev_ms_count = svd->vdev_ms_count;
 670 
 671         svd->vdev_ms_array = 0;
 672         svd->vdev_ms_shift = 0;
 673         svd->vdev_ms_count = 0;
 674 
 675         if (tvd->vdev_mg)
 676                 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
 677         tvd->vdev_mg = svd->vdev_mg;
 678         tvd->vdev_ms = svd->vdev_ms;
 679 
 680         svd->vdev_mg = NULL;
 681         svd->vdev_ms = NULL;
 682 
 683         if (tvd->vdev_mg != NULL)
 684                 tvd->vdev_mg->mg_vd = tvd;
 685 
 686         tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
 687         tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
 688         tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
 689 
 690         svd->vdev_stat.vs_alloc = 0;
 691         svd->vdev_stat.vs_space = 0;
 692         svd->vdev_stat.vs_dspace = 0;
 693 
 694         for (t = 0; t < TXG_SIZE; t++) {
 695                 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
 696                         (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
 697                 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
 698                         (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
 699                 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
 700                         (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
 701         }
 702 
 703         if (list_link_active(&svd->vdev_config_dirty_node)) {
 704                 vdev_config_clean(svd);
 705                 vdev_config_dirty(tvd);
 706         }
 707 
 708         if (list_link_active(&svd->vdev_state_dirty_node)) {
 709                 vdev_state_clean(svd);
 710                 vdev_state_dirty(tvd);
 711         }
 712 
 713         tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
 714         svd->vdev_deflate_ratio = 0;
 715 
 716         tvd->vdev_islog = svd->vdev_islog;
 717         svd->vdev_islog = 0;
 718 }
 719 
 720 static void
 721 vdev_top_update(vdev_t *tvd, vdev_t *vd)
 722 {
 723         if (vd == NULL)
 724                 return;
 725 
 726         vd->vdev_top = tvd;
 727 
 728         for (int c = 0; c < vd->vdev_children; c++)
 729                 vdev_top_update(tvd, vd->vdev_child[c]);
 730 }
 731 
 732 /*
 733  * Add a mirror/replacing vdev above an existing vdev.
 734  */
 735 vdev_t *
 736 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
 737 {
 738         spa_t *spa = cvd->vdev_spa;
 739         vdev_t *pvd = cvd->vdev_parent;
 740         vdev_t *mvd;
 741 
 742         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
 743 
 744         mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
 745 
 746         mvd->vdev_asize = cvd->vdev_asize;
 747         mvd->vdev_min_asize = cvd->vdev_min_asize;
 748         mvd->vdev_max_asize = cvd->vdev_max_asize;
 749         mvd->vdev_ashift = cvd->vdev_ashift;
 750         mvd->vdev_state = cvd->vdev_state;
 751         mvd->vdev_crtxg = cvd->vdev_crtxg;
 752 
 753         vdev_remove_child(pvd, cvd);
 754         vdev_add_child(pvd, mvd);
 755         cvd->vdev_id = mvd->vdev_children;
 756         vdev_add_child(mvd, cvd);
 757         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
 758 
 759         if (mvd == mvd->vdev_top)
 760                 vdev_top_transfer(cvd, mvd);
 761 
 762         return (mvd);
 763 }
 764 
 765 /*
 766  * Remove a 1-way mirror/replacing vdev from the tree.
 767  */
 768 void
 769 vdev_remove_parent(vdev_t *cvd)
 770 {
 771         vdev_t *mvd = cvd->vdev_parent;
 772         vdev_t *pvd = mvd->vdev_parent;
 773 
 774         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
 775 
 776         ASSERT(mvd->vdev_children == 1);
 777         ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
 778             mvd->vdev_ops == &vdev_replacing_ops ||
 779             mvd->vdev_ops == &vdev_spare_ops);
 780         cvd->vdev_ashift = mvd->vdev_ashift;
 781 
 782         vdev_remove_child(mvd, cvd);
 783         vdev_remove_child(pvd, mvd);
 784 
 785         /*
 786          * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
 787          * Otherwise, we could have detached an offline device, and when we
 788          * go to import the pool we'll think we have two top-level vdevs,
 789          * instead of a different version of the same top-level vdev.
 790          */
 791         if (mvd->vdev_top == mvd) {
 792                 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
 793                 cvd->vdev_orig_guid = cvd->vdev_guid;
 794                 cvd->vdev_guid += guid_delta;
 795                 cvd->vdev_guid_sum += guid_delta;
 796         }
 797         cvd->vdev_id = mvd->vdev_id;
 798         vdev_add_child(pvd, cvd);
 799         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
 800 
 801         if (cvd == cvd->vdev_top)
 802                 vdev_top_transfer(mvd, cvd);
 803 
 804         ASSERT(mvd->vdev_children == 0);
 805         vdev_free(mvd);
 806 }
 807 
 808 int
 809 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
 810 {
 811         spa_t *spa = vd->vdev_spa;
 812         objset_t *mos = spa->spa_meta_objset;
 813         uint64_t m;
 814         uint64_t oldc = vd->vdev_ms_count;
 815         uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
 816         metaslab_t **mspp;
 817         int error;
 818 
 819         ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
 820 
 821         /*
 822          * This vdev is not being allocated from yet or is a hole.
 823          */
 824         if (vd->vdev_ms_shift == 0)
 825                 return (0);
 826 
 827         ASSERT(!vd->vdev_ishole);
 828 
 829         /*
 830          * Compute the raidz-deflation ratio.  Note, we hard-code
 831          * in 128k (1 << 17) because it is the "typical" blocksize.
 832          * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
 833          * otherwise it would inconsistently account for existing bp's.
 834          */
 835         vd->vdev_deflate_ratio = (1 << 17) /
 836             (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
 837 
 838         ASSERT(oldc <= newc);
 839 
 840         mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
 841 
 842         if (oldc != 0) {
 843                 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
 844                 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
 845         }
 846 
 847         vd->vdev_ms = mspp;
 848         vd->vdev_ms_count = newc;
 849 
 850         for (m = oldc; m < newc; m++) {
 851                 uint64_t object = 0;
 852 
 853                 if (txg == 0) {
 854                         error = dmu_read(mos, vd->vdev_ms_array,
 855                             m * sizeof (uint64_t), sizeof (uint64_t), &object,
 856                             DMU_READ_PREFETCH);
 857                         if (error)
 858                                 return (error);
 859                 }
 860 
 861                 error = metaslab_init(vd->vdev_mg, m, object, txg,
 862                     &(vd->vdev_ms[m]));
 863                 if (error)
 864                         return (error);
 865         }
 866 
 867         if (txg == 0)
 868                 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
 869 
 870         /*
 871          * If the vdev is being removed we don't activate
 872          * the metaslabs since we want to ensure that no new
 873          * allocations are performed on this device.
 874          */
 875         if (oldc == 0 && !vd->vdev_removing)
 876                 metaslab_group_activate(vd->vdev_mg);
 877 
 878         if (txg == 0)
 879                 spa_config_exit(spa, SCL_ALLOC, FTAG);
 880 
 881         return (0);
 882 }
 883 
 884 void
 885 vdev_metaslab_fini(vdev_t *vd)
 886 {
 887         uint64_t m;
 888         uint64_t count = vd->vdev_ms_count;
 889 
 890         if (vd->vdev_ms != NULL) {
 891                 metaslab_group_passivate(vd->vdev_mg);
 892                 for (m = 0; m < count; m++) {
 893                         metaslab_t *msp = vd->vdev_ms[m];
 894 
 895                         if (msp != NULL)
 896                                 metaslab_fini(msp);
 897                 }
 898                 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
 899                 vd->vdev_ms = NULL;
 900         }
 901 }
 902 
 903 typedef struct vdev_probe_stats {
 904         boolean_t       vps_readable;
 905         boolean_t       vps_writeable;
 906         int             vps_flags;
 907 } vdev_probe_stats_t;
 908 
 909 static void
 910 vdev_probe_done(zio_t *zio)
 911 {
 912         spa_t *spa = zio->io_spa;
 913         vdev_t *vd = zio->io_vd;
 914         vdev_probe_stats_t *vps = zio->io_private;
 915 
 916         ASSERT(vd->vdev_probe_zio != NULL);
 917 
 918         if (zio->io_type == ZIO_TYPE_READ) {
 919                 if (zio->io_error == 0)
 920                         vps->vps_readable = 1;
 921                 if (zio->io_error == 0 && spa_writeable(spa)) {
 922                         zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
 923                             zio->io_offset, zio->io_size, zio->io_data,
 924                             ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
 925                             ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
 926                 } else {
 927                         zio_buf_free(zio->io_data, zio->io_size);
 928                 }
 929         } else if (zio->io_type == ZIO_TYPE_WRITE) {
 930                 if (zio->io_error == 0)
 931                         vps->vps_writeable = 1;
 932                 zio_buf_free(zio->io_data, zio->io_size);
 933         } else if (zio->io_type == ZIO_TYPE_NULL) {
 934                 zio_t *pio;
 935 
 936                 vd->vdev_cant_read |= !vps->vps_readable;
 937                 vd->vdev_cant_write |= !vps->vps_writeable;
 938 
 939                 if (vdev_readable(vd) &&
 940                     (vdev_writeable(vd) || !spa_writeable(spa))) {
 941                         zio->io_error = 0;
 942                 } else {
 943                         ASSERT(zio->io_error != 0);
 944                         zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
 945                             spa, vd, NULL, 0, 0);
 946                         zio->io_error = SET_ERROR(ENXIO);
 947                 }
 948 
 949                 mutex_enter(&vd->vdev_probe_lock);
 950                 ASSERT(vd->vdev_probe_zio == zio);
 951                 vd->vdev_probe_zio = NULL;
 952                 mutex_exit(&vd->vdev_probe_lock);
 953 
 954                 while ((pio = zio_walk_parents(zio)) != NULL)
 955                         if (!vdev_accessible(vd, pio))
 956                                 pio->io_error = SET_ERROR(ENXIO);
 957 
 958                 kmem_free(vps, sizeof (*vps));
 959         }
 960 }
 961 
 962 /*
 963  * Determine whether this device is accessible.
 964  *
 965  * Read and write to several known locations: the pad regions of each
 966  * vdev label but the first, which we leave alone in case it contains
 967  * a VTOC.
 968  */
 969 zio_t *
 970 vdev_probe(vdev_t *vd, zio_t *zio)
 971 {
 972         spa_t *spa = vd->vdev_spa;
 973         vdev_probe_stats_t *vps = NULL;
 974         zio_t *pio;
 975 
 976         ASSERT(vd->vdev_ops->vdev_op_leaf);
 977 
 978         /*
 979          * Don't probe the probe.
 980          */
 981         if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
 982                 return (NULL);
 983 
 984         /*
 985          * To prevent 'probe storms' when a device fails, we create
 986          * just one probe i/o at a time.  All zios that want to probe
 987          * this vdev will become parents of the probe io.
 988          */
 989         mutex_enter(&vd->vdev_probe_lock);
 990 
 991         if ((pio = vd->vdev_probe_zio) == NULL) {
 992                 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
 993 
 994                 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
 995                     ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
 996                     ZIO_FLAG_TRYHARD;
 997 
 998                 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
 999                         /*
1000                          * vdev_cant_read and vdev_cant_write can only
1001                          * transition from TRUE to FALSE when we have the
1002                          * SCL_ZIO lock as writer; otherwise they can only
1003                          * transition from FALSE to TRUE.  This ensures that
1004                          * any zio looking at these values can assume that
1005                          * failures persist for the life of the I/O.  That's
1006                          * important because when a device has intermittent
1007                          * connectivity problems, we want to ensure that
1008                          * they're ascribed to the device (ENXIO) and not
1009                          * the zio (EIO).
1010                          *
1011                          * Since we hold SCL_ZIO as writer here, clear both
1012                          * values so the probe can reevaluate from first
1013                          * principles.
1014                          */
1015                         vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1016                         vd->vdev_cant_read = B_FALSE;
1017                         vd->vdev_cant_write = B_FALSE;
1018                 }
1019 
1020                 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1021                     vdev_probe_done, vps,
1022                     vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1023 
1024                 /*
1025                  * We can't change the vdev state in this context, so we
1026                  * kick off an async task to do it on our behalf.
1027                  */
1028                 if (zio != NULL) {
1029                         vd->vdev_probe_wanted = B_TRUE;
1030                         spa_async_request(spa, SPA_ASYNC_PROBE);
1031                 }
1032         }
1033 
1034         if (zio != NULL)
1035                 zio_add_child(zio, pio);
1036 
1037         mutex_exit(&vd->vdev_probe_lock);
1038 
1039         if (vps == NULL) {
1040                 ASSERT(zio != NULL);
1041                 return (NULL);
1042         }
1043 
1044         for (int l = 1; l < VDEV_LABELS; l++) {
1045                 zio_nowait(zio_read_phys(pio, vd,
1046                     vdev_label_offset(vd->vdev_psize, l,
1047                     offsetof(vdev_label_t, vl_pad2)),
1048                     VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1049                     ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1050                     ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1051         }
1052 
1053         if (zio == NULL)
1054                 return (pio);
1055 
1056         zio_nowait(pio);
1057         return (NULL);
1058 }
1059 
1060 static void
1061 vdev_open_child(void *arg)
1062 {
1063         vdev_t *vd = arg;
1064 
1065         vd->vdev_open_thread = curthread;
1066         vd->vdev_open_error = vdev_open(vd);
1067         vd->vdev_open_thread = NULL;
1068 }
1069 
1070 boolean_t
1071 vdev_uses_zvols(vdev_t *vd)
1072 {
1073         if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1074             strlen(ZVOL_DIR)) == 0)
1075                 return (B_TRUE);
1076         for (int c = 0; c < vd->vdev_children; c++)
1077                 if (vdev_uses_zvols(vd->vdev_child[c]))
1078                         return (B_TRUE);
1079         return (B_FALSE);
1080 }
1081 
1082 void
1083 vdev_open_children(vdev_t *vd)
1084 {
1085         taskq_t *tq;
1086         int children = vd->vdev_children;
1087 
1088         /*
1089          * in order to handle pools on top of zvols, do the opens
1090          * in a single thread so that the same thread holds the
1091          * spa_namespace_lock
1092          */
1093         if (vdev_uses_zvols(vd)) {
1094                 for (int c = 0; c < children; c++)
1095                         vd->vdev_child[c]->vdev_open_error =
1096                             vdev_open(vd->vdev_child[c]);
1097                 return;
1098         }
1099         tq = taskq_create("vdev_open", children, minclsyspri,
1100             children, children, TASKQ_PREPOPULATE);
1101 
1102         for (int c = 0; c < children; c++)
1103                 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1104                     TQ_SLEEP) != NULL);
1105 
1106         taskq_destroy(tq);
1107 }
1108 
1109 /*
1110  * Prepare a virtual device for access.
1111  */
1112 int
1113 vdev_open(vdev_t *vd)
1114 {
1115         spa_t *spa = vd->vdev_spa;
1116         int error;
1117         uint64_t osize = 0;
1118         uint64_t max_osize = 0;
1119         uint64_t asize, max_asize, psize;
1120         uint64_t ashift = 0;
1121 
1122         ASSERT(vd->vdev_open_thread == curthread ||
1123             spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1124         ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1125             vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1126             vd->vdev_state == VDEV_STATE_OFFLINE);
1127 
1128         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1129         vd->vdev_cant_read = B_FALSE;
1130         vd->vdev_cant_write = B_FALSE;
1131         vd->vdev_min_asize = vdev_get_min_asize(vd);
1132 
1133         /*
1134          * If this vdev is not removed, check its fault status.  If it's
1135          * faulted, bail out of the open.
1136          */
1137         if (!vd->vdev_removed && vd->vdev_faulted) {
1138                 ASSERT(vd->vdev_children == 0);
1139                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1140                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1141                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1142                     vd->vdev_label_aux);
1143                 return (SET_ERROR(ENXIO));
1144         } else if (vd->vdev_offline) {
1145                 ASSERT(vd->vdev_children == 0);
1146                 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1147                 return (SET_ERROR(ENXIO));
1148         }
1149 
1150         error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1151 
1152         /*
1153          * Reset the vdev_reopening flag so that we actually close
1154          * the vdev on error.
1155          */
1156         vd->vdev_reopening = B_FALSE;
1157         if (zio_injection_enabled && error == 0)
1158                 error = zio_handle_device_injection(vd, NULL, ENXIO);
1159 
1160         if (error) {
1161                 if (vd->vdev_removed &&
1162                     vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1163                         vd->vdev_removed = B_FALSE;
1164 
1165                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1166                     vd->vdev_stat.vs_aux);
1167                 return (error);
1168         }
1169 
1170         vd->vdev_removed = B_FALSE;
1171 
1172         /*
1173          * Recheck the faulted flag now that we have confirmed that
1174          * the vdev is accessible.  If we're faulted, bail.
1175          */
1176         if (vd->vdev_faulted) {
1177                 ASSERT(vd->vdev_children == 0);
1178                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1179                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1180                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1181                     vd->vdev_label_aux);
1182                 return (SET_ERROR(ENXIO));
1183         }
1184 
1185         if (vd->vdev_degraded) {
1186                 ASSERT(vd->vdev_children == 0);
1187                 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1188                     VDEV_AUX_ERR_EXCEEDED);
1189         } else {
1190                 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1191         }
1192 
1193         /*
1194          * For hole or missing vdevs we just return success.
1195          */
1196         if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1197                 return (0);
1198 
1199         for (int c = 0; c < vd->vdev_children; c++) {
1200                 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1201                         vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1202                             VDEV_AUX_NONE);
1203                         break;
1204                 }
1205         }
1206 
1207         osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1208         max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1209 
1210         if (vd->vdev_children == 0) {
1211                 if (osize < SPA_MINDEVSIZE) {
1212                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1213                             VDEV_AUX_TOO_SMALL);
1214                         return (SET_ERROR(EOVERFLOW));
1215                 }
1216                 psize = osize;
1217                 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1218                 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1219                     VDEV_LABEL_END_SIZE);
1220         } else {
1221                 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1222                     (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1223                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1224                             VDEV_AUX_TOO_SMALL);
1225                         return (SET_ERROR(EOVERFLOW));
1226                 }
1227                 psize = 0;
1228                 asize = osize;
1229                 max_asize = max_osize;
1230         }
1231 
1232         vd->vdev_psize = psize;
1233 
1234         /*
1235          * Make sure the allocatable size hasn't shrunk.
1236          */
1237         if (asize < vd->vdev_min_asize) {
1238                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1239                     VDEV_AUX_BAD_LABEL);
1240                 return (SET_ERROR(EINVAL));
1241         }
1242 
1243         if (vd->vdev_asize == 0) {
1244                 /*
1245                  * This is the first-ever open, so use the computed values.
1246                  * For testing purposes, a higher ashift can be requested.
1247                  */
1248                 vd->vdev_asize = asize;
1249                 vd->vdev_max_asize = max_asize;
1250                 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1251         } else {
1252                 /*
1253                  * Detect if the alignment requirement has increased.
1254                  * We don't want to make the pool unavailable, just
1255                  * issue a warning instead.
1256                  */
1257                 if (ashift > vd->vdev_top->vdev_ashift &&
1258                     vd->vdev_ops->vdev_op_leaf) {
1259                         cmn_err(CE_WARN,
1260                             "Disk, '%s', has a block alignment that is "
1261                             "larger than the pool's alignment\n",
1262                             vd->vdev_path);
1263                 }
1264                 vd->vdev_max_asize = max_asize;
1265         }
1266 
1267         /*
1268          * If all children are healthy and the asize has increased,
1269          * then we've experienced dynamic LUN growth.  If automatic
1270          * expansion is enabled then use the additional space.
1271          */
1272         if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1273             (vd->vdev_expanding || spa->spa_autoexpand))
1274                 vd->vdev_asize = asize;
1275 
1276         vdev_set_min_asize(vd);
1277 
1278         /*
1279          * Ensure we can issue some IO before declaring the
1280          * vdev open for business.
1281          */
1282         if (vd->vdev_ops->vdev_op_leaf &&
1283             (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1284                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1285                     VDEV_AUX_ERR_EXCEEDED);
1286                 return (error);
1287         }
1288 
1289         /*
1290          * If a leaf vdev has a DTL, and seems healthy, then kick off a
1291          * resilver.  But don't do this if we are doing a reopen for a scrub,
1292          * since this would just restart the scrub we are already doing.
1293          */
1294         if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1295             vdev_resilver_needed(vd, NULL, NULL))
1296                 spa_async_request(spa, SPA_ASYNC_RESILVER);
1297 
1298         return (0);
1299 }
1300 
1301 /*
1302  * Called once the vdevs are all opened, this routine validates the label
1303  * contents.  This needs to be done before vdev_load() so that we don't
1304  * inadvertently do repair I/Os to the wrong device.
1305  *
1306  * If 'strict' is false ignore the spa guid check. This is necessary because
1307  * if the machine crashed during a re-guid the new guid might have been written
1308  * to all of the vdev labels, but not the cached config. The strict check
1309  * will be performed when the pool is opened again using the mos config.
1310  *
1311  * This function will only return failure if one of the vdevs indicates that it
1312  * has since been destroyed or exported.  This is only possible if
1313  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1314  * will be updated but the function will return 0.
1315  */
1316 int
1317 vdev_validate(vdev_t *vd, boolean_t strict)
1318 {
1319         spa_t *spa = vd->vdev_spa;
1320         nvlist_t *label;
1321         uint64_t guid = 0, top_guid;
1322         uint64_t state;
1323 
1324         for (int c = 0; c < vd->vdev_children; c++)
1325                 if (vdev_validate(vd->vdev_child[c], strict) != 0)
1326                         return (SET_ERROR(EBADF));
1327 
1328         /*
1329          * If the device has already failed, or was marked offline, don't do
1330          * any further validation.  Otherwise, label I/O will fail and we will
1331          * overwrite the previous state.
1332          */
1333         if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1334                 uint64_t aux_guid = 0;
1335                 nvlist_t *nvl;
1336                 uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1337                     spa_last_synced_txg(spa) : -1ULL;
1338 
1339                 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1340                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1341                             VDEV_AUX_BAD_LABEL);
1342                         return (0);
1343                 }
1344 
1345                 /*
1346                  * Determine if this vdev has been split off into another
1347                  * pool.  If so, then refuse to open it.
1348                  */
1349                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1350                     &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1351                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1352                             VDEV_AUX_SPLIT_POOL);
1353                         nvlist_free(label);
1354                         return (0);
1355                 }
1356 
1357                 if (strict && (nvlist_lookup_uint64(label,
1358                     ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1359                     guid != spa_guid(spa))) {
1360                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1361                             VDEV_AUX_CORRUPT_DATA);
1362                         nvlist_free(label);
1363                         return (0);
1364                 }
1365 
1366                 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1367                     != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1368                     &aux_guid) != 0)
1369                         aux_guid = 0;
1370 
1371                 /*
1372                  * If this vdev just became a top-level vdev because its
1373                  * sibling was detached, it will have adopted the parent's
1374                  * vdev guid -- but the label may or may not be on disk yet.
1375                  * Fortunately, either version of the label will have the
1376                  * same top guid, so if we're a top-level vdev, we can
1377                  * safely compare to that instead.
1378                  *
1379                  * If we split this vdev off instead, then we also check the
1380                  * original pool's guid.  We don't want to consider the vdev
1381                  * corrupt if it is partway through a split operation.
1382                  */
1383                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1384                     &guid) != 0 ||
1385                     nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1386                     &top_guid) != 0 ||
1387                     ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1388                     (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1389                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1390                             VDEV_AUX_CORRUPT_DATA);
1391                         nvlist_free(label);
1392                         return (0);
1393                 }
1394 
1395                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1396                     &state) != 0) {
1397                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1398                             VDEV_AUX_CORRUPT_DATA);
1399                         nvlist_free(label);
1400                         return (0);
1401                 }
1402 
1403                 nvlist_free(label);
1404 
1405                 /*
1406                  * If this is a verbatim import, no need to check the
1407                  * state of the pool.
1408                  */
1409                 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1410                     spa_load_state(spa) == SPA_LOAD_OPEN &&
1411                     state != POOL_STATE_ACTIVE)
1412                         return (SET_ERROR(EBADF));
1413 
1414                 /*
1415                  * If we were able to open and validate a vdev that was
1416                  * previously marked permanently unavailable, clear that state
1417                  * now.
1418                  */
1419                 if (vd->vdev_not_present)
1420                         vd->vdev_not_present = 0;
1421         }
1422 
1423         return (0);
1424 }
1425 
1426 /*
1427  * Close a virtual device.
1428  */
1429 void
1430 vdev_close(vdev_t *vd)
1431 {
1432         spa_t *spa = vd->vdev_spa;
1433         vdev_t *pvd = vd->vdev_parent;
1434 
1435         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1436 
1437         /*
1438          * If our parent is reopening, then we are as well, unless we are
1439          * going offline.
1440          */
1441         if (pvd != NULL && pvd->vdev_reopening)
1442                 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1443 
1444         vd->vdev_ops->vdev_op_close(vd);
1445 
1446         vdev_cache_purge(vd);
1447 
1448         /*
1449          * We record the previous state before we close it, so that if we are
1450          * doing a reopen(), we don't generate FMA ereports if we notice that
1451          * it's still faulted.
1452          */
1453         vd->vdev_prevstate = vd->vdev_state;
1454 
1455         if (vd->vdev_offline)
1456                 vd->vdev_state = VDEV_STATE_OFFLINE;
1457         else
1458                 vd->vdev_state = VDEV_STATE_CLOSED;
1459         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1460 }
1461 
1462 void
1463 vdev_hold(vdev_t *vd)
1464 {
1465         spa_t *spa = vd->vdev_spa;
1466 
1467         ASSERT(spa_is_root(spa));
1468         if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1469                 return;
1470 
1471         for (int c = 0; c < vd->vdev_children; c++)
1472                 vdev_hold(vd->vdev_child[c]);
1473 
1474         if (vd->vdev_ops->vdev_op_leaf)
1475                 vd->vdev_ops->vdev_op_hold(vd);
1476 }
1477 
1478 void
1479 vdev_rele(vdev_t *vd)
1480 {
1481         spa_t *spa = vd->vdev_spa;
1482 
1483         ASSERT(spa_is_root(spa));
1484         for (int c = 0; c < vd->vdev_children; c++)
1485                 vdev_rele(vd->vdev_child[c]);
1486 
1487         if (vd->vdev_ops->vdev_op_leaf)
1488                 vd->vdev_ops->vdev_op_rele(vd);
1489 }
1490 
1491 /*
1492  * Reopen all interior vdevs and any unopened leaves.  We don't actually
1493  * reopen leaf vdevs which had previously been opened as they might deadlock
1494  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1495  * If the leaf has never been opened then open it, as usual.
1496  */
1497 void
1498 vdev_reopen(vdev_t *vd)
1499 {
1500         spa_t *spa = vd->vdev_spa;
1501 
1502         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1503 
1504         /* set the reopening flag unless we're taking the vdev offline */
1505         vd->vdev_reopening = !vd->vdev_offline;
1506         vdev_close(vd);
1507         (void) vdev_open(vd);
1508 
1509         /*
1510          * Call vdev_validate() here to make sure we have the same device.
1511          * Otherwise, a device with an invalid label could be successfully
1512          * opened in response to vdev_reopen().
1513          */
1514         if (vd->vdev_aux) {
1515                 (void) vdev_validate_aux(vd);
1516                 if (vdev_readable(vd) && vdev_writeable(vd) &&
1517                     vd->vdev_aux == &spa->spa_l2cache &&
1518                     !l2arc_vdev_present(vd))
1519                         l2arc_add_vdev(spa, vd);
1520         } else {
1521                 (void) vdev_validate(vd, B_TRUE);
1522         }
1523 
1524         /*
1525          * Reassess parent vdev's health.
1526          */
1527         vdev_propagate_state(vd);
1528 }
1529 
1530 int
1531 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1532 {
1533         int error;
1534 
1535         /*
1536          * Normally, partial opens (e.g. of a mirror) are allowed.
1537          * For a create, however, we want to fail the request if
1538          * there are any components we can't open.
1539          */
1540         error = vdev_open(vd);
1541 
1542         if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1543                 vdev_close(vd);
1544                 return (error ? error : ENXIO);
1545         }
1546 
1547         /*
1548          * Recursively load DTLs and initialize all labels.
1549          */
1550         if ((error = vdev_dtl_load(vd)) != 0 ||
1551             (error = vdev_label_init(vd, txg, isreplacing ?
1552             VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1553                 vdev_close(vd);
1554                 return (error);
1555         }
1556 
1557         return (0);
1558 }
1559 
1560 void
1561 vdev_metaslab_set_size(vdev_t *vd)
1562 {
1563         /*
1564          * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev.
1565          */
1566         vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev);
1567         vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1568 }
1569 
1570 void
1571 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1572 {
1573         ASSERT(vd == vd->vdev_top);
1574         ASSERT(!vd->vdev_ishole);
1575         ASSERT(ISP2(flags));
1576         ASSERT(spa_writeable(vd->vdev_spa));
1577 
1578         if (flags & VDD_METASLAB)
1579                 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1580 
1581         if (flags & VDD_DTL)
1582                 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1583 
1584         (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1585 }
1586 
1587 void
1588 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
1589 {
1590         for (int c = 0; c < vd->vdev_children; c++)
1591                 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
1592 
1593         if (vd->vdev_ops->vdev_op_leaf)
1594                 vdev_dirty(vd->vdev_top, flags, vd, txg);
1595 }
1596 
1597 /*
1598  * DTLs.
1599  *
1600  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1601  * the vdev has less than perfect replication.  There are four kinds of DTL:
1602  *
1603  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1604  *
1605  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1606  *
1607  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1608  *      scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1609  *      txgs that was scrubbed.
1610  *
1611  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1612  *      persistent errors or just some device being offline.
1613  *      Unlike the other three, the DTL_OUTAGE map is not generally
1614  *      maintained; it's only computed when needed, typically to
1615  *      determine whether a device can be detached.
1616  *
1617  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1618  * either has the data or it doesn't.
1619  *
1620  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1621  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1622  * if any child is less than fully replicated, then so is its parent.
1623  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1624  * comprising only those txgs which appear in 'maxfaults' or more children;
1625  * those are the txgs we don't have enough replication to read.  For example,
1626  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1627  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1628  * two child DTL_MISSING maps.
1629  *
1630  * It should be clear from the above that to compute the DTLs and outage maps
1631  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1632  * Therefore, that is all we keep on disk.  When loading the pool, or after
1633  * a configuration change, we generate all other DTLs from first principles.
1634  */
1635 void
1636 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1637 {
1638         range_tree_t *rt = vd->vdev_dtl[t];
1639 
1640         ASSERT(t < DTL_TYPES);
1641         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1642         ASSERT(spa_writeable(vd->vdev_spa));
1643 
1644         mutex_enter(rt->rt_lock);
1645         if (!range_tree_contains(rt, txg, size))
1646                 range_tree_add(rt, txg, size);
1647         mutex_exit(rt->rt_lock);
1648 }
1649 
1650 boolean_t
1651 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1652 {
1653         range_tree_t *rt = vd->vdev_dtl[t];
1654         boolean_t dirty = B_FALSE;
1655 
1656         ASSERT(t < DTL_TYPES);
1657         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1658 
1659         mutex_enter(rt->rt_lock);
1660         if (range_tree_space(rt) != 0)
1661                 dirty = range_tree_contains(rt, txg, size);
1662         mutex_exit(rt->rt_lock);
1663 
1664         return (dirty);
1665 }
1666 
1667 boolean_t
1668 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1669 {
1670         range_tree_t *rt = vd->vdev_dtl[t];
1671         boolean_t empty;
1672 
1673         mutex_enter(rt->rt_lock);
1674         empty = (range_tree_space(rt) == 0);
1675         mutex_exit(rt->rt_lock);
1676 
1677         return (empty);
1678 }
1679 
1680 /*
1681  * Returns the lowest txg in the DTL range.
1682  */
1683 static uint64_t
1684 vdev_dtl_min(vdev_t *vd)
1685 {
1686         range_seg_t *rs;
1687 
1688         ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1689         ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1690         ASSERT0(vd->vdev_children);
1691 
1692         rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1693         return (rs->rs_start - 1);
1694 }
1695 
1696 /*
1697  * Returns the highest txg in the DTL.
1698  */
1699 static uint64_t
1700 vdev_dtl_max(vdev_t *vd)
1701 {
1702         range_seg_t *rs;
1703 
1704         ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1705         ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1706         ASSERT0(vd->vdev_children);
1707 
1708         rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1709         return (rs->rs_end);
1710 }
1711 
1712 /*
1713  * Determine if a resilvering vdev should remove any DTL entries from
1714  * its range. If the vdev was resilvering for the entire duration of the
1715  * scan then it should excise that range from its DTLs. Otherwise, this
1716  * vdev is considered partially resilvered and should leave its DTL
1717  * entries intact. The comment in vdev_dtl_reassess() describes how we
1718  * excise the DTLs.
1719  */
1720 static boolean_t
1721 vdev_dtl_should_excise(vdev_t *vd)
1722 {
1723         spa_t *spa = vd->vdev_spa;
1724         dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1725 
1726         ASSERT0(scn->scn_phys.scn_errors);
1727         ASSERT0(vd->vdev_children);
1728 
1729         if (vd->vdev_resilver_txg == 0 ||
1730             range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0)
1731                 return (B_TRUE);
1732 
1733         /*
1734          * When a resilver is initiated the scan will assign the scn_max_txg
1735          * value to the highest txg value that exists in all DTLs. If this
1736          * device's max DTL is not part of this scan (i.e. it is not in
1737          * the range (scn_min_txg, scn_max_txg] then it is not eligible
1738          * for excision.
1739          */
1740         if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
1741                 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
1742                 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
1743                 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
1744                 return (B_TRUE);
1745         }
1746         return (B_FALSE);
1747 }
1748 
1749 /*
1750  * Reassess DTLs after a config change or scrub completion.
1751  */
1752 void
1753 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1754 {
1755         spa_t *spa = vd->vdev_spa;
1756         avl_tree_t reftree;
1757         int minref;
1758 
1759         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1760 
1761         for (int c = 0; c < vd->vdev_children; c++)
1762                 vdev_dtl_reassess(vd->vdev_child[c], txg,
1763                     scrub_txg, scrub_done);
1764 
1765         if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1766                 return;
1767 
1768         if (vd->vdev_ops->vdev_op_leaf) {
1769                 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1770 
1771                 mutex_enter(&vd->vdev_dtl_lock);
1772 
1773                 /*
1774                  * If we've completed a scan cleanly then determine
1775                  * if this vdev should remove any DTLs. We only want to
1776                  * excise regions on vdevs that were available during
1777                  * the entire duration of this scan.
1778                  */
1779                 if (scrub_txg != 0 &&
1780                     (spa->spa_scrub_started ||
1781                     (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
1782                     vdev_dtl_should_excise(vd)) {
1783                         /*
1784                          * We completed a scrub up to scrub_txg.  If we
1785                          * did it without rebooting, then the scrub dtl
1786                          * will be valid, so excise the old region and
1787                          * fold in the scrub dtl.  Otherwise, leave the
1788                          * dtl as-is if there was an error.
1789                          *
1790                          * There's little trick here: to excise the beginning
1791                          * of the DTL_MISSING map, we put it into a reference
1792                          * tree and then add a segment with refcnt -1 that
1793                          * covers the range [0, scrub_txg).  This means
1794                          * that each txg in that range has refcnt -1 or 0.
1795                          * We then add DTL_SCRUB with a refcnt of 2, so that
1796                          * entries in the range [0, scrub_txg) will have a
1797                          * positive refcnt -- either 1 or 2.  We then convert
1798                          * the reference tree into the new DTL_MISSING map.
1799                          */
1800                         space_reftree_create(&reftree);
1801                         space_reftree_add_map(&reftree,
1802                             vd->vdev_dtl[DTL_MISSING], 1);
1803                         space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
1804                         space_reftree_add_map(&reftree,
1805                             vd->vdev_dtl[DTL_SCRUB], 2);
1806                         space_reftree_generate_map(&reftree,
1807                             vd->vdev_dtl[DTL_MISSING], 1);
1808                         space_reftree_destroy(&reftree);
1809                 }
1810                 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1811                 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1812                     range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
1813                 if (scrub_done)
1814                         range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1815                 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1816                 if (!vdev_readable(vd))
1817                         range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1818                 else
1819                         range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1820                             range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
1821 
1822                 /*
1823                  * If the vdev was resilvering and no longer has any
1824                  * DTLs then reset its resilvering flag.
1825                  */
1826                 if (vd->vdev_resilver_txg != 0 &&
1827                     range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 &&
1828                     range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0)
1829                         vd->vdev_resilver_txg = 0;
1830 
1831                 mutex_exit(&vd->vdev_dtl_lock);
1832 
1833                 if (txg != 0)
1834                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1835                 return;
1836         }
1837 
1838         mutex_enter(&vd->vdev_dtl_lock);
1839         for (int t = 0; t < DTL_TYPES; t++) {
1840                 /* account for child's outage in parent's missing map */
1841                 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1842                 if (t == DTL_SCRUB)
1843                         continue;                       /* leaf vdevs only */
1844                 if (t == DTL_PARTIAL)
1845                         minref = 1;                     /* i.e. non-zero */
1846                 else if (vd->vdev_nparity != 0)
1847                         minref = vd->vdev_nparity + 1;       /* RAID-Z */
1848                 else
1849                         minref = vd->vdev_children;  /* any kind of mirror */
1850                 space_reftree_create(&reftree);
1851                 for (int c = 0; c < vd->vdev_children; c++) {
1852                         vdev_t *cvd = vd->vdev_child[c];
1853                         mutex_enter(&cvd->vdev_dtl_lock);
1854                         space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
1855                         mutex_exit(&cvd->vdev_dtl_lock);
1856                 }
1857                 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
1858                 space_reftree_destroy(&reftree);
1859         }
1860         mutex_exit(&vd->vdev_dtl_lock);
1861 }
1862 
1863 int
1864 vdev_dtl_load(vdev_t *vd)
1865 {
1866         spa_t *spa = vd->vdev_spa;
1867         objset_t *mos = spa->spa_meta_objset;
1868         int error = 0;
1869 
1870         if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
1871                 ASSERT(!vd->vdev_ishole);
1872 
1873                 error = space_map_open(&vd->vdev_dtl_sm, mos,
1874                     vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock);
1875                 if (error)
1876                         return (error);
1877                 ASSERT(vd->vdev_dtl_sm != NULL);
1878 
1879                 mutex_enter(&vd->vdev_dtl_lock);
1880 
1881                 /*
1882                  * Now that we've opened the space_map we need to update
1883                  * the in-core DTL.
1884                  */
1885                 space_map_update(vd->vdev_dtl_sm);
1886 
1887                 error = space_map_load(vd->vdev_dtl_sm,
1888                     vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
1889                 mutex_exit(&vd->vdev_dtl_lock);
1890 
1891                 return (error);
1892         }
1893 
1894         for (int c = 0; c < vd->vdev_children; c++) {
1895                 error = vdev_dtl_load(vd->vdev_child[c]);
1896                 if (error != 0)
1897                         break;
1898         }
1899 
1900         return (error);
1901 }
1902 
1903 void
1904 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1905 {
1906         spa_t *spa = vd->vdev_spa;
1907         range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
1908         objset_t *mos = spa->spa_meta_objset;
1909         range_tree_t *rtsync;
1910         kmutex_t rtlock;
1911         dmu_tx_t *tx;
1912         uint64_t object = space_map_object(vd->vdev_dtl_sm);
1913 
1914         ASSERT(!vd->vdev_ishole);
1915         ASSERT(vd->vdev_ops->vdev_op_leaf);
1916 
1917         tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1918 
1919         if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
1920                 mutex_enter(&vd->vdev_dtl_lock);
1921                 space_map_free(vd->vdev_dtl_sm, tx);
1922                 space_map_close(vd->vdev_dtl_sm);
1923                 vd->vdev_dtl_sm = NULL;
1924                 mutex_exit(&vd->vdev_dtl_lock);
1925                 dmu_tx_commit(tx);
1926                 return;
1927         }
1928 
1929         if (vd->vdev_dtl_sm == NULL) {
1930                 uint64_t new_object;
1931 
1932                 new_object = space_map_alloc(mos, tx);
1933                 VERIFY3U(new_object, !=, 0);
1934 
1935                 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
1936                     0, -1ULL, 0, &vd->vdev_dtl_lock));
1937                 ASSERT(vd->vdev_dtl_sm != NULL);
1938         }
1939 
1940         mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL);
1941 
1942         rtsync = range_tree_create(NULL, NULL, &rtlock);
1943 
1944         mutex_enter(&rtlock);
1945 
1946         mutex_enter(&vd->vdev_dtl_lock);
1947         range_tree_walk(rt, range_tree_add, rtsync);
1948         mutex_exit(&vd->vdev_dtl_lock);
1949 
1950         space_map_truncate(vd->vdev_dtl_sm, tx);
1951         space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
1952         range_tree_vacate(rtsync, NULL, NULL);
1953 
1954         range_tree_destroy(rtsync);
1955 
1956         mutex_exit(&rtlock);
1957         mutex_destroy(&rtlock);
1958 
1959         /*
1960          * If the object for the space map has changed then dirty
1961          * the top level so that we update the config.
1962          */
1963         if (object != space_map_object(vd->vdev_dtl_sm)) {
1964                 zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, "
1965                     "new object %llu", txg, spa_name(spa), object,
1966                     space_map_object(vd->vdev_dtl_sm));
1967                 vdev_config_dirty(vd->vdev_top);
1968         }
1969 
1970         dmu_tx_commit(tx);
1971 
1972         mutex_enter(&vd->vdev_dtl_lock);
1973         space_map_update(vd->vdev_dtl_sm);
1974         mutex_exit(&vd->vdev_dtl_lock);
1975 }
1976 
1977 /*
1978  * Determine whether the specified vdev can be offlined/detached/removed
1979  * without losing data.
1980  */
1981 boolean_t
1982 vdev_dtl_required(vdev_t *vd)
1983 {
1984         spa_t *spa = vd->vdev_spa;
1985         vdev_t *tvd = vd->vdev_top;
1986         uint8_t cant_read = vd->vdev_cant_read;
1987         boolean_t required;
1988 
1989         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1990 
1991         if (vd == spa->spa_root_vdev || vd == tvd)
1992                 return (B_TRUE);
1993 
1994         /*
1995          * Temporarily mark the device as unreadable, and then determine
1996          * whether this results in any DTL outages in the top-level vdev.
1997          * If not, we can safely offline/detach/remove the device.
1998          */
1999         vd->vdev_cant_read = B_TRUE;
2000         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2001         required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2002         vd->vdev_cant_read = cant_read;
2003         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2004 
2005         if (!required && zio_injection_enabled)
2006                 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2007 
2008         return (required);
2009 }
2010 
2011 /*
2012  * Determine if resilver is needed, and if so the txg range.
2013  */
2014 boolean_t
2015 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2016 {
2017         boolean_t needed = B_FALSE;
2018         uint64_t thismin = UINT64_MAX;
2019         uint64_t thismax = 0;
2020 
2021         if (vd->vdev_children == 0) {
2022                 mutex_enter(&vd->vdev_dtl_lock);
2023                 if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 &&
2024                     vdev_writeable(vd)) {
2025 
2026                         thismin = vdev_dtl_min(vd);
2027                         thismax = vdev_dtl_max(vd);
2028                         needed = B_TRUE;
2029                 }
2030                 mutex_exit(&vd->vdev_dtl_lock);
2031         } else {
2032                 for (int c = 0; c < vd->vdev_children; c++) {
2033                         vdev_t *cvd = vd->vdev_child[c];
2034                         uint64_t cmin, cmax;
2035 
2036                         if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2037                                 thismin = MIN(thismin, cmin);
2038                                 thismax = MAX(thismax, cmax);
2039                                 needed = B_TRUE;
2040                         }
2041                 }
2042         }
2043 
2044         if (needed && minp) {
2045                 *minp = thismin;
2046                 *maxp = thismax;
2047         }
2048         return (needed);
2049 }
2050 
2051 void
2052 vdev_load(vdev_t *vd)
2053 {
2054         /*
2055          * Recursively load all children.
2056          */
2057         for (int c = 0; c < vd->vdev_children; c++)
2058                 vdev_load(vd->vdev_child[c]);
2059 
2060         /*
2061          * If this is a top-level vdev, initialize its metaslabs.
2062          */
2063         if (vd == vd->vdev_top && !vd->vdev_ishole &&
2064             (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
2065             vdev_metaslab_init(vd, 0) != 0))
2066                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2067                     VDEV_AUX_CORRUPT_DATA);
2068 
2069         /*
2070          * If this is a leaf vdev, load its DTL.
2071          */
2072         if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
2073                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2074                     VDEV_AUX_CORRUPT_DATA);
2075 }
2076 
2077 /*
2078  * The special vdev case is used for hot spares and l2cache devices.  Its
2079  * sole purpose it to set the vdev state for the associated vdev.  To do this,
2080  * we make sure that we can open the underlying device, then try to read the
2081  * label, and make sure that the label is sane and that it hasn't been
2082  * repurposed to another pool.
2083  */
2084 int
2085 vdev_validate_aux(vdev_t *vd)
2086 {
2087         nvlist_t *label;
2088         uint64_t guid, version;
2089         uint64_t state;
2090 
2091         if (!vdev_readable(vd))
2092                 return (0);
2093 
2094         if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2095                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2096                     VDEV_AUX_CORRUPT_DATA);
2097                 return (-1);
2098         }
2099 
2100         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2101             !SPA_VERSION_IS_SUPPORTED(version) ||
2102             nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2103             guid != vd->vdev_guid ||
2104             nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2105                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2106                     VDEV_AUX_CORRUPT_DATA);
2107                 nvlist_free(label);
2108                 return (-1);
2109         }
2110 
2111         /*
2112          * We don't actually check the pool state here.  If it's in fact in
2113          * use by another pool, we update this fact on the fly when requested.
2114          */
2115         nvlist_free(label);
2116         return (0);
2117 }
2118 
2119 void
2120 vdev_remove(vdev_t *vd, uint64_t txg)
2121 {
2122         spa_t *spa = vd->vdev_spa;
2123         objset_t *mos = spa->spa_meta_objset;
2124         dmu_tx_t *tx;
2125 
2126         tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2127 
2128         if (vd->vdev_ms != NULL) {
2129                 metaslab_group_t *mg = vd->vdev_mg;
2130 
2131                 metaslab_group_histogram_verify(mg);
2132                 metaslab_class_histogram_verify(mg->mg_class);
2133 
2134                 for (int m = 0; m < vd->vdev_ms_count; m++) {
2135                         metaslab_t *msp = vd->vdev_ms[m];
2136 
2137                         if (msp == NULL || msp->ms_sm == NULL)
2138                                 continue;
2139 
2140                         mutex_enter(&msp->ms_lock);
2141                         /*
2142                          * If the metaslab was not loaded when the vdev
2143                          * was removed then the histogram accounting may
2144                          * not be accurate. Update the histogram information
2145                          * here so that we ensure that the metaslab group
2146                          * and metaslab class are up-to-date.
2147                          */
2148                         metaslab_group_histogram_remove(mg, msp);
2149 
2150                         VERIFY0(space_map_allocated(msp->ms_sm));
2151                         space_map_free(msp->ms_sm, tx);
2152                         space_map_close(msp->ms_sm);
2153                         msp->ms_sm = NULL;
2154                         mutex_exit(&msp->ms_lock);
2155                 }
2156 
2157                 metaslab_group_histogram_verify(mg);
2158                 metaslab_class_histogram_verify(mg->mg_class);
2159                 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2160                         ASSERT0(mg->mg_histogram[i]);
2161 
2162         }
2163 
2164         if (vd->vdev_ms_array) {
2165                 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2166                 vd->vdev_ms_array = 0;
2167         }
2168         dmu_tx_commit(tx);
2169 }
2170 
2171 void
2172 vdev_sync_done(vdev_t *vd, uint64_t txg)
2173 {
2174         metaslab_t *msp;
2175         boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2176 
2177         ASSERT(!vd->vdev_ishole);
2178 
2179         while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2180                 metaslab_sync_done(msp, txg);
2181 
2182         if (reassess)
2183                 metaslab_sync_reassess(vd->vdev_mg);
2184 }
2185 
2186 void
2187 vdev_sync(vdev_t *vd, uint64_t txg)
2188 {
2189         spa_t *spa = vd->vdev_spa;
2190         vdev_t *lvd;
2191         metaslab_t *msp;
2192         dmu_tx_t *tx;
2193 
2194         ASSERT(!vd->vdev_ishole);
2195 
2196         if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2197                 ASSERT(vd == vd->vdev_top);
2198                 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2199                 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2200                     DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2201                 ASSERT(vd->vdev_ms_array != 0);
2202                 vdev_config_dirty(vd);
2203                 dmu_tx_commit(tx);
2204         }
2205 
2206         /*
2207          * Remove the metadata associated with this vdev once it's empty.
2208          */
2209         if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2210                 vdev_remove(vd, txg);
2211 
2212         while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2213                 metaslab_sync(msp, txg);
2214                 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2215         }
2216 
2217         while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2218                 vdev_dtl_sync(lvd, txg);
2219 
2220         (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2221 }
2222 
2223 uint64_t
2224 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2225 {
2226         return (vd->vdev_ops->vdev_op_asize(vd, psize));
2227 }
2228 
2229 /*
2230  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2231  * not be opened, and no I/O is attempted.
2232  */
2233 int
2234 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2235 {
2236         vdev_t *vd, *tvd;
2237 
2238         spa_vdev_state_enter(spa, SCL_NONE);
2239 
2240         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2241                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2242 
2243         if (!vd->vdev_ops->vdev_op_leaf)
2244                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2245 
2246         tvd = vd->vdev_top;
2247 
2248         /*
2249          * We don't directly use the aux state here, but if we do a
2250          * vdev_reopen(), we need this value to be present to remember why we
2251          * were faulted.
2252          */
2253         vd->vdev_label_aux = aux;
2254 
2255         /*
2256          * Faulted state takes precedence over degraded.
2257          */
2258         vd->vdev_delayed_close = B_FALSE;
2259         vd->vdev_faulted = 1ULL;
2260         vd->vdev_degraded = 0ULL;
2261         vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2262 
2263         /*
2264          * If this device has the only valid copy of the data, then
2265          * back off and simply mark the vdev as degraded instead.
2266          */
2267         if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2268                 vd->vdev_degraded = 1ULL;
2269                 vd->vdev_faulted = 0ULL;
2270 
2271                 /*
2272                  * If we reopen the device and it's not dead, only then do we
2273                  * mark it degraded.
2274                  */
2275                 vdev_reopen(tvd);
2276 
2277                 if (vdev_readable(vd))
2278                         vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2279         }
2280 
2281         return (spa_vdev_state_exit(spa, vd, 0));
2282 }
2283 
2284 /*
2285  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2286  * user that something is wrong.  The vdev continues to operate as normal as far
2287  * as I/O is concerned.
2288  */
2289 int
2290 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2291 {
2292         vdev_t *vd;
2293 
2294         spa_vdev_state_enter(spa, SCL_NONE);
2295 
2296         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2297                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2298 
2299         if (!vd->vdev_ops->vdev_op_leaf)
2300                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2301 
2302         /*
2303          * If the vdev is already faulted, then don't do anything.
2304          */
2305         if (vd->vdev_faulted || vd->vdev_degraded)
2306                 return (spa_vdev_state_exit(spa, NULL, 0));
2307 
2308         vd->vdev_degraded = 1ULL;
2309         if (!vdev_is_dead(vd))
2310                 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2311                     aux);
2312 
2313         return (spa_vdev_state_exit(spa, vd, 0));
2314 }
2315 
2316 /*
2317  * Online the given vdev.
2318  *
2319  * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
2320  * spare device should be detached when the device finishes resilvering.
2321  * Second, the online should be treated like a 'test' online case, so no FMA
2322  * events are generated if the device fails to open.
2323  */
2324 int
2325 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2326 {
2327         vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2328 
2329         spa_vdev_state_enter(spa, SCL_NONE);
2330 
2331         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2332                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2333 
2334         if (!vd->vdev_ops->vdev_op_leaf)
2335                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2336 
2337         tvd = vd->vdev_top;
2338         vd->vdev_offline = B_FALSE;
2339         vd->vdev_tmpoffline = B_FALSE;
2340         vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2341         vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2342 
2343         /* XXX - L2ARC 1.0 does not support expansion */
2344         if (!vd->vdev_aux) {
2345                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2346                         pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2347         }
2348 
2349         vdev_reopen(tvd);
2350         vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2351 
2352         if (!vd->vdev_aux) {
2353                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2354                         pvd->vdev_expanding = B_FALSE;
2355         }
2356 
2357         if (newstate)
2358                 *newstate = vd->vdev_state;
2359         if ((flags & ZFS_ONLINE_UNSPARE) &&
2360             !vdev_is_dead(vd) && vd->vdev_parent &&
2361             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2362             vd->vdev_parent->vdev_child[0] == vd)
2363                 vd->vdev_unspare = B_TRUE;
2364 
2365         if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2366 
2367                 /* XXX - L2ARC 1.0 does not support expansion */
2368                 if (vd->vdev_aux)
2369                         return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2370                 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2371         }
2372         return (spa_vdev_state_exit(spa, vd, 0));
2373 }
2374 
2375 static int
2376 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2377 {
2378         vdev_t *vd, *tvd;
2379         int error = 0;
2380         uint64_t generation;
2381         metaslab_group_t *mg;
2382 
2383 top:
2384         spa_vdev_state_enter(spa, SCL_ALLOC);
2385 
2386         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2387                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2388 
2389         if (!vd->vdev_ops->vdev_op_leaf)
2390                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2391 
2392         tvd = vd->vdev_top;
2393         mg = tvd->vdev_mg;
2394         generation = spa->spa_config_generation + 1;
2395 
2396         /*
2397          * If the device isn't already offline, try to offline it.
2398          */
2399         if (!vd->vdev_offline) {
2400                 /*
2401                  * If this device has the only valid copy of some data,
2402                  * don't allow it to be offlined. Log devices are always
2403                  * expendable.
2404                  */
2405                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2406                     vdev_dtl_required(vd))
2407                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2408 
2409                 /*
2410                  * If the top-level is a slog and it has had allocations
2411                  * then proceed.  We check that the vdev's metaslab group
2412                  * is not NULL since it's possible that we may have just
2413                  * added this vdev but not yet initialized its metaslabs.
2414                  */
2415                 if (tvd->vdev_islog && mg != NULL) {
2416                         /*
2417                          * Prevent any future allocations.
2418                          */
2419                         metaslab_group_passivate(mg);
2420                         (void) spa_vdev_state_exit(spa, vd, 0);
2421 
2422                         error = spa_offline_log(spa);
2423 
2424                         spa_vdev_state_enter(spa, SCL_ALLOC);
2425 
2426                         /*
2427                          * Check to see if the config has changed.
2428                          */
2429                         if (error || generation != spa->spa_config_generation) {
2430                                 metaslab_group_activate(mg);
2431                                 if (error)
2432                                         return (spa_vdev_state_exit(spa,
2433                                             vd, error));
2434                                 (void) spa_vdev_state_exit(spa, vd, 0);
2435                                 goto top;
2436                         }
2437                         ASSERT0(tvd->vdev_stat.vs_alloc);
2438                 }
2439 
2440                 /*
2441                  * Offline this device and reopen its top-level vdev.
2442                  * If the top-level vdev is a log device then just offline
2443                  * it. Otherwise, if this action results in the top-level
2444                  * vdev becoming unusable, undo it and fail the request.
2445                  */
2446                 vd->vdev_offline = B_TRUE;
2447                 vdev_reopen(tvd);
2448 
2449                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2450                     vdev_is_dead(tvd)) {
2451                         vd->vdev_offline = B_FALSE;
2452                         vdev_reopen(tvd);
2453                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2454                 }
2455 
2456                 /*
2457                  * Add the device back into the metaslab rotor so that
2458                  * once we online the device it's open for business.
2459                  */
2460                 if (tvd->vdev_islog && mg != NULL)
2461                         metaslab_group_activate(mg);
2462         }
2463 
2464         vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2465 
2466         return (spa_vdev_state_exit(spa, vd, 0));
2467 }
2468 
2469 int
2470 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2471 {
2472         int error;
2473 
2474         mutex_enter(&spa->spa_vdev_top_lock);
2475         error = vdev_offline_locked(spa, guid, flags);
2476         mutex_exit(&spa->spa_vdev_top_lock);
2477 
2478         return (error);
2479 }
2480 
2481 /*
2482  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2483  * vdev_offline(), we assume the spa config is locked.  We also clear all
2484  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2485  */
2486 void
2487 vdev_clear(spa_t *spa, vdev_t *vd)
2488 {
2489         vdev_t *rvd = spa->spa_root_vdev;
2490 
2491         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2492 
2493         if (vd == NULL)
2494                 vd = rvd;
2495 
2496         vd->vdev_stat.vs_read_errors = 0;
2497         vd->vdev_stat.vs_write_errors = 0;
2498         vd->vdev_stat.vs_checksum_errors = 0;
2499 
2500         for (int c = 0; c < vd->vdev_children; c++)
2501                 vdev_clear(spa, vd->vdev_child[c]);
2502 
2503         /*
2504          * If we're in the FAULTED state or have experienced failed I/O, then
2505          * clear the persistent state and attempt to reopen the device.  We
2506          * also mark the vdev config dirty, so that the new faulted state is
2507          * written out to disk.
2508          */
2509         if (vd->vdev_faulted || vd->vdev_degraded ||
2510             !vdev_readable(vd) || !vdev_writeable(vd)) {
2511 
2512                 /*
2513                  * When reopening in reponse to a clear event, it may be due to
2514                  * a fmadm repair request.  In this case, if the device is
2515                  * still broken, we want to still post the ereport again.
2516                  */
2517                 vd->vdev_forcefault = B_TRUE;
2518 
2519                 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2520                 vd->vdev_cant_read = B_FALSE;
2521                 vd->vdev_cant_write = B_FALSE;
2522 
2523                 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2524 
2525                 vd->vdev_forcefault = B_FALSE;
2526 
2527                 if (vd != rvd && vdev_writeable(vd->vdev_top))
2528                         vdev_state_dirty(vd->vdev_top);
2529 
2530                 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2531                         spa_async_request(spa, SPA_ASYNC_RESILVER);
2532 
2533                 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2534         }
2535 
2536         /*
2537          * When clearing a FMA-diagnosed fault, we always want to
2538          * unspare the device, as we assume that the original spare was
2539          * done in response to the FMA fault.
2540          */
2541         if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2542             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2543             vd->vdev_parent->vdev_child[0] == vd)
2544                 vd->vdev_unspare = B_TRUE;
2545 }
2546 
2547 boolean_t
2548 vdev_is_dead(vdev_t *vd)
2549 {
2550         /*
2551          * Holes and missing devices are always considered "dead".
2552          * This simplifies the code since we don't have to check for
2553          * these types of devices in the various code paths.
2554          * Instead we rely on the fact that we skip over dead devices
2555          * before issuing I/O to them.
2556          */
2557         return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2558             vd->vdev_ops == &vdev_missing_ops);
2559 }
2560 
2561 boolean_t
2562 vdev_readable(vdev_t *vd)
2563 {
2564         return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2565 }
2566 
2567 boolean_t
2568 vdev_writeable(vdev_t *vd)
2569 {
2570         return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2571 }
2572 
2573 boolean_t
2574 vdev_allocatable(vdev_t *vd)
2575 {
2576         uint64_t state = vd->vdev_state;
2577 
2578         /*
2579          * We currently allow allocations from vdevs which may be in the
2580          * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2581          * fails to reopen then we'll catch it later when we're holding
2582          * the proper locks.  Note that we have to get the vdev state
2583          * in a local variable because although it changes atomically,
2584          * we're asking two separate questions about it.
2585          */
2586         return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2587             !vd->vdev_cant_write && !vd->vdev_ishole);
2588 }
2589 
2590 boolean_t
2591 vdev_accessible(vdev_t *vd, zio_t *zio)
2592 {
2593         ASSERT(zio->io_vd == vd);
2594 
2595         if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2596                 return (B_FALSE);
2597 
2598         if (zio->io_type == ZIO_TYPE_READ)
2599                 return (!vd->vdev_cant_read);
2600 
2601         if (zio->io_type == ZIO_TYPE_WRITE)
2602                 return (!vd->vdev_cant_write);
2603 
2604         return (B_TRUE);
2605 }
2606 
2607 /*
2608  * Get statistics for the given vdev.
2609  */
2610 void
2611 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2612 {
2613         spa_t *spa = vd->vdev_spa;
2614         vdev_t *rvd = spa->spa_root_vdev;
2615 
2616         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2617 
2618         mutex_enter(&vd->vdev_stat_lock);
2619         bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2620         vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2621         vs->vs_state = vd->vdev_state;
2622         vs->vs_rsize = vdev_get_min_asize(vd);
2623         if (vd->vdev_ops->vdev_op_leaf)
2624                 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2625         vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2626         if (vd->vdev_aux == NULL && vd == vd->vdev_top && !vd->vdev_ishole) {
2627                 vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
2628         }
2629 
2630         /*
2631          * If we're getting stats on the root vdev, aggregate the I/O counts
2632          * over all top-level vdevs (i.e. the direct children of the root).
2633          */
2634         if (vd == rvd) {
2635                 for (int c = 0; c < rvd->vdev_children; c++) {
2636                         vdev_t *cvd = rvd->vdev_child[c];
2637                         vdev_stat_t *cvs = &cvd->vdev_stat;
2638 
2639                         for (int t = 0; t < ZIO_TYPES; t++) {
2640                                 vs->vs_ops[t] += cvs->vs_ops[t];
2641                                 vs->vs_bytes[t] += cvs->vs_bytes[t];
2642                         }
2643                         cvs->vs_scan_removing = cvd->vdev_removing;
2644                 }
2645         }
2646         mutex_exit(&vd->vdev_stat_lock);
2647 }
2648 
2649 void
2650 vdev_clear_stats(vdev_t *vd)
2651 {
2652         mutex_enter(&vd->vdev_stat_lock);
2653         vd->vdev_stat.vs_space = 0;
2654         vd->vdev_stat.vs_dspace = 0;
2655         vd->vdev_stat.vs_alloc = 0;
2656         mutex_exit(&vd->vdev_stat_lock);
2657 }
2658 
2659 void
2660 vdev_scan_stat_init(vdev_t *vd)
2661 {
2662         vdev_stat_t *vs = &vd->vdev_stat;
2663 
2664         for (int c = 0; c < vd->vdev_children; c++)
2665                 vdev_scan_stat_init(vd->vdev_child[c]);
2666 
2667         mutex_enter(&vd->vdev_stat_lock);
2668         vs->vs_scan_processed = 0;
2669         mutex_exit(&vd->vdev_stat_lock);
2670 }
2671 
2672 void
2673 vdev_stat_update(zio_t *zio, uint64_t psize)
2674 {
2675         spa_t *spa = zio->io_spa;
2676         vdev_t *rvd = spa->spa_root_vdev;
2677         vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2678         vdev_t *pvd;
2679         uint64_t txg = zio->io_txg;
2680         vdev_stat_t *vs = &vd->vdev_stat;
2681         zio_type_t type = zio->io_type;
2682         int flags = zio->io_flags;
2683 
2684         /*
2685          * If this i/o is a gang leader, it didn't do any actual work.
2686          */
2687         if (zio->io_gang_tree)
2688                 return;
2689 
2690         if (zio->io_error == 0) {
2691                 /*
2692                  * If this is a root i/o, don't count it -- we've already
2693                  * counted the top-level vdevs, and vdev_get_stats() will
2694                  * aggregate them when asked.  This reduces contention on
2695                  * the root vdev_stat_lock and implicitly handles blocks
2696                  * that compress away to holes, for which there is no i/o.
2697                  * (Holes never create vdev children, so all the counters
2698                  * remain zero, which is what we want.)
2699                  *
2700                  * Note: this only applies to successful i/o (io_error == 0)
2701                  * because unlike i/o counts, errors are not additive.
2702                  * When reading a ditto block, for example, failure of
2703                  * one top-level vdev does not imply a root-level error.
2704                  */
2705                 if (vd == rvd)
2706                         return;
2707 
2708                 ASSERT(vd == zio->io_vd);
2709 
2710                 if (flags & ZIO_FLAG_IO_BYPASS)
2711                         return;
2712 
2713                 mutex_enter(&vd->vdev_stat_lock);
2714 
2715                 if (flags & ZIO_FLAG_IO_REPAIR) {
2716                         if (flags & ZIO_FLAG_SCAN_THREAD) {
2717                                 dsl_scan_phys_t *scn_phys =
2718                                     &spa->spa_dsl_pool->dp_scan->scn_phys;
2719                                 uint64_t *processed = &scn_phys->scn_processed;
2720 
2721                                 /* XXX cleanup? */
2722                                 if (vd->vdev_ops->vdev_op_leaf)
2723                                         atomic_add_64(processed, psize);
2724                                 vs->vs_scan_processed += psize;
2725                         }
2726 
2727                         if (flags & ZIO_FLAG_SELF_HEAL)
2728                                 vs->vs_self_healed += psize;
2729                 }
2730 
2731                 vs->vs_ops[type]++;
2732                 vs->vs_bytes[type] += psize;
2733 
2734                 mutex_exit(&vd->vdev_stat_lock);
2735                 return;
2736         }
2737 
2738         if (flags & ZIO_FLAG_SPECULATIVE)
2739                 return;
2740 
2741         /*
2742          * If this is an I/O error that is going to be retried, then ignore the
2743          * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2744          * hard errors, when in reality they can happen for any number of
2745          * innocuous reasons (bus resets, MPxIO link failure, etc).
2746          */
2747         if (zio->io_error == EIO &&
2748             !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2749                 return;
2750 
2751         /*
2752          * Intent logs writes won't propagate their error to the root
2753          * I/O so don't mark these types of failures as pool-level
2754          * errors.
2755          */
2756         if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2757                 return;
2758 
2759         mutex_enter(&vd->vdev_stat_lock);
2760         if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2761                 if (zio->io_error == ECKSUM)
2762                         vs->vs_checksum_errors++;
2763                 else
2764                         vs->vs_read_errors++;
2765         }
2766         if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2767                 vs->vs_write_errors++;
2768         mutex_exit(&vd->vdev_stat_lock);
2769 
2770         if (type == ZIO_TYPE_WRITE && txg != 0 &&
2771             (!(flags & ZIO_FLAG_IO_REPAIR) ||
2772             (flags & ZIO_FLAG_SCAN_THREAD) ||
2773             spa->spa_claiming)) {
2774                 /*
2775                  * This is either a normal write (not a repair), or it's
2776                  * a repair induced by the scrub thread, or it's a repair
2777                  * made by zil_claim() during spa_load() in the first txg.
2778                  * In the normal case, we commit the DTL change in the same
2779                  * txg as the block was born.  In the scrub-induced repair
2780                  * case, we know that scrubs run in first-pass syncing context,
2781                  * so we commit the DTL change in spa_syncing_txg(spa).
2782                  * In the zil_claim() case, we commit in spa_first_txg(spa).
2783                  *
2784                  * We currently do not make DTL entries for failed spontaneous
2785                  * self-healing writes triggered by normal (non-scrubbing)
2786                  * reads, because we have no transactional context in which to
2787                  * do so -- and it's not clear that it'd be desirable anyway.
2788                  */
2789                 if (vd->vdev_ops->vdev_op_leaf) {
2790                         uint64_t commit_txg = txg;
2791                         if (flags & ZIO_FLAG_SCAN_THREAD) {
2792                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2793                                 ASSERT(spa_sync_pass(spa) == 1);
2794                                 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2795                                 commit_txg = spa_syncing_txg(spa);
2796                         } else if (spa->spa_claiming) {
2797                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2798                                 commit_txg = spa_first_txg(spa);
2799                         }
2800                         ASSERT(commit_txg >= spa_syncing_txg(spa));
2801                         if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2802                                 return;
2803                         for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2804                                 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2805                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2806                 }
2807                 if (vd != rvd)
2808                         vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2809         }
2810 }
2811 
2812 /*
2813  * Update the in-core space usage stats for this vdev, its metaslab class,
2814  * and the root vdev.
2815  */
2816 void
2817 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2818     int64_t space_delta)
2819 {
2820         int64_t dspace_delta = space_delta;
2821         spa_t *spa = vd->vdev_spa;
2822         vdev_t *rvd = spa->spa_root_vdev;
2823         metaslab_group_t *mg = vd->vdev_mg;
2824         metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2825 
2826         ASSERT(vd == vd->vdev_top);
2827 
2828         /*
2829          * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2830          * factor.  We must calculate this here and not at the root vdev
2831          * because the root vdev's psize-to-asize is simply the max of its
2832          * childrens', thus not accurate enough for us.
2833          */
2834         ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2835         ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2836         dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2837             vd->vdev_deflate_ratio;
2838 
2839         mutex_enter(&vd->vdev_stat_lock);
2840         vd->vdev_stat.vs_alloc += alloc_delta;
2841         vd->vdev_stat.vs_space += space_delta;
2842         vd->vdev_stat.vs_dspace += dspace_delta;
2843         mutex_exit(&vd->vdev_stat_lock);
2844 
2845         if (mc == spa_normal_class(spa)) {
2846                 mutex_enter(&rvd->vdev_stat_lock);
2847                 rvd->vdev_stat.vs_alloc += alloc_delta;
2848                 rvd->vdev_stat.vs_space += space_delta;
2849                 rvd->vdev_stat.vs_dspace += dspace_delta;
2850                 mutex_exit(&rvd->vdev_stat_lock);
2851         }
2852 
2853         if (mc != NULL) {
2854                 ASSERT(rvd == vd->vdev_parent);
2855                 ASSERT(vd->vdev_ms_count != 0);
2856 
2857                 metaslab_class_space_update(mc,
2858                     alloc_delta, defer_delta, space_delta, dspace_delta);
2859         }
2860 }
2861 
2862 /*
2863  * Mark a top-level vdev's config as dirty, placing it on the dirty list
2864  * so that it will be written out next time the vdev configuration is synced.
2865  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2866  */
2867 void
2868 vdev_config_dirty(vdev_t *vd)
2869 {
2870         spa_t *spa = vd->vdev_spa;
2871         vdev_t *rvd = spa->spa_root_vdev;
2872         int c;
2873 
2874         ASSERT(spa_writeable(spa));
2875 
2876         /*
2877          * If this is an aux vdev (as with l2cache and spare devices), then we
2878          * update the vdev config manually and set the sync flag.
2879          */
2880         if (vd->vdev_aux != NULL) {
2881                 spa_aux_vdev_t *sav = vd->vdev_aux;
2882                 nvlist_t **aux;
2883                 uint_t naux;
2884 
2885                 for (c = 0; c < sav->sav_count; c++) {
2886                         if (sav->sav_vdevs[c] == vd)
2887                                 break;
2888                 }
2889 
2890                 if (c == sav->sav_count) {
2891                         /*
2892                          * We're being removed.  There's nothing more to do.
2893                          */
2894                         ASSERT(sav->sav_sync == B_TRUE);
2895                         return;
2896                 }
2897 
2898                 sav->sav_sync = B_TRUE;
2899 
2900                 if (nvlist_lookup_nvlist_array(sav->sav_config,
2901                     ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2902                         VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2903                             ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2904                 }
2905 
2906                 ASSERT(c < naux);
2907 
2908                 /*
2909                  * Setting the nvlist in the middle if the array is a little
2910                  * sketchy, but it will work.
2911                  */
2912                 nvlist_free(aux[c]);
2913                 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
2914 
2915                 return;
2916         }
2917 
2918         /*
2919          * The dirty list is protected by the SCL_CONFIG lock.  The caller
2920          * must either hold SCL_CONFIG as writer, or must be the sync thread
2921          * (which holds SCL_CONFIG as reader).  There's only one sync thread,
2922          * so this is sufficient to ensure mutual exclusion.
2923          */
2924         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2925             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2926             spa_config_held(spa, SCL_CONFIG, RW_READER)));
2927 
2928         if (vd == rvd) {
2929                 for (c = 0; c < rvd->vdev_children; c++)
2930                         vdev_config_dirty(rvd->vdev_child[c]);
2931         } else {
2932                 ASSERT(vd == vd->vdev_top);
2933 
2934                 if (!list_link_active(&vd->vdev_config_dirty_node) &&
2935                     !vd->vdev_ishole)
2936                         list_insert_head(&spa->spa_config_dirty_list, vd);
2937         }
2938 }
2939 
2940 void
2941 vdev_config_clean(vdev_t *vd)
2942 {
2943         spa_t *spa = vd->vdev_spa;
2944 
2945         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2946             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2947             spa_config_held(spa, SCL_CONFIG, RW_READER)));
2948 
2949         ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2950         list_remove(&spa->spa_config_dirty_list, vd);
2951 }
2952 
2953 /*
2954  * Mark a top-level vdev's state as dirty, so that the next pass of
2955  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
2956  * the state changes from larger config changes because they require
2957  * much less locking, and are often needed for administrative actions.
2958  */
2959 void
2960 vdev_state_dirty(vdev_t *vd)
2961 {
2962         spa_t *spa = vd->vdev_spa;
2963 
2964         ASSERT(spa_writeable(spa));
2965         ASSERT(vd == vd->vdev_top);
2966 
2967         /*
2968          * The state list is protected by the SCL_STATE lock.  The caller
2969          * must either hold SCL_STATE as writer, or must be the sync thread
2970          * (which holds SCL_STATE as reader).  There's only one sync thread,
2971          * so this is sufficient to ensure mutual exclusion.
2972          */
2973         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2974             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2975             spa_config_held(spa, SCL_STATE, RW_READER)));
2976 
2977         if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
2978                 list_insert_head(&spa->spa_state_dirty_list, vd);
2979 }
2980 
2981 void
2982 vdev_state_clean(vdev_t *vd)
2983 {
2984         spa_t *spa = vd->vdev_spa;
2985 
2986         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2987             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2988             spa_config_held(spa, SCL_STATE, RW_READER)));
2989 
2990         ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2991         list_remove(&spa->spa_state_dirty_list, vd);
2992 }
2993 
2994 /*
2995  * Propagate vdev state up from children to parent.
2996  */
2997 void
2998 vdev_propagate_state(vdev_t *vd)
2999 {
3000         spa_t *spa = vd->vdev_spa;
3001         vdev_t *rvd = spa->spa_root_vdev;
3002         int degraded = 0, faulted = 0;
3003         int corrupted = 0;
3004         vdev_t *child;
3005 
3006         if (vd->vdev_children > 0) {
3007                 for (int c = 0; c < vd->vdev_children; c++) {
3008                         child = vd->vdev_child[c];
3009 
3010                         /*
3011                          * Don't factor holes into the decision.
3012                          */
3013                         if (child->vdev_ishole)
3014                                 continue;
3015 
3016                         if (!vdev_readable(child) ||
3017                             (!vdev_writeable(child) && spa_writeable(spa))) {
3018                                 /*
3019                                  * Root special: if there is a top-level log
3020                                  * device, treat the root vdev as if it were
3021                                  * degraded.
3022                                  */
3023                                 if (child->vdev_islog && vd == rvd)
3024                                         degraded++;
3025                                 else
3026                                         faulted++;
3027                         } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3028                                 degraded++;
3029                         }
3030 
3031                         if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3032                                 corrupted++;
3033                 }
3034 
3035                 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3036 
3037                 /*
3038                  * Root special: if there is a top-level vdev that cannot be
3039                  * opened due to corrupted metadata, then propagate the root
3040                  * vdev's aux state as 'corrupt' rather than 'insufficient
3041                  * replicas'.
3042                  */
3043                 if (corrupted && vd == rvd &&
3044                     rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3045                         vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3046                             VDEV_AUX_CORRUPT_DATA);
3047         }
3048 
3049         if (vd->vdev_parent)
3050                 vdev_propagate_state(vd->vdev_parent);
3051 }
3052 
3053 /*
3054  * Set a vdev's state.  If this is during an open, we don't update the parent
3055  * state, because we're in the process of opening children depth-first.
3056  * Otherwise, we propagate the change to the parent.
3057  *
3058  * If this routine places a device in a faulted state, an appropriate ereport is
3059  * generated.
3060  */
3061 void
3062 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3063 {
3064         uint64_t save_state;
3065         spa_t *spa = vd->vdev_spa;
3066 
3067         if (state == vd->vdev_state) {
3068                 vd->vdev_stat.vs_aux = aux;
3069                 return;
3070         }
3071 
3072         save_state = vd->vdev_state;
3073 
3074         vd->vdev_state = state;
3075         vd->vdev_stat.vs_aux = aux;
3076 
3077         /*
3078          * If we are setting the vdev state to anything but an open state, then
3079          * always close the underlying device unless the device has requested
3080          * a delayed close (i.e. we're about to remove or fault the device).
3081          * Otherwise, we keep accessible but invalid devices open forever.
3082          * We don't call vdev_close() itself, because that implies some extra
3083          * checks (offline, etc) that we don't want here.  This is limited to
3084          * leaf devices, because otherwise closing the device will affect other
3085          * children.
3086          */
3087         if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3088             vd->vdev_ops->vdev_op_leaf)
3089                 vd->vdev_ops->vdev_op_close(vd);
3090 
3091         /*
3092          * If we have brought this vdev back into service, we need
3093          * to notify fmd so that it can gracefully repair any outstanding
3094          * cases due to a missing device.  We do this in all cases, even those
3095          * that probably don't correlate to a repaired fault.  This is sure to
3096          * catch all cases, and we let the zfs-retire agent sort it out.  If
3097          * this is a transient state it's OK, as the retire agent will
3098          * double-check the state of the vdev before repairing it.
3099          */
3100         if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
3101             vd->vdev_prevstate != state)
3102                 zfs_post_state_change(spa, vd);
3103 
3104         if (vd->vdev_removed &&
3105             state == VDEV_STATE_CANT_OPEN &&
3106             (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3107                 /*
3108                  * If the previous state is set to VDEV_STATE_REMOVED, then this
3109                  * device was previously marked removed and someone attempted to
3110                  * reopen it.  If this failed due to a nonexistent device, then
3111                  * keep the device in the REMOVED state.  We also let this be if
3112                  * it is one of our special test online cases, which is only
3113                  * attempting to online the device and shouldn't generate an FMA
3114                  * fault.
3115                  */
3116                 vd->vdev_state = VDEV_STATE_REMOVED;
3117                 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3118         } else if (state == VDEV_STATE_REMOVED) {
3119                 vd->vdev_removed = B_TRUE;
3120         } else if (state == VDEV_STATE_CANT_OPEN) {
3121                 /*
3122                  * If we fail to open a vdev during an import or recovery, we
3123                  * mark it as "not available", which signifies that it was
3124                  * never there to begin with.  Failure to open such a device
3125                  * is not considered an error.
3126                  */
3127                 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3128                     spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3129                     vd->vdev_ops->vdev_op_leaf)
3130                         vd->vdev_not_present = 1;
3131 
3132                 /*
3133                  * Post the appropriate ereport.  If the 'prevstate' field is
3134                  * set to something other than VDEV_STATE_UNKNOWN, it indicates
3135                  * that this is part of a vdev_reopen().  In this case, we don't
3136                  * want to post the ereport if the device was already in the
3137                  * CANT_OPEN state beforehand.
3138                  *
3139                  * If the 'checkremove' flag is set, then this is an attempt to
3140                  * online the device in response to an insertion event.  If we
3141                  * hit this case, then we have detected an insertion event for a
3142                  * faulted or offline device that wasn't in the removed state.
3143                  * In this scenario, we don't post an ereport because we are
3144                  * about to replace the device, or attempt an online with
3145                  * vdev_forcefault, which will generate the fault for us.
3146                  */
3147                 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3148                     !vd->vdev_not_present && !vd->vdev_checkremove &&
3149                     vd != spa->spa_root_vdev) {
3150                         const char *class;
3151 
3152                         switch (aux) {
3153                         case VDEV_AUX_OPEN_FAILED:
3154                                 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3155                                 break;
3156                         case VDEV_AUX_CORRUPT_DATA:
3157                                 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3158                                 break;
3159                         case VDEV_AUX_NO_REPLICAS:
3160                                 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3161                                 break;
3162                         case VDEV_AUX_BAD_GUID_SUM:
3163                                 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3164                                 break;
3165                         case VDEV_AUX_TOO_SMALL:
3166                                 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3167                                 break;
3168                         case VDEV_AUX_BAD_LABEL:
3169                                 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3170                                 break;
3171                         default:
3172                                 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3173                         }
3174 
3175                         zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3176                 }
3177 
3178                 /* Erase any notion of persistent removed state */
3179                 vd->vdev_removed = B_FALSE;
3180         } else {
3181                 vd->vdev_removed = B_FALSE;
3182         }
3183 
3184         if (!isopen && vd->vdev_parent)
3185                 vdev_propagate_state(vd->vdev_parent);
3186 }
3187 
3188 /*
3189  * Check the vdev configuration to ensure that it's capable of supporting
3190  * a root pool. Currently, we do not support RAID-Z or partial configuration.
3191  * In addition, only a single top-level vdev is allowed and none of the leaves
3192  * can be wholedisks.
3193  */
3194 boolean_t
3195 vdev_is_bootable(vdev_t *vd)
3196 {
3197         if (!vd->vdev_ops->vdev_op_leaf) {
3198                 char *vdev_type = vd->vdev_ops->vdev_op_type;
3199 
3200                 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3201                     vd->vdev_children > 1) {
3202                         return (B_FALSE);
3203                 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3204                     strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3205                         return (B_FALSE);
3206                 }
3207         }
3208 
3209         for (int c = 0; c < vd->vdev_children; c++) {
3210                 if (!vdev_is_bootable(vd->vdev_child[c]))
3211                         return (B_FALSE);
3212         }
3213         return (B_TRUE);
3214 }
3215 
3216 /*
3217  * Load the state from the original vdev tree (ovd) which
3218  * we've retrieved from the MOS config object. If the original
3219  * vdev was offline or faulted then we transfer that state to the
3220  * device in the current vdev tree (nvd).
3221  */
3222 void
3223 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3224 {
3225         spa_t *spa = nvd->vdev_spa;
3226 
3227         ASSERT(nvd->vdev_top->vdev_islog);
3228         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3229         ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3230 
3231         for (int c = 0; c < nvd->vdev_children; c++)
3232                 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3233 
3234         if (nvd->vdev_ops->vdev_op_leaf) {
3235                 /*
3236                  * Restore the persistent vdev state
3237                  */
3238                 nvd->vdev_offline = ovd->vdev_offline;
3239                 nvd->vdev_faulted = ovd->vdev_faulted;
3240                 nvd->vdev_degraded = ovd->vdev_degraded;
3241                 nvd->vdev_removed = ovd->vdev_removed;
3242         }
3243 }
3244 
3245 /*
3246  * Determine if a log device has valid content.  If the vdev was
3247  * removed or faulted in the MOS config then we know that
3248  * the content on the log device has already been written to the pool.
3249  */
3250 boolean_t
3251 vdev_log_state_valid(vdev_t *vd)
3252 {
3253         if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3254             !vd->vdev_removed)
3255                 return (B_TRUE);
3256 
3257         for (int c = 0; c < vd->vdev_children; c++)
3258                 if (vdev_log_state_valid(vd->vdev_child[c]))
3259                         return (B_TRUE);
3260 
3261         return (B_FALSE);
3262 }
3263 
3264 /*
3265  * Expand a vdev if possible.
3266  */
3267 void
3268 vdev_expand(vdev_t *vd, uint64_t txg)
3269 {
3270         ASSERT(vd->vdev_top == vd);
3271         ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3272 
3273         if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3274                 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3275                 vdev_config_dirty(vd);
3276         }
3277 }
3278 
3279 /*
3280  * Split a vdev.
3281  */
3282 void
3283 vdev_split(vdev_t *vd)
3284 {
3285         vdev_t *cvd, *pvd = vd->vdev_parent;
3286 
3287         vdev_remove_child(pvd, vd);
3288         vdev_compact_children(pvd);
3289 
3290         cvd = pvd->vdev_child[0];
3291         if (pvd->vdev_children == 1) {
3292                 vdev_remove_parent(cvd);
3293                 cvd->vdev_splitting = B_TRUE;
3294         }
3295         vdev_propagate_state(cvd);
3296 }
3297 
3298 void
3299 vdev_deadman(vdev_t *vd)
3300 {
3301         for (int c = 0; c < vd->vdev_children; c++) {
3302                 vdev_t *cvd = vd->vdev_child[c];
3303 
3304                 vdev_deadman(cvd);
3305         }
3306 
3307         if (vd->vdev_ops->vdev_op_leaf) {
3308                 vdev_queue_t *vq = &vd->vdev_queue;
3309 
3310                 mutex_enter(&vq->vq_lock);
3311                 if (avl_numnodes(&vq->vq_active_tree) > 0) {
3312                         spa_t *spa = vd->vdev_spa;
3313                         zio_t *fio;
3314                         uint64_t delta;
3315 
3316                         /*
3317                          * Look at the head of all the pending queues,
3318                          * if any I/O has been outstanding for longer than
3319                          * the spa_deadman_synctime we panic the system.
3320                          */
3321                         fio = avl_first(&vq->vq_active_tree);
3322                         delta = gethrtime() - fio->io_timestamp;
3323                         if (delta > spa_deadman_synctime(spa)) {
3324                                 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3325                                     "delta %lluns, last io %lluns",
3326                                     fio->io_timestamp, delta,
3327                                     vq->vq_io_complete_ts);
3328                                 fm_panic("I/O to pool '%s' appears to be "
3329                                     "hung.", spa_name(spa));
3330                         }
3331                 }
3332                 mutex_exit(&vq->vq_lock);
3333         }
3334 }