1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  24  * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
  25  * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
  26  * Copyright (c) 2012, Joyent, Inc. All rights reserved.
  27  * Copyright 2013 DEY Storage Systems, Inc.
  28  * Copyright 2014 HybridCluster. All rights reserved.
  29  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
  30  */
  31 
  32 /* Portions Copyright 2010 Robert Milkowski */
  33 
  34 #ifndef _SYS_DMU_H
  35 #define _SYS_DMU_H
  36 
  37 /*
  38  * This file describes the interface that the DMU provides for its
  39  * consumers.
  40  *
  41  * The DMU also interacts with the SPA.  That interface is described in
  42  * dmu_spa.h.
  43  */
  44 
  45 #include <sys/zfs_context.h>
  46 #include <sys/inttypes.h>
  47 #include <sys/cred.h>
  48 #include <sys/fs/zfs.h>
  49 
  50 #ifdef  __cplusplus
  51 extern "C" {
  52 #endif
  53 
  54 struct uio;
  55 struct xuio;
  56 struct page;
  57 struct vnode;
  58 struct spa;
  59 struct zilog;
  60 struct zio;
  61 struct blkptr;
  62 struct zap_cursor;
  63 struct dsl_dataset;
  64 struct dsl_pool;
  65 struct dnode;
  66 struct drr_begin;
  67 struct drr_end;
  68 struct zbookmark_phys;
  69 struct spa;
  70 struct nvlist;
  71 struct arc_buf;
  72 struct zio_prop;
  73 struct sa_handle;
  74 
  75 typedef struct objset objset_t;
  76 typedef struct dmu_tx dmu_tx_t;
  77 typedef struct dsl_dir dsl_dir_t;
  78 
  79 typedef enum dmu_object_byteswap {
  80         DMU_BSWAP_UINT8,
  81         DMU_BSWAP_UINT16,
  82         DMU_BSWAP_UINT32,
  83         DMU_BSWAP_UINT64,
  84         DMU_BSWAP_ZAP,
  85         DMU_BSWAP_DNODE,
  86         DMU_BSWAP_OBJSET,
  87         DMU_BSWAP_ZNODE,
  88         DMU_BSWAP_OLDACL,
  89         DMU_BSWAP_ACL,
  90         /*
  91          * Allocating a new byteswap type number makes the on-disk format
  92          * incompatible with any other format that uses the same number.
  93          *
  94          * Data can usually be structured to work with one of the
  95          * DMU_BSWAP_UINT* or DMU_BSWAP_ZAP types.
  96          */
  97         DMU_BSWAP_NUMFUNCS
  98 } dmu_object_byteswap_t;
  99 
 100 #define DMU_OT_NEWTYPE 0x80
 101 #define DMU_OT_METADATA 0x40
 102 #define DMU_OT_BYTESWAP_MASK 0x3f
 103 
 104 /*
 105  * Defines a uint8_t object type. Object types specify if the data
 106  * in the object is metadata (boolean) and how to byteswap the data
 107  * (dmu_object_byteswap_t).
 108  */
 109 #define DMU_OT(byteswap, metadata) \
 110         (DMU_OT_NEWTYPE | \
 111         ((metadata) ? DMU_OT_METADATA : 0) | \
 112         ((byteswap) & DMU_OT_BYTESWAP_MASK))
 113 
 114 #define DMU_OT_IS_VALID(ot) (((ot) & DMU_OT_NEWTYPE) ? \
 115         ((ot) & DMU_OT_BYTESWAP_MASK) < DMU_BSWAP_NUMFUNCS : \
 116         (ot) < DMU_OT_NUMTYPES)
 117 
 118 #define DMU_OT_IS_METADATA(ot) (((ot) & DMU_OT_NEWTYPE) ? \
 119         ((ot) & DMU_OT_METADATA) : \
 120         dmu_ot[(ot)].ot_metadata)
 121 
 122 /*
 123  * These object types use bp_fill != 1 for their L0 bp's. Therefore they can't
 124  * have their data embedded (i.e. use a BP_IS_EMBEDDED() bp), because bp_fill
 125  * is repurposed for embedded BPs.
 126  */
 127 #define DMU_OT_HAS_FILL(ot) \
 128         ((ot) == DMU_OT_DNODE || (ot) == DMU_OT_OBJSET)
 129 
 130 #define DMU_OT_BYTESWAP(ot) (((ot) & DMU_OT_NEWTYPE) ? \
 131         ((ot) & DMU_OT_BYTESWAP_MASK) : \
 132         dmu_ot[(ot)].ot_byteswap)
 133 
 134 typedef enum dmu_object_type {
 135         DMU_OT_NONE,
 136         /* general: */
 137         DMU_OT_OBJECT_DIRECTORY,        /* ZAP */
 138         DMU_OT_OBJECT_ARRAY,            /* UINT64 */
 139         DMU_OT_PACKED_NVLIST,           /* UINT8 (XDR by nvlist_pack/unpack) */
 140         DMU_OT_PACKED_NVLIST_SIZE,      /* UINT64 */
 141         DMU_OT_BPOBJ,                   /* UINT64 */
 142         DMU_OT_BPOBJ_HDR,               /* UINT64 */
 143         /* spa: */
 144         DMU_OT_SPACE_MAP_HEADER,        /* UINT64 */
 145         DMU_OT_SPACE_MAP,               /* UINT64 */
 146         /* zil: */
 147         DMU_OT_INTENT_LOG,              /* UINT64 */
 148         /* dmu: */
 149         DMU_OT_DNODE,                   /* DNODE */
 150         DMU_OT_OBJSET,                  /* OBJSET */
 151         /* dsl: */
 152         DMU_OT_DSL_DIR,                 /* UINT64 */
 153         DMU_OT_DSL_DIR_CHILD_MAP,       /* ZAP */
 154         DMU_OT_DSL_DS_SNAP_MAP,         /* ZAP */
 155         DMU_OT_DSL_PROPS,               /* ZAP */
 156         DMU_OT_DSL_DATASET,             /* UINT64 */
 157         /* zpl: */
 158         DMU_OT_ZNODE,                   /* ZNODE */
 159         DMU_OT_OLDACL,                  /* Old ACL */
 160         DMU_OT_PLAIN_FILE_CONTENTS,     /* UINT8 */
 161         DMU_OT_DIRECTORY_CONTENTS,      /* ZAP */
 162         DMU_OT_MASTER_NODE,             /* ZAP */
 163         DMU_OT_UNLINKED_SET,            /* ZAP */
 164         /* zvol: */
 165         DMU_OT_ZVOL,                    /* UINT8 */
 166         DMU_OT_ZVOL_PROP,               /* ZAP */
 167         /* other; for testing only! */
 168         DMU_OT_PLAIN_OTHER,             /* UINT8 */
 169         DMU_OT_UINT64_OTHER,            /* UINT64 */
 170         DMU_OT_ZAP_OTHER,               /* ZAP */
 171         /* new object types: */
 172         DMU_OT_ERROR_LOG,               /* ZAP */
 173         DMU_OT_SPA_HISTORY,             /* UINT8 */
 174         DMU_OT_SPA_HISTORY_OFFSETS,     /* spa_his_phys_t */
 175         DMU_OT_POOL_PROPS,              /* ZAP */
 176         DMU_OT_DSL_PERMS,               /* ZAP */
 177         DMU_OT_ACL,                     /* ACL */
 178         DMU_OT_SYSACL,                  /* SYSACL */
 179         DMU_OT_FUID,                    /* FUID table (Packed NVLIST UINT8) */
 180         DMU_OT_FUID_SIZE,               /* FUID table size UINT64 */
 181         DMU_OT_NEXT_CLONES,             /* ZAP */
 182         DMU_OT_SCAN_QUEUE,              /* ZAP */
 183         DMU_OT_USERGROUP_USED,          /* ZAP */
 184         DMU_OT_USERGROUP_QUOTA,         /* ZAP */
 185         DMU_OT_USERREFS,                /* ZAP */
 186         DMU_OT_DDT_ZAP,                 /* ZAP */
 187         DMU_OT_DDT_STATS,               /* ZAP */
 188         DMU_OT_SA,                      /* System attr */
 189         DMU_OT_SA_MASTER_NODE,          /* ZAP */
 190         DMU_OT_SA_ATTR_REGISTRATION,    /* ZAP */
 191         DMU_OT_SA_ATTR_LAYOUTS,         /* ZAP */
 192         DMU_OT_SCAN_XLATE,              /* ZAP */
 193         DMU_OT_DEDUP,                   /* fake dedup BP from ddt_bp_create() */
 194         DMU_OT_DEADLIST,                /* ZAP */
 195         DMU_OT_DEADLIST_HDR,            /* UINT64 */
 196         DMU_OT_DSL_CLONES,              /* ZAP */
 197         DMU_OT_BPOBJ_SUBOBJ,            /* UINT64 */
 198         /*
 199          * Do not allocate new object types here. Doing so makes the on-disk
 200          * format incompatible with any other format that uses the same object
 201          * type number.
 202          *
 203          * When creating an object which does not have one of the above types
 204          * use the DMU_OTN_* type with the correct byteswap and metadata
 205          * values.
 206          *
 207          * The DMU_OTN_* types do not have entries in the dmu_ot table,
 208          * use the DMU_OT_IS_METDATA() and DMU_OT_BYTESWAP() macros instead
 209          * of indexing into dmu_ot directly (this works for both DMU_OT_* types
 210          * and DMU_OTN_* types).
 211          */
 212         DMU_OT_NUMTYPES,
 213 
 214         /*
 215          * Names for valid types declared with DMU_OT().
 216          */
 217         DMU_OTN_UINT8_DATA = DMU_OT(DMU_BSWAP_UINT8, B_FALSE),
 218         DMU_OTN_UINT8_METADATA = DMU_OT(DMU_BSWAP_UINT8, B_TRUE),
 219         DMU_OTN_UINT16_DATA = DMU_OT(DMU_BSWAP_UINT16, B_FALSE),
 220         DMU_OTN_UINT16_METADATA = DMU_OT(DMU_BSWAP_UINT16, B_TRUE),
 221         DMU_OTN_UINT32_DATA = DMU_OT(DMU_BSWAP_UINT32, B_FALSE),
 222         DMU_OTN_UINT32_METADATA = DMU_OT(DMU_BSWAP_UINT32, B_TRUE),
 223         DMU_OTN_UINT64_DATA = DMU_OT(DMU_BSWAP_UINT64, B_FALSE),
 224         DMU_OTN_UINT64_METADATA = DMU_OT(DMU_BSWAP_UINT64, B_TRUE),
 225         DMU_OTN_ZAP_DATA = DMU_OT(DMU_BSWAP_ZAP, B_FALSE),
 226         DMU_OTN_ZAP_METADATA = DMU_OT(DMU_BSWAP_ZAP, B_TRUE),
 227 } dmu_object_type_t;
 228 
 229 typedef enum txg_how {
 230         TXG_WAIT = 1,
 231         TXG_NOWAIT,
 232         TXG_WAITED,
 233 } txg_how_t;
 234 
 235 void byteswap_uint64_array(void *buf, size_t size);
 236 void byteswap_uint32_array(void *buf, size_t size);
 237 void byteswap_uint16_array(void *buf, size_t size);
 238 void byteswap_uint8_array(void *buf, size_t size);
 239 void zap_byteswap(void *buf, size_t size);
 240 void zfs_oldacl_byteswap(void *buf, size_t size);
 241 void zfs_acl_byteswap(void *buf, size_t size);
 242 void zfs_znode_byteswap(void *buf, size_t size);
 243 
 244 #define DS_FIND_SNAPSHOTS       (1<<0)
 245 #define DS_FIND_CHILDREN        (1<<1)
 246 #define DS_FIND_SERIALIZE       (1<<2)
 247 
 248 /*
 249  * The maximum number of bytes that can be accessed as part of one
 250  * operation, including metadata.
 251  */
 252 #define DMU_MAX_ACCESS (32 * 1024 * 1024) /* 32MB */
 253 #define DMU_MAX_DELETEBLKCNT (20480) /* ~5MB of indirect blocks */
 254 
 255 #define DMU_USERUSED_OBJECT     (-1ULL)
 256 #define DMU_GROUPUSED_OBJECT    (-2ULL)
 257 
 258 /*
 259  * artificial blkids for bonus buffer and spill blocks
 260  */
 261 #define DMU_BONUS_BLKID         (-1ULL)
 262 #define DMU_SPILL_BLKID         (-2ULL)
 263 /*
 264  * Public routines to create, destroy, open, and close objsets.
 265  */
 266 int dmu_objset_hold(const char *name, void *tag, objset_t **osp);
 267 int dmu_objset_own(const char *name, dmu_objset_type_t type,
 268     boolean_t readonly, void *tag, objset_t **osp);
 269 void dmu_objset_rele(objset_t *os, void *tag);
 270 void dmu_objset_disown(objset_t *os, void *tag);
 271 int dmu_objset_open_ds(struct dsl_dataset *ds, objset_t **osp);
 272 
 273 void dmu_objset_evict_dbufs(objset_t *os);
 274 int dmu_objset_create(const char *name, dmu_objset_type_t type, uint64_t flags,
 275     void (*func)(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx), void *arg);
 276 int dmu_objset_clone(const char *name, const char *origin);
 277 int dsl_destroy_snapshots_nvl(struct nvlist *snaps, boolean_t defer,
 278     struct nvlist *errlist);
 279 int dmu_objset_snapshot_one(const char *fsname, const char *snapname);
 280 int dmu_objset_snapshot_tmp(const char *, const char *, int);
 281 int dmu_objset_find(char *name, int func(const char *, void *), void *arg,
 282     int flags);
 283 void dmu_objset_byteswap(void *buf, size_t size);
 284 int dsl_dataset_rename_snapshot(const char *fsname,
 285     const char *oldsnapname, const char *newsnapname, boolean_t recursive);
 286 
 287 typedef struct dmu_buf {
 288         uint64_t db_object;             /* object that this buffer is part of */
 289         uint64_t db_offset;             /* byte offset in this object */
 290         uint64_t db_size;               /* size of buffer in bytes */
 291         void *db_data;                  /* data in buffer */
 292 } dmu_buf_t;
 293 
 294 /*
 295  * The names of zap entries in the DIRECTORY_OBJECT of the MOS.
 296  */
 297 #define DMU_POOL_DIRECTORY_OBJECT       1
 298 #define DMU_POOL_CONFIG                 "config"
 299 #define DMU_POOL_FEATURES_FOR_WRITE     "features_for_write"
 300 #define DMU_POOL_FEATURES_FOR_READ      "features_for_read"
 301 #define DMU_POOL_FEATURE_DESCRIPTIONS   "feature_descriptions"
 302 #define DMU_POOL_FEATURE_ENABLED_TXG    "feature_enabled_txg"
 303 #define DMU_POOL_ROOT_DATASET           "root_dataset"
 304 #define DMU_POOL_SYNC_BPOBJ             "sync_bplist"
 305 #define DMU_POOL_ERRLOG_SCRUB           "errlog_scrub"
 306 #define DMU_POOL_ERRLOG_LAST            "errlog_last"
 307 #define DMU_POOL_SPARES                 "spares"
 308 #define DMU_POOL_DEFLATE                "deflate"
 309 #define DMU_POOL_HISTORY                "history"
 310 #define DMU_POOL_PROPS                  "pool_props"
 311 #define DMU_POOL_L2CACHE                "l2cache"
 312 #define DMU_POOL_TMP_USERREFS           "tmp_userrefs"
 313 #define DMU_POOL_DDT                    "DDT-%s-%s-%s"
 314 #define DMU_POOL_DDT_STATS              "DDT-statistics"
 315 #define DMU_POOL_CREATION_VERSION       "creation_version"
 316 #define DMU_POOL_SCAN                   "scan"
 317 #define DMU_POOL_FREE_BPOBJ             "free_bpobj"
 318 #define DMU_POOL_BPTREE_OBJ             "bptree_obj"
 319 #define DMU_POOL_EMPTY_BPOBJ            "empty_bpobj"
 320 
 321 /*
 322  * Allocate an object from this objset.  The range of object numbers
 323  * available is (0, DN_MAX_OBJECT).  Object 0 is the meta-dnode.
 324  *
 325  * The transaction must be assigned to a txg.  The newly allocated
 326  * object will be "held" in the transaction (ie. you can modify the
 327  * newly allocated object in this transaction).
 328  *
 329  * dmu_object_alloc() chooses an object and returns it in *objectp.
 330  *
 331  * dmu_object_claim() allocates a specific object number.  If that
 332  * number is already allocated, it fails and returns EEXIST.
 333  *
 334  * Return 0 on success, or ENOSPC or EEXIST as specified above.
 335  */
 336 uint64_t dmu_object_alloc(objset_t *os, dmu_object_type_t ot,
 337     int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx);
 338 int dmu_object_claim(objset_t *os, uint64_t object, dmu_object_type_t ot,
 339     int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx);
 340 int dmu_object_reclaim(objset_t *os, uint64_t object, dmu_object_type_t ot,
 341     int blocksize, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *txp);
 342 
 343 /*
 344  * Free an object from this objset.
 345  *
 346  * The object's data will be freed as well (ie. you don't need to call
 347  * dmu_free(object, 0, -1, tx)).
 348  *
 349  * The object need not be held in the transaction.
 350  *
 351  * If there are any holds on this object's buffers (via dmu_buf_hold()),
 352  * or tx holds on the object (via dmu_tx_hold_object()), you can not
 353  * free it; it fails and returns EBUSY.
 354  *
 355  * If the object is not allocated, it fails and returns ENOENT.
 356  *
 357  * Return 0 on success, or EBUSY or ENOENT as specified above.
 358  */
 359 int dmu_object_free(objset_t *os, uint64_t object, dmu_tx_t *tx);
 360 
 361 /*
 362  * Find the next allocated or free object.
 363  *
 364  * The objectp parameter is in-out.  It will be updated to be the next
 365  * object which is allocated.  Ignore objects which have not been
 366  * modified since txg.
 367  *
 368  * XXX Can only be called on a objset with no dirty data.
 369  *
 370  * Returns 0 on success, or ENOENT if there are no more objects.
 371  */
 372 int dmu_object_next(objset_t *os, uint64_t *objectp,
 373     boolean_t hole, uint64_t txg);
 374 
 375 /*
 376  * Set the data blocksize for an object.
 377  *
 378  * The object cannot have any blocks allcated beyond the first.  If
 379  * the first block is allocated already, the new size must be greater
 380  * than the current block size.  If these conditions are not met,
 381  * ENOTSUP will be returned.
 382  *
 383  * Returns 0 on success, or EBUSY if there are any holds on the object
 384  * contents, or ENOTSUP as described above.
 385  */
 386 int dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size,
 387     int ibs, dmu_tx_t *tx);
 388 
 389 /*
 390  * Set the checksum property on a dnode.  The new checksum algorithm will
 391  * apply to all newly written blocks; existing blocks will not be affected.
 392  */
 393 void dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
 394     dmu_tx_t *tx);
 395 
 396 /*
 397  * Set the compress property on a dnode.  The new compression algorithm will
 398  * apply to all newly written blocks; existing blocks will not be affected.
 399  */
 400 void dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
 401     dmu_tx_t *tx);
 402 
 403 void
 404 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
 405     void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
 406     int compressed_size, int byteorder, dmu_tx_t *tx);
 407 
 408 /*
 409  * Decide how to write a block: checksum, compression, number of copies, etc.
 410  */
 411 #define WP_NOFILL       0x1
 412 #define WP_DMU_SYNC     0x2
 413 #define WP_SPILL        0x4
 414 
 415 void dmu_write_policy(objset_t *os, struct dnode *dn, int level, int wp,
 416     struct zio_prop *zp);
 417 /*
 418  * The bonus data is accessed more or less like a regular buffer.
 419  * You must dmu_bonus_hold() to get the buffer, which will give you a
 420  * dmu_buf_t with db_offset==-1ULL, and db_size = the size of the bonus
 421  * data.  As with any normal buffer, you must call dmu_buf_read() to
 422  * read db_data, dmu_buf_will_dirty() before modifying it, and the
 423  * object must be held in an assigned transaction before calling
 424  * dmu_buf_will_dirty.  You may use dmu_buf_set_user() on the bonus
 425  * buffer as well.  You must release your hold with dmu_buf_rele().
 426  *
 427  * Returns ENOENT, EIO, or 0.
 428  */
 429 int dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **);
 430 int dmu_bonus_max(void);
 431 int dmu_set_bonus(dmu_buf_t *, int, dmu_tx_t *);
 432 int dmu_set_bonustype(dmu_buf_t *, dmu_object_type_t, dmu_tx_t *);
 433 dmu_object_type_t dmu_get_bonustype(dmu_buf_t *);
 434 int dmu_rm_spill(objset_t *, uint64_t, dmu_tx_t *);
 435 
 436 /*
 437  * Special spill buffer support used by "SA" framework
 438  */
 439 
 440 int dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp);
 441 int dmu_spill_hold_by_dnode(struct dnode *dn, uint32_t flags,
 442     void *tag, dmu_buf_t **dbp);
 443 int dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp);
 444 
 445 /*
 446  * Obtain the DMU buffer from the specified object which contains the
 447  * specified offset.  dmu_buf_hold() puts a "hold" on the buffer, so
 448  * that it will remain in memory.  You must release the hold with
 449  * dmu_buf_rele().  You musn't access the dmu_buf_t after releasing your
 450  * hold.  You must have a hold on any dmu_buf_t* you pass to the DMU.
 451  *
 452  * You must call dmu_buf_read, dmu_buf_will_dirty, or dmu_buf_will_fill
 453  * on the returned buffer before reading or writing the buffer's
 454  * db_data.  The comments for those routines describe what particular
 455  * operations are valid after calling them.
 456  *
 457  * The object number must be a valid, allocated object number.
 458  */
 459 int dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
 460     void *tag, dmu_buf_t **, int flags);
 461 
 462 /*
 463  * Add a reference to a dmu buffer that has already been held via
 464  * dmu_buf_hold() in the current context.
 465  */
 466 void dmu_buf_add_ref(dmu_buf_t *db, void* tag);
 467 
 468 /*
 469  * Attempt to add a reference to a dmu buffer that is in an unknown state,
 470  * using a pointer that may have been invalidated by eviction processing.
 471  * The request will succeed if the passed in dbuf still represents the
 472  * same os/object/blkid, is ineligible for eviction, and has at least
 473  * one hold by a user other than the syncer.
 474  */
 475 boolean_t dmu_buf_try_add_ref(dmu_buf_t *, objset_t *os, uint64_t object,
 476     uint64_t blkid, void *tag);
 477 
 478 void dmu_buf_rele(dmu_buf_t *db, void *tag);
 479 uint64_t dmu_buf_refcount(dmu_buf_t *db);
 480 
 481 /*
 482  * dmu_buf_hold_array holds the DMU buffers which contain all bytes in a
 483  * range of an object.  A pointer to an array of dmu_buf_t*'s is
 484  * returned (in *dbpp).
 485  *
 486  * dmu_buf_rele_array releases the hold on an array of dmu_buf_t*'s, and
 487  * frees the array.  The hold on the array of buffers MUST be released
 488  * with dmu_buf_rele_array.  You can NOT release the hold on each buffer
 489  * individually with dmu_buf_rele.
 490  */
 491 int dmu_buf_hold_array_by_bonus(dmu_buf_t *db, uint64_t offset,
 492     uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp);
 493 void dmu_buf_rele_array(dmu_buf_t **, int numbufs, void *tag);
 494 
 495 typedef void dmu_buf_evict_func_t(void *user_ptr);
 496 
 497 /*
 498  * A DMU buffer user object may be associated with a dbuf for the
 499  * duration of its lifetime.  This allows the user of a dbuf (client)
 500  * to attach private data to a dbuf (e.g. in-core only data such as a
 501  * dnode_children_t, zap_t, or zap_leaf_t) and be optionally notified
 502  * when that dbuf has been evicted.  Clients typically respond to the
 503  * eviction notification by freeing their private data, thus ensuring
 504  * the same lifetime for both dbuf and private data.
 505  *
 506  * The mapping from a dmu_buf_user_t to any client private data is the
 507  * client's responsibility.  All current consumers of the API with private
 508  * data embed a dmu_buf_user_t as the first member of the structure for
 509  * their private data.  This allows conversions between the two types
 510  * with a simple cast.  Since the DMU buf user API never needs access
 511  * to the private data, other strategies can be employed if necessary
 512  * or convenient for the client (e.g. using container_of() to do the
 513  * conversion for private data that cannot have the dmu_buf_user_t as
 514  * its first member).
 515  *
 516  * Eviction callbacks are executed without the dbuf mutex held or any
 517  * other type of mechanism to guarantee that the dbuf is still available.
 518  * For this reason, users must assume the dbuf has already been freed
 519  * and not reference the dbuf from the callback context.
 520  *
 521  * Users requesting "immediate eviction" are notified as soon as the dbuf
 522  * is only referenced by dirty records (dirties == holds).  Otherwise the
 523  * notification occurs after eviction processing for the dbuf begins.
 524  */
 525 typedef struct dmu_buf_user {
 526         /*
 527          * Asynchronous user eviction callback state.
 528          */
 529         taskq_ent_t     dbu_tqent;
 530 
 531         /* This instance's eviction function pointer. */
 532         dmu_buf_evict_func_t *dbu_evict_func;
 533 #ifdef ZFS_DEBUG
 534         /*
 535          * Pointer to user's dbuf pointer.  NULL for clients that do
 536          * not associate a dbuf with their user data.
 537          *
 538          * The dbuf pointer is cleared upon eviction so as to catch
 539          * use-after-evict bugs in clients.
 540          */
 541         dmu_buf_t **dbu_clear_on_evict_dbufp;
 542 #endif
 543 } dmu_buf_user_t;
 544 
 545 /*
 546  * Initialize the given dmu_buf_user_t instance with the eviction function
 547  * evict_func, to be called when the user is evicted.
 548  *
 549  * NOTE: This function should only be called once on a given dmu_buf_user_t.
 550  *       To allow enforcement of this, dbu must already be zeroed on entry.
 551  */
 552 #ifdef __lint
 553 /* Very ugly, but it beats issuing suppression directives in many Makefiles. */
 554 extern void
 555 dmu_buf_init_user(dmu_buf_user_t *dbu, dmu_buf_evict_func_t *evict_func,
 556     dmu_buf_t **clear_on_evict_dbufp);
 557 #else /* __lint */
 558 inline void
 559 dmu_buf_init_user(dmu_buf_user_t *dbu, dmu_buf_evict_func_t *evict_func,
 560     dmu_buf_t **clear_on_evict_dbufp)
 561 {
 562         ASSERT(dbu->dbu_evict_func == NULL);
 563         ASSERT(evict_func != NULL);
 564         dbu->dbu_evict_func = evict_func;
 565 #ifdef ZFS_DEBUG
 566         dbu->dbu_clear_on_evict_dbufp = clear_on_evict_dbufp;
 567 #endif
 568 }
 569 #endif /* __lint */
 570 
 571 /*
 572  * Attach user data to a dbuf and mark it for normal (when the dbuf's
 573  * data is cleared or its reference count goes to zero) eviction processing.
 574  *
 575  * Returns NULL on success, or the existing user if another user currently
 576  * owns the buffer.
 577  */
 578 void *dmu_buf_set_user(dmu_buf_t *db, dmu_buf_user_t *user);
 579 
 580 /*
 581  * Attach user data to a dbuf and mark it for immediate (its dirty and
 582  * reference counts are equal) eviction processing.
 583  *
 584  * Returns NULL on success, or the existing user if another user currently
 585  * owns the buffer.
 586  */
 587 void *dmu_buf_set_user_ie(dmu_buf_t *db, dmu_buf_user_t *user);
 588 
 589 /*
 590  * Replace the current user of a dbuf.
 591  *
 592  * If given the current user of a dbuf, replaces the dbuf's user with
 593  * "new_user" and returns the user data pointer that was replaced.
 594  * Otherwise returns the current, and unmodified, dbuf user pointer.
 595  */
 596 void *dmu_buf_replace_user(dmu_buf_t *db,
 597     dmu_buf_user_t *old_user, dmu_buf_user_t *new_user);
 598 
 599 /*
 600  * Remove the specified user data for a DMU buffer.
 601  *
 602  * Returns the user that was removed on success, or the current user if
 603  * another user currently owns the buffer.
 604  */
 605 void *dmu_buf_remove_user(dmu_buf_t *db, dmu_buf_user_t *user);
 606 
 607 /*
 608  * Returns the user data (dmu_buf_user_t *) associated with this dbuf.
 609  */
 610 void *dmu_buf_get_user(dmu_buf_t *db);
 611 
 612 /* Block until any in-progress dmu buf user evictions complete. */
 613 void dmu_buf_user_evict_wait(void);
 614 
 615 /*
 616  * Returns the blkptr associated with this dbuf, or NULL if not set.
 617  */
 618 struct blkptr *dmu_buf_get_blkptr(dmu_buf_t *db);
 619 
 620 /*
 621  * Indicate that you are going to modify the buffer's data (db_data).
 622  *
 623  * The transaction (tx) must be assigned to a txg (ie. you've called
 624  * dmu_tx_assign()).  The buffer's object must be held in the tx
 625  * (ie. you've called dmu_tx_hold_object(tx, db->db_object)).
 626  */
 627 void dmu_buf_will_dirty(dmu_buf_t *db, dmu_tx_t *tx);
 628 
 629 /*
 630  * Tells if the given dbuf is freeable.
 631  */
 632 boolean_t dmu_buf_freeable(dmu_buf_t *);
 633 
 634 /*
 635  * You must create a transaction, then hold the objects which you will
 636  * (or might) modify as part of this transaction.  Then you must assign
 637  * the transaction to a transaction group.  Once the transaction has
 638  * been assigned, you can modify buffers which belong to held objects as
 639  * part of this transaction.  You can't modify buffers before the
 640  * transaction has been assigned; you can't modify buffers which don't
 641  * belong to objects which this transaction holds; you can't hold
 642  * objects once the transaction has been assigned.  You may hold an
 643  * object which you are going to free (with dmu_object_free()), but you
 644  * don't have to.
 645  *
 646  * You can abort the transaction before it has been assigned.
 647  *
 648  * Note that you may hold buffers (with dmu_buf_hold) at any time,
 649  * regardless of transaction state.
 650  */
 651 
 652 #define DMU_NEW_OBJECT  (-1ULL)
 653 #define DMU_OBJECT_END  (-1ULL)
 654 
 655 dmu_tx_t *dmu_tx_create(objset_t *os);
 656 void dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len);
 657 void dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off,
 658     uint64_t len);
 659 void dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name);
 660 void dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object);
 661 void dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object);
 662 void dmu_tx_hold_sa(dmu_tx_t *tx, struct sa_handle *hdl, boolean_t may_grow);
 663 void dmu_tx_hold_sa_create(dmu_tx_t *tx, int total_size);
 664 void dmu_tx_abort(dmu_tx_t *tx);
 665 int dmu_tx_assign(dmu_tx_t *tx, enum txg_how txg_how);
 666 void dmu_tx_wait(dmu_tx_t *tx);
 667 void dmu_tx_commit(dmu_tx_t *tx);
 668 void dmu_tx_mark_netfree(dmu_tx_t *tx);
 669 
 670 /*
 671  * To register a commit callback, dmu_tx_callback_register() must be called.
 672  *
 673  * dcb_data is a pointer to caller private data that is passed on as a
 674  * callback parameter. The caller is responsible for properly allocating and
 675  * freeing it.
 676  *
 677  * When registering a callback, the transaction must be already created, but
 678  * it cannot be committed or aborted. It can be assigned to a txg or not.
 679  *
 680  * The callback will be called after the transaction has been safely written
 681  * to stable storage and will also be called if the dmu_tx is aborted.
 682  * If there is any error which prevents the transaction from being committed to
 683  * disk, the callback will be called with a value of error != 0.
 684  */
 685 typedef void dmu_tx_callback_func_t(void *dcb_data, int error);
 686 
 687 void dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *dcb_func,
 688     void *dcb_data);
 689 
 690 /*
 691  * Free up the data blocks for a defined range of a file.  If size is
 692  * -1, the range from offset to end-of-file is freed.
 693  */
 694 int dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
 695         uint64_t size, dmu_tx_t *tx);
 696 int dmu_free_long_range(objset_t *os, uint64_t object, uint64_t offset,
 697         uint64_t size);
 698 int dmu_free_long_object(objset_t *os, uint64_t object);
 699 
 700 /*
 701  * Convenience functions.
 702  *
 703  * Canfail routines will return 0 on success, or an errno if there is a
 704  * nonrecoverable I/O error.
 705  */
 706 #define DMU_READ_PREFETCH       0 /* prefetch */
 707 #define DMU_READ_NO_PREFETCH    1 /* don't prefetch */
 708 int dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
 709         void *buf, uint32_t flags);
 710 void dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
 711         const void *buf, dmu_tx_t *tx);
 712 void dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
 713         dmu_tx_t *tx);
 714 int dmu_read_uio(objset_t *os, uint64_t object, struct uio *uio, uint64_t size);
 715 int dmu_read_uio_dbuf(dmu_buf_t *zdb, struct uio *uio, uint64_t size);
 716 int dmu_write_uio(objset_t *os, uint64_t object, struct uio *uio, uint64_t size,
 717     dmu_tx_t *tx);
 718 int dmu_write_uio_dbuf(dmu_buf_t *zdb, struct uio *uio, uint64_t size,
 719     dmu_tx_t *tx);
 720 int dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset,
 721     uint64_t size, struct page *pp, dmu_tx_t *tx);
 722 struct arc_buf *dmu_request_arcbuf(dmu_buf_t *handle, int size);
 723 void dmu_return_arcbuf(struct arc_buf *buf);
 724 void dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, struct arc_buf *buf,
 725     dmu_tx_t *tx);
 726 int dmu_xuio_init(struct xuio *uio, int niov);
 727 void dmu_xuio_fini(struct xuio *uio);
 728 int dmu_xuio_add(struct xuio *uio, struct arc_buf *abuf, offset_t off,
 729     size_t n);
 730 int dmu_xuio_cnt(struct xuio *uio);
 731 struct arc_buf *dmu_xuio_arcbuf(struct xuio *uio, int i);
 732 void dmu_xuio_clear(struct xuio *uio, int i);
 733 void xuio_stat_wbuf_copied();
 734 void xuio_stat_wbuf_nocopy();
 735 
 736 extern int zfs_prefetch_disable;
 737 extern int zfs_max_recordsize;
 738 
 739 /*
 740  * Asynchronously try to read in the data.
 741  */
 742 void dmu_prefetch(objset_t *os, uint64_t object, uint64_t offset,
 743     uint64_t len);
 744 
 745 typedef struct dmu_object_info {
 746         /* All sizes are in bytes unless otherwise indicated. */
 747         uint32_t doi_data_block_size;
 748         uint32_t doi_metadata_block_size;
 749         dmu_object_type_t doi_type;
 750         dmu_object_type_t doi_bonus_type;
 751         uint64_t doi_bonus_size;
 752         uint8_t doi_indirection;                /* 2 = dnode->indirect->data */
 753         uint8_t doi_checksum;
 754         uint8_t doi_compress;
 755         uint8_t doi_nblkptr;
 756         uint8_t doi_pad[4];
 757         uint64_t doi_physical_blocks_512;       /* data + metadata, 512b blks */
 758         uint64_t doi_max_offset;
 759         uint64_t doi_fill_count;                /* number of non-empty blocks */
 760 } dmu_object_info_t;
 761 
 762 typedef void arc_byteswap_func_t(void *buf, size_t size);
 763 
 764 typedef struct dmu_object_type_info {
 765         dmu_object_byteswap_t   ot_byteswap;
 766         boolean_t               ot_metadata;
 767         char                    *ot_name;
 768 } dmu_object_type_info_t;
 769 
 770 typedef struct dmu_object_byteswap_info {
 771         arc_byteswap_func_t     *ob_func;
 772         char                    *ob_name;
 773 } dmu_object_byteswap_info_t;
 774 
 775 extern const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES];
 776 extern const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS];
 777 
 778 /*
 779  * Get information on a DMU object.
 780  *
 781  * Return 0 on success or ENOENT if object is not allocated.
 782  *
 783  * If doi is NULL, just indicates whether the object exists.
 784  */
 785 int dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi);
 786 /* Like dmu_object_info, but faster if you have a held dnode in hand. */
 787 void dmu_object_info_from_dnode(struct dnode *dn, dmu_object_info_t *doi);
 788 /* Like dmu_object_info, but faster if you have a held dbuf in hand. */
 789 void dmu_object_info_from_db(dmu_buf_t *db, dmu_object_info_t *doi);
 790 /*
 791  * Like dmu_object_info_from_db, but faster still when you only care about
 792  * the size.  This is specifically optimized for zfs_getattr().
 793  */
 794 void dmu_object_size_from_db(dmu_buf_t *db, uint32_t *blksize,
 795     u_longlong_t *nblk512);
 796 
 797 typedef struct dmu_objset_stats {
 798         uint64_t dds_num_clones; /* number of clones of this */
 799         uint64_t dds_creation_txg;
 800         uint64_t dds_guid;
 801         dmu_objset_type_t dds_type;
 802         uint8_t dds_is_snapshot;
 803         uint8_t dds_inconsistent;
 804         char dds_origin[MAXNAMELEN];
 805 } dmu_objset_stats_t;
 806 
 807 /*
 808  * Get stats on a dataset.
 809  */
 810 void dmu_objset_fast_stat(objset_t *os, dmu_objset_stats_t *stat);
 811 
 812 /*
 813  * Add entries to the nvlist for all the objset's properties.  See
 814  * zfs_prop_table[] and zfs(1m) for details on the properties.
 815  */
 816 void dmu_objset_stats(objset_t *os, struct nvlist *nv);
 817 
 818 /*
 819  * Get the space usage statistics for statvfs().
 820  *
 821  * refdbytes is the amount of space "referenced" by this objset.
 822  * availbytes is the amount of space available to this objset, taking
 823  * into account quotas & reservations, assuming that no other objsets
 824  * use the space first.  These values correspond to the 'referenced' and
 825  * 'available' properties, described in the zfs(1m) manpage.
 826  *
 827  * usedobjs and availobjs are the number of objects currently allocated,
 828  * and available.
 829  */
 830 void dmu_objset_space(objset_t *os, uint64_t *refdbytesp, uint64_t *availbytesp,
 831     uint64_t *usedobjsp, uint64_t *availobjsp);
 832 
 833 /*
 834  * The fsid_guid is a 56-bit ID that can change to avoid collisions.
 835  * (Contrast with the ds_guid which is a 64-bit ID that will never
 836  * change, so there is a small probability that it will collide.)
 837  */
 838 uint64_t dmu_objset_fsid_guid(objset_t *os);
 839 
 840 /*
 841  * Get the [cm]time for an objset's snapshot dir
 842  */
 843 timestruc_t dmu_objset_snap_cmtime(objset_t *os);
 844 
 845 int dmu_objset_is_snapshot(objset_t *os);
 846 
 847 extern struct spa *dmu_objset_spa(objset_t *os);
 848 extern struct zilog *dmu_objset_zil(objset_t *os);
 849 extern struct dsl_pool *dmu_objset_pool(objset_t *os);
 850 extern struct dsl_dataset *dmu_objset_ds(objset_t *os);
 851 extern void dmu_objset_name(objset_t *os, char *buf);
 852 extern dmu_objset_type_t dmu_objset_type(objset_t *os);
 853 extern uint64_t dmu_objset_id(objset_t *os);
 854 extern zfs_sync_type_t dmu_objset_syncprop(objset_t *os);
 855 extern zfs_logbias_op_t dmu_objset_logbias(objset_t *os);
 856 extern int dmu_snapshot_list_next(objset_t *os, int namelen, char *name,
 857     uint64_t *id, uint64_t *offp, boolean_t *case_conflict);
 858 extern int dmu_snapshot_realname(objset_t *os, char *name, char *real,
 859     int maxlen, boolean_t *conflict);
 860 extern int dmu_dir_list_next(objset_t *os, int namelen, char *name,
 861     uint64_t *idp, uint64_t *offp);
 862 
 863 typedef int objset_used_cb_t(dmu_object_type_t bonustype,
 864     void *bonus, uint64_t *userp, uint64_t *groupp);
 865 extern void dmu_objset_register_type(dmu_objset_type_t ost,
 866     objset_used_cb_t *cb);
 867 extern void dmu_objset_set_user(objset_t *os, void *user_ptr);
 868 extern void *dmu_objset_get_user(objset_t *os);
 869 
 870 /*
 871  * Return the txg number for the given assigned transaction.
 872  */
 873 uint64_t dmu_tx_get_txg(dmu_tx_t *tx);
 874 
 875 /*
 876  * Synchronous write.
 877  * If a parent zio is provided this function initiates a write on the
 878  * provided buffer as a child of the parent zio.
 879  * In the absence of a parent zio, the write is completed synchronously.
 880  * At write completion, blk is filled with the bp of the written block.
 881  * Note that while the data covered by this function will be on stable
 882  * storage when the write completes this new data does not become a
 883  * permanent part of the file until the associated transaction commits.
 884  */
 885 
 886 /*
 887  * {zfs,zvol,ztest}_get_done() args
 888  */
 889 typedef struct zgd {
 890         struct zilog    *zgd_zilog;
 891         struct blkptr   *zgd_bp;
 892         dmu_buf_t       *zgd_db;
 893         struct rl       *zgd_rl;
 894         void            *zgd_private;
 895 } zgd_t;
 896 
 897 typedef void dmu_sync_cb_t(zgd_t *arg, int error);
 898 int dmu_sync(struct zio *zio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd);
 899 
 900 /*
 901  * Find the next hole or data block in file starting at *off
 902  * Return found offset in *off. Return ESRCH for end of file.
 903  */
 904 int dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole,
 905     uint64_t *off);
 906 
 907 /*
 908  * Check if a DMU object has any dirty blocks. If so, sync out
 909  * all pending transaction groups. Otherwise, this function
 910  * does not alter DMU state. This could be improved to only sync
 911  * out the necessary transaction groups for this particular
 912  * object.
 913  */
 914 int dmu_object_wait_synced(objset_t *os, uint64_t object);
 915 
 916 /*
 917  * Initial setup and final teardown.
 918  */
 919 extern void dmu_init(void);
 920 extern void dmu_fini(void);
 921 
 922 typedef void (*dmu_traverse_cb_t)(objset_t *os, void *arg, struct blkptr *bp,
 923     uint64_t object, uint64_t offset, int len);
 924 void dmu_traverse_objset(objset_t *os, uint64_t txg_start,
 925     dmu_traverse_cb_t cb, void *arg);
 926 
 927 int dmu_diff(const char *tosnap_name, const char *fromsnap_name,
 928     struct vnode *vp, offset_t *offp);
 929 
 930 /* CRC64 table */
 931 #define ZFS_CRC64_POLY  0xC96C5795D7870F42ULL   /* ECMA-182, reflected form */
 932 extern uint64_t zfs_crc64_table[256];
 933 
 934 extern int zfs_mdcomp_disable;
 935 
 936 #ifdef  __cplusplus
 937 }
 938 #endif
 939 
 940 #endif  /* _SYS_DMU_H */