1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
25 * Copyright (c) 2013, 2014, Nexenta Systems, Inc. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 */
28
29 /*
30 * SPA: Storage Pool Allocator
31 *
32 * This file contains all the routines used when modifying on-disk SPA state.
33 * This includes opening, importing, destroying, exporting a pool, and syncing a
34 * pool.
35 */
36
37 #include <sys/zfs_context.h>
38 #include <sys/fm/fs/zfs.h>
39 #include <sys/spa_impl.h>
40 #include <sys/zio.h>
41 #include <sys/zio_checksum.h>
42 #include <sys/dmu.h>
43 #include <sys/dmu_tx.h>
44 #include <sys/zap.h>
45 #include <sys/zil.h>
46 #include <sys/ddt.h>
47 #include <sys/vdev_impl.h>
48 #include <sys/metaslab.h>
49 #include <sys/metaslab_impl.h>
50 #include <sys/uberblock_impl.h>
51 #include <sys/txg.h>
52 #include <sys/avl.h>
53 #include <sys/dmu_traverse.h>
54 #include <sys/dmu_objset.h>
55 #include <sys/unique.h>
56 #include <sys/dsl_pool.h>
57 #include <sys/dsl_dataset.h>
58 #include <sys/dsl_dir.h>
59 #include <sys/dsl_prop.h>
60 #include <sys/dsl_synctask.h>
61 #include <sys/fs/zfs.h>
62 #include <sys/arc.h>
63 #include <sys/callb.h>
64 #include <sys/systeminfo.h>
65 #include <sys/spa_boot.h>
66 #include <sys/zfs_ioctl.h>
67 #include <sys/dsl_scan.h>
68 #include <sys/zfeature.h>
69 #include <sys/dsl_destroy.h>
70
71 #ifdef _KERNEL
72 #include <sys/bootprops.h>
73 #include <sys/callb.h>
74 #include <sys/cpupart.h>
75 #include <sys/pool.h>
76 #include <sys/sysdc.h>
77 #include <sys/zone.h>
78 #endif /* _KERNEL */
79
80 #include "zfs_prop.h"
81 #include "zfs_comutil.h"
82
83 /*
84 * The interval, in seconds, at which failed configuration cache file writes
85 * should be retried.
86 */
87 static int zfs_ccw_retry_interval = 300;
88
89 typedef enum zti_modes {
90 ZTI_MODE_FIXED, /* value is # of threads (min 1) */
91 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */
92 ZTI_MODE_NULL, /* don't create a taskq */
93 ZTI_NMODES
94 } zti_modes_t;
95
96 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) }
97 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 }
98 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 }
99
100 #define ZTI_N(n) ZTI_P(n, 1)
101 #define ZTI_ONE ZTI_N(1)
102
103 typedef struct zio_taskq_info {
104 zti_modes_t zti_mode;
105 uint_t zti_value;
106 uint_t zti_count;
107 } zio_taskq_info_t;
108
109 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
110 "issue", "issue_high", "intr", "intr_high"
111 };
112
113 /*
114 * This table defines the taskq settings for each ZFS I/O type. When
115 * initializing a pool, we use this table to create an appropriately sized
116 * taskq. Some operations are low volume and therefore have a small, static
117 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
118 * macros. Other operations process a large amount of data; the ZTI_BATCH
119 * macro causes us to create a taskq oriented for throughput. Some operations
120 * are so high frequency and short-lived that the taskq itself can become a a
121 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
122 * additional degree of parallelism specified by the number of threads per-
123 * taskq and the number of taskqs; when dispatching an event in this case, the
124 * particular taskq is chosen at random.
125 *
126 * The different taskq priorities are to handle the different contexts (issue
127 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
128 * need to be handled with minimum delay.
129 */
130 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
131 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */
132 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */
133 { ZTI_N(8), ZTI_NULL, ZTI_P(12, 8), ZTI_NULL }, /* READ */
134 { ZTI_BATCH, ZTI_N(5), ZTI_N(8), ZTI_N(5) }, /* WRITE */
135 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */
136 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */
137 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */
138 };
139
140 static void spa_sync_version(void *arg, dmu_tx_t *tx);
141 static void spa_sync_props(void *arg, dmu_tx_t *tx);
142 static boolean_t spa_has_active_shared_spare(spa_t *spa);
143 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
144 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
145 char **ereport);
146 static void spa_vdev_resilver_done(spa_t *spa);
147
148 uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */
149 id_t zio_taskq_psrset_bind = PS_NONE;
150 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
151 uint_t zio_taskq_basedc = 80; /* base duty cycle */
152
153 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */
154 extern int zfs_sync_pass_deferred_free;
155
156 /*
157 * This (illegal) pool name is used when temporarily importing a spa_t in order
158 * to get the vdev stats associated with the imported devices.
159 */
160 #define TRYIMPORT_NAME "$import"
161
162 /*
163 * ==========================================================================
164 * SPA properties routines
165 * ==========================================================================
166 */
167
168 /*
169 * Add a (source=src, propname=propval) list to an nvlist.
170 */
171 static void
172 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
173 uint64_t intval, zprop_source_t src)
174 {
175 const char *propname = zpool_prop_to_name(prop);
176 nvlist_t *propval;
177
178 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
179 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
180
181 if (strval != NULL)
182 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
183 else
184 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
185
186 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
187 nvlist_free(propval);
188 }
189
190 /*
191 * Get property values from the spa configuration.
192 */
193 static void
194 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
195 {
196 vdev_t *rvd = spa->spa_root_vdev;
197 dsl_pool_t *pool = spa->spa_dsl_pool;
198 uint64_t size, alloc, cap, version;
199 zprop_source_t src = ZPROP_SRC_NONE;
200 spa_config_dirent_t *dp;
201 metaslab_class_t *mc = spa_normal_class(spa);
202
203 ASSERT(MUTEX_HELD(&spa->spa_props_lock));
204
205 if (rvd != NULL) {
206 alloc = metaslab_class_get_alloc(spa_normal_class(spa));
207 size = metaslab_class_get_space(spa_normal_class(spa));
208 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
209 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
210 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
211 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
212 size - alloc, src);
213
214 spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
215 metaslab_class_fragmentation(mc), src);
216 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
217 metaslab_class_expandable_space(mc), src);
218 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
219 (spa_mode(spa) == FREAD), src);
220
221 cap = (size == 0) ? 0 : (alloc * 100 / size);
222 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
223
224 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
225 ddt_get_pool_dedup_ratio(spa), src);
226
227 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
228 rvd->vdev_state, src);
229
230 version = spa_version(spa);
231 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
232 src = ZPROP_SRC_DEFAULT;
233 else
234 src = ZPROP_SRC_LOCAL;
235 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
236 }
237
238 if (pool != NULL) {
239 /*
240 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
241 * when opening pools before this version freedir will be NULL.
242 */
243 if (pool->dp_free_dir != NULL) {
244 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
245 dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
246 src);
247 } else {
248 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
249 NULL, 0, src);
250 }
251
252 if (pool->dp_leak_dir != NULL) {
253 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
254 dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
255 src);
256 } else {
257 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
258 NULL, 0, src);
259 }
260 }
261
262 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
263
264 if (spa->spa_comment != NULL) {
265 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
266 0, ZPROP_SRC_LOCAL);
267 }
268
269 if (spa->spa_root != NULL)
270 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
271 0, ZPROP_SRC_LOCAL);
272
273 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
274 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
275 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
276 } else {
277 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
278 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
279 }
280
281 if ((dp = list_head(&spa->spa_config_list)) != NULL) {
282 if (dp->scd_path == NULL) {
283 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
284 "none", 0, ZPROP_SRC_LOCAL);
285 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
286 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
287 dp->scd_path, 0, ZPROP_SRC_LOCAL);
288 }
289 }
290 }
291
292 /*
293 * Get zpool property values.
294 */
295 int
296 spa_prop_get(spa_t *spa, nvlist_t **nvp)
297 {
298 objset_t *mos = spa->spa_meta_objset;
299 zap_cursor_t zc;
300 zap_attribute_t za;
301 int err;
302
303 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
304
305 mutex_enter(&spa->spa_props_lock);
306
307 /*
308 * Get properties from the spa config.
309 */
310 spa_prop_get_config(spa, nvp);
311
312 /* If no pool property object, no more prop to get. */
313 if (mos == NULL || spa->spa_pool_props_object == 0) {
314 mutex_exit(&spa->spa_props_lock);
315 return (0);
316 }
317
318 /*
319 * Get properties from the MOS pool property object.
320 */
321 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
322 (err = zap_cursor_retrieve(&zc, &za)) == 0;
323 zap_cursor_advance(&zc)) {
324 uint64_t intval = 0;
325 char *strval = NULL;
326 zprop_source_t src = ZPROP_SRC_DEFAULT;
327 zpool_prop_t prop;
328
329 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
330 continue;
331
332 switch (za.za_integer_length) {
333 case 8:
334 /* integer property */
335 if (za.za_first_integer !=
336 zpool_prop_default_numeric(prop))
337 src = ZPROP_SRC_LOCAL;
338
339 if (prop == ZPOOL_PROP_BOOTFS) {
340 dsl_pool_t *dp;
341 dsl_dataset_t *ds = NULL;
342
343 dp = spa_get_dsl(spa);
344 dsl_pool_config_enter(dp, FTAG);
345 if (err = dsl_dataset_hold_obj(dp,
346 za.za_first_integer, FTAG, &ds)) {
347 dsl_pool_config_exit(dp, FTAG);
348 break;
349 }
350
351 strval = kmem_alloc(
352 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
353 KM_SLEEP);
354 dsl_dataset_name(ds, strval);
355 dsl_dataset_rele(ds, FTAG);
356 dsl_pool_config_exit(dp, FTAG);
357 } else {
358 strval = NULL;
359 intval = za.za_first_integer;
360 }
361
362 spa_prop_add_list(*nvp, prop, strval, intval, src);
363
364 if (strval != NULL)
365 kmem_free(strval,
366 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
367
368 break;
369
370 case 1:
371 /* string property */
372 strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
373 err = zap_lookup(mos, spa->spa_pool_props_object,
374 za.za_name, 1, za.za_num_integers, strval);
375 if (err) {
376 kmem_free(strval, za.za_num_integers);
377 break;
378 }
379 spa_prop_add_list(*nvp, prop, strval, 0, src);
380 kmem_free(strval, za.za_num_integers);
381 break;
382
383 default:
384 break;
385 }
386 }
387 zap_cursor_fini(&zc);
388 mutex_exit(&spa->spa_props_lock);
389 out:
390 if (err && err != ENOENT) {
391 nvlist_free(*nvp);
392 *nvp = NULL;
393 return (err);
394 }
395
396 return (0);
397 }
398
399 /*
400 * Validate the given pool properties nvlist and modify the list
401 * for the property values to be set.
402 */
403 static int
404 spa_prop_validate(spa_t *spa, nvlist_t *props)
405 {
406 nvpair_t *elem;
407 int error = 0, reset_bootfs = 0;
408 uint64_t objnum = 0;
409 boolean_t has_feature = B_FALSE;
410
411 elem = NULL;
412 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
413 uint64_t intval;
414 char *strval, *slash, *check, *fname;
415 const char *propname = nvpair_name(elem);
416 zpool_prop_t prop = zpool_name_to_prop(propname);
417
418 switch (prop) {
419 case ZPROP_INVAL:
420 if (!zpool_prop_feature(propname)) {
421 error = SET_ERROR(EINVAL);
422 break;
423 }
424
425 /*
426 * Sanitize the input.
427 */
428 if (nvpair_type(elem) != DATA_TYPE_UINT64) {
429 error = SET_ERROR(EINVAL);
430 break;
431 }
432
433 if (nvpair_value_uint64(elem, &intval) != 0) {
434 error = SET_ERROR(EINVAL);
435 break;
436 }
437
438 if (intval != 0) {
439 error = SET_ERROR(EINVAL);
440 break;
441 }
442
443 fname = strchr(propname, '@') + 1;
444 if (zfeature_lookup_name(fname, NULL) != 0) {
445 error = SET_ERROR(EINVAL);
446 break;
447 }
448
449 has_feature = B_TRUE;
450 break;
451
452 case ZPOOL_PROP_VERSION:
453 error = nvpair_value_uint64(elem, &intval);
454 if (!error &&
455 (intval < spa_version(spa) ||
456 intval > SPA_VERSION_BEFORE_FEATURES ||
457 has_feature))
458 error = SET_ERROR(EINVAL);
459 break;
460
461 case ZPOOL_PROP_DELEGATION:
462 case ZPOOL_PROP_AUTOREPLACE:
463 case ZPOOL_PROP_LISTSNAPS:
464 case ZPOOL_PROP_AUTOEXPAND:
465 error = nvpair_value_uint64(elem, &intval);
466 if (!error && intval > 1)
467 error = SET_ERROR(EINVAL);
468 break;
469
470 case ZPOOL_PROP_BOOTFS:
471 /*
472 * If the pool version is less than SPA_VERSION_BOOTFS,
473 * or the pool is still being created (version == 0),
474 * the bootfs property cannot be set.
475 */
476 if (spa_version(spa) < SPA_VERSION_BOOTFS) {
477 error = SET_ERROR(ENOTSUP);
478 break;
479 }
480
481 /*
482 * Make sure the vdev config is bootable
483 */
484 if (!vdev_is_bootable(spa->spa_root_vdev)) {
485 error = SET_ERROR(ENOTSUP);
486 break;
487 }
488
489 reset_bootfs = 1;
490
491 error = nvpair_value_string(elem, &strval);
492
493 if (!error) {
494 objset_t *os;
495 uint64_t propval;
496
497 if (strval == NULL || strval[0] == '\0') {
498 objnum = zpool_prop_default_numeric(
499 ZPOOL_PROP_BOOTFS);
500 break;
501 }
502
503 if (error = dmu_objset_hold(strval, FTAG, &os))
504 break;
505
506 /*
507 * Must be ZPL, and its property settings
508 * must be supported by GRUB (compression
509 * is not gzip, and large blocks are not used).
510 */
511
512 if (dmu_objset_type(os) != DMU_OST_ZFS) {
513 error = SET_ERROR(ENOTSUP);
514 } else if ((error =
515 dsl_prop_get_int_ds(dmu_objset_ds(os),
516 zfs_prop_to_name(ZFS_PROP_COMPRESSION),
517 &propval)) == 0 &&
518 !BOOTFS_COMPRESS_VALID(propval)) {
519 error = SET_ERROR(ENOTSUP);
520 } else if ((error =
521 dsl_prop_get_int_ds(dmu_objset_ds(os),
522 zfs_prop_to_name(ZFS_PROP_RECORDSIZE),
523 &propval)) == 0 &&
524 propval > SPA_OLD_MAXBLOCKSIZE) {
525 error = SET_ERROR(ENOTSUP);
526 } else {
527 objnum = dmu_objset_id(os);
528 }
529 dmu_objset_rele(os, FTAG);
530 }
531 break;
532
533 case ZPOOL_PROP_FAILUREMODE:
534 error = nvpair_value_uint64(elem, &intval);
535 if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
536 intval > ZIO_FAILURE_MODE_PANIC))
537 error = SET_ERROR(EINVAL);
538
539 /*
540 * This is a special case which only occurs when
541 * the pool has completely failed. This allows
542 * the user to change the in-core failmode property
543 * without syncing it out to disk (I/Os might
544 * currently be blocked). We do this by returning
545 * EIO to the caller (spa_prop_set) to trick it
546 * into thinking we encountered a property validation
547 * error.
548 */
549 if (!error && spa_suspended(spa)) {
550 spa->spa_failmode = intval;
551 error = SET_ERROR(EIO);
552 }
553 break;
554
555 case ZPOOL_PROP_CACHEFILE:
556 if ((error = nvpair_value_string(elem, &strval)) != 0)
557 break;
558
559 if (strval[0] == '\0')
560 break;
561
562 if (strcmp(strval, "none") == 0)
563 break;
564
565 if (strval[0] != '/') {
566 error = SET_ERROR(EINVAL);
567 break;
568 }
569
570 slash = strrchr(strval, '/');
571 ASSERT(slash != NULL);
572
573 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
574 strcmp(slash, "/..") == 0)
575 error = SET_ERROR(EINVAL);
576 break;
577
578 case ZPOOL_PROP_COMMENT:
579 if ((error = nvpair_value_string(elem, &strval)) != 0)
580 break;
581 for (check = strval; *check != '\0'; check++) {
582 /*
583 * The kernel doesn't have an easy isprint()
584 * check. For this kernel check, we merely
585 * check ASCII apart from DEL. Fix this if
586 * there is an easy-to-use kernel isprint().
587 */
588 if (*check >= 0x7f) {
589 error = SET_ERROR(EINVAL);
590 break;
591 }
592 check++;
593 }
594 if (strlen(strval) > ZPROP_MAX_COMMENT)
595 error = E2BIG;
596 break;
597
598 case ZPOOL_PROP_DEDUPDITTO:
599 if (spa_version(spa) < SPA_VERSION_DEDUP)
600 error = SET_ERROR(ENOTSUP);
601 else
602 error = nvpair_value_uint64(elem, &intval);
603 if (error == 0 &&
604 intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
605 error = SET_ERROR(EINVAL);
606 break;
607 }
608
609 if (error)
610 break;
611 }
612
613 if (!error && reset_bootfs) {
614 error = nvlist_remove(props,
615 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
616
617 if (!error) {
618 error = nvlist_add_uint64(props,
619 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
620 }
621 }
622
623 return (error);
624 }
625
626 void
627 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
628 {
629 char *cachefile;
630 spa_config_dirent_t *dp;
631
632 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
633 &cachefile) != 0)
634 return;
635
636 dp = kmem_alloc(sizeof (spa_config_dirent_t),
637 KM_SLEEP);
638
639 if (cachefile[0] == '\0')
640 dp->scd_path = spa_strdup(spa_config_path);
641 else if (strcmp(cachefile, "none") == 0)
642 dp->scd_path = NULL;
643 else
644 dp->scd_path = spa_strdup(cachefile);
645
646 list_insert_head(&spa->spa_config_list, dp);
647 if (need_sync)
648 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
649 }
650
651 int
652 spa_prop_set(spa_t *spa, nvlist_t *nvp)
653 {
654 int error;
655 nvpair_t *elem = NULL;
656 boolean_t need_sync = B_FALSE;
657
658 if ((error = spa_prop_validate(spa, nvp)) != 0)
659 return (error);
660
661 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
662 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
663
664 if (prop == ZPOOL_PROP_CACHEFILE ||
665 prop == ZPOOL_PROP_ALTROOT ||
666 prop == ZPOOL_PROP_READONLY)
667 continue;
668
669 if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
670 uint64_t ver;
671
672 if (prop == ZPOOL_PROP_VERSION) {
673 VERIFY(nvpair_value_uint64(elem, &ver) == 0);
674 } else {
675 ASSERT(zpool_prop_feature(nvpair_name(elem)));
676 ver = SPA_VERSION_FEATURES;
677 need_sync = B_TRUE;
678 }
679
680 /* Save time if the version is already set. */
681 if (ver == spa_version(spa))
682 continue;
683
684 /*
685 * In addition to the pool directory object, we might
686 * create the pool properties object, the features for
687 * read object, the features for write object, or the
688 * feature descriptions object.
689 */
690 error = dsl_sync_task(spa->spa_name, NULL,
691 spa_sync_version, &ver,
692 6, ZFS_SPACE_CHECK_RESERVED);
693 if (error)
694 return (error);
695 continue;
696 }
697
698 need_sync = B_TRUE;
699 break;
700 }
701
702 if (need_sync) {
703 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
704 nvp, 6, ZFS_SPACE_CHECK_RESERVED));
705 }
706
707 return (0);
708 }
709
710 /*
711 * If the bootfs property value is dsobj, clear it.
712 */
713 void
714 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
715 {
716 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
717 VERIFY(zap_remove(spa->spa_meta_objset,
718 spa->spa_pool_props_object,
719 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
720 spa->spa_bootfs = 0;
721 }
722 }
723
724 /*ARGSUSED*/
725 static int
726 spa_change_guid_check(void *arg, dmu_tx_t *tx)
727 {
728 uint64_t *newguid = arg;
729 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
730 vdev_t *rvd = spa->spa_root_vdev;
731 uint64_t vdev_state;
732
733 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
734 vdev_state = rvd->vdev_state;
735 spa_config_exit(spa, SCL_STATE, FTAG);
736
737 if (vdev_state != VDEV_STATE_HEALTHY)
738 return (SET_ERROR(ENXIO));
739
740 ASSERT3U(spa_guid(spa), !=, *newguid);
741
742 return (0);
743 }
744
745 static void
746 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
747 {
748 uint64_t *newguid = arg;
749 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
750 uint64_t oldguid;
751 vdev_t *rvd = spa->spa_root_vdev;
752
753 oldguid = spa_guid(spa);
754
755 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
756 rvd->vdev_guid = *newguid;
757 rvd->vdev_guid_sum += (*newguid - oldguid);
758 vdev_config_dirty(rvd);
759 spa_config_exit(spa, SCL_STATE, FTAG);
760
761 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
762 oldguid, *newguid);
763 }
764
765 /*
766 * Change the GUID for the pool. This is done so that we can later
767 * re-import a pool built from a clone of our own vdevs. We will modify
768 * the root vdev's guid, our own pool guid, and then mark all of our
769 * vdevs dirty. Note that we must make sure that all our vdevs are
770 * online when we do this, or else any vdevs that weren't present
771 * would be orphaned from our pool. We are also going to issue a
772 * sysevent to update any watchers.
773 */
774 int
775 spa_change_guid(spa_t *spa)
776 {
777 int error;
778 uint64_t guid;
779
780 mutex_enter(&spa->spa_vdev_top_lock);
781 mutex_enter(&spa_namespace_lock);
782 guid = spa_generate_guid(NULL);
783
784 error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
785 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
786
787 if (error == 0) {
788 spa_config_sync(spa, B_FALSE, B_TRUE);
789 spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
790 }
791
792 mutex_exit(&spa_namespace_lock);
793 mutex_exit(&spa->spa_vdev_top_lock);
794
795 return (error);
796 }
797
798 /*
799 * ==========================================================================
800 * SPA state manipulation (open/create/destroy/import/export)
801 * ==========================================================================
802 */
803
804 static int
805 spa_error_entry_compare(const void *a, const void *b)
806 {
807 spa_error_entry_t *sa = (spa_error_entry_t *)a;
808 spa_error_entry_t *sb = (spa_error_entry_t *)b;
809 int ret;
810
811 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
812 sizeof (zbookmark_phys_t));
813
814 if (ret < 0)
815 return (-1);
816 else if (ret > 0)
817 return (1);
818 else
819 return (0);
820 }
821
822 /*
823 * Utility function which retrieves copies of the current logs and
824 * re-initializes them in the process.
825 */
826 void
827 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
828 {
829 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
830
831 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
832 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
833
834 avl_create(&spa->spa_errlist_scrub,
835 spa_error_entry_compare, sizeof (spa_error_entry_t),
836 offsetof(spa_error_entry_t, se_avl));
837 avl_create(&spa->spa_errlist_last,
838 spa_error_entry_compare, sizeof (spa_error_entry_t),
839 offsetof(spa_error_entry_t, se_avl));
840 }
841
842 static void
843 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
844 {
845 const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
846 enum zti_modes mode = ztip->zti_mode;
847 uint_t value = ztip->zti_value;
848 uint_t count = ztip->zti_count;
849 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
850 char name[32];
851 uint_t flags = 0;
852 boolean_t batch = B_FALSE;
853
854 if (mode == ZTI_MODE_NULL) {
855 tqs->stqs_count = 0;
856 tqs->stqs_taskq = NULL;
857 return;
858 }
859
860 ASSERT3U(count, >, 0);
861
862 tqs->stqs_count = count;
863 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
864
865 switch (mode) {
866 case ZTI_MODE_FIXED:
867 ASSERT3U(value, >=, 1);
868 value = MAX(value, 1);
869 break;
870
871 case ZTI_MODE_BATCH:
872 batch = B_TRUE;
873 flags |= TASKQ_THREADS_CPU_PCT;
874 value = zio_taskq_batch_pct;
875 break;
876
877 default:
878 panic("unrecognized mode for %s_%s taskq (%u:%u) in "
879 "spa_activate()",
880 zio_type_name[t], zio_taskq_types[q], mode, value);
881 break;
882 }
883
884 for (uint_t i = 0; i < count; i++) {
885 taskq_t *tq;
886
887 if (count > 1) {
888 (void) snprintf(name, sizeof (name), "%s_%s_%u",
889 zio_type_name[t], zio_taskq_types[q], i);
890 } else {
891 (void) snprintf(name, sizeof (name), "%s_%s",
892 zio_type_name[t], zio_taskq_types[q]);
893 }
894
895 if (zio_taskq_sysdc && spa->spa_proc != &p0) {
896 if (batch)
897 flags |= TASKQ_DC_BATCH;
898
899 tq = taskq_create_sysdc(name, value, 50, INT_MAX,
900 spa->spa_proc, zio_taskq_basedc, flags);
901 } else {
902 pri_t pri = maxclsyspri;
903 /*
904 * The write issue taskq can be extremely CPU
905 * intensive. Run it at slightly lower priority
906 * than the other taskqs.
907 */
908 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
909 pri--;
910
911 tq = taskq_create_proc(name, value, pri, 50,
912 INT_MAX, spa->spa_proc, flags);
913 }
914
915 tqs->stqs_taskq[i] = tq;
916 }
917 }
918
919 static void
920 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
921 {
922 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
923
924 if (tqs->stqs_taskq == NULL) {
925 ASSERT0(tqs->stqs_count);
926 return;
927 }
928
929 for (uint_t i = 0; i < tqs->stqs_count; i++) {
930 ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
931 taskq_destroy(tqs->stqs_taskq[i]);
932 }
933
934 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
935 tqs->stqs_taskq = NULL;
936 }
937
938 /*
939 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
940 * Note that a type may have multiple discrete taskqs to avoid lock contention
941 * on the taskq itself. In that case we choose which taskq at random by using
942 * the low bits of gethrtime().
943 */
944 void
945 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
946 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
947 {
948 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
949 taskq_t *tq;
950
951 ASSERT3P(tqs->stqs_taskq, !=, NULL);
952 ASSERT3U(tqs->stqs_count, !=, 0);
953
954 if (tqs->stqs_count == 1) {
955 tq = tqs->stqs_taskq[0];
956 } else {
957 tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
958 }
959
960 taskq_dispatch_ent(tq, func, arg, flags, ent);
961 }
962
963 static void
964 spa_create_zio_taskqs(spa_t *spa)
965 {
966 for (int t = 0; t < ZIO_TYPES; t++) {
967 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
968 spa_taskqs_init(spa, t, q);
969 }
970 }
971 }
972
973 #ifdef _KERNEL
974 static void
975 spa_thread(void *arg)
976 {
977 callb_cpr_t cprinfo;
978
979 spa_t *spa = arg;
980 user_t *pu = PTOU(curproc);
981
982 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
983 spa->spa_name);
984
985 ASSERT(curproc != &p0);
986 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
987 "zpool-%s", spa->spa_name);
988 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
989
990 /* bind this thread to the requested psrset */
991 if (zio_taskq_psrset_bind != PS_NONE) {
992 pool_lock();
993 mutex_enter(&cpu_lock);
994 mutex_enter(&pidlock);
995 mutex_enter(&curproc->p_lock);
996
997 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
998 0, NULL, NULL) == 0) {
999 curthread->t_bind_pset = zio_taskq_psrset_bind;
1000 } else {
1001 cmn_err(CE_WARN,
1002 "Couldn't bind process for zfs pool \"%s\" to "
1003 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1004 }
1005
1006 mutex_exit(&curproc->p_lock);
1007 mutex_exit(&pidlock);
1008 mutex_exit(&cpu_lock);
1009 pool_unlock();
1010 }
1011
1012 if (zio_taskq_sysdc) {
1013 sysdc_thread_enter(curthread, 100, 0);
1014 }
1015
1016 spa->spa_proc = curproc;
1017 spa->spa_did = curthread->t_did;
1018
1019 spa_create_zio_taskqs(spa);
1020
1021 mutex_enter(&spa->spa_proc_lock);
1022 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1023
1024 spa->spa_proc_state = SPA_PROC_ACTIVE;
1025 cv_broadcast(&spa->spa_proc_cv);
1026
1027 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1028 while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1029 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1030 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1031
1032 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1033 spa->spa_proc_state = SPA_PROC_GONE;
1034 spa->spa_proc = &p0;
1035 cv_broadcast(&spa->spa_proc_cv);
1036 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */
1037
1038 mutex_enter(&curproc->p_lock);
1039 lwp_exit();
1040 }
1041 #endif
1042
1043 /*
1044 * Activate an uninitialized pool.
1045 */
1046 static void
1047 spa_activate(spa_t *spa, int mode)
1048 {
1049 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1050
1051 spa->spa_state = POOL_STATE_ACTIVE;
1052 spa->spa_mode = mode;
1053
1054 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1055 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1056
1057 /* Try to create a covering process */
1058 mutex_enter(&spa->spa_proc_lock);
1059 ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1060 ASSERT(spa->spa_proc == &p0);
1061 spa->spa_did = 0;
1062
1063 /* Only create a process if we're going to be around a while. */
1064 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1065 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1066 NULL, 0) == 0) {
1067 spa->spa_proc_state = SPA_PROC_CREATED;
1068 while (spa->spa_proc_state == SPA_PROC_CREATED) {
1069 cv_wait(&spa->spa_proc_cv,
1070 &spa->spa_proc_lock);
1071 }
1072 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1073 ASSERT(spa->spa_proc != &p0);
1074 ASSERT(spa->spa_did != 0);
1075 } else {
1076 #ifdef _KERNEL
1077 cmn_err(CE_WARN,
1078 "Couldn't create process for zfs pool \"%s\"\n",
1079 spa->spa_name);
1080 #endif
1081 }
1082 }
1083 mutex_exit(&spa->spa_proc_lock);
1084
1085 /* If we didn't create a process, we need to create our taskqs. */
1086 if (spa->spa_proc == &p0) {
1087 spa_create_zio_taskqs(spa);
1088 }
1089
1090 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1091 offsetof(vdev_t, vdev_config_dirty_node));
1092 list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1093 offsetof(objset_t, os_evicting_node));
1094 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1095 offsetof(vdev_t, vdev_state_dirty_node));
1096
1097 txg_list_create(&spa->spa_vdev_txg_list,
1098 offsetof(struct vdev, vdev_txg_node));
1099
1100 avl_create(&spa->spa_errlist_scrub,
1101 spa_error_entry_compare, sizeof (spa_error_entry_t),
1102 offsetof(spa_error_entry_t, se_avl));
1103 avl_create(&spa->spa_errlist_last,
1104 spa_error_entry_compare, sizeof (spa_error_entry_t),
1105 offsetof(spa_error_entry_t, se_avl));
1106 }
1107
1108 /*
1109 * Opposite of spa_activate().
1110 */
1111 static void
1112 spa_deactivate(spa_t *spa)
1113 {
1114 ASSERT(spa->spa_sync_on == B_FALSE);
1115 ASSERT(spa->spa_dsl_pool == NULL);
1116 ASSERT(spa->spa_root_vdev == NULL);
1117 ASSERT(spa->spa_async_zio_root == NULL);
1118 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1119
1120 spa_evicting_os_wait(spa);
1121
1122 txg_list_destroy(&spa->spa_vdev_txg_list);
1123
1124 list_destroy(&spa->spa_config_dirty_list);
1125 list_destroy(&spa->spa_evicting_os_list);
1126 list_destroy(&spa->spa_state_dirty_list);
1127
1128 for (int t = 0; t < ZIO_TYPES; t++) {
1129 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1130 spa_taskqs_fini(spa, t, q);
1131 }
1132 }
1133
1134 metaslab_class_destroy(spa->spa_normal_class);
1135 spa->spa_normal_class = NULL;
1136
1137 metaslab_class_destroy(spa->spa_log_class);
1138 spa->spa_log_class = NULL;
1139
1140 /*
1141 * If this was part of an import or the open otherwise failed, we may
1142 * still have errors left in the queues. Empty them just in case.
1143 */
1144 spa_errlog_drain(spa);
1145
1146 avl_destroy(&spa->spa_errlist_scrub);
1147 avl_destroy(&spa->spa_errlist_last);
1148
1149 spa->spa_state = POOL_STATE_UNINITIALIZED;
1150
1151 mutex_enter(&spa->spa_proc_lock);
1152 if (spa->spa_proc_state != SPA_PROC_NONE) {
1153 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1154 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1155 cv_broadcast(&spa->spa_proc_cv);
1156 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1157 ASSERT(spa->spa_proc != &p0);
1158 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1159 }
1160 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1161 spa->spa_proc_state = SPA_PROC_NONE;
1162 }
1163 ASSERT(spa->spa_proc == &p0);
1164 mutex_exit(&spa->spa_proc_lock);
1165
1166 /*
1167 * We want to make sure spa_thread() has actually exited the ZFS
1168 * module, so that the module can't be unloaded out from underneath
1169 * it.
1170 */
1171 if (spa->spa_did != 0) {
1172 thread_join(spa->spa_did);
1173 spa->spa_did = 0;
1174 }
1175 }
1176
1177 /*
1178 * Verify a pool configuration, and construct the vdev tree appropriately. This
1179 * will create all the necessary vdevs in the appropriate layout, with each vdev
1180 * in the CLOSED state. This will prep the pool before open/creation/import.
1181 * All vdev validation is done by the vdev_alloc() routine.
1182 */
1183 static int
1184 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1185 uint_t id, int atype)
1186 {
1187 nvlist_t **child;
1188 uint_t children;
1189 int error;
1190
1191 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1192 return (error);
1193
1194 if ((*vdp)->vdev_ops->vdev_op_leaf)
1195 return (0);
1196
1197 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1198 &child, &children);
1199
1200 if (error == ENOENT)
1201 return (0);
1202
1203 if (error) {
1204 vdev_free(*vdp);
1205 *vdp = NULL;
1206 return (SET_ERROR(EINVAL));
1207 }
1208
1209 for (int c = 0; c < children; c++) {
1210 vdev_t *vd;
1211 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1212 atype)) != 0) {
1213 vdev_free(*vdp);
1214 *vdp = NULL;
1215 return (error);
1216 }
1217 }
1218
1219 ASSERT(*vdp != NULL);
1220
1221 return (0);
1222 }
1223
1224 /*
1225 * Opposite of spa_load().
1226 */
1227 static void
1228 spa_unload(spa_t *spa)
1229 {
1230 int i;
1231
1232 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1233
1234 /*
1235 * Stop async tasks.
1236 */
1237 spa_async_suspend(spa);
1238
1239 /*
1240 * Stop syncing.
1241 */
1242 if (spa->spa_sync_on) {
1243 txg_sync_stop(spa->spa_dsl_pool);
1244 spa->spa_sync_on = B_FALSE;
1245 }
1246
1247 /*
1248 * Wait for any outstanding async I/O to complete.
1249 */
1250 if (spa->spa_async_zio_root != NULL) {
1251 for (int i = 0; i < max_ncpus; i++)
1252 (void) zio_wait(spa->spa_async_zio_root[i]);
1253 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1254 spa->spa_async_zio_root = NULL;
1255 }
1256
1257 bpobj_close(&spa->spa_deferred_bpobj);
1258
1259 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1260
1261 /*
1262 * Close all vdevs.
1263 */
1264 if (spa->spa_root_vdev)
1265 vdev_free(spa->spa_root_vdev);
1266 ASSERT(spa->spa_root_vdev == NULL);
1267
1268 /*
1269 * Close the dsl pool.
1270 */
1271 if (spa->spa_dsl_pool) {
1272 dsl_pool_close(spa->spa_dsl_pool);
1273 spa->spa_dsl_pool = NULL;
1274 spa->spa_meta_objset = NULL;
1275 }
1276
1277 ddt_unload(spa);
1278
1279
1280 /*
1281 * Drop and purge level 2 cache
1282 */
1283 spa_l2cache_drop(spa);
1284
1285 for (i = 0; i < spa->spa_spares.sav_count; i++)
1286 vdev_free(spa->spa_spares.sav_vdevs[i]);
1287 if (spa->spa_spares.sav_vdevs) {
1288 kmem_free(spa->spa_spares.sav_vdevs,
1289 spa->spa_spares.sav_count * sizeof (void *));
1290 spa->spa_spares.sav_vdevs = NULL;
1291 }
1292 if (spa->spa_spares.sav_config) {
1293 nvlist_free(spa->spa_spares.sav_config);
1294 spa->spa_spares.sav_config = NULL;
1295 }
1296 spa->spa_spares.sav_count = 0;
1297
1298 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1299 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1300 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1301 }
1302 if (spa->spa_l2cache.sav_vdevs) {
1303 kmem_free(spa->spa_l2cache.sav_vdevs,
1304 spa->spa_l2cache.sav_count * sizeof (void *));
1305 spa->spa_l2cache.sav_vdevs = NULL;
1306 }
1307 if (spa->spa_l2cache.sav_config) {
1308 nvlist_free(spa->spa_l2cache.sav_config);
1309 spa->spa_l2cache.sav_config = NULL;
1310 }
1311 spa->spa_l2cache.sav_count = 0;
1312
1313 spa->spa_async_suspended = 0;
1314
1315 if (spa->spa_comment != NULL) {
1316 spa_strfree(spa->spa_comment);
1317 spa->spa_comment = NULL;
1318 }
1319
1320 spa_config_exit(spa, SCL_ALL, FTAG);
1321 }
1322
1323 /*
1324 * Load (or re-load) the current list of vdevs describing the active spares for
1325 * this pool. When this is called, we have some form of basic information in
1326 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and
1327 * then re-generate a more complete list including status information.
1328 */
1329 static void
1330 spa_load_spares(spa_t *spa)
1331 {
1332 nvlist_t **spares;
1333 uint_t nspares;
1334 int i;
1335 vdev_t *vd, *tvd;
1336
1337 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1338
1339 /*
1340 * First, close and free any existing spare vdevs.
1341 */
1342 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1343 vd = spa->spa_spares.sav_vdevs[i];
1344
1345 /* Undo the call to spa_activate() below */
1346 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1347 B_FALSE)) != NULL && tvd->vdev_isspare)
1348 spa_spare_remove(tvd);
1349 vdev_close(vd);
1350 vdev_free(vd);
1351 }
1352
1353 if (spa->spa_spares.sav_vdevs)
1354 kmem_free(spa->spa_spares.sav_vdevs,
1355 spa->spa_spares.sav_count * sizeof (void *));
1356
1357 if (spa->spa_spares.sav_config == NULL)
1358 nspares = 0;
1359 else
1360 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1361 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1362
1363 spa->spa_spares.sav_count = (int)nspares;
1364 spa->spa_spares.sav_vdevs = NULL;
1365
1366 if (nspares == 0)
1367 return;
1368
1369 /*
1370 * Construct the array of vdevs, opening them to get status in the
1371 * process. For each spare, there is potentially two different vdev_t
1372 * structures associated with it: one in the list of spares (used only
1373 * for basic validation purposes) and one in the active vdev
1374 * configuration (if it's spared in). During this phase we open and
1375 * validate each vdev on the spare list. If the vdev also exists in the
1376 * active configuration, then we also mark this vdev as an active spare.
1377 */
1378 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1379 KM_SLEEP);
1380 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1381 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1382 VDEV_ALLOC_SPARE) == 0);
1383 ASSERT(vd != NULL);
1384
1385 spa->spa_spares.sav_vdevs[i] = vd;
1386
1387 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1388 B_FALSE)) != NULL) {
1389 if (!tvd->vdev_isspare)
1390 spa_spare_add(tvd);
1391
1392 /*
1393 * We only mark the spare active if we were successfully
1394 * able to load the vdev. Otherwise, importing a pool
1395 * with a bad active spare would result in strange
1396 * behavior, because multiple pool would think the spare
1397 * is actively in use.
1398 *
1399 * There is a vulnerability here to an equally bizarre
1400 * circumstance, where a dead active spare is later
1401 * brought back to life (onlined or otherwise). Given
1402 * the rarity of this scenario, and the extra complexity
1403 * it adds, we ignore the possibility.
1404 */
1405 if (!vdev_is_dead(tvd))
1406 spa_spare_activate(tvd);
1407 }
1408
1409 vd->vdev_top = vd;
1410 vd->vdev_aux = &spa->spa_spares;
1411
1412 if (vdev_open(vd) != 0)
1413 continue;
1414
1415 if (vdev_validate_aux(vd) == 0)
1416 spa_spare_add(vd);
1417 }
1418
1419 /*
1420 * Recompute the stashed list of spares, with status information
1421 * this time.
1422 */
1423 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1424 DATA_TYPE_NVLIST_ARRAY) == 0);
1425
1426 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1427 KM_SLEEP);
1428 for (i = 0; i < spa->spa_spares.sav_count; i++)
1429 spares[i] = vdev_config_generate(spa,
1430 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1431 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1432 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1433 for (i = 0; i < spa->spa_spares.sav_count; i++)
1434 nvlist_free(spares[i]);
1435 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1436 }
1437
1438 /*
1439 * Load (or re-load) the current list of vdevs describing the active l2cache for
1440 * this pool. When this is called, we have some form of basic information in
1441 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and
1442 * then re-generate a more complete list including status information.
1443 * Devices which are already active have their details maintained, and are
1444 * not re-opened.
1445 */
1446 static void
1447 spa_load_l2cache(spa_t *spa)
1448 {
1449 nvlist_t **l2cache;
1450 uint_t nl2cache;
1451 int i, j, oldnvdevs;
1452 uint64_t guid;
1453 vdev_t *vd, **oldvdevs, **newvdevs;
1454 spa_aux_vdev_t *sav = &spa->spa_l2cache;
1455
1456 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1457
1458 if (sav->sav_config != NULL) {
1459 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1460 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1461 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1462 } else {
1463 nl2cache = 0;
1464 newvdevs = NULL;
1465 }
1466
1467 oldvdevs = sav->sav_vdevs;
1468 oldnvdevs = sav->sav_count;
1469 sav->sav_vdevs = NULL;
1470 sav->sav_count = 0;
1471
1472 /*
1473 * Process new nvlist of vdevs.
1474 */
1475 for (i = 0; i < nl2cache; i++) {
1476 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1477 &guid) == 0);
1478
1479 newvdevs[i] = NULL;
1480 for (j = 0; j < oldnvdevs; j++) {
1481 vd = oldvdevs[j];
1482 if (vd != NULL && guid == vd->vdev_guid) {
1483 /*
1484 * Retain previous vdev for add/remove ops.
1485 */
1486 newvdevs[i] = vd;
1487 oldvdevs[j] = NULL;
1488 break;
1489 }
1490 }
1491
1492 if (newvdevs[i] == NULL) {
1493 /*
1494 * Create new vdev
1495 */
1496 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1497 VDEV_ALLOC_L2CACHE) == 0);
1498 ASSERT(vd != NULL);
1499 newvdevs[i] = vd;
1500
1501 /*
1502 * Commit this vdev as an l2cache device,
1503 * even if it fails to open.
1504 */
1505 spa_l2cache_add(vd);
1506
1507 vd->vdev_top = vd;
1508 vd->vdev_aux = sav;
1509
1510 spa_l2cache_activate(vd);
1511
1512 if (vdev_open(vd) != 0)
1513 continue;
1514
1515 (void) vdev_validate_aux(vd);
1516
1517 if (!vdev_is_dead(vd))
1518 l2arc_add_vdev(spa, vd);
1519 }
1520 }
1521
1522 /*
1523 * Purge vdevs that were dropped
1524 */
1525 for (i = 0; i < oldnvdevs; i++) {
1526 uint64_t pool;
1527
1528 vd = oldvdevs[i];
1529 if (vd != NULL) {
1530 ASSERT(vd->vdev_isl2cache);
1531
1532 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1533 pool != 0ULL && l2arc_vdev_present(vd))
1534 l2arc_remove_vdev(vd);
1535 vdev_clear_stats(vd);
1536 vdev_free(vd);
1537 }
1538 }
1539
1540 if (oldvdevs)
1541 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1542
1543 if (sav->sav_config == NULL)
1544 goto out;
1545
1546 sav->sav_vdevs = newvdevs;
1547 sav->sav_count = (int)nl2cache;
1548
1549 /*
1550 * Recompute the stashed list of l2cache devices, with status
1551 * information this time.
1552 */
1553 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1554 DATA_TYPE_NVLIST_ARRAY) == 0);
1555
1556 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1557 for (i = 0; i < sav->sav_count; i++)
1558 l2cache[i] = vdev_config_generate(spa,
1559 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1560 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1561 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1562 out:
1563 for (i = 0; i < sav->sav_count; i++)
1564 nvlist_free(l2cache[i]);
1565 if (sav->sav_count)
1566 kmem_free(l2cache, sav->sav_count * sizeof (void *));
1567 }
1568
1569 static int
1570 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1571 {
1572 dmu_buf_t *db;
1573 char *packed = NULL;
1574 size_t nvsize = 0;
1575 int error;
1576 *value = NULL;
1577
1578 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1579 if (error != 0)
1580 return (error);
1581
1582 nvsize = *(uint64_t *)db->db_data;
1583 dmu_buf_rele(db, FTAG);
1584
1585 packed = kmem_alloc(nvsize, KM_SLEEP);
1586 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1587 DMU_READ_PREFETCH);
1588 if (error == 0)
1589 error = nvlist_unpack(packed, nvsize, value, 0);
1590 kmem_free(packed, nvsize);
1591
1592 return (error);
1593 }
1594
1595 /*
1596 * Checks to see if the given vdev could not be opened, in which case we post a
1597 * sysevent to notify the autoreplace code that the device has been removed.
1598 */
1599 static void
1600 spa_check_removed(vdev_t *vd)
1601 {
1602 for (int c = 0; c < vd->vdev_children; c++)
1603 spa_check_removed(vd->vdev_child[c]);
1604
1605 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1606 !vd->vdev_ishole) {
1607 zfs_post_autoreplace(vd->vdev_spa, vd);
1608 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1609 }
1610 }
1611
1612 /*
1613 * Validate the current config against the MOS config
1614 */
1615 static boolean_t
1616 spa_config_valid(spa_t *spa, nvlist_t *config)
1617 {
1618 vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1619 nvlist_t *nv;
1620
1621 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1622
1623 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1624 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1625
1626 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1627
1628 /*
1629 * If we're doing a normal import, then build up any additional
1630 * diagnostic information about missing devices in this config.
1631 * We'll pass this up to the user for further processing.
1632 */
1633 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1634 nvlist_t **child, *nv;
1635 uint64_t idx = 0;
1636
1637 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1638 KM_SLEEP);
1639 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1640
1641 for (int c = 0; c < rvd->vdev_children; c++) {
1642 vdev_t *tvd = rvd->vdev_child[c];
1643 vdev_t *mtvd = mrvd->vdev_child[c];
1644
1645 if (tvd->vdev_ops == &vdev_missing_ops &&
1646 mtvd->vdev_ops != &vdev_missing_ops &&
1647 mtvd->vdev_islog)
1648 child[idx++] = vdev_config_generate(spa, mtvd,
1649 B_FALSE, 0);
1650 }
1651
1652 if (idx) {
1653 VERIFY(nvlist_add_nvlist_array(nv,
1654 ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1655 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1656 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1657
1658 for (int i = 0; i < idx; i++)
1659 nvlist_free(child[i]);
1660 }
1661 nvlist_free(nv);
1662 kmem_free(child, rvd->vdev_children * sizeof (char **));
1663 }
1664
1665 /*
1666 * Compare the root vdev tree with the information we have
1667 * from the MOS config (mrvd). Check each top-level vdev
1668 * with the corresponding MOS config top-level (mtvd).
1669 */
1670 for (int c = 0; c < rvd->vdev_children; c++) {
1671 vdev_t *tvd = rvd->vdev_child[c];
1672 vdev_t *mtvd = mrvd->vdev_child[c];
1673
1674 /*
1675 * Resolve any "missing" vdevs in the current configuration.
1676 * If we find that the MOS config has more accurate information
1677 * about the top-level vdev then use that vdev instead.
1678 */
1679 if (tvd->vdev_ops == &vdev_missing_ops &&
1680 mtvd->vdev_ops != &vdev_missing_ops) {
1681
1682 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1683 continue;
1684
1685 /*
1686 * Device specific actions.
1687 */
1688 if (mtvd->vdev_islog) {
1689 spa_set_log_state(spa, SPA_LOG_CLEAR);
1690 } else {
1691 /*
1692 * XXX - once we have 'readonly' pool
1693 * support we should be able to handle
1694 * missing data devices by transitioning
1695 * the pool to readonly.
1696 */
1697 continue;
1698 }
1699
1700 /*
1701 * Swap the missing vdev with the data we were
1702 * able to obtain from the MOS config.
1703 */
1704 vdev_remove_child(rvd, tvd);
1705 vdev_remove_child(mrvd, mtvd);
1706
1707 vdev_add_child(rvd, mtvd);
1708 vdev_add_child(mrvd, tvd);
1709
1710 spa_config_exit(spa, SCL_ALL, FTAG);
1711 vdev_load(mtvd);
1712 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1713
1714 vdev_reopen(rvd);
1715 } else if (mtvd->vdev_islog) {
1716 /*
1717 * Load the slog device's state from the MOS config
1718 * since it's possible that the label does not
1719 * contain the most up-to-date information.
1720 */
1721 vdev_load_log_state(tvd, mtvd);
1722 vdev_reopen(tvd);
1723 }
1724 }
1725 vdev_free(mrvd);
1726 spa_config_exit(spa, SCL_ALL, FTAG);
1727
1728 /*
1729 * Ensure we were able to validate the config.
1730 */
1731 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1732 }
1733
1734 /*
1735 * Check for missing log devices
1736 */
1737 static boolean_t
1738 spa_check_logs(spa_t *spa)
1739 {
1740 boolean_t rv = B_FALSE;
1741 dsl_pool_t *dp = spa_get_dsl(spa);
1742
1743 switch (spa->spa_log_state) {
1744 case SPA_LOG_MISSING:
1745 /* need to recheck in case slog has been restored */
1746 case SPA_LOG_UNKNOWN:
1747 rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1748 zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
1749 if (rv)
1750 spa_set_log_state(spa, SPA_LOG_MISSING);
1751 break;
1752 }
1753 return (rv);
1754 }
1755
1756 static boolean_t
1757 spa_passivate_log(spa_t *spa)
1758 {
1759 vdev_t *rvd = spa->spa_root_vdev;
1760 boolean_t slog_found = B_FALSE;
1761
1762 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1763
1764 if (!spa_has_slogs(spa))
1765 return (B_FALSE);
1766
1767 for (int c = 0; c < rvd->vdev_children; c++) {
1768 vdev_t *tvd = rvd->vdev_child[c];
1769 metaslab_group_t *mg = tvd->vdev_mg;
1770
1771 if (tvd->vdev_islog) {
1772 metaslab_group_passivate(mg);
1773 slog_found = B_TRUE;
1774 }
1775 }
1776
1777 return (slog_found);
1778 }
1779
1780 static void
1781 spa_activate_log(spa_t *spa)
1782 {
1783 vdev_t *rvd = spa->spa_root_vdev;
1784
1785 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1786
1787 for (int c = 0; c < rvd->vdev_children; c++) {
1788 vdev_t *tvd = rvd->vdev_child[c];
1789 metaslab_group_t *mg = tvd->vdev_mg;
1790
1791 if (tvd->vdev_islog)
1792 metaslab_group_activate(mg);
1793 }
1794 }
1795
1796 int
1797 spa_offline_log(spa_t *spa)
1798 {
1799 int error;
1800
1801 error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1802 NULL, DS_FIND_CHILDREN);
1803 if (error == 0) {
1804 /*
1805 * We successfully offlined the log device, sync out the
1806 * current txg so that the "stubby" block can be removed
1807 * by zil_sync().
1808 */
1809 txg_wait_synced(spa->spa_dsl_pool, 0);
1810 }
1811 return (error);
1812 }
1813
1814 static void
1815 spa_aux_check_removed(spa_aux_vdev_t *sav)
1816 {
1817 for (int i = 0; i < sav->sav_count; i++)
1818 spa_check_removed(sav->sav_vdevs[i]);
1819 }
1820
1821 void
1822 spa_claim_notify(zio_t *zio)
1823 {
1824 spa_t *spa = zio->io_spa;
1825
1826 if (zio->io_error)
1827 return;
1828
1829 mutex_enter(&spa->spa_props_lock); /* any mutex will do */
1830 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1831 spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1832 mutex_exit(&spa->spa_props_lock);
1833 }
1834
1835 typedef struct spa_load_error {
1836 uint64_t sle_meta_count;
1837 uint64_t sle_data_count;
1838 } spa_load_error_t;
1839
1840 static void
1841 spa_load_verify_done(zio_t *zio)
1842 {
1843 blkptr_t *bp = zio->io_bp;
1844 spa_load_error_t *sle = zio->io_private;
1845 dmu_object_type_t type = BP_GET_TYPE(bp);
1846 int error = zio->io_error;
1847 spa_t *spa = zio->io_spa;
1848
1849 if (error) {
1850 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1851 type != DMU_OT_INTENT_LOG)
1852 atomic_inc_64(&sle->sle_meta_count);
1853 else
1854 atomic_inc_64(&sle->sle_data_count);
1855 }
1856 zio_data_buf_free(zio->io_data, zio->io_size);
1857
1858 mutex_enter(&spa->spa_scrub_lock);
1859 spa->spa_scrub_inflight--;
1860 cv_broadcast(&spa->spa_scrub_io_cv);
1861 mutex_exit(&spa->spa_scrub_lock);
1862 }
1863
1864 /*
1865 * Maximum number of concurrent scrub i/os to create while verifying
1866 * a pool while importing it.
1867 */
1868 int spa_load_verify_maxinflight = 10000;
1869 boolean_t spa_load_verify_metadata = B_TRUE;
1870 boolean_t spa_load_verify_data = B_TRUE;
1871
1872 /*ARGSUSED*/
1873 static int
1874 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1875 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1876 {
1877 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
1878 return (0);
1879 /*
1880 * Note: normally this routine will not be called if
1881 * spa_load_verify_metadata is not set. However, it may be useful
1882 * to manually set the flag after the traversal has begun.
1883 */
1884 if (!spa_load_verify_metadata)
1885 return (0);
1886 if (BP_GET_BUFC_TYPE(bp) == ARC_BUFC_DATA && !spa_load_verify_data)
1887 return (0);
1888
1889 zio_t *rio = arg;
1890 size_t size = BP_GET_PSIZE(bp);
1891 void *data = zio_data_buf_alloc(size);
1892
1893 mutex_enter(&spa->spa_scrub_lock);
1894 while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight)
1895 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1896 spa->spa_scrub_inflight++;
1897 mutex_exit(&spa->spa_scrub_lock);
1898
1899 zio_nowait(zio_read(rio, spa, bp, data, size,
1900 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1901 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1902 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1903 return (0);
1904 }
1905
1906 static int
1907 spa_load_verify(spa_t *spa)
1908 {
1909 zio_t *rio;
1910 spa_load_error_t sle = { 0 };
1911 zpool_rewind_policy_t policy;
1912 boolean_t verify_ok = B_FALSE;
1913 int error = 0;
1914
1915 zpool_get_rewind_policy(spa->spa_config, &policy);
1916
1917 if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1918 return (0);
1919
1920 rio = zio_root(spa, NULL, &sle,
1921 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1922
1923 if (spa_load_verify_metadata) {
1924 error = traverse_pool(spa, spa->spa_verify_min_txg,
1925 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
1926 spa_load_verify_cb, rio);
1927 }
1928
1929 (void) zio_wait(rio);
1930
1931 spa->spa_load_meta_errors = sle.sle_meta_count;
1932 spa->spa_load_data_errors = sle.sle_data_count;
1933
1934 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1935 sle.sle_data_count <= policy.zrp_maxdata) {
1936 int64_t loss = 0;
1937
1938 verify_ok = B_TRUE;
1939 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1940 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1941
1942 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1943 VERIFY(nvlist_add_uint64(spa->spa_load_info,
1944 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1945 VERIFY(nvlist_add_int64(spa->spa_load_info,
1946 ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1947 VERIFY(nvlist_add_uint64(spa->spa_load_info,
1948 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1949 } else {
1950 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1951 }
1952
1953 if (error) {
1954 if (error != ENXIO && error != EIO)
1955 error = SET_ERROR(EIO);
1956 return (error);
1957 }
1958
1959 return (verify_ok ? 0 : EIO);
1960 }
1961
1962 /*
1963 * Find a value in the pool props object.
1964 */
1965 static void
1966 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1967 {
1968 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1969 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1970 }
1971
1972 /*
1973 * Find a value in the pool directory object.
1974 */
1975 static int
1976 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1977 {
1978 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1979 name, sizeof (uint64_t), 1, val));
1980 }
1981
1982 static int
1983 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1984 {
1985 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
1986 return (err);
1987 }
1988
1989 /*
1990 * Fix up config after a partly-completed split. This is done with the
1991 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off
1992 * pool have that entry in their config, but only the splitting one contains
1993 * a list of all the guids of the vdevs that are being split off.
1994 *
1995 * This function determines what to do with that list: either rejoin
1996 * all the disks to the pool, or complete the splitting process. To attempt
1997 * the rejoin, each disk that is offlined is marked online again, and
1998 * we do a reopen() call. If the vdev label for every disk that was
1999 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2000 * then we call vdev_split() on each disk, and complete the split.
2001 *
2002 * Otherwise we leave the config alone, with all the vdevs in place in
2003 * the original pool.
2004 */
2005 static void
2006 spa_try_repair(spa_t *spa, nvlist_t *config)
2007 {
2008 uint_t extracted;
2009 uint64_t *glist;
2010 uint_t i, gcount;
2011 nvlist_t *nvl;
2012 vdev_t **vd;
2013 boolean_t attempt_reopen;
2014
2015 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2016 return;
2017
2018 /* check that the config is complete */
2019 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2020 &glist, &gcount) != 0)
2021 return;
2022
2023 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2024
2025 /* attempt to online all the vdevs & validate */
2026 attempt_reopen = B_TRUE;
2027 for (i = 0; i < gcount; i++) {
2028 if (glist[i] == 0) /* vdev is hole */
2029 continue;
2030
2031 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2032 if (vd[i] == NULL) {
2033 /*
2034 * Don't bother attempting to reopen the disks;
2035 * just do the split.
2036 */
2037 attempt_reopen = B_FALSE;
2038 } else {
2039 /* attempt to re-online it */
2040 vd[i]->vdev_offline = B_FALSE;
2041 }
2042 }
2043
2044 if (attempt_reopen) {
2045 vdev_reopen(spa->spa_root_vdev);
2046
2047 /* check each device to see what state it's in */
2048 for (extracted = 0, i = 0; i < gcount; i++) {
2049 if (vd[i] != NULL &&
2050 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2051 break;
2052 ++extracted;
2053 }
2054 }
2055
2056 /*
2057 * If every disk has been moved to the new pool, or if we never
2058 * even attempted to look at them, then we split them off for
2059 * good.
2060 */
2061 if (!attempt_reopen || gcount == extracted) {
2062 for (i = 0; i < gcount; i++)
2063 if (vd[i] != NULL)
2064 vdev_split(vd[i]);
2065 vdev_reopen(spa->spa_root_vdev);
2066 }
2067
2068 kmem_free(vd, gcount * sizeof (vdev_t *));
2069 }
2070
2071 static int
2072 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2073 boolean_t mosconfig)
2074 {
2075 nvlist_t *config = spa->spa_config;
2076 char *ereport = FM_EREPORT_ZFS_POOL;
2077 char *comment;
2078 int error;
2079 uint64_t pool_guid;
2080 nvlist_t *nvl;
2081
2082 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2083 return (SET_ERROR(EINVAL));
2084
2085 ASSERT(spa->spa_comment == NULL);
2086 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2087 spa->spa_comment = spa_strdup(comment);
2088
2089 /*
2090 * Versioning wasn't explicitly added to the label until later, so if
2091 * it's not present treat it as the initial version.
2092 */
2093 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2094 &spa->spa_ubsync.ub_version) != 0)
2095 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2096
2097 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2098 &spa->spa_config_txg);
2099
2100 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2101 spa_guid_exists(pool_guid, 0)) {
2102 error = SET_ERROR(EEXIST);
2103 } else {
2104 spa->spa_config_guid = pool_guid;
2105
2106 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2107 &nvl) == 0) {
2108 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2109 KM_SLEEP) == 0);
2110 }
2111
2112 nvlist_free(spa->spa_load_info);
2113 spa->spa_load_info = fnvlist_alloc();
2114
2115 gethrestime(&spa->spa_loaded_ts);
2116 error = spa_load_impl(spa, pool_guid, config, state, type,
2117 mosconfig, &ereport);
2118 }
2119
2120 /*
2121 * Don't count references from objsets that are already closed
2122 * and are making their way through the eviction process.
2123 */
2124 spa_evicting_os_wait(spa);
2125 spa->spa_minref = refcount_count(&spa->spa_refcount);
2126 if (error) {
2127 if (error != EEXIST) {
2128 spa->spa_loaded_ts.tv_sec = 0;
2129 spa->spa_loaded_ts.tv_nsec = 0;
2130 }
2131 if (error != EBADF) {
2132 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2133 }
2134 }
2135 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2136 spa->spa_ena = 0;
2137
2138 return (error);
2139 }
2140
2141 /*
2142 * Load an existing storage pool, using the pool's builtin spa_config as a
2143 * source of configuration information.
2144 */
2145 static int
2146 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2147 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2148 char **ereport)
2149 {
2150 int error = 0;
2151 nvlist_t *nvroot = NULL;
2152 nvlist_t *label;
2153 vdev_t *rvd;
2154 uberblock_t *ub = &spa->spa_uberblock;
2155 uint64_t children, config_cache_txg = spa->spa_config_txg;
2156 int orig_mode = spa->spa_mode;
2157 int parse;
2158 uint64_t obj;
2159 boolean_t missing_feat_write = B_FALSE;
2160
2161 /*
2162 * If this is an untrusted config, access the pool in read-only mode.
2163 * This prevents things like resilvering recently removed devices.
2164 */
2165 if (!mosconfig)
2166 spa->spa_mode = FREAD;
2167
2168 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2169
2170 spa->spa_load_state = state;
2171
2172 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2173 return (SET_ERROR(EINVAL));
2174
2175 parse = (type == SPA_IMPORT_EXISTING ?
2176 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2177
2178 /*
2179 * Create "The Godfather" zio to hold all async IOs
2180 */
2181 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2182 KM_SLEEP);
2183 for (int i = 0; i < max_ncpus; i++) {
2184 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2185 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2186 ZIO_FLAG_GODFATHER);
2187 }
2188
2189 /*
2190 * Parse the configuration into a vdev tree. We explicitly set the
2191 * value that will be returned by spa_version() since parsing the
2192 * configuration requires knowing the version number.
2193 */
2194 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2195 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2196 spa_config_exit(spa, SCL_ALL, FTAG);
2197
2198 if (error != 0)
2199 return (error);
2200
2201 ASSERT(spa->spa_root_vdev == rvd);
2202
2203 if (type != SPA_IMPORT_ASSEMBLE) {
2204 ASSERT(spa_guid(spa) == pool_guid);
2205 }
2206
2207 /*
2208 * Try to open all vdevs, loading each label in the process.
2209 */
2210 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2211 error = vdev_open(rvd);
2212 spa_config_exit(spa, SCL_ALL, FTAG);
2213 if (error != 0)
2214 return (error);
2215
2216 /*
2217 * We need to validate the vdev labels against the configuration that
2218 * we have in hand, which is dependent on the setting of mosconfig. If
2219 * mosconfig is true then we're validating the vdev labels based on
2220 * that config. Otherwise, we're validating against the cached config
2221 * (zpool.cache) that was read when we loaded the zfs module, and then
2222 * later we will recursively call spa_load() and validate against
2223 * the vdev config.
2224 *
2225 * If we're assembling a new pool that's been split off from an
2226 * existing pool, the labels haven't yet been updated so we skip
2227 * validation for now.
2228 */
2229 if (type != SPA_IMPORT_ASSEMBLE) {
2230 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2231 error = vdev_validate(rvd, mosconfig);
2232 spa_config_exit(spa, SCL_ALL, FTAG);
2233
2234 if (error != 0)
2235 return (error);
2236
2237 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2238 return (SET_ERROR(ENXIO));
2239 }
2240
2241 /*
2242 * Find the best uberblock.
2243 */
2244 vdev_uberblock_load(rvd, ub, &label);
2245
2246 /*
2247 * If we weren't able to find a single valid uberblock, return failure.
2248 */
2249 if (ub->ub_txg == 0) {
2250 nvlist_free(label);
2251 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2252 }
2253
2254 /*
2255 * If the pool has an unsupported version we can't open it.
2256 */
2257 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2258 nvlist_free(label);
2259 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2260 }
2261
2262 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2263 nvlist_t *features;
2264
2265 /*
2266 * If we weren't able to find what's necessary for reading the
2267 * MOS in the label, return failure.
2268 */
2269 if (label == NULL || nvlist_lookup_nvlist(label,
2270 ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2271 nvlist_free(label);
2272 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2273 ENXIO));
2274 }
2275
2276 /*
2277 * Update our in-core representation with the definitive values
2278 * from the label.
2279 */
2280 nvlist_free(spa->spa_label_features);
2281 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2282 }
2283
2284 nvlist_free(label);
2285
2286 /*
2287 * Look through entries in the label nvlist's features_for_read. If
2288 * there is a feature listed there which we don't understand then we
2289 * cannot open a pool.
2290 */
2291 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2292 nvlist_t *unsup_feat;
2293
2294 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2295 0);
2296
2297 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2298 NULL); nvp != NULL;
2299 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2300 if (!zfeature_is_supported(nvpair_name(nvp))) {
2301 VERIFY(nvlist_add_string(unsup_feat,
2302 nvpair_name(nvp), "") == 0);
2303 }
2304 }
2305
2306 if (!nvlist_empty(unsup_feat)) {
2307 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2308 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2309 nvlist_free(unsup_feat);
2310 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2311 ENOTSUP));
2312 }
2313
2314 nvlist_free(unsup_feat);
2315 }
2316
2317 /*
2318 * If the vdev guid sum doesn't match the uberblock, we have an
2319 * incomplete configuration. We first check to see if the pool
2320 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2321 * If it is, defer the vdev_guid_sum check till later so we
2322 * can handle missing vdevs.
2323 */
2324 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2325 &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2326 rvd->vdev_guid_sum != ub->ub_guid_sum)
2327 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2328
2329 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2330 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2331 spa_try_repair(spa, config);
2332 spa_config_exit(spa, SCL_ALL, FTAG);
2333 nvlist_free(spa->spa_config_splitting);
2334 spa->spa_config_splitting = NULL;
2335 }
2336
2337 /*
2338 * Initialize internal SPA structures.
2339 */
2340 spa->spa_state = POOL_STATE_ACTIVE;
2341 spa->spa_ubsync = spa->spa_uberblock;
2342 spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2343 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2344 spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2345 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2346 spa->spa_claim_max_txg = spa->spa_first_txg;
2347 spa->spa_prev_software_version = ub->ub_software_version;
2348
2349 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2350 if (error)
2351 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2352 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2353
2354 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2355 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2356
2357 if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2358 boolean_t missing_feat_read = B_FALSE;
2359 nvlist_t *unsup_feat, *enabled_feat;
2360
2361 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2362 &spa->spa_feat_for_read_obj) != 0) {
2363 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2364 }
2365
2366 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2367 &spa->spa_feat_for_write_obj) != 0) {
2368 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2369 }
2370
2371 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2372 &spa->spa_feat_desc_obj) != 0) {
2373 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2374 }
2375
2376 enabled_feat = fnvlist_alloc();
2377 unsup_feat = fnvlist_alloc();
2378
2379 if (!spa_features_check(spa, B_FALSE,
2380 unsup_feat, enabled_feat))
2381 missing_feat_read = B_TRUE;
2382
2383 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2384 if (!spa_features_check(spa, B_TRUE,
2385 unsup_feat, enabled_feat)) {
2386 missing_feat_write = B_TRUE;
2387 }
2388 }
2389
2390 fnvlist_add_nvlist(spa->spa_load_info,
2391 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2392
2393 if (!nvlist_empty(unsup_feat)) {
2394 fnvlist_add_nvlist(spa->spa_load_info,
2395 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2396 }
2397
2398 fnvlist_free(enabled_feat);
2399 fnvlist_free(unsup_feat);
2400
2401 if (!missing_feat_read) {
2402 fnvlist_add_boolean(spa->spa_load_info,
2403 ZPOOL_CONFIG_CAN_RDONLY);
2404 }
2405
2406 /*
2407 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2408 * twofold: to determine whether the pool is available for
2409 * import in read-write mode and (if it is not) whether the
2410 * pool is available for import in read-only mode. If the pool
2411 * is available for import in read-write mode, it is displayed
2412 * as available in userland; if it is not available for import
2413 * in read-only mode, it is displayed as unavailable in
2414 * userland. If the pool is available for import in read-only
2415 * mode but not read-write mode, it is displayed as unavailable
2416 * in userland with a special note that the pool is actually
2417 * available for open in read-only mode.
2418 *
2419 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2420 * missing a feature for write, we must first determine whether
2421 * the pool can be opened read-only before returning to
2422 * userland in order to know whether to display the
2423 * abovementioned note.
2424 */
2425 if (missing_feat_read || (missing_feat_write &&
2426 spa_writeable(spa))) {
2427 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2428 ENOTSUP));
2429 }
2430
2431 /*
2432 * Load refcounts for ZFS features from disk into an in-memory
2433 * cache during SPA initialization.
2434 */
2435 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
2436 uint64_t refcount;
2437
2438 error = feature_get_refcount_from_disk(spa,
2439 &spa_feature_table[i], &refcount);
2440 if (error == 0) {
2441 spa->spa_feat_refcount_cache[i] = refcount;
2442 } else if (error == ENOTSUP) {
2443 spa->spa_feat_refcount_cache[i] =
2444 SPA_FEATURE_DISABLED;
2445 } else {
2446 return (spa_vdev_err(rvd,
2447 VDEV_AUX_CORRUPT_DATA, EIO));
2448 }
2449 }
2450 }
2451
2452 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
2453 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
2454 &spa->spa_feat_enabled_txg_obj) != 0)
2455 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2456 }
2457
2458 spa->spa_is_initializing = B_TRUE;
2459 error = dsl_pool_open(spa->spa_dsl_pool);
2460 spa->spa_is_initializing = B_FALSE;
2461 if (error != 0)
2462 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2463
2464 if (!mosconfig) {
2465 uint64_t hostid;
2466 nvlist_t *policy = NULL, *nvconfig;
2467
2468 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2469 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2470
2471 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2472 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2473 char *hostname;
2474 unsigned long myhostid = 0;
2475
2476 VERIFY(nvlist_lookup_string(nvconfig,
2477 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2478
2479 #ifdef _KERNEL
2480 myhostid = zone_get_hostid(NULL);
2481 #else /* _KERNEL */
2482 /*
2483 * We're emulating the system's hostid in userland, so
2484 * we can't use zone_get_hostid().
2485 */
2486 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2487 #endif /* _KERNEL */
2488 if (hostid != 0 && myhostid != 0 &&
2489 hostid != myhostid) {
2490 nvlist_free(nvconfig);
2491 cmn_err(CE_WARN, "pool '%s' could not be "
2492 "loaded as it was last accessed by "
2493 "another system (host: %s hostid: 0x%lx). "
2494 "See: http://illumos.org/msg/ZFS-8000-EY",
2495 spa_name(spa), hostname,
2496 (unsigned long)hostid);
2497 return (SET_ERROR(EBADF));
2498 }
2499 }
2500 if (nvlist_lookup_nvlist(spa->spa_config,
2501 ZPOOL_REWIND_POLICY, &policy) == 0)
2502 VERIFY(nvlist_add_nvlist(nvconfig,
2503 ZPOOL_REWIND_POLICY, policy) == 0);
2504
2505 spa_config_set(spa, nvconfig);
2506 spa_unload(spa);
2507 spa_deactivate(spa);
2508 spa_activate(spa, orig_mode);
2509
2510 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2511 }
2512
2513 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2514 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2515 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2516 if (error != 0)
2517 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2518
2519 /*
2520 * Load the bit that tells us to use the new accounting function
2521 * (raid-z deflation). If we have an older pool, this will not
2522 * be present.
2523 */
2524 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2525 if (error != 0 && error != ENOENT)
2526 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2527
2528 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2529 &spa->spa_creation_version);
2530 if (error != 0 && error != ENOENT)
2531 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2532
2533 /*
2534 * Load the persistent error log. If we have an older pool, this will
2535 * not be present.
2536 */
2537 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2538 if (error != 0 && error != ENOENT)
2539 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2540
2541 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2542 &spa->spa_errlog_scrub);
2543 if (error != 0 && error != ENOENT)
2544 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2545
2546 /*
2547 * Load the history object. If we have an older pool, this
2548 * will not be present.
2549 */
2550 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2551 if (error != 0 && error != ENOENT)
2552 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2553
2554 /*
2555 * If we're assembling the pool from the split-off vdevs of
2556 * an existing pool, we don't want to attach the spares & cache
2557 * devices.
2558 */
2559
2560 /*
2561 * Load any hot spares for this pool.
2562 */
2563 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2564 if (error != 0 && error != ENOENT)
2565 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2566 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2567 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2568 if (load_nvlist(spa, spa->spa_spares.sav_object,
2569 &spa->spa_spares.sav_config) != 0)
2570 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2571
2572 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2573 spa_load_spares(spa);
2574 spa_config_exit(spa, SCL_ALL, FTAG);
2575 } else if (error == 0) {
2576 spa->spa_spares.sav_sync = B_TRUE;
2577 }
2578
2579 /*
2580 * Load any level 2 ARC devices for this pool.
2581 */
2582 error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2583 &spa->spa_l2cache.sav_object);
2584 if (error != 0 && error != ENOENT)
2585 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2586 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2587 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2588 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2589 &spa->spa_l2cache.sav_config) != 0)
2590 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2591
2592 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2593 spa_load_l2cache(spa);
2594 spa_config_exit(spa, SCL_ALL, FTAG);
2595 } else if (error == 0) {
2596 spa->spa_l2cache.sav_sync = B_TRUE;
2597 }
2598
2599 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2600
2601 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2602 if (error && error != ENOENT)
2603 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2604
2605 if (error == 0) {
2606 uint64_t autoreplace;
2607
2608 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2609 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2610 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2611 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2612 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2613 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2614 &spa->spa_dedup_ditto);
2615
2616 spa->spa_autoreplace = (autoreplace != 0);
2617 }
2618
2619 /*
2620 * If the 'autoreplace' property is set, then post a resource notifying
2621 * the ZFS DE that it should not issue any faults for unopenable
2622 * devices. We also iterate over the vdevs, and post a sysevent for any
2623 * unopenable vdevs so that the normal autoreplace handler can take
2624 * over.
2625 */
2626 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2627 spa_check_removed(spa->spa_root_vdev);
2628 /*
2629 * For the import case, this is done in spa_import(), because
2630 * at this point we're using the spare definitions from
2631 * the MOS config, not necessarily from the userland config.
2632 */
2633 if (state != SPA_LOAD_IMPORT) {
2634 spa_aux_check_removed(&spa->spa_spares);
2635 spa_aux_check_removed(&spa->spa_l2cache);
2636 }
2637 }
2638
2639 /*
2640 * Load the vdev state for all toplevel vdevs.
2641 */
2642 vdev_load(rvd);
2643
2644 /*
2645 * Propagate the leaf DTLs we just loaded all the way up the tree.
2646 */
2647 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2648 vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2649 spa_config_exit(spa, SCL_ALL, FTAG);
2650
2651 /*
2652 * Load the DDTs (dedup tables).
2653 */
2654 error = ddt_load(spa);
2655 if (error != 0)
2656 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2657
2658 spa_update_dspace(spa);
2659
2660 /*
2661 * Validate the config, using the MOS config to fill in any
2662 * information which might be missing. If we fail to validate
2663 * the config then declare the pool unfit for use. If we're
2664 * assembling a pool from a split, the log is not transferred
2665 * over.
2666 */
2667 if (type != SPA_IMPORT_ASSEMBLE) {
2668 nvlist_t *nvconfig;
2669
2670 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2671 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2672
2673 if (!spa_config_valid(spa, nvconfig)) {
2674 nvlist_free(nvconfig);
2675 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2676 ENXIO));
2677 }
2678 nvlist_free(nvconfig);
2679
2680 /*
2681 * Now that we've validated the config, check the state of the
2682 * root vdev. If it can't be opened, it indicates one or
2683 * more toplevel vdevs are faulted.
2684 */
2685 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2686 return (SET_ERROR(ENXIO));
2687
2688 if (spa_check_logs(spa)) {
2689 *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2690 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2691 }
2692 }
2693
2694 if (missing_feat_write) {
2695 ASSERT(state == SPA_LOAD_TRYIMPORT);
2696
2697 /*
2698 * At this point, we know that we can open the pool in
2699 * read-only mode but not read-write mode. We now have enough
2700 * information and can return to userland.
2701 */
2702 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2703 }
2704
2705 /*
2706 * We've successfully opened the pool, verify that we're ready
2707 * to start pushing transactions.
2708 */
2709 if (state != SPA_LOAD_TRYIMPORT) {
2710 if (error = spa_load_verify(spa))
2711 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2712 error));
2713 }
2714
2715 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2716 spa->spa_load_max_txg == UINT64_MAX)) {
2717 dmu_tx_t *tx;
2718 int need_update = B_FALSE;
2719 dsl_pool_t *dp = spa_get_dsl(spa);
2720
2721 ASSERT(state != SPA_LOAD_TRYIMPORT);
2722
2723 /*
2724 * Claim log blocks that haven't been committed yet.
2725 * This must all happen in a single txg.
2726 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2727 * invoked from zil_claim_log_block()'s i/o done callback.
2728 * Price of rollback is that we abandon the log.
2729 */
2730 spa->spa_claiming = B_TRUE;
2731
2732 tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
2733 (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2734 zil_claim, tx, DS_FIND_CHILDREN);
2735 dmu_tx_commit(tx);
2736
2737 spa->spa_claiming = B_FALSE;
2738
2739 spa_set_log_state(spa, SPA_LOG_GOOD);
2740 spa->spa_sync_on = B_TRUE;
2741 txg_sync_start(spa->spa_dsl_pool);
2742
2743 /*
2744 * Wait for all claims to sync. We sync up to the highest
2745 * claimed log block birth time so that claimed log blocks
2746 * don't appear to be from the future. spa_claim_max_txg
2747 * will have been set for us by either zil_check_log_chain()
2748 * (invoked from spa_check_logs()) or zil_claim() above.
2749 */
2750 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2751
2752 /*
2753 * If the config cache is stale, or we have uninitialized
2754 * metaslabs (see spa_vdev_add()), then update the config.
2755 *
2756 * If this is a verbatim import, trust the current
2757 * in-core spa_config and update the disk labels.
2758 */
2759 if (config_cache_txg != spa->spa_config_txg ||
2760 state == SPA_LOAD_IMPORT ||
2761 state == SPA_LOAD_RECOVER ||
2762 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2763 need_update = B_TRUE;
2764
2765 for (int c = 0; c < rvd->vdev_children; c++)
2766 if (rvd->vdev_child[c]->vdev_ms_array == 0)
2767 need_update = B_TRUE;
2768
2769 /*
2770 * Update the config cache asychronously in case we're the
2771 * root pool, in which case the config cache isn't writable yet.
2772 */
2773 if (need_update)
2774 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2775
2776 /*
2777 * Check all DTLs to see if anything needs resilvering.
2778 */
2779 if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2780 vdev_resilver_needed(rvd, NULL, NULL))
2781 spa_async_request(spa, SPA_ASYNC_RESILVER);
2782
2783 /*
2784 * Log the fact that we booted up (so that we can detect if
2785 * we rebooted in the middle of an operation).
2786 */
2787 spa_history_log_version(spa, "open");
2788
2789 /*
2790 * Delete any inconsistent datasets.
2791 */
2792 (void) dmu_objset_find(spa_name(spa),
2793 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2794
2795 /*
2796 * Clean up any stale temporary dataset userrefs.
2797 */
2798 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2799 }
2800
2801 return (0);
2802 }
2803
2804 static int
2805 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2806 {
2807 int mode = spa->spa_mode;
2808
2809 spa_unload(spa);
2810 spa_deactivate(spa);
2811
2812 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
2813
2814 spa_activate(spa, mode);
2815 spa_async_suspend(spa);
2816
2817 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2818 }
2819
2820 /*
2821 * If spa_load() fails this function will try loading prior txg's. If
2822 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2823 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2824 * function will not rewind the pool and will return the same error as
2825 * spa_load().
2826 */
2827 static int
2828 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2829 uint64_t max_request, int rewind_flags)
2830 {
2831 nvlist_t *loadinfo = NULL;
2832 nvlist_t *config = NULL;
2833 int load_error, rewind_error;
2834 uint64_t safe_rewind_txg;
2835 uint64_t min_txg;
2836
2837 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2838 spa->spa_load_max_txg = spa->spa_load_txg;
2839 spa_set_log_state(spa, SPA_LOG_CLEAR);
2840 } else {
2841 spa->spa_load_max_txg = max_request;
2842 if (max_request != UINT64_MAX)
2843 spa->spa_extreme_rewind = B_TRUE;
2844 }
2845
2846 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2847 mosconfig);
2848 if (load_error == 0)
2849 return (0);
2850
2851 if (spa->spa_root_vdev != NULL)
2852 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2853
2854 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2855 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2856
2857 if (rewind_flags & ZPOOL_NEVER_REWIND) {
2858 nvlist_free(config);
2859 return (load_error);
2860 }
2861
2862 if (state == SPA_LOAD_RECOVER) {
2863 /* Price of rolling back is discarding txgs, including log */
2864 spa_set_log_state(spa, SPA_LOG_CLEAR);
2865 } else {
2866 /*
2867 * If we aren't rolling back save the load info from our first
2868 * import attempt so that we can restore it after attempting
2869 * to rewind.
2870 */
2871 loadinfo = spa->spa_load_info;
2872 spa->spa_load_info = fnvlist_alloc();
2873 }
2874
2875 spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2876 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2877 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2878 TXG_INITIAL : safe_rewind_txg;
2879
2880 /*
2881 * Continue as long as we're finding errors, we're still within
2882 * the acceptable rewind range, and we're still finding uberblocks
2883 */
2884 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2885 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2886 if (spa->spa_load_max_txg < safe_rewind_txg)
2887 spa->spa_extreme_rewind = B_TRUE;
2888 rewind_error = spa_load_retry(spa, state, mosconfig);
2889 }
2890
2891 spa->spa_extreme_rewind = B_FALSE;
2892 spa->spa_load_max_txg = UINT64_MAX;
2893
2894 if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2895 spa_config_set(spa, config);
2896
2897 if (state == SPA_LOAD_RECOVER) {
2898 ASSERT3P(loadinfo, ==, NULL);
2899 return (rewind_error);
2900 } else {
2901 /* Store the rewind info as part of the initial load info */
2902 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2903 spa->spa_load_info);
2904
2905 /* Restore the initial load info */
2906 fnvlist_free(spa->spa_load_info);
2907 spa->spa_load_info = loadinfo;
2908
2909 return (load_error);
2910 }
2911 }
2912
2913 /*
2914 * Pool Open/Import
2915 *
2916 * The import case is identical to an open except that the configuration is sent
2917 * down from userland, instead of grabbed from the configuration cache. For the
2918 * case of an open, the pool configuration will exist in the
2919 * POOL_STATE_UNINITIALIZED state.
2920 *
2921 * The stats information (gen/count/ustats) is used to gather vdev statistics at
2922 * the same time open the pool, without having to keep around the spa_t in some
2923 * ambiguous state.
2924 */
2925 static int
2926 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2927 nvlist_t **config)
2928 {
2929 spa_t *spa;
2930 spa_load_state_t state = SPA_LOAD_OPEN;
2931 int error;
2932 int locked = B_FALSE;
2933
2934 *spapp = NULL;
2935
2936 /*
2937 * As disgusting as this is, we need to support recursive calls to this
2938 * function because dsl_dir_open() is called during spa_load(), and ends
2939 * up calling spa_open() again. The real fix is to figure out how to
2940 * avoid dsl_dir_open() calling this in the first place.
2941 */
2942 if (mutex_owner(&spa_namespace_lock) != curthread) {
2943 mutex_enter(&spa_namespace_lock);
2944 locked = B_TRUE;
2945 }
2946
2947 if ((spa = spa_lookup(pool)) == NULL) {
2948 if (locked)
2949 mutex_exit(&spa_namespace_lock);
2950 return (SET_ERROR(ENOENT));
2951 }
2952
2953 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2954 zpool_rewind_policy_t policy;
2955
2956 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2957 &policy);
2958 if (policy.zrp_request & ZPOOL_DO_REWIND)
2959 state = SPA_LOAD_RECOVER;
2960
2961 spa_activate(spa, spa_mode_global);
2962
2963 if (state != SPA_LOAD_RECOVER)
2964 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2965
2966 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2967 policy.zrp_request);
2968
2969 if (error == EBADF) {
2970 /*
2971 * If vdev_validate() returns failure (indicated by
2972 * EBADF), it indicates that one of the vdevs indicates
2973 * that the pool has been exported or destroyed. If
2974 * this is the case, the config cache is out of sync and
2975 * we should remove the pool from the namespace.
2976 */
2977 spa_unload(spa);
2978 spa_deactivate(spa);
2979 spa_config_sync(spa, B_TRUE, B_TRUE);
2980 spa_remove(spa);
2981 if (locked)
2982 mutex_exit(&spa_namespace_lock);
2983 return (SET_ERROR(ENOENT));
2984 }
2985
2986 if (error) {
2987 /*
2988 * We can't open the pool, but we still have useful
2989 * information: the state of each vdev after the
2990 * attempted vdev_open(). Return this to the user.
2991 */
2992 if (config != NULL && spa->spa_config) {
2993 VERIFY(nvlist_dup(spa->spa_config, config,
2994 KM_SLEEP) == 0);
2995 VERIFY(nvlist_add_nvlist(*config,
2996 ZPOOL_CONFIG_LOAD_INFO,
2997 spa->spa_load_info) == 0);
2998 }
2999 spa_unload(spa);
3000 spa_deactivate(spa);
3001 spa->spa_last_open_failed = error;
3002 if (locked)
3003 mutex_exit(&spa_namespace_lock);
3004 *spapp = NULL;
3005 return (error);
3006 }
3007 }
3008
3009 spa_open_ref(spa, tag);
3010
3011 if (config != NULL)
3012 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3013
3014 /*
3015 * If we've recovered the pool, pass back any information we
3016 * gathered while doing the load.
3017 */
3018 if (state == SPA_LOAD_RECOVER) {
3019 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
3020 spa->spa_load_info) == 0);
3021 }
3022
3023 if (locked) {
3024 spa->spa_last_open_failed = 0;
3025 spa->spa_last_ubsync_txg = 0;
3026 spa->spa_load_txg = 0;
3027 mutex_exit(&spa_namespace_lock);
3028 }
3029
3030 *spapp = spa;
3031
3032 return (0);
3033 }
3034
3035 int
3036 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
3037 nvlist_t **config)
3038 {
3039 return (spa_open_common(name, spapp, tag, policy, config));
3040 }
3041
3042 int
3043 spa_open(const char *name, spa_t **spapp, void *tag)
3044 {
3045 return (spa_open_common(name, spapp, tag, NULL, NULL));
3046 }
3047
3048 /*
3049 * Lookup the given spa_t, incrementing the inject count in the process,
3050 * preventing it from being exported or destroyed.
3051 */
3052 spa_t *
3053 spa_inject_addref(char *name)
3054 {
3055 spa_t *spa;
3056
3057 mutex_enter(&spa_namespace_lock);
3058 if ((spa = spa_lookup(name)) == NULL) {
3059 mutex_exit(&spa_namespace_lock);
3060 return (NULL);
3061 }
3062 spa->spa_inject_ref++;
3063 mutex_exit(&spa_namespace_lock);
3064
3065 return (spa);
3066 }
3067
3068 void
3069 spa_inject_delref(spa_t *spa)
3070 {
3071 mutex_enter(&spa_namespace_lock);
3072 spa->spa_inject_ref--;
3073 mutex_exit(&spa_namespace_lock);
3074 }
3075
3076 /*
3077 * Add spares device information to the nvlist.
3078 */
3079 static void
3080 spa_add_spares(spa_t *spa, nvlist_t *config)
3081 {
3082 nvlist_t **spares;
3083 uint_t i, nspares;
3084 nvlist_t *nvroot;
3085 uint64_t guid;
3086 vdev_stat_t *vs;
3087 uint_t vsc;
3088 uint64_t pool;
3089
3090 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3091
3092 if (spa->spa_spares.sav_count == 0)
3093 return;
3094
3095 VERIFY(nvlist_lookup_nvlist(config,
3096 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3097 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3098 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3099 if (nspares != 0) {
3100 VERIFY(nvlist_add_nvlist_array(nvroot,
3101 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3102 VERIFY(nvlist_lookup_nvlist_array(nvroot,
3103 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3104
3105 /*
3106 * Go through and find any spares which have since been
3107 * repurposed as an active spare. If this is the case, update
3108 * their status appropriately.
3109 */
3110 for (i = 0; i < nspares; i++) {
3111 VERIFY(nvlist_lookup_uint64(spares[i],
3112 ZPOOL_CONFIG_GUID, &guid) == 0);
3113 if (spa_spare_exists(guid, &pool, NULL) &&
3114 pool != 0ULL) {
3115 VERIFY(nvlist_lookup_uint64_array(
3116 spares[i], ZPOOL_CONFIG_VDEV_STATS,
3117 (uint64_t **)&vs, &vsc) == 0);
3118 vs->vs_state = VDEV_STATE_CANT_OPEN;
3119 vs->vs_aux = VDEV_AUX_SPARED;
3120 }
3121 }
3122 }
3123 }
3124
3125 /*
3126 * Add l2cache device information to the nvlist, including vdev stats.
3127 */
3128 static void
3129 spa_add_l2cache(spa_t *spa, nvlist_t *config)
3130 {
3131 nvlist_t **l2cache;
3132 uint_t i, j, nl2cache;
3133 nvlist_t *nvroot;
3134 uint64_t guid;
3135 vdev_t *vd;
3136 vdev_stat_t *vs;
3137 uint_t vsc;
3138
3139 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3140
3141 if (spa->spa_l2cache.sav_count == 0)
3142 return;
3143
3144 VERIFY(nvlist_lookup_nvlist(config,
3145 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3146 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3147 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3148 if (nl2cache != 0) {
3149 VERIFY(nvlist_add_nvlist_array(nvroot,
3150 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3151 VERIFY(nvlist_lookup_nvlist_array(nvroot,
3152 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3153
3154 /*
3155 * Update level 2 cache device stats.
3156 */
3157
3158 for (i = 0; i < nl2cache; i++) {
3159 VERIFY(nvlist_lookup_uint64(l2cache[i],
3160 ZPOOL_CONFIG_GUID, &guid) == 0);
3161
3162 vd = NULL;
3163 for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3164 if (guid ==
3165 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3166 vd = spa->spa_l2cache.sav_vdevs[j];
3167 break;
3168 }
3169 }
3170 ASSERT(vd != NULL);
3171
3172 VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3173 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3174 == 0);
3175 vdev_get_stats(vd, vs);
3176 }
3177 }
3178 }
3179
3180 static void
3181 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3182 {
3183 nvlist_t *features;
3184 zap_cursor_t zc;
3185 zap_attribute_t za;
3186
3187 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3188 VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3189
3190 if (spa->spa_feat_for_read_obj != 0) {
3191 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3192 spa->spa_feat_for_read_obj);
3193 zap_cursor_retrieve(&zc, &za) == 0;
3194 zap_cursor_advance(&zc)) {
3195 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3196 za.za_num_integers == 1);
3197 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3198 za.za_first_integer));
3199 }
3200 zap_cursor_fini(&zc);
3201 }
3202
3203 if (spa->spa_feat_for_write_obj != 0) {
3204 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3205 spa->spa_feat_for_write_obj);
3206 zap_cursor_retrieve(&zc, &za) == 0;
3207 zap_cursor_advance(&zc)) {
3208 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3209 za.za_num_integers == 1);
3210 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3211 za.za_first_integer));
3212 }
3213 zap_cursor_fini(&zc);
3214 }
3215
3216 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3217 features) == 0);
3218 nvlist_free(features);
3219 }
3220
3221 int
3222 spa_get_stats(const char *name, nvlist_t **config,
3223 char *altroot, size_t buflen)
3224 {
3225 int error;
3226 spa_t *spa;
3227
3228 *config = NULL;
3229 error = spa_open_common(name, &spa, FTAG, NULL, config);
3230
3231 if (spa != NULL) {
3232 /*
3233 * This still leaves a window of inconsistency where the spares
3234 * or l2cache devices could change and the config would be
3235 * self-inconsistent.
3236 */
3237 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3238
3239 if (*config != NULL) {
3240 uint64_t loadtimes[2];
3241
3242 loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3243 loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3244 VERIFY(nvlist_add_uint64_array(*config,
3245 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3246
3247 VERIFY(nvlist_add_uint64(*config,
3248 ZPOOL_CONFIG_ERRCOUNT,
3249 spa_get_errlog_size(spa)) == 0);
3250
3251 if (spa_suspended(spa))
3252 VERIFY(nvlist_add_uint64(*config,
3253 ZPOOL_CONFIG_SUSPENDED,
3254 spa->spa_failmode) == 0);
3255
3256 spa_add_spares(spa, *config);
3257 spa_add_l2cache(spa, *config);
3258 spa_add_feature_stats(spa, *config);
3259 }
3260 }
3261
3262 /*
3263 * We want to get the alternate root even for faulted pools, so we cheat
3264 * and call spa_lookup() directly.
3265 */
3266 if (altroot) {
3267 if (spa == NULL) {
3268 mutex_enter(&spa_namespace_lock);
3269 spa = spa_lookup(name);
3270 if (spa)
3271 spa_altroot(spa, altroot, buflen);
3272 else
3273 altroot[0] = '\0';
3274 spa = NULL;
3275 mutex_exit(&spa_namespace_lock);
3276 } else {
3277 spa_altroot(spa, altroot, buflen);
3278 }
3279 }
3280
3281 if (spa != NULL) {
3282 spa_config_exit(spa, SCL_CONFIG, FTAG);
3283 spa_close(spa, FTAG);
3284 }
3285
3286 return (error);
3287 }
3288
3289 /*
3290 * Validate that the auxiliary device array is well formed. We must have an
3291 * array of nvlists, each which describes a valid leaf vdev. If this is an
3292 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3293 * specified, as long as they are well-formed.
3294 */
3295 static int
3296 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3297 spa_aux_vdev_t *sav, const char *config, uint64_t version,
3298 vdev_labeltype_t label)
3299 {
3300 nvlist_t **dev;
3301 uint_t i, ndev;
3302 vdev_t *vd;
3303 int error;
3304
3305 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3306
3307 /*
3308 * It's acceptable to have no devs specified.
3309 */
3310 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3311 return (0);
3312
3313 if (ndev == 0)
3314 return (SET_ERROR(EINVAL));
3315
3316 /*
3317 * Make sure the pool is formatted with a version that supports this
3318 * device type.
3319 */
3320 if (spa_version(spa) < version)
3321 return (SET_ERROR(ENOTSUP));
3322
3323 /*
3324 * Set the pending device list so we correctly handle device in-use
3325 * checking.
3326 */
3327 sav->sav_pending = dev;
3328 sav->sav_npending = ndev;
3329
3330 for (i = 0; i < ndev; i++) {
3331 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3332 mode)) != 0)
3333 goto out;
3334
3335 if (!vd->vdev_ops->vdev_op_leaf) {
3336 vdev_free(vd);
3337 error = SET_ERROR(EINVAL);
3338 goto out;
3339 }
3340
3341 /*
3342 * The L2ARC currently only supports disk devices in
3343 * kernel context. For user-level testing, we allow it.
3344 */
3345 #ifdef _KERNEL
3346 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3347 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3348 error = SET_ERROR(ENOTBLK);
3349 vdev_free(vd);
3350 goto out;
3351 }
3352 #endif
3353 vd->vdev_top = vd;
3354
3355 if ((error = vdev_open(vd)) == 0 &&
3356 (error = vdev_label_init(vd, crtxg, label)) == 0) {
3357 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3358 vd->vdev_guid) == 0);
3359 }
3360
3361 vdev_free(vd);
3362
3363 if (error &&
3364 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3365 goto out;
3366 else
3367 error = 0;
3368 }
3369
3370 out:
3371 sav->sav_pending = NULL;
3372 sav->sav_npending = 0;
3373 return (error);
3374 }
3375
3376 static int
3377 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3378 {
3379 int error;
3380
3381 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3382
3383 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3384 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3385 VDEV_LABEL_SPARE)) != 0) {
3386 return (error);
3387 }
3388
3389 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3390 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3391 VDEV_LABEL_L2CACHE));
3392 }
3393
3394 static void
3395 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3396 const char *config)
3397 {
3398 int i;
3399
3400 if (sav->sav_config != NULL) {
3401 nvlist_t **olddevs;
3402 uint_t oldndevs;
3403 nvlist_t **newdevs;
3404
3405 /*
3406 * Generate new dev list by concatentating with the
3407 * current dev list.
3408 */
3409 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3410 &olddevs, &oldndevs) == 0);
3411
3412 newdevs = kmem_alloc(sizeof (void *) *
3413 (ndevs + oldndevs), KM_SLEEP);
3414 for (i = 0; i < oldndevs; i++)
3415 VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3416 KM_SLEEP) == 0);
3417 for (i = 0; i < ndevs; i++)
3418 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3419 KM_SLEEP) == 0);
3420
3421 VERIFY(nvlist_remove(sav->sav_config, config,
3422 DATA_TYPE_NVLIST_ARRAY) == 0);
3423
3424 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3425 config, newdevs, ndevs + oldndevs) == 0);
3426 for (i = 0; i < oldndevs + ndevs; i++)
3427 nvlist_free(newdevs[i]);
3428 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3429 } else {
3430 /*
3431 * Generate a new dev list.
3432 */
3433 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3434 KM_SLEEP) == 0);
3435 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3436 devs, ndevs) == 0);
3437 }
3438 }
3439
3440 /*
3441 * Stop and drop level 2 ARC devices
3442 */
3443 void
3444 spa_l2cache_drop(spa_t *spa)
3445 {
3446 vdev_t *vd;
3447 int i;
3448 spa_aux_vdev_t *sav = &spa->spa_l2cache;
3449
3450 for (i = 0; i < sav->sav_count; i++) {
3451 uint64_t pool;
3452
3453 vd = sav->sav_vdevs[i];
3454 ASSERT(vd != NULL);
3455
3456 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3457 pool != 0ULL && l2arc_vdev_present(vd))
3458 l2arc_remove_vdev(vd);
3459 }
3460 }
3461
3462 /*
3463 * Pool Creation
3464 */
3465 int
3466 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3467 nvlist_t *zplprops)
3468 {
3469 spa_t *spa;
3470 char *altroot = NULL;
3471 vdev_t *rvd;
3472 dsl_pool_t *dp;
3473 dmu_tx_t *tx;
3474 int error = 0;
3475 uint64_t txg = TXG_INITIAL;
3476 nvlist_t **spares, **l2cache;
3477 uint_t nspares, nl2cache;
3478 uint64_t version, obj;
3479 boolean_t has_features;
3480
3481 /*
3482 * If this pool already exists, return failure.
3483 */
3484 mutex_enter(&spa_namespace_lock);
3485 if (spa_lookup(pool) != NULL) {
3486 mutex_exit(&spa_namespace_lock);
3487 return (SET_ERROR(EEXIST));
3488 }
3489
3490 /*
3491 * Allocate a new spa_t structure.
3492 */
3493 (void) nvlist_lookup_string(props,
3494 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3495 spa = spa_add(pool, NULL, altroot);
3496 spa_activate(spa, spa_mode_global);
3497
3498 if (props && (error = spa_prop_validate(spa, props))) {
3499 spa_deactivate(spa);
3500 spa_remove(spa);
3501 mutex_exit(&spa_namespace_lock);
3502 return (error);
3503 }
3504
3505 has_features = B_FALSE;
3506 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3507 elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3508 if (zpool_prop_feature(nvpair_name(elem)))
3509 has_features = B_TRUE;
3510 }
3511
3512 if (has_features || nvlist_lookup_uint64(props,
3513 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3514 version = SPA_VERSION;
3515 }
3516 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3517
3518 spa->spa_first_txg = txg;
3519 spa->spa_uberblock.ub_txg = txg - 1;
3520 spa->spa_uberblock.ub_version = version;
3521 spa->spa_ubsync = spa->spa_uberblock;
3522
3523 /*
3524 * Create "The Godfather" zio to hold all async IOs
3525 */
3526 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3527 KM_SLEEP);
3528 for (int i = 0; i < max_ncpus; i++) {
3529 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3530 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3531 ZIO_FLAG_GODFATHER);
3532 }
3533
3534 /*
3535 * Create the root vdev.
3536 */
3537 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3538
3539 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3540
3541 ASSERT(error != 0 || rvd != NULL);
3542 ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3543
3544 if (error == 0 && !zfs_allocatable_devs(nvroot))
3545 error = SET_ERROR(EINVAL);
3546
3547 if (error == 0 &&
3548 (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3549 (error = spa_validate_aux(spa, nvroot, txg,
3550 VDEV_ALLOC_ADD)) == 0) {
3551 for (int c = 0; c < rvd->vdev_children; c++) {
3552 vdev_metaslab_set_size(rvd->vdev_child[c]);
3553 vdev_expand(rvd->vdev_child[c], txg);
3554 }
3555 }
3556
3557 spa_config_exit(spa, SCL_ALL, FTAG);
3558
3559 if (error != 0) {
3560 spa_unload(spa);
3561 spa_deactivate(spa);
3562 spa_remove(spa);
3563 mutex_exit(&spa_namespace_lock);
3564 return (error);
3565 }
3566
3567 /*
3568 * Get the list of spares, if specified.
3569 */
3570 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3571 &spares, &nspares) == 0) {
3572 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3573 KM_SLEEP) == 0);
3574 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3575 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3576 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3577 spa_load_spares(spa);
3578 spa_config_exit(spa, SCL_ALL, FTAG);
3579 spa->spa_spares.sav_sync = B_TRUE;
3580 }
3581
3582 /*
3583 * Get the list of level 2 cache devices, if specified.
3584 */
3585 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3586 &l2cache, &nl2cache) == 0) {
3587 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3588 NV_UNIQUE_NAME, KM_SLEEP) == 0);
3589 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3590 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3591 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3592 spa_load_l2cache(spa);
3593 spa_config_exit(spa, SCL_ALL, FTAG);
3594 spa->spa_l2cache.sav_sync = B_TRUE;
3595 }
3596
3597 spa->spa_is_initializing = B_TRUE;
3598 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3599 spa->spa_meta_objset = dp->dp_meta_objset;
3600 spa->spa_is_initializing = B_FALSE;
3601
3602 /*
3603 * Create DDTs (dedup tables).
3604 */
3605 ddt_create(spa);
3606
3607 spa_update_dspace(spa);
3608
3609 tx = dmu_tx_create_assigned(dp, txg);
3610
3611 /*
3612 * Create the pool config object.
3613 */
3614 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3615 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3616 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3617
3618 if (zap_add(spa->spa_meta_objset,
3619 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3620 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3621 cmn_err(CE_PANIC, "failed to add pool config");
3622 }
3623
3624 if (spa_version(spa) >= SPA_VERSION_FEATURES)
3625 spa_feature_create_zap_objects(spa, tx);
3626
3627 if (zap_add(spa->spa_meta_objset,
3628 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3629 sizeof (uint64_t), 1, &version, tx) != 0) {
3630 cmn_err(CE_PANIC, "failed to add pool version");
3631 }
3632
3633 /* Newly created pools with the right version are always deflated. */
3634 if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3635 spa->spa_deflate = TRUE;
3636 if (zap_add(spa->spa_meta_objset,
3637 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3638 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3639 cmn_err(CE_PANIC, "failed to add deflate");
3640 }
3641 }
3642
3643 /*
3644 * Create the deferred-free bpobj. Turn off compression
3645 * because sync-to-convergence takes longer if the blocksize
3646 * keeps changing.
3647 */
3648 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3649 dmu_object_set_compress(spa->spa_meta_objset, obj,
3650 ZIO_COMPRESS_OFF, tx);
3651 if (zap_add(spa->spa_meta_objset,
3652 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3653 sizeof (uint64_t), 1, &obj, tx) != 0) {
3654 cmn_err(CE_PANIC, "failed to add bpobj");
3655 }
3656 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3657 spa->spa_meta_objset, obj));
3658
3659 /*
3660 * Create the pool's history object.
3661 */
3662 if (version >= SPA_VERSION_ZPOOL_HISTORY)
3663 spa_history_create_obj(spa, tx);
3664
3665 /*
3666 * Set pool properties.
3667 */
3668 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3669 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3670 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3671 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3672
3673 if (props != NULL) {
3674 spa_configfile_set(spa, props, B_FALSE);
3675 spa_sync_props(props, tx);
3676 }
3677
3678 dmu_tx_commit(tx);
3679
3680 spa->spa_sync_on = B_TRUE;
3681 txg_sync_start(spa->spa_dsl_pool);
3682
3683 /*
3684 * We explicitly wait for the first transaction to complete so that our
3685 * bean counters are appropriately updated.
3686 */
3687 txg_wait_synced(spa->spa_dsl_pool, txg);
3688
3689 spa_config_sync(spa, B_FALSE, B_TRUE);
3690
3691 spa_history_log_version(spa, "create");
3692
3693 /*
3694 * Don't count references from objsets that are already closed
3695 * and are making their way through the eviction process.
3696 */
3697 spa_evicting_os_wait(spa);
3698 spa->spa_minref = refcount_count(&spa->spa_refcount);
3699
3700 mutex_exit(&spa_namespace_lock);
3701
3702 return (0);
3703 }
3704
3705 #ifdef _KERNEL
3706 /*
3707 * Get the root pool information from the root disk, then import the root pool
3708 * during the system boot up time.
3709 */
3710 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3711
3712 static nvlist_t *
3713 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3714 {
3715 nvlist_t *config;
3716 nvlist_t *nvtop, *nvroot;
3717 uint64_t pgid;
3718
3719 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3720 return (NULL);
3721
3722 /*
3723 * Add this top-level vdev to the child array.
3724 */
3725 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3726 &nvtop) == 0);
3727 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3728 &pgid) == 0);
3729 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3730
3731 /*
3732 * Put this pool's top-level vdevs into a root vdev.
3733 */
3734 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3735 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3736 VDEV_TYPE_ROOT) == 0);
3737 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3738 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3739 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3740 &nvtop, 1) == 0);
3741
3742 /*
3743 * Replace the existing vdev_tree with the new root vdev in
3744 * this pool's configuration (remove the old, add the new).
3745 */
3746 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3747 nvlist_free(nvroot);
3748 return (config);
3749 }
3750
3751 /*
3752 * Walk the vdev tree and see if we can find a device with "better"
3753 * configuration. A configuration is "better" if the label on that
3754 * device has a more recent txg.
3755 */
3756 static void
3757 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3758 {
3759 for (int c = 0; c < vd->vdev_children; c++)
3760 spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3761
3762 if (vd->vdev_ops->vdev_op_leaf) {
3763 nvlist_t *label;
3764 uint64_t label_txg;
3765
3766 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3767 &label) != 0)
3768 return;
3769
3770 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3771 &label_txg) == 0);
3772
3773 /*
3774 * Do we have a better boot device?
3775 */
3776 if (label_txg > *txg) {
3777 *txg = label_txg;
3778 *avd = vd;
3779 }
3780 nvlist_free(label);
3781 }
3782 }
3783
3784 /*
3785 * Import a root pool.
3786 *
3787 * For x86. devpath_list will consist of devid and/or physpath name of
3788 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3789 * The GRUB "findroot" command will return the vdev we should boot.
3790 *
3791 * For Sparc, devpath_list consists the physpath name of the booting device
3792 * no matter the rootpool is a single device pool or a mirrored pool.
3793 * e.g.
3794 * "/pci@1f,0/ide@d/disk@0,0:a"
3795 */
3796 int
3797 spa_import_rootpool(char *devpath, char *devid)
3798 {
3799 spa_t *spa;
3800 vdev_t *rvd, *bvd, *avd = NULL;
3801 nvlist_t *config, *nvtop;
3802 uint64_t guid, txg;
3803 char *pname;
3804 int error;
3805
3806 /*
3807 * Read the label from the boot device and generate a configuration.
3808 */
3809 config = spa_generate_rootconf(devpath, devid, &guid);
3810 #if defined(_OBP) && defined(_KERNEL)
3811 if (config == NULL) {
3812 if (strstr(devpath, "/iscsi/ssd") != NULL) {
3813 /* iscsi boot */
3814 get_iscsi_bootpath_phy(devpath);
3815 config = spa_generate_rootconf(devpath, devid, &guid);
3816 }
3817 }
3818 #endif
3819 if (config == NULL) {
3820 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3821 devpath);
3822 return (SET_ERROR(EIO));
3823 }
3824
3825 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3826 &pname) == 0);
3827 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3828
3829 mutex_enter(&spa_namespace_lock);
3830 if ((spa = spa_lookup(pname)) != NULL) {
3831 /*
3832 * Remove the existing root pool from the namespace so that we
3833 * can replace it with the correct config we just read in.
3834 */
3835 spa_remove(spa);
3836 }
3837
3838 spa = spa_add(pname, config, NULL);
3839 spa->spa_is_root = B_TRUE;
3840 spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3841
3842 /*
3843 * Build up a vdev tree based on the boot device's label config.
3844 */
3845 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3846 &nvtop) == 0);
3847 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3848 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3849 VDEV_ALLOC_ROOTPOOL);
3850 spa_config_exit(spa, SCL_ALL, FTAG);
3851 if (error) {
3852 mutex_exit(&spa_namespace_lock);
3853 nvlist_free(config);
3854 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3855 pname);
3856 return (error);
3857 }
3858
3859 /*
3860 * Get the boot vdev.
3861 */
3862 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3863 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3864 (u_longlong_t)guid);
3865 error = SET_ERROR(ENOENT);
3866 goto out;
3867 }
3868
3869 /*
3870 * Determine if there is a better boot device.
3871 */
3872 avd = bvd;
3873 spa_alt_rootvdev(rvd, &avd, &txg);
3874 if (avd != bvd) {
3875 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3876 "try booting from '%s'", avd->vdev_path);
3877 error = SET_ERROR(EINVAL);
3878 goto out;
3879 }
3880
3881 /*
3882 * If the boot device is part of a spare vdev then ensure that
3883 * we're booting off the active spare.
3884 */
3885 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3886 !bvd->vdev_isspare) {
3887 cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3888 "try booting from '%s'",
3889 bvd->vdev_parent->
3890 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3891 error = SET_ERROR(EINVAL);
3892 goto out;
3893 }
3894
3895 error = 0;
3896 out:
3897 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3898 vdev_free(rvd);
3899 spa_config_exit(spa, SCL_ALL, FTAG);
3900 mutex_exit(&spa_namespace_lock);
3901
3902 nvlist_free(config);
3903 return (error);
3904 }
3905
3906 #endif
3907
3908 /*
3909 * Import a non-root pool into the system.
3910 */
3911 int
3912 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
3913 {
3914 spa_t *spa;
3915 char *altroot = NULL;
3916 spa_load_state_t state = SPA_LOAD_IMPORT;
3917 zpool_rewind_policy_t policy;
3918 uint64_t mode = spa_mode_global;
3919 uint64_t readonly = B_FALSE;
3920 int error;
3921 nvlist_t *nvroot;
3922 nvlist_t **spares, **l2cache;
3923 uint_t nspares, nl2cache;
3924
3925 /*
3926 * If a pool with this name exists, return failure.
3927 */
3928 mutex_enter(&spa_namespace_lock);
3929 if (spa_lookup(pool) != NULL) {
3930 mutex_exit(&spa_namespace_lock);
3931 return (SET_ERROR(EEXIST));
3932 }
3933
3934 /*
3935 * Create and initialize the spa structure.
3936 */
3937 (void) nvlist_lookup_string(props,
3938 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3939 (void) nvlist_lookup_uint64(props,
3940 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
3941 if (readonly)
3942 mode = FREAD;
3943 spa = spa_add(pool, config, altroot);
3944 spa->spa_import_flags = flags;
3945
3946 /*
3947 * Verbatim import - Take a pool and insert it into the namespace
3948 * as if it had been loaded at boot.
3949 */
3950 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
3951 if (props != NULL)
3952 spa_configfile_set(spa, props, B_FALSE);
3953
3954 spa_config_sync(spa, B_FALSE, B_TRUE);
3955
3956 mutex_exit(&spa_namespace_lock);
3957 return (0);
3958 }
3959
3960 spa_activate(spa, mode);
3961
3962 /*
3963 * Don't start async tasks until we know everything is healthy.
3964 */
3965 spa_async_suspend(spa);
3966
3967 zpool_get_rewind_policy(config, &policy);
3968 if (policy.zrp_request & ZPOOL_DO_REWIND)
3969 state = SPA_LOAD_RECOVER;
3970
3971 /*
3972 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig
3973 * because the user-supplied config is actually the one to trust when
3974 * doing an import.
3975 */
3976 if (state != SPA_LOAD_RECOVER)
3977 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3978
3979 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
3980 policy.zrp_request);
3981
3982 /*
3983 * Propagate anything learned while loading the pool and pass it
3984 * back to caller (i.e. rewind info, missing devices, etc).
3985 */
3986 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
3987 spa->spa_load_info) == 0);
3988
3989 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3990 /*
3991 * Toss any existing sparelist, as it doesn't have any validity
3992 * anymore, and conflicts with spa_has_spare().
3993 */
3994 if (spa->spa_spares.sav_config) {
3995 nvlist_free(spa->spa_spares.sav_config);
3996 spa->spa_spares.sav_config = NULL;
3997 spa_load_spares(spa);
3998 }
3999 if (spa->spa_l2cache.sav_config) {
4000 nvlist_free(spa->spa_l2cache.sav_config);
4001 spa->spa_l2cache.sav_config = NULL;
4002 spa_load_l2cache(spa);
4003 }
4004
4005 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4006 &nvroot) == 0);
4007 if (error == 0)
4008 error = spa_validate_aux(spa, nvroot, -1ULL,
4009 VDEV_ALLOC_SPARE);
4010 if (error == 0)
4011 error = spa_validate_aux(spa, nvroot, -1ULL,
4012 VDEV_ALLOC_L2CACHE);
4013 spa_config_exit(spa, SCL_ALL, FTAG);
4014
4015 if (props != NULL)
4016 spa_configfile_set(spa, props, B_FALSE);
4017
4018 if (error != 0 || (props && spa_writeable(spa) &&
4019 (error = spa_prop_set(spa, props)))) {
4020 spa_unload(spa);
4021 spa_deactivate(spa);
4022 spa_remove(spa);
4023 mutex_exit(&spa_namespace_lock);
4024 return (error);
4025 }
4026
4027 spa_async_resume(spa);
4028
4029 /*
4030 * Override any spares and level 2 cache devices as specified by
4031 * the user, as these may have correct device names/devids, etc.
4032 */
4033 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4034 &spares, &nspares) == 0) {
4035 if (spa->spa_spares.sav_config)
4036 VERIFY(nvlist_remove(spa->spa_spares.sav_config,
4037 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
4038 else
4039 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
4040 NV_UNIQUE_NAME, KM_SLEEP) == 0);
4041 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4042 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4043 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4044 spa_load_spares(spa);
4045 spa_config_exit(spa, SCL_ALL, FTAG);
4046 spa->spa_spares.sav_sync = B_TRUE;
4047 }
4048 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4049 &l2cache, &nl2cache) == 0) {
4050 if (spa->spa_l2cache.sav_config)
4051 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
4052 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
4053 else
4054 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4055 NV_UNIQUE_NAME, KM_SLEEP) == 0);
4056 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4057 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4058 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4059 spa_load_l2cache(spa);
4060 spa_config_exit(spa, SCL_ALL, FTAG);
4061 spa->spa_l2cache.sav_sync = B_TRUE;
4062 }
4063
4064 /*
4065 * Check for any removed devices.
4066 */
4067 if (spa->spa_autoreplace) {
4068 spa_aux_check_removed(&spa->spa_spares);
4069 spa_aux_check_removed(&spa->spa_l2cache);
4070 }
4071
4072 if (spa_writeable(spa)) {
4073 /*
4074 * Update the config cache to include the newly-imported pool.
4075 */
4076 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4077 }
4078
4079 /*
4080 * It's possible that the pool was expanded while it was exported.
4081 * We kick off an async task to handle this for us.
4082 */
4083 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4084
4085 mutex_exit(&spa_namespace_lock);
4086 spa_history_log_version(spa, "import");
4087
4088 return (0);
4089 }
4090
4091 nvlist_t *
4092 spa_tryimport(nvlist_t *tryconfig)
4093 {
4094 nvlist_t *config = NULL;
4095 char *poolname;
4096 spa_t *spa;
4097 uint64_t state;
4098 int error;
4099
4100 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4101 return (NULL);
4102
4103 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4104 return (NULL);
4105
4106 /*
4107 * Create and initialize the spa structure.
4108 */
4109 mutex_enter(&spa_namespace_lock);
4110 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4111 spa_activate(spa, FREAD);
4112
4113 /*
4114 * Pass off the heavy lifting to spa_load().
4115 * Pass TRUE for mosconfig because the user-supplied config
4116 * is actually the one to trust when doing an import.
4117 */
4118 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4119
4120 /*
4121 * If 'tryconfig' was at least parsable, return the current config.
4122 */
4123 if (spa->spa_root_vdev != NULL) {
4124 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4125 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4126 poolname) == 0);
4127 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4128 state) == 0);
4129 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4130 spa->spa_uberblock.ub_timestamp) == 0);
4131 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4132 spa->spa_load_info) == 0);
4133
4134 /*
4135 * If the bootfs property exists on this pool then we
4136 * copy it out so that external consumers can tell which
4137 * pools are bootable.
4138 */
4139 if ((!error || error == EEXIST) && spa->spa_bootfs) {
4140 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4141
4142 /*
4143 * We have to play games with the name since the
4144 * pool was opened as TRYIMPORT_NAME.
4145 */
4146 if (dsl_dsobj_to_dsname(spa_name(spa),
4147 spa->spa_bootfs, tmpname) == 0) {
4148 char *cp;
4149 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4150
4151 cp = strchr(tmpname, '/');
4152 if (cp == NULL) {
4153 (void) strlcpy(dsname, tmpname,
4154 MAXPATHLEN);
4155 } else {
4156 (void) snprintf(dsname, MAXPATHLEN,
4157 "%s/%s", poolname, ++cp);
4158 }
4159 VERIFY(nvlist_add_string(config,
4160 ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4161 kmem_free(dsname, MAXPATHLEN);
4162 }
4163 kmem_free(tmpname, MAXPATHLEN);
4164 }
4165
4166 /*
4167 * Add the list of hot spares and level 2 cache devices.
4168 */
4169 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4170 spa_add_spares(spa, config);
4171 spa_add_l2cache(spa, config);
4172 spa_config_exit(spa, SCL_CONFIG, FTAG);
4173 }
4174
4175 spa_unload(spa);
4176 spa_deactivate(spa);
4177 spa_remove(spa);
4178 mutex_exit(&spa_namespace_lock);
4179
4180 return (config);
4181 }
4182
4183 /*
4184 * Pool export/destroy
4185 *
4186 * The act of destroying or exporting a pool is very simple. We make sure there
4187 * is no more pending I/O and any references to the pool are gone. Then, we
4188 * update the pool state and sync all the labels to disk, removing the
4189 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4190 * we don't sync the labels or remove the configuration cache.
4191 */
4192 static int
4193 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4194 boolean_t force, boolean_t hardforce)
4195 {
4196 spa_t *spa;
4197
4198 if (oldconfig)
4199 *oldconfig = NULL;
4200
4201 if (!(spa_mode_global & FWRITE))
4202 return (SET_ERROR(EROFS));
4203
4204 mutex_enter(&spa_namespace_lock);
4205 if ((spa = spa_lookup(pool)) == NULL) {
4206 mutex_exit(&spa_namespace_lock);
4207 return (SET_ERROR(ENOENT));
4208 }
4209
4210 /*
4211 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4212 * reacquire the namespace lock, and see if we can export.
4213 */
4214 spa_open_ref(spa, FTAG);
4215 mutex_exit(&spa_namespace_lock);
4216 spa_async_suspend(spa);
4217 mutex_enter(&spa_namespace_lock);
4218 spa_close(spa, FTAG);
4219
4220 /*
4221 * The pool will be in core if it's openable,
4222 * in which case we can modify its state.
4223 */
4224 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4225 /*
4226 * Objsets may be open only because they're dirty, so we
4227 * have to force it to sync before checking spa_refcnt.
4228 */
4229 txg_wait_synced(spa->spa_dsl_pool, 0);
4230 spa_evicting_os_wait(spa);
4231
4232 /*
4233 * A pool cannot be exported or destroyed if there are active
4234 * references. If we are resetting a pool, allow references by
4235 * fault injection handlers.
4236 */
4237 if (!spa_refcount_zero(spa) ||
4238 (spa->spa_inject_ref != 0 &&
4239 new_state != POOL_STATE_UNINITIALIZED)) {
4240 spa_async_resume(spa);
4241 mutex_exit(&spa_namespace_lock);
4242 return (SET_ERROR(EBUSY));
4243 }
4244
4245 /*
4246 * A pool cannot be exported if it has an active shared spare.
4247 * This is to prevent other pools stealing the active spare
4248 * from an exported pool. At user's own will, such pool can
4249 * be forcedly exported.
4250 */
4251 if (!force && new_state == POOL_STATE_EXPORTED &&
4252 spa_has_active_shared_spare(spa)) {
4253 spa_async_resume(spa);
4254 mutex_exit(&spa_namespace_lock);
4255 return (SET_ERROR(EXDEV));
4256 }
4257
4258 /*
4259 * We want this to be reflected on every label,
4260 * so mark them all dirty. spa_unload() will do the
4261 * final sync that pushes these changes out.
4262 */
4263 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4264 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4265 spa->spa_state = new_state;
4266 spa->spa_final_txg = spa_last_synced_txg(spa) +
4267 TXG_DEFER_SIZE + 1;
4268 vdev_config_dirty(spa->spa_root_vdev);
4269 spa_config_exit(spa, SCL_ALL, FTAG);
4270 }
4271 }
4272
4273 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4274
4275 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4276 spa_unload(spa);
4277 spa_deactivate(spa);
4278 }
4279
4280 if (oldconfig && spa->spa_config)
4281 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4282
4283 if (new_state != POOL_STATE_UNINITIALIZED) {
4284 if (!hardforce)
4285 spa_config_sync(spa, B_TRUE, B_TRUE);
4286 spa_remove(spa);
4287 }
4288 mutex_exit(&spa_namespace_lock);
4289
4290 return (0);
4291 }
4292
4293 /*
4294 * Destroy a storage pool.
4295 */
4296 int
4297 spa_destroy(char *pool)
4298 {
4299 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4300 B_FALSE, B_FALSE));
4301 }
4302
4303 /*
4304 * Export a storage pool.
4305 */
4306 int
4307 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4308 boolean_t hardforce)
4309 {
4310 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4311 force, hardforce));
4312 }
4313
4314 /*
4315 * Similar to spa_export(), this unloads the spa_t without actually removing it
4316 * from the namespace in any way.
4317 */
4318 int
4319 spa_reset(char *pool)
4320 {
4321 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4322 B_FALSE, B_FALSE));
4323 }
4324
4325 /*
4326 * ==========================================================================
4327 * Device manipulation
4328 * ==========================================================================
4329 */
4330
4331 /*
4332 * Add a device to a storage pool.
4333 */
4334 int
4335 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4336 {
4337 uint64_t txg, id;
4338 int error;
4339 vdev_t *rvd = spa->spa_root_vdev;
4340 vdev_t *vd, *tvd;
4341 nvlist_t **spares, **l2cache;
4342 uint_t nspares, nl2cache;
4343
4344 ASSERT(spa_writeable(spa));
4345
4346 txg = spa_vdev_enter(spa);
4347
4348 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4349 VDEV_ALLOC_ADD)) != 0)
4350 return (spa_vdev_exit(spa, NULL, txg, error));
4351
4352 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */
4353
4354 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4355 &nspares) != 0)
4356 nspares = 0;
4357
4358 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4359 &nl2cache) != 0)
4360 nl2cache = 0;
4361
4362 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4363 return (spa_vdev_exit(spa, vd, txg, EINVAL));
4364
4365 if (vd->vdev_children != 0 &&
4366 (error = vdev_create(vd, txg, B_FALSE)) != 0)
4367 return (spa_vdev_exit(spa, vd, txg, error));
4368
4369 /*
4370 * We must validate the spares and l2cache devices after checking the
4371 * children. Otherwise, vdev_inuse() will blindly overwrite the spare.
4372 */
4373 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4374 return (spa_vdev_exit(spa, vd, txg, error));
4375
4376 /*
4377 * Transfer each new top-level vdev from vd to rvd.
4378 */
4379 for (int c = 0; c < vd->vdev_children; c++) {
4380
4381 /*
4382 * Set the vdev id to the first hole, if one exists.
4383 */
4384 for (id = 0; id < rvd->vdev_children; id++) {
4385 if (rvd->vdev_child[id]->vdev_ishole) {
4386 vdev_free(rvd->vdev_child[id]);
4387 break;
4388 }
4389 }
4390 tvd = vd->vdev_child[c];
4391 vdev_remove_child(vd, tvd);
4392 tvd->vdev_id = id;
4393 vdev_add_child(rvd, tvd);
4394 vdev_config_dirty(tvd);
4395 }
4396
4397 if (nspares != 0) {
4398 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4399 ZPOOL_CONFIG_SPARES);
4400 spa_load_spares(spa);
4401 spa->spa_spares.sav_sync = B_TRUE;
4402 }
4403
4404 if (nl2cache != 0) {
4405 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4406 ZPOOL_CONFIG_L2CACHE);
4407 spa_load_l2cache(spa);
4408 spa->spa_l2cache.sav_sync = B_TRUE;
4409 }
4410
4411 /*
4412 * We have to be careful when adding new vdevs to an existing pool.
4413 * If other threads start allocating from these vdevs before we
4414 * sync the config cache, and we lose power, then upon reboot we may
4415 * fail to open the pool because there are DVAs that the config cache
4416 * can't translate. Therefore, we first add the vdevs without
4417 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4418 * and then let spa_config_update() initialize the new metaslabs.
4419 *
4420 * spa_load() checks for added-but-not-initialized vdevs, so that
4421 * if we lose power at any point in this sequence, the remaining
4422 * steps will be completed the next time we load the pool.
4423 */
4424 (void) spa_vdev_exit(spa, vd, txg, 0);
4425
4426 mutex_enter(&spa_namespace_lock);
4427 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4428 mutex_exit(&spa_namespace_lock);
4429
4430 return (0);
4431 }
4432
4433 /*
4434 * Attach a device to a mirror. The arguments are the path to any device
4435 * in the mirror, and the nvroot for the new device. If the path specifies
4436 * a device that is not mirrored, we automatically insert the mirror vdev.
4437 *
4438 * If 'replacing' is specified, the new device is intended to replace the
4439 * existing device; in this case the two devices are made into their own
4440 * mirror using the 'replacing' vdev, which is functionally identical to
4441 * the mirror vdev (it actually reuses all the same ops) but has a few
4442 * extra rules: you can't attach to it after it's been created, and upon
4443 * completion of resilvering, the first disk (the one being replaced)
4444 * is automatically detached.
4445 */
4446 int
4447 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4448 {
4449 uint64_t txg, dtl_max_txg;
4450 vdev_t *rvd = spa->spa_root_vdev;
4451 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4452 vdev_ops_t *pvops;
4453 char *oldvdpath, *newvdpath;
4454 int newvd_isspare;
4455 int error;
4456
4457 ASSERT(spa_writeable(spa));
4458
4459 txg = spa_vdev_enter(spa);
4460
4461 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4462
4463 if (oldvd == NULL)
4464 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4465
4466 if (!oldvd->vdev_ops->vdev_op_leaf)
4467 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4468
4469 pvd = oldvd->vdev_parent;
4470
4471 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4472 VDEV_ALLOC_ATTACH)) != 0)
4473 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4474
4475 if (newrootvd->vdev_children != 1)
4476 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4477
4478 newvd = newrootvd->vdev_child[0];
4479
4480 if (!newvd->vdev_ops->vdev_op_leaf)
4481 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4482
4483 if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4484 return (spa_vdev_exit(spa, newrootvd, txg, error));
4485
4486 /*
4487 * Spares can't replace logs
4488 */
4489 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4490 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4491
4492 if (!replacing) {
4493 /*
4494 * For attach, the only allowable parent is a mirror or the root
4495 * vdev.
4496 */
4497 if (pvd->vdev_ops != &vdev_mirror_ops &&
4498 pvd->vdev_ops != &vdev_root_ops)
4499 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4500
4501 pvops = &vdev_mirror_ops;
4502 } else {
4503 /*
4504 * Active hot spares can only be replaced by inactive hot
4505 * spares.
4506 */
4507 if (pvd->vdev_ops == &vdev_spare_ops &&
4508 oldvd->vdev_isspare &&
4509 !spa_has_spare(spa, newvd->vdev_guid))
4510 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4511
4512 /*
4513 * If the source is a hot spare, and the parent isn't already a
4514 * spare, then we want to create a new hot spare. Otherwise, we
4515 * want to create a replacing vdev. The user is not allowed to
4516 * attach to a spared vdev child unless the 'isspare' state is
4517 * the same (spare replaces spare, non-spare replaces
4518 * non-spare).
4519 */
4520 if (pvd->vdev_ops == &vdev_replacing_ops &&
4521 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4522 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4523 } else if (pvd->vdev_ops == &vdev_spare_ops &&
4524 newvd->vdev_isspare != oldvd->vdev_isspare) {
4525 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4526 }
4527
4528 if (newvd->vdev_isspare)
4529 pvops = &vdev_spare_ops;
4530 else
4531 pvops = &vdev_replacing_ops;
4532 }
4533
4534 /*
4535 * Make sure the new device is big enough.
4536 */
4537 if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4538 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4539
4540 /*
4541 * The new device cannot have a higher alignment requirement
4542 * than the top-level vdev.
4543 */
4544 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4545 return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4546
4547 /*
4548 * If this is an in-place replacement, update oldvd's path and devid
4549 * to make it distinguishable from newvd, and unopenable from now on.
4550 */
4551 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4552 spa_strfree(oldvd->vdev_path);
4553 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4554 KM_SLEEP);
4555 (void) sprintf(oldvd->vdev_path, "%s/%s",
4556 newvd->vdev_path, "old");
4557 if (oldvd->vdev_devid != NULL) {
4558 spa_strfree(oldvd->vdev_devid);
4559 oldvd->vdev_devid = NULL;
4560 }
4561 }
4562
4563 /* mark the device being resilvered */
4564 newvd->vdev_resilver_txg = txg;
4565
4566 /*
4567 * If the parent is not a mirror, or if we're replacing, insert the new
4568 * mirror/replacing/spare vdev above oldvd.
4569 */
4570 if (pvd->vdev_ops != pvops)
4571 pvd = vdev_add_parent(oldvd, pvops);
4572
4573 ASSERT(pvd->vdev_top->vdev_parent == rvd);
4574 ASSERT(pvd->vdev_ops == pvops);
4575 ASSERT(oldvd->vdev_parent == pvd);
4576
4577 /*
4578 * Extract the new device from its root and add it to pvd.
4579 */
4580 vdev_remove_child(newrootvd, newvd);
4581 newvd->vdev_id = pvd->vdev_children;
4582 newvd->vdev_crtxg = oldvd->vdev_crtxg;
4583 vdev_add_child(pvd, newvd);
4584
4585 tvd = newvd->vdev_top;
4586 ASSERT(pvd->vdev_top == tvd);
4587 ASSERT(tvd->vdev_parent == rvd);
4588
4589 vdev_config_dirty(tvd);
4590
4591 /*
4592 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4593 * for any dmu_sync-ed blocks. It will propagate upward when
4594 * spa_vdev_exit() calls vdev_dtl_reassess().
4595 */
4596 dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4597
4598 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4599 dtl_max_txg - TXG_INITIAL);
4600
4601 if (newvd->vdev_isspare) {
4602 spa_spare_activate(newvd);
4603 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4604 }
4605
4606 oldvdpath = spa_strdup(oldvd->vdev_path);
4607 newvdpath = spa_strdup(newvd->vdev_path);
4608 newvd_isspare = newvd->vdev_isspare;
4609
4610 /*
4611 * Mark newvd's DTL dirty in this txg.
4612 */
4613 vdev_dirty(tvd, VDD_DTL, newvd, txg);
4614
4615 /*
4616 * Schedule the resilver to restart in the future. We do this to
4617 * ensure that dmu_sync-ed blocks have been stitched into the
4618 * respective datasets.
4619 */
4620 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4621
4622 /*
4623 * Commit the config
4624 */
4625 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4626
4627 spa_history_log_internal(spa, "vdev attach", NULL,
4628 "%s vdev=%s %s vdev=%s",
4629 replacing && newvd_isspare ? "spare in" :
4630 replacing ? "replace" : "attach", newvdpath,
4631 replacing ? "for" : "to", oldvdpath);
4632
4633 spa_strfree(oldvdpath);
4634 spa_strfree(newvdpath);
4635
4636 if (spa->spa_bootfs)
4637 spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4638
4639 return (0);
4640 }
4641
4642 /*
4643 * Detach a device from a mirror or replacing vdev.
4644 *
4645 * If 'replace_done' is specified, only detach if the parent
4646 * is a replacing vdev.
4647 */
4648 int
4649 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4650 {
4651 uint64_t txg;
4652 int error;
4653 vdev_t *rvd = spa->spa_root_vdev;
4654 vdev_t *vd, *pvd, *cvd, *tvd;
4655 boolean_t unspare = B_FALSE;
4656 uint64_t unspare_guid = 0;
4657 char *vdpath;
4658
4659 ASSERT(spa_writeable(spa));
4660
4661 txg = spa_vdev_enter(spa);
4662
4663 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4664
4665 if (vd == NULL)
4666 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4667
4668 if (!vd->vdev_ops->vdev_op_leaf)
4669 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4670
4671 pvd = vd->vdev_parent;
4672
4673 /*
4674 * If the parent/child relationship is not as expected, don't do it.
4675 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4676 * vdev that's replacing B with C. The user's intent in replacing
4677 * is to go from M(A,B) to M(A,C). If the user decides to cancel
4678 * the replace by detaching C, the expected behavior is to end up
4679 * M(A,B). But suppose that right after deciding to detach C,
4680 * the replacement of B completes. We would have M(A,C), and then
4681 * ask to detach C, which would leave us with just A -- not what
4682 * the user wanted. To prevent this, we make sure that the
4683 * parent/child relationship hasn't changed -- in this example,
4684 * that C's parent is still the replacing vdev R.
4685 */
4686 if (pvd->vdev_guid != pguid && pguid != 0)
4687 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4688
4689 /*
4690 * Only 'replacing' or 'spare' vdevs can be replaced.
4691 */
4692 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4693 pvd->vdev_ops != &vdev_spare_ops)
4694 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4695
4696 ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4697 spa_version(spa) >= SPA_VERSION_SPARES);
4698
4699 /*
4700 * Only mirror, replacing, and spare vdevs support detach.
4701 */
4702 if (pvd->vdev_ops != &vdev_replacing_ops &&
4703 pvd->vdev_ops != &vdev_mirror_ops &&
4704 pvd->vdev_ops != &vdev_spare_ops)
4705 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4706
4707 /*
4708 * If this device has the only valid copy of some data,
4709 * we cannot safely detach it.
4710 */
4711 if (vdev_dtl_required(vd))
4712 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4713
4714 ASSERT(pvd->vdev_children >= 2);
4715
4716 /*
4717 * If we are detaching the second disk from a replacing vdev, then
4718 * check to see if we changed the original vdev's path to have "/old"
4719 * at the end in spa_vdev_attach(). If so, undo that change now.
4720 */
4721 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4722 vd->vdev_path != NULL) {
4723 size_t len = strlen(vd->vdev_path);
4724
4725 for (int c = 0; c < pvd->vdev_children; c++) {
4726 cvd = pvd->vdev_child[c];
4727
4728 if (cvd == vd || cvd->vdev_path == NULL)
4729 continue;
4730
4731 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4732 strcmp(cvd->vdev_path + len, "/old") == 0) {
4733 spa_strfree(cvd->vdev_path);
4734 cvd->vdev_path = spa_strdup(vd->vdev_path);
4735 break;
4736 }
4737 }
4738 }
4739
4740 /*
4741 * If we are detaching the original disk from a spare, then it implies
4742 * that the spare should become a real disk, and be removed from the
4743 * active spare list for the pool.
4744 */
4745 if (pvd->vdev_ops == &vdev_spare_ops &&
4746 vd->vdev_id == 0 &&
4747 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4748 unspare = B_TRUE;
4749
4750 /*
4751 * Erase the disk labels so the disk can be used for other things.
4752 * This must be done after all other error cases are handled,
4753 * but before we disembowel vd (so we can still do I/O to it).
4754 * But if we can't do it, don't treat the error as fatal --
4755 * it may be that the unwritability of the disk is the reason
4756 * it's being detached!
4757 */
4758 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4759
4760 /*
4761 * Remove vd from its parent and compact the parent's children.
4762 */
4763 vdev_remove_child(pvd, vd);
4764 vdev_compact_children(pvd);
4765
4766 /*
4767 * Remember one of the remaining children so we can get tvd below.
4768 */
4769 cvd = pvd->vdev_child[pvd->vdev_children - 1];
4770
4771 /*
4772 * If we need to remove the remaining child from the list of hot spares,
4773 * do it now, marking the vdev as no longer a spare in the process.
4774 * We must do this before vdev_remove_parent(), because that can
4775 * change the GUID if it creates a new toplevel GUID. For a similar
4776 * reason, we must remove the spare now, in the same txg as the detach;
4777 * otherwise someone could attach a new sibling, change the GUID, and
4778 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4779 */
4780 if (unspare) {
4781 ASSERT(cvd->vdev_isspare);
4782 spa_spare_remove(cvd);
4783 unspare_guid = cvd->vdev_guid;
4784 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4785 cvd->vdev_unspare = B_TRUE;
4786 }
4787
4788 /*
4789 * If the parent mirror/replacing vdev only has one child,
4790 * the parent is no longer needed. Remove it from the tree.
4791 */
4792 if (pvd->vdev_children == 1) {
4793 if (pvd->vdev_ops == &vdev_spare_ops)
4794 cvd->vdev_unspare = B_FALSE;
4795 vdev_remove_parent(cvd);
4796 }
4797
4798
4799 /*
4800 * We don't set tvd until now because the parent we just removed
4801 * may have been the previous top-level vdev.
4802 */
4803 tvd = cvd->vdev_top;
4804 ASSERT(tvd->vdev_parent == rvd);
4805
4806 /*
4807 * Reevaluate the parent vdev state.
4808 */
4809 vdev_propagate_state(cvd);
4810
4811 /*
4812 * If the 'autoexpand' property is set on the pool then automatically
4813 * try to expand the size of the pool. For example if the device we
4814 * just detached was smaller than the others, it may be possible to
4815 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4816 * first so that we can obtain the updated sizes of the leaf vdevs.
4817 */
4818 if (spa->spa_autoexpand) {
4819 vdev_reopen(tvd);
4820 vdev_expand(tvd, txg);
4821 }
4822
4823 vdev_config_dirty(tvd);
4824
4825 /*
4826 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
4827 * vd->vdev_detached is set and free vd's DTL object in syncing context.
4828 * But first make sure we're not on any *other* txg's DTL list, to
4829 * prevent vd from being accessed after it's freed.
4830 */
4831 vdpath = spa_strdup(vd->vdev_path);
4832 for (int t = 0; t < TXG_SIZE; t++)
4833 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4834 vd->vdev_detached = B_TRUE;
4835 vdev_dirty(tvd, VDD_DTL, vd, txg);
4836
4837 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
4838
4839 /* hang on to the spa before we release the lock */
4840 spa_open_ref(spa, FTAG);
4841
4842 error = spa_vdev_exit(spa, vd, txg, 0);
4843
4844 spa_history_log_internal(spa, "detach", NULL,
4845 "vdev=%s", vdpath);
4846 spa_strfree(vdpath);
4847
4848 /*
4849 * If this was the removal of the original device in a hot spare vdev,
4850 * then we want to go through and remove the device from the hot spare
4851 * list of every other pool.
4852 */
4853 if (unspare) {
4854 spa_t *altspa = NULL;
4855
4856 mutex_enter(&spa_namespace_lock);
4857 while ((altspa = spa_next(altspa)) != NULL) {
4858 if (altspa->spa_state != POOL_STATE_ACTIVE ||
4859 altspa == spa)
4860 continue;
4861
4862 spa_open_ref(altspa, FTAG);
4863 mutex_exit(&spa_namespace_lock);
4864 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
4865 mutex_enter(&spa_namespace_lock);
4866 spa_close(altspa, FTAG);
4867 }
4868 mutex_exit(&spa_namespace_lock);
4869
4870 /* search the rest of the vdevs for spares to remove */
4871 spa_vdev_resilver_done(spa);
4872 }
4873
4874 /* all done with the spa; OK to release */
4875 mutex_enter(&spa_namespace_lock);
4876 spa_close(spa, FTAG);
4877 mutex_exit(&spa_namespace_lock);
4878
4879 return (error);
4880 }
4881
4882 /*
4883 * Split a set of devices from their mirrors, and create a new pool from them.
4884 */
4885 int
4886 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
4887 nvlist_t *props, boolean_t exp)
4888 {
4889 int error = 0;
4890 uint64_t txg, *glist;
4891 spa_t *newspa;
4892 uint_t c, children, lastlog;
4893 nvlist_t **child, *nvl, *tmp;
4894 dmu_tx_t *tx;
4895 char *altroot = NULL;
4896 vdev_t *rvd, **vml = NULL; /* vdev modify list */
4897 boolean_t activate_slog;
4898
4899 ASSERT(spa_writeable(spa));
4900
4901 txg = spa_vdev_enter(spa);
4902
4903 /* clear the log and flush everything up to now */
4904 activate_slog = spa_passivate_log(spa);
4905 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4906 error = spa_offline_log(spa);
4907 txg = spa_vdev_config_enter(spa);
4908
4909 if (activate_slog)
4910 spa_activate_log(spa);
4911
4912 if (error != 0)
4913 return (spa_vdev_exit(spa, NULL, txg, error));
4914
4915 /* check new spa name before going any further */
4916 if (spa_lookup(newname) != NULL)
4917 return (spa_vdev_exit(spa, NULL, txg, EEXIST));
4918
4919 /*
4920 * scan through all the children to ensure they're all mirrors
4921 */
4922 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
4923 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
4924 &children) != 0)
4925 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4926
4927 /* first, check to ensure we've got the right child count */
4928 rvd = spa->spa_root_vdev;
4929 lastlog = 0;
4930 for (c = 0; c < rvd->vdev_children; c++) {
4931 vdev_t *vd = rvd->vdev_child[c];
4932
4933 /* don't count the holes & logs as children */
4934 if (vd->vdev_islog || vd->vdev_ishole) {
4935 if (lastlog == 0)
4936 lastlog = c;
4937 continue;
4938 }
4939
4940 lastlog = 0;
4941 }
4942 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
4943 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4944
4945 /* next, ensure no spare or cache devices are part of the split */
4946 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
4947 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
4948 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4949
4950 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
4951 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
4952
4953 /* then, loop over each vdev and validate it */
4954 for (c = 0; c < children; c++) {
4955 uint64_t is_hole = 0;
4956
4957 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
4958 &is_hole);
4959
4960 if (is_hole != 0) {
4961 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
4962 spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
4963 continue;
4964 } else {
4965 error = SET_ERROR(EINVAL);
4966 break;
4967 }
4968 }
4969
4970 /* which disk is going to be split? */
4971 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
4972 &glist[c]) != 0) {
4973 error = SET_ERROR(EINVAL);
4974 break;
4975 }
4976
4977 /* look it up in the spa */
4978 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
4979 if (vml[c] == NULL) {
4980 error = SET_ERROR(ENODEV);
4981 break;
4982 }
4983
4984 /* make sure there's nothing stopping the split */
4985 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
4986 vml[c]->vdev_islog ||
4987 vml[c]->vdev_ishole ||
4988 vml[c]->vdev_isspare ||
4989 vml[c]->vdev_isl2cache ||
4990 !vdev_writeable(vml[c]) ||
4991 vml[c]->vdev_children != 0 ||
4992 vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
4993 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
4994 error = SET_ERROR(EINVAL);
4995 break;
4996 }
4997
4998 if (vdev_dtl_required(vml[c])) {
4999 error = SET_ERROR(EBUSY);
5000 break;
5001 }
5002
5003 /* we need certain info from the top level */
5004 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
5005 vml[c]->vdev_top->vdev_ms_array) == 0);
5006 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
5007 vml[c]->vdev_top->vdev_ms_shift) == 0);
5008 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
5009 vml[c]->vdev_top->vdev_asize) == 0);
5010 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
5011 vml[c]->vdev_top->vdev_ashift) == 0);
5012 }
5013
5014 if (error != 0) {
5015 kmem_free(vml, children * sizeof (vdev_t *));
5016 kmem_free(glist, children * sizeof (uint64_t));
5017 return (spa_vdev_exit(spa, NULL, txg, error));
5018 }
5019
5020 /* stop writers from using the disks */
5021 for (c = 0; c < children; c++) {
5022 if (vml[c] != NULL)
5023 vml[c]->vdev_offline = B_TRUE;
5024 }
5025 vdev_reopen(spa->spa_root_vdev);
5026
5027 /*
5028 * Temporarily record the splitting vdevs in the spa config. This
5029 * will disappear once the config is regenerated.
5030 */
5031 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5032 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
5033 glist, children) == 0);
5034 kmem_free(glist, children * sizeof (uint64_t));
5035
5036 mutex_enter(&spa->spa_props_lock);
5037 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
5038 nvl) == 0);
5039 mutex_exit(&spa->spa_props_lock);
5040 spa->spa_config_splitting = nvl;
5041 vdev_config_dirty(spa->spa_root_vdev);
5042
5043 /* configure and create the new pool */
5044 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
5045 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5046 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
5047 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5048 spa_version(spa)) == 0);
5049 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
5050 spa->spa_config_txg) == 0);
5051 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5052 spa_generate_guid(NULL)) == 0);
5053 (void) nvlist_lookup_string(props,
5054 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5055
5056 /* add the new pool to the namespace */
5057 newspa = spa_add(newname, config, altroot);
5058 newspa->spa_config_txg = spa->spa_config_txg;
5059 spa_set_log_state(newspa, SPA_LOG_CLEAR);
5060
5061 /* release the spa config lock, retaining the namespace lock */
5062 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5063
5064 if (zio_injection_enabled)
5065 zio_handle_panic_injection(spa, FTAG, 1);
5066
5067 spa_activate(newspa, spa_mode_global);
5068 spa_async_suspend(newspa);
5069
5070 /* create the new pool from the disks of the original pool */
5071 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
5072 if (error)
5073 goto out;
5074
5075 /* if that worked, generate a real config for the new pool */
5076 if (newspa->spa_root_vdev != NULL) {
5077 VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
5078 NV_UNIQUE_NAME, KM_SLEEP) == 0);
5079 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
5080 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
5081 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
5082 B_TRUE));
5083 }
5084
5085 /* set the props */
5086 if (props != NULL) {
5087 spa_configfile_set(newspa, props, B_FALSE);
5088 error = spa_prop_set(newspa, props);
5089 if (error)
5090 goto out;
5091 }
5092
5093 /* flush everything */
5094 txg = spa_vdev_config_enter(newspa);
5095 vdev_config_dirty(newspa->spa_root_vdev);
5096 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5097
5098 if (zio_injection_enabled)
5099 zio_handle_panic_injection(spa, FTAG, 2);
5100
5101 spa_async_resume(newspa);
5102
5103 /* finally, update the original pool's config */
5104 txg = spa_vdev_config_enter(spa);
5105 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5106 error = dmu_tx_assign(tx, TXG_WAIT);
5107 if (error != 0)
5108 dmu_tx_abort(tx);
5109 for (c = 0; c < children; c++) {
5110 if (vml[c] != NULL) {
5111 vdev_split(vml[c]);
5112 if (error == 0)
5113 spa_history_log_internal(spa, "detach", tx,
5114 "vdev=%s", vml[c]->vdev_path);
5115 vdev_free(vml[c]);
5116 }
5117 }
5118 vdev_config_dirty(spa->spa_root_vdev);
5119 spa->spa_config_splitting = NULL;
5120 nvlist_free(nvl);
5121 if (error == 0)
5122 dmu_tx_commit(tx);
5123 (void) spa_vdev_exit(spa, NULL, txg, 0);
5124
5125 if (zio_injection_enabled)
5126 zio_handle_panic_injection(spa, FTAG, 3);
5127
5128 /* split is complete; log a history record */
5129 spa_history_log_internal(newspa, "split", NULL,
5130 "from pool %s", spa_name(spa));
5131
5132 kmem_free(vml, children * sizeof (vdev_t *));
5133
5134 /* if we're not going to mount the filesystems in userland, export */
5135 if (exp)
5136 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5137 B_FALSE, B_FALSE);
5138
5139 return (error);
5140
5141 out:
5142 spa_unload(newspa);
5143 spa_deactivate(newspa);
5144 spa_remove(newspa);
5145
5146 txg = spa_vdev_config_enter(spa);
5147
5148 /* re-online all offlined disks */
5149 for (c = 0; c < children; c++) {
5150 if (vml[c] != NULL)
5151 vml[c]->vdev_offline = B_FALSE;
5152 }
5153 vdev_reopen(spa->spa_root_vdev);
5154
5155 nvlist_free(spa->spa_config_splitting);
5156 spa->spa_config_splitting = NULL;
5157 (void) spa_vdev_exit(spa, NULL, txg, error);
5158
5159 kmem_free(vml, children * sizeof (vdev_t *));
5160 return (error);
5161 }
5162
5163 static nvlist_t *
5164 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5165 {
5166 for (int i = 0; i < count; i++) {
5167 uint64_t guid;
5168
5169 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5170 &guid) == 0);
5171
5172 if (guid == target_guid)
5173 return (nvpp[i]);
5174 }
5175
5176 return (NULL);
5177 }
5178
5179 static void
5180 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5181 nvlist_t *dev_to_remove)
5182 {
5183 nvlist_t **newdev = NULL;
5184
5185 if (count > 1)
5186 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5187
5188 for (int i = 0, j = 0; i < count; i++) {
5189 if (dev[i] == dev_to_remove)
5190 continue;
5191 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5192 }
5193
5194 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5195 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5196
5197 for (int i = 0; i < count - 1; i++)
5198 nvlist_free(newdev[i]);
5199
5200 if (count > 1)
5201 kmem_free(newdev, (count - 1) * sizeof (void *));
5202 }
5203
5204 /*
5205 * Evacuate the device.
5206 */
5207 static int
5208 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5209 {
5210 uint64_t txg;
5211 int error = 0;
5212
5213 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5214 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5215 ASSERT(vd == vd->vdev_top);
5216
5217 /*
5218 * Evacuate the device. We don't hold the config lock as writer
5219 * since we need to do I/O but we do keep the
5220 * spa_namespace_lock held. Once this completes the device
5221 * should no longer have any blocks allocated on it.
5222 */
5223 if (vd->vdev_islog) {
5224 if (vd->vdev_stat.vs_alloc != 0)
5225 error = spa_offline_log(spa);
5226 } else {
5227 error = SET_ERROR(ENOTSUP);
5228 }
5229
5230 if (error)
5231 return (error);
5232
5233 /*
5234 * The evacuation succeeded. Remove any remaining MOS metadata
5235 * associated with this vdev, and wait for these changes to sync.
5236 */
5237 ASSERT0(vd->vdev_stat.vs_alloc);
5238 txg = spa_vdev_config_enter(spa);
5239 vd->vdev_removing = B_TRUE;
5240 vdev_dirty_leaves(vd, VDD_DTL, txg);
5241 vdev_config_dirty(vd);
5242 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5243
5244 return (0);
5245 }
5246
5247 /*
5248 * Complete the removal by cleaning up the namespace.
5249 */
5250 static void
5251 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5252 {
5253 vdev_t *rvd = spa->spa_root_vdev;
5254 uint64_t id = vd->vdev_id;
5255 boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5256
5257 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5258 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5259 ASSERT(vd == vd->vdev_top);
5260
5261 /*
5262 * Only remove any devices which are empty.
5263 */
5264 if (vd->vdev_stat.vs_alloc != 0)
5265 return;
5266
5267 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5268
5269 if (list_link_active(&vd->vdev_state_dirty_node))
5270 vdev_state_clean(vd);
5271 if (list_link_active(&vd->vdev_config_dirty_node))
5272 vdev_config_clean(vd);
5273
5274 vdev_free(vd);
5275
5276 if (last_vdev) {
5277 vdev_compact_children(rvd);
5278 } else {
5279 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5280 vdev_add_child(rvd, vd);
5281 }
5282 vdev_config_dirty(rvd);
5283
5284 /*
5285 * Reassess the health of our root vdev.
5286 */
5287 vdev_reopen(rvd);
5288 }
5289
5290 /*
5291 * Remove a device from the pool -
5292 *
5293 * Removing a device from the vdev namespace requires several steps
5294 * and can take a significant amount of time. As a result we use
5295 * the spa_vdev_config_[enter/exit] functions which allow us to
5296 * grab and release the spa_config_lock while still holding the namespace
5297 * lock. During each step the configuration is synced out.
5298 *
5299 * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5300 * devices.
5301 */
5302 int
5303 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5304 {
5305 vdev_t *vd;
5306 metaslab_group_t *mg;
5307 nvlist_t **spares, **l2cache, *nv;
5308 uint64_t txg = 0;
5309 uint_t nspares, nl2cache;
5310 int error = 0;
5311 boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5312
5313 ASSERT(spa_writeable(spa));
5314
5315 if (!locked)
5316 txg = spa_vdev_enter(spa);
5317
5318 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5319
5320 if (spa->spa_spares.sav_vdevs != NULL &&
5321 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5322 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5323 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5324 /*
5325 * Only remove the hot spare if it's not currently in use
5326 * in this pool.
5327 */
5328 if (vd == NULL || unspare) {
5329 spa_vdev_remove_aux(spa->spa_spares.sav_config,
5330 ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5331 spa_load_spares(spa);
5332 spa->spa_spares.sav_sync = B_TRUE;
5333 } else {
5334 error = SET_ERROR(EBUSY);
5335 }
5336 } else if (spa->spa_l2cache.sav_vdevs != NULL &&
5337 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5338 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5339 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5340 /*
5341 * Cache devices can always be removed.
5342 */
5343 spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5344 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5345 spa_load_l2cache(spa);
5346 spa->spa_l2cache.sav_sync = B_TRUE;
5347 } else if (vd != NULL && vd->vdev_islog) {
5348 ASSERT(!locked);
5349 ASSERT(vd == vd->vdev_top);
5350
5351 mg = vd->vdev_mg;
5352
5353 /*
5354 * Stop allocating from this vdev.
5355 */
5356 metaslab_group_passivate(mg);
5357
5358 /*
5359 * Wait for the youngest allocations and frees to sync,
5360 * and then wait for the deferral of those frees to finish.
5361 */
5362 spa_vdev_config_exit(spa, NULL,
5363 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5364
5365 /*
5366 * Attempt to evacuate the vdev.
5367 */
5368 error = spa_vdev_remove_evacuate(spa, vd);
5369
5370 txg = spa_vdev_config_enter(spa);
5371
5372 /*
5373 * If we couldn't evacuate the vdev, unwind.
5374 */
5375 if (error) {
5376 metaslab_group_activate(mg);
5377 return (spa_vdev_exit(spa, NULL, txg, error));
5378 }
5379
5380 /*
5381 * Clean up the vdev namespace.
5382 */
5383 spa_vdev_remove_from_namespace(spa, vd);
5384
5385 } else if (vd != NULL) {
5386 /*
5387 * Normal vdevs cannot be removed (yet).
5388 */
5389 error = SET_ERROR(ENOTSUP);
5390 } else {
5391 /*
5392 * There is no vdev of any kind with the specified guid.
5393 */
5394 error = SET_ERROR(ENOENT);
5395 }
5396
5397 if (!locked)
5398 return (spa_vdev_exit(spa, NULL, txg, error));
5399
5400 return (error);
5401 }
5402
5403 /*
5404 * Find any device that's done replacing, or a vdev marked 'unspare' that's
5405 * currently spared, so we can detach it.
5406 */
5407 static vdev_t *
5408 spa_vdev_resilver_done_hunt(vdev_t *vd)
5409 {
5410 vdev_t *newvd, *oldvd;
5411
5412 for (int c = 0; c < vd->vdev_children; c++) {
5413 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5414 if (oldvd != NULL)
5415 return (oldvd);
5416 }
5417
5418 /*
5419 * Check for a completed replacement. We always consider the first
5420 * vdev in the list to be the oldest vdev, and the last one to be
5421 * the newest (see spa_vdev_attach() for how that works). In
5422 * the case where the newest vdev is faulted, we will not automatically
5423 * remove it after a resilver completes. This is OK as it will require
5424 * user intervention to determine which disk the admin wishes to keep.
5425 */
5426 if (vd->vdev_ops == &vdev_replacing_ops) {
5427 ASSERT(vd->vdev_children > 1);
5428
5429 newvd = vd->vdev_child[vd->vdev_children - 1];
5430 oldvd = vd->vdev_child[0];
5431
5432 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5433 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5434 !vdev_dtl_required(oldvd))
5435 return (oldvd);
5436 }
5437
5438 /*
5439 * Check for a completed resilver with the 'unspare' flag set.
5440 */
5441 if (vd->vdev_ops == &vdev_spare_ops) {
5442 vdev_t *first = vd->vdev_child[0];
5443 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5444
5445 if (last->vdev_unspare) {
5446 oldvd = first;
5447 newvd = last;
5448 } else if (first->vdev_unspare) {
5449 oldvd = last;
5450 newvd = first;
5451 } else {
5452 oldvd = NULL;
5453 }
5454
5455 if (oldvd != NULL &&
5456 vdev_dtl_empty(newvd, DTL_MISSING) &&
5457 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5458 !vdev_dtl_required(oldvd))
5459 return (oldvd);
5460
5461 /*
5462 * If there are more than two spares attached to a disk,
5463 * and those spares are not required, then we want to
5464 * attempt to free them up now so that they can be used
5465 * by other pools. Once we're back down to a single
5466 * disk+spare, we stop removing them.
5467 */
5468 if (vd->vdev_children > 2) {
5469 newvd = vd->vdev_child[1];
5470
5471 if (newvd->vdev_isspare && last->vdev_isspare &&
5472 vdev_dtl_empty(last, DTL_MISSING) &&
5473 vdev_dtl_empty(last, DTL_OUTAGE) &&
5474 !vdev_dtl_required(newvd))
5475 return (newvd);
5476 }
5477 }
5478
5479 return (NULL);
5480 }
5481
5482 static void
5483 spa_vdev_resilver_done(spa_t *spa)
5484 {
5485 vdev_t *vd, *pvd, *ppvd;
5486 uint64_t guid, sguid, pguid, ppguid;
5487
5488 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5489
5490 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5491 pvd = vd->vdev_parent;
5492 ppvd = pvd->vdev_parent;
5493 guid = vd->vdev_guid;
5494 pguid = pvd->vdev_guid;
5495 ppguid = ppvd->vdev_guid;
5496 sguid = 0;
5497 /*
5498 * If we have just finished replacing a hot spared device, then
5499 * we need to detach the parent's first child (the original hot
5500 * spare) as well.
5501 */
5502 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5503 ppvd->vdev_children == 2) {
5504 ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5505 sguid = ppvd->vdev_child[1]->vdev_guid;
5506 }
5507 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5508
5509 spa_config_exit(spa, SCL_ALL, FTAG);
5510 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5511 return;
5512 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5513 return;
5514 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5515 }
5516
5517 spa_config_exit(spa, SCL_ALL, FTAG);
5518 }
5519
5520 /*
5521 * Update the stored path or FRU for this vdev.
5522 */
5523 int
5524 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5525 boolean_t ispath)
5526 {
5527 vdev_t *vd;
5528 boolean_t sync = B_FALSE;
5529
5530 ASSERT(spa_writeable(spa));
5531
5532 spa_vdev_state_enter(spa, SCL_ALL);
5533
5534 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5535 return (spa_vdev_state_exit(spa, NULL, ENOENT));
5536
5537 if (!vd->vdev_ops->vdev_op_leaf)
5538 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5539
5540 if (ispath) {
5541 if (strcmp(value, vd->vdev_path) != 0) {
5542 spa_strfree(vd->vdev_path);
5543 vd->vdev_path = spa_strdup(value);
5544 sync = B_TRUE;
5545 }
5546 } else {
5547 if (vd->vdev_fru == NULL) {
5548 vd->vdev_fru = spa_strdup(value);
5549 sync = B_TRUE;
5550 } else if (strcmp(value, vd->vdev_fru) != 0) {
5551 spa_strfree(vd->vdev_fru);
5552 vd->vdev_fru = spa_strdup(value);
5553 sync = B_TRUE;
5554 }
5555 }
5556
5557 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5558 }
5559
5560 int
5561 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5562 {
5563 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5564 }
5565
5566 int
5567 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5568 {
5569 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5570 }
5571
5572 /*
5573 * ==========================================================================
5574 * SPA Scanning
5575 * ==========================================================================
5576 */
5577
5578 int
5579 spa_scan_stop(spa_t *spa)
5580 {
5581 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5582 if (dsl_scan_resilvering(spa->spa_dsl_pool))
5583 return (SET_ERROR(EBUSY));
5584 return (dsl_scan_cancel(spa->spa_dsl_pool));
5585 }
5586
5587 int
5588 spa_scan(spa_t *spa, pool_scan_func_t func)
5589 {
5590 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5591
5592 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5593 return (SET_ERROR(ENOTSUP));
5594
5595 /*
5596 * If a resilver was requested, but there is no DTL on a
5597 * writeable leaf device, we have nothing to do.
5598 */
5599 if (func == POOL_SCAN_RESILVER &&
5600 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5601 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5602 return (0);
5603 }
5604
5605 return (dsl_scan(spa->spa_dsl_pool, func));
5606 }
5607
5608 /*
5609 * ==========================================================================
5610 * SPA async task processing
5611 * ==========================================================================
5612 */
5613
5614 static void
5615 spa_async_remove(spa_t *spa, vdev_t *vd)
5616 {
5617 if (vd->vdev_remove_wanted) {
5618 vd->vdev_remove_wanted = B_FALSE;
5619 vd->vdev_delayed_close = B_FALSE;
5620 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5621
5622 /*
5623 * We want to clear the stats, but we don't want to do a full
5624 * vdev_clear() as that will cause us to throw away
5625 * degraded/faulted state as well as attempt to reopen the
5626 * device, all of which is a waste.
5627 */
5628 vd->vdev_stat.vs_read_errors = 0;
5629 vd->vdev_stat.vs_write_errors = 0;
5630 vd->vdev_stat.vs_checksum_errors = 0;
5631
5632 vdev_state_dirty(vd->vdev_top);
5633 }
5634
5635 for (int c = 0; c < vd->vdev_children; c++)
5636 spa_async_remove(spa, vd->vdev_child[c]);
5637 }
5638
5639 static void
5640 spa_async_probe(spa_t *spa, vdev_t *vd)
5641 {
5642 if (vd->vdev_probe_wanted) {
5643 vd->vdev_probe_wanted = B_FALSE;
5644 vdev_reopen(vd); /* vdev_open() does the actual probe */
5645 }
5646
5647 for (int c = 0; c < vd->vdev_children; c++)
5648 spa_async_probe(spa, vd->vdev_child[c]);
5649 }
5650
5651 static void
5652 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5653 {
5654 sysevent_id_t eid;
5655 nvlist_t *attr;
5656 char *physpath;
5657
5658 if (!spa->spa_autoexpand)
5659 return;
5660
5661 for (int c = 0; c < vd->vdev_children; c++) {
5662 vdev_t *cvd = vd->vdev_child[c];
5663 spa_async_autoexpand(spa, cvd);
5664 }
5665
5666 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5667 return;
5668
5669 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5670 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5671
5672 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5673 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5674
5675 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5676 ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
5677
5678 nvlist_free(attr);
5679 kmem_free(physpath, MAXPATHLEN);
5680 }
5681
5682 static void
5683 spa_async_thread(spa_t *spa)
5684 {
5685 int tasks;
5686
5687 ASSERT(spa->spa_sync_on);
5688
5689 mutex_enter(&spa->spa_async_lock);
5690 tasks = spa->spa_async_tasks;
5691 spa->spa_async_tasks = 0;
5692 mutex_exit(&spa->spa_async_lock);
5693
5694 /*
5695 * See if the config needs to be updated.
5696 */
5697 if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5698 uint64_t old_space, new_space;
5699
5700 mutex_enter(&spa_namespace_lock);
5701 old_space = metaslab_class_get_space(spa_normal_class(spa));
5702 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5703 new_space = metaslab_class_get_space(spa_normal_class(spa));
5704 mutex_exit(&spa_namespace_lock);
5705
5706 /*
5707 * If the pool grew as a result of the config update,
5708 * then log an internal history event.
5709 */
5710 if (new_space != old_space) {
5711 spa_history_log_internal(spa, "vdev online", NULL,
5712 "pool '%s' size: %llu(+%llu)",
5713 spa_name(spa), new_space, new_space - old_space);
5714 }
5715 }
5716
5717 /*
5718 * See if any devices need to be marked REMOVED.
5719 */
5720 if (tasks & SPA_ASYNC_REMOVE) {
5721 spa_vdev_state_enter(spa, SCL_NONE);
5722 spa_async_remove(spa, spa->spa_root_vdev);
5723 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
5724 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5725 for (int i = 0; i < spa->spa_spares.sav_count; i++)
5726 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5727 (void) spa_vdev_state_exit(spa, NULL, 0);
5728 }
5729
5730 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5731 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5732 spa_async_autoexpand(spa, spa->spa_root_vdev);
5733 spa_config_exit(spa, SCL_CONFIG, FTAG);
5734 }
5735
5736 /*
5737 * See if any devices need to be probed.
5738 */
5739 if (tasks & SPA_ASYNC_PROBE) {
5740 spa_vdev_state_enter(spa, SCL_NONE);
5741 spa_async_probe(spa, spa->spa_root_vdev);
5742 (void) spa_vdev_state_exit(spa, NULL, 0);
5743 }
5744
5745 /*
5746 * If any devices are done replacing, detach them.
5747 */
5748 if (tasks & SPA_ASYNC_RESILVER_DONE)
5749 spa_vdev_resilver_done(spa);
5750
5751 /*
5752 * Kick off a resilver.
5753 */
5754 if (tasks & SPA_ASYNC_RESILVER)
5755 dsl_resilver_restart(spa->spa_dsl_pool, 0);
5756
5757 /*
5758 * Let the world know that we're done.
5759 */
5760 mutex_enter(&spa->spa_async_lock);
5761 spa->spa_async_thread = NULL;
5762 cv_broadcast(&spa->spa_async_cv);
5763 mutex_exit(&spa->spa_async_lock);
5764 thread_exit();
5765 }
5766
5767 void
5768 spa_async_suspend(spa_t *spa)
5769 {
5770 mutex_enter(&spa->spa_async_lock);
5771 spa->spa_async_suspended++;
5772 while (spa->spa_async_thread != NULL)
5773 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5774 mutex_exit(&spa->spa_async_lock);
5775 }
5776
5777 void
5778 spa_async_resume(spa_t *spa)
5779 {
5780 mutex_enter(&spa->spa_async_lock);
5781 ASSERT(spa->spa_async_suspended != 0);
5782 spa->spa_async_suspended--;
5783 mutex_exit(&spa->spa_async_lock);
5784 }
5785
5786 static boolean_t
5787 spa_async_tasks_pending(spa_t *spa)
5788 {
5789 uint_t non_config_tasks;
5790 uint_t config_task;
5791 boolean_t config_task_suspended;
5792
5793 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
5794 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
5795 if (spa->spa_ccw_fail_time == 0) {
5796 config_task_suspended = B_FALSE;
5797 } else {
5798 config_task_suspended =
5799 (gethrtime() - spa->spa_ccw_fail_time) <
5800 (zfs_ccw_retry_interval * NANOSEC);
5801 }
5802
5803 return (non_config_tasks || (config_task && !config_task_suspended));
5804 }
5805
5806 static void
5807 spa_async_dispatch(spa_t *spa)
5808 {
5809 mutex_enter(&spa->spa_async_lock);
5810 if (spa_async_tasks_pending(spa) &&
5811 !spa->spa_async_suspended &&
5812 spa->spa_async_thread == NULL &&
5813 rootdir != NULL)
5814 spa->spa_async_thread = thread_create(NULL, 0,
5815 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
5816 mutex_exit(&spa->spa_async_lock);
5817 }
5818
5819 void
5820 spa_async_request(spa_t *spa, int task)
5821 {
5822 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
5823 mutex_enter(&spa->spa_async_lock);
5824 spa->spa_async_tasks |= task;
5825 mutex_exit(&spa->spa_async_lock);
5826 }
5827
5828 /*
5829 * ==========================================================================
5830 * SPA syncing routines
5831 * ==========================================================================
5832 */
5833
5834 static int
5835 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5836 {
5837 bpobj_t *bpo = arg;
5838 bpobj_enqueue(bpo, bp, tx);
5839 return (0);
5840 }
5841
5842 static int
5843 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5844 {
5845 zio_t *zio = arg;
5846
5847 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
5848 zio->io_flags));
5849 return (0);
5850 }
5851
5852 /*
5853 * Note: this simple function is not inlined to make it easier to dtrace the
5854 * amount of time spent syncing frees.
5855 */
5856 static void
5857 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
5858 {
5859 zio_t *zio = zio_root(spa, NULL, NULL, 0);
5860 bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
5861 VERIFY(zio_wait(zio) == 0);
5862 }
5863
5864 /*
5865 * Note: this simple function is not inlined to make it easier to dtrace the
5866 * amount of time spent syncing deferred frees.
5867 */
5868 static void
5869 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
5870 {
5871 zio_t *zio = zio_root(spa, NULL, NULL, 0);
5872 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
5873 spa_free_sync_cb, zio, tx), ==, 0);
5874 VERIFY0(zio_wait(zio));
5875 }
5876
5877
5878 static void
5879 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
5880 {
5881 char *packed = NULL;
5882 size_t bufsize;
5883 size_t nvsize = 0;
5884 dmu_buf_t *db;
5885
5886 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
5887
5888 /*
5889 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
5890 * information. This avoids the dmu_buf_will_dirty() path and
5891 * saves us a pre-read to get data we don't actually care about.
5892 */
5893 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
5894 packed = kmem_alloc(bufsize, KM_SLEEP);
5895
5896 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
5897 KM_SLEEP) == 0);
5898 bzero(packed + nvsize, bufsize - nvsize);
5899
5900 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
5901
5902 kmem_free(packed, bufsize);
5903
5904 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
5905 dmu_buf_will_dirty(db, tx);
5906 *(uint64_t *)db->db_data = nvsize;
5907 dmu_buf_rele(db, FTAG);
5908 }
5909
5910 static void
5911 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
5912 const char *config, const char *entry)
5913 {
5914 nvlist_t *nvroot;
5915 nvlist_t **list;
5916 int i;
5917
5918 if (!sav->sav_sync)
5919 return;
5920
5921 /*
5922 * Update the MOS nvlist describing the list of available devices.
5923 * spa_validate_aux() will have already made sure this nvlist is
5924 * valid and the vdevs are labeled appropriately.
5925 */
5926 if (sav->sav_object == 0) {
5927 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
5928 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
5929 sizeof (uint64_t), tx);
5930 VERIFY(zap_update(spa->spa_meta_objset,
5931 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
5932 &sav->sav_object, tx) == 0);
5933 }
5934
5935 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5936 if (sav->sav_count == 0) {
5937 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
5938 } else {
5939 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
5940 for (i = 0; i < sav->sav_count; i++)
5941 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
5942 B_FALSE, VDEV_CONFIG_L2CACHE);
5943 VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
5944 sav->sav_count) == 0);
5945 for (i = 0; i < sav->sav_count; i++)
5946 nvlist_free(list[i]);
5947 kmem_free(list, sav->sav_count * sizeof (void *));
5948 }
5949
5950 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
5951 nvlist_free(nvroot);
5952
5953 sav->sav_sync = B_FALSE;
5954 }
5955
5956 static void
5957 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
5958 {
5959 nvlist_t *config;
5960
5961 if (list_is_empty(&spa->spa_config_dirty_list))
5962 return;
5963
5964 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5965
5966 config = spa_config_generate(spa, spa->spa_root_vdev,
5967 dmu_tx_get_txg(tx), B_FALSE);
5968
5969 /*
5970 * If we're upgrading the spa version then make sure that
5971 * the config object gets updated with the correct version.
5972 */
5973 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
5974 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5975 spa->spa_uberblock.ub_version);
5976
5977 spa_config_exit(spa, SCL_STATE, FTAG);
5978
5979 if (spa->spa_config_syncing)
5980 nvlist_free(spa->spa_config_syncing);
5981 spa->spa_config_syncing = config;
5982
5983 spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
5984 }
5985
5986 static void
5987 spa_sync_version(void *arg, dmu_tx_t *tx)
5988 {
5989 uint64_t *versionp = arg;
5990 uint64_t version = *versionp;
5991 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5992
5993 /*
5994 * Setting the version is special cased when first creating the pool.
5995 */
5996 ASSERT(tx->tx_txg != TXG_INITIAL);
5997
5998 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
5999 ASSERT(version >= spa_version(spa));
6000
6001 spa->spa_uberblock.ub_version = version;
6002 vdev_config_dirty(spa->spa_root_vdev);
6003 spa_history_log_internal(spa, "set", tx, "version=%lld", version);
6004 }
6005
6006 /*
6007 * Set zpool properties.
6008 */
6009 static void
6010 spa_sync_props(void *arg, dmu_tx_t *tx)
6011 {
6012 nvlist_t *nvp = arg;
6013 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6014 objset_t *mos = spa->spa_meta_objset;
6015 nvpair_t *elem = NULL;
6016
6017 mutex_enter(&spa->spa_props_lock);
6018
6019 while ((elem = nvlist_next_nvpair(nvp, elem))) {
6020 uint64_t intval;
6021 char *strval, *fname;
6022 zpool_prop_t prop;
6023 const char *propname;
6024 zprop_type_t proptype;
6025 spa_feature_t fid;
6026
6027 switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
6028 case ZPROP_INVAL:
6029 /*
6030 * We checked this earlier in spa_prop_validate().
6031 */
6032 ASSERT(zpool_prop_feature(nvpair_name(elem)));
6033
6034 fname = strchr(nvpair_name(elem), '@') + 1;
6035 VERIFY0(zfeature_lookup_name(fname, &fid));
6036
6037 spa_feature_enable(spa, fid, tx);
6038 spa_history_log_internal(spa, "set", tx,
6039 "%s=enabled", nvpair_name(elem));
6040 break;
6041
6042 case ZPOOL_PROP_VERSION:
6043 intval = fnvpair_value_uint64(elem);
6044 /*
6045 * The version is synced seperatly before other
6046 * properties and should be correct by now.
6047 */
6048 ASSERT3U(spa_version(spa), >=, intval);
6049 break;
6050
6051 case ZPOOL_PROP_ALTROOT:
6052 /*
6053 * 'altroot' is a non-persistent property. It should
6054 * have been set temporarily at creation or import time.
6055 */
6056 ASSERT(spa->spa_root != NULL);
6057 break;
6058
6059 case ZPOOL_PROP_READONLY:
6060 case ZPOOL_PROP_CACHEFILE:
6061 /*
6062 * 'readonly' and 'cachefile' are also non-persisitent
6063 * properties.
6064 */
6065 break;
6066 case ZPOOL_PROP_COMMENT:
6067 strval = fnvpair_value_string(elem);
6068 if (spa->spa_comment != NULL)
6069 spa_strfree(spa->spa_comment);
6070 spa->spa_comment = spa_strdup(strval);
6071 /*
6072 * We need to dirty the configuration on all the vdevs
6073 * so that their labels get updated. It's unnecessary
6074 * to do this for pool creation since the vdev's
6075 * configuratoin has already been dirtied.
6076 */
6077 if (tx->tx_txg != TXG_INITIAL)
6078 vdev_config_dirty(spa->spa_root_vdev);
6079 spa_history_log_internal(spa, "set", tx,
6080 "%s=%s", nvpair_name(elem), strval);
6081 break;
6082 default:
6083 /*
6084 * Set pool property values in the poolprops mos object.
6085 */
6086 if (spa->spa_pool_props_object == 0) {
6087 spa->spa_pool_props_object =
6088 zap_create_link(mos, DMU_OT_POOL_PROPS,
6089 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6090 tx);
6091 }
6092
6093 /* normalize the property name */
6094 propname = zpool_prop_to_name(prop);
6095 proptype = zpool_prop_get_type(prop);
6096
6097 if (nvpair_type(elem) == DATA_TYPE_STRING) {
6098 ASSERT(proptype == PROP_TYPE_STRING);
6099 strval = fnvpair_value_string(elem);
6100 VERIFY0(zap_update(mos,
6101 spa->spa_pool_props_object, propname,
6102 1, strlen(strval) + 1, strval, tx));
6103 spa_history_log_internal(spa, "set", tx,
6104 "%s=%s", nvpair_name(elem), strval);
6105 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6106 intval = fnvpair_value_uint64(elem);
6107
6108 if (proptype == PROP_TYPE_INDEX) {
6109 const char *unused;
6110 VERIFY0(zpool_prop_index_to_string(
6111 prop, intval, &unused));
6112 }
6113 VERIFY0(zap_update(mos,
6114 spa->spa_pool_props_object, propname,
6115 8, 1, &intval, tx));
6116 spa_history_log_internal(spa, "set", tx,
6117 "%s=%lld", nvpair_name(elem), intval);
6118 } else {
6119 ASSERT(0); /* not allowed */
6120 }
6121
6122 switch (prop) {
6123 case ZPOOL_PROP_DELEGATION:
6124 spa->spa_delegation = intval;
6125 break;
6126 case ZPOOL_PROP_BOOTFS:
6127 spa->spa_bootfs = intval;
6128 break;
6129 case ZPOOL_PROP_FAILUREMODE:
6130 spa->spa_failmode = intval;
6131 break;
6132 case ZPOOL_PROP_AUTOEXPAND:
6133 spa->spa_autoexpand = intval;
6134 if (tx->tx_txg != TXG_INITIAL)
6135 spa_async_request(spa,
6136 SPA_ASYNC_AUTOEXPAND);
6137 break;
6138 case ZPOOL_PROP_DEDUPDITTO:
6139 spa->spa_dedup_ditto = intval;
6140 break;
6141 default:
6142 break;
6143 }
6144 }
6145
6146 }
6147
6148 mutex_exit(&spa->spa_props_lock);
6149 }
6150
6151 /*
6152 * Perform one-time upgrade on-disk changes. spa_version() does not
6153 * reflect the new version this txg, so there must be no changes this
6154 * txg to anything that the upgrade code depends on after it executes.
6155 * Therefore this must be called after dsl_pool_sync() does the sync
6156 * tasks.
6157 */
6158 static void
6159 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6160 {
6161 dsl_pool_t *dp = spa->spa_dsl_pool;
6162
6163 ASSERT(spa->spa_sync_pass == 1);
6164
6165 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6166
6167 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6168 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6169 dsl_pool_create_origin(dp, tx);
6170
6171 /* Keeping the origin open increases spa_minref */
6172 spa->spa_minref += 3;
6173 }
6174
6175 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6176 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6177 dsl_pool_upgrade_clones(dp, tx);
6178 }
6179
6180 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6181 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6182 dsl_pool_upgrade_dir_clones(dp, tx);
6183
6184 /* Keeping the freedir open increases spa_minref */
6185 spa->spa_minref += 3;
6186 }
6187
6188 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6189 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6190 spa_feature_create_zap_objects(spa, tx);
6191 }
6192
6193 /*
6194 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
6195 * when possibility to use lz4 compression for metadata was added
6196 * Old pools that have this feature enabled must be upgraded to have
6197 * this feature active
6198 */
6199 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6200 boolean_t lz4_en = spa_feature_is_enabled(spa,
6201 SPA_FEATURE_LZ4_COMPRESS);
6202 boolean_t lz4_ac = spa_feature_is_active(spa,
6203 SPA_FEATURE_LZ4_COMPRESS);
6204
6205 if (lz4_en && !lz4_ac)
6206 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
6207 }
6208 rrw_exit(&dp->dp_config_rwlock, FTAG);
6209 }
6210
6211 /*
6212 * Sync the specified transaction group. New blocks may be dirtied as
6213 * part of the process, so we iterate until it converges.
6214 */
6215 void
6216 spa_sync(spa_t *spa, uint64_t txg)
6217 {
6218 dsl_pool_t *dp = spa->spa_dsl_pool;
6219 objset_t *mos = spa->spa_meta_objset;
6220 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6221 vdev_t *rvd = spa->spa_root_vdev;
6222 vdev_t *vd;
6223 dmu_tx_t *tx;
6224 int error;
6225
6226 VERIFY(spa_writeable(spa));
6227
6228 /*
6229 * Lock out configuration changes.
6230 */
6231 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6232
6233 spa->spa_syncing_txg = txg;
6234 spa->spa_sync_pass = 0;
6235
6236 /*
6237 * If there are any pending vdev state changes, convert them
6238 * into config changes that go out with this transaction group.
6239 */
6240 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6241 while (list_head(&spa->spa_state_dirty_list) != NULL) {
6242 /*
6243 * We need the write lock here because, for aux vdevs,
6244 * calling vdev_config_dirty() modifies sav_config.
6245 * This is ugly and will become unnecessary when we
6246 * eliminate the aux vdev wart by integrating all vdevs
6247 * into the root vdev tree.
6248 */
6249 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6250 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6251 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6252 vdev_state_clean(vd);
6253 vdev_config_dirty(vd);
6254 }
6255 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6256 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6257 }
6258 spa_config_exit(spa, SCL_STATE, FTAG);
6259
6260 tx = dmu_tx_create_assigned(dp, txg);
6261
6262 spa->spa_sync_starttime = gethrtime();
6263 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6264 spa->spa_sync_starttime + spa->spa_deadman_synctime));
6265
6266 /*
6267 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6268 * set spa_deflate if we have no raid-z vdevs.
6269 */
6270 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6271 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6272 int i;
6273
6274 for (i = 0; i < rvd->vdev_children; i++) {
6275 vd = rvd->vdev_child[i];
6276 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6277 break;
6278 }
6279 if (i == rvd->vdev_children) {
6280 spa->spa_deflate = TRUE;
6281 VERIFY(0 == zap_add(spa->spa_meta_objset,
6282 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6283 sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6284 }
6285 }
6286
6287 /*
6288 * Iterate to convergence.
6289 */
6290 do {
6291 int pass = ++spa->spa_sync_pass;
6292
6293 spa_sync_config_object(spa, tx);
6294 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6295 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6296 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6297 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6298 spa_errlog_sync(spa, txg);
6299 dsl_pool_sync(dp, txg);
6300
6301 if (pass < zfs_sync_pass_deferred_free) {
6302 spa_sync_frees(spa, free_bpl, tx);
6303 } else {
6304 /*
6305 * We can not defer frees in pass 1, because
6306 * we sync the deferred frees later in pass 1.
6307 */
6308 ASSERT3U(pass, >, 1);
6309 bplist_iterate(free_bpl, bpobj_enqueue_cb,
6310 &spa->spa_deferred_bpobj, tx);
6311 }
6312
6313 ddt_sync(spa, txg);
6314 dsl_scan_sync(dp, tx);
6315
6316 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6317 vdev_sync(vd, txg);
6318
6319 if (pass == 1) {
6320 spa_sync_upgrades(spa, tx);
6321 ASSERT3U(txg, >=,
6322 spa->spa_uberblock.ub_rootbp.blk_birth);
6323 /*
6324 * Note: We need to check if the MOS is dirty
6325 * because we could have marked the MOS dirty
6326 * without updating the uberblock (e.g. if we
6327 * have sync tasks but no dirty user data). We
6328 * need to check the uberblock's rootbp because
6329 * it is updated if we have synced out dirty
6330 * data (though in this case the MOS will most
6331 * likely also be dirty due to second order
6332 * effects, we don't want to rely on that here).
6333 */
6334 if (spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
6335 !dmu_objset_is_dirty(mos, txg)) {
6336 /*
6337 * Nothing changed on the first pass,
6338 * therefore this TXG is a no-op. Avoid
6339 * syncing deferred frees, so that we
6340 * can keep this TXG as a no-op.
6341 */
6342 ASSERT(txg_list_empty(&dp->dp_dirty_datasets,
6343 txg));
6344 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6345 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
6346 break;
6347 }
6348 spa_sync_deferred_frees(spa, tx);
6349 }
6350
6351 } while (dmu_objset_is_dirty(mos, txg));
6352
6353 /*
6354 * Rewrite the vdev configuration (which includes the uberblock)
6355 * to commit the transaction group.
6356 *
6357 * If there are no dirty vdevs, we sync the uberblock to a few
6358 * random top-level vdevs that are known to be visible in the
6359 * config cache (see spa_vdev_add() for a complete description).
6360 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6361 */
6362 for (;;) {
6363 /*
6364 * We hold SCL_STATE to prevent vdev open/close/etc.
6365 * while we're attempting to write the vdev labels.
6366 */
6367 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6368
6369 if (list_is_empty(&spa->spa_config_dirty_list)) {
6370 vdev_t *svd[SPA_DVAS_PER_BP];
6371 int svdcount = 0;
6372 int children = rvd->vdev_children;
6373 int c0 = spa_get_random(children);
6374
6375 for (int c = 0; c < children; c++) {
6376 vd = rvd->vdev_child[(c0 + c) % children];
6377 if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6378 continue;
6379 svd[svdcount++] = vd;
6380 if (svdcount == SPA_DVAS_PER_BP)
6381 break;
6382 }
6383 error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
6384 if (error != 0)
6385 error = vdev_config_sync(svd, svdcount, txg,
6386 B_TRUE);
6387 } else {
6388 error = vdev_config_sync(rvd->vdev_child,
6389 rvd->vdev_children, txg, B_FALSE);
6390 if (error != 0)
6391 error = vdev_config_sync(rvd->vdev_child,
6392 rvd->vdev_children, txg, B_TRUE);
6393 }
6394
6395 if (error == 0)
6396 spa->spa_last_synced_guid = rvd->vdev_guid;
6397
6398 spa_config_exit(spa, SCL_STATE, FTAG);
6399
6400 if (error == 0)
6401 break;
6402 zio_suspend(spa, NULL);
6403 zio_resume_wait(spa);
6404 }
6405 dmu_tx_commit(tx);
6406
6407 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6408
6409 /*
6410 * Clear the dirty config list.
6411 */
6412 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6413 vdev_config_clean(vd);
6414
6415 /*
6416 * Now that the new config has synced transactionally,
6417 * let it become visible to the config cache.
6418 */
6419 if (spa->spa_config_syncing != NULL) {
6420 spa_config_set(spa, spa->spa_config_syncing);
6421 spa->spa_config_txg = txg;
6422 spa->spa_config_syncing = NULL;
6423 }
6424
6425 spa->spa_ubsync = spa->spa_uberblock;
6426
6427 dsl_pool_sync_done(dp, txg);
6428
6429 /*
6430 * Update usable space statistics.
6431 */
6432 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6433 vdev_sync_done(vd, txg);
6434
6435 spa_update_dspace(spa);
6436
6437 /*
6438 * It had better be the case that we didn't dirty anything
6439 * since vdev_config_sync().
6440 */
6441 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6442 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6443 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6444
6445 spa->spa_sync_pass = 0;
6446
6447 spa_config_exit(spa, SCL_CONFIG, FTAG);
6448
6449 spa_handle_ignored_writes(spa);
6450
6451 /*
6452 * If any async tasks have been requested, kick them off.
6453 */
6454 spa_async_dispatch(spa);
6455 }
6456
6457 /*
6458 * Sync all pools. We don't want to hold the namespace lock across these
6459 * operations, so we take a reference on the spa_t and drop the lock during the
6460 * sync.
6461 */
6462 void
6463 spa_sync_allpools(void)
6464 {
6465 spa_t *spa = NULL;
6466 mutex_enter(&spa_namespace_lock);
6467 while ((spa = spa_next(spa)) != NULL) {
6468 if (spa_state(spa) != POOL_STATE_ACTIVE ||
6469 !spa_writeable(spa) || spa_suspended(spa))
6470 continue;
6471 spa_open_ref(spa, FTAG);
6472 mutex_exit(&spa_namespace_lock);
6473 txg_wait_synced(spa_get_dsl(spa), 0);
6474 mutex_enter(&spa_namespace_lock);
6475 spa_close(spa, FTAG);
6476 }
6477 mutex_exit(&spa_namespace_lock);
6478 }
6479
6480 /*
6481 * ==========================================================================
6482 * Miscellaneous routines
6483 * ==========================================================================
6484 */
6485
6486 /*
6487 * Remove all pools in the system.
6488 */
6489 void
6490 spa_evict_all(void)
6491 {
6492 spa_t *spa;
6493
6494 /*
6495 * Remove all cached state. All pools should be closed now,
6496 * so every spa in the AVL tree should be unreferenced.
6497 */
6498 mutex_enter(&spa_namespace_lock);
6499 while ((spa = spa_next(NULL)) != NULL) {
6500 /*
6501 * Stop async tasks. The async thread may need to detach
6502 * a device that's been replaced, which requires grabbing
6503 * spa_namespace_lock, so we must drop it here.
6504 */
6505 spa_open_ref(spa, FTAG);
6506 mutex_exit(&spa_namespace_lock);
6507 spa_async_suspend(spa);
6508 mutex_enter(&spa_namespace_lock);
6509 spa_close(spa, FTAG);
6510
6511 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6512 spa_unload(spa);
6513 spa_deactivate(spa);
6514 }
6515 spa_remove(spa);
6516 }
6517 mutex_exit(&spa_namespace_lock);
6518 }
6519
6520 vdev_t *
6521 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6522 {
6523 vdev_t *vd;
6524 int i;
6525
6526 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6527 return (vd);
6528
6529 if (aux) {
6530 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6531 vd = spa->spa_l2cache.sav_vdevs[i];
6532 if (vd->vdev_guid == guid)
6533 return (vd);
6534 }
6535
6536 for (i = 0; i < spa->spa_spares.sav_count; i++) {
6537 vd = spa->spa_spares.sav_vdevs[i];
6538 if (vd->vdev_guid == guid)
6539 return (vd);
6540 }
6541 }
6542
6543 return (NULL);
6544 }
6545
6546 void
6547 spa_upgrade(spa_t *spa, uint64_t version)
6548 {
6549 ASSERT(spa_writeable(spa));
6550
6551 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6552
6553 /*
6554 * This should only be called for a non-faulted pool, and since a
6555 * future version would result in an unopenable pool, this shouldn't be
6556 * possible.
6557 */
6558 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6559 ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
6560
6561 spa->spa_uberblock.ub_version = version;
6562 vdev_config_dirty(spa->spa_root_vdev);
6563
6564 spa_config_exit(spa, SCL_ALL, FTAG);
6565
6566 txg_wait_synced(spa_get_dsl(spa), 0);
6567 }
6568
6569 boolean_t
6570 spa_has_spare(spa_t *spa, uint64_t guid)
6571 {
6572 int i;
6573 uint64_t spareguid;
6574 spa_aux_vdev_t *sav = &spa->spa_spares;
6575
6576 for (i = 0; i < sav->sav_count; i++)
6577 if (sav->sav_vdevs[i]->vdev_guid == guid)
6578 return (B_TRUE);
6579
6580 for (i = 0; i < sav->sav_npending; i++) {
6581 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6582 &spareguid) == 0 && spareguid == guid)
6583 return (B_TRUE);
6584 }
6585
6586 return (B_FALSE);
6587 }
6588
6589 /*
6590 * Check if a pool has an active shared spare device.
6591 * Note: reference count of an active spare is 2, as a spare and as a replace
6592 */
6593 static boolean_t
6594 spa_has_active_shared_spare(spa_t *spa)
6595 {
6596 int i, refcnt;
6597 uint64_t pool;
6598 spa_aux_vdev_t *sav = &spa->spa_spares;
6599
6600 for (i = 0; i < sav->sav_count; i++) {
6601 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6602 &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6603 refcnt > 2)
6604 return (B_TRUE);
6605 }
6606
6607 return (B_FALSE);
6608 }
6609
6610 /*
6611 * Post a sysevent corresponding to the given event. The 'name' must be one of
6612 * the event definitions in sys/sysevent/eventdefs.h. The payload will be
6613 * filled in from the spa and (optionally) the vdev. This doesn't do anything
6614 * in the userland libzpool, as we don't want consumers to misinterpret ztest
6615 * or zdb as real changes.
6616 */
6617 void
6618 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6619 {
6620 #ifdef _KERNEL
6621 sysevent_t *ev;
6622 sysevent_attr_list_t *attr = NULL;
6623 sysevent_value_t value;
6624 sysevent_id_t eid;
6625
6626 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
6627 SE_SLEEP);
6628
6629 value.value_type = SE_DATA_TYPE_STRING;
6630 value.value.sv_string = spa_name(spa);
6631 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
6632 goto done;
6633
6634 value.value_type = SE_DATA_TYPE_UINT64;
6635 value.value.sv_uint64 = spa_guid(spa);
6636 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
6637 goto done;
6638
6639 if (vd) {
6640 value.value_type = SE_DATA_TYPE_UINT64;
6641 value.value.sv_uint64 = vd->vdev_guid;
6642 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
6643 SE_SLEEP) != 0)
6644 goto done;
6645
6646 if (vd->vdev_path) {
6647 value.value_type = SE_DATA_TYPE_STRING;
6648 value.value.sv_string = vd->vdev_path;
6649 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
6650 &value, SE_SLEEP) != 0)
6651 goto done;
6652 }
6653 }
6654
6655 if (sysevent_attach_attributes(ev, attr) != 0)
6656 goto done;
6657 attr = NULL;
6658
6659 (void) log_sysevent(ev, SE_SLEEP, &eid);
6660
6661 done:
6662 if (attr)
6663 sysevent_free_attr(attr);
6664 sysevent_free(ev);
6665 #endif
6666 }