1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  24  * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
  25  * Copyright (c) 2013, 2014, Nexenta Systems, Inc.  All rights reserved.
  26  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
  27  */
  28 
  29 /*
  30  * SPA: Storage Pool Allocator
  31  *
  32  * This file contains all the routines used when modifying on-disk SPA state.
  33  * This includes opening, importing, destroying, exporting a pool, and syncing a
  34  * pool.
  35  */
  36 
  37 #include <sys/zfs_context.h>
  38 #include <sys/fm/fs/zfs.h>
  39 #include <sys/spa_impl.h>
  40 #include <sys/zio.h>
  41 #include <sys/zio_checksum.h>
  42 #include <sys/dmu.h>
  43 #include <sys/dmu_tx.h>
  44 #include <sys/zap.h>
  45 #include <sys/zil.h>
  46 #include <sys/ddt.h>
  47 #include <sys/vdev_impl.h>
  48 #include <sys/metaslab.h>
  49 #include <sys/metaslab_impl.h>
  50 #include <sys/uberblock_impl.h>
  51 #include <sys/txg.h>
  52 #include <sys/avl.h>
  53 #include <sys/dmu_traverse.h>
  54 #include <sys/dmu_objset.h>
  55 #include <sys/unique.h>
  56 #include <sys/dsl_pool.h>
  57 #include <sys/dsl_dataset.h>
  58 #include <sys/dsl_dir.h>
  59 #include <sys/dsl_prop.h>
  60 #include <sys/dsl_synctask.h>
  61 #include <sys/fs/zfs.h>
  62 #include <sys/arc.h>
  63 #include <sys/callb.h>
  64 #include <sys/systeminfo.h>
  65 #include <sys/spa_boot.h>
  66 #include <sys/zfs_ioctl.h>
  67 #include <sys/dsl_scan.h>
  68 #include <sys/zfeature.h>
  69 #include <sys/dsl_destroy.h>
  70 
  71 #ifdef  _KERNEL
  72 #include <sys/bootprops.h>
  73 #include <sys/callb.h>
  74 #include <sys/cpupart.h>
  75 #include <sys/pool.h>
  76 #include <sys/sysdc.h>
  77 #include <sys/zone.h>
  78 #endif  /* _KERNEL */
  79 
  80 #include "zfs_prop.h"
  81 #include "zfs_comutil.h"
  82 
  83 /*
  84  * The interval, in seconds, at which failed configuration cache file writes
  85  * should be retried.
  86  */
  87 static int zfs_ccw_retry_interval = 300;
  88 
  89 typedef enum zti_modes {
  90         ZTI_MODE_FIXED,                 /* value is # of threads (min 1) */
  91         ZTI_MODE_BATCH,                 /* cpu-intensive; value is ignored */
  92         ZTI_MODE_NULL,                  /* don't create a taskq */
  93         ZTI_NMODES
  94 } zti_modes_t;
  95 
  96 #define ZTI_P(n, q)     { ZTI_MODE_FIXED, (n), (q) }
  97 #define ZTI_BATCH       { ZTI_MODE_BATCH, 0, 1 }
  98 #define ZTI_NULL        { ZTI_MODE_NULL, 0, 0 }
  99 
 100 #define ZTI_N(n)        ZTI_P(n, 1)
 101 #define ZTI_ONE         ZTI_N(1)
 102 
 103 typedef struct zio_taskq_info {
 104         zti_modes_t zti_mode;
 105         uint_t zti_value;
 106         uint_t zti_count;
 107 } zio_taskq_info_t;
 108 
 109 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
 110         "issue", "issue_high", "intr", "intr_high"
 111 };
 112 
 113 /*
 114  * This table defines the taskq settings for each ZFS I/O type. When
 115  * initializing a pool, we use this table to create an appropriately sized
 116  * taskq. Some operations are low volume and therefore have a small, static
 117  * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
 118  * macros. Other operations process a large amount of data; the ZTI_BATCH
 119  * macro causes us to create a taskq oriented for throughput. Some operations
 120  * are so high frequency and short-lived that the taskq itself can become a a
 121  * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
 122  * additional degree of parallelism specified by the number of threads per-
 123  * taskq and the number of taskqs; when dispatching an event in this case, the
 124  * particular taskq is chosen at random.
 125  *
 126  * The different taskq priorities are to handle the different contexts (issue
 127  * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
 128  * need to be handled with minimum delay.
 129  */
 130 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
 131         /* ISSUE        ISSUE_HIGH      INTR            INTR_HIGH */
 132         { ZTI_ONE,      ZTI_NULL,       ZTI_ONE,        ZTI_NULL }, /* NULL */
 133         { ZTI_N(8),     ZTI_NULL,       ZTI_P(12, 8),   ZTI_NULL }, /* READ */
 134         { ZTI_BATCH,    ZTI_N(5),       ZTI_N(8),       ZTI_N(5) }, /* WRITE */
 135         { ZTI_P(12, 8), ZTI_NULL,       ZTI_ONE,        ZTI_NULL }, /* FREE */
 136         { ZTI_ONE,      ZTI_NULL,       ZTI_ONE,        ZTI_NULL }, /* CLAIM */
 137         { ZTI_ONE,      ZTI_NULL,       ZTI_ONE,        ZTI_NULL }, /* IOCTL */
 138 };
 139 
 140 static void spa_sync_version(void *arg, dmu_tx_t *tx);
 141 static void spa_sync_props(void *arg, dmu_tx_t *tx);
 142 static boolean_t spa_has_active_shared_spare(spa_t *spa);
 143 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
 144     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
 145     char **ereport);
 146 static void spa_vdev_resilver_done(spa_t *spa);
 147 
 148 uint_t          zio_taskq_batch_pct = 75;       /* 1 thread per cpu in pset */
 149 id_t            zio_taskq_psrset_bind = PS_NONE;
 150 boolean_t       zio_taskq_sysdc = B_TRUE;       /* use SDC scheduling class */
 151 uint_t          zio_taskq_basedc = 80;          /* base duty cycle */
 152 
 153 boolean_t       spa_create_process = B_TRUE;    /* no process ==> no sysdc */
 154 extern int      zfs_sync_pass_deferred_free;
 155 
 156 /*
 157  * This (illegal) pool name is used when temporarily importing a spa_t in order
 158  * to get the vdev stats associated with the imported devices.
 159  */
 160 #define TRYIMPORT_NAME  "$import"
 161 
 162 /*
 163  * ==========================================================================
 164  * SPA properties routines
 165  * ==========================================================================
 166  */
 167 
 168 /*
 169  * Add a (source=src, propname=propval) list to an nvlist.
 170  */
 171 static void
 172 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
 173     uint64_t intval, zprop_source_t src)
 174 {
 175         const char *propname = zpool_prop_to_name(prop);
 176         nvlist_t *propval;
 177 
 178         VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
 179         VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
 180 
 181         if (strval != NULL)
 182                 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
 183         else
 184                 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
 185 
 186         VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
 187         nvlist_free(propval);
 188 }
 189 
 190 /*
 191  * Get property values from the spa configuration.
 192  */
 193 static void
 194 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
 195 {
 196         vdev_t *rvd = spa->spa_root_vdev;
 197         dsl_pool_t *pool = spa->spa_dsl_pool;
 198         uint64_t size, alloc, cap, version;
 199         zprop_source_t src = ZPROP_SRC_NONE;
 200         spa_config_dirent_t *dp;
 201         metaslab_class_t *mc = spa_normal_class(spa);
 202 
 203         ASSERT(MUTEX_HELD(&spa->spa_props_lock));
 204 
 205         if (rvd != NULL) {
 206                 alloc = metaslab_class_get_alloc(spa_normal_class(spa));
 207                 size = metaslab_class_get_space(spa_normal_class(spa));
 208                 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
 209                 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
 210                 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
 211                 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
 212                     size - alloc, src);
 213 
 214                 spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
 215                     metaslab_class_fragmentation(mc), src);
 216                 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
 217                     metaslab_class_expandable_space(mc), src);
 218                 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
 219                     (spa_mode(spa) == FREAD), src);
 220 
 221                 cap = (size == 0) ? 0 : (alloc * 100 / size);
 222                 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
 223 
 224                 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
 225                     ddt_get_pool_dedup_ratio(spa), src);
 226 
 227                 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
 228                     rvd->vdev_state, src);
 229 
 230                 version = spa_version(spa);
 231                 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
 232                         src = ZPROP_SRC_DEFAULT;
 233                 else
 234                         src = ZPROP_SRC_LOCAL;
 235                 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
 236         }
 237 
 238         if (pool != NULL) {
 239                 /*
 240                  * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
 241                  * when opening pools before this version freedir will be NULL.
 242                  */
 243                 if (pool->dp_free_dir != NULL) {
 244                         spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
 245                             dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
 246                             src);
 247                 } else {
 248                         spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
 249                             NULL, 0, src);
 250                 }
 251 
 252                 if (pool->dp_leak_dir != NULL) {
 253                         spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
 254                             dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
 255                             src);
 256                 } else {
 257                         spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
 258                             NULL, 0, src);
 259                 }
 260         }
 261 
 262         spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
 263 
 264         if (spa->spa_comment != NULL) {
 265                 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
 266                     0, ZPROP_SRC_LOCAL);
 267         }
 268 
 269         if (spa->spa_root != NULL)
 270                 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
 271                     0, ZPROP_SRC_LOCAL);
 272 
 273         if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
 274                 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
 275                     MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
 276         } else {
 277                 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
 278                     SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
 279         }
 280 
 281         if ((dp = list_head(&spa->spa_config_list)) != NULL) {
 282                 if (dp->scd_path == NULL) {
 283                         spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
 284                             "none", 0, ZPROP_SRC_LOCAL);
 285                 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
 286                         spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
 287                             dp->scd_path, 0, ZPROP_SRC_LOCAL);
 288                 }
 289         }
 290 }
 291 
 292 /*
 293  * Get zpool property values.
 294  */
 295 int
 296 spa_prop_get(spa_t *spa, nvlist_t **nvp)
 297 {
 298         objset_t *mos = spa->spa_meta_objset;
 299         zap_cursor_t zc;
 300         zap_attribute_t za;
 301         int err;
 302 
 303         VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
 304 
 305         mutex_enter(&spa->spa_props_lock);
 306 
 307         /*
 308          * Get properties from the spa config.
 309          */
 310         spa_prop_get_config(spa, nvp);
 311 
 312         /* If no pool property object, no more prop to get. */
 313         if (mos == NULL || spa->spa_pool_props_object == 0) {
 314                 mutex_exit(&spa->spa_props_lock);
 315                 return (0);
 316         }
 317 
 318         /*
 319          * Get properties from the MOS pool property object.
 320          */
 321         for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
 322             (err = zap_cursor_retrieve(&zc, &za)) == 0;
 323             zap_cursor_advance(&zc)) {
 324                 uint64_t intval = 0;
 325                 char *strval = NULL;
 326                 zprop_source_t src = ZPROP_SRC_DEFAULT;
 327                 zpool_prop_t prop;
 328 
 329                 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
 330                         continue;
 331 
 332                 switch (za.za_integer_length) {
 333                 case 8:
 334                         /* integer property */
 335                         if (za.za_first_integer !=
 336                             zpool_prop_default_numeric(prop))
 337                                 src = ZPROP_SRC_LOCAL;
 338 
 339                         if (prop == ZPOOL_PROP_BOOTFS) {
 340                                 dsl_pool_t *dp;
 341                                 dsl_dataset_t *ds = NULL;
 342 
 343                                 dp = spa_get_dsl(spa);
 344                                 dsl_pool_config_enter(dp, FTAG);
 345                                 if (err = dsl_dataset_hold_obj(dp,
 346                                     za.za_first_integer, FTAG, &ds)) {
 347                                         dsl_pool_config_exit(dp, FTAG);
 348                                         break;
 349                                 }
 350 
 351                                 strval = kmem_alloc(
 352                                     MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
 353                                     KM_SLEEP);
 354                                 dsl_dataset_name(ds, strval);
 355                                 dsl_dataset_rele(ds, FTAG);
 356                                 dsl_pool_config_exit(dp, FTAG);
 357                         } else {
 358                                 strval = NULL;
 359                                 intval = za.za_first_integer;
 360                         }
 361 
 362                         spa_prop_add_list(*nvp, prop, strval, intval, src);
 363 
 364                         if (strval != NULL)
 365                                 kmem_free(strval,
 366                                     MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
 367 
 368                         break;
 369 
 370                 case 1:
 371                         /* string property */
 372                         strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
 373                         err = zap_lookup(mos, spa->spa_pool_props_object,
 374                             za.za_name, 1, za.za_num_integers, strval);
 375                         if (err) {
 376                                 kmem_free(strval, za.za_num_integers);
 377                                 break;
 378                         }
 379                         spa_prop_add_list(*nvp, prop, strval, 0, src);
 380                         kmem_free(strval, za.za_num_integers);
 381                         break;
 382 
 383                 default:
 384                         break;
 385                 }
 386         }
 387         zap_cursor_fini(&zc);
 388         mutex_exit(&spa->spa_props_lock);
 389 out:
 390         if (err && err != ENOENT) {
 391                 nvlist_free(*nvp);
 392                 *nvp = NULL;
 393                 return (err);
 394         }
 395 
 396         return (0);
 397 }
 398 
 399 /*
 400  * Validate the given pool properties nvlist and modify the list
 401  * for the property values to be set.
 402  */
 403 static int
 404 spa_prop_validate(spa_t *spa, nvlist_t *props)
 405 {
 406         nvpair_t *elem;
 407         int error = 0, reset_bootfs = 0;
 408         uint64_t objnum = 0;
 409         boolean_t has_feature = B_FALSE;
 410 
 411         elem = NULL;
 412         while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
 413                 uint64_t intval;
 414                 char *strval, *slash, *check, *fname;
 415                 const char *propname = nvpair_name(elem);
 416                 zpool_prop_t prop = zpool_name_to_prop(propname);
 417 
 418                 switch (prop) {
 419                 case ZPROP_INVAL:
 420                         if (!zpool_prop_feature(propname)) {
 421                                 error = SET_ERROR(EINVAL);
 422                                 break;
 423                         }
 424 
 425                         /*
 426                          * Sanitize the input.
 427                          */
 428                         if (nvpair_type(elem) != DATA_TYPE_UINT64) {
 429                                 error = SET_ERROR(EINVAL);
 430                                 break;
 431                         }
 432 
 433                         if (nvpair_value_uint64(elem, &intval) != 0) {
 434                                 error = SET_ERROR(EINVAL);
 435                                 break;
 436                         }
 437 
 438                         if (intval != 0) {
 439                                 error = SET_ERROR(EINVAL);
 440                                 break;
 441                         }
 442 
 443                         fname = strchr(propname, '@') + 1;
 444                         if (zfeature_lookup_name(fname, NULL) != 0) {
 445                                 error = SET_ERROR(EINVAL);
 446                                 break;
 447                         }
 448 
 449                         has_feature = B_TRUE;
 450                         break;
 451 
 452                 case ZPOOL_PROP_VERSION:
 453                         error = nvpair_value_uint64(elem, &intval);
 454                         if (!error &&
 455                             (intval < spa_version(spa) ||
 456                             intval > SPA_VERSION_BEFORE_FEATURES ||
 457                             has_feature))
 458                                 error = SET_ERROR(EINVAL);
 459                         break;
 460 
 461                 case ZPOOL_PROP_DELEGATION:
 462                 case ZPOOL_PROP_AUTOREPLACE:
 463                 case ZPOOL_PROP_LISTSNAPS:
 464                 case ZPOOL_PROP_AUTOEXPAND:
 465                         error = nvpair_value_uint64(elem, &intval);
 466                         if (!error && intval > 1)
 467                                 error = SET_ERROR(EINVAL);
 468                         break;
 469 
 470                 case ZPOOL_PROP_BOOTFS:
 471                         /*
 472                          * If the pool version is less than SPA_VERSION_BOOTFS,
 473                          * or the pool is still being created (version == 0),
 474                          * the bootfs property cannot be set.
 475                          */
 476                         if (spa_version(spa) < SPA_VERSION_BOOTFS) {
 477                                 error = SET_ERROR(ENOTSUP);
 478                                 break;
 479                         }
 480 
 481                         /*
 482                          * Make sure the vdev config is bootable
 483                          */
 484                         if (!vdev_is_bootable(spa->spa_root_vdev)) {
 485                                 error = SET_ERROR(ENOTSUP);
 486                                 break;
 487                         }
 488 
 489                         reset_bootfs = 1;
 490 
 491                         error = nvpair_value_string(elem, &strval);
 492 
 493                         if (!error) {
 494                                 objset_t *os;
 495                                 uint64_t propval;
 496 
 497                                 if (strval == NULL || strval[0] == '\0') {
 498                                         objnum = zpool_prop_default_numeric(
 499                                             ZPOOL_PROP_BOOTFS);
 500                                         break;
 501                                 }
 502 
 503                                 if (error = dmu_objset_hold(strval, FTAG, &os))
 504                                         break;
 505 
 506                                 /*
 507                                  * Must be ZPL, and its property settings
 508                                  * must be supported by GRUB (compression
 509                                  * is not gzip, and large blocks are not used).
 510                                  */
 511 
 512                                 if (dmu_objset_type(os) != DMU_OST_ZFS) {
 513                                         error = SET_ERROR(ENOTSUP);
 514                                 } else if ((error =
 515                                     dsl_prop_get_int_ds(dmu_objset_ds(os),
 516                                     zfs_prop_to_name(ZFS_PROP_COMPRESSION),
 517                                     &propval)) == 0 &&
 518                                     !BOOTFS_COMPRESS_VALID(propval)) {
 519                                         error = SET_ERROR(ENOTSUP);
 520                                 } else if ((error =
 521                                     dsl_prop_get_int_ds(dmu_objset_ds(os),
 522                                     zfs_prop_to_name(ZFS_PROP_RECORDSIZE),
 523                                     &propval)) == 0 &&
 524                                     propval > SPA_OLD_MAXBLOCKSIZE) {
 525                                         error = SET_ERROR(ENOTSUP);
 526                                 } else {
 527                                         objnum = dmu_objset_id(os);
 528                                 }
 529                                 dmu_objset_rele(os, FTAG);
 530                         }
 531                         break;
 532 
 533                 case ZPOOL_PROP_FAILUREMODE:
 534                         error = nvpair_value_uint64(elem, &intval);
 535                         if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
 536                             intval > ZIO_FAILURE_MODE_PANIC))
 537                                 error = SET_ERROR(EINVAL);
 538 
 539                         /*
 540                          * This is a special case which only occurs when
 541                          * the pool has completely failed. This allows
 542                          * the user to change the in-core failmode property
 543                          * without syncing it out to disk (I/Os might
 544                          * currently be blocked). We do this by returning
 545                          * EIO to the caller (spa_prop_set) to trick it
 546                          * into thinking we encountered a property validation
 547                          * error.
 548                          */
 549                         if (!error && spa_suspended(spa)) {
 550                                 spa->spa_failmode = intval;
 551                                 error = SET_ERROR(EIO);
 552                         }
 553                         break;
 554 
 555                 case ZPOOL_PROP_CACHEFILE:
 556                         if ((error = nvpair_value_string(elem, &strval)) != 0)
 557                                 break;
 558 
 559                         if (strval[0] == '\0')
 560                                 break;
 561 
 562                         if (strcmp(strval, "none") == 0)
 563                                 break;
 564 
 565                         if (strval[0] != '/') {
 566                                 error = SET_ERROR(EINVAL);
 567                                 break;
 568                         }
 569 
 570                         slash = strrchr(strval, '/');
 571                         ASSERT(slash != NULL);
 572 
 573                         if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
 574                             strcmp(slash, "/..") == 0)
 575                                 error = SET_ERROR(EINVAL);
 576                         break;
 577 
 578                 case ZPOOL_PROP_COMMENT:
 579                         if ((error = nvpair_value_string(elem, &strval)) != 0)
 580                                 break;
 581                         for (check = strval; *check != '\0'; check++) {
 582                                 /*
 583                                  * The kernel doesn't have an easy isprint()
 584                                  * check.  For this kernel check, we merely
 585                                  * check ASCII apart from DEL.  Fix this if
 586                                  * there is an easy-to-use kernel isprint().
 587                                  */
 588                                 if (*check >= 0x7f) {
 589                                         error = SET_ERROR(EINVAL);
 590                                         break;
 591                                 }
 592                                 check++;
 593                         }
 594                         if (strlen(strval) > ZPROP_MAX_COMMENT)
 595                                 error = E2BIG;
 596                         break;
 597 
 598                 case ZPOOL_PROP_DEDUPDITTO:
 599                         if (spa_version(spa) < SPA_VERSION_DEDUP)
 600                                 error = SET_ERROR(ENOTSUP);
 601                         else
 602                                 error = nvpair_value_uint64(elem, &intval);
 603                         if (error == 0 &&
 604                             intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
 605                                 error = SET_ERROR(EINVAL);
 606                         break;
 607                 }
 608 
 609                 if (error)
 610                         break;
 611         }
 612 
 613         if (!error && reset_bootfs) {
 614                 error = nvlist_remove(props,
 615                     zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
 616 
 617                 if (!error) {
 618                         error = nvlist_add_uint64(props,
 619                             zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
 620                 }
 621         }
 622 
 623         return (error);
 624 }
 625 
 626 void
 627 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
 628 {
 629         char *cachefile;
 630         spa_config_dirent_t *dp;
 631 
 632         if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
 633             &cachefile) != 0)
 634                 return;
 635 
 636         dp = kmem_alloc(sizeof (spa_config_dirent_t),
 637             KM_SLEEP);
 638 
 639         if (cachefile[0] == '\0')
 640                 dp->scd_path = spa_strdup(spa_config_path);
 641         else if (strcmp(cachefile, "none") == 0)
 642                 dp->scd_path = NULL;
 643         else
 644                 dp->scd_path = spa_strdup(cachefile);
 645 
 646         list_insert_head(&spa->spa_config_list, dp);
 647         if (need_sync)
 648                 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
 649 }
 650 
 651 int
 652 spa_prop_set(spa_t *spa, nvlist_t *nvp)
 653 {
 654         int error;
 655         nvpair_t *elem = NULL;
 656         boolean_t need_sync = B_FALSE;
 657 
 658         if ((error = spa_prop_validate(spa, nvp)) != 0)
 659                 return (error);
 660 
 661         while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
 662                 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
 663 
 664                 if (prop == ZPOOL_PROP_CACHEFILE ||
 665                     prop == ZPOOL_PROP_ALTROOT ||
 666                     prop == ZPOOL_PROP_READONLY)
 667                         continue;
 668 
 669                 if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
 670                         uint64_t ver;
 671 
 672                         if (prop == ZPOOL_PROP_VERSION) {
 673                                 VERIFY(nvpair_value_uint64(elem, &ver) == 0);
 674                         } else {
 675                                 ASSERT(zpool_prop_feature(nvpair_name(elem)));
 676                                 ver = SPA_VERSION_FEATURES;
 677                                 need_sync = B_TRUE;
 678                         }
 679 
 680                         /* Save time if the version is already set. */
 681                         if (ver == spa_version(spa))
 682                                 continue;
 683 
 684                         /*
 685                          * In addition to the pool directory object, we might
 686                          * create the pool properties object, the features for
 687                          * read object, the features for write object, or the
 688                          * feature descriptions object.
 689                          */
 690                         error = dsl_sync_task(spa->spa_name, NULL,
 691                             spa_sync_version, &ver,
 692                             6, ZFS_SPACE_CHECK_RESERVED);
 693                         if (error)
 694                                 return (error);
 695                         continue;
 696                 }
 697 
 698                 need_sync = B_TRUE;
 699                 break;
 700         }
 701 
 702         if (need_sync) {
 703                 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
 704                     nvp, 6, ZFS_SPACE_CHECK_RESERVED));
 705         }
 706 
 707         return (0);
 708 }
 709 
 710 /*
 711  * If the bootfs property value is dsobj, clear it.
 712  */
 713 void
 714 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
 715 {
 716         if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
 717                 VERIFY(zap_remove(spa->spa_meta_objset,
 718                     spa->spa_pool_props_object,
 719                     zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
 720                 spa->spa_bootfs = 0;
 721         }
 722 }
 723 
 724 /*ARGSUSED*/
 725 static int
 726 spa_change_guid_check(void *arg, dmu_tx_t *tx)
 727 {
 728         uint64_t *newguid = arg;
 729         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
 730         vdev_t *rvd = spa->spa_root_vdev;
 731         uint64_t vdev_state;
 732 
 733         spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
 734         vdev_state = rvd->vdev_state;
 735         spa_config_exit(spa, SCL_STATE, FTAG);
 736 
 737         if (vdev_state != VDEV_STATE_HEALTHY)
 738                 return (SET_ERROR(ENXIO));
 739 
 740         ASSERT3U(spa_guid(spa), !=, *newguid);
 741 
 742         return (0);
 743 }
 744 
 745 static void
 746 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
 747 {
 748         uint64_t *newguid = arg;
 749         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
 750         uint64_t oldguid;
 751         vdev_t *rvd = spa->spa_root_vdev;
 752 
 753         oldguid = spa_guid(spa);
 754 
 755         spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
 756         rvd->vdev_guid = *newguid;
 757         rvd->vdev_guid_sum += (*newguid - oldguid);
 758         vdev_config_dirty(rvd);
 759         spa_config_exit(spa, SCL_STATE, FTAG);
 760 
 761         spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
 762             oldguid, *newguid);
 763 }
 764 
 765 /*
 766  * Change the GUID for the pool.  This is done so that we can later
 767  * re-import a pool built from a clone of our own vdevs.  We will modify
 768  * the root vdev's guid, our own pool guid, and then mark all of our
 769  * vdevs dirty.  Note that we must make sure that all our vdevs are
 770  * online when we do this, or else any vdevs that weren't present
 771  * would be orphaned from our pool.  We are also going to issue a
 772  * sysevent to update any watchers.
 773  */
 774 int
 775 spa_change_guid(spa_t *spa)
 776 {
 777         int error;
 778         uint64_t guid;
 779 
 780         mutex_enter(&spa->spa_vdev_top_lock);
 781         mutex_enter(&spa_namespace_lock);
 782         guid = spa_generate_guid(NULL);
 783 
 784         error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
 785             spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
 786 
 787         if (error == 0) {
 788                 spa_config_sync(spa, B_FALSE, B_TRUE);
 789                 spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
 790         }
 791 
 792         mutex_exit(&spa_namespace_lock);
 793         mutex_exit(&spa->spa_vdev_top_lock);
 794 
 795         return (error);
 796 }
 797 
 798 /*
 799  * ==========================================================================
 800  * SPA state manipulation (open/create/destroy/import/export)
 801  * ==========================================================================
 802  */
 803 
 804 static int
 805 spa_error_entry_compare(const void *a, const void *b)
 806 {
 807         spa_error_entry_t *sa = (spa_error_entry_t *)a;
 808         spa_error_entry_t *sb = (spa_error_entry_t *)b;
 809         int ret;
 810 
 811         ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
 812             sizeof (zbookmark_phys_t));
 813 
 814         if (ret < 0)
 815                 return (-1);
 816         else if (ret > 0)
 817                 return (1);
 818         else
 819                 return (0);
 820 }
 821 
 822 /*
 823  * Utility function which retrieves copies of the current logs and
 824  * re-initializes them in the process.
 825  */
 826 void
 827 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
 828 {
 829         ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
 830 
 831         bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
 832         bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
 833 
 834         avl_create(&spa->spa_errlist_scrub,
 835             spa_error_entry_compare, sizeof (spa_error_entry_t),
 836             offsetof(spa_error_entry_t, se_avl));
 837         avl_create(&spa->spa_errlist_last,
 838             spa_error_entry_compare, sizeof (spa_error_entry_t),
 839             offsetof(spa_error_entry_t, se_avl));
 840 }
 841 
 842 static void
 843 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
 844 {
 845         const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
 846         enum zti_modes mode = ztip->zti_mode;
 847         uint_t value = ztip->zti_value;
 848         uint_t count = ztip->zti_count;
 849         spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
 850         char name[32];
 851         uint_t flags = 0;
 852         boolean_t batch = B_FALSE;
 853 
 854         if (mode == ZTI_MODE_NULL) {
 855                 tqs->stqs_count = 0;
 856                 tqs->stqs_taskq = NULL;
 857                 return;
 858         }
 859 
 860         ASSERT3U(count, >, 0);
 861 
 862         tqs->stqs_count = count;
 863         tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
 864 
 865         switch (mode) {
 866         case ZTI_MODE_FIXED:
 867                 ASSERT3U(value, >=, 1);
 868                 value = MAX(value, 1);
 869                 break;
 870 
 871         case ZTI_MODE_BATCH:
 872                 batch = B_TRUE;
 873                 flags |= TASKQ_THREADS_CPU_PCT;
 874                 value = zio_taskq_batch_pct;
 875                 break;
 876 
 877         default:
 878                 panic("unrecognized mode for %s_%s taskq (%u:%u) in "
 879                     "spa_activate()",
 880                     zio_type_name[t], zio_taskq_types[q], mode, value);
 881                 break;
 882         }
 883 
 884         for (uint_t i = 0; i < count; i++) {
 885                 taskq_t *tq;
 886 
 887                 if (count > 1) {
 888                         (void) snprintf(name, sizeof (name), "%s_%s_%u",
 889                             zio_type_name[t], zio_taskq_types[q], i);
 890                 } else {
 891                         (void) snprintf(name, sizeof (name), "%s_%s",
 892                             zio_type_name[t], zio_taskq_types[q]);
 893                 }
 894 
 895                 if (zio_taskq_sysdc && spa->spa_proc != &p0) {
 896                         if (batch)
 897                                 flags |= TASKQ_DC_BATCH;
 898 
 899                         tq = taskq_create_sysdc(name, value, 50, INT_MAX,
 900                             spa->spa_proc, zio_taskq_basedc, flags);
 901                 } else {
 902                         pri_t pri = maxclsyspri;
 903                         /*
 904                          * The write issue taskq can be extremely CPU
 905                          * intensive.  Run it at slightly lower priority
 906                          * than the other taskqs.
 907                          */
 908                         if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
 909                                 pri--;
 910 
 911                         tq = taskq_create_proc(name, value, pri, 50,
 912                             INT_MAX, spa->spa_proc, flags);
 913                 }
 914 
 915                 tqs->stqs_taskq[i] = tq;
 916         }
 917 }
 918 
 919 static void
 920 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
 921 {
 922         spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
 923 
 924         if (tqs->stqs_taskq == NULL) {
 925                 ASSERT0(tqs->stqs_count);
 926                 return;
 927         }
 928 
 929         for (uint_t i = 0; i < tqs->stqs_count; i++) {
 930                 ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
 931                 taskq_destroy(tqs->stqs_taskq[i]);
 932         }
 933 
 934         kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
 935         tqs->stqs_taskq = NULL;
 936 }
 937 
 938 /*
 939  * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
 940  * Note that a type may have multiple discrete taskqs to avoid lock contention
 941  * on the taskq itself. In that case we choose which taskq at random by using
 942  * the low bits of gethrtime().
 943  */
 944 void
 945 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
 946     task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
 947 {
 948         spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
 949         taskq_t *tq;
 950 
 951         ASSERT3P(tqs->stqs_taskq, !=, NULL);
 952         ASSERT3U(tqs->stqs_count, !=, 0);
 953 
 954         if (tqs->stqs_count == 1) {
 955                 tq = tqs->stqs_taskq[0];
 956         } else {
 957                 tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
 958         }
 959 
 960         taskq_dispatch_ent(tq, func, arg, flags, ent);
 961 }
 962 
 963 static void
 964 spa_create_zio_taskqs(spa_t *spa)
 965 {
 966         for (int t = 0; t < ZIO_TYPES; t++) {
 967                 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
 968                         spa_taskqs_init(spa, t, q);
 969                 }
 970         }
 971 }
 972 
 973 #ifdef _KERNEL
 974 static void
 975 spa_thread(void *arg)
 976 {
 977         callb_cpr_t cprinfo;
 978 
 979         spa_t *spa = arg;
 980         user_t *pu = PTOU(curproc);
 981 
 982         CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
 983             spa->spa_name);
 984 
 985         ASSERT(curproc != &p0);
 986         (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
 987             "zpool-%s", spa->spa_name);
 988         (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
 989 
 990         /* bind this thread to the requested psrset */
 991         if (zio_taskq_psrset_bind != PS_NONE) {
 992                 pool_lock();
 993                 mutex_enter(&cpu_lock);
 994                 mutex_enter(&pidlock);
 995                 mutex_enter(&curproc->p_lock);
 996 
 997                 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
 998                     0, NULL, NULL) == 0)  {
 999                         curthread->t_bind_pset = zio_taskq_psrset_bind;
1000                 } else {
1001                         cmn_err(CE_WARN,
1002                             "Couldn't bind process for zfs pool \"%s\" to "
1003                             "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1004                 }
1005 
1006                 mutex_exit(&curproc->p_lock);
1007                 mutex_exit(&pidlock);
1008                 mutex_exit(&cpu_lock);
1009                 pool_unlock();
1010         }
1011 
1012         if (zio_taskq_sysdc) {
1013                 sysdc_thread_enter(curthread, 100, 0);
1014         }
1015 
1016         spa->spa_proc = curproc;
1017         spa->spa_did = curthread->t_did;
1018 
1019         spa_create_zio_taskqs(spa);
1020 
1021         mutex_enter(&spa->spa_proc_lock);
1022         ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1023 
1024         spa->spa_proc_state = SPA_PROC_ACTIVE;
1025         cv_broadcast(&spa->spa_proc_cv);
1026 
1027         CALLB_CPR_SAFE_BEGIN(&cprinfo);
1028         while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1029                 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1030         CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1031 
1032         ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1033         spa->spa_proc_state = SPA_PROC_GONE;
1034         spa->spa_proc = &p0;
1035         cv_broadcast(&spa->spa_proc_cv);
1036         CALLB_CPR_EXIT(&cprinfo);   /* drops spa_proc_lock */
1037 
1038         mutex_enter(&curproc->p_lock);
1039         lwp_exit();
1040 }
1041 #endif
1042 
1043 /*
1044  * Activate an uninitialized pool.
1045  */
1046 static void
1047 spa_activate(spa_t *spa, int mode)
1048 {
1049         ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1050 
1051         spa->spa_state = POOL_STATE_ACTIVE;
1052         spa->spa_mode = mode;
1053 
1054         spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1055         spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1056 
1057         /* Try to create a covering process */
1058         mutex_enter(&spa->spa_proc_lock);
1059         ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1060         ASSERT(spa->spa_proc == &p0);
1061         spa->spa_did = 0;
1062 
1063         /* Only create a process if we're going to be around a while. */
1064         if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1065                 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1066                     NULL, 0) == 0) {
1067                         spa->spa_proc_state = SPA_PROC_CREATED;
1068                         while (spa->spa_proc_state == SPA_PROC_CREATED) {
1069                                 cv_wait(&spa->spa_proc_cv,
1070                                     &spa->spa_proc_lock);
1071                         }
1072                         ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1073                         ASSERT(spa->spa_proc != &p0);
1074                         ASSERT(spa->spa_did != 0);
1075                 } else {
1076 #ifdef _KERNEL
1077                         cmn_err(CE_WARN,
1078                             "Couldn't create process for zfs pool \"%s\"\n",
1079                             spa->spa_name);
1080 #endif
1081                 }
1082         }
1083         mutex_exit(&spa->spa_proc_lock);
1084 
1085         /* If we didn't create a process, we need to create our taskqs. */
1086         if (spa->spa_proc == &p0) {
1087                 spa_create_zio_taskqs(spa);
1088         }
1089 
1090         list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1091             offsetof(vdev_t, vdev_config_dirty_node));
1092         list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1093             offsetof(objset_t, os_evicting_node));
1094         list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1095             offsetof(vdev_t, vdev_state_dirty_node));
1096 
1097         txg_list_create(&spa->spa_vdev_txg_list,
1098             offsetof(struct vdev, vdev_txg_node));
1099 
1100         avl_create(&spa->spa_errlist_scrub,
1101             spa_error_entry_compare, sizeof (spa_error_entry_t),
1102             offsetof(spa_error_entry_t, se_avl));
1103         avl_create(&spa->spa_errlist_last,
1104             spa_error_entry_compare, sizeof (spa_error_entry_t),
1105             offsetof(spa_error_entry_t, se_avl));
1106 }
1107 
1108 /*
1109  * Opposite of spa_activate().
1110  */
1111 static void
1112 spa_deactivate(spa_t *spa)
1113 {
1114         ASSERT(spa->spa_sync_on == B_FALSE);
1115         ASSERT(spa->spa_dsl_pool == NULL);
1116         ASSERT(spa->spa_root_vdev == NULL);
1117         ASSERT(spa->spa_async_zio_root == NULL);
1118         ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1119 
1120         spa_evicting_os_wait(spa);
1121 
1122         txg_list_destroy(&spa->spa_vdev_txg_list);
1123 
1124         list_destroy(&spa->spa_config_dirty_list);
1125         list_destroy(&spa->spa_evicting_os_list);
1126         list_destroy(&spa->spa_state_dirty_list);
1127 
1128         for (int t = 0; t < ZIO_TYPES; t++) {
1129                 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1130                         spa_taskqs_fini(spa, t, q);
1131                 }
1132         }
1133 
1134         metaslab_class_destroy(spa->spa_normal_class);
1135         spa->spa_normal_class = NULL;
1136 
1137         metaslab_class_destroy(spa->spa_log_class);
1138         spa->spa_log_class = NULL;
1139 
1140         /*
1141          * If this was part of an import or the open otherwise failed, we may
1142          * still have errors left in the queues.  Empty them just in case.
1143          */
1144         spa_errlog_drain(spa);
1145 
1146         avl_destroy(&spa->spa_errlist_scrub);
1147         avl_destroy(&spa->spa_errlist_last);
1148 
1149         spa->spa_state = POOL_STATE_UNINITIALIZED;
1150 
1151         mutex_enter(&spa->spa_proc_lock);
1152         if (spa->spa_proc_state != SPA_PROC_NONE) {
1153                 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1154                 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1155                 cv_broadcast(&spa->spa_proc_cv);
1156                 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1157                         ASSERT(spa->spa_proc != &p0);
1158                         cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1159                 }
1160                 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1161                 spa->spa_proc_state = SPA_PROC_NONE;
1162         }
1163         ASSERT(spa->spa_proc == &p0);
1164         mutex_exit(&spa->spa_proc_lock);
1165 
1166         /*
1167          * We want to make sure spa_thread() has actually exited the ZFS
1168          * module, so that the module can't be unloaded out from underneath
1169          * it.
1170          */
1171         if (spa->spa_did != 0) {
1172                 thread_join(spa->spa_did);
1173                 spa->spa_did = 0;
1174         }
1175 }
1176 
1177 /*
1178  * Verify a pool configuration, and construct the vdev tree appropriately.  This
1179  * will create all the necessary vdevs in the appropriate layout, with each vdev
1180  * in the CLOSED state.  This will prep the pool before open/creation/import.
1181  * All vdev validation is done by the vdev_alloc() routine.
1182  */
1183 static int
1184 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1185     uint_t id, int atype)
1186 {
1187         nvlist_t **child;
1188         uint_t children;
1189         int error;
1190 
1191         if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1192                 return (error);
1193 
1194         if ((*vdp)->vdev_ops->vdev_op_leaf)
1195                 return (0);
1196 
1197         error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1198             &child, &children);
1199 
1200         if (error == ENOENT)
1201                 return (0);
1202 
1203         if (error) {
1204                 vdev_free(*vdp);
1205                 *vdp = NULL;
1206                 return (SET_ERROR(EINVAL));
1207         }
1208 
1209         for (int c = 0; c < children; c++) {
1210                 vdev_t *vd;
1211                 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1212                     atype)) != 0) {
1213                         vdev_free(*vdp);
1214                         *vdp = NULL;
1215                         return (error);
1216                 }
1217         }
1218 
1219         ASSERT(*vdp != NULL);
1220 
1221         return (0);
1222 }
1223 
1224 /*
1225  * Opposite of spa_load().
1226  */
1227 static void
1228 spa_unload(spa_t *spa)
1229 {
1230         int i;
1231 
1232         ASSERT(MUTEX_HELD(&spa_namespace_lock));
1233 
1234         /*
1235          * Stop async tasks.
1236          */
1237         spa_async_suspend(spa);
1238 
1239         /*
1240          * Stop syncing.
1241          */
1242         if (spa->spa_sync_on) {
1243                 txg_sync_stop(spa->spa_dsl_pool);
1244                 spa->spa_sync_on = B_FALSE;
1245         }
1246 
1247         /*
1248          * Wait for any outstanding async I/O to complete.
1249          */
1250         if (spa->spa_async_zio_root != NULL) {
1251                 for (int i = 0; i < max_ncpus; i++)
1252                         (void) zio_wait(spa->spa_async_zio_root[i]);
1253                 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1254                 spa->spa_async_zio_root = NULL;
1255         }
1256 
1257         bpobj_close(&spa->spa_deferred_bpobj);
1258 
1259         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1260 
1261         /*
1262          * Close all vdevs.
1263          */
1264         if (spa->spa_root_vdev)
1265                 vdev_free(spa->spa_root_vdev);
1266         ASSERT(spa->spa_root_vdev == NULL);
1267 
1268         /*
1269          * Close the dsl pool.
1270          */
1271         if (spa->spa_dsl_pool) {
1272                 dsl_pool_close(spa->spa_dsl_pool);
1273                 spa->spa_dsl_pool = NULL;
1274                 spa->spa_meta_objset = NULL;
1275         }
1276 
1277         ddt_unload(spa);
1278 
1279 
1280         /*
1281          * Drop and purge level 2 cache
1282          */
1283         spa_l2cache_drop(spa);
1284 
1285         for (i = 0; i < spa->spa_spares.sav_count; i++)
1286                 vdev_free(spa->spa_spares.sav_vdevs[i]);
1287         if (spa->spa_spares.sav_vdevs) {
1288                 kmem_free(spa->spa_spares.sav_vdevs,
1289                     spa->spa_spares.sav_count * sizeof (void *));
1290                 spa->spa_spares.sav_vdevs = NULL;
1291         }
1292         if (spa->spa_spares.sav_config) {
1293                 nvlist_free(spa->spa_spares.sav_config);
1294                 spa->spa_spares.sav_config = NULL;
1295         }
1296         spa->spa_spares.sav_count = 0;
1297 
1298         for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1299                 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1300                 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1301         }
1302         if (spa->spa_l2cache.sav_vdevs) {
1303                 kmem_free(spa->spa_l2cache.sav_vdevs,
1304                     spa->spa_l2cache.sav_count * sizeof (void *));
1305                 spa->spa_l2cache.sav_vdevs = NULL;
1306         }
1307         if (spa->spa_l2cache.sav_config) {
1308                 nvlist_free(spa->spa_l2cache.sav_config);
1309                 spa->spa_l2cache.sav_config = NULL;
1310         }
1311         spa->spa_l2cache.sav_count = 0;
1312 
1313         spa->spa_async_suspended = 0;
1314 
1315         if (spa->spa_comment != NULL) {
1316                 spa_strfree(spa->spa_comment);
1317                 spa->spa_comment = NULL;
1318         }
1319 
1320         spa_config_exit(spa, SCL_ALL, FTAG);
1321 }
1322 
1323 /*
1324  * Load (or re-load) the current list of vdevs describing the active spares for
1325  * this pool.  When this is called, we have some form of basic information in
1326  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1327  * then re-generate a more complete list including status information.
1328  */
1329 static void
1330 spa_load_spares(spa_t *spa)
1331 {
1332         nvlist_t **spares;
1333         uint_t nspares;
1334         int i;
1335         vdev_t *vd, *tvd;
1336 
1337         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1338 
1339         /*
1340          * First, close and free any existing spare vdevs.
1341          */
1342         for (i = 0; i < spa->spa_spares.sav_count; i++) {
1343                 vd = spa->spa_spares.sav_vdevs[i];
1344 
1345                 /* Undo the call to spa_activate() below */
1346                 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1347                     B_FALSE)) != NULL && tvd->vdev_isspare)
1348                         spa_spare_remove(tvd);
1349                 vdev_close(vd);
1350                 vdev_free(vd);
1351         }
1352 
1353         if (spa->spa_spares.sav_vdevs)
1354                 kmem_free(spa->spa_spares.sav_vdevs,
1355                     spa->spa_spares.sav_count * sizeof (void *));
1356 
1357         if (spa->spa_spares.sav_config == NULL)
1358                 nspares = 0;
1359         else
1360                 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1361                     ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1362 
1363         spa->spa_spares.sav_count = (int)nspares;
1364         spa->spa_spares.sav_vdevs = NULL;
1365 
1366         if (nspares == 0)
1367                 return;
1368 
1369         /*
1370          * Construct the array of vdevs, opening them to get status in the
1371          * process.   For each spare, there is potentially two different vdev_t
1372          * structures associated with it: one in the list of spares (used only
1373          * for basic validation purposes) and one in the active vdev
1374          * configuration (if it's spared in).  During this phase we open and
1375          * validate each vdev on the spare list.  If the vdev also exists in the
1376          * active configuration, then we also mark this vdev as an active spare.
1377          */
1378         spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1379             KM_SLEEP);
1380         for (i = 0; i < spa->spa_spares.sav_count; i++) {
1381                 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1382                     VDEV_ALLOC_SPARE) == 0);
1383                 ASSERT(vd != NULL);
1384 
1385                 spa->spa_spares.sav_vdevs[i] = vd;
1386 
1387                 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1388                     B_FALSE)) != NULL) {
1389                         if (!tvd->vdev_isspare)
1390                                 spa_spare_add(tvd);
1391 
1392                         /*
1393                          * We only mark the spare active if we were successfully
1394                          * able to load the vdev.  Otherwise, importing a pool
1395                          * with a bad active spare would result in strange
1396                          * behavior, because multiple pool would think the spare
1397                          * is actively in use.
1398                          *
1399                          * There is a vulnerability here to an equally bizarre
1400                          * circumstance, where a dead active spare is later
1401                          * brought back to life (onlined or otherwise).  Given
1402                          * the rarity of this scenario, and the extra complexity
1403                          * it adds, we ignore the possibility.
1404                          */
1405                         if (!vdev_is_dead(tvd))
1406                                 spa_spare_activate(tvd);
1407                 }
1408 
1409                 vd->vdev_top = vd;
1410                 vd->vdev_aux = &spa->spa_spares;
1411 
1412                 if (vdev_open(vd) != 0)
1413                         continue;
1414 
1415                 if (vdev_validate_aux(vd) == 0)
1416                         spa_spare_add(vd);
1417         }
1418 
1419         /*
1420          * Recompute the stashed list of spares, with status information
1421          * this time.
1422          */
1423         VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1424             DATA_TYPE_NVLIST_ARRAY) == 0);
1425 
1426         spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1427             KM_SLEEP);
1428         for (i = 0; i < spa->spa_spares.sav_count; i++)
1429                 spares[i] = vdev_config_generate(spa,
1430                     spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1431         VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1432             ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1433         for (i = 0; i < spa->spa_spares.sav_count; i++)
1434                 nvlist_free(spares[i]);
1435         kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1436 }
1437 
1438 /*
1439  * Load (or re-load) the current list of vdevs describing the active l2cache for
1440  * this pool.  When this is called, we have some form of basic information in
1441  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1442  * then re-generate a more complete list including status information.
1443  * Devices which are already active have their details maintained, and are
1444  * not re-opened.
1445  */
1446 static void
1447 spa_load_l2cache(spa_t *spa)
1448 {
1449         nvlist_t **l2cache;
1450         uint_t nl2cache;
1451         int i, j, oldnvdevs;
1452         uint64_t guid;
1453         vdev_t *vd, **oldvdevs, **newvdevs;
1454         spa_aux_vdev_t *sav = &spa->spa_l2cache;
1455 
1456         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1457 
1458         if (sav->sav_config != NULL) {
1459                 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1460                     ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1461                 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1462         } else {
1463                 nl2cache = 0;
1464                 newvdevs = NULL;
1465         }
1466 
1467         oldvdevs = sav->sav_vdevs;
1468         oldnvdevs = sav->sav_count;
1469         sav->sav_vdevs = NULL;
1470         sav->sav_count = 0;
1471 
1472         /*
1473          * Process new nvlist of vdevs.
1474          */
1475         for (i = 0; i < nl2cache; i++) {
1476                 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1477                     &guid) == 0);
1478 
1479                 newvdevs[i] = NULL;
1480                 for (j = 0; j < oldnvdevs; j++) {
1481                         vd = oldvdevs[j];
1482                         if (vd != NULL && guid == vd->vdev_guid) {
1483                                 /*
1484                                  * Retain previous vdev for add/remove ops.
1485                                  */
1486                                 newvdevs[i] = vd;
1487                                 oldvdevs[j] = NULL;
1488                                 break;
1489                         }
1490                 }
1491 
1492                 if (newvdevs[i] == NULL) {
1493                         /*
1494                          * Create new vdev
1495                          */
1496                         VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1497                             VDEV_ALLOC_L2CACHE) == 0);
1498                         ASSERT(vd != NULL);
1499                         newvdevs[i] = vd;
1500 
1501                         /*
1502                          * Commit this vdev as an l2cache device,
1503                          * even if it fails to open.
1504                          */
1505                         spa_l2cache_add(vd);
1506 
1507                         vd->vdev_top = vd;
1508                         vd->vdev_aux = sav;
1509 
1510                         spa_l2cache_activate(vd);
1511 
1512                         if (vdev_open(vd) != 0)
1513                                 continue;
1514 
1515                         (void) vdev_validate_aux(vd);
1516 
1517                         if (!vdev_is_dead(vd))
1518                                 l2arc_add_vdev(spa, vd);
1519                 }
1520         }
1521 
1522         /*
1523          * Purge vdevs that were dropped
1524          */
1525         for (i = 0; i < oldnvdevs; i++) {
1526                 uint64_t pool;
1527 
1528                 vd = oldvdevs[i];
1529                 if (vd != NULL) {
1530                         ASSERT(vd->vdev_isl2cache);
1531 
1532                         if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1533                             pool != 0ULL && l2arc_vdev_present(vd))
1534                                 l2arc_remove_vdev(vd);
1535                         vdev_clear_stats(vd);
1536                         vdev_free(vd);
1537                 }
1538         }
1539 
1540         if (oldvdevs)
1541                 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1542 
1543         if (sav->sav_config == NULL)
1544                 goto out;
1545 
1546         sav->sav_vdevs = newvdevs;
1547         sav->sav_count = (int)nl2cache;
1548 
1549         /*
1550          * Recompute the stashed list of l2cache devices, with status
1551          * information this time.
1552          */
1553         VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1554             DATA_TYPE_NVLIST_ARRAY) == 0);
1555 
1556         l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1557         for (i = 0; i < sav->sav_count; i++)
1558                 l2cache[i] = vdev_config_generate(spa,
1559                     sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1560         VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1561             ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1562 out:
1563         for (i = 0; i < sav->sav_count; i++)
1564                 nvlist_free(l2cache[i]);
1565         if (sav->sav_count)
1566                 kmem_free(l2cache, sav->sav_count * sizeof (void *));
1567 }
1568 
1569 static int
1570 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1571 {
1572         dmu_buf_t *db;
1573         char *packed = NULL;
1574         size_t nvsize = 0;
1575         int error;
1576         *value = NULL;
1577 
1578         error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1579         if (error != 0)
1580                 return (error);
1581 
1582         nvsize = *(uint64_t *)db->db_data;
1583         dmu_buf_rele(db, FTAG);
1584 
1585         packed = kmem_alloc(nvsize, KM_SLEEP);
1586         error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1587             DMU_READ_PREFETCH);
1588         if (error == 0)
1589                 error = nvlist_unpack(packed, nvsize, value, 0);
1590         kmem_free(packed, nvsize);
1591 
1592         return (error);
1593 }
1594 
1595 /*
1596  * Checks to see if the given vdev could not be opened, in which case we post a
1597  * sysevent to notify the autoreplace code that the device has been removed.
1598  */
1599 static void
1600 spa_check_removed(vdev_t *vd)
1601 {
1602         for (int c = 0; c < vd->vdev_children; c++)
1603                 spa_check_removed(vd->vdev_child[c]);
1604 
1605         if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1606             !vd->vdev_ishole) {
1607                 zfs_post_autoreplace(vd->vdev_spa, vd);
1608                 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1609         }
1610 }
1611 
1612 /*
1613  * Validate the current config against the MOS config
1614  */
1615 static boolean_t
1616 spa_config_valid(spa_t *spa, nvlist_t *config)
1617 {
1618         vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1619         nvlist_t *nv;
1620 
1621         VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1622 
1623         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1624         VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1625 
1626         ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1627 
1628         /*
1629          * If we're doing a normal import, then build up any additional
1630          * diagnostic information about missing devices in this config.
1631          * We'll pass this up to the user for further processing.
1632          */
1633         if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1634                 nvlist_t **child, *nv;
1635                 uint64_t idx = 0;
1636 
1637                 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1638                     KM_SLEEP);
1639                 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1640 
1641                 for (int c = 0; c < rvd->vdev_children; c++) {
1642                         vdev_t *tvd = rvd->vdev_child[c];
1643                         vdev_t *mtvd  = mrvd->vdev_child[c];
1644 
1645                         if (tvd->vdev_ops == &vdev_missing_ops &&
1646                             mtvd->vdev_ops != &vdev_missing_ops &&
1647                             mtvd->vdev_islog)
1648                                 child[idx++] = vdev_config_generate(spa, mtvd,
1649                                     B_FALSE, 0);
1650                 }
1651 
1652                 if (idx) {
1653                         VERIFY(nvlist_add_nvlist_array(nv,
1654                             ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1655                         VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1656                             ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1657 
1658                         for (int i = 0; i < idx; i++)
1659                                 nvlist_free(child[i]);
1660                 }
1661                 nvlist_free(nv);
1662                 kmem_free(child, rvd->vdev_children * sizeof (char **));
1663         }
1664 
1665         /*
1666          * Compare the root vdev tree with the information we have
1667          * from the MOS config (mrvd). Check each top-level vdev
1668          * with the corresponding MOS config top-level (mtvd).
1669          */
1670         for (int c = 0; c < rvd->vdev_children; c++) {
1671                 vdev_t *tvd = rvd->vdev_child[c];
1672                 vdev_t *mtvd  = mrvd->vdev_child[c];
1673 
1674                 /*
1675                  * Resolve any "missing" vdevs in the current configuration.
1676                  * If we find that the MOS config has more accurate information
1677                  * about the top-level vdev then use that vdev instead.
1678                  */
1679                 if (tvd->vdev_ops == &vdev_missing_ops &&
1680                     mtvd->vdev_ops != &vdev_missing_ops) {
1681 
1682                         if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1683                                 continue;
1684 
1685                         /*
1686                          * Device specific actions.
1687                          */
1688                         if (mtvd->vdev_islog) {
1689                                 spa_set_log_state(spa, SPA_LOG_CLEAR);
1690                         } else {
1691                                 /*
1692                                  * XXX - once we have 'readonly' pool
1693                                  * support we should be able to handle
1694                                  * missing data devices by transitioning
1695                                  * the pool to readonly.
1696                                  */
1697                                 continue;
1698                         }
1699 
1700                         /*
1701                          * Swap the missing vdev with the data we were
1702                          * able to obtain from the MOS config.
1703                          */
1704                         vdev_remove_child(rvd, tvd);
1705                         vdev_remove_child(mrvd, mtvd);
1706 
1707                         vdev_add_child(rvd, mtvd);
1708                         vdev_add_child(mrvd, tvd);
1709 
1710                         spa_config_exit(spa, SCL_ALL, FTAG);
1711                         vdev_load(mtvd);
1712                         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1713 
1714                         vdev_reopen(rvd);
1715                 } else if (mtvd->vdev_islog) {
1716                         /*
1717                          * Load the slog device's state from the MOS config
1718                          * since it's possible that the label does not
1719                          * contain the most up-to-date information.
1720                          */
1721                         vdev_load_log_state(tvd, mtvd);
1722                         vdev_reopen(tvd);
1723                 }
1724         }
1725         vdev_free(mrvd);
1726         spa_config_exit(spa, SCL_ALL, FTAG);
1727 
1728         /*
1729          * Ensure we were able to validate the config.
1730          */
1731         return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1732 }
1733 
1734 /*
1735  * Check for missing log devices
1736  */
1737 static boolean_t
1738 spa_check_logs(spa_t *spa)
1739 {
1740         boolean_t rv = B_FALSE;
1741         dsl_pool_t *dp = spa_get_dsl(spa);
1742 
1743         switch (spa->spa_log_state) {
1744         case SPA_LOG_MISSING:
1745                 /* need to recheck in case slog has been restored */
1746         case SPA_LOG_UNKNOWN:
1747                 rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1748                     zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
1749                 if (rv)
1750                         spa_set_log_state(spa, SPA_LOG_MISSING);
1751                 break;
1752         }
1753         return (rv);
1754 }
1755 
1756 static boolean_t
1757 spa_passivate_log(spa_t *spa)
1758 {
1759         vdev_t *rvd = spa->spa_root_vdev;
1760         boolean_t slog_found = B_FALSE;
1761 
1762         ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1763 
1764         if (!spa_has_slogs(spa))
1765                 return (B_FALSE);
1766 
1767         for (int c = 0; c < rvd->vdev_children; c++) {
1768                 vdev_t *tvd = rvd->vdev_child[c];
1769                 metaslab_group_t *mg = tvd->vdev_mg;
1770 
1771                 if (tvd->vdev_islog) {
1772                         metaslab_group_passivate(mg);
1773                         slog_found = B_TRUE;
1774                 }
1775         }
1776 
1777         return (slog_found);
1778 }
1779 
1780 static void
1781 spa_activate_log(spa_t *spa)
1782 {
1783         vdev_t *rvd = spa->spa_root_vdev;
1784 
1785         ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1786 
1787         for (int c = 0; c < rvd->vdev_children; c++) {
1788                 vdev_t *tvd = rvd->vdev_child[c];
1789                 metaslab_group_t *mg = tvd->vdev_mg;
1790 
1791                 if (tvd->vdev_islog)
1792                         metaslab_group_activate(mg);
1793         }
1794 }
1795 
1796 int
1797 spa_offline_log(spa_t *spa)
1798 {
1799         int error;
1800 
1801         error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1802             NULL, DS_FIND_CHILDREN);
1803         if (error == 0) {
1804                 /*
1805                  * We successfully offlined the log device, sync out the
1806                  * current txg so that the "stubby" block can be removed
1807                  * by zil_sync().
1808                  */
1809                 txg_wait_synced(spa->spa_dsl_pool, 0);
1810         }
1811         return (error);
1812 }
1813 
1814 static void
1815 spa_aux_check_removed(spa_aux_vdev_t *sav)
1816 {
1817         for (int i = 0; i < sav->sav_count; i++)
1818                 spa_check_removed(sav->sav_vdevs[i]);
1819 }
1820 
1821 void
1822 spa_claim_notify(zio_t *zio)
1823 {
1824         spa_t *spa = zio->io_spa;
1825 
1826         if (zio->io_error)
1827                 return;
1828 
1829         mutex_enter(&spa->spa_props_lock);       /* any mutex will do */
1830         if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1831                 spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1832         mutex_exit(&spa->spa_props_lock);
1833 }
1834 
1835 typedef struct spa_load_error {
1836         uint64_t        sle_meta_count;
1837         uint64_t        sle_data_count;
1838 } spa_load_error_t;
1839 
1840 static void
1841 spa_load_verify_done(zio_t *zio)
1842 {
1843         blkptr_t *bp = zio->io_bp;
1844         spa_load_error_t *sle = zio->io_private;
1845         dmu_object_type_t type = BP_GET_TYPE(bp);
1846         int error = zio->io_error;
1847         spa_t *spa = zio->io_spa;
1848 
1849         if (error) {
1850                 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1851                     type != DMU_OT_INTENT_LOG)
1852                         atomic_inc_64(&sle->sle_meta_count);
1853                 else
1854                         atomic_inc_64(&sle->sle_data_count);
1855         }
1856         zio_data_buf_free(zio->io_data, zio->io_size);
1857 
1858         mutex_enter(&spa->spa_scrub_lock);
1859         spa->spa_scrub_inflight--;
1860         cv_broadcast(&spa->spa_scrub_io_cv);
1861         mutex_exit(&spa->spa_scrub_lock);
1862 }
1863 
1864 /*
1865  * Maximum number of concurrent scrub i/os to create while verifying
1866  * a pool while importing it.
1867  */
1868 int spa_load_verify_maxinflight = 10000;
1869 boolean_t spa_load_verify_metadata = B_TRUE;
1870 boolean_t spa_load_verify_data = B_TRUE;
1871 
1872 /*ARGSUSED*/
1873 static int
1874 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1875     const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1876 {
1877         if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
1878                 return (0);
1879         /*
1880          * Note: normally this routine will not be called if
1881          * spa_load_verify_metadata is not set.  However, it may be useful
1882          * to manually set the flag after the traversal has begun.
1883          */
1884         if (!spa_load_verify_metadata)
1885                 return (0);
1886         if (BP_GET_BUFC_TYPE(bp) == ARC_BUFC_DATA && !spa_load_verify_data)
1887                 return (0);
1888 
1889         zio_t *rio = arg;
1890         size_t size = BP_GET_PSIZE(bp);
1891         void *data = zio_data_buf_alloc(size);
1892 
1893         mutex_enter(&spa->spa_scrub_lock);
1894         while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight)
1895                 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1896         spa->spa_scrub_inflight++;
1897         mutex_exit(&spa->spa_scrub_lock);
1898 
1899         zio_nowait(zio_read(rio, spa, bp, data, size,
1900             spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1901             ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1902             ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1903         return (0);
1904 }
1905 
1906 static int
1907 spa_load_verify(spa_t *spa)
1908 {
1909         zio_t *rio;
1910         spa_load_error_t sle = { 0 };
1911         zpool_rewind_policy_t policy;
1912         boolean_t verify_ok = B_FALSE;
1913         int error = 0;
1914 
1915         zpool_get_rewind_policy(spa->spa_config, &policy);
1916 
1917         if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1918                 return (0);
1919 
1920         rio = zio_root(spa, NULL, &sle,
1921             ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1922 
1923         if (spa_load_verify_metadata) {
1924                 error = traverse_pool(spa, spa->spa_verify_min_txg,
1925                     TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
1926                     spa_load_verify_cb, rio);
1927         }
1928 
1929         (void) zio_wait(rio);
1930 
1931         spa->spa_load_meta_errors = sle.sle_meta_count;
1932         spa->spa_load_data_errors = sle.sle_data_count;
1933 
1934         if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1935             sle.sle_data_count <= policy.zrp_maxdata) {
1936                 int64_t loss = 0;
1937 
1938                 verify_ok = B_TRUE;
1939                 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1940                 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1941 
1942                 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1943                 VERIFY(nvlist_add_uint64(spa->spa_load_info,
1944                     ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1945                 VERIFY(nvlist_add_int64(spa->spa_load_info,
1946                     ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1947                 VERIFY(nvlist_add_uint64(spa->spa_load_info,
1948                     ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1949         } else {
1950                 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1951         }
1952 
1953         if (error) {
1954                 if (error != ENXIO && error != EIO)
1955                         error = SET_ERROR(EIO);
1956                 return (error);
1957         }
1958 
1959         return (verify_ok ? 0 : EIO);
1960 }
1961 
1962 /*
1963  * Find a value in the pool props object.
1964  */
1965 static void
1966 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1967 {
1968         (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1969             zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1970 }
1971 
1972 /*
1973  * Find a value in the pool directory object.
1974  */
1975 static int
1976 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1977 {
1978         return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1979             name, sizeof (uint64_t), 1, val));
1980 }
1981 
1982 static int
1983 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1984 {
1985         vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
1986         return (err);
1987 }
1988 
1989 /*
1990  * Fix up config after a partly-completed split.  This is done with the
1991  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
1992  * pool have that entry in their config, but only the splitting one contains
1993  * a list of all the guids of the vdevs that are being split off.
1994  *
1995  * This function determines what to do with that list: either rejoin
1996  * all the disks to the pool, or complete the splitting process.  To attempt
1997  * the rejoin, each disk that is offlined is marked online again, and
1998  * we do a reopen() call.  If the vdev label for every disk that was
1999  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2000  * then we call vdev_split() on each disk, and complete the split.
2001  *
2002  * Otherwise we leave the config alone, with all the vdevs in place in
2003  * the original pool.
2004  */
2005 static void
2006 spa_try_repair(spa_t *spa, nvlist_t *config)
2007 {
2008         uint_t extracted;
2009         uint64_t *glist;
2010         uint_t i, gcount;
2011         nvlist_t *nvl;
2012         vdev_t **vd;
2013         boolean_t attempt_reopen;
2014 
2015         if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2016                 return;
2017 
2018         /* check that the config is complete */
2019         if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2020             &glist, &gcount) != 0)
2021                 return;
2022 
2023         vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2024 
2025         /* attempt to online all the vdevs & validate */
2026         attempt_reopen = B_TRUE;
2027         for (i = 0; i < gcount; i++) {
2028                 if (glist[i] == 0)      /* vdev is hole */
2029                         continue;
2030 
2031                 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2032                 if (vd[i] == NULL) {
2033                         /*
2034                          * Don't bother attempting to reopen the disks;
2035                          * just do the split.
2036                          */
2037                         attempt_reopen = B_FALSE;
2038                 } else {
2039                         /* attempt to re-online it */
2040                         vd[i]->vdev_offline = B_FALSE;
2041                 }
2042         }
2043 
2044         if (attempt_reopen) {
2045                 vdev_reopen(spa->spa_root_vdev);
2046 
2047                 /* check each device to see what state it's in */
2048                 for (extracted = 0, i = 0; i < gcount; i++) {
2049                         if (vd[i] != NULL &&
2050                             vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2051                                 break;
2052                         ++extracted;
2053                 }
2054         }
2055 
2056         /*
2057          * If every disk has been moved to the new pool, or if we never
2058          * even attempted to look at them, then we split them off for
2059          * good.
2060          */
2061         if (!attempt_reopen || gcount == extracted) {
2062                 for (i = 0; i < gcount; i++)
2063                         if (vd[i] != NULL)
2064                                 vdev_split(vd[i]);
2065                 vdev_reopen(spa->spa_root_vdev);
2066         }
2067 
2068         kmem_free(vd, gcount * sizeof (vdev_t *));
2069 }
2070 
2071 static int
2072 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2073     boolean_t mosconfig)
2074 {
2075         nvlist_t *config = spa->spa_config;
2076         char *ereport = FM_EREPORT_ZFS_POOL;
2077         char *comment;
2078         int error;
2079         uint64_t pool_guid;
2080         nvlist_t *nvl;
2081 
2082         if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2083                 return (SET_ERROR(EINVAL));
2084 
2085         ASSERT(spa->spa_comment == NULL);
2086         if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2087                 spa->spa_comment = spa_strdup(comment);
2088 
2089         /*
2090          * Versioning wasn't explicitly added to the label until later, so if
2091          * it's not present treat it as the initial version.
2092          */
2093         if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2094             &spa->spa_ubsync.ub_version) != 0)
2095                 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2096 
2097         (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2098             &spa->spa_config_txg);
2099 
2100         if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2101             spa_guid_exists(pool_guid, 0)) {
2102                 error = SET_ERROR(EEXIST);
2103         } else {
2104                 spa->spa_config_guid = pool_guid;
2105 
2106                 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2107                     &nvl) == 0) {
2108                         VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2109                             KM_SLEEP) == 0);
2110                 }
2111 
2112                 nvlist_free(spa->spa_load_info);
2113                 spa->spa_load_info = fnvlist_alloc();
2114 
2115                 gethrestime(&spa->spa_loaded_ts);
2116                 error = spa_load_impl(spa, pool_guid, config, state, type,
2117                     mosconfig, &ereport);
2118         }
2119 
2120         /*
2121          * Don't count references from objsets that are already closed
2122          * and are making their way through the eviction process.
2123          */
2124         spa_evicting_os_wait(spa);
2125         spa->spa_minref = refcount_count(&spa->spa_refcount);
2126         if (error) {
2127                 if (error != EEXIST) {
2128                         spa->spa_loaded_ts.tv_sec = 0;
2129                         spa->spa_loaded_ts.tv_nsec = 0;
2130                 }
2131                 if (error != EBADF) {
2132                         zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2133                 }
2134         }
2135         spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2136         spa->spa_ena = 0;
2137 
2138         return (error);
2139 }
2140 
2141 /*
2142  * Load an existing storage pool, using the pool's builtin spa_config as a
2143  * source of configuration information.
2144  */
2145 static int
2146 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2147     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2148     char **ereport)
2149 {
2150         int error = 0;
2151         nvlist_t *nvroot = NULL;
2152         nvlist_t *label;
2153         vdev_t *rvd;
2154         uberblock_t *ub = &spa->spa_uberblock;
2155         uint64_t children, config_cache_txg = spa->spa_config_txg;
2156         int orig_mode = spa->spa_mode;
2157         int parse;
2158         uint64_t obj;
2159         boolean_t missing_feat_write = B_FALSE;
2160 
2161         /*
2162          * If this is an untrusted config, access the pool in read-only mode.
2163          * This prevents things like resilvering recently removed devices.
2164          */
2165         if (!mosconfig)
2166                 spa->spa_mode = FREAD;
2167 
2168         ASSERT(MUTEX_HELD(&spa_namespace_lock));
2169 
2170         spa->spa_load_state = state;
2171 
2172         if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2173                 return (SET_ERROR(EINVAL));
2174 
2175         parse = (type == SPA_IMPORT_EXISTING ?
2176             VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2177 
2178         /*
2179          * Create "The Godfather" zio to hold all async IOs
2180          */
2181         spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2182             KM_SLEEP);
2183         for (int i = 0; i < max_ncpus; i++) {
2184                 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2185                     ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2186                     ZIO_FLAG_GODFATHER);
2187         }
2188 
2189         /*
2190          * Parse the configuration into a vdev tree.  We explicitly set the
2191          * value that will be returned by spa_version() since parsing the
2192          * configuration requires knowing the version number.
2193          */
2194         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2195         error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2196         spa_config_exit(spa, SCL_ALL, FTAG);
2197 
2198         if (error != 0)
2199                 return (error);
2200 
2201         ASSERT(spa->spa_root_vdev == rvd);
2202 
2203         if (type != SPA_IMPORT_ASSEMBLE) {
2204                 ASSERT(spa_guid(spa) == pool_guid);
2205         }
2206 
2207         /*
2208          * Try to open all vdevs, loading each label in the process.
2209          */
2210         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2211         error = vdev_open(rvd);
2212         spa_config_exit(spa, SCL_ALL, FTAG);
2213         if (error != 0)
2214                 return (error);
2215 
2216         /*
2217          * We need to validate the vdev labels against the configuration that
2218          * we have in hand, which is dependent on the setting of mosconfig. If
2219          * mosconfig is true then we're validating the vdev labels based on
2220          * that config.  Otherwise, we're validating against the cached config
2221          * (zpool.cache) that was read when we loaded the zfs module, and then
2222          * later we will recursively call spa_load() and validate against
2223          * the vdev config.
2224          *
2225          * If we're assembling a new pool that's been split off from an
2226          * existing pool, the labels haven't yet been updated so we skip
2227          * validation for now.
2228          */
2229         if (type != SPA_IMPORT_ASSEMBLE) {
2230                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2231                 error = vdev_validate(rvd, mosconfig);
2232                 spa_config_exit(spa, SCL_ALL, FTAG);
2233 
2234                 if (error != 0)
2235                         return (error);
2236 
2237                 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2238                         return (SET_ERROR(ENXIO));
2239         }
2240 
2241         /*
2242          * Find the best uberblock.
2243          */
2244         vdev_uberblock_load(rvd, ub, &label);
2245 
2246         /*
2247          * If we weren't able to find a single valid uberblock, return failure.
2248          */
2249         if (ub->ub_txg == 0) {
2250                 nvlist_free(label);
2251                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2252         }
2253 
2254         /*
2255          * If the pool has an unsupported version we can't open it.
2256          */
2257         if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2258                 nvlist_free(label);
2259                 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2260         }
2261 
2262         if (ub->ub_version >= SPA_VERSION_FEATURES) {
2263                 nvlist_t *features;
2264 
2265                 /*
2266                  * If we weren't able to find what's necessary for reading the
2267                  * MOS in the label, return failure.
2268                  */
2269                 if (label == NULL || nvlist_lookup_nvlist(label,
2270                     ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2271                         nvlist_free(label);
2272                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2273                             ENXIO));
2274                 }
2275 
2276                 /*
2277                  * Update our in-core representation with the definitive values
2278                  * from the label.
2279                  */
2280                 nvlist_free(spa->spa_label_features);
2281                 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2282         }
2283 
2284         nvlist_free(label);
2285 
2286         /*
2287          * Look through entries in the label nvlist's features_for_read. If
2288          * there is a feature listed there which we don't understand then we
2289          * cannot open a pool.
2290          */
2291         if (ub->ub_version >= SPA_VERSION_FEATURES) {
2292                 nvlist_t *unsup_feat;
2293 
2294                 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2295                     0);
2296 
2297                 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2298                     NULL); nvp != NULL;
2299                     nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2300                         if (!zfeature_is_supported(nvpair_name(nvp))) {
2301                                 VERIFY(nvlist_add_string(unsup_feat,
2302                                     nvpair_name(nvp), "") == 0);
2303                         }
2304                 }
2305 
2306                 if (!nvlist_empty(unsup_feat)) {
2307                         VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2308                             ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2309                         nvlist_free(unsup_feat);
2310                         return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2311                             ENOTSUP));
2312                 }
2313 
2314                 nvlist_free(unsup_feat);
2315         }
2316 
2317         /*
2318          * If the vdev guid sum doesn't match the uberblock, we have an
2319          * incomplete configuration.  We first check to see if the pool
2320          * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2321          * If it is, defer the vdev_guid_sum check till later so we
2322          * can handle missing vdevs.
2323          */
2324         if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2325             &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2326             rvd->vdev_guid_sum != ub->ub_guid_sum)
2327                 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2328 
2329         if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2330                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2331                 spa_try_repair(spa, config);
2332                 spa_config_exit(spa, SCL_ALL, FTAG);
2333                 nvlist_free(spa->spa_config_splitting);
2334                 spa->spa_config_splitting = NULL;
2335         }
2336 
2337         /*
2338          * Initialize internal SPA structures.
2339          */
2340         spa->spa_state = POOL_STATE_ACTIVE;
2341         spa->spa_ubsync = spa->spa_uberblock;
2342         spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2343             TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2344         spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2345             spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2346         spa->spa_claim_max_txg = spa->spa_first_txg;
2347         spa->spa_prev_software_version = ub->ub_software_version;
2348 
2349         error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2350         if (error)
2351                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2352         spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2353 
2354         if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2355                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2356 
2357         if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2358                 boolean_t missing_feat_read = B_FALSE;
2359                 nvlist_t *unsup_feat, *enabled_feat;
2360 
2361                 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2362                     &spa->spa_feat_for_read_obj) != 0) {
2363                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2364                 }
2365 
2366                 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2367                     &spa->spa_feat_for_write_obj) != 0) {
2368                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2369                 }
2370 
2371                 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2372                     &spa->spa_feat_desc_obj) != 0) {
2373                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2374                 }
2375 
2376                 enabled_feat = fnvlist_alloc();
2377                 unsup_feat = fnvlist_alloc();
2378 
2379                 if (!spa_features_check(spa, B_FALSE,
2380                     unsup_feat, enabled_feat))
2381                         missing_feat_read = B_TRUE;
2382 
2383                 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2384                         if (!spa_features_check(spa, B_TRUE,
2385                             unsup_feat, enabled_feat)) {
2386                                 missing_feat_write = B_TRUE;
2387                         }
2388                 }
2389 
2390                 fnvlist_add_nvlist(spa->spa_load_info,
2391                     ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2392 
2393                 if (!nvlist_empty(unsup_feat)) {
2394                         fnvlist_add_nvlist(spa->spa_load_info,
2395                             ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2396                 }
2397 
2398                 fnvlist_free(enabled_feat);
2399                 fnvlist_free(unsup_feat);
2400 
2401                 if (!missing_feat_read) {
2402                         fnvlist_add_boolean(spa->spa_load_info,
2403                             ZPOOL_CONFIG_CAN_RDONLY);
2404                 }
2405 
2406                 /*
2407                  * If the state is SPA_LOAD_TRYIMPORT, our objective is
2408                  * twofold: to determine whether the pool is available for
2409                  * import in read-write mode and (if it is not) whether the
2410                  * pool is available for import in read-only mode. If the pool
2411                  * is available for import in read-write mode, it is displayed
2412                  * as available in userland; if it is not available for import
2413                  * in read-only mode, it is displayed as unavailable in
2414                  * userland. If the pool is available for import in read-only
2415                  * mode but not read-write mode, it is displayed as unavailable
2416                  * in userland with a special note that the pool is actually
2417                  * available for open in read-only mode.
2418                  *
2419                  * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2420                  * missing a feature for write, we must first determine whether
2421                  * the pool can be opened read-only before returning to
2422                  * userland in order to know whether to display the
2423                  * abovementioned note.
2424                  */
2425                 if (missing_feat_read || (missing_feat_write &&
2426                     spa_writeable(spa))) {
2427                         return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2428                             ENOTSUP));
2429                 }
2430 
2431                 /*
2432                  * Load refcounts for ZFS features from disk into an in-memory
2433                  * cache during SPA initialization.
2434                  */
2435                 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
2436                         uint64_t refcount;
2437 
2438                         error = feature_get_refcount_from_disk(spa,
2439                             &spa_feature_table[i], &refcount);
2440                         if (error == 0) {
2441                                 spa->spa_feat_refcount_cache[i] = refcount;
2442                         } else if (error == ENOTSUP) {
2443                                 spa->spa_feat_refcount_cache[i] =
2444                                     SPA_FEATURE_DISABLED;
2445                         } else {
2446                                 return (spa_vdev_err(rvd,
2447                                     VDEV_AUX_CORRUPT_DATA, EIO));
2448                         }
2449                 }
2450         }
2451 
2452         if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
2453                 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
2454                     &spa->spa_feat_enabled_txg_obj) != 0)
2455                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2456         }
2457 
2458         spa->spa_is_initializing = B_TRUE;
2459         error = dsl_pool_open(spa->spa_dsl_pool);
2460         spa->spa_is_initializing = B_FALSE;
2461         if (error != 0)
2462                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2463 
2464         if (!mosconfig) {
2465                 uint64_t hostid;
2466                 nvlist_t *policy = NULL, *nvconfig;
2467 
2468                 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2469                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2470 
2471                 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2472                     ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2473                         char *hostname;
2474                         unsigned long myhostid = 0;
2475 
2476                         VERIFY(nvlist_lookup_string(nvconfig,
2477                             ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2478 
2479 #ifdef  _KERNEL
2480                         myhostid = zone_get_hostid(NULL);
2481 #else   /* _KERNEL */
2482                         /*
2483                          * We're emulating the system's hostid in userland, so
2484                          * we can't use zone_get_hostid().
2485                          */
2486                         (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2487 #endif  /* _KERNEL */
2488                         if (hostid != 0 && myhostid != 0 &&
2489                             hostid != myhostid) {
2490                                 nvlist_free(nvconfig);
2491                                 cmn_err(CE_WARN, "pool '%s' could not be "
2492                                     "loaded as it was last accessed by "
2493                                     "another system (host: %s hostid: 0x%lx). "
2494                                     "See: http://illumos.org/msg/ZFS-8000-EY",
2495                                     spa_name(spa), hostname,
2496                                     (unsigned long)hostid);
2497                                 return (SET_ERROR(EBADF));
2498                         }
2499                 }
2500                 if (nvlist_lookup_nvlist(spa->spa_config,
2501                     ZPOOL_REWIND_POLICY, &policy) == 0)
2502                         VERIFY(nvlist_add_nvlist(nvconfig,
2503                             ZPOOL_REWIND_POLICY, policy) == 0);
2504 
2505                 spa_config_set(spa, nvconfig);
2506                 spa_unload(spa);
2507                 spa_deactivate(spa);
2508                 spa_activate(spa, orig_mode);
2509 
2510                 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2511         }
2512 
2513         if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2514                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2515         error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2516         if (error != 0)
2517                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2518 
2519         /*
2520          * Load the bit that tells us to use the new accounting function
2521          * (raid-z deflation).  If we have an older pool, this will not
2522          * be present.
2523          */
2524         error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2525         if (error != 0 && error != ENOENT)
2526                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2527 
2528         error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2529             &spa->spa_creation_version);
2530         if (error != 0 && error != ENOENT)
2531                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2532 
2533         /*
2534          * Load the persistent error log.  If we have an older pool, this will
2535          * not be present.
2536          */
2537         error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2538         if (error != 0 && error != ENOENT)
2539                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2540 
2541         error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2542             &spa->spa_errlog_scrub);
2543         if (error != 0 && error != ENOENT)
2544                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2545 
2546         /*
2547          * Load the history object.  If we have an older pool, this
2548          * will not be present.
2549          */
2550         error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2551         if (error != 0 && error != ENOENT)
2552                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2553 
2554         /*
2555          * If we're assembling the pool from the split-off vdevs of
2556          * an existing pool, we don't want to attach the spares & cache
2557          * devices.
2558          */
2559 
2560         /*
2561          * Load any hot spares for this pool.
2562          */
2563         error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2564         if (error != 0 && error != ENOENT)
2565                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2566         if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2567                 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2568                 if (load_nvlist(spa, spa->spa_spares.sav_object,
2569                     &spa->spa_spares.sav_config) != 0)
2570                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2571 
2572                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2573                 spa_load_spares(spa);
2574                 spa_config_exit(spa, SCL_ALL, FTAG);
2575         } else if (error == 0) {
2576                 spa->spa_spares.sav_sync = B_TRUE;
2577         }
2578 
2579         /*
2580          * Load any level 2 ARC devices for this pool.
2581          */
2582         error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2583             &spa->spa_l2cache.sav_object);
2584         if (error != 0 && error != ENOENT)
2585                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2586         if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2587                 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2588                 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2589                     &spa->spa_l2cache.sav_config) != 0)
2590                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2591 
2592                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2593                 spa_load_l2cache(spa);
2594                 spa_config_exit(spa, SCL_ALL, FTAG);
2595         } else if (error == 0) {
2596                 spa->spa_l2cache.sav_sync = B_TRUE;
2597         }
2598 
2599         spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2600 
2601         error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2602         if (error && error != ENOENT)
2603                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2604 
2605         if (error == 0) {
2606                 uint64_t autoreplace;
2607 
2608                 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2609                 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2610                 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2611                 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2612                 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2613                 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2614                     &spa->spa_dedup_ditto);
2615 
2616                 spa->spa_autoreplace = (autoreplace != 0);
2617         }
2618 
2619         /*
2620          * If the 'autoreplace' property is set, then post a resource notifying
2621          * the ZFS DE that it should not issue any faults for unopenable
2622          * devices.  We also iterate over the vdevs, and post a sysevent for any
2623          * unopenable vdevs so that the normal autoreplace handler can take
2624          * over.
2625          */
2626         if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2627                 spa_check_removed(spa->spa_root_vdev);
2628                 /*
2629                  * For the import case, this is done in spa_import(), because
2630                  * at this point we're using the spare definitions from
2631                  * the MOS config, not necessarily from the userland config.
2632                  */
2633                 if (state != SPA_LOAD_IMPORT) {
2634                         spa_aux_check_removed(&spa->spa_spares);
2635                         spa_aux_check_removed(&spa->spa_l2cache);
2636                 }
2637         }
2638 
2639         /*
2640          * Load the vdev state for all toplevel vdevs.
2641          */
2642         vdev_load(rvd);
2643 
2644         /*
2645          * Propagate the leaf DTLs we just loaded all the way up the tree.
2646          */
2647         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2648         vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2649         spa_config_exit(spa, SCL_ALL, FTAG);
2650 
2651         /*
2652          * Load the DDTs (dedup tables).
2653          */
2654         error = ddt_load(spa);
2655         if (error != 0)
2656                 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2657 
2658         spa_update_dspace(spa);
2659 
2660         /*
2661          * Validate the config, using the MOS config to fill in any
2662          * information which might be missing.  If we fail to validate
2663          * the config then declare the pool unfit for use. If we're
2664          * assembling a pool from a split, the log is not transferred
2665          * over.
2666          */
2667         if (type != SPA_IMPORT_ASSEMBLE) {
2668                 nvlist_t *nvconfig;
2669 
2670                 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2671                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2672 
2673                 if (!spa_config_valid(spa, nvconfig)) {
2674                         nvlist_free(nvconfig);
2675                         return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2676                             ENXIO));
2677                 }
2678                 nvlist_free(nvconfig);
2679 
2680                 /*
2681                  * Now that we've validated the config, check the state of the
2682                  * root vdev.  If it can't be opened, it indicates one or
2683                  * more toplevel vdevs are faulted.
2684                  */
2685                 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2686                         return (SET_ERROR(ENXIO));
2687 
2688                 if (spa_check_logs(spa)) {
2689                         *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2690                         return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2691                 }
2692         }
2693 
2694         if (missing_feat_write) {
2695                 ASSERT(state == SPA_LOAD_TRYIMPORT);
2696 
2697                 /*
2698                  * At this point, we know that we can open the pool in
2699                  * read-only mode but not read-write mode. We now have enough
2700                  * information and can return to userland.
2701                  */
2702                 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2703         }
2704 
2705         /*
2706          * We've successfully opened the pool, verify that we're ready
2707          * to start pushing transactions.
2708          */
2709         if (state != SPA_LOAD_TRYIMPORT) {
2710                 if (error = spa_load_verify(spa))
2711                         return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2712                             error));
2713         }
2714 
2715         if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2716             spa->spa_load_max_txg == UINT64_MAX)) {
2717                 dmu_tx_t *tx;
2718                 int need_update = B_FALSE;
2719                 dsl_pool_t *dp = spa_get_dsl(spa);
2720 
2721                 ASSERT(state != SPA_LOAD_TRYIMPORT);
2722 
2723                 /*
2724                  * Claim log blocks that haven't been committed yet.
2725                  * This must all happen in a single txg.
2726                  * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2727                  * invoked from zil_claim_log_block()'s i/o done callback.
2728                  * Price of rollback is that we abandon the log.
2729                  */
2730                 spa->spa_claiming = B_TRUE;
2731 
2732                 tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
2733                 (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2734                     zil_claim, tx, DS_FIND_CHILDREN);
2735                 dmu_tx_commit(tx);
2736 
2737                 spa->spa_claiming = B_FALSE;
2738 
2739                 spa_set_log_state(spa, SPA_LOG_GOOD);
2740                 spa->spa_sync_on = B_TRUE;
2741                 txg_sync_start(spa->spa_dsl_pool);
2742 
2743                 /*
2744                  * Wait for all claims to sync.  We sync up to the highest
2745                  * claimed log block birth time so that claimed log blocks
2746                  * don't appear to be from the future.  spa_claim_max_txg
2747                  * will have been set for us by either zil_check_log_chain()
2748                  * (invoked from spa_check_logs()) or zil_claim() above.
2749                  */
2750                 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2751 
2752                 /*
2753                  * If the config cache is stale, or we have uninitialized
2754                  * metaslabs (see spa_vdev_add()), then update the config.
2755                  *
2756                  * If this is a verbatim import, trust the current
2757                  * in-core spa_config and update the disk labels.
2758                  */
2759                 if (config_cache_txg != spa->spa_config_txg ||
2760                     state == SPA_LOAD_IMPORT ||
2761                     state == SPA_LOAD_RECOVER ||
2762                     (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2763                         need_update = B_TRUE;
2764 
2765                 for (int c = 0; c < rvd->vdev_children; c++)
2766                         if (rvd->vdev_child[c]->vdev_ms_array == 0)
2767                                 need_update = B_TRUE;
2768 
2769                 /*
2770                  * Update the config cache asychronously in case we're the
2771                  * root pool, in which case the config cache isn't writable yet.
2772                  */
2773                 if (need_update)
2774                         spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2775 
2776                 /*
2777                  * Check all DTLs to see if anything needs resilvering.
2778                  */
2779                 if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2780                     vdev_resilver_needed(rvd, NULL, NULL))
2781                         spa_async_request(spa, SPA_ASYNC_RESILVER);
2782 
2783                 /*
2784                  * Log the fact that we booted up (so that we can detect if
2785                  * we rebooted in the middle of an operation).
2786                  */
2787                 spa_history_log_version(spa, "open");
2788 
2789                 /*
2790                  * Delete any inconsistent datasets.
2791                  */
2792                 (void) dmu_objset_find(spa_name(spa),
2793                     dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2794 
2795                 /*
2796                  * Clean up any stale temporary dataset userrefs.
2797                  */
2798                 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2799         }
2800 
2801         return (0);
2802 }
2803 
2804 static int
2805 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2806 {
2807         int mode = spa->spa_mode;
2808 
2809         spa_unload(spa);
2810         spa_deactivate(spa);
2811 
2812         spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
2813 
2814         spa_activate(spa, mode);
2815         spa_async_suspend(spa);
2816 
2817         return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2818 }
2819 
2820 /*
2821  * If spa_load() fails this function will try loading prior txg's. If
2822  * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2823  * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2824  * function will not rewind the pool and will return the same error as
2825  * spa_load().
2826  */
2827 static int
2828 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2829     uint64_t max_request, int rewind_flags)
2830 {
2831         nvlist_t *loadinfo = NULL;
2832         nvlist_t *config = NULL;
2833         int load_error, rewind_error;
2834         uint64_t safe_rewind_txg;
2835         uint64_t min_txg;
2836 
2837         if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2838                 spa->spa_load_max_txg = spa->spa_load_txg;
2839                 spa_set_log_state(spa, SPA_LOG_CLEAR);
2840         } else {
2841                 spa->spa_load_max_txg = max_request;
2842                 if (max_request != UINT64_MAX)
2843                         spa->spa_extreme_rewind = B_TRUE;
2844         }
2845 
2846         load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2847             mosconfig);
2848         if (load_error == 0)
2849                 return (0);
2850 
2851         if (spa->spa_root_vdev != NULL)
2852                 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2853 
2854         spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2855         spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2856 
2857         if (rewind_flags & ZPOOL_NEVER_REWIND) {
2858                 nvlist_free(config);
2859                 return (load_error);
2860         }
2861 
2862         if (state == SPA_LOAD_RECOVER) {
2863                 /* Price of rolling back is discarding txgs, including log */
2864                 spa_set_log_state(spa, SPA_LOG_CLEAR);
2865         } else {
2866                 /*
2867                  * If we aren't rolling back save the load info from our first
2868                  * import attempt so that we can restore it after attempting
2869                  * to rewind.
2870                  */
2871                 loadinfo = spa->spa_load_info;
2872                 spa->spa_load_info = fnvlist_alloc();
2873         }
2874 
2875         spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2876         safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2877         min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2878             TXG_INITIAL : safe_rewind_txg;
2879 
2880         /*
2881          * Continue as long as we're finding errors, we're still within
2882          * the acceptable rewind range, and we're still finding uberblocks
2883          */
2884         while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2885             spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2886                 if (spa->spa_load_max_txg < safe_rewind_txg)
2887                         spa->spa_extreme_rewind = B_TRUE;
2888                 rewind_error = spa_load_retry(spa, state, mosconfig);
2889         }
2890 
2891         spa->spa_extreme_rewind = B_FALSE;
2892         spa->spa_load_max_txg = UINT64_MAX;
2893 
2894         if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2895                 spa_config_set(spa, config);
2896 
2897         if (state == SPA_LOAD_RECOVER) {
2898                 ASSERT3P(loadinfo, ==, NULL);
2899                 return (rewind_error);
2900         } else {
2901                 /* Store the rewind info as part of the initial load info */
2902                 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2903                     spa->spa_load_info);
2904 
2905                 /* Restore the initial load info */
2906                 fnvlist_free(spa->spa_load_info);
2907                 spa->spa_load_info = loadinfo;
2908 
2909                 return (load_error);
2910         }
2911 }
2912 
2913 /*
2914  * Pool Open/Import
2915  *
2916  * The import case is identical to an open except that the configuration is sent
2917  * down from userland, instead of grabbed from the configuration cache.  For the
2918  * case of an open, the pool configuration will exist in the
2919  * POOL_STATE_UNINITIALIZED state.
2920  *
2921  * The stats information (gen/count/ustats) is used to gather vdev statistics at
2922  * the same time open the pool, without having to keep around the spa_t in some
2923  * ambiguous state.
2924  */
2925 static int
2926 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2927     nvlist_t **config)
2928 {
2929         spa_t *spa;
2930         spa_load_state_t state = SPA_LOAD_OPEN;
2931         int error;
2932         int locked = B_FALSE;
2933 
2934         *spapp = NULL;
2935 
2936         /*
2937          * As disgusting as this is, we need to support recursive calls to this
2938          * function because dsl_dir_open() is called during spa_load(), and ends
2939          * up calling spa_open() again.  The real fix is to figure out how to
2940          * avoid dsl_dir_open() calling this in the first place.
2941          */
2942         if (mutex_owner(&spa_namespace_lock) != curthread) {
2943                 mutex_enter(&spa_namespace_lock);
2944                 locked = B_TRUE;
2945         }
2946 
2947         if ((spa = spa_lookup(pool)) == NULL) {
2948                 if (locked)
2949                         mutex_exit(&spa_namespace_lock);
2950                 return (SET_ERROR(ENOENT));
2951         }
2952 
2953         if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2954                 zpool_rewind_policy_t policy;
2955 
2956                 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2957                     &policy);
2958                 if (policy.zrp_request & ZPOOL_DO_REWIND)
2959                         state = SPA_LOAD_RECOVER;
2960 
2961                 spa_activate(spa, spa_mode_global);
2962 
2963                 if (state != SPA_LOAD_RECOVER)
2964                         spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2965 
2966                 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2967                     policy.zrp_request);
2968 
2969                 if (error == EBADF) {
2970                         /*
2971                          * If vdev_validate() returns failure (indicated by
2972                          * EBADF), it indicates that one of the vdevs indicates
2973                          * that the pool has been exported or destroyed.  If
2974                          * this is the case, the config cache is out of sync and
2975                          * we should remove the pool from the namespace.
2976                          */
2977                         spa_unload(spa);
2978                         spa_deactivate(spa);
2979                         spa_config_sync(spa, B_TRUE, B_TRUE);
2980                         spa_remove(spa);
2981                         if (locked)
2982                                 mutex_exit(&spa_namespace_lock);
2983                         return (SET_ERROR(ENOENT));
2984                 }
2985 
2986                 if (error) {
2987                         /*
2988                          * We can't open the pool, but we still have useful
2989                          * information: the state of each vdev after the
2990                          * attempted vdev_open().  Return this to the user.
2991                          */
2992                         if (config != NULL && spa->spa_config) {
2993                                 VERIFY(nvlist_dup(spa->spa_config, config,
2994                                     KM_SLEEP) == 0);
2995                                 VERIFY(nvlist_add_nvlist(*config,
2996                                     ZPOOL_CONFIG_LOAD_INFO,
2997                                     spa->spa_load_info) == 0);
2998                         }
2999                         spa_unload(spa);
3000                         spa_deactivate(spa);
3001                         spa->spa_last_open_failed = error;
3002                         if (locked)
3003                                 mutex_exit(&spa_namespace_lock);
3004                         *spapp = NULL;
3005                         return (error);
3006                 }
3007         }
3008 
3009         spa_open_ref(spa, tag);
3010 
3011         if (config != NULL)
3012                 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3013 
3014         /*
3015          * If we've recovered the pool, pass back any information we
3016          * gathered while doing the load.
3017          */
3018         if (state == SPA_LOAD_RECOVER) {
3019                 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
3020                     spa->spa_load_info) == 0);
3021         }
3022 
3023         if (locked) {
3024                 spa->spa_last_open_failed = 0;
3025                 spa->spa_last_ubsync_txg = 0;
3026                 spa->spa_load_txg = 0;
3027                 mutex_exit(&spa_namespace_lock);
3028         }
3029 
3030         *spapp = spa;
3031 
3032         return (0);
3033 }
3034 
3035 int
3036 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
3037     nvlist_t **config)
3038 {
3039         return (spa_open_common(name, spapp, tag, policy, config));
3040 }
3041 
3042 int
3043 spa_open(const char *name, spa_t **spapp, void *tag)
3044 {
3045         return (spa_open_common(name, spapp, tag, NULL, NULL));
3046 }
3047 
3048 /*
3049  * Lookup the given spa_t, incrementing the inject count in the process,
3050  * preventing it from being exported or destroyed.
3051  */
3052 spa_t *
3053 spa_inject_addref(char *name)
3054 {
3055         spa_t *spa;
3056 
3057         mutex_enter(&spa_namespace_lock);
3058         if ((spa = spa_lookup(name)) == NULL) {
3059                 mutex_exit(&spa_namespace_lock);
3060                 return (NULL);
3061         }
3062         spa->spa_inject_ref++;
3063         mutex_exit(&spa_namespace_lock);
3064 
3065         return (spa);
3066 }
3067 
3068 void
3069 spa_inject_delref(spa_t *spa)
3070 {
3071         mutex_enter(&spa_namespace_lock);
3072         spa->spa_inject_ref--;
3073         mutex_exit(&spa_namespace_lock);
3074 }
3075 
3076 /*
3077  * Add spares device information to the nvlist.
3078  */
3079 static void
3080 spa_add_spares(spa_t *spa, nvlist_t *config)
3081 {
3082         nvlist_t **spares;
3083         uint_t i, nspares;
3084         nvlist_t *nvroot;
3085         uint64_t guid;
3086         vdev_stat_t *vs;
3087         uint_t vsc;
3088         uint64_t pool;
3089 
3090         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3091 
3092         if (spa->spa_spares.sav_count == 0)
3093                 return;
3094 
3095         VERIFY(nvlist_lookup_nvlist(config,
3096             ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3097         VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3098             ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3099         if (nspares != 0) {
3100                 VERIFY(nvlist_add_nvlist_array(nvroot,
3101                     ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3102                 VERIFY(nvlist_lookup_nvlist_array(nvroot,
3103                     ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3104 
3105                 /*
3106                  * Go through and find any spares which have since been
3107                  * repurposed as an active spare.  If this is the case, update
3108                  * their status appropriately.
3109                  */
3110                 for (i = 0; i < nspares; i++) {
3111                         VERIFY(nvlist_lookup_uint64(spares[i],
3112                             ZPOOL_CONFIG_GUID, &guid) == 0);
3113                         if (spa_spare_exists(guid, &pool, NULL) &&
3114                             pool != 0ULL) {
3115                                 VERIFY(nvlist_lookup_uint64_array(
3116                                     spares[i], ZPOOL_CONFIG_VDEV_STATS,
3117                                     (uint64_t **)&vs, &vsc) == 0);
3118                                 vs->vs_state = VDEV_STATE_CANT_OPEN;
3119                                 vs->vs_aux = VDEV_AUX_SPARED;
3120                         }
3121                 }
3122         }
3123 }
3124 
3125 /*
3126  * Add l2cache device information to the nvlist, including vdev stats.
3127  */
3128 static void
3129 spa_add_l2cache(spa_t *spa, nvlist_t *config)
3130 {
3131         nvlist_t **l2cache;
3132         uint_t i, j, nl2cache;
3133         nvlist_t *nvroot;
3134         uint64_t guid;
3135         vdev_t *vd;
3136         vdev_stat_t *vs;
3137         uint_t vsc;
3138 
3139         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3140 
3141         if (spa->spa_l2cache.sav_count == 0)
3142                 return;
3143 
3144         VERIFY(nvlist_lookup_nvlist(config,
3145             ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3146         VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3147             ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3148         if (nl2cache != 0) {
3149                 VERIFY(nvlist_add_nvlist_array(nvroot,
3150                     ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3151                 VERIFY(nvlist_lookup_nvlist_array(nvroot,
3152                     ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3153 
3154                 /*
3155                  * Update level 2 cache device stats.
3156                  */
3157 
3158                 for (i = 0; i < nl2cache; i++) {
3159                         VERIFY(nvlist_lookup_uint64(l2cache[i],
3160                             ZPOOL_CONFIG_GUID, &guid) == 0);
3161 
3162                         vd = NULL;
3163                         for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3164                                 if (guid ==
3165                                     spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3166                                         vd = spa->spa_l2cache.sav_vdevs[j];
3167                                         break;
3168                                 }
3169                         }
3170                         ASSERT(vd != NULL);
3171 
3172                         VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3173                             ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3174                             == 0);
3175                         vdev_get_stats(vd, vs);
3176                 }
3177         }
3178 }
3179 
3180 static void
3181 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3182 {
3183         nvlist_t *features;
3184         zap_cursor_t zc;
3185         zap_attribute_t za;
3186 
3187         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3188         VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3189 
3190         if (spa->spa_feat_for_read_obj != 0) {
3191                 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3192                     spa->spa_feat_for_read_obj);
3193                     zap_cursor_retrieve(&zc, &za) == 0;
3194                     zap_cursor_advance(&zc)) {
3195                         ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3196                             za.za_num_integers == 1);
3197                         VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3198                             za.za_first_integer));
3199                 }
3200                 zap_cursor_fini(&zc);
3201         }
3202 
3203         if (spa->spa_feat_for_write_obj != 0) {
3204                 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3205                     spa->spa_feat_for_write_obj);
3206                     zap_cursor_retrieve(&zc, &za) == 0;
3207                     zap_cursor_advance(&zc)) {
3208                         ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3209                             za.za_num_integers == 1);
3210                         VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3211                             za.za_first_integer));
3212                 }
3213                 zap_cursor_fini(&zc);
3214         }
3215 
3216         VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3217             features) == 0);
3218         nvlist_free(features);
3219 }
3220 
3221 int
3222 spa_get_stats(const char *name, nvlist_t **config,
3223     char *altroot, size_t buflen)
3224 {
3225         int error;
3226         spa_t *spa;
3227 
3228         *config = NULL;
3229         error = spa_open_common(name, &spa, FTAG, NULL, config);
3230 
3231         if (spa != NULL) {
3232                 /*
3233                  * This still leaves a window of inconsistency where the spares
3234                  * or l2cache devices could change and the config would be
3235                  * self-inconsistent.
3236                  */
3237                 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3238 
3239                 if (*config != NULL) {
3240                         uint64_t loadtimes[2];
3241 
3242                         loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3243                         loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3244                         VERIFY(nvlist_add_uint64_array(*config,
3245                             ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3246 
3247                         VERIFY(nvlist_add_uint64(*config,
3248                             ZPOOL_CONFIG_ERRCOUNT,
3249                             spa_get_errlog_size(spa)) == 0);
3250 
3251                         if (spa_suspended(spa))
3252                                 VERIFY(nvlist_add_uint64(*config,
3253                                     ZPOOL_CONFIG_SUSPENDED,
3254                                     spa->spa_failmode) == 0);
3255 
3256                         spa_add_spares(spa, *config);
3257                         spa_add_l2cache(spa, *config);
3258                         spa_add_feature_stats(spa, *config);
3259                 }
3260         }
3261 
3262         /*
3263          * We want to get the alternate root even for faulted pools, so we cheat
3264          * and call spa_lookup() directly.
3265          */
3266         if (altroot) {
3267                 if (spa == NULL) {
3268                         mutex_enter(&spa_namespace_lock);
3269                         spa = spa_lookup(name);
3270                         if (spa)
3271                                 spa_altroot(spa, altroot, buflen);
3272                         else
3273                                 altroot[0] = '\0';
3274                         spa = NULL;
3275                         mutex_exit(&spa_namespace_lock);
3276                 } else {
3277                         spa_altroot(spa, altroot, buflen);
3278                 }
3279         }
3280 
3281         if (spa != NULL) {
3282                 spa_config_exit(spa, SCL_CONFIG, FTAG);
3283                 spa_close(spa, FTAG);
3284         }
3285 
3286         return (error);
3287 }
3288 
3289 /*
3290  * Validate that the auxiliary device array is well formed.  We must have an
3291  * array of nvlists, each which describes a valid leaf vdev.  If this is an
3292  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3293  * specified, as long as they are well-formed.
3294  */
3295 static int
3296 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3297     spa_aux_vdev_t *sav, const char *config, uint64_t version,
3298     vdev_labeltype_t label)
3299 {
3300         nvlist_t **dev;
3301         uint_t i, ndev;
3302         vdev_t *vd;
3303         int error;
3304 
3305         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3306 
3307         /*
3308          * It's acceptable to have no devs specified.
3309          */
3310         if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3311                 return (0);
3312 
3313         if (ndev == 0)
3314                 return (SET_ERROR(EINVAL));
3315 
3316         /*
3317          * Make sure the pool is formatted with a version that supports this
3318          * device type.
3319          */
3320         if (spa_version(spa) < version)
3321                 return (SET_ERROR(ENOTSUP));
3322 
3323         /*
3324          * Set the pending device list so we correctly handle device in-use
3325          * checking.
3326          */
3327         sav->sav_pending = dev;
3328         sav->sav_npending = ndev;
3329 
3330         for (i = 0; i < ndev; i++) {
3331                 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3332                     mode)) != 0)
3333                         goto out;
3334 
3335                 if (!vd->vdev_ops->vdev_op_leaf) {
3336                         vdev_free(vd);
3337                         error = SET_ERROR(EINVAL);
3338                         goto out;
3339                 }
3340 
3341                 /*
3342                  * The L2ARC currently only supports disk devices in
3343                  * kernel context.  For user-level testing, we allow it.
3344                  */
3345 #ifdef _KERNEL
3346                 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3347                     strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3348                         error = SET_ERROR(ENOTBLK);
3349                         vdev_free(vd);
3350                         goto out;
3351                 }
3352 #endif
3353                 vd->vdev_top = vd;
3354 
3355                 if ((error = vdev_open(vd)) == 0 &&
3356                     (error = vdev_label_init(vd, crtxg, label)) == 0) {
3357                         VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3358                             vd->vdev_guid) == 0);
3359                 }
3360 
3361                 vdev_free(vd);
3362 
3363                 if (error &&
3364                     (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3365                         goto out;
3366                 else
3367                         error = 0;
3368         }
3369 
3370 out:
3371         sav->sav_pending = NULL;
3372         sav->sav_npending = 0;
3373         return (error);
3374 }
3375 
3376 static int
3377 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3378 {
3379         int error;
3380 
3381         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3382 
3383         if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3384             &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3385             VDEV_LABEL_SPARE)) != 0) {
3386                 return (error);
3387         }
3388 
3389         return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3390             &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3391             VDEV_LABEL_L2CACHE));
3392 }
3393 
3394 static void
3395 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3396     const char *config)
3397 {
3398         int i;
3399 
3400         if (sav->sav_config != NULL) {
3401                 nvlist_t **olddevs;
3402                 uint_t oldndevs;
3403                 nvlist_t **newdevs;
3404 
3405                 /*
3406                  * Generate new dev list by concatentating with the
3407                  * current dev list.
3408                  */
3409                 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3410                     &olddevs, &oldndevs) == 0);
3411 
3412                 newdevs = kmem_alloc(sizeof (void *) *
3413                     (ndevs + oldndevs), KM_SLEEP);
3414                 for (i = 0; i < oldndevs; i++)
3415                         VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3416                             KM_SLEEP) == 0);
3417                 for (i = 0; i < ndevs; i++)
3418                         VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3419                             KM_SLEEP) == 0);
3420 
3421                 VERIFY(nvlist_remove(sav->sav_config, config,
3422                     DATA_TYPE_NVLIST_ARRAY) == 0);
3423 
3424                 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3425                     config, newdevs, ndevs + oldndevs) == 0);
3426                 for (i = 0; i < oldndevs + ndevs; i++)
3427                         nvlist_free(newdevs[i]);
3428                 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3429         } else {
3430                 /*
3431                  * Generate a new dev list.
3432                  */
3433                 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3434                     KM_SLEEP) == 0);
3435                 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3436                     devs, ndevs) == 0);
3437         }
3438 }
3439 
3440 /*
3441  * Stop and drop level 2 ARC devices
3442  */
3443 void
3444 spa_l2cache_drop(spa_t *spa)
3445 {
3446         vdev_t *vd;
3447         int i;
3448         spa_aux_vdev_t *sav = &spa->spa_l2cache;
3449 
3450         for (i = 0; i < sav->sav_count; i++) {
3451                 uint64_t pool;
3452 
3453                 vd = sav->sav_vdevs[i];
3454                 ASSERT(vd != NULL);
3455 
3456                 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3457                     pool != 0ULL && l2arc_vdev_present(vd))
3458                         l2arc_remove_vdev(vd);
3459         }
3460 }
3461 
3462 /*
3463  * Pool Creation
3464  */
3465 int
3466 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3467     nvlist_t *zplprops)
3468 {
3469         spa_t *spa;
3470         char *altroot = NULL;
3471         vdev_t *rvd;
3472         dsl_pool_t *dp;
3473         dmu_tx_t *tx;
3474         int error = 0;
3475         uint64_t txg = TXG_INITIAL;
3476         nvlist_t **spares, **l2cache;
3477         uint_t nspares, nl2cache;
3478         uint64_t version, obj;
3479         boolean_t has_features;
3480 
3481         /*
3482          * If this pool already exists, return failure.
3483          */
3484         mutex_enter(&spa_namespace_lock);
3485         if (spa_lookup(pool) != NULL) {
3486                 mutex_exit(&spa_namespace_lock);
3487                 return (SET_ERROR(EEXIST));
3488         }
3489 
3490         /*
3491          * Allocate a new spa_t structure.
3492          */
3493         (void) nvlist_lookup_string(props,
3494             zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3495         spa = spa_add(pool, NULL, altroot);
3496         spa_activate(spa, spa_mode_global);
3497 
3498         if (props && (error = spa_prop_validate(spa, props))) {
3499                 spa_deactivate(spa);
3500                 spa_remove(spa);
3501                 mutex_exit(&spa_namespace_lock);
3502                 return (error);
3503         }
3504 
3505         has_features = B_FALSE;
3506         for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3507             elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3508                 if (zpool_prop_feature(nvpair_name(elem)))
3509                         has_features = B_TRUE;
3510         }
3511 
3512         if (has_features || nvlist_lookup_uint64(props,
3513             zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3514                 version = SPA_VERSION;
3515         }
3516         ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3517 
3518         spa->spa_first_txg = txg;
3519         spa->spa_uberblock.ub_txg = txg - 1;
3520         spa->spa_uberblock.ub_version = version;
3521         spa->spa_ubsync = spa->spa_uberblock;
3522 
3523         /*
3524          * Create "The Godfather" zio to hold all async IOs
3525          */
3526         spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3527             KM_SLEEP);
3528         for (int i = 0; i < max_ncpus; i++) {
3529                 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3530                     ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3531                     ZIO_FLAG_GODFATHER);
3532         }
3533 
3534         /*
3535          * Create the root vdev.
3536          */
3537         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3538 
3539         error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3540 
3541         ASSERT(error != 0 || rvd != NULL);
3542         ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3543 
3544         if (error == 0 && !zfs_allocatable_devs(nvroot))
3545                 error = SET_ERROR(EINVAL);
3546 
3547         if (error == 0 &&
3548             (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3549             (error = spa_validate_aux(spa, nvroot, txg,
3550             VDEV_ALLOC_ADD)) == 0) {
3551                 for (int c = 0; c < rvd->vdev_children; c++) {
3552                         vdev_metaslab_set_size(rvd->vdev_child[c]);
3553                         vdev_expand(rvd->vdev_child[c], txg);
3554                 }
3555         }
3556 
3557         spa_config_exit(spa, SCL_ALL, FTAG);
3558 
3559         if (error != 0) {
3560                 spa_unload(spa);
3561                 spa_deactivate(spa);
3562                 spa_remove(spa);
3563                 mutex_exit(&spa_namespace_lock);
3564                 return (error);
3565         }
3566 
3567         /*
3568          * Get the list of spares, if specified.
3569          */
3570         if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3571             &spares, &nspares) == 0) {
3572                 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3573                     KM_SLEEP) == 0);
3574                 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3575                     ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3576                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3577                 spa_load_spares(spa);
3578                 spa_config_exit(spa, SCL_ALL, FTAG);
3579                 spa->spa_spares.sav_sync = B_TRUE;
3580         }
3581 
3582         /*
3583          * Get the list of level 2 cache devices, if specified.
3584          */
3585         if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3586             &l2cache, &nl2cache) == 0) {
3587                 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3588                     NV_UNIQUE_NAME, KM_SLEEP) == 0);
3589                 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3590                     ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3591                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3592                 spa_load_l2cache(spa);
3593                 spa_config_exit(spa, SCL_ALL, FTAG);
3594                 spa->spa_l2cache.sav_sync = B_TRUE;
3595         }
3596 
3597         spa->spa_is_initializing = B_TRUE;
3598         spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3599         spa->spa_meta_objset = dp->dp_meta_objset;
3600         spa->spa_is_initializing = B_FALSE;
3601 
3602         /*
3603          * Create DDTs (dedup tables).
3604          */
3605         ddt_create(spa);
3606 
3607         spa_update_dspace(spa);
3608 
3609         tx = dmu_tx_create_assigned(dp, txg);
3610 
3611         /*
3612          * Create the pool config object.
3613          */
3614         spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3615             DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3616             DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3617 
3618         if (zap_add(spa->spa_meta_objset,
3619             DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3620             sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3621                 cmn_err(CE_PANIC, "failed to add pool config");
3622         }
3623 
3624         if (spa_version(spa) >= SPA_VERSION_FEATURES)
3625                 spa_feature_create_zap_objects(spa, tx);
3626 
3627         if (zap_add(spa->spa_meta_objset,
3628             DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3629             sizeof (uint64_t), 1, &version, tx) != 0) {
3630                 cmn_err(CE_PANIC, "failed to add pool version");
3631         }
3632 
3633         /* Newly created pools with the right version are always deflated. */
3634         if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3635                 spa->spa_deflate = TRUE;
3636                 if (zap_add(spa->spa_meta_objset,
3637                     DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3638                     sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3639                         cmn_err(CE_PANIC, "failed to add deflate");
3640                 }
3641         }
3642 
3643         /*
3644          * Create the deferred-free bpobj.  Turn off compression
3645          * because sync-to-convergence takes longer if the blocksize
3646          * keeps changing.
3647          */
3648         obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3649         dmu_object_set_compress(spa->spa_meta_objset, obj,
3650             ZIO_COMPRESS_OFF, tx);
3651         if (zap_add(spa->spa_meta_objset,
3652             DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3653             sizeof (uint64_t), 1, &obj, tx) != 0) {
3654                 cmn_err(CE_PANIC, "failed to add bpobj");
3655         }
3656         VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3657             spa->spa_meta_objset, obj));
3658 
3659         /*
3660          * Create the pool's history object.
3661          */
3662         if (version >= SPA_VERSION_ZPOOL_HISTORY)
3663                 spa_history_create_obj(spa, tx);
3664 
3665         /*
3666          * Set pool properties.
3667          */
3668         spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3669         spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3670         spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3671         spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3672 
3673         if (props != NULL) {
3674                 spa_configfile_set(spa, props, B_FALSE);
3675                 spa_sync_props(props, tx);
3676         }
3677 
3678         dmu_tx_commit(tx);
3679 
3680         spa->spa_sync_on = B_TRUE;
3681         txg_sync_start(spa->spa_dsl_pool);
3682 
3683         /*
3684          * We explicitly wait for the first transaction to complete so that our
3685          * bean counters are appropriately updated.
3686          */
3687         txg_wait_synced(spa->spa_dsl_pool, txg);
3688 
3689         spa_config_sync(spa, B_FALSE, B_TRUE);
3690 
3691         spa_history_log_version(spa, "create");
3692 
3693         /*
3694          * Don't count references from objsets that are already closed
3695          * and are making their way through the eviction process.
3696          */
3697         spa_evicting_os_wait(spa);
3698         spa->spa_minref = refcount_count(&spa->spa_refcount);
3699 
3700         mutex_exit(&spa_namespace_lock);
3701 
3702         return (0);
3703 }
3704 
3705 #ifdef _KERNEL
3706 /*
3707  * Get the root pool information from the root disk, then import the root pool
3708  * during the system boot up time.
3709  */
3710 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3711 
3712 static nvlist_t *
3713 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3714 {
3715         nvlist_t *config;
3716         nvlist_t *nvtop, *nvroot;
3717         uint64_t pgid;
3718 
3719         if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3720                 return (NULL);
3721 
3722         /*
3723          * Add this top-level vdev to the child array.
3724          */
3725         VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3726             &nvtop) == 0);
3727         VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3728             &pgid) == 0);
3729         VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3730 
3731         /*
3732          * Put this pool's top-level vdevs into a root vdev.
3733          */
3734         VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3735         VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3736             VDEV_TYPE_ROOT) == 0);
3737         VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3738         VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3739         VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3740             &nvtop, 1) == 0);
3741 
3742         /*
3743          * Replace the existing vdev_tree with the new root vdev in
3744          * this pool's configuration (remove the old, add the new).
3745          */
3746         VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3747         nvlist_free(nvroot);
3748         return (config);
3749 }
3750 
3751 /*
3752  * Walk the vdev tree and see if we can find a device with "better"
3753  * configuration. A configuration is "better" if the label on that
3754  * device has a more recent txg.
3755  */
3756 static void
3757 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3758 {
3759         for (int c = 0; c < vd->vdev_children; c++)
3760                 spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3761 
3762         if (vd->vdev_ops->vdev_op_leaf) {
3763                 nvlist_t *label;
3764                 uint64_t label_txg;
3765 
3766                 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3767                     &label) != 0)
3768                         return;
3769 
3770                 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3771                     &label_txg) == 0);
3772 
3773                 /*
3774                  * Do we have a better boot device?
3775                  */
3776                 if (label_txg > *txg) {
3777                         *txg = label_txg;
3778                         *avd = vd;
3779                 }
3780                 nvlist_free(label);
3781         }
3782 }
3783 
3784 /*
3785  * Import a root pool.
3786  *
3787  * For x86. devpath_list will consist of devid and/or physpath name of
3788  * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3789  * The GRUB "findroot" command will return the vdev we should boot.
3790  *
3791  * For Sparc, devpath_list consists the physpath name of the booting device
3792  * no matter the rootpool is a single device pool or a mirrored pool.
3793  * e.g.
3794  *      "/pci@1f,0/ide@d/disk@0,0:a"
3795  */
3796 int
3797 spa_import_rootpool(char *devpath, char *devid)
3798 {
3799         spa_t *spa;
3800         vdev_t *rvd, *bvd, *avd = NULL;
3801         nvlist_t *config, *nvtop;
3802         uint64_t guid, txg;
3803         char *pname;
3804         int error;
3805 
3806         /*
3807          * Read the label from the boot device and generate a configuration.
3808          */
3809         config = spa_generate_rootconf(devpath, devid, &guid);
3810 #if defined(_OBP) && defined(_KERNEL)
3811         if (config == NULL) {
3812                 if (strstr(devpath, "/iscsi/ssd") != NULL) {
3813                         /* iscsi boot */
3814                         get_iscsi_bootpath_phy(devpath);
3815                         config = spa_generate_rootconf(devpath, devid, &guid);
3816                 }
3817         }
3818 #endif
3819         if (config == NULL) {
3820                 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3821                     devpath);
3822                 return (SET_ERROR(EIO));
3823         }
3824 
3825         VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3826             &pname) == 0);
3827         VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3828 
3829         mutex_enter(&spa_namespace_lock);
3830         if ((spa = spa_lookup(pname)) != NULL) {
3831                 /*
3832                  * Remove the existing root pool from the namespace so that we
3833                  * can replace it with the correct config we just read in.
3834                  */
3835                 spa_remove(spa);
3836         }
3837 
3838         spa = spa_add(pname, config, NULL);
3839         spa->spa_is_root = B_TRUE;
3840         spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3841 
3842         /*
3843          * Build up a vdev tree based on the boot device's label config.
3844          */
3845         VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3846             &nvtop) == 0);
3847         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3848         error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3849             VDEV_ALLOC_ROOTPOOL);
3850         spa_config_exit(spa, SCL_ALL, FTAG);
3851         if (error) {
3852                 mutex_exit(&spa_namespace_lock);
3853                 nvlist_free(config);
3854                 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3855                     pname);
3856                 return (error);
3857         }
3858 
3859         /*
3860          * Get the boot vdev.
3861          */
3862         if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3863                 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3864                     (u_longlong_t)guid);
3865                 error = SET_ERROR(ENOENT);
3866                 goto out;
3867         }
3868 
3869         /*
3870          * Determine if there is a better boot device.
3871          */
3872         avd = bvd;
3873         spa_alt_rootvdev(rvd, &avd, &txg);
3874         if (avd != bvd) {
3875                 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3876                     "try booting from '%s'", avd->vdev_path);
3877                 error = SET_ERROR(EINVAL);
3878                 goto out;
3879         }
3880 
3881         /*
3882          * If the boot device is part of a spare vdev then ensure that
3883          * we're booting off the active spare.
3884          */
3885         if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3886             !bvd->vdev_isspare) {
3887                 cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3888                     "try booting from '%s'",
3889                     bvd->vdev_parent->
3890                     vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3891                 error = SET_ERROR(EINVAL);
3892                 goto out;
3893         }
3894 
3895         error = 0;
3896 out:
3897         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3898         vdev_free(rvd);
3899         spa_config_exit(spa, SCL_ALL, FTAG);
3900         mutex_exit(&spa_namespace_lock);
3901 
3902         nvlist_free(config);
3903         return (error);
3904 }
3905 
3906 #endif
3907 
3908 /*
3909  * Import a non-root pool into the system.
3910  */
3911 int
3912 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
3913 {
3914         spa_t *spa;
3915         char *altroot = NULL;
3916         spa_load_state_t state = SPA_LOAD_IMPORT;
3917         zpool_rewind_policy_t policy;
3918         uint64_t mode = spa_mode_global;
3919         uint64_t readonly = B_FALSE;
3920         int error;
3921         nvlist_t *nvroot;
3922         nvlist_t **spares, **l2cache;
3923         uint_t nspares, nl2cache;
3924 
3925         /*
3926          * If a pool with this name exists, return failure.
3927          */
3928         mutex_enter(&spa_namespace_lock);
3929         if (spa_lookup(pool) != NULL) {
3930                 mutex_exit(&spa_namespace_lock);
3931                 return (SET_ERROR(EEXIST));
3932         }
3933 
3934         /*
3935          * Create and initialize the spa structure.
3936          */
3937         (void) nvlist_lookup_string(props,
3938             zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3939         (void) nvlist_lookup_uint64(props,
3940             zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
3941         if (readonly)
3942                 mode = FREAD;
3943         spa = spa_add(pool, config, altroot);
3944         spa->spa_import_flags = flags;
3945 
3946         /*
3947          * Verbatim import - Take a pool and insert it into the namespace
3948          * as if it had been loaded at boot.
3949          */
3950         if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
3951                 if (props != NULL)
3952                         spa_configfile_set(spa, props, B_FALSE);
3953 
3954                 spa_config_sync(spa, B_FALSE, B_TRUE);
3955 
3956                 mutex_exit(&spa_namespace_lock);
3957                 return (0);
3958         }
3959 
3960         spa_activate(spa, mode);
3961 
3962         /*
3963          * Don't start async tasks until we know everything is healthy.
3964          */
3965         spa_async_suspend(spa);
3966 
3967         zpool_get_rewind_policy(config, &policy);
3968         if (policy.zrp_request & ZPOOL_DO_REWIND)
3969                 state = SPA_LOAD_RECOVER;
3970 
3971         /*
3972          * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
3973          * because the user-supplied config is actually the one to trust when
3974          * doing an import.
3975          */
3976         if (state != SPA_LOAD_RECOVER)
3977                 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3978 
3979         error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
3980             policy.zrp_request);
3981 
3982         /*
3983          * Propagate anything learned while loading the pool and pass it
3984          * back to caller (i.e. rewind info, missing devices, etc).
3985          */
3986         VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
3987             spa->spa_load_info) == 0);
3988 
3989         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3990         /*
3991          * Toss any existing sparelist, as it doesn't have any validity
3992          * anymore, and conflicts with spa_has_spare().
3993          */
3994         if (spa->spa_spares.sav_config) {
3995                 nvlist_free(spa->spa_spares.sav_config);
3996                 spa->spa_spares.sav_config = NULL;
3997                 spa_load_spares(spa);
3998         }
3999         if (spa->spa_l2cache.sav_config) {
4000                 nvlist_free(spa->spa_l2cache.sav_config);
4001                 spa->spa_l2cache.sav_config = NULL;
4002                 spa_load_l2cache(spa);
4003         }
4004 
4005         VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4006             &nvroot) == 0);
4007         if (error == 0)
4008                 error = spa_validate_aux(spa, nvroot, -1ULL,
4009                     VDEV_ALLOC_SPARE);
4010         if (error == 0)
4011                 error = spa_validate_aux(spa, nvroot, -1ULL,
4012                     VDEV_ALLOC_L2CACHE);
4013         spa_config_exit(spa, SCL_ALL, FTAG);
4014 
4015         if (props != NULL)
4016                 spa_configfile_set(spa, props, B_FALSE);
4017 
4018         if (error != 0 || (props && spa_writeable(spa) &&
4019             (error = spa_prop_set(spa, props)))) {
4020                 spa_unload(spa);
4021                 spa_deactivate(spa);
4022                 spa_remove(spa);
4023                 mutex_exit(&spa_namespace_lock);
4024                 return (error);
4025         }
4026 
4027         spa_async_resume(spa);
4028 
4029         /*
4030          * Override any spares and level 2 cache devices as specified by
4031          * the user, as these may have correct device names/devids, etc.
4032          */
4033         if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4034             &spares, &nspares) == 0) {
4035                 if (spa->spa_spares.sav_config)
4036                         VERIFY(nvlist_remove(spa->spa_spares.sav_config,
4037                             ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
4038                 else
4039                         VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
4040                             NV_UNIQUE_NAME, KM_SLEEP) == 0);
4041                 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4042                     ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4043                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4044                 spa_load_spares(spa);
4045                 spa_config_exit(spa, SCL_ALL, FTAG);
4046                 spa->spa_spares.sav_sync = B_TRUE;
4047         }
4048         if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4049             &l2cache, &nl2cache) == 0) {
4050                 if (spa->spa_l2cache.sav_config)
4051                         VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
4052                             ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
4053                 else
4054                         VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4055                             NV_UNIQUE_NAME, KM_SLEEP) == 0);
4056                 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4057                     ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4058                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4059                 spa_load_l2cache(spa);
4060                 spa_config_exit(spa, SCL_ALL, FTAG);
4061                 spa->spa_l2cache.sav_sync = B_TRUE;
4062         }
4063 
4064         /*
4065          * Check for any removed devices.
4066          */
4067         if (spa->spa_autoreplace) {
4068                 spa_aux_check_removed(&spa->spa_spares);
4069                 spa_aux_check_removed(&spa->spa_l2cache);
4070         }
4071 
4072         if (spa_writeable(spa)) {
4073                 /*
4074                  * Update the config cache to include the newly-imported pool.
4075                  */
4076                 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4077         }
4078 
4079         /*
4080          * It's possible that the pool was expanded while it was exported.
4081          * We kick off an async task to handle this for us.
4082          */
4083         spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4084 
4085         mutex_exit(&spa_namespace_lock);
4086         spa_history_log_version(spa, "import");
4087 
4088         return (0);
4089 }
4090 
4091 nvlist_t *
4092 spa_tryimport(nvlist_t *tryconfig)
4093 {
4094         nvlist_t *config = NULL;
4095         char *poolname;
4096         spa_t *spa;
4097         uint64_t state;
4098         int error;
4099 
4100         if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4101                 return (NULL);
4102 
4103         if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4104                 return (NULL);
4105 
4106         /*
4107          * Create and initialize the spa structure.
4108          */
4109         mutex_enter(&spa_namespace_lock);
4110         spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4111         spa_activate(spa, FREAD);
4112 
4113         /*
4114          * Pass off the heavy lifting to spa_load().
4115          * Pass TRUE for mosconfig because the user-supplied config
4116          * is actually the one to trust when doing an import.
4117          */
4118         error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4119 
4120         /*
4121          * If 'tryconfig' was at least parsable, return the current config.
4122          */
4123         if (spa->spa_root_vdev != NULL) {
4124                 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4125                 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4126                     poolname) == 0);
4127                 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4128                     state) == 0);
4129                 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4130                     spa->spa_uberblock.ub_timestamp) == 0);
4131                 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4132                     spa->spa_load_info) == 0);
4133 
4134                 /*
4135                  * If the bootfs property exists on this pool then we
4136                  * copy it out so that external consumers can tell which
4137                  * pools are bootable.
4138                  */
4139                 if ((!error || error == EEXIST) && spa->spa_bootfs) {
4140                         char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4141 
4142                         /*
4143                          * We have to play games with the name since the
4144                          * pool was opened as TRYIMPORT_NAME.
4145                          */
4146                         if (dsl_dsobj_to_dsname(spa_name(spa),
4147                             spa->spa_bootfs, tmpname) == 0) {
4148                                 char *cp;
4149                                 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4150 
4151                                 cp = strchr(tmpname, '/');
4152                                 if (cp == NULL) {
4153                                         (void) strlcpy(dsname, tmpname,
4154                                             MAXPATHLEN);
4155                                 } else {
4156                                         (void) snprintf(dsname, MAXPATHLEN,
4157                                             "%s/%s", poolname, ++cp);
4158                                 }
4159                                 VERIFY(nvlist_add_string(config,
4160                                     ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4161                                 kmem_free(dsname, MAXPATHLEN);
4162                         }
4163                         kmem_free(tmpname, MAXPATHLEN);
4164                 }
4165 
4166                 /*
4167                  * Add the list of hot spares and level 2 cache devices.
4168                  */
4169                 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4170                 spa_add_spares(spa, config);
4171                 spa_add_l2cache(spa, config);
4172                 spa_config_exit(spa, SCL_CONFIG, FTAG);
4173         }
4174 
4175         spa_unload(spa);
4176         spa_deactivate(spa);
4177         spa_remove(spa);
4178         mutex_exit(&spa_namespace_lock);
4179 
4180         return (config);
4181 }
4182 
4183 /*
4184  * Pool export/destroy
4185  *
4186  * The act of destroying or exporting a pool is very simple.  We make sure there
4187  * is no more pending I/O and any references to the pool are gone.  Then, we
4188  * update the pool state and sync all the labels to disk, removing the
4189  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4190  * we don't sync the labels or remove the configuration cache.
4191  */
4192 static int
4193 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4194     boolean_t force, boolean_t hardforce)
4195 {
4196         spa_t *spa;
4197 
4198         if (oldconfig)
4199                 *oldconfig = NULL;
4200 
4201         if (!(spa_mode_global & FWRITE))
4202                 return (SET_ERROR(EROFS));
4203 
4204         mutex_enter(&spa_namespace_lock);
4205         if ((spa = spa_lookup(pool)) == NULL) {
4206                 mutex_exit(&spa_namespace_lock);
4207                 return (SET_ERROR(ENOENT));
4208         }
4209 
4210         /*
4211          * Put a hold on the pool, drop the namespace lock, stop async tasks,
4212          * reacquire the namespace lock, and see if we can export.
4213          */
4214         spa_open_ref(spa, FTAG);
4215         mutex_exit(&spa_namespace_lock);
4216         spa_async_suspend(spa);
4217         mutex_enter(&spa_namespace_lock);
4218         spa_close(spa, FTAG);
4219 
4220         /*
4221          * The pool will be in core if it's openable,
4222          * in which case we can modify its state.
4223          */
4224         if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4225                 /*
4226                  * Objsets may be open only because they're dirty, so we
4227                  * have to force it to sync before checking spa_refcnt.
4228                  */
4229                 txg_wait_synced(spa->spa_dsl_pool, 0);
4230                 spa_evicting_os_wait(spa);
4231 
4232                 /*
4233                  * A pool cannot be exported or destroyed if there are active
4234                  * references.  If we are resetting a pool, allow references by
4235                  * fault injection handlers.
4236                  */
4237                 if (!spa_refcount_zero(spa) ||
4238                     (spa->spa_inject_ref != 0 &&
4239                     new_state != POOL_STATE_UNINITIALIZED)) {
4240                         spa_async_resume(spa);
4241                         mutex_exit(&spa_namespace_lock);
4242                         return (SET_ERROR(EBUSY));
4243                 }
4244 
4245                 /*
4246                  * A pool cannot be exported if it has an active shared spare.
4247                  * This is to prevent other pools stealing the active spare
4248                  * from an exported pool. At user's own will, such pool can
4249                  * be forcedly exported.
4250                  */
4251                 if (!force && new_state == POOL_STATE_EXPORTED &&
4252                     spa_has_active_shared_spare(spa)) {
4253                         spa_async_resume(spa);
4254                         mutex_exit(&spa_namespace_lock);
4255                         return (SET_ERROR(EXDEV));
4256                 }
4257 
4258                 /*
4259                  * We want this to be reflected on every label,
4260                  * so mark them all dirty.  spa_unload() will do the
4261                  * final sync that pushes these changes out.
4262                  */
4263                 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4264                         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4265                         spa->spa_state = new_state;
4266                         spa->spa_final_txg = spa_last_synced_txg(spa) +
4267                             TXG_DEFER_SIZE + 1;
4268                         vdev_config_dirty(spa->spa_root_vdev);
4269                         spa_config_exit(spa, SCL_ALL, FTAG);
4270                 }
4271         }
4272 
4273         spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4274 
4275         if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4276                 spa_unload(spa);
4277                 spa_deactivate(spa);
4278         }
4279 
4280         if (oldconfig && spa->spa_config)
4281                 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4282 
4283         if (new_state != POOL_STATE_UNINITIALIZED) {
4284                 if (!hardforce)
4285                         spa_config_sync(spa, B_TRUE, B_TRUE);
4286                 spa_remove(spa);
4287         }
4288         mutex_exit(&spa_namespace_lock);
4289 
4290         return (0);
4291 }
4292 
4293 /*
4294  * Destroy a storage pool.
4295  */
4296 int
4297 spa_destroy(char *pool)
4298 {
4299         return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4300             B_FALSE, B_FALSE));
4301 }
4302 
4303 /*
4304  * Export a storage pool.
4305  */
4306 int
4307 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4308     boolean_t hardforce)
4309 {
4310         return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4311             force, hardforce));
4312 }
4313 
4314 /*
4315  * Similar to spa_export(), this unloads the spa_t without actually removing it
4316  * from the namespace in any way.
4317  */
4318 int
4319 spa_reset(char *pool)
4320 {
4321         return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4322             B_FALSE, B_FALSE));
4323 }
4324 
4325 /*
4326  * ==========================================================================
4327  * Device manipulation
4328  * ==========================================================================
4329  */
4330 
4331 /*
4332  * Add a device to a storage pool.
4333  */
4334 int
4335 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4336 {
4337         uint64_t txg, id;
4338         int error;
4339         vdev_t *rvd = spa->spa_root_vdev;
4340         vdev_t *vd, *tvd;
4341         nvlist_t **spares, **l2cache;
4342         uint_t nspares, nl2cache;
4343 
4344         ASSERT(spa_writeable(spa));
4345 
4346         txg = spa_vdev_enter(spa);
4347 
4348         if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4349             VDEV_ALLOC_ADD)) != 0)
4350                 return (spa_vdev_exit(spa, NULL, txg, error));
4351 
4352         spa->spa_pending_vdev = vd;  /* spa_vdev_exit() will clear this */
4353 
4354         if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4355             &nspares) != 0)
4356                 nspares = 0;
4357 
4358         if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4359             &nl2cache) != 0)
4360                 nl2cache = 0;
4361 
4362         if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4363                 return (spa_vdev_exit(spa, vd, txg, EINVAL));
4364 
4365         if (vd->vdev_children != 0 &&
4366             (error = vdev_create(vd, txg, B_FALSE)) != 0)
4367                 return (spa_vdev_exit(spa, vd, txg, error));
4368 
4369         /*
4370          * We must validate the spares and l2cache devices after checking the
4371          * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
4372          */
4373         if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4374                 return (spa_vdev_exit(spa, vd, txg, error));
4375 
4376         /*
4377          * Transfer each new top-level vdev from vd to rvd.
4378          */
4379         for (int c = 0; c < vd->vdev_children; c++) {
4380 
4381                 /*
4382                  * Set the vdev id to the first hole, if one exists.
4383                  */
4384                 for (id = 0; id < rvd->vdev_children; id++) {
4385                         if (rvd->vdev_child[id]->vdev_ishole) {
4386                                 vdev_free(rvd->vdev_child[id]);
4387                                 break;
4388                         }
4389                 }
4390                 tvd = vd->vdev_child[c];
4391                 vdev_remove_child(vd, tvd);
4392                 tvd->vdev_id = id;
4393                 vdev_add_child(rvd, tvd);
4394                 vdev_config_dirty(tvd);
4395         }
4396 
4397         if (nspares != 0) {
4398                 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4399                     ZPOOL_CONFIG_SPARES);
4400                 spa_load_spares(spa);
4401                 spa->spa_spares.sav_sync = B_TRUE;
4402         }
4403 
4404         if (nl2cache != 0) {
4405                 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4406                     ZPOOL_CONFIG_L2CACHE);
4407                 spa_load_l2cache(spa);
4408                 spa->spa_l2cache.sav_sync = B_TRUE;
4409         }
4410 
4411         /*
4412          * We have to be careful when adding new vdevs to an existing pool.
4413          * If other threads start allocating from these vdevs before we
4414          * sync the config cache, and we lose power, then upon reboot we may
4415          * fail to open the pool because there are DVAs that the config cache
4416          * can't translate.  Therefore, we first add the vdevs without
4417          * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4418          * and then let spa_config_update() initialize the new metaslabs.
4419          *
4420          * spa_load() checks for added-but-not-initialized vdevs, so that
4421          * if we lose power at any point in this sequence, the remaining
4422          * steps will be completed the next time we load the pool.
4423          */
4424         (void) spa_vdev_exit(spa, vd, txg, 0);
4425 
4426         mutex_enter(&spa_namespace_lock);
4427         spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4428         mutex_exit(&spa_namespace_lock);
4429 
4430         return (0);
4431 }
4432 
4433 /*
4434  * Attach a device to a mirror.  The arguments are the path to any device
4435  * in the mirror, and the nvroot for the new device.  If the path specifies
4436  * a device that is not mirrored, we automatically insert the mirror vdev.
4437  *
4438  * If 'replacing' is specified, the new device is intended to replace the
4439  * existing device; in this case the two devices are made into their own
4440  * mirror using the 'replacing' vdev, which is functionally identical to
4441  * the mirror vdev (it actually reuses all the same ops) but has a few
4442  * extra rules: you can't attach to it after it's been created, and upon
4443  * completion of resilvering, the first disk (the one being replaced)
4444  * is automatically detached.
4445  */
4446 int
4447 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4448 {
4449         uint64_t txg, dtl_max_txg;
4450         vdev_t *rvd = spa->spa_root_vdev;
4451         vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4452         vdev_ops_t *pvops;
4453         char *oldvdpath, *newvdpath;
4454         int newvd_isspare;
4455         int error;
4456 
4457         ASSERT(spa_writeable(spa));
4458 
4459         txg = spa_vdev_enter(spa);
4460 
4461         oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4462 
4463         if (oldvd == NULL)
4464                 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4465 
4466         if (!oldvd->vdev_ops->vdev_op_leaf)
4467                 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4468 
4469         pvd = oldvd->vdev_parent;
4470 
4471         if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4472             VDEV_ALLOC_ATTACH)) != 0)
4473                 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4474 
4475         if (newrootvd->vdev_children != 1)
4476                 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4477 
4478         newvd = newrootvd->vdev_child[0];
4479 
4480         if (!newvd->vdev_ops->vdev_op_leaf)
4481                 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4482 
4483         if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4484                 return (spa_vdev_exit(spa, newrootvd, txg, error));
4485 
4486         /*
4487          * Spares can't replace logs
4488          */
4489         if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4490                 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4491 
4492         if (!replacing) {
4493                 /*
4494                  * For attach, the only allowable parent is a mirror or the root
4495                  * vdev.
4496                  */
4497                 if (pvd->vdev_ops != &vdev_mirror_ops &&
4498                     pvd->vdev_ops != &vdev_root_ops)
4499                         return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4500 
4501                 pvops = &vdev_mirror_ops;
4502         } else {
4503                 /*
4504                  * Active hot spares can only be replaced by inactive hot
4505                  * spares.
4506                  */
4507                 if (pvd->vdev_ops == &vdev_spare_ops &&
4508                     oldvd->vdev_isspare &&
4509                     !spa_has_spare(spa, newvd->vdev_guid))
4510                         return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4511 
4512                 /*
4513                  * If the source is a hot spare, and the parent isn't already a
4514                  * spare, then we want to create a new hot spare.  Otherwise, we
4515                  * want to create a replacing vdev.  The user is not allowed to
4516                  * attach to a spared vdev child unless the 'isspare' state is
4517                  * the same (spare replaces spare, non-spare replaces
4518                  * non-spare).
4519                  */
4520                 if (pvd->vdev_ops == &vdev_replacing_ops &&
4521                     spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4522                         return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4523                 } else if (pvd->vdev_ops == &vdev_spare_ops &&
4524                     newvd->vdev_isspare != oldvd->vdev_isspare) {
4525                         return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4526                 }
4527 
4528                 if (newvd->vdev_isspare)
4529                         pvops = &vdev_spare_ops;
4530                 else
4531                         pvops = &vdev_replacing_ops;
4532         }
4533 
4534         /*
4535          * Make sure the new device is big enough.
4536          */
4537         if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4538                 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4539 
4540         /*
4541          * The new device cannot have a higher alignment requirement
4542          * than the top-level vdev.
4543          */
4544         if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4545                 return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4546 
4547         /*
4548          * If this is an in-place replacement, update oldvd's path and devid
4549          * to make it distinguishable from newvd, and unopenable from now on.
4550          */
4551         if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4552                 spa_strfree(oldvd->vdev_path);
4553                 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4554                     KM_SLEEP);
4555                 (void) sprintf(oldvd->vdev_path, "%s/%s",
4556                     newvd->vdev_path, "old");
4557                 if (oldvd->vdev_devid != NULL) {
4558                         spa_strfree(oldvd->vdev_devid);
4559                         oldvd->vdev_devid = NULL;
4560                 }
4561         }
4562 
4563         /* mark the device being resilvered */
4564         newvd->vdev_resilver_txg = txg;
4565 
4566         /*
4567          * If the parent is not a mirror, or if we're replacing, insert the new
4568          * mirror/replacing/spare vdev above oldvd.
4569          */
4570         if (pvd->vdev_ops != pvops)
4571                 pvd = vdev_add_parent(oldvd, pvops);
4572 
4573         ASSERT(pvd->vdev_top->vdev_parent == rvd);
4574         ASSERT(pvd->vdev_ops == pvops);
4575         ASSERT(oldvd->vdev_parent == pvd);
4576 
4577         /*
4578          * Extract the new device from its root and add it to pvd.
4579          */
4580         vdev_remove_child(newrootvd, newvd);
4581         newvd->vdev_id = pvd->vdev_children;
4582         newvd->vdev_crtxg = oldvd->vdev_crtxg;
4583         vdev_add_child(pvd, newvd);
4584 
4585         tvd = newvd->vdev_top;
4586         ASSERT(pvd->vdev_top == tvd);
4587         ASSERT(tvd->vdev_parent == rvd);
4588 
4589         vdev_config_dirty(tvd);
4590 
4591         /*
4592          * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4593          * for any dmu_sync-ed blocks.  It will propagate upward when
4594          * spa_vdev_exit() calls vdev_dtl_reassess().
4595          */
4596         dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4597 
4598         vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4599             dtl_max_txg - TXG_INITIAL);
4600 
4601         if (newvd->vdev_isspare) {
4602                 spa_spare_activate(newvd);
4603                 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4604         }
4605 
4606         oldvdpath = spa_strdup(oldvd->vdev_path);
4607         newvdpath = spa_strdup(newvd->vdev_path);
4608         newvd_isspare = newvd->vdev_isspare;
4609 
4610         /*
4611          * Mark newvd's DTL dirty in this txg.
4612          */
4613         vdev_dirty(tvd, VDD_DTL, newvd, txg);
4614 
4615         /*
4616          * Schedule the resilver to restart in the future. We do this to
4617          * ensure that dmu_sync-ed blocks have been stitched into the
4618          * respective datasets.
4619          */
4620         dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4621 
4622         /*
4623          * Commit the config
4624          */
4625         (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4626 
4627         spa_history_log_internal(spa, "vdev attach", NULL,
4628             "%s vdev=%s %s vdev=%s",
4629             replacing && newvd_isspare ? "spare in" :
4630             replacing ? "replace" : "attach", newvdpath,
4631             replacing ? "for" : "to", oldvdpath);
4632 
4633         spa_strfree(oldvdpath);
4634         spa_strfree(newvdpath);
4635 
4636         if (spa->spa_bootfs)
4637                 spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4638 
4639         return (0);
4640 }
4641 
4642 /*
4643  * Detach a device from a mirror or replacing vdev.
4644  *
4645  * If 'replace_done' is specified, only detach if the parent
4646  * is a replacing vdev.
4647  */
4648 int
4649 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4650 {
4651         uint64_t txg;
4652         int error;
4653         vdev_t *rvd = spa->spa_root_vdev;
4654         vdev_t *vd, *pvd, *cvd, *tvd;
4655         boolean_t unspare = B_FALSE;
4656         uint64_t unspare_guid = 0;
4657         char *vdpath;
4658 
4659         ASSERT(spa_writeable(spa));
4660 
4661         txg = spa_vdev_enter(spa);
4662 
4663         vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4664 
4665         if (vd == NULL)
4666                 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4667 
4668         if (!vd->vdev_ops->vdev_op_leaf)
4669                 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4670 
4671         pvd = vd->vdev_parent;
4672 
4673         /*
4674          * If the parent/child relationship is not as expected, don't do it.
4675          * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4676          * vdev that's replacing B with C.  The user's intent in replacing
4677          * is to go from M(A,B) to M(A,C).  If the user decides to cancel
4678          * the replace by detaching C, the expected behavior is to end up
4679          * M(A,B).  But suppose that right after deciding to detach C,
4680          * the replacement of B completes.  We would have M(A,C), and then
4681          * ask to detach C, which would leave us with just A -- not what
4682          * the user wanted.  To prevent this, we make sure that the
4683          * parent/child relationship hasn't changed -- in this example,
4684          * that C's parent is still the replacing vdev R.
4685          */
4686         if (pvd->vdev_guid != pguid && pguid != 0)
4687                 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4688 
4689         /*
4690          * Only 'replacing' or 'spare' vdevs can be replaced.
4691          */
4692         if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4693             pvd->vdev_ops != &vdev_spare_ops)
4694                 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4695 
4696         ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4697             spa_version(spa) >= SPA_VERSION_SPARES);
4698 
4699         /*
4700          * Only mirror, replacing, and spare vdevs support detach.
4701          */
4702         if (pvd->vdev_ops != &vdev_replacing_ops &&
4703             pvd->vdev_ops != &vdev_mirror_ops &&
4704             pvd->vdev_ops != &vdev_spare_ops)
4705                 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4706 
4707         /*
4708          * If this device has the only valid copy of some data,
4709          * we cannot safely detach it.
4710          */
4711         if (vdev_dtl_required(vd))
4712                 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4713 
4714         ASSERT(pvd->vdev_children >= 2);
4715 
4716         /*
4717          * If we are detaching the second disk from a replacing vdev, then
4718          * check to see if we changed the original vdev's path to have "/old"
4719          * at the end in spa_vdev_attach().  If so, undo that change now.
4720          */
4721         if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4722             vd->vdev_path != NULL) {
4723                 size_t len = strlen(vd->vdev_path);
4724 
4725                 for (int c = 0; c < pvd->vdev_children; c++) {
4726                         cvd = pvd->vdev_child[c];
4727 
4728                         if (cvd == vd || cvd->vdev_path == NULL)
4729                                 continue;
4730 
4731                         if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4732                             strcmp(cvd->vdev_path + len, "/old") == 0) {
4733                                 spa_strfree(cvd->vdev_path);
4734                                 cvd->vdev_path = spa_strdup(vd->vdev_path);
4735                                 break;
4736                         }
4737                 }
4738         }
4739 
4740         /*
4741          * If we are detaching the original disk from a spare, then it implies
4742          * that the spare should become a real disk, and be removed from the
4743          * active spare list for the pool.
4744          */
4745         if (pvd->vdev_ops == &vdev_spare_ops &&
4746             vd->vdev_id == 0 &&
4747             pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4748                 unspare = B_TRUE;
4749 
4750         /*
4751          * Erase the disk labels so the disk can be used for other things.
4752          * This must be done after all other error cases are handled,
4753          * but before we disembowel vd (so we can still do I/O to it).
4754          * But if we can't do it, don't treat the error as fatal --
4755          * it may be that the unwritability of the disk is the reason
4756          * it's being detached!
4757          */
4758         error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4759 
4760         /*
4761          * Remove vd from its parent and compact the parent's children.
4762          */
4763         vdev_remove_child(pvd, vd);
4764         vdev_compact_children(pvd);
4765 
4766         /*
4767          * Remember one of the remaining children so we can get tvd below.
4768          */
4769         cvd = pvd->vdev_child[pvd->vdev_children - 1];
4770 
4771         /*
4772          * If we need to remove the remaining child from the list of hot spares,
4773          * do it now, marking the vdev as no longer a spare in the process.
4774          * We must do this before vdev_remove_parent(), because that can
4775          * change the GUID if it creates a new toplevel GUID.  For a similar
4776          * reason, we must remove the spare now, in the same txg as the detach;
4777          * otherwise someone could attach a new sibling, change the GUID, and
4778          * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4779          */
4780         if (unspare) {
4781                 ASSERT(cvd->vdev_isspare);
4782                 spa_spare_remove(cvd);
4783                 unspare_guid = cvd->vdev_guid;
4784                 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4785                 cvd->vdev_unspare = B_TRUE;
4786         }
4787 
4788         /*
4789          * If the parent mirror/replacing vdev only has one child,
4790          * the parent is no longer needed.  Remove it from the tree.
4791          */
4792         if (pvd->vdev_children == 1) {
4793                 if (pvd->vdev_ops == &vdev_spare_ops)
4794                         cvd->vdev_unspare = B_FALSE;
4795                 vdev_remove_parent(cvd);
4796         }
4797 
4798 
4799         /*
4800          * We don't set tvd until now because the parent we just removed
4801          * may have been the previous top-level vdev.
4802          */
4803         tvd = cvd->vdev_top;
4804         ASSERT(tvd->vdev_parent == rvd);
4805 
4806         /*
4807          * Reevaluate the parent vdev state.
4808          */
4809         vdev_propagate_state(cvd);
4810 
4811         /*
4812          * If the 'autoexpand' property is set on the pool then automatically
4813          * try to expand the size of the pool. For example if the device we
4814          * just detached was smaller than the others, it may be possible to
4815          * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4816          * first so that we can obtain the updated sizes of the leaf vdevs.
4817          */
4818         if (spa->spa_autoexpand) {
4819                 vdev_reopen(tvd);
4820                 vdev_expand(tvd, txg);
4821         }
4822 
4823         vdev_config_dirty(tvd);
4824 
4825         /*
4826          * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
4827          * vd->vdev_detached is set and free vd's DTL object in syncing context.
4828          * But first make sure we're not on any *other* txg's DTL list, to
4829          * prevent vd from being accessed after it's freed.
4830          */
4831         vdpath = spa_strdup(vd->vdev_path);
4832         for (int t = 0; t < TXG_SIZE; t++)
4833                 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4834         vd->vdev_detached = B_TRUE;
4835         vdev_dirty(tvd, VDD_DTL, vd, txg);
4836 
4837         spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
4838 
4839         /* hang on to the spa before we release the lock */
4840         spa_open_ref(spa, FTAG);
4841 
4842         error = spa_vdev_exit(spa, vd, txg, 0);
4843 
4844         spa_history_log_internal(spa, "detach", NULL,
4845             "vdev=%s", vdpath);
4846         spa_strfree(vdpath);
4847 
4848         /*
4849          * If this was the removal of the original device in a hot spare vdev,
4850          * then we want to go through and remove the device from the hot spare
4851          * list of every other pool.
4852          */
4853         if (unspare) {
4854                 spa_t *altspa = NULL;
4855 
4856                 mutex_enter(&spa_namespace_lock);
4857                 while ((altspa = spa_next(altspa)) != NULL) {
4858                         if (altspa->spa_state != POOL_STATE_ACTIVE ||
4859                             altspa == spa)
4860                                 continue;
4861 
4862                         spa_open_ref(altspa, FTAG);
4863                         mutex_exit(&spa_namespace_lock);
4864                         (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
4865                         mutex_enter(&spa_namespace_lock);
4866                         spa_close(altspa, FTAG);
4867                 }
4868                 mutex_exit(&spa_namespace_lock);
4869 
4870                 /* search the rest of the vdevs for spares to remove */
4871                 spa_vdev_resilver_done(spa);
4872         }
4873 
4874         /* all done with the spa; OK to release */
4875         mutex_enter(&spa_namespace_lock);
4876         spa_close(spa, FTAG);
4877         mutex_exit(&spa_namespace_lock);
4878 
4879         return (error);
4880 }
4881 
4882 /*
4883  * Split a set of devices from their mirrors, and create a new pool from them.
4884  */
4885 int
4886 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
4887     nvlist_t *props, boolean_t exp)
4888 {
4889         int error = 0;
4890         uint64_t txg, *glist;
4891         spa_t *newspa;
4892         uint_t c, children, lastlog;
4893         nvlist_t **child, *nvl, *tmp;
4894         dmu_tx_t *tx;
4895         char *altroot = NULL;
4896         vdev_t *rvd, **vml = NULL;                      /* vdev modify list */
4897         boolean_t activate_slog;
4898 
4899         ASSERT(spa_writeable(spa));
4900 
4901         txg = spa_vdev_enter(spa);
4902 
4903         /* clear the log and flush everything up to now */
4904         activate_slog = spa_passivate_log(spa);
4905         (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4906         error = spa_offline_log(spa);
4907         txg = spa_vdev_config_enter(spa);
4908 
4909         if (activate_slog)
4910                 spa_activate_log(spa);
4911 
4912         if (error != 0)
4913                 return (spa_vdev_exit(spa, NULL, txg, error));
4914 
4915         /* check new spa name before going any further */
4916         if (spa_lookup(newname) != NULL)
4917                 return (spa_vdev_exit(spa, NULL, txg, EEXIST));
4918 
4919         /*
4920          * scan through all the children to ensure they're all mirrors
4921          */
4922         if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
4923             nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
4924             &children) != 0)
4925                 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4926 
4927         /* first, check to ensure we've got the right child count */
4928         rvd = spa->spa_root_vdev;
4929         lastlog = 0;
4930         for (c = 0; c < rvd->vdev_children; c++) {
4931                 vdev_t *vd = rvd->vdev_child[c];
4932 
4933                 /* don't count the holes & logs as children */
4934                 if (vd->vdev_islog || vd->vdev_ishole) {
4935                         if (lastlog == 0)
4936                                 lastlog = c;
4937                         continue;
4938                 }
4939 
4940                 lastlog = 0;
4941         }
4942         if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
4943                 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4944 
4945         /* next, ensure no spare or cache devices are part of the split */
4946         if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
4947             nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
4948                 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4949 
4950         vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
4951         glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
4952 
4953         /* then, loop over each vdev and validate it */
4954         for (c = 0; c < children; c++) {
4955                 uint64_t is_hole = 0;
4956 
4957                 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
4958                     &is_hole);
4959 
4960                 if (is_hole != 0) {
4961                         if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
4962                             spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
4963                                 continue;
4964                         } else {
4965                                 error = SET_ERROR(EINVAL);
4966                                 break;
4967                         }
4968                 }
4969 
4970                 /* which disk is going to be split? */
4971                 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
4972                     &glist[c]) != 0) {
4973                         error = SET_ERROR(EINVAL);
4974                         break;
4975                 }
4976 
4977                 /* look it up in the spa */
4978                 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
4979                 if (vml[c] == NULL) {
4980                         error = SET_ERROR(ENODEV);
4981                         break;
4982                 }
4983 
4984                 /* make sure there's nothing stopping the split */
4985                 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
4986                     vml[c]->vdev_islog ||
4987                     vml[c]->vdev_ishole ||
4988                     vml[c]->vdev_isspare ||
4989                     vml[c]->vdev_isl2cache ||
4990                     !vdev_writeable(vml[c]) ||
4991                     vml[c]->vdev_children != 0 ||
4992                     vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
4993                     c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
4994                         error = SET_ERROR(EINVAL);
4995                         break;
4996                 }
4997 
4998                 if (vdev_dtl_required(vml[c])) {
4999                         error = SET_ERROR(EBUSY);
5000                         break;
5001                 }
5002 
5003                 /* we need certain info from the top level */
5004                 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
5005                     vml[c]->vdev_top->vdev_ms_array) == 0);
5006                 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
5007                     vml[c]->vdev_top->vdev_ms_shift) == 0);
5008                 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
5009                     vml[c]->vdev_top->vdev_asize) == 0);
5010                 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
5011                     vml[c]->vdev_top->vdev_ashift) == 0);
5012         }
5013 
5014         if (error != 0) {
5015                 kmem_free(vml, children * sizeof (vdev_t *));
5016                 kmem_free(glist, children * sizeof (uint64_t));
5017                 return (spa_vdev_exit(spa, NULL, txg, error));
5018         }
5019 
5020         /* stop writers from using the disks */
5021         for (c = 0; c < children; c++) {
5022                 if (vml[c] != NULL)
5023                         vml[c]->vdev_offline = B_TRUE;
5024         }
5025         vdev_reopen(spa->spa_root_vdev);
5026 
5027         /*
5028          * Temporarily record the splitting vdevs in the spa config.  This
5029          * will disappear once the config is regenerated.
5030          */
5031         VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5032         VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
5033             glist, children) == 0);
5034         kmem_free(glist, children * sizeof (uint64_t));
5035 
5036         mutex_enter(&spa->spa_props_lock);
5037         VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
5038             nvl) == 0);
5039         mutex_exit(&spa->spa_props_lock);
5040         spa->spa_config_splitting = nvl;
5041         vdev_config_dirty(spa->spa_root_vdev);
5042 
5043         /* configure and create the new pool */
5044         VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
5045         VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5046             exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
5047         VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5048             spa_version(spa)) == 0);
5049         VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
5050             spa->spa_config_txg) == 0);
5051         VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5052             spa_generate_guid(NULL)) == 0);
5053         (void) nvlist_lookup_string(props,
5054             zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5055 
5056         /* add the new pool to the namespace */
5057         newspa = spa_add(newname, config, altroot);
5058         newspa->spa_config_txg = spa->spa_config_txg;
5059         spa_set_log_state(newspa, SPA_LOG_CLEAR);
5060 
5061         /* release the spa config lock, retaining the namespace lock */
5062         spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5063 
5064         if (zio_injection_enabled)
5065                 zio_handle_panic_injection(spa, FTAG, 1);
5066 
5067         spa_activate(newspa, spa_mode_global);
5068         spa_async_suspend(newspa);
5069 
5070         /* create the new pool from the disks of the original pool */
5071         error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
5072         if (error)
5073                 goto out;
5074 
5075         /* if that worked, generate a real config for the new pool */
5076         if (newspa->spa_root_vdev != NULL) {
5077                 VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
5078                     NV_UNIQUE_NAME, KM_SLEEP) == 0);
5079                 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
5080                     ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
5081                 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
5082                     B_TRUE));
5083         }
5084 
5085         /* set the props */
5086         if (props != NULL) {
5087                 spa_configfile_set(newspa, props, B_FALSE);
5088                 error = spa_prop_set(newspa, props);
5089                 if (error)
5090                         goto out;
5091         }
5092 
5093         /* flush everything */
5094         txg = spa_vdev_config_enter(newspa);
5095         vdev_config_dirty(newspa->spa_root_vdev);
5096         (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5097 
5098         if (zio_injection_enabled)
5099                 zio_handle_panic_injection(spa, FTAG, 2);
5100 
5101         spa_async_resume(newspa);
5102 
5103         /* finally, update the original pool's config */
5104         txg = spa_vdev_config_enter(spa);
5105         tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5106         error = dmu_tx_assign(tx, TXG_WAIT);
5107         if (error != 0)
5108                 dmu_tx_abort(tx);
5109         for (c = 0; c < children; c++) {
5110                 if (vml[c] != NULL) {
5111                         vdev_split(vml[c]);
5112                         if (error == 0)
5113                                 spa_history_log_internal(spa, "detach", tx,
5114                                     "vdev=%s", vml[c]->vdev_path);
5115                         vdev_free(vml[c]);
5116                 }
5117         }
5118         vdev_config_dirty(spa->spa_root_vdev);
5119         spa->spa_config_splitting = NULL;
5120         nvlist_free(nvl);
5121         if (error == 0)
5122                 dmu_tx_commit(tx);
5123         (void) spa_vdev_exit(spa, NULL, txg, 0);
5124 
5125         if (zio_injection_enabled)
5126                 zio_handle_panic_injection(spa, FTAG, 3);
5127 
5128         /* split is complete; log a history record */
5129         spa_history_log_internal(newspa, "split", NULL,
5130             "from pool %s", spa_name(spa));
5131 
5132         kmem_free(vml, children * sizeof (vdev_t *));
5133 
5134         /* if we're not going to mount the filesystems in userland, export */
5135         if (exp)
5136                 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5137                     B_FALSE, B_FALSE);
5138 
5139         return (error);
5140 
5141 out:
5142         spa_unload(newspa);
5143         spa_deactivate(newspa);
5144         spa_remove(newspa);
5145 
5146         txg = spa_vdev_config_enter(spa);
5147 
5148         /* re-online all offlined disks */
5149         for (c = 0; c < children; c++) {
5150                 if (vml[c] != NULL)
5151                         vml[c]->vdev_offline = B_FALSE;
5152         }
5153         vdev_reopen(spa->spa_root_vdev);
5154 
5155         nvlist_free(spa->spa_config_splitting);
5156         spa->spa_config_splitting = NULL;
5157         (void) spa_vdev_exit(spa, NULL, txg, error);
5158 
5159         kmem_free(vml, children * sizeof (vdev_t *));
5160         return (error);
5161 }
5162 
5163 static nvlist_t *
5164 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5165 {
5166         for (int i = 0; i < count; i++) {
5167                 uint64_t guid;
5168 
5169                 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5170                     &guid) == 0);
5171 
5172                 if (guid == target_guid)
5173                         return (nvpp[i]);
5174         }
5175 
5176         return (NULL);
5177 }
5178 
5179 static void
5180 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5181         nvlist_t *dev_to_remove)
5182 {
5183         nvlist_t **newdev = NULL;
5184 
5185         if (count > 1)
5186                 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5187 
5188         for (int i = 0, j = 0; i < count; i++) {
5189                 if (dev[i] == dev_to_remove)
5190                         continue;
5191                 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5192         }
5193 
5194         VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5195         VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5196 
5197         for (int i = 0; i < count - 1; i++)
5198                 nvlist_free(newdev[i]);
5199 
5200         if (count > 1)
5201                 kmem_free(newdev, (count - 1) * sizeof (void *));
5202 }
5203 
5204 /*
5205  * Evacuate the device.
5206  */
5207 static int
5208 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5209 {
5210         uint64_t txg;
5211         int error = 0;
5212 
5213         ASSERT(MUTEX_HELD(&spa_namespace_lock));
5214         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5215         ASSERT(vd == vd->vdev_top);
5216 
5217         /*
5218          * Evacuate the device.  We don't hold the config lock as writer
5219          * since we need to do I/O but we do keep the
5220          * spa_namespace_lock held.  Once this completes the device
5221          * should no longer have any blocks allocated on it.
5222          */
5223         if (vd->vdev_islog) {
5224                 if (vd->vdev_stat.vs_alloc != 0)
5225                         error = spa_offline_log(spa);
5226         } else {
5227                 error = SET_ERROR(ENOTSUP);
5228         }
5229 
5230         if (error)
5231                 return (error);
5232 
5233         /*
5234          * The evacuation succeeded.  Remove any remaining MOS metadata
5235          * associated with this vdev, and wait for these changes to sync.
5236          */
5237         ASSERT0(vd->vdev_stat.vs_alloc);
5238         txg = spa_vdev_config_enter(spa);
5239         vd->vdev_removing = B_TRUE;
5240         vdev_dirty_leaves(vd, VDD_DTL, txg);
5241         vdev_config_dirty(vd);
5242         spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5243 
5244         return (0);
5245 }
5246 
5247 /*
5248  * Complete the removal by cleaning up the namespace.
5249  */
5250 static void
5251 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5252 {
5253         vdev_t *rvd = spa->spa_root_vdev;
5254         uint64_t id = vd->vdev_id;
5255         boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5256 
5257         ASSERT(MUTEX_HELD(&spa_namespace_lock));
5258         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5259         ASSERT(vd == vd->vdev_top);
5260 
5261         /*
5262          * Only remove any devices which are empty.
5263          */
5264         if (vd->vdev_stat.vs_alloc != 0)
5265                 return;
5266 
5267         (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5268 
5269         if (list_link_active(&vd->vdev_state_dirty_node))
5270                 vdev_state_clean(vd);
5271         if (list_link_active(&vd->vdev_config_dirty_node))
5272                 vdev_config_clean(vd);
5273 
5274         vdev_free(vd);
5275 
5276         if (last_vdev) {
5277                 vdev_compact_children(rvd);
5278         } else {
5279                 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5280                 vdev_add_child(rvd, vd);
5281         }
5282         vdev_config_dirty(rvd);
5283 
5284         /*
5285          * Reassess the health of our root vdev.
5286          */
5287         vdev_reopen(rvd);
5288 }
5289 
5290 /*
5291  * Remove a device from the pool -
5292  *
5293  * Removing a device from the vdev namespace requires several steps
5294  * and can take a significant amount of time.  As a result we use
5295  * the spa_vdev_config_[enter/exit] functions which allow us to
5296  * grab and release the spa_config_lock while still holding the namespace
5297  * lock.  During each step the configuration is synced out.
5298  *
5299  * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5300  * devices.
5301  */
5302 int
5303 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5304 {
5305         vdev_t *vd;
5306         metaslab_group_t *mg;
5307         nvlist_t **spares, **l2cache, *nv;
5308         uint64_t txg = 0;
5309         uint_t nspares, nl2cache;
5310         int error = 0;
5311         boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5312 
5313         ASSERT(spa_writeable(spa));
5314 
5315         if (!locked)
5316                 txg = spa_vdev_enter(spa);
5317 
5318         vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5319 
5320         if (spa->spa_spares.sav_vdevs != NULL &&
5321             nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5322             ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5323             (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5324                 /*
5325                  * Only remove the hot spare if it's not currently in use
5326                  * in this pool.
5327                  */
5328                 if (vd == NULL || unspare) {
5329                         spa_vdev_remove_aux(spa->spa_spares.sav_config,
5330                             ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5331                         spa_load_spares(spa);
5332                         spa->spa_spares.sav_sync = B_TRUE;
5333                 } else {
5334                         error = SET_ERROR(EBUSY);
5335                 }
5336         } else if (spa->spa_l2cache.sav_vdevs != NULL &&
5337             nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5338             ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5339             (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5340                 /*
5341                  * Cache devices can always be removed.
5342                  */
5343                 spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5344                     ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5345                 spa_load_l2cache(spa);
5346                 spa->spa_l2cache.sav_sync = B_TRUE;
5347         } else if (vd != NULL && vd->vdev_islog) {
5348                 ASSERT(!locked);
5349                 ASSERT(vd == vd->vdev_top);
5350 
5351                 mg = vd->vdev_mg;
5352 
5353                 /*
5354                  * Stop allocating from this vdev.
5355                  */
5356                 metaslab_group_passivate(mg);
5357 
5358                 /*
5359                  * Wait for the youngest allocations and frees to sync,
5360                  * and then wait for the deferral of those frees to finish.
5361                  */
5362                 spa_vdev_config_exit(spa, NULL,
5363                     txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5364 
5365                 /*
5366                  * Attempt to evacuate the vdev.
5367                  */
5368                 error = spa_vdev_remove_evacuate(spa, vd);
5369 
5370                 txg = spa_vdev_config_enter(spa);
5371 
5372                 /*
5373                  * If we couldn't evacuate the vdev, unwind.
5374                  */
5375                 if (error) {
5376                         metaslab_group_activate(mg);
5377                         return (spa_vdev_exit(spa, NULL, txg, error));
5378                 }
5379 
5380                 /*
5381                  * Clean up the vdev namespace.
5382                  */
5383                 spa_vdev_remove_from_namespace(spa, vd);
5384 
5385         } else if (vd != NULL) {
5386                 /*
5387                  * Normal vdevs cannot be removed (yet).
5388                  */
5389                 error = SET_ERROR(ENOTSUP);
5390         } else {
5391                 /*
5392                  * There is no vdev of any kind with the specified guid.
5393                  */
5394                 error = SET_ERROR(ENOENT);
5395         }
5396 
5397         if (!locked)
5398                 return (spa_vdev_exit(spa, NULL, txg, error));
5399 
5400         return (error);
5401 }
5402 
5403 /*
5404  * Find any device that's done replacing, or a vdev marked 'unspare' that's
5405  * currently spared, so we can detach it.
5406  */
5407 static vdev_t *
5408 spa_vdev_resilver_done_hunt(vdev_t *vd)
5409 {
5410         vdev_t *newvd, *oldvd;
5411 
5412         for (int c = 0; c < vd->vdev_children; c++) {
5413                 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5414                 if (oldvd != NULL)
5415                         return (oldvd);
5416         }
5417 
5418         /*
5419          * Check for a completed replacement.  We always consider the first
5420          * vdev in the list to be the oldest vdev, and the last one to be
5421          * the newest (see spa_vdev_attach() for how that works).  In
5422          * the case where the newest vdev is faulted, we will not automatically
5423          * remove it after a resilver completes.  This is OK as it will require
5424          * user intervention to determine which disk the admin wishes to keep.
5425          */
5426         if (vd->vdev_ops == &vdev_replacing_ops) {
5427                 ASSERT(vd->vdev_children > 1);
5428 
5429                 newvd = vd->vdev_child[vd->vdev_children - 1];
5430                 oldvd = vd->vdev_child[0];
5431 
5432                 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5433                     vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5434                     !vdev_dtl_required(oldvd))
5435                         return (oldvd);
5436         }
5437 
5438         /*
5439          * Check for a completed resilver with the 'unspare' flag set.
5440          */
5441         if (vd->vdev_ops == &vdev_spare_ops) {
5442                 vdev_t *first = vd->vdev_child[0];
5443                 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5444 
5445                 if (last->vdev_unspare) {
5446                         oldvd = first;
5447                         newvd = last;
5448                 } else if (first->vdev_unspare) {
5449                         oldvd = last;
5450                         newvd = first;
5451                 } else {
5452                         oldvd = NULL;
5453                 }
5454 
5455                 if (oldvd != NULL &&
5456                     vdev_dtl_empty(newvd, DTL_MISSING) &&
5457                     vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5458                     !vdev_dtl_required(oldvd))
5459                         return (oldvd);
5460 
5461                 /*
5462                  * If there are more than two spares attached to a disk,
5463                  * and those spares are not required, then we want to
5464                  * attempt to free them up now so that they can be used
5465                  * by other pools.  Once we're back down to a single
5466                  * disk+spare, we stop removing them.
5467                  */
5468                 if (vd->vdev_children > 2) {
5469                         newvd = vd->vdev_child[1];
5470 
5471                         if (newvd->vdev_isspare && last->vdev_isspare &&
5472                             vdev_dtl_empty(last, DTL_MISSING) &&
5473                             vdev_dtl_empty(last, DTL_OUTAGE) &&
5474                             !vdev_dtl_required(newvd))
5475                                 return (newvd);
5476                 }
5477         }
5478 
5479         return (NULL);
5480 }
5481 
5482 static void
5483 spa_vdev_resilver_done(spa_t *spa)
5484 {
5485         vdev_t *vd, *pvd, *ppvd;
5486         uint64_t guid, sguid, pguid, ppguid;
5487 
5488         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5489 
5490         while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5491                 pvd = vd->vdev_parent;
5492                 ppvd = pvd->vdev_parent;
5493                 guid = vd->vdev_guid;
5494                 pguid = pvd->vdev_guid;
5495                 ppguid = ppvd->vdev_guid;
5496                 sguid = 0;
5497                 /*
5498                  * If we have just finished replacing a hot spared device, then
5499                  * we need to detach the parent's first child (the original hot
5500                  * spare) as well.
5501                  */
5502                 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5503                     ppvd->vdev_children == 2) {
5504                         ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5505                         sguid = ppvd->vdev_child[1]->vdev_guid;
5506                 }
5507                 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5508 
5509                 spa_config_exit(spa, SCL_ALL, FTAG);
5510                 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5511                         return;
5512                 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5513                         return;
5514                 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5515         }
5516 
5517         spa_config_exit(spa, SCL_ALL, FTAG);
5518 }
5519 
5520 /*
5521  * Update the stored path or FRU for this vdev.
5522  */
5523 int
5524 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5525     boolean_t ispath)
5526 {
5527         vdev_t *vd;
5528         boolean_t sync = B_FALSE;
5529 
5530         ASSERT(spa_writeable(spa));
5531 
5532         spa_vdev_state_enter(spa, SCL_ALL);
5533 
5534         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5535                 return (spa_vdev_state_exit(spa, NULL, ENOENT));
5536 
5537         if (!vd->vdev_ops->vdev_op_leaf)
5538                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5539 
5540         if (ispath) {
5541                 if (strcmp(value, vd->vdev_path) != 0) {
5542                         spa_strfree(vd->vdev_path);
5543                         vd->vdev_path = spa_strdup(value);
5544                         sync = B_TRUE;
5545                 }
5546         } else {
5547                 if (vd->vdev_fru == NULL) {
5548                         vd->vdev_fru = spa_strdup(value);
5549                         sync = B_TRUE;
5550                 } else if (strcmp(value, vd->vdev_fru) != 0) {
5551                         spa_strfree(vd->vdev_fru);
5552                         vd->vdev_fru = spa_strdup(value);
5553                         sync = B_TRUE;
5554                 }
5555         }
5556 
5557         return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5558 }
5559 
5560 int
5561 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5562 {
5563         return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5564 }
5565 
5566 int
5567 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5568 {
5569         return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5570 }
5571 
5572 /*
5573  * ==========================================================================
5574  * SPA Scanning
5575  * ==========================================================================
5576  */
5577 
5578 int
5579 spa_scan_stop(spa_t *spa)
5580 {
5581         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5582         if (dsl_scan_resilvering(spa->spa_dsl_pool))
5583                 return (SET_ERROR(EBUSY));
5584         return (dsl_scan_cancel(spa->spa_dsl_pool));
5585 }
5586 
5587 int
5588 spa_scan(spa_t *spa, pool_scan_func_t func)
5589 {
5590         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5591 
5592         if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5593                 return (SET_ERROR(ENOTSUP));
5594 
5595         /*
5596          * If a resilver was requested, but there is no DTL on a
5597          * writeable leaf device, we have nothing to do.
5598          */
5599         if (func == POOL_SCAN_RESILVER &&
5600             !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5601                 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5602                 return (0);
5603         }
5604 
5605         return (dsl_scan(spa->spa_dsl_pool, func));
5606 }
5607 
5608 /*
5609  * ==========================================================================
5610  * SPA async task processing
5611  * ==========================================================================
5612  */
5613 
5614 static void
5615 spa_async_remove(spa_t *spa, vdev_t *vd)
5616 {
5617         if (vd->vdev_remove_wanted) {
5618                 vd->vdev_remove_wanted = B_FALSE;
5619                 vd->vdev_delayed_close = B_FALSE;
5620                 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5621 
5622                 /*
5623                  * We want to clear the stats, but we don't want to do a full
5624                  * vdev_clear() as that will cause us to throw away
5625                  * degraded/faulted state as well as attempt to reopen the
5626                  * device, all of which is a waste.
5627                  */
5628                 vd->vdev_stat.vs_read_errors = 0;
5629                 vd->vdev_stat.vs_write_errors = 0;
5630                 vd->vdev_stat.vs_checksum_errors = 0;
5631 
5632                 vdev_state_dirty(vd->vdev_top);
5633         }
5634 
5635         for (int c = 0; c < vd->vdev_children; c++)
5636                 spa_async_remove(spa, vd->vdev_child[c]);
5637 }
5638 
5639 static void
5640 spa_async_probe(spa_t *spa, vdev_t *vd)
5641 {
5642         if (vd->vdev_probe_wanted) {
5643                 vd->vdev_probe_wanted = B_FALSE;
5644                 vdev_reopen(vd);        /* vdev_open() does the actual probe */
5645         }
5646 
5647         for (int c = 0; c < vd->vdev_children; c++)
5648                 spa_async_probe(spa, vd->vdev_child[c]);
5649 }
5650 
5651 static void
5652 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5653 {
5654         sysevent_id_t eid;
5655         nvlist_t *attr;
5656         char *physpath;
5657 
5658         if (!spa->spa_autoexpand)
5659                 return;
5660 
5661         for (int c = 0; c < vd->vdev_children; c++) {
5662                 vdev_t *cvd = vd->vdev_child[c];
5663                 spa_async_autoexpand(spa, cvd);
5664         }
5665 
5666         if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5667                 return;
5668 
5669         physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5670         (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5671 
5672         VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5673         VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5674 
5675         (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5676             ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
5677 
5678         nvlist_free(attr);
5679         kmem_free(physpath, MAXPATHLEN);
5680 }
5681 
5682 static void
5683 spa_async_thread(spa_t *spa)
5684 {
5685         int tasks;
5686 
5687         ASSERT(spa->spa_sync_on);
5688 
5689         mutex_enter(&spa->spa_async_lock);
5690         tasks = spa->spa_async_tasks;
5691         spa->spa_async_tasks = 0;
5692         mutex_exit(&spa->spa_async_lock);
5693 
5694         /*
5695          * See if the config needs to be updated.
5696          */
5697         if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5698                 uint64_t old_space, new_space;
5699 
5700                 mutex_enter(&spa_namespace_lock);
5701                 old_space = metaslab_class_get_space(spa_normal_class(spa));
5702                 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5703                 new_space = metaslab_class_get_space(spa_normal_class(spa));
5704                 mutex_exit(&spa_namespace_lock);
5705 
5706                 /*
5707                  * If the pool grew as a result of the config update,
5708                  * then log an internal history event.
5709                  */
5710                 if (new_space != old_space) {
5711                         spa_history_log_internal(spa, "vdev online", NULL,
5712                             "pool '%s' size: %llu(+%llu)",
5713                             spa_name(spa), new_space, new_space - old_space);
5714                 }
5715         }
5716 
5717         /*
5718          * See if any devices need to be marked REMOVED.
5719          */
5720         if (tasks & SPA_ASYNC_REMOVE) {
5721                 spa_vdev_state_enter(spa, SCL_NONE);
5722                 spa_async_remove(spa, spa->spa_root_vdev);
5723                 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
5724                         spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5725                 for (int i = 0; i < spa->spa_spares.sav_count; i++)
5726                         spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5727                 (void) spa_vdev_state_exit(spa, NULL, 0);
5728         }
5729 
5730         if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5731                 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5732                 spa_async_autoexpand(spa, spa->spa_root_vdev);
5733                 spa_config_exit(spa, SCL_CONFIG, FTAG);
5734         }
5735 
5736         /*
5737          * See if any devices need to be probed.
5738          */
5739         if (tasks & SPA_ASYNC_PROBE) {
5740                 spa_vdev_state_enter(spa, SCL_NONE);
5741                 spa_async_probe(spa, spa->spa_root_vdev);
5742                 (void) spa_vdev_state_exit(spa, NULL, 0);
5743         }
5744 
5745         /*
5746          * If any devices are done replacing, detach them.
5747          */
5748         if (tasks & SPA_ASYNC_RESILVER_DONE)
5749                 spa_vdev_resilver_done(spa);
5750 
5751         /*
5752          * Kick off a resilver.
5753          */
5754         if (tasks & SPA_ASYNC_RESILVER)
5755                 dsl_resilver_restart(spa->spa_dsl_pool, 0);
5756 
5757         /*
5758          * Let the world know that we're done.
5759          */
5760         mutex_enter(&spa->spa_async_lock);
5761         spa->spa_async_thread = NULL;
5762         cv_broadcast(&spa->spa_async_cv);
5763         mutex_exit(&spa->spa_async_lock);
5764         thread_exit();
5765 }
5766 
5767 void
5768 spa_async_suspend(spa_t *spa)
5769 {
5770         mutex_enter(&spa->spa_async_lock);
5771         spa->spa_async_suspended++;
5772         while (spa->spa_async_thread != NULL)
5773                 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5774         mutex_exit(&spa->spa_async_lock);
5775 }
5776 
5777 void
5778 spa_async_resume(spa_t *spa)
5779 {
5780         mutex_enter(&spa->spa_async_lock);
5781         ASSERT(spa->spa_async_suspended != 0);
5782         spa->spa_async_suspended--;
5783         mutex_exit(&spa->spa_async_lock);
5784 }
5785 
5786 static boolean_t
5787 spa_async_tasks_pending(spa_t *spa)
5788 {
5789         uint_t non_config_tasks;
5790         uint_t config_task;
5791         boolean_t config_task_suspended;
5792 
5793         non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
5794         config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
5795         if (spa->spa_ccw_fail_time == 0) {
5796                 config_task_suspended = B_FALSE;
5797         } else {
5798                 config_task_suspended =
5799                     (gethrtime() - spa->spa_ccw_fail_time) <
5800                     (zfs_ccw_retry_interval * NANOSEC);
5801         }
5802 
5803         return (non_config_tasks || (config_task && !config_task_suspended));
5804 }
5805 
5806 static void
5807 spa_async_dispatch(spa_t *spa)
5808 {
5809         mutex_enter(&spa->spa_async_lock);
5810         if (spa_async_tasks_pending(spa) &&
5811             !spa->spa_async_suspended &&
5812             spa->spa_async_thread == NULL &&
5813             rootdir != NULL)
5814                 spa->spa_async_thread = thread_create(NULL, 0,
5815                     spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
5816         mutex_exit(&spa->spa_async_lock);
5817 }
5818 
5819 void
5820 spa_async_request(spa_t *spa, int task)
5821 {
5822         zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
5823         mutex_enter(&spa->spa_async_lock);
5824         spa->spa_async_tasks |= task;
5825         mutex_exit(&spa->spa_async_lock);
5826 }
5827 
5828 /*
5829  * ==========================================================================
5830  * SPA syncing routines
5831  * ==========================================================================
5832  */
5833 
5834 static int
5835 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5836 {
5837         bpobj_t *bpo = arg;
5838         bpobj_enqueue(bpo, bp, tx);
5839         return (0);
5840 }
5841 
5842 static int
5843 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5844 {
5845         zio_t *zio = arg;
5846 
5847         zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
5848             zio->io_flags));
5849         return (0);
5850 }
5851 
5852 /*
5853  * Note: this simple function is not inlined to make it easier to dtrace the
5854  * amount of time spent syncing frees.
5855  */
5856 static void
5857 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
5858 {
5859         zio_t *zio = zio_root(spa, NULL, NULL, 0);
5860         bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
5861         VERIFY(zio_wait(zio) == 0);
5862 }
5863 
5864 /*
5865  * Note: this simple function is not inlined to make it easier to dtrace the
5866  * amount of time spent syncing deferred frees.
5867  */
5868 static void
5869 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
5870 {
5871         zio_t *zio = zio_root(spa, NULL, NULL, 0);
5872         VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
5873             spa_free_sync_cb, zio, tx), ==, 0);
5874         VERIFY0(zio_wait(zio));
5875 }
5876 
5877 
5878 static void
5879 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
5880 {
5881         char *packed = NULL;
5882         size_t bufsize;
5883         size_t nvsize = 0;
5884         dmu_buf_t *db;
5885 
5886         VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
5887 
5888         /*
5889          * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
5890          * information.  This avoids the dmu_buf_will_dirty() path and
5891          * saves us a pre-read to get data we don't actually care about.
5892          */
5893         bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
5894         packed = kmem_alloc(bufsize, KM_SLEEP);
5895 
5896         VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
5897             KM_SLEEP) == 0);
5898         bzero(packed + nvsize, bufsize - nvsize);
5899 
5900         dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
5901 
5902         kmem_free(packed, bufsize);
5903 
5904         VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
5905         dmu_buf_will_dirty(db, tx);
5906         *(uint64_t *)db->db_data = nvsize;
5907         dmu_buf_rele(db, FTAG);
5908 }
5909 
5910 static void
5911 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
5912     const char *config, const char *entry)
5913 {
5914         nvlist_t *nvroot;
5915         nvlist_t **list;
5916         int i;
5917 
5918         if (!sav->sav_sync)
5919                 return;
5920 
5921         /*
5922          * Update the MOS nvlist describing the list of available devices.
5923          * spa_validate_aux() will have already made sure this nvlist is
5924          * valid and the vdevs are labeled appropriately.
5925          */
5926         if (sav->sav_object == 0) {
5927                 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
5928                     DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
5929                     sizeof (uint64_t), tx);
5930                 VERIFY(zap_update(spa->spa_meta_objset,
5931                     DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
5932                     &sav->sav_object, tx) == 0);
5933         }
5934 
5935         VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5936         if (sav->sav_count == 0) {
5937                 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
5938         } else {
5939                 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
5940                 for (i = 0; i < sav->sav_count; i++)
5941                         list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
5942                             B_FALSE, VDEV_CONFIG_L2CACHE);
5943                 VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
5944                     sav->sav_count) == 0);
5945                 for (i = 0; i < sav->sav_count; i++)
5946                         nvlist_free(list[i]);
5947                 kmem_free(list, sav->sav_count * sizeof (void *));
5948         }
5949 
5950         spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
5951         nvlist_free(nvroot);
5952 
5953         sav->sav_sync = B_FALSE;
5954 }
5955 
5956 static void
5957 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
5958 {
5959         nvlist_t *config;
5960 
5961         if (list_is_empty(&spa->spa_config_dirty_list))
5962                 return;
5963 
5964         spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5965 
5966         config = spa_config_generate(spa, spa->spa_root_vdev,
5967             dmu_tx_get_txg(tx), B_FALSE);
5968 
5969         /*
5970          * If we're upgrading the spa version then make sure that
5971          * the config object gets updated with the correct version.
5972          */
5973         if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
5974                 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5975                     spa->spa_uberblock.ub_version);
5976 
5977         spa_config_exit(spa, SCL_STATE, FTAG);
5978 
5979         if (spa->spa_config_syncing)
5980                 nvlist_free(spa->spa_config_syncing);
5981         spa->spa_config_syncing = config;
5982 
5983         spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
5984 }
5985 
5986 static void
5987 spa_sync_version(void *arg, dmu_tx_t *tx)
5988 {
5989         uint64_t *versionp = arg;
5990         uint64_t version = *versionp;
5991         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5992 
5993         /*
5994          * Setting the version is special cased when first creating the pool.
5995          */
5996         ASSERT(tx->tx_txg != TXG_INITIAL);
5997 
5998         ASSERT(SPA_VERSION_IS_SUPPORTED(version));
5999         ASSERT(version >= spa_version(spa));
6000 
6001         spa->spa_uberblock.ub_version = version;
6002         vdev_config_dirty(spa->spa_root_vdev);
6003         spa_history_log_internal(spa, "set", tx, "version=%lld", version);
6004 }
6005 
6006 /*
6007  * Set zpool properties.
6008  */
6009 static void
6010 spa_sync_props(void *arg, dmu_tx_t *tx)
6011 {
6012         nvlist_t *nvp = arg;
6013         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6014         objset_t *mos = spa->spa_meta_objset;
6015         nvpair_t *elem = NULL;
6016 
6017         mutex_enter(&spa->spa_props_lock);
6018 
6019         while ((elem = nvlist_next_nvpair(nvp, elem))) {
6020                 uint64_t intval;
6021                 char *strval, *fname;
6022                 zpool_prop_t prop;
6023                 const char *propname;
6024                 zprop_type_t proptype;
6025                 spa_feature_t fid;
6026 
6027                 switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
6028                 case ZPROP_INVAL:
6029                         /*
6030                          * We checked this earlier in spa_prop_validate().
6031                          */
6032                         ASSERT(zpool_prop_feature(nvpair_name(elem)));
6033 
6034                         fname = strchr(nvpair_name(elem), '@') + 1;
6035                         VERIFY0(zfeature_lookup_name(fname, &fid));
6036 
6037                         spa_feature_enable(spa, fid, tx);
6038                         spa_history_log_internal(spa, "set", tx,
6039                             "%s=enabled", nvpair_name(elem));
6040                         break;
6041 
6042                 case ZPOOL_PROP_VERSION:
6043                         intval = fnvpair_value_uint64(elem);
6044                         /*
6045                          * The version is synced seperatly before other
6046                          * properties and should be correct by now.
6047                          */
6048                         ASSERT3U(spa_version(spa), >=, intval);
6049                         break;
6050 
6051                 case ZPOOL_PROP_ALTROOT:
6052                         /*
6053                          * 'altroot' is a non-persistent property. It should
6054                          * have been set temporarily at creation or import time.
6055                          */
6056                         ASSERT(spa->spa_root != NULL);
6057                         break;
6058 
6059                 case ZPOOL_PROP_READONLY:
6060                 case ZPOOL_PROP_CACHEFILE:
6061                         /*
6062                          * 'readonly' and 'cachefile' are also non-persisitent
6063                          * properties.
6064                          */
6065                         break;
6066                 case ZPOOL_PROP_COMMENT:
6067                         strval = fnvpair_value_string(elem);
6068                         if (spa->spa_comment != NULL)
6069                                 spa_strfree(spa->spa_comment);
6070                         spa->spa_comment = spa_strdup(strval);
6071                         /*
6072                          * We need to dirty the configuration on all the vdevs
6073                          * so that their labels get updated.  It's unnecessary
6074                          * to do this for pool creation since the vdev's
6075                          * configuratoin has already been dirtied.
6076                          */
6077                         if (tx->tx_txg != TXG_INITIAL)
6078                                 vdev_config_dirty(spa->spa_root_vdev);
6079                         spa_history_log_internal(spa, "set", tx,
6080                             "%s=%s", nvpair_name(elem), strval);
6081                         break;
6082                 default:
6083                         /*
6084                          * Set pool property values in the poolprops mos object.
6085                          */
6086                         if (spa->spa_pool_props_object == 0) {
6087                                 spa->spa_pool_props_object =
6088                                     zap_create_link(mos, DMU_OT_POOL_PROPS,
6089                                     DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6090                                     tx);
6091                         }
6092 
6093                         /* normalize the property name */
6094                         propname = zpool_prop_to_name(prop);
6095                         proptype = zpool_prop_get_type(prop);
6096 
6097                         if (nvpair_type(elem) == DATA_TYPE_STRING) {
6098                                 ASSERT(proptype == PROP_TYPE_STRING);
6099                                 strval = fnvpair_value_string(elem);
6100                                 VERIFY0(zap_update(mos,
6101                                     spa->spa_pool_props_object, propname,
6102                                     1, strlen(strval) + 1, strval, tx));
6103                                 spa_history_log_internal(spa, "set", tx,
6104                                     "%s=%s", nvpair_name(elem), strval);
6105                         } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6106                                 intval = fnvpair_value_uint64(elem);
6107 
6108                                 if (proptype == PROP_TYPE_INDEX) {
6109                                         const char *unused;
6110                                         VERIFY0(zpool_prop_index_to_string(
6111                                             prop, intval, &unused));
6112                                 }
6113                                 VERIFY0(zap_update(mos,
6114                                     spa->spa_pool_props_object, propname,
6115                                     8, 1, &intval, tx));
6116                                 spa_history_log_internal(spa, "set", tx,
6117                                     "%s=%lld", nvpair_name(elem), intval);
6118                         } else {
6119                                 ASSERT(0); /* not allowed */
6120                         }
6121 
6122                         switch (prop) {
6123                         case ZPOOL_PROP_DELEGATION:
6124                                 spa->spa_delegation = intval;
6125                                 break;
6126                         case ZPOOL_PROP_BOOTFS:
6127                                 spa->spa_bootfs = intval;
6128                                 break;
6129                         case ZPOOL_PROP_FAILUREMODE:
6130                                 spa->spa_failmode = intval;
6131                                 break;
6132                         case ZPOOL_PROP_AUTOEXPAND:
6133                                 spa->spa_autoexpand = intval;
6134                                 if (tx->tx_txg != TXG_INITIAL)
6135                                         spa_async_request(spa,
6136                                             SPA_ASYNC_AUTOEXPAND);
6137                                 break;
6138                         case ZPOOL_PROP_DEDUPDITTO:
6139                                 spa->spa_dedup_ditto = intval;
6140                                 break;
6141                         default:
6142                                 break;
6143                         }
6144                 }
6145 
6146         }
6147 
6148         mutex_exit(&spa->spa_props_lock);
6149 }
6150 
6151 /*
6152  * Perform one-time upgrade on-disk changes.  spa_version() does not
6153  * reflect the new version this txg, so there must be no changes this
6154  * txg to anything that the upgrade code depends on after it executes.
6155  * Therefore this must be called after dsl_pool_sync() does the sync
6156  * tasks.
6157  */
6158 static void
6159 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6160 {
6161         dsl_pool_t *dp = spa->spa_dsl_pool;
6162 
6163         ASSERT(spa->spa_sync_pass == 1);
6164 
6165         rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6166 
6167         if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6168             spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6169                 dsl_pool_create_origin(dp, tx);
6170 
6171                 /* Keeping the origin open increases spa_minref */
6172                 spa->spa_minref += 3;
6173         }
6174 
6175         if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6176             spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6177                 dsl_pool_upgrade_clones(dp, tx);
6178         }
6179 
6180         if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6181             spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6182                 dsl_pool_upgrade_dir_clones(dp, tx);
6183 
6184                 /* Keeping the freedir open increases spa_minref */
6185                 spa->spa_minref += 3;
6186         }
6187 
6188         if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6189             spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6190                 spa_feature_create_zap_objects(spa, tx);
6191         }
6192 
6193         /*
6194          * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
6195          * when possibility to use lz4 compression for metadata was added
6196          * Old pools that have this feature enabled must be upgraded to have
6197          * this feature active
6198          */
6199         if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6200                 boolean_t lz4_en = spa_feature_is_enabled(spa,
6201                     SPA_FEATURE_LZ4_COMPRESS);
6202                 boolean_t lz4_ac = spa_feature_is_active(spa,
6203                     SPA_FEATURE_LZ4_COMPRESS);
6204 
6205                 if (lz4_en && !lz4_ac)
6206                         spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
6207         }
6208         rrw_exit(&dp->dp_config_rwlock, FTAG);
6209 }
6210 
6211 /*
6212  * Sync the specified transaction group.  New blocks may be dirtied as
6213  * part of the process, so we iterate until it converges.
6214  */
6215 void
6216 spa_sync(spa_t *spa, uint64_t txg)
6217 {
6218         dsl_pool_t *dp = spa->spa_dsl_pool;
6219         objset_t *mos = spa->spa_meta_objset;
6220         bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6221         vdev_t *rvd = spa->spa_root_vdev;
6222         vdev_t *vd;
6223         dmu_tx_t *tx;
6224         int error;
6225 
6226         VERIFY(spa_writeable(spa));
6227 
6228         /*
6229          * Lock out configuration changes.
6230          */
6231         spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6232 
6233         spa->spa_syncing_txg = txg;
6234         spa->spa_sync_pass = 0;
6235 
6236         /*
6237          * If there are any pending vdev state changes, convert them
6238          * into config changes that go out with this transaction group.
6239          */
6240         spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6241         while (list_head(&spa->spa_state_dirty_list) != NULL) {
6242                 /*
6243                  * We need the write lock here because, for aux vdevs,
6244                  * calling vdev_config_dirty() modifies sav_config.
6245                  * This is ugly and will become unnecessary when we
6246                  * eliminate the aux vdev wart by integrating all vdevs
6247                  * into the root vdev tree.
6248                  */
6249                 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6250                 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6251                 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6252                         vdev_state_clean(vd);
6253                         vdev_config_dirty(vd);
6254                 }
6255                 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6256                 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6257         }
6258         spa_config_exit(spa, SCL_STATE, FTAG);
6259 
6260         tx = dmu_tx_create_assigned(dp, txg);
6261 
6262         spa->spa_sync_starttime = gethrtime();
6263         VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6264             spa->spa_sync_starttime + spa->spa_deadman_synctime));
6265 
6266         /*
6267          * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6268          * set spa_deflate if we have no raid-z vdevs.
6269          */
6270         if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6271             spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6272                 int i;
6273 
6274                 for (i = 0; i < rvd->vdev_children; i++) {
6275                         vd = rvd->vdev_child[i];
6276                         if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6277                                 break;
6278                 }
6279                 if (i == rvd->vdev_children) {
6280                         spa->spa_deflate = TRUE;
6281                         VERIFY(0 == zap_add(spa->spa_meta_objset,
6282                             DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6283                             sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6284                 }
6285         }
6286 
6287         /*
6288          * Iterate to convergence.
6289          */
6290         do {
6291                 int pass = ++spa->spa_sync_pass;
6292 
6293                 spa_sync_config_object(spa, tx);
6294                 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6295                     ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6296                 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6297                     ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6298                 spa_errlog_sync(spa, txg);
6299                 dsl_pool_sync(dp, txg);
6300 
6301                 if (pass < zfs_sync_pass_deferred_free) {
6302                         spa_sync_frees(spa, free_bpl, tx);
6303                 } else {
6304                         /*
6305                          * We can not defer frees in pass 1, because
6306                          * we sync the deferred frees later in pass 1.
6307                          */
6308                         ASSERT3U(pass, >, 1);
6309                         bplist_iterate(free_bpl, bpobj_enqueue_cb,
6310                             &spa->spa_deferred_bpobj, tx);
6311                 }
6312 
6313                 ddt_sync(spa, txg);
6314                 dsl_scan_sync(dp, tx);
6315 
6316                 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6317                         vdev_sync(vd, txg);
6318 
6319                 if (pass == 1) {
6320                         spa_sync_upgrades(spa, tx);
6321                         ASSERT3U(txg, >=,
6322                             spa->spa_uberblock.ub_rootbp.blk_birth);
6323                         /*
6324                          * Note: We need to check if the MOS is dirty
6325                          * because we could have marked the MOS dirty
6326                          * without updating the uberblock (e.g. if we
6327                          * have sync tasks but no dirty user data).  We
6328                          * need to check the uberblock's rootbp because
6329                          * it is updated if we have synced out dirty
6330                          * data (though in this case the MOS will most
6331                          * likely also be dirty due to second order
6332                          * effects, we don't want to rely on that here).
6333                          */
6334                         if (spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
6335                             !dmu_objset_is_dirty(mos, txg)) {
6336                                 /*
6337                                  * Nothing changed on the first pass,
6338                                  * therefore this TXG is a no-op.  Avoid
6339                                  * syncing deferred frees, so that we
6340                                  * can keep this TXG as a no-op.
6341                                  */
6342                                 ASSERT(txg_list_empty(&dp->dp_dirty_datasets,
6343                                     txg));
6344                                 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6345                                 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
6346                                 break;
6347                         }
6348                         spa_sync_deferred_frees(spa, tx);
6349                 }
6350 
6351         } while (dmu_objset_is_dirty(mos, txg));
6352 
6353         /*
6354          * Rewrite the vdev configuration (which includes the uberblock)
6355          * to commit the transaction group.
6356          *
6357          * If there are no dirty vdevs, we sync the uberblock to a few
6358          * random top-level vdevs that are known to be visible in the
6359          * config cache (see spa_vdev_add() for a complete description).
6360          * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6361          */
6362         for (;;) {
6363                 /*
6364                  * We hold SCL_STATE to prevent vdev open/close/etc.
6365                  * while we're attempting to write the vdev labels.
6366                  */
6367                 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6368 
6369                 if (list_is_empty(&spa->spa_config_dirty_list)) {
6370                         vdev_t *svd[SPA_DVAS_PER_BP];
6371                         int svdcount = 0;
6372                         int children = rvd->vdev_children;
6373                         int c0 = spa_get_random(children);
6374 
6375                         for (int c = 0; c < children; c++) {
6376                                 vd = rvd->vdev_child[(c0 + c) % children];
6377                                 if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6378                                         continue;
6379                                 svd[svdcount++] = vd;
6380                                 if (svdcount == SPA_DVAS_PER_BP)
6381                                         break;
6382                         }
6383                         error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
6384                         if (error != 0)
6385                                 error = vdev_config_sync(svd, svdcount, txg,
6386                                     B_TRUE);
6387                 } else {
6388                         error = vdev_config_sync(rvd->vdev_child,
6389                             rvd->vdev_children, txg, B_FALSE);
6390                         if (error != 0)
6391                                 error = vdev_config_sync(rvd->vdev_child,
6392                                     rvd->vdev_children, txg, B_TRUE);
6393                 }
6394 
6395                 if (error == 0)
6396                         spa->spa_last_synced_guid = rvd->vdev_guid;
6397 
6398                 spa_config_exit(spa, SCL_STATE, FTAG);
6399 
6400                 if (error == 0)
6401                         break;
6402                 zio_suspend(spa, NULL);
6403                 zio_resume_wait(spa);
6404         }
6405         dmu_tx_commit(tx);
6406 
6407         VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6408 
6409         /*
6410          * Clear the dirty config list.
6411          */
6412         while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6413                 vdev_config_clean(vd);
6414 
6415         /*
6416          * Now that the new config has synced transactionally,
6417          * let it become visible to the config cache.
6418          */
6419         if (spa->spa_config_syncing != NULL) {
6420                 spa_config_set(spa, spa->spa_config_syncing);
6421                 spa->spa_config_txg = txg;
6422                 spa->spa_config_syncing = NULL;
6423         }
6424 
6425         spa->spa_ubsync = spa->spa_uberblock;
6426 
6427         dsl_pool_sync_done(dp, txg);
6428 
6429         /*
6430          * Update usable space statistics.
6431          */
6432         while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6433                 vdev_sync_done(vd, txg);
6434 
6435         spa_update_dspace(spa);
6436 
6437         /*
6438          * It had better be the case that we didn't dirty anything
6439          * since vdev_config_sync().
6440          */
6441         ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6442         ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6443         ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6444 
6445         spa->spa_sync_pass = 0;
6446 
6447         spa_config_exit(spa, SCL_CONFIG, FTAG);
6448 
6449         spa_handle_ignored_writes(spa);
6450 
6451         /*
6452          * If any async tasks have been requested, kick them off.
6453          */
6454         spa_async_dispatch(spa);
6455 }
6456 
6457 /*
6458  * Sync all pools.  We don't want to hold the namespace lock across these
6459  * operations, so we take a reference on the spa_t and drop the lock during the
6460  * sync.
6461  */
6462 void
6463 spa_sync_allpools(void)
6464 {
6465         spa_t *spa = NULL;
6466         mutex_enter(&spa_namespace_lock);
6467         while ((spa = spa_next(spa)) != NULL) {
6468                 if (spa_state(spa) != POOL_STATE_ACTIVE ||
6469                     !spa_writeable(spa) || spa_suspended(spa))
6470                         continue;
6471                 spa_open_ref(spa, FTAG);
6472                 mutex_exit(&spa_namespace_lock);
6473                 txg_wait_synced(spa_get_dsl(spa), 0);
6474                 mutex_enter(&spa_namespace_lock);
6475                 spa_close(spa, FTAG);
6476         }
6477         mutex_exit(&spa_namespace_lock);
6478 }
6479 
6480 /*
6481  * ==========================================================================
6482  * Miscellaneous routines
6483  * ==========================================================================
6484  */
6485 
6486 /*
6487  * Remove all pools in the system.
6488  */
6489 void
6490 spa_evict_all(void)
6491 {
6492         spa_t *spa;
6493 
6494         /*
6495          * Remove all cached state.  All pools should be closed now,
6496          * so every spa in the AVL tree should be unreferenced.
6497          */
6498         mutex_enter(&spa_namespace_lock);
6499         while ((spa = spa_next(NULL)) != NULL) {
6500                 /*
6501                  * Stop async tasks.  The async thread may need to detach
6502                  * a device that's been replaced, which requires grabbing
6503                  * spa_namespace_lock, so we must drop it here.
6504                  */
6505                 spa_open_ref(spa, FTAG);
6506                 mutex_exit(&spa_namespace_lock);
6507                 spa_async_suspend(spa);
6508                 mutex_enter(&spa_namespace_lock);
6509                 spa_close(spa, FTAG);
6510 
6511                 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6512                         spa_unload(spa);
6513                         spa_deactivate(spa);
6514                 }
6515                 spa_remove(spa);
6516         }
6517         mutex_exit(&spa_namespace_lock);
6518 }
6519 
6520 vdev_t *
6521 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6522 {
6523         vdev_t *vd;
6524         int i;
6525 
6526         if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6527                 return (vd);
6528 
6529         if (aux) {
6530                 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6531                         vd = spa->spa_l2cache.sav_vdevs[i];
6532                         if (vd->vdev_guid == guid)
6533                                 return (vd);
6534                 }
6535 
6536                 for (i = 0; i < spa->spa_spares.sav_count; i++) {
6537                         vd = spa->spa_spares.sav_vdevs[i];
6538                         if (vd->vdev_guid == guid)
6539                                 return (vd);
6540                 }
6541         }
6542 
6543         return (NULL);
6544 }
6545 
6546 void
6547 spa_upgrade(spa_t *spa, uint64_t version)
6548 {
6549         ASSERT(spa_writeable(spa));
6550 
6551         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6552 
6553         /*
6554          * This should only be called for a non-faulted pool, and since a
6555          * future version would result in an unopenable pool, this shouldn't be
6556          * possible.
6557          */
6558         ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6559         ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
6560 
6561         spa->spa_uberblock.ub_version = version;
6562         vdev_config_dirty(spa->spa_root_vdev);
6563 
6564         spa_config_exit(spa, SCL_ALL, FTAG);
6565 
6566         txg_wait_synced(spa_get_dsl(spa), 0);
6567 }
6568 
6569 boolean_t
6570 spa_has_spare(spa_t *spa, uint64_t guid)
6571 {
6572         int i;
6573         uint64_t spareguid;
6574         spa_aux_vdev_t *sav = &spa->spa_spares;
6575 
6576         for (i = 0; i < sav->sav_count; i++)
6577                 if (sav->sav_vdevs[i]->vdev_guid == guid)
6578                         return (B_TRUE);
6579 
6580         for (i = 0; i < sav->sav_npending; i++) {
6581                 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6582                     &spareguid) == 0 && spareguid == guid)
6583                         return (B_TRUE);
6584         }
6585 
6586         return (B_FALSE);
6587 }
6588 
6589 /*
6590  * Check if a pool has an active shared spare device.
6591  * Note: reference count of an active spare is 2, as a spare and as a replace
6592  */
6593 static boolean_t
6594 spa_has_active_shared_spare(spa_t *spa)
6595 {
6596         int i, refcnt;
6597         uint64_t pool;
6598         spa_aux_vdev_t *sav = &spa->spa_spares;
6599 
6600         for (i = 0; i < sav->sav_count; i++) {
6601                 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6602                     &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6603                     refcnt > 2)
6604                         return (B_TRUE);
6605         }
6606 
6607         return (B_FALSE);
6608 }
6609 
6610 /*
6611  * Post a sysevent corresponding to the given event.  The 'name' must be one of
6612  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
6613  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
6614  * in the userland libzpool, as we don't want consumers to misinterpret ztest
6615  * or zdb as real changes.
6616  */
6617 void
6618 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6619 {
6620 #ifdef _KERNEL
6621         sysevent_t              *ev;
6622         sysevent_attr_list_t    *attr = NULL;
6623         sysevent_value_t        value;
6624         sysevent_id_t           eid;
6625 
6626         ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
6627             SE_SLEEP);
6628 
6629         value.value_type = SE_DATA_TYPE_STRING;
6630         value.value.sv_string = spa_name(spa);
6631         if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
6632                 goto done;
6633 
6634         value.value_type = SE_DATA_TYPE_UINT64;
6635         value.value.sv_uint64 = spa_guid(spa);
6636         if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
6637                 goto done;
6638 
6639         if (vd) {
6640                 value.value_type = SE_DATA_TYPE_UINT64;
6641                 value.value.sv_uint64 = vd->vdev_guid;
6642                 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
6643                     SE_SLEEP) != 0)
6644                         goto done;
6645 
6646                 if (vd->vdev_path) {
6647                         value.value_type = SE_DATA_TYPE_STRING;
6648                         value.value.sv_string = vd->vdev_path;
6649                         if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
6650                             &value, SE_SLEEP) != 0)
6651                                 goto done;
6652                 }
6653         }
6654 
6655         if (sysevent_attach_attributes(ev, attr) != 0)
6656                 goto done;
6657         attr = NULL;
6658 
6659         (void) log_sysevent(ev, SE_SLEEP, &eid);
6660 
6661 done:
6662         if (attr)
6663                 sysevent_free_attr(attr);
6664         sysevent_free(ev);
6665 #endif
6666 }