1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
25 * Copyright (c) 2013, 2014, Nexenta Systems, Inc. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 */
28
29 /*
30 * SPA: Storage Pool Allocator
31 *
32 * This file contains all the routines used when modifying on-disk SPA state.
33 * This includes opening, importing, destroying, exporting a pool, and syncing a
34 * pool.
35 */
36
37 #include <sys/zfs_context.h>
38 #include <sys/fm/fs/zfs.h>
39 #include <sys/spa_impl.h>
40 #include <sys/zio.h>
41 #include <sys/zio_checksum.h>
42 #include <sys/dmu.h>
43 #include <sys/dmu_tx.h>
44 #include <sys/zap.h>
45 #include <sys/zil.h>
46 #include <sys/ddt.h>
47 #include <sys/vdev_impl.h>
48 #include <sys/metaslab.h>
49 #include <sys/metaslab_impl.h>
50 #include <sys/uberblock_impl.h>
51 #include <sys/txg.h>
52 #include <sys/avl.h>
53 #include <sys/dmu_traverse.h>
54 #include <sys/dmu_objset.h>
55 #include <sys/unique.h>
56 #include <sys/dsl_pool.h>
57 #include <sys/dsl_dataset.h>
58 #include <sys/dsl_dir.h>
59 #include <sys/dsl_prop.h>
60 #include <sys/dsl_synctask.h>
61 #include <sys/fs/zfs.h>
62 #include <sys/arc.h>
63 #include <sys/callb.h>
64 #include <sys/systeminfo.h>
65 #include <sys/spa_boot.h>
66 #include <sys/zfs_ioctl.h>
67 #include <sys/dsl_scan.h>
68 #include <sys/zfeature.h>
69 #include <sys/dsl_destroy.h>
70
71 #ifdef _KERNEL
72 #include <sys/bootprops.h>
73 #include <sys/callb.h>
74 #include <sys/cpupart.h>
75 #include <sys/pool.h>
76 #include <sys/sysdc.h>
77 #include <sys/zone.h>
78 #endif /* _KERNEL */
79
80 #include "zfs_prop.h"
81 #include "zfs_comutil.h"
82
83 /*
84 * The interval, in seconds, at which failed configuration cache file writes
85 * should be retried.
86 */
87 static int zfs_ccw_retry_interval = 300;
88
89 typedef enum zti_modes {
90 ZTI_MODE_FIXED, /* value is # of threads (min 1) */
91 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */
92 ZTI_MODE_NULL, /* don't create a taskq */
93 ZTI_NMODES
94 } zti_modes_t;
95
96 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) }
97 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 }
98 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 }
99
100 #define ZTI_N(n) ZTI_P(n, 1)
101 #define ZTI_ONE ZTI_N(1)
102
103 typedef struct zio_taskq_info {
104 zti_modes_t zti_mode;
105 uint_t zti_value;
106 uint_t zti_count;
107 } zio_taskq_info_t;
108
109 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
110 "issue", "issue_high", "intr", "intr_high"
111 };
112
113 /*
114 * This table defines the taskq settings for each ZFS I/O type. When
115 * initializing a pool, we use this table to create an appropriately sized
116 * taskq. Some operations are low volume and therefore have a small, static
117 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
118 * macros. Other operations process a large amount of data; the ZTI_BATCH
119 * macro causes us to create a taskq oriented for throughput. Some operations
120 * are so high frequency and short-lived that the taskq itself can become a a
121 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
122 * additional degree of parallelism specified by the number of threads per-
123 * taskq and the number of taskqs; when dispatching an event in this case, the
124 * particular taskq is chosen at random.
125 *
126 * The different taskq priorities are to handle the different contexts (issue
127 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
128 * need to be handled with minimum delay.
129 */
130 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
131 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */
132 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */
133 { ZTI_N(8), ZTI_NULL, ZTI_P(12, 8), ZTI_NULL }, /* READ */
134 { ZTI_BATCH, ZTI_N(5), ZTI_N(8), ZTI_N(5) }, /* WRITE */
135 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */
136 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */
137 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */
138 };
139
140 static void spa_sync_version(void *arg, dmu_tx_t *tx);
141 static void spa_sync_props(void *arg, dmu_tx_t *tx);
142 static boolean_t spa_has_active_shared_spare(spa_t *spa);
143 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
144 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
145 char **ereport);
146 static void spa_vdev_resilver_done(spa_t *spa);
147
148 uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */
149 id_t zio_taskq_psrset_bind = PS_NONE;
150 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
151 uint_t zio_taskq_basedc = 80; /* base duty cycle */
152
153 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */
154 extern int zfs_sync_pass_deferred_free;
155
156 /*
157 * This (illegal) pool name is used when temporarily importing a spa_t in order
158 * to get the vdev stats associated with the imported devices.
159 */
160 #define TRYIMPORT_NAME "$import"
161
162 /*
163 * ==========================================================================
164 * SPA properties routines
165 * ==========================================================================
166 */
167
168 /*
169 * Add a (source=src, propname=propval) list to an nvlist.
170 */
171 static void
172 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
173 uint64_t intval, zprop_source_t src)
174 {
175 const char *propname = zpool_prop_to_name(prop);
176 nvlist_t *propval;
177
178 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
179 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
180
181 if (strval != NULL)
182 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
183 else
184 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
185
186 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
187 nvlist_free(propval);
188 }
189
190 /*
191 * Get property values from the spa configuration.
192 */
193 static void
194 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
195 {
196 vdev_t *rvd = spa->spa_root_vdev;
197 dsl_pool_t *pool = spa->spa_dsl_pool;
198 uint64_t size, alloc, cap, version;
199 zprop_source_t src = ZPROP_SRC_NONE;
200 spa_config_dirent_t *dp;
201 metaslab_class_t *mc = spa_normal_class(spa);
202
203 ASSERT(MUTEX_HELD(&spa->spa_props_lock));
204
205 if (rvd != NULL) {
206 alloc = metaslab_class_get_alloc(spa_normal_class(spa));
207 size = metaslab_class_get_space(spa_normal_class(spa));
208 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
209 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
210 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
211 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
212 size - alloc, src);
213
214 spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
215 metaslab_class_fragmentation(mc), src);
216 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
217 metaslab_class_expandable_space(mc), src);
218 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
219 (spa_mode(spa) == FREAD), src);
220
221 cap = (size == 0) ? 0 : (alloc * 100 / size);
222 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
223
224 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
225 ddt_get_pool_dedup_ratio(spa), src);
226
227 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
228 rvd->vdev_state, src);
229
230 version = spa_version(spa);
231 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
232 src = ZPROP_SRC_DEFAULT;
233 else
234 src = ZPROP_SRC_LOCAL;
235 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
236 }
237
238 if (pool != NULL) {
239 /*
240 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
241 * when opening pools before this version freedir will be NULL.
242 */
243 if (pool->dp_free_dir != NULL) {
244 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
245 dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
246 src);
247 } else {
248 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
249 NULL, 0, src);
250 }
251
252 if (pool->dp_leak_dir != NULL) {
253 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
254 dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
255 src);
256 } else {
257 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
258 NULL, 0, src);
259 }
260 }
261
262 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
263
264 if (spa->spa_comment != NULL) {
265 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
266 0, ZPROP_SRC_LOCAL);
267 }
268
269 if (spa->spa_root != NULL)
270 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
271 0, ZPROP_SRC_LOCAL);
272
273 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
274 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
275 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
276 } else {
277 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
278 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
279 }
280
281 if ((dp = list_head(&spa->spa_config_list)) != NULL) {
282 if (dp->scd_path == NULL) {
283 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
284 "none", 0, ZPROP_SRC_LOCAL);
285 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
286 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
287 dp->scd_path, 0, ZPROP_SRC_LOCAL);
288 }
289 }
290 }
291
292 /*
293 * Get zpool property values.
294 */
295 int
296 spa_prop_get(spa_t *spa, nvlist_t **nvp)
297 {
298 objset_t *mos = spa->spa_meta_objset;
299 zap_cursor_t zc;
300 zap_attribute_t za;
301 int err;
302
303 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
304
305 mutex_enter(&spa->spa_props_lock);
306
307 /*
308 * Get properties from the spa config.
309 */
310 spa_prop_get_config(spa, nvp);
311
312 /* If no pool property object, no more prop to get. */
313 if (mos == NULL || spa->spa_pool_props_object == 0) {
314 mutex_exit(&spa->spa_props_lock);
315 return (0);
316 }
317
318 /*
319 * Get properties from the MOS pool property object.
320 */
321 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
322 (err = zap_cursor_retrieve(&zc, &za)) == 0;
323 zap_cursor_advance(&zc)) {
324 uint64_t intval = 0;
325 char *strval = NULL;
326 zprop_source_t src = ZPROP_SRC_DEFAULT;
327 zpool_prop_t prop;
328
329 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
330 continue;
331
332 switch (za.za_integer_length) {
333 case 8:
334 /* integer property */
335 if (za.za_first_integer !=
336 zpool_prop_default_numeric(prop))
337 src = ZPROP_SRC_LOCAL;
338
339 if (prop == ZPOOL_PROP_BOOTFS) {
340 dsl_pool_t *dp;
341 dsl_dataset_t *ds = NULL;
342
343 dp = spa_get_dsl(spa);
344 dsl_pool_config_enter(dp, FTAG);
345 if (err = dsl_dataset_hold_obj(dp,
346 za.za_first_integer, FTAG, &ds)) {
347 dsl_pool_config_exit(dp, FTAG);
348 break;
349 }
350
351 strval = kmem_alloc(
352 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
353 KM_SLEEP);
354 dsl_dataset_name(ds, strval);
355 dsl_dataset_rele(ds, FTAG);
356 dsl_pool_config_exit(dp, FTAG);
357 } else {
358 strval = NULL;
359 intval = za.za_first_integer;
360 }
361
362 spa_prop_add_list(*nvp, prop, strval, intval, src);
363
364 if (strval != NULL)
365 kmem_free(strval,
366 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
367
368 break;
369
370 case 1:
371 /* string property */
372 strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
373 err = zap_lookup(mos, spa->spa_pool_props_object,
374 za.za_name, 1, za.za_num_integers, strval);
375 if (err) {
376 kmem_free(strval, za.za_num_integers);
377 break;
378 }
379 spa_prop_add_list(*nvp, prop, strval, 0, src);
380 kmem_free(strval, za.za_num_integers);
381 break;
382
383 default:
384 break;
385 }
386 }
387 zap_cursor_fini(&zc);
388 mutex_exit(&spa->spa_props_lock);
389 out:
390 if (err && err != ENOENT) {
391 nvlist_free(*nvp);
392 *nvp = NULL;
393 return (err);
394 }
395
396 return (0);
397 }
398
399 /*
400 * Validate the given pool properties nvlist and modify the list
401 * for the property values to be set.
402 */
403 static int
404 spa_prop_validate(spa_t *spa, nvlist_t *props)
405 {
406 nvpair_t *elem;
407 int error = 0, reset_bootfs = 0;
408 uint64_t objnum = 0;
409 boolean_t has_feature = B_FALSE;
410
411 elem = NULL;
412 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
413 uint64_t intval;
414 char *strval, *slash, *check, *fname;
415 const char *propname = nvpair_name(elem);
416 zpool_prop_t prop = zpool_name_to_prop(propname);
417
418 switch (prop) {
419 case ZPROP_INVAL:
420 if (!zpool_prop_feature(propname)) {
421 error = SET_ERROR(EINVAL);
422 break;
423 }
424
425 /*
426 * Sanitize the input.
427 */
428 if (nvpair_type(elem) != DATA_TYPE_UINT64) {
429 error = SET_ERROR(EINVAL);
430 break;
431 }
432
433 if (nvpair_value_uint64(elem, &intval) != 0) {
434 error = SET_ERROR(EINVAL);
435 break;
436 }
437
438 if (intval != 0) {
439 error = SET_ERROR(EINVAL);
440 break;
441 }
442
443 fname = strchr(propname, '@') + 1;
444 if (zfeature_lookup_name(fname, NULL) != 0) {
445 error = SET_ERROR(EINVAL);
446 break;
447 }
448
449 has_feature = B_TRUE;
450 break;
451
452 case ZPOOL_PROP_VERSION:
453 error = nvpair_value_uint64(elem, &intval);
454 if (!error &&
455 (intval < spa_version(spa) ||
456 intval > SPA_VERSION_BEFORE_FEATURES ||
457 has_feature))
458 error = SET_ERROR(EINVAL);
459 break;
460
461 case ZPOOL_PROP_DELEGATION:
462 case ZPOOL_PROP_AUTOREPLACE:
463 case ZPOOL_PROP_LISTSNAPS:
464 case ZPOOL_PROP_AUTOEXPAND:
465 error = nvpair_value_uint64(elem, &intval);
466 if (!error && intval > 1)
467 error = SET_ERROR(EINVAL);
468 break;
469
470 case ZPOOL_PROP_BOOTFS:
471 /*
472 * If the pool version is less than SPA_VERSION_BOOTFS,
473 * or the pool is still being created (version == 0),
474 * the bootfs property cannot be set.
475 */
476 if (spa_version(spa) < SPA_VERSION_BOOTFS) {
477 error = SET_ERROR(ENOTSUP);
478 break;
479 }
480
481 /*
482 * Make sure the vdev config is bootable
483 */
484 if (!vdev_is_bootable(spa->spa_root_vdev)) {
485 error = SET_ERROR(ENOTSUP);
486 break;
487 }
488
489 reset_bootfs = 1;
490
491 error = nvpair_value_string(elem, &strval);
492
493 if (!error) {
494 objset_t *os;
495 uint64_t propval;
496
497 if (strval == NULL || strval[0] == '\0') {
498 objnum = zpool_prop_default_numeric(
499 ZPOOL_PROP_BOOTFS);
500 break;
501 }
502
503 if (error = dmu_objset_hold(strval, FTAG, &os))
504 break;
505
506 /*
507 * Must be ZPL, and its property settings
508 * must be supported by GRUB (compression
509 * is not gzip, and large blocks are not used).
510 */
511
512 if (dmu_objset_type(os) != DMU_OST_ZFS) {
513 error = SET_ERROR(ENOTSUP);
514 } else if ((error =
515 dsl_prop_get_int_ds(dmu_objset_ds(os),
516 zfs_prop_to_name(ZFS_PROP_COMPRESSION),
517 &propval)) == 0 &&
518 !BOOTFS_COMPRESS_VALID(propval)) {
519 error = SET_ERROR(ENOTSUP);
520 } else if ((error =
521 dsl_prop_get_int_ds(dmu_objset_ds(os),
522 zfs_prop_to_name(ZFS_PROP_RECORDSIZE),
523 &propval)) == 0 &&
524 propval > SPA_OLD_MAXBLOCKSIZE) {
525 error = SET_ERROR(ENOTSUP);
526 } else {
527 objnum = dmu_objset_id(os);
528 }
529 dmu_objset_rele(os, FTAG);
530 }
531 break;
532
533 case ZPOOL_PROP_FAILUREMODE:
534 error = nvpair_value_uint64(elem, &intval);
535 if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
536 intval > ZIO_FAILURE_MODE_PANIC))
537 error = SET_ERROR(EINVAL);
538
539 /*
540 * This is a special case which only occurs when
541 * the pool has completely failed. This allows
542 * the user to change the in-core failmode property
543 * without syncing it out to disk (I/Os might
544 * currently be blocked). We do this by returning
545 * EIO to the caller (spa_prop_set) to trick it
546 * into thinking we encountered a property validation
547 * error.
548 */
549 if (!error && spa_suspended(spa)) {
550 spa->spa_failmode = intval;
551 error = SET_ERROR(EIO);
552 }
553 break;
554
555 case ZPOOL_PROP_CACHEFILE:
556 if ((error = nvpair_value_string(elem, &strval)) != 0)
557 break;
558
559 if (strval[0] == '\0')
560 break;
561
562 if (strcmp(strval, "none") == 0)
563 break;
564
565 if (strval[0] != '/') {
566 error = SET_ERROR(EINVAL);
567 break;
568 }
569
570 slash = strrchr(strval, '/');
571 ASSERT(slash != NULL);
572
573 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
574 strcmp(slash, "/..") == 0)
575 error = SET_ERROR(EINVAL);
576 break;
577
578 case ZPOOL_PROP_COMMENT:
579 if ((error = nvpair_value_string(elem, &strval)) != 0)
580 break;
581 for (check = strval; *check != '\0'; check++) {
582 /*
583 * The kernel doesn't have an easy isprint()
584 * check. For this kernel check, we merely
585 * check ASCII apart from DEL. Fix this if
586 * there is an easy-to-use kernel isprint().
587 */
588 if (*check >= 0x7f) {
589 error = SET_ERROR(EINVAL);
590 break;
591 }
592 check++;
593 }
594 if (strlen(strval) > ZPROP_MAX_COMMENT)
595 error = E2BIG;
596 break;
597
598 case ZPOOL_PROP_DEDUPDITTO:
599 if (spa_version(spa) < SPA_VERSION_DEDUP)
600 error = SET_ERROR(ENOTSUP);
601 else
602 error = nvpair_value_uint64(elem, &intval);
603 if (error == 0 &&
604 intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
605 error = SET_ERROR(EINVAL);
606 break;
607 }
608
609 if (error)
610 break;
611 }
612
613 if (!error && reset_bootfs) {
614 error = nvlist_remove(props,
615 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
616
617 if (!error) {
618 error = nvlist_add_uint64(props,
619 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
620 }
621 }
622
623 return (error);
624 }
625
626 void
627 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
628 {
629 char *cachefile;
630 spa_config_dirent_t *dp;
631
632 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
633 &cachefile) != 0)
634 return;
635
636 dp = kmem_alloc(sizeof (spa_config_dirent_t),
637 KM_SLEEP);
638
639 if (cachefile[0] == '\0')
640 dp->scd_path = spa_strdup(spa_config_path);
641 else if (strcmp(cachefile, "none") == 0)
642 dp->scd_path = NULL;
643 else
644 dp->scd_path = spa_strdup(cachefile);
645
646 list_insert_head(&spa->spa_config_list, dp);
647 if (need_sync)
648 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
649 }
650
651 int
652 spa_prop_set(spa_t *spa, nvlist_t *nvp)
653 {
654 int error;
655 nvpair_t *elem = NULL;
656 boolean_t need_sync = B_FALSE;
657
658 if ((error = spa_prop_validate(spa, nvp)) != 0)
659 return (error);
660
661 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
662 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
663
664 if (prop == ZPOOL_PROP_CACHEFILE ||
665 prop == ZPOOL_PROP_ALTROOT ||
666 prop == ZPOOL_PROP_READONLY)
667 continue;
668
669 if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
670 uint64_t ver;
671
672 if (prop == ZPOOL_PROP_VERSION) {
673 VERIFY(nvpair_value_uint64(elem, &ver) == 0);
674 } else {
675 ASSERT(zpool_prop_feature(nvpair_name(elem)));
676 ver = SPA_VERSION_FEATURES;
677 need_sync = B_TRUE;
678 }
679
680 /* Save time if the version is already set. */
681 if (ver == spa_version(spa))
682 continue;
683
684 /*
685 * In addition to the pool directory object, we might
686 * create the pool properties object, the features for
687 * read object, the features for write object, or the
688 * feature descriptions object.
689 */
690 error = dsl_sync_task(spa->spa_name, NULL,
691 spa_sync_version, &ver,
692 6, ZFS_SPACE_CHECK_RESERVED);
693 if (error)
694 return (error);
695 continue;
696 }
697
698 need_sync = B_TRUE;
699 break;
700 }
701
702 if (need_sync) {
703 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
704 nvp, 6, ZFS_SPACE_CHECK_RESERVED));
705 }
706
707 return (0);
708 }
709
710 /*
711 * If the bootfs property value is dsobj, clear it.
712 */
713 void
714 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
715 {
716 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
717 VERIFY(zap_remove(spa->spa_meta_objset,
718 spa->spa_pool_props_object,
719 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
720 spa->spa_bootfs = 0;
721 }
722 }
723
724 /*ARGSUSED*/
725 static int
726 spa_change_guid_check(void *arg, dmu_tx_t *tx)
727 {
728 uint64_t *newguid = arg;
729 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
730 vdev_t *rvd = spa->spa_root_vdev;
731 uint64_t vdev_state;
732
733 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
734 vdev_state = rvd->vdev_state;
735 spa_config_exit(spa, SCL_STATE, FTAG);
736
737 if (vdev_state != VDEV_STATE_HEALTHY)
738 return (SET_ERROR(ENXIO));
739
740 ASSERT3U(spa_guid(spa), !=, *newguid);
741
742 return (0);
743 }
744
745 static void
746 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
747 {
748 uint64_t *newguid = arg;
749 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
750 uint64_t oldguid;
751 vdev_t *rvd = spa->spa_root_vdev;
752
753 oldguid = spa_guid(spa);
754
755 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
756 rvd->vdev_guid = *newguid;
757 rvd->vdev_guid_sum += (*newguid - oldguid);
758 vdev_config_dirty(rvd);
759 spa_config_exit(spa, SCL_STATE, FTAG);
760
761 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
762 oldguid, *newguid);
763 }
764
765 /*
766 * Change the GUID for the pool. This is done so that we can later
767 * re-import a pool built from a clone of our own vdevs. We will modify
768 * the root vdev's guid, our own pool guid, and then mark all of our
769 * vdevs dirty. Note that we must make sure that all our vdevs are
770 * online when we do this, or else any vdevs that weren't present
771 * would be orphaned from our pool. We are also going to issue a
772 * sysevent to update any watchers.
773 */
774 int
775 spa_change_guid(spa_t *spa)
776 {
777 int error;
778 uint64_t guid;
779
780 mutex_enter(&spa->spa_vdev_top_lock);
781 mutex_enter(&spa_namespace_lock);
782 guid = spa_generate_guid(NULL);
783
784 error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
785 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
786
787 if (error == 0) {
788 spa_config_sync(spa, B_FALSE, B_TRUE);
789 spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
790 }
791
792 mutex_exit(&spa_namespace_lock);
793 mutex_exit(&spa->spa_vdev_top_lock);
794
795 return (error);
796 }
797
798 /*
799 * ==========================================================================
800 * SPA state manipulation (open/create/destroy/import/export)
801 * ==========================================================================
802 */
803
804 static int
805 spa_error_entry_compare(const void *a, const void *b)
806 {
807 spa_error_entry_t *sa = (spa_error_entry_t *)a;
808 spa_error_entry_t *sb = (spa_error_entry_t *)b;
809 int ret;
810
811 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
812 sizeof (zbookmark_phys_t));
813
814 if (ret < 0)
815 return (-1);
816 else if (ret > 0)
817 return (1);
818 else
819 return (0);
820 }
821
822 /*
823 * Utility function which retrieves copies of the current logs and
824 * re-initializes them in the process.
825 */
826 void
827 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
828 {
829 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
830
831 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
832 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
833
834 avl_create(&spa->spa_errlist_scrub,
835 spa_error_entry_compare, sizeof (spa_error_entry_t),
836 offsetof(spa_error_entry_t, se_avl));
837 avl_create(&spa->spa_errlist_last,
838 spa_error_entry_compare, sizeof (spa_error_entry_t),
839 offsetof(spa_error_entry_t, se_avl));
840 }
841
842 static void
843 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
844 {
845 const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
846 enum zti_modes mode = ztip->zti_mode;
847 uint_t value = ztip->zti_value;
848 uint_t count = ztip->zti_count;
849 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
850 char name[32];
851 uint_t flags = 0;
852 boolean_t batch = B_FALSE;
853
854 if (mode == ZTI_MODE_NULL) {
855 tqs->stqs_count = 0;
856 tqs->stqs_taskq = NULL;
857 return;
858 }
859
860 ASSERT3U(count, >, 0);
861
862 tqs->stqs_count = count;
863 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
864
865 switch (mode) {
866 case ZTI_MODE_FIXED:
867 ASSERT3U(value, >=, 1);
868 value = MAX(value, 1);
869 break;
870
871 case ZTI_MODE_BATCH:
872 batch = B_TRUE;
873 flags |= TASKQ_THREADS_CPU_PCT;
874 value = zio_taskq_batch_pct;
875 break;
876
877 default:
878 panic("unrecognized mode for %s_%s taskq (%u:%u) in "
879 "spa_activate()",
880 zio_type_name[t], zio_taskq_types[q], mode, value);
881 break;
882 }
883
884 for (uint_t i = 0; i < count; i++) {
885 taskq_t *tq;
886
887 if (count > 1) {
888 (void) snprintf(name, sizeof (name), "%s_%s_%u",
889 zio_type_name[t], zio_taskq_types[q], i);
890 } else {
891 (void) snprintf(name, sizeof (name), "%s_%s",
892 zio_type_name[t], zio_taskq_types[q]);
893 }
894
895 if (zio_taskq_sysdc && spa->spa_proc != &p0) {
896 if (batch)
897 flags |= TASKQ_DC_BATCH;
898
899 tq = taskq_create_sysdc(name, value, 50, INT_MAX,
900 spa->spa_proc, zio_taskq_basedc, flags);
901 } else {
902 pri_t pri = maxclsyspri;
903 /*
904 * The write issue taskq can be extremely CPU
905 * intensive. Run it at slightly lower priority
906 * than the other taskqs.
907 */
908 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
909 pri--;
910
911 tq = taskq_create_proc(name, value, pri, 50,
912 INT_MAX, spa->spa_proc, flags);
913 }
914
915 tqs->stqs_taskq[i] = tq;
916 }
917 }
918
919 static void
920 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
921 {
922 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
923
924 if (tqs->stqs_taskq == NULL) {
925 ASSERT0(tqs->stqs_count);
926 return;
927 }
928
929 for (uint_t i = 0; i < tqs->stqs_count; i++) {
930 ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
931 taskq_destroy(tqs->stqs_taskq[i]);
932 }
933
934 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
935 tqs->stqs_taskq = NULL;
936 }
937
938 /*
939 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
940 * Note that a type may have multiple discrete taskqs to avoid lock contention
941 * on the taskq itself. In that case we choose which taskq at random by using
942 * the low bits of gethrtime().
943 */
944 void
945 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
946 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
947 {
948 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
949 taskq_t *tq;
950
951 ASSERT3P(tqs->stqs_taskq, !=, NULL);
952 ASSERT3U(tqs->stqs_count, !=, 0);
953
954 if (tqs->stqs_count == 1) {
955 tq = tqs->stqs_taskq[0];
956 } else {
957 tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
958 }
959
960 taskq_dispatch_ent(tq, func, arg, flags, ent);
961 }
962
963 static void
964 spa_create_zio_taskqs(spa_t *spa)
965 {
966 for (int t = 0; t < ZIO_TYPES; t++) {
967 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
968 spa_taskqs_init(spa, t, q);
969 }
970 }
971 }
972
973 #ifdef _KERNEL
974 static void
975 spa_thread(void *arg)
976 {
977 callb_cpr_t cprinfo;
978
979 spa_t *spa = arg;
980 user_t *pu = PTOU(curproc);
981
982 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
983 spa->spa_name);
984
985 ASSERT(curproc != &p0);
986 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
987 "zpool-%s", spa->spa_name);
988 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
989
990 /* bind this thread to the requested psrset */
991 if (zio_taskq_psrset_bind != PS_NONE) {
992 pool_lock();
993 mutex_enter(&cpu_lock);
994 mutex_enter(&pidlock);
995 mutex_enter(&curproc->p_lock);
996
997 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
998 0, NULL, NULL) == 0) {
999 curthread->t_bind_pset = zio_taskq_psrset_bind;
1000 } else {
1001 cmn_err(CE_WARN,
1002 "Couldn't bind process for zfs pool \"%s\" to "
1003 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1004 }
1005
1006 mutex_exit(&curproc->p_lock);
1007 mutex_exit(&pidlock);
1008 mutex_exit(&cpu_lock);
1009 pool_unlock();
1010 }
1011
1012 if (zio_taskq_sysdc) {
1013 sysdc_thread_enter(curthread, 100, 0);
1014 }
1015
1016 spa->spa_proc = curproc;
1017 spa->spa_did = curthread->t_did;
1018
1019 spa_create_zio_taskqs(spa);
1020
1021 mutex_enter(&spa->spa_proc_lock);
1022 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1023
1024 spa->spa_proc_state = SPA_PROC_ACTIVE;
1025 cv_broadcast(&spa->spa_proc_cv);
1026
1027 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1028 while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1029 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1030 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1031
1032 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1033 spa->spa_proc_state = SPA_PROC_GONE;
1034 spa->spa_proc = &p0;
1035 cv_broadcast(&spa->spa_proc_cv);
1036 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */
1037
1038 mutex_enter(&curproc->p_lock);
1039 lwp_exit();
1040 }
1041 #endif
1042
1043 /*
1044 * Activate an uninitialized pool.
1045 */
1046 static void
1047 spa_activate(spa_t *spa, int mode)
1048 {
1049 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1050
1051 spa->spa_state = POOL_STATE_ACTIVE;
1052 spa->spa_mode = mode;
1053
1054 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1055 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1056
1057 /* Try to create a covering process */
1058 mutex_enter(&spa->spa_proc_lock);
1059 ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1060 ASSERT(spa->spa_proc == &p0);
1061 spa->spa_did = 0;
1062
1063 /* Only create a process if we're going to be around a while. */
1064 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1065 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1066 NULL, 0) == 0) {
1067 spa->spa_proc_state = SPA_PROC_CREATED;
1068 while (spa->spa_proc_state == SPA_PROC_CREATED) {
1069 cv_wait(&spa->spa_proc_cv,
1070 &spa->spa_proc_lock);
1071 }
1072 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1073 ASSERT(spa->spa_proc != &p0);
1074 ASSERT(spa->spa_did != 0);
1075 } else {
1076 #ifdef _KERNEL
1077 cmn_err(CE_WARN,
1078 "Couldn't create process for zfs pool \"%s\"\n",
1079 spa->spa_name);
1080 #endif
1081 }
1082 }
1083 mutex_exit(&spa->spa_proc_lock);
1084
1085 /* If we didn't create a process, we need to create our taskqs. */
1086 if (spa->spa_proc == &p0) {
1087 spa_create_zio_taskqs(spa);
1088 }
1089
1090 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1091 offsetof(vdev_t, vdev_config_dirty_node));
1092 list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1093 offsetof(objset_t, os_evicting_node));
1094 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1095 offsetof(vdev_t, vdev_state_dirty_node));
1096
1097 txg_list_create(&spa->spa_vdev_txg_list,
1098 offsetof(struct vdev, vdev_txg_node));
1099
1100 avl_create(&spa->spa_errlist_scrub,
1101 spa_error_entry_compare, sizeof (spa_error_entry_t),
1102 offsetof(spa_error_entry_t, se_avl));
1103 avl_create(&spa->spa_errlist_last,
1104 spa_error_entry_compare, sizeof (spa_error_entry_t),
1105 offsetof(spa_error_entry_t, se_avl));
1106 }
1107
1108 /*
1109 * Opposite of spa_activate().
1110 */
1111 static void
1112 spa_deactivate(spa_t *spa)
1113 {
1114 ASSERT(spa->spa_sync_on == B_FALSE);
1115 ASSERT(spa->spa_dsl_pool == NULL);
1116 ASSERT(spa->spa_root_vdev == NULL);
1117 ASSERT(spa->spa_async_zio_root == NULL);
1118 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1119
1120 spa_evicting_os_wait(spa);
1121
1122 txg_list_destroy(&spa->spa_vdev_txg_list);
1123
1124 list_destroy(&spa->spa_config_dirty_list);
1125 list_destroy(&spa->spa_evicting_os_list);
1126 list_destroy(&spa->spa_state_dirty_list);
1127
1128 for (int t = 0; t < ZIO_TYPES; t++) {
1129 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1130 spa_taskqs_fini(spa, t, q);
1131 }
1132 }
1133
1134 metaslab_class_destroy(spa->spa_normal_class);
1135 spa->spa_normal_class = NULL;
1136
1137 metaslab_class_destroy(spa->spa_log_class);
1138 spa->spa_log_class = NULL;
1139
1140 /*
1141 * If this was part of an import or the open otherwise failed, we may
1142 * still have errors left in the queues. Empty them just in case.
1143 */
1144 spa_errlog_drain(spa);
1145
1146 avl_destroy(&spa->spa_errlist_scrub);
1147 avl_destroy(&spa->spa_errlist_last);
1148
1149 spa->spa_state = POOL_STATE_UNINITIALIZED;
1150
1151 mutex_enter(&spa->spa_proc_lock);
1152 if (spa->spa_proc_state != SPA_PROC_NONE) {
1153 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1154 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1155 cv_broadcast(&spa->spa_proc_cv);
1156 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1157 ASSERT(spa->spa_proc != &p0);
1158 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1159 }
1160 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1161 spa->spa_proc_state = SPA_PROC_NONE;
1162 }
1163 ASSERT(spa->spa_proc == &p0);
1164 mutex_exit(&spa->spa_proc_lock);
1165
1166 /*
1167 * We want to make sure spa_thread() has actually exited the ZFS
1168 * module, so that the module can't be unloaded out from underneath
1169 * it.
1170 */
1171 if (spa->spa_did != 0) {
1172 thread_join(spa->spa_did);
1173 spa->spa_did = 0;
1174 }
1175 }
1176
1177 /*
1178 * Verify a pool configuration, and construct the vdev tree appropriately. This
1179 * will create all the necessary vdevs in the appropriate layout, with each vdev
1180 * in the CLOSED state. This will prep the pool before open/creation/import.
1181 * All vdev validation is done by the vdev_alloc() routine.
1182 */
1183 static int
1184 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1185 uint_t id, int atype)
1186 {
1187 nvlist_t **child;
1188 uint_t children;
1189 int error;
1190
1191 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1192 return (error);
1193
1194 if ((*vdp)->vdev_ops->vdev_op_leaf)
1195 return (0);
1196
1197 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1198 &child, &children);
1199
1200 if (error == ENOENT)
1201 return (0);
1202
1203 if (error) {
1204 vdev_free(*vdp);
1205 *vdp = NULL;
1206 return (SET_ERROR(EINVAL));
1207 }
1208
1209 for (int c = 0; c < children; c++) {
1210 vdev_t *vd;
1211 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1212 atype)) != 0) {
1213 vdev_free(*vdp);
1214 *vdp = NULL;
1215 return (error);
1216 }
1217 }
1218
1219 ASSERT(*vdp != NULL);
1220
1221 return (0);
1222 }
1223
1224 /*
1225 * Opposite of spa_load().
1226 */
1227 static void
1228 spa_unload(spa_t *spa)
1229 {
1230 int i;
1231
1232 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1233
1234 /*
1235 * Stop async tasks.
1236 */
1237 spa_async_suspend(spa);
1238
1239 /*
1240 * Stop syncing.
1241 */
1242 if (spa->spa_sync_on) {
1243 txg_sync_stop(spa->spa_dsl_pool);
1244 spa->spa_sync_on = B_FALSE;
1245 }
1246
1247 /*
1248 * Wait for any outstanding async I/O to complete.
1249 */
1250 if (spa->spa_async_zio_root != NULL) {
1251 for (int i = 0; i < max_ncpus; i++)
1252 (void) zio_wait(spa->spa_async_zio_root[i]);
1253 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1254 spa->spa_async_zio_root = NULL;
1255 }
1256
1257 bpobj_close(&spa->spa_deferred_bpobj);
1258
1259 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1260
1261 /*
1262 * Close all vdevs.
1263 */
1264 if (spa->spa_root_vdev)
1265 vdev_free(spa->spa_root_vdev);
1266 ASSERT(spa->spa_root_vdev == NULL);
1267
1268 /*
1269 * Close the dsl pool.
1270 */
1271 if (spa->spa_dsl_pool) {
1272 dsl_pool_close(spa->spa_dsl_pool);
1273 spa->spa_dsl_pool = NULL;
1274 spa->spa_meta_objset = NULL;
1275 }
1276
1277 ddt_unload(spa);
1278
1279
1280 /*
1281 * Drop and purge level 2 cache
1282 */
1283 spa_l2cache_drop(spa);
1284
1285 for (i = 0; i < spa->spa_spares.sav_count; i++)
1286 vdev_free(spa->spa_spares.sav_vdevs[i]);
1287 if (spa->spa_spares.sav_vdevs) {
1288 kmem_free(spa->spa_spares.sav_vdevs,
1289 spa->spa_spares.sav_count * sizeof (void *));
1290 spa->spa_spares.sav_vdevs = NULL;
1291 }
1292 if (spa->spa_spares.sav_config) {
1293 nvlist_free(spa->spa_spares.sav_config);
1294 spa->spa_spares.sav_config = NULL;
1295 }
1296 spa->spa_spares.sav_count = 0;
1297
1298 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1299 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1300 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1301 }
1302 if (spa->spa_l2cache.sav_vdevs) {
1303 kmem_free(spa->spa_l2cache.sav_vdevs,
1304 spa->spa_l2cache.sav_count * sizeof (void *));
1305 spa->spa_l2cache.sav_vdevs = NULL;
1306 }
1307 if (spa->spa_l2cache.sav_config) {
1308 nvlist_free(spa->spa_l2cache.sav_config);
1309 spa->spa_l2cache.sav_config = NULL;
1310 }
1311 spa->spa_l2cache.sav_count = 0;
1312
1313 spa->spa_async_suspended = 0;
1314
1315 if (spa->spa_comment != NULL) {
1316 spa_strfree(spa->spa_comment);
1317 spa->spa_comment = NULL;
1318 }
1319
1320 spa_config_exit(spa, SCL_ALL, FTAG);
1321 }
1322
1323 /*
1324 * Load (or re-load) the current list of vdevs describing the active spares for
1325 * this pool. When this is called, we have some form of basic information in
1326 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and
1327 * then re-generate a more complete list including status information.
1328 */
1329 static void
1330 spa_load_spares(spa_t *spa)
1331 {
1332 nvlist_t **spares;
1333 uint_t nspares;
1334 int i;
1335 vdev_t *vd, *tvd;
1336
1337 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1338
1339 /*
1340 * First, close and free any existing spare vdevs.
1341 */
1342 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1343 vd = spa->spa_spares.sav_vdevs[i];
1344
1345 /* Undo the call to spa_activate() below */
1346 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1347 B_FALSE)) != NULL && tvd->vdev_isspare)
1348 spa_spare_remove(tvd);
1349 vdev_close(vd);
1350 vdev_free(vd);
1351 }
1352
1353 if (spa->spa_spares.sav_vdevs)
1354 kmem_free(spa->spa_spares.sav_vdevs,
1355 spa->spa_spares.sav_count * sizeof (void *));
1356
1357 if (spa->spa_spares.sav_config == NULL)
1358 nspares = 0;
1359 else
1360 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1361 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1362
1363 spa->spa_spares.sav_count = (int)nspares;
1364 spa->spa_spares.sav_vdevs = NULL;
1365
1366 if (nspares == 0)
1367 return;
1368
1369 /*
1370 * Construct the array of vdevs, opening them to get status in the
1371 * process. For each spare, there is potentially two different vdev_t
1372 * structures associated with it: one in the list of spares (used only
1373 * for basic validation purposes) and one in the active vdev
1374 * configuration (if it's spared in). During this phase we open and
1375 * validate each vdev on the spare list. If the vdev also exists in the
1376 * active configuration, then we also mark this vdev as an active spare.
1377 */
1378 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1379 KM_SLEEP);
1380 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1381 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1382 VDEV_ALLOC_SPARE) == 0);
1383 ASSERT(vd != NULL);
1384
1385 spa->spa_spares.sav_vdevs[i] = vd;
1386
1387 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1388 B_FALSE)) != NULL) {
1389 if (!tvd->vdev_isspare)
1390 spa_spare_add(tvd);
1391
1392 /*
1393 * We only mark the spare active if we were successfully
1394 * able to load the vdev. Otherwise, importing a pool
1395 * with a bad active spare would result in strange
1396 * behavior, because multiple pool would think the spare
1397 * is actively in use.
1398 *
1399 * There is a vulnerability here to an equally bizarre
1400 * circumstance, where a dead active spare is later
1401 * brought back to life (onlined or otherwise). Given
1402 * the rarity of this scenario, and the extra complexity
1403 * it adds, we ignore the possibility.
1404 */
1405 if (!vdev_is_dead(tvd))
1406 spa_spare_activate(tvd);
1407 }
1408
1409 vd->vdev_top = vd;
1410 vd->vdev_aux = &spa->spa_spares;
1411
1412 if (vdev_open(vd) != 0)
1413 continue;
1414
1415 if (vdev_validate_aux(vd) == 0)
1416 spa_spare_add(vd);
1417 }
1418
1419 /*
1420 * Recompute the stashed list of spares, with status information
1421 * this time.
1422 */
1423 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1424 DATA_TYPE_NVLIST_ARRAY) == 0);
1425
1426 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1427 KM_SLEEP);
1428 for (i = 0; i < spa->spa_spares.sav_count; i++)
1429 spares[i] = vdev_config_generate(spa,
1430 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1431 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1432 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1433 for (i = 0; i < spa->spa_spares.sav_count; i++)
1434 nvlist_free(spares[i]);
1435 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1436 }
1437
1438 /*
1439 * Load (or re-load) the current list of vdevs describing the active l2cache for
1440 * this pool. When this is called, we have some form of basic information in
1441 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and
1442 * then re-generate a more complete list including status information.
1443 * Devices which are already active have their details maintained, and are
1444 * not re-opened.
1445 */
1446 static void
1447 spa_load_l2cache(spa_t *spa)
1448 {
1449 nvlist_t **l2cache;
1450 uint_t nl2cache;
1451 int i, j, oldnvdevs;
1452 uint64_t guid;
1453 vdev_t *vd, **oldvdevs, **newvdevs;
1454 spa_aux_vdev_t *sav = &spa->spa_l2cache;
1455
1456 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1457
1458 if (sav->sav_config != NULL) {
1459 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1460 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1461 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1462 } else {
1463 nl2cache = 0;
1464 newvdevs = NULL;
1465 }
1466
1467 oldvdevs = sav->sav_vdevs;
1468 oldnvdevs = sav->sav_count;
1469 sav->sav_vdevs = NULL;
1470 sav->sav_count = 0;
1471
1472 /*
1473 * Process new nvlist of vdevs.
1474 */
1475 for (i = 0; i < nl2cache; i++) {
1476 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1477 &guid) == 0);
1478
1479 newvdevs[i] = NULL;
1480 for (j = 0; j < oldnvdevs; j++) {
1481 vd = oldvdevs[j];
1482 if (vd != NULL && guid == vd->vdev_guid) {
1483 /*
1484 * Retain previous vdev for add/remove ops.
1485 */
1486 newvdevs[i] = vd;
1487 oldvdevs[j] = NULL;
1488 break;
1489 }
1490 }
1491
1492 if (newvdevs[i] == NULL) {
1493 /*
1494 * Create new vdev
1495 */
1496 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1497 VDEV_ALLOC_L2CACHE) == 0);
1498 ASSERT(vd != NULL);
1499 newvdevs[i] = vd;
1500
1501 /*
1502 * Commit this vdev as an l2cache device,
1503 * even if it fails to open.
1504 */
1505 spa_l2cache_add(vd);
1506
1507 vd->vdev_top = vd;
1508 vd->vdev_aux = sav;
1509
1510 spa_l2cache_activate(vd);
1511
1512 if (vdev_open(vd) != 0)
1513 continue;
1514
1515 (void) vdev_validate_aux(vd);
1516
1517 if (!vdev_is_dead(vd))
1518 l2arc_add_vdev(spa, vd);
1519 }
1520 }
1521
1522 /*
1523 * Purge vdevs that were dropped
1524 */
1525 for (i = 0; i < oldnvdevs; i++) {
1526 uint64_t pool;
1527
1528 vd = oldvdevs[i];
1529 if (vd != NULL) {
1530 ASSERT(vd->vdev_isl2cache);
1531
1532 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1533 pool != 0ULL && l2arc_vdev_present(vd))
1534 l2arc_remove_vdev(vd);
1535 vdev_clear_stats(vd);
1536 vdev_free(vd);
1537 }
1538 }
1539
1540 if (oldvdevs)
1541 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1542
1543 if (sav->sav_config == NULL)
1544 goto out;
1545
1546 sav->sav_vdevs = newvdevs;
1547 sav->sav_count = (int)nl2cache;
1548
1549 /*
1550 * Recompute the stashed list of l2cache devices, with status
1551 * information this time.
1552 */
1553 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1554 DATA_TYPE_NVLIST_ARRAY) == 0);
1555
1556 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1557 for (i = 0; i < sav->sav_count; i++)
1558 l2cache[i] = vdev_config_generate(spa,
1559 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1560 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1561 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1562 out:
1563 for (i = 0; i < sav->sav_count; i++)
1564 nvlist_free(l2cache[i]);
1565 if (sav->sav_count)
1566 kmem_free(l2cache, sav->sav_count * sizeof (void *));
1567 }
1568
1569 static int
1570 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1571 {
1572 dmu_buf_t *db;
1573 char *packed = NULL;
1574 size_t nvsize = 0;
1575 int error;
1576 *value = NULL;
1577
1578 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1579 if (error != 0)
1580 return (error);
1581
1582 nvsize = *(uint64_t *)db->db_data;
1583 dmu_buf_rele(db, FTAG);
1584
1585 packed = kmem_alloc(nvsize, KM_SLEEP);
1586 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1587 DMU_READ_PREFETCH);
1588 if (error == 0)
1589 error = nvlist_unpack(packed, nvsize, value, 0);
1590 kmem_free(packed, nvsize);
1591
1592 return (error);
1593 }
1594
1595 /*
1596 * Checks to see if the given vdev could not be opened, in which case we post a
1597 * sysevent to notify the autoreplace code that the device has been removed.
1598 */
1599 static void
1600 spa_check_removed(vdev_t *vd)
1601 {
1602 for (int c = 0; c < vd->vdev_children; c++)
1603 spa_check_removed(vd->vdev_child[c]);
1604
1605 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1606 !vd->vdev_ishole) {
1607 zfs_post_autoreplace(vd->vdev_spa, vd);
1608 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1609 }
1610 }
1611
1612 /*
1613 * Validate the current config against the MOS config
1614 */
1615 static boolean_t
1616 spa_config_valid(spa_t *spa, nvlist_t *config)
1617 {
1618 vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1619 nvlist_t *nv;
1620
1621 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1622
1623 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1624 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1625
1626 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1627
1628 /*
1629 * If we're doing a normal import, then build up any additional
1630 * diagnostic information about missing devices in this config.
1631 * We'll pass this up to the user for further processing.
1632 */
1633 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1634 nvlist_t **child, *nv;
1635 uint64_t idx = 0;
1636
1637 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1638 KM_SLEEP);
1639 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1640
1641 for (int c = 0; c < rvd->vdev_children; c++) {
1642 vdev_t *tvd = rvd->vdev_child[c];
1643 vdev_t *mtvd = mrvd->vdev_child[c];
1644
1645 if (tvd->vdev_ops == &vdev_missing_ops &&
1646 mtvd->vdev_ops != &vdev_missing_ops &&
1647 mtvd->vdev_islog)
1648 child[idx++] = vdev_config_generate(spa, mtvd,
1649 B_FALSE, 0);
1650 }
1651
1652 if (idx) {
1653 VERIFY(nvlist_add_nvlist_array(nv,
1654 ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1655 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1656 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1657
1658 for (int i = 0; i < idx; i++)
1659 nvlist_free(child[i]);
1660 }
1661 nvlist_free(nv);
1662 kmem_free(child, rvd->vdev_children * sizeof (char **));
1663 }
1664
1665 /*
1666 * Compare the root vdev tree with the information we have
1667 * from the MOS config (mrvd). Check each top-level vdev
1668 * with the corresponding MOS config top-level (mtvd).
1669 */
1670 for (int c = 0; c < rvd->vdev_children; c++) {
1671 vdev_t *tvd = rvd->vdev_child[c];
1672 vdev_t *mtvd = mrvd->vdev_child[c];
1673
1674 /*
1675 * Resolve any "missing" vdevs in the current configuration.
1676 * If we find that the MOS config has more accurate information
1677 * about the top-level vdev then use that vdev instead.
1678 */
1679 if (tvd->vdev_ops == &vdev_missing_ops &&
1680 mtvd->vdev_ops != &vdev_missing_ops) {
1681
1682 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1683 continue;
1684
1685 /*
1686 * Device specific actions.
1687 */
1688 if (mtvd->vdev_islog) {
1689 spa_set_log_state(spa, SPA_LOG_CLEAR);
1690 } else {
1691 /*
1692 * XXX - once we have 'readonly' pool
1693 * support we should be able to handle
1694 * missing data devices by transitioning
1695 * the pool to readonly.
1696 */
1697 continue;
1698 }
1699
1700 /*
1701 * Swap the missing vdev with the data we were
1702 * able to obtain from the MOS config.
1703 */
1704 vdev_remove_child(rvd, tvd);
1705 vdev_remove_child(mrvd, mtvd);
1706
1707 vdev_add_child(rvd, mtvd);
1708 vdev_add_child(mrvd, tvd);
1709
1710 spa_config_exit(spa, SCL_ALL, FTAG);
1711 vdev_load(mtvd);
1712 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1713
1714 vdev_reopen(rvd);
1715 } else if (mtvd->vdev_islog) {
1716 /*
1717 * Load the slog device's state from the MOS config
1718 * since it's possible that the label does not
1719 * contain the most up-to-date information.
1720 */
1721 vdev_load_log_state(tvd, mtvd);
1722 vdev_reopen(tvd);
1723 }
1724 }
1725 vdev_free(mrvd);
1726 spa_config_exit(spa, SCL_ALL, FTAG);
1727
1728 /*
1729 * Ensure we were able to validate the config.
1730 */
1731 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1732 }
1733
1734 /*
1735 * Check for missing log devices
1736 */
1737 static boolean_t
1738 spa_check_logs(spa_t *spa)
1739 {
1740 boolean_t rv = B_FALSE;
1741
1742 switch (spa->spa_log_state) {
1743 case SPA_LOG_MISSING:
1744 /* need to recheck in case slog has been restored */
1745 case SPA_LOG_UNKNOWN:
1746 rv = (dmu_objset_find(spa->spa_name, zil_check_log_chain,
1747 NULL, DS_FIND_CHILDREN) != 0);
1748 if (rv)
1749 spa_set_log_state(spa, SPA_LOG_MISSING);
1750 break;
1751 }
1752 return (rv);
1753 }
1754
1755 static boolean_t
1756 spa_passivate_log(spa_t *spa)
1757 {
1758 vdev_t *rvd = spa->spa_root_vdev;
1759 boolean_t slog_found = B_FALSE;
1760
1761 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1762
1763 if (!spa_has_slogs(spa))
1764 return (B_FALSE);
1765
1766 for (int c = 0; c < rvd->vdev_children; c++) {
1767 vdev_t *tvd = rvd->vdev_child[c];
1768 metaslab_group_t *mg = tvd->vdev_mg;
1769
1770 if (tvd->vdev_islog) {
1771 metaslab_group_passivate(mg);
1772 slog_found = B_TRUE;
1773 }
1774 }
1775
1776 return (slog_found);
1777 }
1778
1779 static void
1780 spa_activate_log(spa_t *spa)
1781 {
1782 vdev_t *rvd = spa->spa_root_vdev;
1783
1784 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1785
1786 for (int c = 0; c < rvd->vdev_children; c++) {
1787 vdev_t *tvd = rvd->vdev_child[c];
1788 metaslab_group_t *mg = tvd->vdev_mg;
1789
1790 if (tvd->vdev_islog)
1791 metaslab_group_activate(mg);
1792 }
1793 }
1794
1795 int
1796 spa_offline_log(spa_t *spa)
1797 {
1798 int error;
1799
1800 error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1801 NULL, DS_FIND_CHILDREN);
1802 if (error == 0) {
1803 /*
1804 * We successfully offlined the log device, sync out the
1805 * current txg so that the "stubby" block can be removed
1806 * by zil_sync().
1807 */
1808 txg_wait_synced(spa->spa_dsl_pool, 0);
1809 }
1810 return (error);
1811 }
1812
1813 static void
1814 spa_aux_check_removed(spa_aux_vdev_t *sav)
1815 {
1816 for (int i = 0; i < sav->sav_count; i++)
1817 spa_check_removed(sav->sav_vdevs[i]);
1818 }
1819
1820 void
1821 spa_claim_notify(zio_t *zio)
1822 {
1823 spa_t *spa = zio->io_spa;
1824
1825 if (zio->io_error)
1826 return;
1827
1828 mutex_enter(&spa->spa_props_lock); /* any mutex will do */
1829 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1830 spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1831 mutex_exit(&spa->spa_props_lock);
1832 }
1833
1834 typedef struct spa_load_error {
1835 uint64_t sle_meta_count;
1836 uint64_t sle_data_count;
1837 } spa_load_error_t;
1838
1839 static void
1840 spa_load_verify_done(zio_t *zio)
1841 {
1842 blkptr_t *bp = zio->io_bp;
1843 spa_load_error_t *sle = zio->io_private;
1844 dmu_object_type_t type = BP_GET_TYPE(bp);
1845 int error = zio->io_error;
1846 spa_t *spa = zio->io_spa;
1847
1848 if (error) {
1849 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1850 type != DMU_OT_INTENT_LOG)
1851 atomic_inc_64(&sle->sle_meta_count);
1852 else
1853 atomic_inc_64(&sle->sle_data_count);
1854 }
1855 zio_data_buf_free(zio->io_data, zio->io_size);
1856
1857 mutex_enter(&spa->spa_scrub_lock);
1858 spa->spa_scrub_inflight--;
1859 cv_broadcast(&spa->spa_scrub_io_cv);
1860 mutex_exit(&spa->spa_scrub_lock);
1861 }
1862
1863 /*
1864 * Maximum number of concurrent scrub i/os to create while verifying
1865 * a pool while importing it.
1866 */
1867 int spa_load_verify_maxinflight = 10000;
1868 boolean_t spa_load_verify_metadata = B_TRUE;
1869 boolean_t spa_load_verify_data = B_TRUE;
1870
1871 /*ARGSUSED*/
1872 static int
1873 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1874 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1875 {
1876 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
1877 return (0);
1878 /*
1879 * Note: normally this routine will not be called if
1880 * spa_load_verify_metadata is not set. However, it may be useful
1881 * to manually set the flag after the traversal has begun.
1882 */
1883 if (!spa_load_verify_metadata)
1884 return (0);
1885 if (BP_GET_BUFC_TYPE(bp) == ARC_BUFC_DATA && !spa_load_verify_data)
1886 return (0);
1887
1888 zio_t *rio = arg;
1889 size_t size = BP_GET_PSIZE(bp);
1890 void *data = zio_data_buf_alloc(size);
1891
1892 mutex_enter(&spa->spa_scrub_lock);
1893 while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight)
1894 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1895 spa->spa_scrub_inflight++;
1896 mutex_exit(&spa->spa_scrub_lock);
1897
1898 zio_nowait(zio_read(rio, spa, bp, data, size,
1899 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1900 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1901 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1902 return (0);
1903 }
1904
1905 static int
1906 spa_load_verify(spa_t *spa)
1907 {
1908 zio_t *rio;
1909 spa_load_error_t sle = { 0 };
1910 zpool_rewind_policy_t policy;
1911 boolean_t verify_ok = B_FALSE;
1912 int error = 0;
1913
1914 zpool_get_rewind_policy(spa->spa_config, &policy);
1915
1916 if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1917 return (0);
1918
1919 rio = zio_root(spa, NULL, &sle,
1920 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1921
1922 if (spa_load_verify_metadata) {
1923 error = traverse_pool(spa, spa->spa_verify_min_txg,
1924 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
1925 spa_load_verify_cb, rio);
1926 }
1927
1928 (void) zio_wait(rio);
1929
1930 spa->spa_load_meta_errors = sle.sle_meta_count;
1931 spa->spa_load_data_errors = sle.sle_data_count;
1932
1933 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1934 sle.sle_data_count <= policy.zrp_maxdata) {
1935 int64_t loss = 0;
1936
1937 verify_ok = B_TRUE;
1938 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1939 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1940
1941 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1942 VERIFY(nvlist_add_uint64(spa->spa_load_info,
1943 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1944 VERIFY(nvlist_add_int64(spa->spa_load_info,
1945 ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1946 VERIFY(nvlist_add_uint64(spa->spa_load_info,
1947 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1948 } else {
1949 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1950 }
1951
1952 if (error) {
1953 if (error != ENXIO && error != EIO)
1954 error = SET_ERROR(EIO);
1955 return (error);
1956 }
1957
1958 return (verify_ok ? 0 : EIO);
1959 }
1960
1961 /*
1962 * Find a value in the pool props object.
1963 */
1964 static void
1965 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1966 {
1967 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1968 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1969 }
1970
1971 /*
1972 * Find a value in the pool directory object.
1973 */
1974 static int
1975 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1976 {
1977 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1978 name, sizeof (uint64_t), 1, val));
1979 }
1980
1981 static int
1982 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1983 {
1984 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
1985 return (err);
1986 }
1987
1988 /*
1989 * Fix up config after a partly-completed split. This is done with the
1990 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off
1991 * pool have that entry in their config, but only the splitting one contains
1992 * a list of all the guids of the vdevs that are being split off.
1993 *
1994 * This function determines what to do with that list: either rejoin
1995 * all the disks to the pool, or complete the splitting process. To attempt
1996 * the rejoin, each disk that is offlined is marked online again, and
1997 * we do a reopen() call. If the vdev label for every disk that was
1998 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
1999 * then we call vdev_split() on each disk, and complete the split.
2000 *
2001 * Otherwise we leave the config alone, with all the vdevs in place in
2002 * the original pool.
2003 */
2004 static void
2005 spa_try_repair(spa_t *spa, nvlist_t *config)
2006 {
2007 uint_t extracted;
2008 uint64_t *glist;
2009 uint_t i, gcount;
2010 nvlist_t *nvl;
2011 vdev_t **vd;
2012 boolean_t attempt_reopen;
2013
2014 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2015 return;
2016
2017 /* check that the config is complete */
2018 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2019 &glist, &gcount) != 0)
2020 return;
2021
2022 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2023
2024 /* attempt to online all the vdevs & validate */
2025 attempt_reopen = B_TRUE;
2026 for (i = 0; i < gcount; i++) {
2027 if (glist[i] == 0) /* vdev is hole */
2028 continue;
2029
2030 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2031 if (vd[i] == NULL) {
2032 /*
2033 * Don't bother attempting to reopen the disks;
2034 * just do the split.
2035 */
2036 attempt_reopen = B_FALSE;
2037 } else {
2038 /* attempt to re-online it */
2039 vd[i]->vdev_offline = B_FALSE;
2040 }
2041 }
2042
2043 if (attempt_reopen) {
2044 vdev_reopen(spa->spa_root_vdev);
2045
2046 /* check each device to see what state it's in */
2047 for (extracted = 0, i = 0; i < gcount; i++) {
2048 if (vd[i] != NULL &&
2049 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2050 break;
2051 ++extracted;
2052 }
2053 }
2054
2055 /*
2056 * If every disk has been moved to the new pool, or if we never
2057 * even attempted to look at them, then we split them off for
2058 * good.
2059 */
2060 if (!attempt_reopen || gcount == extracted) {
2061 for (i = 0; i < gcount; i++)
2062 if (vd[i] != NULL)
2063 vdev_split(vd[i]);
2064 vdev_reopen(spa->spa_root_vdev);
2065 }
2066
2067 kmem_free(vd, gcount * sizeof (vdev_t *));
2068 }
2069
2070 static int
2071 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2072 boolean_t mosconfig)
2073 {
2074 nvlist_t *config = spa->spa_config;
2075 char *ereport = FM_EREPORT_ZFS_POOL;
2076 char *comment;
2077 int error;
2078 uint64_t pool_guid;
2079 nvlist_t *nvl;
2080
2081 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2082 return (SET_ERROR(EINVAL));
2083
2084 ASSERT(spa->spa_comment == NULL);
2085 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2086 spa->spa_comment = spa_strdup(comment);
2087
2088 /*
2089 * Versioning wasn't explicitly added to the label until later, so if
2090 * it's not present treat it as the initial version.
2091 */
2092 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2093 &spa->spa_ubsync.ub_version) != 0)
2094 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2095
2096 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2097 &spa->spa_config_txg);
2098
2099 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2100 spa_guid_exists(pool_guid, 0)) {
2101 error = SET_ERROR(EEXIST);
2102 } else {
2103 spa->spa_config_guid = pool_guid;
2104
2105 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2106 &nvl) == 0) {
2107 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2108 KM_SLEEP) == 0);
2109 }
2110
2111 nvlist_free(spa->spa_load_info);
2112 spa->spa_load_info = fnvlist_alloc();
2113
2114 gethrestime(&spa->spa_loaded_ts);
2115 error = spa_load_impl(spa, pool_guid, config, state, type,
2116 mosconfig, &ereport);
2117 }
2118
2119 /*
2120 * Don't count references from objsets that are already closed
2121 * and are making their way through the eviction process.
2122 */
2123 spa_evicting_os_wait(spa);
2124 spa->spa_minref = refcount_count(&spa->spa_refcount);
2125 if (error) {
2126 if (error != EEXIST) {
2127 spa->spa_loaded_ts.tv_sec = 0;
2128 spa->spa_loaded_ts.tv_nsec = 0;
2129 }
2130 if (error != EBADF) {
2131 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2132 }
2133 }
2134 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2135 spa->spa_ena = 0;
2136
2137 return (error);
2138 }
2139
2140 /*
2141 * Load an existing storage pool, using the pool's builtin spa_config as a
2142 * source of configuration information.
2143 */
2144 static int
2145 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2146 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2147 char **ereport)
2148 {
2149 int error = 0;
2150 nvlist_t *nvroot = NULL;
2151 nvlist_t *label;
2152 vdev_t *rvd;
2153 uberblock_t *ub = &spa->spa_uberblock;
2154 uint64_t children, config_cache_txg = spa->spa_config_txg;
2155 int orig_mode = spa->spa_mode;
2156 int parse;
2157 uint64_t obj;
2158 boolean_t missing_feat_write = B_FALSE;
2159
2160 /*
2161 * If this is an untrusted config, access the pool in read-only mode.
2162 * This prevents things like resilvering recently removed devices.
2163 */
2164 if (!mosconfig)
2165 spa->spa_mode = FREAD;
2166
2167 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2168
2169 spa->spa_load_state = state;
2170
2171 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2172 return (SET_ERROR(EINVAL));
2173
2174 parse = (type == SPA_IMPORT_EXISTING ?
2175 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2176
2177 /*
2178 * Create "The Godfather" zio to hold all async IOs
2179 */
2180 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2181 KM_SLEEP);
2182 for (int i = 0; i < max_ncpus; i++) {
2183 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2184 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2185 ZIO_FLAG_GODFATHER);
2186 }
2187
2188 /*
2189 * Parse the configuration into a vdev tree. We explicitly set the
2190 * value that will be returned by spa_version() since parsing the
2191 * configuration requires knowing the version number.
2192 */
2193 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2194 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2195 spa_config_exit(spa, SCL_ALL, FTAG);
2196
2197 if (error != 0)
2198 return (error);
2199
2200 ASSERT(spa->spa_root_vdev == rvd);
2201
2202 if (type != SPA_IMPORT_ASSEMBLE) {
2203 ASSERT(spa_guid(spa) == pool_guid);
2204 }
2205
2206 /*
2207 * Try to open all vdevs, loading each label in the process.
2208 */
2209 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2210 error = vdev_open(rvd);
2211 spa_config_exit(spa, SCL_ALL, FTAG);
2212 if (error != 0)
2213 return (error);
2214
2215 /*
2216 * We need to validate the vdev labels against the configuration that
2217 * we have in hand, which is dependent on the setting of mosconfig. If
2218 * mosconfig is true then we're validating the vdev labels based on
2219 * that config. Otherwise, we're validating against the cached config
2220 * (zpool.cache) that was read when we loaded the zfs module, and then
2221 * later we will recursively call spa_load() and validate against
2222 * the vdev config.
2223 *
2224 * If we're assembling a new pool that's been split off from an
2225 * existing pool, the labels haven't yet been updated so we skip
2226 * validation for now.
2227 */
2228 if (type != SPA_IMPORT_ASSEMBLE) {
2229 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2230 error = vdev_validate(rvd, mosconfig);
2231 spa_config_exit(spa, SCL_ALL, FTAG);
2232
2233 if (error != 0)
2234 return (error);
2235
2236 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2237 return (SET_ERROR(ENXIO));
2238 }
2239
2240 /*
2241 * Find the best uberblock.
2242 */
2243 vdev_uberblock_load(rvd, ub, &label);
2244
2245 /*
2246 * If we weren't able to find a single valid uberblock, return failure.
2247 */
2248 if (ub->ub_txg == 0) {
2249 nvlist_free(label);
2250 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2251 }
2252
2253 /*
2254 * If the pool has an unsupported version we can't open it.
2255 */
2256 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2257 nvlist_free(label);
2258 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2259 }
2260
2261 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2262 nvlist_t *features;
2263
2264 /*
2265 * If we weren't able to find what's necessary for reading the
2266 * MOS in the label, return failure.
2267 */
2268 if (label == NULL || nvlist_lookup_nvlist(label,
2269 ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2270 nvlist_free(label);
2271 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2272 ENXIO));
2273 }
2274
2275 /*
2276 * Update our in-core representation with the definitive values
2277 * from the label.
2278 */
2279 nvlist_free(spa->spa_label_features);
2280 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2281 }
2282
2283 nvlist_free(label);
2284
2285 /*
2286 * Look through entries in the label nvlist's features_for_read. If
2287 * there is a feature listed there which we don't understand then we
2288 * cannot open a pool.
2289 */
2290 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2291 nvlist_t *unsup_feat;
2292
2293 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2294 0);
2295
2296 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2297 NULL); nvp != NULL;
2298 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2299 if (!zfeature_is_supported(nvpair_name(nvp))) {
2300 VERIFY(nvlist_add_string(unsup_feat,
2301 nvpair_name(nvp), "") == 0);
2302 }
2303 }
2304
2305 if (!nvlist_empty(unsup_feat)) {
2306 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2307 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2308 nvlist_free(unsup_feat);
2309 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2310 ENOTSUP));
2311 }
2312
2313 nvlist_free(unsup_feat);
2314 }
2315
2316 /*
2317 * If the vdev guid sum doesn't match the uberblock, we have an
2318 * incomplete configuration. We first check to see if the pool
2319 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2320 * If it is, defer the vdev_guid_sum check till later so we
2321 * can handle missing vdevs.
2322 */
2323 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2324 &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2325 rvd->vdev_guid_sum != ub->ub_guid_sum)
2326 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2327
2328 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2329 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2330 spa_try_repair(spa, config);
2331 spa_config_exit(spa, SCL_ALL, FTAG);
2332 nvlist_free(spa->spa_config_splitting);
2333 spa->spa_config_splitting = NULL;
2334 }
2335
2336 /*
2337 * Initialize internal SPA structures.
2338 */
2339 spa->spa_state = POOL_STATE_ACTIVE;
2340 spa->spa_ubsync = spa->spa_uberblock;
2341 spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2342 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2343 spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2344 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2345 spa->spa_claim_max_txg = spa->spa_first_txg;
2346 spa->spa_prev_software_version = ub->ub_software_version;
2347
2348 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2349 if (error)
2350 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2351 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2352
2353 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2354 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2355
2356 if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2357 boolean_t missing_feat_read = B_FALSE;
2358 nvlist_t *unsup_feat, *enabled_feat;
2359
2360 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2361 &spa->spa_feat_for_read_obj) != 0) {
2362 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2363 }
2364
2365 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2366 &spa->spa_feat_for_write_obj) != 0) {
2367 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2368 }
2369
2370 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2371 &spa->spa_feat_desc_obj) != 0) {
2372 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2373 }
2374
2375 enabled_feat = fnvlist_alloc();
2376 unsup_feat = fnvlist_alloc();
2377
2378 if (!spa_features_check(spa, B_FALSE,
2379 unsup_feat, enabled_feat))
2380 missing_feat_read = B_TRUE;
2381
2382 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2383 if (!spa_features_check(spa, B_TRUE,
2384 unsup_feat, enabled_feat)) {
2385 missing_feat_write = B_TRUE;
2386 }
2387 }
2388
2389 fnvlist_add_nvlist(spa->spa_load_info,
2390 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2391
2392 if (!nvlist_empty(unsup_feat)) {
2393 fnvlist_add_nvlist(spa->spa_load_info,
2394 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2395 }
2396
2397 fnvlist_free(enabled_feat);
2398 fnvlist_free(unsup_feat);
2399
2400 if (!missing_feat_read) {
2401 fnvlist_add_boolean(spa->spa_load_info,
2402 ZPOOL_CONFIG_CAN_RDONLY);
2403 }
2404
2405 /*
2406 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2407 * twofold: to determine whether the pool is available for
2408 * import in read-write mode and (if it is not) whether the
2409 * pool is available for import in read-only mode. If the pool
2410 * is available for import in read-write mode, it is displayed
2411 * as available in userland; if it is not available for import
2412 * in read-only mode, it is displayed as unavailable in
2413 * userland. If the pool is available for import in read-only
2414 * mode but not read-write mode, it is displayed as unavailable
2415 * in userland with a special note that the pool is actually
2416 * available for open in read-only mode.
2417 *
2418 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2419 * missing a feature for write, we must first determine whether
2420 * the pool can be opened read-only before returning to
2421 * userland in order to know whether to display the
2422 * abovementioned note.
2423 */
2424 if (missing_feat_read || (missing_feat_write &&
2425 spa_writeable(spa))) {
2426 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2427 ENOTSUP));
2428 }
2429
2430 /*
2431 * Load refcounts for ZFS features from disk into an in-memory
2432 * cache during SPA initialization.
2433 */
2434 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
2435 uint64_t refcount;
2436
2437 error = feature_get_refcount_from_disk(spa,
2438 &spa_feature_table[i], &refcount);
2439 if (error == 0) {
2440 spa->spa_feat_refcount_cache[i] = refcount;
2441 } else if (error == ENOTSUP) {
2442 spa->spa_feat_refcount_cache[i] =
2443 SPA_FEATURE_DISABLED;
2444 } else {
2445 return (spa_vdev_err(rvd,
2446 VDEV_AUX_CORRUPT_DATA, EIO));
2447 }
2448 }
2449 }
2450
2451 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
2452 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
2453 &spa->spa_feat_enabled_txg_obj) != 0)
2454 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2455 }
2456
2457 spa->spa_is_initializing = B_TRUE;
2458 error = dsl_pool_open(spa->spa_dsl_pool);
2459 spa->spa_is_initializing = B_FALSE;
2460 if (error != 0)
2461 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2462
2463 if (!mosconfig) {
2464 uint64_t hostid;
2465 nvlist_t *policy = NULL, *nvconfig;
2466
2467 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2468 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2469
2470 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2471 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2472 char *hostname;
2473 unsigned long myhostid = 0;
2474
2475 VERIFY(nvlist_lookup_string(nvconfig,
2476 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2477
2478 #ifdef _KERNEL
2479 myhostid = zone_get_hostid(NULL);
2480 #else /* _KERNEL */
2481 /*
2482 * We're emulating the system's hostid in userland, so
2483 * we can't use zone_get_hostid().
2484 */
2485 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2486 #endif /* _KERNEL */
2487 if (hostid != 0 && myhostid != 0 &&
2488 hostid != myhostid) {
2489 nvlist_free(nvconfig);
2490 cmn_err(CE_WARN, "pool '%s' could not be "
2491 "loaded as it was last accessed by "
2492 "another system (host: %s hostid: 0x%lx). "
2493 "See: http://illumos.org/msg/ZFS-8000-EY",
2494 spa_name(spa), hostname,
2495 (unsigned long)hostid);
2496 return (SET_ERROR(EBADF));
2497 }
2498 }
2499 if (nvlist_lookup_nvlist(spa->spa_config,
2500 ZPOOL_REWIND_POLICY, &policy) == 0)
2501 VERIFY(nvlist_add_nvlist(nvconfig,
2502 ZPOOL_REWIND_POLICY, policy) == 0);
2503
2504 spa_config_set(spa, nvconfig);
2505 spa_unload(spa);
2506 spa_deactivate(spa);
2507 spa_activate(spa, orig_mode);
2508
2509 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2510 }
2511
2512 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2513 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2514 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2515 if (error != 0)
2516 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2517
2518 /*
2519 * Load the bit that tells us to use the new accounting function
2520 * (raid-z deflation). If we have an older pool, this will not
2521 * be present.
2522 */
2523 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2524 if (error != 0 && error != ENOENT)
2525 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2526
2527 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2528 &spa->spa_creation_version);
2529 if (error != 0 && error != ENOENT)
2530 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2531
2532 /*
2533 * Load the persistent error log. If we have an older pool, this will
2534 * not be present.
2535 */
2536 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2537 if (error != 0 && error != ENOENT)
2538 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2539
2540 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2541 &spa->spa_errlog_scrub);
2542 if (error != 0 && error != ENOENT)
2543 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2544
2545 /*
2546 * Load the history object. If we have an older pool, this
2547 * will not be present.
2548 */
2549 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2550 if (error != 0 && error != ENOENT)
2551 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2552
2553 /*
2554 * If we're assembling the pool from the split-off vdevs of
2555 * an existing pool, we don't want to attach the spares & cache
2556 * devices.
2557 */
2558
2559 /*
2560 * Load any hot spares for this pool.
2561 */
2562 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2563 if (error != 0 && error != ENOENT)
2564 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2565 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2566 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2567 if (load_nvlist(spa, spa->spa_spares.sav_object,
2568 &spa->spa_spares.sav_config) != 0)
2569 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2570
2571 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2572 spa_load_spares(spa);
2573 spa_config_exit(spa, SCL_ALL, FTAG);
2574 } else if (error == 0) {
2575 spa->spa_spares.sav_sync = B_TRUE;
2576 }
2577
2578 /*
2579 * Load any level 2 ARC devices for this pool.
2580 */
2581 error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2582 &spa->spa_l2cache.sav_object);
2583 if (error != 0 && error != ENOENT)
2584 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2585 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2586 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2587 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2588 &spa->spa_l2cache.sav_config) != 0)
2589 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2590
2591 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2592 spa_load_l2cache(spa);
2593 spa_config_exit(spa, SCL_ALL, FTAG);
2594 } else if (error == 0) {
2595 spa->spa_l2cache.sav_sync = B_TRUE;
2596 }
2597
2598 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2599
2600 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2601 if (error && error != ENOENT)
2602 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2603
2604 if (error == 0) {
2605 uint64_t autoreplace;
2606
2607 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2608 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2609 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2610 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2611 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2612 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2613 &spa->spa_dedup_ditto);
2614
2615 spa->spa_autoreplace = (autoreplace != 0);
2616 }
2617
2618 /*
2619 * If the 'autoreplace' property is set, then post a resource notifying
2620 * the ZFS DE that it should not issue any faults for unopenable
2621 * devices. We also iterate over the vdevs, and post a sysevent for any
2622 * unopenable vdevs so that the normal autoreplace handler can take
2623 * over.
2624 */
2625 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2626 spa_check_removed(spa->spa_root_vdev);
2627 /*
2628 * For the import case, this is done in spa_import(), because
2629 * at this point we're using the spare definitions from
2630 * the MOS config, not necessarily from the userland config.
2631 */
2632 if (state != SPA_LOAD_IMPORT) {
2633 spa_aux_check_removed(&spa->spa_spares);
2634 spa_aux_check_removed(&spa->spa_l2cache);
2635 }
2636 }
2637
2638 /*
2639 * Load the vdev state for all toplevel vdevs.
2640 */
2641 vdev_load(rvd);
2642
2643 /*
2644 * Propagate the leaf DTLs we just loaded all the way up the tree.
2645 */
2646 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2647 vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2648 spa_config_exit(spa, SCL_ALL, FTAG);
2649
2650 /*
2651 * Load the DDTs (dedup tables).
2652 */
2653 error = ddt_load(spa);
2654 if (error != 0)
2655 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2656
2657 spa_update_dspace(spa);
2658
2659 /*
2660 * Validate the config, using the MOS config to fill in any
2661 * information which might be missing. If we fail to validate
2662 * the config then declare the pool unfit for use. If we're
2663 * assembling a pool from a split, the log is not transferred
2664 * over.
2665 */
2666 if (type != SPA_IMPORT_ASSEMBLE) {
2667 nvlist_t *nvconfig;
2668
2669 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2670 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2671
2672 if (!spa_config_valid(spa, nvconfig)) {
2673 nvlist_free(nvconfig);
2674 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2675 ENXIO));
2676 }
2677 nvlist_free(nvconfig);
2678
2679 /*
2680 * Now that we've validated the config, check the state of the
2681 * root vdev. If it can't be opened, it indicates one or
2682 * more toplevel vdevs are faulted.
2683 */
2684 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2685 return (SET_ERROR(ENXIO));
2686
2687 if (spa_check_logs(spa)) {
2688 *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2689 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2690 }
2691 }
2692
2693 if (missing_feat_write) {
2694 ASSERT(state == SPA_LOAD_TRYIMPORT);
2695
2696 /*
2697 * At this point, we know that we can open the pool in
2698 * read-only mode but not read-write mode. We now have enough
2699 * information and can return to userland.
2700 */
2701 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2702 }
2703
2704 /*
2705 * We've successfully opened the pool, verify that we're ready
2706 * to start pushing transactions.
2707 */
2708 if (state != SPA_LOAD_TRYIMPORT) {
2709 if (error = spa_load_verify(spa))
2710 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2711 error));
2712 }
2713
2714 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2715 spa->spa_load_max_txg == UINT64_MAX)) {
2716 dmu_tx_t *tx;
2717 int need_update = B_FALSE;
2718
2719 ASSERT(state != SPA_LOAD_TRYIMPORT);
2720
2721 /*
2722 * Claim log blocks that haven't been committed yet.
2723 * This must all happen in a single txg.
2724 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2725 * invoked from zil_claim_log_block()'s i/o done callback.
2726 * Price of rollback is that we abandon the log.
2727 */
2728 spa->spa_claiming = B_TRUE;
2729
2730 tx = dmu_tx_create_assigned(spa_get_dsl(spa),
2731 spa_first_txg(spa));
2732 (void) dmu_objset_find(spa_name(spa),
2733 zil_claim, tx, DS_FIND_CHILDREN);
2734 dmu_tx_commit(tx);
2735
2736 spa->spa_claiming = B_FALSE;
2737
2738 spa_set_log_state(spa, SPA_LOG_GOOD);
2739 spa->spa_sync_on = B_TRUE;
2740 txg_sync_start(spa->spa_dsl_pool);
2741
2742 /*
2743 * Wait for all claims to sync. We sync up to the highest
2744 * claimed log block birth time so that claimed log blocks
2745 * don't appear to be from the future. spa_claim_max_txg
2746 * will have been set for us by either zil_check_log_chain()
2747 * (invoked from spa_check_logs()) or zil_claim() above.
2748 */
2749 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2750
2751 /*
2752 * If the config cache is stale, or we have uninitialized
2753 * metaslabs (see spa_vdev_add()), then update the config.
2754 *
2755 * If this is a verbatim import, trust the current
2756 * in-core spa_config and update the disk labels.
2757 */
2758 if (config_cache_txg != spa->spa_config_txg ||
2759 state == SPA_LOAD_IMPORT ||
2760 state == SPA_LOAD_RECOVER ||
2761 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2762 need_update = B_TRUE;
2763
2764 for (int c = 0; c < rvd->vdev_children; c++)
2765 if (rvd->vdev_child[c]->vdev_ms_array == 0)
2766 need_update = B_TRUE;
2767
2768 /*
2769 * Update the config cache asychronously in case we're the
2770 * root pool, in which case the config cache isn't writable yet.
2771 */
2772 if (need_update)
2773 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2774
2775 /*
2776 * Check all DTLs to see if anything needs resilvering.
2777 */
2778 if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2779 vdev_resilver_needed(rvd, NULL, NULL))
2780 spa_async_request(spa, SPA_ASYNC_RESILVER);
2781
2782 /*
2783 * Log the fact that we booted up (so that we can detect if
2784 * we rebooted in the middle of an operation).
2785 */
2786 spa_history_log_version(spa, "open");
2787
2788 /*
2789 * Delete any inconsistent datasets.
2790 */
2791 (void) dmu_objset_find(spa_name(spa),
2792 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2793
2794 /*
2795 * Clean up any stale temporary dataset userrefs.
2796 */
2797 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2798 }
2799
2800 return (0);
2801 }
2802
2803 static int
2804 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2805 {
2806 int mode = spa->spa_mode;
2807
2808 spa_unload(spa);
2809 spa_deactivate(spa);
2810
2811 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
2812
2813 spa_activate(spa, mode);
2814 spa_async_suspend(spa);
2815
2816 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2817 }
2818
2819 /*
2820 * If spa_load() fails this function will try loading prior txg's. If
2821 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2822 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2823 * function will not rewind the pool and will return the same error as
2824 * spa_load().
2825 */
2826 static int
2827 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2828 uint64_t max_request, int rewind_flags)
2829 {
2830 nvlist_t *loadinfo = NULL;
2831 nvlist_t *config = NULL;
2832 int load_error, rewind_error;
2833 uint64_t safe_rewind_txg;
2834 uint64_t min_txg;
2835
2836 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2837 spa->spa_load_max_txg = spa->spa_load_txg;
2838 spa_set_log_state(spa, SPA_LOG_CLEAR);
2839 } else {
2840 spa->spa_load_max_txg = max_request;
2841 if (max_request != UINT64_MAX)
2842 spa->spa_extreme_rewind = B_TRUE;
2843 }
2844
2845 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2846 mosconfig);
2847 if (load_error == 0)
2848 return (0);
2849
2850 if (spa->spa_root_vdev != NULL)
2851 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2852
2853 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2854 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2855
2856 if (rewind_flags & ZPOOL_NEVER_REWIND) {
2857 nvlist_free(config);
2858 return (load_error);
2859 }
2860
2861 if (state == SPA_LOAD_RECOVER) {
2862 /* Price of rolling back is discarding txgs, including log */
2863 spa_set_log_state(spa, SPA_LOG_CLEAR);
2864 } else {
2865 /*
2866 * If we aren't rolling back save the load info from our first
2867 * import attempt so that we can restore it after attempting
2868 * to rewind.
2869 */
2870 loadinfo = spa->spa_load_info;
2871 spa->spa_load_info = fnvlist_alloc();
2872 }
2873
2874 spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2875 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2876 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2877 TXG_INITIAL : safe_rewind_txg;
2878
2879 /*
2880 * Continue as long as we're finding errors, we're still within
2881 * the acceptable rewind range, and we're still finding uberblocks
2882 */
2883 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2884 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2885 if (spa->spa_load_max_txg < safe_rewind_txg)
2886 spa->spa_extreme_rewind = B_TRUE;
2887 rewind_error = spa_load_retry(spa, state, mosconfig);
2888 }
2889
2890 spa->spa_extreme_rewind = B_FALSE;
2891 spa->spa_load_max_txg = UINT64_MAX;
2892
2893 if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2894 spa_config_set(spa, config);
2895
2896 if (state == SPA_LOAD_RECOVER) {
2897 ASSERT3P(loadinfo, ==, NULL);
2898 return (rewind_error);
2899 } else {
2900 /* Store the rewind info as part of the initial load info */
2901 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2902 spa->spa_load_info);
2903
2904 /* Restore the initial load info */
2905 fnvlist_free(spa->spa_load_info);
2906 spa->spa_load_info = loadinfo;
2907
2908 return (load_error);
2909 }
2910 }
2911
2912 /*
2913 * Pool Open/Import
2914 *
2915 * The import case is identical to an open except that the configuration is sent
2916 * down from userland, instead of grabbed from the configuration cache. For the
2917 * case of an open, the pool configuration will exist in the
2918 * POOL_STATE_UNINITIALIZED state.
2919 *
2920 * The stats information (gen/count/ustats) is used to gather vdev statistics at
2921 * the same time open the pool, without having to keep around the spa_t in some
2922 * ambiguous state.
2923 */
2924 static int
2925 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2926 nvlist_t **config)
2927 {
2928 spa_t *spa;
2929 spa_load_state_t state = SPA_LOAD_OPEN;
2930 int error;
2931 int locked = B_FALSE;
2932
2933 *spapp = NULL;
2934
2935 /*
2936 * As disgusting as this is, we need to support recursive calls to this
2937 * function because dsl_dir_open() is called during spa_load(), and ends
2938 * up calling spa_open() again. The real fix is to figure out how to
2939 * avoid dsl_dir_open() calling this in the first place.
2940 */
2941 if (mutex_owner(&spa_namespace_lock) != curthread) {
2942 mutex_enter(&spa_namespace_lock);
2943 locked = B_TRUE;
2944 }
2945
2946 if ((spa = spa_lookup(pool)) == NULL) {
2947 if (locked)
2948 mutex_exit(&spa_namespace_lock);
2949 return (SET_ERROR(ENOENT));
2950 }
2951
2952 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2953 zpool_rewind_policy_t policy;
2954
2955 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2956 &policy);
2957 if (policy.zrp_request & ZPOOL_DO_REWIND)
2958 state = SPA_LOAD_RECOVER;
2959
2960 spa_activate(spa, spa_mode_global);
2961
2962 if (state != SPA_LOAD_RECOVER)
2963 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2964
2965 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2966 policy.zrp_request);
2967
2968 if (error == EBADF) {
2969 /*
2970 * If vdev_validate() returns failure (indicated by
2971 * EBADF), it indicates that one of the vdevs indicates
2972 * that the pool has been exported or destroyed. If
2973 * this is the case, the config cache is out of sync and
2974 * we should remove the pool from the namespace.
2975 */
2976 spa_unload(spa);
2977 spa_deactivate(spa);
2978 spa_config_sync(spa, B_TRUE, B_TRUE);
2979 spa_remove(spa);
2980 if (locked)
2981 mutex_exit(&spa_namespace_lock);
2982 return (SET_ERROR(ENOENT));
2983 }
2984
2985 if (error) {
2986 /*
2987 * We can't open the pool, but we still have useful
2988 * information: the state of each vdev after the
2989 * attempted vdev_open(). Return this to the user.
2990 */
2991 if (config != NULL && spa->spa_config) {
2992 VERIFY(nvlist_dup(spa->spa_config, config,
2993 KM_SLEEP) == 0);
2994 VERIFY(nvlist_add_nvlist(*config,
2995 ZPOOL_CONFIG_LOAD_INFO,
2996 spa->spa_load_info) == 0);
2997 }
2998 spa_unload(spa);
2999 spa_deactivate(spa);
3000 spa->spa_last_open_failed = error;
3001 if (locked)
3002 mutex_exit(&spa_namespace_lock);
3003 *spapp = NULL;
3004 return (error);
3005 }
3006 }
3007
3008 spa_open_ref(spa, tag);
3009
3010 if (config != NULL)
3011 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3012
3013 /*
3014 * If we've recovered the pool, pass back any information we
3015 * gathered while doing the load.
3016 */
3017 if (state == SPA_LOAD_RECOVER) {
3018 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
3019 spa->spa_load_info) == 0);
3020 }
3021
3022 if (locked) {
3023 spa->spa_last_open_failed = 0;
3024 spa->spa_last_ubsync_txg = 0;
3025 spa->spa_load_txg = 0;
3026 mutex_exit(&spa_namespace_lock);
3027 }
3028
3029 *spapp = spa;
3030
3031 return (0);
3032 }
3033
3034 int
3035 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
3036 nvlist_t **config)
3037 {
3038 return (spa_open_common(name, spapp, tag, policy, config));
3039 }
3040
3041 int
3042 spa_open(const char *name, spa_t **spapp, void *tag)
3043 {
3044 return (spa_open_common(name, spapp, tag, NULL, NULL));
3045 }
3046
3047 /*
3048 * Lookup the given spa_t, incrementing the inject count in the process,
3049 * preventing it from being exported or destroyed.
3050 */
3051 spa_t *
3052 spa_inject_addref(char *name)
3053 {
3054 spa_t *spa;
3055
3056 mutex_enter(&spa_namespace_lock);
3057 if ((spa = spa_lookup(name)) == NULL) {
3058 mutex_exit(&spa_namespace_lock);
3059 return (NULL);
3060 }
3061 spa->spa_inject_ref++;
3062 mutex_exit(&spa_namespace_lock);
3063
3064 return (spa);
3065 }
3066
3067 void
3068 spa_inject_delref(spa_t *spa)
3069 {
3070 mutex_enter(&spa_namespace_lock);
3071 spa->spa_inject_ref--;
3072 mutex_exit(&spa_namespace_lock);
3073 }
3074
3075 /*
3076 * Add spares device information to the nvlist.
3077 */
3078 static void
3079 spa_add_spares(spa_t *spa, nvlist_t *config)
3080 {
3081 nvlist_t **spares;
3082 uint_t i, nspares;
3083 nvlist_t *nvroot;
3084 uint64_t guid;
3085 vdev_stat_t *vs;
3086 uint_t vsc;
3087 uint64_t pool;
3088
3089 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3090
3091 if (spa->spa_spares.sav_count == 0)
3092 return;
3093
3094 VERIFY(nvlist_lookup_nvlist(config,
3095 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3096 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3097 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3098 if (nspares != 0) {
3099 VERIFY(nvlist_add_nvlist_array(nvroot,
3100 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3101 VERIFY(nvlist_lookup_nvlist_array(nvroot,
3102 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3103
3104 /*
3105 * Go through and find any spares which have since been
3106 * repurposed as an active spare. If this is the case, update
3107 * their status appropriately.
3108 */
3109 for (i = 0; i < nspares; i++) {
3110 VERIFY(nvlist_lookup_uint64(spares[i],
3111 ZPOOL_CONFIG_GUID, &guid) == 0);
3112 if (spa_spare_exists(guid, &pool, NULL) &&
3113 pool != 0ULL) {
3114 VERIFY(nvlist_lookup_uint64_array(
3115 spares[i], ZPOOL_CONFIG_VDEV_STATS,
3116 (uint64_t **)&vs, &vsc) == 0);
3117 vs->vs_state = VDEV_STATE_CANT_OPEN;
3118 vs->vs_aux = VDEV_AUX_SPARED;
3119 }
3120 }
3121 }
3122 }
3123
3124 /*
3125 * Add l2cache device information to the nvlist, including vdev stats.
3126 */
3127 static void
3128 spa_add_l2cache(spa_t *spa, nvlist_t *config)
3129 {
3130 nvlist_t **l2cache;
3131 uint_t i, j, nl2cache;
3132 nvlist_t *nvroot;
3133 uint64_t guid;
3134 vdev_t *vd;
3135 vdev_stat_t *vs;
3136 uint_t vsc;
3137
3138 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3139
3140 if (spa->spa_l2cache.sav_count == 0)
3141 return;
3142
3143 VERIFY(nvlist_lookup_nvlist(config,
3144 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3145 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3146 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3147 if (nl2cache != 0) {
3148 VERIFY(nvlist_add_nvlist_array(nvroot,
3149 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3150 VERIFY(nvlist_lookup_nvlist_array(nvroot,
3151 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3152
3153 /*
3154 * Update level 2 cache device stats.
3155 */
3156
3157 for (i = 0; i < nl2cache; i++) {
3158 VERIFY(nvlist_lookup_uint64(l2cache[i],
3159 ZPOOL_CONFIG_GUID, &guid) == 0);
3160
3161 vd = NULL;
3162 for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3163 if (guid ==
3164 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3165 vd = spa->spa_l2cache.sav_vdevs[j];
3166 break;
3167 }
3168 }
3169 ASSERT(vd != NULL);
3170
3171 VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3172 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3173 == 0);
3174 vdev_get_stats(vd, vs);
3175 }
3176 }
3177 }
3178
3179 static void
3180 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3181 {
3182 nvlist_t *features;
3183 zap_cursor_t zc;
3184 zap_attribute_t za;
3185
3186 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3187 VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3188
3189 if (spa->spa_feat_for_read_obj != 0) {
3190 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3191 spa->spa_feat_for_read_obj);
3192 zap_cursor_retrieve(&zc, &za) == 0;
3193 zap_cursor_advance(&zc)) {
3194 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3195 za.za_num_integers == 1);
3196 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3197 za.za_first_integer));
3198 }
3199 zap_cursor_fini(&zc);
3200 }
3201
3202 if (spa->spa_feat_for_write_obj != 0) {
3203 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3204 spa->spa_feat_for_write_obj);
3205 zap_cursor_retrieve(&zc, &za) == 0;
3206 zap_cursor_advance(&zc)) {
3207 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3208 za.za_num_integers == 1);
3209 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3210 za.za_first_integer));
3211 }
3212 zap_cursor_fini(&zc);
3213 }
3214
3215 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3216 features) == 0);
3217 nvlist_free(features);
3218 }
3219
3220 int
3221 spa_get_stats(const char *name, nvlist_t **config,
3222 char *altroot, size_t buflen)
3223 {
3224 int error;
3225 spa_t *spa;
3226
3227 *config = NULL;
3228 error = spa_open_common(name, &spa, FTAG, NULL, config);
3229
3230 if (spa != NULL) {
3231 /*
3232 * This still leaves a window of inconsistency where the spares
3233 * or l2cache devices could change and the config would be
3234 * self-inconsistent.
3235 */
3236 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3237
3238 if (*config != NULL) {
3239 uint64_t loadtimes[2];
3240
3241 loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3242 loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3243 VERIFY(nvlist_add_uint64_array(*config,
3244 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3245
3246 VERIFY(nvlist_add_uint64(*config,
3247 ZPOOL_CONFIG_ERRCOUNT,
3248 spa_get_errlog_size(spa)) == 0);
3249
3250 if (spa_suspended(spa))
3251 VERIFY(nvlist_add_uint64(*config,
3252 ZPOOL_CONFIG_SUSPENDED,
3253 spa->spa_failmode) == 0);
3254
3255 spa_add_spares(spa, *config);
3256 spa_add_l2cache(spa, *config);
3257 spa_add_feature_stats(spa, *config);
3258 }
3259 }
3260
3261 /*
3262 * We want to get the alternate root even for faulted pools, so we cheat
3263 * and call spa_lookup() directly.
3264 */
3265 if (altroot) {
3266 if (spa == NULL) {
3267 mutex_enter(&spa_namespace_lock);
3268 spa = spa_lookup(name);
3269 if (spa)
3270 spa_altroot(spa, altroot, buflen);
3271 else
3272 altroot[0] = '\0';
3273 spa = NULL;
3274 mutex_exit(&spa_namespace_lock);
3275 } else {
3276 spa_altroot(spa, altroot, buflen);
3277 }
3278 }
3279
3280 if (spa != NULL) {
3281 spa_config_exit(spa, SCL_CONFIG, FTAG);
3282 spa_close(spa, FTAG);
3283 }
3284
3285 return (error);
3286 }
3287
3288 /*
3289 * Validate that the auxiliary device array is well formed. We must have an
3290 * array of nvlists, each which describes a valid leaf vdev. If this is an
3291 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3292 * specified, as long as they are well-formed.
3293 */
3294 static int
3295 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3296 spa_aux_vdev_t *sav, const char *config, uint64_t version,
3297 vdev_labeltype_t label)
3298 {
3299 nvlist_t **dev;
3300 uint_t i, ndev;
3301 vdev_t *vd;
3302 int error;
3303
3304 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3305
3306 /*
3307 * It's acceptable to have no devs specified.
3308 */
3309 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3310 return (0);
3311
3312 if (ndev == 0)
3313 return (SET_ERROR(EINVAL));
3314
3315 /*
3316 * Make sure the pool is formatted with a version that supports this
3317 * device type.
3318 */
3319 if (spa_version(spa) < version)
3320 return (SET_ERROR(ENOTSUP));
3321
3322 /*
3323 * Set the pending device list so we correctly handle device in-use
3324 * checking.
3325 */
3326 sav->sav_pending = dev;
3327 sav->sav_npending = ndev;
3328
3329 for (i = 0; i < ndev; i++) {
3330 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3331 mode)) != 0)
3332 goto out;
3333
3334 if (!vd->vdev_ops->vdev_op_leaf) {
3335 vdev_free(vd);
3336 error = SET_ERROR(EINVAL);
3337 goto out;
3338 }
3339
3340 /*
3341 * The L2ARC currently only supports disk devices in
3342 * kernel context. For user-level testing, we allow it.
3343 */
3344 #ifdef _KERNEL
3345 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3346 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3347 error = SET_ERROR(ENOTBLK);
3348 vdev_free(vd);
3349 goto out;
3350 }
3351 #endif
3352 vd->vdev_top = vd;
3353
3354 if ((error = vdev_open(vd)) == 0 &&
3355 (error = vdev_label_init(vd, crtxg, label)) == 0) {
3356 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3357 vd->vdev_guid) == 0);
3358 }
3359
3360 vdev_free(vd);
3361
3362 if (error &&
3363 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3364 goto out;
3365 else
3366 error = 0;
3367 }
3368
3369 out:
3370 sav->sav_pending = NULL;
3371 sav->sav_npending = 0;
3372 return (error);
3373 }
3374
3375 static int
3376 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3377 {
3378 int error;
3379
3380 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3381
3382 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3383 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3384 VDEV_LABEL_SPARE)) != 0) {
3385 return (error);
3386 }
3387
3388 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3389 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3390 VDEV_LABEL_L2CACHE));
3391 }
3392
3393 static void
3394 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3395 const char *config)
3396 {
3397 int i;
3398
3399 if (sav->sav_config != NULL) {
3400 nvlist_t **olddevs;
3401 uint_t oldndevs;
3402 nvlist_t **newdevs;
3403
3404 /*
3405 * Generate new dev list by concatentating with the
3406 * current dev list.
3407 */
3408 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3409 &olddevs, &oldndevs) == 0);
3410
3411 newdevs = kmem_alloc(sizeof (void *) *
3412 (ndevs + oldndevs), KM_SLEEP);
3413 for (i = 0; i < oldndevs; i++)
3414 VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3415 KM_SLEEP) == 0);
3416 for (i = 0; i < ndevs; i++)
3417 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3418 KM_SLEEP) == 0);
3419
3420 VERIFY(nvlist_remove(sav->sav_config, config,
3421 DATA_TYPE_NVLIST_ARRAY) == 0);
3422
3423 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3424 config, newdevs, ndevs + oldndevs) == 0);
3425 for (i = 0; i < oldndevs + ndevs; i++)
3426 nvlist_free(newdevs[i]);
3427 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3428 } else {
3429 /*
3430 * Generate a new dev list.
3431 */
3432 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3433 KM_SLEEP) == 0);
3434 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3435 devs, ndevs) == 0);
3436 }
3437 }
3438
3439 /*
3440 * Stop and drop level 2 ARC devices
3441 */
3442 void
3443 spa_l2cache_drop(spa_t *spa)
3444 {
3445 vdev_t *vd;
3446 int i;
3447 spa_aux_vdev_t *sav = &spa->spa_l2cache;
3448
3449 for (i = 0; i < sav->sav_count; i++) {
3450 uint64_t pool;
3451
3452 vd = sav->sav_vdevs[i];
3453 ASSERT(vd != NULL);
3454
3455 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3456 pool != 0ULL && l2arc_vdev_present(vd))
3457 l2arc_remove_vdev(vd);
3458 }
3459 }
3460
3461 /*
3462 * Pool Creation
3463 */
3464 int
3465 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3466 nvlist_t *zplprops)
3467 {
3468 spa_t *spa;
3469 char *altroot = NULL;
3470 vdev_t *rvd;
3471 dsl_pool_t *dp;
3472 dmu_tx_t *tx;
3473 int error = 0;
3474 uint64_t txg = TXG_INITIAL;
3475 nvlist_t **spares, **l2cache;
3476 uint_t nspares, nl2cache;
3477 uint64_t version, obj;
3478 boolean_t has_features;
3479
3480 /*
3481 * If this pool already exists, return failure.
3482 */
3483 mutex_enter(&spa_namespace_lock);
3484 if (spa_lookup(pool) != NULL) {
3485 mutex_exit(&spa_namespace_lock);
3486 return (SET_ERROR(EEXIST));
3487 }
3488
3489 /*
3490 * Allocate a new spa_t structure.
3491 */
3492 (void) nvlist_lookup_string(props,
3493 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3494 spa = spa_add(pool, NULL, altroot);
3495 spa_activate(spa, spa_mode_global);
3496
3497 if (props && (error = spa_prop_validate(spa, props))) {
3498 spa_deactivate(spa);
3499 spa_remove(spa);
3500 mutex_exit(&spa_namespace_lock);
3501 return (error);
3502 }
3503
3504 has_features = B_FALSE;
3505 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3506 elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3507 if (zpool_prop_feature(nvpair_name(elem)))
3508 has_features = B_TRUE;
3509 }
3510
3511 if (has_features || nvlist_lookup_uint64(props,
3512 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3513 version = SPA_VERSION;
3514 }
3515 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3516
3517 spa->spa_first_txg = txg;
3518 spa->spa_uberblock.ub_txg = txg - 1;
3519 spa->spa_uberblock.ub_version = version;
3520 spa->spa_ubsync = spa->spa_uberblock;
3521
3522 /*
3523 * Create "The Godfather" zio to hold all async IOs
3524 */
3525 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3526 KM_SLEEP);
3527 for (int i = 0; i < max_ncpus; i++) {
3528 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3529 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3530 ZIO_FLAG_GODFATHER);
3531 }
3532
3533 /*
3534 * Create the root vdev.
3535 */
3536 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3537
3538 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3539
3540 ASSERT(error != 0 || rvd != NULL);
3541 ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3542
3543 if (error == 0 && !zfs_allocatable_devs(nvroot))
3544 error = SET_ERROR(EINVAL);
3545
3546 if (error == 0 &&
3547 (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3548 (error = spa_validate_aux(spa, nvroot, txg,
3549 VDEV_ALLOC_ADD)) == 0) {
3550 for (int c = 0; c < rvd->vdev_children; c++) {
3551 vdev_metaslab_set_size(rvd->vdev_child[c]);
3552 vdev_expand(rvd->vdev_child[c], txg);
3553 }
3554 }
3555
3556 spa_config_exit(spa, SCL_ALL, FTAG);
3557
3558 if (error != 0) {
3559 spa_unload(spa);
3560 spa_deactivate(spa);
3561 spa_remove(spa);
3562 mutex_exit(&spa_namespace_lock);
3563 return (error);
3564 }
3565
3566 /*
3567 * Get the list of spares, if specified.
3568 */
3569 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3570 &spares, &nspares) == 0) {
3571 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3572 KM_SLEEP) == 0);
3573 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3574 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3575 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3576 spa_load_spares(spa);
3577 spa_config_exit(spa, SCL_ALL, FTAG);
3578 spa->spa_spares.sav_sync = B_TRUE;
3579 }
3580
3581 /*
3582 * Get the list of level 2 cache devices, if specified.
3583 */
3584 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3585 &l2cache, &nl2cache) == 0) {
3586 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3587 NV_UNIQUE_NAME, KM_SLEEP) == 0);
3588 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3589 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3590 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3591 spa_load_l2cache(spa);
3592 spa_config_exit(spa, SCL_ALL, FTAG);
3593 spa->spa_l2cache.sav_sync = B_TRUE;
3594 }
3595
3596 spa->spa_is_initializing = B_TRUE;
3597 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3598 spa->spa_meta_objset = dp->dp_meta_objset;
3599 spa->spa_is_initializing = B_FALSE;
3600
3601 /*
3602 * Create DDTs (dedup tables).
3603 */
3604 ddt_create(spa);
3605
3606 spa_update_dspace(spa);
3607
3608 tx = dmu_tx_create_assigned(dp, txg);
3609
3610 /*
3611 * Create the pool config object.
3612 */
3613 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3614 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3615 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3616
3617 if (zap_add(spa->spa_meta_objset,
3618 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3619 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3620 cmn_err(CE_PANIC, "failed to add pool config");
3621 }
3622
3623 if (spa_version(spa) >= SPA_VERSION_FEATURES)
3624 spa_feature_create_zap_objects(spa, tx);
3625
3626 if (zap_add(spa->spa_meta_objset,
3627 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3628 sizeof (uint64_t), 1, &version, tx) != 0) {
3629 cmn_err(CE_PANIC, "failed to add pool version");
3630 }
3631
3632 /* Newly created pools with the right version are always deflated. */
3633 if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3634 spa->spa_deflate = TRUE;
3635 if (zap_add(spa->spa_meta_objset,
3636 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3637 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3638 cmn_err(CE_PANIC, "failed to add deflate");
3639 }
3640 }
3641
3642 /*
3643 * Create the deferred-free bpobj. Turn off compression
3644 * because sync-to-convergence takes longer if the blocksize
3645 * keeps changing.
3646 */
3647 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3648 dmu_object_set_compress(spa->spa_meta_objset, obj,
3649 ZIO_COMPRESS_OFF, tx);
3650 if (zap_add(spa->spa_meta_objset,
3651 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3652 sizeof (uint64_t), 1, &obj, tx) != 0) {
3653 cmn_err(CE_PANIC, "failed to add bpobj");
3654 }
3655 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3656 spa->spa_meta_objset, obj));
3657
3658 /*
3659 * Create the pool's history object.
3660 */
3661 if (version >= SPA_VERSION_ZPOOL_HISTORY)
3662 spa_history_create_obj(spa, tx);
3663
3664 /*
3665 * Set pool properties.
3666 */
3667 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3668 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3669 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3670 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3671
3672 if (props != NULL) {
3673 spa_configfile_set(spa, props, B_FALSE);
3674 spa_sync_props(props, tx);
3675 }
3676
3677 dmu_tx_commit(tx);
3678
3679 spa->spa_sync_on = B_TRUE;
3680 txg_sync_start(spa->spa_dsl_pool);
3681
3682 /*
3683 * We explicitly wait for the first transaction to complete so that our
3684 * bean counters are appropriately updated.
3685 */
3686 txg_wait_synced(spa->spa_dsl_pool, txg);
3687
3688 spa_config_sync(spa, B_FALSE, B_TRUE);
3689
3690 spa_history_log_version(spa, "create");
3691
3692 /*
3693 * Don't count references from objsets that are already closed
3694 * and are making their way through the eviction process.
3695 */
3696 spa_evicting_os_wait(spa);
3697 spa->spa_minref = refcount_count(&spa->spa_refcount);
3698
3699 mutex_exit(&spa_namespace_lock);
3700
3701 return (0);
3702 }
3703
3704 #ifdef _KERNEL
3705 /*
3706 * Get the root pool information from the root disk, then import the root pool
3707 * during the system boot up time.
3708 */
3709 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3710
3711 static nvlist_t *
3712 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3713 {
3714 nvlist_t *config;
3715 nvlist_t *nvtop, *nvroot;
3716 uint64_t pgid;
3717
3718 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3719 return (NULL);
3720
3721 /*
3722 * Add this top-level vdev to the child array.
3723 */
3724 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3725 &nvtop) == 0);
3726 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3727 &pgid) == 0);
3728 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3729
3730 /*
3731 * Put this pool's top-level vdevs into a root vdev.
3732 */
3733 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3734 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3735 VDEV_TYPE_ROOT) == 0);
3736 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3737 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3738 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3739 &nvtop, 1) == 0);
3740
3741 /*
3742 * Replace the existing vdev_tree with the new root vdev in
3743 * this pool's configuration (remove the old, add the new).
3744 */
3745 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3746 nvlist_free(nvroot);
3747 return (config);
3748 }
3749
3750 /*
3751 * Walk the vdev tree and see if we can find a device with "better"
3752 * configuration. A configuration is "better" if the label on that
3753 * device has a more recent txg.
3754 */
3755 static void
3756 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3757 {
3758 for (int c = 0; c < vd->vdev_children; c++)
3759 spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3760
3761 if (vd->vdev_ops->vdev_op_leaf) {
3762 nvlist_t *label;
3763 uint64_t label_txg;
3764
3765 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3766 &label) != 0)
3767 return;
3768
3769 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3770 &label_txg) == 0);
3771
3772 /*
3773 * Do we have a better boot device?
3774 */
3775 if (label_txg > *txg) {
3776 *txg = label_txg;
3777 *avd = vd;
3778 }
3779 nvlist_free(label);
3780 }
3781 }
3782
3783 /*
3784 * Import a root pool.
3785 *
3786 * For x86. devpath_list will consist of devid and/or physpath name of
3787 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3788 * The GRUB "findroot" command will return the vdev we should boot.
3789 *
3790 * For Sparc, devpath_list consists the physpath name of the booting device
3791 * no matter the rootpool is a single device pool or a mirrored pool.
3792 * e.g.
3793 * "/pci@1f,0/ide@d/disk@0,0:a"
3794 */
3795 int
3796 spa_import_rootpool(char *devpath, char *devid)
3797 {
3798 spa_t *spa;
3799 vdev_t *rvd, *bvd, *avd = NULL;
3800 nvlist_t *config, *nvtop;
3801 uint64_t guid, txg;
3802 char *pname;
3803 int error;
3804
3805 /*
3806 * Read the label from the boot device and generate a configuration.
3807 */
3808 config = spa_generate_rootconf(devpath, devid, &guid);
3809 #if defined(_OBP) && defined(_KERNEL)
3810 if (config == NULL) {
3811 if (strstr(devpath, "/iscsi/ssd") != NULL) {
3812 /* iscsi boot */
3813 get_iscsi_bootpath_phy(devpath);
3814 config = spa_generate_rootconf(devpath, devid, &guid);
3815 }
3816 }
3817 #endif
3818 if (config == NULL) {
3819 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3820 devpath);
3821 return (SET_ERROR(EIO));
3822 }
3823
3824 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3825 &pname) == 0);
3826 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3827
3828 mutex_enter(&spa_namespace_lock);
3829 if ((spa = spa_lookup(pname)) != NULL) {
3830 /*
3831 * Remove the existing root pool from the namespace so that we
3832 * can replace it with the correct config we just read in.
3833 */
3834 spa_remove(spa);
3835 }
3836
3837 spa = spa_add(pname, config, NULL);
3838 spa->spa_is_root = B_TRUE;
3839 spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3840
3841 /*
3842 * Build up a vdev tree based on the boot device's label config.
3843 */
3844 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3845 &nvtop) == 0);
3846 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3847 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3848 VDEV_ALLOC_ROOTPOOL);
3849 spa_config_exit(spa, SCL_ALL, FTAG);
3850 if (error) {
3851 mutex_exit(&spa_namespace_lock);
3852 nvlist_free(config);
3853 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3854 pname);
3855 return (error);
3856 }
3857
3858 /*
3859 * Get the boot vdev.
3860 */
3861 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3862 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3863 (u_longlong_t)guid);
3864 error = SET_ERROR(ENOENT);
3865 goto out;
3866 }
3867
3868 /*
3869 * Determine if there is a better boot device.
3870 */
3871 avd = bvd;
3872 spa_alt_rootvdev(rvd, &avd, &txg);
3873 if (avd != bvd) {
3874 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3875 "try booting from '%s'", avd->vdev_path);
3876 error = SET_ERROR(EINVAL);
3877 goto out;
3878 }
3879
3880 /*
3881 * If the boot device is part of a spare vdev then ensure that
3882 * we're booting off the active spare.
3883 */
3884 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3885 !bvd->vdev_isspare) {
3886 cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3887 "try booting from '%s'",
3888 bvd->vdev_parent->
3889 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3890 error = SET_ERROR(EINVAL);
3891 goto out;
3892 }
3893
3894 error = 0;
3895 out:
3896 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3897 vdev_free(rvd);
3898 spa_config_exit(spa, SCL_ALL, FTAG);
3899 mutex_exit(&spa_namespace_lock);
3900
3901 nvlist_free(config);
3902 return (error);
3903 }
3904
3905 #endif
3906
3907 /*
3908 * Import a non-root pool into the system.
3909 */
3910 int
3911 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
3912 {
3913 spa_t *spa;
3914 char *altroot = NULL;
3915 spa_load_state_t state = SPA_LOAD_IMPORT;
3916 zpool_rewind_policy_t policy;
3917 uint64_t mode = spa_mode_global;
3918 uint64_t readonly = B_FALSE;
3919 int error;
3920 nvlist_t *nvroot;
3921 nvlist_t **spares, **l2cache;
3922 uint_t nspares, nl2cache;
3923
3924 /*
3925 * If a pool with this name exists, return failure.
3926 */
3927 mutex_enter(&spa_namespace_lock);
3928 if (spa_lookup(pool) != NULL) {
3929 mutex_exit(&spa_namespace_lock);
3930 return (SET_ERROR(EEXIST));
3931 }
3932
3933 /*
3934 * Create and initialize the spa structure.
3935 */
3936 (void) nvlist_lookup_string(props,
3937 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3938 (void) nvlist_lookup_uint64(props,
3939 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
3940 if (readonly)
3941 mode = FREAD;
3942 spa = spa_add(pool, config, altroot);
3943 spa->spa_import_flags = flags;
3944
3945 /*
3946 * Verbatim import - Take a pool and insert it into the namespace
3947 * as if it had been loaded at boot.
3948 */
3949 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
3950 if (props != NULL)
3951 spa_configfile_set(spa, props, B_FALSE);
3952
3953 spa_config_sync(spa, B_FALSE, B_TRUE);
3954
3955 mutex_exit(&spa_namespace_lock);
3956 return (0);
3957 }
3958
3959 spa_activate(spa, mode);
3960
3961 /*
3962 * Don't start async tasks until we know everything is healthy.
3963 */
3964 spa_async_suspend(spa);
3965
3966 zpool_get_rewind_policy(config, &policy);
3967 if (policy.zrp_request & ZPOOL_DO_REWIND)
3968 state = SPA_LOAD_RECOVER;
3969
3970 /*
3971 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig
3972 * because the user-supplied config is actually the one to trust when
3973 * doing an import.
3974 */
3975 if (state != SPA_LOAD_RECOVER)
3976 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3977
3978 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
3979 policy.zrp_request);
3980
3981 /*
3982 * Propagate anything learned while loading the pool and pass it
3983 * back to caller (i.e. rewind info, missing devices, etc).
3984 */
3985 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
3986 spa->spa_load_info) == 0);
3987
3988 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3989 /*
3990 * Toss any existing sparelist, as it doesn't have any validity
3991 * anymore, and conflicts with spa_has_spare().
3992 */
3993 if (spa->spa_spares.sav_config) {
3994 nvlist_free(spa->spa_spares.sav_config);
3995 spa->spa_spares.sav_config = NULL;
3996 spa_load_spares(spa);
3997 }
3998 if (spa->spa_l2cache.sav_config) {
3999 nvlist_free(spa->spa_l2cache.sav_config);
4000 spa->spa_l2cache.sav_config = NULL;
4001 spa_load_l2cache(spa);
4002 }
4003
4004 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4005 &nvroot) == 0);
4006 if (error == 0)
4007 error = spa_validate_aux(spa, nvroot, -1ULL,
4008 VDEV_ALLOC_SPARE);
4009 if (error == 0)
4010 error = spa_validate_aux(spa, nvroot, -1ULL,
4011 VDEV_ALLOC_L2CACHE);
4012 spa_config_exit(spa, SCL_ALL, FTAG);
4013
4014 if (props != NULL)
4015 spa_configfile_set(spa, props, B_FALSE);
4016
4017 if (error != 0 || (props && spa_writeable(spa) &&
4018 (error = spa_prop_set(spa, props)))) {
4019 spa_unload(spa);
4020 spa_deactivate(spa);
4021 spa_remove(spa);
4022 mutex_exit(&spa_namespace_lock);
4023 return (error);
4024 }
4025
4026 spa_async_resume(spa);
4027
4028 /*
4029 * Override any spares and level 2 cache devices as specified by
4030 * the user, as these may have correct device names/devids, etc.
4031 */
4032 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4033 &spares, &nspares) == 0) {
4034 if (spa->spa_spares.sav_config)
4035 VERIFY(nvlist_remove(spa->spa_spares.sav_config,
4036 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
4037 else
4038 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
4039 NV_UNIQUE_NAME, KM_SLEEP) == 0);
4040 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4041 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4042 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4043 spa_load_spares(spa);
4044 spa_config_exit(spa, SCL_ALL, FTAG);
4045 spa->spa_spares.sav_sync = B_TRUE;
4046 }
4047 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4048 &l2cache, &nl2cache) == 0) {
4049 if (spa->spa_l2cache.sav_config)
4050 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
4051 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
4052 else
4053 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4054 NV_UNIQUE_NAME, KM_SLEEP) == 0);
4055 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4056 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4057 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4058 spa_load_l2cache(spa);
4059 spa_config_exit(spa, SCL_ALL, FTAG);
4060 spa->spa_l2cache.sav_sync = B_TRUE;
4061 }
4062
4063 /*
4064 * Check for any removed devices.
4065 */
4066 if (spa->spa_autoreplace) {
4067 spa_aux_check_removed(&spa->spa_spares);
4068 spa_aux_check_removed(&spa->spa_l2cache);
4069 }
4070
4071 if (spa_writeable(spa)) {
4072 /*
4073 * Update the config cache to include the newly-imported pool.
4074 */
4075 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4076 }
4077
4078 /*
4079 * It's possible that the pool was expanded while it was exported.
4080 * We kick off an async task to handle this for us.
4081 */
4082 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4083
4084 mutex_exit(&spa_namespace_lock);
4085 spa_history_log_version(spa, "import");
4086
4087 return (0);
4088 }
4089
4090 nvlist_t *
4091 spa_tryimport(nvlist_t *tryconfig)
4092 {
4093 nvlist_t *config = NULL;
4094 char *poolname;
4095 spa_t *spa;
4096 uint64_t state;
4097 int error;
4098
4099 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4100 return (NULL);
4101
4102 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4103 return (NULL);
4104
4105 /*
4106 * Create and initialize the spa structure.
4107 */
4108 mutex_enter(&spa_namespace_lock);
4109 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4110 spa_activate(spa, FREAD);
4111
4112 /*
4113 * Pass off the heavy lifting to spa_load().
4114 * Pass TRUE for mosconfig because the user-supplied config
4115 * is actually the one to trust when doing an import.
4116 */
4117 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4118
4119 /*
4120 * If 'tryconfig' was at least parsable, return the current config.
4121 */
4122 if (spa->spa_root_vdev != NULL) {
4123 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4124 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4125 poolname) == 0);
4126 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4127 state) == 0);
4128 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4129 spa->spa_uberblock.ub_timestamp) == 0);
4130 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4131 spa->spa_load_info) == 0);
4132
4133 /*
4134 * If the bootfs property exists on this pool then we
4135 * copy it out so that external consumers can tell which
4136 * pools are bootable.
4137 */
4138 if ((!error || error == EEXIST) && spa->spa_bootfs) {
4139 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4140
4141 /*
4142 * We have to play games with the name since the
4143 * pool was opened as TRYIMPORT_NAME.
4144 */
4145 if (dsl_dsobj_to_dsname(spa_name(spa),
4146 spa->spa_bootfs, tmpname) == 0) {
4147 char *cp;
4148 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4149
4150 cp = strchr(tmpname, '/');
4151 if (cp == NULL) {
4152 (void) strlcpy(dsname, tmpname,
4153 MAXPATHLEN);
4154 } else {
4155 (void) snprintf(dsname, MAXPATHLEN,
4156 "%s/%s", poolname, ++cp);
4157 }
4158 VERIFY(nvlist_add_string(config,
4159 ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4160 kmem_free(dsname, MAXPATHLEN);
4161 }
4162 kmem_free(tmpname, MAXPATHLEN);
4163 }
4164
4165 /*
4166 * Add the list of hot spares and level 2 cache devices.
4167 */
4168 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4169 spa_add_spares(spa, config);
4170 spa_add_l2cache(spa, config);
4171 spa_config_exit(spa, SCL_CONFIG, FTAG);
4172 }
4173
4174 spa_unload(spa);
4175 spa_deactivate(spa);
4176 spa_remove(spa);
4177 mutex_exit(&spa_namespace_lock);
4178
4179 return (config);
4180 }
4181
4182 /*
4183 * Pool export/destroy
4184 *
4185 * The act of destroying or exporting a pool is very simple. We make sure there
4186 * is no more pending I/O and any references to the pool are gone. Then, we
4187 * update the pool state and sync all the labels to disk, removing the
4188 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4189 * we don't sync the labels or remove the configuration cache.
4190 */
4191 static int
4192 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4193 boolean_t force, boolean_t hardforce)
4194 {
4195 spa_t *spa;
4196
4197 if (oldconfig)
4198 *oldconfig = NULL;
4199
4200 if (!(spa_mode_global & FWRITE))
4201 return (SET_ERROR(EROFS));
4202
4203 mutex_enter(&spa_namespace_lock);
4204 if ((spa = spa_lookup(pool)) == NULL) {
4205 mutex_exit(&spa_namespace_lock);
4206 return (SET_ERROR(ENOENT));
4207 }
4208
4209 /*
4210 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4211 * reacquire the namespace lock, and see if we can export.
4212 */
4213 spa_open_ref(spa, FTAG);
4214 mutex_exit(&spa_namespace_lock);
4215 spa_async_suspend(spa);
4216 mutex_enter(&spa_namespace_lock);
4217 spa_close(spa, FTAG);
4218
4219 /*
4220 * The pool will be in core if it's openable,
4221 * in which case we can modify its state.
4222 */
4223 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4224 /*
4225 * Objsets may be open only because they're dirty, so we
4226 * have to force it to sync before checking spa_refcnt.
4227 */
4228 txg_wait_synced(spa->spa_dsl_pool, 0);
4229 spa_evicting_os_wait(spa);
4230
4231 /*
4232 * A pool cannot be exported or destroyed if there are active
4233 * references. If we are resetting a pool, allow references by
4234 * fault injection handlers.
4235 */
4236 if (!spa_refcount_zero(spa) ||
4237 (spa->spa_inject_ref != 0 &&
4238 new_state != POOL_STATE_UNINITIALIZED)) {
4239 spa_async_resume(spa);
4240 mutex_exit(&spa_namespace_lock);
4241 return (SET_ERROR(EBUSY));
4242 }
4243
4244 /*
4245 * A pool cannot be exported if it has an active shared spare.
4246 * This is to prevent other pools stealing the active spare
4247 * from an exported pool. At user's own will, such pool can
4248 * be forcedly exported.
4249 */
4250 if (!force && new_state == POOL_STATE_EXPORTED &&
4251 spa_has_active_shared_spare(spa)) {
4252 spa_async_resume(spa);
4253 mutex_exit(&spa_namespace_lock);
4254 return (SET_ERROR(EXDEV));
4255 }
4256
4257 /*
4258 * We want this to be reflected on every label,
4259 * so mark them all dirty. spa_unload() will do the
4260 * final sync that pushes these changes out.
4261 */
4262 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4263 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4264 spa->spa_state = new_state;
4265 spa->spa_final_txg = spa_last_synced_txg(spa) +
4266 TXG_DEFER_SIZE + 1;
4267 vdev_config_dirty(spa->spa_root_vdev);
4268 spa_config_exit(spa, SCL_ALL, FTAG);
4269 }
4270 }
4271
4272 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4273
4274 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4275 spa_unload(spa);
4276 spa_deactivate(spa);
4277 }
4278
4279 if (oldconfig && spa->spa_config)
4280 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4281
4282 if (new_state != POOL_STATE_UNINITIALIZED) {
4283 if (!hardforce)
4284 spa_config_sync(spa, B_TRUE, B_TRUE);
4285 spa_remove(spa);
4286 }
4287 mutex_exit(&spa_namespace_lock);
4288
4289 return (0);
4290 }
4291
4292 /*
4293 * Destroy a storage pool.
4294 */
4295 int
4296 spa_destroy(char *pool)
4297 {
4298 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4299 B_FALSE, B_FALSE));
4300 }
4301
4302 /*
4303 * Export a storage pool.
4304 */
4305 int
4306 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4307 boolean_t hardforce)
4308 {
4309 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4310 force, hardforce));
4311 }
4312
4313 /*
4314 * Similar to spa_export(), this unloads the spa_t without actually removing it
4315 * from the namespace in any way.
4316 */
4317 int
4318 spa_reset(char *pool)
4319 {
4320 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4321 B_FALSE, B_FALSE));
4322 }
4323
4324 /*
4325 * ==========================================================================
4326 * Device manipulation
4327 * ==========================================================================
4328 */
4329
4330 /*
4331 * Add a device to a storage pool.
4332 */
4333 int
4334 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4335 {
4336 uint64_t txg, id;
4337 int error;
4338 vdev_t *rvd = spa->spa_root_vdev;
4339 vdev_t *vd, *tvd;
4340 nvlist_t **spares, **l2cache;
4341 uint_t nspares, nl2cache;
4342
4343 ASSERT(spa_writeable(spa));
4344
4345 txg = spa_vdev_enter(spa);
4346
4347 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4348 VDEV_ALLOC_ADD)) != 0)
4349 return (spa_vdev_exit(spa, NULL, txg, error));
4350
4351 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */
4352
4353 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4354 &nspares) != 0)
4355 nspares = 0;
4356
4357 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4358 &nl2cache) != 0)
4359 nl2cache = 0;
4360
4361 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4362 return (spa_vdev_exit(spa, vd, txg, EINVAL));
4363
4364 if (vd->vdev_children != 0 &&
4365 (error = vdev_create(vd, txg, B_FALSE)) != 0)
4366 return (spa_vdev_exit(spa, vd, txg, error));
4367
4368 /*
4369 * We must validate the spares and l2cache devices after checking the
4370 * children. Otherwise, vdev_inuse() will blindly overwrite the spare.
4371 */
4372 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4373 return (spa_vdev_exit(spa, vd, txg, error));
4374
4375 /*
4376 * Transfer each new top-level vdev from vd to rvd.
4377 */
4378 for (int c = 0; c < vd->vdev_children; c++) {
4379
4380 /*
4381 * Set the vdev id to the first hole, if one exists.
4382 */
4383 for (id = 0; id < rvd->vdev_children; id++) {
4384 if (rvd->vdev_child[id]->vdev_ishole) {
4385 vdev_free(rvd->vdev_child[id]);
4386 break;
4387 }
4388 }
4389 tvd = vd->vdev_child[c];
4390 vdev_remove_child(vd, tvd);
4391 tvd->vdev_id = id;
4392 vdev_add_child(rvd, tvd);
4393 vdev_config_dirty(tvd);
4394 }
4395
4396 if (nspares != 0) {
4397 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4398 ZPOOL_CONFIG_SPARES);
4399 spa_load_spares(spa);
4400 spa->spa_spares.sav_sync = B_TRUE;
4401 }
4402
4403 if (nl2cache != 0) {
4404 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4405 ZPOOL_CONFIG_L2CACHE);
4406 spa_load_l2cache(spa);
4407 spa->spa_l2cache.sav_sync = B_TRUE;
4408 }
4409
4410 /*
4411 * We have to be careful when adding new vdevs to an existing pool.
4412 * If other threads start allocating from these vdevs before we
4413 * sync the config cache, and we lose power, then upon reboot we may
4414 * fail to open the pool because there are DVAs that the config cache
4415 * can't translate. Therefore, we first add the vdevs without
4416 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4417 * and then let spa_config_update() initialize the new metaslabs.
4418 *
4419 * spa_load() checks for added-but-not-initialized vdevs, so that
4420 * if we lose power at any point in this sequence, the remaining
4421 * steps will be completed the next time we load the pool.
4422 */
4423 (void) spa_vdev_exit(spa, vd, txg, 0);
4424
4425 mutex_enter(&spa_namespace_lock);
4426 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4427 mutex_exit(&spa_namespace_lock);
4428
4429 return (0);
4430 }
4431
4432 /*
4433 * Attach a device to a mirror. The arguments are the path to any device
4434 * in the mirror, and the nvroot for the new device. If the path specifies
4435 * a device that is not mirrored, we automatically insert the mirror vdev.
4436 *
4437 * If 'replacing' is specified, the new device is intended to replace the
4438 * existing device; in this case the two devices are made into their own
4439 * mirror using the 'replacing' vdev, which is functionally identical to
4440 * the mirror vdev (it actually reuses all the same ops) but has a few
4441 * extra rules: you can't attach to it after it's been created, and upon
4442 * completion of resilvering, the first disk (the one being replaced)
4443 * is automatically detached.
4444 */
4445 int
4446 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4447 {
4448 uint64_t txg, dtl_max_txg;
4449 vdev_t *rvd = spa->spa_root_vdev;
4450 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4451 vdev_ops_t *pvops;
4452 char *oldvdpath, *newvdpath;
4453 int newvd_isspare;
4454 int error;
4455
4456 ASSERT(spa_writeable(spa));
4457
4458 txg = spa_vdev_enter(spa);
4459
4460 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4461
4462 if (oldvd == NULL)
4463 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4464
4465 if (!oldvd->vdev_ops->vdev_op_leaf)
4466 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4467
4468 pvd = oldvd->vdev_parent;
4469
4470 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4471 VDEV_ALLOC_ATTACH)) != 0)
4472 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4473
4474 if (newrootvd->vdev_children != 1)
4475 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4476
4477 newvd = newrootvd->vdev_child[0];
4478
4479 if (!newvd->vdev_ops->vdev_op_leaf)
4480 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4481
4482 if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4483 return (spa_vdev_exit(spa, newrootvd, txg, error));
4484
4485 /*
4486 * Spares can't replace logs
4487 */
4488 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4489 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4490
4491 if (!replacing) {
4492 /*
4493 * For attach, the only allowable parent is a mirror or the root
4494 * vdev.
4495 */
4496 if (pvd->vdev_ops != &vdev_mirror_ops &&
4497 pvd->vdev_ops != &vdev_root_ops)
4498 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4499
4500 pvops = &vdev_mirror_ops;
4501 } else {
4502 /*
4503 * Active hot spares can only be replaced by inactive hot
4504 * spares.
4505 */
4506 if (pvd->vdev_ops == &vdev_spare_ops &&
4507 oldvd->vdev_isspare &&
4508 !spa_has_spare(spa, newvd->vdev_guid))
4509 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4510
4511 /*
4512 * If the source is a hot spare, and the parent isn't already a
4513 * spare, then we want to create a new hot spare. Otherwise, we
4514 * want to create a replacing vdev. The user is not allowed to
4515 * attach to a spared vdev child unless the 'isspare' state is
4516 * the same (spare replaces spare, non-spare replaces
4517 * non-spare).
4518 */
4519 if (pvd->vdev_ops == &vdev_replacing_ops &&
4520 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4521 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4522 } else if (pvd->vdev_ops == &vdev_spare_ops &&
4523 newvd->vdev_isspare != oldvd->vdev_isspare) {
4524 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4525 }
4526
4527 if (newvd->vdev_isspare)
4528 pvops = &vdev_spare_ops;
4529 else
4530 pvops = &vdev_replacing_ops;
4531 }
4532
4533 /*
4534 * Make sure the new device is big enough.
4535 */
4536 if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4537 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4538
4539 /*
4540 * The new device cannot have a higher alignment requirement
4541 * than the top-level vdev.
4542 */
4543 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4544 return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4545
4546 /*
4547 * If this is an in-place replacement, update oldvd's path and devid
4548 * to make it distinguishable from newvd, and unopenable from now on.
4549 */
4550 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4551 spa_strfree(oldvd->vdev_path);
4552 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4553 KM_SLEEP);
4554 (void) sprintf(oldvd->vdev_path, "%s/%s",
4555 newvd->vdev_path, "old");
4556 if (oldvd->vdev_devid != NULL) {
4557 spa_strfree(oldvd->vdev_devid);
4558 oldvd->vdev_devid = NULL;
4559 }
4560 }
4561
4562 /* mark the device being resilvered */
4563 newvd->vdev_resilver_txg = txg;
4564
4565 /*
4566 * If the parent is not a mirror, or if we're replacing, insert the new
4567 * mirror/replacing/spare vdev above oldvd.
4568 */
4569 if (pvd->vdev_ops != pvops)
4570 pvd = vdev_add_parent(oldvd, pvops);
4571
4572 ASSERT(pvd->vdev_top->vdev_parent == rvd);
4573 ASSERT(pvd->vdev_ops == pvops);
4574 ASSERT(oldvd->vdev_parent == pvd);
4575
4576 /*
4577 * Extract the new device from its root and add it to pvd.
4578 */
4579 vdev_remove_child(newrootvd, newvd);
4580 newvd->vdev_id = pvd->vdev_children;
4581 newvd->vdev_crtxg = oldvd->vdev_crtxg;
4582 vdev_add_child(pvd, newvd);
4583
4584 tvd = newvd->vdev_top;
4585 ASSERT(pvd->vdev_top == tvd);
4586 ASSERT(tvd->vdev_parent == rvd);
4587
4588 vdev_config_dirty(tvd);
4589
4590 /*
4591 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4592 * for any dmu_sync-ed blocks. It will propagate upward when
4593 * spa_vdev_exit() calls vdev_dtl_reassess().
4594 */
4595 dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4596
4597 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4598 dtl_max_txg - TXG_INITIAL);
4599
4600 if (newvd->vdev_isspare) {
4601 spa_spare_activate(newvd);
4602 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4603 }
4604
4605 oldvdpath = spa_strdup(oldvd->vdev_path);
4606 newvdpath = spa_strdup(newvd->vdev_path);
4607 newvd_isspare = newvd->vdev_isspare;
4608
4609 /*
4610 * Mark newvd's DTL dirty in this txg.
4611 */
4612 vdev_dirty(tvd, VDD_DTL, newvd, txg);
4613
4614 /*
4615 * Schedule the resilver to restart in the future. We do this to
4616 * ensure that dmu_sync-ed blocks have been stitched into the
4617 * respective datasets.
4618 */
4619 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4620
4621 /*
4622 * Commit the config
4623 */
4624 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4625
4626 spa_history_log_internal(spa, "vdev attach", NULL,
4627 "%s vdev=%s %s vdev=%s",
4628 replacing && newvd_isspare ? "spare in" :
4629 replacing ? "replace" : "attach", newvdpath,
4630 replacing ? "for" : "to", oldvdpath);
4631
4632 spa_strfree(oldvdpath);
4633 spa_strfree(newvdpath);
4634
4635 if (spa->spa_bootfs)
4636 spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4637
4638 return (0);
4639 }
4640
4641 /*
4642 * Detach a device from a mirror or replacing vdev.
4643 *
4644 * If 'replace_done' is specified, only detach if the parent
4645 * is a replacing vdev.
4646 */
4647 int
4648 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4649 {
4650 uint64_t txg;
4651 int error;
4652 vdev_t *rvd = spa->spa_root_vdev;
4653 vdev_t *vd, *pvd, *cvd, *tvd;
4654 boolean_t unspare = B_FALSE;
4655 uint64_t unspare_guid = 0;
4656 char *vdpath;
4657
4658 ASSERT(spa_writeable(spa));
4659
4660 txg = spa_vdev_enter(spa);
4661
4662 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4663
4664 if (vd == NULL)
4665 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4666
4667 if (!vd->vdev_ops->vdev_op_leaf)
4668 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4669
4670 pvd = vd->vdev_parent;
4671
4672 /*
4673 * If the parent/child relationship is not as expected, don't do it.
4674 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4675 * vdev that's replacing B with C. The user's intent in replacing
4676 * is to go from M(A,B) to M(A,C). If the user decides to cancel
4677 * the replace by detaching C, the expected behavior is to end up
4678 * M(A,B). But suppose that right after deciding to detach C,
4679 * the replacement of B completes. We would have M(A,C), and then
4680 * ask to detach C, which would leave us with just A -- not what
4681 * the user wanted. To prevent this, we make sure that the
4682 * parent/child relationship hasn't changed -- in this example,
4683 * that C's parent is still the replacing vdev R.
4684 */
4685 if (pvd->vdev_guid != pguid && pguid != 0)
4686 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4687
4688 /*
4689 * Only 'replacing' or 'spare' vdevs can be replaced.
4690 */
4691 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4692 pvd->vdev_ops != &vdev_spare_ops)
4693 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4694
4695 ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4696 spa_version(spa) >= SPA_VERSION_SPARES);
4697
4698 /*
4699 * Only mirror, replacing, and spare vdevs support detach.
4700 */
4701 if (pvd->vdev_ops != &vdev_replacing_ops &&
4702 pvd->vdev_ops != &vdev_mirror_ops &&
4703 pvd->vdev_ops != &vdev_spare_ops)
4704 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4705
4706 /*
4707 * If this device has the only valid copy of some data,
4708 * we cannot safely detach it.
4709 */
4710 if (vdev_dtl_required(vd))
4711 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4712
4713 ASSERT(pvd->vdev_children >= 2);
4714
4715 /*
4716 * If we are detaching the second disk from a replacing vdev, then
4717 * check to see if we changed the original vdev's path to have "/old"
4718 * at the end in spa_vdev_attach(). If so, undo that change now.
4719 */
4720 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4721 vd->vdev_path != NULL) {
4722 size_t len = strlen(vd->vdev_path);
4723
4724 for (int c = 0; c < pvd->vdev_children; c++) {
4725 cvd = pvd->vdev_child[c];
4726
4727 if (cvd == vd || cvd->vdev_path == NULL)
4728 continue;
4729
4730 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4731 strcmp(cvd->vdev_path + len, "/old") == 0) {
4732 spa_strfree(cvd->vdev_path);
4733 cvd->vdev_path = spa_strdup(vd->vdev_path);
4734 break;
4735 }
4736 }
4737 }
4738
4739 /*
4740 * If we are detaching the original disk from a spare, then it implies
4741 * that the spare should become a real disk, and be removed from the
4742 * active spare list for the pool.
4743 */
4744 if (pvd->vdev_ops == &vdev_spare_ops &&
4745 vd->vdev_id == 0 &&
4746 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4747 unspare = B_TRUE;
4748
4749 /*
4750 * Erase the disk labels so the disk can be used for other things.
4751 * This must be done after all other error cases are handled,
4752 * but before we disembowel vd (so we can still do I/O to it).
4753 * But if we can't do it, don't treat the error as fatal --
4754 * it may be that the unwritability of the disk is the reason
4755 * it's being detached!
4756 */
4757 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4758
4759 /*
4760 * Remove vd from its parent and compact the parent's children.
4761 */
4762 vdev_remove_child(pvd, vd);
4763 vdev_compact_children(pvd);
4764
4765 /*
4766 * Remember one of the remaining children so we can get tvd below.
4767 */
4768 cvd = pvd->vdev_child[pvd->vdev_children - 1];
4769
4770 /*
4771 * If we need to remove the remaining child from the list of hot spares,
4772 * do it now, marking the vdev as no longer a spare in the process.
4773 * We must do this before vdev_remove_parent(), because that can
4774 * change the GUID if it creates a new toplevel GUID. For a similar
4775 * reason, we must remove the spare now, in the same txg as the detach;
4776 * otherwise someone could attach a new sibling, change the GUID, and
4777 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4778 */
4779 if (unspare) {
4780 ASSERT(cvd->vdev_isspare);
4781 spa_spare_remove(cvd);
4782 unspare_guid = cvd->vdev_guid;
4783 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4784 cvd->vdev_unspare = B_TRUE;
4785 }
4786
4787 /*
4788 * If the parent mirror/replacing vdev only has one child,
4789 * the parent is no longer needed. Remove it from the tree.
4790 */
4791 if (pvd->vdev_children == 1) {
4792 if (pvd->vdev_ops == &vdev_spare_ops)
4793 cvd->vdev_unspare = B_FALSE;
4794 vdev_remove_parent(cvd);
4795 }
4796
4797
4798 /*
4799 * We don't set tvd until now because the parent we just removed
4800 * may have been the previous top-level vdev.
4801 */
4802 tvd = cvd->vdev_top;
4803 ASSERT(tvd->vdev_parent == rvd);
4804
4805 /*
4806 * Reevaluate the parent vdev state.
4807 */
4808 vdev_propagate_state(cvd);
4809
4810 /*
4811 * If the 'autoexpand' property is set on the pool then automatically
4812 * try to expand the size of the pool. For example if the device we
4813 * just detached was smaller than the others, it may be possible to
4814 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4815 * first so that we can obtain the updated sizes of the leaf vdevs.
4816 */
4817 if (spa->spa_autoexpand) {
4818 vdev_reopen(tvd);
4819 vdev_expand(tvd, txg);
4820 }
4821
4822 vdev_config_dirty(tvd);
4823
4824 /*
4825 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
4826 * vd->vdev_detached is set and free vd's DTL object in syncing context.
4827 * But first make sure we're not on any *other* txg's DTL list, to
4828 * prevent vd from being accessed after it's freed.
4829 */
4830 vdpath = spa_strdup(vd->vdev_path);
4831 for (int t = 0; t < TXG_SIZE; t++)
4832 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4833 vd->vdev_detached = B_TRUE;
4834 vdev_dirty(tvd, VDD_DTL, vd, txg);
4835
4836 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
4837
4838 /* hang on to the spa before we release the lock */
4839 spa_open_ref(spa, FTAG);
4840
4841 error = spa_vdev_exit(spa, vd, txg, 0);
4842
4843 spa_history_log_internal(spa, "detach", NULL,
4844 "vdev=%s", vdpath);
4845 spa_strfree(vdpath);
4846
4847 /*
4848 * If this was the removal of the original device in a hot spare vdev,
4849 * then we want to go through and remove the device from the hot spare
4850 * list of every other pool.
4851 */
4852 if (unspare) {
4853 spa_t *altspa = NULL;
4854
4855 mutex_enter(&spa_namespace_lock);
4856 while ((altspa = spa_next(altspa)) != NULL) {
4857 if (altspa->spa_state != POOL_STATE_ACTIVE ||
4858 altspa == spa)
4859 continue;
4860
4861 spa_open_ref(altspa, FTAG);
4862 mutex_exit(&spa_namespace_lock);
4863 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
4864 mutex_enter(&spa_namespace_lock);
4865 spa_close(altspa, FTAG);
4866 }
4867 mutex_exit(&spa_namespace_lock);
4868
4869 /* search the rest of the vdevs for spares to remove */
4870 spa_vdev_resilver_done(spa);
4871 }
4872
4873 /* all done with the spa; OK to release */
4874 mutex_enter(&spa_namespace_lock);
4875 spa_close(spa, FTAG);
4876 mutex_exit(&spa_namespace_lock);
4877
4878 return (error);
4879 }
4880
4881 /*
4882 * Split a set of devices from their mirrors, and create a new pool from them.
4883 */
4884 int
4885 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
4886 nvlist_t *props, boolean_t exp)
4887 {
4888 int error = 0;
4889 uint64_t txg, *glist;
4890 spa_t *newspa;
4891 uint_t c, children, lastlog;
4892 nvlist_t **child, *nvl, *tmp;
4893 dmu_tx_t *tx;
4894 char *altroot = NULL;
4895 vdev_t *rvd, **vml = NULL; /* vdev modify list */
4896 boolean_t activate_slog;
4897
4898 ASSERT(spa_writeable(spa));
4899
4900 txg = spa_vdev_enter(spa);
4901
4902 /* clear the log and flush everything up to now */
4903 activate_slog = spa_passivate_log(spa);
4904 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4905 error = spa_offline_log(spa);
4906 txg = spa_vdev_config_enter(spa);
4907
4908 if (activate_slog)
4909 spa_activate_log(spa);
4910
4911 if (error != 0)
4912 return (spa_vdev_exit(spa, NULL, txg, error));
4913
4914 /* check new spa name before going any further */
4915 if (spa_lookup(newname) != NULL)
4916 return (spa_vdev_exit(spa, NULL, txg, EEXIST));
4917
4918 /*
4919 * scan through all the children to ensure they're all mirrors
4920 */
4921 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
4922 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
4923 &children) != 0)
4924 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4925
4926 /* first, check to ensure we've got the right child count */
4927 rvd = spa->spa_root_vdev;
4928 lastlog = 0;
4929 for (c = 0; c < rvd->vdev_children; c++) {
4930 vdev_t *vd = rvd->vdev_child[c];
4931
4932 /* don't count the holes & logs as children */
4933 if (vd->vdev_islog || vd->vdev_ishole) {
4934 if (lastlog == 0)
4935 lastlog = c;
4936 continue;
4937 }
4938
4939 lastlog = 0;
4940 }
4941 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
4942 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4943
4944 /* next, ensure no spare or cache devices are part of the split */
4945 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
4946 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
4947 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4948
4949 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
4950 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
4951
4952 /* then, loop over each vdev and validate it */
4953 for (c = 0; c < children; c++) {
4954 uint64_t is_hole = 0;
4955
4956 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
4957 &is_hole);
4958
4959 if (is_hole != 0) {
4960 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
4961 spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
4962 continue;
4963 } else {
4964 error = SET_ERROR(EINVAL);
4965 break;
4966 }
4967 }
4968
4969 /* which disk is going to be split? */
4970 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
4971 &glist[c]) != 0) {
4972 error = SET_ERROR(EINVAL);
4973 break;
4974 }
4975
4976 /* look it up in the spa */
4977 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
4978 if (vml[c] == NULL) {
4979 error = SET_ERROR(ENODEV);
4980 break;
4981 }
4982
4983 /* make sure there's nothing stopping the split */
4984 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
4985 vml[c]->vdev_islog ||
4986 vml[c]->vdev_ishole ||
4987 vml[c]->vdev_isspare ||
4988 vml[c]->vdev_isl2cache ||
4989 !vdev_writeable(vml[c]) ||
4990 vml[c]->vdev_children != 0 ||
4991 vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
4992 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
4993 error = SET_ERROR(EINVAL);
4994 break;
4995 }
4996
4997 if (vdev_dtl_required(vml[c])) {
4998 error = SET_ERROR(EBUSY);
4999 break;
5000 }
5001
5002 /* we need certain info from the top level */
5003 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
5004 vml[c]->vdev_top->vdev_ms_array) == 0);
5005 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
5006 vml[c]->vdev_top->vdev_ms_shift) == 0);
5007 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
5008 vml[c]->vdev_top->vdev_asize) == 0);
5009 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
5010 vml[c]->vdev_top->vdev_ashift) == 0);
5011 }
5012
5013 if (error != 0) {
5014 kmem_free(vml, children * sizeof (vdev_t *));
5015 kmem_free(glist, children * sizeof (uint64_t));
5016 return (spa_vdev_exit(spa, NULL, txg, error));
5017 }
5018
5019 /* stop writers from using the disks */
5020 for (c = 0; c < children; c++) {
5021 if (vml[c] != NULL)
5022 vml[c]->vdev_offline = B_TRUE;
5023 }
5024 vdev_reopen(spa->spa_root_vdev);
5025
5026 /*
5027 * Temporarily record the splitting vdevs in the spa config. This
5028 * will disappear once the config is regenerated.
5029 */
5030 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5031 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
5032 glist, children) == 0);
5033 kmem_free(glist, children * sizeof (uint64_t));
5034
5035 mutex_enter(&spa->spa_props_lock);
5036 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
5037 nvl) == 0);
5038 mutex_exit(&spa->spa_props_lock);
5039 spa->spa_config_splitting = nvl;
5040 vdev_config_dirty(spa->spa_root_vdev);
5041
5042 /* configure and create the new pool */
5043 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
5044 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5045 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
5046 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5047 spa_version(spa)) == 0);
5048 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
5049 spa->spa_config_txg) == 0);
5050 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5051 spa_generate_guid(NULL)) == 0);
5052 (void) nvlist_lookup_string(props,
5053 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5054
5055 /* add the new pool to the namespace */
5056 newspa = spa_add(newname, config, altroot);
5057 newspa->spa_config_txg = spa->spa_config_txg;
5058 spa_set_log_state(newspa, SPA_LOG_CLEAR);
5059
5060 /* release the spa config lock, retaining the namespace lock */
5061 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5062
5063 if (zio_injection_enabled)
5064 zio_handle_panic_injection(spa, FTAG, 1);
5065
5066 spa_activate(newspa, spa_mode_global);
5067 spa_async_suspend(newspa);
5068
5069 /* create the new pool from the disks of the original pool */
5070 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
5071 if (error)
5072 goto out;
5073
5074 /* if that worked, generate a real config for the new pool */
5075 if (newspa->spa_root_vdev != NULL) {
5076 VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
5077 NV_UNIQUE_NAME, KM_SLEEP) == 0);
5078 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
5079 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
5080 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
5081 B_TRUE));
5082 }
5083
5084 /* set the props */
5085 if (props != NULL) {
5086 spa_configfile_set(newspa, props, B_FALSE);
5087 error = spa_prop_set(newspa, props);
5088 if (error)
5089 goto out;
5090 }
5091
5092 /* flush everything */
5093 txg = spa_vdev_config_enter(newspa);
5094 vdev_config_dirty(newspa->spa_root_vdev);
5095 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5096
5097 if (zio_injection_enabled)
5098 zio_handle_panic_injection(spa, FTAG, 2);
5099
5100 spa_async_resume(newspa);
5101
5102 /* finally, update the original pool's config */
5103 txg = spa_vdev_config_enter(spa);
5104 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5105 error = dmu_tx_assign(tx, TXG_WAIT);
5106 if (error != 0)
5107 dmu_tx_abort(tx);
5108 for (c = 0; c < children; c++) {
5109 if (vml[c] != NULL) {
5110 vdev_split(vml[c]);
5111 if (error == 0)
5112 spa_history_log_internal(spa, "detach", tx,
5113 "vdev=%s", vml[c]->vdev_path);
5114 vdev_free(vml[c]);
5115 }
5116 }
5117 vdev_config_dirty(spa->spa_root_vdev);
5118 spa->spa_config_splitting = NULL;
5119 nvlist_free(nvl);
5120 if (error == 0)
5121 dmu_tx_commit(tx);
5122 (void) spa_vdev_exit(spa, NULL, txg, 0);
5123
5124 if (zio_injection_enabled)
5125 zio_handle_panic_injection(spa, FTAG, 3);
5126
5127 /* split is complete; log a history record */
5128 spa_history_log_internal(newspa, "split", NULL,
5129 "from pool %s", spa_name(spa));
5130
5131 kmem_free(vml, children * sizeof (vdev_t *));
5132
5133 /* if we're not going to mount the filesystems in userland, export */
5134 if (exp)
5135 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5136 B_FALSE, B_FALSE);
5137
5138 return (error);
5139
5140 out:
5141 spa_unload(newspa);
5142 spa_deactivate(newspa);
5143 spa_remove(newspa);
5144
5145 txg = spa_vdev_config_enter(spa);
5146
5147 /* re-online all offlined disks */
5148 for (c = 0; c < children; c++) {
5149 if (vml[c] != NULL)
5150 vml[c]->vdev_offline = B_FALSE;
5151 }
5152 vdev_reopen(spa->spa_root_vdev);
5153
5154 nvlist_free(spa->spa_config_splitting);
5155 spa->spa_config_splitting = NULL;
5156 (void) spa_vdev_exit(spa, NULL, txg, error);
5157
5158 kmem_free(vml, children * sizeof (vdev_t *));
5159 return (error);
5160 }
5161
5162 static nvlist_t *
5163 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5164 {
5165 for (int i = 0; i < count; i++) {
5166 uint64_t guid;
5167
5168 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5169 &guid) == 0);
5170
5171 if (guid == target_guid)
5172 return (nvpp[i]);
5173 }
5174
5175 return (NULL);
5176 }
5177
5178 static void
5179 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5180 nvlist_t *dev_to_remove)
5181 {
5182 nvlist_t **newdev = NULL;
5183
5184 if (count > 1)
5185 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5186
5187 for (int i = 0, j = 0; i < count; i++) {
5188 if (dev[i] == dev_to_remove)
5189 continue;
5190 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5191 }
5192
5193 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5194 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5195
5196 for (int i = 0; i < count - 1; i++)
5197 nvlist_free(newdev[i]);
5198
5199 if (count > 1)
5200 kmem_free(newdev, (count - 1) * sizeof (void *));
5201 }
5202
5203 /*
5204 * Evacuate the device.
5205 */
5206 static int
5207 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5208 {
5209 uint64_t txg;
5210 int error = 0;
5211
5212 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5213 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5214 ASSERT(vd == vd->vdev_top);
5215
5216 /*
5217 * Evacuate the device. We don't hold the config lock as writer
5218 * since we need to do I/O but we do keep the
5219 * spa_namespace_lock held. Once this completes the device
5220 * should no longer have any blocks allocated on it.
5221 */
5222 if (vd->vdev_islog) {
5223 if (vd->vdev_stat.vs_alloc != 0)
5224 error = spa_offline_log(spa);
5225 } else {
5226 error = SET_ERROR(ENOTSUP);
5227 }
5228
5229 if (error)
5230 return (error);
5231
5232 /*
5233 * The evacuation succeeded. Remove any remaining MOS metadata
5234 * associated with this vdev, and wait for these changes to sync.
5235 */
5236 ASSERT0(vd->vdev_stat.vs_alloc);
5237 txg = spa_vdev_config_enter(spa);
5238 vd->vdev_removing = B_TRUE;
5239 vdev_dirty_leaves(vd, VDD_DTL, txg);
5240 vdev_config_dirty(vd);
5241 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5242
5243 return (0);
5244 }
5245
5246 /*
5247 * Complete the removal by cleaning up the namespace.
5248 */
5249 static void
5250 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5251 {
5252 vdev_t *rvd = spa->spa_root_vdev;
5253 uint64_t id = vd->vdev_id;
5254 boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5255
5256 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5257 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5258 ASSERT(vd == vd->vdev_top);
5259
5260 /*
5261 * Only remove any devices which are empty.
5262 */
5263 if (vd->vdev_stat.vs_alloc != 0)
5264 return;
5265
5266 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5267
5268 if (list_link_active(&vd->vdev_state_dirty_node))
5269 vdev_state_clean(vd);
5270 if (list_link_active(&vd->vdev_config_dirty_node))
5271 vdev_config_clean(vd);
5272
5273 vdev_free(vd);
5274
5275 if (last_vdev) {
5276 vdev_compact_children(rvd);
5277 } else {
5278 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5279 vdev_add_child(rvd, vd);
5280 }
5281 vdev_config_dirty(rvd);
5282
5283 /*
5284 * Reassess the health of our root vdev.
5285 */
5286 vdev_reopen(rvd);
5287 }
5288
5289 /*
5290 * Remove a device from the pool -
5291 *
5292 * Removing a device from the vdev namespace requires several steps
5293 * and can take a significant amount of time. As a result we use
5294 * the spa_vdev_config_[enter/exit] functions which allow us to
5295 * grab and release the spa_config_lock while still holding the namespace
5296 * lock. During each step the configuration is synced out.
5297 *
5298 * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5299 * devices.
5300 */
5301 int
5302 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5303 {
5304 vdev_t *vd;
5305 metaslab_group_t *mg;
5306 nvlist_t **spares, **l2cache, *nv;
5307 uint64_t txg = 0;
5308 uint_t nspares, nl2cache;
5309 int error = 0;
5310 boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5311
5312 ASSERT(spa_writeable(spa));
5313
5314 if (!locked)
5315 txg = spa_vdev_enter(spa);
5316
5317 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5318
5319 if (spa->spa_spares.sav_vdevs != NULL &&
5320 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5321 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5322 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5323 /*
5324 * Only remove the hot spare if it's not currently in use
5325 * in this pool.
5326 */
5327 if (vd == NULL || unspare) {
5328 spa_vdev_remove_aux(spa->spa_spares.sav_config,
5329 ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5330 spa_load_spares(spa);
5331 spa->spa_spares.sav_sync = B_TRUE;
5332 } else {
5333 error = SET_ERROR(EBUSY);
5334 }
5335 } else if (spa->spa_l2cache.sav_vdevs != NULL &&
5336 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5337 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5338 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5339 /*
5340 * Cache devices can always be removed.
5341 */
5342 spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5343 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5344 spa_load_l2cache(spa);
5345 spa->spa_l2cache.sav_sync = B_TRUE;
5346 } else if (vd != NULL && vd->vdev_islog) {
5347 ASSERT(!locked);
5348 ASSERT(vd == vd->vdev_top);
5349
5350 mg = vd->vdev_mg;
5351
5352 /*
5353 * Stop allocating from this vdev.
5354 */
5355 metaslab_group_passivate(mg);
5356
5357 /*
5358 * Wait for the youngest allocations and frees to sync,
5359 * and then wait for the deferral of those frees to finish.
5360 */
5361 spa_vdev_config_exit(spa, NULL,
5362 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5363
5364 /*
5365 * Attempt to evacuate the vdev.
5366 */
5367 error = spa_vdev_remove_evacuate(spa, vd);
5368
5369 txg = spa_vdev_config_enter(spa);
5370
5371 /*
5372 * If we couldn't evacuate the vdev, unwind.
5373 */
5374 if (error) {
5375 metaslab_group_activate(mg);
5376 return (spa_vdev_exit(spa, NULL, txg, error));
5377 }
5378
5379 /*
5380 * Clean up the vdev namespace.
5381 */
5382 spa_vdev_remove_from_namespace(spa, vd);
5383
5384 } else if (vd != NULL) {
5385 /*
5386 * Normal vdevs cannot be removed (yet).
5387 */
5388 error = SET_ERROR(ENOTSUP);
5389 } else {
5390 /*
5391 * There is no vdev of any kind with the specified guid.
5392 */
5393 error = SET_ERROR(ENOENT);
5394 }
5395
5396 if (!locked)
5397 return (spa_vdev_exit(spa, NULL, txg, error));
5398
5399 return (error);
5400 }
5401
5402 /*
5403 * Find any device that's done replacing, or a vdev marked 'unspare' that's
5404 * currently spared, so we can detach it.
5405 */
5406 static vdev_t *
5407 spa_vdev_resilver_done_hunt(vdev_t *vd)
5408 {
5409 vdev_t *newvd, *oldvd;
5410
5411 for (int c = 0; c < vd->vdev_children; c++) {
5412 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5413 if (oldvd != NULL)
5414 return (oldvd);
5415 }
5416
5417 /*
5418 * Check for a completed replacement. We always consider the first
5419 * vdev in the list to be the oldest vdev, and the last one to be
5420 * the newest (see spa_vdev_attach() for how that works). In
5421 * the case where the newest vdev is faulted, we will not automatically
5422 * remove it after a resilver completes. This is OK as it will require
5423 * user intervention to determine which disk the admin wishes to keep.
5424 */
5425 if (vd->vdev_ops == &vdev_replacing_ops) {
5426 ASSERT(vd->vdev_children > 1);
5427
5428 newvd = vd->vdev_child[vd->vdev_children - 1];
5429 oldvd = vd->vdev_child[0];
5430
5431 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5432 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5433 !vdev_dtl_required(oldvd))
5434 return (oldvd);
5435 }
5436
5437 /*
5438 * Check for a completed resilver with the 'unspare' flag set.
5439 */
5440 if (vd->vdev_ops == &vdev_spare_ops) {
5441 vdev_t *first = vd->vdev_child[0];
5442 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5443
5444 if (last->vdev_unspare) {
5445 oldvd = first;
5446 newvd = last;
5447 } else if (first->vdev_unspare) {
5448 oldvd = last;
5449 newvd = first;
5450 } else {
5451 oldvd = NULL;
5452 }
5453
5454 if (oldvd != NULL &&
5455 vdev_dtl_empty(newvd, DTL_MISSING) &&
5456 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5457 !vdev_dtl_required(oldvd))
5458 return (oldvd);
5459
5460 /*
5461 * If there are more than two spares attached to a disk,
5462 * and those spares are not required, then we want to
5463 * attempt to free them up now so that they can be used
5464 * by other pools. Once we're back down to a single
5465 * disk+spare, we stop removing them.
5466 */
5467 if (vd->vdev_children > 2) {
5468 newvd = vd->vdev_child[1];
5469
5470 if (newvd->vdev_isspare && last->vdev_isspare &&
5471 vdev_dtl_empty(last, DTL_MISSING) &&
5472 vdev_dtl_empty(last, DTL_OUTAGE) &&
5473 !vdev_dtl_required(newvd))
5474 return (newvd);
5475 }
5476 }
5477
5478 return (NULL);
5479 }
5480
5481 static void
5482 spa_vdev_resilver_done(spa_t *spa)
5483 {
5484 vdev_t *vd, *pvd, *ppvd;
5485 uint64_t guid, sguid, pguid, ppguid;
5486
5487 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5488
5489 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5490 pvd = vd->vdev_parent;
5491 ppvd = pvd->vdev_parent;
5492 guid = vd->vdev_guid;
5493 pguid = pvd->vdev_guid;
5494 ppguid = ppvd->vdev_guid;
5495 sguid = 0;
5496 /*
5497 * If we have just finished replacing a hot spared device, then
5498 * we need to detach the parent's first child (the original hot
5499 * spare) as well.
5500 */
5501 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5502 ppvd->vdev_children == 2) {
5503 ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5504 sguid = ppvd->vdev_child[1]->vdev_guid;
5505 }
5506 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5507
5508 spa_config_exit(spa, SCL_ALL, FTAG);
5509 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5510 return;
5511 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5512 return;
5513 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5514 }
5515
5516 spa_config_exit(spa, SCL_ALL, FTAG);
5517 }
5518
5519 /*
5520 * Update the stored path or FRU for this vdev.
5521 */
5522 int
5523 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5524 boolean_t ispath)
5525 {
5526 vdev_t *vd;
5527 boolean_t sync = B_FALSE;
5528
5529 ASSERT(spa_writeable(spa));
5530
5531 spa_vdev_state_enter(spa, SCL_ALL);
5532
5533 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5534 return (spa_vdev_state_exit(spa, NULL, ENOENT));
5535
5536 if (!vd->vdev_ops->vdev_op_leaf)
5537 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5538
5539 if (ispath) {
5540 if (strcmp(value, vd->vdev_path) != 0) {
5541 spa_strfree(vd->vdev_path);
5542 vd->vdev_path = spa_strdup(value);
5543 sync = B_TRUE;
5544 }
5545 } else {
5546 if (vd->vdev_fru == NULL) {
5547 vd->vdev_fru = spa_strdup(value);
5548 sync = B_TRUE;
5549 } else if (strcmp(value, vd->vdev_fru) != 0) {
5550 spa_strfree(vd->vdev_fru);
5551 vd->vdev_fru = spa_strdup(value);
5552 sync = B_TRUE;
5553 }
5554 }
5555
5556 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5557 }
5558
5559 int
5560 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5561 {
5562 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5563 }
5564
5565 int
5566 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5567 {
5568 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5569 }
5570
5571 /*
5572 * ==========================================================================
5573 * SPA Scanning
5574 * ==========================================================================
5575 */
5576
5577 int
5578 spa_scan_stop(spa_t *spa)
5579 {
5580 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5581 if (dsl_scan_resilvering(spa->spa_dsl_pool))
5582 return (SET_ERROR(EBUSY));
5583 return (dsl_scan_cancel(spa->spa_dsl_pool));
5584 }
5585
5586 int
5587 spa_scan(spa_t *spa, pool_scan_func_t func)
5588 {
5589 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5590
5591 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5592 return (SET_ERROR(ENOTSUP));
5593
5594 /*
5595 * If a resilver was requested, but there is no DTL on a
5596 * writeable leaf device, we have nothing to do.
5597 */
5598 if (func == POOL_SCAN_RESILVER &&
5599 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5600 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5601 return (0);
5602 }
5603
5604 return (dsl_scan(spa->spa_dsl_pool, func));
5605 }
5606
5607 /*
5608 * ==========================================================================
5609 * SPA async task processing
5610 * ==========================================================================
5611 */
5612
5613 static void
5614 spa_async_remove(spa_t *spa, vdev_t *vd)
5615 {
5616 if (vd->vdev_remove_wanted) {
5617 vd->vdev_remove_wanted = B_FALSE;
5618 vd->vdev_delayed_close = B_FALSE;
5619 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5620
5621 /*
5622 * We want to clear the stats, but we don't want to do a full
5623 * vdev_clear() as that will cause us to throw away
5624 * degraded/faulted state as well as attempt to reopen the
5625 * device, all of which is a waste.
5626 */
5627 vd->vdev_stat.vs_read_errors = 0;
5628 vd->vdev_stat.vs_write_errors = 0;
5629 vd->vdev_stat.vs_checksum_errors = 0;
5630
5631 vdev_state_dirty(vd->vdev_top);
5632 }
5633
5634 for (int c = 0; c < vd->vdev_children; c++)
5635 spa_async_remove(spa, vd->vdev_child[c]);
5636 }
5637
5638 static void
5639 spa_async_probe(spa_t *spa, vdev_t *vd)
5640 {
5641 if (vd->vdev_probe_wanted) {
5642 vd->vdev_probe_wanted = B_FALSE;
5643 vdev_reopen(vd); /* vdev_open() does the actual probe */
5644 }
5645
5646 for (int c = 0; c < vd->vdev_children; c++)
5647 spa_async_probe(spa, vd->vdev_child[c]);
5648 }
5649
5650 static void
5651 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5652 {
5653 sysevent_id_t eid;
5654 nvlist_t *attr;
5655 char *physpath;
5656
5657 if (!spa->spa_autoexpand)
5658 return;
5659
5660 for (int c = 0; c < vd->vdev_children; c++) {
5661 vdev_t *cvd = vd->vdev_child[c];
5662 spa_async_autoexpand(spa, cvd);
5663 }
5664
5665 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5666 return;
5667
5668 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5669 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5670
5671 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5672 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5673
5674 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5675 ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
5676
5677 nvlist_free(attr);
5678 kmem_free(physpath, MAXPATHLEN);
5679 }
5680
5681 static void
5682 spa_async_thread(spa_t *spa)
5683 {
5684 int tasks;
5685
5686 ASSERT(spa->spa_sync_on);
5687
5688 mutex_enter(&spa->spa_async_lock);
5689 tasks = spa->spa_async_tasks;
5690 spa->spa_async_tasks = 0;
5691 mutex_exit(&spa->spa_async_lock);
5692
5693 /*
5694 * See if the config needs to be updated.
5695 */
5696 if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5697 uint64_t old_space, new_space;
5698
5699 mutex_enter(&spa_namespace_lock);
5700 old_space = metaslab_class_get_space(spa_normal_class(spa));
5701 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5702 new_space = metaslab_class_get_space(spa_normal_class(spa));
5703 mutex_exit(&spa_namespace_lock);
5704
5705 /*
5706 * If the pool grew as a result of the config update,
5707 * then log an internal history event.
5708 */
5709 if (new_space != old_space) {
5710 spa_history_log_internal(spa, "vdev online", NULL,
5711 "pool '%s' size: %llu(+%llu)",
5712 spa_name(spa), new_space, new_space - old_space);
5713 }
5714 }
5715
5716 /*
5717 * See if any devices need to be marked REMOVED.
5718 */
5719 if (tasks & SPA_ASYNC_REMOVE) {
5720 spa_vdev_state_enter(spa, SCL_NONE);
5721 spa_async_remove(spa, spa->spa_root_vdev);
5722 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
5723 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5724 for (int i = 0; i < spa->spa_spares.sav_count; i++)
5725 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5726 (void) spa_vdev_state_exit(spa, NULL, 0);
5727 }
5728
5729 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5730 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5731 spa_async_autoexpand(spa, spa->spa_root_vdev);
5732 spa_config_exit(spa, SCL_CONFIG, FTAG);
5733 }
5734
5735 /*
5736 * See if any devices need to be probed.
5737 */
5738 if (tasks & SPA_ASYNC_PROBE) {
5739 spa_vdev_state_enter(spa, SCL_NONE);
5740 spa_async_probe(spa, spa->spa_root_vdev);
5741 (void) spa_vdev_state_exit(spa, NULL, 0);
5742 }
5743
5744 /*
5745 * If any devices are done replacing, detach them.
5746 */
5747 if (tasks & SPA_ASYNC_RESILVER_DONE)
5748 spa_vdev_resilver_done(spa);
5749
5750 /*
5751 * Kick off a resilver.
5752 */
5753 if (tasks & SPA_ASYNC_RESILVER)
5754 dsl_resilver_restart(spa->spa_dsl_pool, 0);
5755
5756 /*
5757 * Let the world know that we're done.
5758 */
5759 mutex_enter(&spa->spa_async_lock);
5760 spa->spa_async_thread = NULL;
5761 cv_broadcast(&spa->spa_async_cv);
5762 mutex_exit(&spa->spa_async_lock);
5763 thread_exit();
5764 }
5765
5766 void
5767 spa_async_suspend(spa_t *spa)
5768 {
5769 mutex_enter(&spa->spa_async_lock);
5770 spa->spa_async_suspended++;
5771 while (spa->spa_async_thread != NULL)
5772 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5773 mutex_exit(&spa->spa_async_lock);
5774 }
5775
5776 void
5777 spa_async_resume(spa_t *spa)
5778 {
5779 mutex_enter(&spa->spa_async_lock);
5780 ASSERT(spa->spa_async_suspended != 0);
5781 spa->spa_async_suspended--;
5782 mutex_exit(&spa->spa_async_lock);
5783 }
5784
5785 static boolean_t
5786 spa_async_tasks_pending(spa_t *spa)
5787 {
5788 uint_t non_config_tasks;
5789 uint_t config_task;
5790 boolean_t config_task_suspended;
5791
5792 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
5793 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
5794 if (spa->spa_ccw_fail_time == 0) {
5795 config_task_suspended = B_FALSE;
5796 } else {
5797 config_task_suspended =
5798 (gethrtime() - spa->spa_ccw_fail_time) <
5799 (zfs_ccw_retry_interval * NANOSEC);
5800 }
5801
5802 return (non_config_tasks || (config_task && !config_task_suspended));
5803 }
5804
5805 static void
5806 spa_async_dispatch(spa_t *spa)
5807 {
5808 mutex_enter(&spa->spa_async_lock);
5809 if (spa_async_tasks_pending(spa) &&
5810 !spa->spa_async_suspended &&
5811 spa->spa_async_thread == NULL &&
5812 rootdir != NULL)
5813 spa->spa_async_thread = thread_create(NULL, 0,
5814 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
5815 mutex_exit(&spa->spa_async_lock);
5816 }
5817
5818 void
5819 spa_async_request(spa_t *spa, int task)
5820 {
5821 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
5822 mutex_enter(&spa->spa_async_lock);
5823 spa->spa_async_tasks |= task;
5824 mutex_exit(&spa->spa_async_lock);
5825 }
5826
5827 /*
5828 * ==========================================================================
5829 * SPA syncing routines
5830 * ==========================================================================
5831 */
5832
5833 static int
5834 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5835 {
5836 bpobj_t *bpo = arg;
5837 bpobj_enqueue(bpo, bp, tx);
5838 return (0);
5839 }
5840
5841 static int
5842 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5843 {
5844 zio_t *zio = arg;
5845
5846 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
5847 zio->io_flags));
5848 return (0);
5849 }
5850
5851 /*
5852 * Note: this simple function is not inlined to make it easier to dtrace the
5853 * amount of time spent syncing frees.
5854 */
5855 static void
5856 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
5857 {
5858 zio_t *zio = zio_root(spa, NULL, NULL, 0);
5859 bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
5860 VERIFY(zio_wait(zio) == 0);
5861 }
5862
5863 /*
5864 * Note: this simple function is not inlined to make it easier to dtrace the
5865 * amount of time spent syncing deferred frees.
5866 */
5867 static void
5868 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
5869 {
5870 zio_t *zio = zio_root(spa, NULL, NULL, 0);
5871 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
5872 spa_free_sync_cb, zio, tx), ==, 0);
5873 VERIFY0(zio_wait(zio));
5874 }
5875
5876
5877 static void
5878 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
5879 {
5880 char *packed = NULL;
5881 size_t bufsize;
5882 size_t nvsize = 0;
5883 dmu_buf_t *db;
5884
5885 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
5886
5887 /*
5888 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
5889 * information. This avoids the dmu_buf_will_dirty() path and
5890 * saves us a pre-read to get data we don't actually care about.
5891 */
5892 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
5893 packed = kmem_alloc(bufsize, KM_SLEEP);
5894
5895 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
5896 KM_SLEEP) == 0);
5897 bzero(packed + nvsize, bufsize - nvsize);
5898
5899 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
5900
5901 kmem_free(packed, bufsize);
5902
5903 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
5904 dmu_buf_will_dirty(db, tx);
5905 *(uint64_t *)db->db_data = nvsize;
5906 dmu_buf_rele(db, FTAG);
5907 }
5908
5909 static void
5910 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
5911 const char *config, const char *entry)
5912 {
5913 nvlist_t *nvroot;
5914 nvlist_t **list;
5915 int i;
5916
5917 if (!sav->sav_sync)
5918 return;
5919
5920 /*
5921 * Update the MOS nvlist describing the list of available devices.
5922 * spa_validate_aux() will have already made sure this nvlist is
5923 * valid and the vdevs are labeled appropriately.
5924 */
5925 if (sav->sav_object == 0) {
5926 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
5927 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
5928 sizeof (uint64_t), tx);
5929 VERIFY(zap_update(spa->spa_meta_objset,
5930 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
5931 &sav->sav_object, tx) == 0);
5932 }
5933
5934 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5935 if (sav->sav_count == 0) {
5936 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
5937 } else {
5938 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
5939 for (i = 0; i < sav->sav_count; i++)
5940 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
5941 B_FALSE, VDEV_CONFIG_L2CACHE);
5942 VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
5943 sav->sav_count) == 0);
5944 for (i = 0; i < sav->sav_count; i++)
5945 nvlist_free(list[i]);
5946 kmem_free(list, sav->sav_count * sizeof (void *));
5947 }
5948
5949 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
5950 nvlist_free(nvroot);
5951
5952 sav->sav_sync = B_FALSE;
5953 }
5954
5955 static void
5956 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
5957 {
5958 nvlist_t *config;
5959
5960 if (list_is_empty(&spa->spa_config_dirty_list))
5961 return;
5962
5963 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5964
5965 config = spa_config_generate(spa, spa->spa_root_vdev,
5966 dmu_tx_get_txg(tx), B_FALSE);
5967
5968 /*
5969 * If we're upgrading the spa version then make sure that
5970 * the config object gets updated with the correct version.
5971 */
5972 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
5973 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5974 spa->spa_uberblock.ub_version);
5975
5976 spa_config_exit(spa, SCL_STATE, FTAG);
5977
5978 if (spa->spa_config_syncing)
5979 nvlist_free(spa->spa_config_syncing);
5980 spa->spa_config_syncing = config;
5981
5982 spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
5983 }
5984
5985 static void
5986 spa_sync_version(void *arg, dmu_tx_t *tx)
5987 {
5988 uint64_t *versionp = arg;
5989 uint64_t version = *versionp;
5990 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5991
5992 /*
5993 * Setting the version is special cased when first creating the pool.
5994 */
5995 ASSERT(tx->tx_txg != TXG_INITIAL);
5996
5997 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
5998 ASSERT(version >= spa_version(spa));
5999
6000 spa->spa_uberblock.ub_version = version;
6001 vdev_config_dirty(spa->spa_root_vdev);
6002 spa_history_log_internal(spa, "set", tx, "version=%lld", version);
6003 }
6004
6005 /*
6006 * Set zpool properties.
6007 */
6008 static void
6009 spa_sync_props(void *arg, dmu_tx_t *tx)
6010 {
6011 nvlist_t *nvp = arg;
6012 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6013 objset_t *mos = spa->spa_meta_objset;
6014 nvpair_t *elem = NULL;
6015
6016 mutex_enter(&spa->spa_props_lock);
6017
6018 while ((elem = nvlist_next_nvpair(nvp, elem))) {
6019 uint64_t intval;
6020 char *strval, *fname;
6021 zpool_prop_t prop;
6022 const char *propname;
6023 zprop_type_t proptype;
6024 spa_feature_t fid;
6025
6026 switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
6027 case ZPROP_INVAL:
6028 /*
6029 * We checked this earlier in spa_prop_validate().
6030 */
6031 ASSERT(zpool_prop_feature(nvpair_name(elem)));
6032
6033 fname = strchr(nvpair_name(elem), '@') + 1;
6034 VERIFY0(zfeature_lookup_name(fname, &fid));
6035
6036 spa_feature_enable(spa, fid, tx);
6037 spa_history_log_internal(spa, "set", tx,
6038 "%s=enabled", nvpair_name(elem));
6039 break;
6040
6041 case ZPOOL_PROP_VERSION:
6042 intval = fnvpair_value_uint64(elem);
6043 /*
6044 * The version is synced seperatly before other
6045 * properties and should be correct by now.
6046 */
6047 ASSERT3U(spa_version(spa), >=, intval);
6048 break;
6049
6050 case ZPOOL_PROP_ALTROOT:
6051 /*
6052 * 'altroot' is a non-persistent property. It should
6053 * have been set temporarily at creation or import time.
6054 */
6055 ASSERT(spa->spa_root != NULL);
6056 break;
6057
6058 case ZPOOL_PROP_READONLY:
6059 case ZPOOL_PROP_CACHEFILE:
6060 /*
6061 * 'readonly' and 'cachefile' are also non-persisitent
6062 * properties.
6063 */
6064 break;
6065 case ZPOOL_PROP_COMMENT:
6066 strval = fnvpair_value_string(elem);
6067 if (spa->spa_comment != NULL)
6068 spa_strfree(spa->spa_comment);
6069 spa->spa_comment = spa_strdup(strval);
6070 /*
6071 * We need to dirty the configuration on all the vdevs
6072 * so that their labels get updated. It's unnecessary
6073 * to do this for pool creation since the vdev's
6074 * configuratoin has already been dirtied.
6075 */
6076 if (tx->tx_txg != TXG_INITIAL)
6077 vdev_config_dirty(spa->spa_root_vdev);
6078 spa_history_log_internal(spa, "set", tx,
6079 "%s=%s", nvpair_name(elem), strval);
6080 break;
6081 default:
6082 /*
6083 * Set pool property values in the poolprops mos object.
6084 */
6085 if (spa->spa_pool_props_object == 0) {
6086 spa->spa_pool_props_object =
6087 zap_create_link(mos, DMU_OT_POOL_PROPS,
6088 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6089 tx);
6090 }
6091
6092 /* normalize the property name */
6093 propname = zpool_prop_to_name(prop);
6094 proptype = zpool_prop_get_type(prop);
6095
6096 if (nvpair_type(elem) == DATA_TYPE_STRING) {
6097 ASSERT(proptype == PROP_TYPE_STRING);
6098 strval = fnvpair_value_string(elem);
6099 VERIFY0(zap_update(mos,
6100 spa->spa_pool_props_object, propname,
6101 1, strlen(strval) + 1, strval, tx));
6102 spa_history_log_internal(spa, "set", tx,
6103 "%s=%s", nvpair_name(elem), strval);
6104 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6105 intval = fnvpair_value_uint64(elem);
6106
6107 if (proptype == PROP_TYPE_INDEX) {
6108 const char *unused;
6109 VERIFY0(zpool_prop_index_to_string(
6110 prop, intval, &unused));
6111 }
6112 VERIFY0(zap_update(mos,
6113 spa->spa_pool_props_object, propname,
6114 8, 1, &intval, tx));
6115 spa_history_log_internal(spa, "set", tx,
6116 "%s=%lld", nvpair_name(elem), intval);
6117 } else {
6118 ASSERT(0); /* not allowed */
6119 }
6120
6121 switch (prop) {
6122 case ZPOOL_PROP_DELEGATION:
6123 spa->spa_delegation = intval;
6124 break;
6125 case ZPOOL_PROP_BOOTFS:
6126 spa->spa_bootfs = intval;
6127 break;
6128 case ZPOOL_PROP_FAILUREMODE:
6129 spa->spa_failmode = intval;
6130 break;
6131 case ZPOOL_PROP_AUTOEXPAND:
6132 spa->spa_autoexpand = intval;
6133 if (tx->tx_txg != TXG_INITIAL)
6134 spa_async_request(spa,
6135 SPA_ASYNC_AUTOEXPAND);
6136 break;
6137 case ZPOOL_PROP_DEDUPDITTO:
6138 spa->spa_dedup_ditto = intval;
6139 break;
6140 default:
6141 break;
6142 }
6143 }
6144
6145 }
6146
6147 mutex_exit(&spa->spa_props_lock);
6148 }
6149
6150 /*
6151 * Perform one-time upgrade on-disk changes. spa_version() does not
6152 * reflect the new version this txg, so there must be no changes this
6153 * txg to anything that the upgrade code depends on after it executes.
6154 * Therefore this must be called after dsl_pool_sync() does the sync
6155 * tasks.
6156 */
6157 static void
6158 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6159 {
6160 dsl_pool_t *dp = spa->spa_dsl_pool;
6161
6162 ASSERT(spa->spa_sync_pass == 1);
6163
6164 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6165
6166 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6167 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6168 dsl_pool_create_origin(dp, tx);
6169
6170 /* Keeping the origin open increases spa_minref */
6171 spa->spa_minref += 3;
6172 }
6173
6174 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6175 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6176 dsl_pool_upgrade_clones(dp, tx);
6177 }
6178
6179 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6180 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6181 dsl_pool_upgrade_dir_clones(dp, tx);
6182
6183 /* Keeping the freedir open increases spa_minref */
6184 spa->spa_minref += 3;
6185 }
6186
6187 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6188 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6189 spa_feature_create_zap_objects(spa, tx);
6190 }
6191
6192 /*
6193 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
6194 * when possibility to use lz4 compression for metadata was added
6195 * Old pools that have this feature enabled must be upgraded to have
6196 * this feature active
6197 */
6198 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6199 boolean_t lz4_en = spa_feature_is_enabled(spa,
6200 SPA_FEATURE_LZ4_COMPRESS);
6201 boolean_t lz4_ac = spa_feature_is_active(spa,
6202 SPA_FEATURE_LZ4_COMPRESS);
6203
6204 if (lz4_en && !lz4_ac)
6205 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
6206 }
6207 rrw_exit(&dp->dp_config_rwlock, FTAG);
6208 }
6209
6210 /*
6211 * Sync the specified transaction group. New blocks may be dirtied as
6212 * part of the process, so we iterate until it converges.
6213 */
6214 void
6215 spa_sync(spa_t *spa, uint64_t txg)
6216 {
6217 dsl_pool_t *dp = spa->spa_dsl_pool;
6218 objset_t *mos = spa->spa_meta_objset;
6219 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6220 vdev_t *rvd = spa->spa_root_vdev;
6221 vdev_t *vd;
6222 dmu_tx_t *tx;
6223 int error;
6224
6225 VERIFY(spa_writeable(spa));
6226
6227 /*
6228 * Lock out configuration changes.
6229 */
6230 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6231
6232 spa->spa_syncing_txg = txg;
6233 spa->spa_sync_pass = 0;
6234
6235 /*
6236 * If there are any pending vdev state changes, convert them
6237 * into config changes that go out with this transaction group.
6238 */
6239 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6240 while (list_head(&spa->spa_state_dirty_list) != NULL) {
6241 /*
6242 * We need the write lock here because, for aux vdevs,
6243 * calling vdev_config_dirty() modifies sav_config.
6244 * This is ugly and will become unnecessary when we
6245 * eliminate the aux vdev wart by integrating all vdevs
6246 * into the root vdev tree.
6247 */
6248 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6249 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6250 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6251 vdev_state_clean(vd);
6252 vdev_config_dirty(vd);
6253 }
6254 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6255 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6256 }
6257 spa_config_exit(spa, SCL_STATE, FTAG);
6258
6259 tx = dmu_tx_create_assigned(dp, txg);
6260
6261 spa->spa_sync_starttime = gethrtime();
6262 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6263 spa->spa_sync_starttime + spa->spa_deadman_synctime));
6264
6265 /*
6266 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6267 * set spa_deflate if we have no raid-z vdevs.
6268 */
6269 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6270 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6271 int i;
6272
6273 for (i = 0; i < rvd->vdev_children; i++) {
6274 vd = rvd->vdev_child[i];
6275 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6276 break;
6277 }
6278 if (i == rvd->vdev_children) {
6279 spa->spa_deflate = TRUE;
6280 VERIFY(0 == zap_add(spa->spa_meta_objset,
6281 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6282 sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6283 }
6284 }
6285
6286 /*
6287 * Iterate to convergence.
6288 */
6289 do {
6290 int pass = ++spa->spa_sync_pass;
6291
6292 spa_sync_config_object(spa, tx);
6293 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6294 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6295 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6296 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6297 spa_errlog_sync(spa, txg);
6298 dsl_pool_sync(dp, txg);
6299
6300 if (pass < zfs_sync_pass_deferred_free) {
6301 spa_sync_frees(spa, free_bpl, tx);
6302 } else {
6303 /*
6304 * We can not defer frees in pass 1, because
6305 * we sync the deferred frees later in pass 1.
6306 */
6307 ASSERT3U(pass, >, 1);
6308 bplist_iterate(free_bpl, bpobj_enqueue_cb,
6309 &spa->spa_deferred_bpobj, tx);
6310 }
6311
6312 ddt_sync(spa, txg);
6313 dsl_scan_sync(dp, tx);
6314
6315 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6316 vdev_sync(vd, txg);
6317
6318 if (pass == 1) {
6319 spa_sync_upgrades(spa, tx);
6320 ASSERT3U(txg, >=,
6321 spa->spa_uberblock.ub_rootbp.blk_birth);
6322 /*
6323 * Note: We need to check if the MOS is dirty
6324 * because we could have marked the MOS dirty
6325 * without updating the uberblock (e.g. if we
6326 * have sync tasks but no dirty user data). We
6327 * need to check the uberblock's rootbp because
6328 * it is updated if we have synced out dirty
6329 * data (though in this case the MOS will most
6330 * likely also be dirty due to second order
6331 * effects, we don't want to rely on that here).
6332 */
6333 if (spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
6334 !dmu_objset_is_dirty(mos, txg)) {
6335 /*
6336 * Nothing changed on the first pass,
6337 * therefore this TXG is a no-op. Avoid
6338 * syncing deferred frees, so that we
6339 * can keep this TXG as a no-op.
6340 */
6341 ASSERT(txg_list_empty(&dp->dp_dirty_datasets,
6342 txg));
6343 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6344 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
6345 break;
6346 }
6347 spa_sync_deferred_frees(spa, tx);
6348 }
6349
6350 } while (dmu_objset_is_dirty(mos, txg));
6351
6352 /*
6353 * Rewrite the vdev configuration (which includes the uberblock)
6354 * to commit the transaction group.
6355 *
6356 * If there are no dirty vdevs, we sync the uberblock to a few
6357 * random top-level vdevs that are known to be visible in the
6358 * config cache (see spa_vdev_add() for a complete description).
6359 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6360 */
6361 for (;;) {
6362 /*
6363 * We hold SCL_STATE to prevent vdev open/close/etc.
6364 * while we're attempting to write the vdev labels.
6365 */
6366 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6367
6368 if (list_is_empty(&spa->spa_config_dirty_list)) {
6369 vdev_t *svd[SPA_DVAS_PER_BP];
6370 int svdcount = 0;
6371 int children = rvd->vdev_children;
6372 int c0 = spa_get_random(children);
6373
6374 for (int c = 0; c < children; c++) {
6375 vd = rvd->vdev_child[(c0 + c) % children];
6376 if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6377 continue;
6378 svd[svdcount++] = vd;
6379 if (svdcount == SPA_DVAS_PER_BP)
6380 break;
6381 }
6382 error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
6383 if (error != 0)
6384 error = vdev_config_sync(svd, svdcount, txg,
6385 B_TRUE);
6386 } else {
6387 error = vdev_config_sync(rvd->vdev_child,
6388 rvd->vdev_children, txg, B_FALSE);
6389 if (error != 0)
6390 error = vdev_config_sync(rvd->vdev_child,
6391 rvd->vdev_children, txg, B_TRUE);
6392 }
6393
6394 if (error == 0)
6395 spa->spa_last_synced_guid = rvd->vdev_guid;
6396
6397 spa_config_exit(spa, SCL_STATE, FTAG);
6398
6399 if (error == 0)
6400 break;
6401 zio_suspend(spa, NULL);
6402 zio_resume_wait(spa);
6403 }
6404 dmu_tx_commit(tx);
6405
6406 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6407
6408 /*
6409 * Clear the dirty config list.
6410 */
6411 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6412 vdev_config_clean(vd);
6413
6414 /*
6415 * Now that the new config has synced transactionally,
6416 * let it become visible to the config cache.
6417 */
6418 if (spa->spa_config_syncing != NULL) {
6419 spa_config_set(spa, spa->spa_config_syncing);
6420 spa->spa_config_txg = txg;
6421 spa->spa_config_syncing = NULL;
6422 }
6423
6424 spa->spa_ubsync = spa->spa_uberblock;
6425
6426 dsl_pool_sync_done(dp, txg);
6427
6428 /*
6429 * Update usable space statistics.
6430 */
6431 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6432 vdev_sync_done(vd, txg);
6433
6434 spa_update_dspace(spa);
6435
6436 /*
6437 * It had better be the case that we didn't dirty anything
6438 * since vdev_config_sync().
6439 */
6440 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6441 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6442 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6443
6444 spa->spa_sync_pass = 0;
6445
6446 spa_config_exit(spa, SCL_CONFIG, FTAG);
6447
6448 spa_handle_ignored_writes(spa);
6449
6450 /*
6451 * If any async tasks have been requested, kick them off.
6452 */
6453 spa_async_dispatch(spa);
6454 }
6455
6456 /*
6457 * Sync all pools. We don't want to hold the namespace lock across these
6458 * operations, so we take a reference on the spa_t and drop the lock during the
6459 * sync.
6460 */
6461 void
6462 spa_sync_allpools(void)
6463 {
6464 spa_t *spa = NULL;
6465 mutex_enter(&spa_namespace_lock);
6466 while ((spa = spa_next(spa)) != NULL) {
6467 if (spa_state(spa) != POOL_STATE_ACTIVE ||
6468 !spa_writeable(spa) || spa_suspended(spa))
6469 continue;
6470 spa_open_ref(spa, FTAG);
6471 mutex_exit(&spa_namespace_lock);
6472 txg_wait_synced(spa_get_dsl(spa), 0);
6473 mutex_enter(&spa_namespace_lock);
6474 spa_close(spa, FTAG);
6475 }
6476 mutex_exit(&spa_namespace_lock);
6477 }
6478
6479 /*
6480 * ==========================================================================
6481 * Miscellaneous routines
6482 * ==========================================================================
6483 */
6484
6485 /*
6486 * Remove all pools in the system.
6487 */
6488 void
6489 spa_evict_all(void)
6490 {
6491 spa_t *spa;
6492
6493 /*
6494 * Remove all cached state. All pools should be closed now,
6495 * so every spa in the AVL tree should be unreferenced.
6496 */
6497 mutex_enter(&spa_namespace_lock);
6498 while ((spa = spa_next(NULL)) != NULL) {
6499 /*
6500 * Stop async tasks. The async thread may need to detach
6501 * a device that's been replaced, which requires grabbing
6502 * spa_namespace_lock, so we must drop it here.
6503 */
6504 spa_open_ref(spa, FTAG);
6505 mutex_exit(&spa_namespace_lock);
6506 spa_async_suspend(spa);
6507 mutex_enter(&spa_namespace_lock);
6508 spa_close(spa, FTAG);
6509
6510 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6511 spa_unload(spa);
6512 spa_deactivate(spa);
6513 }
6514 spa_remove(spa);
6515 }
6516 mutex_exit(&spa_namespace_lock);
6517 }
6518
6519 vdev_t *
6520 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6521 {
6522 vdev_t *vd;
6523 int i;
6524
6525 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6526 return (vd);
6527
6528 if (aux) {
6529 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6530 vd = spa->spa_l2cache.sav_vdevs[i];
6531 if (vd->vdev_guid == guid)
6532 return (vd);
6533 }
6534
6535 for (i = 0; i < spa->spa_spares.sav_count; i++) {
6536 vd = spa->spa_spares.sav_vdevs[i];
6537 if (vd->vdev_guid == guid)
6538 return (vd);
6539 }
6540 }
6541
6542 return (NULL);
6543 }
6544
6545 void
6546 spa_upgrade(spa_t *spa, uint64_t version)
6547 {
6548 ASSERT(spa_writeable(spa));
6549
6550 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6551
6552 /*
6553 * This should only be called for a non-faulted pool, and since a
6554 * future version would result in an unopenable pool, this shouldn't be
6555 * possible.
6556 */
6557 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6558 ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
6559
6560 spa->spa_uberblock.ub_version = version;
6561 vdev_config_dirty(spa->spa_root_vdev);
6562
6563 spa_config_exit(spa, SCL_ALL, FTAG);
6564
6565 txg_wait_synced(spa_get_dsl(spa), 0);
6566 }
6567
6568 boolean_t
6569 spa_has_spare(spa_t *spa, uint64_t guid)
6570 {
6571 int i;
6572 uint64_t spareguid;
6573 spa_aux_vdev_t *sav = &spa->spa_spares;
6574
6575 for (i = 0; i < sav->sav_count; i++)
6576 if (sav->sav_vdevs[i]->vdev_guid == guid)
6577 return (B_TRUE);
6578
6579 for (i = 0; i < sav->sav_npending; i++) {
6580 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6581 &spareguid) == 0 && spareguid == guid)
6582 return (B_TRUE);
6583 }
6584
6585 return (B_FALSE);
6586 }
6587
6588 /*
6589 * Check if a pool has an active shared spare device.
6590 * Note: reference count of an active spare is 2, as a spare and as a replace
6591 */
6592 static boolean_t
6593 spa_has_active_shared_spare(spa_t *spa)
6594 {
6595 int i, refcnt;
6596 uint64_t pool;
6597 spa_aux_vdev_t *sav = &spa->spa_spares;
6598
6599 for (i = 0; i < sav->sav_count; i++) {
6600 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6601 &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6602 refcnt > 2)
6603 return (B_TRUE);
6604 }
6605
6606 return (B_FALSE);
6607 }
6608
6609 /*
6610 * Post a sysevent corresponding to the given event. The 'name' must be one of
6611 * the event definitions in sys/sysevent/eventdefs.h. The payload will be
6612 * filled in from the spa and (optionally) the vdev. This doesn't do anything
6613 * in the userland libzpool, as we don't want consumers to misinterpret ztest
6614 * or zdb as real changes.
6615 */
6616 void
6617 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6618 {
6619 #ifdef _KERNEL
6620 sysevent_t *ev;
6621 sysevent_attr_list_t *attr = NULL;
6622 sysevent_value_t value;
6623 sysevent_id_t eid;
6624
6625 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
6626 SE_SLEEP);
6627
6628 value.value_type = SE_DATA_TYPE_STRING;
6629 value.value.sv_string = spa_name(spa);
6630 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
6631 goto done;
6632
6633 value.value_type = SE_DATA_TYPE_UINT64;
6634 value.value.sv_uint64 = spa_guid(spa);
6635 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
6636 goto done;
6637
6638 if (vd) {
6639 value.value_type = SE_DATA_TYPE_UINT64;
6640 value.value.sv_uint64 = vd->vdev_guid;
6641 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
6642 SE_SLEEP) != 0)
6643 goto done;
6644
6645 if (vd->vdev_path) {
6646 value.value_type = SE_DATA_TYPE_STRING;
6647 value.value.sv_string = vd->vdev_path;
6648 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
6649 &value, SE_SLEEP) != 0)
6650 goto done;
6651 }
6652 }
6653
6654 if (sysevent_attach_attributes(ev, attr) != 0)
6655 goto done;
6656 attr = NULL;
6657
6658 (void) log_sysevent(ev, SE_SLEEP, &eid);
6659
6660 done:
6661 if (attr)
6662 sysevent_free_attr(attr);
6663 sysevent_free(ev);
6664 #endif
6665 }