Print this page
    
5179 remove unused ZFS ARC functions
    
      
        | Split | 
	Close | 
      
      | Expand all | 
      | Collapse all | 
    
    
          --- old/usr/src/uts/common/fs/zfs/arc.c
          +++ new/usr/src/uts/common/fs/zfs/arc.c
   1    1  /*
   2    2   * CDDL HEADER START
   3    3   *
   4    4   * The contents of this file are subject to the terms of the
   5    5   * Common Development and Distribution License (the "License").
   6    6   * You may not use this file except in compliance with the License.
   7    7   *
   8    8   * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9    9   * or http://www.opensolaris.org/os/licensing.
  10   10   * See the License for the specific language governing permissions
  11   11   * and limitations under the License.
  12   12   *
  13   13   * When distributing Covered Code, include this CDDL HEADER in each
  14   14   * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15   15   * If applicable, add the following below this CDDL HEADER, with the
  16   16   * fields enclosed by brackets "[]" replaced with your own identifying
  17   17   * information: Portions Copyright [yyyy] [name of copyright owner]
  18   18   *
  19   19   * CDDL HEADER END
  20   20   */
  21   21  /*
  22   22   * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  23   23   * Copyright (c) 2012, Joyent, Inc. All rights reserved.
  24   24   * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
  25   25   * Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
  26   26   * Copyright 2014 Nexenta Systems, Inc.  All rights reserved.
  27   27   */
  28   28  
  29   29  /*
  30   30   * DVA-based Adjustable Replacement Cache
  31   31   *
  32   32   * While much of the theory of operation used here is
  33   33   * based on the self-tuning, low overhead replacement cache
  34   34   * presented by Megiddo and Modha at FAST 2003, there are some
  35   35   * significant differences:
  36   36   *
  37   37   * 1. The Megiddo and Modha model assumes any page is evictable.
  38   38   * Pages in its cache cannot be "locked" into memory.  This makes
  39   39   * the eviction algorithm simple: evict the last page in the list.
  40   40   * This also make the performance characteristics easy to reason
  41   41   * about.  Our cache is not so simple.  At any given moment, some
  42   42   * subset of the blocks in the cache are un-evictable because we
  43   43   * have handed out a reference to them.  Blocks are only evictable
  44   44   * when there are no external references active.  This makes
  45   45   * eviction far more problematic:  we choose to evict the evictable
  46   46   * blocks that are the "lowest" in the list.
  47   47   *
  48   48   * There are times when it is not possible to evict the requested
  49   49   * space.  In these circumstances we are unable to adjust the cache
  50   50   * size.  To prevent the cache growing unbounded at these times we
  51   51   * implement a "cache throttle" that slows the flow of new data
  52   52   * into the cache until we can make space available.
  53   53   *
  54   54   * 2. The Megiddo and Modha model assumes a fixed cache size.
  55   55   * Pages are evicted when the cache is full and there is a cache
  56   56   * miss.  Our model has a variable sized cache.  It grows with
  57   57   * high use, but also tries to react to memory pressure from the
  58   58   * operating system: decreasing its size when system memory is
  59   59   * tight.
  60   60   *
  61   61   * 3. The Megiddo and Modha model assumes a fixed page size. All
  62   62   * elements of the cache are therefore exactly the same size.  So
  63   63   * when adjusting the cache size following a cache miss, its simply
  64   64   * a matter of choosing a single page to evict.  In our model, we
  65   65   * have variable sized cache blocks (rangeing from 512 bytes to
  66   66   * 128K bytes).  We therefore choose a set of blocks to evict to make
  67   67   * space for a cache miss that approximates as closely as possible
  68   68   * the space used by the new block.
  69   69   *
  70   70   * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
  71   71   * by N. Megiddo & D. Modha, FAST 2003
  72   72   */
  73   73  
  74   74  /*
  75   75   * The locking model:
  76   76   *
  77   77   * A new reference to a cache buffer can be obtained in two
  78   78   * ways: 1) via a hash table lookup using the DVA as a key,
  79   79   * or 2) via one of the ARC lists.  The arc_read() interface
  80   80   * uses method 1, while the internal arc algorithms for
  81   81   * adjusting the cache use method 2.  We therefore provide two
  82   82   * types of locks: 1) the hash table lock array, and 2) the
  83   83   * arc list locks.
  84   84   *
  85   85   * Buffers do not have their own mutexes, rather they rely on the
  86   86   * hash table mutexes for the bulk of their protection (i.e. most
  87   87   * fields in the arc_buf_hdr_t are protected by these mutexes).
  88   88   *
  89   89   * buf_hash_find() returns the appropriate mutex (held) when it
  90   90   * locates the requested buffer in the hash table.  It returns
  91   91   * NULL for the mutex if the buffer was not in the table.
  92   92   *
  93   93   * buf_hash_remove() expects the appropriate hash mutex to be
  94   94   * already held before it is invoked.
  95   95   *
  96   96   * Each arc state also has a mutex which is used to protect the
  97   97   * buffer list associated with the state.  When attempting to
  98   98   * obtain a hash table lock while holding an arc list lock you
  99   99   * must use: mutex_tryenter() to avoid deadlock.  Also note that
 100  100   * the active state mutex must be held before the ghost state mutex.
 101  101   *
 102  102   * Arc buffers may have an associated eviction callback function.
 103  103   * This function will be invoked prior to removing the buffer (e.g.
 104  104   * in arc_do_user_evicts()).  Note however that the data associated
 105  105   * with the buffer may be evicted prior to the callback.  The callback
 106  106   * must be made with *no locks held* (to prevent deadlock).  Additionally,
 107  107   * the users of callbacks must ensure that their private data is
 108  108   * protected from simultaneous callbacks from arc_clear_callback()
 109  109   * and arc_do_user_evicts().
 110  110   *
 111  111   * Note that the majority of the performance stats are manipulated
 112  112   * with atomic operations.
 113  113   *
 114  114   * The L2ARC uses the l2arc_buflist_mtx global mutex for the following:
 115  115   *
 116  116   *      - L2ARC buflist creation
 117  117   *      - L2ARC buflist eviction
 118  118   *      - L2ARC write completion, which walks L2ARC buflists
 119  119   *      - ARC header destruction, as it removes from L2ARC buflists
 120  120   *      - ARC header release, as it removes from L2ARC buflists
 121  121   */
 122  122  
 123  123  #include <sys/spa.h>
 124  124  #include <sys/zio.h>
 125  125  #include <sys/zio_compress.h>
 126  126  #include <sys/zfs_context.h>
 127  127  #include <sys/arc.h>
 128  128  #include <sys/refcount.h>
 129  129  #include <sys/vdev.h>
 130  130  #include <sys/vdev_impl.h>
 131  131  #include <sys/dsl_pool.h>
 132  132  #ifdef _KERNEL
 133  133  #include <sys/vmsystm.h>
 134  134  #include <vm/anon.h>
 135  135  #include <sys/fs/swapnode.h>
 136  136  #include <sys/dnlc.h>
 137  137  #endif
 138  138  #include <sys/callb.h>
 139  139  #include <sys/kstat.h>
 140  140  #include <zfs_fletcher.h>
 141  141  
 142  142  #ifndef _KERNEL
 143  143  /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
 144  144  boolean_t arc_watch = B_FALSE;
 145  145  int arc_procfd;
 146  146  #endif
 147  147  
 148  148  static kmutex_t         arc_reclaim_thr_lock;
 149  149  static kcondvar_t       arc_reclaim_thr_cv;     /* used to signal reclaim thr */
 150  150  static uint8_t          arc_thread_exit;
 151  151  
 152  152  #define ARC_REDUCE_DNLC_PERCENT 3
 153  153  uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT;
 154  154  
 155  155  typedef enum arc_reclaim_strategy {
 156  156          ARC_RECLAIM_AGGR,               /* Aggressive reclaim strategy */
 157  157          ARC_RECLAIM_CONS                /* Conservative reclaim strategy */
 158  158  } arc_reclaim_strategy_t;
 159  159  
 160  160  /*
 161  161   * The number of iterations through arc_evict_*() before we
 162  162   * drop & reacquire the lock.
 163  163   */
 164  164  int arc_evict_iterations = 100;
 165  165  
 166  166  /* number of seconds before growing cache again */
 167  167  static int              arc_grow_retry = 60;
 168  168  
 169  169  /* shift of arc_c for calculating both min and max arc_p */
 170  170  static int              arc_p_min_shift = 4;
 171  171  
 172  172  /* log2(fraction of arc to reclaim) */
 173  173  static int              arc_shrink_shift = 5;
 174  174  
 175  175  /*
 176  176   * minimum lifespan of a prefetch block in clock ticks
 177  177   * (initialized in arc_init())
 178  178   */
 179  179  static int              arc_min_prefetch_lifespan;
 180  180  
 181  181  /*
 182  182   * If this percent of memory is free, don't throttle.
 183  183   */
 184  184  int arc_lotsfree_percent = 10;
 185  185  
 186  186  static int arc_dead;
 187  187  
 188  188  /*
 189  189   * The arc has filled available memory and has now warmed up.
 190  190   */
 191  191  static boolean_t arc_warm;
 192  192  
 193  193  /*
 194  194   * These tunables are for performance analysis.
 195  195   */
 196  196  uint64_t zfs_arc_max;
 197  197  uint64_t zfs_arc_min;
 198  198  uint64_t zfs_arc_meta_limit = 0;
 199  199  int zfs_arc_grow_retry = 0;
 200  200  int zfs_arc_shrink_shift = 0;
 201  201  int zfs_arc_p_min_shift = 0;
 202  202  int zfs_disable_dup_eviction = 0;
 203  203  int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
 204  204  
 205  205  /*
 206  206   * Note that buffers can be in one of 6 states:
 207  207   *      ARC_anon        - anonymous (discussed below)
 208  208   *      ARC_mru         - recently used, currently cached
 209  209   *      ARC_mru_ghost   - recentely used, no longer in cache
 210  210   *      ARC_mfu         - frequently used, currently cached
 211  211   *      ARC_mfu_ghost   - frequently used, no longer in cache
 212  212   *      ARC_l2c_only    - exists in L2ARC but not other states
 213  213   * When there are no active references to the buffer, they are
 214  214   * are linked onto a list in one of these arc states.  These are
 215  215   * the only buffers that can be evicted or deleted.  Within each
 216  216   * state there are multiple lists, one for meta-data and one for
 217  217   * non-meta-data.  Meta-data (indirect blocks, blocks of dnodes,
 218  218   * etc.) is tracked separately so that it can be managed more
 219  219   * explicitly: favored over data, limited explicitly.
 220  220   *
 221  221   * Anonymous buffers are buffers that are not associated with
 222  222   * a DVA.  These are buffers that hold dirty block copies
 223  223   * before they are written to stable storage.  By definition,
 224  224   * they are "ref'd" and are considered part of arc_mru
 225  225   * that cannot be freed.  Generally, they will aquire a DVA
 226  226   * as they are written and migrate onto the arc_mru list.
 227  227   *
 228  228   * The ARC_l2c_only state is for buffers that are in the second
 229  229   * level ARC but no longer in any of the ARC_m* lists.  The second
 230  230   * level ARC itself may also contain buffers that are in any of
 231  231   * the ARC_m* states - meaning that a buffer can exist in two
 232  232   * places.  The reason for the ARC_l2c_only state is to keep the
 233  233   * buffer header in the hash table, so that reads that hit the
 234  234   * second level ARC benefit from these fast lookups.
 235  235   */
 236  236  
 237  237  typedef struct arc_state {
 238  238          list_t  arcs_list[ARC_BUFC_NUMTYPES];   /* list of evictable buffers */
 239  239          uint64_t arcs_lsize[ARC_BUFC_NUMTYPES]; /* amount of evictable data */
 240  240          uint64_t arcs_size;     /* total amount of data in this state */
 241  241          kmutex_t arcs_mtx;
 242  242  } arc_state_t;
 243  243  
 244  244  /* The 6 states: */
 245  245  static arc_state_t ARC_anon;
 246  246  static arc_state_t ARC_mru;
 247  247  static arc_state_t ARC_mru_ghost;
 248  248  static arc_state_t ARC_mfu;
 249  249  static arc_state_t ARC_mfu_ghost;
 250  250  static arc_state_t ARC_l2c_only;
 251  251  
 252  252  typedef struct arc_stats {
 253  253          kstat_named_t arcstat_hits;
 254  254          kstat_named_t arcstat_misses;
 255  255          kstat_named_t arcstat_demand_data_hits;
 256  256          kstat_named_t arcstat_demand_data_misses;
 257  257          kstat_named_t arcstat_demand_metadata_hits;
 258  258          kstat_named_t arcstat_demand_metadata_misses;
 259  259          kstat_named_t arcstat_prefetch_data_hits;
 260  260          kstat_named_t arcstat_prefetch_data_misses;
 261  261          kstat_named_t arcstat_prefetch_metadata_hits;
 262  262          kstat_named_t arcstat_prefetch_metadata_misses;
 263  263          kstat_named_t arcstat_mru_hits;
 264  264          kstat_named_t arcstat_mru_ghost_hits;
 265  265          kstat_named_t arcstat_mfu_hits;
 266  266          kstat_named_t arcstat_mfu_ghost_hits;
 267  267          kstat_named_t arcstat_deleted;
 268  268          kstat_named_t arcstat_recycle_miss;
 269  269          /*
 270  270           * Number of buffers that could not be evicted because the hash lock
 271  271           * was held by another thread.  The lock may not necessarily be held
 272  272           * by something using the same buffer, since hash locks are shared
 273  273           * by multiple buffers.
 274  274           */
 275  275          kstat_named_t arcstat_mutex_miss;
 276  276          /*
 277  277           * Number of buffers skipped because they have I/O in progress, are
 278  278           * indrect prefetch buffers that have not lived long enough, or are
 279  279           * not from the spa we're trying to evict from.
 280  280           */
 281  281          kstat_named_t arcstat_evict_skip;
 282  282          kstat_named_t arcstat_evict_l2_cached;
 283  283          kstat_named_t arcstat_evict_l2_eligible;
 284  284          kstat_named_t arcstat_evict_l2_ineligible;
 285  285          kstat_named_t arcstat_hash_elements;
 286  286          kstat_named_t arcstat_hash_elements_max;
 287  287          kstat_named_t arcstat_hash_collisions;
 288  288          kstat_named_t arcstat_hash_chains;
 289  289          kstat_named_t arcstat_hash_chain_max;
 290  290          kstat_named_t arcstat_p;
 291  291          kstat_named_t arcstat_c;
 292  292          kstat_named_t arcstat_c_min;
 293  293          kstat_named_t arcstat_c_max;
 294  294          kstat_named_t arcstat_size;
 295  295          kstat_named_t arcstat_hdr_size;
 296  296          kstat_named_t arcstat_data_size;
 297  297          kstat_named_t arcstat_other_size;
 298  298          kstat_named_t arcstat_l2_hits;
 299  299          kstat_named_t arcstat_l2_misses;
 300  300          kstat_named_t arcstat_l2_feeds;
 301  301          kstat_named_t arcstat_l2_rw_clash;
 302  302          kstat_named_t arcstat_l2_read_bytes;
 303  303          kstat_named_t arcstat_l2_write_bytes;
 304  304          kstat_named_t arcstat_l2_writes_sent;
 305  305          kstat_named_t arcstat_l2_writes_done;
 306  306          kstat_named_t arcstat_l2_writes_error;
 307  307          kstat_named_t arcstat_l2_writes_hdr_miss;
 308  308          kstat_named_t arcstat_l2_evict_lock_retry;
 309  309          kstat_named_t arcstat_l2_evict_reading;
 310  310          kstat_named_t arcstat_l2_free_on_write;
 311  311          kstat_named_t arcstat_l2_abort_lowmem;
 312  312          kstat_named_t arcstat_l2_cksum_bad;
 313  313          kstat_named_t arcstat_l2_io_error;
 314  314          kstat_named_t arcstat_l2_size;
 315  315          kstat_named_t arcstat_l2_asize;
 316  316          kstat_named_t arcstat_l2_hdr_size;
 317  317          kstat_named_t arcstat_l2_compress_successes;
 318  318          kstat_named_t arcstat_l2_compress_zeros;
 319  319          kstat_named_t arcstat_l2_compress_failures;
 320  320          kstat_named_t arcstat_memory_throttle_count;
 321  321          kstat_named_t arcstat_duplicate_buffers;
 322  322          kstat_named_t arcstat_duplicate_buffers_size;
 323  323          kstat_named_t arcstat_duplicate_reads;
 324  324          kstat_named_t arcstat_meta_used;
 325  325          kstat_named_t arcstat_meta_limit;
 326  326          kstat_named_t arcstat_meta_max;
 327  327  } arc_stats_t;
 328  328  
 329  329  static arc_stats_t arc_stats = {
 330  330          { "hits",                       KSTAT_DATA_UINT64 },
 331  331          { "misses",                     KSTAT_DATA_UINT64 },
 332  332          { "demand_data_hits",           KSTAT_DATA_UINT64 },
 333  333          { "demand_data_misses",         KSTAT_DATA_UINT64 },
 334  334          { "demand_metadata_hits",       KSTAT_DATA_UINT64 },
 335  335          { "demand_metadata_misses",     KSTAT_DATA_UINT64 },
 336  336          { "prefetch_data_hits",         KSTAT_DATA_UINT64 },
 337  337          { "prefetch_data_misses",       KSTAT_DATA_UINT64 },
 338  338          { "prefetch_metadata_hits",     KSTAT_DATA_UINT64 },
 339  339          { "prefetch_metadata_misses",   KSTAT_DATA_UINT64 },
 340  340          { "mru_hits",                   KSTAT_DATA_UINT64 },
 341  341          { "mru_ghost_hits",             KSTAT_DATA_UINT64 },
 342  342          { "mfu_hits",                   KSTAT_DATA_UINT64 },
 343  343          { "mfu_ghost_hits",             KSTAT_DATA_UINT64 },
 344  344          { "deleted",                    KSTAT_DATA_UINT64 },
 345  345          { "recycle_miss",               KSTAT_DATA_UINT64 },
 346  346          { "mutex_miss",                 KSTAT_DATA_UINT64 },
 347  347          { "evict_skip",                 KSTAT_DATA_UINT64 },
 348  348          { "evict_l2_cached",            KSTAT_DATA_UINT64 },
 349  349          { "evict_l2_eligible",          KSTAT_DATA_UINT64 },
 350  350          { "evict_l2_ineligible",        KSTAT_DATA_UINT64 },
 351  351          { "hash_elements",              KSTAT_DATA_UINT64 },
 352  352          { "hash_elements_max",          KSTAT_DATA_UINT64 },
 353  353          { "hash_collisions",            KSTAT_DATA_UINT64 },
 354  354          { "hash_chains",                KSTAT_DATA_UINT64 },
 355  355          { "hash_chain_max",             KSTAT_DATA_UINT64 },
 356  356          { "p",                          KSTAT_DATA_UINT64 },
 357  357          { "c",                          KSTAT_DATA_UINT64 },
 358  358          { "c_min",                      KSTAT_DATA_UINT64 },
 359  359          { "c_max",                      KSTAT_DATA_UINT64 },
 360  360          { "size",                       KSTAT_DATA_UINT64 },
 361  361          { "hdr_size",                   KSTAT_DATA_UINT64 },
 362  362          { "data_size",                  KSTAT_DATA_UINT64 },
 363  363          { "other_size",                 KSTAT_DATA_UINT64 },
 364  364          { "l2_hits",                    KSTAT_DATA_UINT64 },
 365  365          { "l2_misses",                  KSTAT_DATA_UINT64 },
 366  366          { "l2_feeds",                   KSTAT_DATA_UINT64 },
 367  367          { "l2_rw_clash",                KSTAT_DATA_UINT64 },
 368  368          { "l2_read_bytes",              KSTAT_DATA_UINT64 },
 369  369          { "l2_write_bytes",             KSTAT_DATA_UINT64 },
 370  370          { "l2_writes_sent",             KSTAT_DATA_UINT64 },
 371  371          { "l2_writes_done",             KSTAT_DATA_UINT64 },
 372  372          { "l2_writes_error",            KSTAT_DATA_UINT64 },
 373  373          { "l2_writes_hdr_miss",         KSTAT_DATA_UINT64 },
 374  374          { "l2_evict_lock_retry",        KSTAT_DATA_UINT64 },
 375  375          { "l2_evict_reading",           KSTAT_DATA_UINT64 },
 376  376          { "l2_free_on_write",           KSTAT_DATA_UINT64 },
 377  377          { "l2_abort_lowmem",            KSTAT_DATA_UINT64 },
 378  378          { "l2_cksum_bad",               KSTAT_DATA_UINT64 },
 379  379          { "l2_io_error",                KSTAT_DATA_UINT64 },
 380  380          { "l2_size",                    KSTAT_DATA_UINT64 },
 381  381          { "l2_asize",                   KSTAT_DATA_UINT64 },
 382  382          { "l2_hdr_size",                KSTAT_DATA_UINT64 },
 383  383          { "l2_compress_successes",      KSTAT_DATA_UINT64 },
 384  384          { "l2_compress_zeros",          KSTAT_DATA_UINT64 },
 385  385          { "l2_compress_failures",       KSTAT_DATA_UINT64 },
 386  386          { "memory_throttle_count",      KSTAT_DATA_UINT64 },
 387  387          { "duplicate_buffers",          KSTAT_DATA_UINT64 },
 388  388          { "duplicate_buffers_size",     KSTAT_DATA_UINT64 },
 389  389          { "duplicate_reads",            KSTAT_DATA_UINT64 },
 390  390          { "arc_meta_used",              KSTAT_DATA_UINT64 },
 391  391          { "arc_meta_limit",             KSTAT_DATA_UINT64 },
 392  392          { "arc_meta_max",               KSTAT_DATA_UINT64 }
 393  393  };
 394  394  
 395  395  #define ARCSTAT(stat)   (arc_stats.stat.value.ui64)
 396  396  
 397  397  #define ARCSTAT_INCR(stat, val) \
 398  398          atomic_add_64(&arc_stats.stat.value.ui64, (val))
 399  399  
 400  400  #define ARCSTAT_BUMP(stat)      ARCSTAT_INCR(stat, 1)
 401  401  #define ARCSTAT_BUMPDOWN(stat)  ARCSTAT_INCR(stat, -1)
 402  402  
 403  403  #define ARCSTAT_MAX(stat, val) {                                        \
 404  404          uint64_t m;                                                     \
 405  405          while ((val) > (m = arc_stats.stat.value.ui64) &&               \
 406  406              (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \
 407  407                  continue;                                               \
 408  408  }
 409  409  
 410  410  #define ARCSTAT_MAXSTAT(stat) \
 411  411          ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
 412  412  
 413  413  /*
 414  414   * We define a macro to allow ARC hits/misses to be easily broken down by
 415  415   * two separate conditions, giving a total of four different subtypes for
 416  416   * each of hits and misses (so eight statistics total).
 417  417   */
 418  418  #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
 419  419          if (cond1) {                                                    \
 420  420                  if (cond2) {                                            \
 421  421                          ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
 422  422                  } else {                                                \
 423  423                          ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
 424  424                  }                                                       \
 425  425          } else {                                                        \
 426  426                  if (cond2) {                                            \
 427  427                          ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
 428  428                  } else {                                                \
 429  429                          ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
 430  430                  }                                                       \
 431  431          }
 432  432  
 433  433  kstat_t                 *arc_ksp;
 434  434  static arc_state_t      *arc_anon;
 435  435  static arc_state_t      *arc_mru;
 436  436  static arc_state_t      *arc_mru_ghost;
 437  437  static arc_state_t      *arc_mfu;
 438  438  static arc_state_t      *arc_mfu_ghost;
 439  439  static arc_state_t      *arc_l2c_only;
 440  440  
 441  441  /*
 442  442   * There are several ARC variables that are critical to export as kstats --
 443  443   * but we don't want to have to grovel around in the kstat whenever we wish to
 444  444   * manipulate them.  For these variables, we therefore define them to be in
 445  445   * terms of the statistic variable.  This assures that we are not introducing
 446  446   * the possibility of inconsistency by having shadow copies of the variables,
 447  447   * while still allowing the code to be readable.
 448  448   */
 449  449  #define arc_size        ARCSTAT(arcstat_size)   /* actual total arc size */
 450  450  #define arc_p           ARCSTAT(arcstat_p)      /* target size of MRU */
 451  451  #define arc_c           ARCSTAT(arcstat_c)      /* target size of cache */
 452  452  #define arc_c_min       ARCSTAT(arcstat_c_min)  /* min target cache size */
 453  453  #define arc_c_max       ARCSTAT(arcstat_c_max)  /* max target cache size */
 454  454  #define arc_meta_limit  ARCSTAT(arcstat_meta_limit) /* max size for metadata */
 455  455  #define arc_meta_used   ARCSTAT(arcstat_meta_used) /* size of metadata */
 456  456  #define arc_meta_max    ARCSTAT(arcstat_meta_max) /* max size of metadata */
 457  457  
 458  458  #define L2ARC_IS_VALID_COMPRESS(_c_) \
 459  459          ((_c_) == ZIO_COMPRESS_LZ4 || (_c_) == ZIO_COMPRESS_EMPTY)
 460  460  
 461  461  static int              arc_no_grow;    /* Don't try to grow cache size */
 462  462  static uint64_t         arc_tempreserve;
 463  463  static uint64_t         arc_loaned_bytes;
 464  464  
 465  465  typedef struct l2arc_buf_hdr l2arc_buf_hdr_t;
 466  466  
 467  467  typedef struct arc_callback arc_callback_t;
 468  468  
 469  469  struct arc_callback {
 470  470          void                    *acb_private;
 471  471          arc_done_func_t         *acb_done;
 472  472          arc_buf_t               *acb_buf;
 473  473          zio_t                   *acb_zio_dummy;
 474  474          arc_callback_t          *acb_next;
 475  475  };
 476  476  
 477  477  typedef struct arc_write_callback arc_write_callback_t;
 478  478  
 479  479  struct arc_write_callback {
 480  480          void            *awcb_private;
 481  481          arc_done_func_t *awcb_ready;
 482  482          arc_done_func_t *awcb_physdone;
 483  483          arc_done_func_t *awcb_done;
 484  484          arc_buf_t       *awcb_buf;
 485  485  };
 486  486  
 487  487  struct arc_buf_hdr {
 488  488          /* protected by hash lock */
 489  489          dva_t                   b_dva;
 490  490          uint64_t                b_birth;
 491  491          uint64_t                b_cksum0;
 492  492  
 493  493          kmutex_t                b_freeze_lock;
 494  494          zio_cksum_t             *b_freeze_cksum;
 495  495          void                    *b_thawed;
 496  496  
 497  497          arc_buf_hdr_t           *b_hash_next;
 498  498          arc_buf_t               *b_buf;
 499  499          uint32_t                b_flags;
 500  500          uint32_t                b_datacnt;
 501  501  
 502  502          arc_callback_t          *b_acb;
 503  503          kcondvar_t              b_cv;
 504  504  
 505  505          /* immutable */
 506  506          arc_buf_contents_t      b_type;
 507  507          uint64_t                b_size;
 508  508          uint64_t                b_spa;
 509  509  
 510  510          /* protected by arc state mutex */
 511  511          arc_state_t             *b_state;
 512  512          list_node_t             b_arc_node;
 513  513  
 514  514          /* updated atomically */
 515  515          clock_t                 b_arc_access;
 516  516  
 517  517          /* self protecting */
 518  518          refcount_t              b_refcnt;
 519  519  
 520  520          l2arc_buf_hdr_t         *b_l2hdr;
 521  521          list_node_t             b_l2node;
 522  522  };
 523  523  
 524  524  static arc_buf_t *arc_eviction_list;
 525  525  static kmutex_t arc_eviction_mtx;
 526  526  static arc_buf_hdr_t arc_eviction_hdr;
 527  527  static void arc_get_data_buf(arc_buf_t *buf);
 528  528  static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock);
 529  529  static int arc_evict_needed(arc_buf_contents_t type);
 530  530  static void arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes);
 531  531  static void arc_buf_watch(arc_buf_t *buf);
 532  532  
 533  533  static boolean_t l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab);
 534  534  
 535  535  #define GHOST_STATE(state)      \
 536  536          ((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||        \
 537  537          (state) == arc_l2c_only)
 538  538  
 539  539  /*
 540  540   * Private ARC flags.  These flags are private ARC only flags that will show up
 541  541   * in b_flags in the arc_hdr_buf_t.  Some flags are publicly declared, and can
 542  542   * be passed in as arc_flags in things like arc_read.  However, these flags
 543  543   * should never be passed and should only be set by ARC code.  When adding new
 544  544   * public flags, make sure not to smash the private ones.
 545  545   */
 546  546  
 547  547  #define ARC_IN_HASH_TABLE       (1 << 9)        /* this buffer is hashed */
 548  548  #define ARC_IO_IN_PROGRESS      (1 << 10)       /* I/O in progress for buf */
 549  549  #define ARC_IO_ERROR            (1 << 11)       /* I/O failed for buf */
 550  550  #define ARC_FREED_IN_READ       (1 << 12)       /* buf freed while in read */
 551  551  #define ARC_BUF_AVAILABLE       (1 << 13)       /* block not in active use */
 552  552  #define ARC_INDIRECT            (1 << 14)       /* this is an indirect block */
 553  553  #define ARC_FREE_IN_PROGRESS    (1 << 15)       /* hdr about to be freed */
 554  554  #define ARC_L2_WRITING          (1 << 16)       /* L2ARC write in progress */
 555  555  #define ARC_L2_EVICTED          (1 << 17)       /* evicted during I/O */
 556  556  #define ARC_L2_WRITE_HEAD       (1 << 18)       /* head of write list */
 557  557  
 558  558  #define HDR_IN_HASH_TABLE(hdr)  ((hdr)->b_flags & ARC_IN_HASH_TABLE)
 559  559  #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS)
 560  560  #define HDR_IO_ERROR(hdr)       ((hdr)->b_flags & ARC_IO_ERROR)
 561  561  #define HDR_PREFETCH(hdr)       ((hdr)->b_flags & ARC_PREFETCH)
 562  562  #define HDR_FREED_IN_READ(hdr)  ((hdr)->b_flags & ARC_FREED_IN_READ)
 563  563  #define HDR_BUF_AVAILABLE(hdr)  ((hdr)->b_flags & ARC_BUF_AVAILABLE)
 564  564  #define HDR_FREE_IN_PROGRESS(hdr)       ((hdr)->b_flags & ARC_FREE_IN_PROGRESS)
 565  565  #define HDR_L2CACHE(hdr)        ((hdr)->b_flags & ARC_L2CACHE)
 566  566  #define HDR_L2_READING(hdr)     ((hdr)->b_flags & ARC_IO_IN_PROGRESS && \
 567  567                                      (hdr)->b_l2hdr != NULL)
 568  568  #define HDR_L2_WRITING(hdr)     ((hdr)->b_flags & ARC_L2_WRITING)
 569  569  #define HDR_L2_EVICTED(hdr)     ((hdr)->b_flags & ARC_L2_EVICTED)
 570  570  #define HDR_L2_WRITE_HEAD(hdr)  ((hdr)->b_flags & ARC_L2_WRITE_HEAD)
 571  571  
 572  572  /*
 573  573   * Other sizes
 574  574   */
 575  575  
 576  576  #define HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
 577  577  #define L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t))
 578  578  
 579  579  /*
 580  580   * Hash table routines
 581  581   */
 582  582  
 583  583  #define HT_LOCK_PAD     64
 584  584  
 585  585  struct ht_lock {
 586  586          kmutex_t        ht_lock;
 587  587  #ifdef _KERNEL
 588  588          unsigned char   pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
 589  589  #endif
 590  590  };
 591  591  
 592  592  #define BUF_LOCKS 256
 593  593  typedef struct buf_hash_table {
 594  594          uint64_t ht_mask;
 595  595          arc_buf_hdr_t **ht_table;
 596  596          struct ht_lock ht_locks[BUF_LOCKS];
 597  597  } buf_hash_table_t;
 598  598  
 599  599  static buf_hash_table_t buf_hash_table;
 600  600  
 601  601  #define BUF_HASH_INDEX(spa, dva, birth) \
 602  602          (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
 603  603  #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
 604  604  #define BUF_HASH_LOCK(idx)      (&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
 605  605  #define HDR_LOCK(hdr) \
 606  606          (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
 607  607  
 608  608  uint64_t zfs_crc64_table[256];
 609  609  
 610  610  /*
 611  611   * Level 2 ARC
 612  612   */
 613  613  
 614  614  #define L2ARC_WRITE_SIZE        (8 * 1024 * 1024)       /* initial write max */
 615  615  #define L2ARC_HEADROOM          2                       /* num of writes */
 616  616  /*
 617  617   * If we discover during ARC scan any buffers to be compressed, we boost
 618  618   * our headroom for the next scanning cycle by this percentage multiple.
 619  619   */
 620  620  #define L2ARC_HEADROOM_BOOST    200
 621  621  #define L2ARC_FEED_SECS         1               /* caching interval secs */
 622  622  #define L2ARC_FEED_MIN_MS       200             /* min caching interval ms */
 623  623  
 624  624  #define l2arc_writes_sent       ARCSTAT(arcstat_l2_writes_sent)
 625  625  #define l2arc_writes_done       ARCSTAT(arcstat_l2_writes_done)
 626  626  
 627  627  /* L2ARC Performance Tunables */
 628  628  uint64_t l2arc_write_max = L2ARC_WRITE_SIZE;    /* default max write size */
 629  629  uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE;  /* extra write during warmup */
 630  630  uint64_t l2arc_headroom = L2ARC_HEADROOM;       /* number of dev writes */
 631  631  uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
 632  632  uint64_t l2arc_feed_secs = L2ARC_FEED_SECS;     /* interval seconds */
 633  633  uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval milliseconds */
 634  634  boolean_t l2arc_noprefetch = B_TRUE;            /* don't cache prefetch bufs */
 635  635  boolean_t l2arc_feed_again = B_TRUE;            /* turbo warmup */
 636  636  boolean_t l2arc_norw = B_TRUE;                  /* no reads during writes */
 637  637  
 638  638  /*
 639  639   * L2ARC Internals
 640  640   */
 641  641  typedef struct l2arc_dev {
 642  642          vdev_t                  *l2ad_vdev;     /* vdev */
 643  643          spa_t                   *l2ad_spa;      /* spa */
 644  644          uint64_t                l2ad_hand;      /* next write location */
 645  645          uint64_t                l2ad_start;     /* first addr on device */
 646  646          uint64_t                l2ad_end;       /* last addr on device */
 647  647          uint64_t                l2ad_evict;     /* last addr eviction reached */
 648  648          boolean_t               l2ad_first;     /* first sweep through */
 649  649          boolean_t               l2ad_writing;   /* currently writing */
 650  650          list_t                  *l2ad_buflist;  /* buffer list */
 651  651          list_node_t             l2ad_node;      /* device list node */
 652  652  } l2arc_dev_t;
 653  653  
 654  654  static list_t L2ARC_dev_list;                   /* device list */
 655  655  static list_t *l2arc_dev_list;                  /* device list pointer */
 656  656  static kmutex_t l2arc_dev_mtx;                  /* device list mutex */
 657  657  static l2arc_dev_t *l2arc_dev_last;             /* last device used */
 658  658  static kmutex_t l2arc_buflist_mtx;              /* mutex for all buflists */
 659  659  static list_t L2ARC_free_on_write;              /* free after write buf list */
 660  660  static list_t *l2arc_free_on_write;             /* free after write list ptr */
 661  661  static kmutex_t l2arc_free_on_write_mtx;        /* mutex for list */
 662  662  static uint64_t l2arc_ndev;                     /* number of devices */
 663  663  
 664  664  typedef struct l2arc_read_callback {
 665  665          arc_buf_t               *l2rcb_buf;             /* read buffer */
 666  666          spa_t                   *l2rcb_spa;             /* spa */
 667  667          blkptr_t                l2rcb_bp;               /* original blkptr */
 668  668          zbookmark_phys_t        l2rcb_zb;               /* original bookmark */
 669  669          int                     l2rcb_flags;            /* original flags */
 670  670          enum zio_compress       l2rcb_compress;         /* applied compress */
 671  671  } l2arc_read_callback_t;
 672  672  
 673  673  typedef struct l2arc_write_callback {
 674  674          l2arc_dev_t     *l2wcb_dev;             /* device info */
 675  675          arc_buf_hdr_t   *l2wcb_head;            /* head of write buflist */
 676  676  } l2arc_write_callback_t;
 677  677  
 678  678  struct l2arc_buf_hdr {
 679  679          /* protected by arc_buf_hdr  mutex */
 680  680          l2arc_dev_t             *b_dev;         /* L2ARC device */
 681  681          uint64_t                b_daddr;        /* disk address, offset byte */
 682  682          /* compression applied to buffer data */
 683  683          enum zio_compress       b_compress;
 684  684          /* real alloc'd buffer size depending on b_compress applied */
 685  685          int                     b_asize;
 686  686          /* temporary buffer holder for in-flight compressed data */
 687  687          void                    *b_tmp_cdata;
 688  688  };
 689  689  
 690  690  typedef struct l2arc_data_free {
 691  691          /* protected by l2arc_free_on_write_mtx */
 692  692          void            *l2df_data;
 693  693          size_t          l2df_size;
 694  694          void            (*l2df_func)(void *, size_t);
 695  695          list_node_t     l2df_list_node;
 696  696  } l2arc_data_free_t;
 697  697  
 698  698  static kmutex_t l2arc_feed_thr_lock;
 699  699  static kcondvar_t l2arc_feed_thr_cv;
 700  700  static uint8_t l2arc_thread_exit;
 701  701  
 702  702  static void l2arc_read_done(zio_t *zio);
 703  703  static void l2arc_hdr_stat_add(void);
 704  704  static void l2arc_hdr_stat_remove(void);
 705  705  
 706  706  static boolean_t l2arc_compress_buf(l2arc_buf_hdr_t *l2hdr);
 707  707  static void l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr,
 708  708      enum zio_compress c);
 709  709  static void l2arc_release_cdata_buf(arc_buf_hdr_t *ab);
 710  710  
 711  711  static uint64_t
 712  712  buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
 713  713  {
 714  714          uint8_t *vdva = (uint8_t *)dva;
 715  715          uint64_t crc = -1ULL;
 716  716          int i;
 717  717  
 718  718          ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
 719  719  
 720  720          for (i = 0; i < sizeof (dva_t); i++)
 721  721                  crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
 722  722  
 723  723          crc ^= (spa>>8) ^ birth;
 724  724  
 725  725          return (crc);
 726  726  }
 727  727  
 728  728  #define BUF_EMPTY(buf)                                          \
 729  729          ((buf)->b_dva.dva_word[0] == 0 &&                       \
 730  730          (buf)->b_dva.dva_word[1] == 0 &&                        \
 731  731          (buf)->b_cksum0 == 0)
 732  732  
 733  733  #define BUF_EQUAL(spa, dva, birth, buf)                         \
 734  734          ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&     \
 735  735          ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&     \
 736  736          ((buf)->b_birth == birth) && ((buf)->b_spa == spa)
 737  737  
 738  738  static void
 739  739  buf_discard_identity(arc_buf_hdr_t *hdr)
 740  740  {
 741  741          hdr->b_dva.dva_word[0] = 0;
 742  742          hdr->b_dva.dva_word[1] = 0;
 743  743          hdr->b_birth = 0;
 744  744          hdr->b_cksum0 = 0;
 745  745  }
 746  746  
 747  747  static arc_buf_hdr_t *
 748  748  buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
 749  749  {
 750  750          const dva_t *dva = BP_IDENTITY(bp);
 751  751          uint64_t birth = BP_PHYSICAL_BIRTH(bp);
 752  752          uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
 753  753          kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
 754  754          arc_buf_hdr_t *buf;
 755  755  
 756  756          mutex_enter(hash_lock);
 757  757          for (buf = buf_hash_table.ht_table[idx]; buf != NULL;
 758  758              buf = buf->b_hash_next) {
 759  759                  if (BUF_EQUAL(spa, dva, birth, buf)) {
 760  760                          *lockp = hash_lock;
 761  761                          return (buf);
 762  762                  }
 763  763          }
 764  764          mutex_exit(hash_lock);
 765  765          *lockp = NULL;
 766  766          return (NULL);
 767  767  }
 768  768  
 769  769  /*
 770  770   * Insert an entry into the hash table.  If there is already an element
 771  771   * equal to elem in the hash table, then the already existing element
 772  772   * will be returned and the new element will not be inserted.
 773  773   * Otherwise returns NULL.
 774  774   */
 775  775  static arc_buf_hdr_t *
 776  776  buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp)
 777  777  {
 778  778          uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
 779  779          kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
 780  780          arc_buf_hdr_t *fbuf;
 781  781          uint32_t i;
 782  782  
 783  783          ASSERT(!DVA_IS_EMPTY(&buf->b_dva));
 784  784          ASSERT(buf->b_birth != 0);
 785  785          ASSERT(!HDR_IN_HASH_TABLE(buf));
 786  786          *lockp = hash_lock;
 787  787          mutex_enter(hash_lock);
 788  788          for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL;
 789  789              fbuf = fbuf->b_hash_next, i++) {
 790  790                  if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf))
 791  791                          return (fbuf);
 792  792          }
 793  793  
 794  794          buf->b_hash_next = buf_hash_table.ht_table[idx];
 795  795          buf_hash_table.ht_table[idx] = buf;
 796  796          buf->b_flags |= ARC_IN_HASH_TABLE;
 797  797  
 798  798          /* collect some hash table performance data */
 799  799          if (i > 0) {
 800  800                  ARCSTAT_BUMP(arcstat_hash_collisions);
 801  801                  if (i == 1)
 802  802                          ARCSTAT_BUMP(arcstat_hash_chains);
 803  803  
 804  804                  ARCSTAT_MAX(arcstat_hash_chain_max, i);
 805  805          }
 806  806  
 807  807          ARCSTAT_BUMP(arcstat_hash_elements);
 808  808          ARCSTAT_MAXSTAT(arcstat_hash_elements);
 809  809  
 810  810          return (NULL);
 811  811  }
 812  812  
 813  813  static void
 814  814  buf_hash_remove(arc_buf_hdr_t *buf)
 815  815  {
 816  816          arc_buf_hdr_t *fbuf, **bufp;
 817  817          uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
 818  818  
 819  819          ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
 820  820          ASSERT(HDR_IN_HASH_TABLE(buf));
 821  821  
 822  822          bufp = &buf_hash_table.ht_table[idx];
 823  823          while ((fbuf = *bufp) != buf) {
 824  824                  ASSERT(fbuf != NULL);
 825  825                  bufp = &fbuf->b_hash_next;
 826  826          }
 827  827          *bufp = buf->b_hash_next;
 828  828          buf->b_hash_next = NULL;
 829  829          buf->b_flags &= ~ARC_IN_HASH_TABLE;
 830  830  
 831  831          /* collect some hash table performance data */
 832  832          ARCSTAT_BUMPDOWN(arcstat_hash_elements);
 833  833  
 834  834          if (buf_hash_table.ht_table[idx] &&
 835  835              buf_hash_table.ht_table[idx]->b_hash_next == NULL)
 836  836                  ARCSTAT_BUMPDOWN(arcstat_hash_chains);
 837  837  }
 838  838  
 839  839  /*
 840  840   * Global data structures and functions for the buf kmem cache.
 841  841   */
 842  842  static kmem_cache_t *hdr_cache;
 843  843  static kmem_cache_t *buf_cache;
 844  844  
 845  845  static void
 846  846  buf_fini(void)
 847  847  {
 848  848          int i;
 849  849  
 850  850          kmem_free(buf_hash_table.ht_table,
 851  851              (buf_hash_table.ht_mask + 1) * sizeof (void *));
 852  852          for (i = 0; i < BUF_LOCKS; i++)
 853  853                  mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
 854  854          kmem_cache_destroy(hdr_cache);
 855  855          kmem_cache_destroy(buf_cache);
 856  856  }
 857  857  
 858  858  /*
 859  859   * Constructor callback - called when the cache is empty
 860  860   * and a new buf is requested.
 861  861   */
 862  862  /* ARGSUSED */
 863  863  static int
 864  864  hdr_cons(void *vbuf, void *unused, int kmflag)
 865  865  {
 866  866          arc_buf_hdr_t *buf = vbuf;
 867  867  
 868  868          bzero(buf, sizeof (arc_buf_hdr_t));
 869  869          refcount_create(&buf->b_refcnt);
 870  870          cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL);
 871  871          mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
 872  872          arc_space_consume(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
 873  873  
 874  874          return (0);
 875  875  }
 876  876  
 877  877  /* ARGSUSED */
 878  878  static int
 879  879  buf_cons(void *vbuf, void *unused, int kmflag)
 880  880  {
 881  881          arc_buf_t *buf = vbuf;
 882  882  
 883  883          bzero(buf, sizeof (arc_buf_t));
 884  884          mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
 885  885          arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
 886  886  
 887  887          return (0);
 888  888  }
 889  889  
 890  890  /*
 891  891   * Destructor callback - called when a cached buf is
 892  892   * no longer required.
 893  893   */
 894  894  /* ARGSUSED */
 895  895  static void
 896  896  hdr_dest(void *vbuf, void *unused)
 897  897  {
 898  898          arc_buf_hdr_t *buf = vbuf;
 899  899  
 900  900          ASSERT(BUF_EMPTY(buf));
 901  901          refcount_destroy(&buf->b_refcnt);
 902  902          cv_destroy(&buf->b_cv);
 903  903          mutex_destroy(&buf->b_freeze_lock);
 904  904          arc_space_return(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
 905  905  }
 906  906  
 907  907  /* ARGSUSED */
 908  908  static void
 909  909  buf_dest(void *vbuf, void *unused)
 910  910  {
 911  911          arc_buf_t *buf = vbuf;
 912  912  
 913  913          mutex_destroy(&buf->b_evict_lock);
 914  914          arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
 915  915  }
 916  916  
 917  917  /*
 918  918   * Reclaim callback -- invoked when memory is low.
 919  919   */
 920  920  /* ARGSUSED */
 921  921  static void
 922  922  hdr_recl(void *unused)
 923  923  {
 924  924          dprintf("hdr_recl called\n");
 925  925          /*
 926  926           * umem calls the reclaim func when we destroy the buf cache,
 927  927           * which is after we do arc_fini().
 928  928           */
 929  929          if (!arc_dead)
 930  930                  cv_signal(&arc_reclaim_thr_cv);
 931  931  }
 932  932  
 933  933  static void
 934  934  buf_init(void)
 935  935  {
 936  936          uint64_t *ct;
 937  937          uint64_t hsize = 1ULL << 12;
 938  938          int i, j;
 939  939  
 940  940          /*
 941  941           * The hash table is big enough to fill all of physical memory
 942  942           * with an average block size of zfs_arc_average_blocksize (default 8K).
 943  943           * By default, the table will take up
 944  944           * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
 945  945           */
 946  946          while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE)
 947  947                  hsize <<= 1;
 948  948  retry:
 949  949          buf_hash_table.ht_mask = hsize - 1;
 950  950          buf_hash_table.ht_table =
 951  951              kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
 952  952          if (buf_hash_table.ht_table == NULL) {
 953  953                  ASSERT(hsize > (1ULL << 8));
 954  954                  hsize >>= 1;
 955  955                  goto retry;
 956  956          }
 957  957  
 958  958          hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t),
 959  959              0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0);
 960  960          buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
 961  961              0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
 962  962  
 963  963          for (i = 0; i < 256; i++)
 964  964                  for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
 965  965                          *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
 966  966  
 967  967          for (i = 0; i < BUF_LOCKS; i++) {
 968  968                  mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
 969  969                      NULL, MUTEX_DEFAULT, NULL);
 970  970          }
 971  971  }
 972  972  
 973  973  #define ARC_MINTIME     (hz>>4) /* 62 ms */
 974  974  
 975  975  static void
 976  976  arc_cksum_verify(arc_buf_t *buf)
 977  977  {
 978  978          zio_cksum_t zc;
 979  979  
 980  980          if (!(zfs_flags & ZFS_DEBUG_MODIFY))
 981  981                  return;
 982  982  
 983  983          mutex_enter(&buf->b_hdr->b_freeze_lock);
 984  984          if (buf->b_hdr->b_freeze_cksum == NULL ||
 985  985              (buf->b_hdr->b_flags & ARC_IO_ERROR)) {
 986  986                  mutex_exit(&buf->b_hdr->b_freeze_lock);
 987  987                  return;
 988  988          }
 989  989          fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
 990  990          if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
 991  991                  panic("buffer modified while frozen!");
 992  992          mutex_exit(&buf->b_hdr->b_freeze_lock);
 993  993  }
 994  994  
 995  995  static int
 996  996  arc_cksum_equal(arc_buf_t *buf)
 997  997  {
 998  998          zio_cksum_t zc;
 999  999          int equal;
1000 1000  
1001 1001          mutex_enter(&buf->b_hdr->b_freeze_lock);
1002 1002          fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
1003 1003          equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
1004 1004          mutex_exit(&buf->b_hdr->b_freeze_lock);
1005 1005  
1006 1006          return (equal);
1007 1007  }
1008 1008  
1009 1009  static void
1010 1010  arc_cksum_compute(arc_buf_t *buf, boolean_t force)
1011 1011  {
1012 1012          if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
1013 1013                  return;
1014 1014  
1015 1015          mutex_enter(&buf->b_hdr->b_freeze_lock);
1016 1016          if (buf->b_hdr->b_freeze_cksum != NULL) {
1017 1017                  mutex_exit(&buf->b_hdr->b_freeze_lock);
1018 1018                  return;
1019 1019          }
1020 1020          buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP);
1021 1021          fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
1022 1022              buf->b_hdr->b_freeze_cksum);
1023 1023          mutex_exit(&buf->b_hdr->b_freeze_lock);
1024 1024          arc_buf_watch(buf);
1025 1025  }
1026 1026  
1027 1027  #ifndef _KERNEL
1028 1028  typedef struct procctl {
1029 1029          long cmd;
1030 1030          prwatch_t prwatch;
1031 1031  } procctl_t;
1032 1032  #endif
1033 1033  
1034 1034  /* ARGSUSED */
1035 1035  static void
1036 1036  arc_buf_unwatch(arc_buf_t *buf)
1037 1037  {
1038 1038  #ifndef _KERNEL
1039 1039          if (arc_watch) {
1040 1040                  int result;
1041 1041                  procctl_t ctl;
1042 1042                  ctl.cmd = PCWATCH;
1043 1043                  ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1044 1044                  ctl.prwatch.pr_size = 0;
1045 1045                  ctl.prwatch.pr_wflags = 0;
1046 1046                  result = write(arc_procfd, &ctl, sizeof (ctl));
1047 1047                  ASSERT3U(result, ==, sizeof (ctl));
1048 1048          }
1049 1049  #endif
1050 1050  }
1051 1051  
1052 1052  /* ARGSUSED */
1053 1053  static void
1054 1054  arc_buf_watch(arc_buf_t *buf)
1055 1055  {
1056 1056  #ifndef _KERNEL
1057 1057          if (arc_watch) {
1058 1058                  int result;
1059 1059                  procctl_t ctl;
1060 1060                  ctl.cmd = PCWATCH;
1061 1061                  ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1062 1062                  ctl.prwatch.pr_size = buf->b_hdr->b_size;
1063 1063                  ctl.prwatch.pr_wflags = WA_WRITE;
1064 1064                  result = write(arc_procfd, &ctl, sizeof (ctl));
1065 1065                  ASSERT3U(result, ==, sizeof (ctl));
1066 1066          }
1067 1067  #endif
1068 1068  }
1069 1069  
1070 1070  void
1071 1071  arc_buf_thaw(arc_buf_t *buf)
1072 1072  {
1073 1073          if (zfs_flags & ZFS_DEBUG_MODIFY) {
1074 1074                  if (buf->b_hdr->b_state != arc_anon)
1075 1075                          panic("modifying non-anon buffer!");
1076 1076                  if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS)
1077 1077                          panic("modifying buffer while i/o in progress!");
1078 1078                  arc_cksum_verify(buf);
1079 1079          }
1080 1080  
1081 1081          mutex_enter(&buf->b_hdr->b_freeze_lock);
1082 1082          if (buf->b_hdr->b_freeze_cksum != NULL) {
1083 1083                  kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1084 1084                  buf->b_hdr->b_freeze_cksum = NULL;
1085 1085          }
1086 1086  
1087 1087          if (zfs_flags & ZFS_DEBUG_MODIFY) {
1088 1088                  if (buf->b_hdr->b_thawed)
1089 1089                          kmem_free(buf->b_hdr->b_thawed, 1);
1090 1090                  buf->b_hdr->b_thawed = kmem_alloc(1, KM_SLEEP);
1091 1091          }
1092 1092  
1093 1093          mutex_exit(&buf->b_hdr->b_freeze_lock);
1094 1094  
1095 1095          arc_buf_unwatch(buf);
1096 1096  }
1097 1097  
1098 1098  void
1099 1099  arc_buf_freeze(arc_buf_t *buf)
1100 1100  {
1101 1101          kmutex_t *hash_lock;
1102 1102  
1103 1103          if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1104 1104                  return;
1105 1105  
1106 1106          hash_lock = HDR_LOCK(buf->b_hdr);
1107 1107          mutex_enter(hash_lock);
1108 1108  
1109 1109          ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
1110 1110              buf->b_hdr->b_state == arc_anon);
1111 1111          arc_cksum_compute(buf, B_FALSE);
1112 1112          mutex_exit(hash_lock);
1113 1113  
1114 1114  }
1115 1115  
1116 1116  static void
1117 1117  add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
1118 1118  {
1119 1119          ASSERT(MUTEX_HELD(hash_lock));
1120 1120  
1121 1121          if ((refcount_add(&ab->b_refcnt, tag) == 1) &&
1122 1122              (ab->b_state != arc_anon)) {
1123 1123                  uint64_t delta = ab->b_size * ab->b_datacnt;
1124 1124                  list_t *list = &ab->b_state->arcs_list[ab->b_type];
1125 1125                  uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type];
1126 1126  
1127 1127                  ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx));
1128 1128                  mutex_enter(&ab->b_state->arcs_mtx);
1129 1129                  ASSERT(list_link_active(&ab->b_arc_node));
1130 1130                  list_remove(list, ab);
1131 1131                  if (GHOST_STATE(ab->b_state)) {
1132 1132                          ASSERT0(ab->b_datacnt);
1133 1133                          ASSERT3P(ab->b_buf, ==, NULL);
1134 1134                          delta = ab->b_size;
1135 1135                  }
1136 1136                  ASSERT(delta > 0);
1137 1137                  ASSERT3U(*size, >=, delta);
1138 1138                  atomic_add_64(size, -delta);
1139 1139                  mutex_exit(&ab->b_state->arcs_mtx);
1140 1140                  /* remove the prefetch flag if we get a reference */
1141 1141                  if (ab->b_flags & ARC_PREFETCH)
1142 1142                          ab->b_flags &= ~ARC_PREFETCH;
1143 1143          }
1144 1144  }
1145 1145  
1146 1146  static int
1147 1147  remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
1148 1148  {
1149 1149          int cnt;
1150 1150          arc_state_t *state = ab->b_state;
1151 1151  
1152 1152          ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
1153 1153          ASSERT(!GHOST_STATE(state));
1154 1154  
1155 1155          if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) &&
1156 1156              (state != arc_anon)) {
1157 1157                  uint64_t *size = &state->arcs_lsize[ab->b_type];
1158 1158  
1159 1159                  ASSERT(!MUTEX_HELD(&state->arcs_mtx));
1160 1160                  mutex_enter(&state->arcs_mtx);
1161 1161                  ASSERT(!list_link_active(&ab->b_arc_node));
1162 1162                  list_insert_head(&state->arcs_list[ab->b_type], ab);
1163 1163                  ASSERT(ab->b_datacnt > 0);
1164 1164                  atomic_add_64(size, ab->b_size * ab->b_datacnt);
1165 1165                  mutex_exit(&state->arcs_mtx);
1166 1166          }
1167 1167          return (cnt);
1168 1168  }
1169 1169  
1170 1170  /*
1171 1171   * Move the supplied buffer to the indicated state.  The mutex
1172 1172   * for the buffer must be held by the caller.
1173 1173   */
1174 1174  static void
1175 1175  arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock)
1176 1176  {
1177 1177          arc_state_t *old_state = ab->b_state;
1178 1178          int64_t refcnt = refcount_count(&ab->b_refcnt);
1179 1179          uint64_t from_delta, to_delta;
1180 1180  
1181 1181          ASSERT(MUTEX_HELD(hash_lock));
1182 1182          ASSERT3P(new_state, !=, old_state);
1183 1183          ASSERT(refcnt == 0 || ab->b_datacnt > 0);
1184 1184          ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state));
1185 1185          ASSERT(ab->b_datacnt <= 1 || old_state != arc_anon);
1186 1186  
1187 1187          from_delta = to_delta = ab->b_datacnt * ab->b_size;
1188 1188  
1189 1189          /*
1190 1190           * If this buffer is evictable, transfer it from the
1191 1191           * old state list to the new state list.
1192 1192           */
1193 1193          if (refcnt == 0) {
1194 1194                  if (old_state != arc_anon) {
1195 1195                          int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx);
1196 1196                          uint64_t *size = &old_state->arcs_lsize[ab->b_type];
1197 1197  
1198 1198                          if (use_mutex)
1199 1199                                  mutex_enter(&old_state->arcs_mtx);
1200 1200  
1201 1201                          ASSERT(list_link_active(&ab->b_arc_node));
1202 1202                          list_remove(&old_state->arcs_list[ab->b_type], ab);
1203 1203  
1204 1204                          /*
1205 1205                           * If prefetching out of the ghost cache,
1206 1206                           * we will have a non-zero datacnt.
1207 1207                           */
1208 1208                          if (GHOST_STATE(old_state) && ab->b_datacnt == 0) {
1209 1209                                  /* ghost elements have a ghost size */
1210 1210                                  ASSERT(ab->b_buf == NULL);
1211 1211                                  from_delta = ab->b_size;
1212 1212                          }
1213 1213                          ASSERT3U(*size, >=, from_delta);
1214 1214                          atomic_add_64(size, -from_delta);
1215 1215  
1216 1216                          if (use_mutex)
1217 1217                                  mutex_exit(&old_state->arcs_mtx);
1218 1218                  }
1219 1219                  if (new_state != arc_anon) {
1220 1220                          int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx);
1221 1221                          uint64_t *size = &new_state->arcs_lsize[ab->b_type];
1222 1222  
1223 1223                          if (use_mutex)
1224 1224                                  mutex_enter(&new_state->arcs_mtx);
1225 1225  
1226 1226                          list_insert_head(&new_state->arcs_list[ab->b_type], ab);
1227 1227  
1228 1228                          /* ghost elements have a ghost size */
1229 1229                          if (GHOST_STATE(new_state)) {
1230 1230                                  ASSERT(ab->b_datacnt == 0);
1231 1231                                  ASSERT(ab->b_buf == NULL);
1232 1232                                  to_delta = ab->b_size;
1233 1233                          }
1234 1234                          atomic_add_64(size, to_delta);
1235 1235  
1236 1236                          if (use_mutex)
1237 1237                                  mutex_exit(&new_state->arcs_mtx);
1238 1238                  }
1239 1239          }
1240 1240  
1241 1241          ASSERT(!BUF_EMPTY(ab));
1242 1242          if (new_state == arc_anon && HDR_IN_HASH_TABLE(ab))
1243 1243                  buf_hash_remove(ab);
1244 1244  
1245 1245          /* adjust state sizes */
1246 1246          if (to_delta)
1247 1247                  atomic_add_64(&new_state->arcs_size, to_delta);
1248 1248          if (from_delta) {
1249 1249                  ASSERT3U(old_state->arcs_size, >=, from_delta);
1250 1250                  atomic_add_64(&old_state->arcs_size, -from_delta);
1251 1251          }
1252 1252          ab->b_state = new_state;
1253 1253  
1254 1254          /* adjust l2arc hdr stats */
1255 1255          if (new_state == arc_l2c_only)
1256 1256                  l2arc_hdr_stat_add();
1257 1257          else if (old_state == arc_l2c_only)
1258 1258                  l2arc_hdr_stat_remove();
1259 1259  }
1260 1260  
1261 1261  void
1262 1262  arc_space_consume(uint64_t space, arc_space_type_t type)
1263 1263  {
1264 1264          ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1265 1265  
1266 1266          switch (type) {
1267 1267          case ARC_SPACE_DATA:
1268 1268                  ARCSTAT_INCR(arcstat_data_size, space);
1269 1269                  break;
1270 1270          case ARC_SPACE_OTHER:
1271 1271                  ARCSTAT_INCR(arcstat_other_size, space);
1272 1272                  break;
1273 1273          case ARC_SPACE_HDRS:
1274 1274                  ARCSTAT_INCR(arcstat_hdr_size, space);
1275 1275                  break;
1276 1276          case ARC_SPACE_L2HDRS:
1277 1277                  ARCSTAT_INCR(arcstat_l2_hdr_size, space);
1278 1278                  break;
1279 1279          }
1280 1280  
1281 1281          ARCSTAT_INCR(arcstat_meta_used, space);
1282 1282          atomic_add_64(&arc_size, space);
1283 1283  }
1284 1284  
1285 1285  void
1286 1286  arc_space_return(uint64_t space, arc_space_type_t type)
1287 1287  {
1288 1288          ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1289 1289  
1290 1290          switch (type) {
1291 1291          case ARC_SPACE_DATA:
1292 1292                  ARCSTAT_INCR(arcstat_data_size, -space);
1293 1293                  break;
1294 1294          case ARC_SPACE_OTHER:
1295 1295                  ARCSTAT_INCR(arcstat_other_size, -space);
1296 1296                  break;
1297 1297          case ARC_SPACE_HDRS:
1298 1298                  ARCSTAT_INCR(arcstat_hdr_size, -space);
1299 1299                  break;
1300 1300          case ARC_SPACE_L2HDRS:
1301 1301                  ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
1302 1302                  break;
  
    | 
      ↓ open down ↓ | 
    1302 lines elided | 
    
      ↑ open up ↑ | 
  
1303 1303          }
1304 1304  
1305 1305          ASSERT(arc_meta_used >= space);
1306 1306          if (arc_meta_max < arc_meta_used)
1307 1307                  arc_meta_max = arc_meta_used;
1308 1308          ARCSTAT_INCR(arcstat_meta_used, -space);
1309 1309          ASSERT(arc_size >= space);
1310 1310          atomic_add_64(&arc_size, -space);
1311 1311  }
1312 1312  
1313      -void *
1314      -arc_data_buf_alloc(uint64_t size)
1315      -{
1316      -        if (arc_evict_needed(ARC_BUFC_DATA))
1317      -                cv_signal(&arc_reclaim_thr_cv);
1318      -        atomic_add_64(&arc_size, size);
1319      -        return (zio_data_buf_alloc(size));
1320      -}
1321      -
1322      -void
1323      -arc_data_buf_free(void *buf, uint64_t size)
1324      -{
1325      -        zio_data_buf_free(buf, size);
1326      -        ASSERT(arc_size >= size);
1327      -        atomic_add_64(&arc_size, -size);
1328      -}
1329      -
1330 1313  arc_buf_t *
1331 1314  arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type)
1332 1315  {
1333 1316          arc_buf_hdr_t *hdr;
1334 1317          arc_buf_t *buf;
1335 1318  
1336 1319          ASSERT3U(size, >, 0);
1337 1320          hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
1338 1321          ASSERT(BUF_EMPTY(hdr));
1339 1322          hdr->b_size = size;
1340 1323          hdr->b_type = type;
1341 1324          hdr->b_spa = spa_load_guid(spa);
1342 1325          hdr->b_state = arc_anon;
1343 1326          hdr->b_arc_access = 0;
1344 1327          buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1345 1328          buf->b_hdr = hdr;
1346 1329          buf->b_data = NULL;
1347 1330          buf->b_efunc = NULL;
1348 1331          buf->b_private = NULL;
1349 1332          buf->b_next = NULL;
1350 1333          hdr->b_buf = buf;
1351 1334          arc_get_data_buf(buf);
1352 1335          hdr->b_datacnt = 1;
1353 1336          hdr->b_flags = 0;
1354 1337          ASSERT(refcount_is_zero(&hdr->b_refcnt));
1355 1338          (void) refcount_add(&hdr->b_refcnt, tag);
1356 1339  
1357 1340          return (buf);
1358 1341  }
1359 1342  
1360 1343  static char *arc_onloan_tag = "onloan";
1361 1344  
1362 1345  /*
1363 1346   * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
1364 1347   * flight data by arc_tempreserve_space() until they are "returned". Loaned
1365 1348   * buffers must be returned to the arc before they can be used by the DMU or
1366 1349   * freed.
1367 1350   */
1368 1351  arc_buf_t *
1369 1352  arc_loan_buf(spa_t *spa, int size)
1370 1353  {
1371 1354          arc_buf_t *buf;
1372 1355  
1373 1356          buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA);
1374 1357  
1375 1358          atomic_add_64(&arc_loaned_bytes, size);
1376 1359          return (buf);
1377 1360  }
1378 1361  
1379 1362  /*
1380 1363   * Return a loaned arc buffer to the arc.
1381 1364   */
1382 1365  void
1383 1366  arc_return_buf(arc_buf_t *buf, void *tag)
1384 1367  {
1385 1368          arc_buf_hdr_t *hdr = buf->b_hdr;
1386 1369  
1387 1370          ASSERT(buf->b_data != NULL);
1388 1371          (void) refcount_add(&hdr->b_refcnt, tag);
1389 1372          (void) refcount_remove(&hdr->b_refcnt, arc_onloan_tag);
1390 1373  
1391 1374          atomic_add_64(&arc_loaned_bytes, -hdr->b_size);
1392 1375  }
1393 1376  
1394 1377  /* Detach an arc_buf from a dbuf (tag) */
1395 1378  void
1396 1379  arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
1397 1380  {
1398 1381          arc_buf_hdr_t *hdr;
1399 1382  
1400 1383          ASSERT(buf->b_data != NULL);
1401 1384          hdr = buf->b_hdr;
1402 1385          (void) refcount_add(&hdr->b_refcnt, arc_onloan_tag);
1403 1386          (void) refcount_remove(&hdr->b_refcnt, tag);
1404 1387          buf->b_efunc = NULL;
1405 1388          buf->b_private = NULL;
1406 1389  
1407 1390          atomic_add_64(&arc_loaned_bytes, hdr->b_size);
1408 1391  }
1409 1392  
1410 1393  static arc_buf_t *
1411 1394  arc_buf_clone(arc_buf_t *from)
1412 1395  {
1413 1396          arc_buf_t *buf;
1414 1397          arc_buf_hdr_t *hdr = from->b_hdr;
1415 1398          uint64_t size = hdr->b_size;
1416 1399  
1417 1400          ASSERT(hdr->b_state != arc_anon);
1418 1401  
1419 1402          buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1420 1403          buf->b_hdr = hdr;
1421 1404          buf->b_data = NULL;
1422 1405          buf->b_efunc = NULL;
1423 1406          buf->b_private = NULL;
1424 1407          buf->b_next = hdr->b_buf;
1425 1408          hdr->b_buf = buf;
1426 1409          arc_get_data_buf(buf);
1427 1410          bcopy(from->b_data, buf->b_data, size);
1428 1411  
1429 1412          /*
1430 1413           * This buffer already exists in the arc so create a duplicate
1431 1414           * copy for the caller.  If the buffer is associated with user data
1432 1415           * then track the size and number of duplicates.  These stats will be
1433 1416           * updated as duplicate buffers are created and destroyed.
1434 1417           */
1435 1418          if (hdr->b_type == ARC_BUFC_DATA) {
1436 1419                  ARCSTAT_BUMP(arcstat_duplicate_buffers);
1437 1420                  ARCSTAT_INCR(arcstat_duplicate_buffers_size, size);
1438 1421          }
1439 1422          hdr->b_datacnt += 1;
1440 1423          return (buf);
1441 1424  }
1442 1425  
1443 1426  void
1444 1427  arc_buf_add_ref(arc_buf_t *buf, void* tag)
1445 1428  {
1446 1429          arc_buf_hdr_t *hdr;
1447 1430          kmutex_t *hash_lock;
1448 1431  
1449 1432          /*
1450 1433           * Check to see if this buffer is evicted.  Callers
1451 1434           * must verify b_data != NULL to know if the add_ref
1452 1435           * was successful.
1453 1436           */
1454 1437          mutex_enter(&buf->b_evict_lock);
1455 1438          if (buf->b_data == NULL) {
1456 1439                  mutex_exit(&buf->b_evict_lock);
1457 1440                  return;
1458 1441          }
1459 1442          hash_lock = HDR_LOCK(buf->b_hdr);
1460 1443          mutex_enter(hash_lock);
1461 1444          hdr = buf->b_hdr;
1462 1445          ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1463 1446          mutex_exit(&buf->b_evict_lock);
1464 1447  
1465 1448          ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
1466 1449          add_reference(hdr, hash_lock, tag);
1467 1450          DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
1468 1451          arc_access(hdr, hash_lock);
1469 1452          mutex_exit(hash_lock);
1470 1453          ARCSTAT_BUMP(arcstat_hits);
1471 1454          ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
1472 1455              demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
1473 1456              data, metadata, hits);
1474 1457  }
1475 1458  
1476 1459  /*
1477 1460   * Free the arc data buffer.  If it is an l2arc write in progress,
1478 1461   * the buffer is placed on l2arc_free_on_write to be freed later.
1479 1462   */
1480 1463  static void
1481 1464  arc_buf_data_free(arc_buf_t *buf, void (*free_func)(void *, size_t))
1482 1465  {
1483 1466          arc_buf_hdr_t *hdr = buf->b_hdr;
1484 1467  
1485 1468          if (HDR_L2_WRITING(hdr)) {
1486 1469                  l2arc_data_free_t *df;
1487 1470                  df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP);
1488 1471                  df->l2df_data = buf->b_data;
1489 1472                  df->l2df_size = hdr->b_size;
1490 1473                  df->l2df_func = free_func;
1491 1474                  mutex_enter(&l2arc_free_on_write_mtx);
1492 1475                  list_insert_head(l2arc_free_on_write, df);
1493 1476                  mutex_exit(&l2arc_free_on_write_mtx);
1494 1477                  ARCSTAT_BUMP(arcstat_l2_free_on_write);
1495 1478          } else {
1496 1479                  free_func(buf->b_data, hdr->b_size);
1497 1480          }
1498 1481  }
1499 1482  
1500 1483  /*
1501 1484   * Free up buf->b_data and if 'remove' is set, then pull the
1502 1485   * arc_buf_t off of the the arc_buf_hdr_t's list and free it.
1503 1486   */
1504 1487  static void
1505 1488  arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t remove)
1506 1489  {
1507 1490          arc_buf_t **bufp;
1508 1491  
1509 1492          /* free up data associated with the buf */
1510 1493          if (buf->b_data) {
1511 1494                  arc_state_t *state = buf->b_hdr->b_state;
1512 1495                  uint64_t size = buf->b_hdr->b_size;
1513 1496                  arc_buf_contents_t type = buf->b_hdr->b_type;
1514 1497  
1515 1498                  arc_cksum_verify(buf);
1516 1499                  arc_buf_unwatch(buf);
1517 1500  
1518 1501                  if (!recycle) {
1519 1502                          if (type == ARC_BUFC_METADATA) {
1520 1503                                  arc_buf_data_free(buf, zio_buf_free);
1521 1504                                  arc_space_return(size, ARC_SPACE_DATA);
1522 1505                          } else {
1523 1506                                  ASSERT(type == ARC_BUFC_DATA);
1524 1507                                  arc_buf_data_free(buf, zio_data_buf_free);
1525 1508                                  ARCSTAT_INCR(arcstat_data_size, -size);
1526 1509                                  atomic_add_64(&arc_size, -size);
1527 1510                          }
1528 1511                  }
1529 1512                  if (list_link_active(&buf->b_hdr->b_arc_node)) {
1530 1513                          uint64_t *cnt = &state->arcs_lsize[type];
1531 1514  
1532 1515                          ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt));
1533 1516                          ASSERT(state != arc_anon);
1534 1517  
1535 1518                          ASSERT3U(*cnt, >=, size);
1536 1519                          atomic_add_64(cnt, -size);
1537 1520                  }
1538 1521                  ASSERT3U(state->arcs_size, >=, size);
1539 1522                  atomic_add_64(&state->arcs_size, -size);
1540 1523                  buf->b_data = NULL;
1541 1524  
1542 1525                  /*
1543 1526                   * If we're destroying a duplicate buffer make sure
1544 1527                   * that the appropriate statistics are updated.
1545 1528                   */
1546 1529                  if (buf->b_hdr->b_datacnt > 1 &&
1547 1530                      buf->b_hdr->b_type == ARC_BUFC_DATA) {
1548 1531                          ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
1549 1532                          ARCSTAT_INCR(arcstat_duplicate_buffers_size, -size);
1550 1533                  }
1551 1534                  ASSERT(buf->b_hdr->b_datacnt > 0);
1552 1535                  buf->b_hdr->b_datacnt -= 1;
1553 1536          }
1554 1537  
1555 1538          /* only remove the buf if requested */
1556 1539          if (!remove)
1557 1540                  return;
1558 1541  
1559 1542          /* remove the buf from the hdr list */
1560 1543          for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next)
1561 1544                  continue;
1562 1545          *bufp = buf->b_next;
1563 1546          buf->b_next = NULL;
1564 1547  
1565 1548          ASSERT(buf->b_efunc == NULL);
1566 1549  
1567 1550          /* clean up the buf */
1568 1551          buf->b_hdr = NULL;
1569 1552          kmem_cache_free(buf_cache, buf);
1570 1553  }
1571 1554  
1572 1555  static void
1573 1556  arc_hdr_destroy(arc_buf_hdr_t *hdr)
1574 1557  {
1575 1558          ASSERT(refcount_is_zero(&hdr->b_refcnt));
1576 1559          ASSERT3P(hdr->b_state, ==, arc_anon);
1577 1560          ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1578 1561          l2arc_buf_hdr_t *l2hdr = hdr->b_l2hdr;
1579 1562  
1580 1563          if (l2hdr != NULL) {
1581 1564                  boolean_t buflist_held = MUTEX_HELD(&l2arc_buflist_mtx);
1582 1565                  /*
1583 1566                   * To prevent arc_free() and l2arc_evict() from
1584 1567                   * attempting to free the same buffer at the same time,
1585 1568                   * a FREE_IN_PROGRESS flag is given to arc_free() to
1586 1569                   * give it priority.  l2arc_evict() can't destroy this
1587 1570                   * header while we are waiting on l2arc_buflist_mtx.
1588 1571                   *
1589 1572                   * The hdr may be removed from l2ad_buflist before we
1590 1573                   * grab l2arc_buflist_mtx, so b_l2hdr is rechecked.
1591 1574                   */
1592 1575                  if (!buflist_held) {
1593 1576                          mutex_enter(&l2arc_buflist_mtx);
1594 1577                          l2hdr = hdr->b_l2hdr;
1595 1578                  }
1596 1579  
1597 1580                  if (l2hdr != NULL) {
1598 1581                          list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
1599 1582                          ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
1600 1583                          ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize);
1601 1584                          vdev_space_update(l2hdr->b_dev->l2ad_vdev,
1602 1585                              -l2hdr->b_asize, 0, 0);
1603 1586                          kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
1604 1587                          if (hdr->b_state == arc_l2c_only)
1605 1588                                  l2arc_hdr_stat_remove();
1606 1589                          hdr->b_l2hdr = NULL;
1607 1590                  }
1608 1591  
1609 1592                  if (!buflist_held)
1610 1593                          mutex_exit(&l2arc_buflist_mtx);
1611 1594          }
1612 1595  
1613 1596          if (!BUF_EMPTY(hdr)) {
1614 1597                  ASSERT(!HDR_IN_HASH_TABLE(hdr));
1615 1598                  buf_discard_identity(hdr);
1616 1599          }
1617 1600          while (hdr->b_buf) {
1618 1601                  arc_buf_t *buf = hdr->b_buf;
1619 1602  
1620 1603                  if (buf->b_efunc) {
1621 1604                          mutex_enter(&arc_eviction_mtx);
1622 1605                          mutex_enter(&buf->b_evict_lock);
1623 1606                          ASSERT(buf->b_hdr != NULL);
1624 1607                          arc_buf_destroy(hdr->b_buf, FALSE, FALSE);
1625 1608                          hdr->b_buf = buf->b_next;
1626 1609                          buf->b_hdr = &arc_eviction_hdr;
1627 1610                          buf->b_next = arc_eviction_list;
1628 1611                          arc_eviction_list = buf;
1629 1612                          mutex_exit(&buf->b_evict_lock);
1630 1613                          mutex_exit(&arc_eviction_mtx);
1631 1614                  } else {
1632 1615                          arc_buf_destroy(hdr->b_buf, FALSE, TRUE);
1633 1616                  }
1634 1617          }
1635 1618          if (hdr->b_freeze_cksum != NULL) {
1636 1619                  kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1637 1620                  hdr->b_freeze_cksum = NULL;
1638 1621          }
1639 1622          if (hdr->b_thawed) {
1640 1623                  kmem_free(hdr->b_thawed, 1);
1641 1624                  hdr->b_thawed = NULL;
1642 1625          }
1643 1626  
1644 1627          ASSERT(!list_link_active(&hdr->b_arc_node));
1645 1628          ASSERT3P(hdr->b_hash_next, ==, NULL);
1646 1629          ASSERT3P(hdr->b_acb, ==, NULL);
1647 1630          kmem_cache_free(hdr_cache, hdr);
1648 1631  }
1649 1632  
1650 1633  void
1651 1634  arc_buf_free(arc_buf_t *buf, void *tag)
1652 1635  {
1653 1636          arc_buf_hdr_t *hdr = buf->b_hdr;
1654 1637          int hashed = hdr->b_state != arc_anon;
1655 1638  
1656 1639          ASSERT(buf->b_efunc == NULL);
1657 1640          ASSERT(buf->b_data != NULL);
1658 1641  
1659 1642          if (hashed) {
1660 1643                  kmutex_t *hash_lock = HDR_LOCK(hdr);
1661 1644  
1662 1645                  mutex_enter(hash_lock);
1663 1646                  hdr = buf->b_hdr;
1664 1647                  ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1665 1648  
1666 1649                  (void) remove_reference(hdr, hash_lock, tag);
1667 1650                  if (hdr->b_datacnt > 1) {
1668 1651                          arc_buf_destroy(buf, FALSE, TRUE);
1669 1652                  } else {
1670 1653                          ASSERT(buf == hdr->b_buf);
1671 1654                          ASSERT(buf->b_efunc == NULL);
1672 1655                          hdr->b_flags |= ARC_BUF_AVAILABLE;
1673 1656                  }
1674 1657                  mutex_exit(hash_lock);
1675 1658          } else if (HDR_IO_IN_PROGRESS(hdr)) {
1676 1659                  int destroy_hdr;
1677 1660                  /*
1678 1661                   * We are in the middle of an async write.  Don't destroy
1679 1662                   * this buffer unless the write completes before we finish
1680 1663                   * decrementing the reference count.
1681 1664                   */
1682 1665                  mutex_enter(&arc_eviction_mtx);
1683 1666                  (void) remove_reference(hdr, NULL, tag);
1684 1667                  ASSERT(refcount_is_zero(&hdr->b_refcnt));
1685 1668                  destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
1686 1669                  mutex_exit(&arc_eviction_mtx);
1687 1670                  if (destroy_hdr)
1688 1671                          arc_hdr_destroy(hdr);
1689 1672          } else {
1690 1673                  if (remove_reference(hdr, NULL, tag) > 0)
1691 1674                          arc_buf_destroy(buf, FALSE, TRUE);
1692 1675                  else
1693 1676                          arc_hdr_destroy(hdr);
1694 1677          }
1695 1678  }
1696 1679  
1697 1680  boolean_t
1698 1681  arc_buf_remove_ref(arc_buf_t *buf, void* tag)
1699 1682  {
1700 1683          arc_buf_hdr_t *hdr = buf->b_hdr;
1701 1684          kmutex_t *hash_lock = HDR_LOCK(hdr);
1702 1685          boolean_t no_callback = (buf->b_efunc == NULL);
1703 1686  
1704 1687          if (hdr->b_state == arc_anon) {
1705 1688                  ASSERT(hdr->b_datacnt == 1);
1706 1689                  arc_buf_free(buf, tag);
1707 1690                  return (no_callback);
1708 1691          }
1709 1692  
1710 1693          mutex_enter(hash_lock);
1711 1694          hdr = buf->b_hdr;
1712 1695          ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1713 1696          ASSERT(hdr->b_state != arc_anon);
1714 1697          ASSERT(buf->b_data != NULL);
1715 1698  
1716 1699          (void) remove_reference(hdr, hash_lock, tag);
1717 1700          if (hdr->b_datacnt > 1) {
1718 1701                  if (no_callback)
1719 1702                          arc_buf_destroy(buf, FALSE, TRUE);
1720 1703          } else if (no_callback) {
1721 1704                  ASSERT(hdr->b_buf == buf && buf->b_next == NULL);
1722 1705                  ASSERT(buf->b_efunc == NULL);
1723 1706                  hdr->b_flags |= ARC_BUF_AVAILABLE;
1724 1707          }
1725 1708          ASSERT(no_callback || hdr->b_datacnt > 1 ||
1726 1709              refcount_is_zero(&hdr->b_refcnt));
1727 1710          mutex_exit(hash_lock);
1728 1711          return (no_callback);
1729 1712  }
1730 1713  
1731 1714  int
1732 1715  arc_buf_size(arc_buf_t *buf)
1733 1716  {
1734 1717          return (buf->b_hdr->b_size);
1735 1718  }
1736 1719  
1737 1720  /*
1738 1721   * Called from the DMU to determine if the current buffer should be
1739 1722   * evicted. In order to ensure proper locking, the eviction must be initiated
1740 1723   * from the DMU. Return true if the buffer is associated with user data and
1741 1724   * duplicate buffers still exist.
1742 1725   */
1743 1726  boolean_t
1744 1727  arc_buf_eviction_needed(arc_buf_t *buf)
1745 1728  {
1746 1729          arc_buf_hdr_t *hdr;
1747 1730          boolean_t evict_needed = B_FALSE;
1748 1731  
1749 1732          if (zfs_disable_dup_eviction)
1750 1733                  return (B_FALSE);
1751 1734  
1752 1735          mutex_enter(&buf->b_evict_lock);
1753 1736          hdr = buf->b_hdr;
1754 1737          if (hdr == NULL) {
1755 1738                  /*
1756 1739                   * We are in arc_do_user_evicts(); let that function
1757 1740                   * perform the eviction.
1758 1741                   */
1759 1742                  ASSERT(buf->b_data == NULL);
1760 1743                  mutex_exit(&buf->b_evict_lock);
1761 1744                  return (B_FALSE);
1762 1745          } else if (buf->b_data == NULL) {
1763 1746                  /*
1764 1747                   * We have already been added to the arc eviction list;
1765 1748                   * recommend eviction.
1766 1749                   */
1767 1750                  ASSERT3P(hdr, ==, &arc_eviction_hdr);
1768 1751                  mutex_exit(&buf->b_evict_lock);
1769 1752                  return (B_TRUE);
1770 1753          }
1771 1754  
1772 1755          if (hdr->b_datacnt > 1 && hdr->b_type == ARC_BUFC_DATA)
1773 1756                  evict_needed = B_TRUE;
1774 1757  
1775 1758          mutex_exit(&buf->b_evict_lock);
1776 1759          return (evict_needed);
1777 1760  }
1778 1761  
1779 1762  /*
1780 1763   * Evict buffers from list until we've removed the specified number of
1781 1764   * bytes.  Move the removed buffers to the appropriate evict state.
1782 1765   * If the recycle flag is set, then attempt to "recycle" a buffer:
1783 1766   * - look for a buffer to evict that is `bytes' long.
1784 1767   * - return the data block from this buffer rather than freeing it.
1785 1768   * This flag is used by callers that are trying to make space for a
1786 1769   * new buffer in a full arc cache.
1787 1770   *
1788 1771   * This function makes a "best effort".  It skips over any buffers
1789 1772   * it can't get a hash_lock on, and so may not catch all candidates.
1790 1773   * It may also return without evicting as much space as requested.
1791 1774   */
1792 1775  static void *
1793 1776  arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle,
1794 1777      arc_buf_contents_t type)
1795 1778  {
1796 1779          arc_state_t *evicted_state;
1797 1780          uint64_t bytes_evicted = 0, skipped = 0, missed = 0;
1798 1781          arc_buf_hdr_t *ab, *ab_prev = NULL;
1799 1782          list_t *list = &state->arcs_list[type];
1800 1783          kmutex_t *hash_lock;
1801 1784          boolean_t have_lock;
1802 1785          void *stolen = NULL;
1803 1786          arc_buf_hdr_t marker = { 0 };
1804 1787          int count = 0;
1805 1788  
1806 1789          ASSERT(state == arc_mru || state == arc_mfu);
1807 1790  
1808 1791          evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
1809 1792  
1810 1793          mutex_enter(&state->arcs_mtx);
1811 1794          mutex_enter(&evicted_state->arcs_mtx);
1812 1795  
1813 1796          for (ab = list_tail(list); ab; ab = ab_prev) {
1814 1797                  ab_prev = list_prev(list, ab);
1815 1798                  /* prefetch buffers have a minimum lifespan */
1816 1799                  if (HDR_IO_IN_PROGRESS(ab) ||
1817 1800                      (spa && ab->b_spa != spa) ||
1818 1801                      (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) &&
1819 1802                      ddi_get_lbolt() - ab->b_arc_access <
1820 1803                      arc_min_prefetch_lifespan)) {
1821 1804                          skipped++;
1822 1805                          continue;
1823 1806                  }
1824 1807                  /* "lookahead" for better eviction candidate */
1825 1808                  if (recycle && ab->b_size != bytes &&
1826 1809                      ab_prev && ab_prev->b_size == bytes)
1827 1810                          continue;
1828 1811  
1829 1812                  /* ignore markers */
1830 1813                  if (ab->b_spa == 0)
1831 1814                          continue;
1832 1815  
1833 1816                  /*
1834 1817                   * It may take a long time to evict all the bufs requested.
1835 1818                   * To avoid blocking all arc activity, periodically drop
1836 1819                   * the arcs_mtx and give other threads a chance to run
1837 1820                   * before reacquiring the lock.
1838 1821                   *
1839 1822                   * If we are looking for a buffer to recycle, we are in
1840 1823                   * the hot code path, so don't sleep.
1841 1824                   */
1842 1825                  if (!recycle && count++ > arc_evict_iterations) {
1843 1826                          list_insert_after(list, ab, &marker);
1844 1827                          mutex_exit(&evicted_state->arcs_mtx);
1845 1828                          mutex_exit(&state->arcs_mtx);
1846 1829                          kpreempt(KPREEMPT_SYNC);
1847 1830                          mutex_enter(&state->arcs_mtx);
1848 1831                          mutex_enter(&evicted_state->arcs_mtx);
1849 1832                          ab_prev = list_prev(list, &marker);
1850 1833                          list_remove(list, &marker);
1851 1834                          count = 0;
1852 1835                          continue;
1853 1836                  }
1854 1837  
1855 1838                  hash_lock = HDR_LOCK(ab);
1856 1839                  have_lock = MUTEX_HELD(hash_lock);
1857 1840                  if (have_lock || mutex_tryenter(hash_lock)) {
1858 1841                          ASSERT0(refcount_count(&ab->b_refcnt));
1859 1842                          ASSERT(ab->b_datacnt > 0);
1860 1843                          while (ab->b_buf) {
1861 1844                                  arc_buf_t *buf = ab->b_buf;
1862 1845                                  if (!mutex_tryenter(&buf->b_evict_lock)) {
1863 1846                                          missed += 1;
1864 1847                                          break;
1865 1848                                  }
1866 1849                                  if (buf->b_data) {
1867 1850                                          bytes_evicted += ab->b_size;
1868 1851                                          if (recycle && ab->b_type == type &&
1869 1852                                              ab->b_size == bytes &&
1870 1853                                              !HDR_L2_WRITING(ab)) {
1871 1854                                                  stolen = buf->b_data;
1872 1855                                                  recycle = FALSE;
1873 1856                                          }
1874 1857                                  }
1875 1858                                  if (buf->b_efunc) {
1876 1859                                          mutex_enter(&arc_eviction_mtx);
1877 1860                                          arc_buf_destroy(buf,
1878 1861                                              buf->b_data == stolen, FALSE);
1879 1862                                          ab->b_buf = buf->b_next;
1880 1863                                          buf->b_hdr = &arc_eviction_hdr;
1881 1864                                          buf->b_next = arc_eviction_list;
1882 1865                                          arc_eviction_list = buf;
1883 1866                                          mutex_exit(&arc_eviction_mtx);
1884 1867                                          mutex_exit(&buf->b_evict_lock);
1885 1868                                  } else {
1886 1869                                          mutex_exit(&buf->b_evict_lock);
1887 1870                                          arc_buf_destroy(buf,
1888 1871                                              buf->b_data == stolen, TRUE);
1889 1872                                  }
1890 1873                          }
1891 1874  
1892 1875                          if (ab->b_l2hdr) {
1893 1876                                  ARCSTAT_INCR(arcstat_evict_l2_cached,
1894 1877                                      ab->b_size);
1895 1878                          } else {
1896 1879                                  if (l2arc_write_eligible(ab->b_spa, ab)) {
1897 1880                                          ARCSTAT_INCR(arcstat_evict_l2_eligible,
1898 1881                                              ab->b_size);
1899 1882                                  } else {
1900 1883                                          ARCSTAT_INCR(
1901 1884                                              arcstat_evict_l2_ineligible,
1902 1885                                              ab->b_size);
1903 1886                                  }
1904 1887                          }
1905 1888  
1906 1889                          if (ab->b_datacnt == 0) {
1907 1890                                  arc_change_state(evicted_state, ab, hash_lock);
1908 1891                                  ASSERT(HDR_IN_HASH_TABLE(ab));
1909 1892                                  ab->b_flags |= ARC_IN_HASH_TABLE;
1910 1893                                  ab->b_flags &= ~ARC_BUF_AVAILABLE;
1911 1894                                  DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab);
1912 1895                          }
1913 1896                          if (!have_lock)
1914 1897                                  mutex_exit(hash_lock);
1915 1898                          if (bytes >= 0 && bytes_evicted >= bytes)
1916 1899                                  break;
1917 1900                  } else {
1918 1901                          missed += 1;
1919 1902                  }
1920 1903          }
1921 1904  
1922 1905          mutex_exit(&evicted_state->arcs_mtx);
1923 1906          mutex_exit(&state->arcs_mtx);
1924 1907  
1925 1908          if (bytes_evicted < bytes)
1926 1909                  dprintf("only evicted %lld bytes from %x",
1927 1910                      (longlong_t)bytes_evicted, state);
1928 1911  
1929 1912          if (skipped)
1930 1913                  ARCSTAT_INCR(arcstat_evict_skip, skipped);
1931 1914  
1932 1915          if (missed)
1933 1916                  ARCSTAT_INCR(arcstat_mutex_miss, missed);
1934 1917  
1935 1918          /*
1936 1919           * Note: we have just evicted some data into the ghost state,
1937 1920           * potentially putting the ghost size over the desired size.  Rather
1938 1921           * that evicting from the ghost list in this hot code path, leave
1939 1922           * this chore to the arc_reclaim_thread().
1940 1923           */
1941 1924  
1942 1925          return (stolen);
1943 1926  }
1944 1927  
1945 1928  /*
1946 1929   * Remove buffers from list until we've removed the specified number of
1947 1930   * bytes.  Destroy the buffers that are removed.
1948 1931   */
1949 1932  static void
1950 1933  arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes)
1951 1934  {
1952 1935          arc_buf_hdr_t *ab, *ab_prev;
1953 1936          arc_buf_hdr_t marker = { 0 };
1954 1937          list_t *list = &state->arcs_list[ARC_BUFC_DATA];
1955 1938          kmutex_t *hash_lock;
1956 1939          uint64_t bytes_deleted = 0;
1957 1940          uint64_t bufs_skipped = 0;
1958 1941          int count = 0;
1959 1942  
1960 1943          ASSERT(GHOST_STATE(state));
1961 1944  top:
1962 1945          mutex_enter(&state->arcs_mtx);
1963 1946          for (ab = list_tail(list); ab; ab = ab_prev) {
1964 1947                  ab_prev = list_prev(list, ab);
1965 1948                  if (ab->b_type > ARC_BUFC_NUMTYPES)
1966 1949                          panic("invalid ab=%p", (void *)ab);
1967 1950                  if (spa && ab->b_spa != spa)
1968 1951                          continue;
1969 1952  
1970 1953                  /* ignore markers */
1971 1954                  if (ab->b_spa == 0)
1972 1955                          continue;
1973 1956  
1974 1957                  hash_lock = HDR_LOCK(ab);
1975 1958                  /* caller may be trying to modify this buffer, skip it */
1976 1959                  if (MUTEX_HELD(hash_lock))
1977 1960                          continue;
1978 1961  
1979 1962                  /*
1980 1963                   * It may take a long time to evict all the bufs requested.
1981 1964                   * To avoid blocking all arc activity, periodically drop
1982 1965                   * the arcs_mtx and give other threads a chance to run
1983 1966                   * before reacquiring the lock.
1984 1967                   */
1985 1968                  if (count++ > arc_evict_iterations) {
1986 1969                          list_insert_after(list, ab, &marker);
1987 1970                          mutex_exit(&state->arcs_mtx);
1988 1971                          kpreempt(KPREEMPT_SYNC);
1989 1972                          mutex_enter(&state->arcs_mtx);
1990 1973                          ab_prev = list_prev(list, &marker);
1991 1974                          list_remove(list, &marker);
1992 1975                          count = 0;
1993 1976                          continue;
1994 1977                  }
1995 1978                  if (mutex_tryenter(hash_lock)) {
1996 1979                          ASSERT(!HDR_IO_IN_PROGRESS(ab));
1997 1980                          ASSERT(ab->b_buf == NULL);
1998 1981                          ARCSTAT_BUMP(arcstat_deleted);
1999 1982                          bytes_deleted += ab->b_size;
2000 1983  
2001 1984                          if (ab->b_l2hdr != NULL) {
2002 1985                                  /*
2003 1986                                   * This buffer is cached on the 2nd Level ARC;
2004 1987                                   * don't destroy the header.
2005 1988                                   */
2006 1989                                  arc_change_state(arc_l2c_only, ab, hash_lock);
2007 1990                                  mutex_exit(hash_lock);
2008 1991                          } else {
2009 1992                                  arc_change_state(arc_anon, ab, hash_lock);
2010 1993                                  mutex_exit(hash_lock);
2011 1994                                  arc_hdr_destroy(ab);
2012 1995                          }
2013 1996  
2014 1997                          DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab);
2015 1998                          if (bytes >= 0 && bytes_deleted >= bytes)
2016 1999                                  break;
2017 2000                  } else if (bytes < 0) {
2018 2001                          /*
2019 2002                           * Insert a list marker and then wait for the
2020 2003                           * hash lock to become available. Once its
2021 2004                           * available, restart from where we left off.
2022 2005                           */
2023 2006                          list_insert_after(list, ab, &marker);
2024 2007                          mutex_exit(&state->arcs_mtx);
2025 2008                          mutex_enter(hash_lock);
2026 2009                          mutex_exit(hash_lock);
2027 2010                          mutex_enter(&state->arcs_mtx);
2028 2011                          ab_prev = list_prev(list, &marker);
2029 2012                          list_remove(list, &marker);
2030 2013                  } else {
2031 2014                          bufs_skipped += 1;
2032 2015                  }
2033 2016  
2034 2017          }
2035 2018          mutex_exit(&state->arcs_mtx);
2036 2019  
2037 2020          if (list == &state->arcs_list[ARC_BUFC_DATA] &&
2038 2021              (bytes < 0 || bytes_deleted < bytes)) {
2039 2022                  list = &state->arcs_list[ARC_BUFC_METADATA];
2040 2023                  goto top;
2041 2024          }
2042 2025  
2043 2026          if (bufs_skipped) {
2044 2027                  ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped);
2045 2028                  ASSERT(bytes >= 0);
2046 2029          }
2047 2030  
2048 2031          if (bytes_deleted < bytes)
2049 2032                  dprintf("only deleted %lld bytes from %p",
2050 2033                      (longlong_t)bytes_deleted, state);
2051 2034  }
2052 2035  
2053 2036  static void
2054 2037  arc_adjust(void)
2055 2038  {
2056 2039          int64_t adjustment, delta;
2057 2040  
2058 2041          /*
2059 2042           * Adjust MRU size
2060 2043           */
2061 2044  
2062 2045          adjustment = MIN((int64_t)(arc_size - arc_c),
2063 2046              (int64_t)(arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used -
2064 2047              arc_p));
2065 2048  
2066 2049          if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) {
2067 2050                  delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], adjustment);
2068 2051                  (void) arc_evict(arc_mru, NULL, delta, FALSE, ARC_BUFC_DATA);
2069 2052                  adjustment -= delta;
2070 2053          }
2071 2054  
2072 2055          if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) {
2073 2056                  delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment);
2074 2057                  (void) arc_evict(arc_mru, NULL, delta, FALSE,
2075 2058                      ARC_BUFC_METADATA);
2076 2059          }
2077 2060  
2078 2061          /*
2079 2062           * Adjust MFU size
2080 2063           */
2081 2064  
2082 2065          adjustment = arc_size - arc_c;
2083 2066  
2084 2067          if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) {
2085 2068                  delta = MIN(adjustment, arc_mfu->arcs_lsize[ARC_BUFC_DATA]);
2086 2069                  (void) arc_evict(arc_mfu, NULL, delta, FALSE, ARC_BUFC_DATA);
2087 2070                  adjustment -= delta;
2088 2071          }
2089 2072  
2090 2073          if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) {
2091 2074                  int64_t delta = MIN(adjustment,
2092 2075                      arc_mfu->arcs_lsize[ARC_BUFC_METADATA]);
2093 2076                  (void) arc_evict(arc_mfu, NULL, delta, FALSE,
2094 2077                      ARC_BUFC_METADATA);
2095 2078          }
2096 2079  
2097 2080          /*
2098 2081           * Adjust ghost lists
2099 2082           */
2100 2083  
2101 2084          adjustment = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c;
2102 2085  
2103 2086          if (adjustment > 0 && arc_mru_ghost->arcs_size > 0) {
2104 2087                  delta = MIN(arc_mru_ghost->arcs_size, adjustment);
2105 2088                  arc_evict_ghost(arc_mru_ghost, NULL, delta);
2106 2089          }
2107 2090  
2108 2091          adjustment =
2109 2092              arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c;
2110 2093  
2111 2094          if (adjustment > 0 && arc_mfu_ghost->arcs_size > 0) {
2112 2095                  delta = MIN(arc_mfu_ghost->arcs_size, adjustment);
2113 2096                  arc_evict_ghost(arc_mfu_ghost, NULL, delta);
2114 2097          }
2115 2098  }
2116 2099  
2117 2100  static void
2118 2101  arc_do_user_evicts(void)
2119 2102  {
2120 2103          mutex_enter(&arc_eviction_mtx);
2121 2104          while (arc_eviction_list != NULL) {
2122 2105                  arc_buf_t *buf = arc_eviction_list;
2123 2106                  arc_eviction_list = buf->b_next;
2124 2107                  mutex_enter(&buf->b_evict_lock);
2125 2108                  buf->b_hdr = NULL;
2126 2109                  mutex_exit(&buf->b_evict_lock);
2127 2110                  mutex_exit(&arc_eviction_mtx);
2128 2111  
2129 2112                  if (buf->b_efunc != NULL)
2130 2113                          VERIFY0(buf->b_efunc(buf->b_private));
2131 2114  
2132 2115                  buf->b_efunc = NULL;
2133 2116                  buf->b_private = NULL;
2134 2117                  kmem_cache_free(buf_cache, buf);
2135 2118                  mutex_enter(&arc_eviction_mtx);
2136 2119          }
2137 2120          mutex_exit(&arc_eviction_mtx);
2138 2121  }
2139 2122  
2140 2123  /*
2141 2124   * Flush all *evictable* data from the cache for the given spa.
2142 2125   * NOTE: this will not touch "active" (i.e. referenced) data.
2143 2126   */
2144 2127  void
2145 2128  arc_flush(spa_t *spa)
2146 2129  {
2147 2130          uint64_t guid = 0;
2148 2131  
2149 2132          if (spa)
2150 2133                  guid = spa_load_guid(spa);
2151 2134  
2152 2135          while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA])) {
2153 2136                  (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_DATA);
2154 2137                  if (spa)
2155 2138                          break;
2156 2139          }
2157 2140          while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA])) {
2158 2141                  (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_METADATA);
2159 2142                  if (spa)
2160 2143                          break;
2161 2144          }
2162 2145          while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA])) {
2163 2146                  (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_DATA);
2164 2147                  if (spa)
2165 2148                          break;
2166 2149          }
2167 2150          while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA])) {
2168 2151                  (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_METADATA);
2169 2152                  if (spa)
2170 2153                          break;
2171 2154          }
2172 2155  
2173 2156          arc_evict_ghost(arc_mru_ghost, guid, -1);
2174 2157          arc_evict_ghost(arc_mfu_ghost, guid, -1);
2175 2158  
2176 2159          mutex_enter(&arc_reclaim_thr_lock);
2177 2160          arc_do_user_evicts();
2178 2161          mutex_exit(&arc_reclaim_thr_lock);
2179 2162          ASSERT(spa || arc_eviction_list == NULL);
2180 2163  }
2181 2164  
2182 2165  void
2183 2166  arc_shrink(void)
2184 2167  {
2185 2168          if (arc_c > arc_c_min) {
2186 2169                  uint64_t to_free;
2187 2170  
2188 2171  #ifdef _KERNEL
2189 2172                  to_free = MAX(arc_c >> arc_shrink_shift, ptob(needfree));
2190 2173  #else
2191 2174                  to_free = arc_c >> arc_shrink_shift;
2192 2175  #endif
2193 2176                  if (arc_c > arc_c_min + to_free)
2194 2177                          atomic_add_64(&arc_c, -to_free);
2195 2178                  else
2196 2179                          arc_c = arc_c_min;
2197 2180  
2198 2181                  atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
2199 2182                  if (arc_c > arc_size)
2200 2183                          arc_c = MAX(arc_size, arc_c_min);
2201 2184                  if (arc_p > arc_c)
2202 2185                          arc_p = (arc_c >> 1);
2203 2186                  ASSERT(arc_c >= arc_c_min);
2204 2187                  ASSERT((int64_t)arc_p >= 0);
2205 2188          }
2206 2189  
2207 2190          if (arc_size > arc_c)
2208 2191                  arc_adjust();
2209 2192  }
2210 2193  
2211 2194  /*
2212 2195   * Determine if the system is under memory pressure and is asking
2213 2196   * to reclaim memory. A return value of 1 indicates that the system
2214 2197   * is under memory pressure and that the arc should adjust accordingly.
2215 2198   */
2216 2199  static int
2217 2200  arc_reclaim_needed(void)
2218 2201  {
2219 2202          uint64_t extra;
2220 2203  
2221 2204  #ifdef _KERNEL
2222 2205  
2223 2206          if (needfree)
2224 2207                  return (1);
2225 2208  
2226 2209          /*
2227 2210           * take 'desfree' extra pages, so we reclaim sooner, rather than later
2228 2211           */
2229 2212          extra = desfree;
2230 2213  
2231 2214          /*
2232 2215           * check that we're out of range of the pageout scanner.  It starts to
2233 2216           * schedule paging if freemem is less than lotsfree and needfree.
2234 2217           * lotsfree is the high-water mark for pageout, and needfree is the
2235 2218           * number of needed free pages.  We add extra pages here to make sure
2236 2219           * the scanner doesn't start up while we're freeing memory.
2237 2220           */
2238 2221          if (freemem < lotsfree + needfree + extra)
2239 2222                  return (1);
2240 2223  
2241 2224          /*
2242 2225           * check to make sure that swapfs has enough space so that anon
2243 2226           * reservations can still succeed. anon_resvmem() checks that the
2244 2227           * availrmem is greater than swapfs_minfree, and the number of reserved
2245 2228           * swap pages.  We also add a bit of extra here just to prevent
2246 2229           * circumstances from getting really dire.
2247 2230           */
2248 2231          if (availrmem < swapfs_minfree + swapfs_reserve + extra)
2249 2232                  return (1);
2250 2233  
2251 2234          /*
2252 2235           * Check that we have enough availrmem that memory locking (e.g., via
2253 2236           * mlock(3C) or memcntl(2)) can still succeed.  (pages_pp_maximum
2254 2237           * stores the number of pages that cannot be locked; when availrmem
2255 2238           * drops below pages_pp_maximum, page locking mechanisms such as
2256 2239           * page_pp_lock() will fail.)
2257 2240           */
2258 2241          if (availrmem <= pages_pp_maximum)
2259 2242                  return (1);
2260 2243  
2261 2244  #if defined(__i386)
2262 2245          /*
2263 2246           * If we're on an i386 platform, it's possible that we'll exhaust the
2264 2247           * kernel heap space before we ever run out of available physical
2265 2248           * memory.  Most checks of the size of the heap_area compare against
2266 2249           * tune.t_minarmem, which is the minimum available real memory that we
2267 2250           * can have in the system.  However, this is generally fixed at 25 pages
2268 2251           * which is so low that it's useless.  In this comparison, we seek to
2269 2252           * calculate the total heap-size, and reclaim if more than 3/4ths of the
2270 2253           * heap is allocated.  (Or, in the calculation, if less than 1/4th is
2271 2254           * free)
2272 2255           */
2273 2256          if (vmem_size(heap_arena, VMEM_FREE) <
2274 2257              (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2))
2275 2258                  return (1);
2276 2259  #endif
2277 2260  
2278 2261          /*
2279 2262           * If zio data pages are being allocated out of a separate heap segment,
2280 2263           * then enforce that the size of available vmem for this arena remains
2281 2264           * above about 1/16th free.
2282 2265           *
2283 2266           * Note: The 1/16th arena free requirement was put in place
2284 2267           * to aggressively evict memory from the arc in order to avoid
2285 2268           * memory fragmentation issues.
2286 2269           */
2287 2270          if (zio_arena != NULL &&
2288 2271              vmem_size(zio_arena, VMEM_FREE) <
2289 2272              (vmem_size(zio_arena, VMEM_ALLOC) >> 4))
2290 2273                  return (1);
2291 2274  #else
2292 2275          if (spa_get_random(100) == 0)
2293 2276                  return (1);
2294 2277  #endif
2295 2278          return (0);
2296 2279  }
2297 2280  
2298 2281  static void
2299 2282  arc_kmem_reap_now(arc_reclaim_strategy_t strat)
2300 2283  {
2301 2284          size_t                  i;
2302 2285          kmem_cache_t            *prev_cache = NULL;
2303 2286          kmem_cache_t            *prev_data_cache = NULL;
2304 2287          extern kmem_cache_t     *zio_buf_cache[];
2305 2288          extern kmem_cache_t     *zio_data_buf_cache[];
2306 2289          extern kmem_cache_t     *range_seg_cache;
2307 2290  
2308 2291  #ifdef _KERNEL
2309 2292          if (arc_meta_used >= arc_meta_limit) {
2310 2293                  /*
2311 2294                   * We are exceeding our meta-data cache limit.
2312 2295                   * Purge some DNLC entries to release holds on meta-data.
2313 2296                   */
2314 2297                  dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
2315 2298          }
2316 2299  #if defined(__i386)
2317 2300          /*
2318 2301           * Reclaim unused memory from all kmem caches.
2319 2302           */
2320 2303          kmem_reap();
2321 2304  #endif
2322 2305  #endif
2323 2306  
2324 2307          /*
2325 2308           * An aggressive reclamation will shrink the cache size as well as
2326 2309           * reap free buffers from the arc kmem caches.
2327 2310           */
2328 2311          if (strat == ARC_RECLAIM_AGGR)
2329 2312                  arc_shrink();
2330 2313  
2331 2314          for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
2332 2315                  if (zio_buf_cache[i] != prev_cache) {
2333 2316                          prev_cache = zio_buf_cache[i];
2334 2317                          kmem_cache_reap_now(zio_buf_cache[i]);
2335 2318                  }
2336 2319                  if (zio_data_buf_cache[i] != prev_data_cache) {
2337 2320                          prev_data_cache = zio_data_buf_cache[i];
2338 2321                          kmem_cache_reap_now(zio_data_buf_cache[i]);
2339 2322                  }
2340 2323          }
2341 2324          kmem_cache_reap_now(buf_cache);
2342 2325          kmem_cache_reap_now(hdr_cache);
2343 2326          kmem_cache_reap_now(range_seg_cache);
2344 2327  
2345 2328          /*
2346 2329           * Ask the vmem areana to reclaim unused memory from its
2347 2330           * quantum caches.
2348 2331           */
2349 2332          if (zio_arena != NULL && strat == ARC_RECLAIM_AGGR)
2350 2333                  vmem_qcache_reap(zio_arena);
2351 2334  }
2352 2335  
2353 2336  static void
2354 2337  arc_reclaim_thread(void)
2355 2338  {
2356 2339          clock_t                 growtime = 0;
2357 2340          arc_reclaim_strategy_t  last_reclaim = ARC_RECLAIM_CONS;
2358 2341          callb_cpr_t             cpr;
2359 2342  
2360 2343          CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG);
2361 2344  
2362 2345          mutex_enter(&arc_reclaim_thr_lock);
2363 2346          while (arc_thread_exit == 0) {
2364 2347                  if (arc_reclaim_needed()) {
2365 2348  
2366 2349                          if (arc_no_grow) {
2367 2350                                  if (last_reclaim == ARC_RECLAIM_CONS) {
2368 2351                                          last_reclaim = ARC_RECLAIM_AGGR;
2369 2352                                  } else {
2370 2353                                          last_reclaim = ARC_RECLAIM_CONS;
2371 2354                                  }
2372 2355                          } else {
2373 2356                                  arc_no_grow = TRUE;
2374 2357                                  last_reclaim = ARC_RECLAIM_AGGR;
2375 2358                                  membar_producer();
2376 2359                          }
2377 2360  
2378 2361                          /* reset the growth delay for every reclaim */
2379 2362                          growtime = ddi_get_lbolt() + (arc_grow_retry * hz);
2380 2363  
2381 2364                          arc_kmem_reap_now(last_reclaim);
2382 2365                          arc_warm = B_TRUE;
2383 2366  
2384 2367                  } else if (arc_no_grow && ddi_get_lbolt() >= growtime) {
2385 2368                          arc_no_grow = FALSE;
2386 2369                  }
2387 2370  
2388 2371                  arc_adjust();
2389 2372  
2390 2373                  if (arc_eviction_list != NULL)
2391 2374                          arc_do_user_evicts();
2392 2375  
2393 2376                  /* block until needed, or one second, whichever is shorter */
2394 2377                  CALLB_CPR_SAFE_BEGIN(&cpr);
2395 2378                  (void) cv_timedwait(&arc_reclaim_thr_cv,
2396 2379                      &arc_reclaim_thr_lock, (ddi_get_lbolt() + hz));
2397 2380                  CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock);
2398 2381          }
2399 2382  
2400 2383          arc_thread_exit = 0;
2401 2384          cv_broadcast(&arc_reclaim_thr_cv);
2402 2385          CALLB_CPR_EXIT(&cpr);           /* drops arc_reclaim_thr_lock */
2403 2386          thread_exit();
2404 2387  }
2405 2388  
2406 2389  /*
2407 2390   * Adapt arc info given the number of bytes we are trying to add and
2408 2391   * the state that we are comming from.  This function is only called
2409 2392   * when we are adding new content to the cache.
2410 2393   */
2411 2394  static void
2412 2395  arc_adapt(int bytes, arc_state_t *state)
2413 2396  {
2414 2397          int mult;
2415 2398          uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
2416 2399  
2417 2400          if (state == arc_l2c_only)
2418 2401                  return;
2419 2402  
2420 2403          ASSERT(bytes > 0);
2421 2404          /*
2422 2405           * Adapt the target size of the MRU list:
2423 2406           *      - if we just hit in the MRU ghost list, then increase
2424 2407           *        the target size of the MRU list.
2425 2408           *      - if we just hit in the MFU ghost list, then increase
2426 2409           *        the target size of the MFU list by decreasing the
2427 2410           *        target size of the MRU list.
2428 2411           */
2429 2412          if (state == arc_mru_ghost) {
2430 2413                  mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ?
2431 2414                      1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size));
2432 2415                  mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
2433 2416  
2434 2417                  arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
2435 2418          } else if (state == arc_mfu_ghost) {
2436 2419                  uint64_t delta;
2437 2420  
2438 2421                  mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ?
2439 2422                      1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size));
2440 2423                  mult = MIN(mult, 10);
2441 2424  
2442 2425                  delta = MIN(bytes * mult, arc_p);
2443 2426                  arc_p = MAX(arc_p_min, arc_p - delta);
2444 2427          }
2445 2428          ASSERT((int64_t)arc_p >= 0);
2446 2429  
2447 2430          if (arc_reclaim_needed()) {
2448 2431                  cv_signal(&arc_reclaim_thr_cv);
2449 2432                  return;
2450 2433          }
2451 2434  
2452 2435          if (arc_no_grow)
2453 2436                  return;
2454 2437  
2455 2438          if (arc_c >= arc_c_max)
2456 2439                  return;
2457 2440  
2458 2441          /*
2459 2442           * If we're within (2 * maxblocksize) bytes of the target
2460 2443           * cache size, increment the target cache size
2461 2444           */
2462 2445          if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
2463 2446                  atomic_add_64(&arc_c, (int64_t)bytes);
2464 2447                  if (arc_c > arc_c_max)
2465 2448                          arc_c = arc_c_max;
2466 2449                  else if (state == arc_anon)
2467 2450                          atomic_add_64(&arc_p, (int64_t)bytes);
2468 2451                  if (arc_p > arc_c)
2469 2452                          arc_p = arc_c;
2470 2453          }
2471 2454          ASSERT((int64_t)arc_p >= 0);
2472 2455  }
2473 2456  
2474 2457  /*
2475 2458   * Check if the cache has reached its limits and eviction is required
2476 2459   * prior to insert.
2477 2460   */
2478 2461  static int
2479 2462  arc_evict_needed(arc_buf_contents_t type)
2480 2463  {
2481 2464          if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit)
2482 2465                  return (1);
2483 2466  
2484 2467          if (arc_reclaim_needed())
2485 2468                  return (1);
2486 2469  
2487 2470          return (arc_size > arc_c);
2488 2471  }
2489 2472  
2490 2473  /*
2491 2474   * The buffer, supplied as the first argument, needs a data block.
2492 2475   * So, if we are at cache max, determine which cache should be victimized.
2493 2476   * We have the following cases:
2494 2477   *
2495 2478   * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) ->
2496 2479   * In this situation if we're out of space, but the resident size of the MFU is
2497 2480   * under the limit, victimize the MFU cache to satisfy this insertion request.
2498 2481   *
2499 2482   * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) ->
2500 2483   * Here, we've used up all of the available space for the MRU, so we need to
2501 2484   * evict from our own cache instead.  Evict from the set of resident MRU
2502 2485   * entries.
2503 2486   *
2504 2487   * 3. Insert for MFU (c - p) > sizeof(arc_mfu) ->
2505 2488   * c minus p represents the MFU space in the cache, since p is the size of the
2506 2489   * cache that is dedicated to the MRU.  In this situation there's still space on
2507 2490   * the MFU side, so the MRU side needs to be victimized.
2508 2491   *
2509 2492   * 4. Insert for MFU (c - p) < sizeof(arc_mfu) ->
2510 2493   * MFU's resident set is consuming more space than it has been allotted.  In
2511 2494   * this situation, we must victimize our own cache, the MFU, for this insertion.
2512 2495   */
2513 2496  static void
2514 2497  arc_get_data_buf(arc_buf_t *buf)
2515 2498  {
2516 2499          arc_state_t             *state = buf->b_hdr->b_state;
2517 2500          uint64_t                size = buf->b_hdr->b_size;
2518 2501          arc_buf_contents_t      type = buf->b_hdr->b_type;
2519 2502  
2520 2503          arc_adapt(size, state);
2521 2504  
2522 2505          /*
2523 2506           * We have not yet reached cache maximum size,
2524 2507           * just allocate a new buffer.
2525 2508           */
2526 2509          if (!arc_evict_needed(type)) {
2527 2510                  if (type == ARC_BUFC_METADATA) {
2528 2511                          buf->b_data = zio_buf_alloc(size);
2529 2512                          arc_space_consume(size, ARC_SPACE_DATA);
2530 2513                  } else {
2531 2514                          ASSERT(type == ARC_BUFC_DATA);
2532 2515                          buf->b_data = zio_data_buf_alloc(size);
2533 2516                          ARCSTAT_INCR(arcstat_data_size, size);
2534 2517                          atomic_add_64(&arc_size, size);
2535 2518                  }
2536 2519                  goto out;
2537 2520          }
2538 2521  
2539 2522          /*
2540 2523           * If we are prefetching from the mfu ghost list, this buffer
2541 2524           * will end up on the mru list; so steal space from there.
2542 2525           */
2543 2526          if (state == arc_mfu_ghost)
2544 2527                  state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu;
2545 2528          else if (state == arc_mru_ghost)
2546 2529                  state = arc_mru;
2547 2530  
2548 2531          if (state == arc_mru || state == arc_anon) {
2549 2532                  uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size;
2550 2533                  state = (arc_mfu->arcs_lsize[type] >= size &&
2551 2534                      arc_p > mru_used) ? arc_mfu : arc_mru;
2552 2535          } else {
2553 2536                  /* MFU cases */
2554 2537                  uint64_t mfu_space = arc_c - arc_p;
2555 2538                  state =  (arc_mru->arcs_lsize[type] >= size &&
2556 2539                      mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu;
2557 2540          }
2558 2541          if ((buf->b_data = arc_evict(state, NULL, size, TRUE, type)) == NULL) {
2559 2542                  if (type == ARC_BUFC_METADATA) {
2560 2543                          buf->b_data = zio_buf_alloc(size);
2561 2544                          arc_space_consume(size, ARC_SPACE_DATA);
2562 2545                  } else {
2563 2546                          ASSERT(type == ARC_BUFC_DATA);
2564 2547                          buf->b_data = zio_data_buf_alloc(size);
2565 2548                          ARCSTAT_INCR(arcstat_data_size, size);
2566 2549                          atomic_add_64(&arc_size, size);
2567 2550                  }
2568 2551                  ARCSTAT_BUMP(arcstat_recycle_miss);
2569 2552          }
2570 2553          ASSERT(buf->b_data != NULL);
2571 2554  out:
2572 2555          /*
2573 2556           * Update the state size.  Note that ghost states have a
2574 2557           * "ghost size" and so don't need to be updated.
2575 2558           */
2576 2559          if (!GHOST_STATE(buf->b_hdr->b_state)) {
2577 2560                  arc_buf_hdr_t *hdr = buf->b_hdr;
2578 2561  
2579 2562                  atomic_add_64(&hdr->b_state->arcs_size, size);
2580 2563                  if (list_link_active(&hdr->b_arc_node)) {
2581 2564                          ASSERT(refcount_is_zero(&hdr->b_refcnt));
2582 2565                          atomic_add_64(&hdr->b_state->arcs_lsize[type], size);
2583 2566                  }
2584 2567                  /*
2585 2568                   * If we are growing the cache, and we are adding anonymous
2586 2569                   * data, and we have outgrown arc_p, update arc_p
2587 2570                   */
2588 2571                  if (arc_size < arc_c && hdr->b_state == arc_anon &&
2589 2572                      arc_anon->arcs_size + arc_mru->arcs_size > arc_p)
2590 2573                          arc_p = MIN(arc_c, arc_p + size);
2591 2574          }
2592 2575  }
2593 2576  
2594 2577  /*
2595 2578   * This routine is called whenever a buffer is accessed.
2596 2579   * NOTE: the hash lock is dropped in this function.
2597 2580   */
2598 2581  static void
2599 2582  arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock)
2600 2583  {
2601 2584          clock_t now;
2602 2585  
2603 2586          ASSERT(MUTEX_HELD(hash_lock));
2604 2587  
2605 2588          if (buf->b_state == arc_anon) {
2606 2589                  /*
2607 2590                   * This buffer is not in the cache, and does not
2608 2591                   * appear in our "ghost" list.  Add the new buffer
2609 2592                   * to the MRU state.
2610 2593                   */
2611 2594  
2612 2595                  ASSERT(buf->b_arc_access == 0);
2613 2596                  buf->b_arc_access = ddi_get_lbolt();
2614 2597                  DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2615 2598                  arc_change_state(arc_mru, buf, hash_lock);
2616 2599  
2617 2600          } else if (buf->b_state == arc_mru) {
2618 2601                  now = ddi_get_lbolt();
2619 2602  
2620 2603                  /*
2621 2604                   * If this buffer is here because of a prefetch, then either:
2622 2605                   * - clear the flag if this is a "referencing" read
2623 2606                   *   (any subsequent access will bump this into the MFU state).
2624 2607                   * or
2625 2608                   * - move the buffer to the head of the list if this is
2626 2609                   *   another prefetch (to make it less likely to be evicted).
2627 2610                   */
2628 2611                  if ((buf->b_flags & ARC_PREFETCH) != 0) {
2629 2612                          if (refcount_count(&buf->b_refcnt) == 0) {
2630 2613                                  ASSERT(list_link_active(&buf->b_arc_node));
2631 2614                          } else {
2632 2615                                  buf->b_flags &= ~ARC_PREFETCH;
2633 2616                                  ARCSTAT_BUMP(arcstat_mru_hits);
2634 2617                          }
2635 2618                          buf->b_arc_access = now;
2636 2619                          return;
2637 2620                  }
2638 2621  
2639 2622                  /*
2640 2623                   * This buffer has been "accessed" only once so far,
2641 2624                   * but it is still in the cache. Move it to the MFU
2642 2625                   * state.
2643 2626                   */
2644 2627                  if (now > buf->b_arc_access + ARC_MINTIME) {
2645 2628                          /*
2646 2629                           * More than 125ms have passed since we
2647 2630                           * instantiated this buffer.  Move it to the
2648 2631                           * most frequently used state.
2649 2632                           */
2650 2633                          buf->b_arc_access = now;
2651 2634                          DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2652 2635                          arc_change_state(arc_mfu, buf, hash_lock);
2653 2636                  }
2654 2637                  ARCSTAT_BUMP(arcstat_mru_hits);
2655 2638          } else if (buf->b_state == arc_mru_ghost) {
2656 2639                  arc_state_t     *new_state;
2657 2640                  /*
2658 2641                   * This buffer has been "accessed" recently, but
2659 2642                   * was evicted from the cache.  Move it to the
2660 2643                   * MFU state.
2661 2644                   */
2662 2645  
2663 2646                  if (buf->b_flags & ARC_PREFETCH) {
2664 2647                          new_state = arc_mru;
2665 2648                          if (refcount_count(&buf->b_refcnt) > 0)
2666 2649                                  buf->b_flags &= ~ARC_PREFETCH;
2667 2650                          DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2668 2651                  } else {
2669 2652                          new_state = arc_mfu;
2670 2653                          DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2671 2654                  }
2672 2655  
2673 2656                  buf->b_arc_access = ddi_get_lbolt();
2674 2657                  arc_change_state(new_state, buf, hash_lock);
2675 2658  
2676 2659                  ARCSTAT_BUMP(arcstat_mru_ghost_hits);
2677 2660          } else if (buf->b_state == arc_mfu) {
2678 2661                  /*
2679 2662                   * This buffer has been accessed more than once and is
2680 2663                   * still in the cache.  Keep it in the MFU state.
2681 2664                   *
2682 2665                   * NOTE: an add_reference() that occurred when we did
2683 2666                   * the arc_read() will have kicked this off the list.
2684 2667                   * If it was a prefetch, we will explicitly move it to
2685 2668                   * the head of the list now.
2686 2669                   */
2687 2670                  if ((buf->b_flags & ARC_PREFETCH) != 0) {
2688 2671                          ASSERT(refcount_count(&buf->b_refcnt) == 0);
2689 2672                          ASSERT(list_link_active(&buf->b_arc_node));
2690 2673                  }
2691 2674                  ARCSTAT_BUMP(arcstat_mfu_hits);
2692 2675                  buf->b_arc_access = ddi_get_lbolt();
2693 2676          } else if (buf->b_state == arc_mfu_ghost) {
2694 2677                  arc_state_t     *new_state = arc_mfu;
2695 2678                  /*
2696 2679                   * This buffer has been accessed more than once but has
2697 2680                   * been evicted from the cache.  Move it back to the
2698 2681                   * MFU state.
2699 2682                   */
2700 2683  
2701 2684                  if (buf->b_flags & ARC_PREFETCH) {
2702 2685                          /*
2703 2686                           * This is a prefetch access...
2704 2687                           * move this block back to the MRU state.
2705 2688                           */
2706 2689                          ASSERT0(refcount_count(&buf->b_refcnt));
2707 2690                          new_state = arc_mru;
2708 2691                  }
2709 2692  
2710 2693                  buf->b_arc_access = ddi_get_lbolt();
2711 2694                  DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2712 2695                  arc_change_state(new_state, buf, hash_lock);
2713 2696  
2714 2697                  ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
2715 2698          } else if (buf->b_state == arc_l2c_only) {
2716 2699                  /*
2717 2700                   * This buffer is on the 2nd Level ARC.
2718 2701                   */
2719 2702  
2720 2703                  buf->b_arc_access = ddi_get_lbolt();
2721 2704                  DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2722 2705                  arc_change_state(arc_mfu, buf, hash_lock);
2723 2706          } else {
2724 2707                  ASSERT(!"invalid arc state");
2725 2708          }
2726 2709  }
2727 2710  
2728 2711  /* a generic arc_done_func_t which you can use */
2729 2712  /* ARGSUSED */
2730 2713  void
2731 2714  arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
2732 2715  {
2733 2716          if (zio == NULL || zio->io_error == 0)
2734 2717                  bcopy(buf->b_data, arg, buf->b_hdr->b_size);
2735 2718          VERIFY(arc_buf_remove_ref(buf, arg));
2736 2719  }
2737 2720  
2738 2721  /* a generic arc_done_func_t */
2739 2722  void
2740 2723  arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
2741 2724  {
2742 2725          arc_buf_t **bufp = arg;
2743 2726          if (zio && zio->io_error) {
2744 2727                  VERIFY(arc_buf_remove_ref(buf, arg));
2745 2728                  *bufp = NULL;
2746 2729          } else {
2747 2730                  *bufp = buf;
2748 2731                  ASSERT(buf->b_data);
2749 2732          }
2750 2733  }
2751 2734  
2752 2735  static void
2753 2736  arc_read_done(zio_t *zio)
2754 2737  {
2755 2738          arc_buf_hdr_t   *hdr;
2756 2739          arc_buf_t       *buf;
2757 2740          arc_buf_t       *abuf;  /* buffer we're assigning to callback */
2758 2741          kmutex_t        *hash_lock = NULL;
2759 2742          arc_callback_t  *callback_list, *acb;
2760 2743          int             freeable = FALSE;
2761 2744  
2762 2745          buf = zio->io_private;
2763 2746          hdr = buf->b_hdr;
2764 2747  
2765 2748          /*
2766 2749           * The hdr was inserted into hash-table and removed from lists
2767 2750           * prior to starting I/O.  We should find this header, since
2768 2751           * it's in the hash table, and it should be legit since it's
2769 2752           * not possible to evict it during the I/O.  The only possible
2770 2753           * reason for it not to be found is if we were freed during the
2771 2754           * read.
2772 2755           */
2773 2756          if (HDR_IN_HASH_TABLE(hdr)) {
2774 2757                  ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
2775 2758                  ASSERT3U(hdr->b_dva.dva_word[0], ==,
2776 2759                      BP_IDENTITY(zio->io_bp)->dva_word[0]);
2777 2760                  ASSERT3U(hdr->b_dva.dva_word[1], ==,
2778 2761                      BP_IDENTITY(zio->io_bp)->dva_word[1]);
2779 2762  
2780 2763                  arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp,
2781 2764                      &hash_lock);
2782 2765  
2783 2766                  ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) &&
2784 2767                      hash_lock == NULL) ||
2785 2768                      (found == hdr &&
2786 2769                      DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
2787 2770                      (found == hdr && HDR_L2_READING(hdr)));
2788 2771          }
2789 2772  
2790 2773          hdr->b_flags &= ~ARC_L2_EVICTED;
2791 2774          if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH))
2792 2775                  hdr->b_flags &= ~ARC_L2CACHE;
2793 2776  
2794 2777          /* byteswap if necessary */
2795 2778          callback_list = hdr->b_acb;
2796 2779          ASSERT(callback_list != NULL);
2797 2780          if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) {
2798 2781                  dmu_object_byteswap_t bswap =
2799 2782                      DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
2800 2783                  arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ?
2801 2784                      byteswap_uint64_array :
2802 2785                      dmu_ot_byteswap[bswap].ob_func;
2803 2786                  func(buf->b_data, hdr->b_size);
2804 2787          }
2805 2788  
2806 2789          arc_cksum_compute(buf, B_FALSE);
2807 2790          arc_buf_watch(buf);
2808 2791  
2809 2792          if (hash_lock && zio->io_error == 0 && hdr->b_state == arc_anon) {
2810 2793                  /*
2811 2794                   * Only call arc_access on anonymous buffers.  This is because
2812 2795                   * if we've issued an I/O for an evicted buffer, we've already
2813 2796                   * called arc_access (to prevent any simultaneous readers from
2814 2797                   * getting confused).
2815 2798                   */
2816 2799                  arc_access(hdr, hash_lock);
2817 2800          }
2818 2801  
2819 2802          /* create copies of the data buffer for the callers */
2820 2803          abuf = buf;
2821 2804          for (acb = callback_list; acb; acb = acb->acb_next) {
2822 2805                  if (acb->acb_done) {
2823 2806                          if (abuf == NULL) {
2824 2807                                  ARCSTAT_BUMP(arcstat_duplicate_reads);
2825 2808                                  abuf = arc_buf_clone(buf);
2826 2809                          }
2827 2810                          acb->acb_buf = abuf;
2828 2811                          abuf = NULL;
2829 2812                  }
2830 2813          }
2831 2814          hdr->b_acb = NULL;
2832 2815          hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2833 2816          ASSERT(!HDR_BUF_AVAILABLE(hdr));
2834 2817          if (abuf == buf) {
2835 2818                  ASSERT(buf->b_efunc == NULL);
2836 2819                  ASSERT(hdr->b_datacnt == 1);
2837 2820                  hdr->b_flags |= ARC_BUF_AVAILABLE;
2838 2821          }
2839 2822  
2840 2823          ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL);
2841 2824  
2842 2825          if (zio->io_error != 0) {
2843 2826                  hdr->b_flags |= ARC_IO_ERROR;
2844 2827                  if (hdr->b_state != arc_anon)
2845 2828                          arc_change_state(arc_anon, hdr, hash_lock);
2846 2829                  if (HDR_IN_HASH_TABLE(hdr))
2847 2830                          buf_hash_remove(hdr);
2848 2831                  freeable = refcount_is_zero(&hdr->b_refcnt);
2849 2832          }
2850 2833  
2851 2834          /*
2852 2835           * Broadcast before we drop the hash_lock to avoid the possibility
2853 2836           * that the hdr (and hence the cv) might be freed before we get to
2854 2837           * the cv_broadcast().
2855 2838           */
2856 2839          cv_broadcast(&hdr->b_cv);
2857 2840  
2858 2841          if (hash_lock) {
2859 2842                  mutex_exit(hash_lock);
2860 2843          } else {
2861 2844                  /*
2862 2845                   * This block was freed while we waited for the read to
2863 2846                   * complete.  It has been removed from the hash table and
2864 2847                   * moved to the anonymous state (so that it won't show up
2865 2848                   * in the cache).
2866 2849                   */
2867 2850                  ASSERT3P(hdr->b_state, ==, arc_anon);
2868 2851                  freeable = refcount_is_zero(&hdr->b_refcnt);
2869 2852          }
2870 2853  
2871 2854          /* execute each callback and free its structure */
2872 2855          while ((acb = callback_list) != NULL) {
2873 2856                  if (acb->acb_done)
2874 2857                          acb->acb_done(zio, acb->acb_buf, acb->acb_private);
2875 2858  
2876 2859                  if (acb->acb_zio_dummy != NULL) {
2877 2860                          acb->acb_zio_dummy->io_error = zio->io_error;
2878 2861                          zio_nowait(acb->acb_zio_dummy);
2879 2862                  }
2880 2863  
2881 2864                  callback_list = acb->acb_next;
2882 2865                  kmem_free(acb, sizeof (arc_callback_t));
2883 2866          }
2884 2867  
2885 2868          if (freeable)
2886 2869                  arc_hdr_destroy(hdr);
2887 2870  }
2888 2871  
2889 2872  /*
2890 2873   * "Read" the block at the specified DVA (in bp) via the
2891 2874   * cache.  If the block is found in the cache, invoke the provided
2892 2875   * callback immediately and return.  Note that the `zio' parameter
2893 2876   * in the callback will be NULL in this case, since no IO was
2894 2877   * required.  If the block is not in the cache pass the read request
2895 2878   * on to the spa with a substitute callback function, so that the
2896 2879   * requested block will be added to the cache.
2897 2880   *
2898 2881   * If a read request arrives for a block that has a read in-progress,
2899 2882   * either wait for the in-progress read to complete (and return the
2900 2883   * results); or, if this is a read with a "done" func, add a record
2901 2884   * to the read to invoke the "done" func when the read completes,
2902 2885   * and return; or just return.
2903 2886   *
2904 2887   * arc_read_done() will invoke all the requested "done" functions
2905 2888   * for readers of this block.
2906 2889   */
2907 2890  int
2908 2891  arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
2909 2892      void *private, zio_priority_t priority, int zio_flags, uint32_t *arc_flags,
2910 2893      const zbookmark_phys_t *zb)
2911 2894  {
2912 2895          arc_buf_hdr_t *hdr = NULL;
2913 2896          arc_buf_t *buf = NULL;
2914 2897          kmutex_t *hash_lock = NULL;
2915 2898          zio_t *rzio;
2916 2899          uint64_t guid = spa_load_guid(spa);
2917 2900  
2918 2901          ASSERT(!BP_IS_EMBEDDED(bp) ||
2919 2902              BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
2920 2903  
2921 2904  top:
2922 2905          if (!BP_IS_EMBEDDED(bp)) {
2923 2906                  /*
2924 2907                   * Embedded BP's have no DVA and require no I/O to "read".
2925 2908                   * Create an anonymous arc buf to back it.
2926 2909                   */
2927 2910                  hdr = buf_hash_find(guid, bp, &hash_lock);
2928 2911          }
2929 2912  
2930 2913          if (hdr != NULL && hdr->b_datacnt > 0) {
2931 2914  
2932 2915                  *arc_flags |= ARC_CACHED;
2933 2916  
2934 2917                  if (HDR_IO_IN_PROGRESS(hdr)) {
2935 2918  
2936 2919                          if (*arc_flags & ARC_WAIT) {
2937 2920                                  cv_wait(&hdr->b_cv, hash_lock);
2938 2921                                  mutex_exit(hash_lock);
2939 2922                                  goto top;
2940 2923                          }
2941 2924                          ASSERT(*arc_flags & ARC_NOWAIT);
2942 2925  
2943 2926                          if (done) {
2944 2927                                  arc_callback_t  *acb = NULL;
2945 2928  
2946 2929                                  acb = kmem_zalloc(sizeof (arc_callback_t),
2947 2930                                      KM_SLEEP);
2948 2931                                  acb->acb_done = done;
2949 2932                                  acb->acb_private = private;
2950 2933                                  if (pio != NULL)
2951 2934                                          acb->acb_zio_dummy = zio_null(pio,
2952 2935                                              spa, NULL, NULL, NULL, zio_flags);
2953 2936  
2954 2937                                  ASSERT(acb->acb_done != NULL);
2955 2938                                  acb->acb_next = hdr->b_acb;
2956 2939                                  hdr->b_acb = acb;
2957 2940                                  add_reference(hdr, hash_lock, private);
2958 2941                                  mutex_exit(hash_lock);
2959 2942                                  return (0);
2960 2943                          }
2961 2944                          mutex_exit(hash_lock);
2962 2945                          return (0);
2963 2946                  }
2964 2947  
2965 2948                  ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
2966 2949  
2967 2950                  if (done) {
2968 2951                          add_reference(hdr, hash_lock, private);
2969 2952                          /*
2970 2953                           * If this block is already in use, create a new
2971 2954                           * copy of the data so that we will be guaranteed
2972 2955                           * that arc_release() will always succeed.
2973 2956                           */
2974 2957                          buf = hdr->b_buf;
2975 2958                          ASSERT(buf);
2976 2959                          ASSERT(buf->b_data);
2977 2960                          if (HDR_BUF_AVAILABLE(hdr)) {
2978 2961                                  ASSERT(buf->b_efunc == NULL);
2979 2962                                  hdr->b_flags &= ~ARC_BUF_AVAILABLE;
2980 2963                          } else {
2981 2964                                  buf = arc_buf_clone(buf);
2982 2965                          }
2983 2966  
2984 2967                  } else if (*arc_flags & ARC_PREFETCH &&
2985 2968                      refcount_count(&hdr->b_refcnt) == 0) {
2986 2969                          hdr->b_flags |= ARC_PREFETCH;
2987 2970                  }
2988 2971                  DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
2989 2972                  arc_access(hdr, hash_lock);
2990 2973                  if (*arc_flags & ARC_L2CACHE)
2991 2974                          hdr->b_flags |= ARC_L2CACHE;
2992 2975                  if (*arc_flags & ARC_L2COMPRESS)
2993 2976                          hdr->b_flags |= ARC_L2COMPRESS;
2994 2977                  mutex_exit(hash_lock);
2995 2978                  ARCSTAT_BUMP(arcstat_hits);
2996 2979                  ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
2997 2980                      demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
2998 2981                      data, metadata, hits);
2999 2982  
3000 2983                  if (done)
3001 2984                          done(NULL, buf, private);
3002 2985          } else {
3003 2986                  uint64_t size = BP_GET_LSIZE(bp);
3004 2987                  arc_callback_t *acb;
3005 2988                  vdev_t *vd = NULL;
3006 2989                  uint64_t addr = 0;
3007 2990                  boolean_t devw = B_FALSE;
3008 2991                  enum zio_compress b_compress = ZIO_COMPRESS_OFF;
3009 2992                  uint64_t b_asize = 0;
3010 2993  
3011 2994                  if (hdr == NULL) {
3012 2995                          /* this block is not in the cache */
3013 2996                          arc_buf_hdr_t *exists = NULL;
3014 2997                          arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
3015 2998                          buf = arc_buf_alloc(spa, size, private, type);
3016 2999                          hdr = buf->b_hdr;
3017 3000                          if (!BP_IS_EMBEDDED(bp)) {
3018 3001                                  hdr->b_dva = *BP_IDENTITY(bp);
3019 3002                                  hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
3020 3003                                  hdr->b_cksum0 = bp->blk_cksum.zc_word[0];
3021 3004                                  exists = buf_hash_insert(hdr, &hash_lock);
3022 3005                          }
3023 3006                          if (exists != NULL) {
3024 3007                                  /* somebody beat us to the hash insert */
3025 3008                                  mutex_exit(hash_lock);
3026 3009                                  buf_discard_identity(hdr);
3027 3010                                  (void) arc_buf_remove_ref(buf, private);
3028 3011                                  goto top; /* restart the IO request */
3029 3012                          }
3030 3013                          /* if this is a prefetch, we don't have a reference */
3031 3014                          if (*arc_flags & ARC_PREFETCH) {
3032 3015                                  (void) remove_reference(hdr, hash_lock,
3033 3016                                      private);
3034 3017                                  hdr->b_flags |= ARC_PREFETCH;
3035 3018                          }
3036 3019                          if (*arc_flags & ARC_L2CACHE)
3037 3020                                  hdr->b_flags |= ARC_L2CACHE;
3038 3021                          if (*arc_flags & ARC_L2COMPRESS)
3039 3022                                  hdr->b_flags |= ARC_L2COMPRESS;
3040 3023                          if (BP_GET_LEVEL(bp) > 0)
3041 3024                                  hdr->b_flags |= ARC_INDIRECT;
3042 3025                  } else {
3043 3026                          /* this block is in the ghost cache */
3044 3027                          ASSERT(GHOST_STATE(hdr->b_state));
3045 3028                          ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3046 3029                          ASSERT0(refcount_count(&hdr->b_refcnt));
3047 3030                          ASSERT(hdr->b_buf == NULL);
3048 3031  
3049 3032                          /* if this is a prefetch, we don't have a reference */
3050 3033                          if (*arc_flags & ARC_PREFETCH)
3051 3034                                  hdr->b_flags |= ARC_PREFETCH;
3052 3035                          else
3053 3036                                  add_reference(hdr, hash_lock, private);
3054 3037                          if (*arc_flags & ARC_L2CACHE)
3055 3038                                  hdr->b_flags |= ARC_L2CACHE;
3056 3039                          if (*arc_flags & ARC_L2COMPRESS)
3057 3040                                  hdr->b_flags |= ARC_L2COMPRESS;
3058 3041                          buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
3059 3042                          buf->b_hdr = hdr;
3060 3043                          buf->b_data = NULL;
3061 3044                          buf->b_efunc = NULL;
3062 3045                          buf->b_private = NULL;
3063 3046                          buf->b_next = NULL;
3064 3047                          hdr->b_buf = buf;
3065 3048                          ASSERT(hdr->b_datacnt == 0);
3066 3049                          hdr->b_datacnt = 1;
3067 3050                          arc_get_data_buf(buf);
3068 3051                          arc_access(hdr, hash_lock);
3069 3052                  }
3070 3053  
3071 3054                  ASSERT(!GHOST_STATE(hdr->b_state));
3072 3055  
3073 3056                  acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
3074 3057                  acb->acb_done = done;
3075 3058                  acb->acb_private = private;
3076 3059  
3077 3060                  ASSERT(hdr->b_acb == NULL);
3078 3061                  hdr->b_acb = acb;
3079 3062                  hdr->b_flags |= ARC_IO_IN_PROGRESS;
3080 3063  
3081 3064                  if (hdr->b_l2hdr != NULL &&
3082 3065                      (vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) {
3083 3066                          devw = hdr->b_l2hdr->b_dev->l2ad_writing;
3084 3067                          addr = hdr->b_l2hdr->b_daddr;
3085 3068                          b_compress = hdr->b_l2hdr->b_compress;
3086 3069                          b_asize = hdr->b_l2hdr->b_asize;
3087 3070                          /*
3088 3071                           * Lock out device removal.
3089 3072                           */
3090 3073                          if (vdev_is_dead(vd) ||
3091 3074                              !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
3092 3075                                  vd = NULL;
3093 3076                  }
3094 3077  
3095 3078                  if (hash_lock != NULL)
3096 3079                          mutex_exit(hash_lock);
3097 3080  
3098 3081                  /*
3099 3082                   * At this point, we have a level 1 cache miss.  Try again in
3100 3083                   * L2ARC if possible.
3101 3084                   */
3102 3085                  ASSERT3U(hdr->b_size, ==, size);
3103 3086                  DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
3104 3087                      uint64_t, size, zbookmark_phys_t *, zb);
3105 3088                  ARCSTAT_BUMP(arcstat_misses);
3106 3089                  ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
3107 3090                      demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
3108 3091                      data, metadata, misses);
3109 3092  
3110 3093                  if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
3111 3094                          /*
3112 3095                           * Read from the L2ARC if the following are true:
3113 3096                           * 1. The L2ARC vdev was previously cached.
3114 3097                           * 2. This buffer still has L2ARC metadata.
3115 3098                           * 3. This buffer isn't currently writing to the L2ARC.
3116 3099                           * 4. The L2ARC entry wasn't evicted, which may
3117 3100                           *    also have invalidated the vdev.
3118 3101                           * 5. This isn't prefetch and l2arc_noprefetch is set.
3119 3102                           */
3120 3103                          if (hdr->b_l2hdr != NULL &&
3121 3104                              !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
3122 3105                              !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
3123 3106                                  l2arc_read_callback_t *cb;
3124 3107  
3125 3108                                  DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
3126 3109                                  ARCSTAT_BUMP(arcstat_l2_hits);
3127 3110  
3128 3111                                  cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
3129 3112                                      KM_SLEEP);
3130 3113                                  cb->l2rcb_buf = buf;
3131 3114                                  cb->l2rcb_spa = spa;
3132 3115                                  cb->l2rcb_bp = *bp;
3133 3116                                  cb->l2rcb_zb = *zb;
3134 3117                                  cb->l2rcb_flags = zio_flags;
3135 3118                                  cb->l2rcb_compress = b_compress;
3136 3119  
3137 3120                                  ASSERT(addr >= VDEV_LABEL_START_SIZE &&
3138 3121                                      addr + size < vd->vdev_psize -
3139 3122                                      VDEV_LABEL_END_SIZE);
3140 3123  
3141 3124                                  /*
3142 3125                                   * l2arc read.  The SCL_L2ARC lock will be
3143 3126                                   * released by l2arc_read_done().
3144 3127                                   * Issue a null zio if the underlying buffer
3145 3128                                   * was squashed to zero size by compression.
3146 3129                                   */
3147 3130                                  if (b_compress == ZIO_COMPRESS_EMPTY) {
3148 3131                                          rzio = zio_null(pio, spa, vd,
3149 3132                                              l2arc_read_done, cb,
3150 3133                                              zio_flags | ZIO_FLAG_DONT_CACHE |
3151 3134                                              ZIO_FLAG_CANFAIL |
3152 3135                                              ZIO_FLAG_DONT_PROPAGATE |
3153 3136                                              ZIO_FLAG_DONT_RETRY);
3154 3137                                  } else {
3155 3138                                          rzio = zio_read_phys(pio, vd, addr,
3156 3139                                              b_asize, buf->b_data,
3157 3140                                              ZIO_CHECKSUM_OFF,
3158 3141                                              l2arc_read_done, cb, priority,
3159 3142                                              zio_flags | ZIO_FLAG_DONT_CACHE |
3160 3143                                              ZIO_FLAG_CANFAIL |
3161 3144                                              ZIO_FLAG_DONT_PROPAGATE |
3162 3145                                              ZIO_FLAG_DONT_RETRY, B_FALSE);
3163 3146                                  }
3164 3147                                  DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
3165 3148                                      zio_t *, rzio);
3166 3149                                  ARCSTAT_INCR(arcstat_l2_read_bytes, b_asize);
3167 3150  
3168 3151                                  if (*arc_flags & ARC_NOWAIT) {
3169 3152                                          zio_nowait(rzio);
3170 3153                                          return (0);
3171 3154                                  }
3172 3155  
3173 3156                                  ASSERT(*arc_flags & ARC_WAIT);
3174 3157                                  if (zio_wait(rzio) == 0)
3175 3158                                          return (0);
3176 3159  
3177 3160                                  /* l2arc read error; goto zio_read() */
3178 3161                          } else {
3179 3162                                  DTRACE_PROBE1(l2arc__miss,
3180 3163                                      arc_buf_hdr_t *, hdr);
3181 3164                                  ARCSTAT_BUMP(arcstat_l2_misses);
3182 3165                                  if (HDR_L2_WRITING(hdr))
3183 3166                                          ARCSTAT_BUMP(arcstat_l2_rw_clash);
3184 3167                                  spa_config_exit(spa, SCL_L2ARC, vd);
3185 3168                          }
3186 3169                  } else {
3187 3170                          if (vd != NULL)
3188 3171                                  spa_config_exit(spa, SCL_L2ARC, vd);
3189 3172                          if (l2arc_ndev != 0) {
3190 3173                                  DTRACE_PROBE1(l2arc__miss,
3191 3174                                      arc_buf_hdr_t *, hdr);
3192 3175                                  ARCSTAT_BUMP(arcstat_l2_misses);
3193 3176                          }
3194 3177                  }
3195 3178  
3196 3179                  rzio = zio_read(pio, spa, bp, buf->b_data, size,
3197 3180                      arc_read_done, buf, priority, zio_flags, zb);
3198 3181  
3199 3182                  if (*arc_flags & ARC_WAIT)
3200 3183                          return (zio_wait(rzio));
3201 3184  
3202 3185                  ASSERT(*arc_flags & ARC_NOWAIT);
3203 3186                  zio_nowait(rzio);
3204 3187          }
3205 3188          return (0);
3206 3189  }
3207 3190  
3208 3191  void
3209 3192  arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
3210 3193  {
3211 3194          ASSERT(buf->b_hdr != NULL);
3212 3195          ASSERT(buf->b_hdr->b_state != arc_anon);
3213 3196          ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL);
3214 3197          ASSERT(buf->b_efunc == NULL);
3215 3198          ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr));
3216 3199  
3217 3200          buf->b_efunc = func;
3218 3201          buf->b_private = private;
3219 3202  }
3220 3203  
3221 3204  /*
3222 3205   * Notify the arc that a block was freed, and thus will never be used again.
3223 3206   */
3224 3207  void
3225 3208  arc_freed(spa_t *spa, const blkptr_t *bp)
3226 3209  {
3227 3210          arc_buf_hdr_t *hdr;
3228 3211          kmutex_t *hash_lock;
3229 3212          uint64_t guid = spa_load_guid(spa);
3230 3213  
3231 3214          ASSERT(!BP_IS_EMBEDDED(bp));
3232 3215  
3233 3216          hdr = buf_hash_find(guid, bp, &hash_lock);
3234 3217          if (hdr == NULL)
3235 3218                  return;
3236 3219          if (HDR_BUF_AVAILABLE(hdr)) {
3237 3220                  arc_buf_t *buf = hdr->b_buf;
3238 3221                  add_reference(hdr, hash_lock, FTAG);
3239 3222                  hdr->b_flags &= ~ARC_BUF_AVAILABLE;
3240 3223                  mutex_exit(hash_lock);
3241 3224  
3242 3225                  arc_release(buf, FTAG);
3243 3226                  (void) arc_buf_remove_ref(buf, FTAG);
3244 3227          } else {
3245 3228                  mutex_exit(hash_lock);
3246 3229          }
3247 3230  
3248 3231  }
3249 3232  
3250 3233  /*
3251 3234   * Clear the user eviction callback set by arc_set_callback(), first calling
3252 3235   * it if it exists.  Because the presence of a callback keeps an arc_buf cached
3253 3236   * clearing the callback may result in the arc_buf being destroyed.  However,
3254 3237   * it will not result in the *last* arc_buf being destroyed, hence the data
3255 3238   * will remain cached in the ARC. We make a copy of the arc buffer here so
3256 3239   * that we can process the callback without holding any locks.
3257 3240   *
3258 3241   * It's possible that the callback is already in the process of being cleared
3259 3242   * by another thread.  In this case we can not clear the callback.
3260 3243   *
3261 3244   * Returns B_TRUE if the callback was successfully called and cleared.
3262 3245   */
3263 3246  boolean_t
3264 3247  arc_clear_callback(arc_buf_t *buf)
3265 3248  {
3266 3249          arc_buf_hdr_t *hdr;
3267 3250          kmutex_t *hash_lock;
3268 3251          arc_evict_func_t *efunc = buf->b_efunc;
3269 3252          void *private = buf->b_private;
3270 3253  
3271 3254          mutex_enter(&buf->b_evict_lock);
3272 3255          hdr = buf->b_hdr;
3273 3256          if (hdr == NULL) {
3274 3257                  /*
3275 3258                   * We are in arc_do_user_evicts().
3276 3259                   */
3277 3260                  ASSERT(buf->b_data == NULL);
3278 3261                  mutex_exit(&buf->b_evict_lock);
3279 3262                  return (B_FALSE);
3280 3263          } else if (buf->b_data == NULL) {
3281 3264                  /*
3282 3265                   * We are on the eviction list; process this buffer now
3283 3266                   * but let arc_do_user_evicts() do the reaping.
3284 3267                   */
3285 3268                  buf->b_efunc = NULL;
3286 3269                  mutex_exit(&buf->b_evict_lock);
3287 3270                  VERIFY0(efunc(private));
3288 3271                  return (B_TRUE);
3289 3272          }
3290 3273          hash_lock = HDR_LOCK(hdr);
3291 3274          mutex_enter(hash_lock);
3292 3275          hdr = buf->b_hdr;
3293 3276          ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3294 3277  
3295 3278          ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt);
3296 3279          ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
3297 3280  
3298 3281          buf->b_efunc = NULL;
3299 3282          buf->b_private = NULL;
3300 3283  
3301 3284          if (hdr->b_datacnt > 1) {
3302 3285                  mutex_exit(&buf->b_evict_lock);
3303 3286                  arc_buf_destroy(buf, FALSE, TRUE);
3304 3287          } else {
3305 3288                  ASSERT(buf == hdr->b_buf);
3306 3289                  hdr->b_flags |= ARC_BUF_AVAILABLE;
3307 3290                  mutex_exit(&buf->b_evict_lock);
3308 3291          }
3309 3292  
3310 3293          mutex_exit(hash_lock);
3311 3294          VERIFY0(efunc(private));
3312 3295          return (B_TRUE);
3313 3296  }
3314 3297  
3315 3298  /*
3316 3299   * Release this buffer from the cache, making it an anonymous buffer.  This
3317 3300   * must be done after a read and prior to modifying the buffer contents.
3318 3301   * If the buffer has more than one reference, we must make
3319 3302   * a new hdr for the buffer.
3320 3303   */
3321 3304  void
3322 3305  arc_release(arc_buf_t *buf, void *tag)
3323 3306  {
3324 3307          arc_buf_hdr_t *hdr;
3325 3308          kmutex_t *hash_lock = NULL;
3326 3309          l2arc_buf_hdr_t *l2hdr;
3327 3310          uint64_t buf_size;
3328 3311  
3329 3312          /*
3330 3313           * It would be nice to assert that if it's DMU metadata (level >
3331 3314           * 0 || it's the dnode file), then it must be syncing context.
3332 3315           * But we don't know that information at this level.
3333 3316           */
3334 3317  
3335 3318          mutex_enter(&buf->b_evict_lock);
3336 3319          hdr = buf->b_hdr;
3337 3320  
3338 3321          /* this buffer is not on any list */
3339 3322          ASSERT(refcount_count(&hdr->b_refcnt) > 0);
3340 3323  
3341 3324          if (hdr->b_state == arc_anon) {
3342 3325                  /* this buffer is already released */
3343 3326                  ASSERT(buf->b_efunc == NULL);
3344 3327          } else {
3345 3328                  hash_lock = HDR_LOCK(hdr);
3346 3329                  mutex_enter(hash_lock);
3347 3330                  hdr = buf->b_hdr;
3348 3331                  ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3349 3332          }
3350 3333  
3351 3334          l2hdr = hdr->b_l2hdr;
3352 3335          if (l2hdr) {
3353 3336                  mutex_enter(&l2arc_buflist_mtx);
3354 3337                  hdr->b_l2hdr = NULL;
3355 3338                  list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
3356 3339          }
3357 3340          buf_size = hdr->b_size;
3358 3341  
3359 3342          /*
3360 3343           * Do we have more than one buf?
3361 3344           */
3362 3345          if (hdr->b_datacnt > 1) {
3363 3346                  arc_buf_hdr_t *nhdr;
3364 3347                  arc_buf_t **bufp;
3365 3348                  uint64_t blksz = hdr->b_size;
3366 3349                  uint64_t spa = hdr->b_spa;
3367 3350                  arc_buf_contents_t type = hdr->b_type;
3368 3351                  uint32_t flags = hdr->b_flags;
3369 3352  
3370 3353                  ASSERT(hdr->b_buf != buf || buf->b_next != NULL);
3371 3354                  /*
3372 3355                   * Pull the data off of this hdr and attach it to
3373 3356                   * a new anonymous hdr.
3374 3357                   */
3375 3358                  (void) remove_reference(hdr, hash_lock, tag);
3376 3359                  bufp = &hdr->b_buf;
3377 3360                  while (*bufp != buf)
3378 3361                          bufp = &(*bufp)->b_next;
3379 3362                  *bufp = buf->b_next;
3380 3363                  buf->b_next = NULL;
3381 3364  
3382 3365                  ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size);
3383 3366                  atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size);
3384 3367                  if (refcount_is_zero(&hdr->b_refcnt)) {
3385 3368                          uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type];
3386 3369                          ASSERT3U(*size, >=, hdr->b_size);
3387 3370                          atomic_add_64(size, -hdr->b_size);
3388 3371                  }
3389 3372  
3390 3373                  /*
3391 3374                   * We're releasing a duplicate user data buffer, update
3392 3375                   * our statistics accordingly.
3393 3376                   */
3394 3377                  if (hdr->b_type == ARC_BUFC_DATA) {
3395 3378                          ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
3396 3379                          ARCSTAT_INCR(arcstat_duplicate_buffers_size,
3397 3380                              -hdr->b_size);
3398 3381                  }
3399 3382                  hdr->b_datacnt -= 1;
3400 3383                  arc_cksum_verify(buf);
3401 3384                  arc_buf_unwatch(buf);
3402 3385  
3403 3386                  mutex_exit(hash_lock);
3404 3387  
3405 3388                  nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
3406 3389                  nhdr->b_size = blksz;
3407 3390                  nhdr->b_spa = spa;
3408 3391                  nhdr->b_type = type;
3409 3392                  nhdr->b_buf = buf;
3410 3393                  nhdr->b_state = arc_anon;
3411 3394                  nhdr->b_arc_access = 0;
3412 3395                  nhdr->b_flags = flags & ARC_L2_WRITING;
3413 3396                  nhdr->b_l2hdr = NULL;
3414 3397                  nhdr->b_datacnt = 1;
3415 3398                  nhdr->b_freeze_cksum = NULL;
3416 3399                  (void) refcount_add(&nhdr->b_refcnt, tag);
3417 3400                  buf->b_hdr = nhdr;
3418 3401                  mutex_exit(&buf->b_evict_lock);
3419 3402                  atomic_add_64(&arc_anon->arcs_size, blksz);
3420 3403          } else {
3421 3404                  mutex_exit(&buf->b_evict_lock);
3422 3405                  ASSERT(refcount_count(&hdr->b_refcnt) == 1);
3423 3406                  ASSERT(!list_link_active(&hdr->b_arc_node));
3424 3407                  ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3425 3408                  if (hdr->b_state != arc_anon)
3426 3409                          arc_change_state(arc_anon, hdr, hash_lock);
3427 3410                  hdr->b_arc_access = 0;
3428 3411                  if (hash_lock)
3429 3412                          mutex_exit(hash_lock);
3430 3413  
3431 3414                  buf_discard_identity(hdr);
3432 3415                  arc_buf_thaw(buf);
3433 3416          }
3434 3417          buf->b_efunc = NULL;
3435 3418          buf->b_private = NULL;
3436 3419  
3437 3420          if (l2hdr) {
3438 3421                  ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize);
3439 3422                  vdev_space_update(l2hdr->b_dev->l2ad_vdev,
3440 3423                      -l2hdr->b_asize, 0, 0);
3441 3424                  kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
3442 3425                  ARCSTAT_INCR(arcstat_l2_size, -buf_size);
3443 3426                  mutex_exit(&l2arc_buflist_mtx);
3444 3427          }
3445 3428  }
3446 3429  
3447 3430  int
3448 3431  arc_released(arc_buf_t *buf)
3449 3432  {
3450 3433          int released;
3451 3434  
3452 3435          mutex_enter(&buf->b_evict_lock);
3453 3436          released = (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon);
3454 3437          mutex_exit(&buf->b_evict_lock);
3455 3438          return (released);
3456 3439  }
3457 3440  
3458 3441  #ifdef ZFS_DEBUG
3459 3442  int
3460 3443  arc_referenced(arc_buf_t *buf)
3461 3444  {
3462 3445          int referenced;
3463 3446  
3464 3447          mutex_enter(&buf->b_evict_lock);
3465 3448          referenced = (refcount_count(&buf->b_hdr->b_refcnt));
3466 3449          mutex_exit(&buf->b_evict_lock);
3467 3450          return (referenced);
3468 3451  }
3469 3452  #endif
3470 3453  
3471 3454  static void
3472 3455  arc_write_ready(zio_t *zio)
3473 3456  {
3474 3457          arc_write_callback_t *callback = zio->io_private;
3475 3458          arc_buf_t *buf = callback->awcb_buf;
3476 3459          arc_buf_hdr_t *hdr = buf->b_hdr;
3477 3460  
3478 3461          ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt));
3479 3462          callback->awcb_ready(zio, buf, callback->awcb_private);
3480 3463  
3481 3464          /*
3482 3465           * If the IO is already in progress, then this is a re-write
3483 3466           * attempt, so we need to thaw and re-compute the cksum.
3484 3467           * It is the responsibility of the callback to handle the
3485 3468           * accounting for any re-write attempt.
3486 3469           */
3487 3470          if (HDR_IO_IN_PROGRESS(hdr)) {
3488 3471                  mutex_enter(&hdr->b_freeze_lock);
3489 3472                  if (hdr->b_freeze_cksum != NULL) {
3490 3473                          kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
3491 3474                          hdr->b_freeze_cksum = NULL;
3492 3475                  }
3493 3476                  mutex_exit(&hdr->b_freeze_lock);
3494 3477          }
3495 3478          arc_cksum_compute(buf, B_FALSE);
3496 3479          hdr->b_flags |= ARC_IO_IN_PROGRESS;
3497 3480  }
3498 3481  
3499 3482  /*
3500 3483   * The SPA calls this callback for each physical write that happens on behalf
3501 3484   * of a logical write.  See the comment in dbuf_write_physdone() for details.
3502 3485   */
3503 3486  static void
3504 3487  arc_write_physdone(zio_t *zio)
3505 3488  {
3506 3489          arc_write_callback_t *cb = zio->io_private;
3507 3490          if (cb->awcb_physdone != NULL)
3508 3491                  cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
3509 3492  }
3510 3493  
3511 3494  static void
3512 3495  arc_write_done(zio_t *zio)
3513 3496  {
3514 3497          arc_write_callback_t *callback = zio->io_private;
3515 3498          arc_buf_t *buf = callback->awcb_buf;
3516 3499          arc_buf_hdr_t *hdr = buf->b_hdr;
3517 3500  
3518 3501          ASSERT(hdr->b_acb == NULL);
3519 3502  
3520 3503          if (zio->io_error == 0) {
3521 3504                  if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
3522 3505                          buf_discard_identity(hdr);
3523 3506                  } else {
3524 3507                          hdr->b_dva = *BP_IDENTITY(zio->io_bp);
3525 3508                          hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
3526 3509                          hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0];
3527 3510                  }
3528 3511          } else {
3529 3512                  ASSERT(BUF_EMPTY(hdr));
3530 3513          }
3531 3514  
3532 3515          /*
3533 3516           * If the block to be written was all-zero or compressed enough to be
3534 3517           * embedded in the BP, no write was performed so there will be no
3535 3518           * dva/birth/checksum.  The buffer must therefore remain anonymous
3536 3519           * (and uncached).
3537 3520           */
3538 3521          if (!BUF_EMPTY(hdr)) {
3539 3522                  arc_buf_hdr_t *exists;
3540 3523                  kmutex_t *hash_lock;
3541 3524  
3542 3525                  ASSERT(zio->io_error == 0);
3543 3526  
3544 3527                  arc_cksum_verify(buf);
3545 3528  
3546 3529                  exists = buf_hash_insert(hdr, &hash_lock);
3547 3530                  if (exists) {
3548 3531                          /*
3549 3532                           * This can only happen if we overwrite for
3550 3533                           * sync-to-convergence, because we remove
3551 3534                           * buffers from the hash table when we arc_free().
3552 3535                           */
3553 3536                          if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
3554 3537                                  if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
3555 3538                                          panic("bad overwrite, hdr=%p exists=%p",
3556 3539                                              (void *)hdr, (void *)exists);
3557 3540                                  ASSERT(refcount_is_zero(&exists->b_refcnt));
3558 3541                                  arc_change_state(arc_anon, exists, hash_lock);
3559 3542                                  mutex_exit(hash_lock);
3560 3543                                  arc_hdr_destroy(exists);
3561 3544                                  exists = buf_hash_insert(hdr, &hash_lock);
3562 3545                                  ASSERT3P(exists, ==, NULL);
3563 3546                          } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
3564 3547                                  /* nopwrite */
3565 3548                                  ASSERT(zio->io_prop.zp_nopwrite);
3566 3549                                  if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
3567 3550                                          panic("bad nopwrite, hdr=%p exists=%p",
3568 3551                                              (void *)hdr, (void *)exists);
3569 3552                          } else {
3570 3553                                  /* Dedup */
3571 3554                                  ASSERT(hdr->b_datacnt == 1);
3572 3555                                  ASSERT(hdr->b_state == arc_anon);
3573 3556                                  ASSERT(BP_GET_DEDUP(zio->io_bp));
3574 3557                                  ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
3575 3558                          }
3576 3559                  }
3577 3560                  hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3578 3561                  /* if it's not anon, we are doing a scrub */
3579 3562                  if (!exists && hdr->b_state == arc_anon)
3580 3563                          arc_access(hdr, hash_lock);
3581 3564                  mutex_exit(hash_lock);
3582 3565          } else {
3583 3566                  hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3584 3567          }
3585 3568  
3586 3569          ASSERT(!refcount_is_zero(&hdr->b_refcnt));
3587 3570          callback->awcb_done(zio, buf, callback->awcb_private);
3588 3571  
3589 3572          kmem_free(callback, sizeof (arc_write_callback_t));
3590 3573  }
3591 3574  
3592 3575  zio_t *
3593 3576  arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
3594 3577      blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, boolean_t l2arc_compress,
3595 3578      const zio_prop_t *zp, arc_done_func_t *ready, arc_done_func_t *physdone,
3596 3579      arc_done_func_t *done, void *private, zio_priority_t priority,
3597 3580      int zio_flags, const zbookmark_phys_t *zb)
3598 3581  {
3599 3582          arc_buf_hdr_t *hdr = buf->b_hdr;
3600 3583          arc_write_callback_t *callback;
3601 3584          zio_t *zio;
3602 3585  
3603 3586          ASSERT(ready != NULL);
3604 3587          ASSERT(done != NULL);
3605 3588          ASSERT(!HDR_IO_ERROR(hdr));
3606 3589          ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0);
3607 3590          ASSERT(hdr->b_acb == NULL);
3608 3591          if (l2arc)
3609 3592                  hdr->b_flags |= ARC_L2CACHE;
3610 3593          if (l2arc_compress)
3611 3594                  hdr->b_flags |= ARC_L2COMPRESS;
3612 3595          callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
3613 3596          callback->awcb_ready = ready;
3614 3597          callback->awcb_physdone = physdone;
3615 3598          callback->awcb_done = done;
3616 3599          callback->awcb_private = private;
3617 3600          callback->awcb_buf = buf;
3618 3601  
3619 3602          zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp,
3620 3603              arc_write_ready, arc_write_physdone, arc_write_done, callback,
3621 3604              priority, zio_flags, zb);
3622 3605  
3623 3606          return (zio);
3624 3607  }
3625 3608  
3626 3609  static int
3627 3610  arc_memory_throttle(uint64_t reserve, uint64_t txg)
3628 3611  {
3629 3612  #ifdef _KERNEL
3630 3613          uint64_t available_memory = ptob(freemem);
3631 3614          static uint64_t page_load = 0;
3632 3615          static uint64_t last_txg = 0;
3633 3616  
3634 3617  #if defined(__i386)
3635 3618          available_memory =
3636 3619              MIN(available_memory, vmem_size(heap_arena, VMEM_FREE));
3637 3620  #endif
3638 3621  
3639 3622          if (freemem > physmem * arc_lotsfree_percent / 100)
3640 3623                  return (0);
3641 3624  
3642 3625          if (txg > last_txg) {
3643 3626                  last_txg = txg;
3644 3627                  page_load = 0;
3645 3628          }
3646 3629          /*
3647 3630           * If we are in pageout, we know that memory is already tight,
3648 3631           * the arc is already going to be evicting, so we just want to
3649 3632           * continue to let page writes occur as quickly as possible.
3650 3633           */
3651 3634          if (curproc == proc_pageout) {
3652 3635                  if (page_load > MAX(ptob(minfree), available_memory) / 4)
3653 3636                          return (SET_ERROR(ERESTART));
3654 3637                  /* Note: reserve is inflated, so we deflate */
3655 3638                  page_load += reserve / 8;
3656 3639                  return (0);
3657 3640          } else if (page_load > 0 && arc_reclaim_needed()) {
3658 3641                  /* memory is low, delay before restarting */
3659 3642                  ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
3660 3643                  return (SET_ERROR(EAGAIN));
3661 3644          }
3662 3645          page_load = 0;
3663 3646  #endif
3664 3647          return (0);
3665 3648  }
3666 3649  
3667 3650  void
3668 3651  arc_tempreserve_clear(uint64_t reserve)
3669 3652  {
3670 3653          atomic_add_64(&arc_tempreserve, -reserve);
3671 3654          ASSERT((int64_t)arc_tempreserve >= 0);
3672 3655  }
3673 3656  
3674 3657  int
3675 3658  arc_tempreserve_space(uint64_t reserve, uint64_t txg)
3676 3659  {
3677 3660          int error;
3678 3661          uint64_t anon_size;
3679 3662  
3680 3663          if (reserve > arc_c/4 && !arc_no_grow)
3681 3664                  arc_c = MIN(arc_c_max, reserve * 4);
3682 3665          if (reserve > arc_c)
3683 3666                  return (SET_ERROR(ENOMEM));
3684 3667  
3685 3668          /*
3686 3669           * Don't count loaned bufs as in flight dirty data to prevent long
3687 3670           * network delays from blocking transactions that are ready to be
3688 3671           * assigned to a txg.
3689 3672           */
3690 3673          anon_size = MAX((int64_t)(arc_anon->arcs_size - arc_loaned_bytes), 0);
3691 3674  
3692 3675          /*
3693 3676           * Writes will, almost always, require additional memory allocations
3694 3677           * in order to compress/encrypt/etc the data.  We therefore need to
3695 3678           * make sure that there is sufficient available memory for this.
3696 3679           */
3697 3680          error = arc_memory_throttle(reserve, txg);
3698 3681          if (error != 0)
3699 3682                  return (error);
3700 3683  
3701 3684          /*
3702 3685           * Throttle writes when the amount of dirty data in the cache
3703 3686           * gets too large.  We try to keep the cache less than half full
3704 3687           * of dirty blocks so that our sync times don't grow too large.
3705 3688           * Note: if two requests come in concurrently, we might let them
3706 3689           * both succeed, when one of them should fail.  Not a huge deal.
3707 3690           */
3708 3691  
3709 3692          if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
3710 3693              anon_size > arc_c / 4) {
3711 3694                  dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
3712 3695                      "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
3713 3696                      arc_tempreserve>>10,
3714 3697                      arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
3715 3698                      arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
3716 3699                      reserve>>10, arc_c>>10);
3717 3700                  return (SET_ERROR(ERESTART));
3718 3701          }
3719 3702          atomic_add_64(&arc_tempreserve, reserve);
3720 3703          return (0);
3721 3704  }
3722 3705  
3723 3706  void
3724 3707  arc_init(void)
3725 3708  {
3726 3709          mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL);
3727 3710          cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL);
3728 3711  
3729 3712          /* Convert seconds to clock ticks */
3730 3713          arc_min_prefetch_lifespan = 1 * hz;
3731 3714  
3732 3715          /* Start out with 1/8 of all memory */
3733 3716          arc_c = physmem * PAGESIZE / 8;
3734 3717  
3735 3718  #ifdef _KERNEL
3736 3719          /*
3737 3720           * On architectures where the physical memory can be larger
3738 3721           * than the addressable space (intel in 32-bit mode), we may
3739 3722           * need to limit the cache to 1/8 of VM size.
3740 3723           */
3741 3724          arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
3742 3725  #endif
3743 3726  
3744 3727          /* set min cache to 1/32 of all memory, or 64MB, whichever is more */
3745 3728          arc_c_min = MAX(arc_c / 4, 64<<20);
3746 3729          /* set max to 3/4 of all memory, or all but 1GB, whichever is more */
3747 3730          if (arc_c * 8 >= 1<<30)
3748 3731                  arc_c_max = (arc_c * 8) - (1<<30);
3749 3732          else
3750 3733                  arc_c_max = arc_c_min;
3751 3734          arc_c_max = MAX(arc_c * 6, arc_c_max);
3752 3735  
3753 3736          /*
3754 3737           * Allow the tunables to override our calculations if they are
3755 3738           * reasonable (ie. over 64MB)
3756 3739           */
3757 3740          if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE)
3758 3741                  arc_c_max = zfs_arc_max;
3759 3742          if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc_c_max)
3760 3743                  arc_c_min = zfs_arc_min;
3761 3744  
3762 3745          arc_c = arc_c_max;
3763 3746          arc_p = (arc_c >> 1);
3764 3747  
3765 3748          /* limit meta-data to 1/4 of the arc capacity */
3766 3749          arc_meta_limit = arc_c_max / 4;
3767 3750  
3768 3751          /* Allow the tunable to override if it is reasonable */
3769 3752          if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
3770 3753                  arc_meta_limit = zfs_arc_meta_limit;
3771 3754  
3772 3755          if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
3773 3756                  arc_c_min = arc_meta_limit / 2;
3774 3757  
3775 3758          if (zfs_arc_grow_retry > 0)
3776 3759                  arc_grow_retry = zfs_arc_grow_retry;
3777 3760  
3778 3761          if (zfs_arc_shrink_shift > 0)
3779 3762                  arc_shrink_shift = zfs_arc_shrink_shift;
3780 3763  
3781 3764          if (zfs_arc_p_min_shift > 0)
3782 3765                  arc_p_min_shift = zfs_arc_p_min_shift;
3783 3766  
3784 3767          /* if kmem_flags are set, lets try to use less memory */
3785 3768          if (kmem_debugging())
3786 3769                  arc_c = arc_c / 2;
3787 3770          if (arc_c < arc_c_min)
3788 3771                  arc_c = arc_c_min;
3789 3772  
3790 3773          arc_anon = &ARC_anon;
3791 3774          arc_mru = &ARC_mru;
3792 3775          arc_mru_ghost = &ARC_mru_ghost;
3793 3776          arc_mfu = &ARC_mfu;
3794 3777          arc_mfu_ghost = &ARC_mfu_ghost;
3795 3778          arc_l2c_only = &ARC_l2c_only;
3796 3779          arc_size = 0;
3797 3780  
3798 3781          mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3799 3782          mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3800 3783          mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3801 3784          mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3802 3785          mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3803 3786          mutex_init(&arc_l2c_only->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3804 3787  
3805 3788          list_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
3806 3789              sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3807 3790          list_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
3808 3791              sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3809 3792          list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
3810 3793              sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3811 3794          list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
3812 3795              sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3813 3796          list_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
3814 3797              sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3815 3798          list_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
3816 3799              sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3817 3800          list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
3818 3801              sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3819 3802          list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
3820 3803              sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3821 3804          list_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
3822 3805              sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3823 3806          list_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
3824 3807              sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3825 3808  
3826 3809          buf_init();
3827 3810  
3828 3811          arc_thread_exit = 0;
3829 3812          arc_eviction_list = NULL;
3830 3813          mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL);
3831 3814          bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
3832 3815  
3833 3816          arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
3834 3817              sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
3835 3818  
3836 3819          if (arc_ksp != NULL) {
3837 3820                  arc_ksp->ks_data = &arc_stats;
3838 3821                  kstat_install(arc_ksp);
3839 3822          }
3840 3823  
3841 3824          (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
3842 3825              TS_RUN, minclsyspri);
3843 3826  
3844 3827          arc_dead = FALSE;
3845 3828          arc_warm = B_FALSE;
3846 3829  
3847 3830          /*
3848 3831           * Calculate maximum amount of dirty data per pool.
3849 3832           *
3850 3833           * If it has been set by /etc/system, take that.
3851 3834           * Otherwise, use a percentage of physical memory defined by
3852 3835           * zfs_dirty_data_max_percent (default 10%) with a cap at
3853 3836           * zfs_dirty_data_max_max (default 4GB).
3854 3837           */
3855 3838          if (zfs_dirty_data_max == 0) {
3856 3839                  zfs_dirty_data_max = physmem * PAGESIZE *
3857 3840                      zfs_dirty_data_max_percent / 100;
3858 3841                  zfs_dirty_data_max = MIN(zfs_dirty_data_max,
3859 3842                      zfs_dirty_data_max_max);
3860 3843          }
3861 3844  }
3862 3845  
3863 3846  void
3864 3847  arc_fini(void)
3865 3848  {
3866 3849          mutex_enter(&arc_reclaim_thr_lock);
3867 3850          arc_thread_exit = 1;
3868 3851          while (arc_thread_exit != 0)
3869 3852                  cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock);
3870 3853          mutex_exit(&arc_reclaim_thr_lock);
3871 3854  
3872 3855          arc_flush(NULL);
3873 3856  
3874 3857          arc_dead = TRUE;
3875 3858  
3876 3859          if (arc_ksp != NULL) {
3877 3860                  kstat_delete(arc_ksp);
3878 3861                  arc_ksp = NULL;
3879 3862          }
3880 3863  
3881 3864          mutex_destroy(&arc_eviction_mtx);
3882 3865          mutex_destroy(&arc_reclaim_thr_lock);
3883 3866          cv_destroy(&arc_reclaim_thr_cv);
3884 3867  
3885 3868          list_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
3886 3869          list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
3887 3870          list_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
3888 3871          list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
3889 3872          list_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
3890 3873          list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
3891 3874          list_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
3892 3875          list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
3893 3876  
3894 3877          mutex_destroy(&arc_anon->arcs_mtx);
3895 3878          mutex_destroy(&arc_mru->arcs_mtx);
3896 3879          mutex_destroy(&arc_mru_ghost->arcs_mtx);
3897 3880          mutex_destroy(&arc_mfu->arcs_mtx);
3898 3881          mutex_destroy(&arc_mfu_ghost->arcs_mtx);
3899 3882          mutex_destroy(&arc_l2c_only->arcs_mtx);
3900 3883  
3901 3884          buf_fini();
3902 3885  
3903 3886          ASSERT(arc_loaned_bytes == 0);
3904 3887  }
3905 3888  
3906 3889  /*
3907 3890   * Level 2 ARC
3908 3891   *
3909 3892   * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
3910 3893   * It uses dedicated storage devices to hold cached data, which are populated
3911 3894   * using large infrequent writes.  The main role of this cache is to boost
3912 3895   * the performance of random read workloads.  The intended L2ARC devices
3913 3896   * include short-stroked disks, solid state disks, and other media with
3914 3897   * substantially faster read latency than disk.
3915 3898   *
3916 3899   *                 +-----------------------+
3917 3900   *                 |         ARC           |
3918 3901   *                 +-----------------------+
3919 3902   *                    |         ^     ^
3920 3903   *                    |         |     |
3921 3904   *      l2arc_feed_thread()    arc_read()
3922 3905   *                    |         |     |
3923 3906   *                    |  l2arc read   |
3924 3907   *                    V         |     |
3925 3908   *               +---------------+    |
3926 3909   *               |     L2ARC     |    |
3927 3910   *               +---------------+    |
3928 3911   *                   |    ^           |
3929 3912   *          l2arc_write() |           |
3930 3913   *                   |    |           |
3931 3914   *                   V    |           |
3932 3915   *                 +-------+      +-------+
3933 3916   *                 | vdev  |      | vdev  |
3934 3917   *                 | cache |      | cache |
3935 3918   *                 +-------+      +-------+
3936 3919   *                 +=========+     .-----.
3937 3920   *                 :  L2ARC  :    |-_____-|
3938 3921   *                 : devices :    | Disks |
3939 3922   *                 +=========+    `-_____-'
3940 3923   *
3941 3924   * Read requests are satisfied from the following sources, in order:
3942 3925   *
3943 3926   *      1) ARC
3944 3927   *      2) vdev cache of L2ARC devices
3945 3928   *      3) L2ARC devices
3946 3929   *      4) vdev cache of disks
3947 3930   *      5) disks
3948 3931   *
3949 3932   * Some L2ARC device types exhibit extremely slow write performance.
3950 3933   * To accommodate for this there are some significant differences between
3951 3934   * the L2ARC and traditional cache design:
3952 3935   *
3953 3936   * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
3954 3937   * the ARC behave as usual, freeing buffers and placing headers on ghost
3955 3938   * lists.  The ARC does not send buffers to the L2ARC during eviction as
3956 3939   * this would add inflated write latencies for all ARC memory pressure.
3957 3940   *
3958 3941   * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
3959 3942   * It does this by periodically scanning buffers from the eviction-end of
3960 3943   * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
3961 3944   * not already there. It scans until a headroom of buffers is satisfied,
3962 3945   * which itself is a buffer for ARC eviction. If a compressible buffer is
3963 3946   * found during scanning and selected for writing to an L2ARC device, we
3964 3947   * temporarily boost scanning headroom during the next scan cycle to make
3965 3948   * sure we adapt to compression effects (which might significantly reduce
3966 3949   * the data volume we write to L2ARC). The thread that does this is
3967 3950   * l2arc_feed_thread(), illustrated below; example sizes are included to
3968 3951   * provide a better sense of ratio than this diagram:
3969 3952   *
3970 3953   *             head -->                        tail
3971 3954   *              +---------------------+----------+
3972 3955   *      ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
3973 3956   *              +---------------------+----------+   |   o L2ARC eligible
3974 3957   *      ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
3975 3958   *              +---------------------+----------+   |
3976 3959   *                   15.9 Gbytes      ^ 32 Mbytes    |
3977 3960   *                                 headroom          |
3978 3961   *                                            l2arc_feed_thread()
3979 3962   *                                                   |
3980 3963   *                       l2arc write hand <--[oooo]--'
3981 3964   *                               |           8 Mbyte
3982 3965   *                               |          write max
3983 3966   *                               V
3984 3967   *                +==============================+
3985 3968   *      L2ARC dev |####|#|###|###|    |####| ... |
3986 3969   *                +==============================+
3987 3970   *                           32 Gbytes
3988 3971   *
3989 3972   * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
3990 3973   * evicted, then the L2ARC has cached a buffer much sooner than it probably
3991 3974   * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
3992 3975   * safe to say that this is an uncommon case, since buffers at the end of
3993 3976   * the ARC lists have moved there due to inactivity.
3994 3977   *
3995 3978   * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
3996 3979   * then the L2ARC simply misses copying some buffers.  This serves as a
3997 3980   * pressure valve to prevent heavy read workloads from both stalling the ARC
3998 3981   * with waits and clogging the L2ARC with writes.  This also helps prevent
3999 3982   * the potential for the L2ARC to churn if it attempts to cache content too
4000 3983   * quickly, such as during backups of the entire pool.
4001 3984   *
4002 3985   * 5. After system boot and before the ARC has filled main memory, there are
4003 3986   * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
4004 3987   * lists can remain mostly static.  Instead of searching from tail of these
4005 3988   * lists as pictured, the l2arc_feed_thread() will search from the list heads
4006 3989   * for eligible buffers, greatly increasing its chance of finding them.
4007 3990   *
4008 3991   * The L2ARC device write speed is also boosted during this time so that
4009 3992   * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
4010 3993   * there are no L2ARC reads, and no fear of degrading read performance
4011 3994   * through increased writes.
4012 3995   *
4013 3996   * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
4014 3997   * the vdev queue can aggregate them into larger and fewer writes.  Each
4015 3998   * device is written to in a rotor fashion, sweeping writes through
4016 3999   * available space then repeating.
4017 4000   *
4018 4001   * 7. The L2ARC does not store dirty content.  It never needs to flush
4019 4002   * write buffers back to disk based storage.
4020 4003   *
4021 4004   * 8. If an ARC buffer is written (and dirtied) which also exists in the
4022 4005   * L2ARC, the now stale L2ARC buffer is immediately dropped.
4023 4006   *
4024 4007   * The performance of the L2ARC can be tweaked by a number of tunables, which
4025 4008   * may be necessary for different workloads:
4026 4009   *
4027 4010   *      l2arc_write_max         max write bytes per interval
4028 4011   *      l2arc_write_boost       extra write bytes during device warmup
4029 4012   *      l2arc_noprefetch        skip caching prefetched buffers
4030 4013   *      l2arc_headroom          number of max device writes to precache
4031 4014   *      l2arc_headroom_boost    when we find compressed buffers during ARC
4032 4015   *                              scanning, we multiply headroom by this
4033 4016   *                              percentage factor for the next scan cycle,
4034 4017   *                              since more compressed buffers are likely to
4035 4018   *                              be present
4036 4019   *      l2arc_feed_secs         seconds between L2ARC writing
4037 4020   *
4038 4021   * Tunables may be removed or added as future performance improvements are
4039 4022   * integrated, and also may become zpool properties.
4040 4023   *
4041 4024   * There are three key functions that control how the L2ARC warms up:
4042 4025   *
4043 4026   *      l2arc_write_eligible()  check if a buffer is eligible to cache
4044 4027   *      l2arc_write_size()      calculate how much to write
4045 4028   *      l2arc_write_interval()  calculate sleep delay between writes
4046 4029   *
4047 4030   * These three functions determine what to write, how much, and how quickly
4048 4031   * to send writes.
4049 4032   */
4050 4033  
4051 4034  static boolean_t
4052 4035  l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab)
4053 4036  {
4054 4037          /*
4055 4038           * A buffer is *not* eligible for the L2ARC if it:
4056 4039           * 1. belongs to a different spa.
4057 4040           * 2. is already cached on the L2ARC.
4058 4041           * 3. has an I/O in progress (it may be an incomplete read).
4059 4042           * 4. is flagged not eligible (zfs property).
4060 4043           */
4061 4044          if (ab->b_spa != spa_guid || ab->b_l2hdr != NULL ||
4062 4045              HDR_IO_IN_PROGRESS(ab) || !HDR_L2CACHE(ab))
4063 4046                  return (B_FALSE);
4064 4047  
4065 4048          return (B_TRUE);
4066 4049  }
4067 4050  
4068 4051  static uint64_t
4069 4052  l2arc_write_size(void)
4070 4053  {
4071 4054          uint64_t size;
4072 4055  
4073 4056          /*
4074 4057           * Make sure our globals have meaningful values in case the user
4075 4058           * altered them.
4076 4059           */
4077 4060          size = l2arc_write_max;
4078 4061          if (size == 0) {
4079 4062                  cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
4080 4063                      "be greater than zero, resetting it to the default (%d)",
4081 4064                      L2ARC_WRITE_SIZE);
4082 4065                  size = l2arc_write_max = L2ARC_WRITE_SIZE;
4083 4066          }
4084 4067  
4085 4068          if (arc_warm == B_FALSE)
4086 4069                  size += l2arc_write_boost;
4087 4070  
4088 4071          return (size);
4089 4072  
4090 4073  }
4091 4074  
4092 4075  static clock_t
4093 4076  l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
4094 4077  {
4095 4078          clock_t interval, next, now;
4096 4079  
4097 4080          /*
4098 4081           * If the ARC lists are busy, increase our write rate; if the
4099 4082           * lists are stale, idle back.  This is achieved by checking
4100 4083           * how much we previously wrote - if it was more than half of
4101 4084           * what we wanted, schedule the next write much sooner.
4102 4085           */
4103 4086          if (l2arc_feed_again && wrote > (wanted / 2))
4104 4087                  interval = (hz * l2arc_feed_min_ms) / 1000;
4105 4088          else
4106 4089                  interval = hz * l2arc_feed_secs;
4107 4090  
4108 4091          now = ddi_get_lbolt();
4109 4092          next = MAX(now, MIN(now + interval, began + interval));
4110 4093  
4111 4094          return (next);
4112 4095  }
4113 4096  
4114 4097  static void
4115 4098  l2arc_hdr_stat_add(void)
4116 4099  {
4117 4100          ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE + L2HDR_SIZE);
4118 4101          ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE);
4119 4102  }
4120 4103  
4121 4104  static void
4122 4105  l2arc_hdr_stat_remove(void)
4123 4106  {
4124 4107          ARCSTAT_INCR(arcstat_l2_hdr_size, -(HDR_SIZE + L2HDR_SIZE));
4125 4108          ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE);
4126 4109  }
4127 4110  
4128 4111  /*
4129 4112   * Cycle through L2ARC devices.  This is how L2ARC load balances.
4130 4113   * If a device is returned, this also returns holding the spa config lock.
4131 4114   */
4132 4115  static l2arc_dev_t *
4133 4116  l2arc_dev_get_next(void)
4134 4117  {
4135 4118          l2arc_dev_t *first, *next = NULL;
4136 4119  
4137 4120          /*
4138 4121           * Lock out the removal of spas (spa_namespace_lock), then removal
4139 4122           * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
4140 4123           * both locks will be dropped and a spa config lock held instead.
4141 4124           */
4142 4125          mutex_enter(&spa_namespace_lock);
4143 4126          mutex_enter(&l2arc_dev_mtx);
4144 4127  
4145 4128          /* if there are no vdevs, there is nothing to do */
4146 4129          if (l2arc_ndev == 0)
4147 4130                  goto out;
4148 4131  
4149 4132          first = NULL;
4150 4133          next = l2arc_dev_last;
4151 4134          do {
4152 4135                  /* loop around the list looking for a non-faulted vdev */
4153 4136                  if (next == NULL) {
4154 4137                          next = list_head(l2arc_dev_list);
4155 4138                  } else {
4156 4139                          next = list_next(l2arc_dev_list, next);
4157 4140                          if (next == NULL)
4158 4141                                  next = list_head(l2arc_dev_list);
4159 4142                  }
4160 4143  
4161 4144                  /* if we have come back to the start, bail out */
4162 4145                  if (first == NULL)
4163 4146                          first = next;
4164 4147                  else if (next == first)
4165 4148                          break;
4166 4149  
4167 4150          } while (vdev_is_dead(next->l2ad_vdev));
4168 4151  
4169 4152          /* if we were unable to find any usable vdevs, return NULL */
4170 4153          if (vdev_is_dead(next->l2ad_vdev))
4171 4154                  next = NULL;
4172 4155  
4173 4156          l2arc_dev_last = next;
4174 4157  
4175 4158  out:
4176 4159          mutex_exit(&l2arc_dev_mtx);
4177 4160  
4178 4161          /*
4179 4162           * Grab the config lock to prevent the 'next' device from being
4180 4163           * removed while we are writing to it.
4181 4164           */
4182 4165          if (next != NULL)
4183 4166                  spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
4184 4167          mutex_exit(&spa_namespace_lock);
4185 4168  
4186 4169          return (next);
4187 4170  }
4188 4171  
4189 4172  /*
4190 4173   * Free buffers that were tagged for destruction.
4191 4174   */
4192 4175  static void
4193 4176  l2arc_do_free_on_write()
4194 4177  {
4195 4178          list_t *buflist;
4196 4179          l2arc_data_free_t *df, *df_prev;
4197 4180  
4198 4181          mutex_enter(&l2arc_free_on_write_mtx);
4199 4182          buflist = l2arc_free_on_write;
4200 4183  
4201 4184          for (df = list_tail(buflist); df; df = df_prev) {
4202 4185                  df_prev = list_prev(buflist, df);
4203 4186                  ASSERT(df->l2df_data != NULL);
4204 4187                  ASSERT(df->l2df_func != NULL);
4205 4188                  df->l2df_func(df->l2df_data, df->l2df_size);
4206 4189                  list_remove(buflist, df);
4207 4190                  kmem_free(df, sizeof (l2arc_data_free_t));
4208 4191          }
4209 4192  
4210 4193          mutex_exit(&l2arc_free_on_write_mtx);
4211 4194  }
4212 4195  
4213 4196  /*
4214 4197   * A write to a cache device has completed.  Update all headers to allow
4215 4198   * reads from these buffers to begin.
4216 4199   */
4217 4200  static void
4218 4201  l2arc_write_done(zio_t *zio)
4219 4202  {
4220 4203          l2arc_write_callback_t *cb;
4221 4204          l2arc_dev_t *dev;
4222 4205          list_t *buflist;
4223 4206          arc_buf_hdr_t *head, *ab, *ab_prev;
4224 4207          l2arc_buf_hdr_t *abl2;
4225 4208          kmutex_t *hash_lock;
4226 4209          int64_t bytes_dropped = 0;
4227 4210  
4228 4211          cb = zio->io_private;
4229 4212          ASSERT(cb != NULL);
4230 4213          dev = cb->l2wcb_dev;
4231 4214          ASSERT(dev != NULL);
4232 4215          head = cb->l2wcb_head;
4233 4216          ASSERT(head != NULL);
4234 4217          buflist = dev->l2ad_buflist;
4235 4218          ASSERT(buflist != NULL);
4236 4219          DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
4237 4220              l2arc_write_callback_t *, cb);
4238 4221  
4239 4222          if (zio->io_error != 0)
4240 4223                  ARCSTAT_BUMP(arcstat_l2_writes_error);
4241 4224  
4242 4225          mutex_enter(&l2arc_buflist_mtx);
4243 4226  
4244 4227          /*
4245 4228           * All writes completed, or an error was hit.
4246 4229           */
4247 4230          for (ab = list_prev(buflist, head); ab; ab = ab_prev) {
4248 4231                  ab_prev = list_prev(buflist, ab);
4249 4232                  abl2 = ab->b_l2hdr;
4250 4233  
4251 4234                  /*
4252 4235                   * Release the temporary compressed buffer as soon as possible.
4253 4236                   */
4254 4237                  if (abl2->b_compress != ZIO_COMPRESS_OFF)
4255 4238                          l2arc_release_cdata_buf(ab);
4256 4239  
4257 4240                  hash_lock = HDR_LOCK(ab);
4258 4241                  if (!mutex_tryenter(hash_lock)) {
4259 4242                          /*
4260 4243                           * This buffer misses out.  It may be in a stage
4261 4244                           * of eviction.  Its ARC_L2_WRITING flag will be
4262 4245                           * left set, denying reads to this buffer.
4263 4246                           */
4264 4247                          ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss);
4265 4248                          continue;
4266 4249                  }
4267 4250  
4268 4251                  if (zio->io_error != 0) {
4269 4252                          /*
4270 4253                           * Error - drop L2ARC entry.
4271 4254                           */
4272 4255                          list_remove(buflist, ab);
4273 4256                          ARCSTAT_INCR(arcstat_l2_asize, -abl2->b_asize);
4274 4257                          bytes_dropped += abl2->b_asize;
4275 4258                          ab->b_l2hdr = NULL;
4276 4259                          kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
4277 4260                          ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
4278 4261                  }
4279 4262  
4280 4263                  /*
4281 4264                   * Allow ARC to begin reads to this L2ARC entry.
4282 4265                   */
4283 4266                  ab->b_flags &= ~ARC_L2_WRITING;
4284 4267  
4285 4268                  mutex_exit(hash_lock);
4286 4269          }
4287 4270  
4288 4271          atomic_inc_64(&l2arc_writes_done);
4289 4272          list_remove(buflist, head);
4290 4273          kmem_cache_free(hdr_cache, head);
4291 4274          mutex_exit(&l2arc_buflist_mtx);
4292 4275  
4293 4276          vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
4294 4277  
4295 4278          l2arc_do_free_on_write();
4296 4279  
4297 4280          kmem_free(cb, sizeof (l2arc_write_callback_t));
4298 4281  }
4299 4282  
4300 4283  /*
4301 4284   * A read to a cache device completed.  Validate buffer contents before
4302 4285   * handing over to the regular ARC routines.
4303 4286   */
4304 4287  static void
4305 4288  l2arc_read_done(zio_t *zio)
4306 4289  {
4307 4290          l2arc_read_callback_t *cb;
4308 4291          arc_buf_hdr_t *hdr;
4309 4292          arc_buf_t *buf;
4310 4293          kmutex_t *hash_lock;
4311 4294          int equal;
4312 4295  
4313 4296          ASSERT(zio->io_vd != NULL);
4314 4297          ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
4315 4298  
4316 4299          spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
4317 4300  
4318 4301          cb = zio->io_private;
4319 4302          ASSERT(cb != NULL);
4320 4303          buf = cb->l2rcb_buf;
4321 4304          ASSERT(buf != NULL);
4322 4305  
4323 4306          hash_lock = HDR_LOCK(buf->b_hdr);
4324 4307          mutex_enter(hash_lock);
4325 4308          hdr = buf->b_hdr;
4326 4309          ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
4327 4310  
4328 4311          /*
4329 4312           * If the buffer was compressed, decompress it first.
4330 4313           */
4331 4314          if (cb->l2rcb_compress != ZIO_COMPRESS_OFF)
4332 4315                  l2arc_decompress_zio(zio, hdr, cb->l2rcb_compress);
4333 4316          ASSERT(zio->io_data != NULL);
4334 4317  
4335 4318          /*
4336 4319           * Check this survived the L2ARC journey.
4337 4320           */
4338 4321          equal = arc_cksum_equal(buf);
4339 4322          if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
4340 4323                  mutex_exit(hash_lock);
4341 4324                  zio->io_private = buf;
4342 4325                  zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */
4343 4326                  zio->io_bp = &zio->io_bp_copy;  /* XXX fix in L2ARC 2.0 */
4344 4327                  arc_read_done(zio);
4345 4328          } else {
4346 4329                  mutex_exit(hash_lock);
4347 4330                  /*
4348 4331                   * Buffer didn't survive caching.  Increment stats and
4349 4332                   * reissue to the original storage device.
4350 4333                   */
4351 4334                  if (zio->io_error != 0) {
4352 4335                          ARCSTAT_BUMP(arcstat_l2_io_error);
4353 4336                  } else {
4354 4337                          zio->io_error = SET_ERROR(EIO);
4355 4338                  }
4356 4339                  if (!equal)
4357 4340                          ARCSTAT_BUMP(arcstat_l2_cksum_bad);
4358 4341  
4359 4342                  /*
4360 4343                   * If there's no waiter, issue an async i/o to the primary
4361 4344                   * storage now.  If there *is* a waiter, the caller must
4362 4345                   * issue the i/o in a context where it's OK to block.
4363 4346                   */
4364 4347                  if (zio->io_waiter == NULL) {
4365 4348                          zio_t *pio = zio_unique_parent(zio);
4366 4349  
4367 4350                          ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
4368 4351  
4369 4352                          zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp,
4370 4353                              buf->b_data, zio->io_size, arc_read_done, buf,
4371 4354                              zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb));
4372 4355                  }
4373 4356          }
4374 4357  
4375 4358          kmem_free(cb, sizeof (l2arc_read_callback_t));
4376 4359  }
4377 4360  
4378 4361  /*
4379 4362   * This is the list priority from which the L2ARC will search for pages to
4380 4363   * cache.  This is used within loops (0..3) to cycle through lists in the
4381 4364   * desired order.  This order can have a significant effect on cache
4382 4365   * performance.
4383 4366   *
4384 4367   * Currently the metadata lists are hit first, MFU then MRU, followed by
4385 4368   * the data lists.  This function returns a locked list, and also returns
4386 4369   * the lock pointer.
4387 4370   */
4388 4371  static list_t *
4389 4372  l2arc_list_locked(int list_num, kmutex_t **lock)
4390 4373  {
4391 4374          list_t *list = NULL;
4392 4375  
4393 4376          ASSERT(list_num >= 0 && list_num <= 3);
4394 4377  
4395 4378          switch (list_num) {
4396 4379          case 0:
4397 4380                  list = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
4398 4381                  *lock = &arc_mfu->arcs_mtx;
4399 4382                  break;
4400 4383          case 1:
4401 4384                  list = &arc_mru->arcs_list[ARC_BUFC_METADATA];
4402 4385                  *lock = &arc_mru->arcs_mtx;
4403 4386                  break;
4404 4387          case 2:
4405 4388                  list = &arc_mfu->arcs_list[ARC_BUFC_DATA];
4406 4389                  *lock = &arc_mfu->arcs_mtx;
4407 4390                  break;
4408 4391          case 3:
4409 4392                  list = &arc_mru->arcs_list[ARC_BUFC_DATA];
4410 4393                  *lock = &arc_mru->arcs_mtx;
4411 4394                  break;
4412 4395          }
4413 4396  
4414 4397          ASSERT(!(MUTEX_HELD(*lock)));
4415 4398          mutex_enter(*lock);
4416 4399          return (list);
4417 4400  }
4418 4401  
4419 4402  /*
4420 4403   * Evict buffers from the device write hand to the distance specified in
4421 4404   * bytes.  This distance may span populated buffers, it may span nothing.
4422 4405   * This is clearing a region on the L2ARC device ready for writing.
4423 4406   * If the 'all' boolean is set, every buffer is evicted.
4424 4407   */
4425 4408  static void
4426 4409  l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
4427 4410  {
4428 4411          list_t *buflist;
4429 4412          l2arc_buf_hdr_t *abl2;
4430 4413          arc_buf_hdr_t *ab, *ab_prev;
4431 4414          kmutex_t *hash_lock;
4432 4415          uint64_t taddr;
4433 4416          int64_t bytes_evicted = 0;
4434 4417  
4435 4418          buflist = dev->l2ad_buflist;
4436 4419  
4437 4420          if (buflist == NULL)
4438 4421                  return;
4439 4422  
4440 4423          if (!all && dev->l2ad_first) {
4441 4424                  /*
4442 4425                   * This is the first sweep through the device.  There is
4443 4426                   * nothing to evict.
4444 4427                   */
4445 4428                  return;
4446 4429          }
4447 4430  
4448 4431          if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
4449 4432                  /*
4450 4433                   * When nearing the end of the device, evict to the end
4451 4434                   * before the device write hand jumps to the start.
4452 4435                   */
4453 4436                  taddr = dev->l2ad_end;
4454 4437          } else {
4455 4438                  taddr = dev->l2ad_hand + distance;
4456 4439          }
4457 4440          DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
4458 4441              uint64_t, taddr, boolean_t, all);
4459 4442  
4460 4443  top:
4461 4444          mutex_enter(&l2arc_buflist_mtx);
4462 4445          for (ab = list_tail(buflist); ab; ab = ab_prev) {
4463 4446                  ab_prev = list_prev(buflist, ab);
4464 4447  
4465 4448                  hash_lock = HDR_LOCK(ab);
4466 4449                  if (!mutex_tryenter(hash_lock)) {
4467 4450                          /*
4468 4451                           * Missed the hash lock.  Retry.
4469 4452                           */
4470 4453                          ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
4471 4454                          mutex_exit(&l2arc_buflist_mtx);
4472 4455                          mutex_enter(hash_lock);
4473 4456                          mutex_exit(hash_lock);
4474 4457                          goto top;
4475 4458                  }
4476 4459  
4477 4460                  if (HDR_L2_WRITE_HEAD(ab)) {
4478 4461                          /*
4479 4462                           * We hit a write head node.  Leave it for
4480 4463                           * l2arc_write_done().
4481 4464                           */
4482 4465                          list_remove(buflist, ab);
4483 4466                          mutex_exit(hash_lock);
4484 4467                          continue;
4485 4468                  }
4486 4469  
4487 4470                  if (!all && ab->b_l2hdr != NULL &&
4488 4471                      (ab->b_l2hdr->b_daddr > taddr ||
4489 4472                      ab->b_l2hdr->b_daddr < dev->l2ad_hand)) {
4490 4473                          /*
4491 4474                           * We've evicted to the target address,
4492 4475                           * or the end of the device.
4493 4476                           */
4494 4477                          mutex_exit(hash_lock);
4495 4478                          break;
4496 4479                  }
4497 4480  
4498 4481                  if (HDR_FREE_IN_PROGRESS(ab)) {
4499 4482                          /*
4500 4483                           * Already on the path to destruction.
4501 4484                           */
4502 4485                          mutex_exit(hash_lock);
4503 4486                          continue;
4504 4487                  }
4505 4488  
4506 4489                  if (ab->b_state == arc_l2c_only) {
4507 4490                          ASSERT(!HDR_L2_READING(ab));
4508 4491                          /*
4509 4492                           * This doesn't exist in the ARC.  Destroy.
4510 4493                           * arc_hdr_destroy() will call list_remove()
4511 4494                           * and decrement arcstat_l2_size.
4512 4495                           */
4513 4496                          arc_change_state(arc_anon, ab, hash_lock);
4514 4497                          arc_hdr_destroy(ab);
4515 4498                  } else {
4516 4499                          /*
4517 4500                           * Invalidate issued or about to be issued
4518 4501                           * reads, since we may be about to write
4519 4502                           * over this location.
4520 4503                           */
4521 4504                          if (HDR_L2_READING(ab)) {
4522 4505                                  ARCSTAT_BUMP(arcstat_l2_evict_reading);
4523 4506                                  ab->b_flags |= ARC_L2_EVICTED;
4524 4507                          }
4525 4508  
4526 4509                          /*
4527 4510                           * Tell ARC this no longer exists in L2ARC.
4528 4511                           */
4529 4512                          if (ab->b_l2hdr != NULL) {
4530 4513                                  abl2 = ab->b_l2hdr;
4531 4514                                  ARCSTAT_INCR(arcstat_l2_asize, -abl2->b_asize);
4532 4515                                  bytes_evicted += abl2->b_asize;
4533 4516                                  ab->b_l2hdr = NULL;
4534 4517                                  kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
4535 4518                                  ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
4536 4519                          }
4537 4520                          list_remove(buflist, ab);
4538 4521  
4539 4522                          /*
4540 4523                           * This may have been leftover after a
4541 4524                           * failed write.
4542 4525                           */
4543 4526                          ab->b_flags &= ~ARC_L2_WRITING;
4544 4527                  }
4545 4528                  mutex_exit(hash_lock);
4546 4529          }
4547 4530          mutex_exit(&l2arc_buflist_mtx);
4548 4531  
4549 4532          vdev_space_update(dev->l2ad_vdev, -bytes_evicted, 0, 0);
4550 4533          dev->l2ad_evict = taddr;
4551 4534  }
4552 4535  
4553 4536  /*
4554 4537   * Find and write ARC buffers to the L2ARC device.
4555 4538   *
4556 4539   * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid
4557 4540   * for reading until they have completed writing.
4558 4541   * The headroom_boost is an in-out parameter used to maintain headroom boost
4559 4542   * state between calls to this function.
4560 4543   *
4561 4544   * Returns the number of bytes actually written (which may be smaller than
4562 4545   * the delta by which the device hand has changed due to alignment).
4563 4546   */
4564 4547  static uint64_t
4565 4548  l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz,
4566 4549      boolean_t *headroom_boost)
4567 4550  {
4568 4551          arc_buf_hdr_t *ab, *ab_prev, *head;
4569 4552          list_t *list;
4570 4553          uint64_t write_asize, write_psize, write_sz, headroom,
4571 4554              buf_compress_minsz;
4572 4555          void *buf_data;
4573 4556          kmutex_t *list_lock;
4574 4557          boolean_t full;
4575 4558          l2arc_write_callback_t *cb;
4576 4559          zio_t *pio, *wzio;
4577 4560          uint64_t guid = spa_load_guid(spa);
4578 4561          const boolean_t do_headroom_boost = *headroom_boost;
4579 4562  
4580 4563          ASSERT(dev->l2ad_vdev != NULL);
4581 4564  
4582 4565          /* Lower the flag now, we might want to raise it again later. */
4583 4566          *headroom_boost = B_FALSE;
4584 4567  
4585 4568          pio = NULL;
4586 4569          write_sz = write_asize = write_psize = 0;
4587 4570          full = B_FALSE;
4588 4571          head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
4589 4572          head->b_flags |= ARC_L2_WRITE_HEAD;
4590 4573  
4591 4574          /*
4592 4575           * We will want to try to compress buffers that are at least 2x the
4593 4576           * device sector size.
4594 4577           */
4595 4578          buf_compress_minsz = 2 << dev->l2ad_vdev->vdev_ashift;
4596 4579  
4597 4580          /*
4598 4581           * Copy buffers for L2ARC writing.
4599 4582           */
4600 4583          mutex_enter(&l2arc_buflist_mtx);
4601 4584          for (int try = 0; try <= 3; try++) {
4602 4585                  uint64_t passed_sz = 0;
4603 4586  
4604 4587                  list = l2arc_list_locked(try, &list_lock);
4605 4588  
4606 4589                  /*
4607 4590                   * L2ARC fast warmup.
4608 4591                   *
4609 4592                   * Until the ARC is warm and starts to evict, read from the
4610 4593                   * head of the ARC lists rather than the tail.
4611 4594                   */
4612 4595                  if (arc_warm == B_FALSE)
4613 4596                          ab = list_head(list);
4614 4597                  else
4615 4598                          ab = list_tail(list);
4616 4599  
4617 4600                  headroom = target_sz * l2arc_headroom;
4618 4601                  if (do_headroom_boost)
4619 4602                          headroom = (headroom * l2arc_headroom_boost) / 100;
4620 4603  
4621 4604                  for (; ab; ab = ab_prev) {
4622 4605                          l2arc_buf_hdr_t *l2hdr;
4623 4606                          kmutex_t *hash_lock;
4624 4607                          uint64_t buf_sz;
4625 4608  
4626 4609                          if (arc_warm == B_FALSE)
4627 4610                                  ab_prev = list_next(list, ab);
4628 4611                          else
4629 4612                                  ab_prev = list_prev(list, ab);
4630 4613  
4631 4614                          hash_lock = HDR_LOCK(ab);
4632 4615                          if (!mutex_tryenter(hash_lock)) {
4633 4616                                  /*
4634 4617                                   * Skip this buffer rather than waiting.
4635 4618                                   */
4636 4619                                  continue;
4637 4620                          }
4638 4621  
4639 4622                          passed_sz += ab->b_size;
4640 4623                          if (passed_sz > headroom) {
4641 4624                                  /*
4642 4625                                   * Searched too far.
4643 4626                                   */
4644 4627                                  mutex_exit(hash_lock);
4645 4628                                  break;
4646 4629                          }
4647 4630  
4648 4631                          if (!l2arc_write_eligible(guid, ab)) {
4649 4632                                  mutex_exit(hash_lock);
4650 4633                                  continue;
4651 4634                          }
4652 4635  
4653 4636                          if ((write_sz + ab->b_size) > target_sz) {
4654 4637                                  full = B_TRUE;
4655 4638                                  mutex_exit(hash_lock);
4656 4639                                  break;
4657 4640                          }
4658 4641  
4659 4642                          if (pio == NULL) {
4660 4643                                  /*
4661 4644                                   * Insert a dummy header on the buflist so
4662 4645                                   * l2arc_write_done() can find where the
4663 4646                                   * write buffers begin without searching.
4664 4647                                   */
4665 4648                                  list_insert_head(dev->l2ad_buflist, head);
4666 4649  
4667 4650                                  cb = kmem_alloc(
4668 4651                                      sizeof (l2arc_write_callback_t), KM_SLEEP);
4669 4652                                  cb->l2wcb_dev = dev;
4670 4653                                  cb->l2wcb_head = head;
4671 4654                                  pio = zio_root(spa, l2arc_write_done, cb,
4672 4655                                      ZIO_FLAG_CANFAIL);
4673 4656                          }
4674 4657  
4675 4658                          /*
4676 4659                           * Create and add a new L2ARC header.
4677 4660                           */
4678 4661                          l2hdr = kmem_zalloc(sizeof (l2arc_buf_hdr_t), KM_SLEEP);
4679 4662                          l2hdr->b_dev = dev;
4680 4663                          ab->b_flags |= ARC_L2_WRITING;
4681 4664  
4682 4665                          /*
4683 4666                           * Temporarily stash the data buffer in b_tmp_cdata.
4684 4667                           * The subsequent write step will pick it up from
4685 4668                           * there. This is because can't access ab->b_buf
4686 4669                           * without holding the hash_lock, which we in turn
4687 4670                           * can't access without holding the ARC list locks
4688 4671                           * (which we want to avoid during compression/writing).
4689 4672                           */
4690 4673                          l2hdr->b_compress = ZIO_COMPRESS_OFF;
4691 4674                          l2hdr->b_asize = ab->b_size;
4692 4675                          l2hdr->b_tmp_cdata = ab->b_buf->b_data;
4693 4676  
4694 4677                          buf_sz = ab->b_size;
4695 4678                          ab->b_l2hdr = l2hdr;
4696 4679  
4697 4680                          list_insert_head(dev->l2ad_buflist, ab);
4698 4681  
4699 4682                          /*
4700 4683                           * Compute and store the buffer cksum before
4701 4684                           * writing.  On debug the cksum is verified first.
4702 4685                           */
4703 4686                          arc_cksum_verify(ab->b_buf);
4704 4687                          arc_cksum_compute(ab->b_buf, B_TRUE);
4705 4688  
4706 4689                          mutex_exit(hash_lock);
4707 4690  
4708 4691                          write_sz += buf_sz;
4709 4692                  }
4710 4693  
4711 4694                  mutex_exit(list_lock);
4712 4695  
4713 4696                  if (full == B_TRUE)
4714 4697                          break;
4715 4698          }
4716 4699  
4717 4700          /* No buffers selected for writing? */
4718 4701          if (pio == NULL) {
4719 4702                  ASSERT0(write_sz);
4720 4703                  mutex_exit(&l2arc_buflist_mtx);
4721 4704                  kmem_cache_free(hdr_cache, head);
4722 4705                  return (0);
4723 4706          }
4724 4707  
4725 4708          /*
4726 4709           * Now start writing the buffers. We're starting at the write head
4727 4710           * and work backwards, retracing the course of the buffer selector
4728 4711           * loop above.
4729 4712           */
4730 4713          for (ab = list_prev(dev->l2ad_buflist, head); ab;
4731 4714              ab = list_prev(dev->l2ad_buflist, ab)) {
4732 4715                  l2arc_buf_hdr_t *l2hdr;
4733 4716                  uint64_t buf_sz;
4734 4717  
4735 4718                  /*
4736 4719                   * We shouldn't need to lock the buffer here, since we flagged
4737 4720                   * it as ARC_L2_WRITING in the previous step, but we must take
4738 4721                   * care to only access its L2 cache parameters. In particular,
4739 4722                   * ab->b_buf may be invalid by now due to ARC eviction.
4740 4723                   */
4741 4724                  l2hdr = ab->b_l2hdr;
4742 4725                  l2hdr->b_daddr = dev->l2ad_hand;
4743 4726  
4744 4727                  if ((ab->b_flags & ARC_L2COMPRESS) &&
4745 4728                      l2hdr->b_asize >= buf_compress_minsz) {
4746 4729                          if (l2arc_compress_buf(l2hdr)) {
4747 4730                                  /*
4748 4731                                   * If compression succeeded, enable headroom
4749 4732                                   * boost on the next scan cycle.
4750 4733                                   */
4751 4734                                  *headroom_boost = B_TRUE;
4752 4735                          }
4753 4736                  }
4754 4737  
4755 4738                  /*
4756 4739                   * Pick up the buffer data we had previously stashed away
4757 4740                   * (and now potentially also compressed).
4758 4741                   */
4759 4742                  buf_data = l2hdr->b_tmp_cdata;
4760 4743                  buf_sz = l2hdr->b_asize;
4761 4744  
4762 4745                  /* Compression may have squashed the buffer to zero length. */
4763 4746                  if (buf_sz != 0) {
4764 4747                          uint64_t buf_p_sz;
4765 4748  
4766 4749                          wzio = zio_write_phys(pio, dev->l2ad_vdev,
4767 4750                              dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
4768 4751                              NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
4769 4752                              ZIO_FLAG_CANFAIL, B_FALSE);
4770 4753  
4771 4754                          DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
4772 4755                              zio_t *, wzio);
4773 4756                          (void) zio_nowait(wzio);
4774 4757  
4775 4758                          write_asize += buf_sz;
4776 4759                          /*
4777 4760                           * Keep the clock hand suitably device-aligned.
4778 4761                           */
4779 4762                          buf_p_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
4780 4763                          write_psize += buf_p_sz;
4781 4764                          dev->l2ad_hand += buf_p_sz;
4782 4765                  }
4783 4766          }
4784 4767  
4785 4768          mutex_exit(&l2arc_buflist_mtx);
4786 4769  
4787 4770          ASSERT3U(write_asize, <=, target_sz);
4788 4771          ARCSTAT_BUMP(arcstat_l2_writes_sent);
4789 4772          ARCSTAT_INCR(arcstat_l2_write_bytes, write_asize);
4790 4773          ARCSTAT_INCR(arcstat_l2_size, write_sz);
4791 4774          ARCSTAT_INCR(arcstat_l2_asize, write_asize);
4792 4775          vdev_space_update(dev->l2ad_vdev, write_asize, 0, 0);
4793 4776  
4794 4777          /*
4795 4778           * Bump device hand to the device start if it is approaching the end.
4796 4779           * l2arc_evict() will already have evicted ahead for this case.
4797 4780           */
4798 4781          if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
4799 4782                  dev->l2ad_hand = dev->l2ad_start;
4800 4783                  dev->l2ad_evict = dev->l2ad_start;
4801 4784                  dev->l2ad_first = B_FALSE;
4802 4785          }
4803 4786  
4804 4787          dev->l2ad_writing = B_TRUE;
4805 4788          (void) zio_wait(pio);
4806 4789          dev->l2ad_writing = B_FALSE;
4807 4790  
4808 4791          return (write_asize);
4809 4792  }
4810 4793  
4811 4794  /*
4812 4795   * Compresses an L2ARC buffer.
4813 4796   * The data to be compressed must be prefilled in l2hdr->b_tmp_cdata and its
4814 4797   * size in l2hdr->b_asize. This routine tries to compress the data and
4815 4798   * depending on the compression result there are three possible outcomes:
4816 4799   * *) The buffer was incompressible. The original l2hdr contents were left
4817 4800   *    untouched and are ready for writing to an L2 device.
4818 4801   * *) The buffer was all-zeros, so there is no need to write it to an L2
4819 4802   *    device. To indicate this situation b_tmp_cdata is NULL'ed, b_asize is
4820 4803   *    set to zero and b_compress is set to ZIO_COMPRESS_EMPTY.
4821 4804   * *) Compression succeeded and b_tmp_cdata was replaced with a temporary
4822 4805   *    data buffer which holds the compressed data to be written, and b_asize
4823 4806   *    tells us how much data there is. b_compress is set to the appropriate
4824 4807   *    compression algorithm. Once writing is done, invoke
4825 4808   *    l2arc_release_cdata_buf on this l2hdr to free this temporary buffer.
4826 4809   *
4827 4810   * Returns B_TRUE if compression succeeded, or B_FALSE if it didn't (the
4828 4811   * buffer was incompressible).
4829 4812   */
4830 4813  static boolean_t
4831 4814  l2arc_compress_buf(l2arc_buf_hdr_t *l2hdr)
4832 4815  {
4833 4816          void *cdata;
4834 4817          size_t csize, len, rounded;
4835 4818  
4836 4819          ASSERT(l2hdr->b_compress == ZIO_COMPRESS_OFF);
4837 4820          ASSERT(l2hdr->b_tmp_cdata != NULL);
4838 4821  
4839 4822          len = l2hdr->b_asize;
4840 4823          cdata = zio_data_buf_alloc(len);
4841 4824          csize = zio_compress_data(ZIO_COMPRESS_LZ4, l2hdr->b_tmp_cdata,
4842 4825              cdata, l2hdr->b_asize);
4843 4826  
4844 4827          rounded = P2ROUNDUP(csize, (size_t)SPA_MINBLOCKSIZE);
4845 4828          if (rounded > csize) {
4846 4829                  bzero((char *)cdata + csize, rounded - csize);
4847 4830                  csize = rounded;
4848 4831          }
4849 4832  
4850 4833          if (csize == 0) {
4851 4834                  /* zero block, indicate that there's nothing to write */
4852 4835                  zio_data_buf_free(cdata, len);
4853 4836                  l2hdr->b_compress = ZIO_COMPRESS_EMPTY;
4854 4837                  l2hdr->b_asize = 0;
4855 4838                  l2hdr->b_tmp_cdata = NULL;
4856 4839                  ARCSTAT_BUMP(arcstat_l2_compress_zeros);
4857 4840                  return (B_TRUE);
4858 4841          } else if (csize > 0 && csize < len) {
4859 4842                  /*
4860 4843                   * Compression succeeded, we'll keep the cdata around for
4861 4844                   * writing and release it afterwards.
4862 4845                   */
4863 4846                  l2hdr->b_compress = ZIO_COMPRESS_LZ4;
4864 4847                  l2hdr->b_asize = csize;
4865 4848                  l2hdr->b_tmp_cdata = cdata;
4866 4849                  ARCSTAT_BUMP(arcstat_l2_compress_successes);
4867 4850                  return (B_TRUE);
4868 4851          } else {
4869 4852                  /*
4870 4853                   * Compression failed, release the compressed buffer.
4871 4854                   * l2hdr will be left unmodified.
4872 4855                   */
4873 4856                  zio_data_buf_free(cdata, len);
4874 4857                  ARCSTAT_BUMP(arcstat_l2_compress_failures);
4875 4858                  return (B_FALSE);
4876 4859          }
4877 4860  }
4878 4861  
4879 4862  /*
4880 4863   * Decompresses a zio read back from an l2arc device. On success, the
4881 4864   * underlying zio's io_data buffer is overwritten by the uncompressed
4882 4865   * version. On decompression error (corrupt compressed stream), the
4883 4866   * zio->io_error value is set to signal an I/O error.
4884 4867   *
4885 4868   * Please note that the compressed data stream is not checksummed, so
4886 4869   * if the underlying device is experiencing data corruption, we may feed
4887 4870   * corrupt data to the decompressor, so the decompressor needs to be
4888 4871   * able to handle this situation (LZ4 does).
4889 4872   */
4890 4873  static void
4891 4874  l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr, enum zio_compress c)
4892 4875  {
4893 4876          ASSERT(L2ARC_IS_VALID_COMPRESS(c));
4894 4877  
4895 4878          if (zio->io_error != 0) {
4896 4879                  /*
4897 4880                   * An io error has occured, just restore the original io
4898 4881                   * size in preparation for a main pool read.
4899 4882                   */
4900 4883                  zio->io_orig_size = zio->io_size = hdr->b_size;
4901 4884                  return;
4902 4885          }
4903 4886  
4904 4887          if (c == ZIO_COMPRESS_EMPTY) {
4905 4888                  /*
4906 4889                   * An empty buffer results in a null zio, which means we
4907 4890                   * need to fill its io_data after we're done restoring the
4908 4891                   * buffer's contents.
4909 4892                   */
4910 4893                  ASSERT(hdr->b_buf != NULL);
4911 4894                  bzero(hdr->b_buf->b_data, hdr->b_size);
4912 4895                  zio->io_data = zio->io_orig_data = hdr->b_buf->b_data;
4913 4896          } else {
4914 4897                  ASSERT(zio->io_data != NULL);
4915 4898                  /*
4916 4899                   * We copy the compressed data from the start of the arc buffer
4917 4900                   * (the zio_read will have pulled in only what we need, the
4918 4901                   * rest is garbage which we will overwrite at decompression)
4919 4902                   * and then decompress back to the ARC data buffer. This way we
4920 4903                   * can minimize copying by simply decompressing back over the
4921 4904                   * original compressed data (rather than decompressing to an
4922 4905                   * aux buffer and then copying back the uncompressed buffer,
4923 4906                   * which is likely to be much larger).
4924 4907                   */
4925 4908                  uint64_t csize;
4926 4909                  void *cdata;
4927 4910  
4928 4911                  csize = zio->io_size;
4929 4912                  cdata = zio_data_buf_alloc(csize);
4930 4913                  bcopy(zio->io_data, cdata, csize);
4931 4914                  if (zio_decompress_data(c, cdata, zio->io_data, csize,
4932 4915                      hdr->b_size) != 0)
4933 4916                          zio->io_error = EIO;
4934 4917                  zio_data_buf_free(cdata, csize);
4935 4918          }
4936 4919  
4937 4920          /* Restore the expected uncompressed IO size. */
4938 4921          zio->io_orig_size = zio->io_size = hdr->b_size;
4939 4922  }
4940 4923  
4941 4924  /*
4942 4925   * Releases the temporary b_tmp_cdata buffer in an l2arc header structure.
4943 4926   * This buffer serves as a temporary holder of compressed data while
4944 4927   * the buffer entry is being written to an l2arc device. Once that is
4945 4928   * done, we can dispose of it.
4946 4929   */
4947 4930  static void
4948 4931  l2arc_release_cdata_buf(arc_buf_hdr_t *ab)
4949 4932  {
4950 4933          l2arc_buf_hdr_t *l2hdr = ab->b_l2hdr;
4951 4934  
4952 4935          if (l2hdr->b_compress == ZIO_COMPRESS_LZ4) {
4953 4936                  /*
4954 4937                   * If the data was compressed, then we've allocated a
4955 4938                   * temporary buffer for it, so now we need to release it.
4956 4939                   */
4957 4940                  ASSERT(l2hdr->b_tmp_cdata != NULL);
4958 4941                  zio_data_buf_free(l2hdr->b_tmp_cdata, ab->b_size);
4959 4942          }
4960 4943          l2hdr->b_tmp_cdata = NULL;
4961 4944  }
4962 4945  
4963 4946  /*
4964 4947   * This thread feeds the L2ARC at regular intervals.  This is the beating
4965 4948   * heart of the L2ARC.
4966 4949   */
4967 4950  static void
4968 4951  l2arc_feed_thread(void)
4969 4952  {
4970 4953          callb_cpr_t cpr;
4971 4954          l2arc_dev_t *dev;
4972 4955          spa_t *spa;
4973 4956          uint64_t size, wrote;
4974 4957          clock_t begin, next = ddi_get_lbolt();
4975 4958          boolean_t headroom_boost = B_FALSE;
4976 4959  
4977 4960          CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
4978 4961  
4979 4962          mutex_enter(&l2arc_feed_thr_lock);
4980 4963  
4981 4964          while (l2arc_thread_exit == 0) {
4982 4965                  CALLB_CPR_SAFE_BEGIN(&cpr);
4983 4966                  (void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
4984 4967                      next);
4985 4968                  CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
4986 4969                  next = ddi_get_lbolt() + hz;
4987 4970  
4988 4971                  /*
4989 4972                   * Quick check for L2ARC devices.
4990 4973                   */
4991 4974                  mutex_enter(&l2arc_dev_mtx);
4992 4975                  if (l2arc_ndev == 0) {
4993 4976                          mutex_exit(&l2arc_dev_mtx);
4994 4977                          continue;
4995 4978                  }
4996 4979                  mutex_exit(&l2arc_dev_mtx);
4997 4980                  begin = ddi_get_lbolt();
4998 4981  
4999 4982                  /*
5000 4983                   * This selects the next l2arc device to write to, and in
5001 4984                   * doing so the next spa to feed from: dev->l2ad_spa.   This
5002 4985                   * will return NULL if there are now no l2arc devices or if
5003 4986                   * they are all faulted.
5004 4987                   *
5005 4988                   * If a device is returned, its spa's config lock is also
5006 4989                   * held to prevent device removal.  l2arc_dev_get_next()
5007 4990                   * will grab and release l2arc_dev_mtx.
5008 4991                   */
5009 4992                  if ((dev = l2arc_dev_get_next()) == NULL)
5010 4993                          continue;
5011 4994  
5012 4995                  spa = dev->l2ad_spa;
5013 4996                  ASSERT(spa != NULL);
5014 4997  
5015 4998                  /*
5016 4999                   * If the pool is read-only then force the feed thread to
5017 5000                   * sleep a little longer.
5018 5001                   */
5019 5002                  if (!spa_writeable(spa)) {
5020 5003                          next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
5021 5004                          spa_config_exit(spa, SCL_L2ARC, dev);
5022 5005                          continue;
5023 5006                  }
5024 5007  
5025 5008                  /*
5026 5009                   * Avoid contributing to memory pressure.
5027 5010                   */
5028 5011                  if (arc_reclaim_needed()) {
5029 5012                          ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
5030 5013                          spa_config_exit(spa, SCL_L2ARC, dev);
5031 5014                          continue;
5032 5015                  }
5033 5016  
5034 5017                  ARCSTAT_BUMP(arcstat_l2_feeds);
5035 5018  
5036 5019                  size = l2arc_write_size();
5037 5020  
5038 5021                  /*
5039 5022                   * Evict L2ARC buffers that will be overwritten.
5040 5023                   */
5041 5024                  l2arc_evict(dev, size, B_FALSE);
5042 5025  
5043 5026                  /*
5044 5027                   * Write ARC buffers.
5045 5028                   */
5046 5029                  wrote = l2arc_write_buffers(spa, dev, size, &headroom_boost);
5047 5030  
5048 5031                  /*
5049 5032                   * Calculate interval between writes.
5050 5033                   */
5051 5034                  next = l2arc_write_interval(begin, size, wrote);
5052 5035                  spa_config_exit(spa, SCL_L2ARC, dev);
5053 5036          }
5054 5037  
5055 5038          l2arc_thread_exit = 0;
5056 5039          cv_broadcast(&l2arc_feed_thr_cv);
5057 5040          CALLB_CPR_EXIT(&cpr);           /* drops l2arc_feed_thr_lock */
5058 5041          thread_exit();
5059 5042  }
5060 5043  
5061 5044  boolean_t
5062 5045  l2arc_vdev_present(vdev_t *vd)
5063 5046  {
5064 5047          l2arc_dev_t *dev;
5065 5048  
5066 5049          mutex_enter(&l2arc_dev_mtx);
5067 5050          for (dev = list_head(l2arc_dev_list); dev != NULL;
5068 5051              dev = list_next(l2arc_dev_list, dev)) {
5069 5052                  if (dev->l2ad_vdev == vd)
5070 5053                          break;
5071 5054          }
5072 5055          mutex_exit(&l2arc_dev_mtx);
5073 5056  
5074 5057          return (dev != NULL);
5075 5058  }
5076 5059  
5077 5060  /*
5078 5061   * Add a vdev for use by the L2ARC.  By this point the spa has already
5079 5062   * validated the vdev and opened it.
5080 5063   */
5081 5064  void
5082 5065  l2arc_add_vdev(spa_t *spa, vdev_t *vd)
5083 5066  {
5084 5067          l2arc_dev_t *adddev;
5085 5068  
5086 5069          ASSERT(!l2arc_vdev_present(vd));
5087 5070  
5088 5071          /*
5089 5072           * Create a new l2arc device entry.
5090 5073           */
5091 5074          adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
5092 5075          adddev->l2ad_spa = spa;
5093 5076          adddev->l2ad_vdev = vd;
5094 5077          adddev->l2ad_start = VDEV_LABEL_START_SIZE;
5095 5078          adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
5096 5079          adddev->l2ad_hand = adddev->l2ad_start;
5097 5080          adddev->l2ad_evict = adddev->l2ad_start;
5098 5081          adddev->l2ad_first = B_TRUE;
5099 5082          adddev->l2ad_writing = B_FALSE;
5100 5083  
5101 5084          /*
5102 5085           * This is a list of all ARC buffers that are still valid on the
5103 5086           * device.
5104 5087           */
5105 5088          adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP);
5106 5089          list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
5107 5090              offsetof(arc_buf_hdr_t, b_l2node));
5108 5091  
5109 5092          vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
5110 5093  
5111 5094          /*
5112 5095           * Add device to global list
5113 5096           */
5114 5097          mutex_enter(&l2arc_dev_mtx);
5115 5098          list_insert_head(l2arc_dev_list, adddev);
5116 5099          atomic_inc_64(&l2arc_ndev);
5117 5100          mutex_exit(&l2arc_dev_mtx);
5118 5101  }
5119 5102  
5120 5103  /*
5121 5104   * Remove a vdev from the L2ARC.
5122 5105   */
5123 5106  void
5124 5107  l2arc_remove_vdev(vdev_t *vd)
5125 5108  {
5126 5109          l2arc_dev_t *dev, *nextdev, *remdev = NULL;
5127 5110  
5128 5111          /*
5129 5112           * Find the device by vdev
5130 5113           */
5131 5114          mutex_enter(&l2arc_dev_mtx);
5132 5115          for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
5133 5116                  nextdev = list_next(l2arc_dev_list, dev);
5134 5117                  if (vd == dev->l2ad_vdev) {
5135 5118                          remdev = dev;
5136 5119                          break;
5137 5120                  }
5138 5121          }
5139 5122          ASSERT(remdev != NULL);
5140 5123  
5141 5124          /*
5142 5125           * Remove device from global list
5143 5126           */
5144 5127          list_remove(l2arc_dev_list, remdev);
5145 5128          l2arc_dev_last = NULL;          /* may have been invalidated */
5146 5129          atomic_dec_64(&l2arc_ndev);
5147 5130          mutex_exit(&l2arc_dev_mtx);
5148 5131  
5149 5132          /*
5150 5133           * Clear all buflists and ARC references.  L2ARC device flush.
5151 5134           */
5152 5135          l2arc_evict(remdev, 0, B_TRUE);
5153 5136          list_destroy(remdev->l2ad_buflist);
5154 5137          kmem_free(remdev->l2ad_buflist, sizeof (list_t));
5155 5138          kmem_free(remdev, sizeof (l2arc_dev_t));
5156 5139  }
5157 5140  
5158 5141  void
5159 5142  l2arc_init(void)
5160 5143  {
5161 5144          l2arc_thread_exit = 0;
5162 5145          l2arc_ndev = 0;
5163 5146          l2arc_writes_sent = 0;
5164 5147          l2arc_writes_done = 0;
5165 5148  
5166 5149          mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
5167 5150          cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
5168 5151          mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
5169 5152          mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL);
5170 5153          mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
5171 5154  
5172 5155          l2arc_dev_list = &L2ARC_dev_list;
5173 5156          l2arc_free_on_write = &L2ARC_free_on_write;
5174 5157          list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
5175 5158              offsetof(l2arc_dev_t, l2ad_node));
5176 5159          list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
5177 5160              offsetof(l2arc_data_free_t, l2df_list_node));
5178 5161  }
5179 5162  
5180 5163  void
5181 5164  l2arc_fini(void)
5182 5165  {
5183 5166          /*
5184 5167           * This is called from dmu_fini(), which is called from spa_fini();
5185 5168           * Because of this, we can assume that all l2arc devices have
5186 5169           * already been removed when the pools themselves were removed.
5187 5170           */
5188 5171  
5189 5172          l2arc_do_free_on_write();
5190 5173  
5191 5174          mutex_destroy(&l2arc_feed_thr_lock);
5192 5175          cv_destroy(&l2arc_feed_thr_cv);
5193 5176          mutex_destroy(&l2arc_dev_mtx);
5194 5177          mutex_destroy(&l2arc_buflist_mtx);
5195 5178          mutex_destroy(&l2arc_free_on_write_mtx);
5196 5179  
5197 5180          list_destroy(l2arc_dev_list);
5198 5181          list_destroy(l2arc_free_on_write);
5199 5182  }
5200 5183  
5201 5184  void
5202 5185  l2arc_start(void)
5203 5186  {
5204 5187          if (!(spa_mode_global & FWRITE))
5205 5188                  return;
5206 5189  
5207 5190          (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
5208 5191              TS_RUN, minclsyspri);
5209 5192  }
5210 5193  
5211 5194  void
5212 5195  l2arc_stop(void)
5213 5196  {
5214 5197          if (!(spa_mode_global & FWRITE))
5215 5198                  return;
5216 5199  
5217 5200          mutex_enter(&l2arc_feed_thr_lock);
5218 5201          cv_signal(&l2arc_feed_thr_cv);  /* kick thread out of startup */
5219 5202          l2arc_thread_exit = 1;
5220 5203          while (l2arc_thread_exit != 0)
5221 5204                  cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
5222 5205          mutex_exit(&l2arc_feed_thr_lock);
5223 5206  }
  
    | 
      ↓ open down ↓ | 
    3884 lines elided | 
    
      ↑ open up ↑ | 
  
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX