1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  23  * Copyright (c) 2012, Joyent, Inc. All rights reserved.
  24  * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
  25  * Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
  26  * Copyright 2014 Nexenta Systems, Inc.  All rights reserved.
  27  */
  28 
  29 /*
  30  * DVA-based Adjustable Replacement Cache
  31  *
  32  * While much of the theory of operation used here is
  33  * based on the self-tuning, low overhead replacement cache
  34  * presented by Megiddo and Modha at FAST 2003, there are some
  35  * significant differences:
  36  *
  37  * 1. The Megiddo and Modha model assumes any page is evictable.
  38  * Pages in its cache cannot be "locked" into memory.  This makes
  39  * the eviction algorithm simple: evict the last page in the list.
  40  * This also make the performance characteristics easy to reason
  41  * about.  Our cache is not so simple.  At any given moment, some
  42  * subset of the blocks in the cache are un-evictable because we
  43  * have handed out a reference to them.  Blocks are only evictable
  44  * when there are no external references active.  This makes
  45  * eviction far more problematic:  we choose to evict the evictable
  46  * blocks that are the "lowest" in the list.
  47  *
  48  * There are times when it is not possible to evict the requested
  49  * space.  In these circumstances we are unable to adjust the cache
  50  * size.  To prevent the cache growing unbounded at these times we
  51  * implement a "cache throttle" that slows the flow of new data
  52  * into the cache until we can make space available.
  53  *
  54  * 2. The Megiddo and Modha model assumes a fixed cache size.
  55  * Pages are evicted when the cache is full and there is a cache
  56  * miss.  Our model has a variable sized cache.  It grows with
  57  * high use, but also tries to react to memory pressure from the
  58  * operating system: decreasing its size when system memory is
  59  * tight.
  60  *
  61  * 3. The Megiddo and Modha model assumes a fixed page size. All
  62  * elements of the cache are therefore exactly the same size.  So
  63  * when adjusting the cache size following a cache miss, its simply
  64  * a matter of choosing a single page to evict.  In our model, we
  65  * have variable sized cache blocks (rangeing from 512 bytes to
  66  * 128K bytes).  We therefore choose a set of blocks to evict to make
  67  * space for a cache miss that approximates as closely as possible
  68  * the space used by the new block.
  69  *
  70  * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
  71  * by N. Megiddo & D. Modha, FAST 2003
  72  */
  73 
  74 /*
  75  * The locking model:
  76  *
  77  * A new reference to a cache buffer can be obtained in two
  78  * ways: 1) via a hash table lookup using the DVA as a key,
  79  * or 2) via one of the ARC lists.  The arc_read() interface
  80  * uses method 1, while the internal arc algorithms for
  81  * adjusting the cache use method 2.  We therefore provide two
  82  * types of locks: 1) the hash table lock array, and 2) the
  83  * arc list locks.
  84  *
  85  * Buffers do not have their own mutexes, rather they rely on the
  86  * hash table mutexes for the bulk of their protection (i.e. most
  87  * fields in the arc_buf_hdr_t are protected by these mutexes).
  88  *
  89  * buf_hash_find() returns the appropriate mutex (held) when it
  90  * locates the requested buffer in the hash table.  It returns
  91  * NULL for the mutex if the buffer was not in the table.
  92  *
  93  * buf_hash_remove() expects the appropriate hash mutex to be
  94  * already held before it is invoked.
  95  *
  96  * Each arc state also has a mutex which is used to protect the
  97  * buffer list associated with the state.  When attempting to
  98  * obtain a hash table lock while holding an arc list lock you
  99  * must use: mutex_tryenter() to avoid deadlock.  Also note that
 100  * the active state mutex must be held before the ghost state mutex.
 101  *
 102  * Arc buffers may have an associated eviction callback function.
 103  * This function will be invoked prior to removing the buffer (e.g.
 104  * in arc_do_user_evicts()).  Note however that the data associated
 105  * with the buffer may be evicted prior to the callback.  The callback
 106  * must be made with *no locks held* (to prevent deadlock).  Additionally,
 107  * the users of callbacks must ensure that their private data is
 108  * protected from simultaneous callbacks from arc_clear_callback()
 109  * and arc_do_user_evicts().
 110  *
 111  * Note that the majority of the performance stats are manipulated
 112  * with atomic operations.
 113  *
 114  * The L2ARC uses the l2arc_buflist_mtx global mutex for the following:
 115  *
 116  *      - L2ARC buflist creation
 117  *      - L2ARC buflist eviction
 118  *      - L2ARC write completion, which walks L2ARC buflists
 119  *      - ARC header destruction, as it removes from L2ARC buflists
 120  *      - ARC header release, as it removes from L2ARC buflists
 121  */
 122 
 123 #include <sys/spa.h>
 124 #include <sys/zio.h>
 125 #include <sys/zio_compress.h>
 126 #include <sys/zfs_context.h>
 127 #include <sys/arc.h>
 128 #include <sys/refcount.h>
 129 #include <sys/vdev.h>
 130 #include <sys/vdev_impl.h>
 131 #include <sys/dsl_pool.h>
 132 #ifdef _KERNEL
 133 #include <sys/vmsystm.h>
 134 #include <vm/anon.h>
 135 #include <sys/fs/swapnode.h>
 136 #include <sys/dnlc.h>
 137 #endif
 138 #include <sys/callb.h>
 139 #include <sys/kstat.h>
 140 #include <zfs_fletcher.h>
 141 
 142 #ifndef _KERNEL
 143 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
 144 boolean_t arc_watch = B_FALSE;
 145 int arc_procfd;
 146 #endif
 147 
 148 static kmutex_t         arc_reclaim_thr_lock;
 149 static kcondvar_t       arc_reclaim_thr_cv;     /* used to signal reclaim thr */
 150 static uint8_t          arc_thread_exit;
 151 
 152 #define ARC_REDUCE_DNLC_PERCENT 3
 153 uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT;
 154 
 155 typedef enum arc_reclaim_strategy {
 156         ARC_RECLAIM_AGGR,               /* Aggressive reclaim strategy */
 157         ARC_RECLAIM_CONS                /* Conservative reclaim strategy */
 158 } arc_reclaim_strategy_t;
 159 
 160 /*
 161  * The number of iterations through arc_evict_*() before we
 162  * drop & reacquire the lock.
 163  */
 164 int arc_evict_iterations = 100;
 165 
 166 /* number of seconds before growing cache again */
 167 static int              arc_grow_retry = 60;
 168 
 169 /* shift of arc_c for calculating both min and max arc_p */
 170 static int              arc_p_min_shift = 4;
 171 
 172 /* log2(fraction of arc to reclaim) */
 173 static int              arc_shrink_shift = 5;
 174 
 175 /*
 176  * minimum lifespan of a prefetch block in clock ticks
 177  * (initialized in arc_init())
 178  */
 179 static int              arc_min_prefetch_lifespan;
 180 
 181 /*
 182  * If this percent of memory is free, don't throttle.
 183  */
 184 int arc_lotsfree_percent = 10;
 185 
 186 static int arc_dead;
 187 
 188 /*
 189  * The arc has filled available memory and has now warmed up.
 190  */
 191 static boolean_t arc_warm;
 192 
 193 /*
 194  * These tunables are for performance analysis.
 195  */
 196 uint64_t zfs_arc_max;
 197 uint64_t zfs_arc_min;
 198 uint64_t zfs_arc_meta_limit = 0;
 199 int zfs_arc_grow_retry = 0;
 200 int zfs_arc_shrink_shift = 0;
 201 int zfs_arc_p_min_shift = 0;
 202 int zfs_disable_dup_eviction = 0;
 203 int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
 204 
 205 /*
 206  * Note that buffers can be in one of 6 states:
 207  *      ARC_anon        - anonymous (discussed below)
 208  *      ARC_mru         - recently used, currently cached
 209  *      ARC_mru_ghost   - recentely used, no longer in cache
 210  *      ARC_mfu         - frequently used, currently cached
 211  *      ARC_mfu_ghost   - frequently used, no longer in cache
 212  *      ARC_l2c_only    - exists in L2ARC but not other states
 213  * When there are no active references to the buffer, they are
 214  * are linked onto a list in one of these arc states.  These are
 215  * the only buffers that can be evicted or deleted.  Within each
 216  * state there are multiple lists, one for meta-data and one for
 217  * non-meta-data.  Meta-data (indirect blocks, blocks of dnodes,
 218  * etc.) is tracked separately so that it can be managed more
 219  * explicitly: favored over data, limited explicitly.
 220  *
 221  * Anonymous buffers are buffers that are not associated with
 222  * a DVA.  These are buffers that hold dirty block copies
 223  * before they are written to stable storage.  By definition,
 224  * they are "ref'd" and are considered part of arc_mru
 225  * that cannot be freed.  Generally, they will aquire a DVA
 226  * as they are written and migrate onto the arc_mru list.
 227  *
 228  * The ARC_l2c_only state is for buffers that are in the second
 229  * level ARC but no longer in any of the ARC_m* lists.  The second
 230  * level ARC itself may also contain buffers that are in any of
 231  * the ARC_m* states - meaning that a buffer can exist in two
 232  * places.  The reason for the ARC_l2c_only state is to keep the
 233  * buffer header in the hash table, so that reads that hit the
 234  * second level ARC benefit from these fast lookups.
 235  */
 236 
 237 typedef struct arc_state {
 238         list_t  arcs_list[ARC_BUFC_NUMTYPES];   /* list of evictable buffers */
 239         uint64_t arcs_lsize[ARC_BUFC_NUMTYPES]; /* amount of evictable data */
 240         uint64_t arcs_size;     /* total amount of data in this state */
 241         kmutex_t arcs_mtx;
 242 } arc_state_t;
 243 
 244 /* The 6 states: */
 245 static arc_state_t ARC_anon;
 246 static arc_state_t ARC_mru;
 247 static arc_state_t ARC_mru_ghost;
 248 static arc_state_t ARC_mfu;
 249 static arc_state_t ARC_mfu_ghost;
 250 static arc_state_t ARC_l2c_only;
 251 
 252 typedef struct arc_stats {
 253         kstat_named_t arcstat_hits;
 254         kstat_named_t arcstat_misses;
 255         kstat_named_t arcstat_demand_data_hits;
 256         kstat_named_t arcstat_demand_data_misses;
 257         kstat_named_t arcstat_demand_metadata_hits;
 258         kstat_named_t arcstat_demand_metadata_misses;
 259         kstat_named_t arcstat_prefetch_data_hits;
 260         kstat_named_t arcstat_prefetch_data_misses;
 261         kstat_named_t arcstat_prefetch_metadata_hits;
 262         kstat_named_t arcstat_prefetch_metadata_misses;
 263         kstat_named_t arcstat_mru_hits;
 264         kstat_named_t arcstat_mru_ghost_hits;
 265         kstat_named_t arcstat_mfu_hits;
 266         kstat_named_t arcstat_mfu_ghost_hits;
 267         kstat_named_t arcstat_deleted;
 268         kstat_named_t arcstat_recycle_miss;
 269         /*
 270          * Number of buffers that could not be evicted because the hash lock
 271          * was held by another thread.  The lock may not necessarily be held
 272          * by something using the same buffer, since hash locks are shared
 273          * by multiple buffers.
 274          */
 275         kstat_named_t arcstat_mutex_miss;
 276         /*
 277          * Number of buffers skipped because they have I/O in progress, are
 278          * indrect prefetch buffers that have not lived long enough, or are
 279          * not from the spa we're trying to evict from.
 280          */
 281         kstat_named_t arcstat_evict_skip;
 282         kstat_named_t arcstat_evict_l2_cached;
 283         kstat_named_t arcstat_evict_l2_eligible;
 284         kstat_named_t arcstat_evict_l2_ineligible;
 285         kstat_named_t arcstat_hash_elements;
 286         kstat_named_t arcstat_hash_elements_max;
 287         kstat_named_t arcstat_hash_collisions;
 288         kstat_named_t arcstat_hash_chains;
 289         kstat_named_t arcstat_hash_chain_max;
 290         kstat_named_t arcstat_p;
 291         kstat_named_t arcstat_c;
 292         kstat_named_t arcstat_c_min;
 293         kstat_named_t arcstat_c_max;
 294         kstat_named_t arcstat_size;
 295         kstat_named_t arcstat_hdr_size;
 296         kstat_named_t arcstat_data_size;
 297         kstat_named_t arcstat_other_size;
 298         kstat_named_t arcstat_l2_hits;
 299         kstat_named_t arcstat_l2_misses;
 300         kstat_named_t arcstat_l2_feeds;
 301         kstat_named_t arcstat_l2_rw_clash;
 302         kstat_named_t arcstat_l2_read_bytes;
 303         kstat_named_t arcstat_l2_write_bytes;
 304         kstat_named_t arcstat_l2_writes_sent;
 305         kstat_named_t arcstat_l2_writes_done;
 306         kstat_named_t arcstat_l2_writes_error;
 307         kstat_named_t arcstat_l2_writes_hdr_miss;
 308         kstat_named_t arcstat_l2_evict_lock_retry;
 309         kstat_named_t arcstat_l2_evict_reading;
 310         kstat_named_t arcstat_l2_free_on_write;
 311         kstat_named_t arcstat_l2_abort_lowmem;
 312         kstat_named_t arcstat_l2_cksum_bad;
 313         kstat_named_t arcstat_l2_io_error;
 314         kstat_named_t arcstat_l2_size;
 315         kstat_named_t arcstat_l2_asize;
 316         kstat_named_t arcstat_l2_hdr_size;
 317         kstat_named_t arcstat_l2_compress_successes;
 318         kstat_named_t arcstat_l2_compress_zeros;
 319         kstat_named_t arcstat_l2_compress_failures;
 320         kstat_named_t arcstat_memory_throttle_count;
 321         kstat_named_t arcstat_duplicate_buffers;
 322         kstat_named_t arcstat_duplicate_buffers_size;
 323         kstat_named_t arcstat_duplicate_reads;
 324         kstat_named_t arcstat_meta_used;
 325         kstat_named_t arcstat_meta_limit;
 326         kstat_named_t arcstat_meta_max;
 327 } arc_stats_t;
 328 
 329 static arc_stats_t arc_stats = {
 330         { "hits",                       KSTAT_DATA_UINT64 },
 331         { "misses",                     KSTAT_DATA_UINT64 },
 332         { "demand_data_hits",           KSTAT_DATA_UINT64 },
 333         { "demand_data_misses",         KSTAT_DATA_UINT64 },
 334         { "demand_metadata_hits",       KSTAT_DATA_UINT64 },
 335         { "demand_metadata_misses",     KSTAT_DATA_UINT64 },
 336         { "prefetch_data_hits",         KSTAT_DATA_UINT64 },
 337         { "prefetch_data_misses",       KSTAT_DATA_UINT64 },
 338         { "prefetch_metadata_hits",     KSTAT_DATA_UINT64 },
 339         { "prefetch_metadata_misses",   KSTAT_DATA_UINT64 },
 340         { "mru_hits",                   KSTAT_DATA_UINT64 },
 341         { "mru_ghost_hits",             KSTAT_DATA_UINT64 },
 342         { "mfu_hits",                   KSTAT_DATA_UINT64 },
 343         { "mfu_ghost_hits",             KSTAT_DATA_UINT64 },
 344         { "deleted",                    KSTAT_DATA_UINT64 },
 345         { "recycle_miss",               KSTAT_DATA_UINT64 },
 346         { "mutex_miss",                 KSTAT_DATA_UINT64 },
 347         { "evict_skip",                 KSTAT_DATA_UINT64 },
 348         { "evict_l2_cached",            KSTAT_DATA_UINT64 },
 349         { "evict_l2_eligible",          KSTAT_DATA_UINT64 },
 350         { "evict_l2_ineligible",        KSTAT_DATA_UINT64 },
 351         { "hash_elements",              KSTAT_DATA_UINT64 },
 352         { "hash_elements_max",          KSTAT_DATA_UINT64 },
 353         { "hash_collisions",            KSTAT_DATA_UINT64 },
 354         { "hash_chains",                KSTAT_DATA_UINT64 },
 355         { "hash_chain_max",             KSTAT_DATA_UINT64 },
 356         { "p",                          KSTAT_DATA_UINT64 },
 357         { "c",                          KSTAT_DATA_UINT64 },
 358         { "c_min",                      KSTAT_DATA_UINT64 },
 359         { "c_max",                      KSTAT_DATA_UINT64 },
 360         { "size",                       KSTAT_DATA_UINT64 },
 361         { "hdr_size",                   KSTAT_DATA_UINT64 },
 362         { "data_size",                  KSTAT_DATA_UINT64 },
 363         { "other_size",                 KSTAT_DATA_UINT64 },
 364         { "l2_hits",                    KSTAT_DATA_UINT64 },
 365         { "l2_misses",                  KSTAT_DATA_UINT64 },
 366         { "l2_feeds",                   KSTAT_DATA_UINT64 },
 367         { "l2_rw_clash",                KSTAT_DATA_UINT64 },
 368         { "l2_read_bytes",              KSTAT_DATA_UINT64 },
 369         { "l2_write_bytes",             KSTAT_DATA_UINT64 },
 370         { "l2_writes_sent",             KSTAT_DATA_UINT64 },
 371         { "l2_writes_done",             KSTAT_DATA_UINT64 },
 372         { "l2_writes_error",            KSTAT_DATA_UINT64 },
 373         { "l2_writes_hdr_miss",         KSTAT_DATA_UINT64 },
 374         { "l2_evict_lock_retry",        KSTAT_DATA_UINT64 },
 375         { "l2_evict_reading",           KSTAT_DATA_UINT64 },
 376         { "l2_free_on_write",           KSTAT_DATA_UINT64 },
 377         { "l2_abort_lowmem",            KSTAT_DATA_UINT64 },
 378         { "l2_cksum_bad",               KSTAT_DATA_UINT64 },
 379         { "l2_io_error",                KSTAT_DATA_UINT64 },
 380         { "l2_size",                    KSTAT_DATA_UINT64 },
 381         { "l2_asize",                   KSTAT_DATA_UINT64 },
 382         { "l2_hdr_size",                KSTAT_DATA_UINT64 },
 383         { "l2_compress_successes",      KSTAT_DATA_UINT64 },
 384         { "l2_compress_zeros",          KSTAT_DATA_UINT64 },
 385         { "l2_compress_failures",       KSTAT_DATA_UINT64 },
 386         { "memory_throttle_count",      KSTAT_DATA_UINT64 },
 387         { "duplicate_buffers",          KSTAT_DATA_UINT64 },
 388         { "duplicate_buffers_size",     KSTAT_DATA_UINT64 },
 389         { "duplicate_reads",            KSTAT_DATA_UINT64 },
 390         { "arc_meta_used",              KSTAT_DATA_UINT64 },
 391         { "arc_meta_limit",             KSTAT_DATA_UINT64 },
 392         { "arc_meta_max",               KSTAT_DATA_UINT64 }
 393 };
 394 
 395 #define ARCSTAT(stat)   (arc_stats.stat.value.ui64)
 396 
 397 #define ARCSTAT_INCR(stat, val) \
 398         atomic_add_64(&arc_stats.stat.value.ui64, (val))
 399 
 400 #define ARCSTAT_BUMP(stat)      ARCSTAT_INCR(stat, 1)
 401 #define ARCSTAT_BUMPDOWN(stat)  ARCSTAT_INCR(stat, -1)
 402 
 403 #define ARCSTAT_MAX(stat, val) {                                        \
 404         uint64_t m;                                                     \
 405         while ((val) > (m = arc_stats.stat.value.ui64) &&            \
 406             (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))     \
 407                 continue;                                               \
 408 }
 409 
 410 #define ARCSTAT_MAXSTAT(stat) \
 411         ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
 412 
 413 /*
 414  * We define a macro to allow ARC hits/misses to be easily broken down by
 415  * two separate conditions, giving a total of four different subtypes for
 416  * each of hits and misses (so eight statistics total).
 417  */
 418 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
 419         if (cond1) {                                                    \
 420                 if (cond2) {                                            \
 421                         ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
 422                 } else {                                                \
 423                         ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
 424                 }                                                       \
 425         } else {                                                        \
 426                 if (cond2) {                                            \
 427                         ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
 428                 } else {                                                \
 429                         ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
 430                 }                                                       \
 431         }
 432 
 433 kstat_t                 *arc_ksp;
 434 static arc_state_t      *arc_anon;
 435 static arc_state_t      *arc_mru;
 436 static arc_state_t      *arc_mru_ghost;
 437 static arc_state_t      *arc_mfu;
 438 static arc_state_t      *arc_mfu_ghost;
 439 static arc_state_t      *arc_l2c_only;
 440 
 441 /*
 442  * There are several ARC variables that are critical to export as kstats --
 443  * but we don't want to have to grovel around in the kstat whenever we wish to
 444  * manipulate them.  For these variables, we therefore define them to be in
 445  * terms of the statistic variable.  This assures that we are not introducing
 446  * the possibility of inconsistency by having shadow copies of the variables,
 447  * while still allowing the code to be readable.
 448  */
 449 #define arc_size        ARCSTAT(arcstat_size)   /* actual total arc size */
 450 #define arc_p           ARCSTAT(arcstat_p)      /* target size of MRU */
 451 #define arc_c           ARCSTAT(arcstat_c)      /* target size of cache */
 452 #define arc_c_min       ARCSTAT(arcstat_c_min)  /* min target cache size */
 453 #define arc_c_max       ARCSTAT(arcstat_c_max)  /* max target cache size */
 454 #define arc_meta_limit  ARCSTAT(arcstat_meta_limit) /* max size for metadata */
 455 #define arc_meta_used   ARCSTAT(arcstat_meta_used) /* size of metadata */
 456 #define arc_meta_max    ARCSTAT(arcstat_meta_max) /* max size of metadata */
 457 
 458 #define L2ARC_IS_VALID_COMPRESS(_c_) \
 459         ((_c_) == ZIO_COMPRESS_LZ4 || (_c_) == ZIO_COMPRESS_EMPTY)
 460 
 461 static int              arc_no_grow;    /* Don't try to grow cache size */
 462 static uint64_t         arc_tempreserve;
 463 static uint64_t         arc_loaned_bytes;
 464 
 465 typedef struct l2arc_buf_hdr l2arc_buf_hdr_t;
 466 
 467 typedef struct arc_callback arc_callback_t;
 468 
 469 struct arc_callback {
 470         void                    *acb_private;
 471         arc_done_func_t         *acb_done;
 472         arc_buf_t               *acb_buf;
 473         zio_t                   *acb_zio_dummy;
 474         arc_callback_t          *acb_next;
 475 };
 476 
 477 typedef struct arc_write_callback arc_write_callback_t;
 478 
 479 struct arc_write_callback {
 480         void            *awcb_private;
 481         arc_done_func_t *awcb_ready;
 482         arc_done_func_t *awcb_physdone;
 483         arc_done_func_t *awcb_done;
 484         arc_buf_t       *awcb_buf;
 485 };
 486 
 487 struct arc_buf_hdr {
 488         /* protected by hash lock */
 489         dva_t                   b_dva;
 490         uint64_t                b_birth;
 491         uint64_t                b_cksum0;
 492 
 493         kmutex_t                b_freeze_lock;
 494         zio_cksum_t             *b_freeze_cksum;
 495         void                    *b_thawed;
 496 
 497         arc_buf_hdr_t           *b_hash_next;
 498         arc_buf_t               *b_buf;
 499         uint32_t                b_flags;
 500         uint32_t                b_datacnt;
 501 
 502         arc_callback_t          *b_acb;
 503         kcondvar_t              b_cv;
 504 
 505         /* immutable */
 506         arc_buf_contents_t      b_type;
 507         uint64_t                b_size;
 508         uint64_t                b_spa;
 509 
 510         /* protected by arc state mutex */
 511         arc_state_t             *b_state;
 512         list_node_t             b_arc_node;
 513 
 514         /* updated atomically */
 515         clock_t                 b_arc_access;
 516 
 517         /* self protecting */
 518         refcount_t              b_refcnt;
 519 
 520         l2arc_buf_hdr_t         *b_l2hdr;
 521         list_node_t             b_l2node;
 522 };
 523 
 524 static arc_buf_t *arc_eviction_list;
 525 static kmutex_t arc_eviction_mtx;
 526 static arc_buf_hdr_t arc_eviction_hdr;
 527 static void arc_get_data_buf(arc_buf_t *buf);
 528 static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock);
 529 static int arc_evict_needed(arc_buf_contents_t type);
 530 static void arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes);
 531 static void arc_buf_watch(arc_buf_t *buf);
 532 
 533 static boolean_t l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab);
 534 
 535 #define GHOST_STATE(state)      \
 536         ((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||        \
 537         (state) == arc_l2c_only)
 538 
 539 /*
 540  * Private ARC flags.  These flags are private ARC only flags that will show up
 541  * in b_flags in the arc_hdr_buf_t.  Some flags are publicly declared, and can
 542  * be passed in as arc_flags in things like arc_read.  However, these flags
 543  * should never be passed and should only be set by ARC code.  When adding new
 544  * public flags, make sure not to smash the private ones.
 545  */
 546 
 547 #define ARC_IN_HASH_TABLE       (1 << 9)  /* this buffer is hashed */
 548 #define ARC_IO_IN_PROGRESS      (1 << 10) /* I/O in progress for buf */
 549 #define ARC_IO_ERROR            (1 << 11) /* I/O failed for buf */
 550 #define ARC_FREED_IN_READ       (1 << 12) /* buf freed while in read */
 551 #define ARC_BUF_AVAILABLE       (1 << 13) /* block not in active use */
 552 #define ARC_INDIRECT            (1 << 14) /* this is an indirect block */
 553 #define ARC_FREE_IN_PROGRESS    (1 << 15) /* hdr about to be freed */
 554 #define ARC_L2_WRITING          (1 << 16) /* L2ARC write in progress */
 555 #define ARC_L2_EVICTED          (1 << 17) /* evicted during I/O */
 556 #define ARC_L2_WRITE_HEAD       (1 << 18) /* head of write list */
 557 
 558 #define HDR_IN_HASH_TABLE(hdr)  ((hdr)->b_flags & ARC_IN_HASH_TABLE)
 559 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS)
 560 #define HDR_IO_ERROR(hdr)       ((hdr)->b_flags & ARC_IO_ERROR)
 561 #define HDR_PREFETCH(hdr)       ((hdr)->b_flags & ARC_PREFETCH)
 562 #define HDR_FREED_IN_READ(hdr)  ((hdr)->b_flags & ARC_FREED_IN_READ)
 563 #define HDR_BUF_AVAILABLE(hdr)  ((hdr)->b_flags & ARC_BUF_AVAILABLE)
 564 #define HDR_FREE_IN_PROGRESS(hdr)       ((hdr)->b_flags & ARC_FREE_IN_PROGRESS)
 565 #define HDR_L2CACHE(hdr)        ((hdr)->b_flags & ARC_L2CACHE)
 566 #define HDR_L2_READING(hdr)     ((hdr)->b_flags & ARC_IO_IN_PROGRESS &&  \
 567                                     (hdr)->b_l2hdr != NULL)
 568 #define HDR_L2_WRITING(hdr)     ((hdr)->b_flags & ARC_L2_WRITING)
 569 #define HDR_L2_EVICTED(hdr)     ((hdr)->b_flags & ARC_L2_EVICTED)
 570 #define HDR_L2_WRITE_HEAD(hdr)  ((hdr)->b_flags & ARC_L2_WRITE_HEAD)
 571 
 572 /*
 573  * Other sizes
 574  */
 575 
 576 #define HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
 577 #define L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t))
 578 
 579 /*
 580  * Hash table routines
 581  */
 582 
 583 #define HT_LOCK_PAD     64
 584 
 585 struct ht_lock {
 586         kmutex_t        ht_lock;
 587 #ifdef _KERNEL
 588         unsigned char   pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
 589 #endif
 590 };
 591 
 592 #define BUF_LOCKS 256
 593 typedef struct buf_hash_table {
 594         uint64_t ht_mask;
 595         arc_buf_hdr_t **ht_table;
 596         struct ht_lock ht_locks[BUF_LOCKS];
 597 } buf_hash_table_t;
 598 
 599 static buf_hash_table_t buf_hash_table;
 600 
 601 #define BUF_HASH_INDEX(spa, dva, birth) \
 602         (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
 603 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
 604 #define BUF_HASH_LOCK(idx)      (&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
 605 #define HDR_LOCK(hdr) \
 606         (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
 607 
 608 uint64_t zfs_crc64_table[256];
 609 
 610 /*
 611  * Level 2 ARC
 612  */
 613 
 614 #define L2ARC_WRITE_SIZE        (8 * 1024 * 1024)       /* initial write max */
 615 #define L2ARC_HEADROOM          2                       /* num of writes */
 616 /*
 617  * If we discover during ARC scan any buffers to be compressed, we boost
 618  * our headroom for the next scanning cycle by this percentage multiple.
 619  */
 620 #define L2ARC_HEADROOM_BOOST    200
 621 #define L2ARC_FEED_SECS         1               /* caching interval secs */
 622 #define L2ARC_FEED_MIN_MS       200             /* min caching interval ms */
 623 
 624 #define l2arc_writes_sent       ARCSTAT(arcstat_l2_writes_sent)
 625 #define l2arc_writes_done       ARCSTAT(arcstat_l2_writes_done)
 626 
 627 /* L2ARC Performance Tunables */
 628 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE;    /* default max write size */
 629 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE;  /* extra write during warmup */
 630 uint64_t l2arc_headroom = L2ARC_HEADROOM;       /* number of dev writes */
 631 uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
 632 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS;     /* interval seconds */
 633 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval milliseconds */
 634 boolean_t l2arc_noprefetch = B_TRUE;            /* don't cache prefetch bufs */
 635 boolean_t l2arc_feed_again = B_TRUE;            /* turbo warmup */
 636 boolean_t l2arc_norw = B_TRUE;                  /* no reads during writes */
 637 
 638 /*
 639  * L2ARC Internals
 640  */
 641 typedef struct l2arc_dev {
 642         vdev_t                  *l2ad_vdev;     /* vdev */
 643         spa_t                   *l2ad_spa;      /* spa */
 644         uint64_t                l2ad_hand;      /* next write location */
 645         uint64_t                l2ad_start;     /* first addr on device */
 646         uint64_t                l2ad_end;       /* last addr on device */
 647         uint64_t                l2ad_evict;     /* last addr eviction reached */
 648         boolean_t               l2ad_first;     /* first sweep through */
 649         boolean_t               l2ad_writing;   /* currently writing */
 650         list_t                  *l2ad_buflist;  /* buffer list */
 651         list_node_t             l2ad_node;      /* device list node */
 652 } l2arc_dev_t;
 653 
 654 static list_t L2ARC_dev_list;                   /* device list */
 655 static list_t *l2arc_dev_list;                  /* device list pointer */
 656 static kmutex_t l2arc_dev_mtx;                  /* device list mutex */
 657 static l2arc_dev_t *l2arc_dev_last;             /* last device used */
 658 static kmutex_t l2arc_buflist_mtx;              /* mutex for all buflists */
 659 static list_t L2ARC_free_on_write;              /* free after write buf list */
 660 static list_t *l2arc_free_on_write;             /* free after write list ptr */
 661 static kmutex_t l2arc_free_on_write_mtx;        /* mutex for list */
 662 static uint64_t l2arc_ndev;                     /* number of devices */
 663 
 664 typedef struct l2arc_read_callback {
 665         arc_buf_t               *l2rcb_buf;             /* read buffer */
 666         spa_t                   *l2rcb_spa;             /* spa */
 667         blkptr_t                l2rcb_bp;               /* original blkptr */
 668         zbookmark_phys_t        l2rcb_zb;               /* original bookmark */
 669         int                     l2rcb_flags;            /* original flags */
 670         enum zio_compress       l2rcb_compress;         /* applied compress */
 671 } l2arc_read_callback_t;
 672 
 673 typedef struct l2arc_write_callback {
 674         l2arc_dev_t     *l2wcb_dev;             /* device info */
 675         arc_buf_hdr_t   *l2wcb_head;            /* head of write buflist */
 676 } l2arc_write_callback_t;
 677 
 678 struct l2arc_buf_hdr {
 679         /* protected by arc_buf_hdr  mutex */
 680         l2arc_dev_t             *b_dev;         /* L2ARC device */
 681         uint64_t                b_daddr;        /* disk address, offset byte */
 682         /* compression applied to buffer data */
 683         enum zio_compress       b_compress;
 684         /* real alloc'd buffer size depending on b_compress applied */
 685         int                     b_asize;
 686         /* temporary buffer holder for in-flight compressed data */
 687         void                    *b_tmp_cdata;
 688 };
 689 
 690 typedef struct l2arc_data_free {
 691         /* protected by l2arc_free_on_write_mtx */
 692         void            *l2df_data;
 693         size_t          l2df_size;
 694         void            (*l2df_func)(void *, size_t);
 695         list_node_t     l2df_list_node;
 696 } l2arc_data_free_t;
 697 
 698 static kmutex_t l2arc_feed_thr_lock;
 699 static kcondvar_t l2arc_feed_thr_cv;
 700 static uint8_t l2arc_thread_exit;
 701 
 702 static void l2arc_read_done(zio_t *zio);
 703 static void l2arc_hdr_stat_add(void);
 704 static void l2arc_hdr_stat_remove(void);
 705 
 706 static boolean_t l2arc_compress_buf(l2arc_buf_hdr_t *l2hdr);
 707 static void l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr,
 708     enum zio_compress c);
 709 static void l2arc_release_cdata_buf(arc_buf_hdr_t *ab);
 710 
 711 static uint64_t
 712 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
 713 {
 714         uint8_t *vdva = (uint8_t *)dva;
 715         uint64_t crc = -1ULL;
 716         int i;
 717 
 718         ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
 719 
 720         for (i = 0; i < sizeof (dva_t); i++)
 721                 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
 722 
 723         crc ^= (spa>>8) ^ birth;
 724 
 725         return (crc);
 726 }
 727 
 728 #define BUF_EMPTY(buf)                                          \
 729         ((buf)->b_dva.dva_word[0] == 0 &&                    \
 730         (buf)->b_dva.dva_word[1] == 0 &&                     \
 731         (buf)->b_cksum0 == 0)
 732 
 733 #define BUF_EQUAL(spa, dva, birth, buf)                         \
 734         ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&       \
 735         ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&       \
 736         ((buf)->b_birth == birth) && ((buf)->b_spa == spa)
 737 
 738 static void
 739 buf_discard_identity(arc_buf_hdr_t *hdr)
 740 {
 741         hdr->b_dva.dva_word[0] = 0;
 742         hdr->b_dva.dva_word[1] = 0;
 743         hdr->b_birth = 0;
 744         hdr->b_cksum0 = 0;
 745 }
 746 
 747 static arc_buf_hdr_t *
 748 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
 749 {
 750         const dva_t *dva = BP_IDENTITY(bp);
 751         uint64_t birth = BP_PHYSICAL_BIRTH(bp);
 752         uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
 753         kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
 754         arc_buf_hdr_t *buf;
 755 
 756         mutex_enter(hash_lock);
 757         for (buf = buf_hash_table.ht_table[idx]; buf != NULL;
 758             buf = buf->b_hash_next) {
 759                 if (BUF_EQUAL(spa, dva, birth, buf)) {
 760                         *lockp = hash_lock;
 761                         return (buf);
 762                 }
 763         }
 764         mutex_exit(hash_lock);
 765         *lockp = NULL;
 766         return (NULL);
 767 }
 768 
 769 /*
 770  * Insert an entry into the hash table.  If there is already an element
 771  * equal to elem in the hash table, then the already existing element
 772  * will be returned and the new element will not be inserted.
 773  * Otherwise returns NULL.
 774  */
 775 static arc_buf_hdr_t *
 776 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp)
 777 {
 778         uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
 779         kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
 780         arc_buf_hdr_t *fbuf;
 781         uint32_t i;
 782 
 783         ASSERT(!DVA_IS_EMPTY(&buf->b_dva));
 784         ASSERT(buf->b_birth != 0);
 785         ASSERT(!HDR_IN_HASH_TABLE(buf));
 786         *lockp = hash_lock;
 787         mutex_enter(hash_lock);
 788         for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL;
 789             fbuf = fbuf->b_hash_next, i++) {
 790                 if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf))
 791                         return (fbuf);
 792         }
 793 
 794         buf->b_hash_next = buf_hash_table.ht_table[idx];
 795         buf_hash_table.ht_table[idx] = buf;
 796         buf->b_flags |= ARC_IN_HASH_TABLE;
 797 
 798         /* collect some hash table performance data */
 799         if (i > 0) {
 800                 ARCSTAT_BUMP(arcstat_hash_collisions);
 801                 if (i == 1)
 802                         ARCSTAT_BUMP(arcstat_hash_chains);
 803 
 804                 ARCSTAT_MAX(arcstat_hash_chain_max, i);
 805         }
 806 
 807         ARCSTAT_BUMP(arcstat_hash_elements);
 808         ARCSTAT_MAXSTAT(arcstat_hash_elements);
 809 
 810         return (NULL);
 811 }
 812 
 813 static void
 814 buf_hash_remove(arc_buf_hdr_t *buf)
 815 {
 816         arc_buf_hdr_t *fbuf, **bufp;
 817         uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
 818 
 819         ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
 820         ASSERT(HDR_IN_HASH_TABLE(buf));
 821 
 822         bufp = &buf_hash_table.ht_table[idx];
 823         while ((fbuf = *bufp) != buf) {
 824                 ASSERT(fbuf != NULL);
 825                 bufp = &fbuf->b_hash_next;
 826         }
 827         *bufp = buf->b_hash_next;
 828         buf->b_hash_next = NULL;
 829         buf->b_flags &= ~ARC_IN_HASH_TABLE;
 830 
 831         /* collect some hash table performance data */
 832         ARCSTAT_BUMPDOWN(arcstat_hash_elements);
 833 
 834         if (buf_hash_table.ht_table[idx] &&
 835             buf_hash_table.ht_table[idx]->b_hash_next == NULL)
 836                 ARCSTAT_BUMPDOWN(arcstat_hash_chains);
 837 }
 838 
 839 /*
 840  * Global data structures and functions for the buf kmem cache.
 841  */
 842 static kmem_cache_t *hdr_cache;
 843 static kmem_cache_t *buf_cache;
 844 
 845 static void
 846 buf_fini(void)
 847 {
 848         int i;
 849 
 850         kmem_free(buf_hash_table.ht_table,
 851             (buf_hash_table.ht_mask + 1) * sizeof (void *));
 852         for (i = 0; i < BUF_LOCKS; i++)
 853                 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
 854         kmem_cache_destroy(hdr_cache);
 855         kmem_cache_destroy(buf_cache);
 856 }
 857 
 858 /*
 859  * Constructor callback - called when the cache is empty
 860  * and a new buf is requested.
 861  */
 862 /* ARGSUSED */
 863 static int
 864 hdr_cons(void *vbuf, void *unused, int kmflag)
 865 {
 866         arc_buf_hdr_t *buf = vbuf;
 867 
 868         bzero(buf, sizeof (arc_buf_hdr_t));
 869         refcount_create(&buf->b_refcnt);
 870         cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL);
 871         mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
 872         arc_space_consume(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
 873 
 874         return (0);
 875 }
 876 
 877 /* ARGSUSED */
 878 static int
 879 buf_cons(void *vbuf, void *unused, int kmflag)
 880 {
 881         arc_buf_t *buf = vbuf;
 882 
 883         bzero(buf, sizeof (arc_buf_t));
 884         mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
 885         arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
 886 
 887         return (0);
 888 }
 889 
 890 /*
 891  * Destructor callback - called when a cached buf is
 892  * no longer required.
 893  */
 894 /* ARGSUSED */
 895 static void
 896 hdr_dest(void *vbuf, void *unused)
 897 {
 898         arc_buf_hdr_t *buf = vbuf;
 899 
 900         ASSERT(BUF_EMPTY(buf));
 901         refcount_destroy(&buf->b_refcnt);
 902         cv_destroy(&buf->b_cv);
 903         mutex_destroy(&buf->b_freeze_lock);
 904         arc_space_return(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
 905 }
 906 
 907 /* ARGSUSED */
 908 static void
 909 buf_dest(void *vbuf, void *unused)
 910 {
 911         arc_buf_t *buf = vbuf;
 912 
 913         mutex_destroy(&buf->b_evict_lock);
 914         arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
 915 }
 916 
 917 /*
 918  * Reclaim callback -- invoked when memory is low.
 919  */
 920 /* ARGSUSED */
 921 static void
 922 hdr_recl(void *unused)
 923 {
 924         dprintf("hdr_recl called\n");
 925         /*
 926          * umem calls the reclaim func when we destroy the buf cache,
 927          * which is after we do arc_fini().
 928          */
 929         if (!arc_dead)
 930                 cv_signal(&arc_reclaim_thr_cv);
 931 }
 932 
 933 static void
 934 buf_init(void)
 935 {
 936         uint64_t *ct;
 937         uint64_t hsize = 1ULL << 12;
 938         int i, j;
 939 
 940         /*
 941          * The hash table is big enough to fill all of physical memory
 942          * with an average block size of zfs_arc_average_blocksize (default 8K).
 943          * By default, the table will take up
 944          * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
 945          */
 946         while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE)
 947                 hsize <<= 1;
 948 retry:
 949         buf_hash_table.ht_mask = hsize - 1;
 950         buf_hash_table.ht_table =
 951             kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
 952         if (buf_hash_table.ht_table == NULL) {
 953                 ASSERT(hsize > (1ULL << 8));
 954                 hsize >>= 1;
 955                 goto retry;
 956         }
 957 
 958         hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t),
 959             0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0);
 960         buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
 961             0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
 962 
 963         for (i = 0; i < 256; i++)
 964                 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
 965                         *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
 966 
 967         for (i = 0; i < BUF_LOCKS; i++) {
 968                 mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
 969                     NULL, MUTEX_DEFAULT, NULL);
 970         }
 971 }
 972 
 973 #define ARC_MINTIME     (hz>>4) /* 62 ms */
 974 
 975 static void
 976 arc_cksum_verify(arc_buf_t *buf)
 977 {
 978         zio_cksum_t zc;
 979 
 980         if (!(zfs_flags & ZFS_DEBUG_MODIFY))
 981                 return;
 982 
 983         mutex_enter(&buf->b_hdr->b_freeze_lock);
 984         if (buf->b_hdr->b_freeze_cksum == NULL ||
 985             (buf->b_hdr->b_flags & ARC_IO_ERROR)) {
 986                 mutex_exit(&buf->b_hdr->b_freeze_lock);
 987                 return;
 988         }
 989         fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
 990         if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
 991                 panic("buffer modified while frozen!");
 992         mutex_exit(&buf->b_hdr->b_freeze_lock);
 993 }
 994 
 995 static int
 996 arc_cksum_equal(arc_buf_t *buf)
 997 {
 998         zio_cksum_t zc;
 999         int equal;
1000 
1001         mutex_enter(&buf->b_hdr->b_freeze_lock);
1002         fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
1003         equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
1004         mutex_exit(&buf->b_hdr->b_freeze_lock);
1005 
1006         return (equal);
1007 }
1008 
1009 static void
1010 arc_cksum_compute(arc_buf_t *buf, boolean_t force)
1011 {
1012         if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
1013                 return;
1014 
1015         mutex_enter(&buf->b_hdr->b_freeze_lock);
1016         if (buf->b_hdr->b_freeze_cksum != NULL) {
1017                 mutex_exit(&buf->b_hdr->b_freeze_lock);
1018                 return;
1019         }
1020         buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP);
1021         fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
1022             buf->b_hdr->b_freeze_cksum);
1023         mutex_exit(&buf->b_hdr->b_freeze_lock);
1024         arc_buf_watch(buf);
1025 }
1026 
1027 #ifndef _KERNEL
1028 typedef struct procctl {
1029         long cmd;
1030         prwatch_t prwatch;
1031 } procctl_t;
1032 #endif
1033 
1034 /* ARGSUSED */
1035 static void
1036 arc_buf_unwatch(arc_buf_t *buf)
1037 {
1038 #ifndef _KERNEL
1039         if (arc_watch) {
1040                 int result;
1041                 procctl_t ctl;
1042                 ctl.cmd = PCWATCH;
1043                 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1044                 ctl.prwatch.pr_size = 0;
1045                 ctl.prwatch.pr_wflags = 0;
1046                 result = write(arc_procfd, &ctl, sizeof (ctl));
1047                 ASSERT3U(result, ==, sizeof (ctl));
1048         }
1049 #endif
1050 }
1051 
1052 /* ARGSUSED */
1053 static void
1054 arc_buf_watch(arc_buf_t *buf)
1055 {
1056 #ifndef _KERNEL
1057         if (arc_watch) {
1058                 int result;
1059                 procctl_t ctl;
1060                 ctl.cmd = PCWATCH;
1061                 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1062                 ctl.prwatch.pr_size = buf->b_hdr->b_size;
1063                 ctl.prwatch.pr_wflags = WA_WRITE;
1064                 result = write(arc_procfd, &ctl, sizeof (ctl));
1065                 ASSERT3U(result, ==, sizeof (ctl));
1066         }
1067 #endif
1068 }
1069 
1070 void
1071 arc_buf_thaw(arc_buf_t *buf)
1072 {
1073         if (zfs_flags & ZFS_DEBUG_MODIFY) {
1074                 if (buf->b_hdr->b_state != arc_anon)
1075                         panic("modifying non-anon buffer!");
1076                 if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS)
1077                         panic("modifying buffer while i/o in progress!");
1078                 arc_cksum_verify(buf);
1079         }
1080 
1081         mutex_enter(&buf->b_hdr->b_freeze_lock);
1082         if (buf->b_hdr->b_freeze_cksum != NULL) {
1083                 kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1084                 buf->b_hdr->b_freeze_cksum = NULL;
1085         }
1086 
1087         if (zfs_flags & ZFS_DEBUG_MODIFY) {
1088                 if (buf->b_hdr->b_thawed)
1089                         kmem_free(buf->b_hdr->b_thawed, 1);
1090                 buf->b_hdr->b_thawed = kmem_alloc(1, KM_SLEEP);
1091         }
1092 
1093         mutex_exit(&buf->b_hdr->b_freeze_lock);
1094 
1095         arc_buf_unwatch(buf);
1096 }
1097 
1098 void
1099 arc_buf_freeze(arc_buf_t *buf)
1100 {
1101         kmutex_t *hash_lock;
1102 
1103         if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1104                 return;
1105 
1106         hash_lock = HDR_LOCK(buf->b_hdr);
1107         mutex_enter(hash_lock);
1108 
1109         ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
1110             buf->b_hdr->b_state == arc_anon);
1111         arc_cksum_compute(buf, B_FALSE);
1112         mutex_exit(hash_lock);
1113 
1114 }
1115 
1116 static void
1117 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
1118 {
1119         ASSERT(MUTEX_HELD(hash_lock));
1120 
1121         if ((refcount_add(&ab->b_refcnt, tag) == 1) &&
1122             (ab->b_state != arc_anon)) {
1123                 uint64_t delta = ab->b_size * ab->b_datacnt;
1124                 list_t *list = &ab->b_state->arcs_list[ab->b_type];
1125                 uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type];
1126 
1127                 ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx));
1128                 mutex_enter(&ab->b_state->arcs_mtx);
1129                 ASSERT(list_link_active(&ab->b_arc_node));
1130                 list_remove(list, ab);
1131                 if (GHOST_STATE(ab->b_state)) {
1132                         ASSERT0(ab->b_datacnt);
1133                         ASSERT3P(ab->b_buf, ==, NULL);
1134                         delta = ab->b_size;
1135                 }
1136                 ASSERT(delta > 0);
1137                 ASSERT3U(*size, >=, delta);
1138                 atomic_add_64(size, -delta);
1139                 mutex_exit(&ab->b_state->arcs_mtx);
1140                 /* remove the prefetch flag if we get a reference */
1141                 if (ab->b_flags & ARC_PREFETCH)
1142                         ab->b_flags &= ~ARC_PREFETCH;
1143         }
1144 }
1145 
1146 static int
1147 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
1148 {
1149         int cnt;
1150         arc_state_t *state = ab->b_state;
1151 
1152         ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
1153         ASSERT(!GHOST_STATE(state));
1154 
1155         if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) &&
1156             (state != arc_anon)) {
1157                 uint64_t *size = &state->arcs_lsize[ab->b_type];
1158 
1159                 ASSERT(!MUTEX_HELD(&state->arcs_mtx));
1160                 mutex_enter(&state->arcs_mtx);
1161                 ASSERT(!list_link_active(&ab->b_arc_node));
1162                 list_insert_head(&state->arcs_list[ab->b_type], ab);
1163                 ASSERT(ab->b_datacnt > 0);
1164                 atomic_add_64(size, ab->b_size * ab->b_datacnt);
1165                 mutex_exit(&state->arcs_mtx);
1166         }
1167         return (cnt);
1168 }
1169 
1170 /*
1171  * Move the supplied buffer to the indicated state.  The mutex
1172  * for the buffer must be held by the caller.
1173  */
1174 static void
1175 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock)
1176 {
1177         arc_state_t *old_state = ab->b_state;
1178         int64_t refcnt = refcount_count(&ab->b_refcnt);
1179         uint64_t from_delta, to_delta;
1180 
1181         ASSERT(MUTEX_HELD(hash_lock));
1182         ASSERT3P(new_state, !=, old_state);
1183         ASSERT(refcnt == 0 || ab->b_datacnt > 0);
1184         ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state));
1185         ASSERT(ab->b_datacnt <= 1 || old_state != arc_anon);
1186 
1187         from_delta = to_delta = ab->b_datacnt * ab->b_size;
1188 
1189         /*
1190          * If this buffer is evictable, transfer it from the
1191          * old state list to the new state list.
1192          */
1193         if (refcnt == 0) {
1194                 if (old_state != arc_anon) {
1195                         int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx);
1196                         uint64_t *size = &old_state->arcs_lsize[ab->b_type];
1197 
1198                         if (use_mutex)
1199                                 mutex_enter(&old_state->arcs_mtx);
1200 
1201                         ASSERT(list_link_active(&ab->b_arc_node));
1202                         list_remove(&old_state->arcs_list[ab->b_type], ab);
1203 
1204                         /*
1205                          * If prefetching out of the ghost cache,
1206                          * we will have a non-zero datacnt.
1207                          */
1208                         if (GHOST_STATE(old_state) && ab->b_datacnt == 0) {
1209                                 /* ghost elements have a ghost size */
1210                                 ASSERT(ab->b_buf == NULL);
1211                                 from_delta = ab->b_size;
1212                         }
1213                         ASSERT3U(*size, >=, from_delta);
1214                         atomic_add_64(size, -from_delta);
1215 
1216                         if (use_mutex)
1217                                 mutex_exit(&old_state->arcs_mtx);
1218                 }
1219                 if (new_state != arc_anon) {
1220                         int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx);
1221                         uint64_t *size = &new_state->arcs_lsize[ab->b_type];
1222 
1223                         if (use_mutex)
1224                                 mutex_enter(&new_state->arcs_mtx);
1225 
1226                         list_insert_head(&new_state->arcs_list[ab->b_type], ab);
1227 
1228                         /* ghost elements have a ghost size */
1229                         if (GHOST_STATE(new_state)) {
1230                                 ASSERT(ab->b_datacnt == 0);
1231                                 ASSERT(ab->b_buf == NULL);
1232                                 to_delta = ab->b_size;
1233                         }
1234                         atomic_add_64(size, to_delta);
1235 
1236                         if (use_mutex)
1237                                 mutex_exit(&new_state->arcs_mtx);
1238                 }
1239         }
1240 
1241         ASSERT(!BUF_EMPTY(ab));
1242         if (new_state == arc_anon && HDR_IN_HASH_TABLE(ab))
1243                 buf_hash_remove(ab);
1244 
1245         /* adjust state sizes */
1246         if (to_delta)
1247                 atomic_add_64(&new_state->arcs_size, to_delta);
1248         if (from_delta) {
1249                 ASSERT3U(old_state->arcs_size, >=, from_delta);
1250                 atomic_add_64(&old_state->arcs_size, -from_delta);
1251         }
1252         ab->b_state = new_state;
1253 
1254         /* adjust l2arc hdr stats */
1255         if (new_state == arc_l2c_only)
1256                 l2arc_hdr_stat_add();
1257         else if (old_state == arc_l2c_only)
1258                 l2arc_hdr_stat_remove();
1259 }
1260 
1261 void
1262 arc_space_consume(uint64_t space, arc_space_type_t type)
1263 {
1264         ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1265 
1266         switch (type) {
1267         case ARC_SPACE_DATA:
1268                 ARCSTAT_INCR(arcstat_data_size, space);
1269                 break;
1270         case ARC_SPACE_OTHER:
1271                 ARCSTAT_INCR(arcstat_other_size, space);
1272                 break;
1273         case ARC_SPACE_HDRS:
1274                 ARCSTAT_INCR(arcstat_hdr_size, space);
1275                 break;
1276         case ARC_SPACE_L2HDRS:
1277                 ARCSTAT_INCR(arcstat_l2_hdr_size, space);
1278                 break;
1279         }
1280 
1281         ARCSTAT_INCR(arcstat_meta_used, space);
1282         atomic_add_64(&arc_size, space);
1283 }
1284 
1285 void
1286 arc_space_return(uint64_t space, arc_space_type_t type)
1287 {
1288         ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1289 
1290         switch (type) {
1291         case ARC_SPACE_DATA:
1292                 ARCSTAT_INCR(arcstat_data_size, -space);
1293                 break;
1294         case ARC_SPACE_OTHER:
1295                 ARCSTAT_INCR(arcstat_other_size, -space);
1296                 break;
1297         case ARC_SPACE_HDRS:
1298                 ARCSTAT_INCR(arcstat_hdr_size, -space);
1299                 break;
1300         case ARC_SPACE_L2HDRS:
1301                 ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
1302                 break;
1303         }
1304 
1305         ASSERT(arc_meta_used >= space);
1306         if (arc_meta_max < arc_meta_used)
1307                 arc_meta_max = arc_meta_used;
1308         ARCSTAT_INCR(arcstat_meta_used, -space);
1309         ASSERT(arc_size >= space);
1310         atomic_add_64(&arc_size, -space);
1311 }
1312 
1313 arc_buf_t *
1314 arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type)
1315 {
1316         arc_buf_hdr_t *hdr;
1317         arc_buf_t *buf;
1318 
1319         ASSERT3U(size, >, 0);
1320         hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
1321         ASSERT(BUF_EMPTY(hdr));
1322         hdr->b_size = size;
1323         hdr->b_type = type;
1324         hdr->b_spa = spa_load_guid(spa);
1325         hdr->b_state = arc_anon;
1326         hdr->b_arc_access = 0;
1327         buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1328         buf->b_hdr = hdr;
1329         buf->b_data = NULL;
1330         buf->b_efunc = NULL;
1331         buf->b_private = NULL;
1332         buf->b_next = NULL;
1333         hdr->b_buf = buf;
1334         arc_get_data_buf(buf);
1335         hdr->b_datacnt = 1;
1336         hdr->b_flags = 0;
1337         ASSERT(refcount_is_zero(&hdr->b_refcnt));
1338         (void) refcount_add(&hdr->b_refcnt, tag);
1339 
1340         return (buf);
1341 }
1342 
1343 static char *arc_onloan_tag = "onloan";
1344 
1345 /*
1346  * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
1347  * flight data by arc_tempreserve_space() until they are "returned". Loaned
1348  * buffers must be returned to the arc before they can be used by the DMU or
1349  * freed.
1350  */
1351 arc_buf_t *
1352 arc_loan_buf(spa_t *spa, int size)
1353 {
1354         arc_buf_t *buf;
1355 
1356         buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA);
1357 
1358         atomic_add_64(&arc_loaned_bytes, size);
1359         return (buf);
1360 }
1361 
1362 /*
1363  * Return a loaned arc buffer to the arc.
1364  */
1365 void
1366 arc_return_buf(arc_buf_t *buf, void *tag)
1367 {
1368         arc_buf_hdr_t *hdr = buf->b_hdr;
1369 
1370         ASSERT(buf->b_data != NULL);
1371         (void) refcount_add(&hdr->b_refcnt, tag);
1372         (void) refcount_remove(&hdr->b_refcnt, arc_onloan_tag);
1373 
1374         atomic_add_64(&arc_loaned_bytes, -hdr->b_size);
1375 }
1376 
1377 /* Detach an arc_buf from a dbuf (tag) */
1378 void
1379 arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
1380 {
1381         arc_buf_hdr_t *hdr;
1382 
1383         ASSERT(buf->b_data != NULL);
1384         hdr = buf->b_hdr;
1385         (void) refcount_add(&hdr->b_refcnt, arc_onloan_tag);
1386         (void) refcount_remove(&hdr->b_refcnt, tag);
1387         buf->b_efunc = NULL;
1388         buf->b_private = NULL;
1389 
1390         atomic_add_64(&arc_loaned_bytes, hdr->b_size);
1391 }
1392 
1393 static arc_buf_t *
1394 arc_buf_clone(arc_buf_t *from)
1395 {
1396         arc_buf_t *buf;
1397         arc_buf_hdr_t *hdr = from->b_hdr;
1398         uint64_t size = hdr->b_size;
1399 
1400         ASSERT(hdr->b_state != arc_anon);
1401 
1402         buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1403         buf->b_hdr = hdr;
1404         buf->b_data = NULL;
1405         buf->b_efunc = NULL;
1406         buf->b_private = NULL;
1407         buf->b_next = hdr->b_buf;
1408         hdr->b_buf = buf;
1409         arc_get_data_buf(buf);
1410         bcopy(from->b_data, buf->b_data, size);
1411 
1412         /*
1413          * This buffer already exists in the arc so create a duplicate
1414          * copy for the caller.  If the buffer is associated with user data
1415          * then track the size and number of duplicates.  These stats will be
1416          * updated as duplicate buffers are created and destroyed.
1417          */
1418         if (hdr->b_type == ARC_BUFC_DATA) {
1419                 ARCSTAT_BUMP(arcstat_duplicate_buffers);
1420                 ARCSTAT_INCR(arcstat_duplicate_buffers_size, size);
1421         }
1422         hdr->b_datacnt += 1;
1423         return (buf);
1424 }
1425 
1426 void
1427 arc_buf_add_ref(arc_buf_t *buf, void* tag)
1428 {
1429         arc_buf_hdr_t *hdr;
1430         kmutex_t *hash_lock;
1431 
1432         /*
1433          * Check to see if this buffer is evicted.  Callers
1434          * must verify b_data != NULL to know if the add_ref
1435          * was successful.
1436          */
1437         mutex_enter(&buf->b_evict_lock);
1438         if (buf->b_data == NULL) {
1439                 mutex_exit(&buf->b_evict_lock);
1440                 return;
1441         }
1442         hash_lock = HDR_LOCK(buf->b_hdr);
1443         mutex_enter(hash_lock);
1444         hdr = buf->b_hdr;
1445         ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1446         mutex_exit(&buf->b_evict_lock);
1447 
1448         ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
1449         add_reference(hdr, hash_lock, tag);
1450         DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
1451         arc_access(hdr, hash_lock);
1452         mutex_exit(hash_lock);
1453         ARCSTAT_BUMP(arcstat_hits);
1454         ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
1455             demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
1456             data, metadata, hits);
1457 }
1458 
1459 /*
1460  * Free the arc data buffer.  If it is an l2arc write in progress,
1461  * the buffer is placed on l2arc_free_on_write to be freed later.
1462  */
1463 static void
1464 arc_buf_data_free(arc_buf_t *buf, void (*free_func)(void *, size_t))
1465 {
1466         arc_buf_hdr_t *hdr = buf->b_hdr;
1467 
1468         if (HDR_L2_WRITING(hdr)) {
1469                 l2arc_data_free_t *df;
1470                 df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP);
1471                 df->l2df_data = buf->b_data;
1472                 df->l2df_size = hdr->b_size;
1473                 df->l2df_func = free_func;
1474                 mutex_enter(&l2arc_free_on_write_mtx);
1475                 list_insert_head(l2arc_free_on_write, df);
1476                 mutex_exit(&l2arc_free_on_write_mtx);
1477                 ARCSTAT_BUMP(arcstat_l2_free_on_write);
1478         } else {
1479                 free_func(buf->b_data, hdr->b_size);
1480         }
1481 }
1482 
1483 /*
1484  * Free up buf->b_data and if 'remove' is set, then pull the
1485  * arc_buf_t off of the the arc_buf_hdr_t's list and free it.
1486  */
1487 static void
1488 arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t remove)
1489 {
1490         arc_buf_t **bufp;
1491 
1492         /* free up data associated with the buf */
1493         if (buf->b_data) {
1494                 arc_state_t *state = buf->b_hdr->b_state;
1495                 uint64_t size = buf->b_hdr->b_size;
1496                 arc_buf_contents_t type = buf->b_hdr->b_type;
1497 
1498                 arc_cksum_verify(buf);
1499                 arc_buf_unwatch(buf);
1500 
1501                 if (!recycle) {
1502                         if (type == ARC_BUFC_METADATA) {
1503                                 arc_buf_data_free(buf, zio_buf_free);
1504                                 arc_space_return(size, ARC_SPACE_DATA);
1505                         } else {
1506                                 ASSERT(type == ARC_BUFC_DATA);
1507                                 arc_buf_data_free(buf, zio_data_buf_free);
1508                                 ARCSTAT_INCR(arcstat_data_size, -size);
1509                                 atomic_add_64(&arc_size, -size);
1510                         }
1511                 }
1512                 if (list_link_active(&buf->b_hdr->b_arc_node)) {
1513                         uint64_t *cnt = &state->arcs_lsize[type];
1514 
1515                         ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt));
1516                         ASSERT(state != arc_anon);
1517 
1518                         ASSERT3U(*cnt, >=, size);
1519                         atomic_add_64(cnt, -size);
1520                 }
1521                 ASSERT3U(state->arcs_size, >=, size);
1522                 atomic_add_64(&state->arcs_size, -size);
1523                 buf->b_data = NULL;
1524 
1525                 /*
1526                  * If we're destroying a duplicate buffer make sure
1527                  * that the appropriate statistics are updated.
1528                  */
1529                 if (buf->b_hdr->b_datacnt > 1 &&
1530                     buf->b_hdr->b_type == ARC_BUFC_DATA) {
1531                         ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
1532                         ARCSTAT_INCR(arcstat_duplicate_buffers_size, -size);
1533                 }
1534                 ASSERT(buf->b_hdr->b_datacnt > 0);
1535                 buf->b_hdr->b_datacnt -= 1;
1536         }
1537 
1538         /* only remove the buf if requested */
1539         if (!remove)
1540                 return;
1541 
1542         /* remove the buf from the hdr list */
1543         for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next)
1544                 continue;
1545         *bufp = buf->b_next;
1546         buf->b_next = NULL;
1547 
1548         ASSERT(buf->b_efunc == NULL);
1549 
1550         /* clean up the buf */
1551         buf->b_hdr = NULL;
1552         kmem_cache_free(buf_cache, buf);
1553 }
1554 
1555 static void
1556 arc_hdr_destroy(arc_buf_hdr_t *hdr)
1557 {
1558         ASSERT(refcount_is_zero(&hdr->b_refcnt));
1559         ASSERT3P(hdr->b_state, ==, arc_anon);
1560         ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1561         l2arc_buf_hdr_t *l2hdr = hdr->b_l2hdr;
1562 
1563         if (l2hdr != NULL) {
1564                 boolean_t buflist_held = MUTEX_HELD(&l2arc_buflist_mtx);
1565                 /*
1566                  * To prevent arc_free() and l2arc_evict() from
1567                  * attempting to free the same buffer at the same time,
1568                  * a FREE_IN_PROGRESS flag is given to arc_free() to
1569                  * give it priority.  l2arc_evict() can't destroy this
1570                  * header while we are waiting on l2arc_buflist_mtx.
1571                  *
1572                  * The hdr may be removed from l2ad_buflist before we
1573                  * grab l2arc_buflist_mtx, so b_l2hdr is rechecked.
1574                  */
1575                 if (!buflist_held) {
1576                         mutex_enter(&l2arc_buflist_mtx);
1577                         l2hdr = hdr->b_l2hdr;
1578                 }
1579 
1580                 if (l2hdr != NULL) {
1581                         list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
1582                         ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
1583                         ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize);
1584                         vdev_space_update(l2hdr->b_dev->l2ad_vdev,
1585                             -l2hdr->b_asize, 0, 0);
1586                         kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
1587                         if (hdr->b_state == arc_l2c_only)
1588                                 l2arc_hdr_stat_remove();
1589                         hdr->b_l2hdr = NULL;
1590                 }
1591 
1592                 if (!buflist_held)
1593                         mutex_exit(&l2arc_buflist_mtx);
1594         }
1595 
1596         if (!BUF_EMPTY(hdr)) {
1597                 ASSERT(!HDR_IN_HASH_TABLE(hdr));
1598                 buf_discard_identity(hdr);
1599         }
1600         while (hdr->b_buf) {
1601                 arc_buf_t *buf = hdr->b_buf;
1602 
1603                 if (buf->b_efunc) {
1604                         mutex_enter(&arc_eviction_mtx);
1605                         mutex_enter(&buf->b_evict_lock);
1606                         ASSERT(buf->b_hdr != NULL);
1607                         arc_buf_destroy(hdr->b_buf, FALSE, FALSE);
1608                         hdr->b_buf = buf->b_next;
1609                         buf->b_hdr = &arc_eviction_hdr;
1610                         buf->b_next = arc_eviction_list;
1611                         arc_eviction_list = buf;
1612                         mutex_exit(&buf->b_evict_lock);
1613                         mutex_exit(&arc_eviction_mtx);
1614                 } else {
1615                         arc_buf_destroy(hdr->b_buf, FALSE, TRUE);
1616                 }
1617         }
1618         if (hdr->b_freeze_cksum != NULL) {
1619                 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1620                 hdr->b_freeze_cksum = NULL;
1621         }
1622         if (hdr->b_thawed) {
1623                 kmem_free(hdr->b_thawed, 1);
1624                 hdr->b_thawed = NULL;
1625         }
1626 
1627         ASSERT(!list_link_active(&hdr->b_arc_node));
1628         ASSERT3P(hdr->b_hash_next, ==, NULL);
1629         ASSERT3P(hdr->b_acb, ==, NULL);
1630         kmem_cache_free(hdr_cache, hdr);
1631 }
1632 
1633 void
1634 arc_buf_free(arc_buf_t *buf, void *tag)
1635 {
1636         arc_buf_hdr_t *hdr = buf->b_hdr;
1637         int hashed = hdr->b_state != arc_anon;
1638 
1639         ASSERT(buf->b_efunc == NULL);
1640         ASSERT(buf->b_data != NULL);
1641 
1642         if (hashed) {
1643                 kmutex_t *hash_lock = HDR_LOCK(hdr);
1644 
1645                 mutex_enter(hash_lock);
1646                 hdr = buf->b_hdr;
1647                 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1648 
1649                 (void) remove_reference(hdr, hash_lock, tag);
1650                 if (hdr->b_datacnt > 1) {
1651                         arc_buf_destroy(buf, FALSE, TRUE);
1652                 } else {
1653                         ASSERT(buf == hdr->b_buf);
1654                         ASSERT(buf->b_efunc == NULL);
1655                         hdr->b_flags |= ARC_BUF_AVAILABLE;
1656                 }
1657                 mutex_exit(hash_lock);
1658         } else if (HDR_IO_IN_PROGRESS(hdr)) {
1659                 int destroy_hdr;
1660                 /*
1661                  * We are in the middle of an async write.  Don't destroy
1662                  * this buffer unless the write completes before we finish
1663                  * decrementing the reference count.
1664                  */
1665                 mutex_enter(&arc_eviction_mtx);
1666                 (void) remove_reference(hdr, NULL, tag);
1667                 ASSERT(refcount_is_zero(&hdr->b_refcnt));
1668                 destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
1669                 mutex_exit(&arc_eviction_mtx);
1670                 if (destroy_hdr)
1671                         arc_hdr_destroy(hdr);
1672         } else {
1673                 if (remove_reference(hdr, NULL, tag) > 0)
1674                         arc_buf_destroy(buf, FALSE, TRUE);
1675                 else
1676                         arc_hdr_destroy(hdr);
1677         }
1678 }
1679 
1680 boolean_t
1681 arc_buf_remove_ref(arc_buf_t *buf, void* tag)
1682 {
1683         arc_buf_hdr_t *hdr = buf->b_hdr;
1684         kmutex_t *hash_lock = HDR_LOCK(hdr);
1685         boolean_t no_callback = (buf->b_efunc == NULL);
1686 
1687         if (hdr->b_state == arc_anon) {
1688                 ASSERT(hdr->b_datacnt == 1);
1689                 arc_buf_free(buf, tag);
1690                 return (no_callback);
1691         }
1692 
1693         mutex_enter(hash_lock);
1694         hdr = buf->b_hdr;
1695         ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1696         ASSERT(hdr->b_state != arc_anon);
1697         ASSERT(buf->b_data != NULL);
1698 
1699         (void) remove_reference(hdr, hash_lock, tag);
1700         if (hdr->b_datacnt > 1) {
1701                 if (no_callback)
1702                         arc_buf_destroy(buf, FALSE, TRUE);
1703         } else if (no_callback) {
1704                 ASSERT(hdr->b_buf == buf && buf->b_next == NULL);
1705                 ASSERT(buf->b_efunc == NULL);
1706                 hdr->b_flags |= ARC_BUF_AVAILABLE;
1707         }
1708         ASSERT(no_callback || hdr->b_datacnt > 1 ||
1709             refcount_is_zero(&hdr->b_refcnt));
1710         mutex_exit(hash_lock);
1711         return (no_callback);
1712 }
1713 
1714 int
1715 arc_buf_size(arc_buf_t *buf)
1716 {
1717         return (buf->b_hdr->b_size);
1718 }
1719 
1720 /*
1721  * Called from the DMU to determine if the current buffer should be
1722  * evicted. In order to ensure proper locking, the eviction must be initiated
1723  * from the DMU. Return true if the buffer is associated with user data and
1724  * duplicate buffers still exist.
1725  */
1726 boolean_t
1727 arc_buf_eviction_needed(arc_buf_t *buf)
1728 {
1729         arc_buf_hdr_t *hdr;
1730         boolean_t evict_needed = B_FALSE;
1731 
1732         if (zfs_disable_dup_eviction)
1733                 return (B_FALSE);
1734 
1735         mutex_enter(&buf->b_evict_lock);
1736         hdr = buf->b_hdr;
1737         if (hdr == NULL) {
1738                 /*
1739                  * We are in arc_do_user_evicts(); let that function
1740                  * perform the eviction.
1741                  */
1742                 ASSERT(buf->b_data == NULL);
1743                 mutex_exit(&buf->b_evict_lock);
1744                 return (B_FALSE);
1745         } else if (buf->b_data == NULL) {
1746                 /*
1747                  * We have already been added to the arc eviction list;
1748                  * recommend eviction.
1749                  */
1750                 ASSERT3P(hdr, ==, &arc_eviction_hdr);
1751                 mutex_exit(&buf->b_evict_lock);
1752                 return (B_TRUE);
1753         }
1754 
1755         if (hdr->b_datacnt > 1 && hdr->b_type == ARC_BUFC_DATA)
1756                 evict_needed = B_TRUE;
1757 
1758         mutex_exit(&buf->b_evict_lock);
1759         return (evict_needed);
1760 }
1761 
1762 /*
1763  * Evict buffers from list until we've removed the specified number of
1764  * bytes.  Move the removed buffers to the appropriate evict state.
1765  * If the recycle flag is set, then attempt to "recycle" a buffer:
1766  * - look for a buffer to evict that is `bytes' long.
1767  * - return the data block from this buffer rather than freeing it.
1768  * This flag is used by callers that are trying to make space for a
1769  * new buffer in a full arc cache.
1770  *
1771  * This function makes a "best effort".  It skips over any buffers
1772  * it can't get a hash_lock on, and so may not catch all candidates.
1773  * It may also return without evicting as much space as requested.
1774  */
1775 static void *
1776 arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle,
1777     arc_buf_contents_t type)
1778 {
1779         arc_state_t *evicted_state;
1780         uint64_t bytes_evicted = 0, skipped = 0, missed = 0;
1781         arc_buf_hdr_t *ab, *ab_prev = NULL;
1782         list_t *list = &state->arcs_list[type];
1783         kmutex_t *hash_lock;
1784         boolean_t have_lock;
1785         void *stolen = NULL;
1786         arc_buf_hdr_t marker = { 0 };
1787         int count = 0;
1788 
1789         ASSERT(state == arc_mru || state == arc_mfu);
1790 
1791         evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
1792 
1793         mutex_enter(&state->arcs_mtx);
1794         mutex_enter(&evicted_state->arcs_mtx);
1795 
1796         for (ab = list_tail(list); ab; ab = ab_prev) {
1797                 ab_prev = list_prev(list, ab);
1798                 /* prefetch buffers have a minimum lifespan */
1799                 if (HDR_IO_IN_PROGRESS(ab) ||
1800                     (spa && ab->b_spa != spa) ||
1801                     (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) &&
1802                     ddi_get_lbolt() - ab->b_arc_access <
1803                     arc_min_prefetch_lifespan)) {
1804                         skipped++;
1805                         continue;
1806                 }
1807                 /* "lookahead" for better eviction candidate */
1808                 if (recycle && ab->b_size != bytes &&
1809                     ab_prev && ab_prev->b_size == bytes)
1810                         continue;
1811 
1812                 /* ignore markers */
1813                 if (ab->b_spa == 0)
1814                         continue;
1815 
1816                 /*
1817                  * It may take a long time to evict all the bufs requested.
1818                  * To avoid blocking all arc activity, periodically drop
1819                  * the arcs_mtx and give other threads a chance to run
1820                  * before reacquiring the lock.
1821                  *
1822                  * If we are looking for a buffer to recycle, we are in
1823                  * the hot code path, so don't sleep.
1824                  */
1825                 if (!recycle && count++ > arc_evict_iterations) {
1826                         list_insert_after(list, ab, &marker);
1827                         mutex_exit(&evicted_state->arcs_mtx);
1828                         mutex_exit(&state->arcs_mtx);
1829                         kpreempt(KPREEMPT_SYNC);
1830                         mutex_enter(&state->arcs_mtx);
1831                         mutex_enter(&evicted_state->arcs_mtx);
1832                         ab_prev = list_prev(list, &marker);
1833                         list_remove(list, &marker);
1834                         count = 0;
1835                         continue;
1836                 }
1837 
1838                 hash_lock = HDR_LOCK(ab);
1839                 have_lock = MUTEX_HELD(hash_lock);
1840                 if (have_lock || mutex_tryenter(hash_lock)) {
1841                         ASSERT0(refcount_count(&ab->b_refcnt));
1842                         ASSERT(ab->b_datacnt > 0);
1843                         while (ab->b_buf) {
1844                                 arc_buf_t *buf = ab->b_buf;
1845                                 if (!mutex_tryenter(&buf->b_evict_lock)) {
1846                                         missed += 1;
1847                                         break;
1848                                 }
1849                                 if (buf->b_data) {
1850                                         bytes_evicted += ab->b_size;
1851                                         if (recycle && ab->b_type == type &&
1852                                             ab->b_size == bytes &&
1853                                             !HDR_L2_WRITING(ab)) {
1854                                                 stolen = buf->b_data;
1855                                                 recycle = FALSE;
1856                                         }
1857                                 }
1858                                 if (buf->b_efunc) {
1859                                         mutex_enter(&arc_eviction_mtx);
1860                                         arc_buf_destroy(buf,
1861                                             buf->b_data == stolen, FALSE);
1862                                         ab->b_buf = buf->b_next;
1863                                         buf->b_hdr = &arc_eviction_hdr;
1864                                         buf->b_next = arc_eviction_list;
1865                                         arc_eviction_list = buf;
1866                                         mutex_exit(&arc_eviction_mtx);
1867                                         mutex_exit(&buf->b_evict_lock);
1868                                 } else {
1869                                         mutex_exit(&buf->b_evict_lock);
1870                                         arc_buf_destroy(buf,
1871                                             buf->b_data == stolen, TRUE);
1872                                 }
1873                         }
1874 
1875                         if (ab->b_l2hdr) {
1876                                 ARCSTAT_INCR(arcstat_evict_l2_cached,
1877                                     ab->b_size);
1878                         } else {
1879                                 if (l2arc_write_eligible(ab->b_spa, ab)) {
1880                                         ARCSTAT_INCR(arcstat_evict_l2_eligible,
1881                                             ab->b_size);
1882                                 } else {
1883                                         ARCSTAT_INCR(
1884                                             arcstat_evict_l2_ineligible,
1885                                             ab->b_size);
1886                                 }
1887                         }
1888 
1889                         if (ab->b_datacnt == 0) {
1890                                 arc_change_state(evicted_state, ab, hash_lock);
1891                                 ASSERT(HDR_IN_HASH_TABLE(ab));
1892                                 ab->b_flags |= ARC_IN_HASH_TABLE;
1893                                 ab->b_flags &= ~ARC_BUF_AVAILABLE;
1894                                 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab);
1895                         }
1896                         if (!have_lock)
1897                                 mutex_exit(hash_lock);
1898                         if (bytes >= 0 && bytes_evicted >= bytes)
1899                                 break;
1900                 } else {
1901                         missed += 1;
1902                 }
1903         }
1904 
1905         mutex_exit(&evicted_state->arcs_mtx);
1906         mutex_exit(&state->arcs_mtx);
1907 
1908         if (bytes_evicted < bytes)
1909                 dprintf("only evicted %lld bytes from %x",
1910                     (longlong_t)bytes_evicted, state);
1911 
1912         if (skipped)
1913                 ARCSTAT_INCR(arcstat_evict_skip, skipped);
1914 
1915         if (missed)
1916                 ARCSTAT_INCR(arcstat_mutex_miss, missed);
1917 
1918         /*
1919          * Note: we have just evicted some data into the ghost state,
1920          * potentially putting the ghost size over the desired size.  Rather
1921          * that evicting from the ghost list in this hot code path, leave
1922          * this chore to the arc_reclaim_thread().
1923          */
1924 
1925         return (stolen);
1926 }
1927 
1928 /*
1929  * Remove buffers from list until we've removed the specified number of
1930  * bytes.  Destroy the buffers that are removed.
1931  */
1932 static void
1933 arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes)
1934 {
1935         arc_buf_hdr_t *ab, *ab_prev;
1936         arc_buf_hdr_t marker = { 0 };
1937         list_t *list = &state->arcs_list[ARC_BUFC_DATA];
1938         kmutex_t *hash_lock;
1939         uint64_t bytes_deleted = 0;
1940         uint64_t bufs_skipped = 0;
1941         int count = 0;
1942 
1943         ASSERT(GHOST_STATE(state));
1944 top:
1945         mutex_enter(&state->arcs_mtx);
1946         for (ab = list_tail(list); ab; ab = ab_prev) {
1947                 ab_prev = list_prev(list, ab);
1948                 if (ab->b_type > ARC_BUFC_NUMTYPES)
1949                         panic("invalid ab=%p", (void *)ab);
1950                 if (spa && ab->b_spa != spa)
1951                         continue;
1952 
1953                 /* ignore markers */
1954                 if (ab->b_spa == 0)
1955                         continue;
1956 
1957                 hash_lock = HDR_LOCK(ab);
1958                 /* caller may be trying to modify this buffer, skip it */
1959                 if (MUTEX_HELD(hash_lock))
1960                         continue;
1961 
1962                 /*
1963                  * It may take a long time to evict all the bufs requested.
1964                  * To avoid blocking all arc activity, periodically drop
1965                  * the arcs_mtx and give other threads a chance to run
1966                  * before reacquiring the lock.
1967                  */
1968                 if (count++ > arc_evict_iterations) {
1969                         list_insert_after(list, ab, &marker);
1970                         mutex_exit(&state->arcs_mtx);
1971                         kpreempt(KPREEMPT_SYNC);
1972                         mutex_enter(&state->arcs_mtx);
1973                         ab_prev = list_prev(list, &marker);
1974                         list_remove(list, &marker);
1975                         count = 0;
1976                         continue;
1977                 }
1978                 if (mutex_tryenter(hash_lock)) {
1979                         ASSERT(!HDR_IO_IN_PROGRESS(ab));
1980                         ASSERT(ab->b_buf == NULL);
1981                         ARCSTAT_BUMP(arcstat_deleted);
1982                         bytes_deleted += ab->b_size;
1983 
1984                         if (ab->b_l2hdr != NULL) {
1985                                 /*
1986                                  * This buffer is cached on the 2nd Level ARC;
1987                                  * don't destroy the header.
1988                                  */
1989                                 arc_change_state(arc_l2c_only, ab, hash_lock);
1990                                 mutex_exit(hash_lock);
1991                         } else {
1992                                 arc_change_state(arc_anon, ab, hash_lock);
1993                                 mutex_exit(hash_lock);
1994                                 arc_hdr_destroy(ab);
1995                         }
1996 
1997                         DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab);
1998                         if (bytes >= 0 && bytes_deleted >= bytes)
1999                                 break;
2000                 } else if (bytes < 0) {
2001                         /*
2002                          * Insert a list marker and then wait for the
2003                          * hash lock to become available. Once its
2004                          * available, restart from where we left off.
2005                          */
2006                         list_insert_after(list, ab, &marker);
2007                         mutex_exit(&state->arcs_mtx);
2008                         mutex_enter(hash_lock);
2009                         mutex_exit(hash_lock);
2010                         mutex_enter(&state->arcs_mtx);
2011                         ab_prev = list_prev(list, &marker);
2012                         list_remove(list, &marker);
2013                 } else {
2014                         bufs_skipped += 1;
2015                 }
2016 
2017         }
2018         mutex_exit(&state->arcs_mtx);
2019 
2020         if (list == &state->arcs_list[ARC_BUFC_DATA] &&
2021             (bytes < 0 || bytes_deleted < bytes)) {
2022                 list = &state->arcs_list[ARC_BUFC_METADATA];
2023                 goto top;
2024         }
2025 
2026         if (bufs_skipped) {
2027                 ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped);
2028                 ASSERT(bytes >= 0);
2029         }
2030 
2031         if (bytes_deleted < bytes)
2032                 dprintf("only deleted %lld bytes from %p",
2033                     (longlong_t)bytes_deleted, state);
2034 }
2035 
2036 static void
2037 arc_adjust(void)
2038 {
2039         int64_t adjustment, delta;
2040 
2041         /*
2042          * Adjust MRU size
2043          */
2044 
2045         adjustment = MIN((int64_t)(arc_size - arc_c),
2046             (int64_t)(arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used -
2047             arc_p));
2048 
2049         if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) {
2050                 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], adjustment);
2051                 (void) arc_evict(arc_mru, NULL, delta, FALSE, ARC_BUFC_DATA);
2052                 adjustment -= delta;
2053         }
2054 
2055         if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) {
2056                 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment);
2057                 (void) arc_evict(arc_mru, NULL, delta, FALSE,
2058                     ARC_BUFC_METADATA);
2059         }
2060 
2061         /*
2062          * Adjust MFU size
2063          */
2064 
2065         adjustment = arc_size - arc_c;
2066 
2067         if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) {
2068                 delta = MIN(adjustment, arc_mfu->arcs_lsize[ARC_BUFC_DATA]);
2069                 (void) arc_evict(arc_mfu, NULL, delta, FALSE, ARC_BUFC_DATA);
2070                 adjustment -= delta;
2071         }
2072 
2073         if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) {
2074                 int64_t delta = MIN(adjustment,
2075                     arc_mfu->arcs_lsize[ARC_BUFC_METADATA]);
2076                 (void) arc_evict(arc_mfu, NULL, delta, FALSE,
2077                     ARC_BUFC_METADATA);
2078         }
2079 
2080         /*
2081          * Adjust ghost lists
2082          */
2083 
2084         adjustment = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c;
2085 
2086         if (adjustment > 0 && arc_mru_ghost->arcs_size > 0) {
2087                 delta = MIN(arc_mru_ghost->arcs_size, adjustment);
2088                 arc_evict_ghost(arc_mru_ghost, NULL, delta);
2089         }
2090 
2091         adjustment =
2092             arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c;
2093 
2094         if (adjustment > 0 && arc_mfu_ghost->arcs_size > 0) {
2095                 delta = MIN(arc_mfu_ghost->arcs_size, adjustment);
2096                 arc_evict_ghost(arc_mfu_ghost, NULL, delta);
2097         }
2098 }
2099 
2100 static void
2101 arc_do_user_evicts(void)
2102 {
2103         mutex_enter(&arc_eviction_mtx);
2104         while (arc_eviction_list != NULL) {
2105                 arc_buf_t *buf = arc_eviction_list;
2106                 arc_eviction_list = buf->b_next;
2107                 mutex_enter(&buf->b_evict_lock);
2108                 buf->b_hdr = NULL;
2109                 mutex_exit(&buf->b_evict_lock);
2110                 mutex_exit(&arc_eviction_mtx);
2111 
2112                 if (buf->b_efunc != NULL)
2113                         VERIFY0(buf->b_efunc(buf->b_private));
2114 
2115                 buf->b_efunc = NULL;
2116                 buf->b_private = NULL;
2117                 kmem_cache_free(buf_cache, buf);
2118                 mutex_enter(&arc_eviction_mtx);
2119         }
2120         mutex_exit(&arc_eviction_mtx);
2121 }
2122 
2123 /*
2124  * Flush all *evictable* data from the cache for the given spa.
2125  * NOTE: this will not touch "active" (i.e. referenced) data.
2126  */
2127 void
2128 arc_flush(spa_t *spa)
2129 {
2130         uint64_t guid = 0;
2131 
2132         if (spa)
2133                 guid = spa_load_guid(spa);
2134 
2135         while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA])) {
2136                 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_DATA);
2137                 if (spa)
2138                         break;
2139         }
2140         while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA])) {
2141                 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_METADATA);
2142                 if (spa)
2143                         break;
2144         }
2145         while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA])) {
2146                 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_DATA);
2147                 if (spa)
2148                         break;
2149         }
2150         while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA])) {
2151                 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_METADATA);
2152                 if (spa)
2153                         break;
2154         }
2155 
2156         arc_evict_ghost(arc_mru_ghost, guid, -1);
2157         arc_evict_ghost(arc_mfu_ghost, guid, -1);
2158 
2159         mutex_enter(&arc_reclaim_thr_lock);
2160         arc_do_user_evicts();
2161         mutex_exit(&arc_reclaim_thr_lock);
2162         ASSERT(spa || arc_eviction_list == NULL);
2163 }
2164 
2165 void
2166 arc_shrink(void)
2167 {
2168         if (arc_c > arc_c_min) {
2169                 uint64_t to_free;
2170 
2171 #ifdef _KERNEL
2172                 to_free = MAX(arc_c >> arc_shrink_shift, ptob(needfree));
2173 #else
2174                 to_free = arc_c >> arc_shrink_shift;
2175 #endif
2176                 if (arc_c > arc_c_min + to_free)
2177                         atomic_add_64(&arc_c, -to_free);
2178                 else
2179                         arc_c = arc_c_min;
2180 
2181                 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
2182                 if (arc_c > arc_size)
2183                         arc_c = MAX(arc_size, arc_c_min);
2184                 if (arc_p > arc_c)
2185                         arc_p = (arc_c >> 1);
2186                 ASSERT(arc_c >= arc_c_min);
2187                 ASSERT((int64_t)arc_p >= 0);
2188         }
2189 
2190         if (arc_size > arc_c)
2191                 arc_adjust();
2192 }
2193 
2194 /*
2195  * Determine if the system is under memory pressure and is asking
2196  * to reclaim memory. A return value of 1 indicates that the system
2197  * is under memory pressure and that the arc should adjust accordingly.
2198  */
2199 static int
2200 arc_reclaim_needed(void)
2201 {
2202         uint64_t extra;
2203 
2204 #ifdef _KERNEL
2205 
2206         if (needfree)
2207                 return (1);
2208 
2209         /*
2210          * take 'desfree' extra pages, so we reclaim sooner, rather than later
2211          */
2212         extra = desfree;
2213 
2214         /*
2215          * check that we're out of range of the pageout scanner.  It starts to
2216          * schedule paging if freemem is less than lotsfree and needfree.
2217          * lotsfree is the high-water mark for pageout, and needfree is the
2218          * number of needed free pages.  We add extra pages here to make sure
2219          * the scanner doesn't start up while we're freeing memory.
2220          */
2221         if (freemem < lotsfree + needfree + extra)
2222                 return (1);
2223 
2224         /*
2225          * check to make sure that swapfs has enough space so that anon
2226          * reservations can still succeed. anon_resvmem() checks that the
2227          * availrmem is greater than swapfs_minfree, and the number of reserved
2228          * swap pages.  We also add a bit of extra here just to prevent
2229          * circumstances from getting really dire.
2230          */
2231         if (availrmem < swapfs_minfree + swapfs_reserve + extra)
2232                 return (1);
2233 
2234         /*
2235          * Check that we have enough availrmem that memory locking (e.g., via
2236          * mlock(3C) or memcntl(2)) can still succeed.  (pages_pp_maximum
2237          * stores the number of pages that cannot be locked; when availrmem
2238          * drops below pages_pp_maximum, page locking mechanisms such as
2239          * page_pp_lock() will fail.)
2240          */
2241         if (availrmem <= pages_pp_maximum)
2242                 return (1);
2243 
2244 #if defined(__i386)
2245         /*
2246          * If we're on an i386 platform, it's possible that we'll exhaust the
2247          * kernel heap space before we ever run out of available physical
2248          * memory.  Most checks of the size of the heap_area compare against
2249          * tune.t_minarmem, which is the minimum available real memory that we
2250          * can have in the system.  However, this is generally fixed at 25 pages
2251          * which is so low that it's useless.  In this comparison, we seek to
2252          * calculate the total heap-size, and reclaim if more than 3/4ths of the
2253          * heap is allocated.  (Or, in the calculation, if less than 1/4th is
2254          * free)
2255          */
2256         if (vmem_size(heap_arena, VMEM_FREE) <
2257             (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2))
2258                 return (1);
2259 #endif
2260 
2261         /*
2262          * If zio data pages are being allocated out of a separate heap segment,
2263          * then enforce that the size of available vmem for this arena remains
2264          * above about 1/16th free.
2265          *
2266          * Note: The 1/16th arena free requirement was put in place
2267          * to aggressively evict memory from the arc in order to avoid
2268          * memory fragmentation issues.
2269          */
2270         if (zio_arena != NULL &&
2271             vmem_size(zio_arena, VMEM_FREE) <
2272             (vmem_size(zio_arena, VMEM_ALLOC) >> 4))
2273                 return (1);
2274 #else
2275         if (spa_get_random(100) == 0)
2276                 return (1);
2277 #endif
2278         return (0);
2279 }
2280 
2281 static void
2282 arc_kmem_reap_now(arc_reclaim_strategy_t strat)
2283 {
2284         size_t                  i;
2285         kmem_cache_t            *prev_cache = NULL;
2286         kmem_cache_t            *prev_data_cache = NULL;
2287         extern kmem_cache_t     *zio_buf_cache[];
2288         extern kmem_cache_t     *zio_data_buf_cache[];
2289         extern kmem_cache_t     *range_seg_cache;
2290 
2291 #ifdef _KERNEL
2292         if (arc_meta_used >= arc_meta_limit) {
2293                 /*
2294                  * We are exceeding our meta-data cache limit.
2295                  * Purge some DNLC entries to release holds on meta-data.
2296                  */
2297                 dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
2298         }
2299 #if defined(__i386)
2300         /*
2301          * Reclaim unused memory from all kmem caches.
2302          */
2303         kmem_reap();
2304 #endif
2305 #endif
2306 
2307         /*
2308          * An aggressive reclamation will shrink the cache size as well as
2309          * reap free buffers from the arc kmem caches.
2310          */
2311         if (strat == ARC_RECLAIM_AGGR)
2312                 arc_shrink();
2313 
2314         for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
2315                 if (zio_buf_cache[i] != prev_cache) {
2316                         prev_cache = zio_buf_cache[i];
2317                         kmem_cache_reap_now(zio_buf_cache[i]);
2318                 }
2319                 if (zio_data_buf_cache[i] != prev_data_cache) {
2320                         prev_data_cache = zio_data_buf_cache[i];
2321                         kmem_cache_reap_now(zio_data_buf_cache[i]);
2322                 }
2323         }
2324         kmem_cache_reap_now(buf_cache);
2325         kmem_cache_reap_now(hdr_cache);
2326         kmem_cache_reap_now(range_seg_cache);
2327 
2328         /*
2329          * Ask the vmem areana to reclaim unused memory from its
2330          * quantum caches.
2331          */
2332         if (zio_arena != NULL && strat == ARC_RECLAIM_AGGR)
2333                 vmem_qcache_reap(zio_arena);
2334 }
2335 
2336 static void
2337 arc_reclaim_thread(void)
2338 {
2339         clock_t                 growtime = 0;
2340         arc_reclaim_strategy_t  last_reclaim = ARC_RECLAIM_CONS;
2341         callb_cpr_t             cpr;
2342 
2343         CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG);
2344 
2345         mutex_enter(&arc_reclaim_thr_lock);
2346         while (arc_thread_exit == 0) {
2347                 if (arc_reclaim_needed()) {
2348 
2349                         if (arc_no_grow) {
2350                                 if (last_reclaim == ARC_RECLAIM_CONS) {
2351                                         last_reclaim = ARC_RECLAIM_AGGR;
2352                                 } else {
2353                                         last_reclaim = ARC_RECLAIM_CONS;
2354                                 }
2355                         } else {
2356                                 arc_no_grow = TRUE;
2357                                 last_reclaim = ARC_RECLAIM_AGGR;
2358                                 membar_producer();
2359                         }
2360 
2361                         /* reset the growth delay for every reclaim */
2362                         growtime = ddi_get_lbolt() + (arc_grow_retry * hz);
2363 
2364                         arc_kmem_reap_now(last_reclaim);
2365                         arc_warm = B_TRUE;
2366 
2367                 } else if (arc_no_grow && ddi_get_lbolt() >= growtime) {
2368                         arc_no_grow = FALSE;
2369                 }
2370 
2371                 arc_adjust();
2372 
2373                 if (arc_eviction_list != NULL)
2374                         arc_do_user_evicts();
2375 
2376                 /* block until needed, or one second, whichever is shorter */
2377                 CALLB_CPR_SAFE_BEGIN(&cpr);
2378                 (void) cv_timedwait(&arc_reclaim_thr_cv,
2379                     &arc_reclaim_thr_lock, (ddi_get_lbolt() + hz));
2380                 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock);
2381         }
2382 
2383         arc_thread_exit = 0;
2384         cv_broadcast(&arc_reclaim_thr_cv);
2385         CALLB_CPR_EXIT(&cpr);               /* drops arc_reclaim_thr_lock */
2386         thread_exit();
2387 }
2388 
2389 /*
2390  * Adapt arc info given the number of bytes we are trying to add and
2391  * the state that we are comming from.  This function is only called
2392  * when we are adding new content to the cache.
2393  */
2394 static void
2395 arc_adapt(int bytes, arc_state_t *state)
2396 {
2397         int mult;
2398         uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
2399 
2400         if (state == arc_l2c_only)
2401                 return;
2402 
2403         ASSERT(bytes > 0);
2404         /*
2405          * Adapt the target size of the MRU list:
2406          *      - if we just hit in the MRU ghost list, then increase
2407          *        the target size of the MRU list.
2408          *      - if we just hit in the MFU ghost list, then increase
2409          *        the target size of the MFU list by decreasing the
2410          *        target size of the MRU list.
2411          */
2412         if (state == arc_mru_ghost) {
2413                 mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ?
2414                     1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size));
2415                 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
2416 
2417                 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
2418         } else if (state == arc_mfu_ghost) {
2419                 uint64_t delta;
2420 
2421                 mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ?
2422                     1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size));
2423                 mult = MIN(mult, 10);
2424 
2425                 delta = MIN(bytes * mult, arc_p);
2426                 arc_p = MAX(arc_p_min, arc_p - delta);
2427         }
2428         ASSERT((int64_t)arc_p >= 0);
2429 
2430         if (arc_reclaim_needed()) {
2431                 cv_signal(&arc_reclaim_thr_cv);
2432                 return;
2433         }
2434 
2435         if (arc_no_grow)
2436                 return;
2437 
2438         if (arc_c >= arc_c_max)
2439                 return;
2440 
2441         /*
2442          * If we're within (2 * maxblocksize) bytes of the target
2443          * cache size, increment the target cache size
2444          */
2445         if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
2446                 atomic_add_64(&arc_c, (int64_t)bytes);
2447                 if (arc_c > arc_c_max)
2448                         arc_c = arc_c_max;
2449                 else if (state == arc_anon)
2450                         atomic_add_64(&arc_p, (int64_t)bytes);
2451                 if (arc_p > arc_c)
2452                         arc_p = arc_c;
2453         }
2454         ASSERT((int64_t)arc_p >= 0);
2455 }
2456 
2457 /*
2458  * Check if the cache has reached its limits and eviction is required
2459  * prior to insert.
2460  */
2461 static int
2462 arc_evict_needed(arc_buf_contents_t type)
2463 {
2464         if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit)
2465                 return (1);
2466 
2467         if (arc_reclaim_needed())
2468                 return (1);
2469 
2470         return (arc_size > arc_c);
2471 }
2472 
2473 /*
2474  * The buffer, supplied as the first argument, needs a data block.
2475  * So, if we are at cache max, determine which cache should be victimized.
2476  * We have the following cases:
2477  *
2478  * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) ->
2479  * In this situation if we're out of space, but the resident size of the MFU is
2480  * under the limit, victimize the MFU cache to satisfy this insertion request.
2481  *
2482  * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) ->
2483  * Here, we've used up all of the available space for the MRU, so we need to
2484  * evict from our own cache instead.  Evict from the set of resident MRU
2485  * entries.
2486  *
2487  * 3. Insert for MFU (c - p) > sizeof(arc_mfu) ->
2488  * c minus p represents the MFU space in the cache, since p is the size of the
2489  * cache that is dedicated to the MRU.  In this situation there's still space on
2490  * the MFU side, so the MRU side needs to be victimized.
2491  *
2492  * 4. Insert for MFU (c - p) < sizeof(arc_mfu) ->
2493  * MFU's resident set is consuming more space than it has been allotted.  In
2494  * this situation, we must victimize our own cache, the MFU, for this insertion.
2495  */
2496 static void
2497 arc_get_data_buf(arc_buf_t *buf)
2498 {
2499         arc_state_t             *state = buf->b_hdr->b_state;
2500         uint64_t                size = buf->b_hdr->b_size;
2501         arc_buf_contents_t      type = buf->b_hdr->b_type;
2502 
2503         arc_adapt(size, state);
2504 
2505         /*
2506          * We have not yet reached cache maximum size,
2507          * just allocate a new buffer.
2508          */
2509         if (!arc_evict_needed(type)) {
2510                 if (type == ARC_BUFC_METADATA) {
2511                         buf->b_data = zio_buf_alloc(size);
2512                         arc_space_consume(size, ARC_SPACE_DATA);
2513                 } else {
2514                         ASSERT(type == ARC_BUFC_DATA);
2515                         buf->b_data = zio_data_buf_alloc(size);
2516                         ARCSTAT_INCR(arcstat_data_size, size);
2517                         atomic_add_64(&arc_size, size);
2518                 }
2519                 goto out;
2520         }
2521 
2522         /*
2523          * If we are prefetching from the mfu ghost list, this buffer
2524          * will end up on the mru list; so steal space from there.
2525          */
2526         if (state == arc_mfu_ghost)
2527                 state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu;
2528         else if (state == arc_mru_ghost)
2529                 state = arc_mru;
2530 
2531         if (state == arc_mru || state == arc_anon) {
2532                 uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size;
2533                 state = (arc_mfu->arcs_lsize[type] >= size &&
2534                     arc_p > mru_used) ? arc_mfu : arc_mru;
2535         } else {
2536                 /* MFU cases */
2537                 uint64_t mfu_space = arc_c - arc_p;
2538                 state =  (arc_mru->arcs_lsize[type] >= size &&
2539                     mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu;
2540         }
2541         if ((buf->b_data = arc_evict(state, NULL, size, TRUE, type)) == NULL) {
2542                 if (type == ARC_BUFC_METADATA) {
2543                         buf->b_data = zio_buf_alloc(size);
2544                         arc_space_consume(size, ARC_SPACE_DATA);
2545                 } else {
2546                         ASSERT(type == ARC_BUFC_DATA);
2547                         buf->b_data = zio_data_buf_alloc(size);
2548                         ARCSTAT_INCR(arcstat_data_size, size);
2549                         atomic_add_64(&arc_size, size);
2550                 }
2551                 ARCSTAT_BUMP(arcstat_recycle_miss);
2552         }
2553         ASSERT(buf->b_data != NULL);
2554 out:
2555         /*
2556          * Update the state size.  Note that ghost states have a
2557          * "ghost size" and so don't need to be updated.
2558          */
2559         if (!GHOST_STATE(buf->b_hdr->b_state)) {
2560                 arc_buf_hdr_t *hdr = buf->b_hdr;
2561 
2562                 atomic_add_64(&hdr->b_state->arcs_size, size);
2563                 if (list_link_active(&hdr->b_arc_node)) {
2564                         ASSERT(refcount_is_zero(&hdr->b_refcnt));
2565                         atomic_add_64(&hdr->b_state->arcs_lsize[type], size);
2566                 }
2567                 /*
2568                  * If we are growing the cache, and we are adding anonymous
2569                  * data, and we have outgrown arc_p, update arc_p
2570                  */
2571                 if (arc_size < arc_c && hdr->b_state == arc_anon &&
2572                     arc_anon->arcs_size + arc_mru->arcs_size > arc_p)
2573                         arc_p = MIN(arc_c, arc_p + size);
2574         }
2575 }
2576 
2577 /*
2578  * This routine is called whenever a buffer is accessed.
2579  * NOTE: the hash lock is dropped in this function.
2580  */
2581 static void
2582 arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock)
2583 {
2584         clock_t now;
2585 
2586         ASSERT(MUTEX_HELD(hash_lock));
2587 
2588         if (buf->b_state == arc_anon) {
2589                 /*
2590                  * This buffer is not in the cache, and does not
2591                  * appear in our "ghost" list.  Add the new buffer
2592                  * to the MRU state.
2593                  */
2594 
2595                 ASSERT(buf->b_arc_access == 0);
2596                 buf->b_arc_access = ddi_get_lbolt();
2597                 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2598                 arc_change_state(arc_mru, buf, hash_lock);
2599 
2600         } else if (buf->b_state == arc_mru) {
2601                 now = ddi_get_lbolt();
2602 
2603                 /*
2604                  * If this buffer is here because of a prefetch, then either:
2605                  * - clear the flag if this is a "referencing" read
2606                  *   (any subsequent access will bump this into the MFU state).
2607                  * or
2608                  * - move the buffer to the head of the list if this is
2609                  *   another prefetch (to make it less likely to be evicted).
2610                  */
2611                 if ((buf->b_flags & ARC_PREFETCH) != 0) {
2612                         if (refcount_count(&buf->b_refcnt) == 0) {
2613                                 ASSERT(list_link_active(&buf->b_arc_node));
2614                         } else {
2615                                 buf->b_flags &= ~ARC_PREFETCH;
2616                                 ARCSTAT_BUMP(arcstat_mru_hits);
2617                         }
2618                         buf->b_arc_access = now;
2619                         return;
2620                 }
2621 
2622                 /*
2623                  * This buffer has been "accessed" only once so far,
2624                  * but it is still in the cache. Move it to the MFU
2625                  * state.
2626                  */
2627                 if (now > buf->b_arc_access + ARC_MINTIME) {
2628                         /*
2629                          * More than 125ms have passed since we
2630                          * instantiated this buffer.  Move it to the
2631                          * most frequently used state.
2632                          */
2633                         buf->b_arc_access = now;
2634                         DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2635                         arc_change_state(arc_mfu, buf, hash_lock);
2636                 }
2637                 ARCSTAT_BUMP(arcstat_mru_hits);
2638         } else if (buf->b_state == arc_mru_ghost) {
2639                 arc_state_t     *new_state;
2640                 /*
2641                  * This buffer has been "accessed" recently, but
2642                  * was evicted from the cache.  Move it to the
2643                  * MFU state.
2644                  */
2645 
2646                 if (buf->b_flags & ARC_PREFETCH) {
2647                         new_state = arc_mru;
2648                         if (refcount_count(&buf->b_refcnt) > 0)
2649                                 buf->b_flags &= ~ARC_PREFETCH;
2650                         DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2651                 } else {
2652                         new_state = arc_mfu;
2653                         DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2654                 }
2655 
2656                 buf->b_arc_access = ddi_get_lbolt();
2657                 arc_change_state(new_state, buf, hash_lock);
2658 
2659                 ARCSTAT_BUMP(arcstat_mru_ghost_hits);
2660         } else if (buf->b_state == arc_mfu) {
2661                 /*
2662                  * This buffer has been accessed more than once and is
2663                  * still in the cache.  Keep it in the MFU state.
2664                  *
2665                  * NOTE: an add_reference() that occurred when we did
2666                  * the arc_read() will have kicked this off the list.
2667                  * If it was a prefetch, we will explicitly move it to
2668                  * the head of the list now.
2669                  */
2670                 if ((buf->b_flags & ARC_PREFETCH) != 0) {
2671                         ASSERT(refcount_count(&buf->b_refcnt) == 0);
2672                         ASSERT(list_link_active(&buf->b_arc_node));
2673                 }
2674                 ARCSTAT_BUMP(arcstat_mfu_hits);
2675                 buf->b_arc_access = ddi_get_lbolt();
2676         } else if (buf->b_state == arc_mfu_ghost) {
2677                 arc_state_t     *new_state = arc_mfu;
2678                 /*
2679                  * This buffer has been accessed more than once but has
2680                  * been evicted from the cache.  Move it back to the
2681                  * MFU state.
2682                  */
2683 
2684                 if (buf->b_flags & ARC_PREFETCH) {
2685                         /*
2686                          * This is a prefetch access...
2687                          * move this block back to the MRU state.
2688                          */
2689                         ASSERT0(refcount_count(&buf->b_refcnt));
2690                         new_state = arc_mru;
2691                 }
2692 
2693                 buf->b_arc_access = ddi_get_lbolt();
2694                 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2695                 arc_change_state(new_state, buf, hash_lock);
2696 
2697                 ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
2698         } else if (buf->b_state == arc_l2c_only) {
2699                 /*
2700                  * This buffer is on the 2nd Level ARC.
2701                  */
2702 
2703                 buf->b_arc_access = ddi_get_lbolt();
2704                 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2705                 arc_change_state(arc_mfu, buf, hash_lock);
2706         } else {
2707                 ASSERT(!"invalid arc state");
2708         }
2709 }
2710 
2711 /* a generic arc_done_func_t which you can use */
2712 /* ARGSUSED */
2713 void
2714 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
2715 {
2716         if (zio == NULL || zio->io_error == 0)
2717                 bcopy(buf->b_data, arg, buf->b_hdr->b_size);
2718         VERIFY(arc_buf_remove_ref(buf, arg));
2719 }
2720 
2721 /* a generic arc_done_func_t */
2722 void
2723 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
2724 {
2725         arc_buf_t **bufp = arg;
2726         if (zio && zio->io_error) {
2727                 VERIFY(arc_buf_remove_ref(buf, arg));
2728                 *bufp = NULL;
2729         } else {
2730                 *bufp = buf;
2731                 ASSERT(buf->b_data);
2732         }
2733 }
2734 
2735 static void
2736 arc_read_done(zio_t *zio)
2737 {
2738         arc_buf_hdr_t   *hdr;
2739         arc_buf_t       *buf;
2740         arc_buf_t       *abuf;  /* buffer we're assigning to callback */
2741         kmutex_t        *hash_lock = NULL;
2742         arc_callback_t  *callback_list, *acb;
2743         int             freeable = FALSE;
2744 
2745         buf = zio->io_private;
2746         hdr = buf->b_hdr;
2747 
2748         /*
2749          * The hdr was inserted into hash-table and removed from lists
2750          * prior to starting I/O.  We should find this header, since
2751          * it's in the hash table, and it should be legit since it's
2752          * not possible to evict it during the I/O.  The only possible
2753          * reason for it not to be found is if we were freed during the
2754          * read.
2755          */
2756         if (HDR_IN_HASH_TABLE(hdr)) {
2757                 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
2758                 ASSERT3U(hdr->b_dva.dva_word[0], ==,
2759                     BP_IDENTITY(zio->io_bp)->dva_word[0]);
2760                 ASSERT3U(hdr->b_dva.dva_word[1], ==,
2761                     BP_IDENTITY(zio->io_bp)->dva_word[1]);
2762 
2763                 arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp,
2764                     &hash_lock);
2765 
2766                 ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) &&
2767                     hash_lock == NULL) ||
2768                     (found == hdr &&
2769                     DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
2770                     (found == hdr && HDR_L2_READING(hdr)));
2771         }
2772 
2773         hdr->b_flags &= ~ARC_L2_EVICTED;
2774         if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH))
2775                 hdr->b_flags &= ~ARC_L2CACHE;
2776 
2777         /* byteswap if necessary */
2778         callback_list = hdr->b_acb;
2779         ASSERT(callback_list != NULL);
2780         if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) {
2781                 dmu_object_byteswap_t bswap =
2782                     DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
2783                 arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ?
2784                     byteswap_uint64_array :
2785                     dmu_ot_byteswap[bswap].ob_func;
2786                 func(buf->b_data, hdr->b_size);
2787         }
2788 
2789         arc_cksum_compute(buf, B_FALSE);
2790         arc_buf_watch(buf);
2791 
2792         if (hash_lock && zio->io_error == 0 && hdr->b_state == arc_anon) {
2793                 /*
2794                  * Only call arc_access on anonymous buffers.  This is because
2795                  * if we've issued an I/O for an evicted buffer, we've already
2796                  * called arc_access (to prevent any simultaneous readers from
2797                  * getting confused).
2798                  */
2799                 arc_access(hdr, hash_lock);
2800         }
2801 
2802         /* create copies of the data buffer for the callers */
2803         abuf = buf;
2804         for (acb = callback_list; acb; acb = acb->acb_next) {
2805                 if (acb->acb_done) {
2806                         if (abuf == NULL) {
2807                                 ARCSTAT_BUMP(arcstat_duplicate_reads);
2808                                 abuf = arc_buf_clone(buf);
2809                         }
2810                         acb->acb_buf = abuf;
2811                         abuf = NULL;
2812                 }
2813         }
2814         hdr->b_acb = NULL;
2815         hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2816         ASSERT(!HDR_BUF_AVAILABLE(hdr));
2817         if (abuf == buf) {
2818                 ASSERT(buf->b_efunc == NULL);
2819                 ASSERT(hdr->b_datacnt == 1);
2820                 hdr->b_flags |= ARC_BUF_AVAILABLE;
2821         }
2822 
2823         ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL);
2824 
2825         if (zio->io_error != 0) {
2826                 hdr->b_flags |= ARC_IO_ERROR;
2827                 if (hdr->b_state != arc_anon)
2828                         arc_change_state(arc_anon, hdr, hash_lock);
2829                 if (HDR_IN_HASH_TABLE(hdr))
2830                         buf_hash_remove(hdr);
2831                 freeable = refcount_is_zero(&hdr->b_refcnt);
2832         }
2833 
2834         /*
2835          * Broadcast before we drop the hash_lock to avoid the possibility
2836          * that the hdr (and hence the cv) might be freed before we get to
2837          * the cv_broadcast().
2838          */
2839         cv_broadcast(&hdr->b_cv);
2840 
2841         if (hash_lock) {
2842                 mutex_exit(hash_lock);
2843         } else {
2844                 /*
2845                  * This block was freed while we waited for the read to
2846                  * complete.  It has been removed from the hash table and
2847                  * moved to the anonymous state (so that it won't show up
2848                  * in the cache).
2849                  */
2850                 ASSERT3P(hdr->b_state, ==, arc_anon);
2851                 freeable = refcount_is_zero(&hdr->b_refcnt);
2852         }
2853 
2854         /* execute each callback and free its structure */
2855         while ((acb = callback_list) != NULL) {
2856                 if (acb->acb_done)
2857                         acb->acb_done(zio, acb->acb_buf, acb->acb_private);
2858 
2859                 if (acb->acb_zio_dummy != NULL) {
2860                         acb->acb_zio_dummy->io_error = zio->io_error;
2861                         zio_nowait(acb->acb_zio_dummy);
2862                 }
2863 
2864                 callback_list = acb->acb_next;
2865                 kmem_free(acb, sizeof (arc_callback_t));
2866         }
2867 
2868         if (freeable)
2869                 arc_hdr_destroy(hdr);
2870 }
2871 
2872 /*
2873  * "Read" the block at the specified DVA (in bp) via the
2874  * cache.  If the block is found in the cache, invoke the provided
2875  * callback immediately and return.  Note that the `zio' parameter
2876  * in the callback will be NULL in this case, since no IO was
2877  * required.  If the block is not in the cache pass the read request
2878  * on to the spa with a substitute callback function, so that the
2879  * requested block will be added to the cache.
2880  *
2881  * If a read request arrives for a block that has a read in-progress,
2882  * either wait for the in-progress read to complete (and return the
2883  * results); or, if this is a read with a "done" func, add a record
2884  * to the read to invoke the "done" func when the read completes,
2885  * and return; or just return.
2886  *
2887  * arc_read_done() will invoke all the requested "done" functions
2888  * for readers of this block.
2889  */
2890 int
2891 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
2892     void *private, zio_priority_t priority, int zio_flags, uint32_t *arc_flags,
2893     const zbookmark_phys_t *zb)
2894 {
2895         arc_buf_hdr_t *hdr = NULL;
2896         arc_buf_t *buf = NULL;
2897         kmutex_t *hash_lock = NULL;
2898         zio_t *rzio;
2899         uint64_t guid = spa_load_guid(spa);
2900 
2901         ASSERT(!BP_IS_EMBEDDED(bp) ||
2902             BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
2903 
2904 top:
2905         if (!BP_IS_EMBEDDED(bp)) {
2906                 /*
2907                  * Embedded BP's have no DVA and require no I/O to "read".
2908                  * Create an anonymous arc buf to back it.
2909                  */
2910                 hdr = buf_hash_find(guid, bp, &hash_lock);
2911         }
2912 
2913         if (hdr != NULL && hdr->b_datacnt > 0) {
2914 
2915                 *arc_flags |= ARC_CACHED;
2916 
2917                 if (HDR_IO_IN_PROGRESS(hdr)) {
2918 
2919                         if (*arc_flags & ARC_WAIT) {
2920                                 cv_wait(&hdr->b_cv, hash_lock);
2921                                 mutex_exit(hash_lock);
2922                                 goto top;
2923                         }
2924                         ASSERT(*arc_flags & ARC_NOWAIT);
2925 
2926                         if (done) {
2927                                 arc_callback_t  *acb = NULL;
2928 
2929                                 acb = kmem_zalloc(sizeof (arc_callback_t),
2930                                     KM_SLEEP);
2931                                 acb->acb_done = done;
2932                                 acb->acb_private = private;
2933                                 if (pio != NULL)
2934                                         acb->acb_zio_dummy = zio_null(pio,
2935                                             spa, NULL, NULL, NULL, zio_flags);
2936 
2937                                 ASSERT(acb->acb_done != NULL);
2938                                 acb->acb_next = hdr->b_acb;
2939                                 hdr->b_acb = acb;
2940                                 add_reference(hdr, hash_lock, private);
2941                                 mutex_exit(hash_lock);
2942                                 return (0);
2943                         }
2944                         mutex_exit(hash_lock);
2945                         return (0);
2946                 }
2947 
2948                 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
2949 
2950                 if (done) {
2951                         add_reference(hdr, hash_lock, private);
2952                         /*
2953                          * If this block is already in use, create a new
2954                          * copy of the data so that we will be guaranteed
2955                          * that arc_release() will always succeed.
2956                          */
2957                         buf = hdr->b_buf;
2958                         ASSERT(buf);
2959                         ASSERT(buf->b_data);
2960                         if (HDR_BUF_AVAILABLE(hdr)) {
2961                                 ASSERT(buf->b_efunc == NULL);
2962                                 hdr->b_flags &= ~ARC_BUF_AVAILABLE;
2963                         } else {
2964                                 buf = arc_buf_clone(buf);
2965                         }
2966 
2967                 } else if (*arc_flags & ARC_PREFETCH &&
2968                     refcount_count(&hdr->b_refcnt) == 0) {
2969                         hdr->b_flags |= ARC_PREFETCH;
2970                 }
2971                 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
2972                 arc_access(hdr, hash_lock);
2973                 if (*arc_flags & ARC_L2CACHE)
2974                         hdr->b_flags |= ARC_L2CACHE;
2975                 if (*arc_flags & ARC_L2COMPRESS)
2976                         hdr->b_flags |= ARC_L2COMPRESS;
2977                 mutex_exit(hash_lock);
2978                 ARCSTAT_BUMP(arcstat_hits);
2979                 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
2980                     demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
2981                     data, metadata, hits);
2982 
2983                 if (done)
2984                         done(NULL, buf, private);
2985         } else {
2986                 uint64_t size = BP_GET_LSIZE(bp);
2987                 arc_callback_t *acb;
2988                 vdev_t *vd = NULL;
2989                 uint64_t addr = 0;
2990                 boolean_t devw = B_FALSE;
2991                 enum zio_compress b_compress = ZIO_COMPRESS_OFF;
2992                 uint64_t b_asize = 0;
2993 
2994                 if (hdr == NULL) {
2995                         /* this block is not in the cache */
2996                         arc_buf_hdr_t *exists = NULL;
2997                         arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
2998                         buf = arc_buf_alloc(spa, size, private, type);
2999                         hdr = buf->b_hdr;
3000                         if (!BP_IS_EMBEDDED(bp)) {
3001                                 hdr->b_dva = *BP_IDENTITY(bp);
3002                                 hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
3003                                 hdr->b_cksum0 = bp->blk_cksum.zc_word[0];
3004                                 exists = buf_hash_insert(hdr, &hash_lock);
3005                         }
3006                         if (exists != NULL) {
3007                                 /* somebody beat us to the hash insert */
3008                                 mutex_exit(hash_lock);
3009                                 buf_discard_identity(hdr);
3010                                 (void) arc_buf_remove_ref(buf, private);
3011                                 goto top; /* restart the IO request */
3012                         }
3013                         /* if this is a prefetch, we don't have a reference */
3014                         if (*arc_flags & ARC_PREFETCH) {
3015                                 (void) remove_reference(hdr, hash_lock,
3016                                     private);
3017                                 hdr->b_flags |= ARC_PREFETCH;
3018                         }
3019                         if (*arc_flags & ARC_L2CACHE)
3020                                 hdr->b_flags |= ARC_L2CACHE;
3021                         if (*arc_flags & ARC_L2COMPRESS)
3022                                 hdr->b_flags |= ARC_L2COMPRESS;
3023                         if (BP_GET_LEVEL(bp) > 0)
3024                                 hdr->b_flags |= ARC_INDIRECT;
3025                 } else {
3026                         /* this block is in the ghost cache */
3027                         ASSERT(GHOST_STATE(hdr->b_state));
3028                         ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3029                         ASSERT0(refcount_count(&hdr->b_refcnt));
3030                         ASSERT(hdr->b_buf == NULL);
3031 
3032                         /* if this is a prefetch, we don't have a reference */
3033                         if (*arc_flags & ARC_PREFETCH)
3034                                 hdr->b_flags |= ARC_PREFETCH;
3035                         else
3036                                 add_reference(hdr, hash_lock, private);
3037                         if (*arc_flags & ARC_L2CACHE)
3038                                 hdr->b_flags |= ARC_L2CACHE;
3039                         if (*arc_flags & ARC_L2COMPRESS)
3040                                 hdr->b_flags |= ARC_L2COMPRESS;
3041                         buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
3042                         buf->b_hdr = hdr;
3043                         buf->b_data = NULL;
3044                         buf->b_efunc = NULL;
3045                         buf->b_private = NULL;
3046                         buf->b_next = NULL;
3047                         hdr->b_buf = buf;
3048                         ASSERT(hdr->b_datacnt == 0);
3049                         hdr->b_datacnt = 1;
3050                         arc_get_data_buf(buf);
3051                         arc_access(hdr, hash_lock);
3052                 }
3053 
3054                 ASSERT(!GHOST_STATE(hdr->b_state));
3055 
3056                 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
3057                 acb->acb_done = done;
3058                 acb->acb_private = private;
3059 
3060                 ASSERT(hdr->b_acb == NULL);
3061                 hdr->b_acb = acb;
3062                 hdr->b_flags |= ARC_IO_IN_PROGRESS;
3063 
3064                 if (hdr->b_l2hdr != NULL &&
3065                     (vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) {
3066                         devw = hdr->b_l2hdr->b_dev->l2ad_writing;
3067                         addr = hdr->b_l2hdr->b_daddr;
3068                         b_compress = hdr->b_l2hdr->b_compress;
3069                         b_asize = hdr->b_l2hdr->b_asize;
3070                         /*
3071                          * Lock out device removal.
3072                          */
3073                         if (vdev_is_dead(vd) ||
3074                             !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
3075                                 vd = NULL;
3076                 }
3077 
3078                 if (hash_lock != NULL)
3079                         mutex_exit(hash_lock);
3080 
3081                 /*
3082                  * At this point, we have a level 1 cache miss.  Try again in
3083                  * L2ARC if possible.
3084                  */
3085                 ASSERT3U(hdr->b_size, ==, size);
3086                 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
3087                     uint64_t, size, zbookmark_phys_t *, zb);
3088                 ARCSTAT_BUMP(arcstat_misses);
3089                 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
3090                     demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
3091                     data, metadata, misses);
3092 
3093                 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
3094                         /*
3095                          * Read from the L2ARC if the following are true:
3096                          * 1. The L2ARC vdev was previously cached.
3097                          * 2. This buffer still has L2ARC metadata.
3098                          * 3. This buffer isn't currently writing to the L2ARC.
3099                          * 4. The L2ARC entry wasn't evicted, which may
3100                          *    also have invalidated the vdev.
3101                          * 5. This isn't prefetch and l2arc_noprefetch is set.
3102                          */
3103                         if (hdr->b_l2hdr != NULL &&
3104                             !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
3105                             !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
3106                                 l2arc_read_callback_t *cb;
3107 
3108                                 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
3109                                 ARCSTAT_BUMP(arcstat_l2_hits);
3110 
3111                                 cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
3112                                     KM_SLEEP);
3113                                 cb->l2rcb_buf = buf;
3114                                 cb->l2rcb_spa = spa;
3115                                 cb->l2rcb_bp = *bp;
3116                                 cb->l2rcb_zb = *zb;
3117                                 cb->l2rcb_flags = zio_flags;
3118                                 cb->l2rcb_compress = b_compress;
3119 
3120                                 ASSERT(addr >= VDEV_LABEL_START_SIZE &&
3121                                     addr + size < vd->vdev_psize -
3122                                     VDEV_LABEL_END_SIZE);
3123 
3124                                 /*
3125                                  * l2arc read.  The SCL_L2ARC lock will be
3126                                  * released by l2arc_read_done().
3127                                  * Issue a null zio if the underlying buffer
3128                                  * was squashed to zero size by compression.
3129                                  */
3130                                 if (b_compress == ZIO_COMPRESS_EMPTY) {
3131                                         rzio = zio_null(pio, spa, vd,
3132                                             l2arc_read_done, cb,
3133                                             zio_flags | ZIO_FLAG_DONT_CACHE |
3134                                             ZIO_FLAG_CANFAIL |
3135                                             ZIO_FLAG_DONT_PROPAGATE |
3136                                             ZIO_FLAG_DONT_RETRY);
3137                                 } else {
3138                                         rzio = zio_read_phys(pio, vd, addr,
3139                                             b_asize, buf->b_data,
3140                                             ZIO_CHECKSUM_OFF,
3141                                             l2arc_read_done, cb, priority,
3142                                             zio_flags | ZIO_FLAG_DONT_CACHE |
3143                                             ZIO_FLAG_CANFAIL |
3144                                             ZIO_FLAG_DONT_PROPAGATE |
3145                                             ZIO_FLAG_DONT_RETRY, B_FALSE);
3146                                 }
3147                                 DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
3148                                     zio_t *, rzio);
3149                                 ARCSTAT_INCR(arcstat_l2_read_bytes, b_asize);
3150 
3151                                 if (*arc_flags & ARC_NOWAIT) {
3152                                         zio_nowait(rzio);
3153                                         return (0);
3154                                 }
3155 
3156                                 ASSERT(*arc_flags & ARC_WAIT);
3157                                 if (zio_wait(rzio) == 0)
3158                                         return (0);
3159 
3160                                 /* l2arc read error; goto zio_read() */
3161                         } else {
3162                                 DTRACE_PROBE1(l2arc__miss,
3163                                     arc_buf_hdr_t *, hdr);
3164                                 ARCSTAT_BUMP(arcstat_l2_misses);
3165                                 if (HDR_L2_WRITING(hdr))
3166                                         ARCSTAT_BUMP(arcstat_l2_rw_clash);
3167                                 spa_config_exit(spa, SCL_L2ARC, vd);
3168                         }
3169                 } else {
3170                         if (vd != NULL)
3171                                 spa_config_exit(spa, SCL_L2ARC, vd);
3172                         if (l2arc_ndev != 0) {
3173                                 DTRACE_PROBE1(l2arc__miss,
3174                                     arc_buf_hdr_t *, hdr);
3175                                 ARCSTAT_BUMP(arcstat_l2_misses);
3176                         }
3177                 }
3178 
3179                 rzio = zio_read(pio, spa, bp, buf->b_data, size,
3180                     arc_read_done, buf, priority, zio_flags, zb);
3181 
3182                 if (*arc_flags & ARC_WAIT)
3183                         return (zio_wait(rzio));
3184 
3185                 ASSERT(*arc_flags & ARC_NOWAIT);
3186                 zio_nowait(rzio);
3187         }
3188         return (0);
3189 }
3190 
3191 void
3192 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
3193 {
3194         ASSERT(buf->b_hdr != NULL);
3195         ASSERT(buf->b_hdr->b_state != arc_anon);
3196         ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL);
3197         ASSERT(buf->b_efunc == NULL);
3198         ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr));
3199 
3200         buf->b_efunc = func;
3201         buf->b_private = private;
3202 }
3203 
3204 /*
3205  * Notify the arc that a block was freed, and thus will never be used again.
3206  */
3207 void
3208 arc_freed(spa_t *spa, const blkptr_t *bp)
3209 {
3210         arc_buf_hdr_t *hdr;
3211         kmutex_t *hash_lock;
3212         uint64_t guid = spa_load_guid(spa);
3213 
3214         ASSERT(!BP_IS_EMBEDDED(bp));
3215 
3216         hdr = buf_hash_find(guid, bp, &hash_lock);
3217         if (hdr == NULL)
3218                 return;
3219         if (HDR_BUF_AVAILABLE(hdr)) {
3220                 arc_buf_t *buf = hdr->b_buf;
3221                 add_reference(hdr, hash_lock, FTAG);
3222                 hdr->b_flags &= ~ARC_BUF_AVAILABLE;
3223                 mutex_exit(hash_lock);
3224 
3225                 arc_release(buf, FTAG);
3226                 (void) arc_buf_remove_ref(buf, FTAG);
3227         } else {
3228                 mutex_exit(hash_lock);
3229         }
3230 
3231 }
3232 
3233 /*
3234  * Clear the user eviction callback set by arc_set_callback(), first calling
3235  * it if it exists.  Because the presence of a callback keeps an arc_buf cached
3236  * clearing the callback may result in the arc_buf being destroyed.  However,
3237  * it will not result in the *last* arc_buf being destroyed, hence the data
3238  * will remain cached in the ARC. We make a copy of the arc buffer here so
3239  * that we can process the callback without holding any locks.
3240  *
3241  * It's possible that the callback is already in the process of being cleared
3242  * by another thread.  In this case we can not clear the callback.
3243  *
3244  * Returns B_TRUE if the callback was successfully called and cleared.
3245  */
3246 boolean_t
3247 arc_clear_callback(arc_buf_t *buf)
3248 {
3249         arc_buf_hdr_t *hdr;
3250         kmutex_t *hash_lock;
3251         arc_evict_func_t *efunc = buf->b_efunc;
3252         void *private = buf->b_private;
3253 
3254         mutex_enter(&buf->b_evict_lock);
3255         hdr = buf->b_hdr;
3256         if (hdr == NULL) {
3257                 /*
3258                  * We are in arc_do_user_evicts().
3259                  */
3260                 ASSERT(buf->b_data == NULL);
3261                 mutex_exit(&buf->b_evict_lock);
3262                 return (B_FALSE);
3263         } else if (buf->b_data == NULL) {
3264                 /*
3265                  * We are on the eviction list; process this buffer now
3266                  * but let arc_do_user_evicts() do the reaping.
3267                  */
3268                 buf->b_efunc = NULL;
3269                 mutex_exit(&buf->b_evict_lock);
3270                 VERIFY0(efunc(private));
3271                 return (B_TRUE);
3272         }
3273         hash_lock = HDR_LOCK(hdr);
3274         mutex_enter(hash_lock);
3275         hdr = buf->b_hdr;
3276         ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3277 
3278         ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt);
3279         ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
3280 
3281         buf->b_efunc = NULL;
3282         buf->b_private = NULL;
3283 
3284         if (hdr->b_datacnt > 1) {
3285                 mutex_exit(&buf->b_evict_lock);
3286                 arc_buf_destroy(buf, FALSE, TRUE);
3287         } else {
3288                 ASSERT(buf == hdr->b_buf);
3289                 hdr->b_flags |= ARC_BUF_AVAILABLE;
3290                 mutex_exit(&buf->b_evict_lock);
3291         }
3292 
3293         mutex_exit(hash_lock);
3294         VERIFY0(efunc(private));
3295         return (B_TRUE);
3296 }
3297 
3298 /*
3299  * Release this buffer from the cache, making it an anonymous buffer.  This
3300  * must be done after a read and prior to modifying the buffer contents.
3301  * If the buffer has more than one reference, we must make
3302  * a new hdr for the buffer.
3303  */
3304 void
3305 arc_release(arc_buf_t *buf, void *tag)
3306 {
3307         arc_buf_hdr_t *hdr;
3308         kmutex_t *hash_lock = NULL;
3309         l2arc_buf_hdr_t *l2hdr;
3310         uint64_t buf_size;
3311 
3312         /*
3313          * It would be nice to assert that if it's DMU metadata (level >
3314          * 0 || it's the dnode file), then it must be syncing context.
3315          * But we don't know that information at this level.
3316          */
3317 
3318         mutex_enter(&buf->b_evict_lock);
3319         hdr = buf->b_hdr;
3320 
3321         /* this buffer is not on any list */
3322         ASSERT(refcount_count(&hdr->b_refcnt) > 0);
3323 
3324         if (hdr->b_state == arc_anon) {
3325                 /* this buffer is already released */
3326                 ASSERT(buf->b_efunc == NULL);
3327         } else {
3328                 hash_lock = HDR_LOCK(hdr);
3329                 mutex_enter(hash_lock);
3330                 hdr = buf->b_hdr;
3331                 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3332         }
3333 
3334         l2hdr = hdr->b_l2hdr;
3335         if (l2hdr) {
3336                 mutex_enter(&l2arc_buflist_mtx);
3337                 hdr->b_l2hdr = NULL;
3338                 list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
3339         }
3340         buf_size = hdr->b_size;
3341 
3342         /*
3343          * Do we have more than one buf?
3344          */
3345         if (hdr->b_datacnt > 1) {
3346                 arc_buf_hdr_t *nhdr;
3347                 arc_buf_t **bufp;
3348                 uint64_t blksz = hdr->b_size;
3349                 uint64_t spa = hdr->b_spa;
3350                 arc_buf_contents_t type = hdr->b_type;
3351                 uint32_t flags = hdr->b_flags;
3352 
3353                 ASSERT(hdr->b_buf != buf || buf->b_next != NULL);
3354                 /*
3355                  * Pull the data off of this hdr and attach it to
3356                  * a new anonymous hdr.
3357                  */
3358                 (void) remove_reference(hdr, hash_lock, tag);
3359                 bufp = &hdr->b_buf;
3360                 while (*bufp != buf)
3361                         bufp = &(*bufp)->b_next;
3362                 *bufp = buf->b_next;
3363                 buf->b_next = NULL;
3364 
3365                 ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size);
3366                 atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size);
3367                 if (refcount_is_zero(&hdr->b_refcnt)) {
3368                         uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type];
3369                         ASSERT3U(*size, >=, hdr->b_size);
3370                         atomic_add_64(size, -hdr->b_size);
3371                 }
3372 
3373                 /*
3374                  * We're releasing a duplicate user data buffer, update
3375                  * our statistics accordingly.
3376                  */
3377                 if (hdr->b_type == ARC_BUFC_DATA) {
3378                         ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
3379                         ARCSTAT_INCR(arcstat_duplicate_buffers_size,
3380                             -hdr->b_size);
3381                 }
3382                 hdr->b_datacnt -= 1;
3383                 arc_cksum_verify(buf);
3384                 arc_buf_unwatch(buf);
3385 
3386                 mutex_exit(hash_lock);
3387 
3388                 nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
3389                 nhdr->b_size = blksz;
3390                 nhdr->b_spa = spa;
3391                 nhdr->b_type = type;
3392                 nhdr->b_buf = buf;
3393                 nhdr->b_state = arc_anon;
3394                 nhdr->b_arc_access = 0;
3395                 nhdr->b_flags = flags & ARC_L2_WRITING;
3396                 nhdr->b_l2hdr = NULL;
3397                 nhdr->b_datacnt = 1;
3398                 nhdr->b_freeze_cksum = NULL;
3399                 (void) refcount_add(&nhdr->b_refcnt, tag);
3400                 buf->b_hdr = nhdr;
3401                 mutex_exit(&buf->b_evict_lock);
3402                 atomic_add_64(&arc_anon->arcs_size, blksz);
3403         } else {
3404                 mutex_exit(&buf->b_evict_lock);
3405                 ASSERT(refcount_count(&hdr->b_refcnt) == 1);
3406                 ASSERT(!list_link_active(&hdr->b_arc_node));
3407                 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3408                 if (hdr->b_state != arc_anon)
3409                         arc_change_state(arc_anon, hdr, hash_lock);
3410                 hdr->b_arc_access = 0;
3411                 if (hash_lock)
3412                         mutex_exit(hash_lock);
3413 
3414                 buf_discard_identity(hdr);
3415                 arc_buf_thaw(buf);
3416         }
3417         buf->b_efunc = NULL;
3418         buf->b_private = NULL;
3419 
3420         if (l2hdr) {
3421                 ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize);
3422                 vdev_space_update(l2hdr->b_dev->l2ad_vdev,
3423                     -l2hdr->b_asize, 0, 0);
3424                 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
3425                 ARCSTAT_INCR(arcstat_l2_size, -buf_size);
3426                 mutex_exit(&l2arc_buflist_mtx);
3427         }
3428 }
3429 
3430 int
3431 arc_released(arc_buf_t *buf)
3432 {
3433         int released;
3434 
3435         mutex_enter(&buf->b_evict_lock);
3436         released = (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon);
3437         mutex_exit(&buf->b_evict_lock);
3438         return (released);
3439 }
3440 
3441 #ifdef ZFS_DEBUG
3442 int
3443 arc_referenced(arc_buf_t *buf)
3444 {
3445         int referenced;
3446 
3447         mutex_enter(&buf->b_evict_lock);
3448         referenced = (refcount_count(&buf->b_hdr->b_refcnt));
3449         mutex_exit(&buf->b_evict_lock);
3450         return (referenced);
3451 }
3452 #endif
3453 
3454 static void
3455 arc_write_ready(zio_t *zio)
3456 {
3457         arc_write_callback_t *callback = zio->io_private;
3458         arc_buf_t *buf = callback->awcb_buf;
3459         arc_buf_hdr_t *hdr = buf->b_hdr;
3460 
3461         ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt));
3462         callback->awcb_ready(zio, buf, callback->awcb_private);
3463 
3464         /*
3465          * If the IO is already in progress, then this is a re-write
3466          * attempt, so we need to thaw and re-compute the cksum.
3467          * It is the responsibility of the callback to handle the
3468          * accounting for any re-write attempt.
3469          */
3470         if (HDR_IO_IN_PROGRESS(hdr)) {
3471                 mutex_enter(&hdr->b_freeze_lock);
3472                 if (hdr->b_freeze_cksum != NULL) {
3473                         kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
3474                         hdr->b_freeze_cksum = NULL;
3475                 }
3476                 mutex_exit(&hdr->b_freeze_lock);
3477         }
3478         arc_cksum_compute(buf, B_FALSE);
3479         hdr->b_flags |= ARC_IO_IN_PROGRESS;
3480 }
3481 
3482 /*
3483  * The SPA calls this callback for each physical write that happens on behalf
3484  * of a logical write.  See the comment in dbuf_write_physdone() for details.
3485  */
3486 static void
3487 arc_write_physdone(zio_t *zio)
3488 {
3489         arc_write_callback_t *cb = zio->io_private;
3490         if (cb->awcb_physdone != NULL)
3491                 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
3492 }
3493 
3494 static void
3495 arc_write_done(zio_t *zio)
3496 {
3497         arc_write_callback_t *callback = zio->io_private;
3498         arc_buf_t *buf = callback->awcb_buf;
3499         arc_buf_hdr_t *hdr = buf->b_hdr;
3500 
3501         ASSERT(hdr->b_acb == NULL);
3502 
3503         if (zio->io_error == 0) {
3504                 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
3505                         buf_discard_identity(hdr);
3506                 } else {
3507                         hdr->b_dva = *BP_IDENTITY(zio->io_bp);
3508                         hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
3509                         hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0];
3510                 }
3511         } else {
3512                 ASSERT(BUF_EMPTY(hdr));
3513         }
3514 
3515         /*
3516          * If the block to be written was all-zero or compressed enough to be
3517          * embedded in the BP, no write was performed so there will be no
3518          * dva/birth/checksum.  The buffer must therefore remain anonymous
3519          * (and uncached).
3520          */
3521         if (!BUF_EMPTY(hdr)) {
3522                 arc_buf_hdr_t *exists;
3523                 kmutex_t *hash_lock;
3524 
3525                 ASSERT(zio->io_error == 0);
3526 
3527                 arc_cksum_verify(buf);
3528 
3529                 exists = buf_hash_insert(hdr, &hash_lock);
3530                 if (exists) {
3531                         /*
3532                          * This can only happen if we overwrite for
3533                          * sync-to-convergence, because we remove
3534                          * buffers from the hash table when we arc_free().
3535                          */
3536                         if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
3537                                 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
3538                                         panic("bad overwrite, hdr=%p exists=%p",
3539                                             (void *)hdr, (void *)exists);
3540                                 ASSERT(refcount_is_zero(&exists->b_refcnt));
3541                                 arc_change_state(arc_anon, exists, hash_lock);
3542                                 mutex_exit(hash_lock);
3543                                 arc_hdr_destroy(exists);
3544                                 exists = buf_hash_insert(hdr, &hash_lock);
3545                                 ASSERT3P(exists, ==, NULL);
3546                         } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
3547                                 /* nopwrite */
3548                                 ASSERT(zio->io_prop.zp_nopwrite);
3549                                 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
3550                                         panic("bad nopwrite, hdr=%p exists=%p",
3551                                             (void *)hdr, (void *)exists);
3552                         } else {
3553                                 /* Dedup */
3554                                 ASSERT(hdr->b_datacnt == 1);
3555                                 ASSERT(hdr->b_state == arc_anon);
3556                                 ASSERT(BP_GET_DEDUP(zio->io_bp));
3557                                 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
3558                         }
3559                 }
3560                 hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3561                 /* if it's not anon, we are doing a scrub */
3562                 if (!exists && hdr->b_state == arc_anon)
3563                         arc_access(hdr, hash_lock);
3564                 mutex_exit(hash_lock);
3565         } else {
3566                 hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3567         }
3568 
3569         ASSERT(!refcount_is_zero(&hdr->b_refcnt));
3570         callback->awcb_done(zio, buf, callback->awcb_private);
3571 
3572         kmem_free(callback, sizeof (arc_write_callback_t));
3573 }
3574 
3575 zio_t *
3576 arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
3577     blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, boolean_t l2arc_compress,
3578     const zio_prop_t *zp, arc_done_func_t *ready, arc_done_func_t *physdone,
3579     arc_done_func_t *done, void *private, zio_priority_t priority,
3580     int zio_flags, const zbookmark_phys_t *zb)
3581 {
3582         arc_buf_hdr_t *hdr = buf->b_hdr;
3583         arc_write_callback_t *callback;
3584         zio_t *zio;
3585 
3586         ASSERT(ready != NULL);
3587         ASSERT(done != NULL);
3588         ASSERT(!HDR_IO_ERROR(hdr));
3589         ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0);
3590         ASSERT(hdr->b_acb == NULL);
3591         if (l2arc)
3592                 hdr->b_flags |= ARC_L2CACHE;
3593         if (l2arc_compress)
3594                 hdr->b_flags |= ARC_L2COMPRESS;
3595         callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
3596         callback->awcb_ready = ready;
3597         callback->awcb_physdone = physdone;
3598         callback->awcb_done = done;
3599         callback->awcb_private = private;
3600         callback->awcb_buf = buf;
3601 
3602         zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp,
3603             arc_write_ready, arc_write_physdone, arc_write_done, callback,
3604             priority, zio_flags, zb);
3605 
3606         return (zio);
3607 }
3608 
3609 static int
3610 arc_memory_throttle(uint64_t reserve, uint64_t txg)
3611 {
3612 #ifdef _KERNEL
3613         uint64_t available_memory = ptob(freemem);
3614         static uint64_t page_load = 0;
3615         static uint64_t last_txg = 0;
3616 
3617 #if defined(__i386)
3618         available_memory =
3619             MIN(available_memory, vmem_size(heap_arena, VMEM_FREE));
3620 #endif
3621 
3622         if (freemem > physmem * arc_lotsfree_percent / 100)
3623                 return (0);
3624 
3625         if (txg > last_txg) {
3626                 last_txg = txg;
3627                 page_load = 0;
3628         }
3629         /*
3630          * If we are in pageout, we know that memory is already tight,
3631          * the arc is already going to be evicting, so we just want to
3632          * continue to let page writes occur as quickly as possible.
3633          */
3634         if (curproc == proc_pageout) {
3635                 if (page_load > MAX(ptob(minfree), available_memory) / 4)
3636                         return (SET_ERROR(ERESTART));
3637                 /* Note: reserve is inflated, so we deflate */
3638                 page_load += reserve / 8;
3639                 return (0);
3640         } else if (page_load > 0 && arc_reclaim_needed()) {
3641                 /* memory is low, delay before restarting */
3642                 ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
3643                 return (SET_ERROR(EAGAIN));
3644         }
3645         page_load = 0;
3646 #endif
3647         return (0);
3648 }
3649 
3650 void
3651 arc_tempreserve_clear(uint64_t reserve)
3652 {
3653         atomic_add_64(&arc_tempreserve, -reserve);
3654         ASSERT((int64_t)arc_tempreserve >= 0);
3655 }
3656 
3657 int
3658 arc_tempreserve_space(uint64_t reserve, uint64_t txg)
3659 {
3660         int error;
3661         uint64_t anon_size;
3662 
3663         if (reserve > arc_c/4 && !arc_no_grow)
3664                 arc_c = MIN(arc_c_max, reserve * 4);
3665         if (reserve > arc_c)
3666                 return (SET_ERROR(ENOMEM));
3667 
3668         /*
3669          * Don't count loaned bufs as in flight dirty data to prevent long
3670          * network delays from blocking transactions that are ready to be
3671          * assigned to a txg.
3672          */
3673         anon_size = MAX((int64_t)(arc_anon->arcs_size - arc_loaned_bytes), 0);
3674 
3675         /*
3676          * Writes will, almost always, require additional memory allocations
3677          * in order to compress/encrypt/etc the data.  We therefore need to
3678          * make sure that there is sufficient available memory for this.
3679          */
3680         error = arc_memory_throttle(reserve, txg);
3681         if (error != 0)
3682                 return (error);
3683 
3684         /*
3685          * Throttle writes when the amount of dirty data in the cache
3686          * gets too large.  We try to keep the cache less than half full
3687          * of dirty blocks so that our sync times don't grow too large.
3688          * Note: if two requests come in concurrently, we might let them
3689          * both succeed, when one of them should fail.  Not a huge deal.
3690          */
3691 
3692         if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
3693             anon_size > arc_c / 4) {
3694                 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
3695                     "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
3696                     arc_tempreserve>>10,
3697                     arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
3698                     arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
3699                     reserve>>10, arc_c>>10);
3700                 return (SET_ERROR(ERESTART));
3701         }
3702         atomic_add_64(&arc_tempreserve, reserve);
3703         return (0);
3704 }
3705 
3706 void
3707 arc_init(void)
3708 {
3709         mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL);
3710         cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL);
3711 
3712         /* Convert seconds to clock ticks */
3713         arc_min_prefetch_lifespan = 1 * hz;
3714 
3715         /* Start out with 1/8 of all memory */
3716         arc_c = physmem * PAGESIZE / 8;
3717 
3718 #ifdef _KERNEL
3719         /*
3720          * On architectures where the physical memory can be larger
3721          * than the addressable space (intel in 32-bit mode), we may
3722          * need to limit the cache to 1/8 of VM size.
3723          */
3724         arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
3725 #endif
3726 
3727         /* set min cache to 1/32 of all memory, or 64MB, whichever is more */
3728         arc_c_min = MAX(arc_c / 4, 64<<20);
3729         /* set max to 3/4 of all memory, or all but 1GB, whichever is more */
3730         if (arc_c * 8 >= 1<<30)
3731                 arc_c_max = (arc_c * 8) - (1<<30);
3732         else
3733                 arc_c_max = arc_c_min;
3734         arc_c_max = MAX(arc_c * 6, arc_c_max);
3735 
3736         /*
3737          * Allow the tunables to override our calculations if they are
3738          * reasonable (ie. over 64MB)
3739          */
3740         if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE)
3741                 arc_c_max = zfs_arc_max;
3742         if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc_c_max)
3743                 arc_c_min = zfs_arc_min;
3744 
3745         arc_c = arc_c_max;
3746         arc_p = (arc_c >> 1);
3747 
3748         /* limit meta-data to 1/4 of the arc capacity */
3749         arc_meta_limit = arc_c_max / 4;
3750 
3751         /* Allow the tunable to override if it is reasonable */
3752         if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
3753                 arc_meta_limit = zfs_arc_meta_limit;
3754 
3755         if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
3756                 arc_c_min = arc_meta_limit / 2;
3757 
3758         if (zfs_arc_grow_retry > 0)
3759                 arc_grow_retry = zfs_arc_grow_retry;
3760 
3761         if (zfs_arc_shrink_shift > 0)
3762                 arc_shrink_shift = zfs_arc_shrink_shift;
3763 
3764         if (zfs_arc_p_min_shift > 0)
3765                 arc_p_min_shift = zfs_arc_p_min_shift;
3766 
3767         /* if kmem_flags are set, lets try to use less memory */
3768         if (kmem_debugging())
3769                 arc_c = arc_c / 2;
3770         if (arc_c < arc_c_min)
3771                 arc_c = arc_c_min;
3772 
3773         arc_anon = &ARC_anon;
3774         arc_mru = &ARC_mru;
3775         arc_mru_ghost = &ARC_mru_ghost;
3776         arc_mfu = &ARC_mfu;
3777         arc_mfu_ghost = &ARC_mfu_ghost;
3778         arc_l2c_only = &ARC_l2c_only;
3779         arc_size = 0;
3780 
3781         mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3782         mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3783         mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3784         mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3785         mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3786         mutex_init(&arc_l2c_only->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3787 
3788         list_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
3789             sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3790         list_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
3791             sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3792         list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
3793             sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3794         list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
3795             sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3796         list_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
3797             sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3798         list_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
3799             sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3800         list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
3801             sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3802         list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
3803             sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3804         list_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
3805             sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3806         list_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
3807             sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3808 
3809         buf_init();
3810 
3811         arc_thread_exit = 0;
3812         arc_eviction_list = NULL;
3813         mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL);
3814         bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
3815 
3816         arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
3817             sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
3818 
3819         if (arc_ksp != NULL) {
3820                 arc_ksp->ks_data = &arc_stats;
3821                 kstat_install(arc_ksp);
3822         }
3823 
3824         (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
3825             TS_RUN, minclsyspri);
3826 
3827         arc_dead = FALSE;
3828         arc_warm = B_FALSE;
3829 
3830         /*
3831          * Calculate maximum amount of dirty data per pool.
3832          *
3833          * If it has been set by /etc/system, take that.
3834          * Otherwise, use a percentage of physical memory defined by
3835          * zfs_dirty_data_max_percent (default 10%) with a cap at
3836          * zfs_dirty_data_max_max (default 4GB).
3837          */
3838         if (zfs_dirty_data_max == 0) {
3839                 zfs_dirty_data_max = physmem * PAGESIZE *
3840                     zfs_dirty_data_max_percent / 100;
3841                 zfs_dirty_data_max = MIN(zfs_dirty_data_max,
3842                     zfs_dirty_data_max_max);
3843         }
3844 }
3845 
3846 void
3847 arc_fini(void)
3848 {
3849         mutex_enter(&arc_reclaim_thr_lock);
3850         arc_thread_exit = 1;
3851         while (arc_thread_exit != 0)
3852                 cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock);
3853         mutex_exit(&arc_reclaim_thr_lock);
3854 
3855         arc_flush(NULL);
3856 
3857         arc_dead = TRUE;
3858 
3859         if (arc_ksp != NULL) {
3860                 kstat_delete(arc_ksp);
3861                 arc_ksp = NULL;
3862         }
3863 
3864         mutex_destroy(&arc_eviction_mtx);
3865         mutex_destroy(&arc_reclaim_thr_lock);
3866         cv_destroy(&arc_reclaim_thr_cv);
3867 
3868         list_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
3869         list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
3870         list_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
3871         list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
3872         list_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
3873         list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
3874         list_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
3875         list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
3876 
3877         mutex_destroy(&arc_anon->arcs_mtx);
3878         mutex_destroy(&arc_mru->arcs_mtx);
3879         mutex_destroy(&arc_mru_ghost->arcs_mtx);
3880         mutex_destroy(&arc_mfu->arcs_mtx);
3881         mutex_destroy(&arc_mfu_ghost->arcs_mtx);
3882         mutex_destroy(&arc_l2c_only->arcs_mtx);
3883 
3884         buf_fini();
3885 
3886         ASSERT(arc_loaned_bytes == 0);
3887 }
3888 
3889 /*
3890  * Level 2 ARC
3891  *
3892  * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
3893  * It uses dedicated storage devices to hold cached data, which are populated
3894  * using large infrequent writes.  The main role of this cache is to boost
3895  * the performance of random read workloads.  The intended L2ARC devices
3896  * include short-stroked disks, solid state disks, and other media with
3897  * substantially faster read latency than disk.
3898  *
3899  *                 +-----------------------+
3900  *                 |         ARC           |
3901  *                 +-----------------------+
3902  *                    |         ^     ^
3903  *                    |         |     |
3904  *      l2arc_feed_thread()    arc_read()
3905  *                    |         |     |
3906  *                    |  l2arc read   |
3907  *                    V         |     |
3908  *               +---------------+    |
3909  *               |     L2ARC     |    |
3910  *               +---------------+    |
3911  *                   |    ^           |
3912  *          l2arc_write() |           |
3913  *                   |    |           |
3914  *                   V    |           |
3915  *                 +-------+      +-------+
3916  *                 | vdev  |      | vdev  |
3917  *                 | cache |      | cache |
3918  *                 +-------+      +-------+
3919  *                 +=========+     .-----.
3920  *                 :  L2ARC  :    |-_____-|
3921  *                 : devices :    | Disks |
3922  *                 +=========+    `-_____-'
3923  *
3924  * Read requests are satisfied from the following sources, in order:
3925  *
3926  *      1) ARC
3927  *      2) vdev cache of L2ARC devices
3928  *      3) L2ARC devices
3929  *      4) vdev cache of disks
3930  *      5) disks
3931  *
3932  * Some L2ARC device types exhibit extremely slow write performance.
3933  * To accommodate for this there are some significant differences between
3934  * the L2ARC and traditional cache design:
3935  *
3936  * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
3937  * the ARC behave as usual, freeing buffers and placing headers on ghost
3938  * lists.  The ARC does not send buffers to the L2ARC during eviction as
3939  * this would add inflated write latencies for all ARC memory pressure.
3940  *
3941  * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
3942  * It does this by periodically scanning buffers from the eviction-end of
3943  * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
3944  * not already there. It scans until a headroom of buffers is satisfied,
3945  * which itself is a buffer for ARC eviction. If a compressible buffer is
3946  * found during scanning and selected for writing to an L2ARC device, we
3947  * temporarily boost scanning headroom during the next scan cycle to make
3948  * sure we adapt to compression effects (which might significantly reduce
3949  * the data volume we write to L2ARC). The thread that does this is
3950  * l2arc_feed_thread(), illustrated below; example sizes are included to
3951  * provide a better sense of ratio than this diagram:
3952  *
3953  *             head -->                        tail
3954  *              +---------------------+----------+
3955  *      ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
3956  *              +---------------------+----------+   |   o L2ARC eligible
3957  *      ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
3958  *              +---------------------+----------+   |
3959  *                   15.9 Gbytes      ^ 32 Mbytes    |
3960  *                                 headroom          |
3961  *                                            l2arc_feed_thread()
3962  *                                                   |
3963  *                       l2arc write hand <--[oooo]--'
3964  *                               |           8 Mbyte
3965  *                               |          write max
3966  *                               V
3967  *                +==============================+
3968  *      L2ARC dev |####|#|###|###|    |####| ... |
3969  *                +==============================+
3970  *                           32 Gbytes
3971  *
3972  * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
3973  * evicted, then the L2ARC has cached a buffer much sooner than it probably
3974  * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
3975  * safe to say that this is an uncommon case, since buffers at the end of
3976  * the ARC lists have moved there due to inactivity.
3977  *
3978  * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
3979  * then the L2ARC simply misses copying some buffers.  This serves as a
3980  * pressure valve to prevent heavy read workloads from both stalling the ARC
3981  * with waits and clogging the L2ARC with writes.  This also helps prevent
3982  * the potential for the L2ARC to churn if it attempts to cache content too
3983  * quickly, such as during backups of the entire pool.
3984  *
3985  * 5. After system boot and before the ARC has filled main memory, there are
3986  * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
3987  * lists can remain mostly static.  Instead of searching from tail of these
3988  * lists as pictured, the l2arc_feed_thread() will search from the list heads
3989  * for eligible buffers, greatly increasing its chance of finding them.
3990  *
3991  * The L2ARC device write speed is also boosted during this time so that
3992  * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
3993  * there are no L2ARC reads, and no fear of degrading read performance
3994  * through increased writes.
3995  *
3996  * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
3997  * the vdev queue can aggregate them into larger and fewer writes.  Each
3998  * device is written to in a rotor fashion, sweeping writes through
3999  * available space then repeating.
4000  *
4001  * 7. The L2ARC does not store dirty content.  It never needs to flush
4002  * write buffers back to disk based storage.
4003  *
4004  * 8. If an ARC buffer is written (and dirtied) which also exists in the
4005  * L2ARC, the now stale L2ARC buffer is immediately dropped.
4006  *
4007  * The performance of the L2ARC can be tweaked by a number of tunables, which
4008  * may be necessary for different workloads:
4009  *
4010  *      l2arc_write_max         max write bytes per interval
4011  *      l2arc_write_boost       extra write bytes during device warmup
4012  *      l2arc_noprefetch        skip caching prefetched buffers
4013  *      l2arc_headroom          number of max device writes to precache
4014  *      l2arc_headroom_boost    when we find compressed buffers during ARC
4015  *                              scanning, we multiply headroom by this
4016  *                              percentage factor for the next scan cycle,
4017  *                              since more compressed buffers are likely to
4018  *                              be present
4019  *      l2arc_feed_secs         seconds between L2ARC writing
4020  *
4021  * Tunables may be removed or added as future performance improvements are
4022  * integrated, and also may become zpool properties.
4023  *
4024  * There are three key functions that control how the L2ARC warms up:
4025  *
4026  *      l2arc_write_eligible()  check if a buffer is eligible to cache
4027  *      l2arc_write_size()      calculate how much to write
4028  *      l2arc_write_interval()  calculate sleep delay between writes
4029  *
4030  * These three functions determine what to write, how much, and how quickly
4031  * to send writes.
4032  */
4033 
4034 static boolean_t
4035 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab)
4036 {
4037         /*
4038          * A buffer is *not* eligible for the L2ARC if it:
4039          * 1. belongs to a different spa.
4040          * 2. is already cached on the L2ARC.
4041          * 3. has an I/O in progress (it may be an incomplete read).
4042          * 4. is flagged not eligible (zfs property).
4043          */
4044         if (ab->b_spa != spa_guid || ab->b_l2hdr != NULL ||
4045             HDR_IO_IN_PROGRESS(ab) || !HDR_L2CACHE(ab))
4046                 return (B_FALSE);
4047 
4048         return (B_TRUE);
4049 }
4050 
4051 static uint64_t
4052 l2arc_write_size(void)
4053 {
4054         uint64_t size;
4055 
4056         /*
4057          * Make sure our globals have meaningful values in case the user
4058          * altered them.
4059          */
4060         size = l2arc_write_max;
4061         if (size == 0) {
4062                 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
4063                     "be greater than zero, resetting it to the default (%d)",
4064                     L2ARC_WRITE_SIZE);
4065                 size = l2arc_write_max = L2ARC_WRITE_SIZE;
4066         }
4067 
4068         if (arc_warm == B_FALSE)
4069                 size += l2arc_write_boost;
4070 
4071         return (size);
4072 
4073 }
4074 
4075 static clock_t
4076 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
4077 {
4078         clock_t interval, next, now;
4079 
4080         /*
4081          * If the ARC lists are busy, increase our write rate; if the
4082          * lists are stale, idle back.  This is achieved by checking
4083          * how much we previously wrote - if it was more than half of
4084          * what we wanted, schedule the next write much sooner.
4085          */
4086         if (l2arc_feed_again && wrote > (wanted / 2))
4087                 interval = (hz * l2arc_feed_min_ms) / 1000;
4088         else
4089                 interval = hz * l2arc_feed_secs;
4090 
4091         now = ddi_get_lbolt();
4092         next = MAX(now, MIN(now + interval, began + interval));
4093 
4094         return (next);
4095 }
4096 
4097 static void
4098 l2arc_hdr_stat_add(void)
4099 {
4100         ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE + L2HDR_SIZE);
4101         ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE);
4102 }
4103 
4104 static void
4105 l2arc_hdr_stat_remove(void)
4106 {
4107         ARCSTAT_INCR(arcstat_l2_hdr_size, -(HDR_SIZE + L2HDR_SIZE));
4108         ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE);
4109 }
4110 
4111 /*
4112  * Cycle through L2ARC devices.  This is how L2ARC load balances.
4113  * If a device is returned, this also returns holding the spa config lock.
4114  */
4115 static l2arc_dev_t *
4116 l2arc_dev_get_next(void)
4117 {
4118         l2arc_dev_t *first, *next = NULL;
4119 
4120         /*
4121          * Lock out the removal of spas (spa_namespace_lock), then removal
4122          * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
4123          * both locks will be dropped and a spa config lock held instead.
4124          */
4125         mutex_enter(&spa_namespace_lock);
4126         mutex_enter(&l2arc_dev_mtx);
4127 
4128         /* if there are no vdevs, there is nothing to do */
4129         if (l2arc_ndev == 0)
4130                 goto out;
4131 
4132         first = NULL;
4133         next = l2arc_dev_last;
4134         do {
4135                 /* loop around the list looking for a non-faulted vdev */
4136                 if (next == NULL) {
4137                         next = list_head(l2arc_dev_list);
4138                 } else {
4139                         next = list_next(l2arc_dev_list, next);
4140                         if (next == NULL)
4141                                 next = list_head(l2arc_dev_list);
4142                 }
4143 
4144                 /* if we have come back to the start, bail out */
4145                 if (first == NULL)
4146                         first = next;
4147                 else if (next == first)
4148                         break;
4149 
4150         } while (vdev_is_dead(next->l2ad_vdev));
4151 
4152         /* if we were unable to find any usable vdevs, return NULL */
4153         if (vdev_is_dead(next->l2ad_vdev))
4154                 next = NULL;
4155 
4156         l2arc_dev_last = next;
4157 
4158 out:
4159         mutex_exit(&l2arc_dev_mtx);
4160 
4161         /*
4162          * Grab the config lock to prevent the 'next' device from being
4163          * removed while we are writing to it.
4164          */
4165         if (next != NULL)
4166                 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
4167         mutex_exit(&spa_namespace_lock);
4168 
4169         return (next);
4170 }
4171 
4172 /*
4173  * Free buffers that were tagged for destruction.
4174  */
4175 static void
4176 l2arc_do_free_on_write()
4177 {
4178         list_t *buflist;
4179         l2arc_data_free_t *df, *df_prev;
4180 
4181         mutex_enter(&l2arc_free_on_write_mtx);
4182         buflist = l2arc_free_on_write;
4183 
4184         for (df = list_tail(buflist); df; df = df_prev) {
4185                 df_prev = list_prev(buflist, df);
4186                 ASSERT(df->l2df_data != NULL);
4187                 ASSERT(df->l2df_func != NULL);
4188                 df->l2df_func(df->l2df_data, df->l2df_size);
4189                 list_remove(buflist, df);
4190                 kmem_free(df, sizeof (l2arc_data_free_t));
4191         }
4192 
4193         mutex_exit(&l2arc_free_on_write_mtx);
4194 }
4195 
4196 /*
4197  * A write to a cache device has completed.  Update all headers to allow
4198  * reads from these buffers to begin.
4199  */
4200 static void
4201 l2arc_write_done(zio_t *zio)
4202 {
4203         l2arc_write_callback_t *cb;
4204         l2arc_dev_t *dev;
4205         list_t *buflist;
4206         arc_buf_hdr_t *head, *ab, *ab_prev;
4207         l2arc_buf_hdr_t *abl2;
4208         kmutex_t *hash_lock;
4209         int64_t bytes_dropped = 0;
4210 
4211         cb = zio->io_private;
4212         ASSERT(cb != NULL);
4213         dev = cb->l2wcb_dev;
4214         ASSERT(dev != NULL);
4215         head = cb->l2wcb_head;
4216         ASSERT(head != NULL);
4217         buflist = dev->l2ad_buflist;
4218         ASSERT(buflist != NULL);
4219         DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
4220             l2arc_write_callback_t *, cb);
4221 
4222         if (zio->io_error != 0)
4223                 ARCSTAT_BUMP(arcstat_l2_writes_error);
4224 
4225         mutex_enter(&l2arc_buflist_mtx);
4226 
4227         /*
4228          * All writes completed, or an error was hit.
4229          */
4230         for (ab = list_prev(buflist, head); ab; ab = ab_prev) {
4231                 ab_prev = list_prev(buflist, ab);
4232                 abl2 = ab->b_l2hdr;
4233 
4234                 /*
4235                  * Release the temporary compressed buffer as soon as possible.
4236                  */
4237                 if (abl2->b_compress != ZIO_COMPRESS_OFF)
4238                         l2arc_release_cdata_buf(ab);
4239 
4240                 hash_lock = HDR_LOCK(ab);
4241                 if (!mutex_tryenter(hash_lock)) {
4242                         /*
4243                          * This buffer misses out.  It may be in a stage
4244                          * of eviction.  Its ARC_L2_WRITING flag will be
4245                          * left set, denying reads to this buffer.
4246                          */
4247                         ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss);
4248                         continue;
4249                 }
4250 
4251                 if (zio->io_error != 0) {
4252                         /*
4253                          * Error - drop L2ARC entry.
4254                          */
4255                         list_remove(buflist, ab);
4256                         ARCSTAT_INCR(arcstat_l2_asize, -abl2->b_asize);
4257                         bytes_dropped += abl2->b_asize;
4258                         ab->b_l2hdr = NULL;
4259                         kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
4260                         ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
4261                 }
4262 
4263                 /*
4264                  * Allow ARC to begin reads to this L2ARC entry.
4265                  */
4266                 ab->b_flags &= ~ARC_L2_WRITING;
4267 
4268                 mutex_exit(hash_lock);
4269         }
4270 
4271         atomic_inc_64(&l2arc_writes_done);
4272         list_remove(buflist, head);
4273         kmem_cache_free(hdr_cache, head);
4274         mutex_exit(&l2arc_buflist_mtx);
4275 
4276         vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
4277 
4278         l2arc_do_free_on_write();
4279 
4280         kmem_free(cb, sizeof (l2arc_write_callback_t));
4281 }
4282 
4283 /*
4284  * A read to a cache device completed.  Validate buffer contents before
4285  * handing over to the regular ARC routines.
4286  */
4287 static void
4288 l2arc_read_done(zio_t *zio)
4289 {
4290         l2arc_read_callback_t *cb;
4291         arc_buf_hdr_t *hdr;
4292         arc_buf_t *buf;
4293         kmutex_t *hash_lock;
4294         int equal;
4295 
4296         ASSERT(zio->io_vd != NULL);
4297         ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
4298 
4299         spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
4300 
4301         cb = zio->io_private;
4302         ASSERT(cb != NULL);
4303         buf = cb->l2rcb_buf;
4304         ASSERT(buf != NULL);
4305 
4306         hash_lock = HDR_LOCK(buf->b_hdr);
4307         mutex_enter(hash_lock);
4308         hdr = buf->b_hdr;
4309         ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
4310 
4311         /*
4312          * If the buffer was compressed, decompress it first.
4313          */
4314         if (cb->l2rcb_compress != ZIO_COMPRESS_OFF)
4315                 l2arc_decompress_zio(zio, hdr, cb->l2rcb_compress);
4316         ASSERT(zio->io_data != NULL);
4317 
4318         /*
4319          * Check this survived the L2ARC journey.
4320          */
4321         equal = arc_cksum_equal(buf);
4322         if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
4323                 mutex_exit(hash_lock);
4324                 zio->io_private = buf;
4325                 zio->io_bp_copy = cb->l2rcb_bp;   /* XXX fix in L2ARC 2.0 */
4326                 zio->io_bp = &zio->io_bp_copy;        /* XXX fix in L2ARC 2.0 */
4327                 arc_read_done(zio);
4328         } else {
4329                 mutex_exit(hash_lock);
4330                 /*
4331                  * Buffer didn't survive caching.  Increment stats and
4332                  * reissue to the original storage device.
4333                  */
4334                 if (zio->io_error != 0) {
4335                         ARCSTAT_BUMP(arcstat_l2_io_error);
4336                 } else {
4337                         zio->io_error = SET_ERROR(EIO);
4338                 }
4339                 if (!equal)
4340                         ARCSTAT_BUMP(arcstat_l2_cksum_bad);
4341 
4342                 /*
4343                  * If there's no waiter, issue an async i/o to the primary
4344                  * storage now.  If there *is* a waiter, the caller must
4345                  * issue the i/o in a context where it's OK to block.
4346                  */
4347                 if (zio->io_waiter == NULL) {
4348                         zio_t *pio = zio_unique_parent(zio);
4349 
4350                         ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
4351 
4352                         zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp,
4353                             buf->b_data, zio->io_size, arc_read_done, buf,
4354                             zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb));
4355                 }
4356         }
4357 
4358         kmem_free(cb, sizeof (l2arc_read_callback_t));
4359 }
4360 
4361 /*
4362  * This is the list priority from which the L2ARC will search for pages to
4363  * cache.  This is used within loops (0..3) to cycle through lists in the
4364  * desired order.  This order can have a significant effect on cache
4365  * performance.
4366  *
4367  * Currently the metadata lists are hit first, MFU then MRU, followed by
4368  * the data lists.  This function returns a locked list, and also returns
4369  * the lock pointer.
4370  */
4371 static list_t *
4372 l2arc_list_locked(int list_num, kmutex_t **lock)
4373 {
4374         list_t *list = NULL;
4375 
4376         ASSERT(list_num >= 0 && list_num <= 3);
4377 
4378         switch (list_num) {
4379         case 0:
4380                 list = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
4381                 *lock = &arc_mfu->arcs_mtx;
4382                 break;
4383         case 1:
4384                 list = &arc_mru->arcs_list[ARC_BUFC_METADATA];
4385                 *lock = &arc_mru->arcs_mtx;
4386                 break;
4387         case 2:
4388                 list = &arc_mfu->arcs_list[ARC_BUFC_DATA];
4389                 *lock = &arc_mfu->arcs_mtx;
4390                 break;
4391         case 3:
4392                 list = &arc_mru->arcs_list[ARC_BUFC_DATA];
4393                 *lock = &arc_mru->arcs_mtx;
4394                 break;
4395         }
4396 
4397         ASSERT(!(MUTEX_HELD(*lock)));
4398         mutex_enter(*lock);
4399         return (list);
4400 }
4401 
4402 /*
4403  * Evict buffers from the device write hand to the distance specified in
4404  * bytes.  This distance may span populated buffers, it may span nothing.
4405  * This is clearing a region on the L2ARC device ready for writing.
4406  * If the 'all' boolean is set, every buffer is evicted.
4407  */
4408 static void
4409 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
4410 {
4411         list_t *buflist;
4412         l2arc_buf_hdr_t *abl2;
4413         arc_buf_hdr_t *ab, *ab_prev;
4414         kmutex_t *hash_lock;
4415         uint64_t taddr;
4416         int64_t bytes_evicted = 0;
4417 
4418         buflist = dev->l2ad_buflist;
4419 
4420         if (buflist == NULL)
4421                 return;
4422 
4423         if (!all && dev->l2ad_first) {
4424                 /*
4425                  * This is the first sweep through the device.  There is
4426                  * nothing to evict.
4427                  */
4428                 return;
4429         }
4430 
4431         if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
4432                 /*
4433                  * When nearing the end of the device, evict to the end
4434                  * before the device write hand jumps to the start.
4435                  */
4436                 taddr = dev->l2ad_end;
4437         } else {
4438                 taddr = dev->l2ad_hand + distance;
4439         }
4440         DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
4441             uint64_t, taddr, boolean_t, all);
4442 
4443 top:
4444         mutex_enter(&l2arc_buflist_mtx);
4445         for (ab = list_tail(buflist); ab; ab = ab_prev) {
4446                 ab_prev = list_prev(buflist, ab);
4447 
4448                 hash_lock = HDR_LOCK(ab);
4449                 if (!mutex_tryenter(hash_lock)) {
4450                         /*
4451                          * Missed the hash lock.  Retry.
4452                          */
4453                         ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
4454                         mutex_exit(&l2arc_buflist_mtx);
4455                         mutex_enter(hash_lock);
4456                         mutex_exit(hash_lock);
4457                         goto top;
4458                 }
4459 
4460                 if (HDR_L2_WRITE_HEAD(ab)) {
4461                         /*
4462                          * We hit a write head node.  Leave it for
4463                          * l2arc_write_done().
4464                          */
4465                         list_remove(buflist, ab);
4466                         mutex_exit(hash_lock);
4467                         continue;
4468                 }
4469 
4470                 if (!all && ab->b_l2hdr != NULL &&
4471                     (ab->b_l2hdr->b_daddr > taddr ||
4472                     ab->b_l2hdr->b_daddr < dev->l2ad_hand)) {
4473                         /*
4474                          * We've evicted to the target address,
4475                          * or the end of the device.
4476                          */
4477                         mutex_exit(hash_lock);
4478                         break;
4479                 }
4480 
4481                 if (HDR_FREE_IN_PROGRESS(ab)) {
4482                         /*
4483                          * Already on the path to destruction.
4484                          */
4485                         mutex_exit(hash_lock);
4486                         continue;
4487                 }
4488 
4489                 if (ab->b_state == arc_l2c_only) {
4490                         ASSERT(!HDR_L2_READING(ab));
4491                         /*
4492                          * This doesn't exist in the ARC.  Destroy.
4493                          * arc_hdr_destroy() will call list_remove()
4494                          * and decrement arcstat_l2_size.
4495                          */
4496                         arc_change_state(arc_anon, ab, hash_lock);
4497                         arc_hdr_destroy(ab);
4498                 } else {
4499                         /*
4500                          * Invalidate issued or about to be issued
4501                          * reads, since we may be about to write
4502                          * over this location.
4503                          */
4504                         if (HDR_L2_READING(ab)) {
4505                                 ARCSTAT_BUMP(arcstat_l2_evict_reading);
4506                                 ab->b_flags |= ARC_L2_EVICTED;
4507                         }
4508 
4509                         /*
4510                          * Tell ARC this no longer exists in L2ARC.
4511                          */
4512                         if (ab->b_l2hdr != NULL) {
4513                                 abl2 = ab->b_l2hdr;
4514                                 ARCSTAT_INCR(arcstat_l2_asize, -abl2->b_asize);
4515                                 bytes_evicted += abl2->b_asize;
4516                                 ab->b_l2hdr = NULL;
4517                                 kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
4518                                 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
4519                         }
4520                         list_remove(buflist, ab);
4521 
4522                         /*
4523                          * This may have been leftover after a
4524                          * failed write.
4525                          */
4526                         ab->b_flags &= ~ARC_L2_WRITING;
4527                 }
4528                 mutex_exit(hash_lock);
4529         }
4530         mutex_exit(&l2arc_buflist_mtx);
4531 
4532         vdev_space_update(dev->l2ad_vdev, -bytes_evicted, 0, 0);
4533         dev->l2ad_evict = taddr;
4534 }
4535 
4536 /*
4537  * Find and write ARC buffers to the L2ARC device.
4538  *
4539  * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid
4540  * for reading until they have completed writing.
4541  * The headroom_boost is an in-out parameter used to maintain headroom boost
4542  * state between calls to this function.
4543  *
4544  * Returns the number of bytes actually written (which may be smaller than
4545  * the delta by which the device hand has changed due to alignment).
4546  */
4547 static uint64_t
4548 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz,
4549     boolean_t *headroom_boost)
4550 {
4551         arc_buf_hdr_t *ab, *ab_prev, *head;
4552         list_t *list;
4553         uint64_t write_asize, write_psize, write_sz, headroom,
4554             buf_compress_minsz;
4555         void *buf_data;
4556         kmutex_t *list_lock;
4557         boolean_t full;
4558         l2arc_write_callback_t *cb;
4559         zio_t *pio, *wzio;
4560         uint64_t guid = spa_load_guid(spa);
4561         const boolean_t do_headroom_boost = *headroom_boost;
4562 
4563         ASSERT(dev->l2ad_vdev != NULL);
4564 
4565         /* Lower the flag now, we might want to raise it again later. */
4566         *headroom_boost = B_FALSE;
4567 
4568         pio = NULL;
4569         write_sz = write_asize = write_psize = 0;
4570         full = B_FALSE;
4571         head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
4572         head->b_flags |= ARC_L2_WRITE_HEAD;
4573 
4574         /*
4575          * We will want to try to compress buffers that are at least 2x the
4576          * device sector size.
4577          */
4578         buf_compress_minsz = 2 << dev->l2ad_vdev->vdev_ashift;
4579 
4580         /*
4581          * Copy buffers for L2ARC writing.
4582          */
4583         mutex_enter(&l2arc_buflist_mtx);
4584         for (int try = 0; try <= 3; try++) {
4585                 uint64_t passed_sz = 0;
4586 
4587                 list = l2arc_list_locked(try, &list_lock);
4588 
4589                 /*
4590                  * L2ARC fast warmup.
4591                  *
4592                  * Until the ARC is warm and starts to evict, read from the
4593                  * head of the ARC lists rather than the tail.
4594                  */
4595                 if (arc_warm == B_FALSE)
4596                         ab = list_head(list);
4597                 else
4598                         ab = list_tail(list);
4599 
4600                 headroom = target_sz * l2arc_headroom;
4601                 if (do_headroom_boost)
4602                         headroom = (headroom * l2arc_headroom_boost) / 100;
4603 
4604                 for (; ab; ab = ab_prev) {
4605                         l2arc_buf_hdr_t *l2hdr;
4606                         kmutex_t *hash_lock;
4607                         uint64_t buf_sz;
4608 
4609                         if (arc_warm == B_FALSE)
4610                                 ab_prev = list_next(list, ab);
4611                         else
4612                                 ab_prev = list_prev(list, ab);
4613 
4614                         hash_lock = HDR_LOCK(ab);
4615                         if (!mutex_tryenter(hash_lock)) {
4616                                 /*
4617                                  * Skip this buffer rather than waiting.
4618                                  */
4619                                 continue;
4620                         }
4621 
4622                         passed_sz += ab->b_size;
4623                         if (passed_sz > headroom) {
4624                                 /*
4625                                  * Searched too far.
4626                                  */
4627                                 mutex_exit(hash_lock);
4628                                 break;
4629                         }
4630 
4631                         if (!l2arc_write_eligible(guid, ab)) {
4632                                 mutex_exit(hash_lock);
4633                                 continue;
4634                         }
4635 
4636                         if ((write_sz + ab->b_size) > target_sz) {
4637                                 full = B_TRUE;
4638                                 mutex_exit(hash_lock);
4639                                 break;
4640                         }
4641 
4642                         if (pio == NULL) {
4643                                 /*
4644                                  * Insert a dummy header on the buflist so
4645                                  * l2arc_write_done() can find where the
4646                                  * write buffers begin without searching.
4647                                  */
4648                                 list_insert_head(dev->l2ad_buflist, head);
4649 
4650                                 cb = kmem_alloc(
4651                                     sizeof (l2arc_write_callback_t), KM_SLEEP);
4652                                 cb->l2wcb_dev = dev;
4653                                 cb->l2wcb_head = head;
4654                                 pio = zio_root(spa, l2arc_write_done, cb,
4655                                     ZIO_FLAG_CANFAIL);
4656                         }
4657 
4658                         /*
4659                          * Create and add a new L2ARC header.
4660                          */
4661                         l2hdr = kmem_zalloc(sizeof (l2arc_buf_hdr_t), KM_SLEEP);
4662                         l2hdr->b_dev = dev;
4663                         ab->b_flags |= ARC_L2_WRITING;
4664 
4665                         /*
4666                          * Temporarily stash the data buffer in b_tmp_cdata.
4667                          * The subsequent write step will pick it up from
4668                          * there. This is because can't access ab->b_buf
4669                          * without holding the hash_lock, which we in turn
4670                          * can't access without holding the ARC list locks
4671                          * (which we want to avoid during compression/writing).
4672                          */
4673                         l2hdr->b_compress = ZIO_COMPRESS_OFF;
4674                         l2hdr->b_asize = ab->b_size;
4675                         l2hdr->b_tmp_cdata = ab->b_buf->b_data;
4676 
4677                         buf_sz = ab->b_size;
4678                         ab->b_l2hdr = l2hdr;
4679 
4680                         list_insert_head(dev->l2ad_buflist, ab);
4681 
4682                         /*
4683                          * Compute and store the buffer cksum before
4684                          * writing.  On debug the cksum is verified first.
4685                          */
4686                         arc_cksum_verify(ab->b_buf);
4687                         arc_cksum_compute(ab->b_buf, B_TRUE);
4688 
4689                         mutex_exit(hash_lock);
4690 
4691                         write_sz += buf_sz;
4692                 }
4693 
4694                 mutex_exit(list_lock);
4695 
4696                 if (full == B_TRUE)
4697                         break;
4698         }
4699 
4700         /* No buffers selected for writing? */
4701         if (pio == NULL) {
4702                 ASSERT0(write_sz);
4703                 mutex_exit(&l2arc_buflist_mtx);
4704                 kmem_cache_free(hdr_cache, head);
4705                 return (0);
4706         }
4707 
4708         /*
4709          * Now start writing the buffers. We're starting at the write head
4710          * and work backwards, retracing the course of the buffer selector
4711          * loop above.
4712          */
4713         for (ab = list_prev(dev->l2ad_buflist, head); ab;
4714             ab = list_prev(dev->l2ad_buflist, ab)) {
4715                 l2arc_buf_hdr_t *l2hdr;
4716                 uint64_t buf_sz;
4717 
4718                 /*
4719                  * We shouldn't need to lock the buffer here, since we flagged
4720                  * it as ARC_L2_WRITING in the previous step, but we must take
4721                  * care to only access its L2 cache parameters. In particular,
4722                  * ab->b_buf may be invalid by now due to ARC eviction.
4723                  */
4724                 l2hdr = ab->b_l2hdr;
4725                 l2hdr->b_daddr = dev->l2ad_hand;
4726 
4727                 if ((ab->b_flags & ARC_L2COMPRESS) &&
4728                     l2hdr->b_asize >= buf_compress_minsz) {
4729                         if (l2arc_compress_buf(l2hdr)) {
4730                                 /*
4731                                  * If compression succeeded, enable headroom
4732                                  * boost on the next scan cycle.
4733                                  */
4734                                 *headroom_boost = B_TRUE;
4735                         }
4736                 }
4737 
4738                 /*
4739                  * Pick up the buffer data we had previously stashed away
4740                  * (and now potentially also compressed).
4741                  */
4742                 buf_data = l2hdr->b_tmp_cdata;
4743                 buf_sz = l2hdr->b_asize;
4744 
4745                 /* Compression may have squashed the buffer to zero length. */
4746                 if (buf_sz != 0) {
4747                         uint64_t buf_p_sz;
4748 
4749                         wzio = zio_write_phys(pio, dev->l2ad_vdev,
4750                             dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
4751                             NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
4752                             ZIO_FLAG_CANFAIL, B_FALSE);
4753 
4754                         DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
4755                             zio_t *, wzio);
4756                         (void) zio_nowait(wzio);
4757 
4758                         write_asize += buf_sz;
4759                         /*
4760                          * Keep the clock hand suitably device-aligned.
4761                          */
4762                         buf_p_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
4763                         write_psize += buf_p_sz;
4764                         dev->l2ad_hand += buf_p_sz;
4765                 }
4766         }
4767 
4768         mutex_exit(&l2arc_buflist_mtx);
4769 
4770         ASSERT3U(write_asize, <=, target_sz);
4771         ARCSTAT_BUMP(arcstat_l2_writes_sent);
4772         ARCSTAT_INCR(arcstat_l2_write_bytes, write_asize);
4773         ARCSTAT_INCR(arcstat_l2_size, write_sz);
4774         ARCSTAT_INCR(arcstat_l2_asize, write_asize);
4775         vdev_space_update(dev->l2ad_vdev, write_asize, 0, 0);
4776 
4777         /*
4778          * Bump device hand to the device start if it is approaching the end.
4779          * l2arc_evict() will already have evicted ahead for this case.
4780          */
4781         if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
4782                 dev->l2ad_hand = dev->l2ad_start;
4783                 dev->l2ad_evict = dev->l2ad_start;
4784                 dev->l2ad_first = B_FALSE;
4785         }
4786 
4787         dev->l2ad_writing = B_TRUE;
4788         (void) zio_wait(pio);
4789         dev->l2ad_writing = B_FALSE;
4790 
4791         return (write_asize);
4792 }
4793 
4794 /*
4795  * Compresses an L2ARC buffer.
4796  * The data to be compressed must be prefilled in l2hdr->b_tmp_cdata and its
4797  * size in l2hdr->b_asize. This routine tries to compress the data and
4798  * depending on the compression result there are three possible outcomes:
4799  * *) The buffer was incompressible. The original l2hdr contents were left
4800  *    untouched and are ready for writing to an L2 device.
4801  * *) The buffer was all-zeros, so there is no need to write it to an L2
4802  *    device. To indicate this situation b_tmp_cdata is NULL'ed, b_asize is
4803  *    set to zero and b_compress is set to ZIO_COMPRESS_EMPTY.
4804  * *) Compression succeeded and b_tmp_cdata was replaced with a temporary
4805  *    data buffer which holds the compressed data to be written, and b_asize
4806  *    tells us how much data there is. b_compress is set to the appropriate
4807  *    compression algorithm. Once writing is done, invoke
4808  *    l2arc_release_cdata_buf on this l2hdr to free this temporary buffer.
4809  *
4810  * Returns B_TRUE if compression succeeded, or B_FALSE if it didn't (the
4811  * buffer was incompressible).
4812  */
4813 static boolean_t
4814 l2arc_compress_buf(l2arc_buf_hdr_t *l2hdr)
4815 {
4816         void *cdata;
4817         size_t csize, len, rounded;
4818 
4819         ASSERT(l2hdr->b_compress == ZIO_COMPRESS_OFF);
4820         ASSERT(l2hdr->b_tmp_cdata != NULL);
4821 
4822         len = l2hdr->b_asize;
4823         cdata = zio_data_buf_alloc(len);
4824         csize = zio_compress_data(ZIO_COMPRESS_LZ4, l2hdr->b_tmp_cdata,
4825             cdata, l2hdr->b_asize);
4826 
4827         rounded = P2ROUNDUP(csize, (size_t)SPA_MINBLOCKSIZE);
4828         if (rounded > csize) {
4829                 bzero((char *)cdata + csize, rounded - csize);
4830                 csize = rounded;
4831         }
4832 
4833         if (csize == 0) {
4834                 /* zero block, indicate that there's nothing to write */
4835                 zio_data_buf_free(cdata, len);
4836                 l2hdr->b_compress = ZIO_COMPRESS_EMPTY;
4837                 l2hdr->b_asize = 0;
4838                 l2hdr->b_tmp_cdata = NULL;
4839                 ARCSTAT_BUMP(arcstat_l2_compress_zeros);
4840                 return (B_TRUE);
4841         } else if (csize > 0 && csize < len) {
4842                 /*
4843                  * Compression succeeded, we'll keep the cdata around for
4844                  * writing and release it afterwards.
4845                  */
4846                 l2hdr->b_compress = ZIO_COMPRESS_LZ4;
4847                 l2hdr->b_asize = csize;
4848                 l2hdr->b_tmp_cdata = cdata;
4849                 ARCSTAT_BUMP(arcstat_l2_compress_successes);
4850                 return (B_TRUE);
4851         } else {
4852                 /*
4853                  * Compression failed, release the compressed buffer.
4854                  * l2hdr will be left unmodified.
4855                  */
4856                 zio_data_buf_free(cdata, len);
4857                 ARCSTAT_BUMP(arcstat_l2_compress_failures);
4858                 return (B_FALSE);
4859         }
4860 }
4861 
4862 /*
4863  * Decompresses a zio read back from an l2arc device. On success, the
4864  * underlying zio's io_data buffer is overwritten by the uncompressed
4865  * version. On decompression error (corrupt compressed stream), the
4866  * zio->io_error value is set to signal an I/O error.
4867  *
4868  * Please note that the compressed data stream is not checksummed, so
4869  * if the underlying device is experiencing data corruption, we may feed
4870  * corrupt data to the decompressor, so the decompressor needs to be
4871  * able to handle this situation (LZ4 does).
4872  */
4873 static void
4874 l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr, enum zio_compress c)
4875 {
4876         ASSERT(L2ARC_IS_VALID_COMPRESS(c));
4877 
4878         if (zio->io_error != 0) {
4879                 /*
4880                  * An io error has occured, just restore the original io
4881                  * size in preparation for a main pool read.
4882                  */
4883                 zio->io_orig_size = zio->io_size = hdr->b_size;
4884                 return;
4885         }
4886 
4887         if (c == ZIO_COMPRESS_EMPTY) {
4888                 /*
4889                  * An empty buffer results in a null zio, which means we
4890                  * need to fill its io_data after we're done restoring the
4891                  * buffer's contents.
4892                  */
4893                 ASSERT(hdr->b_buf != NULL);
4894                 bzero(hdr->b_buf->b_data, hdr->b_size);
4895                 zio->io_data = zio->io_orig_data = hdr->b_buf->b_data;
4896         } else {
4897                 ASSERT(zio->io_data != NULL);
4898                 /*
4899                  * We copy the compressed data from the start of the arc buffer
4900                  * (the zio_read will have pulled in only what we need, the
4901                  * rest is garbage which we will overwrite at decompression)
4902                  * and then decompress back to the ARC data buffer. This way we
4903                  * can minimize copying by simply decompressing back over the
4904                  * original compressed data (rather than decompressing to an
4905                  * aux buffer and then copying back the uncompressed buffer,
4906                  * which is likely to be much larger).
4907                  */
4908                 uint64_t csize;
4909                 void *cdata;
4910 
4911                 csize = zio->io_size;
4912                 cdata = zio_data_buf_alloc(csize);
4913                 bcopy(zio->io_data, cdata, csize);
4914                 if (zio_decompress_data(c, cdata, zio->io_data, csize,
4915                     hdr->b_size) != 0)
4916                         zio->io_error = EIO;
4917                 zio_data_buf_free(cdata, csize);
4918         }
4919 
4920         /* Restore the expected uncompressed IO size. */
4921         zio->io_orig_size = zio->io_size = hdr->b_size;
4922 }
4923 
4924 /*
4925  * Releases the temporary b_tmp_cdata buffer in an l2arc header structure.
4926  * This buffer serves as a temporary holder of compressed data while
4927  * the buffer entry is being written to an l2arc device. Once that is
4928  * done, we can dispose of it.
4929  */
4930 static void
4931 l2arc_release_cdata_buf(arc_buf_hdr_t *ab)
4932 {
4933         l2arc_buf_hdr_t *l2hdr = ab->b_l2hdr;
4934 
4935         if (l2hdr->b_compress == ZIO_COMPRESS_LZ4) {
4936                 /*
4937                  * If the data was compressed, then we've allocated a
4938                  * temporary buffer for it, so now we need to release it.
4939                  */
4940                 ASSERT(l2hdr->b_tmp_cdata != NULL);
4941                 zio_data_buf_free(l2hdr->b_tmp_cdata, ab->b_size);
4942         }
4943         l2hdr->b_tmp_cdata = NULL;
4944 }
4945 
4946 /*
4947  * This thread feeds the L2ARC at regular intervals.  This is the beating
4948  * heart of the L2ARC.
4949  */
4950 static void
4951 l2arc_feed_thread(void)
4952 {
4953         callb_cpr_t cpr;
4954         l2arc_dev_t *dev;
4955         spa_t *spa;
4956         uint64_t size, wrote;
4957         clock_t begin, next = ddi_get_lbolt();
4958         boolean_t headroom_boost = B_FALSE;
4959 
4960         CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
4961 
4962         mutex_enter(&l2arc_feed_thr_lock);
4963 
4964         while (l2arc_thread_exit == 0) {
4965                 CALLB_CPR_SAFE_BEGIN(&cpr);
4966                 (void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
4967                     next);
4968                 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
4969                 next = ddi_get_lbolt() + hz;
4970 
4971                 /*
4972                  * Quick check for L2ARC devices.
4973                  */
4974                 mutex_enter(&l2arc_dev_mtx);
4975                 if (l2arc_ndev == 0) {
4976                         mutex_exit(&l2arc_dev_mtx);
4977                         continue;
4978                 }
4979                 mutex_exit(&l2arc_dev_mtx);
4980                 begin = ddi_get_lbolt();
4981 
4982                 /*
4983                  * This selects the next l2arc device to write to, and in
4984                  * doing so the next spa to feed from: dev->l2ad_spa.   This
4985                  * will return NULL if there are now no l2arc devices or if
4986                  * they are all faulted.
4987                  *
4988                  * If a device is returned, its spa's config lock is also
4989                  * held to prevent device removal.  l2arc_dev_get_next()
4990                  * will grab and release l2arc_dev_mtx.
4991                  */
4992                 if ((dev = l2arc_dev_get_next()) == NULL)
4993                         continue;
4994 
4995                 spa = dev->l2ad_spa;
4996                 ASSERT(spa != NULL);
4997 
4998                 /*
4999                  * If the pool is read-only then force the feed thread to
5000                  * sleep a little longer.
5001                  */
5002                 if (!spa_writeable(spa)) {
5003                         next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
5004                         spa_config_exit(spa, SCL_L2ARC, dev);
5005                         continue;
5006                 }
5007 
5008                 /*
5009                  * Avoid contributing to memory pressure.
5010                  */
5011                 if (arc_reclaim_needed()) {
5012                         ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
5013                         spa_config_exit(spa, SCL_L2ARC, dev);
5014                         continue;
5015                 }
5016 
5017                 ARCSTAT_BUMP(arcstat_l2_feeds);
5018 
5019                 size = l2arc_write_size();
5020 
5021                 /*
5022                  * Evict L2ARC buffers that will be overwritten.
5023                  */
5024                 l2arc_evict(dev, size, B_FALSE);
5025 
5026                 /*
5027                  * Write ARC buffers.
5028                  */
5029                 wrote = l2arc_write_buffers(spa, dev, size, &headroom_boost);
5030 
5031                 /*
5032                  * Calculate interval between writes.
5033                  */
5034                 next = l2arc_write_interval(begin, size, wrote);
5035                 spa_config_exit(spa, SCL_L2ARC, dev);
5036         }
5037 
5038         l2arc_thread_exit = 0;
5039         cv_broadcast(&l2arc_feed_thr_cv);
5040         CALLB_CPR_EXIT(&cpr);               /* drops l2arc_feed_thr_lock */
5041         thread_exit();
5042 }
5043 
5044 boolean_t
5045 l2arc_vdev_present(vdev_t *vd)
5046 {
5047         l2arc_dev_t *dev;
5048 
5049         mutex_enter(&l2arc_dev_mtx);
5050         for (dev = list_head(l2arc_dev_list); dev != NULL;
5051             dev = list_next(l2arc_dev_list, dev)) {
5052                 if (dev->l2ad_vdev == vd)
5053                         break;
5054         }
5055         mutex_exit(&l2arc_dev_mtx);
5056 
5057         return (dev != NULL);
5058 }
5059 
5060 /*
5061  * Add a vdev for use by the L2ARC.  By this point the spa has already
5062  * validated the vdev and opened it.
5063  */
5064 void
5065 l2arc_add_vdev(spa_t *spa, vdev_t *vd)
5066 {
5067         l2arc_dev_t *adddev;
5068 
5069         ASSERT(!l2arc_vdev_present(vd));
5070 
5071         /*
5072          * Create a new l2arc device entry.
5073          */
5074         adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
5075         adddev->l2ad_spa = spa;
5076         adddev->l2ad_vdev = vd;
5077         adddev->l2ad_start = VDEV_LABEL_START_SIZE;
5078         adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
5079         adddev->l2ad_hand = adddev->l2ad_start;
5080         adddev->l2ad_evict = adddev->l2ad_start;
5081         adddev->l2ad_first = B_TRUE;
5082         adddev->l2ad_writing = B_FALSE;
5083 
5084         /*
5085          * This is a list of all ARC buffers that are still valid on the
5086          * device.
5087          */
5088         adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP);
5089         list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
5090             offsetof(arc_buf_hdr_t, b_l2node));
5091 
5092         vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
5093 
5094         /*
5095          * Add device to global list
5096          */
5097         mutex_enter(&l2arc_dev_mtx);
5098         list_insert_head(l2arc_dev_list, adddev);
5099         atomic_inc_64(&l2arc_ndev);
5100         mutex_exit(&l2arc_dev_mtx);
5101 }
5102 
5103 /*
5104  * Remove a vdev from the L2ARC.
5105  */
5106 void
5107 l2arc_remove_vdev(vdev_t *vd)
5108 {
5109         l2arc_dev_t *dev, *nextdev, *remdev = NULL;
5110 
5111         /*
5112          * Find the device by vdev
5113          */
5114         mutex_enter(&l2arc_dev_mtx);
5115         for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
5116                 nextdev = list_next(l2arc_dev_list, dev);
5117                 if (vd == dev->l2ad_vdev) {
5118                         remdev = dev;
5119                         break;
5120                 }
5121         }
5122         ASSERT(remdev != NULL);
5123 
5124         /*
5125          * Remove device from global list
5126          */
5127         list_remove(l2arc_dev_list, remdev);
5128         l2arc_dev_last = NULL;          /* may have been invalidated */
5129         atomic_dec_64(&l2arc_ndev);
5130         mutex_exit(&l2arc_dev_mtx);
5131 
5132         /*
5133          * Clear all buflists and ARC references.  L2ARC device flush.
5134          */
5135         l2arc_evict(remdev, 0, B_TRUE);
5136         list_destroy(remdev->l2ad_buflist);
5137         kmem_free(remdev->l2ad_buflist, sizeof (list_t));
5138         kmem_free(remdev, sizeof (l2arc_dev_t));
5139 }
5140 
5141 void
5142 l2arc_init(void)
5143 {
5144         l2arc_thread_exit = 0;
5145         l2arc_ndev = 0;
5146         l2arc_writes_sent = 0;
5147         l2arc_writes_done = 0;
5148 
5149         mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
5150         cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
5151         mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
5152         mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL);
5153         mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
5154 
5155         l2arc_dev_list = &L2ARC_dev_list;
5156         l2arc_free_on_write = &L2ARC_free_on_write;
5157         list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
5158             offsetof(l2arc_dev_t, l2ad_node));
5159         list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
5160             offsetof(l2arc_data_free_t, l2df_list_node));
5161 }
5162 
5163 void
5164 l2arc_fini(void)
5165 {
5166         /*
5167          * This is called from dmu_fini(), which is called from spa_fini();
5168          * Because of this, we can assume that all l2arc devices have
5169          * already been removed when the pools themselves were removed.
5170          */
5171 
5172         l2arc_do_free_on_write();
5173 
5174         mutex_destroy(&l2arc_feed_thr_lock);
5175         cv_destroy(&l2arc_feed_thr_cv);
5176         mutex_destroy(&l2arc_dev_mtx);
5177         mutex_destroy(&l2arc_buflist_mtx);
5178         mutex_destroy(&l2arc_free_on_write_mtx);
5179 
5180         list_destroy(l2arc_dev_list);
5181         list_destroy(l2arc_free_on_write);
5182 }
5183 
5184 void
5185 l2arc_start(void)
5186 {
5187         if (!(spa_mode_global & FWRITE))
5188                 return;
5189 
5190         (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
5191             TS_RUN, minclsyspri);
5192 }
5193 
5194 void
5195 l2arc_stop(void)
5196 {
5197         if (!(spa_mode_global & FWRITE))
5198                 return;
5199 
5200         mutex_enter(&l2arc_feed_thr_lock);
5201         cv_signal(&l2arc_feed_thr_cv);      /* kick thread out of startup */
5202         l2arc_thread_exit = 1;
5203         while (l2arc_thread_exit != 0)
5204                 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
5205         mutex_exit(&l2arc_feed_thr_lock);
5206 }