1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 1990 Mentat Inc.
25 * Copyright (c) 2012 Joyent, Inc. All rights reserved.
26 * Copyright (c) 2014, OmniTI Computer Consulting, Inc. All rights reserved.
27 */
28
29 #include <sys/types.h>
30 #include <sys/stream.h>
31 #include <sys/dlpi.h>
32 #include <sys/stropts.h>
33 #include <sys/sysmacros.h>
34 #include <sys/strsubr.h>
35 #include <sys/strlog.h>
36 #include <sys/strsun.h>
37 #include <sys/zone.h>
38 #define _SUN_TPI_VERSION 2
39 #include <sys/tihdr.h>
40 #include <sys/xti_inet.h>
41 #include <sys/ddi.h>
42 #include <sys/suntpi.h>
43 #include <sys/cmn_err.h>
44 #include <sys/debug.h>
45 #include <sys/kobj.h>
46 #include <sys/modctl.h>
47 #include <sys/atomic.h>
48 #include <sys/policy.h>
49 #include <sys/priv.h>
50 #include <sys/taskq.h>
51
52 #include <sys/systm.h>
53 #include <sys/param.h>
54 #include <sys/kmem.h>
55 #include <sys/sdt.h>
56 #include <sys/socket.h>
57 #include <sys/vtrace.h>
58 #include <sys/isa_defs.h>
59 #include <sys/mac.h>
60 #include <net/if.h>
61 #include <net/if_arp.h>
62 #include <net/route.h>
63 #include <sys/sockio.h>
64 #include <netinet/in.h>
65 #include <net/if_dl.h>
66
67 #include <inet/common.h>
68 #include <inet/mi.h>
69 #include <inet/mib2.h>
70 #include <inet/nd.h>
71 #include <inet/arp.h>
72 #include <inet/snmpcom.h>
73 #include <inet/optcom.h>
74 #include <inet/kstatcom.h>
75
76 #include <netinet/igmp_var.h>
77 #include <netinet/ip6.h>
78 #include <netinet/icmp6.h>
79 #include <netinet/sctp.h>
80
81 #include <inet/ip.h>
82 #include <inet/ip_impl.h>
83 #include <inet/ip6.h>
84 #include <inet/ip6_asp.h>
85 #include <inet/tcp.h>
86 #include <inet/tcp_impl.h>
87 #include <inet/ip_multi.h>
88 #include <inet/ip_if.h>
89 #include <inet/ip_ire.h>
90 #include <inet/ip_ftable.h>
91 #include <inet/ip_rts.h>
92 #include <inet/ip_ndp.h>
93 #include <inet/ip_listutils.h>
94 #include <netinet/igmp.h>
95 #include <netinet/ip_mroute.h>
96 #include <inet/ipp_common.h>
97
98 #include <net/pfkeyv2.h>
99 #include <inet/sadb.h>
100 #include <inet/ipsec_impl.h>
101 #include <inet/iptun/iptun_impl.h>
102 #include <inet/ipdrop.h>
103 #include <inet/ip_netinfo.h>
104 #include <inet/ilb_ip.h>
105
106 #include <sys/ethernet.h>
107 #include <net/if_types.h>
108 #include <sys/cpuvar.h>
109
110 #include <ipp/ipp.h>
111 #include <ipp/ipp_impl.h>
112 #include <ipp/ipgpc/ipgpc.h>
113
114 #include <sys/pattr.h>
115 #include <inet/ipclassifier.h>
116 #include <inet/sctp_ip.h>
117 #include <inet/sctp/sctp_impl.h>
118 #include <inet/udp_impl.h>
119 #include <inet/rawip_impl.h>
120 #include <inet/rts_impl.h>
121
122 #include <sys/tsol/label.h>
123 #include <sys/tsol/tnet.h>
124
125 #include <sys/squeue_impl.h>
126 #include <inet/ip_arp.h>
127
128 #include <sys/clock_impl.h> /* For LBOLT_FASTPATH{,64} */
129
130 /*
131 * Values for squeue switch:
132 * IP_SQUEUE_ENTER_NODRAIN: SQ_NODRAIN
133 * IP_SQUEUE_ENTER: SQ_PROCESS
134 * IP_SQUEUE_FILL: SQ_FILL
135 */
136 int ip_squeue_enter = IP_SQUEUE_ENTER; /* Setable in /etc/system */
137
138 int ip_squeue_flag;
139
140 /*
141 * Setable in /etc/system
142 */
143 int ip_poll_normal_ms = 100;
144 int ip_poll_normal_ticks = 0;
145 int ip_modclose_ackwait_ms = 3000;
146
147 /*
148 * It would be nice to have these present only in DEBUG systems, but the
149 * current design of the global symbol checking logic requires them to be
150 * unconditionally present.
151 */
152 uint_t ip_thread_data; /* TSD key for debug support */
153 krwlock_t ip_thread_rwlock;
154 list_t ip_thread_list;
155
156 /*
157 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions.
158 */
159
160 struct listptr_s {
161 mblk_t *lp_head; /* pointer to the head of the list */
162 mblk_t *lp_tail; /* pointer to the tail of the list */
163 };
164
165 typedef struct listptr_s listptr_t;
166
167 /*
168 * This is used by ip_snmp_get_mib2_ip_route_media and
169 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data.
170 */
171 typedef struct iproutedata_s {
172 uint_t ird_idx;
173 uint_t ird_flags; /* see below */
174 listptr_t ird_route; /* ipRouteEntryTable */
175 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */
176 listptr_t ird_attrs; /* ipRouteAttributeTable */
177 } iproutedata_t;
178
179 /* Include ire_testhidden and IRE_IF_CLONE routes */
180 #define IRD_REPORT_ALL 0x01
181
182 /*
183 * Cluster specific hooks. These should be NULL when booted as a non-cluster
184 */
185
186 /*
187 * Hook functions to enable cluster networking
188 * On non-clustered systems these vectors must always be NULL.
189 *
190 * Hook function to Check ip specified ip address is a shared ip address
191 * in the cluster
192 *
193 */
194 int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol,
195 sa_family_t addr_family, uint8_t *laddrp, void *args) = NULL;
196
197 /*
198 * Hook function to generate cluster wide ip fragment identifier
199 */
200 uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol,
201 sa_family_t addr_family, uint8_t *laddrp, uint8_t *faddrp,
202 void *args) = NULL;
203
204 /*
205 * Hook function to generate cluster wide SPI.
206 */
207 void (*cl_inet_getspi)(netstackid_t, uint8_t, uint8_t *, size_t,
208 void *) = NULL;
209
210 /*
211 * Hook function to verify if the SPI is already utlized.
212 */
213
214 int (*cl_inet_checkspi)(netstackid_t, uint8_t, uint32_t, void *) = NULL;
215
216 /*
217 * Hook function to delete the SPI from the cluster wide repository.
218 */
219
220 void (*cl_inet_deletespi)(netstackid_t, uint8_t, uint32_t, void *) = NULL;
221
222 /*
223 * Hook function to inform the cluster when packet received on an IDLE SA
224 */
225
226 void (*cl_inet_idlesa)(netstackid_t, uint8_t, uint32_t, sa_family_t,
227 in6_addr_t, in6_addr_t, void *) = NULL;
228
229 /*
230 * Synchronization notes:
231 *
232 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any
233 * MT level protection given by STREAMS. IP uses a combination of its own
234 * internal serialization mechanism and standard Solaris locking techniques.
235 * The internal serialization is per phyint. This is used to serialize
236 * plumbing operations, IPMP operations, most set ioctls, etc.
237 *
238 * Plumbing is a long sequence of operations involving message
239 * exchanges between IP, ARP and device drivers. Many set ioctls are typically
240 * involved in plumbing operations. A natural model is to serialize these
241 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in
242 * parallel without any interference. But various set ioctls on hme0 are best
243 * serialized, along with IPMP operations and processing of DLPI control
244 * messages received from drivers on a per phyint basis. This serialization is
245 * provided by the ipsq_t and primitives operating on this. Details can
246 * be found in ip_if.c above the core primitives operating on ipsq_t.
247 *
248 * Lookups of an ipif or ill by a thread return a refheld ipif / ill.
249 * Simiarly lookup of an ire by a thread also returns a refheld ire.
250 * In addition ipif's and ill's referenced by the ire are also indirectly
251 * refheld. Thus no ipif or ill can vanish as long as an ipif is refheld
252 * directly or indirectly. For example an SIOCSLIFADDR ioctl that changes the
253 * address of an ipif has to go through the ipsq_t. This ensures that only
254 * one such exclusive operation proceeds at any time on the ipif. It then
255 * waits for all refcnts
256 * associated with this ipif to come down to zero. The address is changed
257 * only after the ipif has been quiesced. Then the ipif is brought up again.
258 * More details are described above the comment in ip_sioctl_flags.
259 *
260 * Packet processing is based mostly on IREs and are fully multi-threaded
261 * using standard Solaris MT techniques.
262 *
263 * There are explicit locks in IP to handle:
264 * - The ip_g_head list maintained by mi_open_link() and friends.
265 *
266 * - The reassembly data structures (one lock per hash bucket)
267 *
268 * - conn_lock is meant to protect conn_t fields. The fields actually
269 * protected by conn_lock are documented in the conn_t definition.
270 *
271 * - ire_lock to protect some of the fields of the ire, IRE tables
272 * (one lock per hash bucket). Refer to ip_ire.c for details.
273 *
274 * - ndp_g_lock and ncec_lock for protecting NCEs.
275 *
276 * - ill_lock protects fields of the ill and ipif. Details in ip.h
277 *
278 * - ill_g_lock: This is a global reader/writer lock. Protects the following
279 * * The AVL tree based global multi list of all ills.
280 * * The linked list of all ipifs of an ill
281 * * The <ipsq-xop> mapping
282 * * <ill-phyint> association
283 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif
284 * into an ill, changing the <ipsq-xop> mapping of an ill, changing the
285 * <ill-phyint> assoc of an ill will all have to hold the ill_g_lock as
286 * writer for the actual duration of the insertion/deletion/change.
287 *
288 * - ill_lock: This is a per ill mutex.
289 * It protects some members of the ill_t struct; see ip.h for details.
290 * It also protects the <ill-phyint> assoc.
291 * It also protects the list of ipifs hanging off the ill.
292 *
293 * - ipsq_lock: This is a per ipsq_t mutex lock.
294 * This protects some members of the ipsq_t struct; see ip.h for details.
295 * It also protects the <ipsq-ipxop> mapping
296 *
297 * - ipx_lock: This is a per ipxop_t mutex lock.
298 * This protects some members of the ipxop_t struct; see ip.h for details.
299 *
300 * - phyint_lock: This is a per phyint mutex lock. Protects just the
301 * phyint_flags
302 *
303 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses.
304 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the
305 * uniqueness check also done atomically.
306 *
307 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc
308 * group list linked by ill_usesrc_grp_next. It also protects the
309 * ill_usesrc_ifindex field. It is taken as a writer when a member of the
310 * group is being added or deleted. This lock is taken as a reader when
311 * walking the list/group(eg: to get the number of members in a usesrc group).
312 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next
313 * field is changing state i.e from NULL to non-NULL or vice-versa. For
314 * example, it is not necessary to take this lock in the initial portion
315 * of ip_sioctl_slifusesrc or at all in ip_sioctl_flags since these
316 * operations are executed exclusively and that ensures that the "usesrc
317 * group state" cannot change. The "usesrc group state" change can happen
318 * only in the latter part of ip_sioctl_slifusesrc and in ill_delete.
319 *
320 * Changing <ill-phyint>, <ipsq-xop> assocications:
321 *
322 * To change the <ill-phyint> association, the ill_g_lock must be held
323 * as writer, and the ill_locks of both the v4 and v6 instance of the ill
324 * must be held.
325 *
326 * To change the <ipsq-xop> association, the ill_g_lock must be held as
327 * writer, the ipsq_lock must be held, and one must be writer on the ipsq.
328 * This is only done when ills are added or removed from IPMP groups.
329 *
330 * To add or delete an ipif from the list of ipifs hanging off the ill,
331 * ill_g_lock (writer) and ill_lock must be held and the thread must be
332 * a writer on the associated ipsq.
333 *
334 * To add or delete an ill to the system, the ill_g_lock must be held as
335 * writer and the thread must be a writer on the associated ipsq.
336 *
337 * To add or delete an ilm to an ill, the ill_lock must be held and the thread
338 * must be a writer on the associated ipsq.
339 *
340 * Lock hierarchy
341 *
342 * Some lock hierarchy scenarios are listed below.
343 *
344 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock
345 * ill_g_lock -> ill_lock(s) -> phyint_lock
346 * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock
347 * ill_g_lock -> ip_addr_avail_lock
348 * conn_lock -> irb_lock -> ill_lock -> ire_lock
349 * ill_g_lock -> ip_g_nd_lock
350 * ill_g_lock -> ips_ipmp_lock -> ill_lock -> nce_lock
351 * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock -> nce_lock
352 * arl_lock -> ill_lock
353 * ips_ire_dep_lock -> irb_lock
354 *
355 * When more than 1 ill lock is needed to be held, all ill lock addresses
356 * are sorted on address and locked starting from highest addressed lock
357 * downward.
358 *
359 * Multicast scenarios
360 * ips_ill_g_lock -> ill_mcast_lock
361 * conn_ilg_lock -> ips_ill_g_lock -> ill_lock
362 * ill_mcast_serializer -> ill_mcast_lock -> ips_ipmp_lock -> ill_lock
363 * ill_mcast_serializer -> ill_mcast_lock -> connf_lock -> conn_lock
364 * ill_mcast_serializer -> ill_mcast_lock -> conn_ilg_lock
365 * ill_mcast_serializer -> ill_mcast_lock -> ips_igmp_timer_lock
366 *
367 * IPsec scenarios
368 *
369 * ipsa_lock -> ill_g_lock -> ill_lock
370 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock
371 *
372 * Trusted Solaris scenarios
373 *
374 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock
375 * igsa_lock -> gcdb_lock
376 * gcgrp_rwlock -> ire_lock
377 * gcgrp_rwlock -> gcdb_lock
378 *
379 * squeue(sq_lock), flow related (ft_lock, fe_lock) locking
380 *
381 * cpu_lock --> ill_lock --> sqset_lock --> sq_lock
382 * sq_lock -> conn_lock -> QLOCK(q)
383 * ill_lock -> ft_lock -> fe_lock
384 *
385 * Routing/forwarding table locking notes:
386 *
387 * Lock acquisition order: Radix tree lock, irb_lock.
388 * Requirements:
389 * i. Walker must not hold any locks during the walker callback.
390 * ii Walker must not see a truncated tree during the walk because of any node
391 * deletion.
392 * iii Existing code assumes ire_bucket is valid if it is non-null and is used
393 * in many places in the code to walk the irb list. Thus even if all the
394 * ires in a bucket have been deleted, we still can't free the radix node
395 * until the ires have actually been inactive'd (freed).
396 *
397 * Tree traversal - Need to hold the global tree lock in read mode.
398 * Before dropping the global tree lock, need to either increment the ire_refcnt
399 * to ensure that the radix node can't be deleted.
400 *
401 * Tree add - Need to hold the global tree lock in write mode to add a
402 * radix node. To prevent the node from being deleted, increment the
403 * irb_refcnt, after the node is added to the tree. The ire itself is
404 * added later while holding the irb_lock, but not the tree lock.
405 *
406 * Tree delete - Need to hold the global tree lock and irb_lock in write mode.
407 * All associated ires must be inactive (i.e. freed), and irb_refcnt
408 * must be zero.
409 *
410 * Walker - Increment irb_refcnt before calling the walker callback. Hold the
411 * global tree lock (read mode) for traversal.
412 *
413 * IRE dependencies - In some cases we hold ips_ire_dep_lock across ire_refrele
414 * hence we will acquire irb_lock while holding ips_ire_dep_lock.
415 *
416 * IPsec notes :
417 *
418 * IP interacts with the IPsec code (AH/ESP) by storing IPsec attributes
419 * in the ip_xmit_attr_t ip_recv_attr_t. For outbound datagrams, the
420 * ip_xmit_attr_t has the
421 * information used by the IPsec code for applying the right level of
422 * protection. The information initialized by IP in the ip_xmit_attr_t
423 * is determined by the per-socket policy or global policy in the system.
424 * For inbound datagrams, the ip_recv_attr_t
425 * starts out with nothing in it. It gets filled
426 * with the right information if it goes through the AH/ESP code, which
427 * happens if the incoming packet is secure. The information initialized
428 * by AH/ESP, is later used by IP (during fanouts to ULP) to see whether
429 * the policy requirements needed by per-socket policy or global policy
430 * is met or not.
431 *
432 * For fully connected sockets i.e dst, src [addr, port] is known,
433 * conn_policy_cached is set indicating that policy has been cached.
434 * conn_in_enforce_policy may or may not be set depending on whether
435 * there is a global policy match or per-socket policy match.
436 * Policy inheriting happpens in ip_policy_set once the destination is known.
437 * Once the right policy is set on the conn_t, policy cannot change for
438 * this socket. This makes life simpler for TCP (UDP ?) where
439 * re-transmissions go out with the same policy. For symmetry, policy
440 * is cached for fully connected UDP sockets also. Thus if policy is cached,
441 * it also implies that policy is latched i.e policy cannot change
442 * on these sockets. As we have the right policy on the conn, we don't
443 * have to lookup global policy for every outbound and inbound datagram
444 * and thus serving as an optimization. Note that a global policy change
445 * does not affect fully connected sockets if they have policy. If fully
446 * connected sockets did not have any policy associated with it, global
447 * policy change may affect them.
448 *
449 * IP Flow control notes:
450 * ---------------------
451 * Non-TCP streams are flow controlled by IP. The way this is accomplished
452 * differs when ILL_CAPAB_DLD_DIRECT is enabled for that IP instance. When
453 * ILL_DIRECT_CAPABLE(ill) is TRUE, IP can do direct function calls into
454 * GLDv3. Otherwise packets are sent down to lower layers using STREAMS
455 * functions.
456 *
457 * Per Tx ring udp flow control:
458 * This is applicable only when ILL_CAPAB_DLD_DIRECT capability is set in
459 * the ill (i.e. ILL_DIRECT_CAPABLE(ill) is true).
460 *
461 * The underlying link can expose multiple Tx rings to the GLDv3 mac layer.
462 * To achieve best performance, outgoing traffic need to be fanned out among
463 * these Tx ring. mac_tx() is called (via str_mdata_fastpath_put()) to send
464 * traffic out of the NIC and it takes a fanout hint. UDP connections pass
465 * the address of connp as fanout hint to mac_tx(). Under flow controlled
466 * condition, mac_tx() returns a non-NULL cookie (ip_mac_tx_cookie_t). This
467 * cookie points to a specific Tx ring that is blocked. The cookie is used to
468 * hash into an idl_tx_list[] entry in idl_tx_list[] array. Each idl_tx_list_t
469 * point to drain_lists (idl_t's). These drain list will store the blocked UDP
470 * connp's. The drain list is not a single list but a configurable number of
471 * lists.
472 *
473 * The diagram below shows idl_tx_list_t's and their drain_lists. ip_stack_t
474 * has an array of idl_tx_list_t. The size of the array is TX_FANOUT_SIZE
475 * which is equal to 128. This array in turn contains a pointer to idl_t[],
476 * the ip drain list. The idl_t[] array size is MIN(max_ncpus, 8). The drain
477 * list will point to the list of connp's that are flow controlled.
478 *
479 * --------------- ------- ------- -------
480 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|-->
481 * | --------------- ------- ------- -------
482 * | --------------- ------- ------- -------
483 * |->|drain_list[1]|-->|connp|-->|connp|-->|connp|-->
484 * ---------------- | --------------- ------- ------- -------
485 * |idl_tx_list[0]|->| --------------- ------- ------- -------
486 * ---------------- |->|drain_list[2]|-->|connp|-->|connp|-->|connp|-->
487 * | --------------- ------- ------- -------
488 * . . . . .
489 * | --------------- ------- ------- -------
490 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|-->
491 * --------------- ------- ------- -------
492 * --------------- ------- ------- -------
493 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|-->
494 * | --------------- ------- ------- -------
495 * | --------------- ------- ------- -------
496 * ---------------- |->|drain_list[1]|-->|connp|-->|connp|-->|connp|-->
497 * |idl_tx_list[1]|->| --------------- ------- ------- -------
498 * ---------------- | . . . .
499 * | --------------- ------- ------- -------
500 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|-->
501 * --------------- ------- ------- -------
502 * .....
503 * ----------------
504 * |idl_tx_list[n]|-> ...
505 * ----------------
506 *
507 * When mac_tx() returns a cookie, the cookie is hashed into an index into
508 * ips_idl_tx_list[], and conn_drain_insert() is called with the idl_tx_list
509 * to insert the conn onto. conn_drain_insert() asserts flow control for the
510 * sockets via su_txq_full() (non-STREAMS) or QFULL on conn_wq (STREAMS).
511 * Further, conn_blocked is set to indicate that the conn is blocked.
512 *
513 * GLDv3 calls ill_flow_enable() when flow control is relieved. The cookie
514 * passed in the call to ill_flow_enable() identifies the blocked Tx ring and
515 * is again hashed to locate the appropriate idl_tx_list, which is then
516 * drained via conn_walk_drain(). conn_walk_drain() goes through each conn in
517 * the drain list and calls conn_drain_remove() to clear flow control (via
518 * calling su_txq_full() or clearing QFULL), and remove the conn from the
519 * drain list.
520 *
521 * Note that the drain list is not a single list but a (configurable) array of
522 * lists (8 elements by default). Synchronization between drain insertion and
523 * flow control wakeup is handled by using idl_txl->txl_lock, and only
524 * conn_drain_insert() and conn_drain_remove() manipulate the drain list.
525 *
526 * Flow control via STREAMS is used when ILL_DIRECT_CAPABLE() returns FALSE.
527 * On the send side, if the packet cannot be sent down to the driver by IP
528 * (canput() fails), ip_xmit() drops the packet and returns EWOULDBLOCK to the
529 * caller, who may then invoke ixa_check_drain_insert() to insert the conn on
530 * the 0'th drain list. When ip_wsrv() runs on the ill_wq because flow
531 * control has been relieved, the blocked conns in the 0'th drain list are
532 * drained as in the non-STREAMS case.
533 *
534 * In both the STREAMS and non-STREAMS cases, the sockfs upcall to set QFULL
535 * is done when the conn is inserted into the drain list (conn_drain_insert())
536 * and cleared when the conn is removed from the it (conn_drain_remove()).
537 *
538 * IPQOS notes:
539 *
540 * IPQoS Policies are applied to packets using IPPF (IP Policy framework)
541 * and IPQoS modules. IPPF includes hooks in IP at different control points
542 * (callout positions) which direct packets to IPQoS modules for policy
543 * processing. Policies, if present, are global.
544 *
545 * The callout positions are located in the following paths:
546 * o local_in (packets destined for this host)
547 * o local_out (packets orginating from this host )
548 * o fwd_in (packets forwarded by this m/c - inbound)
549 * o fwd_out (packets forwarded by this m/c - outbound)
550 * Hooks at these callout points can be enabled/disabled using the ndd variable
551 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions).
552 * By default all the callout positions are enabled.
553 *
554 * Outbound (local_out)
555 * Hooks are placed in ire_send_wire_v4 and ire_send_wire_v6.
556 *
557 * Inbound (local_in)
558 * Hooks are placed in ip_fanout_v4 and ip_fanout_v6.
559 *
560 * Forwarding (in and out)
561 * Hooks are placed in ire_recv_forward_v4/v6.
562 *
563 * IP Policy Framework processing (IPPF processing)
564 * Policy processing for a packet is initiated by ip_process, which ascertains
565 * that the classifier (ipgpc) is loaded and configured, failing which the
566 * packet resumes normal processing in IP. If the clasifier is present, the
567 * packet is acted upon by one or more IPQoS modules (action instances), per
568 * filters configured in ipgpc and resumes normal IP processing thereafter.
569 * An action instance can drop a packet in course of its processing.
570 *
571 * Zones notes:
572 *
573 * The partitioning rules for networking are as follows:
574 * 1) Packets coming from a zone must have a source address belonging to that
575 * zone.
576 * 2) Packets coming from a zone can only be sent on a physical interface on
577 * which the zone has an IP address.
578 * 3) Between two zones on the same machine, packet delivery is only allowed if
579 * there's a matching route for the destination and zone in the forwarding
580 * table.
581 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in
582 * different zones can bind to the same port with the wildcard address
583 * (INADDR_ANY).
584 *
585 * The granularity of interface partitioning is at the logical interface level.
586 * Therefore, every zone has its own IP addresses, and incoming packets can be
587 * attributed to a zone unambiguously. A logical interface is placed into a zone
588 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t
589 * structure. Rule (1) is implemented by modifying the source address selection
590 * algorithm so that the list of eligible addresses is filtered based on the
591 * sending process zone.
592 *
593 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared
594 * across all zones, depending on their type. Here is the break-up:
595 *
596 * IRE type Shared/exclusive
597 * -------- ----------------
598 * IRE_BROADCAST Exclusive
599 * IRE_DEFAULT (default routes) Shared (*)
600 * IRE_LOCAL Exclusive (x)
601 * IRE_LOOPBACK Exclusive
602 * IRE_PREFIX (net routes) Shared (*)
603 * IRE_IF_NORESOLVER (interface routes) Exclusive
604 * IRE_IF_RESOLVER (interface routes) Exclusive
605 * IRE_IF_CLONE (interface routes) Exclusive
606 * IRE_HOST (host routes) Shared (*)
607 *
608 * (*) A zone can only use a default or off-subnet route if the gateway is
609 * directly reachable from the zone, that is, if the gateway's address matches
610 * one of the zone's logical interfaces.
611 *
612 * (x) IRE_LOCAL are handled a bit differently.
613 * When ip_restrict_interzone_loopback is set (the default),
614 * ire_route_recursive restricts loopback using an IRE_LOCAL
615 * between zone to the case when L2 would have conceptually looped the packet
616 * back, i.e. the loopback which is required since neither Ethernet drivers
617 * nor Ethernet hardware loops them back. This is the case when the normal
618 * routes (ignoring IREs with different zoneids) would send out the packet on
619 * the same ill as the ill with which is IRE_LOCAL is associated.
620 *
621 * Multiple zones can share a common broadcast address; typically all zones
622 * share the 255.255.255.255 address. Incoming as well as locally originated
623 * broadcast packets must be dispatched to all the zones on the broadcast
624 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial
625 * since some zones may not be on the 10.16.72/24 network. To handle this, each
626 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are
627 * sent to every zone that has an IRE_BROADCAST entry for the destination
628 * address on the input ill, see ip_input_broadcast().
629 *
630 * Applications in different zones can join the same multicast group address.
631 * The same logic applies for multicast as for broadcast. ip_input_multicast
632 * dispatches packets to all zones that have members on the physical interface.
633 */
634
635 /*
636 * Squeue Fanout flags:
637 * 0: No fanout.
638 * 1: Fanout across all squeues
639 */
640 boolean_t ip_squeue_fanout = 0;
641
642 /*
643 * Maximum dups allowed per packet.
644 */
645 uint_t ip_max_frag_dups = 10;
646
647 static int ip_open(queue_t *q, dev_t *devp, int flag, int sflag,
648 cred_t *credp, boolean_t isv6);
649 static mblk_t *ip_xmit_attach_llhdr(mblk_t *, nce_t *);
650
651 static boolean_t icmp_inbound_verify_v4(mblk_t *, icmph_t *, ip_recv_attr_t *);
652 static void icmp_inbound_too_big_v4(icmph_t *, ip_recv_attr_t *);
653 static void icmp_inbound_error_fanout_v4(mblk_t *, icmph_t *,
654 ip_recv_attr_t *);
655 static void icmp_options_update(ipha_t *);
656 static void icmp_param_problem(mblk_t *, uint8_t, ip_recv_attr_t *);
657 static void icmp_pkt(mblk_t *, void *, size_t, ip_recv_attr_t *);
658 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_recv_attr_t *);
659 static void icmp_redirect_v4(mblk_t *mp, ipha_t *, icmph_t *,
660 ip_recv_attr_t *);
661 static void icmp_send_redirect(mblk_t *, ipaddr_t, ip_recv_attr_t *);
662 static void icmp_send_reply_v4(mblk_t *, ipha_t *, icmph_t *,
663 ip_recv_attr_t *);
664
665 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t);
666 char *ip_dot_addr(ipaddr_t, char *);
667 mblk_t *ip_carve_mp(mblk_t **, ssize_t);
668 int ip_close(queue_t *, int);
669 static char *ip_dot_saddr(uchar_t *, char *);
670 static void ip_lrput(queue_t *, mblk_t *);
671 ipaddr_t ip_net_mask(ipaddr_t);
672 char *ip_nv_lookup(nv_t *, int);
673 void ip_rput(queue_t *, mblk_t *);
674 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp,
675 void *dummy_arg);
676 int ip_snmp_get(queue_t *, mblk_t *, int, boolean_t);
677 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *,
678 mib2_ipIfStatsEntry_t *, ip_stack_t *, boolean_t);
679 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *,
680 ip_stack_t *, boolean_t);
681 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *,
682 boolean_t);
683 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst);
684 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst);
685 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst);
686 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst);
687 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *,
688 ip_stack_t *ipst, boolean_t);
689 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *,
690 ip_stack_t *ipst, boolean_t);
691 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *,
692 ip_stack_t *ipst);
693 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *,
694 ip_stack_t *ipst);
695 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *,
696 ip_stack_t *ipst);
697 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *,
698 ip_stack_t *ipst);
699 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *,
700 ip_stack_t *ipst);
701 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *,
702 ip_stack_t *ipst);
703 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, int,
704 ip_stack_t *ipst);
705 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, int,
706 ip_stack_t *ipst);
707 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *);
708 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *);
709 static int ip_snmp_get2_v4_media(ncec_t *, iproutedata_t *);
710 static int ip_snmp_get2_v6_media(ncec_t *, iproutedata_t *);
711 int ip_snmp_set(queue_t *, int, int, uchar_t *, int);
712
713 static mblk_t *ip_fragment_copyhdr(uchar_t *, int, int, ip_stack_t *,
714 mblk_t *);
715
716 static void conn_drain_init(ip_stack_t *);
717 static void conn_drain_fini(ip_stack_t *);
718 static void conn_drain(conn_t *connp, boolean_t closing);
719
720 static void conn_walk_drain(ip_stack_t *, idl_tx_list_t *);
721 static void conn_walk_sctp(pfv_t, void *, zoneid_t, netstack_t *);
722
723 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns);
724 static void ip_stack_shutdown(netstackid_t stackid, void *arg);
725 static void ip_stack_fini(netstackid_t stackid, void *arg);
726
727 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t,
728 const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *),
729 ire_t *, conn_t *, boolean_t, const in6_addr_t *, mcast_record_t,
730 const in6_addr_t *);
731
732 static int ip_squeue_switch(int);
733
734 static void *ip_kstat_init(netstackid_t, ip_stack_t *);
735 static void ip_kstat_fini(netstackid_t, kstat_t *);
736 static int ip_kstat_update(kstat_t *kp, int rw);
737 static void *icmp_kstat_init(netstackid_t);
738 static void icmp_kstat_fini(netstackid_t, kstat_t *);
739 static int icmp_kstat_update(kstat_t *kp, int rw);
740 static void *ip_kstat2_init(netstackid_t, ip_stat_t *);
741 static void ip_kstat2_fini(netstackid_t, kstat_t *);
742
743 static void ipobs_init(ip_stack_t *);
744 static void ipobs_fini(ip_stack_t *);
745
746 static int ip_tp_cpu_update(cpu_setup_t, int, void *);
747
748 ipaddr_t ip_g_all_ones = IP_HOST_MASK;
749
750 static long ip_rput_pullups;
751 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */
752
753 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */
754 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */
755
756 int ip_debug;
757
758 /*
759 * Multirouting/CGTP stuff
760 */
761 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */
762
763 /*
764 * IP tunables related declarations. Definitions are in ip_tunables.c
765 */
766 extern mod_prop_info_t ip_propinfo_tbl[];
767 extern int ip_propinfo_count;
768
769 /*
770 * Table of IP ioctls encoding the various properties of the ioctl and
771 * indexed based on the last byte of the ioctl command. Occasionally there
772 * is a clash, and there is more than 1 ioctl with the same last byte.
773 * In such a case 1 ioctl is encoded in the ndx table and the remaining
774 * ioctls are encoded in the misc table. An entry in the ndx table is
775 * retrieved by indexing on the last byte of the ioctl command and comparing
776 * the ioctl command with the value in the ndx table. In the event of a
777 * mismatch the misc table is then searched sequentially for the desired
778 * ioctl command.
779 *
780 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func>
781 */
782 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = {
783 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
784 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
785 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
786 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
787 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
788 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
789 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
790 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
791 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
792 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
793
794 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV,
795 MISC_CMD, ip_siocaddrt, NULL },
796 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV,
797 MISC_CMD, ip_siocdelrt, NULL },
798
799 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
800 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart },
801 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD,
802 IF_CMD, ip_sioctl_get_addr, NULL },
803
804 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
805 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart },
806 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq),
807 IPI_GET_CMD, IF_CMD, ip_sioctl_get_dstaddr, NULL },
808
809 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq),
810 IPI_PRIV | IPI_WR,
811 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart },
812 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq),
813 IPI_MODOK | IPI_GET_CMD,
814 IF_CMD, ip_sioctl_get_flags, NULL },
815
816 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
817 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
818
819 /* copyin size cannot be coded for SIOCGIFCONF */
820 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD,
821 MISC_CMD, ip_sioctl_get_ifconf, NULL },
822
823 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
824 IF_CMD, ip_sioctl_mtu, NULL },
825 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD,
826 IF_CMD, ip_sioctl_get_mtu, NULL },
827 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq),
828 IPI_GET_CMD, IF_CMD, ip_sioctl_get_brdaddr, NULL },
829 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
830 IF_CMD, ip_sioctl_brdaddr, NULL },
831 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq),
832 IPI_GET_CMD, IF_CMD, ip_sioctl_get_netmask, NULL },
833 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
834 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart },
835 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq),
836 IPI_GET_CMD, IF_CMD, ip_sioctl_get_metric, NULL },
837 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV,
838 IF_CMD, ip_sioctl_metric, NULL },
839 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
840
841 /* See 166-168 below for extended SIOC*XARP ioctls */
842 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR,
843 ARP_CMD, ip_sioctl_arp, NULL },
844 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD,
845 ARP_CMD, ip_sioctl_arp, NULL },
846 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR,
847 ARP_CMD, ip_sioctl_arp, NULL },
848
849 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
850 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
851 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
852 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
853 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
854 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
855 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
856 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
857 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
858 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
859 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
860 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
861 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
862 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
863 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
864 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
865 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
866 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
867 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
868 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
869 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
870
871 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK,
872 MISC_CMD, if_unitsel, if_unitsel_restart },
873
874 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
875 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
876 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
877 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
878 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
879 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
880 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
881 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
882 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
883 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
884 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
885 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
886 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
887 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
888 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
889 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
890 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
891 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
892
893 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq),
894 IPI_PRIV | IPI_WR | IPI_MODOK,
895 IF_CMD, ip_sioctl_sifname, NULL },
896
897 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
898 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
899 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
900 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
901 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
902 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
903 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
904 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
905 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
906 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
907 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
908 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
909 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
910
911 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD,
912 MISC_CMD, ip_sioctl_get_ifnum, NULL },
913 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD,
914 IF_CMD, ip_sioctl_get_muxid, NULL },
915 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq),
916 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_muxid, NULL },
917
918 /* Both if and lif variants share same func */
919 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD,
920 IF_CMD, ip_sioctl_get_lifindex, NULL },
921 /* Both if and lif variants share same func */
922 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq),
923 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_slifindex, NULL },
924
925 /* copyin size cannot be coded for SIOCGIFCONF */
926 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD,
927 MISC_CMD, ip_sioctl_get_ifconf, NULL },
928 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
929 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
930 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
931 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
932 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
933 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
934 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
935 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
936 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
937 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
938 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
939 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
940 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
941 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
942 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
943 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
944 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
945
946 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq),
947 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_removeif,
948 ip_sioctl_removeif_restart },
949 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq),
950 IPI_GET_CMD | IPI_PRIV | IPI_WR,
951 LIF_CMD, ip_sioctl_addif, NULL },
952 #define SIOCLIFADDR_NDX 112
953 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
954 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart },
955 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq),
956 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_addr, NULL },
957 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
958 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart },
959 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq),
960 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dstaddr, NULL },
961 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq),
962 IPI_PRIV | IPI_WR,
963 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart },
964 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq),
965 IPI_GET_CMD | IPI_MODOK,
966 LIF_CMD, ip_sioctl_get_flags, NULL },
967
968 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
969 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
970
971 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD,
972 ip_sioctl_get_lifconf, NULL },
973 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
974 LIF_CMD, ip_sioctl_mtu, NULL },
975 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD,
976 LIF_CMD, ip_sioctl_get_mtu, NULL },
977 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq),
978 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_brdaddr, NULL },
979 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
980 LIF_CMD, ip_sioctl_brdaddr, NULL },
981 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq),
982 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_netmask, NULL },
983 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
984 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart },
985 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq),
986 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_metric, NULL },
987 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
988 LIF_CMD, ip_sioctl_metric, NULL },
989 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq),
990 IPI_PRIV | IPI_WR | IPI_MODOK,
991 LIF_CMD, ip_sioctl_slifname,
992 ip_sioctl_slifname_restart },
993
994 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD,
995 MISC_CMD, ip_sioctl_get_lifnum, NULL },
996 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq),
997 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_muxid, NULL },
998 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq),
999 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_muxid, NULL },
1000 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq),
1001 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifindex, 0 },
1002 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq),
1003 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifindex, 0 },
1004 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1005 LIF_CMD, ip_sioctl_token, NULL },
1006 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq),
1007 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_token, NULL },
1008 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1009 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart },
1010 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq),
1011 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_subnet, NULL },
1012 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1013 LIF_CMD, ip_sioctl_lnkinfo, NULL },
1014
1015 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq),
1016 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lnkinfo, NULL },
1017 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV,
1018 LIF_CMD, ip_siocdelndp_v6, NULL },
1019 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD,
1020 LIF_CMD, ip_siocqueryndp_v6, NULL },
1021 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV,
1022 LIF_CMD, ip_siocsetndp_v6, NULL },
1023 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD,
1024 MISC_CMD, ip_sioctl_tmyaddr, NULL },
1025 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD,
1026 MISC_CMD, ip_sioctl_tonlink, NULL },
1027 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0,
1028 MISC_CMD, ip_sioctl_tmysite, NULL },
1029 /* 147 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1030 /* 148 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1031
1032 /* Old *IPSECONFIG ioctls are now deprecated, now see spdsock.c */
1033 /* 149 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1034 /* 150 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1035 /* 151 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1036 /* 152 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1037
1038 /* 153 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1039
1040 /* 154 */ { SIOCGLIFBINDING, sizeof (struct lifreq), IPI_GET_CMD,
1041 LIF_CMD, ip_sioctl_get_binding, NULL },
1042 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq),
1043 IPI_PRIV | IPI_WR,
1044 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname },
1045 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq),
1046 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_groupname, NULL },
1047 /* 157 */ { SIOCGLIFGROUPINFO, sizeof (lifgroupinfo_t),
1048 IPI_GET_CMD, MISC_CMD, ip_sioctl_groupinfo, NULL },
1049
1050 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */
1051 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1052 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1053 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1054
1055 /* 161 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1056
1057 /* These are handled in ip_sioctl_copyin_setup itself */
1058 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT,
1059 MISC_CMD, NULL, NULL },
1060 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT,
1061 MISC_CMD, NULL, NULL },
1062 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL },
1063
1064 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD,
1065 ip_sioctl_get_lifconf, NULL },
1066
1067 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR,
1068 XARP_CMD, ip_sioctl_arp, NULL },
1069 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD,
1070 XARP_CMD, ip_sioctl_arp, NULL },
1071 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR,
1072 XARP_CMD, ip_sioctl_arp, NULL },
1073
1074 /* SIOCPOPSOCKFS is not handled by IP */
1075 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL },
1076
1077 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq),
1078 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifzone, NULL },
1079 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq),
1080 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifzone,
1081 ip_sioctl_slifzone_restart },
1082 /* 172-174 are SCTP ioctls and not handled by IP */
1083 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1084 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1085 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1086 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq),
1087 IPI_GET_CMD, LIF_CMD,
1088 ip_sioctl_get_lifusesrc, 0 },
1089 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq),
1090 IPI_PRIV | IPI_WR,
1091 LIF_CMD, ip_sioctl_slifusesrc,
1092 NULL },
1093 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD,
1094 ip_sioctl_get_lifsrcof, NULL },
1095 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD,
1096 MSFILT_CMD, ip_sioctl_msfilter, NULL },
1097 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), 0,
1098 MSFILT_CMD, ip_sioctl_msfilter, NULL },
1099 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD,
1100 MSFILT_CMD, ip_sioctl_msfilter, NULL },
1101 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), 0,
1102 MSFILT_CMD, ip_sioctl_msfilter, NULL },
1103 /* 182 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1104 /* SIOCSENABLESDP is handled by SDP */
1105 /* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL },
1106 /* 184 */ { IPI_DONTCARE /* SIOCSQPTR */, 0, 0, 0, NULL, NULL },
1107 /* 185 */ { SIOCGIFHWADDR, sizeof (struct ifreq), IPI_GET_CMD,
1108 IF_CMD, ip_sioctl_get_ifhwaddr, NULL },
1109 /* 186 */ { IPI_DONTCARE /* SIOCGSTAMP */, 0, 0, 0, NULL, NULL },
1110 /* 187 */ { SIOCILB, 0, IPI_PRIV | IPI_GET_CMD, MISC_CMD,
1111 ip_sioctl_ilb_cmd, NULL },
1112 /* 188 */ { SIOCGETPROP, 0, IPI_GET_CMD, 0, NULL, NULL },
1113 /* 189 */ { SIOCSETPROP, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL},
1114 /* 190 */ { SIOCGLIFDADSTATE, sizeof (struct lifreq),
1115 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dadstate, NULL },
1116 /* 191 */ { SIOCSLIFPREFIX, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1117 LIF_CMD, ip_sioctl_prefix, ip_sioctl_prefix_restart },
1118 /* 192 */ { SIOCGLIFHWADDR, sizeof (struct lifreq), IPI_GET_CMD,
1119 LIF_CMD, ip_sioctl_get_lifhwaddr, NULL }
1120 };
1121
1122 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t);
1123
1124 ip_ioctl_cmd_t ip_misc_ioctl_table[] = {
1125 { I_LINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1126 { I_UNLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1127 { I_PLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1128 { I_PUNLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1129 { ND_GET, 0, 0, 0, NULL, NULL },
1130 { ND_SET, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1131 { IP_IOCTL, 0, 0, 0, NULL, NULL },
1132 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_GET_CMD,
1133 MISC_CMD, mrt_ioctl},
1134 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_GET_CMD,
1135 MISC_CMD, mrt_ioctl},
1136 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_GET_CMD,
1137 MISC_CMD, mrt_ioctl}
1138 };
1139
1140 int ip_misc_ioctl_count =
1141 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t);
1142
1143 int conn_drain_nthreads; /* Number of drainers reqd. */
1144 /* Settable in /etc/system */
1145 /* Defined in ip_ire.c */
1146 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt;
1147 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt;
1148 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio;
1149
1150 static nv_t ire_nv_arr[] = {
1151 { IRE_BROADCAST, "BROADCAST" },
1152 { IRE_LOCAL, "LOCAL" },
1153 { IRE_LOOPBACK, "LOOPBACK" },
1154 { IRE_DEFAULT, "DEFAULT" },
1155 { IRE_PREFIX, "PREFIX" },
1156 { IRE_IF_NORESOLVER, "IF_NORESOL" },
1157 { IRE_IF_RESOLVER, "IF_RESOLV" },
1158 { IRE_IF_CLONE, "IF_CLONE" },
1159 { IRE_HOST, "HOST" },
1160 { IRE_MULTICAST, "MULTICAST" },
1161 { IRE_NOROUTE, "NOROUTE" },
1162 { 0 }
1163 };
1164
1165 nv_t *ire_nv_tbl = ire_nv_arr;
1166
1167 /* Simple ICMP IP Header Template */
1168 static ipha_t icmp_ipha = {
1169 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP
1170 };
1171
1172 struct module_info ip_mod_info = {
1173 IP_MOD_ID, IP_MOD_NAME, IP_MOD_MINPSZ, IP_MOD_MAXPSZ, IP_MOD_HIWAT,
1174 IP_MOD_LOWAT
1175 };
1176
1177 /*
1178 * Duplicate static symbols within a module confuses mdb; so we avoid the
1179 * problem by making the symbols here distinct from those in udp.c.
1180 */
1181
1182 /*
1183 * Entry points for IP as a device and as a module.
1184 * We have separate open functions for the /dev/ip and /dev/ip6 devices.
1185 */
1186 static struct qinit iprinitv4 = {
1187 (pfi_t)ip_rput, NULL, ip_openv4, ip_close, NULL,
1188 &ip_mod_info
1189 };
1190
1191 struct qinit iprinitv6 = {
1192 (pfi_t)ip_rput_v6, NULL, ip_openv6, ip_close, NULL,
1193 &ip_mod_info
1194 };
1195
1196 static struct qinit ipwinit = {
1197 (pfi_t)ip_wput_nondata, (pfi_t)ip_wsrv, NULL, NULL, NULL,
1198 &ip_mod_info
1199 };
1200
1201 static struct qinit iplrinit = {
1202 (pfi_t)ip_lrput, NULL, ip_openv4, ip_close, NULL,
1203 &ip_mod_info
1204 };
1205
1206 static struct qinit iplwinit = {
1207 (pfi_t)ip_lwput, NULL, NULL, NULL, NULL,
1208 &ip_mod_info
1209 };
1210
1211 /* For AF_INET aka /dev/ip */
1212 struct streamtab ipinfov4 = {
1213 &iprinitv4, &ipwinit, &iplrinit, &iplwinit
1214 };
1215
1216 /* For AF_INET6 aka /dev/ip6 */
1217 struct streamtab ipinfov6 = {
1218 &iprinitv6, &ipwinit, &iplrinit, &iplwinit
1219 };
1220
1221 #ifdef DEBUG
1222 boolean_t skip_sctp_cksum = B_FALSE;
1223 #endif
1224
1225 /*
1226 * Generate an ICMP fragmentation needed message.
1227 * When called from ip_output side a minimal ip_recv_attr_t needs to be
1228 * constructed by the caller.
1229 */
1230 void
1231 icmp_frag_needed(mblk_t *mp, int mtu, ip_recv_attr_t *ira)
1232 {
1233 icmph_t icmph;
1234 ip_stack_t *ipst = ira->ira_ill->ill_ipst;
1235
1236 mp = icmp_pkt_err_ok(mp, ira);
1237 if (mp == NULL)
1238 return;
1239
1240 bzero(&icmph, sizeof (icmph_t));
1241 icmph.icmph_type = ICMP_DEST_UNREACHABLE;
1242 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED;
1243 icmph.icmph_du_mtu = htons((uint16_t)mtu);
1244 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded);
1245 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs);
1246
1247 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
1248 }
1249
1250 /*
1251 * icmp_inbound_v4 deals with ICMP messages that are handled by IP.
1252 * If the ICMP message is consumed by IP, i.e., it should not be delivered
1253 * to any IPPROTO_ICMP raw sockets, then it returns NULL.
1254 * Likewise, if the ICMP error is misformed (too short, etc), then it
1255 * returns NULL. The caller uses this to determine whether or not to send
1256 * to raw sockets.
1257 *
1258 * All error messages are passed to the matching transport stream.
1259 *
1260 * The following cases are handled by icmp_inbound:
1261 * 1) It needs to send a reply back and possibly delivering it
1262 * to the "interested" upper clients.
1263 * 2) Return the mblk so that the caller can pass it to the RAW socket clients.
1264 * 3) It needs to change some values in IP only.
1265 * 4) It needs to change some values in IP and upper layers e.g TCP
1266 * by delivering an error to the upper layers.
1267 *
1268 * We handle the above three cases in the context of IPsec in the
1269 * following way :
1270 *
1271 * 1) Send the reply back in the same way as the request came in.
1272 * If it came in encrypted, it goes out encrypted. If it came in
1273 * clear, it goes out in clear. Thus, this will prevent chosen
1274 * plain text attack.
1275 * 2) The client may or may not expect things to come in secure.
1276 * If it comes in secure, the policy constraints are checked
1277 * before delivering it to the upper layers. If it comes in
1278 * clear, ipsec_inbound_accept_clear will decide whether to
1279 * accept this in clear or not. In both the cases, if the returned
1280 * message (IP header + 8 bytes) that caused the icmp message has
1281 * AH/ESP headers, it is sent up to AH/ESP for validation before
1282 * sending up. If there are only 8 bytes of returned message, then
1283 * upper client will not be notified.
1284 * 3) Check with global policy to see whether it matches the constaints.
1285 * But this will be done only if icmp_accept_messages_in_clear is
1286 * zero.
1287 * 4) If we need to change both in IP and ULP, then the decision taken
1288 * while affecting the values in IP and while delivering up to TCP
1289 * should be the same.
1290 *
1291 * There are two cases.
1292 *
1293 * a) If we reject data at the IP layer (ipsec_check_global_policy()
1294 * failed), we will not deliver it to the ULP, even though they
1295 * are *willing* to accept in *clear*. This is fine as our global
1296 * disposition to icmp messages asks us reject the datagram.
1297 *
1298 * b) If we accept data at the IP layer (ipsec_check_global_policy()
1299 * succeeded or icmp_accept_messages_in_clear is 1), and not able
1300 * to deliver it to ULP (policy failed), it can lead to
1301 * consistency problems. The cases known at this time are
1302 * ICMP_DESTINATION_UNREACHABLE messages with following code
1303 * values :
1304 *
1305 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value
1306 * and Upper layer rejects. Then the communication will
1307 * come to a stop. This is solved by making similar decisions
1308 * at both levels. Currently, when we are unable to deliver
1309 * to the Upper Layer (due to policy failures) while IP has
1310 * adjusted dce_pmtu, the next outbound datagram would
1311 * generate a local ICMP_FRAGMENTATION_NEEDED message - which
1312 * will be with the right level of protection. Thus the right
1313 * value will be communicated even if we are not able to
1314 * communicate when we get from the wire initially. But this
1315 * assumes there would be at least one outbound datagram after
1316 * IP has adjusted its dce_pmtu value. To make things
1317 * simpler, we accept in clear after the validation of
1318 * AH/ESP headers.
1319 *
1320 * - Other ICMP ERRORS : We may not be able to deliver it to the
1321 * upper layer depending on the level of protection the upper
1322 * layer expects and the disposition in ipsec_inbound_accept_clear().
1323 * ipsec_inbound_accept_clear() decides whether a given ICMP error
1324 * should be accepted in clear when the Upper layer expects secure.
1325 * Thus the communication may get aborted by some bad ICMP
1326 * packets.
1327 */
1328 mblk_t *
1329 icmp_inbound_v4(mblk_t *mp, ip_recv_attr_t *ira)
1330 {
1331 icmph_t *icmph;
1332 ipha_t *ipha; /* Outer header */
1333 int ip_hdr_length; /* Outer header length */
1334 boolean_t interested;
1335 ipif_t *ipif;
1336 uint32_t ts;
1337 uint32_t *tsp;
1338 timestruc_t now;
1339 ill_t *ill = ira->ira_ill;
1340 ip_stack_t *ipst = ill->ill_ipst;
1341 zoneid_t zoneid = ira->ira_zoneid;
1342 int len_needed;
1343 mblk_t *mp_ret = NULL;
1344
1345 ipha = (ipha_t *)mp->b_rptr;
1346
1347 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs);
1348
1349 ip_hdr_length = ira->ira_ip_hdr_length;
1350 if ((mp->b_wptr - mp->b_rptr) < (ip_hdr_length + ICMPH_SIZE)) {
1351 if (ira->ira_pktlen < (ip_hdr_length + ICMPH_SIZE)) {
1352 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
1353 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
1354 freemsg(mp);
1355 return (NULL);
1356 }
1357 /* Last chance to get real. */
1358 ipha = ip_pullup(mp, ip_hdr_length + ICMPH_SIZE, ira);
1359 if (ipha == NULL) {
1360 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors);
1361 freemsg(mp);
1362 return (NULL);
1363 }
1364 }
1365
1366 /* The IP header will always be a multiple of four bytes */
1367 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1368 ip2dbg(("icmp_inbound_v4: type %d code %d\n", icmph->icmph_type,
1369 icmph->icmph_code));
1370
1371 /*
1372 * We will set "interested" to "true" if we should pass a copy to
1373 * the transport or if we handle the packet locally.
1374 */
1375 interested = B_FALSE;
1376 switch (icmph->icmph_type) {
1377 case ICMP_ECHO_REPLY:
1378 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps);
1379 break;
1380 case ICMP_DEST_UNREACHABLE:
1381 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED)
1382 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded);
1383 interested = B_TRUE; /* Pass up to transport */
1384 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs);
1385 break;
1386 case ICMP_SOURCE_QUENCH:
1387 interested = B_TRUE; /* Pass up to transport */
1388 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs);
1389 break;
1390 case ICMP_REDIRECT:
1391 if (!ipst->ips_ip_ignore_redirect)
1392 interested = B_TRUE;
1393 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects);
1394 break;
1395 case ICMP_ECHO_REQUEST:
1396 /*
1397 * Whether to respond to echo requests that come in as IP
1398 * broadcasts or as IP multicast is subject to debate
1399 * (what isn't?). We aim to please, you pick it.
1400 * Default is do it.
1401 */
1402 if (ira->ira_flags & IRAF_MULTICAST) {
1403 /* multicast: respond based on tunable */
1404 interested = ipst->ips_ip_g_resp_to_echo_mcast;
1405 } else if (ira->ira_flags & IRAF_BROADCAST) {
1406 /* broadcast: respond based on tunable */
1407 interested = ipst->ips_ip_g_resp_to_echo_bcast;
1408 } else {
1409 /* unicast: always respond */
1410 interested = B_TRUE;
1411 }
1412 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos);
1413 if (!interested) {
1414 /* We never pass these to RAW sockets */
1415 freemsg(mp);
1416 return (NULL);
1417 }
1418
1419 /* Check db_ref to make sure we can modify the packet. */
1420 if (mp->b_datap->db_ref > 1) {
1421 mblk_t *mp1;
1422
1423 mp1 = copymsg(mp);
1424 freemsg(mp);
1425 if (!mp1) {
1426 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
1427 return (NULL);
1428 }
1429 mp = mp1;
1430 ipha = (ipha_t *)mp->b_rptr;
1431 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1432 }
1433 icmph->icmph_type = ICMP_ECHO_REPLY;
1434 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps);
1435 icmp_send_reply_v4(mp, ipha, icmph, ira);
1436 return (NULL);
1437
1438 case ICMP_ROUTER_ADVERTISEMENT:
1439 case ICMP_ROUTER_SOLICITATION:
1440 break;
1441 case ICMP_TIME_EXCEEDED:
1442 interested = B_TRUE; /* Pass up to transport */
1443 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds);
1444 break;
1445 case ICMP_PARAM_PROBLEM:
1446 interested = B_TRUE; /* Pass up to transport */
1447 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs);
1448 break;
1449 case ICMP_TIME_STAMP_REQUEST:
1450 /* Response to Time Stamp Requests is local policy. */
1451 if (ipst->ips_ip_g_resp_to_timestamp) {
1452 if (ira->ira_flags & IRAF_MULTIBROADCAST)
1453 interested =
1454 ipst->ips_ip_g_resp_to_timestamp_bcast;
1455 else
1456 interested = B_TRUE;
1457 }
1458 if (!interested) {
1459 /* We never pass these to RAW sockets */
1460 freemsg(mp);
1461 return (NULL);
1462 }
1463
1464 /* Make sure we have enough of the packet */
1465 len_needed = ip_hdr_length + ICMPH_SIZE +
1466 3 * sizeof (uint32_t);
1467
1468 if (mp->b_wptr - mp->b_rptr < len_needed) {
1469 ipha = ip_pullup(mp, len_needed, ira);
1470 if (ipha == NULL) {
1471 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1472 ip_drop_input("ipIfStatsInDiscards - ip_pullup",
1473 mp, ill);
1474 freemsg(mp);
1475 return (NULL);
1476 }
1477 /* Refresh following the pullup. */
1478 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1479 }
1480 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps);
1481 /* Check db_ref to make sure we can modify the packet. */
1482 if (mp->b_datap->db_ref > 1) {
1483 mblk_t *mp1;
1484
1485 mp1 = copymsg(mp);
1486 freemsg(mp);
1487 if (!mp1) {
1488 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
1489 return (NULL);
1490 }
1491 mp = mp1;
1492 ipha = (ipha_t *)mp->b_rptr;
1493 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1494 }
1495 icmph->icmph_type = ICMP_TIME_STAMP_REPLY;
1496 tsp = (uint32_t *)&icmph[1];
1497 tsp++; /* Skip past 'originate time' */
1498 /* Compute # of milliseconds since midnight */
1499 gethrestime(&now);
1500 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
1501 NSEC2MSEC(now.tv_nsec);
1502 *tsp++ = htonl(ts); /* Lay in 'receive time' */
1503 *tsp++ = htonl(ts); /* Lay in 'send time' */
1504 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps);
1505 icmp_send_reply_v4(mp, ipha, icmph, ira);
1506 return (NULL);
1507
1508 case ICMP_TIME_STAMP_REPLY:
1509 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps);
1510 break;
1511 case ICMP_INFO_REQUEST:
1512 /* Per RFC 1122 3.2.2.7, ignore this. */
1513 case ICMP_INFO_REPLY:
1514 break;
1515 case ICMP_ADDRESS_MASK_REQUEST:
1516 if (ira->ira_flags & IRAF_MULTIBROADCAST) {
1517 interested =
1518 ipst->ips_ip_respond_to_address_mask_broadcast;
1519 } else {
1520 interested = B_TRUE;
1521 }
1522 if (!interested) {
1523 /* We never pass these to RAW sockets */
1524 freemsg(mp);
1525 return (NULL);
1526 }
1527 len_needed = ip_hdr_length + ICMPH_SIZE + IP_ADDR_LEN;
1528 if (mp->b_wptr - mp->b_rptr < len_needed) {
1529 ipha = ip_pullup(mp, len_needed, ira);
1530 if (ipha == NULL) {
1531 BUMP_MIB(ill->ill_ip_mib,
1532 ipIfStatsInTruncatedPkts);
1533 ip_drop_input("ipIfStatsInTruncatedPkts", mp,
1534 ill);
1535 freemsg(mp);
1536 return (NULL);
1537 }
1538 /* Refresh following the pullup. */
1539 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1540 }
1541 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks);
1542 /* Check db_ref to make sure we can modify the packet. */
1543 if (mp->b_datap->db_ref > 1) {
1544 mblk_t *mp1;
1545
1546 mp1 = copymsg(mp);
1547 freemsg(mp);
1548 if (!mp1) {
1549 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
1550 return (NULL);
1551 }
1552 mp = mp1;
1553 ipha = (ipha_t *)mp->b_rptr;
1554 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1555 }
1556 /*
1557 * Need the ipif with the mask be the same as the source
1558 * address of the mask reply. For unicast we have a specific
1559 * ipif. For multicast/broadcast we only handle onlink
1560 * senders, and use the source address to pick an ipif.
1561 */
1562 ipif = ipif_lookup_addr(ipha->ipha_dst, ill, zoneid, ipst);
1563 if (ipif == NULL) {
1564 /* Broadcast or multicast */
1565 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid);
1566 if (ipif == NULL) {
1567 freemsg(mp);
1568 return (NULL);
1569 }
1570 }
1571 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY;
1572 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN);
1573 ipif_refrele(ipif);
1574 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps);
1575 icmp_send_reply_v4(mp, ipha, icmph, ira);
1576 return (NULL);
1577
1578 case ICMP_ADDRESS_MASK_REPLY:
1579 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps);
1580 break;
1581 default:
1582 interested = B_TRUE; /* Pass up to transport */
1583 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns);
1584 break;
1585 }
1586 /*
1587 * See if there is an ICMP client to avoid an extra copymsg/freemsg
1588 * if there isn't one.
1589 */
1590 if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_ICMP].connf_head != NULL) {
1591 /* If there is an ICMP client and we want one too, copy it. */
1592
1593 if (!interested) {
1594 /* Caller will deliver to RAW sockets */
1595 return (mp);
1596 }
1597 mp_ret = copymsg(mp);
1598 if (mp_ret == NULL) {
1599 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1600 ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill);
1601 }
1602 } else if (!interested) {
1603 /* Neither we nor raw sockets are interested. Drop packet now */
1604 freemsg(mp);
1605 return (NULL);
1606 }
1607
1608 /*
1609 * ICMP error or redirect packet. Make sure we have enough of
1610 * the header and that db_ref == 1 since we might end up modifying
1611 * the packet.
1612 */
1613 if (mp->b_cont != NULL) {
1614 if (ip_pullup(mp, -1, ira) == NULL) {
1615 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1616 ip_drop_input("ipIfStatsInDiscards - ip_pullup",
1617 mp, ill);
1618 freemsg(mp);
1619 return (mp_ret);
1620 }
1621 }
1622
1623 if (mp->b_datap->db_ref > 1) {
1624 mblk_t *mp1;
1625
1626 mp1 = copymsg(mp);
1627 if (mp1 == NULL) {
1628 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1629 ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill);
1630 freemsg(mp);
1631 return (mp_ret);
1632 }
1633 freemsg(mp);
1634 mp = mp1;
1635 }
1636
1637 /*
1638 * In case mp has changed, verify the message before any further
1639 * processes.
1640 */
1641 ipha = (ipha_t *)mp->b_rptr;
1642 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1643 if (!icmp_inbound_verify_v4(mp, icmph, ira)) {
1644 freemsg(mp);
1645 return (mp_ret);
1646 }
1647
1648 switch (icmph->icmph_type) {
1649 case ICMP_REDIRECT:
1650 icmp_redirect_v4(mp, ipha, icmph, ira);
1651 break;
1652 case ICMP_DEST_UNREACHABLE:
1653 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) {
1654 /* Update DCE and adjust MTU is icmp header if needed */
1655 icmp_inbound_too_big_v4(icmph, ira);
1656 }
1657 /* FALLTHRU */
1658 default:
1659 icmp_inbound_error_fanout_v4(mp, icmph, ira);
1660 break;
1661 }
1662 return (mp_ret);
1663 }
1664
1665 /*
1666 * Send an ICMP echo, timestamp or address mask reply.
1667 * The caller has already updated the payload part of the packet.
1668 * We handle the ICMP checksum, IP source address selection and feed
1669 * the packet into ip_output_simple.
1670 */
1671 static void
1672 icmp_send_reply_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph,
1673 ip_recv_attr_t *ira)
1674 {
1675 uint_t ip_hdr_length = ira->ira_ip_hdr_length;
1676 ill_t *ill = ira->ira_ill;
1677 ip_stack_t *ipst = ill->ill_ipst;
1678 ip_xmit_attr_t ixas;
1679
1680 /* Send out an ICMP packet */
1681 icmph->icmph_checksum = 0;
1682 icmph->icmph_checksum = IP_CSUM(mp, ip_hdr_length, 0);
1683 /* Reset time to live. */
1684 ipha->ipha_ttl = ipst->ips_ip_def_ttl;
1685 {
1686 /* Swap source and destination addresses */
1687 ipaddr_t tmp;
1688
1689 tmp = ipha->ipha_src;
1690 ipha->ipha_src = ipha->ipha_dst;
1691 ipha->ipha_dst = tmp;
1692 }
1693 ipha->ipha_ident = 0;
1694 if (!IS_SIMPLE_IPH(ipha))
1695 icmp_options_update(ipha);
1696
1697 bzero(&ixas, sizeof (ixas));
1698 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4;
1699 ixas.ixa_zoneid = ira->ira_zoneid;
1700 ixas.ixa_cred = kcred;
1701 ixas.ixa_cpid = NOPID;
1702 ixas.ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */
1703 ixas.ixa_ifindex = 0;
1704 ixas.ixa_ipst = ipst;
1705 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1706
1707 if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) {
1708 /*
1709 * This packet should go out the same way as it
1710 * came in i.e in clear, independent of the IPsec policy
1711 * for transmitting packets.
1712 */
1713 ixas.ixa_flags |= IXAF_NO_IPSEC;
1714 } else {
1715 if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) {
1716 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1717 /* Note: mp already consumed and ip_drop_packet done */
1718 return;
1719 }
1720 }
1721 if (ira->ira_flags & IRAF_MULTIBROADCAST) {
1722 /*
1723 * Not one or our addresses (IRE_LOCALs), thus we let
1724 * ip_output_simple pick the source.
1725 */
1726 ipha->ipha_src = INADDR_ANY;
1727 ixas.ixa_flags |= IXAF_SET_SOURCE;
1728 }
1729 /* Should we send with DF and use dce_pmtu? */
1730 if (ipst->ips_ipv4_icmp_return_pmtu) {
1731 ixas.ixa_flags |= IXAF_PMTU_DISCOVERY;
1732 ipha->ipha_fragment_offset_and_flags |= IPH_DF_HTONS;
1733 }
1734
1735 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs);
1736
1737 (void) ip_output_simple(mp, &ixas);
1738 ixa_cleanup(&ixas);
1739 }
1740
1741 /*
1742 * Verify the ICMP messages for either for ICMP error or redirect packet.
1743 * The caller should have fully pulled up the message. If it's a redirect
1744 * packet, only basic checks on IP header will be done; otherwise, verify
1745 * the packet by looking at the included ULP header.
1746 *
1747 * Called before icmp_inbound_error_fanout_v4 is called.
1748 */
1749 static boolean_t
1750 icmp_inbound_verify_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira)
1751 {
1752 ill_t *ill = ira->ira_ill;
1753 int hdr_length;
1754 ip_stack_t *ipst = ira->ira_ill->ill_ipst;
1755 conn_t *connp;
1756 ipha_t *ipha; /* Inner IP header */
1757
1758 ipha = (ipha_t *)&icmph[1];
1759 if ((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH > mp->b_wptr)
1760 goto truncated;
1761
1762 hdr_length = IPH_HDR_LENGTH(ipha);
1763
1764 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION))
1765 goto discard_pkt;
1766
1767 if (hdr_length < sizeof (ipha_t))
1768 goto truncated;
1769
1770 if ((uchar_t *)ipha + hdr_length > mp->b_wptr)
1771 goto truncated;
1772
1773 /*
1774 * Stop here for ICMP_REDIRECT.
1775 */
1776 if (icmph->icmph_type == ICMP_REDIRECT)
1777 return (B_TRUE);
1778
1779 /*
1780 * ICMP errors only.
1781 */
1782 switch (ipha->ipha_protocol) {
1783 case IPPROTO_UDP:
1784 /*
1785 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
1786 * transport header.
1787 */
1788 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
1789 mp->b_wptr)
1790 goto truncated;
1791 break;
1792 case IPPROTO_TCP: {
1793 tcpha_t *tcpha;
1794
1795 /*
1796 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
1797 * transport header.
1798 */
1799 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
1800 mp->b_wptr)
1801 goto truncated;
1802
1803 tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length);
1804 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN,
1805 ipst);
1806 if (connp == NULL)
1807 goto discard_pkt;
1808
1809 if ((connp->conn_verifyicmp != NULL) &&
1810 !connp->conn_verifyicmp(connp, tcpha, icmph, NULL, ira)) {
1811 CONN_DEC_REF(connp);
1812 goto discard_pkt;
1813 }
1814 CONN_DEC_REF(connp);
1815 break;
1816 }
1817 case IPPROTO_SCTP:
1818 /*
1819 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
1820 * transport header.
1821 */
1822 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
1823 mp->b_wptr)
1824 goto truncated;
1825 break;
1826 case IPPROTO_ESP:
1827 case IPPROTO_AH:
1828 break;
1829 case IPPROTO_ENCAP:
1830 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) >
1831 mp->b_wptr)
1832 goto truncated;
1833 break;
1834 default:
1835 break;
1836 }
1837
1838 return (B_TRUE);
1839
1840 discard_pkt:
1841 /* Bogus ICMP error. */
1842 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1843 return (B_FALSE);
1844
1845 truncated:
1846 /* We pulled up everthing already. Must be truncated */
1847 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
1848 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
1849 return (B_FALSE);
1850 }
1851
1852 /* Table from RFC 1191 */
1853 static int icmp_frag_size_table[] =
1854 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 };
1855
1856 /*
1857 * Process received ICMP Packet too big.
1858 * Just handles the DCE create/update, including using the above table of
1859 * PMTU guesses. The caller is responsible for validating the packet before
1860 * passing it in and also to fanout the ICMP error to any matching transport
1861 * conns. Assumes the message has been fully pulled up and verified.
1862 *
1863 * Before getting here, the caller has called icmp_inbound_verify_v4()
1864 * that should have verified with ULP to prevent undoing the changes we're
1865 * going to make to DCE. For example, TCP might have verified that the packet
1866 * which generated error is in the send window.
1867 *
1868 * In some cases modified this MTU in the ICMP header packet; the caller
1869 * should pass to the matching ULP after this returns.
1870 */
1871 static void
1872 icmp_inbound_too_big_v4(icmph_t *icmph, ip_recv_attr_t *ira)
1873 {
1874 dce_t *dce;
1875 int old_mtu;
1876 int mtu, orig_mtu;
1877 ipaddr_t dst;
1878 boolean_t disable_pmtud;
1879 ill_t *ill = ira->ira_ill;
1880 ip_stack_t *ipst = ill->ill_ipst;
1881 uint_t hdr_length;
1882 ipha_t *ipha;
1883
1884 /* Caller already pulled up everything. */
1885 ipha = (ipha_t *)&icmph[1];
1886 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE &&
1887 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED);
1888 ASSERT(ill != NULL);
1889
1890 hdr_length = IPH_HDR_LENGTH(ipha);
1891
1892 /*
1893 * We handle path MTU for source routed packets since the DCE
1894 * is looked up using the final destination.
1895 */
1896 dst = ip_get_dst(ipha);
1897
1898 dce = dce_lookup_and_add_v4(dst, ipst);
1899 if (dce == NULL) {
1900 /* Couldn't add a unique one - ENOMEM */
1901 ip1dbg(("icmp_inbound_too_big_v4: no dce for 0x%x\n",
1902 ntohl(dst)));
1903 return;
1904 }
1905
1906 /* Check for MTU discovery advice as described in RFC 1191 */
1907 mtu = ntohs(icmph->icmph_du_mtu);
1908 orig_mtu = mtu;
1909 disable_pmtud = B_FALSE;
1910
1911 mutex_enter(&dce->dce_lock);
1912 if (dce->dce_flags & DCEF_PMTU)
1913 old_mtu = dce->dce_pmtu;
1914 else
1915 old_mtu = ill->ill_mtu;
1916
1917 if (icmph->icmph_du_zero != 0 || mtu < ipst->ips_ip_pmtu_min) {
1918 uint32_t length;
1919 int i;
1920
1921 /*
1922 * Use the table from RFC 1191 to figure out
1923 * the next "plateau" based on the length in
1924 * the original IP packet.
1925 */
1926 length = ntohs(ipha->ipha_length);
1927 DTRACE_PROBE2(ip4__pmtu__guess, dce_t *, dce,
1928 uint32_t, length);
1929 if (old_mtu <= length &&
1930 old_mtu >= length - hdr_length) {
1931 /*
1932 * Handle broken BSD 4.2 systems that
1933 * return the wrong ipha_length in ICMP
1934 * errors.
1935 */
1936 ip1dbg(("Wrong mtu: sent %d, dce %d\n",
1937 length, old_mtu));
1938 length -= hdr_length;
1939 }
1940 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) {
1941 if (length > icmp_frag_size_table[i])
1942 break;
1943 }
1944 if (i == A_CNT(icmp_frag_size_table)) {
1945 /* Smaller than IP_MIN_MTU! */
1946 ip1dbg(("Too big for packet size %d\n",
1947 length));
1948 disable_pmtud = B_TRUE;
1949 mtu = ipst->ips_ip_pmtu_min;
1950 } else {
1951 mtu = icmp_frag_size_table[i];
1952 ip1dbg(("Calculated mtu %d, packet size %d, "
1953 "before %d\n", mtu, length, old_mtu));
1954 if (mtu < ipst->ips_ip_pmtu_min) {
1955 mtu = ipst->ips_ip_pmtu_min;
1956 disable_pmtud = B_TRUE;
1957 }
1958 }
1959 }
1960 if (disable_pmtud)
1961 dce->dce_flags |= DCEF_TOO_SMALL_PMTU;
1962 else
1963 dce->dce_flags &= ~DCEF_TOO_SMALL_PMTU;
1964
1965 dce->dce_pmtu = MIN(old_mtu, mtu);
1966 /* Prepare to send the new max frag size for the ULP. */
1967 icmph->icmph_du_zero = 0;
1968 icmph->icmph_du_mtu = htons((uint16_t)dce->dce_pmtu);
1969 DTRACE_PROBE4(ip4__pmtu__change, icmph_t *, icmph, dce_t *,
1970 dce, int, orig_mtu, int, mtu);
1971
1972 /* We now have a PMTU for sure */
1973 dce->dce_flags |= DCEF_PMTU;
1974 dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64());
1975 mutex_exit(&dce->dce_lock);
1976 /*
1977 * After dropping the lock the new value is visible to everyone.
1978 * Then we bump the generation number so any cached values reinspect
1979 * the dce_t.
1980 */
1981 dce_increment_generation(dce);
1982 dce_refrele(dce);
1983 }
1984
1985 /*
1986 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout_v4
1987 * calls this function.
1988 */
1989 static mblk_t *
1990 icmp_inbound_self_encap_error_v4(mblk_t *mp, ipha_t *ipha, ipha_t *in_ipha)
1991 {
1992 int length;
1993
1994 ASSERT(mp->b_datap->db_type == M_DATA);
1995
1996 /* icmp_inbound_v4 has already pulled up the whole error packet */
1997 ASSERT(mp->b_cont == NULL);
1998
1999 /*
2000 * The length that we want to overlay is the inner header
2001 * and what follows it.
2002 */
2003 length = msgdsize(mp) - ((uchar_t *)in_ipha - mp->b_rptr);
2004
2005 /*
2006 * Overlay the inner header and whatever follows it over the
2007 * outer header.
2008 */
2009 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length);
2010
2011 /* Adjust for what we removed */
2012 mp->b_wptr -= (uchar_t *)in_ipha - (uchar_t *)ipha;
2013 return (mp);
2014 }
2015
2016 /*
2017 * Try to pass the ICMP message upstream in case the ULP cares.
2018 *
2019 * If the packet that caused the ICMP error is secure, we send
2020 * it to AH/ESP to make sure that the attached packet has a
2021 * valid association. ipha in the code below points to the
2022 * IP header of the packet that caused the error.
2023 *
2024 * For IPsec cases, we let the next-layer-up (which has access to
2025 * cached policy on the conn_t, or can query the SPD directly)
2026 * subtract out any IPsec overhead if they must. We therefore make no
2027 * adjustments here for IPsec overhead.
2028 *
2029 * IFN could have been generated locally or by some router.
2030 *
2031 * LOCAL : ire_send_wire (before calling ipsec_out_process) can call
2032 * icmp_frag_needed/icmp_pkt2big_v6 to generated a local IFN.
2033 * This happens because IP adjusted its value of MTU on an
2034 * earlier IFN message and could not tell the upper layer,
2035 * the new adjusted value of MTU e.g. Packet was encrypted
2036 * or there was not enough information to fanout to upper
2037 * layers. Thus on the next outbound datagram, ire_send_wire
2038 * generates the IFN, where IPsec processing has *not* been
2039 * done.
2040 *
2041 * Note that we retain ixa_fragsize across IPsec thus once
2042 * we have picking ixa_fragsize and entered ipsec_out_process we do
2043 * no change the fragsize even if the path MTU changes before
2044 * we reach ip_output_post_ipsec.
2045 *
2046 * In the local case, IRAF_LOOPBACK will be set indicating
2047 * that IFN was generated locally.
2048 *
2049 * ROUTER : IFN could be secure or non-secure.
2050 *
2051 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the
2052 * packet in error has AH/ESP headers to validate the AH/ESP
2053 * headers. AH/ESP will verify whether there is a valid SA or
2054 * not and send it back. We will fanout again if we have more
2055 * data in the packet.
2056 *
2057 * If the packet in error does not have AH/ESP, we handle it
2058 * like any other case.
2059 *
2060 * * NON_SECURE : If the packet in error has AH/ESP headers, we send it
2061 * up to AH/ESP for validation. AH/ESP will verify whether there is a
2062 * valid SA or not and send it back. We will fanout again if
2063 * we have more data in the packet.
2064 *
2065 * If the packet in error does not have AH/ESP, we handle it
2066 * like any other case.
2067 *
2068 * The caller must have called icmp_inbound_verify_v4.
2069 */
2070 static void
2071 icmp_inbound_error_fanout_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira)
2072 {
2073 uint16_t *up; /* Pointer to ports in ULP header */
2074 uint32_t ports; /* reversed ports for fanout */
2075 ipha_t ripha; /* With reversed addresses */
2076 ipha_t *ipha; /* Inner IP header */
2077 uint_t hdr_length; /* Inner IP header length */
2078 tcpha_t *tcpha;
2079 conn_t *connp;
2080 ill_t *ill = ira->ira_ill;
2081 ip_stack_t *ipst = ill->ill_ipst;
2082 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec;
2083 ill_t *rill = ira->ira_rill;
2084
2085 /* Caller already pulled up everything. */
2086 ipha = (ipha_t *)&icmph[1];
2087 ASSERT((uchar_t *)&ipha[1] <= mp->b_wptr);
2088 ASSERT(mp->b_cont == NULL);
2089
2090 hdr_length = IPH_HDR_LENGTH(ipha);
2091 ira->ira_protocol = ipha->ipha_protocol;
2092
2093 /*
2094 * We need a separate IP header with the source and destination
2095 * addresses reversed to do fanout/classification because the ipha in
2096 * the ICMP error is in the form we sent it out.
2097 */
2098 ripha.ipha_src = ipha->ipha_dst;
2099 ripha.ipha_dst = ipha->ipha_src;
2100 ripha.ipha_protocol = ipha->ipha_protocol;
2101 ripha.ipha_version_and_hdr_length = ipha->ipha_version_and_hdr_length;
2102
2103 ip2dbg(("icmp_inbound_error_v4: proto %d %x to %x: %d/%d\n",
2104 ripha.ipha_protocol, ntohl(ipha->ipha_src),
2105 ntohl(ipha->ipha_dst),
2106 icmph->icmph_type, icmph->icmph_code));
2107
2108 switch (ipha->ipha_protocol) {
2109 case IPPROTO_UDP:
2110 up = (uint16_t *)((uchar_t *)ipha + hdr_length);
2111
2112 /* Attempt to find a client stream based on port. */
2113 ip2dbg(("icmp_inbound_error_v4: UDP ports %d to %d\n",
2114 ntohs(up[0]), ntohs(up[1])));
2115
2116 /* Note that we send error to all matches. */
2117 ira->ira_flags |= IRAF_ICMP_ERROR;
2118 ip_fanout_udp_multi_v4(mp, &ripha, up[0], up[1], ira);
2119 ira->ira_flags &= ~IRAF_ICMP_ERROR;
2120 return;
2121
2122 case IPPROTO_TCP:
2123 /*
2124 * Find a TCP client stream for this packet.
2125 * Note that we do a reverse lookup since the header is
2126 * in the form we sent it out.
2127 */
2128 tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length);
2129 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN,
2130 ipst);
2131 if (connp == NULL)
2132 goto discard_pkt;
2133
2134 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) ||
2135 (ira->ira_flags & IRAF_IPSEC_SECURE)) {
2136 mp = ipsec_check_inbound_policy(mp, connp,
2137 ipha, NULL, ira);
2138 if (mp == NULL) {
2139 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
2140 /* Note that mp is NULL */
2141 ip_drop_input("ipIfStatsInDiscards", mp, ill);
2142 CONN_DEC_REF(connp);
2143 return;
2144 }
2145 }
2146
2147 ira->ira_flags |= IRAF_ICMP_ERROR;
2148 ira->ira_ill = ira->ira_rill = NULL;
2149 if (IPCL_IS_TCP(connp)) {
2150 SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
2151 connp->conn_recvicmp, connp, ira, SQ_FILL,
2152 SQTAG_TCP_INPUT_ICMP_ERR);
2153 } else {
2154 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */
2155 (connp->conn_recv)(connp, mp, NULL, ira);
2156 CONN_DEC_REF(connp);
2157 }
2158 ira->ira_ill = ill;
2159 ira->ira_rill = rill;
2160 ira->ira_flags &= ~IRAF_ICMP_ERROR;
2161 return;
2162
2163 case IPPROTO_SCTP:
2164 up = (uint16_t *)((uchar_t *)ipha + hdr_length);
2165 /* Find a SCTP client stream for this packet. */
2166 ((uint16_t *)&ports)[0] = up[1];
2167 ((uint16_t *)&ports)[1] = up[0];
2168
2169 ira->ira_flags |= IRAF_ICMP_ERROR;
2170 ip_fanout_sctp(mp, &ripha, NULL, ports, ira);
2171 ira->ira_flags &= ~IRAF_ICMP_ERROR;
2172 return;
2173
2174 case IPPROTO_ESP:
2175 case IPPROTO_AH:
2176 if (!ipsec_loaded(ipss)) {
2177 ip_proto_not_sup(mp, ira);
2178 return;
2179 }
2180
2181 if (ipha->ipha_protocol == IPPROTO_ESP)
2182 mp = ipsecesp_icmp_error(mp, ira);
2183 else
2184 mp = ipsecah_icmp_error(mp, ira);
2185 if (mp == NULL)
2186 return;
2187
2188 /* Just in case ipsec didn't preserve the NULL b_cont */
2189 if (mp->b_cont != NULL) {
2190 if (!pullupmsg(mp, -1))
2191 goto discard_pkt;
2192 }
2193
2194 /*
2195 * Note that ira_pktlen and ira_ip_hdr_length are no longer
2196 * correct, but we don't use them any more here.
2197 *
2198 * If succesful, the mp has been modified to not include
2199 * the ESP/AH header so we can fanout to the ULP's icmp
2200 * error handler.
2201 */
2202 if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH)
2203 goto truncated;
2204
2205 /* Verify the modified message before any further processes. */
2206 ipha = (ipha_t *)mp->b_rptr;
2207 hdr_length = IPH_HDR_LENGTH(ipha);
2208 icmph = (icmph_t *)&mp->b_rptr[hdr_length];
2209 if (!icmp_inbound_verify_v4(mp, icmph, ira)) {
2210 freemsg(mp);
2211 return;
2212 }
2213
2214 icmp_inbound_error_fanout_v4(mp, icmph, ira);
2215 return;
2216
2217 case IPPROTO_ENCAP: {
2218 /* Look for self-encapsulated packets that caused an error */
2219 ipha_t *in_ipha;
2220
2221 /*
2222 * Caller has verified that length has to be
2223 * at least the size of IP header.
2224 */
2225 ASSERT(hdr_length >= sizeof (ipha_t));
2226 /*
2227 * Check the sanity of the inner IP header like
2228 * we did for the outer header.
2229 */
2230 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length);
2231 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) {
2232 goto discard_pkt;
2233 }
2234 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) {
2235 goto discard_pkt;
2236 }
2237 /* Check for Self-encapsulated tunnels */
2238 if (in_ipha->ipha_src == ipha->ipha_src &&
2239 in_ipha->ipha_dst == ipha->ipha_dst) {
2240
2241 mp = icmp_inbound_self_encap_error_v4(mp, ipha,
2242 in_ipha);
2243 if (mp == NULL)
2244 goto discard_pkt;
2245
2246 /*
2247 * Just in case self_encap didn't preserve the NULL
2248 * b_cont
2249 */
2250 if (mp->b_cont != NULL) {
2251 if (!pullupmsg(mp, -1))
2252 goto discard_pkt;
2253 }
2254 /*
2255 * Note that ira_pktlen and ira_ip_hdr_length are no
2256 * longer correct, but we don't use them any more here.
2257 */
2258 if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH)
2259 goto truncated;
2260
2261 /*
2262 * Verify the modified message before any further
2263 * processes.
2264 */
2265 ipha = (ipha_t *)mp->b_rptr;
2266 hdr_length = IPH_HDR_LENGTH(ipha);
2267 icmph = (icmph_t *)&mp->b_rptr[hdr_length];
2268 if (!icmp_inbound_verify_v4(mp, icmph, ira)) {
2269 freemsg(mp);
2270 return;
2271 }
2272
2273 /*
2274 * The packet in error is self-encapsualted.
2275 * And we are finding it further encapsulated
2276 * which we could not have possibly generated.
2277 */
2278 if (ipha->ipha_protocol == IPPROTO_ENCAP) {
2279 goto discard_pkt;
2280 }
2281 icmp_inbound_error_fanout_v4(mp, icmph, ira);
2282 return;
2283 }
2284 /* No self-encapsulated */
2285 /* FALLTHRU */
2286 }
2287 case IPPROTO_IPV6:
2288 if ((connp = ipcl_iptun_classify_v4(&ripha.ipha_src,
2289 &ripha.ipha_dst, ipst)) != NULL) {
2290 ira->ira_flags |= IRAF_ICMP_ERROR;
2291 connp->conn_recvicmp(connp, mp, NULL, ira);
2292 CONN_DEC_REF(connp);
2293 ira->ira_flags &= ~IRAF_ICMP_ERROR;
2294 return;
2295 }
2296 /*
2297 * No IP tunnel is interested, fallthrough and see
2298 * if a raw socket will want it.
2299 */
2300 /* FALLTHRU */
2301 default:
2302 ira->ira_flags |= IRAF_ICMP_ERROR;
2303 ip_fanout_proto_v4(mp, &ripha, ira);
2304 ira->ira_flags &= ~IRAF_ICMP_ERROR;
2305 return;
2306 }
2307 /* NOTREACHED */
2308 discard_pkt:
2309 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
2310 ip1dbg(("icmp_inbound_error_fanout_v4: drop pkt\n"));
2311 ip_drop_input("ipIfStatsInDiscards", mp, ill);
2312 freemsg(mp);
2313 return;
2314
2315 truncated:
2316 /* We pulled up everthing already. Must be truncated */
2317 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
2318 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
2319 freemsg(mp);
2320 }
2321
2322 /*
2323 * Common IP options parser.
2324 *
2325 * Setup routine: fill in *optp with options-parsing state, then
2326 * tail-call ipoptp_next to return the first option.
2327 */
2328 uint8_t
2329 ipoptp_first(ipoptp_t *optp, ipha_t *ipha)
2330 {
2331 uint32_t totallen; /* total length of all options */
2332
2333 totallen = ipha->ipha_version_and_hdr_length -
2334 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS);
2335 totallen <<= 2;
2336 optp->ipoptp_next = (uint8_t *)(&ipha[1]);
2337 optp->ipoptp_end = optp->ipoptp_next + totallen;
2338 optp->ipoptp_flags = 0;
2339 return (ipoptp_next(optp));
2340 }
2341
2342 /* Like above but without an ipha_t */
2343 uint8_t
2344 ipoptp_first2(ipoptp_t *optp, uint32_t totallen, uint8_t *opt)
2345 {
2346 optp->ipoptp_next = opt;
2347 optp->ipoptp_end = optp->ipoptp_next + totallen;
2348 optp->ipoptp_flags = 0;
2349 return (ipoptp_next(optp));
2350 }
2351
2352 /*
2353 * Common IP options parser: extract next option.
2354 */
2355 uint8_t
2356 ipoptp_next(ipoptp_t *optp)
2357 {
2358 uint8_t *end = optp->ipoptp_end;
2359 uint8_t *cur = optp->ipoptp_next;
2360 uint8_t opt, len, pointer;
2361
2362 /*
2363 * If cur > end already, then the ipoptp_end or ipoptp_next pointer
2364 * has been corrupted.
2365 */
2366 ASSERT(cur <= end);
2367
2368 if (cur == end)
2369 return (IPOPT_EOL);
2370
2371 opt = cur[IPOPT_OPTVAL];
2372
2373 /*
2374 * Skip any NOP options.
2375 */
2376 while (opt == IPOPT_NOP) {
2377 cur++;
2378 if (cur == end)
2379 return (IPOPT_EOL);
2380 opt = cur[IPOPT_OPTVAL];
2381 }
2382
2383 if (opt == IPOPT_EOL)
2384 return (IPOPT_EOL);
2385
2386 /*
2387 * Option requiring a length.
2388 */
2389 if ((cur + 1) >= end) {
2390 optp->ipoptp_flags |= IPOPTP_ERROR;
2391 return (IPOPT_EOL);
2392 }
2393 len = cur[IPOPT_OLEN];
2394 if (len < 2) {
2395 optp->ipoptp_flags |= IPOPTP_ERROR;
2396 return (IPOPT_EOL);
2397 }
2398 optp->ipoptp_cur = cur;
2399 optp->ipoptp_len = len;
2400 optp->ipoptp_next = cur + len;
2401 if (cur + len > end) {
2402 optp->ipoptp_flags |= IPOPTP_ERROR;
2403 return (IPOPT_EOL);
2404 }
2405
2406 /*
2407 * For the options which require a pointer field, make sure
2408 * its there, and make sure it points to either something
2409 * inside this option, or the end of the option.
2410 */
2411 switch (opt) {
2412 case IPOPT_RR:
2413 case IPOPT_TS:
2414 case IPOPT_LSRR:
2415 case IPOPT_SSRR:
2416 if (len <= IPOPT_OFFSET) {
2417 optp->ipoptp_flags |= IPOPTP_ERROR;
2418 return (opt);
2419 }
2420 pointer = cur[IPOPT_OFFSET];
2421 if (pointer - 1 > len) {
2422 optp->ipoptp_flags |= IPOPTP_ERROR;
2423 return (opt);
2424 }
2425 break;
2426 }
2427
2428 /*
2429 * Sanity check the pointer field based on the type of the
2430 * option.
2431 */
2432 switch (opt) {
2433 case IPOPT_RR:
2434 case IPOPT_SSRR:
2435 case IPOPT_LSRR:
2436 if (pointer < IPOPT_MINOFF_SR)
2437 optp->ipoptp_flags |= IPOPTP_ERROR;
2438 break;
2439 case IPOPT_TS:
2440 if (pointer < IPOPT_MINOFF_IT)
2441 optp->ipoptp_flags |= IPOPTP_ERROR;
2442 /*
2443 * Note that the Internet Timestamp option also
2444 * contains two four bit fields (the Overflow field,
2445 * and the Flag field), which follow the pointer
2446 * field. We don't need to check that these fields
2447 * fall within the length of the option because this
2448 * was implicitely done above. We've checked that the
2449 * pointer value is at least IPOPT_MINOFF_IT, and that
2450 * it falls within the option. Since IPOPT_MINOFF_IT >
2451 * IPOPT_POS_OV_FLG, we don't need the explicit check.
2452 */
2453 ASSERT(len > IPOPT_POS_OV_FLG);
2454 break;
2455 }
2456
2457 return (opt);
2458 }
2459
2460 /*
2461 * Use the outgoing IP header to create an IP_OPTIONS option the way
2462 * it was passed down from the application.
2463 *
2464 * This is compatible with BSD in that it returns
2465 * the reverse source route with the final destination
2466 * as the last entry. The first 4 bytes of the option
2467 * will contain the final destination.
2468 */
2469 int
2470 ip_opt_get_user(conn_t *connp, uchar_t *buf)
2471 {
2472 ipoptp_t opts;
2473 uchar_t *opt;
2474 uint8_t optval;
2475 uint8_t optlen;
2476 uint32_t len = 0;
2477 uchar_t *buf1 = buf;
2478 uint32_t totallen;
2479 ipaddr_t dst;
2480 ip_pkt_t *ipp = &connp->conn_xmit_ipp;
2481
2482 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS))
2483 return (0);
2484
2485 totallen = ipp->ipp_ipv4_options_len;
2486 if (totallen & 0x3)
2487 return (0);
2488
2489 buf += IP_ADDR_LEN; /* Leave room for final destination */
2490 len += IP_ADDR_LEN;
2491 bzero(buf1, IP_ADDR_LEN);
2492
2493 dst = connp->conn_faddr_v4;
2494
2495 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options);
2496 optval != IPOPT_EOL;
2497 optval = ipoptp_next(&opts)) {
2498 int off;
2499
2500 opt = opts.ipoptp_cur;
2501 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
2502 break;
2503 }
2504 optlen = opts.ipoptp_len;
2505
2506 switch (optval) {
2507 case IPOPT_SSRR:
2508 case IPOPT_LSRR:
2509
2510 /*
2511 * Insert destination as the first entry in the source
2512 * route and move down the entries on step.
2513 * The last entry gets placed at buf1.
2514 */
2515 buf[IPOPT_OPTVAL] = optval;
2516 buf[IPOPT_OLEN] = optlen;
2517 buf[IPOPT_OFFSET] = optlen;
2518
2519 off = optlen - IP_ADDR_LEN;
2520 if (off < 0) {
2521 /* No entries in source route */
2522 break;
2523 }
2524 /* Last entry in source route if not already set */
2525 if (dst == INADDR_ANY)
2526 bcopy(opt + off, buf1, IP_ADDR_LEN);
2527 off -= IP_ADDR_LEN;
2528
2529 while (off > 0) {
2530 bcopy(opt + off,
2531 buf + off + IP_ADDR_LEN,
2532 IP_ADDR_LEN);
2533 off -= IP_ADDR_LEN;
2534 }
2535 /* ipha_dst into first slot */
2536 bcopy(&dst, buf + off + IP_ADDR_LEN,
2537 IP_ADDR_LEN);
2538 buf += optlen;
2539 len += optlen;
2540 break;
2541
2542 default:
2543 bcopy(opt, buf, optlen);
2544 buf += optlen;
2545 len += optlen;
2546 break;
2547 }
2548 }
2549 done:
2550 /* Pad the resulting options */
2551 while (len & 0x3) {
2552 *buf++ = IPOPT_EOL;
2553 len++;
2554 }
2555 return (len);
2556 }
2557
2558 /*
2559 * Update any record route or timestamp options to include this host.
2560 * Reverse any source route option.
2561 * This routine assumes that the options are well formed i.e. that they
2562 * have already been checked.
2563 */
2564 static void
2565 icmp_options_update(ipha_t *ipha)
2566 {
2567 ipoptp_t opts;
2568 uchar_t *opt;
2569 uint8_t optval;
2570 ipaddr_t src; /* Our local address */
2571 ipaddr_t dst;
2572
2573 ip2dbg(("icmp_options_update\n"));
2574 src = ipha->ipha_src;
2575 dst = ipha->ipha_dst;
2576
2577 for (optval = ipoptp_first(&opts, ipha);
2578 optval != IPOPT_EOL;
2579 optval = ipoptp_next(&opts)) {
2580 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
2581 opt = opts.ipoptp_cur;
2582 ip2dbg(("icmp_options_update: opt %d, len %d\n",
2583 optval, opts.ipoptp_len));
2584 switch (optval) {
2585 int off1, off2;
2586 case IPOPT_SSRR:
2587 case IPOPT_LSRR:
2588 /*
2589 * Reverse the source route. The first entry
2590 * should be the next to last one in the current
2591 * source route (the last entry is our address).
2592 * The last entry should be the final destination.
2593 */
2594 off1 = IPOPT_MINOFF_SR - 1;
2595 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
2596 if (off2 < 0) {
2597 /* No entries in source route */
2598 ip1dbg((
2599 "icmp_options_update: bad src route\n"));
2600 break;
2601 }
2602 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN);
2603 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN);
2604 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN);
2605 off2 -= IP_ADDR_LEN;
2606
2607 while (off1 < off2) {
2608 bcopy((char *)opt + off1, &src, IP_ADDR_LEN);
2609 bcopy((char *)opt + off2, (char *)opt + off1,
2610 IP_ADDR_LEN);
2611 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN);
2612 off1 += IP_ADDR_LEN;
2613 off2 -= IP_ADDR_LEN;
2614 }
2615 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
2616 break;
2617 }
2618 }
2619 }
2620
2621 /*
2622 * Process received ICMP Redirect messages.
2623 * Assumes the caller has verified that the headers are in the pulled up mblk.
2624 * Consumes mp.
2625 */
2626 static void
2627 icmp_redirect_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph, ip_recv_attr_t *ira)
2628 {
2629 ire_t *ire, *nire;
2630 ire_t *prev_ire;
2631 ipaddr_t src, dst, gateway;
2632 ip_stack_t *ipst = ira->ira_ill->ill_ipst;
2633 ipha_t *inner_ipha; /* Inner IP header */
2634
2635 /* Caller already pulled up everything. */
2636 inner_ipha = (ipha_t *)&icmph[1];
2637 src = ipha->ipha_src;
2638 dst = inner_ipha->ipha_dst;
2639 gateway = icmph->icmph_rd_gateway;
2640 /* Make sure the new gateway is reachable somehow. */
2641 ire = ire_ftable_lookup_v4(gateway, 0, 0, IRE_ONLINK, NULL,
2642 ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, NULL);
2643 /*
2644 * Make sure we had a route for the dest in question and that
2645 * that route was pointing to the old gateway (the source of the
2646 * redirect packet.)
2647 * We do longest match and then compare ire_gateway_addr below.
2648 */
2649 prev_ire = ire_ftable_lookup_v4(dst, 0, 0, 0, NULL, ALL_ZONES,
2650 NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL);
2651 /*
2652 * Check that
2653 * the redirect was not from ourselves
2654 * the new gateway and the old gateway are directly reachable
2655 */
2656 if (prev_ire == NULL || ire == NULL ||
2657 (prev_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) ||
2658 (prev_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) ||
2659 !(ire->ire_type & IRE_IF_ALL) ||
2660 prev_ire->ire_gateway_addr != src) {
2661 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects);
2662 ip_drop_input("icmpInBadRedirects - ire", mp, ira->ira_ill);
2663 freemsg(mp);
2664 if (ire != NULL)
2665 ire_refrele(ire);
2666 if (prev_ire != NULL)
2667 ire_refrele(prev_ire);
2668 return;
2669 }
2670
2671 ire_refrele(prev_ire);
2672 ire_refrele(ire);
2673
2674 /*
2675 * TODO: more precise handling for cases 0, 2, 3, the latter two
2676 * require TOS routing
2677 */
2678 switch (icmph->icmph_code) {
2679 case 0:
2680 case 1:
2681 /* TODO: TOS specificity for cases 2 and 3 */
2682 case 2:
2683 case 3:
2684 break;
2685 default:
2686 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects);
2687 ip_drop_input("icmpInBadRedirects - code", mp, ira->ira_ill);
2688 freemsg(mp);
2689 return;
2690 }
2691 /*
2692 * Create a Route Association. This will allow us to remember that
2693 * someone we believe told us to use the particular gateway.
2694 */
2695 ire = ire_create(
2696 (uchar_t *)&dst, /* dest addr */
2697 (uchar_t *)&ip_g_all_ones, /* mask */
2698 (uchar_t *)&gateway, /* gateway addr */
2699 IRE_HOST,
2700 NULL, /* ill */
2701 ALL_ZONES,
2702 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST),
2703 NULL, /* tsol_gc_t */
2704 ipst);
2705
2706 if (ire == NULL) {
2707 freemsg(mp);
2708 return;
2709 }
2710 nire = ire_add(ire);
2711 /* Check if it was a duplicate entry */
2712 if (nire != NULL && nire != ire) {
2713 ASSERT(nire->ire_identical_ref > 1);
2714 ire_delete(nire);
2715 ire_refrele(nire);
2716 nire = NULL;
2717 }
2718 ire = nire;
2719 if (ire != NULL) {
2720 ire_refrele(ire); /* Held in ire_add */
2721
2722 /* tell routing sockets that we received a redirect */
2723 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src,
2724 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0,
2725 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst);
2726 }
2727
2728 /*
2729 * Delete any existing IRE_HOST type redirect ires for this destination.
2730 * This together with the added IRE has the effect of
2731 * modifying an existing redirect.
2732 */
2733 prev_ire = ire_ftable_lookup_v4(dst, 0, src, IRE_HOST, NULL,
2734 ALL_ZONES, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), 0, ipst, NULL);
2735 if (prev_ire != NULL) {
2736 if (prev_ire ->ire_flags & RTF_DYNAMIC)
2737 ire_delete(prev_ire);
2738 ire_refrele(prev_ire);
2739 }
2740
2741 freemsg(mp);
2742 }
2743
2744 /*
2745 * Generate an ICMP parameter problem message.
2746 * When called from ip_output side a minimal ip_recv_attr_t needs to be
2747 * constructed by the caller.
2748 */
2749 static void
2750 icmp_param_problem(mblk_t *mp, uint8_t ptr, ip_recv_attr_t *ira)
2751 {
2752 icmph_t icmph;
2753 ip_stack_t *ipst = ira->ira_ill->ill_ipst;
2754
2755 mp = icmp_pkt_err_ok(mp, ira);
2756 if (mp == NULL)
2757 return;
2758
2759 bzero(&icmph, sizeof (icmph_t));
2760 icmph.icmph_type = ICMP_PARAM_PROBLEM;
2761 icmph.icmph_pp_ptr = ptr;
2762 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs);
2763 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
2764 }
2765
2766 /*
2767 * Build and ship an IPv4 ICMP message using the packet data in mp, and
2768 * the ICMP header pointed to by "stuff". (May be called as writer.)
2769 * Note: assumes that icmp_pkt_err_ok has been called to verify that
2770 * an icmp error packet can be sent.
2771 * Assigns an appropriate source address to the packet. If ipha_dst is
2772 * one of our addresses use it for source. Otherwise let ip_output_simple
2773 * pick the source address.
2774 */
2775 static void
2776 icmp_pkt(mblk_t *mp, void *stuff, size_t len, ip_recv_attr_t *ira)
2777 {
2778 ipaddr_t dst;
2779 icmph_t *icmph;
2780 ipha_t *ipha;
2781 uint_t len_needed;
2782 size_t msg_len;
2783 mblk_t *mp1;
2784 ipaddr_t src;
2785 ire_t *ire;
2786 ip_xmit_attr_t ixas;
2787 ip_stack_t *ipst = ira->ira_ill->ill_ipst;
2788
2789 ipha = (ipha_t *)mp->b_rptr;
2790
2791 bzero(&ixas, sizeof (ixas));
2792 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4;
2793 ixas.ixa_zoneid = ira->ira_zoneid;
2794 ixas.ixa_ifindex = 0;
2795 ixas.ixa_ipst = ipst;
2796 ixas.ixa_cred = kcred;
2797 ixas.ixa_cpid = NOPID;
2798 ixas.ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */
2799 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
2800
2801 if (ira->ira_flags & IRAF_IPSEC_SECURE) {
2802 /*
2803 * Apply IPsec based on how IPsec was applied to
2804 * the packet that had the error.
2805 *
2806 * If it was an outbound packet that caused the ICMP
2807 * error, then the caller will have setup the IRA
2808 * appropriately.
2809 */
2810 if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) {
2811 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
2812 /* Note: mp already consumed and ip_drop_packet done */
2813 return;
2814 }
2815 } else {
2816 /*
2817 * This is in clear. The icmp message we are building
2818 * here should go out in clear, independent of our policy.
2819 */
2820 ixas.ixa_flags |= IXAF_NO_IPSEC;
2821 }
2822
2823 /* Remember our eventual destination */
2824 dst = ipha->ipha_src;
2825
2826 /*
2827 * If the packet was for one of our unicast addresses, make
2828 * sure we respond with that as the source. Otherwise
2829 * have ip_output_simple pick the source address.
2830 */
2831 ire = ire_ftable_lookup_v4(ipha->ipha_dst, 0, 0,
2832 (IRE_LOCAL|IRE_LOOPBACK), NULL, ira->ira_zoneid, NULL,
2833 MATCH_IRE_TYPE|MATCH_IRE_ZONEONLY, 0, ipst, NULL);
2834 if (ire != NULL) {
2835 ire_refrele(ire);
2836 src = ipha->ipha_dst;
2837 } else {
2838 src = INADDR_ANY;
2839 ixas.ixa_flags |= IXAF_SET_SOURCE;
2840 }
2841
2842 /*
2843 * Check if we can send back more then 8 bytes in addition to
2844 * the IP header. We try to send 64 bytes of data and the internal
2845 * header in the special cases of ipv4 encapsulated ipv4 or ipv6.
2846 */
2847 len_needed = IPH_HDR_LENGTH(ipha);
2848 if (ipha->ipha_protocol == IPPROTO_ENCAP ||
2849 ipha->ipha_protocol == IPPROTO_IPV6) {
2850 if (!pullupmsg(mp, -1)) {
2851 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
2852 ip_drop_output("ipIfStatsOutDiscards", mp, NULL);
2853 freemsg(mp);
2854 return;
2855 }
2856 ipha = (ipha_t *)mp->b_rptr;
2857
2858 if (ipha->ipha_protocol == IPPROTO_ENCAP) {
2859 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha +
2860 len_needed));
2861 } else {
2862 ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed);
2863
2864 ASSERT(ipha->ipha_protocol == IPPROTO_IPV6);
2865 len_needed += ip_hdr_length_v6(mp, ip6h);
2866 }
2867 }
2868 len_needed += ipst->ips_ip_icmp_return;
2869 msg_len = msgdsize(mp);
2870 if (msg_len > len_needed) {
2871 (void) adjmsg(mp, len_needed - msg_len);
2872 msg_len = len_needed;
2873 }
2874 mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_MED);
2875 if (mp1 == NULL) {
2876 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors);
2877 freemsg(mp);
2878 return;
2879 }
2880 mp1->b_cont = mp;
2881 mp = mp1;
2882
2883 /*
2884 * Set IXAF_TRUSTED_ICMP so we can let the ICMP messages this
2885 * node generates be accepted in peace by all on-host destinations.
2886 * If we do NOT assume that all on-host destinations trust
2887 * self-generated ICMP messages, then rework here, ip6.c, and spd.c.
2888 * (Look for IXAF_TRUSTED_ICMP).
2889 */
2890 ixas.ixa_flags |= IXAF_TRUSTED_ICMP;
2891
2892 ipha = (ipha_t *)mp->b_rptr;
2893 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len);
2894 *ipha = icmp_ipha;
2895 ipha->ipha_src = src;
2896 ipha->ipha_dst = dst;
2897 ipha->ipha_ttl = ipst->ips_ip_def_ttl;
2898 msg_len += sizeof (icmp_ipha) + len;
2899 if (msg_len > IP_MAXPACKET) {
2900 (void) adjmsg(mp, IP_MAXPACKET - msg_len);
2901 msg_len = IP_MAXPACKET;
2902 }
2903 ipha->ipha_length = htons((uint16_t)msg_len);
2904 icmph = (icmph_t *)&ipha[1];
2905 bcopy(stuff, icmph, len);
2906 icmph->icmph_checksum = 0;
2907 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0);
2908 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs);
2909
2910 (void) ip_output_simple(mp, &ixas);
2911 ixa_cleanup(&ixas);
2912 }
2913
2914 /*
2915 * Determine if an ICMP error packet can be sent given the rate limit.
2916 * The limit consists of an average frequency (icmp_pkt_err_interval measured
2917 * in milliseconds) and a burst size. Burst size number of packets can
2918 * be sent arbitrarely closely spaced.
2919 * The state is tracked using two variables to implement an approximate
2920 * token bucket filter:
2921 * icmp_pkt_err_last - lbolt value when the last burst started
2922 * icmp_pkt_err_sent - number of packets sent in current burst
2923 */
2924 boolean_t
2925 icmp_err_rate_limit(ip_stack_t *ipst)
2926 {
2927 clock_t now = TICK_TO_MSEC(ddi_get_lbolt());
2928 uint_t refilled; /* Number of packets refilled in tbf since last */
2929 /* Guard against changes by loading into local variable */
2930 uint_t err_interval = ipst->ips_ip_icmp_err_interval;
2931
2932 if (err_interval == 0)
2933 return (B_FALSE);
2934
2935 if (ipst->ips_icmp_pkt_err_last > now) {
2936 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */
2937 ipst->ips_icmp_pkt_err_last = 0;
2938 ipst->ips_icmp_pkt_err_sent = 0;
2939 }
2940 /*
2941 * If we are in a burst update the token bucket filter.
2942 * Update the "last" time to be close to "now" but make sure
2943 * we don't loose precision.
2944 */
2945 if (ipst->ips_icmp_pkt_err_sent != 0) {
2946 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval;
2947 if (refilled > ipst->ips_icmp_pkt_err_sent) {
2948 ipst->ips_icmp_pkt_err_sent = 0;
2949 } else {
2950 ipst->ips_icmp_pkt_err_sent -= refilled;
2951 ipst->ips_icmp_pkt_err_last += refilled * err_interval;
2952 }
2953 }
2954 if (ipst->ips_icmp_pkt_err_sent == 0) {
2955 /* Start of new burst */
2956 ipst->ips_icmp_pkt_err_last = now;
2957 }
2958 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) {
2959 ipst->ips_icmp_pkt_err_sent++;
2960 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n",
2961 ipst->ips_icmp_pkt_err_sent));
2962 return (B_FALSE);
2963 }
2964 ip1dbg(("icmp_err_rate_limit: dropped\n"));
2965 return (B_TRUE);
2966 }
2967
2968 /*
2969 * Check if it is ok to send an IPv4 ICMP error packet in
2970 * response to the IPv4 packet in mp.
2971 * Free the message and return null if no
2972 * ICMP error packet should be sent.
2973 */
2974 static mblk_t *
2975 icmp_pkt_err_ok(mblk_t *mp, ip_recv_attr_t *ira)
2976 {
2977 ip_stack_t *ipst = ira->ira_ill->ill_ipst;
2978 icmph_t *icmph;
2979 ipha_t *ipha;
2980 uint_t len_needed;
2981
2982 if (!mp)
2983 return (NULL);
2984 ipha = (ipha_t *)mp->b_rptr;
2985 if (ip_csum_hdr(ipha)) {
2986 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs);
2987 ip_drop_input("ipIfStatsInCksumErrs", mp, NULL);
2988 freemsg(mp);
2989 return (NULL);
2990 }
2991 if (ip_type_v4(ipha->ipha_dst, ipst) == IRE_BROADCAST ||
2992 ip_type_v4(ipha->ipha_src, ipst) == IRE_BROADCAST ||
2993 CLASSD(ipha->ipha_dst) ||
2994 CLASSD(ipha->ipha_src) ||
2995 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) {
2996 /* Note: only errors to the fragment with offset 0 */
2997 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
2998 freemsg(mp);
2999 return (NULL);
3000 }
3001 if (ipha->ipha_protocol == IPPROTO_ICMP) {
3002 /*
3003 * Check the ICMP type. RFC 1122 sez: don't send ICMP
3004 * errors in response to any ICMP errors.
3005 */
3006 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE;
3007 if (mp->b_wptr - mp->b_rptr < len_needed) {
3008 if (!pullupmsg(mp, len_needed)) {
3009 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors);
3010 freemsg(mp);
3011 return (NULL);
3012 }
3013 ipha = (ipha_t *)mp->b_rptr;
3014 }
3015 icmph = (icmph_t *)
3016 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]);
3017 switch (icmph->icmph_type) {
3018 case ICMP_DEST_UNREACHABLE:
3019 case ICMP_SOURCE_QUENCH:
3020 case ICMP_TIME_EXCEEDED:
3021 case ICMP_PARAM_PROBLEM:
3022 case ICMP_REDIRECT:
3023 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
3024 freemsg(mp);
3025 return (NULL);
3026 default:
3027 break;
3028 }
3029 }
3030 /*
3031 * If this is a labeled system, then check to see if we're allowed to
3032 * send a response to this particular sender. If not, then just drop.
3033 */
3034 if (is_system_labeled() && !tsol_can_reply_error(mp, ira)) {
3035 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n"));
3036 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
3037 freemsg(mp);
3038 return (NULL);
3039 }
3040 if (icmp_err_rate_limit(ipst)) {
3041 /*
3042 * Only send ICMP error packets every so often.
3043 * This should be done on a per port/source basis,
3044 * but for now this will suffice.
3045 */
3046 freemsg(mp);
3047 return (NULL);
3048 }
3049 return (mp);
3050 }
3051
3052 /*
3053 * Called when a packet was sent out the same link that it arrived on.
3054 * Check if it is ok to send a redirect and then send it.
3055 */
3056 void
3057 ip_send_potential_redirect_v4(mblk_t *mp, ipha_t *ipha, ire_t *ire,
3058 ip_recv_attr_t *ira)
3059 {
3060 ip_stack_t *ipst = ira->ira_ill->ill_ipst;
3061 ipaddr_t src, nhop;
3062 mblk_t *mp1;
3063 ire_t *nhop_ire;
3064
3065 /*
3066 * Check the source address to see if it originated
3067 * on the same logical subnet it is going back out on.
3068 * If so, we should be able to send it a redirect.
3069 * Avoid sending a redirect if the destination
3070 * is directly connected (i.e., we matched an IRE_ONLINK),
3071 * or if the packet was source routed out this interface.
3072 *
3073 * We avoid sending a redirect if the
3074 * destination is directly connected
3075 * because it is possible that multiple
3076 * IP subnets may have been configured on
3077 * the link, and the source may not
3078 * be on the same subnet as ip destination,
3079 * even though they are on the same
3080 * physical link.
3081 */
3082 if ((ire->ire_type & IRE_ONLINK) ||
3083 ip_source_routed(ipha, ipst))
3084 return;
3085
3086 nhop_ire = ire_nexthop(ire);
3087 if (nhop_ire == NULL)
3088 return;
3089
3090 nhop = nhop_ire->ire_addr;
3091
3092 if (nhop_ire->ire_type & IRE_IF_CLONE) {
3093 ire_t *ire2;
3094
3095 /* Follow ire_dep_parent to find non-clone IRE_INTERFACE */
3096 mutex_enter(&nhop_ire->ire_lock);
3097 ire2 = nhop_ire->ire_dep_parent;
3098 if (ire2 != NULL)
3099 ire_refhold(ire2);
3100 mutex_exit(&nhop_ire->ire_lock);
3101 ire_refrele(nhop_ire);
3102 nhop_ire = ire2;
3103 }
3104 if (nhop_ire == NULL)
3105 return;
3106
3107 ASSERT(!(nhop_ire->ire_type & IRE_IF_CLONE));
3108
3109 src = ipha->ipha_src;
3110
3111 /*
3112 * We look at the interface ire for the nexthop,
3113 * to see if ipha_src is in the same subnet
3114 * as the nexthop.
3115 */
3116 if ((src & nhop_ire->ire_mask) == (nhop & nhop_ire->ire_mask)) {
3117 /*
3118 * The source is directly connected.
3119 */
3120 mp1 = copymsg(mp);
3121 if (mp1 != NULL) {
3122 icmp_send_redirect(mp1, nhop, ira);
3123 }
3124 }
3125 ire_refrele(nhop_ire);
3126 }
3127
3128 /*
3129 * Generate an ICMP redirect message.
3130 */
3131 static void
3132 icmp_send_redirect(mblk_t *mp, ipaddr_t gateway, ip_recv_attr_t *ira)
3133 {
3134 icmph_t icmph;
3135 ip_stack_t *ipst = ira->ira_ill->ill_ipst;
3136
3137 mp = icmp_pkt_err_ok(mp, ira);
3138 if (mp == NULL)
3139 return;
3140
3141 bzero(&icmph, sizeof (icmph_t));
3142 icmph.icmph_type = ICMP_REDIRECT;
3143 icmph.icmph_code = 1;
3144 icmph.icmph_rd_gateway = gateway;
3145 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects);
3146 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
3147 }
3148
3149 /*
3150 * Generate an ICMP time exceeded message.
3151 */
3152 void
3153 icmp_time_exceeded(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira)
3154 {
3155 icmph_t icmph;
3156 ip_stack_t *ipst = ira->ira_ill->ill_ipst;
3157
3158 mp = icmp_pkt_err_ok(mp, ira);
3159 if (mp == NULL)
3160 return;
3161
3162 bzero(&icmph, sizeof (icmph_t));
3163 icmph.icmph_type = ICMP_TIME_EXCEEDED;
3164 icmph.icmph_code = code;
3165 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds);
3166 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
3167 }
3168
3169 /*
3170 * Generate an ICMP unreachable message.
3171 * When called from ip_output side a minimal ip_recv_attr_t needs to be
3172 * constructed by the caller.
3173 */
3174 void
3175 icmp_unreachable(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira)
3176 {
3177 icmph_t icmph;
3178 ip_stack_t *ipst = ira->ira_ill->ill_ipst;
3179
3180 mp = icmp_pkt_err_ok(mp, ira);
3181 if (mp == NULL)
3182 return;
3183
3184 bzero(&icmph, sizeof (icmph_t));
3185 icmph.icmph_type = ICMP_DEST_UNREACHABLE;
3186 icmph.icmph_code = code;
3187 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs);
3188 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
3189 }
3190
3191 /*
3192 * Latch in the IPsec state for a stream based the policy in the listener
3193 * and the actions in the ip_recv_attr_t.
3194 * Called directly from TCP and SCTP.
3195 */
3196 boolean_t
3197 ip_ipsec_policy_inherit(conn_t *connp, conn_t *lconnp, ip_recv_attr_t *ira)
3198 {
3199 ASSERT(lconnp->conn_policy != NULL);
3200 ASSERT(connp->conn_policy == NULL);
3201
3202 IPPH_REFHOLD(lconnp->conn_policy);
3203 connp->conn_policy = lconnp->conn_policy;
3204
3205 if (ira->ira_ipsec_action != NULL) {
3206 if (connp->conn_latch == NULL) {
3207 connp->conn_latch = iplatch_create();
3208 if (connp->conn_latch == NULL)
3209 return (B_FALSE);
3210 }
3211 ipsec_latch_inbound(connp, ira);
3212 }
3213 return (B_TRUE);
3214 }
3215
3216 /*
3217 * Verify whether or not the IP address is a valid local address.
3218 * Could be a unicast, including one for a down interface.
3219 * If allow_mcbc then a multicast or broadcast address is also
3220 * acceptable.
3221 *
3222 * In the case of a broadcast/multicast address, however, the
3223 * upper protocol is expected to reset the src address
3224 * to zero when we return IPVL_MCAST/IPVL_BCAST so that
3225 * no packets are emitted with broadcast/multicast address as
3226 * source address (that violates hosts requirements RFC 1122)
3227 * The addresses valid for bind are:
3228 * (1) - INADDR_ANY (0)
3229 * (2) - IP address of an UP interface
3230 * (3) - IP address of a DOWN interface
3231 * (4) - valid local IP broadcast addresses. In this case
3232 * the conn will only receive packets destined to
3233 * the specified broadcast address.
3234 * (5) - a multicast address. In this case
3235 * the conn will only receive packets destined to
3236 * the specified multicast address. Note: the
3237 * application still has to issue an
3238 * IP_ADD_MEMBERSHIP socket option.
3239 *
3240 * In all the above cases, the bound address must be valid in the current zone.
3241 * When the address is loopback, multicast or broadcast, there might be many
3242 * matching IREs so bind has to look up based on the zone.
3243 */
3244 ip_laddr_t
3245 ip_laddr_verify_v4(ipaddr_t src_addr, zoneid_t zoneid,
3246 ip_stack_t *ipst, boolean_t allow_mcbc)
3247 {
3248 ire_t *src_ire;
3249
3250 ASSERT(src_addr != INADDR_ANY);
3251
3252 src_ire = ire_ftable_lookup_v4(src_addr, 0, 0, 0,
3253 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, 0, ipst, NULL);
3254
3255 /*
3256 * If an address other than in6addr_any is requested,
3257 * we verify that it is a valid address for bind
3258 * Note: Following code is in if-else-if form for
3259 * readability compared to a condition check.
3260 */
3261 if (src_ire != NULL && (src_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK))) {
3262 /*
3263 * (2) Bind to address of local UP interface
3264 */
3265 ire_refrele(src_ire);
3266 return (IPVL_UNICAST_UP);
3267 } else if (src_ire != NULL && src_ire->ire_type & IRE_BROADCAST) {
3268 /*
3269 * (4) Bind to broadcast address
3270 */
3271 ire_refrele(src_ire);
3272 if (allow_mcbc)
3273 return (IPVL_BCAST);
3274 else
3275 return (IPVL_BAD);
3276 } else if (CLASSD(src_addr)) {
3277 /* (5) bind to multicast address. */
3278 if (src_ire != NULL)
3279 ire_refrele(src_ire);
3280
3281 if (allow_mcbc)
3282 return (IPVL_MCAST);
3283 else
3284 return (IPVL_BAD);
3285 } else {
3286 ipif_t *ipif;
3287
3288 /*
3289 * (3) Bind to address of local DOWN interface?
3290 * (ipif_lookup_addr() looks up all interfaces
3291 * but we do not get here for UP interfaces
3292 * - case (2) above)
3293 */
3294 if (src_ire != NULL)
3295 ire_refrele(src_ire);
3296
3297 ipif = ipif_lookup_addr(src_addr, NULL, zoneid, ipst);
3298 if (ipif == NULL)
3299 return (IPVL_BAD);
3300
3301 /* Not a useful source? */
3302 if (ipif->ipif_flags & (IPIF_NOLOCAL | IPIF_ANYCAST)) {
3303 ipif_refrele(ipif);
3304 return (IPVL_BAD);
3305 }
3306 ipif_refrele(ipif);
3307 return (IPVL_UNICAST_DOWN);
3308 }
3309 }
3310
3311 /*
3312 * Insert in the bind fanout for IPv4 and IPv6.
3313 * The caller should already have used ip_laddr_verify_v*() before calling
3314 * this.
3315 */
3316 int
3317 ip_laddr_fanout_insert(conn_t *connp)
3318 {
3319 int error;
3320
3321 /*
3322 * Allow setting new policies. For example, disconnects result
3323 * in us being called. As we would have set conn_policy_cached
3324 * to B_TRUE before, we should set it to B_FALSE, so that policy
3325 * can change after the disconnect.
3326 */
3327 connp->conn_policy_cached = B_FALSE;
3328
3329 error = ipcl_bind_insert(connp);
3330 if (error != 0) {
3331 if (connp->conn_anon_port) {
3332 (void) tsol_mlp_anon(crgetzone(connp->conn_cred),
3333 connp->conn_mlp_type, connp->conn_proto,
3334 ntohs(connp->conn_lport), B_FALSE);
3335 }
3336 connp->conn_mlp_type = mlptSingle;
3337 }
3338 return (error);
3339 }
3340
3341 /*
3342 * Verify that both the source and destination addresses are valid. If
3343 * IPDF_VERIFY_DST is not set, then the destination address may be unreachable,
3344 * i.e. have no route to it. Protocols like TCP want to verify destination
3345 * reachability, while tunnels do not.
3346 *
3347 * Determine the route, the interface, and (optionally) the source address
3348 * to use to reach a given destination.
3349 * Note that we allow connect to broadcast and multicast addresses when
3350 * IPDF_ALLOW_MCBC is set.
3351 * first_hop and dst_addr are normally the same, but if source routing
3352 * they will differ; in that case the first_hop is what we'll use for the
3353 * routing lookup but the dce and label checks will be done on dst_addr,
3354 *
3355 * If uinfo is set, then we fill in the best available information
3356 * we have for the destination. This is based on (in priority order) any
3357 * metrics and path MTU stored in a dce_t, route metrics, and finally the
3358 * ill_mtu/ill_mc_mtu.
3359 *
3360 * Tsol note: If we have a source route then dst_addr != firsthop. But we
3361 * always do the label check on dst_addr.
3362 */
3363 int
3364 ip_set_destination_v4(ipaddr_t *src_addrp, ipaddr_t dst_addr, ipaddr_t firsthop,
3365 ip_xmit_attr_t *ixa, iulp_t *uinfo, uint32_t flags, uint_t mac_mode)
3366 {
3367 ire_t *ire = NULL;
3368 int error = 0;
3369 ipaddr_t setsrc; /* RTF_SETSRC */
3370 zoneid_t zoneid = ixa->ixa_zoneid; /* Honors SO_ALLZONES */
3371 ip_stack_t *ipst = ixa->ixa_ipst;
3372 dce_t *dce;
3373 uint_t pmtu;
3374 uint_t generation;
3375 nce_t *nce;
3376 ill_t *ill = NULL;
3377 boolean_t multirt = B_FALSE;
3378
3379 ASSERT(ixa->ixa_flags & IXAF_IS_IPV4);
3380
3381 /*
3382 * We never send to zero; the ULPs map it to the loopback address.
3383 * We can't allow it since we use zero to mean unitialized in some
3384 * places.
3385 */
3386 ASSERT(dst_addr != INADDR_ANY);
3387
3388 if (is_system_labeled()) {
3389 ts_label_t *tsl = NULL;
3390
3391 error = tsol_check_dest(ixa->ixa_tsl, &dst_addr, IPV4_VERSION,
3392 mac_mode, (flags & IPDF_ZONE_IS_GLOBAL) != 0, &tsl);
3393 if (error != 0)
3394 return (error);
3395 if (tsl != NULL) {
3396 /* Update the label */
3397 ip_xmit_attr_replace_tsl(ixa, tsl);
3398 }
3399 }
3400
3401 setsrc = INADDR_ANY;
3402 /*
3403 * Select a route; For IPMP interfaces, we would only select
3404 * a "hidden" route (i.e., going through a specific under_ill)
3405 * if ixa_ifindex has been specified.
3406 */
3407 ire = ip_select_route_v4(firsthop, *src_addrp, ixa,
3408 &generation, &setsrc, &error, &multirt);
3409 ASSERT(ire != NULL); /* IRE_NOROUTE if none found */
3410 if (error != 0)
3411 goto bad_addr;
3412
3413 /*
3414 * ire can't be a broadcast or multicast unless IPDF_ALLOW_MCBC is set.
3415 * If IPDF_VERIFY_DST is set, the destination must be reachable;
3416 * Otherwise the destination needn't be reachable.
3417 *
3418 * If we match on a reject or black hole, then we've got a
3419 * local failure. May as well fail out the connect() attempt,
3420 * since it's never going to succeed.
3421 */
3422 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
3423 /*
3424 * If we're verifying destination reachability, we always want
3425 * to complain here.
3426 *
3427 * If we're not verifying destination reachability but the
3428 * destination has a route, we still want to fail on the
3429 * temporary address and broadcast address tests.
3430 *
3431 * In both cases do we let the code continue so some reasonable
3432 * information is returned to the caller. That enables the
3433 * caller to use (and even cache) the IRE. conn_ip_ouput will
3434 * use the generation mismatch path to check for the unreachable
3435 * case thereby avoiding any specific check in the main path.
3436 */
3437 ASSERT(generation == IRE_GENERATION_VERIFY);
3438 if (flags & IPDF_VERIFY_DST) {
3439 /*
3440 * Set errno but continue to set up ixa_ire to be
3441 * the RTF_REJECT|RTF_BLACKHOLE IRE.
3442 * That allows callers to use ip_output to get an
3443 * ICMP error back.
3444 */
3445 if (!(ire->ire_type & IRE_HOST))
3446 error = ENETUNREACH;
3447 else
3448 error = EHOSTUNREACH;
3449 }
3450 }
3451
3452 if ((ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST)) &&
3453 !(flags & IPDF_ALLOW_MCBC)) {
3454 ire_refrele(ire);
3455 ire = ire_reject(ipst, B_FALSE);
3456 generation = IRE_GENERATION_VERIFY;
3457 error = ENETUNREACH;
3458 }
3459
3460 /* Cache things */
3461 if (ixa->ixa_ire != NULL)
3462 ire_refrele_notr(ixa->ixa_ire);
3463 #ifdef DEBUG
3464 ire_refhold_notr(ire);
3465 ire_refrele(ire);
3466 #endif
3467 ixa->ixa_ire = ire;
3468 ixa->ixa_ire_generation = generation;
3469
3470 /*
3471 * Ensure that ixa_dce is always set any time that ixa_ire is set,
3472 * since some callers will send a packet to conn_ip_output() even if
3473 * there's an error.
3474 */
3475 if (flags & IPDF_UNIQUE_DCE) {
3476 /* Fallback to the default dce if allocation fails */
3477 dce = dce_lookup_and_add_v4(dst_addr, ipst);
3478 if (dce != NULL)
3479 generation = dce->dce_generation;
3480 else
3481 dce = dce_lookup_v4(dst_addr, ipst, &generation);
3482 } else {
3483 dce = dce_lookup_v4(dst_addr, ipst, &generation);
3484 }
3485 ASSERT(dce != NULL);
3486 if (ixa->ixa_dce != NULL)
3487 dce_refrele_notr(ixa->ixa_dce);
3488 #ifdef DEBUG
3489 dce_refhold_notr(dce);
3490 dce_refrele(dce);
3491 #endif
3492 ixa->ixa_dce = dce;
3493 ixa->ixa_dce_generation = generation;
3494
3495 /*
3496 * For multicast with multirt we have a flag passed back from
3497 * ire_lookup_multi_ill_v4 since we don't have an IRE for each
3498 * possible multicast address.
3499 * We also need a flag for multicast since we can't check
3500 * whether RTF_MULTIRT is set in ixa_ire for multicast.
3501 */
3502 if (multirt) {
3503 ixa->ixa_postfragfn = ip_postfrag_multirt_v4;
3504 ixa->ixa_flags |= IXAF_MULTIRT_MULTICAST;
3505 } else {
3506 ixa->ixa_postfragfn = ire->ire_postfragfn;
3507 ixa->ixa_flags &= ~IXAF_MULTIRT_MULTICAST;
3508 }
3509 if (!(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) {
3510 /* Get an nce to cache. */
3511 nce = ire_to_nce(ire, firsthop, NULL);
3512 if (nce == NULL) {
3513 /* Allocation failure? */
3514 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
3515 } else {
3516 if (ixa->ixa_nce != NULL)
3517 nce_refrele(ixa->ixa_nce);
3518 ixa->ixa_nce = nce;
3519 }
3520 }
3521
3522 /*
3523 * If the source address is a loopback address, the
3524 * destination had best be local or multicast.
3525 * If we are sending to an IRE_LOCAL using a loopback source then
3526 * it had better be the same zoneid.
3527 */
3528 if (*src_addrp == htonl(INADDR_LOOPBACK)) {
3529 if ((ire->ire_type & IRE_LOCAL) && ire->ire_zoneid != zoneid) {
3530 ire = NULL; /* Stored in ixa_ire */
3531 error = EADDRNOTAVAIL;
3532 goto bad_addr;
3533 }
3534 if (!(ire->ire_type & (IRE_LOOPBACK|IRE_LOCAL|IRE_MULTICAST))) {
3535 ire = NULL; /* Stored in ixa_ire */
3536 error = EADDRNOTAVAIL;
3537 goto bad_addr;
3538 }
3539 }
3540 if (ire->ire_type & IRE_BROADCAST) {
3541 /*
3542 * If the ULP didn't have a specified source, then we
3543 * make sure we reselect the source when sending
3544 * broadcasts out different interfaces.
3545 */
3546 if (flags & IPDF_SELECT_SRC)
3547 ixa->ixa_flags |= IXAF_SET_SOURCE;
3548 else
3549 ixa->ixa_flags &= ~IXAF_SET_SOURCE;
3550 }
3551
3552 /*
3553 * Does the caller want us to pick a source address?
3554 */
3555 if (flags & IPDF_SELECT_SRC) {
3556 ipaddr_t src_addr;
3557
3558 /*
3559 * We use use ire_nexthop_ill to avoid the under ipmp
3560 * interface for source address selection. Note that for ipmp
3561 * probe packets, ixa_ifindex would have been specified, and
3562 * the ip_select_route() invocation would have picked an ire
3563 * will ire_ill pointing at an under interface.
3564 */
3565 ill = ire_nexthop_ill(ire);
3566
3567 /* If unreachable we have no ill but need some source */
3568 if (ill == NULL) {
3569 src_addr = htonl(INADDR_LOOPBACK);
3570 /* Make sure we look for a better source address */
3571 generation = SRC_GENERATION_VERIFY;
3572 } else {
3573 error = ip_select_source_v4(ill, setsrc, dst_addr,
3574 ixa->ixa_multicast_ifaddr, zoneid,
3575 ipst, &src_addr, &generation, NULL);
3576 if (error != 0) {
3577 ire = NULL; /* Stored in ixa_ire */
3578 goto bad_addr;
3579 }
3580 }
3581
3582 /*
3583 * We allow the source address to to down.
3584 * However, we check that we don't use the loopback address
3585 * as a source when sending out on the wire.
3586 */
3587 if ((src_addr == htonl(INADDR_LOOPBACK)) &&
3588 !(ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK|IRE_MULTICAST)) &&
3589 !(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) {
3590 ire = NULL; /* Stored in ixa_ire */
3591 error = EADDRNOTAVAIL;
3592 goto bad_addr;
3593 }
3594
3595 *src_addrp = src_addr;
3596 ixa->ixa_src_generation = generation;
3597 }
3598
3599 /*
3600 * Make sure we don't leave an unreachable ixa_nce in place
3601 * since ip_select_route is used when we unplumb i.e., remove
3602 * references on ixa_ire, ixa_nce, and ixa_dce.
3603 */
3604 nce = ixa->ixa_nce;
3605 if (nce != NULL && nce->nce_is_condemned) {
3606 nce_refrele(nce);
3607 ixa->ixa_nce = NULL;
3608 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
3609 }
3610
3611 /*
3612 * The caller has set IXAF_PMTU_DISCOVERY if path MTU is desired.
3613 * However, we can't do it for IPv4 multicast or broadcast.
3614 */
3615 if (ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST))
3616 ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY;
3617
3618 /*
3619 * Set initial value for fragmentation limit. Either conn_ip_output
3620 * or ULP might updates it when there are routing changes.
3621 * Handles a NULL ixa_ire->ire_ill or a NULL ixa_nce for RTF_REJECT.
3622 */
3623 pmtu = ip_get_pmtu(ixa);
3624 ixa->ixa_fragsize = pmtu;
3625 /* Make sure ixa_fragsize and ixa_pmtu remain identical */
3626 if (ixa->ixa_flags & IXAF_VERIFY_PMTU)
3627 ixa->ixa_pmtu = pmtu;
3628
3629 /*
3630 * Extract information useful for some transports.
3631 * First we look for DCE metrics. Then we take what we have in
3632 * the metrics in the route, where the offlink is used if we have
3633 * one.
3634 */
3635 if (uinfo != NULL) {
3636 bzero(uinfo, sizeof (*uinfo));
3637
3638 if (dce->dce_flags & DCEF_UINFO)
3639 *uinfo = dce->dce_uinfo;
3640
3641 rts_merge_metrics(uinfo, &ire->ire_metrics);
3642
3643 /* Allow ire_metrics to decrease the path MTU from above */
3644 if (uinfo->iulp_mtu == 0 || uinfo->iulp_mtu > pmtu)
3645 uinfo->iulp_mtu = pmtu;
3646
3647 uinfo->iulp_localnet = (ire->ire_type & IRE_ONLINK) != 0;
3648 uinfo->iulp_loopback = (ire->ire_type & IRE_LOOPBACK) != 0;
3649 uinfo->iulp_local = (ire->ire_type & IRE_LOCAL) != 0;
3650 }
3651
3652 if (ill != NULL)
3653 ill_refrele(ill);
3654
3655 return (error);
3656
3657 bad_addr:
3658 if (ire != NULL)
3659 ire_refrele(ire);
3660
3661 if (ill != NULL)
3662 ill_refrele(ill);
3663
3664 /*
3665 * Make sure we don't leave an unreachable ixa_nce in place
3666 * since ip_select_route is used when we unplumb i.e., remove
3667 * references on ixa_ire, ixa_nce, and ixa_dce.
3668 */
3669 nce = ixa->ixa_nce;
3670 if (nce != NULL && nce->nce_is_condemned) {
3671 nce_refrele(nce);
3672 ixa->ixa_nce = NULL;
3673 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
3674 }
3675
3676 return (error);
3677 }
3678
3679
3680 /*
3681 * Get the base MTU for the case when path MTU discovery is not used.
3682 * Takes the MTU of the IRE into account.
3683 */
3684 uint_t
3685 ip_get_base_mtu(ill_t *ill, ire_t *ire)
3686 {
3687 uint_t mtu;
3688 uint_t iremtu = ire->ire_metrics.iulp_mtu;
3689
3690 if (ire->ire_type & (IRE_MULTICAST|IRE_BROADCAST))
3691 mtu = ill->ill_mc_mtu;
3692 else
3693 mtu = ill->ill_mtu;
3694
3695 if (iremtu != 0 && iremtu < mtu)
3696 mtu = iremtu;
3697
3698 return (mtu);
3699 }
3700
3701 /*
3702 * Get the PMTU for the attributes. Handles both IPv4 and IPv6.
3703 * Assumes that ixa_ire, dce, and nce have already been set up.
3704 *
3705 * The caller has set IXAF_PMTU_DISCOVERY if path MTU discovery is desired.
3706 * We avoid path MTU discovery if it is disabled with ndd.
3707 * Furtermore, if the path MTU is too small, then we don't set DF for IPv4.
3708 *
3709 * NOTE: We also used to turn it off for source routed packets. That
3710 * is no longer required since the dce is per final destination.
3711 */
3712 uint_t
3713 ip_get_pmtu(ip_xmit_attr_t *ixa)
3714 {
3715 ip_stack_t *ipst = ixa->ixa_ipst;
3716 dce_t *dce;
3717 nce_t *nce;
3718 ire_t *ire;
3719 uint_t pmtu;
3720
3721 ire = ixa->ixa_ire;
3722 dce = ixa->ixa_dce;
3723 nce = ixa->ixa_nce;
3724
3725 /*
3726 * If path MTU discovery has been turned off by ndd, then we ignore
3727 * any dce_pmtu and for IPv4 we will not set DF.
3728 */
3729 if (!ipst->ips_ip_path_mtu_discovery)
3730 ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY;
3731
3732 pmtu = IP_MAXPACKET;
3733 /*
3734 * Decide whether whether IPv4 sets DF
3735 * For IPv6 "no DF" means to use the 1280 mtu
3736 */
3737 if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) {
3738 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF;
3739 } else {
3740 ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF;
3741 if (!(ixa->ixa_flags & IXAF_IS_IPV4))
3742 pmtu = IPV6_MIN_MTU;
3743 }
3744
3745 /* Check if the PMTU is to old before we use it */
3746 if ((dce->dce_flags & DCEF_PMTU) &&
3747 TICK_TO_SEC(ddi_get_lbolt64()) - dce->dce_last_change_time >
3748 ipst->ips_ip_pathmtu_interval) {
3749 /*
3750 * Older than 20 minutes. Drop the path MTU information.
3751 */
3752 mutex_enter(&dce->dce_lock);
3753 dce->dce_flags &= ~(DCEF_PMTU|DCEF_TOO_SMALL_PMTU);
3754 dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64());
3755 mutex_exit(&dce->dce_lock);
3756 dce_increment_generation(dce);
3757 }
3758
3759 /* The metrics on the route can lower the path MTU */
3760 if (ire->ire_metrics.iulp_mtu != 0 &&
3761 ire->ire_metrics.iulp_mtu < pmtu)
3762 pmtu = ire->ire_metrics.iulp_mtu;
3763
3764 /*
3765 * If the path MTU is smaller than some minimum, we still use dce_pmtu
3766 * above (would be 576 for IPv4 and 1280 for IPv6), but we clear
3767 * IXAF_PMTU_IPV4_DF so that we avoid setting DF for IPv4.
3768 */
3769 if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) {
3770 if (dce->dce_flags & DCEF_PMTU) {
3771 if (dce->dce_pmtu < pmtu)
3772 pmtu = dce->dce_pmtu;
3773
3774 if (dce->dce_flags & DCEF_TOO_SMALL_PMTU) {
3775 ixa->ixa_flags |= IXAF_PMTU_TOO_SMALL;
3776 ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF;
3777 } else {
3778 ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL;
3779 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF;
3780 }
3781 } else {
3782 ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL;
3783 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF;
3784 }
3785 }
3786
3787 /*
3788 * If we have an IRE_LOCAL we use the loopback mtu instead of
3789 * the ill for going out the wire i.e., IRE_LOCAL gets the same
3790 * mtu as IRE_LOOPBACK.
3791 */
3792 if (ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) {
3793 uint_t loopback_mtu;
3794
3795 loopback_mtu = (ire->ire_ipversion == IPV6_VERSION) ?
3796 ip_loopback_mtu_v6plus : ip_loopback_mtuplus;
3797
3798 if (loopback_mtu < pmtu)
3799 pmtu = loopback_mtu;
3800 } else if (nce != NULL) {
3801 /*
3802 * Make sure we don't exceed the interface MTU.
3803 * In the case of RTF_REJECT or RTF_BLACKHOLE we might not have
3804 * an ill. We'd use the above IP_MAXPACKET in that case just
3805 * to tell the transport something larger than zero.
3806 */
3807 if (ire->ire_type & (IRE_MULTICAST|IRE_BROADCAST)) {
3808 if (nce->nce_common->ncec_ill->ill_mc_mtu < pmtu)
3809 pmtu = nce->nce_common->ncec_ill->ill_mc_mtu;
3810 if (nce->nce_common->ncec_ill != nce->nce_ill &&
3811 nce->nce_ill->ill_mc_mtu < pmtu) {
3812 /*
3813 * for interfaces in an IPMP group, the mtu of
3814 * the nce_ill (under_ill) could be different
3815 * from the mtu of the ncec_ill, so we take the
3816 * min of the two.
3817 */
3818 pmtu = nce->nce_ill->ill_mc_mtu;
3819 }
3820 } else {
3821 if (nce->nce_common->ncec_ill->ill_mtu < pmtu)
3822 pmtu = nce->nce_common->ncec_ill->ill_mtu;
3823 if (nce->nce_common->ncec_ill != nce->nce_ill &&
3824 nce->nce_ill->ill_mtu < pmtu) {
3825 /*
3826 * for interfaces in an IPMP group, the mtu of
3827 * the nce_ill (under_ill) could be different
3828 * from the mtu of the ncec_ill, so we take the
3829 * min of the two.
3830 */
3831 pmtu = nce->nce_ill->ill_mtu;
3832 }
3833 }
3834 }
3835
3836 /*
3837 * Handle the IPV6_USE_MIN_MTU socket option or ancillary data.
3838 * Only applies to IPv6.
3839 */
3840 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) {
3841 if (ixa->ixa_flags & IXAF_USE_MIN_MTU) {
3842 switch (ixa->ixa_use_min_mtu) {
3843 case IPV6_USE_MIN_MTU_MULTICAST:
3844 if (ire->ire_type & IRE_MULTICAST)
3845 pmtu = IPV6_MIN_MTU;
3846 break;
3847 case IPV6_USE_MIN_MTU_ALWAYS:
3848 pmtu = IPV6_MIN_MTU;
3849 break;
3850 case IPV6_USE_MIN_MTU_NEVER:
3851 break;
3852 }
3853 } else {
3854 /* Default is IPV6_USE_MIN_MTU_MULTICAST */
3855 if (ire->ire_type & IRE_MULTICAST)
3856 pmtu = IPV6_MIN_MTU;
3857 }
3858 }
3859
3860 /*
3861 * After receiving an ICMPv6 "packet too big" message with a
3862 * MTU < 1280, and for multirouted IPv6 packets, the IP layer
3863 * will insert a 8-byte fragment header in every packet. We compensate
3864 * for those cases by returning a smaller path MTU to the ULP.
3865 *
3866 * In the case of CGTP then ip_output will add a fragment header.
3867 * Make sure there is room for it by telling a smaller number
3868 * to the transport.
3869 *
3870 * When IXAF_IPV6_ADDR_FRAGHDR we subtract the frag hdr here
3871 * so the ULPs consistently see a iulp_pmtu and ip_get_pmtu()
3872 * which is the size of the packets it can send.
3873 */
3874 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) {
3875 if ((dce->dce_flags & DCEF_TOO_SMALL_PMTU) ||
3876 (ire->ire_flags & RTF_MULTIRT) ||
3877 (ixa->ixa_flags & IXAF_MULTIRT_MULTICAST)) {
3878 pmtu -= sizeof (ip6_frag_t);
3879 ixa->ixa_flags |= IXAF_IPV6_ADD_FRAGHDR;
3880 }
3881 }
3882
3883 return (pmtu);
3884 }
3885
3886 /*
3887 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping
3888 * the final piece where we don't. Return a pointer to the first mblk in the
3889 * result, and update the pointer to the next mblk to chew on. If anything
3890 * goes wrong (i.e., dupb fails), we waste everything in sight and return a
3891 * NULL pointer.
3892 */
3893 mblk_t *
3894 ip_carve_mp(mblk_t **mpp, ssize_t len)
3895 {
3896 mblk_t *mp0;
3897 mblk_t *mp1;
3898 mblk_t *mp2;
3899
3900 if (!len || !mpp || !(mp0 = *mpp))
3901 return (NULL);
3902 /* If we aren't going to consume the first mblk, we need a dup. */
3903 if (mp0->b_wptr - mp0->b_rptr > len) {
3904 mp1 = dupb(mp0);
3905 if (mp1) {
3906 /* Partition the data between the two mblks. */
3907 mp1->b_wptr = mp1->b_rptr + len;
3908 mp0->b_rptr = mp1->b_wptr;
3909 /*
3910 * after adjustments if mblk not consumed is now
3911 * unaligned, try to align it. If this fails free
3912 * all messages and let upper layer recover.
3913 */
3914 if (!OK_32PTR(mp0->b_rptr)) {
3915 if (!pullupmsg(mp0, -1)) {
3916 freemsg(mp0);
3917 freemsg(mp1);
3918 *mpp = NULL;
3919 return (NULL);
3920 }
3921 }
3922 }
3923 return (mp1);
3924 }
3925 /* Eat through as many mblks as we need to get len bytes. */
3926 len -= mp0->b_wptr - mp0->b_rptr;
3927 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) {
3928 if (mp2->b_wptr - mp2->b_rptr > len) {
3929 /*
3930 * We won't consume the entire last mblk. Like
3931 * above, dup and partition it.
3932 */
3933 mp1->b_cont = dupb(mp2);
3934 mp1 = mp1->b_cont;
3935 if (!mp1) {
3936 /*
3937 * Trouble. Rather than go to a lot of
3938 * trouble to clean up, we free the messages.
3939 * This won't be any worse than losing it on
3940 * the wire.
3941 */
3942 freemsg(mp0);
3943 freemsg(mp2);
3944 *mpp = NULL;
3945 return (NULL);
3946 }
3947 mp1->b_wptr = mp1->b_rptr + len;
3948 mp2->b_rptr = mp1->b_wptr;
3949 /*
3950 * after adjustments if mblk not consumed is now
3951 * unaligned, try to align it. If this fails free
3952 * all messages and let upper layer recover.
3953 */
3954 if (!OK_32PTR(mp2->b_rptr)) {
3955 if (!pullupmsg(mp2, -1)) {
3956 freemsg(mp0);
3957 freemsg(mp2);
3958 *mpp = NULL;
3959 return (NULL);
3960 }
3961 }
3962 *mpp = mp2;
3963 return (mp0);
3964 }
3965 /* Decrement len by the amount we just got. */
3966 len -= mp2->b_wptr - mp2->b_rptr;
3967 }
3968 /*
3969 * len should be reduced to zero now. If not our caller has
3970 * screwed up.
3971 */
3972 if (len) {
3973 /* Shouldn't happen! */
3974 freemsg(mp0);
3975 *mpp = NULL;
3976 return (NULL);
3977 }
3978 /*
3979 * We consumed up to exactly the end of an mblk. Detach the part
3980 * we are returning from the rest of the chain.
3981 */
3982 mp1->b_cont = NULL;
3983 *mpp = mp2;
3984 return (mp0);
3985 }
3986
3987 /* The ill stream is being unplumbed. Called from ip_close */
3988 int
3989 ip_modclose(ill_t *ill)
3990 {
3991 boolean_t success;
3992 ipsq_t *ipsq;
3993 ipif_t *ipif;
3994 queue_t *q = ill->ill_rq;
3995 ip_stack_t *ipst = ill->ill_ipst;
3996 int i;
3997 arl_ill_common_t *ai = ill->ill_common;
3998
3999 /*
4000 * The punlink prior to this may have initiated a capability
4001 * negotiation. But ipsq_enter will block until that finishes or
4002 * times out.
4003 */
4004 success = ipsq_enter(ill, B_FALSE, NEW_OP);
4005
4006 /*
4007 * Open/close/push/pop is guaranteed to be single threaded
4008 * per stream by STREAMS. FS guarantees that all references
4009 * from top are gone before close is called. So there can't
4010 * be another close thread that has set CONDEMNED on this ill.
4011 * and cause ipsq_enter to return failure.
4012 */
4013 ASSERT(success);
4014 ipsq = ill->ill_phyint->phyint_ipsq;
4015
4016 /*
4017 * Mark it condemned. No new reference will be made to this ill.
4018 * Lookup functions will return an error. Threads that try to
4019 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures
4020 * that the refcnt will drop down to zero.
4021 */
4022 mutex_enter(&ill->ill_lock);
4023 ill->ill_state_flags |= ILL_CONDEMNED;
4024 for (ipif = ill->ill_ipif; ipif != NULL;
4025 ipif = ipif->ipif_next) {
4026 ipif->ipif_state_flags |= IPIF_CONDEMNED;
4027 }
4028 /*
4029 * Wake up anybody waiting to enter the ipsq. ipsq_enter
4030 * returns error if ILL_CONDEMNED is set
4031 */
4032 cv_broadcast(&ill->ill_cv);
4033 mutex_exit(&ill->ill_lock);
4034
4035 /*
4036 * Send all the deferred DLPI messages downstream which came in
4037 * during the small window right before ipsq_enter(). We do this
4038 * without waiting for the ACKs because all the ACKs for M_PROTO
4039 * messages are ignored in ip_rput() when ILL_CONDEMNED is set.
4040 */
4041 ill_dlpi_send_deferred(ill);
4042
4043 /*
4044 * Shut down fragmentation reassembly.
4045 * ill_frag_timer won't start a timer again.
4046 * Now cancel any existing timer
4047 */
4048 (void) untimeout(ill->ill_frag_timer_id);
4049 (void) ill_frag_timeout(ill, 0);
4050
4051 /*
4052 * Call ill_delete to bring down the ipifs, ilms and ill on
4053 * this ill. Then wait for the refcnts to drop to zero.
4054 * ill_is_freeable checks whether the ill is really quiescent.
4055 * Then make sure that threads that are waiting to enter the
4056 * ipsq have seen the error returned by ipsq_enter and have
4057 * gone away. Then we call ill_delete_tail which does the
4058 * DL_UNBIND_REQ with the driver and then qprocsoff.
4059 */
4060 ill_delete(ill);
4061 mutex_enter(&ill->ill_lock);
4062 while (!ill_is_freeable(ill))
4063 cv_wait(&ill->ill_cv, &ill->ill_lock);
4064
4065 while (ill->ill_waiters)
4066 cv_wait(&ill->ill_cv, &ill->ill_lock);
4067
4068 mutex_exit(&ill->ill_lock);
4069
4070 /*
4071 * ill_delete_tail drops reference on ill_ipst, but we need to keep
4072 * it held until the end of the function since the cleanup
4073 * below needs to be able to use the ip_stack_t.
4074 */
4075 netstack_hold(ipst->ips_netstack);
4076
4077 /* qprocsoff is done via ill_delete_tail */
4078 ill_delete_tail(ill);
4079 /*
4080 * synchronously wait for arp stream to unbind. After this, we
4081 * cannot get any data packets up from the driver.
4082 */
4083 arp_unbind_complete(ill);
4084 ASSERT(ill->ill_ipst == NULL);
4085
4086 /*
4087 * Walk through all conns and qenable those that have queued data.
4088 * Close synchronization needs this to
4089 * be done to ensure that all upper layers blocked
4090 * due to flow control to the closing device
4091 * get unblocked.
4092 */
4093 ip1dbg(("ip_wsrv: walking\n"));
4094 for (i = 0; i < TX_FANOUT_SIZE; i++) {
4095 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[i]);
4096 }
4097
4098 /*
4099 * ai can be null if this is an IPv6 ill, or if the IPv4
4100 * stream is being torn down before ARP was plumbed (e.g.,
4101 * /sbin/ifconfig plumbing a stream twice, and encountering
4102 * an error
4103 */
4104 if (ai != NULL) {
4105 ASSERT(!ill->ill_isv6);
4106 mutex_enter(&ai->ai_lock);
4107 ai->ai_ill = NULL;
4108 if (ai->ai_arl == NULL) {
4109 mutex_destroy(&ai->ai_lock);
4110 kmem_free(ai, sizeof (*ai));
4111 } else {
4112 cv_signal(&ai->ai_ill_unplumb_done);
4113 mutex_exit(&ai->ai_lock);
4114 }
4115 }
4116
4117 mutex_enter(&ipst->ips_ip_mi_lock);
4118 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill);
4119 mutex_exit(&ipst->ips_ip_mi_lock);
4120
4121 /*
4122 * credp could be null if the open didn't succeed and ip_modopen
4123 * itself calls ip_close.
4124 */
4125 if (ill->ill_credp != NULL)
4126 crfree(ill->ill_credp);
4127
4128 mutex_destroy(&ill->ill_saved_ire_lock);
4129 mutex_destroy(&ill->ill_lock);
4130 rw_destroy(&ill->ill_mcast_lock);
4131 mutex_destroy(&ill->ill_mcast_serializer);
4132 list_destroy(&ill->ill_nce);
4133
4134 /*
4135 * Now we are done with the module close pieces that
4136 * need the netstack_t.
4137 */
4138 netstack_rele(ipst->ips_netstack);
4139
4140 mi_close_free((IDP)ill);
4141 q->q_ptr = WR(q)->q_ptr = NULL;
4142
4143 ipsq_exit(ipsq);
4144
4145 return (0);
4146 }
4147
4148 /*
4149 * This is called as part of close() for IP, UDP, ICMP, and RTS
4150 * in order to quiesce the conn.
4151 */
4152 void
4153 ip_quiesce_conn(conn_t *connp)
4154 {
4155 boolean_t drain_cleanup_reqd = B_FALSE;
4156 boolean_t conn_ioctl_cleanup_reqd = B_FALSE;
4157 boolean_t ilg_cleanup_reqd = B_FALSE;
4158 ip_stack_t *ipst;
4159
4160 ASSERT(!IPCL_IS_TCP(connp));
4161 ipst = connp->conn_netstack->netstack_ip;
4162
4163 /*
4164 * Mark the conn as closing, and this conn must not be
4165 * inserted in future into any list. Eg. conn_drain_insert(),
4166 * won't insert this conn into the conn_drain_list.
4167 *
4168 * conn_idl, and conn_ilg cannot get set henceforth.
4169 */
4170 mutex_enter(&connp->conn_lock);
4171 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED));
4172 connp->conn_state_flags |= CONN_CLOSING;
4173 if (connp->conn_idl != NULL)
4174 drain_cleanup_reqd = B_TRUE;
4175 if (connp->conn_oper_pending_ill != NULL)
4176 conn_ioctl_cleanup_reqd = B_TRUE;
4177 if (connp->conn_dhcpinit_ill != NULL) {
4178 ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0);
4179 atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit);
4180 ill_set_inputfn(connp->conn_dhcpinit_ill);
4181 connp->conn_dhcpinit_ill = NULL;
4182 }
4183 if (connp->conn_ilg != NULL)
4184 ilg_cleanup_reqd = B_TRUE;
4185 mutex_exit(&connp->conn_lock);
4186
4187 if (conn_ioctl_cleanup_reqd)
4188 conn_ioctl_cleanup(connp);
4189
4190 if (is_system_labeled() && connp->conn_anon_port) {
4191 (void) tsol_mlp_anon(crgetzone(connp->conn_cred),
4192 connp->conn_mlp_type, connp->conn_proto,
4193 ntohs(connp->conn_lport), B_FALSE);
4194 connp->conn_anon_port = 0;
4195 }
4196 connp->conn_mlp_type = mlptSingle;
4197
4198 /*
4199 * Remove this conn from any fanout list it is on.
4200 * and then wait for any threads currently operating
4201 * on this endpoint to finish
4202 */
4203 ipcl_hash_remove(connp);
4204
4205 /*
4206 * Remove this conn from the drain list, and do any other cleanup that
4207 * may be required. (TCP conns are never flow controlled, and
4208 * conn_idl will be NULL.)
4209 */
4210 if (drain_cleanup_reqd && connp->conn_idl != NULL) {
4211 idl_t *idl = connp->conn_idl;
4212
4213 mutex_enter(&idl->idl_lock);
4214 conn_drain(connp, B_TRUE);
4215 mutex_exit(&idl->idl_lock);
4216 }
4217
4218 if (connp == ipst->ips_ip_g_mrouter)
4219 (void) ip_mrouter_done(ipst);
4220
4221 if (ilg_cleanup_reqd)
4222 ilg_delete_all(connp);
4223
4224 /*
4225 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED.
4226 * callers from write side can't be there now because close
4227 * is in progress. The only other caller is ipcl_walk
4228 * which checks for the condemned flag.
4229 */
4230 mutex_enter(&connp->conn_lock);
4231 connp->conn_state_flags |= CONN_CONDEMNED;
4232 while (connp->conn_ref != 1)
4233 cv_wait(&connp->conn_cv, &connp->conn_lock);
4234 connp->conn_state_flags |= CONN_QUIESCED;
4235 mutex_exit(&connp->conn_lock);
4236 }
4237
4238 /* ARGSUSED */
4239 int
4240 ip_close(queue_t *q, int flags)
4241 {
4242 conn_t *connp;
4243
4244 /*
4245 * Call the appropriate delete routine depending on whether this is
4246 * a module or device.
4247 */
4248 if (WR(q)->q_next != NULL) {
4249 /* This is a module close */
4250 return (ip_modclose((ill_t *)q->q_ptr));
4251 }
4252
4253 connp = q->q_ptr;
4254 ip_quiesce_conn(connp);
4255
4256 qprocsoff(q);
4257
4258 /*
4259 * Now we are truly single threaded on this stream, and can
4260 * delete the things hanging off the connp, and finally the connp.
4261 * We removed this connp from the fanout list, it cannot be
4262 * accessed thru the fanouts, and we already waited for the
4263 * conn_ref to drop to 0. We are already in close, so
4264 * there cannot be any other thread from the top. qprocsoff
4265 * has completed, and service has completed or won't run in
4266 * future.
4267 */
4268 ASSERT(connp->conn_ref == 1);
4269
4270 inet_minor_free(connp->conn_minor_arena, connp->conn_dev);
4271
4272 connp->conn_ref--;
4273 ipcl_conn_destroy(connp);
4274
4275 q->q_ptr = WR(q)->q_ptr = NULL;
4276 return (0);
4277 }
4278
4279 /*
4280 * Wapper around putnext() so that ip_rts_request can merely use
4281 * conn_recv.
4282 */
4283 /*ARGSUSED2*/
4284 static void
4285 ip_conn_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
4286 {
4287 conn_t *connp = (conn_t *)arg1;
4288
4289 putnext(connp->conn_rq, mp);
4290 }
4291
4292 /* Dummy in case ICMP error delivery is attempted to a /dev/ip instance */
4293 /* ARGSUSED */
4294 static void
4295 ip_conn_input_icmp(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
4296 {
4297 freemsg(mp);
4298 }
4299
4300 /*
4301 * Called when the module is about to be unloaded
4302 */
4303 void
4304 ip_ddi_destroy(void)
4305 {
4306 /* This needs to be called before destroying any transports. */
4307 mutex_enter(&cpu_lock);
4308 unregister_cpu_setup_func(ip_tp_cpu_update, NULL);
4309 mutex_exit(&cpu_lock);
4310
4311 tnet_fini();
4312
4313 icmp_ddi_g_destroy();
4314 rts_ddi_g_destroy();
4315 udp_ddi_g_destroy();
4316 sctp_ddi_g_destroy();
4317 tcp_ddi_g_destroy();
4318 ilb_ddi_g_destroy();
4319 dce_g_destroy();
4320 ipsec_policy_g_destroy();
4321 ipcl_g_destroy();
4322 ip_net_g_destroy();
4323 ip_ire_g_fini();
4324 inet_minor_destroy(ip_minor_arena_sa);
4325 #if defined(_LP64)
4326 inet_minor_destroy(ip_minor_arena_la);
4327 #endif
4328
4329 #ifdef DEBUG
4330 list_destroy(&ip_thread_list);
4331 rw_destroy(&ip_thread_rwlock);
4332 tsd_destroy(&ip_thread_data);
4333 #endif
4334
4335 netstack_unregister(NS_IP);
4336 }
4337
4338 /*
4339 * First step in cleanup.
4340 */
4341 /* ARGSUSED */
4342 static void
4343 ip_stack_shutdown(netstackid_t stackid, void *arg)
4344 {
4345 ip_stack_t *ipst = (ip_stack_t *)arg;
4346 kt_did_t ktid;
4347
4348 #ifdef NS_DEBUG
4349 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid);
4350 #endif
4351
4352 /*
4353 * Perform cleanup for special interfaces (loopback and IPMP).
4354 */
4355 ip_interface_cleanup(ipst);
4356
4357 /*
4358 * The *_hook_shutdown()s start the process of notifying any
4359 * consumers that things are going away.... nothing is destroyed.
4360 */
4361 ipv4_hook_shutdown(ipst);
4362 ipv6_hook_shutdown(ipst);
4363 arp_hook_shutdown(ipst);
4364
4365 mutex_enter(&ipst->ips_capab_taskq_lock);
4366 ktid = ipst->ips_capab_taskq_thread->t_did;
4367 ipst->ips_capab_taskq_quit = B_TRUE;
4368 cv_signal(&ipst->ips_capab_taskq_cv);
4369 mutex_exit(&ipst->ips_capab_taskq_lock);
4370
4371 /*
4372 * In rare occurrences, particularly on virtual hardware where CPUs can
4373 * be de-scheduled, the thread that we just signaled will not run until
4374 * after we have gotten through parts of ip_stack_fini. If that happens
4375 * then we'll try to grab the ips_capab_taskq_lock as part of returning
4376 * from cv_wait which no longer exists.
4377 */
4378 thread_join(ktid);
4379 }
4380
4381 /*
4382 * Free the IP stack instance.
4383 */
4384 static void
4385 ip_stack_fini(netstackid_t stackid, void *arg)
4386 {
4387 ip_stack_t *ipst = (ip_stack_t *)arg;
4388 int ret;
4389
4390 #ifdef NS_DEBUG
4391 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid);
4392 #endif
4393 /*
4394 * At this point, all of the notifications that the events and
4395 * protocols are going away have been run, meaning that we can
4396 * now set about starting to clean things up.
4397 */
4398 ipobs_fini(ipst);
4399 ipv4_hook_destroy(ipst);
4400 ipv6_hook_destroy(ipst);
4401 arp_hook_destroy(ipst);
4402 ip_net_destroy(ipst);
4403
4404 ipmp_destroy(ipst);
4405
4406 ip_kstat_fini(stackid, ipst->ips_ip_mibkp);
4407 ipst->ips_ip_mibkp = NULL;
4408 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp);
4409 ipst->ips_icmp_mibkp = NULL;
4410 ip_kstat2_fini(stackid, ipst->ips_ip_kstat);
4411 ipst->ips_ip_kstat = NULL;
4412 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics));
4413 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat);
4414 ipst->ips_ip6_kstat = NULL;
4415 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics));
4416
4417 kmem_free(ipst->ips_propinfo_tbl,
4418 ip_propinfo_count * sizeof (mod_prop_info_t));
4419 ipst->ips_propinfo_tbl = NULL;
4420
4421 dce_stack_destroy(ipst);
4422 ip_mrouter_stack_destroy(ipst);
4423
4424 ret = untimeout(ipst->ips_igmp_timeout_id);
4425 if (ret == -1) {
4426 ASSERT(ipst->ips_igmp_timeout_id == 0);
4427 } else {
4428 ASSERT(ipst->ips_igmp_timeout_id != 0);
4429 ipst->ips_igmp_timeout_id = 0;
4430 }
4431 ret = untimeout(ipst->ips_igmp_slowtimeout_id);
4432 if (ret == -1) {
4433 ASSERT(ipst->ips_igmp_slowtimeout_id == 0);
4434 } else {
4435 ASSERT(ipst->ips_igmp_slowtimeout_id != 0);
4436 ipst->ips_igmp_slowtimeout_id = 0;
4437 }
4438 ret = untimeout(ipst->ips_mld_timeout_id);
4439 if (ret == -1) {
4440 ASSERT(ipst->ips_mld_timeout_id == 0);
4441 } else {
4442 ASSERT(ipst->ips_mld_timeout_id != 0);
4443 ipst->ips_mld_timeout_id = 0;
4444 }
4445 ret = untimeout(ipst->ips_mld_slowtimeout_id);
4446 if (ret == -1) {
4447 ASSERT(ipst->ips_mld_slowtimeout_id == 0);
4448 } else {
4449 ASSERT(ipst->ips_mld_slowtimeout_id != 0);
4450 ipst->ips_mld_slowtimeout_id = 0;
4451 }
4452
4453 ip_ire_fini(ipst);
4454 ip6_asp_free(ipst);
4455 conn_drain_fini(ipst);
4456 ipcl_destroy(ipst);
4457
4458 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock);
4459 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock);
4460 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t));
4461 ipst->ips_ndp4 = NULL;
4462 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t));
4463 ipst->ips_ndp6 = NULL;
4464
4465 if (ipst->ips_loopback_ksp != NULL) {
4466 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid);
4467 ipst->ips_loopback_ksp = NULL;
4468 }
4469
4470 mutex_destroy(&ipst->ips_capab_taskq_lock);
4471 cv_destroy(&ipst->ips_capab_taskq_cv);
4472
4473 rw_destroy(&ipst->ips_srcid_lock);
4474
4475 mutex_destroy(&ipst->ips_ip_mi_lock);
4476 rw_destroy(&ipst->ips_ill_g_usesrc_lock);
4477
4478 mutex_destroy(&ipst->ips_igmp_timer_lock);
4479 mutex_destroy(&ipst->ips_mld_timer_lock);
4480 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock);
4481 mutex_destroy(&ipst->ips_mld_slowtimeout_lock);
4482 mutex_destroy(&ipst->ips_ip_addr_avail_lock);
4483 rw_destroy(&ipst->ips_ill_g_lock);
4484
4485 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t));
4486 ipst->ips_phyint_g_list = NULL;
4487 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS);
4488 ipst->ips_ill_g_heads = NULL;
4489
4490 ldi_ident_release(ipst->ips_ldi_ident);
4491 kmem_free(ipst, sizeof (*ipst));
4492 }
4493
4494 /*
4495 * This function is called from the TSD destructor, and is used to debug
4496 * reference count issues in IP. See block comment in <inet/ip_if.h> for
4497 * details.
4498 */
4499 static void
4500 ip_thread_exit(void *phash)
4501 {
4502 th_hash_t *thh = phash;
4503
4504 rw_enter(&ip_thread_rwlock, RW_WRITER);
4505 list_remove(&ip_thread_list, thh);
4506 rw_exit(&ip_thread_rwlock);
4507 mod_hash_destroy_hash(thh->thh_hash);
4508 kmem_free(thh, sizeof (*thh));
4509 }
4510
4511 /*
4512 * Called when the IP kernel module is loaded into the kernel
4513 */
4514 void
4515 ip_ddi_init(void)
4516 {
4517 ip_squeue_flag = ip_squeue_switch(ip_squeue_enter);
4518
4519 /*
4520 * For IP and TCP the minor numbers should start from 2 since we have 4
4521 * initial devices: ip, ip6, tcp, tcp6.
4522 */
4523 /*
4524 * If this is a 64-bit kernel, then create two separate arenas -
4525 * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the
4526 * other for socket apps in the range 2^^18 through 2^^32-1.
4527 */
4528 ip_minor_arena_la = NULL;
4529 ip_minor_arena_sa = NULL;
4530 #if defined(_LP64)
4531 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa",
4532 INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) {
4533 cmn_err(CE_PANIC,
4534 "ip_ddi_init: ip_minor_arena_sa creation failed\n");
4535 }
4536 if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la",
4537 MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) {
4538 cmn_err(CE_PANIC,
4539 "ip_ddi_init: ip_minor_arena_la creation failed\n");
4540 }
4541 #else
4542 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa",
4543 INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) {
4544 cmn_err(CE_PANIC,
4545 "ip_ddi_init: ip_minor_arena_sa creation failed\n");
4546 }
4547 #endif
4548 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms);
4549
4550 ipcl_g_init();
4551 ip_ire_g_init();
4552 ip_net_g_init();
4553
4554 #ifdef DEBUG
4555 tsd_create(&ip_thread_data, ip_thread_exit);
4556 rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL);
4557 list_create(&ip_thread_list, sizeof (th_hash_t),
4558 offsetof(th_hash_t, thh_link));
4559 #endif
4560 ipsec_policy_g_init();
4561 tcp_ddi_g_init();
4562 sctp_ddi_g_init();
4563 dce_g_init();
4564
4565 /*
4566 * We want to be informed each time a stack is created or
4567 * destroyed in the kernel, so we can maintain the
4568 * set of udp_stack_t's.
4569 */
4570 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown,
4571 ip_stack_fini);
4572
4573 tnet_init();
4574
4575 udp_ddi_g_init();
4576 rts_ddi_g_init();
4577 icmp_ddi_g_init();
4578 ilb_ddi_g_init();
4579
4580 /* This needs to be called after all transports are initialized. */
4581 mutex_enter(&cpu_lock);
4582 register_cpu_setup_func(ip_tp_cpu_update, NULL);
4583 mutex_exit(&cpu_lock);
4584 }
4585
4586 /*
4587 * Initialize the IP stack instance.
4588 */
4589 static void *
4590 ip_stack_init(netstackid_t stackid, netstack_t *ns)
4591 {
4592 ip_stack_t *ipst;
4593 size_t arrsz;
4594 major_t major;
4595
4596 #ifdef NS_DEBUG
4597 printf("ip_stack_init(stack %d)\n", stackid);
4598 #endif
4599
4600 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP);
4601 ipst->ips_netstack = ns;
4602
4603 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS,
4604 KM_SLEEP);
4605 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t),
4606 KM_SLEEP);
4607 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP);
4608 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP);
4609 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL);
4610 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL);
4611
4612 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL);
4613 ipst->ips_igmp_deferred_next = INFINITY;
4614 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL);
4615 ipst->ips_mld_deferred_next = INFINITY;
4616 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL);
4617 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL);
4618 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL);
4619 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL);
4620 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL);
4621 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL);
4622
4623 ipcl_init(ipst);
4624 ip_ire_init(ipst);
4625 ip6_asp_init(ipst);
4626 ipif_init(ipst);
4627 conn_drain_init(ipst);
4628 ip_mrouter_stack_init(ipst);
4629 dce_stack_init(ipst);
4630
4631 ipst->ips_ip_multirt_log_interval = 1000;
4632
4633 ipst->ips_ill_index = 1;
4634
4635 ipst->ips_saved_ip_forwarding = -1;
4636 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */
4637
4638 arrsz = ip_propinfo_count * sizeof (mod_prop_info_t);
4639 ipst->ips_propinfo_tbl = (mod_prop_info_t *)kmem_alloc(arrsz, KM_SLEEP);
4640 bcopy(ip_propinfo_tbl, ipst->ips_propinfo_tbl, arrsz);
4641
4642 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst);
4643 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid);
4644 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics);
4645 ipst->ips_ip6_kstat =
4646 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics);
4647
4648 ipst->ips_ip_src_id = 1;
4649 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL);
4650
4651 ipst->ips_src_generation = SRC_GENERATION_INITIAL;
4652
4653 ip_net_init(ipst, ns);
4654 ipv4_hook_init(ipst);
4655 ipv6_hook_init(ipst);
4656 arp_hook_init(ipst);
4657 ipmp_init(ipst);
4658 ipobs_init(ipst);
4659
4660 /*
4661 * Create the taskq dispatcher thread and initialize related stuff.
4662 */
4663 mutex_init(&ipst->ips_capab_taskq_lock, NULL, MUTEX_DEFAULT, NULL);
4664 cv_init(&ipst->ips_capab_taskq_cv, NULL, CV_DEFAULT, NULL);
4665 ipst->ips_capab_taskq_thread = thread_create(NULL, 0,
4666 ill_taskq_dispatch, ipst, 0, &p0, TS_RUN, minclsyspri);
4667
4668 major = mod_name_to_major(INET_NAME);
4669 (void) ldi_ident_from_major(major, &ipst->ips_ldi_ident);
4670 return (ipst);
4671 }
4672
4673 /*
4674 * Allocate and initialize a DLPI template of the specified length. (May be
4675 * called as writer.)
4676 */
4677 mblk_t *
4678 ip_dlpi_alloc(size_t len, t_uscalar_t prim)
4679 {
4680 mblk_t *mp;
4681
4682 mp = allocb(len, BPRI_MED);
4683 if (!mp)
4684 return (NULL);
4685
4686 /*
4687 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter
4688 * of which we don't seem to use) are sent with M_PCPROTO, and
4689 * that other DLPI are M_PROTO.
4690 */
4691 if (prim == DL_INFO_REQ) {
4692 mp->b_datap->db_type = M_PCPROTO;
4693 } else {
4694 mp->b_datap->db_type = M_PROTO;
4695 }
4696
4697 mp->b_wptr = mp->b_rptr + len;
4698 bzero(mp->b_rptr, len);
4699 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim;
4700 return (mp);
4701 }
4702
4703 /*
4704 * Allocate and initialize a DLPI notification. (May be called as writer.)
4705 */
4706 mblk_t *
4707 ip_dlnotify_alloc(uint_t notification, uint_t data)
4708 {
4709 dl_notify_ind_t *notifyp;
4710 mblk_t *mp;
4711
4712 if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL)
4713 return (NULL);
4714
4715 notifyp = (dl_notify_ind_t *)mp->b_rptr;
4716 notifyp->dl_notification = notification;
4717 notifyp->dl_data = data;
4718 return (mp);
4719 }
4720
4721 mblk_t *
4722 ip_dlnotify_alloc2(uint_t notification, uint_t data1, uint_t data2)
4723 {
4724 dl_notify_ind_t *notifyp;
4725 mblk_t *mp;
4726
4727 if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL)
4728 return (NULL);
4729
4730 notifyp = (dl_notify_ind_t *)mp->b_rptr;
4731 notifyp->dl_notification = notification;
4732 notifyp->dl_data1 = data1;
4733 notifyp->dl_data2 = data2;
4734 return (mp);
4735 }
4736
4737 /*
4738 * Debug formatting routine. Returns a character string representation of the
4739 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address
4740 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer.
4741 *
4742 * Once the ndd table-printing interfaces are removed, this can be changed to
4743 * standard dotted-decimal form.
4744 */
4745 char *
4746 ip_dot_addr(ipaddr_t addr, char *buf)
4747 {
4748 uint8_t *ap = (uint8_t *)&addr;
4749
4750 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d",
4751 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF);
4752 return (buf);
4753 }
4754
4755 /*
4756 * Write the given MAC address as a printable string in the usual colon-
4757 * separated format.
4758 */
4759 const char *
4760 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen)
4761 {
4762 char *bp;
4763
4764 if (alen == 0 || buflen < 4)
4765 return ("?");
4766 bp = buf;
4767 for (;;) {
4768 /*
4769 * If there are more MAC address bytes available, but we won't
4770 * have any room to print them, then add "..." to the string
4771 * instead. See below for the 'magic number' explanation.
4772 */
4773 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) {
4774 (void) strcpy(bp, "...");
4775 break;
4776 }
4777 (void) sprintf(bp, "%02x", *addr++);
4778 bp += 2;
4779 if (--alen == 0)
4780 break;
4781 *bp++ = ':';
4782 buflen -= 3;
4783 /*
4784 * At this point, based on the first 'if' statement above,
4785 * either alen == 1 and buflen >= 3, or alen > 1 and
4786 * buflen >= 4. The first case leaves room for the final "xx"
4787 * number and trailing NUL byte. The second leaves room for at
4788 * least "...". Thus the apparently 'magic' numbers chosen for
4789 * that statement.
4790 */
4791 }
4792 return (buf);
4793 }
4794
4795 /*
4796 * Called when it is conceptually a ULP that would sent the packet
4797 * e.g., port unreachable and protocol unreachable. Check that the packet
4798 * would have passed the IPsec global policy before sending the error.
4799 *
4800 * Send an ICMP error after patching up the packet appropriately.
4801 * Uses ip_drop_input and bumps the appropriate MIB.
4802 */
4803 void
4804 ip_fanout_send_icmp_v4(mblk_t *mp, uint_t icmp_type, uint_t icmp_code,
4805 ip_recv_attr_t *ira)
4806 {
4807 ipha_t *ipha;
4808 boolean_t secure;
4809 ill_t *ill = ira->ira_ill;
4810 ip_stack_t *ipst = ill->ill_ipst;
4811 netstack_t *ns = ipst->ips_netstack;
4812 ipsec_stack_t *ipss = ns->netstack_ipsec;
4813
4814 secure = ira->ira_flags & IRAF_IPSEC_SECURE;
4815
4816 /*
4817 * We are generating an icmp error for some inbound packet.
4818 * Called from all ip_fanout_(udp, tcp, proto) functions.
4819 * Before we generate an error, check with global policy
4820 * to see whether this is allowed to enter the system. As
4821 * there is no "conn", we are checking with global policy.
4822 */
4823 ipha = (ipha_t *)mp->b_rptr;
4824 if (secure || ipss->ipsec_inbound_v4_policy_present) {
4825 mp = ipsec_check_global_policy(mp, NULL, ipha, NULL, ira, ns);
4826 if (mp == NULL)
4827 return;
4828 }
4829
4830 /* We never send errors for protocols that we do implement */
4831 if (ira->ira_protocol == IPPROTO_ICMP ||
4832 ira->ira_protocol == IPPROTO_IGMP) {
4833 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
4834 ip_drop_input("ip_fanout_send_icmp_v4", mp, ill);
4835 freemsg(mp);
4836 return;
4837 }
4838 /*
4839 * Have to correct checksum since
4840 * the packet might have been
4841 * fragmented and the reassembly code in ip_rput
4842 * does not restore the IP checksum.
4843 */
4844 ipha->ipha_hdr_checksum = 0;
4845 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
4846
4847 switch (icmp_type) {
4848 case ICMP_DEST_UNREACHABLE:
4849 switch (icmp_code) {
4850 case ICMP_PROTOCOL_UNREACHABLE:
4851 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInUnknownProtos);
4852 ip_drop_input("ipIfStatsInUnknownProtos", mp, ill);
4853 break;
4854 case ICMP_PORT_UNREACHABLE:
4855 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts);
4856 ip_drop_input("ipIfStatsNoPorts", mp, ill);
4857 break;
4858 }
4859
4860 icmp_unreachable(mp, icmp_code, ira);
4861 break;
4862 default:
4863 #ifdef DEBUG
4864 panic("ip_fanout_send_icmp_v4: wrong type");
4865 /*NOTREACHED*/
4866 #else
4867 freemsg(mp);
4868 break;
4869 #endif
4870 }
4871 }
4872
4873 /*
4874 * Used to send an ICMP error message when a packet is received for
4875 * a protocol that is not supported. The mblk passed as argument
4876 * is consumed by this function.
4877 */
4878 void
4879 ip_proto_not_sup(mblk_t *mp, ip_recv_attr_t *ira)
4880 {
4881 ipha_t *ipha;
4882
4883 ipha = (ipha_t *)mp->b_rptr;
4884 if (ira->ira_flags & IRAF_IS_IPV4) {
4885 ASSERT(IPH_HDR_VERSION(ipha) == IP_VERSION);
4886 ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE,
4887 ICMP_PROTOCOL_UNREACHABLE, ira);
4888 } else {
4889 ASSERT(IPH_HDR_VERSION(ipha) == IPV6_VERSION);
4890 ip_fanout_send_icmp_v6(mp, ICMP6_PARAM_PROB,
4891 ICMP6_PARAMPROB_NEXTHEADER, ira);
4892 }
4893 }
4894
4895 /*
4896 * Deliver a rawip packet to the given conn, possibly applying ipsec policy.
4897 * Handles IPv4 and IPv6.
4898 * We are responsible for disposing of mp, such as by freemsg() or putnext()
4899 * Caller is responsible for dropping references to the conn.
4900 */
4901 void
4902 ip_fanout_proto_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h,
4903 ip_recv_attr_t *ira)
4904 {
4905 ill_t *ill = ira->ira_ill;
4906 ip_stack_t *ipst = ill->ill_ipst;
4907 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec;
4908 boolean_t secure;
4909 uint_t protocol = ira->ira_protocol;
4910 iaflags_t iraflags = ira->ira_flags;
4911 queue_t *rq;
4912
4913 secure = iraflags & IRAF_IPSEC_SECURE;
4914
4915 rq = connp->conn_rq;
4916 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) {
4917 switch (protocol) {
4918 case IPPROTO_ICMPV6:
4919 BUMP_MIB(ill->ill_icmp6_mib, ipv6IfIcmpInOverflows);
4920 break;
4921 case IPPROTO_ICMP:
4922 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows);
4923 break;
4924 default:
4925 BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows);
4926 break;
4927 }
4928 freemsg(mp);
4929 return;
4930 }
4931
4932 ASSERT(!(IPCL_IS_IPTUN(connp)));
4933
4934 if (((iraflags & IRAF_IS_IPV4) ?
4935 CONN_INBOUND_POLICY_PRESENT(connp, ipss) :
4936 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) ||
4937 secure) {
4938 mp = ipsec_check_inbound_policy(mp, connp, ipha,
4939 ip6h, ira);
4940 if (mp == NULL) {
4941 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
4942 /* Note that mp is NULL */
4943 ip_drop_input("ipIfStatsInDiscards", mp, ill);
4944 return;
4945 }
4946 }
4947
4948 if (iraflags & IRAF_ICMP_ERROR) {
4949 (connp->conn_recvicmp)(connp, mp, NULL, ira);
4950 } else {
4951 ill_t *rill = ira->ira_rill;
4952
4953 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
4954 ira->ira_ill = ira->ira_rill = NULL;
4955 /* Send it upstream */
4956 (connp->conn_recv)(connp, mp, NULL, ira);
4957 ira->ira_ill = ill;
4958 ira->ira_rill = rill;
4959 }
4960 }
4961
4962 /*
4963 * Handle protocols with which IP is less intimate. There
4964 * can be more than one stream bound to a particular
4965 * protocol. When this is the case, normally each one gets a copy
4966 * of any incoming packets.
4967 *
4968 * IPsec NOTE :
4969 *
4970 * Don't allow a secure packet going up a non-secure connection.
4971 * We don't allow this because
4972 *
4973 * 1) Reply might go out in clear which will be dropped at
4974 * the sending side.
4975 * 2) If the reply goes out in clear it will give the
4976 * adversary enough information for getting the key in
4977 * most of the cases.
4978 *
4979 * Moreover getting a secure packet when we expect clear
4980 * implies that SA's were added without checking for
4981 * policy on both ends. This should not happen once ISAKMP
4982 * is used to negotiate SAs as SAs will be added only after
4983 * verifying the policy.
4984 *
4985 * Zones notes:
4986 * Earlier in ip_input on a system with multiple shared-IP zones we
4987 * duplicate the multicast and broadcast packets and send them up
4988 * with each explicit zoneid that exists on that ill.
4989 * This means that here we can match the zoneid with SO_ALLZONES being special.
4990 */
4991 void
4992 ip_fanout_proto_v4(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira)
4993 {
4994 mblk_t *mp1;
4995 ipaddr_t laddr;
4996 conn_t *connp, *first_connp, *next_connp;
4997 connf_t *connfp;
4998 ill_t *ill = ira->ira_ill;
4999 ip_stack_t *ipst = ill->ill_ipst;
5000
5001 laddr = ipha->ipha_dst;
5002
5003 connfp = &ipst->ips_ipcl_proto_fanout_v4[ira->ira_protocol];
5004 mutex_enter(&connfp->connf_lock);
5005 connp = connfp->connf_head;
5006 for (connp = connfp->connf_head; connp != NULL;
5007 connp = connp->conn_next) {
5008 /* Note: IPCL_PROTO_MATCH includes conn_wantpacket */
5009 if (IPCL_PROTO_MATCH(connp, ira, ipha) &&
5010 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5011 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) {
5012 break;
5013 }
5014 }
5015
5016 if (connp == NULL) {
5017 /*
5018 * No one bound to these addresses. Is
5019 * there a client that wants all
5020 * unclaimed datagrams?
5021 */
5022 mutex_exit(&connfp->connf_lock);
5023 ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE,
5024 ICMP_PROTOCOL_UNREACHABLE, ira);
5025 return;
5026 }
5027
5028 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL);
5029
5030 CONN_INC_REF(connp);
5031 first_connp = connp;
5032 connp = connp->conn_next;
5033
5034 for (;;) {
5035 while (connp != NULL) {
5036 /* Note: IPCL_PROTO_MATCH includes conn_wantpacket */
5037 if (IPCL_PROTO_MATCH(connp, ira, ipha) &&
5038 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5039 tsol_receive_local(mp, &laddr, IPV4_VERSION,
5040 ira, connp)))
5041 break;
5042 connp = connp->conn_next;
5043 }
5044
5045 if (connp == NULL) {
5046 /* No more interested clients */
5047 connp = first_connp;
5048 break;
5049 }
5050 if (((mp1 = dupmsg(mp)) == NULL) &&
5051 ((mp1 = copymsg(mp)) == NULL)) {
5052 /* Memory allocation failed */
5053 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5054 ip_drop_input("ipIfStatsInDiscards", mp, ill);
5055 connp = first_connp;
5056 break;
5057 }
5058
5059 CONN_INC_REF(connp);
5060 mutex_exit(&connfp->connf_lock);
5061
5062 ip_fanout_proto_conn(connp, mp1, (ipha_t *)mp1->b_rptr, NULL,
5063 ira);
5064
5065 mutex_enter(&connfp->connf_lock);
5066 /* Follow the next pointer before releasing the conn. */
5067 next_connp = connp->conn_next;
5068 CONN_DEC_REF(connp);
5069 connp = next_connp;
5070 }
5071
5072 /* Last one. Send it upstream. */
5073 mutex_exit(&connfp->connf_lock);
5074
5075 ip_fanout_proto_conn(connp, mp, ipha, NULL, ira);
5076
5077 CONN_DEC_REF(connp);
5078 }
5079
5080 /*
5081 * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or
5082 * pass it along to ESP if the SPI is non-zero. Returns the mblk if the mblk
5083 * is not consumed.
5084 *
5085 * One of three things can happen, all of which affect the passed-in mblk:
5086 *
5087 * 1.) The packet is stock UDP and gets its zero-SPI stripped. Return mblk..
5088 *
5089 * 2.) The packet is ESP-in-UDP, gets transformed into an equivalent
5090 * ESP packet, and is passed along to ESP for consumption. Return NULL.
5091 *
5092 * 3.) The packet is an ESP-in-UDP Keepalive. Drop it and return NULL.
5093 */
5094 mblk_t *
5095 zero_spi_check(mblk_t *mp, ip_recv_attr_t *ira)
5096 {
5097 int shift, plen, iph_len;
5098 ipha_t *ipha;
5099 udpha_t *udpha;
5100 uint32_t *spi;
5101 uint32_t esp_ports;
5102 uint8_t *orptr;
5103 ip_stack_t *ipst = ira->ira_ill->ill_ipst;
5104 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec;
5105
5106 ipha = (ipha_t *)mp->b_rptr;
5107 iph_len = ira->ira_ip_hdr_length;
5108 plen = ira->ira_pktlen;
5109
5110 if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) {
5111 /*
5112 * Most likely a keepalive for the benefit of an intervening
5113 * NAT. These aren't for us, per se, so drop it.
5114 *
5115 * RFC 3947/8 doesn't say for sure what to do for 2-3
5116 * byte packets (keepalives are 1-byte), but we'll drop them
5117 * also.
5118 */
5119 ip_drop_packet(mp, B_TRUE, ira->ira_ill,
5120 DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper);
5121 return (NULL);
5122 }
5123
5124 if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) {
5125 /* might as well pull it all up - it might be ESP. */
5126 if (!pullupmsg(mp, -1)) {
5127 ip_drop_packet(mp, B_TRUE, ira->ira_ill,
5128 DROPPER(ipss, ipds_esp_nomem),
5129 &ipss->ipsec_dropper);
5130 return (NULL);
5131 }
5132
5133 ipha = (ipha_t *)mp->b_rptr;
5134 }
5135 spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t));
5136 if (*spi == 0) {
5137 /* UDP packet - remove 0-spi. */
5138 shift = sizeof (uint32_t);
5139 } else {
5140 /* ESP-in-UDP packet - reduce to ESP. */
5141 ipha->ipha_protocol = IPPROTO_ESP;
5142 shift = sizeof (udpha_t);
5143 }
5144
5145 /* Fix IP header */
5146 ira->ira_pktlen = (plen - shift);
5147 ipha->ipha_length = htons(ira->ira_pktlen);
5148 ipha->ipha_hdr_checksum = 0;
5149
5150 orptr = mp->b_rptr;
5151 mp->b_rptr += shift;
5152
5153 udpha = (udpha_t *)(orptr + iph_len);
5154 if (*spi == 0) {
5155 ASSERT((uint8_t *)ipha == orptr);
5156 udpha->uha_length = htons(plen - shift - iph_len);
5157 iph_len += sizeof (udpha_t); /* For the call to ovbcopy(). */
5158 esp_ports = 0;
5159 } else {
5160 esp_ports = *((uint32_t *)udpha);
5161 ASSERT(esp_ports != 0);
5162 }
5163 ovbcopy(orptr, orptr + shift, iph_len);
5164 if (esp_ports != 0) /* Punt up for ESP processing. */ {
5165 ipha = (ipha_t *)(orptr + shift);
5166
5167 ira->ira_flags |= IRAF_ESP_UDP_PORTS;
5168 ira->ira_esp_udp_ports = esp_ports;
5169 ip_fanout_v4(mp, ipha, ira);
5170 return (NULL);
5171 }
5172 return (mp);
5173 }
5174
5175 /*
5176 * Deliver a udp packet to the given conn, possibly applying ipsec policy.
5177 * Handles IPv4 and IPv6.
5178 * We are responsible for disposing of mp, such as by freemsg() or putnext()
5179 * Caller is responsible for dropping references to the conn.
5180 */
5181 void
5182 ip_fanout_udp_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h,
5183 ip_recv_attr_t *ira)
5184 {
5185 ill_t *ill = ira->ira_ill;
5186 ip_stack_t *ipst = ill->ill_ipst;
5187 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec;
5188 boolean_t secure;
5189 iaflags_t iraflags = ira->ira_flags;
5190
5191 secure = iraflags & IRAF_IPSEC_SECURE;
5192
5193 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld :
5194 !canputnext(connp->conn_rq)) {
5195 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows);
5196 freemsg(mp);
5197 return;
5198 }
5199
5200 if (((iraflags & IRAF_IS_IPV4) ?
5201 CONN_INBOUND_POLICY_PRESENT(connp, ipss) :
5202 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) ||
5203 secure) {
5204 mp = ipsec_check_inbound_policy(mp, connp, ipha,
5205 ip6h, ira);
5206 if (mp == NULL) {
5207 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5208 /* Note that mp is NULL */
5209 ip_drop_input("ipIfStatsInDiscards", mp, ill);
5210 return;
5211 }
5212 }
5213
5214 /*
5215 * Since this code is not used for UDP unicast we don't need a NAT_T
5216 * check. Only ip_fanout_v4 has that check.
5217 */
5218 if (ira->ira_flags & IRAF_ICMP_ERROR) {
5219 (connp->conn_recvicmp)(connp, mp, NULL, ira);
5220 } else {
5221 ill_t *rill = ira->ira_rill;
5222
5223 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
5224 ira->ira_ill = ira->ira_rill = NULL;
5225 /* Send it upstream */
5226 (connp->conn_recv)(connp, mp, NULL, ira);
5227 ira->ira_ill = ill;
5228 ira->ira_rill = rill;
5229 }
5230 }
5231
5232 /*
5233 * Fanout for UDP packets that are multicast or broadcast, and ICMP errors.
5234 * (Unicast fanout is handled in ip_input_v4.)
5235 *
5236 * If SO_REUSEADDR is set all multicast and broadcast packets
5237 * will be delivered to all conns bound to the same port.
5238 *
5239 * If there is at least one matching AF_INET receiver, then we will
5240 * ignore any AF_INET6 receivers.
5241 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an
5242 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4
5243 * packets.
5244 *
5245 * Zones notes:
5246 * Earlier in ip_input on a system with multiple shared-IP zones we
5247 * duplicate the multicast and broadcast packets and send them up
5248 * with each explicit zoneid that exists on that ill.
5249 * This means that here we can match the zoneid with SO_ALLZONES being special.
5250 */
5251 void
5252 ip_fanout_udp_multi_v4(mblk_t *mp, ipha_t *ipha, uint16_t lport, uint16_t fport,
5253 ip_recv_attr_t *ira)
5254 {
5255 ipaddr_t laddr;
5256 in6_addr_t v6faddr;
5257 conn_t *connp;
5258 connf_t *connfp;
5259 ipaddr_t faddr;
5260 ill_t *ill = ira->ira_ill;
5261 ip_stack_t *ipst = ill->ill_ipst;
5262
5263 ASSERT(ira->ira_flags & (IRAF_MULTIBROADCAST|IRAF_ICMP_ERROR));
5264
5265 laddr = ipha->ipha_dst;
5266 faddr = ipha->ipha_src;
5267
5268 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)];
5269 mutex_enter(&connfp->connf_lock);
5270 connp = connfp->connf_head;
5271
5272 /*
5273 * If SO_REUSEADDR has been set on the first we send the
5274 * packet to all clients that have joined the group and
5275 * match the port.
5276 */
5277 while (connp != NULL) {
5278 if ((IPCL_UDP_MATCH(connp, lport, laddr, fport, faddr)) &&
5279 conn_wantpacket(connp, ira, ipha) &&
5280 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5281 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp)))
5282 break;
5283 connp = connp->conn_next;
5284 }
5285
5286 if (connp == NULL)
5287 goto notfound;
5288
5289 CONN_INC_REF(connp);
5290
5291 if (connp->conn_reuseaddr) {
5292 conn_t *first_connp = connp;
5293 conn_t *next_connp;
5294 mblk_t *mp1;
5295
5296 connp = connp->conn_next;
5297 for (;;) {
5298 while (connp != NULL) {
5299 if (IPCL_UDP_MATCH(connp, lport, laddr,
5300 fport, faddr) &&
5301 conn_wantpacket(connp, ira, ipha) &&
5302 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5303 tsol_receive_local(mp, &laddr, IPV4_VERSION,
5304 ira, connp)))
5305 break;
5306 connp = connp->conn_next;
5307 }
5308 if (connp == NULL) {
5309 /* No more interested clients */
5310 connp = first_connp;
5311 break;
5312 }
5313 if (((mp1 = dupmsg(mp)) == NULL) &&
5314 ((mp1 = copymsg(mp)) == NULL)) {
5315 /* Memory allocation failed */
5316 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5317 ip_drop_input("ipIfStatsInDiscards", mp, ill);
5318 connp = first_connp;
5319 break;
5320 }
5321 CONN_INC_REF(connp);
5322 mutex_exit(&connfp->connf_lock);
5323
5324 IP_STAT(ipst, ip_udp_fanmb);
5325 ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr,
5326 NULL, ira);
5327 mutex_enter(&connfp->connf_lock);
5328 /* Follow the next pointer before releasing the conn */
5329 next_connp = connp->conn_next;
5330 CONN_DEC_REF(connp);
5331 connp = next_connp;
5332 }
5333 }
5334
5335 /* Last one. Send it upstream. */
5336 mutex_exit(&connfp->connf_lock);
5337 IP_STAT(ipst, ip_udp_fanmb);
5338 ip_fanout_udp_conn(connp, mp, ipha, NULL, ira);
5339 CONN_DEC_REF(connp);
5340 return;
5341
5342 notfound:
5343 mutex_exit(&connfp->connf_lock);
5344 /*
5345 * IPv6 endpoints bound to multicast IPv4-mapped addresses
5346 * have already been matched above, since they live in the IPv4
5347 * fanout tables. This implies we only need to
5348 * check for IPv6 in6addr_any endpoints here.
5349 * Thus we compare using ipv6_all_zeros instead of the destination
5350 * address, except for the multicast group membership lookup which
5351 * uses the IPv4 destination.
5352 */
5353 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6faddr);
5354 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)];
5355 mutex_enter(&connfp->connf_lock);
5356 connp = connfp->connf_head;
5357 /*
5358 * IPv4 multicast packet being delivered to an AF_INET6
5359 * in6addr_any endpoint.
5360 * Need to check conn_wantpacket(). Note that we use conn_wantpacket()
5361 * and not conn_wantpacket_v6() since any multicast membership is
5362 * for an IPv4-mapped multicast address.
5363 */
5364 while (connp != NULL) {
5365 if (IPCL_UDP_MATCH_V6(connp, lport, ipv6_all_zeros,
5366 fport, v6faddr) &&
5367 conn_wantpacket(connp, ira, ipha) &&
5368 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5369 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp)))
5370 break;
5371 connp = connp->conn_next;
5372 }
5373
5374 if (connp == NULL) {
5375 /*
5376 * No one bound to this port. Is
5377 * there a client that wants all
5378 * unclaimed datagrams?
5379 */
5380 mutex_exit(&connfp->connf_lock);
5381
5382 if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_UDP].connf_head !=
5383 NULL) {
5384 ASSERT(ira->ira_protocol == IPPROTO_UDP);
5385 ip_fanout_proto_v4(mp, ipha, ira);
5386 } else {
5387 /*
5388 * We used to attempt to send an icmp error here, but
5389 * since this is known to be a multicast packet
5390 * and we don't send icmp errors in response to
5391 * multicast, just drop the packet and give up sooner.
5392 */
5393 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts);
5394 freemsg(mp);
5395 }
5396 return;
5397 }
5398 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL);
5399
5400 /*
5401 * If SO_REUSEADDR has been set on the first we send the
5402 * packet to all clients that have joined the group and
5403 * match the port.
5404 */
5405 if (connp->conn_reuseaddr) {
5406 conn_t *first_connp = connp;
5407 conn_t *next_connp;
5408 mblk_t *mp1;
5409
5410 CONN_INC_REF(connp);
5411 connp = connp->conn_next;
5412 for (;;) {
5413 while (connp != NULL) {
5414 if (IPCL_UDP_MATCH_V6(connp, lport,
5415 ipv6_all_zeros, fport, v6faddr) &&
5416 conn_wantpacket(connp, ira, ipha) &&
5417 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5418 tsol_receive_local(mp, &laddr, IPV4_VERSION,
5419 ira, connp)))
5420 break;
5421 connp = connp->conn_next;
5422 }
5423 if (connp == NULL) {
5424 /* No more interested clients */
5425 connp = first_connp;
5426 break;
5427 }
5428 if (((mp1 = dupmsg(mp)) == NULL) &&
5429 ((mp1 = copymsg(mp)) == NULL)) {
5430 /* Memory allocation failed */
5431 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5432 ip_drop_input("ipIfStatsInDiscards", mp, ill);
5433 connp = first_connp;
5434 break;
5435 }
5436 CONN_INC_REF(connp);
5437 mutex_exit(&connfp->connf_lock);
5438
5439 IP_STAT(ipst, ip_udp_fanmb);
5440 ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr,
5441 NULL, ira);
5442 mutex_enter(&connfp->connf_lock);
5443 /* Follow the next pointer before releasing the conn */
5444 next_connp = connp->conn_next;
5445 CONN_DEC_REF(connp);
5446 connp = next_connp;
5447 }
5448 }
5449
5450 /* Last one. Send it upstream. */
5451 mutex_exit(&connfp->connf_lock);
5452 IP_STAT(ipst, ip_udp_fanmb);
5453 ip_fanout_udp_conn(connp, mp, ipha, NULL, ira);
5454 CONN_DEC_REF(connp);
5455 }
5456
5457 /*
5458 * Split an incoming packet's IPv4 options into the label and the other options.
5459 * If 'allocate' is set it does memory allocation for the ip_pkt_t, including
5460 * clearing out any leftover label or options.
5461 * Otherwise it just makes ipp point into the packet.
5462 *
5463 * Returns zero if ok; ENOMEM if the buffer couldn't be allocated.
5464 */
5465 int
5466 ip_find_hdr_v4(ipha_t *ipha, ip_pkt_t *ipp, boolean_t allocate)
5467 {
5468 uchar_t *opt;
5469 uint32_t totallen;
5470 uint32_t optval;
5471 uint32_t optlen;
5472
5473 ipp->ipp_fields |= IPPF_HOPLIMIT | IPPF_TCLASS | IPPF_ADDR;
5474 ipp->ipp_hoplimit = ipha->ipha_ttl;
5475 ipp->ipp_type_of_service = ipha->ipha_type_of_service;
5476 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &ipp->ipp_addr);
5477
5478 /*
5479 * Get length (in 4 byte octets) of IP header options.
5480 */
5481 totallen = ipha->ipha_version_and_hdr_length -
5482 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS);
5483
5484 if (totallen == 0) {
5485 if (!allocate)
5486 return (0);
5487
5488 /* Clear out anything from a previous packet */
5489 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
5490 kmem_free(ipp->ipp_ipv4_options,
5491 ipp->ipp_ipv4_options_len);
5492 ipp->ipp_ipv4_options = NULL;
5493 ipp->ipp_ipv4_options_len = 0;
5494 ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS;
5495 }
5496 if (ipp->ipp_fields & IPPF_LABEL_V4) {
5497 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4);
5498 ipp->ipp_label_v4 = NULL;
5499 ipp->ipp_label_len_v4 = 0;
5500 ipp->ipp_fields &= ~IPPF_LABEL_V4;
5501 }
5502 return (0);
5503 }
5504
5505 totallen <<= 2;
5506 opt = (uchar_t *)&ipha[1];
5507 if (!is_system_labeled()) {
5508
5509 copyall:
5510 if (!allocate) {
5511 if (totallen != 0) {
5512 ipp->ipp_ipv4_options = opt;
5513 ipp->ipp_ipv4_options_len = totallen;
5514 ipp->ipp_fields |= IPPF_IPV4_OPTIONS;
5515 }
5516 return (0);
5517 }
5518 /* Just copy all of options */
5519 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
5520 if (totallen == ipp->ipp_ipv4_options_len) {
5521 bcopy(opt, ipp->ipp_ipv4_options, totallen);
5522 return (0);
5523 }
5524 kmem_free(ipp->ipp_ipv4_options,
5525 ipp->ipp_ipv4_options_len);
5526 ipp->ipp_ipv4_options = NULL;
5527 ipp->ipp_ipv4_options_len = 0;
5528 ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS;
5529 }
5530 if (totallen == 0)
5531 return (0);
5532
5533 ipp->ipp_ipv4_options = kmem_alloc(totallen, KM_NOSLEEP);
5534 if (ipp->ipp_ipv4_options == NULL)
5535 return (ENOMEM);
5536 ipp->ipp_ipv4_options_len = totallen;
5537 ipp->ipp_fields |= IPPF_IPV4_OPTIONS;
5538 bcopy(opt, ipp->ipp_ipv4_options, totallen);
5539 return (0);
5540 }
5541
5542 if (allocate && (ipp->ipp_fields & IPPF_LABEL_V4)) {
5543 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4);
5544 ipp->ipp_label_v4 = NULL;
5545 ipp->ipp_label_len_v4 = 0;
5546 ipp->ipp_fields &= ~IPPF_LABEL_V4;
5547 }
5548
5549 /*
5550 * Search for CIPSO option.
5551 * We assume CIPSO is first in options if it is present.
5552 * If it isn't, then ipp_opt_ipv4_options will not include the options
5553 * prior to the CIPSO option.
5554 */
5555 while (totallen != 0) {
5556 switch (optval = opt[IPOPT_OPTVAL]) {
5557 case IPOPT_EOL:
5558 return (0);
5559 case IPOPT_NOP:
5560 optlen = 1;
5561 break;
5562 default:
5563 if (totallen <= IPOPT_OLEN)
5564 return (EINVAL);
5565 optlen = opt[IPOPT_OLEN];
5566 if (optlen < 2)
5567 return (EINVAL);
5568 }
5569 if (optlen > totallen)
5570 return (EINVAL);
5571
5572 switch (optval) {
5573 case IPOPT_COMSEC:
5574 if (!allocate) {
5575 ipp->ipp_label_v4 = opt;
5576 ipp->ipp_label_len_v4 = optlen;
5577 ipp->ipp_fields |= IPPF_LABEL_V4;
5578 } else {
5579 ipp->ipp_label_v4 = kmem_alloc(optlen,
5580 KM_NOSLEEP);
5581 if (ipp->ipp_label_v4 == NULL)
5582 return (ENOMEM);
5583 ipp->ipp_label_len_v4 = optlen;
5584 ipp->ipp_fields |= IPPF_LABEL_V4;
5585 bcopy(opt, ipp->ipp_label_v4, optlen);
5586 }
5587 totallen -= optlen;
5588 opt += optlen;
5589
5590 /* Skip padding bytes until we get to a multiple of 4 */
5591 while ((totallen & 3) != 0 && opt[0] == IPOPT_NOP) {
5592 totallen--;
5593 opt++;
5594 }
5595 /* Remaining as ipp_ipv4_options */
5596 goto copyall;
5597 }
5598 totallen -= optlen;
5599 opt += optlen;
5600 }
5601 /* No CIPSO found; return everything as ipp_ipv4_options */
5602 totallen = ipha->ipha_version_and_hdr_length -
5603 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS);
5604 totallen <<= 2;
5605 opt = (uchar_t *)&ipha[1];
5606 goto copyall;
5607 }
5608
5609 /*
5610 * Efficient versions of lookup for an IRE when we only
5611 * match the address.
5612 * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE.
5613 * Does not handle multicast addresses.
5614 */
5615 uint_t
5616 ip_type_v4(ipaddr_t addr, ip_stack_t *ipst)
5617 {
5618 ire_t *ire;
5619 uint_t result;
5620
5621 ire = ire_ftable_lookup_simple_v4(addr, 0, ipst, NULL);
5622 ASSERT(ire != NULL);
5623 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))
5624 result = IRE_NOROUTE;
5625 else
5626 result = ire->ire_type;
5627 ire_refrele(ire);
5628 return (result);
5629 }
5630
5631 /*
5632 * Efficient versions of lookup for an IRE when we only
5633 * match the address.
5634 * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE.
5635 * Does not handle multicast addresses.
5636 */
5637 uint_t
5638 ip_type_v6(const in6_addr_t *addr, ip_stack_t *ipst)
5639 {
5640 ire_t *ire;
5641 uint_t result;
5642
5643 ire = ire_ftable_lookup_simple_v6(addr, 0, ipst, NULL);
5644 ASSERT(ire != NULL);
5645 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))
5646 result = IRE_NOROUTE;
5647 else
5648 result = ire->ire_type;
5649 ire_refrele(ire);
5650 return (result);
5651 }
5652
5653 /*
5654 * Nobody should be sending
5655 * packets up this stream
5656 */
5657 static void
5658 ip_lrput(queue_t *q, mblk_t *mp)
5659 {
5660 switch (mp->b_datap->db_type) {
5661 case M_FLUSH:
5662 /* Turn around */
5663 if (*mp->b_rptr & FLUSHW) {
5664 *mp->b_rptr &= ~FLUSHR;
5665 qreply(q, mp);
5666 return;
5667 }
5668 break;
5669 }
5670 freemsg(mp);
5671 }
5672
5673 /* Nobody should be sending packets down this stream */
5674 /* ARGSUSED */
5675 void
5676 ip_lwput(queue_t *q, mblk_t *mp)
5677 {
5678 freemsg(mp);
5679 }
5680
5681 /*
5682 * Move the first hop in any source route to ipha_dst and remove that part of
5683 * the source route. Called by other protocols. Errors in option formatting
5684 * are ignored - will be handled by ip_output_options. Return the final
5685 * destination (either ipha_dst or the last entry in a source route.)
5686 */
5687 ipaddr_t
5688 ip_massage_options(ipha_t *ipha, netstack_t *ns)
5689 {
5690 ipoptp_t opts;
5691 uchar_t *opt;
5692 uint8_t optval;
5693 uint8_t optlen;
5694 ipaddr_t dst;
5695 int i;
5696 ip_stack_t *ipst = ns->netstack_ip;
5697
5698 ip2dbg(("ip_massage_options\n"));
5699 dst = ipha->ipha_dst;
5700 for (optval = ipoptp_first(&opts, ipha);
5701 optval != IPOPT_EOL;
5702 optval = ipoptp_next(&opts)) {
5703 opt = opts.ipoptp_cur;
5704 switch (optval) {
5705 uint8_t off;
5706 case IPOPT_SSRR:
5707 case IPOPT_LSRR:
5708 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
5709 ip1dbg(("ip_massage_options: bad src route\n"));
5710 break;
5711 }
5712 optlen = opts.ipoptp_len;
5713 off = opt[IPOPT_OFFSET];
5714 off--;
5715 redo_srr:
5716 if (optlen < IP_ADDR_LEN ||
5717 off > optlen - IP_ADDR_LEN) {
5718 /* End of source route */
5719 ip1dbg(("ip_massage_options: end of SR\n"));
5720 break;
5721 }
5722 bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
5723 ip1dbg(("ip_massage_options: next hop 0x%x\n",
5724 ntohl(dst)));
5725 /*
5726 * Check if our address is present more than
5727 * once as consecutive hops in source route.
5728 * XXX verify per-interface ip_forwarding
5729 * for source route?
5730 */
5731 if (ip_type_v4(dst, ipst) == IRE_LOCAL) {
5732 off += IP_ADDR_LEN;
5733 goto redo_srr;
5734 }
5735 if (dst == htonl(INADDR_LOOPBACK)) {
5736 ip1dbg(("ip_massage_options: loopback addr in "
5737 "source route!\n"));
5738 break;
5739 }
5740 /*
5741 * Update ipha_dst to be the first hop and remove the
5742 * first hop from the source route (by overwriting
5743 * part of the option with NOP options).
5744 */
5745 ipha->ipha_dst = dst;
5746 /* Put the last entry in dst */
5747 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) +
5748 3;
5749 bcopy(&opt[off], &dst, IP_ADDR_LEN);
5750
5751 ip1dbg(("ip_massage_options: last hop 0x%x\n",
5752 ntohl(dst)));
5753 /* Move down and overwrite */
5754 opt[IP_ADDR_LEN] = opt[0];
5755 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN;
5756 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET];
5757 for (i = 0; i < IP_ADDR_LEN; i++)
5758 opt[i] = IPOPT_NOP;
5759 break;
5760 }
5761 }
5762 return (dst);
5763 }
5764
5765 /*
5766 * Return the network mask
5767 * associated with the specified address.
5768 */
5769 ipaddr_t
5770 ip_net_mask(ipaddr_t addr)
5771 {
5772 uchar_t *up = (uchar_t *)&addr;
5773 ipaddr_t mask = 0;
5774 uchar_t *maskp = (uchar_t *)&mask;
5775
5776 #if defined(__i386) || defined(__amd64)
5777 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER
5778 #endif
5779 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER
5780 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0;
5781 #endif
5782 if (CLASSD(addr)) {
5783 maskp[0] = 0xF0;
5784 return (mask);
5785 }
5786
5787 /* We assume Class E default netmask to be 32 */
5788 if (CLASSE(addr))
5789 return (0xffffffffU);
5790
5791 if (addr == 0)
5792 return (0);
5793 maskp[0] = 0xFF;
5794 if ((up[0] & 0x80) == 0)
5795 return (mask);
5796
5797 maskp[1] = 0xFF;
5798 if ((up[0] & 0xC0) == 0x80)
5799 return (mask);
5800
5801 maskp[2] = 0xFF;
5802 if ((up[0] & 0xE0) == 0xC0)
5803 return (mask);
5804
5805 /* Otherwise return no mask */
5806 return ((ipaddr_t)0);
5807 }
5808
5809 /* Name/Value Table Lookup Routine */
5810 char *
5811 ip_nv_lookup(nv_t *nv, int value)
5812 {
5813 if (!nv)
5814 return (NULL);
5815 for (; nv->nv_name; nv++) {
5816 if (nv->nv_value == value)
5817 return (nv->nv_name);
5818 }
5819 return ("unknown");
5820 }
5821
5822 static int
5823 ip_wait_for_info_ack(ill_t *ill)
5824 {
5825 int err;
5826
5827 mutex_enter(&ill->ill_lock);
5828 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) {
5829 /*
5830 * Return value of 0 indicates a pending signal.
5831 */
5832 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock);
5833 if (err == 0) {
5834 mutex_exit(&ill->ill_lock);
5835 return (EINTR);
5836 }
5837 }
5838 mutex_exit(&ill->ill_lock);
5839 /*
5840 * ip_rput_other could have set an error in ill_error on
5841 * receipt of M_ERROR.
5842 */
5843 return (ill->ill_error);
5844 }
5845
5846 /*
5847 * This is a module open, i.e. this is a control stream for access
5848 * to a DLPI device. We allocate an ill_t as the instance data in
5849 * this case.
5850 */
5851 static int
5852 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
5853 {
5854 ill_t *ill;
5855 int err;
5856 zoneid_t zoneid;
5857 netstack_t *ns;
5858 ip_stack_t *ipst;
5859
5860 /*
5861 * Prevent unprivileged processes from pushing IP so that
5862 * they can't send raw IP.
5863 */
5864 if (secpolicy_net_rawaccess(credp) != 0)
5865 return (EPERM);
5866
5867 ns = netstack_find_by_cred(credp);
5868 ASSERT(ns != NULL);
5869 ipst = ns->netstack_ip;
5870 ASSERT(ipst != NULL);
5871
5872 /*
5873 * For exclusive stacks we set the zoneid to zero
5874 * to make IP operate as if in the global zone.
5875 */
5876 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID)
5877 zoneid = GLOBAL_ZONEID;
5878 else
5879 zoneid = crgetzoneid(credp);
5880
5881 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t));
5882 q->q_ptr = WR(q)->q_ptr = ill;
5883 ill->ill_ipst = ipst;
5884 ill->ill_zoneid = zoneid;
5885
5886 /*
5887 * ill_init initializes the ill fields and then sends down
5888 * down a DL_INFO_REQ after calling qprocson.
5889 */
5890 err = ill_init(q, ill);
5891
5892 if (err != 0) {
5893 mi_free(ill);
5894 netstack_rele(ipst->ips_netstack);
5895 q->q_ptr = NULL;
5896 WR(q)->q_ptr = NULL;
5897 return (err);
5898 }
5899
5900 /*
5901 * Wait for the DL_INFO_ACK if a DL_INFO_REQ was sent.
5902 *
5903 * ill_init initializes the ipsq marking this thread as
5904 * writer
5905 */
5906 ipsq_exit(ill->ill_phyint->phyint_ipsq);
5907 err = ip_wait_for_info_ack(ill);
5908 if (err == 0)
5909 ill->ill_credp = credp;
5910 else
5911 goto fail;
5912
5913 crhold(credp);
5914
5915 mutex_enter(&ipst->ips_ip_mi_lock);
5916 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)q->q_ptr, devp, flag,
5917 sflag, credp);
5918 mutex_exit(&ipst->ips_ip_mi_lock);
5919 fail:
5920 if (err) {
5921 (void) ip_close(q, 0);
5922 return (err);
5923 }
5924 return (0);
5925 }
5926
5927 /* For /dev/ip aka AF_INET open */
5928 int
5929 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
5930 {
5931 return (ip_open(q, devp, flag, sflag, credp, B_FALSE));
5932 }
5933
5934 /* For /dev/ip6 aka AF_INET6 open */
5935 int
5936 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
5937 {
5938 return (ip_open(q, devp, flag, sflag, credp, B_TRUE));
5939 }
5940
5941 /* IP open routine. */
5942 int
5943 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp,
5944 boolean_t isv6)
5945 {
5946 conn_t *connp;
5947 major_t maj;
5948 zoneid_t zoneid;
5949 netstack_t *ns;
5950 ip_stack_t *ipst;
5951
5952 /* Allow reopen. */
5953 if (q->q_ptr != NULL)
5954 return (0);
5955
5956 if (sflag & MODOPEN) {
5957 /* This is a module open */
5958 return (ip_modopen(q, devp, flag, sflag, credp));
5959 }
5960
5961 if ((flag & ~(FKLYR)) == IP_HELPER_STR) {
5962 /*
5963 * Non streams based socket looking for a stream
5964 * to access IP
5965 */
5966 return (ip_helper_stream_setup(q, devp, flag, sflag,
5967 credp, isv6));
5968 }
5969
5970 ns = netstack_find_by_cred(credp);
5971 ASSERT(ns != NULL);
5972 ipst = ns->netstack_ip;
5973 ASSERT(ipst != NULL);
5974
5975 /*
5976 * For exclusive stacks we set the zoneid to zero
5977 * to make IP operate as if in the global zone.
5978 */
5979 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID)
5980 zoneid = GLOBAL_ZONEID;
5981 else
5982 zoneid = crgetzoneid(credp);
5983
5984 /*
5985 * We are opening as a device. This is an IP client stream, and we
5986 * allocate an conn_t as the instance data.
5987 */
5988 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack);
5989
5990 /*
5991 * ipcl_conn_create did a netstack_hold. Undo the hold that was
5992 * done by netstack_find_by_cred()
5993 */
5994 netstack_rele(ipst->ips_netstack);
5995
5996 connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_ULP_CKSUM;
5997 /* conn_allzones can not be set this early, hence no IPCL_ZONEID */
5998 connp->conn_ixa->ixa_zoneid = zoneid;
5999 connp->conn_zoneid = zoneid;
6000
6001 connp->conn_rq = q;
6002 q->q_ptr = WR(q)->q_ptr = connp;
6003
6004 /* Minor tells us which /dev entry was opened */
6005 if (isv6) {
6006 connp->conn_family = AF_INET6;
6007 connp->conn_ipversion = IPV6_VERSION;
6008 connp->conn_ixa->ixa_flags &= ~IXAF_IS_IPV4;
6009 connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT;
6010 } else {
6011 connp->conn_family = AF_INET;
6012 connp->conn_ipversion = IPV4_VERSION;
6013 connp->conn_ixa->ixa_flags |= IXAF_IS_IPV4;
6014 }
6015
6016 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) &&
6017 ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) {
6018 connp->conn_minor_arena = ip_minor_arena_la;
6019 } else {
6020 /*
6021 * Either minor numbers in the large arena were exhausted
6022 * or a non socket application is doing the open.
6023 * Try to allocate from the small arena.
6024 */
6025 if ((connp->conn_dev =
6026 inet_minor_alloc(ip_minor_arena_sa)) == 0) {
6027 /* CONN_DEC_REF takes care of netstack_rele() */
6028 q->q_ptr = WR(q)->q_ptr = NULL;
6029 CONN_DEC_REF(connp);
6030 return (EBUSY);
6031 }
6032 connp->conn_minor_arena = ip_minor_arena_sa;
6033 }
6034
6035 maj = getemajor(*devp);
6036 *devp = makedevice(maj, (minor_t)connp->conn_dev);
6037
6038 /*
6039 * connp->conn_cred is crfree()ed in ipcl_conn_destroy()
6040 */
6041 connp->conn_cred = credp;
6042 connp->conn_cpid = curproc->p_pid;
6043 /* Cache things in ixa without an extra refhold */
6044 ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED));
6045 connp->conn_ixa->ixa_cred = connp->conn_cred;
6046 connp->conn_ixa->ixa_cpid = connp->conn_cpid;
6047 if (is_system_labeled())
6048 connp->conn_ixa->ixa_tsl = crgetlabel(connp->conn_cred);
6049
6050 /*
6051 * Handle IP_IOC_RTS_REQUEST and other ioctls which use conn_recv
6052 */
6053 connp->conn_recv = ip_conn_input;
6054 connp->conn_recvicmp = ip_conn_input_icmp;
6055
6056 crhold(connp->conn_cred);
6057
6058 /*
6059 * If the caller has the process-wide flag set, then default to MAC
6060 * exempt mode. This allows read-down to unlabeled hosts.
6061 */
6062 if (getpflags(NET_MAC_AWARE, credp) != 0)
6063 connp->conn_mac_mode = CONN_MAC_AWARE;
6064
6065 connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID);
6066
6067 connp->conn_rq = q;
6068 connp->conn_wq = WR(q);
6069
6070 /* Non-zero default values */
6071 connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP;
6072
6073 /*
6074 * Make the conn globally visible to walkers
6075 */
6076 ASSERT(connp->conn_ref == 1);
6077 mutex_enter(&connp->conn_lock);
6078 connp->conn_state_flags &= ~CONN_INCIPIENT;
6079 mutex_exit(&connp->conn_lock);
6080
6081 qprocson(q);
6082
6083 return (0);
6084 }
6085
6086 /*
6087 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid,
6088 * all of them are copied to the conn_t. If the req is "zero", the policy is
6089 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req
6090 * fields.
6091 * We keep only the latest setting of the policy and thus policy setting
6092 * is not incremental/cumulative.
6093 *
6094 * Requests to set policies with multiple alternative actions will
6095 * go through a different API.
6096 */
6097 int
6098 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req)
6099 {
6100 uint_t ah_req = 0;
6101 uint_t esp_req = 0;
6102 uint_t se_req = 0;
6103 ipsec_act_t *actp = NULL;
6104 uint_t nact;
6105 ipsec_policy_head_t *ph;
6106 boolean_t is_pol_reset, is_pol_inserted = B_FALSE;
6107 int error = 0;
6108 netstack_t *ns = connp->conn_netstack;
6109 ip_stack_t *ipst = ns->netstack_ip;
6110 ipsec_stack_t *ipss = ns->netstack_ipsec;
6111
6112 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER)
6113
6114 /*
6115 * The IP_SEC_OPT option does not allow variable length parameters,
6116 * hence a request cannot be NULL.
6117 */
6118 if (req == NULL)
6119 return (EINVAL);
6120
6121 ah_req = req->ipsr_ah_req;
6122 esp_req = req->ipsr_esp_req;
6123 se_req = req->ipsr_self_encap_req;
6124
6125 /* Don't allow setting self-encap without one or more of AH/ESP. */
6126 if (se_req != 0 && esp_req == 0 && ah_req == 0)
6127 return (EINVAL);
6128
6129 /*
6130 * Are we dealing with a request to reset the policy (i.e.
6131 * zero requests).
6132 */
6133 is_pol_reset = ((ah_req & REQ_MASK) == 0 &&
6134 (esp_req & REQ_MASK) == 0 &&
6135 (se_req & REQ_MASK) == 0);
6136
6137 if (!is_pol_reset) {
6138 /*
6139 * If we couldn't load IPsec, fail with "protocol
6140 * not supported".
6141 * IPsec may not have been loaded for a request with zero
6142 * policies, so we don't fail in this case.
6143 */
6144 mutex_enter(&ipss->ipsec_loader_lock);
6145 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) {
6146 mutex_exit(&ipss->ipsec_loader_lock);
6147 return (EPROTONOSUPPORT);
6148 }
6149 mutex_exit(&ipss->ipsec_loader_lock);
6150
6151 /*
6152 * Test for valid requests. Invalid algorithms
6153 * need to be tested by IPsec code because new
6154 * algorithms can be added dynamically.
6155 */
6156 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 ||
6157 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 ||
6158 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) {
6159 return (EINVAL);
6160 }
6161
6162 /*
6163 * Only privileged users can issue these
6164 * requests.
6165 */
6166 if (((ah_req & IPSEC_PREF_NEVER) ||
6167 (esp_req & IPSEC_PREF_NEVER) ||
6168 (se_req & IPSEC_PREF_NEVER)) &&
6169 secpolicy_ip_config(cr, B_FALSE) != 0) {
6170 return (EPERM);
6171 }
6172
6173 /*
6174 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER
6175 * are mutually exclusive.
6176 */
6177 if (((ah_req & REQ_MASK) == REQ_MASK) ||
6178 ((esp_req & REQ_MASK) == REQ_MASK) ||
6179 ((se_req & REQ_MASK) == REQ_MASK)) {
6180 /* Both of them are set */
6181 return (EINVAL);
6182 }
6183 }
6184
6185 ASSERT(MUTEX_HELD(&connp->conn_lock));
6186
6187 /*
6188 * If we have already cached policies in conn_connect(), don't
6189 * let them change now. We cache policies for connections
6190 * whose src,dst [addr, port] is known.
6191 */
6192 if (connp->conn_policy_cached) {
6193 return (EINVAL);
6194 }
6195
6196 /*
6197 * We have a zero policies, reset the connection policy if already
6198 * set. This will cause the connection to inherit the
6199 * global policy, if any.
6200 */
6201 if (is_pol_reset) {
6202 if (connp->conn_policy != NULL) {
6203 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack);
6204 connp->conn_policy = NULL;
6205 }
6206 connp->conn_in_enforce_policy = B_FALSE;
6207 connp->conn_out_enforce_policy = B_FALSE;
6208 return (0);
6209 }
6210
6211 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy,
6212 ipst->ips_netstack);
6213 if (ph == NULL)
6214 goto enomem;
6215
6216 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack);
6217 if (actp == NULL)
6218 goto enomem;
6219
6220 /*
6221 * Always insert IPv4 policy entries, since they can also apply to
6222 * ipv6 sockets being used in ipv4-compat mode.
6223 */
6224 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4,
6225 IPSEC_TYPE_INBOUND, ns))
6226 goto enomem;
6227 is_pol_inserted = B_TRUE;
6228 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4,
6229 IPSEC_TYPE_OUTBOUND, ns))
6230 goto enomem;
6231
6232 /*
6233 * We're looking at a v6 socket, also insert the v6-specific
6234 * entries.
6235 */
6236 if (connp->conn_family == AF_INET6) {
6237 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6,
6238 IPSEC_TYPE_INBOUND, ns))
6239 goto enomem;
6240 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6,
6241 IPSEC_TYPE_OUTBOUND, ns))
6242 goto enomem;
6243 }
6244
6245 ipsec_actvec_free(actp, nact);
6246
6247 /*
6248 * If the requests need security, set enforce_policy.
6249 * If the requests are IPSEC_PREF_NEVER, one should
6250 * still set conn_out_enforce_policy so that ip_set_destination
6251 * marks the ip_xmit_attr_t appropriatly. This is needed so that
6252 * for connections that we don't cache policy in at connect time,
6253 * if global policy matches in ip_output_attach_policy, we
6254 * don't wrongly inherit global policy. Similarly, we need
6255 * to set conn_in_enforce_policy also so that we don't verify
6256 * policy wrongly.
6257 */
6258 if ((ah_req & REQ_MASK) != 0 ||
6259 (esp_req & REQ_MASK) != 0 ||
6260 (se_req & REQ_MASK) != 0) {
6261 connp->conn_in_enforce_policy = B_TRUE;
6262 connp->conn_out_enforce_policy = B_TRUE;
6263 }
6264
6265 return (error);
6266 #undef REQ_MASK
6267
6268 /*
6269 * Common memory-allocation-failure exit path.
6270 */
6271 enomem:
6272 if (actp != NULL)
6273 ipsec_actvec_free(actp, nact);
6274 if (is_pol_inserted)
6275 ipsec_polhead_flush(ph, ns);
6276 return (ENOMEM);
6277 }
6278
6279 /*
6280 * Set socket options for joining and leaving multicast groups.
6281 * Common to IPv4 and IPv6; inet6 indicates the type of socket.
6282 * The caller has already check that the option name is consistent with
6283 * the address family of the socket.
6284 */
6285 int
6286 ip_opt_set_multicast_group(conn_t *connp, t_scalar_t name,
6287 uchar_t *invalp, boolean_t inet6, boolean_t checkonly)
6288 {
6289 int *i1 = (int *)invalp;
6290 int error = 0;
6291 ip_stack_t *ipst = connp->conn_netstack->netstack_ip;
6292 struct ip_mreq *v4_mreqp;
6293 struct ipv6_mreq *v6_mreqp;
6294 struct group_req *greqp;
6295 ire_t *ire;
6296 boolean_t done = B_FALSE;
6297 ipaddr_t ifaddr;
6298 in6_addr_t v6group;
6299 uint_t ifindex;
6300 boolean_t mcast_opt = B_TRUE;
6301 mcast_record_t fmode;
6302 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *,
6303 ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *);
6304
6305 switch (name) {
6306 case IP_ADD_MEMBERSHIP:
6307 case IPV6_JOIN_GROUP:
6308 mcast_opt = B_FALSE;
6309 /* FALLTHRU */
6310 case MCAST_JOIN_GROUP:
6311 fmode = MODE_IS_EXCLUDE;
6312 optfn = ip_opt_add_group;
6313 break;
6314
6315 case IP_DROP_MEMBERSHIP:
6316 case IPV6_LEAVE_GROUP:
6317 mcast_opt = B_FALSE;
6318 /* FALLTHRU */
6319 case MCAST_LEAVE_GROUP:
6320 fmode = MODE_IS_INCLUDE;
6321 optfn = ip_opt_delete_group;
6322 break;
6323 default:
6324 ASSERT(0);
6325 }
6326
6327 if (mcast_opt) {
6328 struct sockaddr_in *sin;
6329 struct sockaddr_in6 *sin6;
6330
6331 greqp = (struct group_req *)i1;
6332 if (greqp->gr_group.ss_family == AF_INET) {
6333 sin = (struct sockaddr_in *)&(greqp->gr_group);
6334 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, &v6group);
6335 } else {
6336 if (!inet6)
6337 return (EINVAL); /* Not on INET socket */
6338
6339 sin6 = (struct sockaddr_in6 *)&(greqp->gr_group);
6340 v6group = sin6->sin6_addr;
6341 }
6342 ifaddr = INADDR_ANY;
6343 ifindex = greqp->gr_interface;
6344 } else if (inet6) {
6345 v6_mreqp = (struct ipv6_mreq *)i1;
6346 v6group = v6_mreqp->ipv6mr_multiaddr;
6347 ifaddr = INADDR_ANY;
6348 ifindex = v6_mreqp->ipv6mr_interface;
6349 } else {
6350 v4_mreqp = (struct ip_mreq *)i1;
6351 IN6_INADDR_TO_V4MAPPED(&v4_mreqp->imr_multiaddr, &v6group);
6352 ifaddr = (ipaddr_t)v4_mreqp->imr_interface.s_addr;
6353 ifindex = 0;
6354 }
6355
6356 /*
6357 * In the multirouting case, we need to replicate
6358 * the request on all interfaces that will take part
6359 * in replication. We do so because multirouting is
6360 * reflective, thus we will probably receive multi-
6361 * casts on those interfaces.
6362 * The ip_multirt_apply_membership() succeeds if
6363 * the operation succeeds on at least one interface.
6364 */
6365 if (IN6_IS_ADDR_V4MAPPED(&v6group)) {
6366 ipaddr_t group;
6367
6368 IN6_V4MAPPED_TO_IPADDR(&v6group, group);
6369
6370 ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0,
6371 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6372 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6373 } else {
6374 ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0,
6375 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6376 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6377 }
6378 if (ire != NULL) {
6379 if (ire->ire_flags & RTF_MULTIRT) {
6380 error = ip_multirt_apply_membership(optfn, ire, connp,
6381 checkonly, &v6group, fmode, &ipv6_all_zeros);
6382 done = B_TRUE;
6383 }
6384 ire_refrele(ire);
6385 }
6386
6387 if (!done) {
6388 error = optfn(connp, checkonly, &v6group, ifaddr, ifindex,
6389 fmode, &ipv6_all_zeros);
6390 }
6391 return (error);
6392 }
6393
6394 /*
6395 * Set socket options for joining and leaving multicast groups
6396 * for specific sources.
6397 * Common to IPv4 and IPv6; inet6 indicates the type of socket.
6398 * The caller has already check that the option name is consistent with
6399 * the address family of the socket.
6400 */
6401 int
6402 ip_opt_set_multicast_sources(conn_t *connp, t_scalar_t name,
6403 uchar_t *invalp, boolean_t inet6, boolean_t checkonly)
6404 {
6405 int *i1 = (int *)invalp;
6406 int error = 0;
6407 ip_stack_t *ipst = connp->conn_netstack->netstack_ip;
6408 struct ip_mreq_source *imreqp;
6409 struct group_source_req *gsreqp;
6410 in6_addr_t v6group, v6src;
6411 uint32_t ifindex;
6412 ipaddr_t ifaddr;
6413 boolean_t mcast_opt = B_TRUE;
6414 mcast_record_t fmode;
6415 ire_t *ire;
6416 boolean_t done = B_FALSE;
6417 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *,
6418 ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *);
6419
6420 switch (name) {
6421 case IP_BLOCK_SOURCE:
6422 mcast_opt = B_FALSE;
6423 /* FALLTHRU */
6424 case MCAST_BLOCK_SOURCE:
6425 fmode = MODE_IS_EXCLUDE;
6426 optfn = ip_opt_add_group;
6427 break;
6428
6429 case IP_UNBLOCK_SOURCE:
6430 mcast_opt = B_FALSE;
6431 /* FALLTHRU */
6432 case MCAST_UNBLOCK_SOURCE:
6433 fmode = MODE_IS_EXCLUDE;
6434 optfn = ip_opt_delete_group;
6435 break;
6436
6437 case IP_ADD_SOURCE_MEMBERSHIP:
6438 mcast_opt = B_FALSE;
6439 /* FALLTHRU */
6440 case MCAST_JOIN_SOURCE_GROUP:
6441 fmode = MODE_IS_INCLUDE;
6442 optfn = ip_opt_add_group;
6443 break;
6444
6445 case IP_DROP_SOURCE_MEMBERSHIP:
6446 mcast_opt = B_FALSE;
6447 /* FALLTHRU */
6448 case MCAST_LEAVE_SOURCE_GROUP:
6449 fmode = MODE_IS_INCLUDE;
6450 optfn = ip_opt_delete_group;
6451 break;
6452 default:
6453 ASSERT(0);
6454 }
6455
6456 if (mcast_opt) {
6457 gsreqp = (struct group_source_req *)i1;
6458 ifindex = gsreqp->gsr_interface;
6459 if (gsreqp->gsr_group.ss_family == AF_INET) {
6460 struct sockaddr_in *s;
6461 s = (struct sockaddr_in *)&gsreqp->gsr_group;
6462 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6group);
6463 s = (struct sockaddr_in *)&gsreqp->gsr_source;
6464 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src);
6465 } else {
6466 struct sockaddr_in6 *s6;
6467
6468 if (!inet6)
6469 return (EINVAL); /* Not on INET socket */
6470
6471 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group;
6472 v6group = s6->sin6_addr;
6473 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source;
6474 v6src = s6->sin6_addr;
6475 }
6476 ifaddr = INADDR_ANY;
6477 } else {
6478 imreqp = (struct ip_mreq_source *)i1;
6479 IN6_INADDR_TO_V4MAPPED(&imreqp->imr_multiaddr, &v6group);
6480 IN6_INADDR_TO_V4MAPPED(&imreqp->imr_sourceaddr, &v6src);
6481 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr;
6482 ifindex = 0;
6483 }
6484
6485 /*
6486 * Handle src being mapped INADDR_ANY by changing it to unspecified.
6487 */
6488 if (IN6_IS_ADDR_V4MAPPED_ANY(&v6src))
6489 v6src = ipv6_all_zeros;
6490
6491 /*
6492 * In the multirouting case, we need to replicate
6493 * the request as noted in the mcast cases above.
6494 */
6495 if (IN6_IS_ADDR_V4MAPPED(&v6group)) {
6496 ipaddr_t group;
6497
6498 IN6_V4MAPPED_TO_IPADDR(&v6group, group);
6499
6500 ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0,
6501 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6502 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6503 } else {
6504 ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0,
6505 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6506 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6507 }
6508 if (ire != NULL) {
6509 if (ire->ire_flags & RTF_MULTIRT) {
6510 error = ip_multirt_apply_membership(optfn, ire, connp,
6511 checkonly, &v6group, fmode, &v6src);
6512 done = B_TRUE;
6513 }
6514 ire_refrele(ire);
6515 }
6516 if (!done) {
6517 error = optfn(connp, checkonly, &v6group, ifaddr, ifindex,
6518 fmode, &v6src);
6519 }
6520 return (error);
6521 }
6522
6523 /*
6524 * Given a destination address and a pointer to where to put the information
6525 * this routine fills in the mtuinfo.
6526 * The socket must be connected.
6527 * For sctp conn_faddr is the primary address.
6528 */
6529 int
6530 ip_fill_mtuinfo(conn_t *connp, ip_xmit_attr_t *ixa, struct ip6_mtuinfo *mtuinfo)
6531 {
6532 uint32_t pmtu = IP_MAXPACKET;
6533 uint_t scopeid;
6534
6535 if (IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6))
6536 return (-1);
6537
6538 /* In case we never sent or called ip_set_destination_v4/v6 */
6539 if (ixa->ixa_ire != NULL)
6540 pmtu = ip_get_pmtu(ixa);
6541
6542 if (ixa->ixa_flags & IXAF_SCOPEID_SET)
6543 scopeid = ixa->ixa_scopeid;
6544 else
6545 scopeid = 0;
6546
6547 bzero(mtuinfo, sizeof (*mtuinfo));
6548 mtuinfo->ip6m_addr.sin6_family = AF_INET6;
6549 mtuinfo->ip6m_addr.sin6_port = connp->conn_fport;
6550 mtuinfo->ip6m_addr.sin6_addr = connp->conn_faddr_v6;
6551 mtuinfo->ip6m_addr.sin6_scope_id = scopeid;
6552 mtuinfo->ip6m_mtu = pmtu;
6553
6554 return (sizeof (struct ip6_mtuinfo));
6555 }
6556
6557 /*
6558 * When the src multihoming is changed from weak to [strong, preferred]
6559 * ip_ire_rebind_walker is called to walk the list of all ire_t entries
6560 * and identify routes that were created by user-applications in the
6561 * unbound state (i.e., without RTA_IFP), and for which an ire_ill is not
6562 * currently defined. These routes are then 'rebound', i.e., their ire_ill
6563 * is selected by finding an interface route for the gateway.
6564 */
6565 /* ARGSUSED */
6566 void
6567 ip_ire_rebind_walker(ire_t *ire, void *notused)
6568 {
6569 if (!ire->ire_unbound || ire->ire_ill != NULL)
6570 return;
6571 ire_rebind(ire);
6572 ire_delete(ire);
6573 }
6574
6575 /*
6576 * When the src multihoming is changed from [strong, preferred] to weak,
6577 * ip_ire_unbind_walker is called to walk the list of all ire_t entries, and
6578 * set any entries that were created by user-applications in the unbound state
6579 * (i.e., without RTA_IFP) back to having a NULL ire_ill.
6580 */
6581 /* ARGSUSED */
6582 void
6583 ip_ire_unbind_walker(ire_t *ire, void *notused)
6584 {
6585 ire_t *new_ire;
6586
6587 if (!ire->ire_unbound || ire->ire_ill == NULL)
6588 return;
6589 if (ire->ire_ipversion == IPV6_VERSION) {
6590 new_ire = ire_create_v6(&ire->ire_addr_v6, &ire->ire_mask_v6,
6591 &ire->ire_gateway_addr_v6, ire->ire_type, NULL,
6592 ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst);
6593 } else {
6594 new_ire = ire_create((uchar_t *)&ire->ire_addr,
6595 (uchar_t *)&ire->ire_mask,
6596 (uchar_t *)&ire->ire_gateway_addr, ire->ire_type, NULL,
6597 ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst);
6598 }
6599 if (new_ire == NULL)
6600 return;
6601 new_ire->ire_unbound = B_TRUE;
6602 /*
6603 * The bound ire must first be deleted so that we don't return
6604 * the existing one on the attempt to add the unbound new_ire.
6605 */
6606 ire_delete(ire);
6607 new_ire = ire_add(new_ire);
6608 if (new_ire != NULL)
6609 ire_refrele(new_ire);
6610 }
6611
6612 /*
6613 * When the settings of ip*_strict_src_multihoming tunables are changed,
6614 * all cached routes need to be recomputed. This recomputation needs to be
6615 * done when going from weaker to stronger modes so that the cached ire
6616 * for the connection does not violate the current ip*_strict_src_multihoming
6617 * setting. It also needs to be done when going from stronger to weaker modes,
6618 * so that we fall back to matching on the longest-matching-route (as opposed
6619 * to a shorter match that may have been selected in the strong mode
6620 * to satisfy src_multihoming settings).
6621 *
6622 * The cached ixa_ire entires for all conn_t entries are marked as
6623 * "verify" so that they will be recomputed for the next packet.
6624 */
6625 void
6626 conn_ire_revalidate(conn_t *connp, void *arg)
6627 {
6628 boolean_t isv6 = (boolean_t)arg;
6629
6630 if ((isv6 && connp->conn_ipversion != IPV6_VERSION) ||
6631 (!isv6 && connp->conn_ipversion != IPV4_VERSION))
6632 return;
6633 connp->conn_ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
6634 }
6635
6636 /*
6637 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases,
6638 * When an ipf is passed here for the first time, if
6639 * we already have in-order fragments on the queue, we convert from the fast-
6640 * path reassembly scheme to the hard-case scheme. From then on, additional
6641 * fragments are reassembled here. We keep track of the start and end offsets
6642 * of each piece, and the number of holes in the chain. When the hole count
6643 * goes to zero, we are done!
6644 *
6645 * The ipf_count will be updated to account for any mblk(s) added (pointed to
6646 * by mp) or subtracted (freeb()ed dups), upon return the caller must update
6647 * ipfb_count and ill_frag_count by the difference of ipf_count before and
6648 * after the call to ip_reassemble().
6649 */
6650 int
6651 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill,
6652 size_t msg_len)
6653 {
6654 uint_t end;
6655 mblk_t *next_mp;
6656 mblk_t *mp1;
6657 uint_t offset;
6658 boolean_t incr_dups = B_TRUE;
6659 boolean_t offset_zero_seen = B_FALSE;
6660 boolean_t pkt_boundary_checked = B_FALSE;
6661
6662 /* If start == 0 then ipf_nf_hdr_len has to be set. */
6663 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0);
6664
6665 /* Add in byte count */
6666 ipf->ipf_count += msg_len;
6667 if (ipf->ipf_end) {
6668 /*
6669 * We were part way through in-order reassembly, but now there
6670 * is a hole. We walk through messages already queued, and
6671 * mark them for hard case reassembly. We know that up till
6672 * now they were in order starting from offset zero.
6673 */
6674 offset = 0;
6675 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) {
6676 IP_REASS_SET_START(mp1, offset);
6677 if (offset == 0) {
6678 ASSERT(ipf->ipf_nf_hdr_len != 0);
6679 offset = -ipf->ipf_nf_hdr_len;
6680 }
6681 offset += mp1->b_wptr - mp1->b_rptr;
6682 IP_REASS_SET_END(mp1, offset);
6683 }
6684 /* One hole at the end. */
6685 ipf->ipf_hole_cnt = 1;
6686 /* Brand it as a hard case, forever. */
6687 ipf->ipf_end = 0;
6688 }
6689 /* Walk through all the new pieces. */
6690 do {
6691 end = start + (mp->b_wptr - mp->b_rptr);
6692 /*
6693 * If start is 0, decrease 'end' only for the first mblk of
6694 * the fragment. Otherwise 'end' can get wrong value in the
6695 * second pass of the loop if first mblk is exactly the
6696 * size of ipf_nf_hdr_len.
6697 */
6698 if (start == 0 && !offset_zero_seen) {
6699 /* First segment */
6700 ASSERT(ipf->ipf_nf_hdr_len != 0);
6701 end -= ipf->ipf_nf_hdr_len;
6702 offset_zero_seen = B_TRUE;
6703 }
6704 next_mp = mp->b_cont;
6705 /*
6706 * We are checking to see if there is any interesing data
6707 * to process. If there isn't and the mblk isn't the
6708 * one which carries the unfragmentable header then we
6709 * drop it. It's possible to have just the unfragmentable
6710 * header come through without any data. That needs to be
6711 * saved.
6712 *
6713 * If the assert at the top of this function holds then the
6714 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code
6715 * is infrequently traveled enough that the test is left in
6716 * to protect against future code changes which break that
6717 * invariant.
6718 */
6719 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) {
6720 /* Empty. Blast it. */
6721 IP_REASS_SET_START(mp, 0);
6722 IP_REASS_SET_END(mp, 0);
6723 /*
6724 * If the ipf points to the mblk we are about to free,
6725 * update ipf to point to the next mblk (or NULL
6726 * if none).
6727 */
6728 if (ipf->ipf_mp->b_cont == mp)
6729 ipf->ipf_mp->b_cont = next_mp;
6730 freeb(mp);
6731 continue;
6732 }
6733 mp->b_cont = NULL;
6734 IP_REASS_SET_START(mp, start);
6735 IP_REASS_SET_END(mp, end);
6736 if (!ipf->ipf_tail_mp) {
6737 ipf->ipf_tail_mp = mp;
6738 ipf->ipf_mp->b_cont = mp;
6739 if (start == 0 || !more) {
6740 ipf->ipf_hole_cnt = 1;
6741 /*
6742 * if the first fragment comes in more than one
6743 * mblk, this loop will be executed for each
6744 * mblk. Need to adjust hole count so exiting
6745 * this routine will leave hole count at 1.
6746 */
6747 if (next_mp)
6748 ipf->ipf_hole_cnt++;
6749 } else
6750 ipf->ipf_hole_cnt = 2;
6751 continue;
6752 } else if (ipf->ipf_last_frag_seen && !more &&
6753 !pkt_boundary_checked) {
6754 /*
6755 * We check datagram boundary only if this fragment
6756 * claims to be the last fragment and we have seen a
6757 * last fragment in the past too. We do this only
6758 * once for a given fragment.
6759 *
6760 * start cannot be 0 here as fragments with start=0
6761 * and MF=0 gets handled as a complete packet. These
6762 * fragments should not reach here.
6763 */
6764
6765 if (start + msgdsize(mp) !=
6766 IP_REASS_END(ipf->ipf_tail_mp)) {
6767 /*
6768 * We have two fragments both of which claim
6769 * to be the last fragment but gives conflicting
6770 * information about the whole datagram size.
6771 * Something fishy is going on. Drop the
6772 * fragment and free up the reassembly list.
6773 */
6774 return (IP_REASS_FAILED);
6775 }
6776
6777 /*
6778 * We shouldn't come to this code block again for this
6779 * particular fragment.
6780 */
6781 pkt_boundary_checked = B_TRUE;
6782 }
6783
6784 /* New stuff at or beyond tail? */
6785 offset = IP_REASS_END(ipf->ipf_tail_mp);
6786 if (start >= offset) {
6787 if (ipf->ipf_last_frag_seen) {
6788 /* current fragment is beyond last fragment */
6789 return (IP_REASS_FAILED);
6790 }
6791 /* Link it on end. */
6792 ipf->ipf_tail_mp->b_cont = mp;
6793 ipf->ipf_tail_mp = mp;
6794 if (more) {
6795 if (start != offset)
6796 ipf->ipf_hole_cnt++;
6797 } else if (start == offset && next_mp == NULL)
6798 ipf->ipf_hole_cnt--;
6799 continue;
6800 }
6801 mp1 = ipf->ipf_mp->b_cont;
6802 offset = IP_REASS_START(mp1);
6803 /* New stuff at the front? */
6804 if (start < offset) {
6805 if (start == 0) {
6806 if (end >= offset) {
6807 /* Nailed the hole at the begining. */
6808 ipf->ipf_hole_cnt--;
6809 }
6810 } else if (end < offset) {
6811 /*
6812 * A hole, stuff, and a hole where there used
6813 * to be just a hole.
6814 */
6815 ipf->ipf_hole_cnt++;
6816 }
6817 mp->b_cont = mp1;
6818 /* Check for overlap. */
6819 while (end > offset) {
6820 if (end < IP_REASS_END(mp1)) {
6821 mp->b_wptr -= end - offset;
6822 IP_REASS_SET_END(mp, offset);
6823 BUMP_MIB(ill->ill_ip_mib,
6824 ipIfStatsReasmPartDups);
6825 break;
6826 }
6827 /* Did we cover another hole? */
6828 if ((mp1->b_cont &&
6829 IP_REASS_END(mp1) !=
6830 IP_REASS_START(mp1->b_cont) &&
6831 end >= IP_REASS_START(mp1->b_cont)) ||
6832 (!ipf->ipf_last_frag_seen && !more)) {
6833 ipf->ipf_hole_cnt--;
6834 }
6835 /* Clip out mp1. */
6836 if ((mp->b_cont = mp1->b_cont) == NULL) {
6837 /*
6838 * After clipping out mp1, this guy
6839 * is now hanging off the end.
6840 */
6841 ipf->ipf_tail_mp = mp;
6842 }
6843 IP_REASS_SET_START(mp1, 0);
6844 IP_REASS_SET_END(mp1, 0);
6845 /* Subtract byte count */
6846 ipf->ipf_count -= mp1->b_datap->db_lim -
6847 mp1->b_datap->db_base;
6848 freeb(mp1);
6849 BUMP_MIB(ill->ill_ip_mib,
6850 ipIfStatsReasmPartDups);
6851 mp1 = mp->b_cont;
6852 if (!mp1)
6853 break;
6854 offset = IP_REASS_START(mp1);
6855 }
6856 ipf->ipf_mp->b_cont = mp;
6857 continue;
6858 }
6859 /*
6860 * The new piece starts somewhere between the start of the head
6861 * and before the end of the tail.
6862 */
6863 for (; mp1; mp1 = mp1->b_cont) {
6864 offset = IP_REASS_END(mp1);
6865 if (start < offset) {
6866 if (end <= offset) {
6867 /* Nothing new. */
6868 IP_REASS_SET_START(mp, 0);
6869 IP_REASS_SET_END(mp, 0);
6870 /* Subtract byte count */
6871 ipf->ipf_count -= mp->b_datap->db_lim -
6872 mp->b_datap->db_base;
6873 if (incr_dups) {
6874 ipf->ipf_num_dups++;
6875 incr_dups = B_FALSE;
6876 }
6877 freeb(mp);
6878 BUMP_MIB(ill->ill_ip_mib,
6879 ipIfStatsReasmDuplicates);
6880 break;
6881 }
6882 /*
6883 * Trim redundant stuff off beginning of new
6884 * piece.
6885 */
6886 IP_REASS_SET_START(mp, offset);
6887 mp->b_rptr += offset - start;
6888 BUMP_MIB(ill->ill_ip_mib,
6889 ipIfStatsReasmPartDups);
6890 start = offset;
6891 if (!mp1->b_cont) {
6892 /*
6893 * After trimming, this guy is now
6894 * hanging off the end.
6895 */
6896 mp1->b_cont = mp;
6897 ipf->ipf_tail_mp = mp;
6898 if (!more) {
6899 ipf->ipf_hole_cnt--;
6900 }
6901 break;
6902 }
6903 }
6904 if (start >= IP_REASS_START(mp1->b_cont))
6905 continue;
6906 /* Fill a hole */
6907 if (start > offset)
6908 ipf->ipf_hole_cnt++;
6909 mp->b_cont = mp1->b_cont;
6910 mp1->b_cont = mp;
6911 mp1 = mp->b_cont;
6912 offset = IP_REASS_START(mp1);
6913 if (end >= offset) {
6914 ipf->ipf_hole_cnt--;
6915 /* Check for overlap. */
6916 while (end > offset) {
6917 if (end < IP_REASS_END(mp1)) {
6918 mp->b_wptr -= end - offset;
6919 IP_REASS_SET_END(mp, offset);
6920 /*
6921 * TODO we might bump
6922 * this up twice if there is
6923 * overlap at both ends.
6924 */
6925 BUMP_MIB(ill->ill_ip_mib,
6926 ipIfStatsReasmPartDups);
6927 break;
6928 }
6929 /* Did we cover another hole? */
6930 if ((mp1->b_cont &&
6931 IP_REASS_END(mp1)
6932 != IP_REASS_START(mp1->b_cont) &&
6933 end >=
6934 IP_REASS_START(mp1->b_cont)) ||
6935 (!ipf->ipf_last_frag_seen &&
6936 !more)) {
6937 ipf->ipf_hole_cnt--;
6938 }
6939 /* Clip out mp1. */
6940 if ((mp->b_cont = mp1->b_cont) ==
6941 NULL) {
6942 /*
6943 * After clipping out mp1,
6944 * this guy is now hanging
6945 * off the end.
6946 */
6947 ipf->ipf_tail_mp = mp;
6948 }
6949 IP_REASS_SET_START(mp1, 0);
6950 IP_REASS_SET_END(mp1, 0);
6951 /* Subtract byte count */
6952 ipf->ipf_count -=
6953 mp1->b_datap->db_lim -
6954 mp1->b_datap->db_base;
6955 freeb(mp1);
6956 BUMP_MIB(ill->ill_ip_mib,
6957 ipIfStatsReasmPartDups);
6958 mp1 = mp->b_cont;
6959 if (!mp1)
6960 break;
6961 offset = IP_REASS_START(mp1);
6962 }
6963 }
6964 break;
6965 }
6966 } while (start = end, mp = next_mp);
6967
6968 /* Fragment just processed could be the last one. Remember this fact */
6969 if (!more)
6970 ipf->ipf_last_frag_seen = B_TRUE;
6971
6972 /* Still got holes? */
6973 if (ipf->ipf_hole_cnt)
6974 return (IP_REASS_PARTIAL);
6975 /* Clean up overloaded fields to avoid upstream disasters. */
6976 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) {
6977 IP_REASS_SET_START(mp1, 0);
6978 IP_REASS_SET_END(mp1, 0);
6979 }
6980 return (IP_REASS_COMPLETE);
6981 }
6982
6983 /*
6984 * Fragmentation reassembly. Each ILL has a hash table for
6985 * queuing packets undergoing reassembly for all IPIFs
6986 * associated with the ILL. The hash is based on the packet
6987 * IP ident field. The ILL frag hash table was allocated
6988 * as a timer block at the time the ILL was created. Whenever
6989 * there is anything on the reassembly queue, the timer will
6990 * be running. Returns the reassembled packet if reassembly completes.
6991 */
6992 mblk_t *
6993 ip_input_fragment(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira)
6994 {
6995 uint32_t frag_offset_flags;
6996 mblk_t *t_mp;
6997 ipaddr_t dst;
6998 uint8_t proto = ipha->ipha_protocol;
6999 uint32_t sum_val;
7000 uint16_t sum_flags;
7001 ipf_t *ipf;
7002 ipf_t **ipfp;
7003 ipfb_t *ipfb;
7004 uint16_t ident;
7005 uint32_t offset;
7006 ipaddr_t src;
7007 uint_t hdr_length;
7008 uint32_t end;
7009 mblk_t *mp1;
7010 mblk_t *tail_mp;
7011 size_t count;
7012 size_t msg_len;
7013 uint8_t ecn_info = 0;
7014 uint32_t packet_size;
7015 boolean_t pruned = B_FALSE;
7016 ill_t *ill = ira->ira_ill;
7017 ip_stack_t *ipst = ill->ill_ipst;
7018
7019 /*
7020 * Drop the fragmented as early as possible, if
7021 * we don't have resource(s) to re-assemble.
7022 */
7023 if (ipst->ips_ip_reass_queue_bytes == 0) {
7024 freemsg(mp);
7025 return (NULL);
7026 }
7027
7028 /* Check for fragmentation offset; return if there's none */
7029 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) &
7030 (IPH_MF | IPH_OFFSET)) == 0)
7031 return (mp);
7032
7033 /*
7034 * We utilize hardware computed checksum info only for UDP since
7035 * IP fragmentation is a normal occurrence for the protocol. In
7036 * addition, checksum offload support for IP fragments carrying
7037 * UDP payload is commonly implemented across network adapters.
7038 */
7039 ASSERT(ira->ira_rill != NULL);
7040 if (proto == IPPROTO_UDP && dohwcksum &&
7041 ILL_HCKSUM_CAPABLE(ira->ira_rill) &&
7042 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) {
7043 mblk_t *mp1 = mp->b_cont;
7044 int32_t len;
7045
7046 /* Record checksum information from the packet */
7047 sum_val = (uint32_t)DB_CKSUM16(mp);
7048 sum_flags = DB_CKSUMFLAGS(mp);
7049
7050 /* IP payload offset from beginning of mblk */
7051 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr;
7052
7053 if ((sum_flags & HCK_PARTIALCKSUM) &&
7054 (mp1 == NULL || mp1->b_cont == NULL) &&
7055 offset >= DB_CKSUMSTART(mp) &&
7056 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) {
7057 uint32_t adj;
7058 /*
7059 * Partial checksum has been calculated by hardware
7060 * and attached to the packet; in addition, any
7061 * prepended extraneous data is even byte aligned.
7062 * If any such data exists, we adjust the checksum;
7063 * this would also handle any postpended data.
7064 */
7065 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp),
7066 mp, mp1, len, adj);
7067
7068 /* One's complement subtract extraneous checksum */
7069 if (adj >= sum_val)
7070 sum_val = ~(adj - sum_val) & 0xFFFF;
7071 else
7072 sum_val -= adj;
7073 }
7074 } else {
7075 sum_val = 0;
7076 sum_flags = 0;
7077 }
7078
7079 /* Clear hardware checksumming flag */
7080 DB_CKSUMFLAGS(mp) = 0;
7081
7082 ident = ipha->ipha_ident;
7083 offset = (frag_offset_flags << 3) & 0xFFFF;
7084 src = ipha->ipha_src;
7085 dst = ipha->ipha_dst;
7086 hdr_length = IPH_HDR_LENGTH(ipha);
7087 end = ntohs(ipha->ipha_length) - hdr_length;
7088
7089 /* If end == 0 then we have a packet with no data, so just free it */
7090 if (end == 0) {
7091 freemsg(mp);
7092 return (NULL);
7093 }
7094
7095 /* Record the ECN field info. */
7096 ecn_info = (ipha->ipha_type_of_service & 0x3);
7097 if (offset != 0) {
7098 /*
7099 * If this isn't the first piece, strip the header, and
7100 * add the offset to the end value.
7101 */
7102 mp->b_rptr += hdr_length;
7103 end += offset;
7104 }
7105
7106 /* Handle vnic loopback of fragments */
7107 if (mp->b_datap->db_ref > 2)
7108 msg_len = 0;
7109 else
7110 msg_len = MBLKSIZE(mp);
7111
7112 tail_mp = mp;
7113 while (tail_mp->b_cont != NULL) {
7114 tail_mp = tail_mp->b_cont;
7115 if (tail_mp->b_datap->db_ref <= 2)
7116 msg_len += MBLKSIZE(tail_mp);
7117 }
7118
7119 /* If the reassembly list for this ILL will get too big, prune it */
7120 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >=
7121 ipst->ips_ip_reass_queue_bytes) {
7122 DTRACE_PROBE3(ip_reass_queue_bytes, uint_t, msg_len,
7123 uint_t, ill->ill_frag_count,
7124 uint_t, ipst->ips_ip_reass_queue_bytes);
7125 ill_frag_prune(ill,
7126 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 :
7127 (ipst->ips_ip_reass_queue_bytes - msg_len));
7128 pruned = B_TRUE;
7129 }
7130
7131 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)];
7132 mutex_enter(&ipfb->ipfb_lock);
7133
7134 ipfp = &ipfb->ipfb_ipf;
7135 /* Try to find an existing fragment queue for this packet. */
7136 for (;;) {
7137 ipf = ipfp[0];
7138 if (ipf != NULL) {
7139 /*
7140 * It has to match on ident and src/dst address.
7141 */
7142 if (ipf->ipf_ident == ident &&
7143 ipf->ipf_src == src &&
7144 ipf->ipf_dst == dst &&
7145 ipf->ipf_protocol == proto) {
7146 /*
7147 * If we have received too many
7148 * duplicate fragments for this packet
7149 * free it.
7150 */
7151 if (ipf->ipf_num_dups > ip_max_frag_dups) {
7152 ill_frag_free_pkts(ill, ipfb, ipf, 1);
7153 freemsg(mp);
7154 mutex_exit(&ipfb->ipfb_lock);
7155 return (NULL);
7156 }
7157 /* Found it. */
7158 break;
7159 }
7160 ipfp = &ipf->ipf_hash_next;
7161 continue;
7162 }
7163
7164 /*
7165 * If we pruned the list, do we want to store this new
7166 * fragment?. We apply an optimization here based on the
7167 * fact that most fragments will be received in order.
7168 * So if the offset of this incoming fragment is zero,
7169 * it is the first fragment of a new packet. We will
7170 * keep it. Otherwise drop the fragment, as we have
7171 * probably pruned the packet already (since the
7172 * packet cannot be found).
7173 */
7174 if (pruned && offset != 0) {
7175 mutex_exit(&ipfb->ipfb_lock);
7176 freemsg(mp);
7177 return (NULL);
7178 }
7179
7180 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) {
7181 /*
7182 * Too many fragmented packets in this hash
7183 * bucket. Free the oldest.
7184 */
7185 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1);
7186 }
7187
7188 /* New guy. Allocate a frag message. */
7189 mp1 = allocb(sizeof (*ipf), BPRI_MED);
7190 if (mp1 == NULL) {
7191 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7192 ip_drop_input("ipIfStatsInDiscards", mp, ill);
7193 freemsg(mp);
7194 reass_done:
7195 mutex_exit(&ipfb->ipfb_lock);
7196 return (NULL);
7197 }
7198
7199 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds);
7200 mp1->b_cont = mp;
7201
7202 /* Initialize the fragment header. */
7203 ipf = (ipf_t *)mp1->b_rptr;
7204 ipf->ipf_mp = mp1;
7205 ipf->ipf_ptphn = ipfp;
7206 ipfp[0] = ipf;
7207 ipf->ipf_hash_next = NULL;
7208 ipf->ipf_ident = ident;
7209 ipf->ipf_protocol = proto;
7210 ipf->ipf_src = src;
7211 ipf->ipf_dst = dst;
7212 ipf->ipf_nf_hdr_len = 0;
7213 /* Record reassembly start time. */
7214 ipf->ipf_timestamp = gethrestime_sec();
7215 /* Record ipf generation and account for frag header */
7216 ipf->ipf_gen = ill->ill_ipf_gen++;
7217 ipf->ipf_count = MBLKSIZE(mp1);
7218 ipf->ipf_last_frag_seen = B_FALSE;
7219 ipf->ipf_ecn = ecn_info;
7220 ipf->ipf_num_dups = 0;
7221 ipfb->ipfb_frag_pkts++;
7222 ipf->ipf_checksum = 0;
7223 ipf->ipf_checksum_flags = 0;
7224
7225 /* Store checksum value in fragment header */
7226 if (sum_flags != 0) {
7227 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7228 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7229 ipf->ipf_checksum = sum_val;
7230 ipf->ipf_checksum_flags = sum_flags;
7231 }
7232
7233 /*
7234 * We handle reassembly two ways. In the easy case,
7235 * where all the fragments show up in order, we do
7236 * minimal bookkeeping, and just clip new pieces on
7237 * the end. If we ever see a hole, then we go off
7238 * to ip_reassemble which has to mark the pieces and
7239 * keep track of the number of holes, etc. Obviously,
7240 * the point of having both mechanisms is so we can
7241 * handle the easy case as efficiently as possible.
7242 */
7243 if (offset == 0) {
7244 /* Easy case, in-order reassembly so far. */
7245 ipf->ipf_count += msg_len;
7246 ipf->ipf_tail_mp = tail_mp;
7247 /*
7248 * Keep track of next expected offset in
7249 * ipf_end.
7250 */
7251 ipf->ipf_end = end;
7252 ipf->ipf_nf_hdr_len = hdr_length;
7253 } else {
7254 /* Hard case, hole at the beginning. */
7255 ipf->ipf_tail_mp = NULL;
7256 /*
7257 * ipf_end == 0 means that we have given up
7258 * on easy reassembly.
7259 */
7260 ipf->ipf_end = 0;
7261
7262 /* Forget checksum offload from now on */
7263 ipf->ipf_checksum_flags = 0;
7264
7265 /*
7266 * ipf_hole_cnt is set by ip_reassemble.
7267 * ipf_count is updated by ip_reassemble.
7268 * No need to check for return value here
7269 * as we don't expect reassembly to complete
7270 * or fail for the first fragment itself.
7271 */
7272 (void) ip_reassemble(mp, ipf,
7273 (frag_offset_flags & IPH_OFFSET) << 3,
7274 (frag_offset_flags & IPH_MF), ill, msg_len);
7275 }
7276 /* Update per ipfb and ill byte counts */
7277 ipfb->ipfb_count += ipf->ipf_count;
7278 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */
7279 atomic_add_32(&ill->ill_frag_count, ipf->ipf_count);
7280 /* If the frag timer wasn't already going, start it. */
7281 mutex_enter(&ill->ill_lock);
7282 ill_frag_timer_start(ill);
7283 mutex_exit(&ill->ill_lock);
7284 goto reass_done;
7285 }
7286
7287 /*
7288 * If the packet's flag has changed (it could be coming up
7289 * from an interface different than the previous, therefore
7290 * possibly different checksum capability), then forget about
7291 * any stored checksum states. Otherwise add the value to
7292 * the existing one stored in the fragment header.
7293 */
7294 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) {
7295 sum_val += ipf->ipf_checksum;
7296 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7297 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7298 ipf->ipf_checksum = sum_val;
7299 } else if (ipf->ipf_checksum_flags != 0) {
7300 /* Forget checksum offload from now on */
7301 ipf->ipf_checksum_flags = 0;
7302 }
7303
7304 /*
7305 * We have a new piece of a datagram which is already being
7306 * reassembled. Update the ECN info if all IP fragments
7307 * are ECN capable. If there is one which is not, clear
7308 * all the info. If there is at least one which has CE
7309 * code point, IP needs to report that up to transport.
7310 */
7311 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) {
7312 if (ecn_info == IPH_ECN_CE)
7313 ipf->ipf_ecn = IPH_ECN_CE;
7314 } else {
7315 ipf->ipf_ecn = IPH_ECN_NECT;
7316 }
7317 if (offset && ipf->ipf_end == offset) {
7318 /* The new fragment fits at the end */
7319 ipf->ipf_tail_mp->b_cont = mp;
7320 /* Update the byte count */
7321 ipf->ipf_count += msg_len;
7322 /* Update per ipfb and ill byte counts */
7323 ipfb->ipfb_count += msg_len;
7324 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */
7325 atomic_add_32(&ill->ill_frag_count, msg_len);
7326 if (frag_offset_flags & IPH_MF) {
7327 /* More to come. */
7328 ipf->ipf_end = end;
7329 ipf->ipf_tail_mp = tail_mp;
7330 goto reass_done;
7331 }
7332 } else {
7333 /* Go do the hard cases. */
7334 int ret;
7335
7336 if (offset == 0)
7337 ipf->ipf_nf_hdr_len = hdr_length;
7338
7339 /* Save current byte count */
7340 count = ipf->ipf_count;
7341 ret = ip_reassemble(mp, ipf,
7342 (frag_offset_flags & IPH_OFFSET) << 3,
7343 (frag_offset_flags & IPH_MF), ill, msg_len);
7344 /* Count of bytes added and subtracted (freeb()ed) */
7345 count = ipf->ipf_count - count;
7346 if (count) {
7347 /* Update per ipfb and ill byte counts */
7348 ipfb->ipfb_count += count;
7349 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */
7350 atomic_add_32(&ill->ill_frag_count, count);
7351 }
7352 if (ret == IP_REASS_PARTIAL) {
7353 goto reass_done;
7354 } else if (ret == IP_REASS_FAILED) {
7355 /* Reassembly failed. Free up all resources */
7356 ill_frag_free_pkts(ill, ipfb, ipf, 1);
7357 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) {
7358 IP_REASS_SET_START(t_mp, 0);
7359 IP_REASS_SET_END(t_mp, 0);
7360 }
7361 freemsg(mp);
7362 goto reass_done;
7363 }
7364 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */
7365 }
7366 /*
7367 * We have completed reassembly. Unhook the frag header from
7368 * the reassembly list.
7369 *
7370 * Before we free the frag header, record the ECN info
7371 * to report back to the transport.
7372 */
7373 ecn_info = ipf->ipf_ecn;
7374 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs);
7375 ipfp = ipf->ipf_ptphn;
7376
7377 /* We need to supply these to caller */
7378 if ((sum_flags = ipf->ipf_checksum_flags) != 0)
7379 sum_val = ipf->ipf_checksum;
7380 else
7381 sum_val = 0;
7382
7383 mp1 = ipf->ipf_mp;
7384 count = ipf->ipf_count;
7385 ipf = ipf->ipf_hash_next;
7386 if (ipf != NULL)
7387 ipf->ipf_ptphn = ipfp;
7388 ipfp[0] = ipf;
7389 atomic_add_32(&ill->ill_frag_count, -count);
7390 ASSERT(ipfb->ipfb_count >= count);
7391 ipfb->ipfb_count -= count;
7392 ipfb->ipfb_frag_pkts--;
7393 mutex_exit(&ipfb->ipfb_lock);
7394 /* Ditch the frag header. */
7395 mp = mp1->b_cont;
7396
7397 freeb(mp1);
7398
7399 /* Restore original IP length in header. */
7400 packet_size = (uint32_t)msgdsize(mp);
7401 if (packet_size > IP_MAXPACKET) {
7402 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7403 ip_drop_input("Reassembled packet too large", mp, ill);
7404 freemsg(mp);
7405 return (NULL);
7406 }
7407
7408 if (DB_REF(mp) > 1) {
7409 mblk_t *mp2 = copymsg(mp);
7410
7411 if (mp2 == NULL) {
7412 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7413 ip_drop_input("ipIfStatsInDiscards", mp, ill);
7414 freemsg(mp);
7415 return (NULL);
7416 }
7417 freemsg(mp);
7418 mp = mp2;
7419 }
7420 ipha = (ipha_t *)mp->b_rptr;
7421
7422 ipha->ipha_length = htons((uint16_t)packet_size);
7423 /* We're now complete, zip the frag state */
7424 ipha->ipha_fragment_offset_and_flags = 0;
7425 /* Record the ECN info. */
7426 ipha->ipha_type_of_service &= 0xFC;
7427 ipha->ipha_type_of_service |= ecn_info;
7428
7429 /* Update the receive attributes */
7430 ira->ira_pktlen = packet_size;
7431 ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha);
7432
7433 /* Reassembly is successful; set checksum information in packet */
7434 DB_CKSUM16(mp) = (uint16_t)sum_val;
7435 DB_CKSUMFLAGS(mp) = sum_flags;
7436 DB_CKSUMSTART(mp) = ira->ira_ip_hdr_length;
7437
7438 return (mp);
7439 }
7440
7441 /*
7442 * Pullup function that should be used for IP input in order to
7443 * ensure we do not loose the L2 source address; we need the l2 source
7444 * address for IP_RECVSLLA and for ndp_input.
7445 *
7446 * We return either NULL or b_rptr.
7447 */
7448 void *
7449 ip_pullup(mblk_t *mp, ssize_t len, ip_recv_attr_t *ira)
7450 {
7451 ill_t *ill = ira->ira_ill;
7452
7453 if (ip_rput_pullups++ == 0) {
7454 (void) mi_strlog(ill->ill_rq, 1, SL_ERROR|SL_TRACE,
7455 "ip_pullup: %s forced us to "
7456 " pullup pkt, hdr len %ld, hdr addr %p",
7457 ill->ill_name, len, (void *)mp->b_rptr);
7458 }
7459 if (!(ira->ira_flags & IRAF_L2SRC_SET))
7460 ip_setl2src(mp, ira, ira->ira_rill);
7461 ASSERT(ira->ira_flags & IRAF_L2SRC_SET);
7462 if (!pullupmsg(mp, len))
7463 return (NULL);
7464 else
7465 return (mp->b_rptr);
7466 }
7467
7468 /*
7469 * Make sure ira_l2src has an address. If we don't have one fill with zeros.
7470 * When called from the ULP ira_rill will be NULL hence the caller has to
7471 * pass in the ill.
7472 */
7473 /* ARGSUSED */
7474 void
7475 ip_setl2src(mblk_t *mp, ip_recv_attr_t *ira, ill_t *ill)
7476 {
7477 const uchar_t *addr;
7478 int alen;
7479
7480 if (ira->ira_flags & IRAF_L2SRC_SET)
7481 return;
7482
7483 ASSERT(ill != NULL);
7484 alen = ill->ill_phys_addr_length;
7485 ASSERT(alen <= sizeof (ira->ira_l2src));
7486 if (ira->ira_mhip != NULL &&
7487 (addr = ira->ira_mhip->mhi_saddr) != NULL) {
7488 bcopy(addr, ira->ira_l2src, alen);
7489 } else if ((ira->ira_flags & IRAF_L2SRC_LOOPBACK) &&
7490 (addr = ill->ill_phys_addr) != NULL) {
7491 bcopy(addr, ira->ira_l2src, alen);
7492 } else {
7493 bzero(ira->ira_l2src, alen);
7494 }
7495 ira->ira_flags |= IRAF_L2SRC_SET;
7496 }
7497
7498 /*
7499 * check ip header length and align it.
7500 */
7501 mblk_t *
7502 ip_check_and_align_header(mblk_t *mp, uint_t min_size, ip_recv_attr_t *ira)
7503 {
7504 ill_t *ill = ira->ira_ill;
7505 ssize_t len;
7506
7507 len = MBLKL(mp);
7508
7509 if (!OK_32PTR(mp->b_rptr))
7510 IP_STAT(ill->ill_ipst, ip_notaligned);
7511 else
7512 IP_STAT(ill->ill_ipst, ip_recv_pullup);
7513
7514 /* Guard against bogus device drivers */
7515 if (len < 0) {
7516 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7517 ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7518 freemsg(mp);
7519 return (NULL);
7520 }
7521
7522 if (len == 0) {
7523 /* GLD sometimes sends up mblk with b_rptr == b_wptr! */
7524 mblk_t *mp1 = mp->b_cont;
7525
7526 if (!(ira->ira_flags & IRAF_L2SRC_SET))
7527 ip_setl2src(mp, ira, ira->ira_rill);
7528 ASSERT(ira->ira_flags & IRAF_L2SRC_SET);
7529
7530 freeb(mp);
7531 mp = mp1;
7532 if (mp == NULL)
7533 return (NULL);
7534
7535 if (OK_32PTR(mp->b_rptr) && MBLKL(mp) >= min_size)
7536 return (mp);
7537 }
7538 if (ip_pullup(mp, min_size, ira) == NULL) {
7539 if (msgdsize(mp) < min_size) {
7540 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7541 ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7542 } else {
7543 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7544 ip_drop_input("ipIfStatsInDiscards", mp, ill);
7545 }
7546 freemsg(mp);
7547 return (NULL);
7548 }
7549 return (mp);
7550 }
7551
7552 /*
7553 * Common code for IPv4 and IPv6 to check and pullup multi-mblks
7554 */
7555 mblk_t *
7556 ip_check_length(mblk_t *mp, uchar_t *rptr, ssize_t len, uint_t pkt_len,
7557 uint_t min_size, ip_recv_attr_t *ira)
7558 {
7559 ill_t *ill = ira->ira_ill;
7560
7561 /*
7562 * Make sure we have data length consistent
7563 * with the IP header.
7564 */
7565 if (mp->b_cont == NULL) {
7566 /* pkt_len is based on ipha_len, not the mblk length */
7567 if (pkt_len < min_size) {
7568 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7569 ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7570 freemsg(mp);
7571 return (NULL);
7572 }
7573 if (len < 0) {
7574 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
7575 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
7576 freemsg(mp);
7577 return (NULL);
7578 }
7579 /* Drop any pad */
7580 mp->b_wptr = rptr + pkt_len;
7581 } else if ((len += msgdsize(mp->b_cont)) != 0) {
7582 ASSERT(pkt_len >= min_size);
7583 if (pkt_len < min_size) {
7584 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7585 ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7586 freemsg(mp);
7587 return (NULL);
7588 }
7589 if (len < 0) {
7590 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
7591 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
7592 freemsg(mp);
7593 return (NULL);
7594 }
7595 /* Drop any pad */
7596 (void) adjmsg(mp, -len);
7597 /*
7598 * adjmsg may have freed an mblk from the chain, hence
7599 * invalidate any hw checksum here. This will force IP to
7600 * calculate the checksum in sw, but only for this packet.
7601 */
7602 DB_CKSUMFLAGS(mp) = 0;
7603 IP_STAT(ill->ill_ipst, ip_multimblk);
7604 }
7605 return (mp);
7606 }
7607
7608 /*
7609 * Check that the IPv4 opt_len is consistent with the packet and pullup
7610 * the options.
7611 */
7612 mblk_t *
7613 ip_check_optlen(mblk_t *mp, ipha_t *ipha, uint_t opt_len, uint_t pkt_len,
7614 ip_recv_attr_t *ira)
7615 {
7616 ill_t *ill = ira->ira_ill;
7617 ssize_t len;
7618
7619 /* Assume no IPv6 packets arrive over the IPv4 queue */
7620 if (IPH_HDR_VERSION(ipha) != IPV4_VERSION) {
7621 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7622 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion);
7623 ip_drop_input("IPvN packet on IPv4 ill", mp, ill);
7624 freemsg(mp);
7625 return (NULL);
7626 }
7627
7628 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) {
7629 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7630 ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7631 freemsg(mp);
7632 return (NULL);
7633 }
7634 /*
7635 * Recompute complete header length and make sure we
7636 * have access to all of it.
7637 */
7638 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2;
7639 if (len > (mp->b_wptr - mp->b_rptr)) {
7640 if (len > pkt_len) {
7641 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7642 ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7643 freemsg(mp);
7644 return (NULL);
7645 }
7646 if (ip_pullup(mp, len, ira) == NULL) {
7647 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7648 ip_drop_input("ipIfStatsInDiscards", mp, ill);
7649 freemsg(mp);
7650 return (NULL);
7651 }
7652 }
7653 return (mp);
7654 }
7655
7656 /*
7657 * Returns a new ire, or the same ire, or NULL.
7658 * If a different IRE is returned, then it is held; the caller
7659 * needs to release it.
7660 * In no case is there any hold/release on the ire argument.
7661 */
7662 ire_t *
7663 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill)
7664 {
7665 ire_t *new_ire;
7666 ill_t *ire_ill;
7667 uint_t ifindex;
7668 ip_stack_t *ipst = ill->ill_ipst;
7669 boolean_t strict_check = B_FALSE;
7670
7671 /*
7672 * IPMP common case: if IRE and ILL are in the same group, there's no
7673 * issue (e.g. packet received on an underlying interface matched an
7674 * IRE_LOCAL on its associated group interface).
7675 */
7676 ASSERT(ire->ire_ill != NULL);
7677 if (IS_IN_SAME_ILLGRP(ill, ire->ire_ill))
7678 return (ire);
7679
7680 /*
7681 * Do another ire lookup here, using the ingress ill, to see if the
7682 * interface is in a usesrc group.
7683 * As long as the ills belong to the same group, we don't consider
7684 * them to be arriving on the wrong interface. Thus, if the switch
7685 * is doing inbound load spreading, we won't drop packets when the
7686 * ip*_strict_dst_multihoming switch is on.
7687 * We also need to check for IPIF_UNNUMBERED point2point interfaces
7688 * where the local address may not be unique. In this case we were
7689 * at the mercy of the initial ire lookup and the IRE_LOCAL it
7690 * actually returned. The new lookup, which is more specific, should
7691 * only find the IRE_LOCAL associated with the ingress ill if one
7692 * exists.
7693 */
7694 if (ire->ire_ipversion == IPV4_VERSION) {
7695 if (ipst->ips_ip_strict_dst_multihoming)
7696 strict_check = B_TRUE;
7697 new_ire = ire_ftable_lookup_v4(*((ipaddr_t *)addr), 0, 0,
7698 IRE_LOCAL, ill, ALL_ZONES, NULL,
7699 (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL);
7700 } else {
7701 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr));
7702 if (ipst->ips_ipv6_strict_dst_multihoming)
7703 strict_check = B_TRUE;
7704 new_ire = ire_ftable_lookup_v6((in6_addr_t *)addr, NULL, NULL,
7705 IRE_LOCAL, ill, ALL_ZONES, NULL,
7706 (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL);
7707 }
7708 /*
7709 * If the same ire that was returned in ip_input() is found then this
7710 * is an indication that usesrc groups are in use. The packet
7711 * arrived on a different ill in the group than the one associated with
7712 * the destination address. If a different ire was found then the same
7713 * IP address must be hosted on multiple ills. This is possible with
7714 * unnumbered point2point interfaces. We switch to use this new ire in
7715 * order to have accurate interface statistics.
7716 */
7717 if (new_ire != NULL) {
7718 /* Note: held in one case but not the other? Caller handles */
7719 if (new_ire != ire)
7720 return (new_ire);
7721 /* Unchanged */
7722 ire_refrele(new_ire);
7723 return (ire);
7724 }
7725
7726 /*
7727 * Chase pointers once and store locally.
7728 */
7729 ASSERT(ire->ire_ill != NULL);
7730 ire_ill = ire->ire_ill;
7731 ifindex = ill->ill_usesrc_ifindex;
7732
7733 /*
7734 * Check if it's a legal address on the 'usesrc' interface.
7735 * For IPMP data addresses the IRE_LOCAL is the upper, hence we
7736 * can just check phyint_ifindex.
7737 */
7738 if (ifindex != 0 && ifindex == ire_ill->ill_phyint->phyint_ifindex) {
7739 return (ire);
7740 }
7741
7742 /*
7743 * If the ip*_strict_dst_multihoming switch is on then we can
7744 * only accept this packet if the interface is marked as routing.
7745 */
7746 if (!(strict_check))
7747 return (ire);
7748
7749 if ((ill->ill_flags & ire->ire_ill->ill_flags & ILLF_ROUTER) != 0) {
7750 return (ire);
7751 }
7752 return (NULL);
7753 }
7754
7755 /*
7756 * This function is used to construct a mac_header_info_s from a
7757 * DL_UNITDATA_IND message.
7758 * The address fields in the mhi structure points into the message,
7759 * thus the caller can't use those fields after freeing the message.
7760 *
7761 * We determine whether the packet received is a non-unicast packet
7762 * and in doing so, determine whether or not it is broadcast vs multicast.
7763 * For it to be a broadcast packet, we must have the appropriate mblk_t
7764 * hanging off the ill_t. If this is either not present or doesn't match
7765 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed
7766 * to be multicast. Thus NICs that have no broadcast address (or no
7767 * capability for one, such as point to point links) cannot return as
7768 * the packet being broadcast.
7769 */
7770 void
7771 ip_dlur_to_mhi(ill_t *ill, mblk_t *mb, struct mac_header_info_s *mhip)
7772 {
7773 dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr;
7774 mblk_t *bmp;
7775 uint_t extra_offset;
7776
7777 bzero(mhip, sizeof (struct mac_header_info_s));
7778
7779 mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST;
7780
7781 if (ill->ill_sap_length < 0)
7782 extra_offset = 0;
7783 else
7784 extra_offset = ill->ill_sap_length;
7785
7786 mhip->mhi_daddr = (uchar_t *)ind + ind->dl_dest_addr_offset +
7787 extra_offset;
7788 mhip->mhi_saddr = (uchar_t *)ind + ind->dl_src_addr_offset +
7789 extra_offset;
7790
7791 if (!ind->dl_group_address)
7792 return;
7793
7794 /* Multicast or broadcast */
7795 mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST;
7796
7797 if (ind->dl_dest_addr_offset > sizeof (*ind) &&
7798 ind->dl_dest_addr_offset + ind->dl_dest_addr_length < MBLKL(mb) &&
7799 (bmp = ill->ill_bcast_mp) != NULL) {
7800 dl_unitdata_req_t *dlur;
7801 uint8_t *bphys_addr;
7802
7803 dlur = (dl_unitdata_req_t *)bmp->b_rptr;
7804 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset +
7805 extra_offset;
7806
7807 if (bcmp(mhip->mhi_daddr, bphys_addr,
7808 ind->dl_dest_addr_length) == 0)
7809 mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST;
7810 }
7811 }
7812
7813 /*
7814 * This function is used to construct a mac_header_info_s from a
7815 * M_DATA fastpath message from a DLPI driver.
7816 * The address fields in the mhi structure points into the message,
7817 * thus the caller can't use those fields after freeing the message.
7818 *
7819 * We determine whether the packet received is a non-unicast packet
7820 * and in doing so, determine whether or not it is broadcast vs multicast.
7821 * For it to be a broadcast packet, we must have the appropriate mblk_t
7822 * hanging off the ill_t. If this is either not present or doesn't match
7823 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed
7824 * to be multicast. Thus NICs that have no broadcast address (or no
7825 * capability for one, such as point to point links) cannot return as
7826 * the packet being broadcast.
7827 */
7828 void
7829 ip_mdata_to_mhi(ill_t *ill, mblk_t *mp, struct mac_header_info_s *mhip)
7830 {
7831 mblk_t *bmp;
7832 struct ether_header *pether;
7833
7834 bzero(mhip, sizeof (struct mac_header_info_s));
7835
7836 mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST;
7837
7838 pether = (struct ether_header *)((char *)mp->b_rptr
7839 - sizeof (struct ether_header));
7840
7841 /*
7842 * Make sure the interface is an ethernet type, since we don't
7843 * know the header format for anything but Ethernet. Also make
7844 * sure we are pointing correctly above db_base.
7845 */
7846 if (ill->ill_type != IFT_ETHER)
7847 return;
7848
7849 retry:
7850 if ((uchar_t *)pether < mp->b_datap->db_base)
7851 return;
7852
7853 /* Is there a VLAN tag? */
7854 if (ill->ill_isv6) {
7855 if (pether->ether_type != htons(ETHERTYPE_IPV6)) {
7856 pether = (struct ether_header *)((char *)pether - 4);
7857 goto retry;
7858 }
7859 } else {
7860 if (pether->ether_type != htons(ETHERTYPE_IP)) {
7861 pether = (struct ether_header *)((char *)pether - 4);
7862 goto retry;
7863 }
7864 }
7865 mhip->mhi_daddr = (uchar_t *)&pether->ether_dhost;
7866 mhip->mhi_saddr = (uchar_t *)&pether->ether_shost;
7867
7868 if (!(mhip->mhi_daddr[0] & 0x01))
7869 return;
7870
7871 /* Multicast or broadcast */
7872 mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST;
7873
7874 if ((bmp = ill->ill_bcast_mp) != NULL) {
7875 dl_unitdata_req_t *dlur;
7876 uint8_t *bphys_addr;
7877 uint_t addrlen;
7878
7879 dlur = (dl_unitdata_req_t *)bmp->b_rptr;
7880 addrlen = dlur->dl_dest_addr_length;
7881 if (ill->ill_sap_length < 0) {
7882 bphys_addr = (uchar_t *)dlur +
7883 dlur->dl_dest_addr_offset;
7884 addrlen += ill->ill_sap_length;
7885 } else {
7886 bphys_addr = (uchar_t *)dlur +
7887 dlur->dl_dest_addr_offset +
7888 ill->ill_sap_length;
7889 addrlen -= ill->ill_sap_length;
7890 }
7891 if (bcmp(mhip->mhi_daddr, bphys_addr, addrlen) == 0)
7892 mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST;
7893 }
7894 }
7895
7896 /*
7897 * Handle anything but M_DATA messages
7898 * We see the DL_UNITDATA_IND which are part
7899 * of the data path, and also the other messages from the driver.
7900 */
7901 void
7902 ip_rput_notdata(ill_t *ill, mblk_t *mp)
7903 {
7904 mblk_t *first_mp;
7905 struct iocblk *iocp;
7906 struct mac_header_info_s mhi;
7907
7908 switch (DB_TYPE(mp)) {
7909 case M_PROTO:
7910 case M_PCPROTO: {
7911 if (((dl_unitdata_ind_t *)mp->b_rptr)->dl_primitive !=
7912 DL_UNITDATA_IND) {
7913 /* Go handle anything other than data elsewhere. */
7914 ip_rput_dlpi(ill, mp);
7915 return;
7916 }
7917
7918 first_mp = mp;
7919 mp = first_mp->b_cont;
7920 first_mp->b_cont = NULL;
7921
7922 if (mp == NULL) {
7923 freeb(first_mp);
7924 return;
7925 }
7926 ip_dlur_to_mhi(ill, first_mp, &mhi);
7927 if (ill->ill_isv6)
7928 ip_input_v6(ill, NULL, mp, &mhi);
7929 else
7930 ip_input(ill, NULL, mp, &mhi);
7931
7932 /* Ditch the DLPI header. */
7933 freeb(first_mp);
7934 return;
7935 }
7936 case M_IOCACK:
7937 iocp = (struct iocblk *)mp->b_rptr;
7938 switch (iocp->ioc_cmd) {
7939 case DL_IOC_HDR_INFO:
7940 ill_fastpath_ack(ill, mp);
7941 return;
7942 default:
7943 putnext(ill->ill_rq, mp);
7944 return;
7945 }
7946 /* FALLTHRU */
7947 case M_ERROR:
7948 case M_HANGUP:
7949 mutex_enter(&ill->ill_lock);
7950 if (ill->ill_state_flags & ILL_CONDEMNED) {
7951 mutex_exit(&ill->ill_lock);
7952 freemsg(mp);
7953 return;
7954 }
7955 ill_refhold_locked(ill);
7956 mutex_exit(&ill->ill_lock);
7957 qwriter_ip(ill, ill->ill_rq, mp, ip_rput_other, CUR_OP,
7958 B_FALSE);
7959 return;
7960 case M_CTL:
7961 putnext(ill->ill_rq, mp);
7962 return;
7963 case M_IOCNAK:
7964 ip1dbg(("got iocnak "));
7965 iocp = (struct iocblk *)mp->b_rptr;
7966 switch (iocp->ioc_cmd) {
7967 case DL_IOC_HDR_INFO:
7968 ip_rput_other(NULL, ill->ill_rq, mp, NULL);
7969 return;
7970 default:
7971 break;
7972 }
7973 /* FALLTHRU */
7974 default:
7975 putnext(ill->ill_rq, mp);
7976 return;
7977 }
7978 }
7979
7980 /* Read side put procedure. Packets coming from the wire arrive here. */
7981 void
7982 ip_rput(queue_t *q, mblk_t *mp)
7983 {
7984 ill_t *ill;
7985 union DL_primitives *dl;
7986
7987 ill = (ill_t *)q->q_ptr;
7988
7989 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) {
7990 /*
7991 * If things are opening or closing, only accept high-priority
7992 * DLPI messages. (On open ill->ill_ipif has not yet been
7993 * created; on close, things hanging off the ill may have been
7994 * freed already.)
7995 */
7996 dl = (union DL_primitives *)mp->b_rptr;
7997 if (DB_TYPE(mp) != M_PCPROTO ||
7998 dl->dl_primitive == DL_UNITDATA_IND) {
7999 inet_freemsg(mp);
8000 return;
8001 }
8002 }
8003 if (DB_TYPE(mp) == M_DATA) {
8004 struct mac_header_info_s mhi;
8005
8006 ip_mdata_to_mhi(ill, mp, &mhi);
8007 ip_input(ill, NULL, mp, &mhi);
8008 } else {
8009 ip_rput_notdata(ill, mp);
8010 }
8011 }
8012
8013 /*
8014 * Move the information to a copy.
8015 */
8016 mblk_t *
8017 ip_fix_dbref(mblk_t *mp, ip_recv_attr_t *ira)
8018 {
8019 mblk_t *mp1;
8020 ill_t *ill = ira->ira_ill;
8021 ip_stack_t *ipst = ill->ill_ipst;
8022
8023 IP_STAT(ipst, ip_db_ref);
8024
8025 /* Make sure we have ira_l2src before we loose the original mblk */
8026 if (!(ira->ira_flags & IRAF_L2SRC_SET))
8027 ip_setl2src(mp, ira, ira->ira_rill);
8028
8029 mp1 = copymsg(mp);
8030 if (mp1 == NULL) {
8031 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
8032 ip_drop_input("ipIfStatsInDiscards", mp, ill);
8033 freemsg(mp);
8034 return (NULL);
8035 }
8036 /* preserve the hardware checksum flags and data, if present */
8037 if (DB_CKSUMFLAGS(mp) != 0) {
8038 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp);
8039 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp);
8040 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp);
8041 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp);
8042 DB_CKSUM16(mp1) = DB_CKSUM16(mp);
8043 }
8044 freemsg(mp);
8045 return (mp1);
8046 }
8047
8048 static void
8049 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err,
8050 t_uscalar_t err)
8051 {
8052 if (dl_err == DL_SYSERR) {
8053 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
8054 "%s: %s failed: DL_SYSERR (errno %u)\n",
8055 ill->ill_name, dl_primstr(prim), err);
8056 return;
8057 }
8058
8059 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
8060 "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim),
8061 dl_errstr(dl_err));
8062 }
8063
8064 /*
8065 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other
8066 * than DL_UNITDATA_IND messages. If we need to process this message
8067 * exclusively, we call qwriter_ip, in which case we also need to call
8068 * ill_refhold before that, since qwriter_ip does an ill_refrele.
8069 */
8070 void
8071 ip_rput_dlpi(ill_t *ill, mblk_t *mp)
8072 {
8073 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr;
8074 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa;
8075 queue_t *q = ill->ill_rq;
8076 t_uscalar_t prim = dloa->dl_primitive;
8077 t_uscalar_t reqprim = DL_PRIM_INVAL;
8078
8079 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi",
8080 char *, dl_primstr(prim), ill_t *, ill);
8081 ip1dbg(("ip_rput_dlpi"));
8082
8083 /*
8084 * If we received an ACK but didn't send a request for it, then it
8085 * can't be part of any pending operation; discard up-front.
8086 */
8087 switch (prim) {
8088 case DL_ERROR_ACK:
8089 reqprim = dlea->dl_error_primitive;
8090 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK for %s (0x%x): %s "
8091 "(0x%x), unix %u\n", ill->ill_name, dl_primstr(reqprim),
8092 reqprim, dl_errstr(dlea->dl_errno), dlea->dl_errno,
8093 dlea->dl_unix_errno));
8094 break;
8095 case DL_OK_ACK:
8096 reqprim = dloa->dl_correct_primitive;
8097 break;
8098 case DL_INFO_ACK:
8099 reqprim = DL_INFO_REQ;
8100 break;
8101 case DL_BIND_ACK:
8102 reqprim = DL_BIND_REQ;
8103 break;
8104 case DL_PHYS_ADDR_ACK:
8105 reqprim = DL_PHYS_ADDR_REQ;
8106 break;
8107 case DL_NOTIFY_ACK:
8108 reqprim = DL_NOTIFY_REQ;
8109 break;
8110 case DL_CAPABILITY_ACK:
8111 reqprim = DL_CAPABILITY_REQ;
8112 break;
8113 }
8114
8115 if (prim != DL_NOTIFY_IND) {
8116 if (reqprim == DL_PRIM_INVAL ||
8117 !ill_dlpi_pending(ill, reqprim)) {
8118 /* Not a DLPI message we support or expected */
8119 freemsg(mp);
8120 return;
8121 }
8122 ip1dbg(("ip_rput: received %s for %s\n", dl_primstr(prim),
8123 dl_primstr(reqprim)));
8124 }
8125
8126 switch (reqprim) {
8127 case DL_UNBIND_REQ:
8128 /*
8129 * NOTE: we mark the unbind as complete even if we got a
8130 * DL_ERROR_ACK, since there's not much else we can do.
8131 */
8132 mutex_enter(&ill->ill_lock);
8133 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS;
8134 cv_signal(&ill->ill_cv);
8135 mutex_exit(&ill->ill_lock);
8136 break;
8137
8138 case DL_ENABMULTI_REQ:
8139 if (prim == DL_OK_ACK) {
8140 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS)
8141 ill->ill_dlpi_multicast_state = IDS_OK;
8142 }
8143 break;
8144 }
8145
8146 /*
8147 * The message is one we're waiting for (or DL_NOTIFY_IND), but we
8148 * need to become writer to continue to process it. Because an
8149 * exclusive operation doesn't complete until replies to all queued
8150 * DLPI messages have been received, we know we're in the middle of an
8151 * exclusive operation and pass CUR_OP (except for DL_NOTIFY_IND).
8152 *
8153 * As required by qwriter_ip(), we refhold the ill; it will refrele.
8154 * Since this is on the ill stream we unconditionally bump up the
8155 * refcount without doing ILL_CAN_LOOKUP().
8156 */
8157 ill_refhold(ill);
8158 if (prim == DL_NOTIFY_IND)
8159 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE);
8160 else
8161 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE);
8162 }
8163
8164 /*
8165 * Handling of DLPI messages that require exclusive access to the ipsq.
8166 *
8167 * Need to do ipsq_pending_mp_get on ioctl completion, which could
8168 * happen here. (along with mi_copy_done)
8169 */
8170 /* ARGSUSED */
8171 static void
8172 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
8173 {
8174 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr;
8175 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa;
8176 int err = 0;
8177 ill_t *ill = (ill_t *)q->q_ptr;
8178 ipif_t *ipif = NULL;
8179 mblk_t *mp1 = NULL;
8180 conn_t *connp = NULL;
8181 t_uscalar_t paddrreq;
8182 mblk_t *mp_hw;
8183 boolean_t success;
8184 boolean_t ioctl_aborted = B_FALSE;
8185 boolean_t log = B_TRUE;
8186
8187 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer",
8188 char *, dl_primstr(dloa->dl_primitive), ill_t *, ill);
8189
8190 ip1dbg(("ip_rput_dlpi_writer .."));
8191 ASSERT(ipsq->ipsq_xop == ill->ill_phyint->phyint_ipsq->ipsq_xop);
8192 ASSERT(IAM_WRITER_ILL(ill));
8193
8194 ipif = ipsq->ipsq_xop->ipx_pending_ipif;
8195 /*
8196 * The current ioctl could have been aborted by the user and a new
8197 * ioctl to bring up another ill could have started. We could still
8198 * get a response from the driver later.
8199 */
8200 if (ipif != NULL && ipif->ipif_ill != ill)
8201 ioctl_aborted = B_TRUE;
8202
8203 switch (dloa->dl_primitive) {
8204 case DL_ERROR_ACK:
8205 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n",
8206 dl_primstr(dlea->dl_error_primitive)));
8207
8208 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer error",
8209 char *, dl_primstr(dlea->dl_error_primitive),
8210 ill_t *, ill);
8211
8212 switch (dlea->dl_error_primitive) {
8213 case DL_DISABMULTI_REQ:
8214 ill_dlpi_done(ill, dlea->dl_error_primitive);
8215 break;
8216 case DL_PROMISCON_REQ:
8217 case DL_PROMISCOFF_REQ:
8218 case DL_UNBIND_REQ:
8219 case DL_ATTACH_REQ:
8220 case DL_INFO_REQ:
8221 ill_dlpi_done(ill, dlea->dl_error_primitive);
8222 break;
8223 case DL_NOTIFY_REQ:
8224 ill_dlpi_done(ill, DL_NOTIFY_REQ);
8225 log = B_FALSE;
8226 break;
8227 case DL_PHYS_ADDR_REQ:
8228 /*
8229 * For IPv6 only, there are two additional
8230 * phys_addr_req's sent to the driver to get the
8231 * IPv6 token and lla. This allows IP to acquire
8232 * the hardware address format for a given interface
8233 * without having built in knowledge of the hardware
8234 * address. ill_phys_addr_pend keeps track of the last
8235 * DL_PAR sent so we know which response we are
8236 * dealing with. ill_dlpi_done will update
8237 * ill_phys_addr_pend when it sends the next req.
8238 * We don't complete the IOCTL until all three DL_PARs
8239 * have been attempted, so set *_len to 0 and break.
8240 */
8241 paddrreq = ill->ill_phys_addr_pend;
8242 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ);
8243 if (paddrreq == DL_IPV6_TOKEN) {
8244 ill->ill_token_length = 0;
8245 log = B_FALSE;
8246 break;
8247 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) {
8248 ill->ill_nd_lla_len = 0;
8249 log = B_FALSE;
8250 break;
8251 }
8252 /*
8253 * Something went wrong with the DL_PHYS_ADDR_REQ.
8254 * We presumably have an IOCTL hanging out waiting
8255 * for completion. Find it and complete the IOCTL
8256 * with the error noted.
8257 * However, ill_dl_phys was called on an ill queue
8258 * (from SIOCSLIFNAME), thus conn_pending_ill is not
8259 * set. But the ioctl is known to be pending on ill_wq.
8260 */
8261 if (!ill->ill_ifname_pending)
8262 break;
8263 ill->ill_ifname_pending = 0;
8264 if (!ioctl_aborted)
8265 mp1 = ipsq_pending_mp_get(ipsq, &connp);
8266 if (mp1 != NULL) {
8267 /*
8268 * This operation (SIOCSLIFNAME) must have
8269 * happened on the ill. Assert there is no conn
8270 */
8271 ASSERT(connp == NULL);
8272 q = ill->ill_wq;
8273 }
8274 break;
8275 case DL_BIND_REQ:
8276 ill_dlpi_done(ill, DL_BIND_REQ);
8277 if (ill->ill_ifname_pending)
8278 break;
8279 mutex_enter(&ill->ill_lock);
8280 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS;
8281 mutex_exit(&ill->ill_lock);
8282 /*
8283 * Something went wrong with the bind. We presumably
8284 * have an IOCTL hanging out waiting for completion.
8285 * Find it, take down the interface that was coming
8286 * up, and complete the IOCTL with the error noted.
8287 */
8288 if (!ioctl_aborted)
8289 mp1 = ipsq_pending_mp_get(ipsq, &connp);
8290 if (mp1 != NULL) {
8291 /*
8292 * This might be a result of a DL_NOTE_REPLUMB
8293 * notification. In that case, connp is NULL.
8294 */
8295 if (connp != NULL)
8296 q = CONNP_TO_WQ(connp);
8297
8298 (void) ipif_down(ipif, NULL, NULL);
8299 /* error is set below the switch */
8300 }
8301 break;
8302 case DL_ENABMULTI_REQ:
8303 ill_dlpi_done(ill, DL_ENABMULTI_REQ);
8304
8305 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS)
8306 ill->ill_dlpi_multicast_state = IDS_FAILED;
8307 if (ill->ill_dlpi_multicast_state == IDS_FAILED) {
8308
8309 printf("ip: joining multicasts failed (%d)"
8310 " on %s - will use link layer "
8311 "broadcasts for multicast\n",
8312 dlea->dl_errno, ill->ill_name);
8313
8314 /*
8315 * Set up for multi_bcast; We are the
8316 * writer, so ok to access ill->ill_ipif
8317 * without any lock.
8318 */
8319 mutex_enter(&ill->ill_phyint->phyint_lock);
8320 ill->ill_phyint->phyint_flags |=
8321 PHYI_MULTI_BCAST;
8322 mutex_exit(&ill->ill_phyint->phyint_lock);
8323
8324 }
8325 freemsg(mp); /* Don't want to pass this up */
8326 return;
8327 case DL_CAPABILITY_REQ:
8328 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for "
8329 "DL_CAPABILITY REQ\n"));
8330 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT)
8331 ill->ill_dlpi_capab_state = IDCS_FAILED;
8332 ill_capability_done(ill);
8333 freemsg(mp);
8334 return;
8335 }
8336 /*
8337 * Note the error for IOCTL completion (mp1 is set when
8338 * ready to complete ioctl). If ill_ifname_pending_err is
8339 * set, an error occured during plumbing (ill_ifname_pending),
8340 * so we want to report that error.
8341 *
8342 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's
8343 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are
8344 * expected to get errack'd if the driver doesn't support
8345 * these flags (e.g. ethernet). log will be set to B_FALSE
8346 * if these error conditions are encountered.
8347 */
8348 if (mp1 != NULL) {
8349 if (ill->ill_ifname_pending_err != 0) {
8350 err = ill->ill_ifname_pending_err;
8351 ill->ill_ifname_pending_err = 0;
8352 } else {
8353 err = dlea->dl_unix_errno ?
8354 dlea->dl_unix_errno : ENXIO;
8355 }
8356 /*
8357 * If we're plumbing an interface and an error hasn't already
8358 * been saved, set ill_ifname_pending_err to the error passed
8359 * up. Ignore the error if log is B_FALSE (see comment above).
8360 */
8361 } else if (log && ill->ill_ifname_pending &&
8362 ill->ill_ifname_pending_err == 0) {
8363 ill->ill_ifname_pending_err = dlea->dl_unix_errno ?
8364 dlea->dl_unix_errno : ENXIO;
8365 }
8366
8367 if (log)
8368 ip_dlpi_error(ill, dlea->dl_error_primitive,
8369 dlea->dl_errno, dlea->dl_unix_errno);
8370 break;
8371 case DL_CAPABILITY_ACK:
8372 ill_capability_ack(ill, mp);
8373 /*
8374 * The message has been handed off to ill_capability_ack
8375 * and must not be freed below
8376 */
8377 mp = NULL;
8378 break;
8379
8380 case DL_INFO_ACK:
8381 /* Call a routine to handle this one. */
8382 ill_dlpi_done(ill, DL_INFO_REQ);
8383 ip_ll_subnet_defaults(ill, mp);
8384 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock));
8385 return;
8386 case DL_BIND_ACK:
8387 /*
8388 * We should have an IOCTL waiting on this unless
8389 * sent by ill_dl_phys, in which case just return
8390 */
8391 ill_dlpi_done(ill, DL_BIND_REQ);
8392
8393 if (ill->ill_ifname_pending) {
8394 DTRACE_PROBE2(ip__rput__dlpi__ifname__pending,
8395 ill_t *, ill, mblk_t *, mp);
8396 break;
8397 }
8398 mutex_enter(&ill->ill_lock);
8399 ill->ill_dl_up = 1;
8400 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS;
8401 mutex_exit(&ill->ill_lock);
8402
8403 if (!ioctl_aborted)
8404 mp1 = ipsq_pending_mp_get(ipsq, &connp);
8405 if (mp1 == NULL) {
8406 DTRACE_PROBE1(ip__rput__dlpi__no__mblk, ill_t *, ill);
8407 break;
8408 }
8409 /*
8410 * mp1 was added by ill_dl_up(). if that is a result of
8411 * a DL_NOTE_REPLUMB notification, connp could be NULL.
8412 */
8413 if (connp != NULL)
8414 q = CONNP_TO_WQ(connp);
8415 /*
8416 * We are exclusive. So nothing can change even after
8417 * we get the pending mp.
8418 */
8419 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name));
8420 DTRACE_PROBE1(ip__rput__dlpi__bind__ack, ill_t *, ill);
8421 ill_nic_event_dispatch(ill, 0, NE_UP, NULL, 0);
8422
8423 /*
8424 * Now bring up the resolver; when that is complete, we'll
8425 * create IREs. Note that we intentionally mirror what
8426 * ipif_up() would have done, because we got here by way of
8427 * ill_dl_up(), which stopped ipif_up()'s processing.
8428 */
8429 if (ill->ill_isv6) {
8430 /*
8431 * v6 interfaces.
8432 * Unlike ARP which has to do another bind
8433 * and attach, once we get here we are
8434 * done with NDP
8435 */
8436 (void) ipif_resolver_up(ipif, Res_act_initial);
8437 if ((err = ipif_ndp_up(ipif, B_TRUE)) == 0)
8438 err = ipif_up_done_v6(ipif);
8439 } else if (ill->ill_net_type == IRE_IF_RESOLVER) {
8440 /*
8441 * ARP and other v4 external resolvers.
8442 * Leave the pending mblk intact so that
8443 * the ioctl completes in ip_rput().
8444 */
8445 if (connp != NULL)
8446 mutex_enter(&connp->conn_lock);
8447 mutex_enter(&ill->ill_lock);
8448 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0);
8449 mutex_exit(&ill->ill_lock);
8450 if (connp != NULL)
8451 mutex_exit(&connp->conn_lock);
8452 if (success) {
8453 err = ipif_resolver_up(ipif, Res_act_initial);
8454 if (err == EINPROGRESS) {
8455 freemsg(mp);
8456 return;
8457 }
8458 mp1 = ipsq_pending_mp_get(ipsq, &connp);
8459 } else {
8460 /* The conn has started closing */
8461 err = EINTR;
8462 }
8463 } else {
8464 /*
8465 * This one is complete. Reply to pending ioctl.
8466 */
8467 (void) ipif_resolver_up(ipif, Res_act_initial);
8468 err = ipif_up_done(ipif);
8469 }
8470
8471 if ((err == 0) && (ill->ill_up_ipifs)) {
8472 err = ill_up_ipifs(ill, q, mp1);
8473 if (err == EINPROGRESS) {
8474 freemsg(mp);
8475 return;
8476 }
8477 }
8478
8479 /*
8480 * If we have a moved ipif to bring up, and everything has
8481 * succeeded to this point, bring it up on the IPMP ill.
8482 * Otherwise, leave it down -- the admin can try to bring it
8483 * up by hand if need be.
8484 */
8485 if (ill->ill_move_ipif != NULL) {
8486 if (err != 0) {
8487 ill->ill_move_ipif = NULL;
8488 } else {
8489 ipif = ill->ill_move_ipif;
8490 ill->ill_move_ipif = NULL;
8491 err = ipif_up(ipif, q, mp1);
8492 if (err == EINPROGRESS) {
8493 freemsg(mp);
8494 return;
8495 }
8496 }
8497 }
8498 break;
8499
8500 case DL_NOTIFY_IND: {
8501 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr;
8502 uint_t orig_mtu, orig_mc_mtu;
8503
8504 switch (notify->dl_notification) {
8505 case DL_NOTE_PHYS_ADDR:
8506 err = ill_set_phys_addr(ill, mp);
8507 break;
8508
8509 case DL_NOTE_REPLUMB:
8510 /*
8511 * Directly return after calling ill_replumb().
8512 * Note that we should not free mp as it is reused
8513 * in the ill_replumb() function.
8514 */
8515 err = ill_replumb(ill, mp);
8516 return;
8517
8518 case DL_NOTE_FASTPATH_FLUSH:
8519 nce_flush(ill, B_FALSE);
8520 break;
8521
8522 case DL_NOTE_SDU_SIZE:
8523 case DL_NOTE_SDU_SIZE2:
8524 /*
8525 * The dce and fragmentation code can cope with
8526 * this changing while packets are being sent.
8527 * When packets are sent ip_output will discover
8528 * a change.
8529 *
8530 * Change the MTU size of the interface.
8531 */
8532 mutex_enter(&ill->ill_lock);
8533 orig_mtu = ill->ill_mtu;
8534 orig_mc_mtu = ill->ill_mc_mtu;
8535 switch (notify->dl_notification) {
8536 case DL_NOTE_SDU_SIZE:
8537 ill->ill_current_frag =
8538 (uint_t)notify->dl_data;
8539 ill->ill_mc_mtu = (uint_t)notify->dl_data;
8540 break;
8541 case DL_NOTE_SDU_SIZE2:
8542 ill->ill_current_frag =
8543 (uint_t)notify->dl_data1;
8544 ill->ill_mc_mtu = (uint_t)notify->dl_data2;
8545 break;
8546 }
8547 if (ill->ill_current_frag > ill->ill_max_frag)
8548 ill->ill_max_frag = ill->ill_current_frag;
8549
8550 if (!(ill->ill_flags & ILLF_FIXEDMTU)) {
8551 ill->ill_mtu = ill->ill_current_frag;
8552
8553 /*
8554 * If ill_user_mtu was set (via
8555 * SIOCSLIFLNKINFO), clamp ill_mtu at it.
8556 */
8557 if (ill->ill_user_mtu != 0 &&
8558 ill->ill_user_mtu < ill->ill_mtu)
8559 ill->ill_mtu = ill->ill_user_mtu;
8560
8561 if (ill->ill_user_mtu != 0 &&
8562 ill->ill_user_mtu < ill->ill_mc_mtu)
8563 ill->ill_mc_mtu = ill->ill_user_mtu;
8564
8565 if (ill->ill_isv6) {
8566 if (ill->ill_mtu < IPV6_MIN_MTU)
8567 ill->ill_mtu = IPV6_MIN_MTU;
8568 if (ill->ill_mc_mtu < IPV6_MIN_MTU)
8569 ill->ill_mc_mtu = IPV6_MIN_MTU;
8570 } else {
8571 if (ill->ill_mtu < IP_MIN_MTU)
8572 ill->ill_mtu = IP_MIN_MTU;
8573 if (ill->ill_mc_mtu < IP_MIN_MTU)
8574 ill->ill_mc_mtu = IP_MIN_MTU;
8575 }
8576 } else if (ill->ill_mc_mtu > ill->ill_mtu) {
8577 ill->ill_mc_mtu = ill->ill_mtu;
8578 }
8579
8580 mutex_exit(&ill->ill_lock);
8581 /*
8582 * Make sure all dce_generation checks find out
8583 * that ill_mtu/ill_mc_mtu has changed.
8584 */
8585 if (orig_mtu != ill->ill_mtu ||
8586 orig_mc_mtu != ill->ill_mc_mtu) {
8587 dce_increment_all_generations(ill->ill_isv6,
8588 ill->ill_ipst);
8589 }
8590
8591 /*
8592 * Refresh IPMP meta-interface MTU if necessary.
8593 */
8594 if (IS_UNDER_IPMP(ill))
8595 ipmp_illgrp_refresh_mtu(ill->ill_grp);
8596 break;
8597
8598 case DL_NOTE_LINK_UP:
8599 case DL_NOTE_LINK_DOWN: {
8600 /*
8601 * We are writer. ill / phyint / ipsq assocs stable.
8602 * The RUNNING flag reflects the state of the link.
8603 */
8604 phyint_t *phyint = ill->ill_phyint;
8605 uint64_t new_phyint_flags;
8606 boolean_t changed = B_FALSE;
8607 boolean_t went_up;
8608
8609 went_up = notify->dl_notification == DL_NOTE_LINK_UP;
8610 mutex_enter(&phyint->phyint_lock);
8611
8612 new_phyint_flags = went_up ?
8613 phyint->phyint_flags | PHYI_RUNNING :
8614 phyint->phyint_flags & ~PHYI_RUNNING;
8615
8616 if (IS_IPMP(ill)) {
8617 new_phyint_flags = went_up ?
8618 new_phyint_flags & ~PHYI_FAILED :
8619 new_phyint_flags | PHYI_FAILED;
8620 }
8621
8622 if (new_phyint_flags != phyint->phyint_flags) {
8623 phyint->phyint_flags = new_phyint_flags;
8624 changed = B_TRUE;
8625 }
8626 mutex_exit(&phyint->phyint_lock);
8627 /*
8628 * ill_restart_dad handles the DAD restart and routing
8629 * socket notification logic.
8630 */
8631 if (changed) {
8632 ill_restart_dad(phyint->phyint_illv4, went_up);
8633 ill_restart_dad(phyint->phyint_illv6, went_up);
8634 }
8635 break;
8636 }
8637 case DL_NOTE_PROMISC_ON_PHYS: {
8638 phyint_t *phyint = ill->ill_phyint;
8639
8640 mutex_enter(&phyint->phyint_lock);
8641 phyint->phyint_flags |= PHYI_PROMISC;
8642 mutex_exit(&phyint->phyint_lock);
8643 break;
8644 }
8645 case DL_NOTE_PROMISC_OFF_PHYS: {
8646 phyint_t *phyint = ill->ill_phyint;
8647
8648 mutex_enter(&phyint->phyint_lock);
8649 phyint->phyint_flags &= ~PHYI_PROMISC;
8650 mutex_exit(&phyint->phyint_lock);
8651 break;
8652 }
8653 case DL_NOTE_CAPAB_RENEG:
8654 /*
8655 * Something changed on the driver side.
8656 * It wants us to renegotiate the capabilities
8657 * on this ill. One possible cause is the aggregation
8658 * interface under us where a port got added or
8659 * went away.
8660 *
8661 * If the capability negotiation is already done
8662 * or is in progress, reset the capabilities and
8663 * mark the ill's ill_capab_reneg to be B_TRUE,
8664 * so that when the ack comes back, we can start
8665 * the renegotiation process.
8666 *
8667 * Note that if ill_capab_reneg is already B_TRUE
8668 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case),
8669 * the capability resetting request has been sent
8670 * and the renegotiation has not been started yet;
8671 * nothing needs to be done in this case.
8672 */
8673 ipsq_current_start(ipsq, ill->ill_ipif, 0);
8674 ill_capability_reset(ill, B_TRUE);
8675 ipsq_current_finish(ipsq);
8676 break;
8677
8678 case DL_NOTE_ALLOWED_IPS:
8679 ill_set_allowed_ips(ill, mp);
8680 break;
8681 default:
8682 ip0dbg(("ip_rput_dlpi_writer: unknown notification "
8683 "type 0x%x for DL_NOTIFY_IND\n",
8684 notify->dl_notification));
8685 break;
8686 }
8687
8688 /*
8689 * As this is an asynchronous operation, we
8690 * should not call ill_dlpi_done
8691 */
8692 break;
8693 }
8694 case DL_NOTIFY_ACK: {
8695 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr;
8696
8697 if (noteack->dl_notifications & DL_NOTE_LINK_UP)
8698 ill->ill_note_link = 1;
8699 ill_dlpi_done(ill, DL_NOTIFY_REQ);
8700 break;
8701 }
8702 case DL_PHYS_ADDR_ACK: {
8703 /*
8704 * As part of plumbing the interface via SIOCSLIFNAME,
8705 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs,
8706 * whose answers we receive here. As each answer is received,
8707 * we call ill_dlpi_done() to dispatch the next request as
8708 * we're processing the current one. Once all answers have
8709 * been received, we use ipsq_pending_mp_get() to dequeue the
8710 * outstanding IOCTL and reply to it. (Because ill_dl_phys()
8711 * is invoked from an ill queue, conn_oper_pending_ill is not
8712 * available, but we know the ioctl is pending on ill_wq.)
8713 */
8714 uint_t paddrlen, paddroff;
8715 uint8_t *addr;
8716
8717 paddrreq = ill->ill_phys_addr_pend;
8718 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length;
8719 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset;
8720 addr = mp->b_rptr + paddroff;
8721
8722 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ);
8723 if (paddrreq == DL_IPV6_TOKEN) {
8724 /*
8725 * bcopy to low-order bits of ill_token
8726 *
8727 * XXX Temporary hack - currently, all known tokens
8728 * are 64 bits, so I'll cheat for the moment.
8729 */
8730 bcopy(addr, &ill->ill_token.s6_addr32[2], paddrlen);
8731 ill->ill_token_length = paddrlen;
8732 break;
8733 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) {
8734 ASSERT(ill->ill_nd_lla_mp == NULL);
8735 ill_set_ndmp(ill, mp, paddroff, paddrlen);
8736 mp = NULL;
8737 break;
8738 } else if (paddrreq == DL_CURR_DEST_ADDR) {
8739 ASSERT(ill->ill_dest_addr_mp == NULL);
8740 ill->ill_dest_addr_mp = mp;
8741 ill->ill_dest_addr = addr;
8742 mp = NULL;
8743 if (ill->ill_isv6) {
8744 ill_setdesttoken(ill);
8745 ipif_setdestlinklocal(ill->ill_ipif);
8746 }
8747 break;
8748 }
8749
8750 ASSERT(paddrreq == DL_CURR_PHYS_ADDR);
8751 ASSERT(ill->ill_phys_addr_mp == NULL);
8752 if (!ill->ill_ifname_pending)
8753 break;
8754 ill->ill_ifname_pending = 0;
8755 if (!ioctl_aborted)
8756 mp1 = ipsq_pending_mp_get(ipsq, &connp);
8757 if (mp1 != NULL) {
8758 ASSERT(connp == NULL);
8759 q = ill->ill_wq;
8760 }
8761 /*
8762 * If any error acks received during the plumbing sequence,
8763 * ill_ifname_pending_err will be set. Break out and send up
8764 * the error to the pending ioctl.
8765 */
8766 if (ill->ill_ifname_pending_err != 0) {
8767 err = ill->ill_ifname_pending_err;
8768 ill->ill_ifname_pending_err = 0;
8769 break;
8770 }
8771
8772 ill->ill_phys_addr_mp = mp;
8773 ill->ill_phys_addr = (paddrlen == 0 ? NULL : addr);
8774 mp = NULL;
8775
8776 /*
8777 * If paddrlen or ill_phys_addr_length is zero, the DLPI
8778 * provider doesn't support physical addresses. We check both
8779 * paddrlen and ill_phys_addr_length because sppp (PPP) does
8780 * not have physical addresses, but historically adversises a
8781 * physical address length of 0 in its DL_INFO_ACK, but 6 in
8782 * its DL_PHYS_ADDR_ACK.
8783 */
8784 if (paddrlen == 0 || ill->ill_phys_addr_length == 0) {
8785 ill->ill_phys_addr = NULL;
8786 } else if (paddrlen != ill->ill_phys_addr_length) {
8787 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d",
8788 paddrlen, ill->ill_phys_addr_length));
8789 err = EINVAL;
8790 break;
8791 }
8792
8793 if (ill->ill_nd_lla_mp == NULL) {
8794 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) {
8795 err = ENOMEM;
8796 break;
8797 }
8798 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen);
8799 }
8800
8801 if (ill->ill_isv6) {
8802 ill_setdefaulttoken(ill);
8803 ipif_setlinklocal(ill->ill_ipif);
8804 }
8805 break;
8806 }
8807 case DL_OK_ACK:
8808 ip2dbg(("DL_OK_ACK %s (0x%x)\n",
8809 dl_primstr((int)dloa->dl_correct_primitive),
8810 dloa->dl_correct_primitive));
8811 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer ok",
8812 char *, dl_primstr(dloa->dl_correct_primitive),
8813 ill_t *, ill);
8814
8815 switch (dloa->dl_correct_primitive) {
8816 case DL_ENABMULTI_REQ:
8817 case DL_DISABMULTI_REQ:
8818 ill_dlpi_done(ill, dloa->dl_correct_primitive);
8819 break;
8820 case DL_PROMISCON_REQ:
8821 case DL_PROMISCOFF_REQ:
8822 case DL_UNBIND_REQ:
8823 case DL_ATTACH_REQ:
8824 ill_dlpi_done(ill, dloa->dl_correct_primitive);
8825 break;
8826 }
8827 break;
8828 default:
8829 break;
8830 }
8831
8832 freemsg(mp);
8833 if (mp1 == NULL)
8834 return;
8835
8836 /*
8837 * The operation must complete without EINPROGRESS since
8838 * ipsq_pending_mp_get() has removed the mblk (mp1). Otherwise,
8839 * the operation will be stuck forever inside the IPSQ.
8840 */
8841 ASSERT(err != EINPROGRESS);
8842
8843 DTRACE_PROBE4(ipif__ioctl, char *, "ip_rput_dlpi_writer finish",
8844 int, ipsq->ipsq_xop->ipx_current_ioctl, ill_t *, ill,
8845 ipif_t *, NULL);
8846
8847 switch (ipsq->ipsq_xop->ipx_current_ioctl) {
8848 case 0:
8849 ipsq_current_finish(ipsq);
8850 break;
8851
8852 case SIOCSLIFNAME:
8853 case IF_UNITSEL: {
8854 ill_t *ill_other = ILL_OTHER(ill);
8855
8856 /*
8857 * If SIOCSLIFNAME or IF_UNITSEL is about to succeed, and the
8858 * ill has a peer which is in an IPMP group, then place ill
8859 * into the same group. One catch: although ifconfig plumbs
8860 * the appropriate IPMP meta-interface prior to plumbing this
8861 * ill, it is possible for multiple ifconfig applications to
8862 * race (or for another application to adjust plumbing), in
8863 * which case the IPMP meta-interface we need will be missing.
8864 * If so, kick the phyint out of the group.
8865 */
8866 if (err == 0 && ill_other != NULL && IS_UNDER_IPMP(ill_other)) {
8867 ipmp_grp_t *grp = ill->ill_phyint->phyint_grp;
8868 ipmp_illgrp_t *illg;
8869
8870 illg = ill->ill_isv6 ? grp->gr_v6 : grp->gr_v4;
8871 if (illg == NULL)
8872 ipmp_phyint_leave_grp(ill->ill_phyint);
8873 else
8874 ipmp_ill_join_illgrp(ill, illg);
8875 }
8876
8877 if (ipsq->ipsq_xop->ipx_current_ioctl == IF_UNITSEL)
8878 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq);
8879 else
8880 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq);
8881 break;
8882 }
8883 case SIOCLIFADDIF:
8884 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq);
8885 break;
8886
8887 default:
8888 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq);
8889 break;
8890 }
8891 }
8892
8893 /*
8894 * ip_rput_other is called by ip_rput to handle messages modifying the global
8895 * state in IP. If 'ipsq' is non-NULL, caller is writer on it.
8896 */
8897 /* ARGSUSED */
8898 void
8899 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
8900 {
8901 ill_t *ill = q->q_ptr;
8902 struct iocblk *iocp;
8903
8904 ip1dbg(("ip_rput_other "));
8905 if (ipsq != NULL) {
8906 ASSERT(IAM_WRITER_IPSQ(ipsq));
8907 ASSERT(ipsq->ipsq_xop ==
8908 ill->ill_phyint->phyint_ipsq->ipsq_xop);
8909 }
8910
8911 switch (mp->b_datap->db_type) {
8912 case M_ERROR:
8913 case M_HANGUP:
8914 /*
8915 * The device has a problem. We force the ILL down. It can
8916 * be brought up again manually using SIOCSIFFLAGS (via
8917 * ifconfig or equivalent).
8918 */
8919 ASSERT(ipsq != NULL);
8920 if (mp->b_rptr < mp->b_wptr)
8921 ill->ill_error = (int)(*mp->b_rptr & 0xFF);
8922 if (ill->ill_error == 0)
8923 ill->ill_error = ENXIO;
8924 if (!ill_down_start(q, mp))
8925 return;
8926 ipif_all_down_tail(ipsq, q, mp, NULL);
8927 break;
8928 case M_IOCNAK: {
8929 iocp = (struct iocblk *)mp->b_rptr;
8930
8931 ASSERT(iocp->ioc_cmd == DL_IOC_HDR_INFO);
8932 /*
8933 * If this was the first attempt, turn off the fastpath
8934 * probing.
8935 */
8936 mutex_enter(&ill->ill_lock);
8937 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) {
8938 ill->ill_dlpi_fastpath_state = IDS_FAILED;
8939 mutex_exit(&ill->ill_lock);
8940 /*
8941 * don't flush the nce_t entries: we use them
8942 * as an index to the ncec itself.
8943 */
8944 ip1dbg(("ip_rput: DLPI fastpath off on interface %s\n",
8945 ill->ill_name));
8946 } else {
8947 mutex_exit(&ill->ill_lock);
8948 }
8949 freemsg(mp);
8950 break;
8951 }
8952 default:
8953 ASSERT(0);
8954 break;
8955 }
8956 }
8957
8958 /*
8959 * Update any source route, record route or timestamp options
8960 * When it fails it has consumed the message and BUMPed the MIB.
8961 */
8962 boolean_t
8963 ip_forward_options(mblk_t *mp, ipha_t *ipha, ill_t *dst_ill,
8964 ip_recv_attr_t *ira)
8965 {
8966 ipoptp_t opts;
8967 uchar_t *opt;
8968 uint8_t optval;
8969 uint8_t optlen;
8970 ipaddr_t dst;
8971 ipaddr_t ifaddr;
8972 uint32_t ts;
8973 timestruc_t now;
8974 ip_stack_t *ipst = ira->ira_ill->ill_ipst;
8975
8976 ip2dbg(("ip_forward_options\n"));
8977 dst = ipha->ipha_dst;
8978 for (optval = ipoptp_first(&opts, ipha);
8979 optval != IPOPT_EOL;
8980 optval = ipoptp_next(&opts)) {
8981 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
8982 opt = opts.ipoptp_cur;
8983 optlen = opts.ipoptp_len;
8984 ip2dbg(("ip_forward_options: opt %d, len %d\n",
8985 optval, opts.ipoptp_len));
8986 switch (optval) {
8987 uint32_t off;
8988 case IPOPT_SSRR:
8989 case IPOPT_LSRR:
8990 /* Check if adminstratively disabled */
8991 if (!ipst->ips_ip_forward_src_routed) {
8992 BUMP_MIB(dst_ill->ill_ip_mib,
8993 ipIfStatsForwProhibits);
8994 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED",
8995 mp, dst_ill);
8996 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED,
8997 ira);
8998 return (B_FALSE);
8999 }
9000 if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
9001 /*
9002 * Must be partial since ip_input_options
9003 * checked for strict.
9004 */
9005 break;
9006 }
9007 off = opt[IPOPT_OFFSET];
9008 off--;
9009 redo_srr:
9010 if (optlen < IP_ADDR_LEN ||
9011 off > optlen - IP_ADDR_LEN) {
9012 /* End of source route */
9013 ip1dbg((
9014 "ip_forward_options: end of SR\n"));
9015 break;
9016 }
9017 /* Pick a reasonable address on the outbound if */
9018 ASSERT(dst_ill != NULL);
9019 if (ip_select_source_v4(dst_ill, INADDR_ANY, dst,
9020 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL,
9021 NULL) != 0) {
9022 /* No source! Shouldn't happen */
9023 ifaddr = INADDR_ANY;
9024 }
9025 bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9026 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9027 ip1dbg(("ip_forward_options: next hop 0x%x\n",
9028 ntohl(dst)));
9029
9030 /*
9031 * Check if our address is present more than
9032 * once as consecutive hops in source route.
9033 */
9034 if (ip_type_v4(dst, ipst) == IRE_LOCAL) {
9035 off += IP_ADDR_LEN;
9036 opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9037 goto redo_srr;
9038 }
9039 ipha->ipha_dst = dst;
9040 opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9041 break;
9042 case IPOPT_RR:
9043 off = opt[IPOPT_OFFSET];
9044 off--;
9045 if (optlen < IP_ADDR_LEN ||
9046 off > optlen - IP_ADDR_LEN) {
9047 /* No more room - ignore */
9048 ip1dbg((
9049 "ip_forward_options: end of RR\n"));
9050 break;
9051 }
9052 /* Pick a reasonable address on the outbound if */
9053 ASSERT(dst_ill != NULL);
9054 if (ip_select_source_v4(dst_ill, INADDR_ANY, dst,
9055 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL,
9056 NULL) != 0) {
9057 /* No source! Shouldn't happen */
9058 ifaddr = INADDR_ANY;
9059 }
9060 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9061 opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9062 break;
9063 case IPOPT_TS:
9064 /* Insert timestamp if there is room */
9065 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9066 case IPOPT_TS_TSONLY:
9067 off = IPOPT_TS_TIMELEN;
9068 break;
9069 case IPOPT_TS_PRESPEC:
9070 case IPOPT_TS_PRESPEC_RFC791:
9071 /* Verify that the address matched */
9072 off = opt[IPOPT_OFFSET] - 1;
9073 bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9074 if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
9075 /* Not for us */
9076 break;
9077 }
9078 /* FALLTHRU */
9079 case IPOPT_TS_TSANDADDR:
9080 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
9081 break;
9082 default:
9083 /*
9084 * ip_*put_options should have already
9085 * dropped this packet.
9086 */
9087 cmn_err(CE_PANIC, "ip_forward_options: "
9088 "unknown IT - bug in ip_input_options?\n");
9089 return (B_TRUE); /* Keep "lint" happy */
9090 }
9091 if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
9092 /* Increase overflow counter */
9093 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
9094 opt[IPOPT_POS_OV_FLG] =
9095 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) |
9096 (off << 4));
9097 break;
9098 }
9099 off = opt[IPOPT_OFFSET] - 1;
9100 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9101 case IPOPT_TS_PRESPEC:
9102 case IPOPT_TS_PRESPEC_RFC791:
9103 case IPOPT_TS_TSANDADDR:
9104 /* Pick a reasonable addr on the outbound if */
9105 ASSERT(dst_ill != NULL);
9106 if (ip_select_source_v4(dst_ill, INADDR_ANY,
9107 dst, INADDR_ANY, ALL_ZONES, ipst, &ifaddr,
9108 NULL, NULL) != 0) {
9109 /* No source! Shouldn't happen */
9110 ifaddr = INADDR_ANY;
9111 }
9112 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9113 opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9114 /* FALLTHRU */
9115 case IPOPT_TS_TSONLY:
9116 off = opt[IPOPT_OFFSET] - 1;
9117 /* Compute # of milliseconds since midnight */
9118 gethrestime(&now);
9119 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
9120 NSEC2MSEC(now.tv_nsec);
9121 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
9122 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
9123 break;
9124 }
9125 break;
9126 }
9127 }
9128 return (B_TRUE);
9129 }
9130
9131 /*
9132 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout
9133 * returns 'true' if there are still fragments left on the queue, in
9134 * which case we restart the timer.
9135 */
9136 void
9137 ill_frag_timer(void *arg)
9138 {
9139 ill_t *ill = (ill_t *)arg;
9140 boolean_t frag_pending;
9141 ip_stack_t *ipst = ill->ill_ipst;
9142 time_t timeout;
9143
9144 mutex_enter(&ill->ill_lock);
9145 ASSERT(!ill->ill_fragtimer_executing);
9146 if (ill->ill_state_flags & ILL_CONDEMNED) {
9147 ill->ill_frag_timer_id = 0;
9148 mutex_exit(&ill->ill_lock);
9149 return;
9150 }
9151 ill->ill_fragtimer_executing = 1;
9152 mutex_exit(&ill->ill_lock);
9153
9154 timeout = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout :
9155 ipst->ips_ip_reassembly_timeout);
9156
9157 frag_pending = ill_frag_timeout(ill, timeout);
9158
9159 /*
9160 * Restart the timer, if we have fragments pending or if someone
9161 * wanted us to be scheduled again.
9162 */
9163 mutex_enter(&ill->ill_lock);
9164 ill->ill_fragtimer_executing = 0;
9165 ill->ill_frag_timer_id = 0;
9166 if (frag_pending || ill->ill_fragtimer_needrestart)
9167 ill_frag_timer_start(ill);
9168 mutex_exit(&ill->ill_lock);
9169 }
9170
9171 void
9172 ill_frag_timer_start(ill_t *ill)
9173 {
9174 ip_stack_t *ipst = ill->ill_ipst;
9175 clock_t timeo_ms;
9176
9177 ASSERT(MUTEX_HELD(&ill->ill_lock));
9178
9179 /* If the ill is closing or opening don't proceed */
9180 if (ill->ill_state_flags & ILL_CONDEMNED)
9181 return;
9182
9183 if (ill->ill_fragtimer_executing) {
9184 /*
9185 * ill_frag_timer is currently executing. Just record the
9186 * the fact that we want the timer to be restarted.
9187 * ill_frag_timer will post a timeout before it returns,
9188 * ensuring it will be called again.
9189 */
9190 ill->ill_fragtimer_needrestart = 1;
9191 return;
9192 }
9193
9194 if (ill->ill_frag_timer_id == 0) {
9195 timeo_ms = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout :
9196 ipst->ips_ip_reassembly_timeout) * SECONDS;
9197
9198 /*
9199 * The timer is neither running nor is the timeout handler
9200 * executing. Post a timeout so that ill_frag_timer will be
9201 * called
9202 */
9203 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill,
9204 MSEC_TO_TICK(timeo_ms >> 1));
9205 ill->ill_fragtimer_needrestart = 0;
9206 }
9207 }
9208
9209 /*
9210 * Update any source route, record route or timestamp options.
9211 * Check that we are at end of strict source route.
9212 * The options have already been checked for sanity in ip_input_options().
9213 */
9214 boolean_t
9215 ip_input_local_options(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira)
9216 {
9217 ipoptp_t opts;
9218 uchar_t *opt;
9219 uint8_t optval;
9220 uint8_t optlen;
9221 ipaddr_t dst;
9222 ipaddr_t ifaddr;
9223 uint32_t ts;
9224 timestruc_t now;
9225 ill_t *ill = ira->ira_ill;
9226 ip_stack_t *ipst = ill->ill_ipst;
9227
9228 ip2dbg(("ip_input_local_options\n"));
9229
9230 for (optval = ipoptp_first(&opts, ipha);
9231 optval != IPOPT_EOL;
9232 optval = ipoptp_next(&opts)) {
9233 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
9234 opt = opts.ipoptp_cur;
9235 optlen = opts.ipoptp_len;
9236 ip2dbg(("ip_input_local_options: opt %d, len %d\n",
9237 optval, optlen));
9238 switch (optval) {
9239 uint32_t off;
9240 case IPOPT_SSRR:
9241 case IPOPT_LSRR:
9242 off = opt[IPOPT_OFFSET];
9243 off--;
9244 if (optlen < IP_ADDR_LEN ||
9245 off > optlen - IP_ADDR_LEN) {
9246 /* End of source route */
9247 ip1dbg(("ip_input_local_options: end of SR\n"));
9248 break;
9249 }
9250 /*
9251 * This will only happen if two consecutive entries
9252 * in the source route contains our address or if
9253 * it is a packet with a loose source route which
9254 * reaches us before consuming the whole source route
9255 */
9256 ip1dbg(("ip_input_local_options: not end of SR\n"));
9257 if (optval == IPOPT_SSRR) {
9258 goto bad_src_route;
9259 }
9260 /*
9261 * Hack: instead of dropping the packet truncate the
9262 * source route to what has been used by filling the
9263 * rest with IPOPT_NOP.
9264 */
9265 opt[IPOPT_OLEN] = (uint8_t)off;
9266 while (off < optlen) {
9267 opt[off++] = IPOPT_NOP;
9268 }
9269 break;
9270 case IPOPT_RR:
9271 off = opt[IPOPT_OFFSET];
9272 off--;
9273 if (optlen < IP_ADDR_LEN ||
9274 off > optlen - IP_ADDR_LEN) {
9275 /* No more room - ignore */
9276 ip1dbg((
9277 "ip_input_local_options: end of RR\n"));
9278 break;
9279 }
9280 /* Pick a reasonable address on the outbound if */
9281 if (ip_select_source_v4(ill, INADDR_ANY, ipha->ipha_dst,
9282 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL,
9283 NULL) != 0) {
9284 /* No source! Shouldn't happen */
9285 ifaddr = INADDR_ANY;
9286 }
9287 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9288 opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9289 break;
9290 case IPOPT_TS:
9291 /* Insert timestamp if there is romm */
9292 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9293 case IPOPT_TS_TSONLY:
9294 off = IPOPT_TS_TIMELEN;
9295 break;
9296 case IPOPT_TS_PRESPEC:
9297 case IPOPT_TS_PRESPEC_RFC791:
9298 /* Verify that the address matched */
9299 off = opt[IPOPT_OFFSET] - 1;
9300 bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9301 if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
9302 /* Not for us */
9303 break;
9304 }
9305 /* FALLTHRU */
9306 case IPOPT_TS_TSANDADDR:
9307 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
9308 break;
9309 default:
9310 /*
9311 * ip_*put_options should have already
9312 * dropped this packet.
9313 */
9314 cmn_err(CE_PANIC, "ip_input_local_options: "
9315 "unknown IT - bug in ip_input_options?\n");
9316 return (B_TRUE); /* Keep "lint" happy */
9317 }
9318 if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
9319 /* Increase overflow counter */
9320 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
9321 opt[IPOPT_POS_OV_FLG] =
9322 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) |
9323 (off << 4));
9324 break;
9325 }
9326 off = opt[IPOPT_OFFSET] - 1;
9327 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9328 case IPOPT_TS_PRESPEC:
9329 case IPOPT_TS_PRESPEC_RFC791:
9330 case IPOPT_TS_TSANDADDR:
9331 /* Pick a reasonable addr on the outbound if */
9332 if (ip_select_source_v4(ill, INADDR_ANY,
9333 ipha->ipha_dst, INADDR_ANY, ALL_ZONES, ipst,
9334 &ifaddr, NULL, NULL) != 0) {
9335 /* No source! Shouldn't happen */
9336 ifaddr = INADDR_ANY;
9337 }
9338 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9339 opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9340 /* FALLTHRU */
9341 case IPOPT_TS_TSONLY:
9342 off = opt[IPOPT_OFFSET] - 1;
9343 /* Compute # of milliseconds since midnight */
9344 gethrestime(&now);
9345 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
9346 NSEC2MSEC(now.tv_nsec);
9347 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
9348 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
9349 break;
9350 }
9351 break;
9352 }
9353 }
9354 return (B_TRUE);
9355
9356 bad_src_route:
9357 /* make sure we clear any indication of a hardware checksum */
9358 DB_CKSUMFLAGS(mp) = 0;
9359 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill);
9360 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira);
9361 return (B_FALSE);
9362
9363 }
9364
9365 /*
9366 * Process IP options in an inbound packet. Always returns the nexthop.
9367 * Normally this is the passed in nexthop, but if there is an option
9368 * that effects the nexthop (such as a source route) that will be returned.
9369 * Sets *errorp if there is an error, in which case an ICMP error has been sent
9370 * and mp freed.
9371 */
9372 ipaddr_t
9373 ip_input_options(ipha_t *ipha, ipaddr_t dst, mblk_t *mp,
9374 ip_recv_attr_t *ira, int *errorp)
9375 {
9376 ip_stack_t *ipst = ira->ira_ill->ill_ipst;
9377 ipoptp_t opts;
9378 uchar_t *opt;
9379 uint8_t optval;
9380 uint8_t optlen;
9381 intptr_t code = 0;
9382 ire_t *ire;
9383
9384 ip2dbg(("ip_input_options\n"));
9385 *errorp = 0;
9386 for (optval = ipoptp_first(&opts, ipha);
9387 optval != IPOPT_EOL;
9388 optval = ipoptp_next(&opts)) {
9389 opt = opts.ipoptp_cur;
9390 optlen = opts.ipoptp_len;
9391 ip2dbg(("ip_input_options: opt %d, len %d\n",
9392 optval, optlen));
9393 /*
9394 * Note: we need to verify the checksum before we
9395 * modify anything thus this routine only extracts the next
9396 * hop dst from any source route.
9397 */
9398 switch (optval) {
9399 uint32_t off;
9400 case IPOPT_SSRR:
9401 case IPOPT_LSRR:
9402 if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
9403 if (optval == IPOPT_SSRR) {
9404 ip1dbg(("ip_input_options: not next"
9405 " strict source route 0x%x\n",
9406 ntohl(dst)));
9407 code = (char *)&ipha->ipha_dst -
9408 (char *)ipha;
9409 goto param_prob; /* RouterReq's */
9410 }
9411 ip2dbg(("ip_input_options: "
9412 "not next source route 0x%x\n",
9413 ntohl(dst)));
9414 break;
9415 }
9416
9417 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
9418 ip1dbg((
9419 "ip_input_options: bad option offset\n"));
9420 code = (char *)&opt[IPOPT_OLEN] -
9421 (char *)ipha;
9422 goto param_prob;
9423 }
9424 off = opt[IPOPT_OFFSET];
9425 off--;
9426 redo_srr:
9427 if (optlen < IP_ADDR_LEN ||
9428 off > optlen - IP_ADDR_LEN) {
9429 /* End of source route */
9430 ip1dbg(("ip_input_options: end of SR\n"));
9431 break;
9432 }
9433 bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9434 ip1dbg(("ip_input_options: next hop 0x%x\n",
9435 ntohl(dst)));
9436
9437 /*
9438 * Check if our address is present more than
9439 * once as consecutive hops in source route.
9440 * XXX verify per-interface ip_forwarding
9441 * for source route?
9442 */
9443 if (ip_type_v4(dst, ipst) == IRE_LOCAL) {
9444 off += IP_ADDR_LEN;
9445 goto redo_srr;
9446 }
9447
9448 if (dst == htonl(INADDR_LOOPBACK)) {
9449 ip1dbg(("ip_input_options: loopback addr in "
9450 "source route!\n"));
9451 goto bad_src_route;
9452 }
9453 /*
9454 * For strict: verify that dst is directly
9455 * reachable.
9456 */
9457 if (optval == IPOPT_SSRR) {
9458 ire = ire_ftable_lookup_v4(dst, 0, 0,
9459 IRE_INTERFACE, NULL, ALL_ZONES,
9460 ira->ira_tsl,
9461 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst,
9462 NULL);
9463 if (ire == NULL) {
9464 ip1dbg(("ip_input_options: SSRR not "
9465 "directly reachable: 0x%x\n",
9466 ntohl(dst)));
9467 goto bad_src_route;
9468 }
9469 ire_refrele(ire);
9470 }
9471 /*
9472 * Defer update of the offset and the record route
9473 * until the packet is forwarded.
9474 */
9475 break;
9476 case IPOPT_RR:
9477 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
9478 ip1dbg((
9479 "ip_input_options: bad option offset\n"));
9480 code = (char *)&opt[IPOPT_OLEN] -
9481 (char *)ipha;
9482 goto param_prob;
9483 }
9484 break;
9485 case IPOPT_TS:
9486 /*
9487 * Verify that length >= 5 and that there is either
9488 * room for another timestamp or that the overflow
9489 * counter is not maxed out.
9490 */
9491 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha;
9492 if (optlen < IPOPT_MINLEN_IT) {
9493 goto param_prob;
9494 }
9495 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
9496 ip1dbg((
9497 "ip_input_options: bad option offset\n"));
9498 code = (char *)&opt[IPOPT_OFFSET] -
9499 (char *)ipha;
9500 goto param_prob;
9501 }
9502 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9503 case IPOPT_TS_TSONLY:
9504 off = IPOPT_TS_TIMELEN;
9505 break;
9506 case IPOPT_TS_TSANDADDR:
9507 case IPOPT_TS_PRESPEC:
9508 case IPOPT_TS_PRESPEC_RFC791:
9509 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
9510 break;
9511 default:
9512 code = (char *)&opt[IPOPT_POS_OV_FLG] -
9513 (char *)ipha;
9514 goto param_prob;
9515 }
9516 if (opt[IPOPT_OFFSET] - 1 + off > optlen &&
9517 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) {
9518 /*
9519 * No room and the overflow counter is 15
9520 * already.
9521 */
9522 goto param_prob;
9523 }
9524 break;
9525 }
9526 }
9527
9528 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) {
9529 return (dst);
9530 }
9531
9532 ip1dbg(("ip_input_options: error processing IP options."));
9533 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha;
9534
9535 param_prob:
9536 /* make sure we clear any indication of a hardware checksum */
9537 DB_CKSUMFLAGS(mp) = 0;
9538 ip_drop_input("ICMP_PARAM_PROBLEM", mp, ira->ira_ill);
9539 icmp_param_problem(mp, (uint8_t)code, ira);
9540 *errorp = -1;
9541 return (dst);
9542
9543 bad_src_route:
9544 /* make sure we clear any indication of a hardware checksum */
9545 DB_CKSUMFLAGS(mp) = 0;
9546 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ira->ira_ill);
9547 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira);
9548 *errorp = -1;
9549 return (dst);
9550 }
9551
9552 /*
9553 * IP & ICMP info in >=14 msg's ...
9554 * - ip fixed part (mib2_ip_t)
9555 * - icmp fixed part (mib2_icmp_t)
9556 * - ipAddrEntryTable (ip 20) all IPv4 ipifs
9557 * - ipRouteEntryTable (ip 21) all IPv4 IREs
9558 * - ipNetToMediaEntryTable (ip 22) all IPv4 Neighbor Cache entries
9559 * - ipRouteAttributeTable (ip 102) labeled routes
9560 * - ip multicast membership (ip_member_t)
9561 * - ip multicast source filtering (ip_grpsrc_t)
9562 * - igmp fixed part (struct igmpstat)
9563 * - multicast routing stats (struct mrtstat)
9564 * - multicast routing vifs (array of struct vifctl)
9565 * - multicast routing routes (array of struct mfcctl)
9566 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t)
9567 * One per ill plus one generic
9568 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t)
9569 * One per ill plus one generic
9570 * - ipv6RouteEntry all IPv6 IREs
9571 * - ipv6RouteAttributeTable (ip6 102) labeled routes
9572 * - ipv6NetToMediaEntry all IPv6 Neighbor Cache entries
9573 * - ipv6AddrEntry all IPv6 ipifs
9574 * - ipv6 multicast membership (ipv6_member_t)
9575 * - ipv6 multicast source filtering (ipv6_grpsrc_t)
9576 *
9577 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is
9578 * already filled in by the caller.
9579 * If legacy_req is true then MIB structures needs to be truncated to their
9580 * legacy sizes before being returned.
9581 * Return value of 0 indicates that no messages were sent and caller
9582 * should free mpctl.
9583 */
9584 int
9585 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level, boolean_t legacy_req)
9586 {
9587 ip_stack_t *ipst;
9588 sctp_stack_t *sctps;
9589
9590 if (q->q_next != NULL) {
9591 ipst = ILLQ_TO_IPST(q);
9592 } else {
9593 ipst = CONNQ_TO_IPST(q);
9594 }
9595 ASSERT(ipst != NULL);
9596 sctps = ipst->ips_netstack->netstack_sctp;
9597
9598 if (mpctl == NULL || mpctl->b_cont == NULL) {
9599 return (0);
9600 }
9601
9602 /*
9603 * For the purposes of the (broken) packet shell use
9604 * of the level we make sure MIB2_TCP/MIB2_UDP can be used
9605 * to make TCP and UDP appear first in the list of mib items.
9606 * TBD: We could expand this and use it in netstat so that
9607 * the kernel doesn't have to produce large tables (connections,
9608 * routes, etc) when netstat only wants the statistics or a particular
9609 * table.
9610 */
9611 if (!(level == MIB2_TCP || level == MIB2_UDP)) {
9612 if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) {
9613 return (1);
9614 }
9615 }
9616
9617 if (level != MIB2_TCP) {
9618 if ((mpctl = udp_snmp_get(q, mpctl, legacy_req)) == NULL) {
9619 return (1);
9620 }
9621 }
9622
9623 if (level != MIB2_UDP) {
9624 if ((mpctl = tcp_snmp_get(q, mpctl, legacy_req)) == NULL) {
9625 return (1);
9626 }
9627 }
9628
9629 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl,
9630 ipst, legacy_req)) == NULL) {
9631 return (1);
9632 }
9633
9634 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst,
9635 legacy_req)) == NULL) {
9636 return (1);
9637 }
9638
9639 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) {
9640 return (1);
9641 }
9642
9643 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) {
9644 return (1);
9645 }
9646
9647 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) {
9648 return (1);
9649 }
9650
9651 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) {
9652 return (1);
9653 }
9654
9655 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst,
9656 legacy_req)) == NULL) {
9657 return (1);
9658 }
9659
9660 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst,
9661 legacy_req)) == NULL) {
9662 return (1);
9663 }
9664
9665 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) {
9666 return (1);
9667 }
9668
9669 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) {
9670 return (1);
9671 }
9672
9673 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) {
9674 return (1);
9675 }
9676
9677 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) {
9678 return (1);
9679 }
9680
9681 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) {
9682 return (1);
9683 }
9684
9685 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) {
9686 return (1);
9687 }
9688
9689 mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, level, ipst);
9690 if (mpctl == NULL)
9691 return (1);
9692
9693 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, level, ipst);
9694 if (mpctl == NULL)
9695 return (1);
9696
9697 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) {
9698 return (1);
9699 }
9700 if ((mpctl = ip_snmp_get_mib2_ip_dce(q, mpctl, ipst)) == NULL) {
9701 return (1);
9702 }
9703 freemsg(mpctl);
9704 return (1);
9705 }
9706
9707 /* Get global (legacy) IPv4 statistics */
9708 static mblk_t *
9709 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib,
9710 ip_stack_t *ipst, boolean_t legacy_req)
9711 {
9712 mib2_ip_t old_ip_mib;
9713 struct opthdr *optp;
9714 mblk_t *mp2ctl;
9715 mib2_ipAddrEntry_t mae;
9716
9717 /*
9718 * make a copy of the original message
9719 */
9720 mp2ctl = copymsg(mpctl);
9721
9722 /* fixed length IP structure... */
9723 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9724 optp->level = MIB2_IP;
9725 optp->name = 0;
9726 SET_MIB(old_ip_mib.ipForwarding,
9727 (WE_ARE_FORWARDING(ipst) ? 1 : 2));
9728 SET_MIB(old_ip_mib.ipDefaultTTL,
9729 (uint32_t)ipst->ips_ip_def_ttl);
9730 SET_MIB(old_ip_mib.ipReasmTimeout,
9731 ipst->ips_ip_reassembly_timeout);
9732 SET_MIB(old_ip_mib.ipAddrEntrySize,
9733 (legacy_req) ? LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t) :
9734 sizeof (mib2_ipAddrEntry_t));
9735 SET_MIB(old_ip_mib.ipRouteEntrySize,
9736 sizeof (mib2_ipRouteEntry_t));
9737 SET_MIB(old_ip_mib.ipNetToMediaEntrySize,
9738 sizeof (mib2_ipNetToMediaEntry_t));
9739 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t));
9740 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t));
9741 SET_MIB(old_ip_mib.ipRouteAttributeSize,
9742 sizeof (mib2_ipAttributeEntry_t));
9743 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t));
9744 SET_MIB(old_ip_mib.ipDestEntrySize, sizeof (dest_cache_entry_t));
9745
9746 /*
9747 * Grab the statistics from the new IP MIB
9748 */
9749 SET_MIB(old_ip_mib.ipInReceives,
9750 (uint32_t)ipmib->ipIfStatsHCInReceives);
9751 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors);
9752 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors);
9753 SET_MIB(old_ip_mib.ipForwDatagrams,
9754 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams);
9755 SET_MIB(old_ip_mib.ipInUnknownProtos,
9756 ipmib->ipIfStatsInUnknownProtos);
9757 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards);
9758 SET_MIB(old_ip_mib.ipInDelivers,
9759 (uint32_t)ipmib->ipIfStatsHCInDelivers);
9760 SET_MIB(old_ip_mib.ipOutRequests,
9761 (uint32_t)ipmib->ipIfStatsHCOutRequests);
9762 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards);
9763 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes);
9764 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds);
9765 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs);
9766 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails);
9767 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs);
9768 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails);
9769 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates);
9770
9771 /* ipRoutingDiscards is not being used */
9772 SET_MIB(old_ip_mib.ipRoutingDiscards, 0);
9773 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs);
9774 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts);
9775 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs);
9776 SET_MIB(old_ip_mib.ipReasmDuplicates,
9777 ipmib->ipIfStatsReasmDuplicates);
9778 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups);
9779 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits);
9780 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs);
9781 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows);
9782 SET_MIB(old_ip_mib.rawipInOverflows,
9783 ipmib->rawipIfStatsInOverflows);
9784
9785 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded);
9786 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed);
9787 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion);
9788 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion);
9789 SET_MIB(old_ip_mib.ipOutSwitchIPv6,
9790 ipmib->ipIfStatsOutSwitchIPVersion);
9791
9792 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib,
9793 (int)sizeof (old_ip_mib))) {
9794 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n",
9795 (uint_t)sizeof (old_ip_mib)));
9796 }
9797
9798 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9799 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n",
9800 (int)optp->level, (int)optp->name, (int)optp->len));
9801 qreply(q, mpctl);
9802 return (mp2ctl);
9803 }
9804
9805 /* Per interface IPv4 statistics */
9806 static mblk_t *
9807 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
9808 boolean_t legacy_req)
9809 {
9810 struct opthdr *optp;
9811 mblk_t *mp2ctl;
9812 ill_t *ill;
9813 ill_walk_context_t ctx;
9814 mblk_t *mp_tail = NULL;
9815 mib2_ipIfStatsEntry_t global_ip_mib;
9816 mib2_ipAddrEntry_t mae;
9817
9818 /*
9819 * Make a copy of the original message
9820 */
9821 mp2ctl = copymsg(mpctl);
9822
9823 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9824 optp->level = MIB2_IP;
9825 optp->name = MIB2_IP_TRAFFIC_STATS;
9826 /* Include "unknown interface" ip_mib */
9827 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4;
9828 ipst->ips_ip_mib.ipIfStatsIfIndex =
9829 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */
9830 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding,
9831 (ipst->ips_ip_forwarding ? 1 : 2));
9832 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL,
9833 (uint32_t)ipst->ips_ip_def_ttl);
9834 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize,
9835 sizeof (mib2_ipIfStatsEntry_t));
9836 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize,
9837 sizeof (mib2_ipAddrEntry_t));
9838 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize,
9839 sizeof (mib2_ipRouteEntry_t));
9840 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize,
9841 sizeof (mib2_ipNetToMediaEntry_t));
9842 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize,
9843 sizeof (ip_member_t));
9844 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize,
9845 sizeof (ip_grpsrc_t));
9846
9847 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib));
9848
9849 if (legacy_req) {
9850 SET_MIB(global_ip_mib.ipIfStatsAddrEntrySize,
9851 LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t));
9852 }
9853
9854 if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
9855 (char *)&global_ip_mib, (int)sizeof (global_ip_mib))) {
9856 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: "
9857 "failed to allocate %u bytes\n",
9858 (uint_t)sizeof (global_ip_mib)));
9859 }
9860
9861 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
9862 ill = ILL_START_WALK_V4(&ctx, ipst);
9863 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
9864 ill->ill_ip_mib->ipIfStatsIfIndex =
9865 ill->ill_phyint->phyint_ifindex;
9866 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding,
9867 (ipst->ips_ip_forwarding ? 1 : 2));
9868 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL,
9869 (uint32_t)ipst->ips_ip_def_ttl);
9870
9871 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib);
9872 if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
9873 (char *)ill->ill_ip_mib,
9874 (int)sizeof (*ill->ill_ip_mib))) {
9875 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: "
9876 "failed to allocate %u bytes\n",
9877 (uint_t)sizeof (*ill->ill_ip_mib)));
9878 }
9879 }
9880 rw_exit(&ipst->ips_ill_g_lock);
9881
9882 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9883 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: "
9884 "level %d, name %d, len %d\n",
9885 (int)optp->level, (int)optp->name, (int)optp->len));
9886 qreply(q, mpctl);
9887
9888 if (mp2ctl == NULL)
9889 return (NULL);
9890
9891 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst,
9892 legacy_req));
9893 }
9894
9895 /* Global IPv4 ICMP statistics */
9896 static mblk_t *
9897 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
9898 {
9899 struct opthdr *optp;
9900 mblk_t *mp2ctl;
9901
9902 /*
9903 * Make a copy of the original message
9904 */
9905 mp2ctl = copymsg(mpctl);
9906
9907 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9908 optp->level = MIB2_ICMP;
9909 optp->name = 0;
9910 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib,
9911 (int)sizeof (ipst->ips_icmp_mib))) {
9912 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n",
9913 (uint_t)sizeof (ipst->ips_icmp_mib)));
9914 }
9915 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9916 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n",
9917 (int)optp->level, (int)optp->name, (int)optp->len));
9918 qreply(q, mpctl);
9919 return (mp2ctl);
9920 }
9921
9922 /* Global IPv4 IGMP statistics */
9923 static mblk_t *
9924 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
9925 {
9926 struct opthdr *optp;
9927 mblk_t *mp2ctl;
9928
9929 /*
9930 * make a copy of the original message
9931 */
9932 mp2ctl = copymsg(mpctl);
9933
9934 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9935 optp->level = EXPER_IGMP;
9936 optp->name = 0;
9937 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat,
9938 (int)sizeof (ipst->ips_igmpstat))) {
9939 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n",
9940 (uint_t)sizeof (ipst->ips_igmpstat)));
9941 }
9942 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9943 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n",
9944 (int)optp->level, (int)optp->name, (int)optp->len));
9945 qreply(q, mpctl);
9946 return (mp2ctl);
9947 }
9948
9949 /* Global IPv4 Multicast Routing statistics */
9950 static mblk_t *
9951 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
9952 {
9953 struct opthdr *optp;
9954 mblk_t *mp2ctl;
9955
9956 /*
9957 * make a copy of the original message
9958 */
9959 mp2ctl = copymsg(mpctl);
9960
9961 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9962 optp->level = EXPER_DVMRP;
9963 optp->name = 0;
9964 if (!ip_mroute_stats(mpctl->b_cont, ipst)) {
9965 ip0dbg(("ip_mroute_stats: failed\n"));
9966 }
9967 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9968 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n",
9969 (int)optp->level, (int)optp->name, (int)optp->len));
9970 qreply(q, mpctl);
9971 return (mp2ctl);
9972 }
9973
9974 /* IPv4 address information */
9975 static mblk_t *
9976 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
9977 boolean_t legacy_req)
9978 {
9979 struct opthdr *optp;
9980 mblk_t *mp2ctl;
9981 mblk_t *mp_tail = NULL;
9982 ill_t *ill;
9983 ipif_t *ipif;
9984 uint_t bitval;
9985 mib2_ipAddrEntry_t mae;
9986 size_t mae_size;
9987 zoneid_t zoneid;
9988 ill_walk_context_t ctx;
9989
9990 /*
9991 * make a copy of the original message
9992 */
9993 mp2ctl = copymsg(mpctl);
9994
9995 mae_size = (legacy_req) ? LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t) :
9996 sizeof (mib2_ipAddrEntry_t);
9997
9998 /* ipAddrEntryTable */
9999
10000 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10001 optp->level = MIB2_IP;
10002 optp->name = MIB2_IP_ADDR;
10003 zoneid = Q_TO_CONN(q)->conn_zoneid;
10004
10005 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10006 ill = ILL_START_WALK_V4(&ctx, ipst);
10007 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10008 for (ipif = ill->ill_ipif; ipif != NULL;
10009 ipif = ipif->ipif_next) {
10010 if (ipif->ipif_zoneid != zoneid &&
10011 ipif->ipif_zoneid != ALL_ZONES)
10012 continue;
10013 /* Sum of count from dead IRE_LO* and our current */
10014 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count;
10015 if (ipif->ipif_ire_local != NULL) {
10016 mae.ipAdEntInfo.ae_ibcnt +=
10017 ipif->ipif_ire_local->ire_ib_pkt_count;
10018 }
10019 mae.ipAdEntInfo.ae_obcnt = 0;
10020 mae.ipAdEntInfo.ae_focnt = 0;
10021
10022 ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes,
10023 OCTET_LENGTH);
10024 mae.ipAdEntIfIndex.o_length =
10025 mi_strlen(mae.ipAdEntIfIndex.o_bytes);
10026 mae.ipAdEntAddr = ipif->ipif_lcl_addr;
10027 mae.ipAdEntNetMask = ipif->ipif_net_mask;
10028 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet;
10029 mae.ipAdEntInfo.ae_subnet_len =
10030 ip_mask_to_plen(ipif->ipif_net_mask);
10031 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_lcl_addr;
10032 for (bitval = 1;
10033 bitval &&
10034 !(bitval & ipif->ipif_brd_addr);
10035 bitval <<= 1)
10036 noop;
10037 mae.ipAdEntBcastAddr = bitval;
10038 mae.ipAdEntReasmMaxSize = IP_MAXPACKET;
10039 mae.ipAdEntInfo.ae_mtu = ipif->ipif_ill->ill_mtu;
10040 mae.ipAdEntInfo.ae_metric = ipif->ipif_ill->ill_metric;
10041 mae.ipAdEntInfo.ae_broadcast_addr =
10042 ipif->ipif_brd_addr;
10043 mae.ipAdEntInfo.ae_pp_dst_addr =
10044 ipif->ipif_pp_dst_addr;
10045 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags |
10046 ill->ill_flags | ill->ill_phyint->phyint_flags;
10047 mae.ipAdEntRetransmitTime =
10048 ill->ill_reachable_retrans_time;
10049
10050 if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10051 (char *)&mae, (int)mae_size)) {
10052 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to "
10053 "allocate %u bytes\n", (uint_t)mae_size));
10054 }
10055 }
10056 }
10057 rw_exit(&ipst->ips_ill_g_lock);
10058
10059 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10060 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n",
10061 (int)optp->level, (int)optp->name, (int)optp->len));
10062 qreply(q, mpctl);
10063 return (mp2ctl);
10064 }
10065
10066 /* IPv6 address information */
10067 static mblk_t *
10068 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
10069 boolean_t legacy_req)
10070 {
10071 struct opthdr *optp;
10072 mblk_t *mp2ctl;
10073 mblk_t *mp_tail = NULL;
10074 ill_t *ill;
10075 ipif_t *ipif;
10076 mib2_ipv6AddrEntry_t mae6;
10077 size_t mae6_size;
10078 zoneid_t zoneid;
10079 ill_walk_context_t ctx;
10080
10081 /*
10082 * make a copy of the original message
10083 */
10084 mp2ctl = copymsg(mpctl);
10085
10086 mae6_size = (legacy_req) ?
10087 LEGACY_MIB_SIZE(&mae6, mib2_ipv6AddrEntry_t) :
10088 sizeof (mib2_ipv6AddrEntry_t);
10089
10090 /* ipv6AddrEntryTable */
10091
10092 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10093 optp->level = MIB2_IP6;
10094 optp->name = MIB2_IP6_ADDR;
10095 zoneid = Q_TO_CONN(q)->conn_zoneid;
10096
10097 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10098 ill = ILL_START_WALK_V6(&ctx, ipst);
10099 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10100 for (ipif = ill->ill_ipif; ipif != NULL;
10101 ipif = ipif->ipif_next) {
10102 if (ipif->ipif_zoneid != zoneid &&
10103 ipif->ipif_zoneid != ALL_ZONES)
10104 continue;
10105 /* Sum of count from dead IRE_LO* and our current */
10106 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count;
10107 if (ipif->ipif_ire_local != NULL) {
10108 mae6.ipv6AddrInfo.ae_ibcnt +=
10109 ipif->ipif_ire_local->ire_ib_pkt_count;
10110 }
10111 mae6.ipv6AddrInfo.ae_obcnt = 0;
10112 mae6.ipv6AddrInfo.ae_focnt = 0;
10113
10114 ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes,
10115 OCTET_LENGTH);
10116 mae6.ipv6AddrIfIndex.o_length =
10117 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes);
10118 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr;
10119 mae6.ipv6AddrPfxLength =
10120 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
10121 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet;
10122 mae6.ipv6AddrInfo.ae_subnet_len =
10123 mae6.ipv6AddrPfxLength;
10124 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6lcl_addr;
10125
10126 /* Type: stateless(1), stateful(2), unknown(3) */
10127 if (ipif->ipif_flags & IPIF_ADDRCONF)
10128 mae6.ipv6AddrType = 1;
10129 else
10130 mae6.ipv6AddrType = 2;
10131 /* Anycast: true(1), false(2) */
10132 if (ipif->ipif_flags & IPIF_ANYCAST)
10133 mae6.ipv6AddrAnycastFlag = 1;
10134 else
10135 mae6.ipv6AddrAnycastFlag = 2;
10136
10137 /*
10138 * Address status: preferred(1), deprecated(2),
10139 * invalid(3), inaccessible(4), unknown(5)
10140 */
10141 if (ipif->ipif_flags & IPIF_NOLOCAL)
10142 mae6.ipv6AddrStatus = 3;
10143 else if (ipif->ipif_flags & IPIF_DEPRECATED)
10144 mae6.ipv6AddrStatus = 2;
10145 else
10146 mae6.ipv6AddrStatus = 1;
10147 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_ill->ill_mtu;
10148 mae6.ipv6AddrInfo.ae_metric =
10149 ipif->ipif_ill->ill_metric;
10150 mae6.ipv6AddrInfo.ae_pp_dst_addr =
10151 ipif->ipif_v6pp_dst_addr;
10152 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags |
10153 ill->ill_flags | ill->ill_phyint->phyint_flags;
10154 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET;
10155 mae6.ipv6AddrIdentifier = ill->ill_token;
10156 mae6.ipv6AddrIdentifierLen = ill->ill_token_length;
10157 mae6.ipv6AddrReachableTime = ill->ill_reachable_time;
10158 mae6.ipv6AddrRetransmitTime =
10159 ill->ill_reachable_retrans_time;
10160 if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10161 (char *)&mae6, (int)mae6_size)) {
10162 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to "
10163 "allocate %u bytes\n",
10164 (uint_t)mae6_size));
10165 }
10166 }
10167 }
10168 rw_exit(&ipst->ips_ill_g_lock);
10169
10170 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10171 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n",
10172 (int)optp->level, (int)optp->name, (int)optp->len));
10173 qreply(q, mpctl);
10174 return (mp2ctl);
10175 }
10176
10177 /* IPv4 multicast group membership. */
10178 static mblk_t *
10179 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10180 {
10181 struct opthdr *optp;
10182 mblk_t *mp2ctl;
10183 ill_t *ill;
10184 ipif_t *ipif;
10185 ilm_t *ilm;
10186 ip_member_t ipm;
10187 mblk_t *mp_tail = NULL;
10188 ill_walk_context_t ctx;
10189 zoneid_t zoneid;
10190
10191 /*
10192 * make a copy of the original message
10193 */
10194 mp2ctl = copymsg(mpctl);
10195 zoneid = Q_TO_CONN(q)->conn_zoneid;
10196
10197 /* ipGroupMember table */
10198 optp = (struct opthdr *)&mpctl->b_rptr[
10199 sizeof (struct T_optmgmt_ack)];
10200 optp->level = MIB2_IP;
10201 optp->name = EXPER_IP_GROUP_MEMBERSHIP;
10202
10203 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10204 ill = ILL_START_WALK_V4(&ctx, ipst);
10205 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10206 /* Make sure the ill isn't going away. */
10207 if (!ill_check_and_refhold(ill))
10208 continue;
10209 rw_exit(&ipst->ips_ill_g_lock);
10210 rw_enter(&ill->ill_mcast_lock, RW_READER);
10211 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10212 if (ilm->ilm_zoneid != zoneid &&
10213 ilm->ilm_zoneid != ALL_ZONES)
10214 continue;
10215
10216 /* Is there an ipif for ilm_ifaddr? */
10217 for (ipif = ill->ill_ipif; ipif != NULL;
10218 ipif = ipif->ipif_next) {
10219 if (!IPIF_IS_CONDEMNED(ipif) &&
10220 ipif->ipif_lcl_addr == ilm->ilm_ifaddr &&
10221 ilm->ilm_ifaddr != INADDR_ANY)
10222 break;
10223 }
10224 if (ipif != NULL) {
10225 ipif_get_name(ipif,
10226 ipm.ipGroupMemberIfIndex.o_bytes,
10227 OCTET_LENGTH);
10228 } else {
10229 ill_get_name(ill,
10230 ipm.ipGroupMemberIfIndex.o_bytes,
10231 OCTET_LENGTH);
10232 }
10233 ipm.ipGroupMemberIfIndex.o_length =
10234 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes);
10235
10236 ipm.ipGroupMemberAddress = ilm->ilm_addr;
10237 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt;
10238 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode;
10239 if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10240 (char *)&ipm, (int)sizeof (ipm))) {
10241 ip1dbg(("ip_snmp_get_mib2_ip_group: "
10242 "failed to allocate %u bytes\n",
10243 (uint_t)sizeof (ipm)));
10244 }
10245 }
10246 rw_exit(&ill->ill_mcast_lock);
10247 ill_refrele(ill);
10248 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10249 }
10250 rw_exit(&ipst->ips_ill_g_lock);
10251 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10252 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10253 (int)optp->level, (int)optp->name, (int)optp->len));
10254 qreply(q, mpctl);
10255 return (mp2ctl);
10256 }
10257
10258 /* IPv6 multicast group membership. */
10259 static mblk_t *
10260 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10261 {
10262 struct opthdr *optp;
10263 mblk_t *mp2ctl;
10264 ill_t *ill;
10265 ilm_t *ilm;
10266 ipv6_member_t ipm6;
10267 mblk_t *mp_tail = NULL;
10268 ill_walk_context_t ctx;
10269 zoneid_t zoneid;
10270
10271 /*
10272 * make a copy of the original message
10273 */
10274 mp2ctl = copymsg(mpctl);
10275 zoneid = Q_TO_CONN(q)->conn_zoneid;
10276
10277 /* ip6GroupMember table */
10278 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10279 optp->level = MIB2_IP6;
10280 optp->name = EXPER_IP6_GROUP_MEMBERSHIP;
10281
10282 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10283 ill = ILL_START_WALK_V6(&ctx, ipst);
10284 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10285 /* Make sure the ill isn't going away. */
10286 if (!ill_check_and_refhold(ill))
10287 continue;
10288 rw_exit(&ipst->ips_ill_g_lock);
10289 /*
10290 * Normally we don't have any members on under IPMP interfaces.
10291 * We report them as a debugging aid.
10292 */
10293 rw_enter(&ill->ill_mcast_lock, RW_READER);
10294 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex;
10295 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10296 if (ilm->ilm_zoneid != zoneid &&
10297 ilm->ilm_zoneid != ALL_ZONES)
10298 continue; /* not this zone */
10299 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr;
10300 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt;
10301 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode;
10302 if (!snmp_append_data2(mpctl->b_cont,
10303 &mp_tail,
10304 (char *)&ipm6, (int)sizeof (ipm6))) {
10305 ip1dbg(("ip_snmp_get_mib2_ip6_group: "
10306 "failed to allocate %u bytes\n",
10307 (uint_t)sizeof (ipm6)));
10308 }
10309 }
10310 rw_exit(&ill->ill_mcast_lock);
10311 ill_refrele(ill);
10312 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10313 }
10314 rw_exit(&ipst->ips_ill_g_lock);
10315
10316 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10317 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10318 (int)optp->level, (int)optp->name, (int)optp->len));
10319 qreply(q, mpctl);
10320 return (mp2ctl);
10321 }
10322
10323 /* IP multicast filtered sources */
10324 static mblk_t *
10325 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10326 {
10327 struct opthdr *optp;
10328 mblk_t *mp2ctl;
10329 ill_t *ill;
10330 ipif_t *ipif;
10331 ilm_t *ilm;
10332 ip_grpsrc_t ips;
10333 mblk_t *mp_tail = NULL;
10334 ill_walk_context_t ctx;
10335 zoneid_t zoneid;
10336 int i;
10337 slist_t *sl;
10338
10339 /*
10340 * make a copy of the original message
10341 */
10342 mp2ctl = copymsg(mpctl);
10343 zoneid = Q_TO_CONN(q)->conn_zoneid;
10344
10345 /* ipGroupSource table */
10346 optp = (struct opthdr *)&mpctl->b_rptr[
10347 sizeof (struct T_optmgmt_ack)];
10348 optp->level = MIB2_IP;
10349 optp->name = EXPER_IP_GROUP_SOURCES;
10350
10351 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10352 ill = ILL_START_WALK_V4(&ctx, ipst);
10353 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10354 /* Make sure the ill isn't going away. */
10355 if (!ill_check_and_refhold(ill))
10356 continue;
10357 rw_exit(&ipst->ips_ill_g_lock);
10358 rw_enter(&ill->ill_mcast_lock, RW_READER);
10359 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10360 sl = ilm->ilm_filter;
10361 if (ilm->ilm_zoneid != zoneid &&
10362 ilm->ilm_zoneid != ALL_ZONES)
10363 continue;
10364 if (SLIST_IS_EMPTY(sl))
10365 continue;
10366
10367 /* Is there an ipif for ilm_ifaddr? */
10368 for (ipif = ill->ill_ipif; ipif != NULL;
10369 ipif = ipif->ipif_next) {
10370 if (!IPIF_IS_CONDEMNED(ipif) &&
10371 ipif->ipif_lcl_addr == ilm->ilm_ifaddr &&
10372 ilm->ilm_ifaddr != INADDR_ANY)
10373 break;
10374 }
10375 if (ipif != NULL) {
10376 ipif_get_name(ipif,
10377 ips.ipGroupSourceIfIndex.o_bytes,
10378 OCTET_LENGTH);
10379 } else {
10380 ill_get_name(ill,
10381 ips.ipGroupSourceIfIndex.o_bytes,
10382 OCTET_LENGTH);
10383 }
10384 ips.ipGroupSourceIfIndex.o_length =
10385 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes);
10386
10387 ips.ipGroupSourceGroup = ilm->ilm_addr;
10388 for (i = 0; i < sl->sl_numsrc; i++) {
10389 if (!IN6_IS_ADDR_V4MAPPED(&sl->sl_addr[i]))
10390 continue;
10391 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i],
10392 ips.ipGroupSourceAddress);
10393 if (snmp_append_data2(mpctl->b_cont, &mp_tail,
10394 (char *)&ips, (int)sizeof (ips)) == 0) {
10395 ip1dbg(("ip_snmp_get_mib2_ip_group_src:"
10396 " failed to allocate %u bytes\n",
10397 (uint_t)sizeof (ips)));
10398 }
10399 }
10400 }
10401 rw_exit(&ill->ill_mcast_lock);
10402 ill_refrele(ill);
10403 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10404 }
10405 rw_exit(&ipst->ips_ill_g_lock);
10406 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10407 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10408 (int)optp->level, (int)optp->name, (int)optp->len));
10409 qreply(q, mpctl);
10410 return (mp2ctl);
10411 }
10412
10413 /* IPv6 multicast filtered sources. */
10414 static mblk_t *
10415 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10416 {
10417 struct opthdr *optp;
10418 mblk_t *mp2ctl;
10419 ill_t *ill;
10420 ilm_t *ilm;
10421 ipv6_grpsrc_t ips6;
10422 mblk_t *mp_tail = NULL;
10423 ill_walk_context_t ctx;
10424 zoneid_t zoneid;
10425 int i;
10426 slist_t *sl;
10427
10428 /*
10429 * make a copy of the original message
10430 */
10431 mp2ctl = copymsg(mpctl);
10432 zoneid = Q_TO_CONN(q)->conn_zoneid;
10433
10434 /* ip6GroupMember table */
10435 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10436 optp->level = MIB2_IP6;
10437 optp->name = EXPER_IP6_GROUP_SOURCES;
10438
10439 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10440 ill = ILL_START_WALK_V6(&ctx, ipst);
10441 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10442 /* Make sure the ill isn't going away. */
10443 if (!ill_check_and_refhold(ill))
10444 continue;
10445 rw_exit(&ipst->ips_ill_g_lock);
10446 /*
10447 * Normally we don't have any members on under IPMP interfaces.
10448 * We report them as a debugging aid.
10449 */
10450 rw_enter(&ill->ill_mcast_lock, RW_READER);
10451 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex;
10452 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10453 sl = ilm->ilm_filter;
10454 if (ilm->ilm_zoneid != zoneid &&
10455 ilm->ilm_zoneid != ALL_ZONES)
10456 continue;
10457 if (SLIST_IS_EMPTY(sl))
10458 continue;
10459 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr;
10460 for (i = 0; i < sl->sl_numsrc; i++) {
10461 ips6.ipv6GroupSourceAddress = sl->sl_addr[i];
10462 if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10463 (char *)&ips6, (int)sizeof (ips6))) {
10464 ip1dbg(("ip_snmp_get_mib2_ip6_"
10465 "group_src: failed to allocate "
10466 "%u bytes\n",
10467 (uint_t)sizeof (ips6)));
10468 }
10469 }
10470 }
10471 rw_exit(&ill->ill_mcast_lock);
10472 ill_refrele(ill);
10473 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10474 }
10475 rw_exit(&ipst->ips_ill_g_lock);
10476
10477 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10478 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10479 (int)optp->level, (int)optp->name, (int)optp->len));
10480 qreply(q, mpctl);
10481 return (mp2ctl);
10482 }
10483
10484 /* Multicast routing virtual interface table. */
10485 static mblk_t *
10486 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10487 {
10488 struct opthdr *optp;
10489 mblk_t *mp2ctl;
10490
10491 /*
10492 * make a copy of the original message
10493 */
10494 mp2ctl = copymsg(mpctl);
10495
10496 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10497 optp->level = EXPER_DVMRP;
10498 optp->name = EXPER_DVMRP_VIF;
10499 if (!ip_mroute_vif(mpctl->b_cont, ipst)) {
10500 ip0dbg(("ip_mroute_vif: failed\n"));
10501 }
10502 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10503 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n",
10504 (int)optp->level, (int)optp->name, (int)optp->len));
10505 qreply(q, mpctl);
10506 return (mp2ctl);
10507 }
10508
10509 /* Multicast routing table. */
10510 static mblk_t *
10511 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10512 {
10513 struct opthdr *optp;
10514 mblk_t *mp2ctl;
10515
10516 /*
10517 * make a copy of the original message
10518 */
10519 mp2ctl = copymsg(mpctl);
10520
10521 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10522 optp->level = EXPER_DVMRP;
10523 optp->name = EXPER_DVMRP_MRT;
10524 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) {
10525 ip0dbg(("ip_mroute_mrt: failed\n"));
10526 }
10527 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10528 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n",
10529 (int)optp->level, (int)optp->name, (int)optp->len));
10530 qreply(q, mpctl);
10531 return (mp2ctl);
10532 }
10533
10534 /*
10535 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable
10536 * in one IRE walk.
10537 */
10538 static mblk_t *
10539 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, int level,
10540 ip_stack_t *ipst)
10541 {
10542 struct opthdr *optp;
10543 mblk_t *mp2ctl; /* Returned */
10544 mblk_t *mp3ctl; /* nettomedia */
10545 mblk_t *mp4ctl; /* routeattrs */
10546 iproutedata_t ird;
10547 zoneid_t zoneid;
10548
10549 /*
10550 * make copies of the original message
10551 * - mp2ctl is returned unchanged to the caller for his use
10552 * - mpctl is sent upstream as ipRouteEntryTable
10553 * - mp3ctl is sent upstream as ipNetToMediaEntryTable
10554 * - mp4ctl is sent upstream as ipRouteAttributeTable
10555 */
10556 mp2ctl = copymsg(mpctl);
10557 mp3ctl = copymsg(mpctl);
10558 mp4ctl = copymsg(mpctl);
10559 if (mp3ctl == NULL || mp4ctl == NULL) {
10560 freemsg(mp4ctl);
10561 freemsg(mp3ctl);
10562 freemsg(mp2ctl);
10563 freemsg(mpctl);
10564 return (NULL);
10565 }
10566
10567 bzero(&ird, sizeof (ird));
10568
10569 ird.ird_route.lp_head = mpctl->b_cont;
10570 ird.ird_netmedia.lp_head = mp3ctl->b_cont;
10571 ird.ird_attrs.lp_head = mp4ctl->b_cont;
10572 /*
10573 * If the level has been set the special EXPER_IP_AND_ALL_IRES value,
10574 * then also include ire_testhidden IREs and IRE_IF_CLONE. This is
10575 * intended a temporary solution until a proper MIB API is provided
10576 * that provides complete filtering/caller-opt-in.
10577 */
10578 if (level == EXPER_IP_AND_ALL_IRES)
10579 ird.ird_flags |= IRD_REPORT_ALL;
10580
10581 zoneid = Q_TO_CONN(q)->conn_zoneid;
10582 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst);
10583
10584 /* ipRouteEntryTable in mpctl */
10585 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10586 optp->level = MIB2_IP;
10587 optp->name = MIB2_IP_ROUTE;
10588 optp->len = msgdsize(ird.ird_route.lp_head);
10589 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
10590 (int)optp->level, (int)optp->name, (int)optp->len));
10591 qreply(q, mpctl);
10592
10593 /* ipNetToMediaEntryTable in mp3ctl */
10594 ncec_walk(NULL, ip_snmp_get2_v4_media, &ird, ipst);
10595
10596 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10597 optp->level = MIB2_IP;
10598 optp->name = MIB2_IP_MEDIA;
10599 optp->len = msgdsize(ird.ird_netmedia.lp_head);
10600 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
10601 (int)optp->level, (int)optp->name, (int)optp->len));
10602 qreply(q, mp3ctl);
10603
10604 /* ipRouteAttributeTable in mp4ctl */
10605 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10606 optp->level = MIB2_IP;
10607 optp->name = EXPER_IP_RTATTR;
10608 optp->len = msgdsize(ird.ird_attrs.lp_head);
10609 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
10610 (int)optp->level, (int)optp->name, (int)optp->len));
10611 if (optp->len == 0)
10612 freemsg(mp4ctl);
10613 else
10614 qreply(q, mp4ctl);
10615
10616 return (mp2ctl);
10617 }
10618
10619 /*
10620 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and
10621 * ipv6NetToMediaEntryTable in an NDP walk.
10622 */
10623 static mblk_t *
10624 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, int level,
10625 ip_stack_t *ipst)
10626 {
10627 struct opthdr *optp;
10628 mblk_t *mp2ctl; /* Returned */
10629 mblk_t *mp3ctl; /* nettomedia */
10630 mblk_t *mp4ctl; /* routeattrs */
10631 iproutedata_t ird;
10632 zoneid_t zoneid;
10633
10634 /*
10635 * make copies of the original message
10636 * - mp2ctl is returned unchanged to the caller for his use
10637 * - mpctl is sent upstream as ipv6RouteEntryTable
10638 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable
10639 * - mp4ctl is sent upstream as ipv6RouteAttributeTable
10640 */
10641 mp2ctl = copymsg(mpctl);
10642 mp3ctl = copymsg(mpctl);
10643 mp4ctl = copymsg(mpctl);
10644 if (mp3ctl == NULL || mp4ctl == NULL) {
10645 freemsg(mp4ctl);
10646 freemsg(mp3ctl);
10647 freemsg(mp2ctl);
10648 freemsg(mpctl);
10649 return (NULL);
10650 }
10651
10652 bzero(&ird, sizeof (ird));
10653
10654 ird.ird_route.lp_head = mpctl->b_cont;
10655 ird.ird_netmedia.lp_head = mp3ctl->b_cont;
10656 ird.ird_attrs.lp_head = mp4ctl->b_cont;
10657 /*
10658 * If the level has been set the special EXPER_IP_AND_ALL_IRES value,
10659 * then also include ire_testhidden IREs and IRE_IF_CLONE. This is
10660 * intended a temporary solution until a proper MIB API is provided
10661 * that provides complete filtering/caller-opt-in.
10662 */
10663 if (level == EXPER_IP_AND_ALL_IRES)
10664 ird.ird_flags |= IRD_REPORT_ALL;
10665
10666 zoneid = Q_TO_CONN(q)->conn_zoneid;
10667 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst);
10668
10669 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10670 optp->level = MIB2_IP6;
10671 optp->name = MIB2_IP6_ROUTE;
10672 optp->len = msgdsize(ird.ird_route.lp_head);
10673 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",
10674 (int)optp->level, (int)optp->name, (int)optp->len));
10675 qreply(q, mpctl);
10676
10677 /* ipv6NetToMediaEntryTable in mp3ctl */
10678 ncec_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst);
10679
10680 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10681 optp->level = MIB2_IP6;
10682 optp->name = MIB2_IP6_MEDIA;
10683 optp->len = msgdsize(ird.ird_netmedia.lp_head);
10684 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",
10685 (int)optp->level, (int)optp->name, (int)optp->len));
10686 qreply(q, mp3ctl);
10687
10688 /* ipv6RouteAttributeTable in mp4ctl */
10689 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10690 optp->level = MIB2_IP6;
10691 optp->name = EXPER_IP_RTATTR;
10692 optp->len = msgdsize(ird.ird_attrs.lp_head);
10693 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",
10694 (int)optp->level, (int)optp->name, (int)optp->len));
10695 if (optp->len == 0)
10696 freemsg(mp4ctl);
10697 else
10698 qreply(q, mp4ctl);
10699
10700 return (mp2ctl);
10701 }
10702
10703 /*
10704 * IPv6 mib: One per ill
10705 */
10706 static mblk_t *
10707 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
10708 boolean_t legacy_req)
10709 {
10710 struct opthdr *optp;
10711 mblk_t *mp2ctl;
10712 ill_t *ill;
10713 ill_walk_context_t ctx;
10714 mblk_t *mp_tail = NULL;
10715 mib2_ipv6AddrEntry_t mae6;
10716 mib2_ipIfStatsEntry_t *ise;
10717 size_t ise_size, iae_size;
10718
10719 /*
10720 * Make a copy of the original message
10721 */
10722 mp2ctl = copymsg(mpctl);
10723
10724 /* fixed length IPv6 structure ... */
10725
10726 if (legacy_req) {
10727 ise_size = LEGACY_MIB_SIZE(&ipst->ips_ip6_mib,
10728 mib2_ipIfStatsEntry_t);
10729 iae_size = LEGACY_MIB_SIZE(&mae6, mib2_ipv6AddrEntry_t);
10730 } else {
10731 ise_size = sizeof (mib2_ipIfStatsEntry_t);
10732 iae_size = sizeof (mib2_ipv6AddrEntry_t);
10733 }
10734
10735 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10736 optp->level = MIB2_IP6;
10737 optp->name = 0;
10738 /* Include "unknown interface" ip6_mib */
10739 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6;
10740 ipst->ips_ip6_mib.ipIfStatsIfIndex =
10741 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */
10742 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding,
10743 ipst->ips_ipv6_forwarding ? 1 : 2);
10744 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit,
10745 ipst->ips_ipv6_def_hops);
10746 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize,
10747 sizeof (mib2_ipIfStatsEntry_t));
10748 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize,
10749 sizeof (mib2_ipv6AddrEntry_t));
10750 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize,
10751 sizeof (mib2_ipv6RouteEntry_t));
10752 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize,
10753 sizeof (mib2_ipv6NetToMediaEntry_t));
10754 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize,
10755 sizeof (ipv6_member_t));
10756 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize,
10757 sizeof (ipv6_grpsrc_t));
10758
10759 /*
10760 * Synchronize 64- and 32-bit counters
10761 */
10762 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives,
10763 ipIfStatsHCInReceives);
10764 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers,
10765 ipIfStatsHCInDelivers);
10766 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests,
10767 ipIfStatsHCOutRequests);
10768 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams,
10769 ipIfStatsHCOutForwDatagrams);
10770 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts,
10771 ipIfStatsHCOutMcastPkts);
10772 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts,
10773 ipIfStatsHCInMcastPkts);
10774
10775 if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10776 (char *)&ipst->ips_ip6_mib, (int)ise_size)) {
10777 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n",
10778 (uint_t)ise_size));
10779 } else if (legacy_req) {
10780 /* Adjust the EntrySize fields for legacy requests. */
10781 ise =
10782 (mib2_ipIfStatsEntry_t *)(mp_tail->b_wptr - (int)ise_size);
10783 SET_MIB(ise->ipIfStatsEntrySize, ise_size);
10784 SET_MIB(ise->ipIfStatsAddrEntrySize, iae_size);
10785 }
10786
10787 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10788 ill = ILL_START_WALK_V6(&ctx, ipst);
10789 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10790 ill->ill_ip_mib->ipIfStatsIfIndex =
10791 ill->ill_phyint->phyint_ifindex;
10792 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding,
10793 ipst->ips_ipv6_forwarding ? 1 : 2);
10794 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit,
10795 ill->ill_max_hops);
10796
10797 /*
10798 * Synchronize 64- and 32-bit counters
10799 */
10800 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives,
10801 ipIfStatsHCInReceives);
10802 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers,
10803 ipIfStatsHCInDelivers);
10804 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests,
10805 ipIfStatsHCOutRequests);
10806 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams,
10807 ipIfStatsHCOutForwDatagrams);
10808 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts,
10809 ipIfStatsHCOutMcastPkts);
10810 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts,
10811 ipIfStatsHCInMcastPkts);
10812
10813 if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10814 (char *)ill->ill_ip_mib, (int)ise_size)) {
10815 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate "
10816 "%u bytes\n", (uint_t)ise_size));
10817 } else if (legacy_req) {
10818 /* Adjust the EntrySize fields for legacy requests. */
10819 ise = (mib2_ipIfStatsEntry_t *)(mp_tail->b_wptr -
10820 (int)ise_size);
10821 SET_MIB(ise->ipIfStatsEntrySize, ise_size);
10822 SET_MIB(ise->ipIfStatsAddrEntrySize, iae_size);
10823 }
10824 }
10825 rw_exit(&ipst->ips_ill_g_lock);
10826
10827 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10828 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n",
10829 (int)optp->level, (int)optp->name, (int)optp->len));
10830 qreply(q, mpctl);
10831 return (mp2ctl);
10832 }
10833
10834 /*
10835 * ICMPv6 mib: One per ill
10836 */
10837 static mblk_t *
10838 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10839 {
10840 struct opthdr *optp;
10841 mblk_t *mp2ctl;
10842 ill_t *ill;
10843 ill_walk_context_t ctx;
10844 mblk_t *mp_tail = NULL;
10845 /*
10846 * Make a copy of the original message
10847 */
10848 mp2ctl = copymsg(mpctl);
10849
10850 /* fixed length ICMPv6 structure ... */
10851
10852 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10853 optp->level = MIB2_ICMP6;
10854 optp->name = 0;
10855 /* Include "unknown interface" icmp6_mib */
10856 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex =
10857 MIB2_UNKNOWN_INTERFACE; /* netstat flag */
10858 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize =
10859 sizeof (mib2_ipv6IfIcmpEntry_t);
10860 if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10861 (char *)&ipst->ips_icmp6_mib,
10862 (int)sizeof (ipst->ips_icmp6_mib))) {
10863 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n",
10864 (uint_t)sizeof (ipst->ips_icmp6_mib)));
10865 }
10866
10867 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10868 ill = ILL_START_WALK_V6(&ctx, ipst);
10869 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10870 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex =
10871 ill->ill_phyint->phyint_ifindex;
10872 if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10873 (char *)ill->ill_icmp6_mib,
10874 (int)sizeof (*ill->ill_icmp6_mib))) {
10875 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate "
10876 "%u bytes\n",
10877 (uint_t)sizeof (*ill->ill_icmp6_mib)));
10878 }
10879 }
10880 rw_exit(&ipst->ips_ill_g_lock);
10881
10882 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10883 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n",
10884 (int)optp->level, (int)optp->name, (int)optp->len));
10885 qreply(q, mpctl);
10886 return (mp2ctl);
10887 }
10888
10889 /*
10890 * ire_walk routine to create both ipRouteEntryTable and
10891 * ipRouteAttributeTable in one IRE walk
10892 */
10893 static void
10894 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird)
10895 {
10896 ill_t *ill;
10897 mib2_ipRouteEntry_t *re;
10898 mib2_ipAttributeEntry_t iaes;
10899 tsol_ire_gw_secattr_t *attrp;
10900 tsol_gc_t *gc = NULL;
10901 tsol_gcgrp_t *gcgrp = NULL;
10902 ip_stack_t *ipst = ire->ire_ipst;
10903
10904 ASSERT(ire->ire_ipversion == IPV4_VERSION);
10905
10906 if (!(ird->ird_flags & IRD_REPORT_ALL)) {
10907 if (ire->ire_testhidden)
10908 return;
10909 if (ire->ire_type & IRE_IF_CLONE)
10910 return;
10911 }
10912
10913 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL)
10914 return;
10915
10916 if ((attrp = ire->ire_gw_secattr) != NULL) {
10917 mutex_enter(&attrp->igsa_lock);
10918 if ((gc = attrp->igsa_gc) != NULL) {
10919 gcgrp = gc->gc_grp;
10920 ASSERT(gcgrp != NULL);
10921 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER);
10922 }
10923 mutex_exit(&attrp->igsa_lock);
10924 }
10925 /*
10926 * Return all IRE types for route table... let caller pick and choose
10927 */
10928 re->ipRouteDest = ire->ire_addr;
10929 ill = ire->ire_ill;
10930 re->ipRouteIfIndex.o_length = 0;
10931 if (ill != NULL) {
10932 ill_get_name(ill, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH);
10933 re->ipRouteIfIndex.o_length =
10934 mi_strlen(re->ipRouteIfIndex.o_bytes);
10935 }
10936 re->ipRouteMetric1 = -1;
10937 re->ipRouteMetric2 = -1;
10938 re->ipRouteMetric3 = -1;
10939 re->ipRouteMetric4 = -1;
10940
10941 re->ipRouteNextHop = ire->ire_gateway_addr;
10942 /* indirect(4), direct(3), or invalid(2) */
10943 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE))
10944 re->ipRouteType = 2;
10945 else if (ire->ire_type & IRE_ONLINK)
10946 re->ipRouteType = 3;
10947 else
10948 re->ipRouteType = 4;
10949
10950 re->ipRouteProto = -1;
10951 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time;
10952 re->ipRouteMask = ire->ire_mask;
10953 re->ipRouteMetric5 = -1;
10954 re->ipRouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu;
10955 if (ire->ire_ill != NULL && re->ipRouteInfo.re_max_frag == 0)
10956 re->ipRouteInfo.re_max_frag = ire->ire_ill->ill_mtu;
10957
10958 re->ipRouteInfo.re_frag_flag = 0;
10959 re->ipRouteInfo.re_rtt = 0;
10960 re->ipRouteInfo.re_src_addr = 0;
10961 re->ipRouteInfo.re_ref = ire->ire_refcnt;
10962 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count;
10963 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count;
10964 re->ipRouteInfo.re_flags = ire->ire_flags;
10965
10966 /* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */
10967 if (ire->ire_type & IRE_INTERFACE) {
10968 ire_t *child;
10969
10970 rw_enter(&ipst->ips_ire_dep_lock, RW_READER);
10971 child = ire->ire_dep_children;
10972 while (child != NULL) {
10973 re->ipRouteInfo.re_obpkt += child->ire_ob_pkt_count;
10974 re->ipRouteInfo.re_ibpkt += child->ire_ib_pkt_count;
10975 child = child->ire_dep_sib_next;
10976 }
10977 rw_exit(&ipst->ips_ire_dep_lock);
10978 }
10979
10980 if (ire->ire_flags & RTF_DYNAMIC) {
10981 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT;
10982 } else {
10983 re->ipRouteInfo.re_ire_type = ire->ire_type;
10984 }
10985
10986 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail,
10987 (char *)re, (int)sizeof (*re))) {
10988 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n",
10989 (uint_t)sizeof (*re)));
10990 }
10991
10992 if (gc != NULL) {
10993 iaes.iae_routeidx = ird->ird_idx;
10994 iaes.iae_doi = gc->gc_db->gcdb_doi;
10995 iaes.iae_slrange = gc->gc_db->gcdb_slrange;
10996
10997 if (!snmp_append_data2(ird->ird_attrs.lp_head,
10998 &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) {
10999 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u "
11000 "bytes\n", (uint_t)sizeof (iaes)));
11001 }
11002 }
11003
11004 /* bump route index for next pass */
11005 ird->ird_idx++;
11006
11007 kmem_free(re, sizeof (*re));
11008 if (gcgrp != NULL)
11009 rw_exit(&gcgrp->gcgrp_rwlock);
11010 }
11011
11012 /*
11013 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable.
11014 */
11015 static void
11016 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird)
11017 {
11018 ill_t *ill;
11019 mib2_ipv6RouteEntry_t *re;
11020 mib2_ipAttributeEntry_t iaes;
11021 tsol_ire_gw_secattr_t *attrp;
11022 tsol_gc_t *gc = NULL;
11023 tsol_gcgrp_t *gcgrp = NULL;
11024 ip_stack_t *ipst = ire->ire_ipst;
11025
11026 ASSERT(ire->ire_ipversion == IPV6_VERSION);
11027
11028 if (!(ird->ird_flags & IRD_REPORT_ALL)) {
11029 if (ire->ire_testhidden)
11030 return;
11031 if (ire->ire_type & IRE_IF_CLONE)
11032 return;
11033 }
11034
11035 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL)
11036 return;
11037
11038 if ((attrp = ire->ire_gw_secattr) != NULL) {
11039 mutex_enter(&attrp->igsa_lock);
11040 if ((gc = attrp->igsa_gc) != NULL) {
11041 gcgrp = gc->gc_grp;
11042 ASSERT(gcgrp != NULL);
11043 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER);
11044 }
11045 mutex_exit(&attrp->igsa_lock);
11046 }
11047 /*
11048 * Return all IRE types for route table... let caller pick and choose
11049 */
11050 re->ipv6RouteDest = ire->ire_addr_v6;
11051 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6);
11052 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */
11053 re->ipv6RouteIfIndex.o_length = 0;
11054 ill = ire->ire_ill;
11055 if (ill != NULL) {
11056 ill_get_name(ill, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH);
11057 re->ipv6RouteIfIndex.o_length =
11058 mi_strlen(re->ipv6RouteIfIndex.o_bytes);
11059 }
11060
11061 ASSERT(!(ire->ire_type & IRE_BROADCAST));
11062
11063 mutex_enter(&ire->ire_lock);
11064 re->ipv6RouteNextHop = ire->ire_gateway_addr_v6;
11065 mutex_exit(&ire->ire_lock);
11066
11067 /* remote(4), local(3), or discard(2) */
11068 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE))
11069 re->ipv6RouteType = 2;
11070 else if (ire->ire_type & IRE_ONLINK)
11071 re->ipv6RouteType = 3;
11072 else
11073 re->ipv6RouteType = 4;
11074
11075 re->ipv6RouteProtocol = -1;
11076 re->ipv6RoutePolicy = 0;
11077 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time;
11078 re->ipv6RouteNextHopRDI = 0;
11079 re->ipv6RouteWeight = 0;
11080 re->ipv6RouteMetric = 0;
11081 re->ipv6RouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu;
11082 if (ire->ire_ill != NULL && re->ipv6RouteInfo.re_max_frag == 0)
11083 re->ipv6RouteInfo.re_max_frag = ire->ire_ill->ill_mtu;
11084
11085 re->ipv6RouteInfo.re_frag_flag = 0;
11086 re->ipv6RouteInfo.re_rtt = 0;
11087 re->ipv6RouteInfo.re_src_addr = ipv6_all_zeros;
11088 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count;
11089 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count;
11090 re->ipv6RouteInfo.re_ref = ire->ire_refcnt;
11091 re->ipv6RouteInfo.re_flags = ire->ire_flags;
11092
11093 /* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */
11094 if (ire->ire_type & IRE_INTERFACE) {
11095 ire_t *child;
11096
11097 rw_enter(&ipst->ips_ire_dep_lock, RW_READER);
11098 child = ire->ire_dep_children;
11099 while (child != NULL) {
11100 re->ipv6RouteInfo.re_obpkt += child->ire_ob_pkt_count;
11101 re->ipv6RouteInfo.re_ibpkt += child->ire_ib_pkt_count;
11102 child = child->ire_dep_sib_next;
11103 }
11104 rw_exit(&ipst->ips_ire_dep_lock);
11105 }
11106 if (ire->ire_flags & RTF_DYNAMIC) {
11107 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT;
11108 } else {
11109 re->ipv6RouteInfo.re_ire_type = ire->ire_type;
11110 }
11111
11112 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail,
11113 (char *)re, (int)sizeof (*re))) {
11114 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n",
11115 (uint_t)sizeof (*re)));
11116 }
11117
11118 if (gc != NULL) {
11119 iaes.iae_routeidx = ird->ird_idx;
11120 iaes.iae_doi = gc->gc_db->gcdb_doi;
11121 iaes.iae_slrange = gc->gc_db->gcdb_slrange;
11122
11123 if (!snmp_append_data2(ird->ird_attrs.lp_head,
11124 &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) {
11125 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u "
11126 "bytes\n", (uint_t)sizeof (iaes)));
11127 }
11128 }
11129
11130 /* bump route index for next pass */
11131 ird->ird_idx++;
11132
11133 kmem_free(re, sizeof (*re));
11134 if (gcgrp != NULL)
11135 rw_exit(&gcgrp->gcgrp_rwlock);
11136 }
11137
11138 /*
11139 * ncec_walk routine to create ipv6NetToMediaEntryTable
11140 */
11141 static int
11142 ip_snmp_get2_v6_media(ncec_t *ncec, iproutedata_t *ird)
11143 {
11144 ill_t *ill;
11145 mib2_ipv6NetToMediaEntry_t ntme;
11146
11147 ill = ncec->ncec_ill;
11148 /* skip arpce entries, and loopback ncec entries */
11149 if (ill->ill_isv6 == B_FALSE || ill->ill_net_type == IRE_LOOPBACK)
11150 return (0);
11151 /*
11152 * Neighbor cache entry attached to IRE with on-link
11153 * destination.
11154 * We report all IPMP groups on ncec_ill which is normally the upper.
11155 */
11156 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex;
11157 ntme.ipv6NetToMediaNetAddress = ncec->ncec_addr;
11158 ntme.ipv6NetToMediaPhysAddress.o_length = ill->ill_phys_addr_length;
11159 if (ncec->ncec_lladdr != NULL) {
11160 bcopy(ncec->ncec_lladdr, ntme.ipv6NetToMediaPhysAddress.o_bytes,
11161 ntme.ipv6NetToMediaPhysAddress.o_length);
11162 }
11163 /*
11164 * Note: Returns ND_* states. Should be:
11165 * reachable(1), stale(2), delay(3), probe(4),
11166 * invalid(5), unknown(6)
11167 */
11168 ntme.ipv6NetToMediaState = ncec->ncec_state;
11169 ntme.ipv6NetToMediaLastUpdated = 0;
11170
11171 /* other(1), dynamic(2), static(3), local(4) */
11172 if (NCE_MYADDR(ncec)) {
11173 ntme.ipv6NetToMediaType = 4;
11174 } else if (ncec->ncec_flags & NCE_F_PUBLISH) {
11175 ntme.ipv6NetToMediaType = 1; /* proxy */
11176 } else if (ncec->ncec_flags & NCE_F_STATIC) {
11177 ntme.ipv6NetToMediaType = 3;
11178 } else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST)) {
11179 ntme.ipv6NetToMediaType = 1;
11180 } else {
11181 ntme.ipv6NetToMediaType = 2;
11182 }
11183
11184 if (!snmp_append_data2(ird->ird_netmedia.lp_head,
11185 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) {
11186 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n",
11187 (uint_t)sizeof (ntme)));
11188 }
11189 return (0);
11190 }
11191
11192 int
11193 nce2ace(ncec_t *ncec)
11194 {
11195 int flags = 0;
11196
11197 if (NCE_ISREACHABLE(ncec))
11198 flags |= ACE_F_RESOLVED;
11199 if (ncec->ncec_flags & NCE_F_AUTHORITY)
11200 flags |= ACE_F_AUTHORITY;
11201 if (ncec->ncec_flags & NCE_F_PUBLISH)
11202 flags |= ACE_F_PUBLISH;
11203 if ((ncec->ncec_flags & NCE_F_NONUD) != 0)
11204 flags |= ACE_F_PERMANENT;
11205 if (NCE_MYADDR(ncec))
11206 flags |= (ACE_F_MYADDR | ACE_F_AUTHORITY);
11207 if (ncec->ncec_flags & NCE_F_UNVERIFIED)
11208 flags |= ACE_F_UNVERIFIED;
11209 if (ncec->ncec_flags & NCE_F_AUTHORITY)
11210 flags |= ACE_F_AUTHORITY;
11211 if (ncec->ncec_flags & NCE_F_DELAYED)
11212 flags |= ACE_F_DELAYED;
11213 return (flags);
11214 }
11215
11216 /*
11217 * ncec_walk routine to create ipNetToMediaEntryTable
11218 */
11219 static int
11220 ip_snmp_get2_v4_media(ncec_t *ncec, iproutedata_t *ird)
11221 {
11222 ill_t *ill;
11223 mib2_ipNetToMediaEntry_t ntme;
11224 const char *name = "unknown";
11225 ipaddr_t ncec_addr;
11226
11227 ill = ncec->ncec_ill;
11228 if (ill->ill_isv6 || (ncec->ncec_flags & NCE_F_BCAST) ||
11229 ill->ill_net_type == IRE_LOOPBACK)
11230 return (0);
11231
11232 /* We report all IPMP groups on ncec_ill which is normally the upper. */
11233 name = ill->ill_name;
11234 /* Based on RFC 4293: other(1), inval(2), dyn(3), stat(4) */
11235 if (NCE_MYADDR(ncec)) {
11236 ntme.ipNetToMediaType = 4;
11237 } else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST|NCE_F_PUBLISH)) {
11238 ntme.ipNetToMediaType = 1;
11239 } else {
11240 ntme.ipNetToMediaType = 3;
11241 }
11242 ntme.ipNetToMediaIfIndex.o_length = MIN(OCTET_LENGTH, strlen(name));
11243 bcopy(name, ntme.ipNetToMediaIfIndex.o_bytes,
11244 ntme.ipNetToMediaIfIndex.o_length);
11245
11246 IN6_V4MAPPED_TO_IPADDR(&ncec->ncec_addr, ncec_addr);
11247 bcopy(&ncec_addr, &ntme.ipNetToMediaNetAddress, sizeof (ncec_addr));
11248
11249 ntme.ipNetToMediaInfo.ntm_mask.o_length = sizeof (ipaddr_t);
11250 ncec_addr = INADDR_BROADCAST;
11251 bcopy(&ncec_addr, ntme.ipNetToMediaInfo.ntm_mask.o_bytes,
11252 sizeof (ncec_addr));
11253 /*
11254 * map all the flags to the ACE counterpart.
11255 */
11256 ntme.ipNetToMediaInfo.ntm_flags = nce2ace(ncec);
11257
11258 ntme.ipNetToMediaPhysAddress.o_length =
11259 MIN(OCTET_LENGTH, ill->ill_phys_addr_length);
11260
11261 if (!NCE_ISREACHABLE(ncec))
11262 ntme.ipNetToMediaPhysAddress.o_length = 0;
11263 else {
11264 if (ncec->ncec_lladdr != NULL) {
11265 bcopy(ncec->ncec_lladdr,
11266 ntme.ipNetToMediaPhysAddress.o_bytes,
11267 ntme.ipNetToMediaPhysAddress.o_length);
11268 }
11269 }
11270
11271 if (!snmp_append_data2(ird->ird_netmedia.lp_head,
11272 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) {
11273 ip1dbg(("ip_snmp_get2_v4_media: failed to allocate %u bytes\n",
11274 (uint_t)sizeof (ntme)));
11275 }
11276 return (0);
11277 }
11278
11279 /*
11280 * return (0) if invalid set request, 1 otherwise, including non-tcp requests
11281 */
11282 /* ARGSUSED */
11283 int
11284 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len)
11285 {
11286 switch (level) {
11287 case MIB2_IP:
11288 case MIB2_ICMP:
11289 switch (name) {
11290 default:
11291 break;
11292 }
11293 return (1);
11294 default:
11295 return (1);
11296 }
11297 }
11298
11299 /*
11300 * When there exists both a 64- and 32-bit counter of a particular type
11301 * (i.e., InReceives), only the 64-bit counters are added.
11302 */
11303 void
11304 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2)
11305 {
11306 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors);
11307 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors);
11308 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes);
11309 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors);
11310 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos);
11311 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts);
11312 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards);
11313 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards);
11314 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs);
11315 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails);
11316 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates);
11317 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds);
11318 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs);
11319 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails);
11320 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes);
11321 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates);
11322 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups);
11323 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits);
11324 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs);
11325 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows);
11326 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows);
11327 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion,
11328 o2->ipIfStatsInWrongIPVersion);
11329 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion,
11330 o2->ipIfStatsInWrongIPVersion);
11331 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion,
11332 o2->ipIfStatsOutSwitchIPVersion);
11333 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives);
11334 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets);
11335 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams,
11336 o2->ipIfStatsHCInForwDatagrams);
11337 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers);
11338 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests);
11339 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams,
11340 o2->ipIfStatsHCOutForwDatagrams);
11341 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds);
11342 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits);
11343 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets);
11344 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts);
11345 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets);
11346 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts);
11347 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets,
11348 o2->ipIfStatsHCOutMcastOctets);
11349 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts);
11350 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts);
11351 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded);
11352 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed);
11353 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs);
11354 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs);
11355 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts);
11356 }
11357
11358 void
11359 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2)
11360 {
11361 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs);
11362 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors);
11363 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs);
11364 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs);
11365 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds);
11366 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems);
11367 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs);
11368 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos);
11369 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies);
11370 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits,
11371 o2->ipv6IfIcmpInRouterSolicits);
11372 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements,
11373 o2->ipv6IfIcmpInRouterAdvertisements);
11374 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits,
11375 o2->ipv6IfIcmpInNeighborSolicits);
11376 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements,
11377 o2->ipv6IfIcmpInNeighborAdvertisements);
11378 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects);
11379 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries,
11380 o2->ipv6IfIcmpInGroupMembQueries);
11381 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses,
11382 o2->ipv6IfIcmpInGroupMembResponses);
11383 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions,
11384 o2->ipv6IfIcmpInGroupMembReductions);
11385 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs);
11386 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors);
11387 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs,
11388 o2->ipv6IfIcmpOutDestUnreachs);
11389 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs,
11390 o2->ipv6IfIcmpOutAdminProhibs);
11391 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds);
11392 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems,
11393 o2->ipv6IfIcmpOutParmProblems);
11394 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs);
11395 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos);
11396 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies);
11397 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits,
11398 o2->ipv6IfIcmpOutRouterSolicits);
11399 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements,
11400 o2->ipv6IfIcmpOutRouterAdvertisements);
11401 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits,
11402 o2->ipv6IfIcmpOutNeighborSolicits);
11403 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements,
11404 o2->ipv6IfIcmpOutNeighborAdvertisements);
11405 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects);
11406 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries,
11407 o2->ipv6IfIcmpOutGroupMembQueries);
11408 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses,
11409 o2->ipv6IfIcmpOutGroupMembResponses);
11410 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions,
11411 o2->ipv6IfIcmpOutGroupMembReductions);
11412 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows);
11413 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit);
11414 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements,
11415 o2->ipv6IfIcmpInBadNeighborAdvertisements);
11416 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations,
11417 o2->ipv6IfIcmpInBadNeighborSolicitations);
11418 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects);
11419 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal,
11420 o2->ipv6IfIcmpInGroupMembTotal);
11421 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries,
11422 o2->ipv6IfIcmpInGroupMembBadQueries);
11423 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports,
11424 o2->ipv6IfIcmpInGroupMembBadReports);
11425 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports,
11426 o2->ipv6IfIcmpInGroupMembOurReports);
11427 }
11428
11429 /*
11430 * Called before the options are updated to check if this packet will
11431 * be source routed from here.
11432 * This routine assumes that the options are well formed i.e. that they
11433 * have already been checked.
11434 */
11435 boolean_t
11436 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst)
11437 {
11438 ipoptp_t opts;
11439 uchar_t *opt;
11440 uint8_t optval;
11441 uint8_t optlen;
11442 ipaddr_t dst;
11443
11444 if (IS_SIMPLE_IPH(ipha)) {
11445 ip2dbg(("not source routed\n"));
11446 return (B_FALSE);
11447 }
11448 dst = ipha->ipha_dst;
11449 for (optval = ipoptp_first(&opts, ipha);
11450 optval != IPOPT_EOL;
11451 optval = ipoptp_next(&opts)) {
11452 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
11453 opt = opts.ipoptp_cur;
11454 optlen = opts.ipoptp_len;
11455 ip2dbg(("ip_source_routed: opt %d, len %d\n",
11456 optval, optlen));
11457 switch (optval) {
11458 uint32_t off;
11459 case IPOPT_SSRR:
11460 case IPOPT_LSRR:
11461 /*
11462 * If dst is one of our addresses and there are some
11463 * entries left in the source route return (true).
11464 */
11465 if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
11466 ip2dbg(("ip_source_routed: not next"
11467 " source route 0x%x\n",
11468 ntohl(dst)));
11469 return (B_FALSE);
11470 }
11471 off = opt[IPOPT_OFFSET];
11472 off--;
11473 if (optlen < IP_ADDR_LEN ||
11474 off > optlen - IP_ADDR_LEN) {
11475 /* End of source route */
11476 ip1dbg(("ip_source_routed: end of SR\n"));
11477 return (B_FALSE);
11478 }
11479 return (B_TRUE);
11480 }
11481 }
11482 ip2dbg(("not source routed\n"));
11483 return (B_FALSE);
11484 }
11485
11486 /*
11487 * ip_unbind is called by the transports to remove a conn from
11488 * the fanout table.
11489 */
11490 void
11491 ip_unbind(conn_t *connp)
11492 {
11493
11494 ASSERT(!MUTEX_HELD(&connp->conn_lock));
11495
11496 if (is_system_labeled() && connp->conn_anon_port) {
11497 (void) tsol_mlp_anon(crgetzone(connp->conn_cred),
11498 connp->conn_mlp_type, connp->conn_proto,
11499 ntohs(connp->conn_lport), B_FALSE);
11500 connp->conn_anon_port = 0;
11501 }
11502 connp->conn_mlp_type = mlptSingle;
11503
11504 ipcl_hash_remove(connp);
11505 }
11506
11507 /*
11508 * Used for deciding the MSS size for the upper layer. Thus
11509 * we need to check the outbound policy values in the conn.
11510 */
11511 int
11512 conn_ipsec_length(conn_t *connp)
11513 {
11514 ipsec_latch_t *ipl;
11515
11516 ipl = connp->conn_latch;
11517 if (ipl == NULL)
11518 return (0);
11519
11520 if (connp->conn_ixa->ixa_ipsec_policy == NULL)
11521 return (0);
11522
11523 return (connp->conn_ixa->ixa_ipsec_policy->ipsp_act->ipa_ovhd);
11524 }
11525
11526 /*
11527 * Returns an estimate of the IPsec headers size. This is used if
11528 * we don't want to call into IPsec to get the exact size.
11529 */
11530 int
11531 ipsec_out_extra_length(ip_xmit_attr_t *ixa)
11532 {
11533 ipsec_action_t *a;
11534
11535 if (!(ixa->ixa_flags & IXAF_IPSEC_SECURE))
11536 return (0);
11537
11538 a = ixa->ixa_ipsec_action;
11539 if (a == NULL) {
11540 ASSERT(ixa->ixa_ipsec_policy != NULL);
11541 a = ixa->ixa_ipsec_policy->ipsp_act;
11542 }
11543 ASSERT(a != NULL);
11544
11545 return (a->ipa_ovhd);
11546 }
11547
11548 /*
11549 * If there are any source route options, return the true final
11550 * destination. Otherwise, return the destination.
11551 */
11552 ipaddr_t
11553 ip_get_dst(ipha_t *ipha)
11554 {
11555 ipoptp_t opts;
11556 uchar_t *opt;
11557 uint8_t optval;
11558 uint8_t optlen;
11559 ipaddr_t dst;
11560 uint32_t off;
11561
11562 dst = ipha->ipha_dst;
11563
11564 if (IS_SIMPLE_IPH(ipha))
11565 return (dst);
11566
11567 for (optval = ipoptp_first(&opts, ipha);
11568 optval != IPOPT_EOL;
11569 optval = ipoptp_next(&opts)) {
11570 opt = opts.ipoptp_cur;
11571 optlen = opts.ipoptp_len;
11572 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
11573 switch (optval) {
11574 case IPOPT_SSRR:
11575 case IPOPT_LSRR:
11576 off = opt[IPOPT_OFFSET];
11577 /*
11578 * If one of the conditions is true, it means
11579 * end of options and dst already has the right
11580 * value.
11581 */
11582 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) {
11583 off = optlen - IP_ADDR_LEN;
11584 bcopy(&opt[off], &dst, IP_ADDR_LEN);
11585 }
11586 return (dst);
11587 default:
11588 break;
11589 }
11590 }
11591
11592 return (dst);
11593 }
11594
11595 /*
11596 * Outbound IP fragmentation routine.
11597 * Assumes the caller has checked whether or not fragmentation should
11598 * be allowed. Here we copy the DF bit from the header to all the generated
11599 * fragments.
11600 */
11601 int
11602 ip_fragment_v4(mblk_t *mp_orig, nce_t *nce, iaflags_t ixaflags,
11603 uint_t pkt_len, uint32_t max_frag, uint32_t xmit_hint, zoneid_t szone,
11604 zoneid_t nolzid, pfirepostfrag_t postfragfn, uintptr_t *ixa_cookie)
11605 {
11606 int i1;
11607 int hdr_len;
11608 mblk_t *hdr_mp;
11609 ipha_t *ipha;
11610 int ip_data_end;
11611 int len;
11612 mblk_t *mp = mp_orig;
11613 int offset;
11614 ill_t *ill = nce->nce_ill;
11615 ip_stack_t *ipst = ill->ill_ipst;
11616 mblk_t *carve_mp;
11617 uint32_t frag_flag;
11618 uint_t priority = mp->b_band;
11619 int error = 0;
11620
11621 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragReqds);
11622
11623 if (pkt_len != msgdsize(mp)) {
11624 ip0dbg(("Packet length mismatch: %d, %ld\n",
11625 pkt_len, msgdsize(mp)));
11626 freemsg(mp);
11627 return (EINVAL);
11628 }
11629
11630 if (max_frag == 0) {
11631 ip1dbg(("ip_fragment_v4: max_frag is zero. Dropping packet\n"));
11632 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11633 ip_drop_output("FragFails: zero max_frag", mp, ill);
11634 freemsg(mp);
11635 return (EINVAL);
11636 }
11637
11638 ASSERT(MBLKL(mp) >= sizeof (ipha_t));
11639 ipha = (ipha_t *)mp->b_rptr;
11640 ASSERT(ntohs(ipha->ipha_length) == pkt_len);
11641 frag_flag = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_DF;
11642
11643 /*
11644 * Establish the starting offset. May not be zero if we are fragging
11645 * a fragment that is being forwarded.
11646 */
11647 offset = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET;
11648
11649 /* TODO why is this test needed? */
11650 if (((max_frag - ntohs(ipha->ipha_length)) & ~7) < 8) {
11651 /* TODO: notify ulp somehow */
11652 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11653 ip_drop_output("FragFails: bad starting offset", mp, ill);
11654 freemsg(mp);
11655 return (EINVAL);
11656 }
11657
11658 hdr_len = IPH_HDR_LENGTH(ipha);
11659 ipha->ipha_hdr_checksum = 0;
11660
11661 /*
11662 * Establish the number of bytes maximum per frag, after putting
11663 * in the header.
11664 */
11665 len = (max_frag - hdr_len) & ~7;
11666
11667 /* Get a copy of the header for the trailing frags */
11668 hdr_mp = ip_fragment_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst,
11669 mp);
11670 if (hdr_mp == NULL) {
11671 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11672 ip_drop_output("FragFails: no hdr_mp", mp, ill);
11673 freemsg(mp);
11674 return (ENOBUFS);
11675 }
11676
11677 /* Store the starting offset, with the MoreFrags flag. */
11678 i1 = offset | IPH_MF | frag_flag;
11679 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1);
11680
11681 /* Establish the ending byte offset, based on the starting offset. */
11682 offset <<= 3;
11683 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len;
11684
11685 /* Store the length of the first fragment in the IP header. */
11686 i1 = len + hdr_len;
11687 ASSERT(i1 <= IP_MAXPACKET);
11688 ipha->ipha_length = htons((uint16_t)i1);
11689
11690 /*
11691 * Compute the IP header checksum for the first frag. We have to
11692 * watch out that we stop at the end of the header.
11693 */
11694 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
11695
11696 /*
11697 * Now carve off the first frag. Note that this will include the
11698 * original IP header.
11699 */
11700 if (!(mp = ip_carve_mp(&mp_orig, i1))) {
11701 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11702 ip_drop_output("FragFails: could not carve mp", mp_orig, ill);
11703 freeb(hdr_mp);
11704 freemsg(mp_orig);
11705 return (ENOBUFS);
11706 }
11707
11708 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates);
11709
11710 error = postfragfn(mp, nce, ixaflags, i1, xmit_hint, szone, nolzid,
11711 ixa_cookie);
11712 if (error != 0 && error != EWOULDBLOCK) {
11713 /* No point in sending the other fragments */
11714 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11715 ip_drop_output("FragFails: postfragfn failed", mp_orig, ill);
11716 freeb(hdr_mp);
11717 freemsg(mp_orig);
11718 return (error);
11719 }
11720
11721 /* No need to redo state machine in loop */
11722 ixaflags &= ~IXAF_REACH_CONF;
11723
11724 /* Advance the offset to the second frag starting point. */
11725 offset += len;
11726 /*
11727 * Update hdr_len from the copied header - there might be less options
11728 * in the later fragments.
11729 */
11730 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr);
11731 /* Loop until done. */
11732 for (;;) {
11733 uint16_t offset_and_flags;
11734 uint16_t ip_len;
11735
11736 if (ip_data_end - offset > len) {
11737 /*
11738 * Carve off the appropriate amount from the original
11739 * datagram.
11740 */
11741 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) {
11742 mp = NULL;
11743 break;
11744 }
11745 /*
11746 * More frags after this one. Get another copy
11747 * of the header.
11748 */
11749 if (carve_mp->b_datap->db_ref == 1 &&
11750 hdr_mp->b_wptr - hdr_mp->b_rptr <
11751 carve_mp->b_rptr - carve_mp->b_datap->db_base) {
11752 /* Inline IP header */
11753 carve_mp->b_rptr -= hdr_mp->b_wptr -
11754 hdr_mp->b_rptr;
11755 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr,
11756 hdr_mp->b_wptr - hdr_mp->b_rptr);
11757 mp = carve_mp;
11758 } else {
11759 if (!(mp = copyb(hdr_mp))) {
11760 freemsg(carve_mp);
11761 break;
11762 }
11763 /* Get priority marking, if any. */
11764 mp->b_band = priority;
11765 mp->b_cont = carve_mp;
11766 }
11767 ipha = (ipha_t *)mp->b_rptr;
11768 offset_and_flags = IPH_MF;
11769 } else {
11770 /*
11771 * Last frag. Consume the header. Set len to
11772 * the length of this last piece.
11773 */
11774 len = ip_data_end - offset;
11775
11776 /*
11777 * Carve off the appropriate amount from the original
11778 * datagram.
11779 */
11780 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) {
11781 mp = NULL;
11782 break;
11783 }
11784 if (carve_mp->b_datap->db_ref == 1 &&
11785 hdr_mp->b_wptr - hdr_mp->b_rptr <
11786 carve_mp->b_rptr - carve_mp->b_datap->db_base) {
11787 /* Inline IP header */
11788 carve_mp->b_rptr -= hdr_mp->b_wptr -
11789 hdr_mp->b_rptr;
11790 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr,
11791 hdr_mp->b_wptr - hdr_mp->b_rptr);
11792 mp = carve_mp;
11793 freeb(hdr_mp);
11794 hdr_mp = mp;
11795 } else {
11796 mp = hdr_mp;
11797 /* Get priority marking, if any. */
11798 mp->b_band = priority;
11799 mp->b_cont = carve_mp;
11800 }
11801 ipha = (ipha_t *)mp->b_rptr;
11802 /* A frag of a frag might have IPH_MF non-zero */
11803 offset_and_flags =
11804 ntohs(ipha->ipha_fragment_offset_and_flags) &
11805 IPH_MF;
11806 }
11807 offset_and_flags |= (uint16_t)(offset >> 3);
11808 offset_and_flags |= (uint16_t)frag_flag;
11809 /* Store the offset and flags in the IP header. */
11810 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags);
11811
11812 /* Store the length in the IP header. */
11813 ip_len = (uint16_t)(len + hdr_len);
11814 ipha->ipha_length = htons(ip_len);
11815
11816 /*
11817 * Set the IP header checksum. Note that mp is just
11818 * the header, so this is easy to pass to ip_csum.
11819 */
11820 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
11821
11822 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates);
11823
11824 error = postfragfn(mp, nce, ixaflags, ip_len, xmit_hint, szone,
11825 nolzid, ixa_cookie);
11826 /* All done if we just consumed the hdr_mp. */
11827 if (mp == hdr_mp) {
11828 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs);
11829 return (error);
11830 }
11831 if (error != 0 && error != EWOULDBLOCK) {
11832 DTRACE_PROBE2(ip__xmit__frag__fail, ill_t *, ill,
11833 mblk_t *, hdr_mp);
11834 /* No point in sending the other fragments */
11835 break;
11836 }
11837
11838 /* Otherwise, advance and loop. */
11839 offset += len;
11840 }
11841 /* Clean up following allocation failure. */
11842 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11843 ip_drop_output("FragFails: loop ended", NULL, ill);
11844 if (mp != hdr_mp)
11845 freeb(hdr_mp);
11846 if (mp != mp_orig)
11847 freemsg(mp_orig);
11848 return (error);
11849 }
11850
11851 /*
11852 * Copy the header plus those options which have the copy bit set
11853 */
11854 static mblk_t *
11855 ip_fragment_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst,
11856 mblk_t *src)
11857 {
11858 mblk_t *mp;
11859 uchar_t *up;
11860
11861 /*
11862 * Quick check if we need to look for options without the copy bit
11863 * set
11864 */
11865 mp = allocb_tmpl(ipst->ips_ip_wroff_extra + hdr_len, src);
11866 if (!mp)
11867 return (mp);
11868 mp->b_rptr += ipst->ips_ip_wroff_extra;
11869 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) {
11870 bcopy(rptr, mp->b_rptr, hdr_len);
11871 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra;
11872 return (mp);
11873 }
11874 up = mp->b_rptr;
11875 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH);
11876 up += IP_SIMPLE_HDR_LENGTH;
11877 rptr += IP_SIMPLE_HDR_LENGTH;
11878 hdr_len -= IP_SIMPLE_HDR_LENGTH;
11879 while (hdr_len > 0) {
11880 uint32_t optval;
11881 uint32_t optlen;
11882
11883 optval = *rptr;
11884 if (optval == IPOPT_EOL)
11885 break;
11886 if (optval == IPOPT_NOP)
11887 optlen = 1;
11888 else
11889 optlen = rptr[1];
11890 if (optval & IPOPT_COPY) {
11891 bcopy(rptr, up, optlen);
11892 up += optlen;
11893 }
11894 rptr += optlen;
11895 hdr_len -= optlen;
11896 }
11897 /*
11898 * Make sure that we drop an even number of words by filling
11899 * with EOL to the next word boundary.
11900 */
11901 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH);
11902 hdr_len & 0x3; hdr_len++)
11903 *up++ = IPOPT_EOL;
11904 mp->b_wptr = up;
11905 /* Update header length */
11906 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2));
11907 return (mp);
11908 }
11909
11910 /*
11911 * Update any source route, record route, or timestamp options when
11912 * sending a packet back to ourselves.
11913 * Check that we are at end of strict source route.
11914 * The options have been sanity checked by ip_output_options().
11915 */
11916 void
11917 ip_output_local_options(ipha_t *ipha, ip_stack_t *ipst)
11918 {
11919 ipoptp_t opts;
11920 uchar_t *opt;
11921 uint8_t optval;
11922 uint8_t optlen;
11923 ipaddr_t dst;
11924 uint32_t ts;
11925 timestruc_t now;
11926
11927 for (optval = ipoptp_first(&opts, ipha);
11928 optval != IPOPT_EOL;
11929 optval = ipoptp_next(&opts)) {
11930 opt = opts.ipoptp_cur;
11931 optlen = opts.ipoptp_len;
11932 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
11933 switch (optval) {
11934 uint32_t off;
11935 case IPOPT_SSRR:
11936 case IPOPT_LSRR:
11937 off = opt[IPOPT_OFFSET];
11938 off--;
11939 if (optlen < IP_ADDR_LEN ||
11940 off > optlen - IP_ADDR_LEN) {
11941 /* End of source route */
11942 break;
11943 }
11944 /*
11945 * This will only happen if two consecutive entries
11946 * in the source route contains our address or if
11947 * it is a packet with a loose source route which
11948 * reaches us before consuming the whole source route
11949 */
11950
11951 if (optval == IPOPT_SSRR) {
11952 return;
11953 }
11954 /*
11955 * Hack: instead of dropping the packet truncate the
11956 * source route to what has been used by filling the
11957 * rest with IPOPT_NOP.
11958 */
11959 opt[IPOPT_OLEN] = (uint8_t)off;
11960 while (off < optlen) {
11961 opt[off++] = IPOPT_NOP;
11962 }
11963 break;
11964 case IPOPT_RR:
11965 off = opt[IPOPT_OFFSET];
11966 off--;
11967 if (optlen < IP_ADDR_LEN ||
11968 off > optlen - IP_ADDR_LEN) {
11969 /* No more room - ignore */
11970 ip1dbg((
11971 "ip_output_local_options: end of RR\n"));
11972 break;
11973 }
11974 dst = htonl(INADDR_LOOPBACK);
11975 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN);
11976 opt[IPOPT_OFFSET] += IP_ADDR_LEN;
11977 break;
11978 case IPOPT_TS:
11979 /* Insert timestamp if there is romm */
11980 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
11981 case IPOPT_TS_TSONLY:
11982 off = IPOPT_TS_TIMELEN;
11983 break;
11984 case IPOPT_TS_PRESPEC:
11985 case IPOPT_TS_PRESPEC_RFC791:
11986 /* Verify that the address matched */
11987 off = opt[IPOPT_OFFSET] - 1;
11988 bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
11989 if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
11990 /* Not for us */
11991 break;
11992 }
11993 /* FALLTHRU */
11994 case IPOPT_TS_TSANDADDR:
11995 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
11996 break;
11997 default:
11998 /*
11999 * ip_*put_options should have already
12000 * dropped this packet.
12001 */
12002 cmn_err(CE_PANIC, "ip_output_local_options: "
12003 "unknown IT - bug in ip_output_options?\n");
12004 return; /* Keep "lint" happy */
12005 }
12006 if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
12007 /* Increase overflow counter */
12008 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
12009 opt[IPOPT_POS_OV_FLG] = (uint8_t)
12010 (opt[IPOPT_POS_OV_FLG] & 0x0F) |
12011 (off << 4);
12012 break;
12013 }
12014 off = opt[IPOPT_OFFSET] - 1;
12015 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
12016 case IPOPT_TS_PRESPEC:
12017 case IPOPT_TS_PRESPEC_RFC791:
12018 case IPOPT_TS_TSANDADDR:
12019 dst = htonl(INADDR_LOOPBACK);
12020 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN);
12021 opt[IPOPT_OFFSET] += IP_ADDR_LEN;
12022 /* FALLTHRU */
12023 case IPOPT_TS_TSONLY:
12024 off = opt[IPOPT_OFFSET] - 1;
12025 /* Compute # of milliseconds since midnight */
12026 gethrestime(&now);
12027 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
12028 NSEC2MSEC(now.tv_nsec);
12029 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
12030 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
12031 break;
12032 }
12033 break;
12034 }
12035 }
12036 }
12037
12038 /*
12039 * Prepend an M_DATA fastpath header, and if none present prepend a
12040 * DL_UNITDATA_REQ. Frees the mblk on failure.
12041 *
12042 * nce_dlur_mp and nce_fp_mp can not disappear once they have been set.
12043 * If there is a change to them, the nce will be deleted (condemned) and
12044 * a new nce_t will be created when packets are sent. Thus we need no locks
12045 * to access those fields.
12046 *
12047 * We preserve b_band to support IPQoS. If a DL_UNITDATA_REQ is prepended
12048 * we place b_band in dl_priority.dl_max.
12049 */
12050 static mblk_t *
12051 ip_xmit_attach_llhdr(mblk_t *mp, nce_t *nce)
12052 {
12053 uint_t hlen;
12054 mblk_t *mp1;
12055 uint_t priority;
12056 uchar_t *rptr;
12057
12058 rptr = mp->b_rptr;
12059
12060 ASSERT(DB_TYPE(mp) == M_DATA);
12061 priority = mp->b_band;
12062
12063 ASSERT(nce != NULL);
12064 if ((mp1 = nce->nce_fp_mp) != NULL) {
12065 hlen = MBLKL(mp1);
12066 /*
12067 * Check if we have enough room to prepend fastpath
12068 * header
12069 */
12070 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) {
12071 rptr -= hlen;
12072 bcopy(mp1->b_rptr, rptr, hlen);
12073 /*
12074 * Set the b_rptr to the start of the link layer
12075 * header
12076 */
12077 mp->b_rptr = rptr;
12078 return (mp);
12079 }
12080 mp1 = copyb(mp1);
12081 if (mp1 == NULL) {
12082 ill_t *ill = nce->nce_ill;
12083
12084 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12085 ip_drop_output("ipIfStatsOutDiscards", mp, ill);
12086 freemsg(mp);
12087 return (NULL);
12088 }
12089 mp1->b_band = priority;
12090 mp1->b_cont = mp;
12091 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp);
12092 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp);
12093 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp);
12094 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp);
12095 DB_LSOMSS(mp1) = DB_LSOMSS(mp);
12096 DTRACE_PROBE1(ip__xmit__copyb, (mblk_t *), mp1);
12097 /*
12098 * XXX disable ICK_VALID and compute checksum
12099 * here; can happen if nce_fp_mp changes and
12100 * it can't be copied now due to insufficient
12101 * space. (unlikely, fp mp can change, but it
12102 * does not increase in length)
12103 */
12104 return (mp1);
12105 }
12106 mp1 = copyb(nce->nce_dlur_mp);
12107
12108 if (mp1 == NULL) {
12109 ill_t *ill = nce->nce_ill;
12110
12111 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12112 ip_drop_output("ipIfStatsOutDiscards", mp, ill);
12113 freemsg(mp);
12114 return (NULL);
12115 }
12116 mp1->b_cont = mp;
12117 if (priority != 0) {
12118 mp1->b_band = priority;
12119 ((dl_unitdata_req_t *)(mp1->b_rptr))->dl_priority.dl_max =
12120 priority;
12121 }
12122 return (mp1);
12123 }
12124
12125 /*
12126 * Finish the outbound IPsec processing. This function is called from
12127 * ipsec_out_process() if the IPsec packet was processed
12128 * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed
12129 * asynchronously.
12130 *
12131 * This is common to IPv4 and IPv6.
12132 */
12133 int
12134 ip_output_post_ipsec(mblk_t *mp, ip_xmit_attr_t *ixa)
12135 {
12136 iaflags_t ixaflags = ixa->ixa_flags;
12137 uint_t pktlen;
12138
12139
12140 /* AH/ESP don't update ixa_pktlen when they modify the packet */
12141 if (ixaflags & IXAF_IS_IPV4) {
12142 ipha_t *ipha = (ipha_t *)mp->b_rptr;
12143
12144 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
12145 pktlen = ntohs(ipha->ipha_length);
12146 } else {
12147 ip6_t *ip6h = (ip6_t *)mp->b_rptr;
12148
12149 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION);
12150 pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN;
12151 }
12152
12153 /*
12154 * We release any hard reference on the SAs here to make
12155 * sure the SAs can be garbage collected. ipsr_sa has a soft reference
12156 * on the SAs.
12157 * If in the future we want the hard latching of the SAs in the
12158 * ip_xmit_attr_t then we should remove this.
12159 */
12160 if (ixa->ixa_ipsec_esp_sa != NULL) {
12161 IPSA_REFRELE(ixa->ixa_ipsec_esp_sa);
12162 ixa->ixa_ipsec_esp_sa = NULL;
12163 }
12164 if (ixa->ixa_ipsec_ah_sa != NULL) {
12165 IPSA_REFRELE(ixa->ixa_ipsec_ah_sa);
12166 ixa->ixa_ipsec_ah_sa = NULL;
12167 }
12168
12169 /* Do we need to fragment? */
12170 if ((ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR) ||
12171 pktlen > ixa->ixa_fragsize) {
12172 if (ixaflags & IXAF_IS_IPV4) {
12173 ASSERT(!(ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR));
12174 /*
12175 * We check for the DF case in ipsec_out_process
12176 * hence this only handles the non-DF case.
12177 */
12178 return (ip_fragment_v4(mp, ixa->ixa_nce, ixa->ixa_flags,
12179 pktlen, ixa->ixa_fragsize,
12180 ixa->ixa_xmit_hint, ixa->ixa_zoneid,
12181 ixa->ixa_no_loop_zoneid, ixa->ixa_postfragfn,
12182 &ixa->ixa_cookie));
12183 } else {
12184 mp = ip_fraghdr_add_v6(mp, ixa->ixa_ident, ixa);
12185 if (mp == NULL) {
12186 /* MIB and ip_drop_output already done */
12187 return (ENOMEM);
12188 }
12189 pktlen += sizeof (ip6_frag_t);
12190 if (pktlen > ixa->ixa_fragsize) {
12191 return (ip_fragment_v6(mp, ixa->ixa_nce,
12192 ixa->ixa_flags, pktlen,
12193 ixa->ixa_fragsize, ixa->ixa_xmit_hint,
12194 ixa->ixa_zoneid, ixa->ixa_no_loop_zoneid,
12195 ixa->ixa_postfragfn, &ixa->ixa_cookie));
12196 }
12197 }
12198 }
12199 return ((ixa->ixa_postfragfn)(mp, ixa->ixa_nce, ixa->ixa_flags,
12200 pktlen, ixa->ixa_xmit_hint, ixa->ixa_zoneid,
12201 ixa->ixa_no_loop_zoneid, NULL));
12202 }
12203
12204 /*
12205 * Finish the inbound IPsec processing. This function is called from
12206 * ipsec_out_process() if the IPsec packet was processed
12207 * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed
12208 * asynchronously.
12209 *
12210 * This is common to IPv4 and IPv6.
12211 */
12212 void
12213 ip_input_post_ipsec(mblk_t *mp, ip_recv_attr_t *ira)
12214 {
12215 iaflags_t iraflags = ira->ira_flags;
12216
12217 /* Length might have changed */
12218 if (iraflags & IRAF_IS_IPV4) {
12219 ipha_t *ipha = (ipha_t *)mp->b_rptr;
12220
12221 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
12222 ira->ira_pktlen = ntohs(ipha->ipha_length);
12223 ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha);
12224 ira->ira_protocol = ipha->ipha_protocol;
12225
12226 ip_fanout_v4(mp, ipha, ira);
12227 } else {
12228 ip6_t *ip6h = (ip6_t *)mp->b_rptr;
12229 uint8_t *nexthdrp;
12230
12231 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION);
12232 ira->ira_pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN;
12233 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ira->ira_ip_hdr_length,
12234 &nexthdrp)) {
12235 /* Malformed packet */
12236 BUMP_MIB(ira->ira_ill->ill_ip_mib, ipIfStatsInDiscards);
12237 ip_drop_input("ipIfStatsInDiscards", mp, ira->ira_ill);
12238 freemsg(mp);
12239 return;
12240 }
12241 ira->ira_protocol = *nexthdrp;
12242 ip_fanout_v6(mp, ip6h, ira);
12243 }
12244 }
12245
12246 /*
12247 * Select which AH & ESP SA's to use (if any) for the outbound packet.
12248 *
12249 * If this function returns B_TRUE, the requested SA's have been filled
12250 * into the ixa_ipsec_*_sa pointers.
12251 *
12252 * If the function returns B_FALSE, the packet has been "consumed", most
12253 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon.
12254 *
12255 * The SA references created by the protocol-specific "select"
12256 * function will be released in ip_output_post_ipsec.
12257 */
12258 static boolean_t
12259 ipsec_out_select_sa(mblk_t *mp, ip_xmit_attr_t *ixa)
12260 {
12261 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE;
12262 ipsec_policy_t *pp;
12263 ipsec_action_t *ap;
12264
12265 ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE);
12266 ASSERT((ixa->ixa_ipsec_policy != NULL) ||
12267 (ixa->ixa_ipsec_action != NULL));
12268
12269 ap = ixa->ixa_ipsec_action;
12270 if (ap == NULL) {
12271 pp = ixa->ixa_ipsec_policy;
12272 ASSERT(pp != NULL);
12273 ap = pp->ipsp_act;
12274 ASSERT(ap != NULL);
12275 }
12276
12277 /*
12278 * We have an action. now, let's select SA's.
12279 * A side effect of setting ixa_ipsec_*_sa is that it will
12280 * be cached in the conn_t.
12281 */
12282 if (ap->ipa_want_esp) {
12283 if (ixa->ixa_ipsec_esp_sa == NULL) {
12284 need_esp_acquire = !ipsec_outbound_sa(mp, ixa,
12285 IPPROTO_ESP);
12286 }
12287 ASSERT(need_esp_acquire || ixa->ixa_ipsec_esp_sa != NULL);
12288 }
12289
12290 if (ap->ipa_want_ah) {
12291 if (ixa->ixa_ipsec_ah_sa == NULL) {
12292 need_ah_acquire = !ipsec_outbound_sa(mp, ixa,
12293 IPPROTO_AH);
12294 }
12295 ASSERT(need_ah_acquire || ixa->ixa_ipsec_ah_sa != NULL);
12296 /*
12297 * The ESP and AH processing order needs to be preserved
12298 * when both protocols are required (ESP should be applied
12299 * before AH for an outbound packet). Force an ESP ACQUIRE
12300 * when both ESP and AH are required, and an AH ACQUIRE
12301 * is needed.
12302 */
12303 if (ap->ipa_want_esp && need_ah_acquire)
12304 need_esp_acquire = B_TRUE;
12305 }
12306
12307 /*
12308 * Send an ACQUIRE (extended, regular, or both) if we need one.
12309 * Release SAs that got referenced, but will not be used until we
12310 * acquire _all_ of the SAs we need.
12311 */
12312 if (need_ah_acquire || need_esp_acquire) {
12313 if (ixa->ixa_ipsec_ah_sa != NULL) {
12314 IPSA_REFRELE(ixa->ixa_ipsec_ah_sa);
12315 ixa->ixa_ipsec_ah_sa = NULL;
12316 }
12317 if (ixa->ixa_ipsec_esp_sa != NULL) {
12318 IPSA_REFRELE(ixa->ixa_ipsec_esp_sa);
12319 ixa->ixa_ipsec_esp_sa = NULL;
12320 }
12321
12322 sadb_acquire(mp, ixa, need_ah_acquire, need_esp_acquire);
12323 return (B_FALSE);
12324 }
12325
12326 return (B_TRUE);
12327 }
12328
12329 /*
12330 * Handle IPsec output processing.
12331 * This function is only entered once for a given packet.
12332 * We try to do things synchronously, but if we need to have user-level
12333 * set up SAs, or ESP or AH uses asynchronous kEF, then the operation
12334 * will be completed
12335 * - when the SAs are added in esp_add_sa_finish/ah_add_sa_finish
12336 * - when asynchronous ESP is done it will do AH
12337 *
12338 * In all cases we come back in ip_output_post_ipsec() to fragment and
12339 * send out the packet.
12340 */
12341 int
12342 ipsec_out_process(mblk_t *mp, ip_xmit_attr_t *ixa)
12343 {
12344 ill_t *ill = ixa->ixa_nce->nce_ill;
12345 ip_stack_t *ipst = ixa->ixa_ipst;
12346 ipsec_stack_t *ipss;
12347 ipsec_policy_t *pp;
12348 ipsec_action_t *ap;
12349
12350 ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE);
12351
12352 ASSERT((ixa->ixa_ipsec_policy != NULL) ||
12353 (ixa->ixa_ipsec_action != NULL));
12354
12355 ipss = ipst->ips_netstack->netstack_ipsec;
12356 if (!ipsec_loaded(ipss)) {
12357 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12358 ip_drop_packet(mp, B_TRUE, ill,
12359 DROPPER(ipss, ipds_ip_ipsec_not_loaded),
12360 &ipss->ipsec_dropper);
12361 return (ENOTSUP);
12362 }
12363
12364 ap = ixa->ixa_ipsec_action;
12365 if (ap == NULL) {
12366 pp = ixa->ixa_ipsec_policy;
12367 ASSERT(pp != NULL);
12368 ap = pp->ipsp_act;
12369 ASSERT(ap != NULL);
12370 }
12371
12372 /* Handle explicit drop action and bypass. */
12373 switch (ap->ipa_act.ipa_type) {
12374 case IPSEC_ACT_DISCARD:
12375 case IPSEC_ACT_REJECT:
12376 ip_drop_packet(mp, B_FALSE, ill,
12377 DROPPER(ipss, ipds_spd_explicit), &ipss->ipsec_spd_dropper);
12378 return (EHOSTUNREACH); /* IPsec policy failure */
12379 case IPSEC_ACT_BYPASS:
12380 return (ip_output_post_ipsec(mp, ixa));
12381 }
12382
12383 /*
12384 * The order of processing is first insert a IP header if needed.
12385 * Then insert the ESP header and then the AH header.
12386 */
12387 if ((ixa->ixa_flags & IXAF_IS_IPV4) && ap->ipa_want_se) {
12388 /*
12389 * First get the outer IP header before sending
12390 * it to ESP.
12391 */
12392 ipha_t *oipha, *iipha;
12393 mblk_t *outer_mp, *inner_mp;
12394
12395 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) {
12396 (void) mi_strlog(ill->ill_rq, 0,
12397 SL_ERROR|SL_TRACE|SL_CONSOLE,
12398 "ipsec_out_process: "
12399 "Self-Encapsulation failed: Out of memory\n");
12400 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12401 ip_drop_output("ipIfStatsOutDiscards", mp, ill);
12402 freemsg(mp);
12403 return (ENOBUFS);
12404 }
12405 inner_mp = mp;
12406 ASSERT(inner_mp->b_datap->db_type == M_DATA);
12407 oipha = (ipha_t *)outer_mp->b_rptr;
12408 iipha = (ipha_t *)inner_mp->b_rptr;
12409 *oipha = *iipha;
12410 outer_mp->b_wptr += sizeof (ipha_t);
12411 oipha->ipha_length = htons(ntohs(iipha->ipha_length) +
12412 sizeof (ipha_t));
12413 oipha->ipha_protocol = IPPROTO_ENCAP;
12414 oipha->ipha_version_and_hdr_length =
12415 IP_SIMPLE_HDR_VERSION;
12416 oipha->ipha_hdr_checksum = 0;
12417 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha);
12418 outer_mp->b_cont = inner_mp;
12419 mp = outer_mp;
12420
12421 ixa->ixa_flags |= IXAF_IPSEC_TUNNEL;
12422 }
12423
12424 /* If we need to wait for a SA then we can't return any errno */
12425 if (((ap->ipa_want_ah && (ixa->ixa_ipsec_ah_sa == NULL)) ||
12426 (ap->ipa_want_esp && (ixa->ixa_ipsec_esp_sa == NULL))) &&
12427 !ipsec_out_select_sa(mp, ixa))
12428 return (0);
12429
12430 /*
12431 * By now, we know what SA's to use. Toss over to ESP & AH
12432 * to do the heavy lifting.
12433 */
12434 if (ap->ipa_want_esp) {
12435 ASSERT(ixa->ixa_ipsec_esp_sa != NULL);
12436
12437 mp = ixa->ixa_ipsec_esp_sa->ipsa_output_func(mp, ixa);
12438 if (mp == NULL) {
12439 /*
12440 * Either it failed or is pending. In the former case
12441 * ipIfStatsInDiscards was increased.
12442 */
12443 return (0);
12444 }
12445 }
12446
12447 if (ap->ipa_want_ah) {
12448 ASSERT(ixa->ixa_ipsec_ah_sa != NULL);
12449
12450 mp = ixa->ixa_ipsec_ah_sa->ipsa_output_func(mp, ixa);
12451 if (mp == NULL) {
12452 /*
12453 * Either it failed or is pending. In the former case
12454 * ipIfStatsInDiscards was increased.
12455 */
12456 return (0);
12457 }
12458 }
12459 /*
12460 * We are done with IPsec processing. Send it over
12461 * the wire.
12462 */
12463 return (ip_output_post_ipsec(mp, ixa));
12464 }
12465
12466 /*
12467 * ioctls that go through a down/up sequence may need to wait for the down
12468 * to complete. This involves waiting for the ire and ipif refcnts to go down
12469 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail.
12470 */
12471 /* ARGSUSED */
12472 void
12473 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
12474 {
12475 struct iocblk *iocp;
12476 mblk_t *mp1;
12477 ip_ioctl_cmd_t *ipip;
12478 int err;
12479 sin_t *sin;
12480 struct lifreq *lifr;
12481 struct ifreq *ifr;
12482
12483 iocp = (struct iocblk *)mp->b_rptr;
12484 ASSERT(ipsq != NULL);
12485 /* Existence of mp1 verified in ip_wput_nondata */
12486 mp1 = mp->b_cont->b_cont;
12487 ipip = ip_sioctl_lookup(iocp->ioc_cmd);
12488 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) {
12489 /*
12490 * Special case where ipx_current_ipif is not set:
12491 * ill_phyint_reinit merged the v4 and v6 into a single ipsq.
12492 * We are here as were not able to complete the operation in
12493 * ipif_set_values because we could not become exclusive on
12494 * the new ipsq.
12495 */
12496 ill_t *ill = q->q_ptr;
12497 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd);
12498 }
12499 ASSERT(ipsq->ipsq_xop->ipx_current_ipif != NULL);
12500
12501 if (ipip->ipi_cmd_type == IF_CMD) {
12502 /* This a old style SIOC[GS]IF* command */
12503 ifr = (struct ifreq *)mp1->b_rptr;
12504 sin = (sin_t *)&ifr->ifr_addr;
12505 } else if (ipip->ipi_cmd_type == LIF_CMD) {
12506 /* This a new style SIOC[GS]LIF* command */
12507 lifr = (struct lifreq *)mp1->b_rptr;
12508 sin = (sin_t *)&lifr->lifr_addr;
12509 } else {
12510 sin = NULL;
12511 }
12512
12513 err = (*ipip->ipi_func_restart)(ipsq->ipsq_xop->ipx_current_ipif, sin,
12514 q, mp, ipip, mp1->b_rptr);
12515
12516 DTRACE_PROBE4(ipif__ioctl, char *, "ip_reprocess_ioctl finish",
12517 int, ipip->ipi_cmd,
12518 ill_t *, ipsq->ipsq_xop->ipx_current_ipif->ipif_ill,
12519 ipif_t *, ipsq->ipsq_xop->ipx_current_ipif);
12520
12521 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq);
12522 }
12523
12524 /*
12525 * ioctl processing
12526 *
12527 * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up
12528 * the ioctl command in the ioctl tables, determines the copyin data size
12529 * from the ipi_copyin_size field, and does an mi_copyin() of that size.
12530 *
12531 * ioctl processing then continues when the M_IOCDATA makes its way down to
12532 * ip_wput_nondata(). The ioctl is looked up again in the ioctl table, its
12533 * associated 'conn' is refheld till the end of the ioctl and the general
12534 * ioctl processing function ip_process_ioctl() is called to extract the
12535 * arguments and process the ioctl. To simplify extraction, ioctl commands
12536 * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a
12537 * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq())
12538 * is used to extract the ioctl's arguments.
12539 *
12540 * ip_process_ioctl determines if the ioctl needs to be serialized, and if
12541 * so goes thru the serialization primitive ipsq_try_enter. Then the
12542 * appropriate function to handle the ioctl is called based on the entry in
12543 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish
12544 * which also refreleases the 'conn' that was refheld at the start of the
12545 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq.
12546 *
12547 * Many exclusive ioctls go thru an internal down up sequence as part of
12548 * the operation. For example an attempt to change the IP address of an
12549 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface
12550 * does all the cleanup such as deleting all ires that use this address.
12551 * Then we need to wait till all references to the interface go away.
12552 */
12553 void
12554 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg)
12555 {
12556 struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
12557 ip_ioctl_cmd_t *ipip = arg;
12558 ip_extract_func_t *extract_funcp;
12559 cmd_info_t ci;
12560 int err;
12561 boolean_t entered_ipsq = B_FALSE;
12562
12563 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd));
12564
12565 if (ipip == NULL)
12566 ipip = ip_sioctl_lookup(iocp->ioc_cmd);
12567
12568 /*
12569 * SIOCLIFADDIF needs to go thru a special path since the
12570 * ill may not exist yet. This happens in the case of lo0
12571 * which is created using this ioctl.
12572 */
12573 if (ipip->ipi_cmd == SIOCLIFADDIF) {
12574 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL);
12575 DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish",
12576 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL);
12577 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL);
12578 return;
12579 }
12580
12581 ci.ci_ipif = NULL;
12582 switch (ipip->ipi_cmd_type) {
12583 case MISC_CMD:
12584 case MSFILT_CMD:
12585 /*
12586 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF.
12587 */
12588 if (ipip->ipi_cmd == IF_UNITSEL) {
12589 /* ioctl comes down the ill */
12590 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif;
12591 ipif_refhold(ci.ci_ipif);
12592 }
12593 err = 0;
12594 ci.ci_sin = NULL;
12595 ci.ci_sin6 = NULL;
12596 ci.ci_lifr = NULL;
12597 extract_funcp = NULL;
12598 break;
12599
12600 case IF_CMD:
12601 case LIF_CMD:
12602 extract_funcp = ip_extract_lifreq;
12603 break;
12604
12605 case ARP_CMD:
12606 case XARP_CMD:
12607 extract_funcp = ip_extract_arpreq;
12608 break;
12609
12610 default:
12611 ASSERT(0);
12612 }
12613
12614 if (extract_funcp != NULL) {
12615 err = (*extract_funcp)(q, mp, ipip, &ci);
12616 if (err != 0) {
12617 DTRACE_PROBE4(ipif__ioctl,
12618 char *, "ip_process_ioctl finish err",
12619 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL);
12620 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL);
12621 return;
12622 }
12623
12624 /*
12625 * All of the extraction functions return a refheld ipif.
12626 */
12627 ASSERT(ci.ci_ipif != NULL);
12628 }
12629
12630 if (!(ipip->ipi_flags & IPI_WR)) {
12631 /*
12632 * A return value of EINPROGRESS means the ioctl is
12633 * either queued and waiting for some reason or has
12634 * already completed.
12635 */
12636 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip,
12637 ci.ci_lifr);
12638 if (ci.ci_ipif != NULL) {
12639 DTRACE_PROBE4(ipif__ioctl,
12640 char *, "ip_process_ioctl finish RD",
12641 int, ipip->ipi_cmd, ill_t *, ci.ci_ipif->ipif_ill,
12642 ipif_t *, ci.ci_ipif);
12643 ipif_refrele(ci.ci_ipif);
12644 } else {
12645 DTRACE_PROBE4(ipif__ioctl,
12646 char *, "ip_process_ioctl finish RD",
12647 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL);
12648 }
12649 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL);
12650 return;
12651 }
12652
12653 ASSERT(ci.ci_ipif != NULL);
12654
12655 /*
12656 * If ipsq is non-NULL, we are already being called exclusively
12657 */
12658 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq));
12659 if (ipsq == NULL) {
12660 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, ip_process_ioctl,
12661 NEW_OP, B_TRUE);
12662 if (ipsq == NULL) {
12663 ipif_refrele(ci.ci_ipif);
12664 return;
12665 }
12666 entered_ipsq = B_TRUE;
12667 }
12668 /*
12669 * Release the ipif so that ipif_down and friends that wait for
12670 * references to go away are not misled about the current ipif_refcnt
12671 * values. We are writer so we can access the ipif even after releasing
12672 * the ipif.
12673 */
12674 ipif_refrele(ci.ci_ipif);
12675
12676 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd);
12677
12678 /*
12679 * A return value of EINPROGRESS means the ioctl is
12680 * either queued and waiting for some reason or has
12681 * already completed.
12682 */
12683 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr);
12684
12685 DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish WR",
12686 int, ipip->ipi_cmd,
12687 ill_t *, ci.ci_ipif == NULL ? NULL : ci.ci_ipif->ipif_ill,
12688 ipif_t *, ci.ci_ipif);
12689 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq);
12690
12691 if (entered_ipsq)
12692 ipsq_exit(ipsq);
12693 }
12694
12695 /*
12696 * Complete the ioctl. Typically ioctls use the mi package and need to
12697 * do mi_copyout/mi_copy_done.
12698 */
12699 void
12700 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq)
12701 {
12702 conn_t *connp = NULL;
12703
12704 if (err == EINPROGRESS)
12705 return;
12706
12707 if (CONN_Q(q)) {
12708 connp = Q_TO_CONN(q);
12709 ASSERT(connp->conn_ref >= 2);
12710 }
12711
12712 switch (mode) {
12713 case COPYOUT:
12714 if (err == 0)
12715 mi_copyout(q, mp);
12716 else
12717 mi_copy_done(q, mp, err);
12718 break;
12719
12720 case NO_COPYOUT:
12721 mi_copy_done(q, mp, err);
12722 break;
12723
12724 default:
12725 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */
12726 break;
12727 }
12728
12729 /*
12730 * The conn refhold and ioctlref placed on the conn at the start of the
12731 * ioctl are released here.
12732 */
12733 if (connp != NULL) {
12734 CONN_DEC_IOCTLREF(connp);
12735 CONN_OPER_PENDING_DONE(connp);
12736 }
12737
12738 if (ipsq != NULL)
12739 ipsq_current_finish(ipsq);
12740 }
12741
12742 /* Handles all non data messages */
12743 void
12744 ip_wput_nondata(queue_t *q, mblk_t *mp)
12745 {
12746 mblk_t *mp1;
12747 struct iocblk *iocp;
12748 ip_ioctl_cmd_t *ipip;
12749 conn_t *connp;
12750 cred_t *cr;
12751 char *proto_str;
12752
12753 if (CONN_Q(q))
12754 connp = Q_TO_CONN(q);
12755 else
12756 connp = NULL;
12757
12758 switch (DB_TYPE(mp)) {
12759 case M_IOCTL:
12760 /*
12761 * IOCTL processing begins in ip_sioctl_copyin_setup which
12762 * will arrange to copy in associated control structures.
12763 */
12764 ip_sioctl_copyin_setup(q, mp);
12765 return;
12766 case M_IOCDATA:
12767 /*
12768 * Ensure that this is associated with one of our trans-
12769 * parent ioctls. If it's not ours, discard it if we're
12770 * running as a driver, or pass it on if we're a module.
12771 */
12772 iocp = (struct iocblk *)mp->b_rptr;
12773 ipip = ip_sioctl_lookup(iocp->ioc_cmd);
12774 if (ipip == NULL) {
12775 if (q->q_next == NULL) {
12776 goto nak;
12777 } else {
12778 putnext(q, mp);
12779 }
12780 return;
12781 }
12782 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) {
12783 /*
12784 * The ioctl is one we recognise, but is not consumed
12785 * by IP as a module and we are a module, so we drop
12786 */
12787 goto nak;
12788 }
12789
12790 /* IOCTL continuation following copyin or copyout. */
12791 if (mi_copy_state(q, mp, NULL) == -1) {
12792 /*
12793 * The copy operation failed. mi_copy_state already
12794 * cleaned up, so we're out of here.
12795 */
12796 return;
12797 }
12798 /*
12799 * If we just completed a copy in, we become writer and
12800 * continue processing in ip_sioctl_copyin_done. If it
12801 * was a copy out, we call mi_copyout again. If there is
12802 * nothing more to copy out, it will complete the IOCTL.
12803 */
12804 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) {
12805 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) {
12806 mi_copy_done(q, mp, EPROTO);
12807 return;
12808 }
12809 /*
12810 * Check for cases that need more copying. A return
12811 * value of 0 means a second copyin has been started,
12812 * so we return; a return value of 1 means no more
12813 * copying is needed, so we continue.
12814 */
12815 if (ipip->ipi_cmd_type == MSFILT_CMD &&
12816 MI_COPY_COUNT(mp) == 1) {
12817 if (ip_copyin_msfilter(q, mp) == 0)
12818 return;
12819 }
12820 /*
12821 * Refhold the conn, till the ioctl completes. This is
12822 * needed in case the ioctl ends up in the pending mp
12823 * list. Every mp in the ipx_pending_mp list must have
12824 * a refhold on the conn to resume processing. The
12825 * refhold is released when the ioctl completes
12826 * (whether normally or abnormally). An ioctlref is also
12827 * placed on the conn to prevent TCP from removing the
12828 * queue needed to send the ioctl reply back.
12829 * In all cases ip_ioctl_finish is called to finish
12830 * the ioctl and release the refholds.
12831 */
12832 if (connp != NULL) {
12833 /* This is not a reentry */
12834 CONN_INC_REF(connp);
12835 CONN_INC_IOCTLREF(connp);
12836 } else {
12837 if (!(ipip->ipi_flags & IPI_MODOK)) {
12838 mi_copy_done(q, mp, EINVAL);
12839 return;
12840 }
12841 }
12842
12843 ip_process_ioctl(NULL, q, mp, ipip);
12844
12845 } else {
12846 mi_copyout(q, mp);
12847 }
12848 return;
12849
12850 case M_IOCNAK:
12851 /*
12852 * The only way we could get here is if a resolver didn't like
12853 * an IOCTL we sent it. This shouldn't happen.
12854 */
12855 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
12856 "ip_wput_nondata: unexpected M_IOCNAK, ioc_cmd 0x%x",
12857 ((struct iocblk *)mp->b_rptr)->ioc_cmd);
12858 freemsg(mp);
12859 return;
12860 case M_IOCACK:
12861 /* /dev/ip shouldn't see this */
12862 goto nak;
12863 case M_FLUSH:
12864 if (*mp->b_rptr & FLUSHW)
12865 flushq(q, FLUSHALL);
12866 if (q->q_next) {
12867 putnext(q, mp);
12868 return;
12869 }
12870 if (*mp->b_rptr & FLUSHR) {
12871 *mp->b_rptr &= ~FLUSHW;
12872 qreply(q, mp);
12873 return;
12874 }
12875 freemsg(mp);
12876 return;
12877 case M_CTL:
12878 break;
12879 case M_PROTO:
12880 case M_PCPROTO:
12881 /*
12882 * The only PROTO messages we expect are SNMP-related.
12883 */
12884 switch (((union T_primitives *)mp->b_rptr)->type) {
12885 case T_SVR4_OPTMGMT_REQ:
12886 ip2dbg(("ip_wput_nondata: T_SVR4_OPTMGMT_REQ "
12887 "flags %x\n",
12888 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags));
12889
12890 if (connp == NULL) {
12891 proto_str = "T_SVR4_OPTMGMT_REQ";
12892 goto protonak;
12893 }
12894
12895 /*
12896 * All Solaris components should pass a db_credp
12897 * for this TPI message, hence we ASSERT.
12898 * But in case there is some other M_PROTO that looks
12899 * like a TPI message sent by some other kernel
12900 * component, we check and return an error.
12901 */
12902 cr = msg_getcred(mp, NULL);
12903 ASSERT(cr != NULL);
12904 if (cr == NULL) {
12905 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL);
12906 if (mp != NULL)
12907 qreply(q, mp);
12908 return;
12909 }
12910
12911 if (!snmpcom_req(q, mp, ip_snmp_set, ip_snmp_get, cr)) {
12912 proto_str = "Bad SNMPCOM request?";
12913 goto protonak;
12914 }
12915 return;
12916 default:
12917 ip1dbg(("ip_wput_nondata: dropping M_PROTO prim %u\n",
12918 (int)*(uint_t *)mp->b_rptr));
12919 freemsg(mp);
12920 return;
12921 }
12922 default:
12923 break;
12924 }
12925 if (q->q_next) {
12926 putnext(q, mp);
12927 } else
12928 freemsg(mp);
12929 return;
12930
12931 nak:
12932 iocp->ioc_error = EINVAL;
12933 mp->b_datap->db_type = M_IOCNAK;
12934 iocp->ioc_count = 0;
12935 qreply(q, mp);
12936 return;
12937
12938 protonak:
12939 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str);
12940 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL)
12941 qreply(q, mp);
12942 }
12943
12944 /*
12945 * Process IP options in an outbound packet. Verify that the nexthop in a
12946 * strict source route is onlink.
12947 * Returns non-zero if something fails in which case an ICMP error has been
12948 * sent and mp freed.
12949 *
12950 * Assumes the ULP has called ip_massage_options to move nexthop into ipha_dst.
12951 */
12952 int
12953 ip_output_options(mblk_t *mp, ipha_t *ipha, ip_xmit_attr_t *ixa, ill_t *ill)
12954 {
12955 ipoptp_t opts;
12956 uchar_t *opt;
12957 uint8_t optval;
12958 uint8_t optlen;
12959 ipaddr_t dst;
12960 intptr_t code = 0;
12961 ire_t *ire;
12962 ip_stack_t *ipst = ixa->ixa_ipst;
12963 ip_recv_attr_t iras;
12964
12965 ip2dbg(("ip_output_options\n"));
12966
12967 dst = ipha->ipha_dst;
12968 for (optval = ipoptp_first(&opts, ipha);
12969 optval != IPOPT_EOL;
12970 optval = ipoptp_next(&opts)) {
12971 opt = opts.ipoptp_cur;
12972 optlen = opts.ipoptp_len;
12973 ip2dbg(("ip_output_options: opt %d, len %d\n",
12974 optval, optlen));
12975 switch (optval) {
12976 uint32_t off;
12977 case IPOPT_SSRR:
12978 case IPOPT_LSRR:
12979 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
12980 ip1dbg((
12981 "ip_output_options: bad option offset\n"));
12982 code = (char *)&opt[IPOPT_OLEN] -
12983 (char *)ipha;
12984 goto param_prob;
12985 }
12986 off = opt[IPOPT_OFFSET];
12987 ip1dbg(("ip_output_options: next hop 0x%x\n",
12988 ntohl(dst)));
12989 /*
12990 * For strict: verify that dst is directly
12991 * reachable.
12992 */
12993 if (optval == IPOPT_SSRR) {
12994 ire = ire_ftable_lookup_v4(dst, 0, 0,
12995 IRE_INTERFACE, NULL, ALL_ZONES,
12996 ixa->ixa_tsl,
12997 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst,
12998 NULL);
12999 if (ire == NULL) {
13000 ip1dbg(("ip_output_options: SSRR not"
13001 " directly reachable: 0x%x\n",
13002 ntohl(dst)));
13003 goto bad_src_route;
13004 }
13005 ire_refrele(ire);
13006 }
13007 break;
13008 case IPOPT_RR:
13009 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
13010 ip1dbg((
13011 "ip_output_options: bad option offset\n"));
13012 code = (char *)&opt[IPOPT_OLEN] -
13013 (char *)ipha;
13014 goto param_prob;
13015 }
13016 break;
13017 case IPOPT_TS:
13018 /*
13019 * Verify that length >=5 and that there is either
13020 * room for another timestamp or that the overflow
13021 * counter is not maxed out.
13022 */
13023 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha;
13024 if (optlen < IPOPT_MINLEN_IT) {
13025 goto param_prob;
13026 }
13027 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
13028 ip1dbg((
13029 "ip_output_options: bad option offset\n"));
13030 code = (char *)&opt[IPOPT_OFFSET] -
13031 (char *)ipha;
13032 goto param_prob;
13033 }
13034 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
13035 case IPOPT_TS_TSONLY:
13036 off = IPOPT_TS_TIMELEN;
13037 break;
13038 case IPOPT_TS_TSANDADDR:
13039 case IPOPT_TS_PRESPEC:
13040 case IPOPT_TS_PRESPEC_RFC791:
13041 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
13042 break;
13043 default:
13044 code = (char *)&opt[IPOPT_POS_OV_FLG] -
13045 (char *)ipha;
13046 goto param_prob;
13047 }
13048 if (opt[IPOPT_OFFSET] - 1 + off > optlen &&
13049 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) {
13050 /*
13051 * No room and the overflow counter is 15
13052 * already.
13053 */
13054 goto param_prob;
13055 }
13056 break;
13057 }
13058 }
13059
13060 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0)
13061 return (0);
13062
13063 ip1dbg(("ip_output_options: error processing IP options."));
13064 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha;
13065
13066 param_prob:
13067 bzero(&iras, sizeof (iras));
13068 iras.ira_ill = iras.ira_rill = ill;
13069 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex;
13070 iras.ira_rifindex = iras.ira_ruifindex;
13071 iras.ira_flags = IRAF_IS_IPV4;
13072
13073 ip_drop_output("ip_output_options", mp, ill);
13074 icmp_param_problem(mp, (uint8_t)code, &iras);
13075 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE));
13076 return (-1);
13077
13078 bad_src_route:
13079 bzero(&iras, sizeof (iras));
13080 iras.ira_ill = iras.ira_rill = ill;
13081 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex;
13082 iras.ira_rifindex = iras.ira_ruifindex;
13083 iras.ira_flags = IRAF_IS_IPV4;
13084
13085 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill);
13086 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, &iras);
13087 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE));
13088 return (-1);
13089 }
13090
13091 /*
13092 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT.
13093 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads
13094 * thru /etc/system.
13095 */
13096 #define CONN_MAXDRAINCNT 64
13097
13098 static void
13099 conn_drain_init(ip_stack_t *ipst)
13100 {
13101 int i, j;
13102 idl_tx_list_t *itl_tx;
13103
13104 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads;
13105
13106 if ((ipst->ips_conn_drain_list_cnt == 0) ||
13107 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) {
13108 /*
13109 * Default value of the number of drainers is the
13110 * number of cpus, subject to maximum of 8 drainers.
13111 */
13112 if (boot_max_ncpus != -1)
13113 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8);
13114 else
13115 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8);
13116 }
13117
13118 ipst->ips_idl_tx_list =
13119 kmem_zalloc(TX_FANOUT_SIZE * sizeof (idl_tx_list_t), KM_SLEEP);
13120 for (i = 0; i < TX_FANOUT_SIZE; i++) {
13121 itl_tx = &ipst->ips_idl_tx_list[i];
13122 itl_tx->txl_drain_list =
13123 kmem_zalloc(ipst->ips_conn_drain_list_cnt *
13124 sizeof (idl_t), KM_SLEEP);
13125 mutex_init(&itl_tx->txl_lock, NULL, MUTEX_DEFAULT, NULL);
13126 for (j = 0; j < ipst->ips_conn_drain_list_cnt; j++) {
13127 mutex_init(&itl_tx->txl_drain_list[j].idl_lock, NULL,
13128 MUTEX_DEFAULT, NULL);
13129 itl_tx->txl_drain_list[j].idl_itl = itl_tx;
13130 }
13131 }
13132 }
13133
13134 static void
13135 conn_drain_fini(ip_stack_t *ipst)
13136 {
13137 int i;
13138 idl_tx_list_t *itl_tx;
13139
13140 for (i = 0; i < TX_FANOUT_SIZE; i++) {
13141 itl_tx = &ipst->ips_idl_tx_list[i];
13142 kmem_free(itl_tx->txl_drain_list,
13143 ipst->ips_conn_drain_list_cnt * sizeof (idl_t));
13144 }
13145 kmem_free(ipst->ips_idl_tx_list,
13146 TX_FANOUT_SIZE * sizeof (idl_tx_list_t));
13147 ipst->ips_idl_tx_list = NULL;
13148 }
13149
13150 /*
13151 * Flow control has blocked us from proceeding. Insert the given conn in one
13152 * of the conn drain lists. When flow control is unblocked, either ip_wsrv()
13153 * (STREAMS) or ill_flow_enable() (direct) will be called back, which in turn
13154 * will call conn_walk_drain(). See the flow control notes at the top of this
13155 * file for more details.
13156 */
13157 void
13158 conn_drain_insert(conn_t *connp, idl_tx_list_t *tx_list)
13159 {
13160 idl_t *idl = tx_list->txl_drain_list;
13161 uint_t index;
13162 ip_stack_t *ipst = connp->conn_netstack->netstack_ip;
13163
13164 mutex_enter(&connp->conn_lock);
13165 if (connp->conn_state_flags & CONN_CLOSING) {
13166 /*
13167 * The conn is closing as a result of which CONN_CLOSING
13168 * is set. Return.
13169 */
13170 mutex_exit(&connp->conn_lock);
13171 return;
13172 } else if (connp->conn_idl == NULL) {
13173 /*
13174 * Assign the next drain list round robin. We dont' use
13175 * a lock, and thus it may not be strictly round robin.
13176 * Atomicity of load/stores is enough to make sure that
13177 * conn_drain_list_index is always within bounds.
13178 */
13179 index = tx_list->txl_drain_index;
13180 ASSERT(index < ipst->ips_conn_drain_list_cnt);
13181 connp->conn_idl = &tx_list->txl_drain_list[index];
13182 index++;
13183 if (index == ipst->ips_conn_drain_list_cnt)
13184 index = 0;
13185 tx_list->txl_drain_index = index;
13186 } else {
13187 ASSERT(connp->conn_idl->idl_itl == tx_list);
13188 }
13189 mutex_exit(&connp->conn_lock);
13190
13191 idl = connp->conn_idl;
13192 mutex_enter(&idl->idl_lock);
13193 if ((connp->conn_drain_prev != NULL) ||
13194 (connp->conn_state_flags & CONN_CLOSING)) {
13195 /*
13196 * The conn is either already in the drain list or closing.
13197 * (We needed to check for CONN_CLOSING again since close can
13198 * sneak in between dropping conn_lock and acquiring idl_lock.)
13199 */
13200 mutex_exit(&idl->idl_lock);
13201 return;
13202 }
13203
13204 /*
13205 * The conn is not in the drain list. Insert it at the
13206 * tail of the drain list. The drain list is circular
13207 * and doubly linked. idl_conn points to the 1st element
13208 * in the list.
13209 */
13210 if (idl->idl_conn == NULL) {
13211 idl->idl_conn = connp;
13212 connp->conn_drain_next = connp;
13213 connp->conn_drain_prev = connp;
13214 } else {
13215 conn_t *head = idl->idl_conn;
13216
13217 connp->conn_drain_next = head;
13218 connp->conn_drain_prev = head->conn_drain_prev;
13219 head->conn_drain_prev->conn_drain_next = connp;
13220 head->conn_drain_prev = connp;
13221 }
13222 /*
13223 * For non streams based sockets assert flow control.
13224 */
13225 conn_setqfull(connp, NULL);
13226 mutex_exit(&idl->idl_lock);
13227 }
13228
13229 static void
13230 conn_drain_remove(conn_t *connp)
13231 {
13232 idl_t *idl = connp->conn_idl;
13233
13234 if (idl != NULL) {
13235 /*
13236 * Remove ourself from the drain list.
13237 */
13238 if (connp->conn_drain_next == connp) {
13239 /* Singleton in the list */
13240 ASSERT(connp->conn_drain_prev == connp);
13241 idl->idl_conn = NULL;
13242 } else {
13243 connp->conn_drain_prev->conn_drain_next =
13244 connp->conn_drain_next;
13245 connp->conn_drain_next->conn_drain_prev =
13246 connp->conn_drain_prev;
13247 if (idl->idl_conn == connp)
13248 idl->idl_conn = connp->conn_drain_next;
13249 }
13250
13251 /*
13252 * NOTE: because conn_idl is associated with a specific drain
13253 * list which in turn is tied to the index the TX ring
13254 * (txl_cookie) hashes to, and because the TX ring can change
13255 * over the lifetime of the conn_t, we must clear conn_idl so
13256 * a subsequent conn_drain_insert() will set conn_idl again
13257 * based on the latest txl_cookie.
13258 */
13259 connp->conn_idl = NULL;
13260 }
13261 connp->conn_drain_next = NULL;
13262 connp->conn_drain_prev = NULL;
13263
13264 conn_clrqfull(connp, NULL);
13265 /*
13266 * For streams based sockets open up flow control.
13267 */
13268 if (!IPCL_IS_NONSTR(connp))
13269 enableok(connp->conn_wq);
13270 }
13271
13272 /*
13273 * This conn is closing, and we are called from ip_close. OR
13274 * this conn is draining because flow-control on the ill has been relieved.
13275 *
13276 * We must also need to remove conn's on this idl from the list, and also
13277 * inform the sockfs upcalls about the change in flow-control.
13278 */
13279 static void
13280 conn_drain(conn_t *connp, boolean_t closing)
13281 {
13282 idl_t *idl;
13283 conn_t *next_connp;
13284
13285 /*
13286 * connp->conn_idl is stable at this point, and no lock is needed
13287 * to check it. If we are called from ip_close, close has already
13288 * set CONN_CLOSING, thus freezing the value of conn_idl, and
13289 * called us only because conn_idl is non-null. If we are called thru
13290 * service, conn_idl could be null, but it cannot change because
13291 * service is single-threaded per queue, and there cannot be another
13292 * instance of service trying to call conn_drain_insert on this conn
13293 * now.
13294 */
13295 ASSERT(!closing || connp == NULL || connp->conn_idl != NULL);
13296
13297 /*
13298 * If the conn doesn't exist or is not on a drain list, bail.
13299 */
13300 if (connp == NULL || connp->conn_idl == NULL ||
13301 connp->conn_drain_prev == NULL) {
13302 return;
13303 }
13304
13305 idl = connp->conn_idl;
13306 ASSERT(MUTEX_HELD(&idl->idl_lock));
13307
13308 if (!closing) {
13309 next_connp = connp->conn_drain_next;
13310 while (next_connp != connp) {
13311 conn_t *delconnp = next_connp;
13312
13313 next_connp = next_connp->conn_drain_next;
13314 conn_drain_remove(delconnp);
13315 }
13316 ASSERT(connp->conn_drain_next == idl->idl_conn);
13317 }
13318 conn_drain_remove(connp);
13319 }
13320
13321 /*
13322 * Write service routine. Shared perimeter entry point.
13323 * The device queue's messages has fallen below the low water mark and STREAMS
13324 * has backenabled the ill_wq. Send sockfs notification about flow-control on
13325 * each waiting conn.
13326 */
13327 void
13328 ip_wsrv(queue_t *q)
13329 {
13330 ill_t *ill;
13331
13332 ill = (ill_t *)q->q_ptr;
13333 if (ill->ill_state_flags == 0) {
13334 ip_stack_t *ipst = ill->ill_ipst;
13335
13336 /*
13337 * The device flow control has opened up.
13338 * Walk through conn drain lists and qenable the
13339 * first conn in each list. This makes sense only
13340 * if the stream is fully plumbed and setup.
13341 * Hence the ill_state_flags check above.
13342 */
13343 ip1dbg(("ip_wsrv: walking\n"));
13344 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[0]);
13345 enableok(ill->ill_wq);
13346 }
13347 }
13348
13349 /*
13350 * Callback to disable flow control in IP.
13351 *
13352 * This is a mac client callback added when the DLD_CAPAB_DIRECT capability
13353 * is enabled.
13354 *
13355 * When MAC_TX() is not able to send any more packets, dld sets its queue
13356 * to QFULL and enable the STREAMS flow control. Later, when the underlying
13357 * driver is able to continue to send packets, it calls mac_tx_(ring_)update()
13358 * function and wakes up corresponding mac worker threads, which in turn
13359 * calls this callback function, and disables flow control.
13360 */
13361 void
13362 ill_flow_enable(void *arg, ip_mac_tx_cookie_t cookie)
13363 {
13364 ill_t *ill = (ill_t *)arg;
13365 ip_stack_t *ipst = ill->ill_ipst;
13366 idl_tx_list_t *idl_txl;
13367
13368 idl_txl = &ipst->ips_idl_tx_list[IDLHASHINDEX(cookie)];
13369 mutex_enter(&idl_txl->txl_lock);
13370 /* add code to to set a flag to indicate idl_txl is enabled */
13371 conn_walk_drain(ipst, idl_txl);
13372 mutex_exit(&idl_txl->txl_lock);
13373 }
13374
13375 /*
13376 * Flow control has been relieved and STREAMS has backenabled us; drain
13377 * all the conn lists on `tx_list'.
13378 */
13379 static void
13380 conn_walk_drain(ip_stack_t *ipst, idl_tx_list_t *tx_list)
13381 {
13382 int i;
13383 idl_t *idl;
13384
13385 IP_STAT(ipst, ip_conn_walk_drain);
13386
13387 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) {
13388 idl = &tx_list->txl_drain_list[i];
13389 mutex_enter(&idl->idl_lock);
13390 conn_drain(idl->idl_conn, B_FALSE);
13391 mutex_exit(&idl->idl_lock);
13392 }
13393 }
13394
13395 /*
13396 * Determine if the ill and multicast aspects of that packets
13397 * "matches" the conn.
13398 */
13399 boolean_t
13400 conn_wantpacket(conn_t *connp, ip_recv_attr_t *ira, ipha_t *ipha)
13401 {
13402 ill_t *ill = ira->ira_rill;
13403 zoneid_t zoneid = ira->ira_zoneid;
13404 uint_t in_ifindex;
13405 ipaddr_t dst, src;
13406
13407 dst = ipha->ipha_dst;
13408 src = ipha->ipha_src;
13409
13410 /*
13411 * conn_incoming_ifindex is set by IP_BOUND_IF which limits
13412 * unicast, broadcast and multicast reception to
13413 * conn_incoming_ifindex.
13414 * conn_wantpacket is called for unicast, broadcast and
13415 * multicast packets.
13416 */
13417 in_ifindex = connp->conn_incoming_ifindex;
13418
13419 /* mpathd can bind to the under IPMP interface, which we allow */
13420 if (in_ifindex != 0 && in_ifindex != ill->ill_phyint->phyint_ifindex) {
13421 if (!IS_UNDER_IPMP(ill))
13422 return (B_FALSE);
13423
13424 if (in_ifindex != ipmp_ill_get_ipmp_ifindex(ill))
13425 return (B_FALSE);
13426 }
13427
13428 if (!IPCL_ZONE_MATCH(connp, zoneid))
13429 return (B_FALSE);
13430
13431 if (!(ira->ira_flags & IRAF_MULTICAST))
13432 return (B_TRUE);
13433
13434 if (connp->conn_multi_router) {
13435 /* multicast packet and multicast router socket: send up */
13436 return (B_TRUE);
13437 }
13438
13439 if (ipha->ipha_protocol == IPPROTO_PIM ||
13440 ipha->ipha_protocol == IPPROTO_RSVP)
13441 return (B_TRUE);
13442
13443 return (conn_hasmembers_ill_withsrc_v4(connp, dst, src, ira->ira_ill));
13444 }
13445
13446 void
13447 conn_setqfull(conn_t *connp, boolean_t *flow_stopped)
13448 {
13449 if (IPCL_IS_NONSTR(connp)) {
13450 (*connp->conn_upcalls->su_txq_full)
13451 (connp->conn_upper_handle, B_TRUE);
13452 if (flow_stopped != NULL)
13453 *flow_stopped = B_TRUE;
13454 } else {
13455 queue_t *q = connp->conn_wq;
13456
13457 ASSERT(q != NULL);
13458 if (!(q->q_flag & QFULL)) {
13459 mutex_enter(QLOCK(q));
13460 if (!(q->q_flag & QFULL)) {
13461 /* still need to set QFULL */
13462 q->q_flag |= QFULL;
13463 /* set flow_stopped to true under QLOCK */
13464 if (flow_stopped != NULL)
13465 *flow_stopped = B_TRUE;
13466 mutex_exit(QLOCK(q));
13467 } else {
13468 /* flow_stopped is left unchanged */
13469 mutex_exit(QLOCK(q));
13470 }
13471 }
13472 }
13473 }
13474
13475 void
13476 conn_clrqfull(conn_t *connp, boolean_t *flow_stopped)
13477 {
13478 if (IPCL_IS_NONSTR(connp)) {
13479 (*connp->conn_upcalls->su_txq_full)
13480 (connp->conn_upper_handle, B_FALSE);
13481 if (flow_stopped != NULL)
13482 *flow_stopped = B_FALSE;
13483 } else {
13484 queue_t *q = connp->conn_wq;
13485
13486 ASSERT(q != NULL);
13487 if (q->q_flag & QFULL) {
13488 mutex_enter(QLOCK(q));
13489 if (q->q_flag & QFULL) {
13490 q->q_flag &= ~QFULL;
13491 /* set flow_stopped to false under QLOCK */
13492 if (flow_stopped != NULL)
13493 *flow_stopped = B_FALSE;
13494 mutex_exit(QLOCK(q));
13495 if (q->q_flag & QWANTW)
13496 qbackenable(q, 0);
13497 } else {
13498 /* flow_stopped is left unchanged */
13499 mutex_exit(QLOCK(q));
13500 }
13501 }
13502 }
13503
13504 mutex_enter(&connp->conn_lock);
13505 connp->conn_blocked = B_FALSE;
13506 mutex_exit(&connp->conn_lock);
13507 }
13508
13509 /*
13510 * Return the length in bytes of the IPv4 headers (base header, label, and
13511 * other IP options) that will be needed based on the
13512 * ip_pkt_t structure passed by the caller.
13513 *
13514 * The returned length does not include the length of the upper level
13515 * protocol (ULP) header.
13516 * The caller needs to check that the length doesn't exceed the max for IPv4.
13517 */
13518 int
13519 ip_total_hdrs_len_v4(const ip_pkt_t *ipp)
13520 {
13521 int len;
13522
13523 len = IP_SIMPLE_HDR_LENGTH;
13524 if (ipp->ipp_fields & IPPF_LABEL_V4) {
13525 ASSERT(ipp->ipp_label_len_v4 != 0);
13526 /* We need to round up here */
13527 len += (ipp->ipp_label_len_v4 + 3) & ~3;
13528 }
13529
13530 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
13531 ASSERT(ipp->ipp_ipv4_options_len != 0);
13532 ASSERT((ipp->ipp_ipv4_options_len & 3) == 0);
13533 len += ipp->ipp_ipv4_options_len;
13534 }
13535 return (len);
13536 }
13537
13538 /*
13539 * All-purpose routine to build an IPv4 header with options based
13540 * on the abstract ip_pkt_t.
13541 *
13542 * The caller has to set the source and destination address as well as
13543 * ipha_length. The caller has to massage any source route and compensate
13544 * for the ULP pseudo-header checksum due to the source route.
13545 */
13546 void
13547 ip_build_hdrs_v4(uchar_t *buf, uint_t buf_len, const ip_pkt_t *ipp,
13548 uint8_t protocol)
13549 {
13550 ipha_t *ipha = (ipha_t *)buf;
13551 uint8_t *cp;
13552
13553 /* Initialize IPv4 header */
13554 ipha->ipha_type_of_service = ipp->ipp_type_of_service;
13555 ipha->ipha_length = 0; /* Caller will set later */
13556 ipha->ipha_ident = 0;
13557 ipha->ipha_fragment_offset_and_flags = 0;
13558 ipha->ipha_ttl = ipp->ipp_unicast_hops;
13559 ipha->ipha_protocol = protocol;
13560 ipha->ipha_hdr_checksum = 0;
13561
13562 if ((ipp->ipp_fields & IPPF_ADDR) &&
13563 IN6_IS_ADDR_V4MAPPED(&ipp->ipp_addr))
13564 ipha->ipha_src = ipp->ipp_addr_v4;
13565
13566 cp = (uint8_t *)&ipha[1];
13567 if (ipp->ipp_fields & IPPF_LABEL_V4) {
13568 ASSERT(ipp->ipp_label_len_v4 != 0);
13569 bcopy(ipp->ipp_label_v4, cp, ipp->ipp_label_len_v4);
13570 cp += ipp->ipp_label_len_v4;
13571 /* We need to round up here */
13572 while ((uintptr_t)cp & 0x3) {
13573 *cp++ = IPOPT_NOP;
13574 }
13575 }
13576
13577 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
13578 ASSERT(ipp->ipp_ipv4_options_len != 0);
13579 ASSERT((ipp->ipp_ipv4_options_len & 3) == 0);
13580 bcopy(ipp->ipp_ipv4_options, cp, ipp->ipp_ipv4_options_len);
13581 cp += ipp->ipp_ipv4_options_len;
13582 }
13583 ipha->ipha_version_and_hdr_length =
13584 (uint8_t)((IP_VERSION << 4) + buf_len / 4);
13585
13586 ASSERT((int)(cp - buf) == buf_len);
13587 }
13588
13589 /* Allocate the private structure */
13590 static int
13591 ip_priv_alloc(void **bufp)
13592 {
13593 void *buf;
13594
13595 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL)
13596 return (ENOMEM);
13597
13598 *bufp = buf;
13599 return (0);
13600 }
13601
13602 /* Function to delete the private structure */
13603 void
13604 ip_priv_free(void *buf)
13605 {
13606 ASSERT(buf != NULL);
13607 kmem_free(buf, sizeof (ip_priv_t));
13608 }
13609
13610 /*
13611 * The entry point for IPPF processing.
13612 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the
13613 * routine just returns.
13614 *
13615 * When called, ip_process generates an ipp_packet_t structure
13616 * which holds the state information for this packet and invokes the
13617 * the classifier (via ipp_packet_process). The classification, depending on
13618 * configured filters, results in a list of actions for this packet. Invoking
13619 * an action may cause the packet to be dropped, in which case we return NULL.
13620 * proc indicates the callout position for
13621 * this packet and ill is the interface this packet arrived on or will leave
13622 * on (inbound and outbound resp.).
13623 *
13624 * We do the processing on the rill (mapped to the upper if ipmp), but MIB
13625 * on the ill corrsponding to the destination IP address.
13626 */
13627 mblk_t *
13628 ip_process(ip_proc_t proc, mblk_t *mp, ill_t *rill, ill_t *ill)
13629 {
13630 ip_priv_t *priv;
13631 ipp_action_id_t aid;
13632 int rc = 0;
13633 ipp_packet_t *pp;
13634
13635 /* If the classifier is not loaded, return */
13636 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) {
13637 return (mp);
13638 }
13639
13640 ASSERT(mp != NULL);
13641
13642 /* Allocate the packet structure */
13643 rc = ipp_packet_alloc(&pp, "ip", aid);
13644 if (rc != 0)
13645 goto drop;
13646
13647 /* Allocate the private structure */
13648 rc = ip_priv_alloc((void **)&priv);
13649 if (rc != 0) {
13650 ipp_packet_free(pp);
13651 goto drop;
13652 }
13653 priv->proc = proc;
13654 priv->ill_index = ill_get_upper_ifindex(rill);
13655
13656 ipp_packet_set_private(pp, priv, ip_priv_free);
13657 ipp_packet_set_data(pp, mp);
13658
13659 /* Invoke the classifier */
13660 rc = ipp_packet_process(&pp);
13661 if (pp != NULL) {
13662 mp = ipp_packet_get_data(pp);
13663 ipp_packet_free(pp);
13664 if (rc != 0)
13665 goto drop;
13666 return (mp);
13667 } else {
13668 /* No mp to trace in ip_drop_input/ip_drop_output */
13669 mp = NULL;
13670 }
13671 drop:
13672 if (proc == IPP_LOCAL_IN || proc == IPP_FWD_IN) {
13673 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
13674 ip_drop_input("ip_process", mp, ill);
13675 } else {
13676 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
13677 ip_drop_output("ip_process", mp, ill);
13678 }
13679 freemsg(mp);
13680 return (NULL);
13681 }
13682
13683 /*
13684 * Propagate a multicast group membership operation (add/drop) on
13685 * all the interfaces crossed by the related multirt routes.
13686 * The call is considered successful if the operation succeeds
13687 * on at least one interface.
13688 *
13689 * This assumes that a set of IRE_HOST/RTF_MULTIRT has been created for the
13690 * multicast addresses with the ire argument being the first one.
13691 * We walk the bucket to find all the of those.
13692 *
13693 * Common to IPv4 and IPv6.
13694 */
13695 static int
13696 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t,
13697 const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *),
13698 ire_t *ire, conn_t *connp, boolean_t checkonly, const in6_addr_t *v6group,
13699 mcast_record_t fmode, const in6_addr_t *v6src)
13700 {
13701 ire_t *ire_gw;
13702 irb_t *irb;
13703 int ifindex;
13704 int error = 0;
13705 int result;
13706 ip_stack_t *ipst = ire->ire_ipst;
13707 ipaddr_t group;
13708 boolean_t isv6;
13709 int match_flags;
13710
13711 if (IN6_IS_ADDR_V4MAPPED(v6group)) {
13712 IN6_V4MAPPED_TO_IPADDR(v6group, group);
13713 isv6 = B_FALSE;
13714 } else {
13715 isv6 = B_TRUE;
13716 }
13717
13718 irb = ire->ire_bucket;
13719 ASSERT(irb != NULL);
13720
13721 result = 0;
13722 irb_refhold(irb);
13723 for (; ire != NULL; ire = ire->ire_next) {
13724 if ((ire->ire_flags & RTF_MULTIRT) == 0)
13725 continue;
13726
13727 /* We handle -ifp routes by matching on the ill if set */
13728 match_flags = MATCH_IRE_TYPE;
13729 if (ire->ire_ill != NULL)
13730 match_flags |= MATCH_IRE_ILL;
13731
13732 if (isv6) {
13733 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, v6group))
13734 continue;
13735
13736 ire_gw = ire_ftable_lookup_v6(&ire->ire_gateway_addr_v6,
13737 0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL,
13738 match_flags, 0, ipst, NULL);
13739 } else {
13740 if (ire->ire_addr != group)
13741 continue;
13742
13743 ire_gw = ire_ftable_lookup_v4(ire->ire_gateway_addr,
13744 0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL,
13745 match_flags, 0, ipst, NULL);
13746 }
13747 /* No interface route exists for the gateway; skip this ire. */
13748 if (ire_gw == NULL)
13749 continue;
13750 if (ire_gw->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
13751 ire_refrele(ire_gw);
13752 continue;
13753 }
13754 ASSERT(ire_gw->ire_ill != NULL); /* IRE_INTERFACE */
13755 ifindex = ire_gw->ire_ill->ill_phyint->phyint_ifindex;
13756
13757 /*
13758 * The operation is considered a success if
13759 * it succeeds at least once on any one interface.
13760 */
13761 error = fn(connp, checkonly, v6group, INADDR_ANY, ifindex,
13762 fmode, v6src);
13763 if (error == 0)
13764 result = CGTP_MCAST_SUCCESS;
13765
13766 ire_refrele(ire_gw);
13767 }
13768 irb_refrele(irb);
13769 /*
13770 * Consider the call as successful if we succeeded on at least
13771 * one interface. Otherwise, return the last encountered error.
13772 */
13773 return (result == CGTP_MCAST_SUCCESS ? 0 : error);
13774 }
13775
13776 /*
13777 * Return the expected CGTP hooks version number.
13778 */
13779 int
13780 ip_cgtp_filter_supported(void)
13781 {
13782 return (ip_cgtp_filter_rev);
13783 }
13784
13785 /*
13786 * CGTP hooks can be registered by invoking this function.
13787 * Checks that the version number matches.
13788 */
13789 int
13790 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops)
13791 {
13792 netstack_t *ns;
13793 ip_stack_t *ipst;
13794
13795 if (ops->cfo_filter_rev != CGTP_FILTER_REV)
13796 return (ENOTSUP);
13797
13798 ns = netstack_find_by_stackid(stackid);
13799 if (ns == NULL)
13800 return (EINVAL);
13801 ipst = ns->netstack_ip;
13802 ASSERT(ipst != NULL);
13803
13804 if (ipst->ips_ip_cgtp_filter_ops != NULL) {
13805 netstack_rele(ns);
13806 return (EALREADY);
13807 }
13808
13809 ipst->ips_ip_cgtp_filter_ops = ops;
13810
13811 ill_set_inputfn_all(ipst);
13812
13813 netstack_rele(ns);
13814 return (0);
13815 }
13816
13817 /*
13818 * CGTP hooks can be unregistered by invoking this function.
13819 * Returns ENXIO if there was no registration.
13820 * Returns EBUSY if the ndd variable has not been turned off.
13821 */
13822 int
13823 ip_cgtp_filter_unregister(netstackid_t stackid)
13824 {
13825 netstack_t *ns;
13826 ip_stack_t *ipst;
13827
13828 ns = netstack_find_by_stackid(stackid);
13829 if (ns == NULL)
13830 return (EINVAL);
13831 ipst = ns->netstack_ip;
13832 ASSERT(ipst != NULL);
13833
13834 if (ipst->ips_ip_cgtp_filter) {
13835 netstack_rele(ns);
13836 return (EBUSY);
13837 }
13838
13839 if (ipst->ips_ip_cgtp_filter_ops == NULL) {
13840 netstack_rele(ns);
13841 return (ENXIO);
13842 }
13843 ipst->ips_ip_cgtp_filter_ops = NULL;
13844
13845 ill_set_inputfn_all(ipst);
13846
13847 netstack_rele(ns);
13848 return (0);
13849 }
13850
13851 /*
13852 * Check whether there is a CGTP filter registration.
13853 * Returns non-zero if there is a registration, otherwise returns zero.
13854 * Note: returns zero if bad stackid.
13855 */
13856 int
13857 ip_cgtp_filter_is_registered(netstackid_t stackid)
13858 {
13859 netstack_t *ns;
13860 ip_stack_t *ipst;
13861 int ret;
13862
13863 ns = netstack_find_by_stackid(stackid);
13864 if (ns == NULL)
13865 return (0);
13866 ipst = ns->netstack_ip;
13867 ASSERT(ipst != NULL);
13868
13869 if (ipst->ips_ip_cgtp_filter_ops != NULL)
13870 ret = 1;
13871 else
13872 ret = 0;
13873
13874 netstack_rele(ns);
13875 return (ret);
13876 }
13877
13878 static int
13879 ip_squeue_switch(int val)
13880 {
13881 int rval;
13882
13883 switch (val) {
13884 case IP_SQUEUE_ENTER_NODRAIN:
13885 rval = SQ_NODRAIN;
13886 break;
13887 case IP_SQUEUE_ENTER:
13888 rval = SQ_PROCESS;
13889 break;
13890 case IP_SQUEUE_FILL:
13891 default:
13892 rval = SQ_FILL;
13893 break;
13894 }
13895 return (rval);
13896 }
13897
13898 static void *
13899 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp)
13900 {
13901 kstat_t *ksp;
13902
13903 ip_stat_t template = {
13904 { "ip_udp_fannorm", KSTAT_DATA_UINT64 },
13905 { "ip_udp_fanmb", KSTAT_DATA_UINT64 },
13906 { "ip_recv_pullup", KSTAT_DATA_UINT64 },
13907 { "ip_db_ref", KSTAT_DATA_UINT64 },
13908 { "ip_notaligned", KSTAT_DATA_UINT64 },
13909 { "ip_multimblk", KSTAT_DATA_UINT64 },
13910 { "ip_opt", KSTAT_DATA_UINT64 },
13911 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 },
13912 { "ip_conn_flputbq", KSTAT_DATA_UINT64 },
13913 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 },
13914 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 },
13915 { "ip_out_sw_cksum_bytes", KSTAT_DATA_UINT64 },
13916 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 },
13917 { "ip_ire_reclaim_calls", KSTAT_DATA_UINT64 },
13918 { "ip_ire_reclaim_deleted", KSTAT_DATA_UINT64 },
13919 { "ip_nce_reclaim_calls", KSTAT_DATA_UINT64 },
13920 { "ip_nce_reclaim_deleted", KSTAT_DATA_UINT64 },
13921 { "ip_dce_reclaim_calls", KSTAT_DATA_UINT64 },
13922 { "ip_dce_reclaim_deleted", KSTAT_DATA_UINT64 },
13923 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 },
13924 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 },
13925 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 },
13926 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 },
13927 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 },
13928 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 },
13929 { "conn_in_recvdstaddr", KSTAT_DATA_UINT64 },
13930 { "conn_in_recvopts", KSTAT_DATA_UINT64 },
13931 { "conn_in_recvif", KSTAT_DATA_UINT64 },
13932 { "conn_in_recvslla", KSTAT_DATA_UINT64 },
13933 { "conn_in_recvucred", KSTAT_DATA_UINT64 },
13934 { "conn_in_recvttl", KSTAT_DATA_UINT64 },
13935 { "conn_in_recvhopopts", KSTAT_DATA_UINT64 },
13936 { "conn_in_recvhoplimit", KSTAT_DATA_UINT64 },
13937 { "conn_in_recvdstopts", KSTAT_DATA_UINT64 },
13938 { "conn_in_recvrthdrdstopts", KSTAT_DATA_UINT64 },
13939 { "conn_in_recvrthdr", KSTAT_DATA_UINT64 },
13940 { "conn_in_recvpktinfo", KSTAT_DATA_UINT64 },
13941 { "conn_in_recvtclass", KSTAT_DATA_UINT64 },
13942 { "conn_in_timestamp", KSTAT_DATA_UINT64 },
13943 };
13944
13945 ksp = kstat_create_netstack("ip", 0, "ipstat", "net",
13946 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
13947 KSTAT_FLAG_VIRTUAL, stackid);
13948
13949 if (ksp == NULL)
13950 return (NULL);
13951
13952 bcopy(&template, ip_statisticsp, sizeof (template));
13953 ksp->ks_data = (void *)ip_statisticsp;
13954 ksp->ks_private = (void *)(uintptr_t)stackid;
13955
13956 kstat_install(ksp);
13957 return (ksp);
13958 }
13959
13960 static void
13961 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp)
13962 {
13963 if (ksp != NULL) {
13964 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
13965 kstat_delete_netstack(ksp, stackid);
13966 }
13967 }
13968
13969 static void *
13970 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst)
13971 {
13972 kstat_t *ksp;
13973
13974 ip_named_kstat_t template = {
13975 { "forwarding", KSTAT_DATA_UINT32, 0 },
13976 { "defaultTTL", KSTAT_DATA_UINT32, 0 },
13977 { "inReceives", KSTAT_DATA_UINT64, 0 },
13978 { "inHdrErrors", KSTAT_DATA_UINT32, 0 },
13979 { "inAddrErrors", KSTAT_DATA_UINT32, 0 },
13980 { "forwDatagrams", KSTAT_DATA_UINT64, 0 },
13981 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 },
13982 { "inDiscards", KSTAT_DATA_UINT32, 0 },
13983 { "inDelivers", KSTAT_DATA_UINT64, 0 },
13984 { "outRequests", KSTAT_DATA_UINT64, 0 },
13985 { "outDiscards", KSTAT_DATA_UINT32, 0 },
13986 { "outNoRoutes", KSTAT_DATA_UINT32, 0 },
13987 { "reasmTimeout", KSTAT_DATA_UINT32, 0 },
13988 { "reasmReqds", KSTAT_DATA_UINT32, 0 },
13989 { "reasmOKs", KSTAT_DATA_UINT32, 0 },
13990 { "reasmFails", KSTAT_DATA_UINT32, 0 },
13991 { "fragOKs", KSTAT_DATA_UINT32, 0 },
13992 { "fragFails", KSTAT_DATA_UINT32, 0 },
13993 { "fragCreates", KSTAT_DATA_UINT32, 0 },
13994 { "addrEntrySize", KSTAT_DATA_INT32, 0 },
13995 { "routeEntrySize", KSTAT_DATA_INT32, 0 },
13996 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 },
13997 { "routingDiscards", KSTAT_DATA_UINT32, 0 },
13998 { "inErrs", KSTAT_DATA_UINT32, 0 },
13999 { "noPorts", KSTAT_DATA_UINT32, 0 },
14000 { "inCksumErrs", KSTAT_DATA_UINT32, 0 },
14001 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 },
14002 { "reasmPartDups", KSTAT_DATA_UINT32, 0 },
14003 { "forwProhibits", KSTAT_DATA_UINT32, 0 },
14004 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 },
14005 { "udpInOverflows", KSTAT_DATA_UINT32, 0 },
14006 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 },
14007 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 },
14008 { "ipsecInFailed", KSTAT_DATA_INT32, 0 },
14009 { "memberEntrySize", KSTAT_DATA_INT32, 0 },
14010 { "inIPv6", KSTAT_DATA_UINT32, 0 },
14011 { "outIPv6", KSTAT_DATA_UINT32, 0 },
14012 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 },
14013 };
14014
14015 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED,
14016 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid);
14017 if (ksp == NULL || ksp->ks_data == NULL)
14018 return (NULL);
14019
14020 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2;
14021 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl;
14022 template.reasmTimeout.value.ui32 = ipst->ips_ip_reassembly_timeout;
14023 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t);
14024 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t);
14025
14026 template.netToMediaEntrySize.value.i32 =
14027 sizeof (mib2_ipNetToMediaEntry_t);
14028
14029 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t);
14030
14031 bcopy(&template, ksp->ks_data, sizeof (template));
14032 ksp->ks_update = ip_kstat_update;
14033 ksp->ks_private = (void *)(uintptr_t)stackid;
14034
14035 kstat_install(ksp);
14036 return (ksp);
14037 }
14038
14039 static void
14040 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp)
14041 {
14042 if (ksp != NULL) {
14043 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
14044 kstat_delete_netstack(ksp, stackid);
14045 }
14046 }
14047
14048 static int
14049 ip_kstat_update(kstat_t *kp, int rw)
14050 {
14051 ip_named_kstat_t *ipkp;
14052 mib2_ipIfStatsEntry_t ipmib;
14053 ill_walk_context_t ctx;
14054 ill_t *ill;
14055 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private;
14056 netstack_t *ns;
14057 ip_stack_t *ipst;
14058
14059 if (kp == NULL || kp->ks_data == NULL)
14060 return (EIO);
14061
14062 if (rw == KSTAT_WRITE)
14063 return (EACCES);
14064
14065 ns = netstack_find_by_stackid(stackid);
14066 if (ns == NULL)
14067 return (-1);
14068 ipst = ns->netstack_ip;
14069 if (ipst == NULL) {
14070 netstack_rele(ns);
14071 return (-1);
14072 }
14073 ipkp = (ip_named_kstat_t *)kp->ks_data;
14074
14075 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib));
14076 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
14077 ill = ILL_START_WALK_V4(&ctx, ipst);
14078 for (; ill != NULL; ill = ill_next(&ctx, ill))
14079 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib);
14080 rw_exit(&ipst->ips_ill_g_lock);
14081
14082 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding;
14083 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL;
14084 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives;
14085 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors;
14086 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors;
14087 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams;
14088 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos;
14089 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards;
14090 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers;
14091 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests;
14092 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards;
14093 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes;
14094 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_reassembly_timeout;
14095 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds;
14096 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs;
14097 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails;
14098 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs;
14099 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails;
14100 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates;
14101
14102 ipkp->routingDiscards.value.ui32 = 0;
14103 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs;
14104 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts;
14105 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs;
14106 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates;
14107 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups;
14108 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits;
14109 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs;
14110 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows;
14111 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows;
14112 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded;
14113 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed;
14114
14115 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion;
14116 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion;
14117 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion;
14118
14119 netstack_rele(ns);
14120
14121 return (0);
14122 }
14123
14124 static void *
14125 icmp_kstat_init(netstackid_t stackid)
14126 {
14127 kstat_t *ksp;
14128
14129 icmp_named_kstat_t template = {
14130 { "inMsgs", KSTAT_DATA_UINT32 },
14131 { "inErrors", KSTAT_DATA_UINT32 },
14132 { "inDestUnreachs", KSTAT_DATA_UINT32 },
14133 { "inTimeExcds", KSTAT_DATA_UINT32 },
14134 { "inParmProbs", KSTAT_DATA_UINT32 },
14135 { "inSrcQuenchs", KSTAT_DATA_UINT32 },
14136 { "inRedirects", KSTAT_DATA_UINT32 },
14137 { "inEchos", KSTAT_DATA_UINT32 },
14138 { "inEchoReps", KSTAT_DATA_UINT32 },
14139 { "inTimestamps", KSTAT_DATA_UINT32 },
14140 { "inTimestampReps", KSTAT_DATA_UINT32 },
14141 { "inAddrMasks", KSTAT_DATA_UINT32 },
14142 { "inAddrMaskReps", KSTAT_DATA_UINT32 },
14143 { "outMsgs", KSTAT_DATA_UINT32 },
14144 { "outErrors", KSTAT_DATA_UINT32 },
14145 { "outDestUnreachs", KSTAT_DATA_UINT32 },
14146 { "outTimeExcds", KSTAT_DATA_UINT32 },
14147 { "outParmProbs", KSTAT_DATA_UINT32 },
14148 { "outSrcQuenchs", KSTAT_DATA_UINT32 },
14149 { "outRedirects", KSTAT_DATA_UINT32 },
14150 { "outEchos", KSTAT_DATA_UINT32 },
14151 { "outEchoReps", KSTAT_DATA_UINT32 },
14152 { "outTimestamps", KSTAT_DATA_UINT32 },
14153 { "outTimestampReps", KSTAT_DATA_UINT32 },
14154 { "outAddrMasks", KSTAT_DATA_UINT32 },
14155 { "outAddrMaskReps", KSTAT_DATA_UINT32 },
14156 { "inChksumErrs", KSTAT_DATA_UINT32 },
14157 { "inUnknowns", KSTAT_DATA_UINT32 },
14158 { "inFragNeeded", KSTAT_DATA_UINT32 },
14159 { "outFragNeeded", KSTAT_DATA_UINT32 },
14160 { "outDrops", KSTAT_DATA_UINT32 },
14161 { "inOverFlows", KSTAT_DATA_UINT32 },
14162 { "inBadRedirects", KSTAT_DATA_UINT32 },
14163 };
14164
14165 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED,
14166 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid);
14167 if (ksp == NULL || ksp->ks_data == NULL)
14168 return (NULL);
14169
14170 bcopy(&template, ksp->ks_data, sizeof (template));
14171
14172 ksp->ks_update = icmp_kstat_update;
14173 ksp->ks_private = (void *)(uintptr_t)stackid;
14174
14175 kstat_install(ksp);
14176 return (ksp);
14177 }
14178
14179 static void
14180 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp)
14181 {
14182 if (ksp != NULL) {
14183 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
14184 kstat_delete_netstack(ksp, stackid);
14185 }
14186 }
14187
14188 static int
14189 icmp_kstat_update(kstat_t *kp, int rw)
14190 {
14191 icmp_named_kstat_t *icmpkp;
14192 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private;
14193 netstack_t *ns;
14194 ip_stack_t *ipst;
14195
14196 if ((kp == NULL) || (kp->ks_data == NULL))
14197 return (EIO);
14198
14199 if (rw == KSTAT_WRITE)
14200 return (EACCES);
14201
14202 ns = netstack_find_by_stackid(stackid);
14203 if (ns == NULL)
14204 return (-1);
14205 ipst = ns->netstack_ip;
14206 if (ipst == NULL) {
14207 netstack_rele(ns);
14208 return (-1);
14209 }
14210 icmpkp = (icmp_named_kstat_t *)kp->ks_data;
14211
14212 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs;
14213 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors;
14214 icmpkp->inDestUnreachs.value.ui32 =
14215 ipst->ips_icmp_mib.icmpInDestUnreachs;
14216 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds;
14217 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs;
14218 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs;
14219 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects;
14220 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos;
14221 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps;
14222 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps;
14223 icmpkp->inTimestampReps.value.ui32 =
14224 ipst->ips_icmp_mib.icmpInTimestampReps;
14225 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks;
14226 icmpkp->inAddrMaskReps.value.ui32 =
14227 ipst->ips_icmp_mib.icmpInAddrMaskReps;
14228 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs;
14229 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors;
14230 icmpkp->outDestUnreachs.value.ui32 =
14231 ipst->ips_icmp_mib.icmpOutDestUnreachs;
14232 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds;
14233 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs;
14234 icmpkp->outSrcQuenchs.value.ui32 =
14235 ipst->ips_icmp_mib.icmpOutSrcQuenchs;
14236 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects;
14237 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos;
14238 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps;
14239 icmpkp->outTimestamps.value.ui32 =
14240 ipst->ips_icmp_mib.icmpOutTimestamps;
14241 icmpkp->outTimestampReps.value.ui32 =
14242 ipst->ips_icmp_mib.icmpOutTimestampReps;
14243 icmpkp->outAddrMasks.value.ui32 =
14244 ipst->ips_icmp_mib.icmpOutAddrMasks;
14245 icmpkp->outAddrMaskReps.value.ui32 =
14246 ipst->ips_icmp_mib.icmpOutAddrMaskReps;
14247 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs;
14248 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns;
14249 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded;
14250 icmpkp->outFragNeeded.value.ui32 =
14251 ipst->ips_icmp_mib.icmpOutFragNeeded;
14252 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops;
14253 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows;
14254 icmpkp->inBadRedirects.value.ui32 =
14255 ipst->ips_icmp_mib.icmpInBadRedirects;
14256
14257 netstack_rele(ns);
14258 return (0);
14259 }
14260
14261 /*
14262 * This is the fanout function for raw socket opened for SCTP. Note
14263 * that it is called after SCTP checks that there is no socket which
14264 * wants a packet. Then before SCTP handles this out of the blue packet,
14265 * this function is called to see if there is any raw socket for SCTP.
14266 * If there is and it is bound to the correct address, the packet will
14267 * be sent to that socket. Note that only one raw socket can be bound to
14268 * a port. This is assured in ipcl_sctp_hash_insert();
14269 */
14270 void
14271 ip_fanout_sctp_raw(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, uint32_t ports,
14272 ip_recv_attr_t *ira)
14273 {
14274 conn_t *connp;
14275 queue_t *rq;
14276 boolean_t secure;
14277 ill_t *ill = ira->ira_ill;
14278 ip_stack_t *ipst = ill->ill_ipst;
14279 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec;
14280 sctp_stack_t *sctps = ipst->ips_netstack->netstack_sctp;
14281 iaflags_t iraflags = ira->ira_flags;
14282 ill_t *rill = ira->ira_rill;
14283
14284 secure = iraflags & IRAF_IPSEC_SECURE;
14285
14286 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, ports, ipha, ip6h,
14287 ira, ipst);
14288 if (connp == NULL) {
14289 /*
14290 * Although raw sctp is not summed, OOB chunks must be.
14291 * Drop the packet here if the sctp checksum failed.
14292 */
14293 if (iraflags & IRAF_SCTP_CSUM_ERR) {
14294 SCTPS_BUMP_MIB(sctps, sctpChecksumError);
14295 freemsg(mp);
14296 return;
14297 }
14298 ira->ira_ill = ira->ira_rill = NULL;
14299 sctp_ootb_input(mp, ira, ipst);
14300 ira->ira_ill = ill;
14301 ira->ira_rill = rill;
14302 return;
14303 }
14304 rq = connp->conn_rq;
14305 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) {
14306 CONN_DEC_REF(connp);
14307 BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows);
14308 freemsg(mp);
14309 return;
14310 }
14311 if (((iraflags & IRAF_IS_IPV4) ?
14312 CONN_INBOUND_POLICY_PRESENT(connp, ipss) :
14313 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) ||
14314 secure) {
14315 mp = ipsec_check_inbound_policy(mp, connp, ipha,
14316 ip6h, ira);
14317 if (mp == NULL) {
14318 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
14319 /* Note that mp is NULL */
14320 ip_drop_input("ipIfStatsInDiscards", mp, ill);
14321 CONN_DEC_REF(connp);
14322 return;
14323 }
14324 }
14325
14326 if (iraflags & IRAF_ICMP_ERROR) {
14327 (connp->conn_recvicmp)(connp, mp, NULL, ira);
14328 } else {
14329 ill_t *rill = ira->ira_rill;
14330
14331 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
14332 /* This is the SOCK_RAW, IPPROTO_SCTP case. */
14333 ira->ira_ill = ira->ira_rill = NULL;
14334 (connp->conn_recv)(connp, mp, NULL, ira);
14335 ira->ira_ill = ill;
14336 ira->ira_rill = rill;
14337 }
14338 CONN_DEC_REF(connp);
14339 }
14340
14341 /*
14342 * Free a packet that has the link-layer dl_unitdata_req_t or fast-path
14343 * header before the ip payload.
14344 */
14345 static void
14346 ip_xmit_flowctl_drop(ill_t *ill, mblk_t *mp, boolean_t is_fp_mp, int fp_mp_len)
14347 {
14348 int len = (mp->b_wptr - mp->b_rptr);
14349 mblk_t *ip_mp;
14350
14351 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
14352 if (is_fp_mp || len != fp_mp_len) {
14353 if (len > fp_mp_len) {
14354 /*
14355 * fastpath header and ip header in the first mblk
14356 */
14357 mp->b_rptr += fp_mp_len;
14358 } else {
14359 /*
14360 * ip_xmit_attach_llhdr had to prepend an mblk to
14361 * attach the fastpath header before ip header.
14362 */
14363 ip_mp = mp->b_cont;
14364 freeb(mp);
14365 mp = ip_mp;
14366 mp->b_rptr += (fp_mp_len - len);
14367 }
14368 } else {
14369 ip_mp = mp->b_cont;
14370 freeb(mp);
14371 mp = ip_mp;
14372 }
14373 ip_drop_output("ipIfStatsOutDiscards - flow ctl", mp, ill);
14374 freemsg(mp);
14375 }
14376
14377 /*
14378 * Normal post fragmentation function.
14379 *
14380 * Send a packet using the passed in nce. This handles both IPv4 and IPv6
14381 * using the same state machine.
14382 *
14383 * We return an error on failure. In particular we return EWOULDBLOCK
14384 * when the driver flow controls. In that case this ensures that ip_wsrv runs
14385 * (currently by canputnext failure resulting in backenabling from GLD.)
14386 * This allows the callers of conn_ip_output() to use EWOULDBLOCK as an
14387 * indication that they can flow control until ip_wsrv() tells then to restart.
14388 *
14389 * If the nce passed by caller is incomplete, this function
14390 * queues the packet and if necessary, sends ARP request and bails.
14391 * If the Neighbor Cache passed is fully resolved, we simply prepend
14392 * the link-layer header to the packet, do ipsec hw acceleration
14393 * work if necessary, and send the packet out on the wire.
14394 */
14395 /* ARGSUSED6 */
14396 int
14397 ip_xmit(mblk_t *mp, nce_t *nce, iaflags_t ixaflags, uint_t pkt_len,
14398 uint32_t xmit_hint, zoneid_t szone, zoneid_t nolzid, uintptr_t *ixacookie)
14399 {
14400 queue_t *wq;
14401 ill_t *ill = nce->nce_ill;
14402 ip_stack_t *ipst = ill->ill_ipst;
14403 uint64_t delta;
14404 boolean_t isv6 = ill->ill_isv6;
14405 boolean_t fp_mp;
14406 ncec_t *ncec = nce->nce_common;
14407 int64_t now = LBOLT_FASTPATH64;
14408 boolean_t is_probe;
14409
14410 DTRACE_PROBE1(ip__xmit, nce_t *, nce);
14411
14412 ASSERT(mp != NULL);
14413 ASSERT(mp->b_datap->db_type == M_DATA);
14414 ASSERT(pkt_len == msgdsize(mp));
14415
14416 /*
14417 * If we have already been here and are coming back after ARP/ND.
14418 * the IXAF_NO_TRACE flag is set. We skip FW_HOOKS, DTRACE and ipobs
14419 * in that case since they have seen the packet when it came here
14420 * the first time.
14421 */
14422 if (ixaflags & IXAF_NO_TRACE)
14423 goto sendit;
14424
14425 if (ixaflags & IXAF_IS_IPV4) {
14426 ipha_t *ipha = (ipha_t *)mp->b_rptr;
14427
14428 ASSERT(!isv6);
14429 ASSERT(pkt_len == ntohs(((ipha_t *)mp->b_rptr)->ipha_length));
14430 if (HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) &&
14431 !(ixaflags & IXAF_NO_PFHOOK)) {
14432 int error;
14433
14434 FW_HOOKS(ipst->ips_ip4_physical_out_event,
14435 ipst->ips_ipv4firewall_physical_out,
14436 NULL, ill, ipha, mp, mp, 0, ipst, error);
14437 DTRACE_PROBE1(ip4__physical__out__end,
14438 mblk_t *, mp);
14439 if (mp == NULL)
14440 return (error);
14441
14442 /* The length could have changed */
14443 pkt_len = msgdsize(mp);
14444 }
14445 if (ipst->ips_ip4_observe.he_interested) {
14446 /*
14447 * Note that for TX the zoneid is the sending
14448 * zone, whether or not MLP is in play.
14449 * Since the szone argument is the IP zoneid (i.e.,
14450 * zero for exclusive-IP zones) and ipobs wants
14451 * the system zoneid, we map it here.
14452 */
14453 szone = IP_REAL_ZONEID(szone, ipst);
14454
14455 /*
14456 * On the outbound path the destination zone will be
14457 * unknown as we're sending this packet out on the
14458 * wire.
14459 */
14460 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES,
14461 ill, ipst);
14462 }
14463 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL,
14464 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, ill,
14465 ipha_t *, ipha, ip6_t *, NULL, int, 0);
14466 } else {
14467 ip6_t *ip6h = (ip6_t *)mp->b_rptr;
14468
14469 ASSERT(isv6);
14470 ASSERT(pkt_len ==
14471 ntohs(((ip6_t *)mp->b_rptr)->ip6_plen) + IPV6_HDR_LEN);
14472 if (HOOKS6_INTERESTED_PHYSICAL_OUT(ipst) &&
14473 !(ixaflags & IXAF_NO_PFHOOK)) {
14474 int error;
14475
14476 FW_HOOKS6(ipst->ips_ip6_physical_out_event,
14477 ipst->ips_ipv6firewall_physical_out,
14478 NULL, ill, ip6h, mp, mp, 0, ipst, error);
14479 DTRACE_PROBE1(ip6__physical__out__end,
14480 mblk_t *, mp);
14481 if (mp == NULL)
14482 return (error);
14483
14484 /* The length could have changed */
14485 pkt_len = msgdsize(mp);
14486 }
14487 if (ipst->ips_ip6_observe.he_interested) {
14488 /* See above */
14489 szone = IP_REAL_ZONEID(szone, ipst);
14490
14491 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES,
14492 ill, ipst);
14493 }
14494 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL,
14495 void_ip_t *, ip6h, __dtrace_ipsr_ill_t *, ill,
14496 ipha_t *, NULL, ip6_t *, ip6h, int, 0);
14497 }
14498
14499 sendit:
14500 /*
14501 * We check the state without a lock because the state can never
14502 * move "backwards" to initial or incomplete.
14503 */
14504 switch (ncec->ncec_state) {
14505 case ND_REACHABLE:
14506 case ND_STALE:
14507 case ND_DELAY:
14508 case ND_PROBE:
14509 mp = ip_xmit_attach_llhdr(mp, nce);
14510 if (mp == NULL) {
14511 /*
14512 * ip_xmit_attach_llhdr has increased
14513 * ipIfStatsOutDiscards and called ip_drop_output()
14514 */
14515 return (ENOBUFS);
14516 }
14517 /*
14518 * check if nce_fastpath completed and we tagged on a
14519 * copy of nce_fp_mp in ip_xmit_attach_llhdr().
14520 */
14521 fp_mp = (mp->b_datap->db_type == M_DATA);
14522
14523 if (fp_mp &&
14524 (ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT)) {
14525 ill_dld_direct_t *idd;
14526
14527 idd = &ill->ill_dld_capab->idc_direct;
14528 /*
14529 * Send the packet directly to DLD, where it
14530 * may be queued depending on the availability
14531 * of transmit resources at the media layer.
14532 * Return value should be taken into
14533 * account and flow control the TCP.
14534 */
14535 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
14536 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
14537 pkt_len);
14538
14539 if (ixaflags & IXAF_NO_DEV_FLOW_CTL) {
14540 (void) idd->idd_tx_df(idd->idd_tx_dh, mp,
14541 (uintptr_t)xmit_hint, IP_DROP_ON_NO_DESC);
14542 } else {
14543 uintptr_t cookie;
14544
14545 if ((cookie = idd->idd_tx_df(idd->idd_tx_dh,
14546 mp, (uintptr_t)xmit_hint, 0)) != 0) {
14547 if (ixacookie != NULL)
14548 *ixacookie = cookie;
14549 return (EWOULDBLOCK);
14550 }
14551 }
14552 } else {
14553 wq = ill->ill_wq;
14554
14555 if (!(ixaflags & IXAF_NO_DEV_FLOW_CTL) &&
14556 !canputnext(wq)) {
14557 if (ixacookie != NULL)
14558 *ixacookie = 0;
14559 ip_xmit_flowctl_drop(ill, mp, fp_mp,
14560 nce->nce_fp_mp != NULL ?
14561 MBLKL(nce->nce_fp_mp) : 0);
14562 return (EWOULDBLOCK);
14563 }
14564 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
14565 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
14566 pkt_len);
14567 putnext(wq, mp);
14568 }
14569
14570 /*
14571 * The rest of this function implements Neighbor Unreachability
14572 * detection. Determine if the ncec is eligible for NUD.
14573 */
14574 if (ncec->ncec_flags & NCE_F_NONUD)
14575 return (0);
14576
14577 ASSERT(ncec->ncec_state != ND_INCOMPLETE);
14578
14579 /*
14580 * Check for upper layer advice
14581 */
14582 if (ixaflags & IXAF_REACH_CONF) {
14583 timeout_id_t tid;
14584
14585 /*
14586 * It should be o.k. to check the state without
14587 * a lock here, at most we lose an advice.
14588 */
14589 ncec->ncec_last = TICK_TO_MSEC(now);
14590 if (ncec->ncec_state != ND_REACHABLE) {
14591 mutex_enter(&ncec->ncec_lock);
14592 ncec->ncec_state = ND_REACHABLE;
14593 tid = ncec->ncec_timeout_id;
14594 ncec->ncec_timeout_id = 0;
14595 mutex_exit(&ncec->ncec_lock);
14596 (void) untimeout(tid);
14597 if (ip_debug > 2) {
14598 /* ip1dbg */
14599 pr_addr_dbg("ip_xmit: state"
14600 " for %s changed to"
14601 " REACHABLE\n", AF_INET6,
14602 &ncec->ncec_addr);
14603 }
14604 }
14605 return (0);
14606 }
14607
14608 delta = TICK_TO_MSEC(now) - ncec->ncec_last;
14609 ip1dbg(("ip_xmit: delta = %" PRId64
14610 " ill_reachable_time = %d \n", delta,
14611 ill->ill_reachable_time));
14612 if (delta > (uint64_t)ill->ill_reachable_time) {
14613 mutex_enter(&ncec->ncec_lock);
14614 switch (ncec->ncec_state) {
14615 case ND_REACHABLE:
14616 ASSERT((ncec->ncec_flags & NCE_F_NONUD) == 0);
14617 /* FALLTHROUGH */
14618 case ND_STALE:
14619 /*
14620 * ND_REACHABLE is identical to
14621 * ND_STALE in this specific case. If
14622 * reachable time has expired for this
14623 * neighbor (delta is greater than
14624 * reachable time), conceptually, the
14625 * neighbor cache is no longer in
14626 * REACHABLE state, but already in
14627 * STALE state. So the correct
14628 * transition here is to ND_DELAY.
14629 */
14630 ncec->ncec_state = ND_DELAY;
14631 mutex_exit(&ncec->ncec_lock);
14632 nce_restart_timer(ncec,
14633 ipst->ips_delay_first_probe_time);
14634 if (ip_debug > 3) {
14635 /* ip2dbg */
14636 pr_addr_dbg("ip_xmit: state"
14637 " for %s changed to"
14638 " DELAY\n", AF_INET6,
14639 &ncec->ncec_addr);
14640 }
14641 break;
14642 case ND_DELAY:
14643 case ND_PROBE:
14644 mutex_exit(&ncec->ncec_lock);
14645 /* Timers have already started */
14646 break;
14647 case ND_UNREACHABLE:
14648 /*
14649 * nce_timer has detected that this ncec
14650 * is unreachable and initiated deleting
14651 * this ncec.
14652 * This is a harmless race where we found the
14653 * ncec before it was deleted and have
14654 * just sent out a packet using this
14655 * unreachable ncec.
14656 */
14657 mutex_exit(&ncec->ncec_lock);
14658 break;
14659 default:
14660 ASSERT(0);
14661 mutex_exit(&ncec->ncec_lock);
14662 }
14663 }
14664 return (0);
14665
14666 case ND_INCOMPLETE:
14667 /*
14668 * the state could have changed since we didn't hold the lock.
14669 * Re-verify state under lock.
14670 */
14671 is_probe = ipmp_packet_is_probe(mp, nce->nce_ill);
14672 mutex_enter(&ncec->ncec_lock);
14673 if (NCE_ISREACHABLE(ncec)) {
14674 mutex_exit(&ncec->ncec_lock);
14675 goto sendit;
14676 }
14677 /* queue the packet */
14678 nce_queue_mp(ncec, mp, is_probe);
14679 mutex_exit(&ncec->ncec_lock);
14680 DTRACE_PROBE2(ip__xmit__incomplete,
14681 (ncec_t *), ncec, (mblk_t *), mp);
14682 return (0);
14683
14684 case ND_INITIAL:
14685 /*
14686 * State could have changed since we didn't hold the lock, so
14687 * re-verify state.
14688 */
14689 is_probe = ipmp_packet_is_probe(mp, nce->nce_ill);
14690 mutex_enter(&ncec->ncec_lock);
14691 if (NCE_ISREACHABLE(ncec)) {
14692 mutex_exit(&ncec->ncec_lock);
14693 goto sendit;
14694 }
14695 nce_queue_mp(ncec, mp, is_probe);
14696 if (ncec->ncec_state == ND_INITIAL) {
14697 ncec->ncec_state = ND_INCOMPLETE;
14698 mutex_exit(&ncec->ncec_lock);
14699 /*
14700 * figure out the source we want to use
14701 * and resolve it.
14702 */
14703 ip_ndp_resolve(ncec);
14704 } else {
14705 mutex_exit(&ncec->ncec_lock);
14706 }
14707 return (0);
14708
14709 case ND_UNREACHABLE:
14710 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
14711 ip_drop_output("ipIfStatsOutDiscards - ND_UNREACHABLE",
14712 mp, ill);
14713 freemsg(mp);
14714 return (0);
14715
14716 default:
14717 ASSERT(0);
14718 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
14719 ip_drop_output("ipIfStatsOutDiscards - ND_other",
14720 mp, ill);
14721 freemsg(mp);
14722 return (ENETUNREACH);
14723 }
14724 }
14725
14726 /*
14727 * Return B_TRUE if the buffers differ in length or content.
14728 * This is used for comparing extension header buffers.
14729 * Note that an extension header would be declared different
14730 * even if all that changed was the next header value in that header i.e.
14731 * what really changed is the next extension header.
14732 */
14733 boolean_t
14734 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf,
14735 uint_t blen)
14736 {
14737 if (!b_valid)
14738 blen = 0;
14739
14740 if (alen != blen)
14741 return (B_TRUE);
14742 if (alen == 0)
14743 return (B_FALSE); /* Both zero length */
14744 return (bcmp(abuf, bbuf, alen));
14745 }
14746
14747 /*
14748 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok.
14749 * Return B_FALSE if memory allocation fails - don't change any state!
14750 */
14751 boolean_t
14752 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid,
14753 const void *src, uint_t srclen)
14754 {
14755 void *dst;
14756
14757 if (!src_valid)
14758 srclen = 0;
14759
14760 ASSERT(*dstlenp == 0);
14761 if (src != NULL && srclen != 0) {
14762 dst = mi_alloc(srclen, BPRI_MED);
14763 if (dst == NULL)
14764 return (B_FALSE);
14765 } else {
14766 dst = NULL;
14767 }
14768 if (*dstp != NULL)
14769 mi_free(*dstp);
14770 *dstp = dst;
14771 *dstlenp = dst == NULL ? 0 : srclen;
14772 return (B_TRUE);
14773 }
14774
14775 /*
14776 * Replace what is in *dst, *dstlen with the source.
14777 * Assumes ip_allocbuf has already been called.
14778 */
14779 void
14780 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid,
14781 const void *src, uint_t srclen)
14782 {
14783 if (!src_valid)
14784 srclen = 0;
14785
14786 ASSERT(*dstlenp == srclen);
14787 if (src != NULL && srclen != 0)
14788 bcopy(src, *dstp, srclen);
14789 }
14790
14791 /*
14792 * Free the storage pointed to by the members of an ip_pkt_t.
14793 */
14794 void
14795 ip_pkt_free(ip_pkt_t *ipp)
14796 {
14797 uint_t fields = ipp->ipp_fields;
14798
14799 if (fields & IPPF_HOPOPTS) {
14800 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen);
14801 ipp->ipp_hopopts = NULL;
14802 ipp->ipp_hopoptslen = 0;
14803 }
14804 if (fields & IPPF_RTHDRDSTOPTS) {
14805 kmem_free(ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen);
14806 ipp->ipp_rthdrdstopts = NULL;
14807 ipp->ipp_rthdrdstoptslen = 0;
14808 }
14809 if (fields & IPPF_DSTOPTS) {
14810 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen);
14811 ipp->ipp_dstopts = NULL;
14812 ipp->ipp_dstoptslen = 0;
14813 }
14814 if (fields & IPPF_RTHDR) {
14815 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen);
14816 ipp->ipp_rthdr = NULL;
14817 ipp->ipp_rthdrlen = 0;
14818 }
14819 if (fields & IPPF_IPV4_OPTIONS) {
14820 kmem_free(ipp->ipp_ipv4_options, ipp->ipp_ipv4_options_len);
14821 ipp->ipp_ipv4_options = NULL;
14822 ipp->ipp_ipv4_options_len = 0;
14823 }
14824 if (fields & IPPF_LABEL_V4) {
14825 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4);
14826 ipp->ipp_label_v4 = NULL;
14827 ipp->ipp_label_len_v4 = 0;
14828 }
14829 if (fields & IPPF_LABEL_V6) {
14830 kmem_free(ipp->ipp_label_v6, ipp->ipp_label_len_v6);
14831 ipp->ipp_label_v6 = NULL;
14832 ipp->ipp_label_len_v6 = 0;
14833 }
14834 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS |
14835 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6);
14836 }
14837
14838 /*
14839 * Copy from src to dst and allocate as needed.
14840 * Returns zero or ENOMEM.
14841 *
14842 * The caller must initialize dst to zero.
14843 */
14844 int
14845 ip_pkt_copy(ip_pkt_t *src, ip_pkt_t *dst, int kmflag)
14846 {
14847 uint_t fields = src->ipp_fields;
14848
14849 /* Start with fields that don't require memory allocation */
14850 dst->ipp_fields = fields &
14851 ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS |
14852 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6);
14853
14854 dst->ipp_addr = src->ipp_addr;
14855 dst->ipp_unicast_hops = src->ipp_unicast_hops;
14856 dst->ipp_hoplimit = src->ipp_hoplimit;
14857 dst->ipp_tclass = src->ipp_tclass;
14858 dst->ipp_type_of_service = src->ipp_type_of_service;
14859
14860 if (!(fields & (IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS |
14861 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6)))
14862 return (0);
14863
14864 if (fields & IPPF_HOPOPTS) {
14865 dst->ipp_hopopts = kmem_alloc(src->ipp_hopoptslen, kmflag);
14866 if (dst->ipp_hopopts == NULL) {
14867 ip_pkt_free(dst);
14868 return (ENOMEM);
14869 }
14870 dst->ipp_fields |= IPPF_HOPOPTS;
14871 bcopy(src->ipp_hopopts, dst->ipp_hopopts,
14872 src->ipp_hopoptslen);
14873 dst->ipp_hopoptslen = src->ipp_hopoptslen;
14874 }
14875 if (fields & IPPF_RTHDRDSTOPTS) {
14876 dst->ipp_rthdrdstopts = kmem_alloc(src->ipp_rthdrdstoptslen,
14877 kmflag);
14878 if (dst->ipp_rthdrdstopts == NULL) {
14879 ip_pkt_free(dst);
14880 return (ENOMEM);
14881 }
14882 dst->ipp_fields |= IPPF_RTHDRDSTOPTS;
14883 bcopy(src->ipp_rthdrdstopts, dst->ipp_rthdrdstopts,
14884 src->ipp_rthdrdstoptslen);
14885 dst->ipp_rthdrdstoptslen = src->ipp_rthdrdstoptslen;
14886 }
14887 if (fields & IPPF_DSTOPTS) {
14888 dst->ipp_dstopts = kmem_alloc(src->ipp_dstoptslen, kmflag);
14889 if (dst->ipp_dstopts == NULL) {
14890 ip_pkt_free(dst);
14891 return (ENOMEM);
14892 }
14893 dst->ipp_fields |= IPPF_DSTOPTS;
14894 bcopy(src->ipp_dstopts, dst->ipp_dstopts,
14895 src->ipp_dstoptslen);
14896 dst->ipp_dstoptslen = src->ipp_dstoptslen;
14897 }
14898 if (fields & IPPF_RTHDR) {
14899 dst->ipp_rthdr = kmem_alloc(src->ipp_rthdrlen, kmflag);
14900 if (dst->ipp_rthdr == NULL) {
14901 ip_pkt_free(dst);
14902 return (ENOMEM);
14903 }
14904 dst->ipp_fields |= IPPF_RTHDR;
14905 bcopy(src->ipp_rthdr, dst->ipp_rthdr,
14906 src->ipp_rthdrlen);
14907 dst->ipp_rthdrlen = src->ipp_rthdrlen;
14908 }
14909 if (fields & IPPF_IPV4_OPTIONS) {
14910 dst->ipp_ipv4_options = kmem_alloc(src->ipp_ipv4_options_len,
14911 kmflag);
14912 if (dst->ipp_ipv4_options == NULL) {
14913 ip_pkt_free(dst);
14914 return (ENOMEM);
14915 }
14916 dst->ipp_fields |= IPPF_IPV4_OPTIONS;
14917 bcopy(src->ipp_ipv4_options, dst->ipp_ipv4_options,
14918 src->ipp_ipv4_options_len);
14919 dst->ipp_ipv4_options_len = src->ipp_ipv4_options_len;
14920 }
14921 if (fields & IPPF_LABEL_V4) {
14922 dst->ipp_label_v4 = kmem_alloc(src->ipp_label_len_v4, kmflag);
14923 if (dst->ipp_label_v4 == NULL) {
14924 ip_pkt_free(dst);
14925 return (ENOMEM);
14926 }
14927 dst->ipp_fields |= IPPF_LABEL_V4;
14928 bcopy(src->ipp_label_v4, dst->ipp_label_v4,
14929 src->ipp_label_len_v4);
14930 dst->ipp_label_len_v4 = src->ipp_label_len_v4;
14931 }
14932 if (fields & IPPF_LABEL_V6) {
14933 dst->ipp_label_v6 = kmem_alloc(src->ipp_label_len_v6, kmflag);
14934 if (dst->ipp_label_v6 == NULL) {
14935 ip_pkt_free(dst);
14936 return (ENOMEM);
14937 }
14938 dst->ipp_fields |= IPPF_LABEL_V6;
14939 bcopy(src->ipp_label_v6, dst->ipp_label_v6,
14940 src->ipp_label_len_v6);
14941 dst->ipp_label_len_v6 = src->ipp_label_len_v6;
14942 }
14943 if (fields & IPPF_FRAGHDR) {
14944 dst->ipp_fraghdr = kmem_alloc(src->ipp_fraghdrlen, kmflag);
14945 if (dst->ipp_fraghdr == NULL) {
14946 ip_pkt_free(dst);
14947 return (ENOMEM);
14948 }
14949 dst->ipp_fields |= IPPF_FRAGHDR;
14950 bcopy(src->ipp_fraghdr, dst->ipp_fraghdr,
14951 src->ipp_fraghdrlen);
14952 dst->ipp_fraghdrlen = src->ipp_fraghdrlen;
14953 }
14954 return (0);
14955 }
14956
14957 /*
14958 * Returns INADDR_ANY if no source route
14959 */
14960 ipaddr_t
14961 ip_pkt_source_route_v4(const ip_pkt_t *ipp)
14962 {
14963 ipaddr_t nexthop = INADDR_ANY;
14964 ipoptp_t opts;
14965 uchar_t *opt;
14966 uint8_t optval;
14967 uint8_t optlen;
14968 uint32_t totallen;
14969
14970 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS))
14971 return (INADDR_ANY);
14972
14973 totallen = ipp->ipp_ipv4_options_len;
14974 if (totallen & 0x3)
14975 return (INADDR_ANY);
14976
14977 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options);
14978 optval != IPOPT_EOL;
14979 optval = ipoptp_next(&opts)) {
14980 opt = opts.ipoptp_cur;
14981 switch (optval) {
14982 uint8_t off;
14983 case IPOPT_SSRR:
14984 case IPOPT_LSRR:
14985 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
14986 break;
14987 }
14988 optlen = opts.ipoptp_len;
14989 off = opt[IPOPT_OFFSET];
14990 off--;
14991 if (optlen < IP_ADDR_LEN ||
14992 off > optlen - IP_ADDR_LEN) {
14993 /* End of source route */
14994 break;
14995 }
14996 bcopy((char *)opt + off, &nexthop, IP_ADDR_LEN);
14997 if (nexthop == htonl(INADDR_LOOPBACK)) {
14998 /* Ignore */
14999 nexthop = INADDR_ANY;
15000 break;
15001 }
15002 break;
15003 }
15004 }
15005 return (nexthop);
15006 }
15007
15008 /*
15009 * Reverse a source route.
15010 */
15011 void
15012 ip_pkt_source_route_reverse_v4(ip_pkt_t *ipp)
15013 {
15014 ipaddr_t tmp;
15015 ipoptp_t opts;
15016 uchar_t *opt;
15017 uint8_t optval;
15018 uint32_t totallen;
15019
15020 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS))
15021 return;
15022
15023 totallen = ipp->ipp_ipv4_options_len;
15024 if (totallen & 0x3)
15025 return;
15026
15027 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options);
15028 optval != IPOPT_EOL;
15029 optval = ipoptp_next(&opts)) {
15030 uint8_t off1, off2;
15031
15032 opt = opts.ipoptp_cur;
15033 switch (optval) {
15034 case IPOPT_SSRR:
15035 case IPOPT_LSRR:
15036 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
15037 break;
15038 }
15039 off1 = IPOPT_MINOFF_SR - 1;
15040 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
15041 while (off2 > off1) {
15042 bcopy(opt + off2, &tmp, IP_ADDR_LEN);
15043 bcopy(opt + off1, opt + off2, IP_ADDR_LEN);
15044 bcopy(&tmp, opt + off2, IP_ADDR_LEN);
15045 off2 -= IP_ADDR_LEN;
15046 off1 += IP_ADDR_LEN;
15047 }
15048 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
15049 break;
15050 }
15051 }
15052 }
15053
15054 /*
15055 * Returns NULL if no routing header
15056 */
15057 in6_addr_t *
15058 ip_pkt_source_route_v6(const ip_pkt_t *ipp)
15059 {
15060 in6_addr_t *nexthop = NULL;
15061 ip6_rthdr0_t *rthdr;
15062
15063 if (!(ipp->ipp_fields & IPPF_RTHDR))
15064 return (NULL);
15065
15066 rthdr = (ip6_rthdr0_t *)ipp->ipp_rthdr;
15067 if (rthdr->ip6r0_segleft == 0)
15068 return (NULL);
15069
15070 nexthop = (in6_addr_t *)((char *)rthdr + sizeof (*rthdr));
15071 return (nexthop);
15072 }
15073
15074 zoneid_t
15075 ip_get_zoneid_v4(ipaddr_t addr, mblk_t *mp, ip_recv_attr_t *ira,
15076 zoneid_t lookup_zoneid)
15077 {
15078 ip_stack_t *ipst = ira->ira_ill->ill_ipst;
15079 ire_t *ire;
15080 int ire_flags = MATCH_IRE_TYPE;
15081 zoneid_t zoneid = ALL_ZONES;
15082
15083 if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE))
15084 return (ALL_ZONES);
15085
15086 if (lookup_zoneid != ALL_ZONES)
15087 ire_flags |= MATCH_IRE_ZONEONLY;
15088 ire = ire_ftable_lookup_v4(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK,
15089 NULL, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL);
15090 if (ire != NULL) {
15091 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst);
15092 ire_refrele(ire);
15093 }
15094 return (zoneid);
15095 }
15096
15097 zoneid_t
15098 ip_get_zoneid_v6(in6_addr_t *addr, mblk_t *mp, const ill_t *ill,
15099 ip_recv_attr_t *ira, zoneid_t lookup_zoneid)
15100 {
15101 ip_stack_t *ipst = ira->ira_ill->ill_ipst;
15102 ire_t *ire;
15103 int ire_flags = MATCH_IRE_TYPE;
15104 zoneid_t zoneid = ALL_ZONES;
15105
15106 if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE))
15107 return (ALL_ZONES);
15108
15109 if (IN6_IS_ADDR_LINKLOCAL(addr))
15110 ire_flags |= MATCH_IRE_ILL;
15111
15112 if (lookup_zoneid != ALL_ZONES)
15113 ire_flags |= MATCH_IRE_ZONEONLY;
15114 ire = ire_ftable_lookup_v6(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK,
15115 ill, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL);
15116 if (ire != NULL) {
15117 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst);
15118 ire_refrele(ire);
15119 }
15120 return (zoneid);
15121 }
15122
15123 /*
15124 * IP obserability hook support functions.
15125 */
15126 static void
15127 ipobs_init(ip_stack_t *ipst)
15128 {
15129 netid_t id;
15130
15131 id = net_getnetidbynetstackid(ipst->ips_netstack->netstack_stackid);
15132
15133 ipst->ips_ip4_observe_pr = net_protocol_lookup(id, NHF_INET);
15134 VERIFY(ipst->ips_ip4_observe_pr != NULL);
15135
15136 ipst->ips_ip6_observe_pr = net_protocol_lookup(id, NHF_INET6);
15137 VERIFY(ipst->ips_ip6_observe_pr != NULL);
15138 }
15139
15140 static void
15141 ipobs_fini(ip_stack_t *ipst)
15142 {
15143
15144 VERIFY(net_protocol_release(ipst->ips_ip4_observe_pr) == 0);
15145 VERIFY(net_protocol_release(ipst->ips_ip6_observe_pr) == 0);
15146 }
15147
15148 /*
15149 * hook_pkt_observe_t is composed in network byte order so that the
15150 * entire mblk_t chain handed into hook_run can be used as-is.
15151 * The caveat is that use of the fields, such as the zone fields,
15152 * requires conversion into host byte order first.
15153 */
15154 void
15155 ipobs_hook(mblk_t *mp, int htype, zoneid_t zsrc, zoneid_t zdst,
15156 const ill_t *ill, ip_stack_t *ipst)
15157 {
15158 hook_pkt_observe_t *hdr;
15159 uint64_t grifindex;
15160 mblk_t *imp;
15161
15162 imp = allocb(sizeof (*hdr), BPRI_HI);
15163 if (imp == NULL)
15164 return;
15165
15166 hdr = (hook_pkt_observe_t *)imp->b_rptr;
15167 /*
15168 * b_wptr is set to make the apparent size of the data in the mblk_t
15169 * to exclude the pointers at the end of hook_pkt_observer_t.
15170 */
15171 imp->b_wptr = imp->b_rptr + sizeof (dl_ipnetinfo_t);
15172 imp->b_cont = mp;
15173
15174 ASSERT(DB_TYPE(mp) == M_DATA);
15175
15176 if (IS_UNDER_IPMP(ill))
15177 grifindex = ipmp_ill_get_ipmp_ifindex(ill);
15178 else
15179 grifindex = 0;
15180
15181 hdr->hpo_version = 1;
15182 hdr->hpo_htype = htons(htype);
15183 hdr->hpo_pktlen = htonl((ulong_t)msgdsize(mp));
15184 hdr->hpo_ifindex = htonl(ill->ill_phyint->phyint_ifindex);
15185 hdr->hpo_grifindex = htonl(grifindex);
15186 hdr->hpo_zsrc = htonl(zsrc);
15187 hdr->hpo_zdst = htonl(zdst);
15188 hdr->hpo_pkt = imp;
15189 hdr->hpo_ctx = ipst->ips_netstack;
15190
15191 if (ill->ill_isv6) {
15192 hdr->hpo_family = AF_INET6;
15193 (void) hook_run(ipst->ips_ipv6_net_data->netd_hooks,
15194 ipst->ips_ipv6observing, (hook_data_t)hdr);
15195 } else {
15196 hdr->hpo_family = AF_INET;
15197 (void) hook_run(ipst->ips_ipv4_net_data->netd_hooks,
15198 ipst->ips_ipv4observing, (hook_data_t)hdr);
15199 }
15200
15201 imp->b_cont = NULL;
15202 freemsg(imp);
15203 }
15204
15205 /*
15206 * Utility routine that checks if `v4srcp' is a valid address on underlying
15207 * interface `ill'. If `ipifp' is non-NULL, it's set to a held ipif
15208 * associated with `v4srcp' on success. NOTE: if this is not called from
15209 * inside the IPSQ (ill_g_lock is not held), `ill' may be removed from the
15210 * group during or after this lookup.
15211 */
15212 boolean_t
15213 ipif_lookup_testaddr_v4(ill_t *ill, const in_addr_t *v4srcp, ipif_t **ipifp)
15214 {
15215 ipif_t *ipif;
15216
15217 ipif = ipif_lookup_addr_exact(*v4srcp, ill, ill->ill_ipst);
15218 if (ipif != NULL) {
15219 if (ipifp != NULL)
15220 *ipifp = ipif;
15221 else
15222 ipif_refrele(ipif);
15223 return (B_TRUE);
15224 }
15225
15226 ip1dbg(("ipif_lookup_testaddr_v4: cannot find ipif for src %x\n",
15227 *v4srcp));
15228 return (B_FALSE);
15229 }
15230
15231 /*
15232 * Transport protocol call back function for CPU state change.
15233 */
15234 /* ARGSUSED */
15235 static int
15236 ip_tp_cpu_update(cpu_setup_t what, int id, void *arg)
15237 {
15238 processorid_t cpu_seqid;
15239 netstack_handle_t nh;
15240 netstack_t *ns;
15241
15242 ASSERT(MUTEX_HELD(&cpu_lock));
15243
15244 switch (what) {
15245 case CPU_CONFIG:
15246 case CPU_ON:
15247 case CPU_INIT:
15248 case CPU_CPUPART_IN:
15249 cpu_seqid = cpu[id]->cpu_seqid;
15250 netstack_next_init(&nh);
15251 while ((ns = netstack_next(&nh)) != NULL) {
15252 tcp_stack_cpu_add(ns->netstack_tcp, cpu_seqid);
15253 sctp_stack_cpu_add(ns->netstack_sctp, cpu_seqid);
15254 udp_stack_cpu_add(ns->netstack_udp, cpu_seqid);
15255 netstack_rele(ns);
15256 }
15257 netstack_next_fini(&nh);
15258 break;
15259 case CPU_UNCONFIG:
15260 case CPU_OFF:
15261 case CPU_CPUPART_OUT:
15262 /*
15263 * Nothing to do. We don't remove the per CPU stats from
15264 * the IP stack even when the CPU goes offline.
15265 */
15266 break;
15267 default:
15268 break;
15269 }
15270 return (0);
15271 }