new usr/src/lib/libwap/tcpd.h 1 new usr/src/lib/libwap/tcpd.h

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 60 SI Zeof (StrUCt SOCkaddl’ |n6) \
10565 Thu Jan 2 23:44:41 2014 61 si zeof (struct sockaddr_in))
new usr/src/lib/libwap/tcpd.h 62 #define SGPORT(sag) (*((sag)->sg_famly == AF_INET6 ? \
4385 M ssing hosts_ctl () prot otype intcpd.h 63 &('sag) - >sg_si n6.sin6_port : \
kkkkkkkkkkkkhkkhkkk Tk kkkkkkkkkk k * ************************** 64 &(Sa) >Sg S| n. S'n port))
1/* 65 #define SGADDRP(sag) (((sag)->sg_famly == AF_I NET6 ? \
2 * Copyright 2014 Sachi dananda Urs <sacchi @mail.con> 66 (char *)&(sag)->sg_sin6.sin6_addr : \
3 #endif /* | codereview */ 67 (char *)&(sag)->sg_sin.sin_addr))
4 * Copyright 2001 Sun Mcrosystens, Inc. Al rights reserved. 10 (char *) &(sag)->sg_sin6.sin6_addr : \
5 * Use is subject to license terns. 11 (char *) &(sag)->sg_sin.sin_addr))
6 */ 68 #defi ne SGFAM sag) ((sag)- >sg famly == AF_INET6 ? \
2 #pragma ident " VYR N Yo %E% SM " 69 AF_I NET6 : AF_I NET)
8 /* 71 #define SG_|S UNSPECI FI ED(sag) \
4 |* 72 ((sag)- >sgfam|y:: AF_I NET6 2 \
9 * @#) tcpd.h 1.5 96/03/19 16:22:24 73 I S_ADDR_UNSPECI FI ED(& sag) - >sg_si n6. si n6_addr) : \
10 * 74 (sag) >sg_sin.sin_addr.s_addr == 0)
11 * Author: Wetse Venemm, Eindhoven University of Technol ogy, The Netherl ands.
12 */ 76 #define VALI D _ADDRTYPE(t) ((t) == AF_INET || (t) == AF_I NET6)
14 #ifndef _TCPD H 78 #ifndef | PV6_ABITS
15 #define _TCPD_H 79 #define | PV6_ABITS 128 /* Size of IPV6 address in bits */
80 #endif

17 #endif /* | codereview */

18 /* 82 #else /* HAVE_I PV6 */

19 * HAVE_IPV6 is traditionally configured at tcp_wappers build tinme but for
he Iibr

20 * Solaris it nust always be defined to keep t ary interface binary 84 #defi ne SGADDRSZ(sag) si zeof (struct in_addr)

21 * conpatible. 85 #defi ne SGSOCKADDRSZ(sag) si zeof (struct sockaddr_in)

22 =/ 28 #define SGADDRSZ(sag) si zeof (struct in_addr)

23 #define HAVE | PV6 29 #define SGSOCKADDRSZ(sag) si zeof (struct sockaddr_in)
86 #define SGPORT(sag) ((sag)->sg_sin.sin_port)

25 /* Structure to describe one conmmunications endpoint. */ 87 #define SGADDRP(sag) ((char *)&(sag)->sg_sin.sin_addr)
31 #define SGADDRP(sag) ((char*) &(sag)->sg_sin.sin_addr)

27 #define STRING LENGTH 128 /* hosts, users, processes */ 88 #define SGFAM sal AF_I NET

9) _
89 #define SG_|S_UNSPECI Fl ED(sag) ((sag)->sg_sin.sin_addr.s_addr == 0)
29 #include <sys/socket.h>

30 #include <netinet/in.h> 91 #define VALI D_ADDRTYPE(t) ((t) == AF_I NET)

32 typedef struct sockaddr_gen { 93 #endif /* HAVE_|I PV6 */

33 uni on {

34 struct sockaddr _sg_sa; 95 struct host_info {

35 struct sockaddr_in _sg_sin; 96 char “nane[STRI NG_LENGTH] ; /* access via eval _hostnane(host) */
36 #ifdef HAVE_| PV6 97 char addr [STRI NG_LENGTH] ; /* access via eval _hostaddr (host) */
37 struct sockaddr _i n6 _sg_si n6; 98 struct sockaddr_gen *sin; /* socket address or 0 */

38 #endif 99 struct t_unitdata *unit; /* TLI transport address or 0 */

39 } sg_addr; 100 struct request_info *request; /* for shared information */

40 } sockaddr_gen; 101 }

__unchanged_portion_onitted_
42 typedef union gen_addr {

43 struct in_addr ga_in; 119 /* Common string operations. Less clutter should be nore readable. */
44 #ifdef HAVE_| PV6
45 struct 1n6_addr ga_i n6; 121 #define STRN CPY(d, s, |) { strncpy((d), (s), (1)); (d)[(l)-1 = 0; }
46 #endi f 65 #define STRN_CPY(d,s,|) { strncpy((d),(s),(l)); (d)[(l)-1] = 0; }
47 } gen_addr;
123 #define STRN EQ(x, vy,) (strncasecrmp((x), (y), (1)) == 0)
49 extern void sockgen_sinplify(); 124 #define STRN_NE(x, vy, |) (strncasecmp((x), (y), (1)) !'=0)
125 #define STR EQ(x, y) (strcasecnmp((x), (y)) == 0)
51 #define sg_sa sg_addr. _sg_sa 126 #define STR_NE(X, y) (strcasecnp((x), (y)) !'=0)
52 #define sg_sin sg_addr._sg_sin 67 #define STRN EQ(x,y,l) (strncasecnp((x),(y),(l)) == 0)
53 #define sg_siné sg_addr. _sg_sin6é 68 #define STRN_NE(X,y,l) (strncasecnmp((x),(y),(l)) !'=0)
54 #define sg_famly sg_sa.sa_famly 69 #define STR EQ(x,Y) (strcasecnmp((x),(y)) == 0)
55 #ifdef HAVE_| PV6 70 #define STR_NE(x,Y) (strcasecmp((x),(y)) !'=0)
56 #define SGADDRSZ(sag) ((sag)->sg_famly == AF_INET6 ? \
57 si zeof (struct in6_addr) : \ 128 /*
58 sizeof (struct in_addr)) 72 |*

59 #defi ne SGSOCKADDRSZ(sag) ((sag)->sg_famly == AF_INET6 ? \ 129 * Initially, all above strings have the enpty value. Infornmation that

new usr/src/lib/libwap/tcpd.h

130 * cannot be deternmined at runtine is set to "unknown", so that we can
131 * distinguish between ‘unavail able’ and ‘not yet |ooked up’. A hostnane
132 * that we do not believe in is set to "paranoid".

133 */

135 #define STRI NG UNKNOAN "unknown"

> /* lookup failed */
136 #define STRI NG_PARANO D "paranoi d"

/* hostnane conflict */

138 extern char unknown[];
139 extern char paranoid[];

141 #define HOSTNAME_KNOAN(s) (STR NE((s), unknown) && STR NE((s), paranoid))
85 #define HOSTNAME_KNOWN(s) (STR_NE((s), unknown) && STR NE((s), paranoid))

143 #i fdef HAVE_I PV6

144 #define NOT_I NADDR(s) (strchr(s, ':') == 0 && s[strspn(s, "0123456789./")] != 0)
88 #define NOT_I NADDR(s) (strchr(s,’:’) == 0 && s[strspn(s,"0123456789./")] != 0)
145 #el se

146 #define NOT_| NADDR(s) (s[strspn(s, "0123456789./")] != 0)

90 #define NOT_I NADDR(s) (s[strspn(s,"0123456789./")] != 0)

147 #endi f

149 /* d obal functions. */

151 #if defined(TLI) || defined(PTX) || defined(TLI_SEQUENT)
152 extern void fronhost(); /* get/validate client host info */

153 #el se

154 #define fromhost sock_host /* no TLI support needed */

155 #endi f

157 extern int hosts_ctl(); /* wrapper around request_init() */

158 #endif /* ! codereview */

159 extern int hosts_access();

160 extern void shell_cnd();

161 extern char *percent_x();

162 extern void rfc931();

163 extern void clean_exit();

164 extern void refuse();

165 extern char *xgets();

166 extern char *split at()

167 extern unsigned | ong dot _quad_addr ();
168 extern int nuneric_addr();

169 extern struct hostent *tcpd_get host byna
170

171 #i fdef HAVE_| PV6

172 extern char *skip_i pv6_addrs();

173 tel se

174 #define skip_i pv6_addrs(x) X
175 #endi f

access control */
execut e shell conmand */
do %<char> expansion */

*

*

*

*

* clean up and exit */

* clean up and exit */

* fgets() on steroids */

* strchr() and split */

* restricted inet_addr() */

* | P4/ 1 P6 inet_addr (restricted) *
();
*

-

| P4/ | P6 get host byname */

/* skip over colons in | Pv6 addrs */

177 /* dobal variables. */

179 extern int allow severity; /* for connection |ogging */

180 extern int deny_severity; /* for connection |ogging */

181 extern char *hosts_all ow_table; /* for verification node redirection */
182 extern char *hosts_deny_tabl e; /* for verification node redirection */
183 extern int hosts_access verbose /* for verbose natching node */

184 extern int rfc931_tineout; /* user |ookup tineout */

185 extern int resident; /* > 0 if resident process */

187 /*

101 /*

188 * Routines for controlled initialization and update of request structure
189 * attributes. Each attribute has its own key.
190 */

client nane from RFC 931 daenpn */

new usr/src/lib/libwap/tcpd.h
192 #i f def STDC

193 extern struct request_info *request_init(struct request_info *, ...);
194 extern struct request_info *request_set(struct request_info *, ...);

107 extern struct request_info *request_init(struct request_l nfo *,...);

108 extern struct request_info *request_set(struct request_info *,...);

195 #el se

196 extern struct request_info *request_init(); /* initialize request */
197 extern struct request_info *request_set(); /* update request structure */
198 #endi f

200 #define RQ_FILE 1 /* file descriptor */

201 #define RQ_DAEMON 2 /* server process (argv[0]) */
202 #define RQ_USER 3 /* client user nane */

203 #define RQ_CLI ENT_NAME 4 /* client host nane */

204 #define RQ_CLI ENT_ADDR 5 /* client host address */

205 #define RQ CLIENT_SIN 6 /* client endpoint (internal)
206 #define RQ SERVER_NAME 7 /* server host nane *

207 #define RQ_SERVER ADDR 8 /* server host address */

208 #define RQ SERVER SIN 9 /* server endpoint (internal) */
210 /*

124 /*

211 * Routines for delayed eval uation of request attributes. Each attribute

212 * type has its own access nethod. The trivial ones are inplenmented by
213 * macros. The other ones are wappers around the transport-specific host
214 * nane, address, and client user |ookup nmethods. The request_info and
215 * host_info structures serve as caches for the |ookup results.

216 */

218 extern char *eval _user(); /* client user */

219 extern char *eval hostnama(), /* printable hostnane */
220 extern char *eval _hostaddr(); /* printable host address */
221 extern char *eval _hosti nfo(); /* host nane or address */
222 extern char *eval _client(); /* whatever is available */
223 extern char *eval _server(); /* whatever is available */
224 #define eval _daenmon(r) ((r)->daenon) /* daenon process nane */
225 #define eval _pid(r) ((r)->pid) /* process id */

227 |* Socket-specific nethods, including DNS hostnane |ookups. */

229 extern void sock_host();
230 extern void sock_host nanE()
231 extern void sock_hostaddr();
232 #define sock_methods(r)
233 { (r)->hostnanme = sock_hostnane; (r)->hostaddr = sock_hostaddr; }

/* 1 ook up endpoint addresses */
/* translate address to hostnane */
/* address to printable address */

235 /* The System V Transport-Level Interface (TLI) interface. */

237 #if defined(TLI) || defined(PTX) || defined(TLI _SEQUENT)
238 extern void tli_host(); /* 1 ook up endpoint addresses etc.
239 #endi f

241 | *

155 /*

242 * Problemreporting interface. Additional file/line context is reported
243 * when available. The junp buffer (tcpd_buf) is not declared here, or
244 * everyone woul d have to include <setjnp.h>.

245 */

247 #ifdef __STDC

248 extern void tcpd_warn(char *, ...); /* report problem and proceed */
249 extern void tcpd_junp(char * o) /* report problemand junp */
250 tel se

251 extern void tcpd_warn();
252 extern void tcpd_junp();
253 #endi f

new usr/src/lib/libwap/tcpd.h

255
256
257
258
259

261
175
262
263
264
265
266

268
269
270

272
186
273
274
275
276
277

279
280

284
285
286
287

289
290
291
292

294
295
296
297

299
300
301
302

304
305
306
307

309
310
311
312

314
315
316
317

struct tcpd_context {
char *file,;
int i ne;

/* current file */
/* current line */

extern struct tcpd_context tcpd_context;

/*
/*

* Wil e processing access control rules, error conditions are handl ed by
* junping back into the hosts_access() routine. This is cleaner than

* checking the return value of each and every silly little function. The
* (-1) returns are here because zero is already taken by |ongjnp().

*/

#define AC_PERM T 1 /* permt access */
#def i ne AC_DENY (-1) /* deny_access */
#def i ne AC_ERROR AC_DENY /% XXX */

/*

/*

* In verification node an option function should just say what it woul d do,
* instead of really doing it. An option function that would not return

* should clear the dry_run flag to informthe caller of this unusual
*/behavior.

*

extern void process_options(); /* execute options */
extern int dry_run; /* verification flag */

/* Bug wor karounds. */

#i f def | NET_ADDR_BUG /* inet_addr() returns struct */
#define inet_addr fix_inet_addr

extern long fix_inet_addr();

#endi f

#i f def BROKEN_FGETS /* partial reads from sockets */
#define fgets fix_fgets

extern char *fix_fgets();

#endi f

#i f def RECVFROM BUG /* no address famly info */
#define recvfromfix_recvfrom

extern int fix_recvfron();

#endi f

#i f def GETPEERNAME_BUG /* clains success with UDP */
#defi ne get peernane fix_get peernane

extern int fix_getpeernane();

#endi f

#i f def SOLARI S_24_GETHOSTBYNAME_BUG /* lists addresses as aliases */
#def i ne get host bynane fix_get host bynane

extern struct hostent *fix_gethostbynane();

#endi f

#i f def USE_STRSEP /* libc calls strtok() */
#define strtok fix_strtok

extern char *fix_strtok();

#endi f

#i f def LIBC _CALLS STRTOK /* libc calls strtok() */
#define strtok ny_strtok

extern char *ny_strtok();

#endi f

new usr/src/lib/libwap/tcpd.h

319 #endif /* _TCPD H */
320 #endif /* I codereview */

