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LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 60 SI Zeof (StrUCt SOCkaddl’ |n6) \
10565 Thu Jan 2 23:44:41 2014 61 si zeof (struct sockaddr_in))
new usr/src/lib/libwap/tcpd.h 62 #define SGPORT(sag) (*((sag)->sg_famly == AF_INET6 ? \
4385 M ssing hosts_ctl () prot otype intcpd.h 63 &('sag) - >sg_si n6.sin6_port : \
kkkkkkkkkkkkhkkhkkk Tk kkkkkkkkkk k * ************************** 64 &(Sa ) >Sg S| n. S'n port))
1/* 65 #define SGADDRP(sag) (((sag)->sg_famly == AF_I NET6 ? \
2 * Copyright 2014 Sachi dananda Urs <sacchi @mail.con> 66 (char *)&(sag)->sg_sin6.sin6_addr : \
3 #endif /* | codereview */ 67 (char *)&(sag)->sg_sin.sin_addr))
4 * Copyright 2001 Sun Mcrosystens, Inc. Al rights reserved. 10 (char *) &(sag)->sg_sin6.sin6_addr : \
5 * Use is subject to license terns. 11 (char *) &(sag)->sg_sin.sin_addr))
6 */ 68 #defi ne SGFAM sag) ((sag)- >sg famly == AF_INET6 ? \
2 #pragma ident " VYR N Yo %E% SM " 69 AF_I NET6 : AF_I NET)
8 /* 71 #define SG_|S UNSPECI FI ED(sag) \
4 |* 72 ((sag)- >sgfam|y:: AF_I NET6 2 \
9 * @#) tcpd.h 1.5 96/03/19 16:22:24 73 I S_ADDR_UNSPECI FI ED( & sag) - >sg_si n6. si n6_addr) : \
10 * 74 (sag) >sg_sin.sin_addr.s_addr == 0)
11 * Author: Wetse Venemm, Eindhoven University of Technol ogy, The Netherl ands.
12 */ 76 #define VALI D _ADDRTYPE(t) ((t) == AF_INET || (t) == AF_I NET6)
14 #ifndef _TCPD H 78 #ifndef | PV6_ABITS
15 #define _TCPD_H 79 #define | PV6_ABITS 128 /* Size of IPV6 address in bits */
80 #endif

17 #endif /* | codereview */

18 /* 82 #else /* HAVE_I PV6 */

19 * HAVE_IPV6 is traditionally configured at tcp_wappers build tinme but for
he Iibr

20 * Solaris it nust always be defined to keep t ary interface binary 84 #defi ne SGADDRSZ( sag) si zeof (struct in_addr)

21 * conpatible. 85 #defi ne SGSOCKADDRSZ( sag) si zeof (struct sockaddr_in)

22 =/ 28 #define SGADDRSZ(sag) si zeof (struct in_addr)

23 #define HAVE | PV6 29 #define SGSOCKADDRSZ( sag) si zeof (struct sockaddr_in)
86 #define SGPORT(sag) ((sag)->sg_sin.sin_port)

25 /* Structure to describe one conmmunications endpoint. */ 87 #define SGADDRP(sag) ((char *)&(sag)->sg_sin.sin_addr)
31 #define SGADDRP(sag) ((char*) &(sag)->sg_sin.sin_addr)

27 #define STRING LENGTH 128 /* hosts, users, processes */ 88 #define SGFAM sal AF_I NET

9) _
89 #define SG_|S_UNSPECI Fl ED(sag) ((sag)->sg_sin.sin_addr.s_addr == 0)
29 #include <sys/socket.h>

30 #include <netinet/in.h> 91 #define VALI D_ADDRTYPE(t) ((t) == AF_I NET)

32 typedef struct sockaddr_gen { 93 #endif /* HAVE_|I PV6 */

33 uni on {

34 struct sockaddr _sg_sa; 95 struct host_info {

35 struct sockaddr_in _sg_sin; 96 char “nane[ STRI NG_LENGTH] ; /* access via eval _hostnane(host) */
36 #ifdef HAVE_| PV6 97 char addr [ STRI NG_LENGTH] ; /* access via eval _hostaddr (host) */
37 struct sockaddr _i n6 _sg_si n6; 98 struct sockaddr_gen *sin; /* socket address or 0 */

38 #endif 99 struct t_unitdata *unit; /* TLI transport address or 0 */

39 } sg_addr; 100 struct request_info *request; /* for shared information */

40 } sockaddr_gen; 101 }

__unchanged_portion_onitted_
42 typedef union gen_addr {

43 struct in_addr ga_in; 119 /* Common string operations. Less clutter should be nore readable. */
44 #ifdef HAVE_| PV6
45 struct 1n6_addr ga_i n6; 121 #define STRN CPY(d, s, |) { strncpy((d), (s), (1)); (d)[(l)-1 = 0; }
46 #endi f 65 #define STRN_CPY(d,s,|) { strncpy((d),(s),(l)); (d)[(l)-1] = 0; }
47 } gen_addr;
123 #define STRN EQ(x, vy, ) (strncasecrmp((x), (y), (1)) == 0)
49 extern void sockgen_sinplify(); 124 #define STRN_NE(x, vy, |) (strncasecmp((x), (y), (1)) !'=0)
125 #define STR EQ(x, y) (strcasecnmp((x), (y)) == 0)
51 #define sg_sa sg_addr. _sg_sa 126 #define STR_NE(X, y) (strcasecnp((x), (y)) !'=0)
52 #define sg_sin sg_addr._sg_sin 67 #define STRN EQ(x,y,l) (strncasecnp((x),(y),(l)) == 0)
53 #define sg_siné sg_addr. _sg_sin6é 68 #define STRN_NE(X,y,l) (strncasecnmp((x),(y),(l)) !'=0)
54 #define sg_famly sg_sa.sa_famly 69 #define STR EQ(x,Y) (strcasecnmp((x),(y)) == 0)
55 #ifdef HAVE_| PV6 70 #define STR_NE(x,Y) (strcasecmp((x),(y)) !'=0)
56 #define SGADDRSZ(sag) ((sag)->sg_famly == AF_INET6 ? \
57 si zeof (struct in6_addr) : \ 128 /*
58 sizeof (struct in_addr)) 72 |*

59 #defi ne SGSOCKADDRSZ( sag) ((sag)->sg_famly == AF_INET6 ? \ 129 * Initially, all above strings have the enpty value. Infornmation that
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130 * cannot be deternmined at runtine is set to "unknown", so that we can
131 * distinguish between ‘unavail able’ and ‘not yet |ooked up’. A hostnane
132 * that we do not believe in is set to "paranoid".

133 */

135 #define STRI NG UNKNOAN "unknown"

> /* lookup failed */
136 #define STRI NG_PARANO D "paranoi d"

/* hostnane conflict */

138 extern char unknown[];
139 extern char paranoid[];

141 #define HOSTNAME_KNOAN(s) (STR NE((s), unknown) && STR NE((s), paranoid))
85 #define HOSTNAME_KNOWN(s) ( STR_NE((s), unknown) && STR NE((s), paranoid))

143 #i fdef HAVE_I PV6

144 #define NOT_I NADDR(s) (strchr(s, ':') == 0 && s[strspn(s, "0123456789./")] != 0)
88 #define NOT_I NADDR(s) (strchr(s,’:’) == 0 && s[strspn(s,"0123456789./")] != 0)
145 #el se

146 #define NOT_| NADDR(s) (s[strspn(s, "0123456789./")] != 0)

90 #define NOT_I NADDR(s) (s[strspn(s,"0123456789./")] != 0)

147 #endi f

149 /* d obal functions. */

151 #if defined(TLI) || defined(PTX) || defined(TLI_SEQUENT)
152 extern void fronhost(); /* get/validate client host info */

153 #el se

154 #define fromhost sock_host /* no TLI support needed */

155 #endi f

157 extern int hosts_ctl(); /* wrapper around request_init() */

158 #endif /* ! codereview */

159 extern int hosts_access();

160 extern void shell_cnd();

161 extern char *percent_x();

162 extern void rfc931();

163 extern void clean_exit();

164 extern void refuse();

165 extern char *xgets();

166 extern char *split at()

167 extern unsigned | ong dot _quad_addr ();
168 extern int nuneric_addr();

169 extern struct hostent *tcpd_get host byna
170

171 #i fdef HAVE_| PV6

172 extern char *skip_i pv6_addrs();

173 tel se

174 #define skip_i pv6_addrs(x) X
175 #endi f

access control */
execut e shell conmand */
do %<char> expansion */

*

*

*

*

* clean up and exit */

* clean up and exit */

* fgets() on steroids */

* strchr() and split */

* restricted inet_addr() */

* | P4/ 1 P6 inet_addr (restricted) *
();
*

-

| P4/ | P6 get host byname */

/* skip over colons in | Pv6 addrs */

177 /* dobal variables. */

179 extern int allow severity; /* for connection |ogging */

180 extern int deny_severity; /* for connection |ogging */

181 extern char *hosts_all ow_table; /* for verification node redirection */
182 extern char *hosts_deny_tabl e; /* for verification node redirection */
183 extern int hosts_access verbose /* for verbose natching node */

184 extern int rfc931_tineout; /* user |ookup tineout */

185 extern int resident; /* > 0 if resident process */

187 /*

101 /*

188 * Routines for controlled initialization and update of request structure
189 * attributes. Each attribute has its own key.
190 */

client nane from RFC 931 daenpn */
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192 #i f def STDC

193 extern struct request_info *request_init(struct request_info *, ...);
194 extern struct request_info *request_set(struct request_info *, ...);

107 extern struct request_info *request_init(struct request_l nfo *,...);

108 extern struct request_info *request_set(struct request_info *,...);

195 #el se

196 extern struct request_info *request_init(); /* initialize request */
197 extern struct request_info *request_set(); /* update request structure */
198 #endi f

200 #define RQ_FILE 1 /* file descriptor */

201 #define RQ_DAEMON 2 /* server process (argv[0]) */
202 #define RQ_USER 3 /* client user nane */

203 #define RQ_CLI ENT_NAME 4 /* client host nane */

204 #define RQ_CLI ENT_ADDR 5 /* client host address */

205 #define RQ CLIENT_SIN 6 /* client endpoint (internal)
206 #define RQ SERVER_NAME 7 /* server host nane *

207 #define RQ_SERVER ADDR 8 /* server host address */

208 #define RQ SERVER SIN 9 /* server endpoint (internal) */
210 /*

124 /*

211 * Routines for delayed eval uation of request attributes. Each attribute

212 * type has its own access nethod. The trivial ones are inplenmented by
213 * macros. The other ones are wappers around the transport-specific host
214 * nane, address, and client user |ookup nmethods. The request_info and
215 * host_info structures serve as caches for the |ookup results.

216 */

218 extern char *eval _user(); /* client user */

219 extern char *eval hostnama(), /* printable hostnane */
220 extern char *eval _hostaddr(); /* printable host address */
221 extern char *eval _hosti nfo(); /* host nane or address */
222 extern char *eval _client(); /* whatever is available */
223 extern char *eval _server(); /* whatever is available */
224 #define eval _daenmon(r) ((r)->daenon) /* daenon process nane */
225 #define eval _pid(r) ((r)->pid) /* process id */

227 |* Socket-specific nethods, including DNS hostnane |ookups. */

229 extern void sock_host();
230 extern void sock_host nanE()
231 extern void sock_hostaddr();
232 #define sock_methods(r)
233 { (r)->hostnanme = sock_hostnane; (r)->hostaddr = sock_hostaddr; }

/* 1 ook up endpoint addresses */
/* translate address to hostnane */
/* address to printable address */

235 /* The System V Transport-Level Interface (TLI) interface. */

237 #if defined(TLI) || defined(PTX) || defined(TLI _SEQUENT)
238 extern void tli_host(); /* 1 ook up endpoint addresses etc.
239 #endi f

241 | *

155 /*

242 * Problemreporting interface. Additional file/line context is reported
243 * when available. The junp buffer (tcpd_buf) is not declared here, or
244 * everyone woul d have to include <setjnp.h>.

245 */

247 #ifdef __STDC

248 extern void tcpd_warn(char *, ...); /* report problem and proceed */
249 extern void tcpd_junp(char * o) /* report problemand junp */
250 tel se

251 extern void tcpd_warn();
252 extern void tcpd_junp();
253 #endi f
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struct tcpd_context {
char *file,;
int i ne;

/* current file */
/* current line */

extern struct tcpd_context tcpd_context;

/*
/*

* Wil e processing access control rules, error conditions are handl ed by
* junping back into the hosts_access() routine. This is cleaner than

* checking the return value of each and every silly little function. The
* (-1) returns are here because zero is already taken by |ongjnp().

*/

#define AC_PERM T 1 /* permt access */
#def i ne AC_DENY (-1) /* deny_access */
#def i ne AC_ERROR AC_DENY /% XXX */

/*

/*

* In verification node an option function should just say what it woul d do,
* instead of really doing it. An option function that would not return

* should clear the dry_run flag to informthe caller of this unusual
*/behavior.

*

extern void process_options(); /* execute options */
extern int dry_run; /* verification flag */

/* Bug wor karounds. */

#i f def | NET_ADDR_BUG /* inet_addr() returns struct */
#define inet_addr fix_inet_addr

extern long fix_inet_addr();

#endi f

#i f def BROKEN_FGETS /* partial reads from sockets */
#define fgets fix_fgets

extern char *fix_fgets();

#endi f

#i f def RECVFROM BUG /* no address famly info */
#define recvfromfix_recvfrom

extern int fix_recvfron();

#endi f

#i f def GETPEERNAME_BUG /* clains success with UDP */
#defi ne get peernane fix_get peernane

extern int fix_getpeernane();

#endi f

#i f def SOLARI S_24_GETHOSTBYNAME_BUG /* lists addresses as aliases */
#def i ne get host bynane fix_get host bynane

extern struct hostent *fix_gethostbynane();

#endi f

#i f def USE_STRSEP /* libc calls strtok() */
#define strtok fix_strtok

extern char *fix_strtok();

#endi f

#i f def LIBC _CALLS STRTOK /* libc calls strtok() */
#define strtok ny_strtok

extern char *ny_strtok();

#endi f
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319 #endif /* _TCPD H */
320 #endif /* I codereview */



