
new/usr/src/lib/libwrap/tcpd.h 1

**
 10565 Thu Jan 2 23:44:41 2014
new/usr/src/lib/libwrap/tcpd.h
4385 Missing hosts_ctl() prototype in tcpd.h
**

1 /*
2 * Copyright 2014 Sachidananda Urs <sacchi@gmail.com>
3 #endif /* ! codereview */
4 * Copyright 2001 Sun Microsystems, Inc. All rights reserved.
5 * Use is subject to license terms.
6 */
2 #pragma ident "%Z%%M% %I% %E% SMI"

8 /*
4 /*
9 * @(#) tcpd.h 1.5 96/03/19 16:22:24

10 *
11 * Author: Wietse Venema, Eindhoven University of Technology, The Netherlands.
12 */

14 #ifndef _TCPD_H
15 #define _TCPD_H

17 #endif /* ! codereview */
18 /*
19 * HAVE_IPV6 is traditionally configured at tcp_wrappers build time but for
20 * Solaris it must always be defined to keep the library interface binary
21 * compatible.
22 */
23 #define HAVE_IPV6

25 /* Structure to describe one communications endpoint. */

27 #define STRING_LENGTH 128 /* hosts, users, processes */

29 #include <sys/socket.h>
30 #include <netinet/in.h>

32 typedef struct sockaddr_gen {
33 union {
34 struct sockaddr _sg_sa;
35 struct sockaddr_in _sg_sin;
36 #ifdef HAVE_IPV6
37 struct sockaddr_in6 _sg_sin6;
38 #endif
39 } sg_addr;
40 } sockaddr_gen;

42 typedef union gen_addr {
43 struct in_addr ga_in;
44 #ifdef HAVE_IPV6
45 struct in6_addr ga_in6;
46 #endif
47 } gen_addr;

49 extern void sockgen_simplify();

51 #define sg_sa sg_addr._sg_sa
52 #define sg_sin sg_addr._sg_sin
53 #define sg_sin6 sg_addr._sg_sin6
54 #define sg_family sg_sa.sa_family
55 #ifdef HAVE_IPV6
56 #define SGADDRSZ(sag) ((sag)->sg_family == AF_INET6 ? \
57 sizeof (struct in6_addr) : \
58 sizeof (struct in_addr))
59 #define SGSOCKADDRSZ(sag) ((sag)->sg_family == AF_INET6 ? \

new/usr/src/lib/libwrap/tcpd.h 2

60 sizeof (struct sockaddr_in6) : \
61 sizeof (struct sockaddr_in))
62 #define SGPORT(sag) (*((sag)->sg_family == AF_INET6 ? \
63 &(sag)->sg_sin6.sin6_port : \
64 &(sag)->sg_sin.sin_port))
65 #define SGADDRP(sag) (((sag)->sg_family == AF_INET6 ? \
66 (char *)&(sag)->sg_sin6.sin6_addr : \
67 (char *)&(sag)->sg_sin.sin_addr))
10 (char *) &(sag)->sg_sin6.sin6_addr : \
11 (char *) &(sag)->sg_sin.sin_addr))
68 #define SGFAM(sag) ((sag)->sg_family == AF_INET6 ? \
69 AF_INET6 : AF_INET)

71 #define SG_IS_UNSPECIFIED(sag) \
72 ((sag)->sg_family == AF_INET6 ? \
73 IN6_IS_ADDR_UNSPECIFIED(&(sag)->sg_sin6.sin6_addr) : \
74 (sag)->sg_sin.sin_addr.s_addr == 0)

76 #define VALID_ADDRTYPE(t) ((t) == AF_INET || (t) == AF_INET6)

78 #ifndef IPV6_ABITS
79 #define IPV6_ABITS 128 /* Size of IPV6 address in bits */
80 #endif

82 #else /* HAVE_IPV6 */

84 #define SGADDRSZ(sag) sizeof (struct in_addr)
85 #define SGSOCKADDRSZ(sag) sizeof (struct sockaddr_in)
28 #define SGADDRSZ(sag) sizeof(struct in_addr)
29 #define SGSOCKADDRSZ(sag) sizeof(struct sockaddr_in)
86 #define SGPORT(sag) ((sag)->sg_sin.sin_port)
87 #define SGADDRP(sag) ((char *)&(sag)->sg_sin.sin_addr)
31 #define SGADDRP(sag) ((char*) &(sag)->sg_sin.sin_addr)
88 #define SGFAM(sag) AF_INET
89 #define SG_IS_UNSPECIFIED(sag) ((sag)->sg_sin.sin_addr.s_addr == 0)

91 #define VALID_ADDRTYPE(t) ((t) == AF_INET)

93 #endif /* HAVE_IPV6 */

95 struct host_info {
96 char name[STRING_LENGTH]; /* access via eval_hostname(host) */
97 char addr[STRING_LENGTH]; /* access via eval_hostaddr(host) */
98 struct sockaddr_gen *sin; /* socket address or 0 */
99 struct t_unitdata *unit; /* TLI transport address or 0 */
100 struct request_info *request; /* for shared information */
101 };

______unchanged_portion_omitted_

119 /* Common string operations. Less clutter should be more readable. */

121 #define STRN_CPY(d, s, l) { strncpy((d), (s), (l)); (d)[(l)-1] = 0; }
65 #define STRN_CPY(d,s,l) { strncpy((d),(s),(l)); (d)[(l)-1] = 0; }

123 #define STRN_EQ(x, y, l) (strncasecmp((x), (y), (l)) == 0)
124 #define STRN_NE(x, y, l) (strncasecmp((x), (y), (l)) != 0)
125 #define STR_EQ(x, y) (strcasecmp((x), (y)) == 0)
126 #define STR_NE(x, y) (strcasecmp((x), (y)) != 0)
67 #define STRN_EQ(x,y,l) (strncasecmp((x),(y),(l)) == 0)
68 #define STRN_NE(x,y,l) (strncasecmp((x),(y),(l)) != 0)
69 #define STR_EQ(x,y) (strcasecmp((x),(y)) == 0)
70 #define STR_NE(x,y) (strcasecmp((x),(y)) != 0)

128 /*
72 /*
129 * Initially, all above strings have the empty value. Information that

new/usr/src/lib/libwrap/tcpd.h 3

130 * cannot be determined at runtime is set to "unknown", so that we can
131 * distinguish between ‘unavailable’ and ‘not yet looked up’. A hostname
132 * that we do not believe in is set to "paranoid".
133 */

135 #define STRING_UNKNOWN "unknown" /* lookup failed */
136 #define STRING_PARANOID "paranoid" /* hostname conflict */

138 extern char unknown[];
139 extern char paranoid[];

141 #define HOSTNAME_KNOWN(s) (STR_NE((s), unknown) && STR_NE((s), paranoid))
85 #define HOSTNAME_KNOWN(s) (STR_NE((s),unknown) && STR_NE((s),paranoid))

143 #ifdef HAVE_IPV6
144 #define NOT_INADDR(s) (strchr(s, ’:’) == 0 && s[strspn(s, "0123456789./")] != 0)
88 #define NOT_INADDR(s) (strchr(s,’:’) == 0 && s[strspn(s,"0123456789./")] != 0)
145 #else
146 #define NOT_INADDR(s) (s[strspn(s, "0123456789./")] != 0)
90 #define NOT_INADDR(s) (s[strspn(s,"0123456789./")] != 0)
147 #endif

149 /* Global functions. */

151 #if defined(TLI) || defined(PTX) || defined(TLI_SEQUENT)
152 extern void fromhost(); /* get/validate client host info */
153 #else
154 #define fromhost sock_host /* no TLI support needed */
155 #endif

157 extern int hosts_ctl(); /* wrapper around request_init() */
158 #endif /* ! codereview */
159 extern int hosts_access(); /* access control */
160 extern void shell_cmd(); /* execute shell command */
161 extern char *percent_x(); /* do %<char> expansion */
162 extern void rfc931(); /* client name from RFC 931 daemon */
163 extern void clean_exit(); /* clean up and exit */
164 extern void refuse(); /* clean up and exit */
165 extern char *xgets(); /* fgets() on steroids */
166 extern char *split_at(); /* strchr() and split */
167 extern unsigned long dot_quad_addr(); /* restricted inet_addr() */
168 extern int numeric_addr(); /* IP4/IP6 inet_addr (restricted) */
169 extern struct hostent *tcpd_gethostbyname();
170 /* IP4/IP6 gethostbyname */
171 #ifdef HAVE_IPV6
172 extern char *skip_ipv6_addrs(); /* skip over colons in IPv6 addrs */
173 #else
174 #define skip_ipv6_addrs(x) x
175 #endif

177 /* Global variables. */

179 extern int allow_severity; /* for connection logging */
180 extern int deny_severity; /* for connection logging */
181 extern char *hosts_allow_table; /* for verification mode redirection */
182 extern char *hosts_deny_table; /* for verification mode redirection */
183 extern int hosts_access_verbose; /* for verbose matching mode */
184 extern int rfc931_timeout; /* user lookup timeout */
185 extern int resident; /* > 0 if resident process */

187 /*
101 /*
188 * Routines for controlled initialization and update of request structure
189 * attributes. Each attribute has its own key.
190 */

new/usr/src/lib/libwrap/tcpd.h 4

192 #ifdef __STDC__
193 extern struct request_info *request_init(struct request_info *, ...);
194 extern struct request_info *request_set(struct request_info *, ...);
107 extern struct request_info *request_init(struct request_info *,...);
108 extern struct request_info *request_set(struct request_info *,...);
195 #else
196 extern struct request_info *request_init(); /* initialize request */
197 extern struct request_info *request_set(); /* update request structure */
198 #endif

200 #define RQ_FILE 1 /* file descriptor */
201 #define RQ_DAEMON 2 /* server process (argv[0]) */
202 #define RQ_USER 3 /* client user name */
203 #define RQ_CLIENT_NAME 4 /* client host name */
204 #define RQ_CLIENT_ADDR 5 /* client host address */
205 #define RQ_CLIENT_SIN 6 /* client endpoint (internal) */
206 #define RQ_SERVER_NAME 7 /* server host name */
207 #define RQ_SERVER_ADDR 8 /* server host address */
208 #define RQ_SERVER_SIN 9 /* server endpoint (internal) */

210 /*
124 /*
211 * Routines for delayed evaluation of request attributes. Each attribute
212 * type has its own access method. The trivial ones are implemented by
213 * macros. The other ones are wrappers around the transport-specific host
214 * name, address, and client user lookup methods. The request_info and
215 * host_info structures serve as caches for the lookup results.
216 */

218 extern char *eval_user(); /* client user */
219 extern char *eval_hostname(); /* printable hostname */
220 extern char *eval_hostaddr(); /* printable host address */
221 extern char *eval_hostinfo(); /* host name or address */
222 extern char *eval_client(); /* whatever is available */
223 extern char *eval_server(); /* whatever is available */
224 #define eval_daemon(r) ((r)->daemon) /* daemon process name */
225 #define eval_pid(r) ((r)->pid) /* process id */

227 /* Socket-specific methods, including DNS hostname lookups. */

229 extern void sock_host(); /* look up endpoint addresses */
230 extern void sock_hostname(); /* translate address to hostname */
231 extern void sock_hostaddr(); /* address to printable address */
232 #define sock_methods(r) \
233 { (r)->hostname = sock_hostname; (r)->hostaddr = sock_hostaddr; }

235 /* The System V Transport-Level Interface (TLI) interface. */

237 #if defined(TLI) || defined(PTX) || defined(TLI_SEQUENT)
238 extern void tli_host(); /* look up endpoint addresses etc. */
239 #endif

241 /*
155 /*
242 * Problem reporting interface. Additional file/line context is reported
243 * when available. The jump buffer (tcpd_buf) is not declared here, or
244 * everyone would have to include <setjmp.h>.
245 */

247 #ifdef __STDC__
248 extern void tcpd_warn(char *, ...); /* report problem and proceed */
249 extern void tcpd_jump(char *, ...); /* report problem and jump */
250 #else
251 extern void tcpd_warn();
252 extern void tcpd_jump();
253 #endif

new/usr/src/lib/libwrap/tcpd.h 5

255 struct tcpd_context {
256 char *file; /* current file */
257 int line; /* current line */
258 };
259 extern struct tcpd_context tcpd_context;

261 /*
175 /*
262 * While processing access control rules, error conditions are handled by
263 * jumping back into the hosts_access() routine. This is cleaner than
264 * checking the return value of each and every silly little function. The
265 * (-1) returns are here because zero is already taken by longjmp().
266 */

268 #define AC_PERMIT 1 /* permit access */
269 #define AC_DENY (-1) /* deny_access */
270 #define AC_ERROR AC_DENY /* XXX */

272 /*
186 /*
273 * In verification mode an option function should just say what it would do,
274 * instead of really doing it. An option function that would not return
275 * should clear the dry_run flag to inform the caller of this unusual
276 * behavior.
277 */

279 extern void process_options(); /* execute options */
280 extern int dry_run; /* verification flag */

282 /* Bug workarounds. */

284 #ifdef INET_ADDR_BUG /* inet_addr() returns struct */
285 #define inet_addr fix_inet_addr
286 extern long fix_inet_addr();
287 #endif

289 #ifdef BROKEN_FGETS /* partial reads from sockets */
290 #define fgets fix_fgets
291 extern char *fix_fgets();
292 #endif

294 #ifdef RECVFROM_BUG /* no address family info */
295 #define recvfrom fix_recvfrom
296 extern int fix_recvfrom();
297 #endif

299 #ifdef GETPEERNAME_BUG /* claims success with UDP */
300 #define getpeername fix_getpeername
301 extern int fix_getpeername();
302 #endif

304 #ifdef SOLARIS_24_GETHOSTBYNAME_BUG /* lists addresses as aliases */
305 #define gethostbyname fix_gethostbyname
306 extern struct hostent *fix_gethostbyname();
307 #endif

309 #ifdef USE_STRSEP /* libc calls strtok() */
310 #define strtok fix_strtok
311 extern char *fix_strtok();
312 #endif

314 #ifdef LIBC_CALLS_STRTOK /* libc calls strtok() */
315 #define strtok my_strtok
316 extern char *my_strtok();
317 #endif

new/usr/src/lib/libwrap/tcpd.h 6

319 #endif /* _TCPD_H */
320 #endif /* ! codereview */

