
new/usr/src/Makefile.master 1

**
 35320 Mon Jul 18 14:42:49 2016
new/usr/src/Makefile.master
7170 ENABLE_PERL64 multiarch builds
reviewed by: Andrew Stormont <andyjstormont@gmail.com>
reviewed by: Lauri Tirkkonen <lotheac@iki.fi>
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright (c) 1989, 2010, Oracle and/or its affiliates. All rights reserved.
24 # Copyright (c) 2012 by Delphix. All rights reserved.
25 # Copyright 2014 Garrett D’Amore <garrett@damore.org>
26 # Copyright 2015, OmniTI Computer Consulting, Inc. All rights reserved.
27 # Copyright 2015 Gary Mills
28 # Copyright 2015 Igor Kozhukhov <ikozhukhov@gmail.com>
29 #

31 #
32 # Makefile.master, global definitions for system source
33 #
34 ROOT= /proto

36 #
37 # Adjunct root, containing an additional proto area to be used for headers
38 # and libraries.
39 #
40 ADJUNCT_PROTO=

42 #
43 # Adjunct for building things that run on the build machine.
44 #
45 NATIVE_ADJUNCT= /usr

47 #
48 # RELEASE_BUILD should be cleared for final release builds.
49 # NOT_RELEASE_BUILD is exactly what the name implies.
50 #
51 # __GNUC toggles the building of ON components using gcc and related tools.
52 # Normally set to ‘#’, set it to ‘’ to do gcc build.
53 #
54 # The declaration POUND_SIGN is always ’#’. This is needed to get around the
55 # make feature that ’#’ is always a comment delimiter, even when escaped or
56 # quoted. We use this macro expansion method to get POUND_SIGN rather than
57 # always breaking out a shell because the general case can cause a noticable
58 # slowdown in build times when so many Makefiles include Makefile.master.
59 #

new/usr/src/Makefile.master 2

60 # While the majority of users are expected to override the setting below
61 # with an env file (via nightly or bldenv), if you aren’t building that way
62 # (ie, you’re using "ws" or some other bootstrapping method) then you need
63 # this definition in order to avoid the subshell invocation mentioned above.
64 #

66 PRE_POUND= pre\#
67 POUND_SIGN= $(PRE_POUND:pre\%=%)

69 NOT_RELEASE_BUILD=
70 RELEASE_BUILD= $(POUND_SIGN)
71 $(RELEASE_BUILD)NOT_RELEASE_BUILD= $(POUND_SIGN)
72 PATCH_BUILD= $(POUND_SIGN)

74 # SPARC_BLD is ’#’ for an Intel build.
75 # INTEL_BLD is ’#’ for a Sparc build.
76 SPARC_BLD_1= $(MACH:i386=$(POUND_SIGN))
77 SPARC_BLD= $(SPARC_BLD_1:sparc=)
78 INTEL_BLD_1= $(MACH:sparc=$(POUND_SIGN))
79 INTEL_BLD= $(INTEL_BLD_1:i386=)

81 # The variables below control the compilers used during the build.
82 # There are a number of permutations.
83 #
84 # __GNUC and __SUNC control (and indicate) the primary compiler. Whichever
85 # one is not POUND_SIGN is the primary, with the other as the shadow. They
86 # may also be used to control entirely compiler-specific Makefile assignments.
87 # __GNUC and GCC are the default.
88 #
89 # __GNUC64 indicates that the 64bit build should use the GNU C compiler.
90 # There is no Sun C analogue.
91 #
92 # The following version-specific options are operative regardless of which
93 # compiler is primary, and control the versions of the given compilers to be
94 # used. They also allow compiler-version specific Makefile fragments.
95 #

97 __SUNC= $(POUND_SIGN)
98 $(__SUNC)__GNUC= $(POUND_SIGN)
99 __GNUC64= $(__GNUC)

101 # Allow build-time "configuration" to enable or disable some things.
102 # The default is POUND_SIGN, meaning "not enabled". If the environment
103 # passes in an override like ENABLE_SMB_PRINTING= (empty) that will
104 # uncomment things in the lower Makefiles to enable the feature.
105 ENABLE_IPP_PRINTING= $(POUND_SIGN)
106 ENABLE_SMB_PRINTING= $(POUND_SIGN)
107 ENABLE_PERL64= $(POUND_SIGN)

109 # CLOSED is the root of the tree that contains source which isn’t released
110 # as open source
111 CLOSED= $(SRC)/../closed

113 # BUILD_TOOLS is the root of all tools including compilers.
114 # ONBLD_TOOLS is the root of all the tools that are part of SUNWonbld.

116 BUILD_TOOLS= /ws/onnv-tools
117 ONBLD_TOOLS= $(BUILD_TOOLS)/onbld

119 # define runtime JAVA_HOME, primarily for cmd/pools/poold
120 JAVA_HOME= /usr/java
121 # define buildtime JAVA_ROOT
122 JAVA_ROOT= /usr/java

124 GCC_ROOT= /opt/gcc/4.4.4
125 GCCLIBDIR= $(GCC_ROOT)/lib

new/usr/src/Makefile.master 3

126 GCCLIBDIR64= $(GCC_ROOT)/lib/$(MACH64)

128 DOCBOOK_XSL_ROOT= /usr/share/sgml/docbook/xsl-stylesheets

130 RPCGEN= /usr/bin/rpcgen
131 STABS= $(ONBLD_TOOLS)/bin/$(MACH)/stabs
132 ELFEXTRACT= $(ONBLD_TOOLS)/bin/$(MACH)/elfextract
133 MBH_PATCH= $(ONBLD_TOOLS)/bin/$(MACH)/mbh_patch
134 ECHO= echo
135 INS= install
136 TRUE= true
137 SYMLINK= /usr/bin/ln -s
138 LN= /usr/bin/ln
139 CHMOD= /usr/bin/chmod
140 MV= /usr/bin/mv -f
141 RM= /usr/bin/rm -f
142 CUT= /usr/bin/cut
143 NM= /usr/ccs/bin/nm
144 DIFF= /usr/bin/diff
145 GREP= /usr/bin/grep
146 EGREP= /usr/bin/egrep
147 ELFWRAP= /usr/bin/elfwrap
148 KSH93= /usr/bin/ksh93
149 SED= /usr/bin/sed
150 AWK= /usr/bin/nawk
151 CP= /usr/bin/cp -f
152 MCS= /usr/ccs/bin/mcs
153 CAT= /usr/bin/cat
154 ELFDUMP= /usr/ccs/bin/elfdump
155 M4= /usr/bin/m4
156 STRIP= /usr/ccs/bin/strip
157 LEX= /usr/ccs/bin/lex
158 FLEX= /usr/bin/flex
159 YACC= /usr/ccs/bin/yacc
160 CPP= /usr/lib/cpp
161 JAVAC= $(JAVA_ROOT)/bin/javac
162 JAVAH= $(JAVA_ROOT)/bin/javah
163 JAVADOC= $(JAVA_ROOT)/bin/javadoc
164 RMIC= $(JAVA_ROOT)/bin/rmic
165 JAR= $(JAVA_ROOT)/bin/jar
166 CTFCONVERT= $(ONBLD_TOOLS)/bin/$(MACH)/ctfconvert
167 CTFMERGE= $(ONBLD_TOOLS)/bin/$(MACH)/ctfmerge
168 CTFSTABS= $(ONBLD_TOOLS)/bin/$(MACH)/ctfstabs
169 CTFSTRIP= $(ONBLD_TOOLS)/bin/$(MACH)/ctfstrip
170 NDRGEN= $(ONBLD_TOOLS)/bin/$(MACH)/ndrgen
171 GENOFFSETS= $(ONBLD_TOOLS)/bin/genoffsets
172 XREF= $(ONBLD_TOOLS)/bin/xref
173 FIND= /usr/bin/find
174 PERL= /usr/bin/perl
175 PERL_VERSION= 5.10.0
176 PERL_PKGVERS= -510
177 PERL_ARCH= i86pc-solaris-64int
178 PERL_ARCH64= i86pc-solaris-64
179 $(SPARC_BLD)PERL_ARCH= sun4-solaris-64int
180 $(SPARC_BLD)PERL_ARCH64= sun4-solaris-64
176 PERL_ARCH = i86pc-solaris-64int
177 $(SPARC_BLD)PERL_ARCH = sun4-solaris-64int
181 PYTHON_26= /usr/bin/python2.6
182 PYTHON= $(PYTHON_26)
183 SORT= /usr/bin/sort
184 TOUCH= /usr/bin/touch
185 WC= /usr/bin/wc
186 XARGS= /usr/bin/xargs
187 ELFEDIT= /usr/bin/elfedit
188 ELFSIGN= /usr/bin/elfsign
189 DTRACE= /usr/sbin/dtrace -xnolibs

new/usr/src/Makefile.master 4

190 UNIQ= /usr/bin/uniq
191 TAR= /usr/bin/tar
192 ASTBINDIR= /usr/ast/bin
193 MSGCC= $(ASTBINDIR)/msgcc
194 MSGFMT= /usr/bin/msgfmt -s

196 FILEMODE= 644
197 DIRMODE= 755

199 # Declare that nothing should be built in parallel.
200 # Individual Makefiles can use the .PARALLEL target to declare otherwise.
201 .NO_PARALLEL:

203 # For stylistic checks
204 #
205 # Note that the X and C checks are not used at this time and may need
206 # modification when they are actually used.
207 #
208 CSTYLE= $(ONBLD_TOOLS)/bin/cstyle
209 CSTYLE_TAIL=
210 HDRCHK= $(ONBLD_TOOLS)/bin/hdrchk
211 HDRCHK_TAIL=
212 JSTYLE= $(ONBLD_TOOLS)/bin/jstyle

214 DOT_H_CHECK= \
215 @$(ECHO) "checking $<"; $(CSTYLE) $< $(CSTYLE_TAIL); \
216 $(HDRCHK) $< $(HDRCHK_TAIL)

218 DOT_X_CHECK= \
219 @$(ECHO) "checking $<"; $(RPCGEN) -C -h $< | $(CSTYLE) $(CSTYLE_TAIL); \
220 $(RPCGEN) -C -h $< | $(HDRCHK) $< $(HDRCHK_TAIL)

222 DOT_C_CHECK= \
223 @$(ECHO) "checking $<"; $(CSTYLE) $< $(CSTYLE_TAIL)

225 MANIFEST_CHECK= \
226 @$(ECHO) "checking $<"; \
227 SVCCFG_DTD=$(SRC)/cmd/svc/dtd/service_bundle.dtd.1 \
228 SVCCFG_REPOSITORY=$(SRC)/cmd/svc/seed/global.db \
229 SVCCFG_CONFIGD_PATH=$(SRC)/cmd/svc/configd/svc.configd-native \
230 $(SRC)/cmd/svc/svccfg/svccfg-native validate $<

232 INS.file= $(RM) $@; $(INS) -s -m $(FILEMODE) -f $(@D) $<
233 INS.dir= $(INS) -s -d -m $(DIRMODE) $@
234 # installs and renames at once
235 #
236 INS.rename= $(INS.file); $(MV) $(@D)/$(<F) $@

238 # install a link
239 INSLINKTARGET= $<
240 INS.link= $(RM) $@; $(LN) $(INSLINKTARGET) $@
241 INS.symlink= $(RM) $@; $(SYMLINK) $(INSLINKTARGET) $@

243 #
244 # Python bakes the mtime of the .py file into the compiled .pyc and
245 # rebuilds if the baked-in mtime != the mtime of the source file
246 # (rather than only if it’s less than), thus when installing python
247 # files we must make certain to not adjust the mtime of the source
248 # (.py) file.
249 #
250 INS.pyfile= $(INS.file); $(TOUCH) -r $< $@

252 # MACH must be set in the shell environment per uname -p on the build host
253 # More specific architecture variables should be set in lower makefiles.
254 #
255 # MACH64 is derived from MACH, and BUILD64 is set to ‘#’ for

new/usr/src/Makefile.master 5

256 # architectures on which we do not build 64-bit versions.
257 # (There are no such architectures at the moment.)
258 #
259 # Set BUILD64=# in the environment to disable 64-bit amd64
260 # builds on i386 machines.

262 MACH64_1= $(MACH:sparc=sparcv9)
263 MACH64= $(MACH64_1:i386=amd64)

265 MACH32_1= $(MACH:sparc=sparcv7)
266 MACH32= $(MACH32_1:i386=i86)

268 sparc_BUILD64=
269 i386_BUILD64=
270 BUILD64= $($(MACH)_BUILD64)

272 #
273 # C compiler mode. Future compilers may change the default on us,
274 # so force extended ANSI mode globally. Lower level makefiles can
275 # override this by setting CCMODE.
276 #
277 CCMODE= -Xa
278 CCMODE64= -Xa

280 #
281 # C compiler verbose mode. This is so we can enable it globally,
282 # but turn it off in the lower level makefiles of things we cannot
283 # (or aren’t going to) fix.
284 #
285 CCVERBOSE= -v

287 # set this to the secret flag "-Wc,-Qiselect-v9abiwarn=1" to get warnings
288 # from the compiler about places the -xarch=v9 may differ from -xarch=v9c.
289 V9ABIWARN=

291 # set this to the secret flag "-Wc,-Qiselect-regsym=0" to disable register
292 # symbols (used to detect conflicts between objects that use global registers)
293 # we disable this now for safety, and because genunix doesn’t link with
294 # this feature (the v9 default) enabled.
295 #
296 # REGSYM is separate since the C++ driver syntax is different.
297 CCREGSYM= -Wc,-Qiselect-regsym=0
298 CCCREGSYM= -Qoption cg -Qiselect-regsym=0

300 # Prevent the removal of static symbols by the SPARC code generator (cg).
301 # The x86 code generator (ube) does not remove such symbols and as such
302 # using this workaround is not applicable for x86.
303 #
304 CCSTATICSYM= -Wc,-Qassembler-ounrefsym=0
305 #
306 # generate 32-bit addresses in the v9 kernel. Saves memory.
307 CCABS32= -Wc,-xcode=abs32
308 #
309 # generate v9 code which tolerates callers using the v7 ABI, for the sake of
310 # system calls.
311 CC32BITCALLERS= -_gcc=-massume-32bit-callers

313 # GCC, especially, is increasingly beginning to auto-inline functions and
314 # sadly does so separately not under the general -fno-inline-functions
315 # Additionally, we wish to prevent optimisations which cause GCC to clone
316 # functions -- in particular, these may cause unhelpful symbols to be
317 # emitted instead of function names
318 CCNOAUTOINLINE= -_gcc=-fno-inline-small-functions \
319 -_gcc=-fno-inline-functions-called-once \
320 -_gcc=-fno-ipa-cp

new/usr/src/Makefile.master 6

322 # One optimization the compiler might perform is to turn this:
323 # #pragma weak foo
324 # extern int foo;
325 # if (&foo)
326 # foo = 5;
327 # into
328 # foo = 5;
329 # Since we do some of this (foo might be referenced in common kernel code
330 # but provided only for some cpu modules or platforms), we disable this
331 # optimization.
332 #
333 sparc_CCUNBOUND = -Wd,-xsafe=unboundsym
334 i386_CCUNBOUND =
335 CCUNBOUND = $($(MACH)_CCUNBOUND)

337 #
338 # compiler ’-xarch’ flag. This is here to centralize it and make it
339 # overridable for testing.
340 sparc_XARCH= -m32
341 sparcv9_XARCH= -m64
342 i386_XARCH= -m32
343 amd64_XARCH= -m64 -Ui386 -U__i386

345 # assembler ’-xarch’ flag. Different from compiler ’-xarch’ flag.
346 sparc_AS_XARCH= -xarch=v8plus
347 sparcv9_AS_XARCH= -xarch=v9
348 i386_AS_XARCH=
349 amd64_AS_XARCH= -xarch=amd64 -P -Ui386 -U__i386

351 #
352 # These flags define what we need to be ’standalone’ i.e. -not- part
353 # of the rather more cosy userland environment. This basically means
354 # the kernel.
355 #
356 # XX64 future versions of gcc will make -mcmodel=kernel imply -mno-red-zone
357 #
358 sparc_STAND_FLAGS= -_gcc=-ffreestanding
359 sparcv9_STAND_FLAGS= -_gcc=-ffreestanding
360 # Disabling MMX also disables 3DNow, disabling SSE also disables all later
361 # additions to SSE (SSE2, AVX ,etc.)
362 NO_SIMD= -_gcc=-mno-mmx -_gcc=-mno-sse
363 i386_STAND_FLAGS= -_gcc=-ffreestanding $(NO_SIMD)
364 amd64_STAND_FLAGS= -xmodel=kernel $(NO_SIMD)

366 SAVEARGS= -Wu,-save_args
367 amd64_STAND_FLAGS += $(SAVEARGS)

369 STAND_FLAGS_32 = $($(MACH)_STAND_FLAGS)
370 STAND_FLAGS_64 = $($(MACH64)_STAND_FLAGS)

372 #
373 # disable the incremental linker
374 ILDOFF= -xildoff
375 #
376 XDEPEND= -xdepend
377 XFFLAG= -xF=%all
378 XESS= -xs
379 XSTRCONST= -xstrconst

381 #
382 # turn warnings into errors (C)
383 CERRWARN = -errtags=yes -errwarn=%all
384 CERRWARN += -erroff=E_EMPTY_TRANSLATION_UNIT
385 CERRWARN += -erroff=E_STATEMENT_NOT_REACHED

387 CERRWARN += -_gcc=-Wno-missing-braces

new/usr/src/Makefile.master 7

388 CERRWARN += -_gcc=-Wno-sign-compare
389 CERRWARN += -_gcc=-Wno-unknown-pragmas
390 CERRWARN += -_gcc=-Wno-unused-parameter
391 CERRWARN += -_gcc=-Wno-missing-field-initializers

393 # Unfortunately, this option can misfire very easily and unfixably.
394 CERRWARN += -_gcc=-Wno-array-bounds

396 # DEBUG v. -nd make for frequent unused variables, empty conditions, etc. in
397 # -nd builds
398 $(RELEASE_BUILD)CERRWARN += -_gcc=-Wno-unused
399 $(RELEASE_BUILD)CERRWARN += -_gcc=-Wno-empty-body

401 #
402 # turn warnings into errors (C++)
403 CCERRWARN= -xwe

405 # C99 mode
406 C99_ENABLE= -xc99=%all
407 C99_DISABLE= -xc99=%none
408 C99MODE= $(C99_DISABLE)
409 C99LMODE= $(C99MODE:-xc99%=-Xc99%)

411 # In most places, assignments to these macros should be appended with +=
412 # (CPPFLAGS.first allows values to be prepended to CPPFLAGS).
413 sparc_CFLAGS= $(sparc_XARCH) $(CCSTATICSYM)
414 sparcv9_CFLAGS= $(sparcv9_XARCH) -dalign $(CCVERBOSE) $(V9ABIWARN) $(CCREGSYM) \
415 $(CCSTATICSYM)
416 i386_CFLAGS= $(i386_XARCH)
417 amd64_CFLAGS= $(amd64_XARCH)

419 sparc_ASFLAGS= $(sparc_AS_XARCH)
420 sparcv9_ASFLAGS=$(sparcv9_AS_XARCH)
421 i386_ASFLAGS= $(i386_AS_XARCH)
422 amd64_ASFLAGS= $(amd64_AS_XARCH)

424 #
425 sparc_COPTFLAG= -xO3
426 sparcv9_COPTFLAG= -xO3
427 i386_COPTFLAG= -O
428 amd64_COPTFLAG= -xO3

430 COPTFLAG= $($(MACH)_COPTFLAG)
431 COPTFLAG64= $($(MACH64)_COPTFLAG)

433 # When -g is used, the compiler globalizes static objects
434 # (gives them a unique prefix). Disable that.
435 CNOGLOBAL= -W0,-noglobal

437 # Direct the Sun Studio compiler to use a static globalization prefix based on t
438 # name of the module rather than something unique. Otherwise, objects
439 # will not build deterministically, as subsequent compilations of identical
440 # source will yeild objects that always look different.
441 #
442 # In the same spirit, this will also remove the date from the N_OPT stab.
443 CGLOBALSTATIC= -W0,-xglobalstatic

445 # Sometimes we want all symbols and types in debugging information even
446 # if they aren’t used.
447 CALLSYMS= -W0,-xdbggen=no%usedonly

449 #
450 # Default debug format for Sun Studio 11 is dwarf, so force it to
451 # generate stabs.
452 #
453 DEBUGFORMAT= -xdebugformat=stabs

new/usr/src/Makefile.master 8

455 #
456 # Flags used to build in debug mode for ctf generation. Bugs in the Devpro
457 # compilers currently prevent us from building with cc-emitted DWARF.
458 #
459 CTF_FLAGS_sparc = -g -Wc,-Qiselect-T1 $(C99MODE) $(CNOGLOBAL) $(CDWARFSTR)
460 CTF_FLAGS_i386 = -g $(C99MODE) $(CNOGLOBAL) $(CDWARFSTR)

462 CTF_FLAGS_sparcv9 = $(CTF_FLAGS_sparc)
463 CTF_FLAGS_amd64 = $(CTF_FLAGS_i386)

465 # Sun Studio produces broken userland code when saving arguments.
466 $(__GNUC)CTF_FLAGS_amd64 += $(SAVEARGS)

468 CTF_FLAGS_32 = $(CTF_FLAGS_$(MACH)) $(DEBUGFORMAT)
469 CTF_FLAGS_64 = $(CTF_FLAGS_$(MACH64)) $(DEBUGFORMAT)
470 CTF_FLAGS = $(CTF_FLAGS_32)

472 #
473 # Flags used with genoffsets
474 #
475 GOFLAGS = -_noecho \
476 $(CALLSYMS) \
477 $(CDWARFSTR)

479 OFFSETS_CREATE = $(GENOFFSETS) -s $(CTFSTABS) -r $(CTFCONVERT) \
480 $(CC) $(GOFLAGS) $(CFLAGS) $(CPPFLAGS)

482 OFFSETS_CREATE64 = $(GENOFFSETS) -s $(CTFSTABS) -r $(CTFCONVERT) \
483 $(CC) $(GOFLAGS) $(CFLAGS64) $(CPPFLAGS)

485 #
486 # tradeoff time for space (smaller is better)
487 #
488 sparc_SPACEFLAG = -xspace -W0,-Lt
489 sparcv9_SPACEFLAG = -xspace -W0,-Lt
490 i386_SPACEFLAG = -xspace
491 amd64_SPACEFLAG =

493 SPACEFLAG = $($(MACH)_SPACEFLAG)
494 SPACEFLAG64 = $($(MACH64)_SPACEFLAG)

496 #
497 # The Sun Studio 11 compiler has changed the behaviour of integer
498 # wrap arounds and so a flag is needed to use the legacy behaviour
499 # (without this flag panics/hangs could be exposed within the source).
500 #
501 sparc_IROPTFLAG = -W2,-xwrap_int
502 sparcv9_IROPTFLAG = -W2,-xwrap_int
503 i386_IROPTFLAG =
504 amd64_IROPTFLAG =

506 IROPTFLAG = $($(MACH)_IROPTFLAG)
507 IROPTFLAG64 = $($(MACH64)_IROPTFLAG)

509 sparc_XREGSFLAG = -xregs=no%appl
510 sparcv9_XREGSFLAG = -xregs=no%appl
511 i386_XREGSFLAG =
512 amd64_XREGSFLAG =

514 XREGSFLAG = $($(MACH)_XREGSFLAG)
515 XREGSFLAG64 = $($(MACH64)_XREGSFLAG)

517 # dmake SOURCEDEBUG=yes ... enables source-level debugging information, and
518 # avoids stripping it.
519 SOURCEDEBUG = $(POUND_SIGN)

new/usr/src/Makefile.master 9

520 SRCDBGBLD = $(SOURCEDEBUG:yes=)

522 #
523 # These variables are intended ONLY for use by developers to safely pass extra
524 # flags to the compilers without unintentionally overriding Makefile-set
525 # flags. They should NEVER be set to any value in a Makefile.
526 #
527 # They come last in the associated FLAGS variable such that they can
528 # explicitly override things if necessary, there are gaps in this, but it’s
529 # the best we can manage.
530 #
531 CUSERFLAGS =
532 CUSERFLAGS64 = $(CUSERFLAGS)
533 CCUSERFLAGS =
534 CCUSERFLAGS64 = $(CCUSERFLAGS)

536 CSOURCEDEBUGFLAGS =
537 CCSOURCEDEBUGFLAGS =
538 $(SRCDBGBLD)CSOURCEDEBUGFLAGS = -g -xs
539 $(SRCDBGBLD)CCSOURCEDEBUGFLAGS = -g -xs

541 CFLAGS= $(COPTFLAG) $($(MACH)_CFLAGS) $(SPACEFLAG) $(CCMODE) \
542 $(ILDOFF) $(CERRWARN) $(C99MODE) $(CCUNBOUND) $(IROPTFLAG) \
543 $(CGLOBALSTATIC) $(CCNOAUTOINLINE) $(CSOURCEDEBUGFLAGS) \
544 $(CUSERFLAGS)
545 CFLAGS64= $(COPTFLAG64) $($(MACH64)_CFLAGS) $(SPACEFLAG64) $(CCMODE64) \
546 $(ILDOFF) $(CERRWARN) $(C99MODE) $(CCUNBOUND) $(IROPTFLAG64) \
547 $(CGLOBALSTATIC) $(CCNOAUTOINLINE) $(CSOURCEDEBUGFLAGS) \
548 $(CUSERFLAGS64)
549 #
550 # Flags that are used to build parts of the code that are subsequently
551 # run on the build machine (also known as the NATIVE_BUILD).
552 #
553 NATIVE_CFLAGS= $(COPTFLAG) $($(NATIVE_MACH)_CFLAGS) $(CCMODE) \
554 $(ILDOFF) $(CERRWARN) $(C99MODE) $($(NATIVE_MACH)_CCUNBOUND) \
555 $(IROPTFLAG) $(CGLOBALSTATIC) $(CCNOAUTOINLINE) \
556 $(CSOURCEDEBUGFLAGS) $(CUSERFLAGS)

558 DTEXTDOM=-DTEXT_DOMAIN=\"$(TEXT_DOMAIN)\" # For messaging.
559 DTS_ERRNO=-D_TS_ERRNO
560 CPPFLAGS.first= # Please keep empty. Only lower makefiles should set this.
561 CPPFLAGS.master=$(DTEXTDOM) $(DTS_ERRNO) \
562 $(ENVCPPFLAGS1) $(ENVCPPFLAGS2) $(ENVCPPFLAGS3) $(ENVCPPFLAGS4) \
563 $(ADJUNCT_PROTO:%=-I%/usr/include)
564 CPPFLAGS.native=$(ENVCPPFLAGS1) $(ENVCPPFLAGS2) $(ENVCPPFLAGS3) \
565 $(ENVCPPFLAGS4) -I$(NATIVE_ADJUNCT)/include
566 CPPFLAGS= $(CPPFLAGS.first) $(CPPFLAGS.master)
567 AS_CPPFLAGS= $(CPPFLAGS.first) $(CPPFLAGS.master)
568 JAVAFLAGS= -source 1.6 -target 1.6 -Xlint:deprecation,-options

570 #
571 # For source message catalogue
572 #
573 .SUFFIXES: $(SUFFIXES) .i .po
574 MSGROOT= $(ROOT)/catalog
575 MSGDOMAIN= $(MSGROOT)/$(TEXT_DOMAIN)
576 MSGDOMAINPOFILE = $(MSGDOMAIN)/$(POFILE)
577 DCMSGDOMAIN= $(MSGROOT)/LC_TIME/$(TEXT_DOMAIN)
578 DCMSGDOMAINPOFILE = $(DCMSGDOMAIN)/$(DCFILE:.dc=.po)

580 CLOBBERFILES += $(POFILE) $(POFILES)
581 COMPILE.cpp= $(CC) -E -C $(CFLAGS) $(CPPFLAGS)
582 XGETTEXT= /usr/bin/xgettext
583 XGETFLAGS= -c TRANSLATION_NOTE
584 GNUXGETTEXT= /usr/gnu/bin/xgettext
585 GNUXGETFLAGS= --add-comments=TRANSLATION_NOTE --keyword=_ \

new/usr/src/Makefile.master 10

586 --strict --no-location --omit-header
587 BUILD.po= $(XGETTEXT) $(XGETFLAGS) -d $(<F) $<.i ;\
588 $(RM) $@ ;\
589 $(SED) "/^domain/d" < $(<F).po > $@ ;\
590 $(RM) $(<F).po $<.i

592 #
593 # This is overwritten by local Makefile when PROG is a list.
594 #
595 POFILE= $(PROG).po

597 sparc_CCFLAGS= -cg92 -compat=4 \
598 -Qoption ccfe -messages=no%anachronism \
599 $(CCERRWARN)
600 sparcv9_CCFLAGS= $(sparcv9_XARCH) -dalign -compat=5 \
601 -Qoption ccfe -messages=no%anachronism \
602 -Qoption ccfe -features=no%conststrings \
603 $(CCCREGSYM) \
604 $(CCERRWARN)
605 i386_CCFLAGS= -compat=4 \
606 -Qoption ccfe -messages=no%anachronism \
607 -Qoption ccfe -features=no%conststrings \
608 $(CCERRWARN)
609 amd64_CCFLAGS= $(amd64_XARCH) -compat=5 \
610 -Qoption ccfe -messages=no%anachronism \
611 -Qoption ccfe -features=no%conststrings \
612 $(CCERRWARN)

614 sparc_CCOPTFLAG= -O
615 sparcv9_CCOPTFLAG= -O
616 i386_CCOPTFLAG= -O
617 amd64_CCOPTFLAG= -O

619 CCOPTFLAG= $($(MACH)_CCOPTFLAG)
620 CCOPTFLAG64= $($(MACH64)_CCOPTFLAG)
621 CCFLAGS= $(CCOPTFLAG) $($(MACH)_CCFLAGS) $(CCSOURCEDEBUGFLAGS) \
622 $(CCUSERFLAGS)
623 CCFLAGS64= $(CCOPTFLAG64) $($(MACH64)_CCFLAGS) $(CCSOURCEDEBUGFLAGS) \
624 $(CCUSERFLAGS64)

626 #
627 #
628 #
629 ELFWRAP_FLAGS =
630 ELFWRAP_FLAGS64 = -64

632 #
633 # Various mapfiles that are used throughout the build, and delivered to
634 # /usr/lib/ld.
635 #
636 MAPFILE.NED_i386 = $(SRC)/common/mapfiles/common/map.noexdata
637 MAPFILE.NED_sparc =
638 MAPFILE.NED = $(MAPFILE.NED_$(MACH))
639 MAPFILE.PGA = $(SRC)/common/mapfiles/common/map.pagealign
640 MAPFILE.NES = $(SRC)/common/mapfiles/common/map.noexstk
641 MAPFILE.FLT = $(SRC)/common/mapfiles/common/map.filter
642 MAPFILE.LEX = $(SRC)/common/mapfiles/common/map.lex.yy

644 #
645 # Generated mapfiles that are compiler specific, and used throughout the
646 # build. These mapfiles are not delivered in /usr/lib/ld.
647 #
648 MAPFILE.NGB_sparc= $(SRC)/common/mapfiles/gen/sparc_cc_map.noexeglobs
649 $(__GNUC64)MAPFILE.NGB_sparc= \
650 $(SRC)/common/mapfiles/gen/sparc_gcc_map.noexeglobs
651 MAPFILE.NGB_sparcv9= $(SRC)/common/mapfiles/gen/sparcv9_cc_map.noexeglobs

new/usr/src/Makefile.master 11

652 $(__GNUC64)MAPFILE.NGB_sparcv9= \
653 $(SRC)/common/mapfiles/gen/sparcv9_gcc_map.noexeglobs
654 MAPFILE.NGB_i386= $(SRC)/common/mapfiles/gen/i386_cc_map.noexeglobs
655 $(__GNUC64)MAPFILE.NGB_i386= \
656 $(SRC)/common/mapfiles/gen/i386_gcc_map.noexeglobs
657 MAPFILE.NGB_amd64= $(SRC)/common/mapfiles/gen/amd64_cc_map.noexeglobs
658 $(__GNUC64)MAPFILE.NGB_amd64= \
659 $(SRC)/common/mapfiles/gen/amd64_gcc_map.noexeglobs
660 MAPFILE.NGB = $(MAPFILE.NGB_$(MACH))

662 #
663 # A generic interface mapfile name, used by various dynamic objects to define
664 # the interfaces and interposers the object must export.
665 #
666 MAPFILE.INT = mapfile-intf

668 #
669 # LDLIBS32 and LDLIBS64 can be set in the environment to override the following
670 # assignments.
671 #
672 # These environment settings make sure that no libraries are searched outside
673 # of the local workspace proto area:
674 # LDLIBS32=-YP,$ROOT/lib:$ROOT/usr/lib
675 # LDLIBS64=-YP,$ROOT/lib/$MACH64:$ROOT/usr/lib/$MACH64
676 #
677 LDLIBS32 = $(ENVLDLIBS1) $(ENVLDLIBS2) $(ENVLDLIBS3)
678 LDLIBS32 += $(ADJUNCT_PROTO:%=-L%/usr/lib -L%/lib)
679 LDLIBS.cmd = $(LDLIBS32)
680 LDLIBS.lib = $(LDLIBS32)

682 LDLIBS64 = $(ENVLDLIBS1:%=%/$(MACH64)) \
683 $(ENVLDLIBS2:%=%/$(MACH64)) \
684 $(ENVLDLIBS3:%=%/$(MACH64))
685 LDLIBS64 += $(ADJUNCT_PROTO:%=-L%/usr/lib/$(MACH64) -L%/lib/$(MACH64))

687 #
688 # Define compilation macros.
689 #
690 COMPILE.c= $(CC) $(CFLAGS) $(CPPFLAGS) -c
691 COMPILE64.c= $(CC) $(CFLAGS64) $(CPPFLAGS) -c
692 COMPILE.cc= $(CCC) $(CCFLAGS) $(CPPFLAGS) -c
693 COMPILE64.cc= $(CCC) $(CCFLAGS64) $(CPPFLAGS) -c
694 COMPILE.s= $(AS) $(ASFLAGS) $(AS_CPPFLAGS)
695 COMPILE64.s= $(AS) $(ASFLAGS) $($(MACH64)_AS_XARCH) $(AS_CPPFLAGS)
696 COMPILE.d= $(DTRACE) -G -32
697 COMPILE64.d= $(DTRACE) -G -64
698 COMPILE.b= $(ELFWRAP) $(ELFWRAP_FLAGS$(CLASS))
699 COMPILE64.b= $(ELFWRAP) $(ELFWRAP_FLAGS$(CLASS))

701 CLASSPATH= .
702 COMPILE.java= $(JAVAC) $(JAVAFLAGS) -classpath $(CLASSPATH)

704 #
705 # Link time macros
706 #
707 CCNEEDED = -lC
708 CCEXTNEEDED = -lCrun -lCstd
709 $(__GNUC)CCNEEDED = -L$(GCCLIBDIR) -lstdc++ -lgcc_s
710 $(__GNUC)CCEXTNEEDED = $(CCNEEDED)

712 LINK.c= $(CC) $(CFLAGS) $(CPPFLAGS) $(LDFLAGS)
713 LINK64.c= $(CC) $(CFLAGS64) $(CPPFLAGS) $(LDFLAGS)
714 NORUNPATH= -norunpath -nolib
715 LINK.cc= $(CCC) $(CCFLAGS) $(CPPFLAGS) $(NORUNPATH) \
716 $(LDFLAGS) $(CCNEEDED)
717 LINK64.cc= $(CCC) $(CCFLAGS64) $(CPPFLAGS) $(NORUNPATH) \

new/usr/src/Makefile.master 12

718 $(LDFLAGS) $(CCNEEDED)

720 #
721 # lint macros
722 #
723 # Note that the undefine of __PRAGMA_REDEFINE_EXTNAME can be removed once
724 # ON is built with a version of lint that has the fix for 4484186.
725 #
726 ALWAYS_LINT_DEFS = -errtags=yes -s
727 ALWAYS_LINT_DEFS += -erroff=E_PTRDIFF_OVERFLOW
728 ALWAYS_LINT_DEFS += -erroff=E_ASSIGN_NARROW_CONV
729 ALWAYS_LINT_DEFS += -U__PRAGMA_REDEFINE_EXTNAME
730 ALWAYS_LINT_DEFS += $(C99LMODE)
731 ALWAYS_LINT_DEFS += -errsecurity=$(SECLEVEL)
732 ALWAYS_LINT_DEFS += -erroff=E_SEC_CREAT_WITHOUT_EXCL
733 ALWAYS_LINT_DEFS += -erroff=E_SEC_FORBIDDEN_WARN_CREAT
734 # XX64 -- really only needed for amd64 lint
735 ALWAYS_LINT_DEFS += -erroff=E_ASSIGN_INT_TO_SMALL_INT
736 ALWAYS_LINT_DEFS += -erroff=E_CAST_INT_CONST_TO_SMALL_INT
737 ALWAYS_LINT_DEFS += -erroff=E_CAST_INT_TO_SMALL_INT
738 ALWAYS_LINT_DEFS += -erroff=E_CAST_TO_PTR_FROM_INT
739 ALWAYS_LINT_DEFS += -erroff=E_COMP_INT_WITH_LARGE_INT
740 ALWAYS_LINT_DEFS += -erroff=E_INTEGRAL_CONST_EXP_EXPECTED
741 ALWAYS_LINT_DEFS += -erroff=E_PASS_INT_TO_SMALL_INT
742 ALWAYS_LINT_DEFS += -erroff=E_PTR_CONV_LOSES_BITS

744 # This forces lint to pick up note.h and sys/note.h from Devpro rather than
745 # from the proto area. The note.h that ON delivers would disable NOTE().
746 ONLY_LINT_DEFS = -I$(SPRO_VROOT)/prod/include/lint

748 SECLEVEL= core
749 LINT.c= $(LINT) $(ONLY_LINT_DEFS) $(LINTFLAGS) $(CPPFLAGS) \
750 $(ALWAYS_LINT_DEFS)
751 LINT64.c= $(LINT) $(ONLY_LINT_DEFS) $(LINTFLAGS64) $(CPPFLAGS) \
752 $(ALWAYS_LINT_DEFS)
753 LINT.s= $(LINT.c)

755 # For some future builds, NATIVE_MACH and MACH might be different.
756 # Therefore, NATIVE_MACH needs to be redefined in the
757 # environment as ‘uname -p‘ to override this macro.
758 #
759 # For now at least, we cross-compile amd64 on i386 machines.
760 NATIVE_MACH= $(MACH:amd64=i386)

762 # Define native compilation macros
763 #

765 # Base directory where compilers are loaded.
766 # Defined here so it can be overridden by developer.
767 #
768 SPRO_ROOT= $(BUILD_TOOLS)/SUNWspro
769 SPRO_VROOT= $(SPRO_ROOT)/SS12
770 GNU_ROOT= /usr

772 # Till SS12u1 formally becomes the NV CBE, LINT is hard
773 # coded to be picked up from the $SPRO_ROOT/sunstudio12.1/
774 # location. Impacted variables are sparc_LINT, sparcv9_LINT,
775 # i386_LINT, amd64_LINT.
776 # Reset them when SS12u1 is rolled out.
777 #

779 # Specify platform compiler versions for languages
780 # that we use (currently only c and c++).
781 #
782 sparc_CC= $(ONBLD_TOOLS)/bin/$(MACH)/cw -_cc
783 $(__GNUC)sparc_CC= $(ONBLD_TOOLS)/bin/$(MACH)/cw -_gcc

new/usr/src/Makefile.master 13

784 sparc_CCC= $(ONBLD_TOOLS)/bin/$(MACH)/cw -_CC
785 $(__GNUC)sparc_CCC= $(ONBLD_TOOLS)/bin/$(MACH)/cw -_g++
786 sparc_CPP= /usr/ccs/lib/cpp
787 sparc_AS= /usr/ccs/bin/as -xregsym=no
788 sparc_LD= /usr/ccs/bin/ld
789 sparc_LINT= $(SPRO_ROOT)/sunstudio12.1/bin/lint

791 sparcv9_CC= $(ONBLD_TOOLS)/bin/$(MACH)/cw -_cc
792 $(__GNUC64)sparcv9_CC= $(ONBLD_TOOLS)/bin/$(MACH)/cw -_gcc
793 sparcv9_CCC= $(ONBLD_TOOLS)/bin/$(MACH)/cw -_CC
794 $(__GNUC64)sparcv9_CCC= $(ONBLD_TOOLS)/bin/$(MACH)/cw -_g++
795 sparcv9_CPP= /usr/ccs/lib/cpp
796 sparcv9_AS= /usr/ccs/bin/as -xregsym=no
797 sparcv9_LD= /usr/ccs/bin/ld
798 sparcv9_LINT= $(SPRO_ROOT)/sunstudio12.1/bin/lint

800 i386_CC= $(ONBLD_TOOLS)/bin/$(MACH)/cw -_cc
801 $(__GNUC)i386_CC= $(ONBLD_TOOLS)/bin/$(MACH)/cw -_gcc
802 i386_CCC= $(ONBLD_TOOLS)/bin/$(MACH)/cw -_CC
803 $(__GNUC)i386_CCC= $(ONBLD_TOOLS)/bin/$(MACH)/cw -_g++
804 i386_CPP= /usr/ccs/lib/cpp
805 i386_AS= /usr/ccs/bin/as
806 $(__GNUC)i386_AS= $(ONBLD_TOOLS)/bin/$(MACH)/aw
807 i386_LD= /usr/ccs/bin/ld
808 i386_LINT= $(SPRO_ROOT)/sunstudio12.1/bin/lint

810 amd64_CC= $(ONBLD_TOOLS)/bin/$(MACH)/cw -_cc
811 $(__GNUC64)amd64_CC= $(ONBLD_TOOLS)/bin/$(MACH)/cw -_gcc
812 amd64_CCC= $(ONBLD_TOOLS)/bin/$(MACH)/cw -_CC
813 $(__GNUC64)amd64_CCC= $(ONBLD_TOOLS)/bin/$(MACH)/cw -_g++
814 amd64_CPP= /usr/ccs/lib/cpp
815 amd64_AS= $(ONBLD_TOOLS)/bin/$(MACH)/aw
816 amd64_LD= /usr/ccs/bin/ld
817 amd64_LINT= $(SPRO_ROOT)/sunstudio12.1/bin/lint

819 NATIVECC= $($(NATIVE_MACH)_CC)
820 NATIVECCC= $($(NATIVE_MACH)_CCC)
821 NATIVECPP= $($(NATIVE_MACH)_CPP)
822 NATIVEAS= $($(NATIVE_MACH)_AS)
823 NATIVELD= $($(NATIVE_MACH)_LD)
824 NATIVELINT= $($(NATIVE_MACH)_LINT)

826 #
827 # Makefile.master.64 overrides these settings
828 #
829 CC= $(NATIVECC)
830 CCC= $(NATIVECCC)
831 CPP= $(NATIVECPP)
832 AS= $(NATIVEAS)
833 LD= $(NATIVELD)
834 LINT= $(NATIVELINT)

836 # The real compilers used for this build
837 CW_CC_CMD= $(CC) -_compiler
838 CW_CCC_CMD= $(CCC) -_compiler
839 REAL_CC= $(CW_CC_CMD:sh)
840 REAL_CCC= $(CW_CCC_CMD:sh)

842 # Pass -Y flag to cpp (method of which is release-dependent)
843 CCYFLAG= -Y I,

845 BDIRECT= -Bdirect
846 BDYNAMIC= -Bdynamic
847 BLOCAL= -Blocal
848 BNODIRECT= -Bnodirect
849 BREDUCE= -Breduce

new/usr/src/Makefile.master 14

850 BSTATIC= -Bstatic

852 ZDEFS= -zdefs
853 ZDIRECT= -zdirect
854 ZIGNORE= -zignore
855 ZINITFIRST= -zinitfirst
856 ZINTERPOSE= -zinterpose
857 ZLAZYLOAD= -zlazyload
858 ZLOADFLTR= -zloadfltr
859 ZMULDEFS= -zmuldefs
860 ZNODEFAULTLIB= -znodefaultlib
861 ZNODEFS= -znodefs
862 ZNODELETE= -znodelete
863 ZNODLOPEN= -znodlopen
864 ZNODUMP= -znodump
865 ZNOLAZYLOAD= -znolazyload
866 ZNOLDYNSYM= -znoldynsym
867 ZNORELOC= -znoreloc
868 ZNOVERSION= -znoversion
869 ZRECORD= -zrecord
870 ZREDLOCSYM= -zredlocsym
871 ZTEXT= -ztext
872 ZVERBOSE= -zverbose

874 GSHARED= -G
875 CCMT= -mt

877 # Handle different PIC models on different ISAs
878 # (May be overridden by lower-level Makefiles)

880 sparc_C_PICFLAGS = -K pic
881 sparcv9_C_PICFLAGS = -K pic
882 i386_C_PICFLAGS = -K pic
883 amd64_C_PICFLAGS = -K pic
884 C_PICFLAGS = $($(MACH)_C_PICFLAGS)
885 C_PICFLAGS64 = $($(MACH64)_C_PICFLAGS)

887 sparc_C_BIGPICFLAGS = -K PIC
888 sparcv9_C_BIGPICFLAGS = -K PIC
889 i386_C_BIGPICFLAGS = -K PIC
890 amd64_C_BIGPICFLAGS = -K PIC
891 C_BIGPICFLAGS = $($(MACH)_C_BIGPICFLAGS)
892 C_BIGPICFLAGS64 = $($(MACH64)_C_BIGPICFLAGS)

894 # CC requires there to be no space between ’-K’ and ’pic’ or ’PIC’.
895 sparc_CC_PICFLAGS = -Kpic
896 sparcv9_CC_PICFLAGS = -KPIC
897 i386_CC_PICFLAGS = -Kpic
898 amd64_CC_PICFLAGS = -Kpic
899 CC_PICFLAGS = $($(MACH)_CC_PICFLAGS)
900 CC_PICFLAGS64 = $($(MACH64)_CC_PICFLAGS)

902 AS_PICFLAGS= $(C_PICFLAGS)
903 AS_BIGPICFLAGS= $(C_BIGPICFLAGS)

905 #
906 # Default label for CTF sections
907 #
908 CTFCVTFLAGS= -i -L VERSION

910 #
911 # Override to pass module-specific flags to ctfmerge. Currently used only by
912 # krtld to turn on fuzzy matching, and source-level debugging to inhibit
913 # stripping.
914 #
915 CTFMRGFLAGS=

new/usr/src/Makefile.master 15

917 CTFCONVERT_O = $(CTFCONVERT) $(CTFCVTFLAGS) $@

919 ELFSIGN_O= $(TRUE)
920 ELFSIGN_CRYPTO= $(ELFSIGN_O)
921 ELFSIGN_OBJECT= $(ELFSIGN_O)

923 # Rules (normally from make.rules) and macros which are used for post
924 # processing files. Normally, these do stripping of the comment section
925 # automatically.
926 # RELEASE_CM: Should be editted to reflect the release.
927 # POST_PROCESS_O: Post-processing for ‘.o’ files.
928 # POST_PROCESS_A: Post-processing for ‘.a’ files (currently null).
929 # POST_PROCESS_SO: Post-processing for ‘.so’ files.
930 # POST_PROCESS: Post-processing for executable files (no suffix).
931 # Note that these macros are not completely generalized as they are to be
932 # used with the file name to be processed following.
933 #
934 # It is left as an exercise to Release Engineering to embellish the generation
935 # of the release comment string.
936 #
937 # If this is a standard development build:
938 # compress the comment section (mcs -c)
939 # add the standard comment (mcs -a $(RELEASE_CM))
940 # add the development specific comment (mcs -a $(DEV_CM))
941 #
942 # If this is an installation build:
943 # delete the comment section (mcs -d)
944 # add the standard comment (mcs -a $(RELEASE_CM))
945 # add the development specific comment (mcs -a $(DEV_CM))
946 #
947 # If this is an release build:
948 # delete the comment section (mcs -d)
949 # add the standard comment (mcs -a $(RELEASE_CM))
950 #
951 # The following list of macros are used in the definition of RELEASE_CM
952 # which is used to label all binaries in the build:
953 #
954 # RELEASE Specific release of the build, eg: 5.2
955 # RELEASE_MAJOR Major version number part of $(RELEASE)
956 # RELEASE_MINOR Minor version number part of $(RELEASE)
957 # VERSION Version of the build (alpha, beta, Generic)
958 # PATCHID If this is a patch this value should contain
959 # the patchid value (eg: "Generic 100832-01"), otherwise
960 # it will be set to $(VERSION)
961 # RELEASE_DATE Date of the Release Build
962 # PATCH_DATE Date the patch was created, if this is blank it
963 # will default to the RELEASE_DATE
964 #
965 RELEASE_MAJOR= 5
966 RELEASE_MINOR= 11
967 RELEASE= $(RELEASE_MAJOR).$(RELEASE_MINOR)
968 VERSION= SunOS Development
969 PATCHID= $(VERSION)
970 RELEASE_DATE= release date not set
971 PATCH_DATE= $(RELEASE_DATE)
972 RELEASE_CM= "@($(POUND_SIGN))SunOS $(RELEASE) $(PATCHID) $(PATCH_DATE)"
973 DEV_CM= "@($(POUND_SIGN))SunOS Internal Development: non-nightly build"

975 PROCESS_COMMENT= @?${MCS} -d -a $(RELEASE_CM) -a $(DEV_CM)
976 $(RELEASE_BUILD)PROCESS_COMMENT= @?${MCS} -d -a $(RELEASE_CM)

978 STRIP_STABS= $(STRIP) -x $@
979 $(SRCDBGBLD)STRIP_STABS= :

981 POST_PROCESS_O=

new/usr/src/Makefile.master 16

982 POST_PROCESS_A=
983 POST_PROCESS_SO= $(PROCESS_COMMENT) $@ ; $(STRIP_STABS) ; \
984 $(ELFSIGN_OBJECT)
985 POST_PROCESS= $(PROCESS_COMMENT) $@ ; $(STRIP_STABS) ; \
986 $(ELFSIGN_OBJECT)

988 #
989 # chk4ubin is a tool that inspects a module for a symbol table
990 # ELF section size which can trigger an OBP bug on older platforms.
991 # This problem affects only specific sun4u bootable modules.
992 #
993 CHK4UBIN= $(ONBLD_TOOLS)/bin/$(MACH)/chk4ubin
994 CHK4UBINFLAGS=
995 CHK4UBINARY= $(CHK4UBIN) $(CHK4UBINFLAGS) $@

997 #
998 # PKGARCHIVE specifies the default location where packages should be
999 # placed if built.

1000 #
1001 $(RELEASE_BUILD)PKGARCHIVESUFFIX= -nd
1002 PKGARCHIVE=$(SRC)/../../packages/$(MACH)/nightly$(PKGARCHIVESUFFIX)

1004 #
1005 # The repositories will be created with these publisher settings. To
1006 # update an image to the resulting repositories, this must match the
1007 # publisher name provided to "pkg set-publisher."
1008 #
1009 PKGPUBLISHER_REDIST= on-nightly
1010 PKGPUBLISHER_NONREDIST= on-extra

1012 # Default build rules which perform comment section post-processing.
1013 #
1014 .c:
1015 $(LINK.c) -o $@ $< $(LDLIBS)
1016 $(POST_PROCESS)
1017 .c.o:
1018 $(COMPILE.c) $(OUTPUT_OPTION) $< $(CTFCONVERT_HOOK)
1019 $(POST_PROCESS_O)
1020 .c.a:
1021 $(COMPILE.c) -o $% $<
1022 $(PROCESS_COMMENT) $%
1023 $(AR) $(ARFLAGS) $@ $%
1024 $(RM) $%
1025 .s.o:
1026 $(COMPILE.s) -o $@ $<
1027 $(POST_PROCESS_O)
1028 .s.a:
1029 $(COMPILE.s) -o $% $<
1030 $(PROCESS_COMMENT) $%
1031 $(AR) $(ARFLAGS) $@ $%
1032 $(RM) $%
1033 .cc:
1034 $(LINK.cc) -o $@ $< $(LDLIBS)
1035 $(POST_PROCESS)
1036 .cc.o:
1037 $(COMPILE.cc) $(OUTPUT_OPTION) $<
1038 $(POST_PROCESS_O)
1039 .cc.a:
1040 $(COMPILE.cc) -o $% $<
1041 $(AR) $(ARFLAGS) $@ $%
1042 $(PROCESS_COMMENT) $%
1043 $(RM) $%
1044 .y:
1045 $(YACC.y) $<
1046 $(LINK.c) -o $@ y.tab.c $(LDLIBS)
1047 $(POST_PROCESS)

new/usr/src/Makefile.master 17

1048 $(RM) y.tab.c
1049 .y.o:
1050 $(YACC.y) $<
1051 $(COMPILE.c) -o $@ y.tab.c $(CTFCONVERT_HOOK)
1052 $(POST_PROCESS_O)
1053 $(RM) y.tab.c
1054 .l:
1055 $(RM) $*.c
1056 $(LEX.l) $< > $*.c
1057 $(LINK.c) -o $@ $*.c -ll $(LDLIBS)
1058 $(POST_PROCESS)
1059 $(RM) $*.c
1060 .l.o:
1061 $(RM) $*.c
1062 $(LEX.l) $< > $*.c
1063 $(COMPILE.c) -o $@ $*.c $(CTFCONVERT_HOOK)
1064 $(POST_PROCESS_O)
1065 $(RM) $*.c

1067 .bin.o:
1068 $(COMPILE.b) -o $@ $<
1069 $(POST_PROCESS_O)

1071 .java.class:
1072 $(COMPILE.java) $<

1074 # Bourne and Korn shell script message catalog build rules.
1075 # We extract all gettext strings with sed(1) (being careful to permit
1076 # multiple gettext strings on the same line), weed out the dups, and
1077 # build the catalogue with awk(1).

1079 .sh.po .ksh.po:
1080 $(SED) -n -e ":a" \
1081 -e "h" \
1082 -e "s/.*gettext *\(\"[^\"]*\"\).*/\1/p" \
1083 -e "x" \
1084 -e "s/\(.*\)gettext *\"[^\"]*\"\(.*\)/\1\2/" \
1085 -e "t a" \
1086 $< | sort -u | $(AWK) ’{ print "msgid\t" $$0 "\nmsgstr" }’ > $@

1088 #
1089 # Python and Perl executable and message catalog build rules.
1090 #
1091 .SUFFIXES: .pl .pm .py .pyc

1093 .pl:
1094 $(RM) $@;
1095 $(SED) -e "s@TEXT_DOMAIN@\"$(TEXT_DOMAIN)\"@" $< > $@;
1096 $(CHMOD) +x $@

1098 .py:
1099 $(RM) $@; $(CAT) $< > $@; $(CHMOD) +x $@

1101 .py.pyc:
1102 $(RM) $@
1103 $(PYTHON) -mpy_compile $<
1104 @[$(<)c = $@] || $(MV) $(<)c $@

1106 .py.po:
1107 $(GNUXGETTEXT) $(GNUXGETFLAGS) -d $(<F:%.py=%) $< ;

1109 .pl.po .pm.po:
1110 $(XGETTEXT) $(XGETFLAGS) -d $(<F) $< ;
1111 $(RM) $@ ;
1112 $(SED) "/^domain/d" < $(<F).po > $@ ;
1113 $(RM) $(<F).po

new/usr/src/Makefile.master 18

1115 #
1116 # When using xgettext, we want messages to go to the default domain,
1117 # rather than the specified one. This special version of the
1118 # COMPILE.cpp macro effectively prevents expansion of TEXT_DOMAIN,
1119 # causing xgettext to put all messages into the default domain.
1120 #
1121 CPPFORPO=$(COMPILE.cpp:\"$(TEXT_DOMAIN)\"=TEXT_DOMAIN)

1123 .c.i:
1124 $(CPPFORPO) $< > $@

1126 .h.i:
1127 $(CPPFORPO) $< > $@

1129 .y.i:
1130 $(YACC) -d $<
1131 $(CPPFORPO) y.tab.c > $@
1132 $(RM) y.tab.c

1134 .l.i:
1135 $(LEX) $<
1136 $(CPPFORPO) lex.yy.c > $@
1137 $(RM) lex.yy.c

1139 .c.po:
1140 $(CPPFORPO) $< > $<.i
1141 $(BUILD.po)

1143 .cc.po:
1144 $(CPPFORPO) $< > $<.i
1145 $(BUILD.po)

1147 .y.po:
1148 $(YACC) -d $<
1149 $(CPPFORPO) y.tab.c > $<.i
1150 $(BUILD.po)
1151 $(RM) y.tab.c

1153 .l.po:
1154 $(LEX) $<
1155 $(CPPFORPO) lex.yy.c > $<.i
1156 $(BUILD.po)
1157 $(RM) lex.yy.c

1159 #
1160 # Rules to perform stylistic checks
1161 #
1162 .SUFFIXES: .x .xml .check .xmlchk

1164 .h.check:
1165 $(DOT_H_CHECK)

1167 .x.check:
1168 $(DOT_X_CHECK)

1170 .xml.xmlchk:
1171 $(MANIFEST_CHECK)

1173 #
1174 # Include rules to render automated sccs get rules "safe".
1175 #
1176 include $(SRC)/Makefile.noget

new/usr/src/cmd/perl/Makefile.perl 1

**
 1791 Mon Jul 18 14:42:49 2016
new/usr/src/cmd/perl/Makefile.perl
7170 ENABLE_PERL64 multiarch builds
reviewed by: Andrew Stormont <andyjstormont@gmail.com>
reviewed by: Lauri Tirkkonen <lotheac@iki.fi>
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www.illumos.org/license/CDDL.

10 #
11 #
12 # Copyright (c) 2014 Racktop Systems.
13 # Copyright 2015, OmniTI Computer Consulting, Inc. All rights reserved.
14 #

16 include $(SRC)/lib/Makefile.lib

18 # PERL_VERSION and PERL_ARCH used to be set here,
19 # but as they were also needed in usr/src/pkg/Makefile,
20 # the definition was moved to usr/src/Makefile.master

22 PERLDIR = $(ADJUNCT_PROTO)/usr/perl5/$(PERL_VERSION)
23 PERLLIBDIR = $(PERLDIR)/lib/$(PERL_ARCH)
24 PERLLIBDIR64 = $(PERLDIR)/lib/$(PERL_ARCH64)
25 PERLINCDIR = $(PERLLIBDIR)/CORE
26 PERLINCDIR64 = $(PERLLIBDIR64)/CORE

28 PERLMOD = $(MODULE).pm
29 PERLEXT = $(MACH)/$(MODULE).so
30 PERLEXT64 = $(MACH64)/$(MODULE).so

32 ROOTPERLDIR = $(ROOT)/usr/perl5/$(PERL_VERSION)
33 ROOTPERLLIBDIR = $(ROOTPERLDIR)/lib/$(PERL_ARCH)
34 ROOTPERLMODDIR = $(ROOTPERLLIBDIR)/Sun/Solaris
35 ROOTPERLEXTDIR = $(ROOTPERLLIBDIR)/auto/Sun/Solaris/$(MODULE)
36 ROOTPERLLIBDIR64 = $(ROOTPERLDIR)/lib/$(PERL_ARCH64)
37 ROOTPERLMODDIR64 = $(ROOTPERLLIBDIR64)/Sun/Solaris
38 ROOTPERLEXTDIR64 = $(ROOTPERLLIBDIR64)/auto/Sun/Solaris/$(MODULE)

40 ROOTPERLMOD = $(ROOTPERLMODDIR)/$(MODULE).pm
41 ROOTPERLEXT = $(ROOTPERLEXTDIR)/$(MODULE).so
42 ROOTPERLMOD64 = $(ROOTPERLMODDIR64)/$(MODULE).pm
43 ROOTPERLEXT64 = $(ROOTPERLEXTDIR64)/$(MODULE).so

45 XSUBPP = $(PERL) $(PERLDIR)/lib/ExtUtils/xsubpp \
46 -typemap $(PERLDIR)/lib/ExtUtils/typemap

48 C99MODE = $(C99_ENABLE)

50 CERRWARN += -_cc=-erroff=E_ATTRIBUTE_UNKNOWN
51 CERRWARN += -_cc=-erroff=E_ATTRIBUTE_PARAM_UNDEFINED

new/usr/src/cmd/perl/Makefile.targ 1

**
 2633 Mon Jul 18 14:42:49 2016
new/usr/src/cmd/perl/Makefile.targ
7170 ENABLE_PERL64 multiarch builds
reviewed by: Andrew Stormont <andyjstormont@gmail.com>
reviewed by: Lauri Tirkkonen <lotheac@iki.fi>
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www.illumos.org/license/CDDL.

10 #
11 #
12 # Copyright (c) 2014 Racktop Systems.
13 # Copyright 2015, OmniTI Computer Consulting, Inc. All rights reserved.
14 #

16 # Link against libc as per solaris specs
16 # Link against libc as perl solaris specs
17 $(PERLEXT):= LDLIBS += -lc
18 $(PERLEXT64):= LDLIBS += -lc

20 # Allow for undefined symbols satisfied by perl
21 $(PERLEXT):= ZDEFS =
22 $(PERLEXT64):= ZDEFS =

24 $(ROOTPERLEXT) := FILEMODE = 0555
25 $(ROOTPERLMOD) := FILEMODE = 0444
26 $(ROOTPERLEXT64) := FILEMODE = 0555
27 $(ROOTPERLMOD64) := FILEMODE = 0444

29 # CFLAGS for perl, specifically.
30 PCFLAGS= -DPERL_EUPXS_ALWAYS_EXPORT -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 \
31 -DPERL_USE_SAFE_PUTENV -D_TS_ERRNO
32 PCFLAGS64= -m64 -DPERL_EUPXS_ALWAYS_EXPORT -D_LARGEFILE64_SOURCE \
33 -DPERL_USE_SAFE_PUTENV -D_TS_ERRNO

35 $(MACH) $(MACH64):
29 $(MACH):
36 $(INS.dir)

38 # Sorry about this...
39 # BUILD.SO doesn’t have distinct versions like COMPILE.c/COMPILE64.c does.
40 # To that end - we’re defining BUILD64.SO here.
41 BUILD64.SO= $(CC) $(CFLAGS64) -o $@ $(GSHARED) $(DYNFLAGS) \
42 $(PICS) $(EXTPICS) -L $(ROOTLIBDIR64) $(LDLIBS)

44 $(PERLEXT): $(MACH)/$(MODULE).o
45 $(BUILD.SO) $(MACH)/$(MODULE).o

47 $(PERLEXT64): $(MACH64)/$(MODULE).o
48 $(BUILD64.SO) $(MACH64)/$(MODULE).o

50 # NOTE: With later version of Perl, we need to define PERL_EUPXS_ALWAYS_EXPORT
51 # which is a backward-compatibility definition for the assumes-5.10 stuff here.
52 $(MACH)/$(MODULE).o: $(MACH)/$(MODULE).c
53 $(COMPILE.c) $(PCFLAGS) $(C_PICFLAGS) -I$(PERLINCDIR) $< -o $@

55 $(MACH64)/$(MODULE).o: $(MACH64)/$(MODULE).c
56 $(COMPILE64.c) $(PCFLAGS64) $(C_PICFLAGS) -I$(PERLINCDIR64) $< -o $@

new/usr/src/cmd/perl/Makefile.targ 2

58 $(MACH)/$(MODULE).c: $(MACH) $(MODULE).xs
59 ISALIST=$(MACH) $(XSUBPP) $(XSUBPPFLAGS) $(MODULE).xs >$@
39 $(PERLDIR)/bin/xsubpp $(XSUBPPFLAGS) $(MODULE).xs >$@

61 $(MACH64)/$(MODULE).c: $(MACH64) $(MODULE).xs
62 ISALIST=$(MACH64) $(XSUBPP) $(XSUBPPFLAGS) $(MODULE).xs >$@

64 $(ROOTPERLMODDIR) $(ROOTPERLMODDIR64):
41 $(ROOTPERLMODDIR):
65 $(INS.dir)

67 $(ROOTPERLMOD): $(ROOTPERLMODDIR) $(MODULE).pm
68 $(RM) $@; $(INS) -s -m $(FILEMODE) -f $^

70 $(ROOTPERLMOD64): $(ROOTPERLMODDIR64) $(MODULE).pm
71 $(RM) $@; $(INS) -s -m $(FILEMODE) -f $^

73 $(ROOTPERLEXTDIR) $(ROOTPERLEXTDIR64):
47 $(ROOTPERLEXTDIR):
74 $(INS.dir)

76 $(ROOTPERLEXT): $(ROOTPERLEXTDIR) $(MACH)/$(MODULE).so
77 $(RM) $@; $(INS) -s -m $(FILEMODE) -f $^

79 $(ROOTPERLEXT64): $(ROOTPERLEXTDIR64) $(MACH64)/$(MODULE).so
80 $(RM) $@; $(INS) -s -m $(FILEMODE) -f $^

new/usr/src/cmd/perl/contrib/Sun/Solaris/BSM/Makefile 1

**
 816 Mon Jul 18 14:42:50 2016
new/usr/src/cmd/perl/contrib/Sun/Solaris/BSM/Makefile
7170 ENABLE_PERL64 multiarch builds
reviewed by: Andrew Stormont <andyjstormont@gmail.com>
reviewed by: Lauri Tirkkonen <lotheac@iki.fi>
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www.illumos.org/license/CDDL.

10 #
11 #
12 # Copyright (c) 2014 Racktop Systems.
13 # Copyright 2014, OmniTI Computer Consulting, Inc. All rights reserved.
14 #

16 MODULE = _BSMparse

18 include $(SRC)/cmd/perl/Makefile.perl

20 # Install module into arch independent directory
19 # Install module into arch independant directory
21 ROOTPERLMODDIR = $(ROOTPERLDIR)/lib/Sun/Solaris/BSM

23 include $(SRC)/cmd/perl/Makefile.targ

25 .KEEP_STATE:

27 all: $(PERLMOD)

29 install: $(ROOTPERLMOD)

31 clean clobber:
32 $(RM) -r $(MACH) $(MACH64)
31 $(RM) -r $(MACH)

new/usr/src/cmd/perl/contrib/Sun/Solaris/Intrs/Makefile 1

**
 894 Mon Jul 18 14:42:50 2016
new/usr/src/cmd/perl/contrib/Sun/Solaris/Intrs/Makefile
7170 ENABLE_PERL64 multiarch builds
reviewed by: Andrew Stormont <andyjstormont@gmail.com>
reviewed by: Lauri Tirkkonen <lotheac@iki.fi>
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www.illumos.org/license/CDDL.

10 #
11 #
12 # Copyright (c) 2014 Racktop Systems.
13 # Copyright 2014, OmniTI Computer Consulting, Inc. All rights reserved.
14 #

16 MODULE = Intrs

18 include $(SRC)/cmd/perl/Makefile.perl

20 CERRWARN += -_gcc=-Wno-unused-variable

22 MAPFILES = mapfile-vers

24 include $(SRC)/cmd/perl/Makefile.targ

26 .KEEP_STATE:

28 all: $(PERLEXT) $(PERLMOD)
29 $(ENABLE_PERL64)all: $(PERLEXT64)

31 install: $(ROOTPERLEXT) $(ROOTPERLMOD)
32 $(ENABLE_PERL64)install: $(ROOTPERLEXT64) $(ROOTPERLMOD64)

34 clean clobber:
35 $(RM) -r $(MACH) $(MACH64)
32 $(RM) -r $(MACH)

new/usr/src/cmd/perl/contrib/Sun/Solaris/Kstat/Makefile 1

**
 1152 Mon Jul 18 14:42:50 2016
new/usr/src/cmd/perl/contrib/Sun/Solaris/Kstat/Makefile
7170 ENABLE_PERL64 multiarch builds
reviewed by: Andrew Stormont <andyjstormont@gmail.com>
reviewed by: Lauri Tirkkonen <lotheac@iki.fi>
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www.illumos.org/license/CDDL.

10 #
11 # Copyright 2014 Gary Mills
12 #
13 # Copyright (c) 2014 Racktop Systems.
14 # Copyright 2014, OmniTI Computer Consulting, Inc. All rights reserved.
15 #

17 MODULE = Kstat

19 include $(SRC)/cmd/perl/Makefile.perl

21 LDLIBS += -lkstat

23 CERRWARN += -_gcc=-Wno-unused-value
24 CERRWARN += -_gcc=-Wno-unused-variable

26 # Additional include directories only needed for the SPARC platform

28 $(SPARC_BLD) CPPFLAGS += -I$(ROOT)/usr/platform/sun4u/include \
29 -I$(ROOT)/usr/platform/sun4v/include

31 MAPFILES = mapfile-vers

33 include $(SRC)/cmd/perl/Makefile.targ

35 .KEEP_STATE:

37 all: $(PERLEXT) $(PERLMOD)
38 $(ENABLE_PERL64)all: $(PERLEXT64)

40 install: $(ROOTPERLEXT) $(ROOTPERLMOD)
41 $(ENABLE_PERL64)install: $(ROOTPERLEXT64) $(ROOTPERLMOD64)

43 clean clobber:
44 $(RM) -r $(MACH) $(MACH64)
41 $(RM) -r $(MACH)

new/usr/src/cmd/perl/contrib/Sun/Solaris/Lgrp/Makefile 1

**
 934 Mon Jul 18 14:42:50 2016
new/usr/src/cmd/perl/contrib/Sun/Solaris/Lgrp/Makefile
7170 ENABLE_PERL64 multiarch builds
reviewed by: Andrew Stormont <andyjstormont@gmail.com>
reviewed by: Lauri Tirkkonen <lotheac@iki.fi>
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www.illumos.org/license/CDDL.

10 #
11 #
12 # Copyright (c) 2014 Racktop Systems.
13 # Copyright 2014, OmniTI Computer Consulting. All rights reserved.
14 #

16 MODULE = Lgrp

18 include $(SRC)/cmd/perl/Makefile.perl

20 LDLIBS += -llgrp

22 CERRWARN += -_gcc=-Wno-type-limits

24 XSUBPPFLAGS = -typemap typemap

26 MAPFILES = mapfile-vers

28 include $(SRC)/cmd/perl/Makefile.targ

30 .KEEP_STATE:

32 all: $(PERLEXT) $(PERLMOD)
33 $(ENABLE_PERL64)all: $(PERLEXT64)

35 install: $(ROOTPERLEXT) $(ROOTPERLMOD)
36 $(ENABLE_PERL64)install: $(ROOTPERLEXT64) $(ROOTPERLMOD64)

38 clean clobber:
39 $(RM) -r $(MACH) $(MACH64)
36 $(RM) -r $(MACH)

new/usr/src/cmd/perl/contrib/Sun/Solaris/Pg/Makefile 1

**
 805 Mon Jul 18 14:42:50 2016
new/usr/src/cmd/perl/contrib/Sun/Solaris/Pg/Makefile
7170 ENABLE_PERL64 multiarch builds
reviewed by: Andrew Stormont <andyjstormont@gmail.com>
reviewed by: Lauri Tirkkonen <lotheac@iki.fi>
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www.illumos.org/license/CDDL.

10 #
11 #
12 # Copyright (c) 2014 Racktop Systems.
13 # Copyright 2014, OmniTI Computer Consulting, Inc. All rights reserved.
14 #

16 MODULE = Pg

18 include $(SRC)/cmd/perl/Makefile.perl

20 # Install module into arch independent directory
19 # Install module into arch independant directory
21 ROOTPERLMODDIR = $(ROOTPERLDIR)/lib/Sun/Solaris

23 include $(SRC)/cmd/perl/Makefile.targ

25 .KEEP_STATE:

27 all: $(PERLMOD)

29 install: $(ROOTPERLMOD)

31 clean clobber:
32 $(RM) -r $(MACH) $(MACH64)
31 $(RM) -r $(MACH)

new/usr/src/cmd/perl/contrib/Sun/Solaris/Project/Makefile 1

**
 955 Mon Jul 18 14:42:51 2016
new/usr/src/cmd/perl/contrib/Sun/Solaris/Project/Makefile
7170 ENABLE_PERL64 multiarch builds
reviewed by: Andrew Stormont <andyjstormont@gmail.com>
reviewed by: Lauri Tirkkonen <lotheac@iki.fi>
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www.illumos.org/license/CDDL.

10 #
11 #
12 # Copyright (c) 2014 Racktop Systems.
13 # Copyright 2014, OmniTI Computer Consulting, Inc. All rights reserved.
14 #

16 MODULE = Project

18 include $(SRC)/cmd/perl/Makefile.perl

20 LDLIBS += -lproject -lgen

22 CERRWARN += -_gcc=-Wno-unused-variable

24 XSUBPPFLAGS = -typemap typemap

26 MAPFILES = mapfile-vers

28 include $(SRC)/cmd/perl/Makefile.targ

30 .KEEP_STATE:

32 all: $(PERLEXT) $(PERLMOD)
33 $(ENABLE_PERL64)all: $(PERLEXT64)

35 install: $(ROOTPERLEXT) $(ROOTPERLMOD)
36 $(ENABLE_PERL64)install: $(ROOTPERLEXT64) $(ROOTPERLMOD64)

38 clean clobber:
39 $(RM) -r $(MACH) $(MACH64)
36 $(RM) -r $(MACH)

new/usr/src/cmd/perl/contrib/Sun/Solaris/Task/Makefile 1

**
 885 Mon Jul 18 14:42:51 2016
new/usr/src/cmd/perl/contrib/Sun/Solaris/Task/Makefile
7170 ENABLE_PERL64 multiarch builds
reviewed by: Andrew Stormont <andyjstormont@gmail.com>
reviewed by: Lauri Tirkkonen <lotheac@iki.fi>
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www.illumos.org/license/CDDL.

10 #
11 #
12 # Copyright (c) 2014 Racktop Systems.
13 # Copyright 2014, OmniTI Computer Consulting, Inc. All rights reserved.
14 #

16 MODULE = Task

18 include $(SRC)/cmd/perl/Makefile.perl

20 XSUBPPFLAGS = -typemap typemap

22 MAPFILES = mapfile-vers

24 include $(SRC)/cmd/perl/Makefile.targ

26 .KEEP_STATE:

28 all: $(PERLEXT) $(PERLMOD)
29 $(ENABLE_PERL64)all: $(PERLEXT64)

31 install: $(ROOTPERLEXT) $(ROOTPERLMOD)
32 $(ENABLE_PERL64)install: $(ROOTPERLEXT64) $(ROOTPERLMOD64)

34 clean clobber:
35 $(RM) -r $(MACH) $(MACH64)
32 $(RM) -r $(MACH)

new/usr/src/cmd/perl/contrib/Sun/Solaris/Utils/Makefile 1

**
 878 Mon Jul 18 14:42:51 2016
new/usr/src/cmd/perl/contrib/Sun/Solaris/Utils/Makefile
7170 ENABLE_PERL64 multiarch builds
reviewed by: Andrew Stormont <andyjstormont@gmail.com>
reviewed by: Lauri Tirkkonen <lotheac@iki.fi>
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www.illumos.org/license/CDDL.

10 #
11 #
12 # Copyright (c) 2014 Racktop Systems.
13 # Copyright 2014, OmniTI Computer Consulting, Inc. All rights reserved.
14 #

16 MODULE = Utils

18 include $(SRC)/cmd/perl/Makefile.perl

20 LDLIBS += -lgen -lintl

22 MAPFILES = mapfile-vers

24 include $(SRC)/cmd/perl/Makefile.targ

26 .KEEP_STATE:

28 all: $(PERLEXT) $(PERLMOD)
29 $(ENABLE_PERL64)all: $(PERLEXT64)

31 install: $(ROOTPERLEXT) $(ROOTPERLMOD)
32 $(ENABLE_PERL64)install: $(ROOTPERLEXT64) $(ROOTPERLMOD64)

34 clean clobber:
35 $(RM) -r $(MACH) $(MACH64)
33 $(RM) -r $(MACH)

new/usr/src/pkg/Makefile 1

**
 25320 Mon Jul 18 14:42:51 2016
new/usr/src/pkg/Makefile
7170 ENABLE_PERL64 multiarch builds
reviewed by: Andrew Stormont <andyjstormont@gmail.com>
reviewed by: Lauri Tirkkonen <lotheac@iki.fi>
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
24 # Copyright 2015, OmniTI Computer Consulting, Inc. All rights reserved.
25 # Copyright 2015 Igor Kozhukhov <ikozhukhov@gmail.com>
26 #

28 include $(SRC)/Makefile.master
29 include $(SRC)/Makefile.buildnum

31 #
32 # Make sure we’re getting a consistent execution environment for the
33 # embedded scripts.
34 #
35 SHELL= /usr/bin/ksh93

37 #
38 # To suppress package dependency generation on any system, regardless
39 # of how it was installed, set SUPPRESSPKGDEP=true in the build
40 # environment.
41 #
42 SUPPRESSPKGDEP= false

44 #
45 # Comment this line out or set "PKGDEBUG=" in your build environment
46 # to get more verbose output from the make processes in usr/src/pkg
47 #
48 PKGDEBUG= @

50 #
51 # Cross platform packaging notes
52 #
53 # By default, we package the proto area from the same architecture as
54 # the packaging build. In other words, if you’re running nightly or
55 # bldenv on an x86 platform, it will take objects from the x86 proto
56 # area and use them to create x86 repositories.
57 #
58 # If you want to create repositories for an architecture that’s
59 # different from $(uname -p), you do so by setting PKGMACH in your

new/usr/src/pkg/Makefile 2

60 # build environment.
61 #
62 # For this to work correctly, the following must all happen:
63 #
64 # 1. You need the desired proto area, which you can get either by
65 # doing a gatekeeper-style build with the -U option to
66 # nightly(1), or by using rsync. If you don’t do this, you will
67 # get packaging failures building all packages, because pkgsend
68 # is unable to find the required binaries.
69 # 2. You need the desired tools proto area, which you can get in the
70 # same ways as the normal proto area. If you don’t do this, you
71 # will get packaging failures building onbld, because pkgsend is
72 # unable to find the tools binaries.
73 # 3. The remainder of this Makefile should never refer directly to
74 # $(MACH). Instead, $(PKGMACH) should be used whenever an
75 # architecture-specific path or token is needed. If this is done
76 # incorrectly, then packaging will fail, and you will see the
77 # value of $(uname -p) instead of the value of $(PKGMACH) in the
78 # commands that fail.
79 # 4. Each time a rule in this Makefile invokes $(MAKE), it should
80 # pass PKGMACH=$(PKGMACH) explicitly on the command line. If
81 # this is done incorrectly, then packaging will fail, and you
82 # will see the value of $(uname -p) instead of the value of
83 # $(PKGMACH) in the commands that fail.
84 #
85 # Refer also to the convenience targets defined later in this
86 # Makefile.
87 #
88 PKGMACH= $(MACH)

90 #
91 # ROOT, TOOLS_PROTO, and PKGARCHIVE should be set by nightly or
92 # bldenv. These macros translate them into terms of $PKGMACH, instead
93 # of $ARCH.
94 #
95 PKGROOT.cmd= print $(ROOT) | sed -e s:/root_$(MACH):/root_$(PKGMACH):
96 PKGROOT= $(PKGROOT.cmd:sh)
97 TOOLSROOT.cmd= print $(TOOLS_PROTO) | sed -e s:/root_$(MACH):/root_$(PKGMACH):
98 TOOLSROOT= $(TOOLSROOT.cmd:sh)
99 PKGDEST.cmd= print $(PKGARCHIVE) | sed -e s:/$(MACH)/:/$(PKGMACH)/:
100 PKGDEST= $(PKGDEST.cmd:sh)

102 EXCEPTIONS= packaging

104 PKGMOGRIFY= pkgmogrify

106 #
107 # Always build the redistributable repository, but only build the
108 # nonredistributable bits if we have access to closed source.
109 #
110 # Some objects that result from the closed build are still
111 # redistributable, and should be packaged as part of an open-only
112 # build. Access to those objects is provided via the closed-bins
113 # tarball. See usr/src/tools/scripts/bindrop.sh for details.
114 #
115 REPOS= redist

117 #
118 # The packages directory will contain the processed manifests as
119 # direct build targets and subdirectories for package metadata extracted
120 # incidentally during manifest processing.
121 #
122 # Nothing underneath $(PDIR) should ever be managed by SCM.
123 #
124 PDIR= packages.$(PKGMACH)

new/usr/src/pkg/Makefile 3

126 #
127 # The tools proto must be specified for dependency generation.
128 # Publication from the tools proto area is managed in the
129 # publication rule.
130 #
131 $(PDIR)/developer-build-onbld.dep:= PKGROOT= $(TOOLSROOT)

133 PKGPUBLISHER= $(PKGPUBLISHER_REDIST)

135 #
136 # To get these defaults, manifests should simply refer to $(PKGVERS).
137 #
138 PKGVERS_COMPONENT= 0.$(RELEASE)
139 PKGVERS_BUILTON= $(RELEASE)
140 PKGVERS_BRANCH= 0.$(ONNV_BUILDNUM)
141 PKGVERS= $(PKGVERS_COMPONENT),$(PKGVERS_BUILTON)-$(PKGVERS_BRANCH)

143 #
144 # The ARCH32 and ARCH64 macros are used in the manifests to express
145 # architecture-specific subdirectories in the installation paths
146 # for isaexec’d commands.
147 #
148 # We can’t simply use $(MACH32) and $(MACH64) here, because they’re
149 # only defined for the build architecture. To do cross-platform
150 # packaging, we need both values.
151 #
152 i386_ARCH32= i86
153 sparc_ARCH32= sparcv7
154 i386_ARCH64= amd64
155 sparc_ARCH64= sparcv9

157 #
158 # macros and transforms needed by pkgmogrify
159 #
160 # If you append to this list using target-specific assignments (:=),
161 # be very careful that the targets are of the form $(PDIR)/pkgname. If
162 # you use a higher level target, or a package list, you’ll trigger a
163 # complete reprocessing of all manifests because they’ll fail command
164 # dependency checking.
165 #
166 PM_TRANSFORMS= common_actions publish restart_fmri facets defaults \
167 extract_metadata
168 PM_INC= transforms manifests

170 PKGMOG_DEFINES= \
171 i386_ONLY=$(POUND_SIGN) \
172 sparc_ONLY=$(POUND_SIGN) \
173 $(PKGMACH)_ONLY= \
174 ARCH=$(PKGMACH) \
175 ARCH32=$($(PKGMACH)_ARCH32) \
176 ARCH64=$($(PKGMACH)_ARCH64) \
177 PKGVERS_COMPONENT=$(PKGVERS_COMPONENT) \
178 PKGVERS_BUILTON=$(PKGVERS_BUILTON) \
179 PKGVERS_BRANCH=$(PKGVERS_BRANCH) \
180 PKGVERS=$(PKGVERS) \
181 ENABLE_PERL64=$(ENABLE_PERL64) \
182 PERL_ARCH=$(PERL_ARCH) \
183 PERL_ARCH64=$(PERL_ARCH64) \
184 PERL_VERSION=$(PERL_VERSION) \
185 PERL_PKGVERS=$(PERL_PKGVERS)

187 PKGDEP_TOKENS_i386= \
188 ’PLATFORM=i86hvm’ \
189 ’PLATFORM=i86pc’ \
190 ’PLATFORM=i86xpv’ \
191 ’ISALIST=amd64’ \

new/usr/src/pkg/Makefile 4

192 ’ISALIST=i386’
193 PKGDEP_TOKENS_sparc= \
194 ’PLATFORM=sun4u’ \
195 ’PLATFORM=sun4v’ \
196 ’ISALIST=sparcv9’ \
197 ’ISALIST=sparc’
198 PKGDEP_TOKENS= $(PKGDEP_TOKENS_$(PKGMACH))

200 #
201 # The package lists are generated with $(PKGDEP_TYPE) as their
202 # dependency types, so that they can be included by either an
203 # incorporation or a group package.
204 #
205 $(PDIR)/osnet-redist.mog := PKGDEP_TYPE= require
206 $(PDIR)/osnet-incorporation.mog:= PKGDEP_TYPE= incorporate

208 PKGDEP_INCORP= \
209 depend fmri=consolidation/osnet/osnet-incorporation type=require

211 #
212 # All packaging build products should go into $(PDIR), so they don’t
213 # need to be included separately in CLOBBERFILES.
214 #
215 CLOBBERFILES= $(PDIR) proto_list_$(PKGMACH) install-$(PKGMACH).out \
216 license-list

218 #
219 # By default, PKGS will list all manifests. To build and/or publish a
220 # subset of packages, override this on the command line or in the
221 # build environment and then reference (implicitly or explicitly) the all
222 # or install targets. Using ls -1 (that’s a one) or print or echo to
223 # get the list of manifests is a little hackish, but avoids having a
224 # 900+ line file to explicitly list them all.
225 #
226 # We want some manifests to optionally built based on environment
227 # options, so those are excluded and optionally added back in.
228 # We also want a relatively easy way to add files to the list of
229 # manifests given special treatment. Add any other special ones
230 # to the SPECIAL_MANIFESTS vaiable. It can contain wildcards in
231 # regexp form, i.e. SUNW.* as one useful example.
232 #
233 SPECIAL_MANIFESTS = print-lp-ipp-ipp-listener.mf
234 LIST_MANIFESTS_CMD = (cd manifests ; /usr/bin/ls -1 *.mf |\
235 $(SED) $(SPECIAL_MANIFESTS:%=-e ’/^%$$/d’))
236 MANIFESTS = $(LIST_MANIFESTS_CMD:sh)

238 # Conditionally add back lp-ipp
239 $(ENABLE_IPP_PRINTING) MANIFESTS += print-lp-ipp-ipp-listener.mf

241 PKGS= $(MANIFESTS:%.mf=%)
242 DEP_PKGS= $(PKGS:%=$(PDIR)/%.dep)
243 PROC_PKGS= $(PKGS:%=$(PDIR)/%.mog)

245 #
246 # Track the synthetic manifests separately so we can properly express
247 # build rules and dependencies. The synthetic and real packages use
248 # different sets of transforms and macros for pkgmogrify.
249 #
250 SYNTH_PKGS= osnet-incorporation osnet-redist
251 DEP_SYNTH_PKGS= $(SYNTH_PKGS:%=$(PDIR)/%.dep)
252 PROC_SYNTH_PKGS= $(SYNTH_PKGS:%=$(PDIR)/%.mog)

254 #
255 # Root of pkg image to use for dependency resolution
256 # Normally / on the machine used to build the binaries
257 #

new/usr/src/pkg/Makefile 5

258 PKGDEP_RESOLVE_IMAGE = /

260 #
261 # For each package, we determine the target repository based on
262 # manifest-embedded metadata. Because we make that determination on
263 # the fly, the publication target cannot be expressed as a
264 # subdirectory inside the unknown-by-the-makefile target repository.
265 #
266 # In order to limit the target set to real files in known locations,
267 # we use a ".pub" file in $(PDIR) for each processed manifest, regardless
268 # of content or target repository.
269 #
270 PUB_PKGS= $(SYNTH_PKGS:%=$(PDIR)/%.pub) $(PKGS:%=$(PDIR)/%.pub)

272 #
273 # Any given repository- and status-specific package list may be empty,
274 # but we can only determine that dynamically, so we always generate all
275 # lists for each repository we’re building.
276 #
277 # The meanings of each package status are as follows:
278 #
279 # PKGSTAT meaning
280 # ---------- --
281 # noincorp Do not include in incorporation or group package
282 # obsolete Include in incorporation, but not group package
283 # renamed Include in incorporation, but not group package
284 # current Include in incorporation and group package
285 #
286 # Since the semantics of the "noincorp" package status dictate that
287 # such packages are not included in the incorporation or group packages,
288 # there is no need to build noincorp package lists.
289 #
290 PKGLISTS= \
291 $(REPOS:%=$(PDIR)/packages.%.current) \
292 $(REPOS:%=$(PDIR)/packages.%.renamed) \
293 $(REPOS:%=$(PDIR)/packages.%.obsolete)

295 .KEEP_STATE:

297 .PARALLEL: $(PKGS) $(PROC_PKGS) $(DEP_PKGS) \
298 $(PROC_SYNTH_PKGS) $(DEP_SYNTH_PKGS) $(PUB_PKGS)

300 #
301 # For a single manifest, the dependency chain looks like this:
302 #
303 # raw manifest (mypkg.mf)
304 # |
305 # | use pkgmogrify to process raw manifest
306 # |
307 # processed manifest (mypkg.mog)
308 # |
309 # * | use pkgdepend generate to generate dependencies
310 # |
311 # manifest with TBD dependencies (mypkg.dep)
312 # |
313 # % | use pkgdepend resolve to resolve dependencies
314 # |
315 # manifest with dependencies resolved (mypkg.res)
316 # |
317 # | use pkgsend to publish the package
318 # |
319 # placeholder to indicate successful publication (mypkg.pub)
320 #
321 # * This may be suppressed via SUPPRESSPKGDEP. The resulting
322 # packages will install correctly, but care must be taken to
323 # install all dependencies, because pkg will not have the input

new/usr/src/pkg/Makefile 6

324 # it needs to determine this automatically.
325 #
326 # % This is included in this diagram to make the picture complete, but
327 # this is a point of synchronization in the build process.
328 # Dependency resolution is actually done once on the entire set of
329 # manifests, not on a per-package basis.
330 #
331 # The full dependency chain for generating everything that needs to be
332 # published, without actually publishing it, looks like this:
333 #
334 # processed synthetic packages
335 # | |
336 # package lists synthetic package manifests
337 # |
338 # processed real packages
339 # | |
340 # package dir real package manifests
341 #
342 # Here, each item is a set of real or synthetic packages. For this
343 # portion of the build, no reference is made to the proto area. It is
344 # therefore suitable for the "all" target, as opposed to "install."
345 #
346 # Since each of these steps is expressed explicitly, "all" need only
347 # depend on the head of the chain.
348 #
349 # From the end of manifest processing, the publication dependency
350 # chain looks like this:
351 #
352 # repository metadata (catalogs and search indices)
353 # |
354 # | pkgrepo refresh
355 # |
356 # published packages
357 # | |
358 # | | pkgsend publish
359 # | |
360 # repositories resolved dependencies
361 # | |
362 # pkgsend | | pkgdepend resolve
363 # create-repository |
364 # | generated dependencies
365 # repo directories |
366 # | pkgdepend
367 # |
368 # processed manifests
369 #

371 ALL_TARGETS= $(PROC_SYNTH_PKGS) proto_list_$(PKGMACH)

373 all: $(ALL_TARGETS)

375 #
376 # This will build the directory to contain the processed manifests
377 # and the metadata symlinks.
378 #
379 $(PDIR):
380 @print "Creating $(@)"
381 $(PKGDEBUG)$(INS.dir)

383 #
384 # This rule resolves dependencies across all published manifests.
385 #
386 # We shouldn’t have to ignore the error from pkgdepend, but until
387 # 16012 and its dependencies are resolved, pkgdepend will always exit
388 # with an error.
389 #

new/usr/src/pkg/Makefile 7

390 $(PDIR)/gendeps: $(DEP_SYNTH_PKGS) $(DEP_PKGS)
391 -$(PKGDEBUG)if ["$(SUPPRESSPKGDEP)" = "true"]; then \
392 print "Suppressing dependency resolution"; \
393 for p in $(DEP_PKGS:%.dep=%); do \
394 $(CP) $$p.dep $$p.res; \
395 done; \
396 else \
397 print "Resolving dependencies"; \
398 pkgdepend -R $(PKGDEP_RESOLVE_IMAGE) resolve \
399 -m $(DEP_SYNTH_PKGS) $(DEP_PKGS); \
400 for p in $(DEP_SYNTH_PKGS:%.dep=%) $(DEP_PKGS:%.dep=%); do \
401 if ["$$(print $$p.metadata.*)" = \
402 "$$(print $$p.metadata.noincorp.*)"]; \
403 then \
404 print "Removing dependency versions from $$p"; \
405 $(PKGMOGRIFY) $(PKGMOG_VERBOSE) \
406 -O $$p.res -I transforms \
407 strip_versions $$p.dep.res; \
408 $(RM) $$p.dep.res; \
409 else \
410 $(MV) $$p.dep.res $$p.res; \
411 fi; \
412 done; \
413 fi
414 $(PKGDEBUG)$(TOUCH) $(@)

416 install: $(ALL_TARGETS) repository-metadata

418 repository-metadata: publish_pkgs
419 $(PKGDEBUG)for r in $(REPOS); do \
420 pkgrepo refresh -s $(PKGDEST)/repo.$$r; \
421 done

423 #
424 # Since we create zero-length processed manifests for a graceful abort
425 # from pkgmogrify, we need to detect that here and make no effort to
426 # publish the package.
427 #
428 # For all other packages, we publish them regardless of status. We
429 # derive the target repository as a component of the metadata-derived
430 # symlink for each package.
431 #
432 publish_pkgs: $(REPOS:%=$(PKGDEST)/repo.%) $(PDIR)/gendeps .WAIT $(PUB_PKGS)

434 #
435 # Before publishing, we want to pull the license files from $CODEMGR_WS
436 # into the proto area. This allows us to NOT pass $SRC (or
437 # $CODEMGR_WS) as a basedir for publication.
438 #
439 $(PUB_PKGS): stage-licenses

441 #
442 # Initialize the empty on-disk repositories
443 #
444 $(REPOS:%=$(PKGDEST)/repo.%):
445 @print "Initializing $(@F)"
446 $(PKGDEBUG)$(INS.dir)
447 $(PKGDEBUG)pkgsend -s file://$(@) create-repository \
448 --set-property publisher.prefix=$(PKGPUBLISHER)

450 #
451 # rule to process real manifests
452 #
453 # To allow redistributability and package status to change, we must
454 # remove not only the actual build target (the processed manifest), but
455 # also the incidental ones (the metadata-derived symlinks).

new/usr/src/pkg/Makefile 8

456 #
457 # If pkgmogrify exits cleanly but fails to create the specified output
458 # file, it means that it encountered an abort directive. That means
459 # that this package should not be published for this particular build
460 # environment. Since we can’t prune such packages from $(PKGS)
461 # retroactively, we need to create an empty target file to keep make
462 # from trying to rebuild it every time. For these empty targets, we
463 # do not create metadata symlinks.
464 #
465 # Automatic dependency resolution to files is also done at this phase of
466 # processing. The skipped packages are skipped due to existing bugs
467 # in pkgdepend.
468 #
469 # The incorporation dependency is tricky: it needs to go into all
470 # current and renamed manifests (ie all incorporated packages), but we
471 # don’t know which those are until after we run pkgmogrify. So
472 # instead of expressing it as a transform, we tack it on ex post facto.
473 #
474 # Implementation notes:
475 #
476 # - The first $(RM) must not match other manifests, or we’ll run into
477 # race conditions with parallel manifest processing.
478 #
479 # - The make macros [ie $(MACRO)] are evaluated when the makefile is
480 # read in, and will result in a fixed, macro-expanded rule for each
481 # target enumerated in $(PROC_PKGS).
482 #
483 # - The shell variables (ie $$VAR) are assigned on the fly, as the rule
484 # is executed. The results may only be referenced in the shell in
485 # which they are assigned, so from the perspective of make, all code
486 # that needs these variables needs to be part of the same line of
487 # code. Hence the use of command separators and line continuation
488 # characters.
489 #
490 # - The extract_metadata transforms are designed to spit out shell
491 # variable assignments to stdout. Those are published to the
492 # .vars temporary files, and then used as input to the eval
493 # statement. This is done in stages specifically so that pkgmogrify
494 # can signal failure if the manifest has a syntactic or other error.
495 # The eval statement should begin with the default values, and the
496 # output from pkgmogrify (if any) should be in the form of a
497 # variable assignment to override those defaults.
498 #
499 # - When this rule completes execution, it must leave an updated
500 # target file ($@) in place, or make will reprocess the package
501 # every time it encounters it as a dependency. Hence the "touch"
502 # statement to ensure that the target is created, even when
503 # pkgmogrify encounters an abort in the publish transforms.
504 #

506 .SUFFIXES: .mf .mog .dep .res .pub

508 $(PDIR)/%.mog: manifests/%.mf
509 @print "Processing manifest $(<F)"
510 @env PKGFMT_OUTPUT=v1 pkgfmt -c $<
511 $(PKGDEBUG)$(RM) $(@) $(@:%.mog=%) $(@:%.mog=%.nodepend) \
512 $(@:%.mog=%.lics) $(PDIR)/$(@F:%.mog=%).metadata.* $(@).vars
513 $(PKGDEBUG)$(PKGMOGRIFY) $(PKGMOG_VERBOSE) $(PM_INC:%= -I %) \
514 $(PKGMOG_DEFINES:%=-D %) -P $(@).vars -O $(@) \
515 $(<) $(PM_TRANSFORMS)
516 $(PKGDEBUG)eval REPO=redist PKGSTAT=current NODEPEND=$(SUPPRESSPKGDEP) \
517 ‘$(CAT) -s $(@).vars‘; \
518 if [-f $(@)]; then \
519 if ["$$NODEPEND" != "false"]; then \
520 $(TOUCH) $(@:%.mog=%.nodepend); \
521 fi; \

new/usr/src/pkg/Makefile 9

522 $(LN) -s $(@F) \
523 $(PDIR)/$(@F:%.mog=%).metadata.$$PKGSTAT.$$REPO; \
524 if [\("$$PKGSTAT" = "current" \) -o \
525 \("$$PKGSTAT" = "renamed" \)]; \
526 then print $(PKGDEP_INCORP) >> $(@); \
527 fi; \
528 print $$LICS > $(@:%.mog=%.lics); \
529 else \
530 $(TOUCH) $(@) $(@:%.mog=%.lics); \
531 fi
532 $(PKGDEBUG)$(RM) $(@).vars

534 $(PDIR)/%.dep: $(PDIR)/%.mog
535 @print "Generating dependencies for $(<F)"
536 $(PKGDEBUG)$(RM) $(@)
537 $(PKGDEBUG)if [! -f $(@:%.dep=%.nodepend)]; then \
538 pkgdepend generate -m $(PKGDEP_TOKENS:%=-D %) $(<) \
539 $(PKGROOT) > $(@); \
540 else \
541 $(CP) $(<) $(@); \
542 fi

544 #
545 # The full chain implies that there should be a .dep.res suffix rule,
546 # but dependency generation is done on a set of manifests, rather than
547 # on a per-manifest basis. Instead, see the gendeps rule above.
548 #

550 $(PDIR)/%.pub: $(PDIR)/%.res
551 $(PKGDEBUG)m=$$(basename $(@:%.pub=%).metadata.*); \
552 r=$${m#$(@F:%.pub=%.metadata.)+(?).}; \
553 if [-s $(<)]; then \
554 print "Publishing $(@F:%.pub=%) to $$r repository"; \
555 pkgsend -s file://$(PKGDEST)/repo.$$r publish \
556 -d $(PKGROOT) -d $(TOOLSROOT) \
557 -d license_files -d $(PKGROOT)/licenses \
558 --fmri-in-manifest --no-index --no-catalog $(<) \
559 > /dev/null; \
560 fi; \
561 $(TOUCH) $(@);

563 #
564 # rule to build the synthetic manifests
565 #
566 # This rule necessarily has PKGDEP_TYPE that changes according to
567 # the specific synthetic manifest. Rather than escape command
568 # dependency checking for the real manifest processing, or failing to
569 # express the (indirect) dependency of synthetic manifests on real
570 # manifests, we simply split this rule out from the one above.
571 #
572 # The implementation notes from the previous rule are applicable
573 # here, too.
574 #
575 $(PROC_SYNTH_PKGS): $(PKGLISTS) $$(@F:%.mog=%.mf)
576 @print "Processing synthetic manifest $(@F:%.mog=%.mf)"
577 $(PKGDEBUG)$(RM) $(@) $(PDIR)/$(@F:%.mog=%).metadata.* $(@).vars
578 $(PKGDEBUG)$(PKGMOGRIFY) $(PKGMOG_VERBOSE) -I transforms -I $(PDIR) \
579 $(PKGMOG_DEFINES:%=-D %) -D PKGDEP_TYPE=$(PKGDEP_TYPE) \
580 -P $(@).vars -O $(@) $(@F:%.mog=%.mf) \
581 $(PM_TRANSFORMS) synthetic
582 $(PKGDEBUG)eval REPO=redist PKGSTAT=current ‘$(CAT) -s $(@).vars‘; \
583 if [-f $(@)]; then \
584 $(LN) -s $(@F) \
585 $(PDIR)/$(@F:%.mog=%).metadata.$$PKGSTAT.$$REPO; \
586 else \
587 $(TOUCH) $(@); \

new/usr/src/pkg/Makefile 10

588 fi
589 $(PKGDEBUG)$(RM) $(@).vars

591 $(DEP_SYNTH_PKGS): $$(@:%.dep=%.mog)
592 @print "Skipping dependency generation for $(@F:%.dep=%)"
593 $(PKGDEBUG)$(CP) $(@:%.dep=%.mog) $(@)

595 clean:

597 clobber: clean
598 $(RM) -r $(CLOBBERFILES)

600 #
601 # This rule assumes that all links in the $PKGSTAT directories
602 # point to valid manifests, and will fail the make run if one
603 # does not contain an fmri.
604 #
605 # We do this in the BEGIN action instead of using pattern matching
606 # because we expect the fmri to be at or near the first line of each input
607 # file, and this way lets us avoid reading the rest of the file after we
608 # find what we need.
609 #
610 # We keep track of a failure to locate an fmri, so we can fail the
611 # make run, but we still attempt to process each package in the
612 # repo/pkgstat-specific subdir, in hopes of maybe giving some
613 # additional useful info.
614 #
615 # The protolist is used for bfu archive creation, which may be invoked
616 # interactively by the user. Both protolist and PKGLISTS targets
617 # depend on $(PROC_PKGS), but protolist builds them recursively.
618 # To avoid collisions, we insert protolist into the dependency chain
619 # here. This has two somewhat subtle benefits: it allows bfu archive
620 # creation to work correctly, even when -a was not part of NIGHTLY_OPTIONS,
621 # and it ensures that a protolist file here will always correspond to the
622 # contents of the processed manifests, which can vary depending on build
623 # environment.
624 #
625 $(PKGLISTS): $(PROC_PKGS)
626 $(PKGDEBUG)sdotr=$(@F:packages.%=%); \
627 r=$${sdotr%.+(?)}; s=$${sdotr#+(?).}; \
628 print "Generating $$r $$s package list"; \
629 $(RM) $(@); $(TOUCH) $(@); \
630 $(AWK) ’BEGIN { \
631 if (ARGC < 2) { \
632 exit; \
633 } \
634 retcode = 0; \
635 for (i = 1; i < ARGC; i++) { \
636 do { \
637 e = getline f < ARGV[i]; \
638 } while ((e == 1) && (f !~ /name=pkg.fmri/)); \
639 close(ARGV[i]); \
640 if (e == 1) { \
641 l = split(f, a, "="); \
642 print "depend fmri=" a[l], \
643 "type=$$(PKGDEP_TYPE)"; \
644 } else { \
645 print "no fmri in " ARGV[i] >> "/dev/stderr"; \
646 retcode = 2; \
647 } \
648 } \
649 exit retcode; \
650 }’ ‘find $(PDIR) -type l -a \($(PKGS:%=-name %.metadata.$$s.$$r -o) \
651 -name NOSUCHFILE \)‘ >> $(@)

653 #

new/usr/src/pkg/Makefile 11

654 # rules to validate proto area against manifests, check for safe
655 # file permission modes, and generate a faux proto list
656 #
657 # For the check targets, the dependencies on $(PROC_PKGS) is specified
658 # as a subordinate make process in order to suppress output.
659 #
660 makesilent:
661 @$(MAKE) -e $(PROC_PKGS) PKGMACH=$(PKGMACH) \
662 SUPPRESSPKGDEP=$(SUPPRESSPKGDEP) > /dev/null

664 #
665 # The .lics files were created during pkgmogrification, and list the
666 # set of licenses to pull from $SRC for each package. Because
667 # licenses may be duplicated between packages, we uniquify them as
668 # well as aggregating them here.
669 #
670 license-list: makesilent
671 $(PKGDEBUG)(for l in ‘cat $(PROC_PKGS:%.mog=%.lics)‘; \
672 do print $$l; done) | sort -u > $@

674 #
675 # Staging the license and description files in the proto area allows
676 # us to do proper unreferenced file checking of both license and
677 # description files without blanket exceptions, and to pull license
678 # content without reference to $CODEMGR_WS during publication.
679 #
680 stage-licenses: license-list FRC
681 $(PKGDEBUG)$(MAKE) -e -f Makefile.lic \
682 PKGDEBUG=$(PKGDEBUG) LICROOT=$(PKGROOT)/licenses \
683 ‘$(AWK) ’{ \
684 print "$(PKGROOT)/licenses/" $$0; \
685 print "$(PKGROOT)/licenses/" $$0 ".descrip"; \
686 }’ license-list‘ > /dev/null;

688 protocmp: makesilent
689 @validate_pkg -a $(PKGMACH) -v \
690 $(EXCEPTIONS:%=-e $(CODEMGR_WS)/exception_lists/%) \
691 -m $(PDIR) -p $(PKGROOT) -p $(TOOLSROOT)

693 pmodes: makesilent
694 @validate_pkg -a $(PKGMACH) -M -m $(PDIR) \
695 -e $(CODEMGR_WS)/exception_lists/pmodes

697 check: protocmp pmodes

699 protolist: proto_list_$(PKGMACH)

701 proto_list_$(PKGMACH): $(PROC_PKGS)
702 @validate_pkg -a $(PKGMACH) -L -m $(PDIR) > $(@)

704 $(PROC_PKGS): $(PDIR)

706 #
707 # This is a convenience target to allow package names to function as
708 # build targets. Generally, using it is only useful when iterating on
709 # development of a manifest.
710 #
711 # When processing a manifest, use the basename (without extension) of
712 # the package. When publishing, use the basename with a ".pub"
713 # extension.
714 #
715 # Other than during manifest development, the preferred usage is to
716 # avoid these targets and override PKGS on the make command line and
717 # use the provided all and install targets.
718 #
719 $(PKGS) $(SYNTH_PKGS): $(PDIR)/$$(@:%=%.mog)

new/usr/src/pkg/Makefile 12

721 $(PKGS:%=%.pub) $(SYNTH_PKGS:%=%.pub): $(PDIR)/$$(@)

723 #
724 # This is a convenience target to resolve dependencies without publishing
725 # packages.
726 #
727 gendeps: $(PDIR)/gendeps

729 #
730 # These are convenience targets for cross-platform packaging. If you
731 # want to build any of "the normal" targets for a different
732 # architecture, simply use "arch/target" as your build target.
733 #
734 # Since the most common use case for this is "install," the architecture
735 # specific install targets have been further abbreviated to elide "/install."
736 #
737 i386/% sparc/%:
738 $(MAKE) -e $(@F) PKGMACH=$(@D) SUPPRESSPKGDEP=$(SUPPRESSPKGDEP)

740 i386 sparc: $$(@)/install

742 FRC:

new/usr/src/pkg/manifests/runtime-perl-module-sun-solaris.mf 1

**
 6277 Mon Jul 18 14:42:52 2016
new/usr/src/pkg/manifests/runtime-perl-module-sun-solaris.mf
7170 ENABLE_PERL64 multiarch builds
reviewed by: Andrew Stormont <andyjstormont@gmail.com>
reviewed by: Lauri Tirkkonen <lotheac@iki.fi>
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
24 # Copyright (c) 2014 Racktop Systems.
25 # Copyright 2015, OmniTI Computer Consulting, Inc. All rights reserved.
26 #

28 <transform file path=.*\.(pm|bs) -> default mode 0444>
29 <transform file path=.*\.so -> default mode 0555>
30 set name=pkg.fmri \
31 value=pkg:/runtime/perl$(PERL_PKGVERS)/module/sun-solaris@0.5.11,$(PKGVERS_B
32 set name=pkg.summary value="Perl $(PERL_VERSION) Sun::Solaris Modules"
33 set name=info.classification \
34 value=org.opensolaris.category.2008:Development/Perl
35 set name=variant.arch value=$(ARCH)
36 dir path=usr group=sys
37 dir path=usr/perl5
38 dir path=usr/perl5/$(PERL_VERSION)
39 dir path=usr/perl5/$(PERL_VERSION)/lib
40 dir path=usr/perl5/$(PERL_VERSION)/lib/$(PERL_ARCH)
41 dir path=usr/perl5/$(PERL_VERSION)/lib/$(PERL_ARCH)/Sun
42 dir path=usr/perl5/$(PERL_VERSION)/lib/$(PERL_ARCH)/Sun/Solaris
43 dir path=usr/perl5/$(PERL_VERSION)/lib/$(PERL_ARCH)/auto
44 dir path=usr/perl5/$(PERL_VERSION)/lib/$(PERL_ARCH)/auto/Sun
45 dir path=usr/perl5/$(PERL_VERSION)/lib/$(PERL_ARCH)/auto/Sun/Solaris
46 dir path=usr/perl5/$(PERL_VERSION)/lib/$(PERL_ARCH)/auto/Sun/Solaris/Intrs
47 dir path=usr/perl5/$(PERL_VERSION)/lib/$(PERL_ARCH)/auto/Sun/Solaris/Kstat
48 dir path=usr/perl5/$(PERL_VERSION)/lib/$(PERL_ARCH)/auto/Sun/Solaris/Lgrp
49 dir path=usr/perl5/$(PERL_VERSION)/lib/$(PERL_ARCH)/auto/Sun/Solaris/Project
50 dir path=usr/perl5/$(PERL_VERSION)/lib/$(PERL_ARCH)/auto/Sun/Solaris/Task
51 dir path=usr/perl5/$(PERL_VERSION)/lib/$(PERL_ARCH)/auto/Sun/Solaris/Utils
52 $(ENABLE_PERL64)dir path=usr/perl5/$(PERL_VERSION)/lib/$(PERL_ARCH64)
53 $(ENABLE_PERL64)dir path=usr/perl5/$(PERL_VERSION)/lib/$(PERL_ARCH64)/Sun
54 $(ENABLE_PERL64)dir \
55 path=usr/perl5/$(PERL_VERSION)/lib/$(PERL_ARCH64)/Sun/Solaris
56 $(ENABLE_PERL64)dir path=usr/perl5/$(PERL_VERSION)/lib/$(PERL_ARCH64)/auto
57 $(ENABLE_PERL64)dir path=usr/perl5/$(PERL_VERSION)/lib/$(PERL_ARCH64)/auto/Sun
58 $(ENABLE_PERL64)dir \
59 path=usr/perl5/$(PERL_VERSION)/lib/$(PERL_ARCH64)/auto/Sun/Solaris

new/usr/src/pkg/manifests/runtime-perl-module-sun-solaris.mf 2

60 $(ENABLE_PERL64)dir \
61 path=usr/perl5/$(PERL_VERSION)/lib/$(PERL_ARCH64)/auto/Sun/Solaris/Intrs
62 $(ENABLE_PERL64)dir \
63 path=usr/perl5/$(PERL_VERSION)/lib/$(PERL_ARCH64)/auto/Sun/Solaris/Kstat
64 $(ENABLE_PERL64)dir \
65 path=usr/perl5/$(PERL_VERSION)/lib/$(PERL_ARCH64)/auto/Sun/Solaris/Lgrp
66 $(ENABLE_PERL64)dir \
67 path=usr/perl5/$(PERL_VERSION)/lib/$(PERL_ARCH64)/auto/Sun/Solaris/Project
68 $(ENABLE_PERL64)dir \
69 path=usr/perl5/$(PERL_VERSION)/lib/$(PERL_ARCH64)/auto/Sun/Solaris/Task
70 $(ENABLE_PERL64)dir \
71 path=usr/perl5/$(PERL_VERSION)/lib/$(PERL_ARCH64)/auto/Sun/Solaris/Utils
72 dir path=usr/perl5/$(PERL_VERSION)/lib/Sun
73 dir path=usr/perl5/$(PERL_VERSION)/lib/Sun/Solaris
74 dir path=usr/perl5/$(PERL_VERSION)/lib/Sun/Solaris/BSM
75 dir path=usr/share/man
76 dir path=usr/share/man/man3perl
77 file path=usr/perl5/$(PERL_VERSION)/lib/$(PERL_ARCH)/Sun/Solaris/Intrs.pm
78 file path=usr/perl5/$(PERL_VERSION)/lib/$(PERL_ARCH)/Sun/Solaris/Kstat.pm
79 file path=usr/perl5/$(PERL_VERSION)/lib/$(PERL_ARCH)/Sun/Solaris/Lgrp.pm
80 file path=usr/perl5/$(PERL_VERSION)/lib/$(PERL_ARCH)/Sun/Solaris/Project.pm
81 file path=usr/perl5/$(PERL_VERSION)/lib/$(PERL_ARCH)/Sun/Solaris/Task.pm
82 file path=usr/perl5/$(PERL_VERSION)/lib/$(PERL_ARCH)/Sun/Solaris/Utils.pm
83 file \
84 path=usr/perl5/$(PERL_VERSION)/lib/$(PERL_ARCH)/auto/Sun/Solaris/Intrs/Intrs
85 file \
86 path=usr/perl5/$(PERL_VERSION)/lib/$(PERL_ARCH)/auto/Sun/Solaris/Kstat/Kstat
87 file \
88 path=usr/perl5/$(PERL_VERSION)/lib/$(PERL_ARCH)/auto/Sun/Solaris/Lgrp/Lgrp.s
89 file \
90 path=usr/perl5/$(PERL_VERSION)/lib/$(PERL_ARCH)/auto/Sun/Solaris/Project/Pro
91 file \
92 path=usr/perl5/$(PERL_VERSION)/lib/$(PERL_ARCH)/auto/Sun/Solaris/Task/Task.s
93 file \
94 path=usr/perl5/$(PERL_VERSION)/lib/$(PERL_ARCH)/auto/Sun/Solaris/Utils/Utils
95 $(ENABLE_PERL64)file \
96 path=usr/perl5/$(PERL_VERSION)/lib/$(PERL_ARCH64)/Sun/Solaris/Intrs.pm
97 $(ENABLE_PERL64)file \
98 path=usr/perl5/$(PERL_VERSION)/lib/$(PERL_ARCH64)/Sun/Solaris/Kstat.pm
99 $(ENABLE_PERL64)file \
100 path=usr/perl5/$(PERL_VERSION)/lib/$(PERL_ARCH64)/Sun/Solaris/Lgrp.pm
101 $(ENABLE_PERL64)file \
102 path=usr/perl5/$(PERL_VERSION)/lib/$(PERL_ARCH64)/Sun/Solaris/Project.pm
103 $(ENABLE_PERL64)file \
104 path=usr/perl5/$(PERL_VERSION)/lib/$(PERL_ARCH64)/Sun/Solaris/Task.pm
105 $(ENABLE_PERL64)file \
106 path=usr/perl5/$(PERL_VERSION)/lib/$(PERL_ARCH64)/Sun/Solaris/Utils.pm
107 $(ENABLE_PERL64)file \
108 path=usr/perl5/$(PERL_VERSION)/lib/$(PERL_ARCH64)/auto/Sun/Solaris/Intrs/Int
109 $(ENABLE_PERL64)file \
110 path=usr/perl5/$(PERL_VERSION)/lib/$(PERL_ARCH64)/auto/Sun/Solaris/Kstat/Kst
111 $(ENABLE_PERL64)file \
112 path=usr/perl5/$(PERL_VERSION)/lib/$(PERL_ARCH64)/auto/Sun/Solaris/Lgrp/Lgrp
113 $(ENABLE_PERL64)file \
114 path=usr/perl5/$(PERL_VERSION)/lib/$(PERL_ARCH64)/auto/Sun/Solaris/Project/P
115 $(ENABLE_PERL64)file \
116 path=usr/perl5/$(PERL_VERSION)/lib/$(PERL_ARCH64)/auto/Sun/Solaris/Task/Task
117 $(ENABLE_PERL64)file \
118 path=usr/perl5/$(PERL_VERSION)/lib/$(PERL_ARCH64)/auto/Sun/Solaris/Utils/Uti
119 file path=usr/perl5/$(PERL_VERSION)/lib/Sun/Solaris/BSM/_BSMparse.pm
120 file path=usr/perl5/$(PERL_VERSION)/lib/Sun/Solaris/Pg.pm
121 file path=usr/share/man/man3perl/Kstat.3perl
122 file path=usr/share/man/man3perl/Lgrp.3perl
123 file path=usr/share/man/man3perl/Project.3perl
124 file path=usr/share/man/man3perl/Task.3perl
125 license cr_Sun license=cr_Sun

new/usr/src/pkg/manifests/runtime-perl-module-sun-solaris.mf 3

126 license usr/src/cmd/perl/THIRDPARTYLICENSE \
127 license=usr/src/cmd/perl/THIRDPARTYLICENSE

