1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 27 #include <sys/modctl.h> 28 #include <sys/dtrace.h> 29 #include <sys/kobj.h> 30 #include <sys/stat.h> 31 #include <sys/ddi.h> 32 #include <sys/sunddi.h> 33 #include <sys/conf.h> 34 35 #define FBT_PUSHL_EBP 0x55 36 #define FBT_MOVL_ESP_EBP0_V0 0x8b 37 #define FBT_MOVL_ESP_EBP1_V0 0xec 38 #define FBT_MOVL_ESP_EBP0_V1 0x89 39 #define FBT_MOVL_ESP_EBP1_V1 0xe5 40 #define FBT_REX_RSP_RBP 0x48 41 42 #define FBT_POPL_EBP 0x5d 43 #define FBT_RET 0xc3 44 #define FBT_RET_IMM16 0xc2 45 #define FBT_LEAVE 0xc9 46 47 #ifdef __amd64 48 #define FBT_PATCHVAL 0xcc 49 #else 50 #define FBT_PATCHVAL 0xf0 51 #endif 52 53 #define FBT_ENTRY "entry" 54 #define FBT_RETURN "return" 55 #define FBT_ADDR2NDX(addr) ((((uintptr_t)(addr)) >> 4) & fbt_probetab_mask) 56 #define FBT_PROBETAB_SIZE 0x8000 /* 32k entries -- 128K total */ 57 58 typedef struct fbt_probe { 59 struct fbt_probe *fbtp_hashnext; 60 uint8_t *fbtp_patchpoint; 61 int8_t fbtp_rval; 62 uint8_t fbtp_patchval; 63 uint8_t fbtp_savedval; 64 uintptr_t fbtp_roffset; 65 dtrace_id_t fbtp_id; 66 char *fbtp_name; 67 struct modctl *fbtp_ctl; 68 int fbtp_loadcnt; 69 int fbtp_symndx; 70 int fbtp_primary; 71 struct fbt_probe *fbtp_next; 72 } fbt_probe_t; 73 74 static dev_info_t *fbt_devi; 75 static dtrace_provider_id_t fbt_id; 76 static fbt_probe_t **fbt_probetab; 77 static int fbt_probetab_size; 78 static int fbt_probetab_mask; 79 static int fbt_verbose = 0; 80 81 static int 82 fbt_invop(uintptr_t addr, uintptr_t *stack, uintptr_t rval) 83 { 84 uintptr_t stack0, stack1, stack2, stack3, stack4; 85 fbt_probe_t *fbt = fbt_probetab[FBT_ADDR2NDX(addr)]; 86 87 for (; fbt != NULL; fbt = fbt->fbtp_hashnext) { 88 if ((uintptr_t)fbt->fbtp_patchpoint == addr) { 89 if (fbt->fbtp_roffset == 0) { 90 int i = 0; 91 /* 92 * When accessing the arguments on the stack, 93 * we must protect against accessing beyond 94 * the stack. We can safely set NOFAULT here 95 * -- we know that interrupts are already 96 * disabled. 97 */ 98 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 99 CPU->cpu_dtrace_caller = stack[i++]; 100 #ifdef __amd64 101 /* 102 * On amd64, stack[0] contains the dereferenced 103 * stack pointer, stack[1] contains savfp, 104 * stack[2] contains savpc. We want to step 105 * over these entries. 106 */ 107 i += 2; 108 #endif 109 stack0 = stack[i++]; 110 stack1 = stack[i++]; 111 stack2 = stack[i++]; 112 stack3 = stack[i++]; 113 stack4 = stack[i++]; 114 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT | 115 CPU_DTRACE_BADADDR); 116 117 dtrace_probe(fbt->fbtp_id, stack0, stack1, 118 stack2, stack3, stack4); 119 120 CPU->cpu_dtrace_caller = NULL; 121 } else { 122 #ifdef __amd64 123 /* 124 * On amd64, we instrument the ret, not the 125 * leave. We therefore need to set the caller 126 * to assure that the top frame of a stack() 127 * action is correct. 128 */ 129 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 130 CPU->cpu_dtrace_caller = stack[0]; 131 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT | 132 CPU_DTRACE_BADADDR); 133 #endif 134 135 dtrace_probe(fbt->fbtp_id, fbt->fbtp_roffset, 136 rval, 0, 0, 0); 137 CPU->cpu_dtrace_caller = NULL; 138 } 139 140 return (fbt->fbtp_rval); 141 } 142 } 143 144 return (0); 145 } 146 147 /*ARGSUSED*/ 148 static void 149 fbt_provide_module(void *arg, struct modctl *ctl) 150 { 151 struct module *mp = ctl->mod_mp; 152 char *str = mp->strings; 153 int nsyms = mp->nsyms; 154 Shdr *symhdr = mp->symhdr; 155 char *modname = ctl->mod_modname; 156 char *name; 157 fbt_probe_t *fbt, *retfbt; 158 size_t symsize; 159 int i, size; 160 161 /* 162 * Employees of dtrace and their families are ineligible. Void 163 * where prohibited. 164 */ 165 if (strcmp(modname, "dtrace") == 0) 166 return; 167 168 if (ctl->mod_requisites != NULL) { 169 struct modctl_list *list; 170 171 list = (struct modctl_list *)ctl->mod_requisites; 172 173 for (; list != NULL; list = list->modl_next) { 174 if (strcmp(list->modl_modp->mod_modname, "dtrace") == 0) 175 return; 176 } 177 } 178 179 /* 180 * KMDB is ineligible for instrumentation -- it may execute in 181 * any context, including probe context. 182 */ 183 if (strcmp(modname, "kmdbmod") == 0) 184 return; 185 186 if (str == NULL || symhdr == NULL || symhdr->sh_addr == NULL) { 187 /* 188 * If this module doesn't (yet) have its string or symbol 189 * table allocated, clear out. 190 */ 191 return; 192 } 193 194 symsize = symhdr->sh_entsize; 195 196 if (mp->fbt_nentries) { 197 /* 198 * This module has some FBT entries allocated; we're afraid 199 * to screw with it. 200 */ 201 return; 202 } 203 204 for (i = 1; i < nsyms; i++) { 205 uint8_t *instr, *limit; 206 Sym *sym = (Sym *)(symhdr->sh_addr + i * symsize); 207 int j; 208 209 if (ELF_ST_TYPE(sym->st_info) != STT_FUNC) 210 continue; 211 212 /* 213 * Weak symbols are not candidates. This could be made to 214 * work (where weak functions and their underlying function 215 * appear as two disjoint probes), but it's not simple. 216 */ 217 if (ELF_ST_BIND(sym->st_info) == STB_WEAK) 218 continue; 219 220 name = str + sym->st_name; 221 222 if (strstr(name, "dtrace_") == name && 223 strstr(name, "dtrace_safe_") != name) { 224 /* 225 * Anything beginning with "dtrace_" may be called 226 * from probe context unless it explitly indicates 227 * that it won't be called from probe context by 228 * using the prefix "dtrace_safe_". 229 */ 230 continue; 231 } 232 233 if (strstr(name, "kdi_") == name || 234 strstr(name, "_kdi_") != NULL) { 235 /* 236 * Any function name beginning with "kdi_" or 237 * containing the string "_kdi_" is a part of the 238 * kernel debugger interface and may be called in 239 * arbitrary context -- including probe context. 240 */ 241 continue; 242 } 243 244 /* 245 * Due to 4524008, _init and _fini may have a bloated st_size. 246 * While this bug was fixed quite some time ago, old drivers 247 * may be lurking. We need to develop a better solution to 248 * this problem, such that correct _init and _fini functions 249 * (the vast majority) may be correctly traced. One solution 250 * may be to scan through the entire symbol table to see if 251 * any symbol overlaps with _init. If none does, set a bit in 252 * the module structure that this module has correct _init and 253 * _fini sizes. This will cause some pain the first time a 254 * module is scanned, but at least it would be O(N) instead of 255 * O(N log N)... 256 */ 257 if (strcmp(name, "_init") == 0) 258 continue; 259 260 if (strcmp(name, "_fini") == 0) 261 continue; 262 263 /* 264 * In order to be eligible, the function must begin with the 265 * following sequence: 266 * 267 * pushl %esp 268 * movl %esp, %ebp 269 * 270 * Note that there are two variants of encodings that generate 271 * the movl; we must check for both. For 64-bit, we would 272 * normally insist that a function begin with the following 273 * sequence: 274 * 275 * pushq %rbp 276 * movq %rsp, %rbp 277 * 278 * However, the compiler for 64-bit often splits these two 279 * instructions -- and the first instruction in the function 280 * is often not the pushq. As a result, on 64-bit we look 281 * for any "pushq %rbp" in the function and we instrument 282 * this with a breakpoint instruction. 283 */ 284 instr = (uint8_t *)sym->st_value; 285 limit = (uint8_t *)(sym->st_value + sym->st_size); 286 287 #ifdef __amd64 288 while (instr < limit) { 289 if (*instr == FBT_PUSHL_EBP) 290 break; 291 292 if ((size = dtrace_instr_size(instr)) <= 0) 293 break; 294 295 instr += size; 296 } 297 298 if (instr >= limit || *instr != FBT_PUSHL_EBP) { 299 /* 300 * We either don't save the frame pointer in this 301 * function, or we ran into some disassembly 302 * screw-up. Either way, we bail. 303 */ 304 continue; 305 } 306 #else 307 if (instr[0] != FBT_PUSHL_EBP) 308 continue; 309 310 if (!(instr[1] == FBT_MOVL_ESP_EBP0_V0 && 311 instr[2] == FBT_MOVL_ESP_EBP1_V0) && 312 !(instr[1] == FBT_MOVL_ESP_EBP0_V1 && 313 instr[2] == FBT_MOVL_ESP_EBP1_V1)) 314 continue; 315 #endif 316 317 fbt = kmem_zalloc(sizeof (fbt_probe_t), KM_SLEEP); 318 fbt->fbtp_name = name; 319 fbt->fbtp_id = dtrace_probe_create(fbt_id, modname, 320 name, FBT_ENTRY, 3, fbt); 321 fbt->fbtp_patchpoint = instr; 322 fbt->fbtp_ctl = ctl; 323 fbt->fbtp_loadcnt = ctl->mod_loadcnt; 324 fbt->fbtp_rval = DTRACE_INVOP_PUSHL_EBP; 325 fbt->fbtp_savedval = *instr; 326 fbt->fbtp_patchval = FBT_PATCHVAL; 327 328 fbt->fbtp_hashnext = fbt_probetab[FBT_ADDR2NDX(instr)]; 329 fbt->fbtp_symndx = i; 330 fbt_probetab[FBT_ADDR2NDX(instr)] = fbt; 331 332 mp->fbt_nentries++; 333 334 retfbt = NULL; 335 again: 336 if (instr >= limit) 337 continue; 338 339 /* 340 * If this disassembly fails, then we've likely walked off into 341 * a jump table or some other unsuitable area. Bail out of the 342 * disassembly now. 343 */ 344 if ((size = dtrace_instr_size(instr)) <= 0) 345 continue; 346 347 #ifdef __amd64 348 /* 349 * We only instrument "ret" on amd64 -- we don't yet instrument 350 * ret imm16, largely because the compiler doesn't seem to 351 * (yet) emit them in the kernel... 352 */ 353 if (*instr != FBT_RET) { 354 instr += size; 355 goto again; 356 } 357 #else 358 if (!(size == 1 && 359 (*instr == FBT_POPL_EBP || *instr == FBT_LEAVE) && 360 (*(instr + 1) == FBT_RET || 361 *(instr + 1) == FBT_RET_IMM16))) { 362 instr += size; 363 goto again; 364 } 365 #endif 366 367 /* 368 * We (desperately) want to avoid erroneously instrumenting a 369 * jump table, especially given that our markers are pretty 370 * short: two bytes on x86, and just one byte on amd64. To 371 * determine if we're looking at a true instruction sequence 372 * or an inline jump table that happens to contain the same 373 * byte sequences, we resort to some heuristic sleeze: we 374 * treat this instruction as being contained within a pointer, 375 * and see if that pointer points to within the body of the 376 * function. If it does, we refuse to instrument it. 377 */ 378 for (j = 0; j < sizeof (uintptr_t); j++) { 379 uintptr_t check = (uintptr_t)instr - j; 380 uint8_t *ptr; 381 382 if (check < sym->st_value) 383 break; 384 385 if (check + sizeof (uintptr_t) > (uintptr_t)limit) 386 continue; 387 388 ptr = *(uint8_t **)check; 389 390 if (ptr >= (uint8_t *)sym->st_value && ptr < limit) { 391 instr += size; 392 goto again; 393 } 394 } 395 396 /* 397 * We have a winner! 398 */ 399 fbt = kmem_zalloc(sizeof (fbt_probe_t), KM_SLEEP); 400 fbt->fbtp_name = name; 401 402 if (retfbt == NULL) { 403 fbt->fbtp_id = dtrace_probe_create(fbt_id, modname, 404 name, FBT_RETURN, 3, fbt); 405 } else { 406 retfbt->fbtp_next = fbt; 407 fbt->fbtp_id = retfbt->fbtp_id; 408 } 409 410 retfbt = fbt; 411 fbt->fbtp_patchpoint = instr; 412 fbt->fbtp_ctl = ctl; 413 fbt->fbtp_loadcnt = ctl->mod_loadcnt; 414 415 #ifndef __amd64 416 if (*instr == FBT_POPL_EBP) { 417 fbt->fbtp_rval = DTRACE_INVOP_POPL_EBP; 418 } else { 419 ASSERT(*instr == FBT_LEAVE); 420 fbt->fbtp_rval = DTRACE_INVOP_LEAVE; 421 } 422 fbt->fbtp_roffset = 423 (uintptr_t)(instr - (uint8_t *)sym->st_value) + 1; 424 425 #else 426 ASSERT(*instr == FBT_RET); 427 fbt->fbtp_rval = DTRACE_INVOP_RET; 428 fbt->fbtp_roffset = 429 (uintptr_t)(instr - (uint8_t *)sym->st_value); 430 #endif 431 432 fbt->fbtp_savedval = *instr; 433 fbt->fbtp_patchval = FBT_PATCHVAL; 434 fbt->fbtp_hashnext = fbt_probetab[FBT_ADDR2NDX(instr)]; 435 fbt->fbtp_symndx = i; 436 fbt_probetab[FBT_ADDR2NDX(instr)] = fbt; 437 438 mp->fbt_nentries++; 439 440 instr += size; 441 goto again; 442 } 443 } 444 445 /*ARGSUSED*/ 446 static void 447 fbt_destroy(void *arg, dtrace_id_t id, void *parg) 448 { 449 fbt_probe_t *fbt = parg, *next, *hash, *last; 450 struct modctl *ctl = fbt->fbtp_ctl; 451 int ndx; 452 453 do { 454 if (ctl != NULL && ctl->mod_loadcnt == fbt->fbtp_loadcnt) { 455 if ((ctl->mod_loadcnt == fbt->fbtp_loadcnt && 456 ctl->mod_loaded)) { 457 ((struct module *) 458 (ctl->mod_mp))->fbt_nentries--; 459 } 460 } 461 462 /* 463 * Now we need to remove this probe from the fbt_probetab. 464 */ 465 ndx = FBT_ADDR2NDX(fbt->fbtp_patchpoint); 466 last = NULL; 467 hash = fbt_probetab[ndx]; 468 469 while (hash != fbt) { 470 ASSERT(hash != NULL); 471 last = hash; 472 hash = hash->fbtp_hashnext; 473 } 474 475 if (last != NULL) { 476 last->fbtp_hashnext = fbt->fbtp_hashnext; 477 } else { 478 fbt_probetab[ndx] = fbt->fbtp_hashnext; 479 } 480 481 next = fbt->fbtp_next; 482 kmem_free(fbt, sizeof (fbt_probe_t)); 483 484 fbt = next; 485 } while (fbt != NULL); 486 } 487 488 /*ARGSUSED*/ 489 static int 490 fbt_enable(void *arg, dtrace_id_t id, void *parg) 491 { 492 fbt_probe_t *fbt = parg; 493 struct modctl *ctl = fbt->fbtp_ctl; 494 495 ctl->mod_nenabled++; 496 497 if (!ctl->mod_loaded) { 498 if (fbt_verbose) { 499 cmn_err(CE_NOTE, "fbt is failing for probe %s " 500 "(module %s unloaded)", 501 fbt->fbtp_name, ctl->mod_modname); 502 } 503 504 return (0); 505 } 506 507 /* 508 * Now check that our modctl has the expected load count. If it 509 * doesn't, this module must have been unloaded and reloaded -- and 510 * we're not going to touch it. 511 */ 512 if (ctl->mod_loadcnt != fbt->fbtp_loadcnt) { 513 if (fbt_verbose) { 514 cmn_err(CE_NOTE, "fbt is failing for probe %s " 515 "(module %s reloaded)", 516 fbt->fbtp_name, ctl->mod_modname); 517 } 518 519 return (0); 520 } 521 522 for (; fbt != NULL; fbt = fbt->fbtp_next) 523 *fbt->fbtp_patchpoint = fbt->fbtp_patchval; 524 525 return (0); 526 } 527 528 /*ARGSUSED*/ 529 static void 530 fbt_disable(void *arg, dtrace_id_t id, void *parg) 531 { 532 fbt_probe_t *fbt = parg; 533 struct modctl *ctl = fbt->fbtp_ctl; 534 535 ASSERT(ctl->mod_nenabled > 0); 536 ctl->mod_nenabled--; 537 538 if (!ctl->mod_loaded || (ctl->mod_loadcnt != fbt->fbtp_loadcnt)) 539 return; 540 541 for (; fbt != NULL; fbt = fbt->fbtp_next) 542 *fbt->fbtp_patchpoint = fbt->fbtp_savedval; 543 } 544 545 /*ARGSUSED*/ 546 static void 547 fbt_suspend(void *arg, dtrace_id_t id, void *parg) 548 { 549 fbt_probe_t *fbt = parg; 550 struct modctl *ctl = fbt->fbtp_ctl; 551 552 ASSERT(ctl->mod_nenabled > 0); 553 554 if (!ctl->mod_loaded || (ctl->mod_loadcnt != fbt->fbtp_loadcnt)) 555 return; 556 557 for (; fbt != NULL; fbt = fbt->fbtp_next) 558 *fbt->fbtp_patchpoint = fbt->fbtp_savedval; 559 } 560 561 /*ARGSUSED*/ 562 static void 563 fbt_resume(void *arg, dtrace_id_t id, void *parg) 564 { 565 fbt_probe_t *fbt = parg; 566 struct modctl *ctl = fbt->fbtp_ctl; 567 568 ASSERT(ctl->mod_nenabled > 0); 569 570 if (!ctl->mod_loaded || (ctl->mod_loadcnt != fbt->fbtp_loadcnt)) 571 return; 572 573 for (; fbt != NULL; fbt = fbt->fbtp_next) 574 *fbt->fbtp_patchpoint = fbt->fbtp_patchval; 575 } 576 577 /*ARGSUSED*/ 578 static void 579 fbt_getargdesc(void *arg, dtrace_id_t id, void *parg, dtrace_argdesc_t *desc) 580 { 581 fbt_probe_t *fbt = parg; 582 struct modctl *ctl = fbt->fbtp_ctl; 583 struct module *mp = ctl->mod_mp; 584 ctf_file_t *fp = NULL, *pfp; 585 ctf_funcinfo_t f; 586 int error; 587 ctf_id_t argv[32], type; 588 int argc = sizeof (argv) / sizeof (ctf_id_t); 589 const char *parent; 590 591 if (!ctl->mod_loaded || (ctl->mod_loadcnt != fbt->fbtp_loadcnt)) 592 goto err; 593 594 if (fbt->fbtp_roffset != 0 && desc->dtargd_ndx == 0) { 595 (void) strcpy(desc->dtargd_native, "int"); 596 return; 597 } 598 599 if ((fp = ctf_modopen(mp, &error)) == NULL) { 600 /* 601 * We have no CTF information for this module -- and therefore 602 * no args[] information. 603 */ 604 goto err; 605 } 606 607 /* 608 * If we have a parent container, we must manually import it. 609 */ 610 if ((parent = ctf_parent_name(fp)) != NULL) { 611 struct modctl *mp = &modules; 612 struct modctl *mod = NULL; 613 614 /* 615 * We must iterate over all modules to find the module that 616 * is our parent. 617 */ 618 do { 619 if (strcmp(mp->mod_modname, parent) == 0) { 620 mod = mp; 621 break; 622 } 623 } while ((mp = mp->mod_next) != &modules); 624 625 if (mod == NULL) 626 goto err; 627 628 if ((pfp = ctf_modopen(mod->mod_mp, &error)) == NULL) { 629 goto err; 630 } 631 632 if (ctf_import(fp, pfp) != 0) { 633 ctf_close(pfp); 634 goto err; 635 } 636 637 ctf_close(pfp); 638 } 639 640 if (ctf_func_info(fp, fbt->fbtp_symndx, &f) == CTF_ERR) 641 goto err; 642 643 if (fbt->fbtp_roffset != 0) { 644 if (desc->dtargd_ndx > 1) 645 goto err; 646 647 ASSERT(desc->dtargd_ndx == 1); 648 type = f.ctc_return; 649 } else { 650 if (desc->dtargd_ndx + 1 > f.ctc_argc) 651 goto err; 652 653 if (ctf_func_args(fp, fbt->fbtp_symndx, argc, argv) == CTF_ERR) 654 goto err; 655 656 type = argv[desc->dtargd_ndx]; 657 } 658 659 if (ctf_type_name(fp, type, desc->dtargd_native, 660 DTRACE_ARGTYPELEN) != NULL) { 661 ctf_close(fp); 662 return; 663 } 664 err: 665 if (fp != NULL) 666 ctf_close(fp); 667 668 desc->dtargd_ndx = DTRACE_ARGNONE; 669 } 670 671 static dtrace_pattr_t fbt_attr = { 672 { DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_ISA }, 673 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 674 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 675 { DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_ISA }, 676 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_ISA }, 677 }; 678 679 static dtrace_pops_t fbt_pops = { 680 NULL, 681 fbt_provide_module, 682 fbt_enable, 683 fbt_disable, 684 fbt_suspend, 685 fbt_resume, 686 fbt_getargdesc, 687 NULL, 688 NULL, 689 fbt_destroy 690 }; 691 692 static void 693 fbt_cleanup(dev_info_t *devi) 694 { 695 dtrace_invop_remove(fbt_invop); 696 ddi_remove_minor_node(devi, NULL); 697 kmem_free(fbt_probetab, fbt_probetab_size * sizeof (fbt_probe_t *)); 698 fbt_probetab = NULL; 699 fbt_probetab_mask = 0; 700 } 701 702 static int 703 fbt_attach(dev_info_t *devi, ddi_attach_cmd_t cmd) 704 { 705 switch (cmd) { 706 case DDI_ATTACH: 707 break; 708 case DDI_RESUME: 709 return (DDI_SUCCESS); 710 default: 711 return (DDI_FAILURE); 712 } 713 714 if (fbt_probetab_size == 0) 715 fbt_probetab_size = FBT_PROBETAB_SIZE; 716 717 fbt_probetab_mask = fbt_probetab_size - 1; 718 fbt_probetab = 719 kmem_zalloc(fbt_probetab_size * sizeof (fbt_probe_t *), KM_SLEEP); 720 721 dtrace_invop_add(fbt_invop); 722 723 if (ddi_create_minor_node(devi, "fbt", S_IFCHR, 0, 724 DDI_PSEUDO, NULL) == DDI_FAILURE || 725 dtrace_register("fbt", &fbt_attr, DTRACE_PRIV_KERNEL, NULL, 726 &fbt_pops, NULL, &fbt_id) != 0) { 727 fbt_cleanup(devi); 728 return (DDI_FAILURE); 729 } 730 731 ddi_report_dev(devi); 732 fbt_devi = devi; 733 734 return (DDI_SUCCESS); 735 } 736 737 static int 738 fbt_detach(dev_info_t *devi, ddi_detach_cmd_t cmd) 739 { 740 switch (cmd) { 741 case DDI_DETACH: 742 break; 743 case DDI_SUSPEND: 744 return (DDI_SUCCESS); 745 default: 746 return (DDI_FAILURE); 747 } 748 749 if (dtrace_unregister(fbt_id) != 0) 750 return (DDI_FAILURE); 751 752 fbt_cleanup(devi); 753 754 return (DDI_SUCCESS); 755 } 756 757 /*ARGSUSED*/ 758 static int 759 fbt_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 760 { 761 int error; 762 763 switch (infocmd) { 764 case DDI_INFO_DEVT2DEVINFO: 765 *result = (void *)fbt_devi; 766 error = DDI_SUCCESS; 767 break; 768 case DDI_INFO_DEVT2INSTANCE: 769 *result = (void *)0; 770 error = DDI_SUCCESS; 771 break; 772 default: 773 error = DDI_FAILURE; 774 } 775 return (error); 776 } 777 778 /*ARGSUSED*/ 779 static int 780 fbt_open(dev_t *devp, int flag, int otyp, cred_t *cred_p) 781 { 782 return (0); 783 } 784 785 static struct cb_ops fbt_cb_ops = { 786 fbt_open, /* open */ 787 nodev, /* close */ 788 nulldev, /* strategy */ 789 nulldev, /* print */ 790 nodev, /* dump */ 791 nodev, /* read */ 792 nodev, /* write */ 793 nodev, /* ioctl */ 794 nodev, /* devmap */ 795 nodev, /* mmap */ 796 nodev, /* segmap */ 797 nochpoll, /* poll */ 798 ddi_prop_op, /* cb_prop_op */ 799 0, /* streamtab */ 800 D_NEW | D_MP /* Driver compatibility flag */ 801 }; 802 803 static struct dev_ops fbt_ops = { 804 DEVO_REV, /* devo_rev */ 805 0, /* refcnt */ 806 fbt_info, /* get_dev_info */ 807 nulldev, /* identify */ 808 nulldev, /* probe */ 809 fbt_attach, /* attach */ 810 fbt_detach, /* detach */ 811 nodev, /* reset */ 812 &fbt_cb_ops, /* driver operations */ 813 NULL, /* bus operations */ 814 nodev, /* dev power */ 815 ddi_quiesce_not_needed, /* quiesce */ 816 }; 817 818 /* 819 * Module linkage information for the kernel. 820 */ 821 static struct modldrv modldrv = { 822 &mod_driverops, /* module type (this is a pseudo driver) */ 823 "Function Boundary Tracing", /* name of module */ 824 &fbt_ops, /* driver ops */ 825 }; 826 827 static struct modlinkage modlinkage = { 828 MODREV_1, 829 { (void *)&modldrv, NULL } 830 }; 831 832 int 833 _init(void) 834 { 835 return (mod_install(&modlinkage)); 836 } 837 838 int 839 _info(struct modinfo *modinfop) 840 { 841 return (mod_info(&modlinkage, modinfop)); 842 } 843 844 int 845 _fini(void) 846 { 847 return (mod_remove(&modlinkage)); 848 }