1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 /* 26 * Copyright (c) 2010, Intel Corporation. 27 * All rights reserved. 28 */ 29 30 #include <sys/types.h> 31 #include <sys/t_lock.h> 32 #include <sys/param.h> 33 #include <sys/segments.h> 34 #include <sys/sysmacros.h> 35 #include <sys/signal.h> 36 #include <sys/systm.h> 37 #include <sys/user.h> 38 #include <sys/mman.h> 39 #include <sys/vm.h> 40 41 #include <sys/disp.h> 42 #include <sys/class.h> 43 44 #include <sys/proc.h> 45 #include <sys/buf.h> 46 #include <sys/kmem.h> 47 48 #include <sys/reboot.h> 49 #include <sys/uadmin.h> 50 #include <sys/callb.h> 51 52 #include <sys/cred.h> 53 #include <sys/vnode.h> 54 #include <sys/file.h> 55 56 #include <sys/procfs.h> 57 #include <sys/acct.h> 58 59 #include <sys/vfs.h> 60 #include <sys/dnlc.h> 61 #include <sys/var.h> 62 #include <sys/cmn_err.h> 63 #include <sys/utsname.h> 64 #include <sys/debug.h> 65 66 #include <sys/dumphdr.h> 67 #include <sys/bootconf.h> 68 #include <sys/varargs.h> 69 #include <sys/promif.h> 70 #include <sys/modctl.h> 71 72 #include <sys/consdev.h> 73 #include <sys/frame.h> 74 75 #include <sys/sunddi.h> 76 #include <sys/ddidmareq.h> 77 #include <sys/psw.h> 78 #include <sys/regset.h> 79 #include <sys/privregs.h> 80 #include <sys/clock.h> 81 #include <sys/tss.h> 82 #include <sys/cpu.h> 83 #include <sys/stack.h> 84 #include <sys/trap.h> 85 #include <sys/pic.h> 86 #include <vm/hat.h> 87 #include <vm/anon.h> 88 #include <vm/as.h> 89 #include <vm/page.h> 90 #include <vm/seg.h> 91 #include <vm/seg_kmem.h> 92 #include <vm/seg_map.h> 93 #include <vm/seg_vn.h> 94 #include <vm/seg_kp.h> 95 #include <vm/hat_i86.h> 96 #include <sys/swap.h> 97 #include <sys/thread.h> 98 #include <sys/sysconf.h> 99 #include <sys/vm_machparam.h> 100 #include <sys/archsystm.h> 101 #include <sys/machsystm.h> 102 #include <sys/machlock.h> 103 #include <sys/x_call.h> 104 #include <sys/instance.h> 105 106 #include <sys/time.h> 107 #include <sys/smp_impldefs.h> 108 #include <sys/psm_types.h> 109 #include <sys/atomic.h> 110 #include <sys/panic.h> 111 #include <sys/cpuvar.h> 112 #include <sys/dtrace.h> 113 #include <sys/bl.h> 114 #include <sys/nvpair.h> 115 #include <sys/x86_archext.h> 116 #include <sys/pool_pset.h> 117 #include <sys/autoconf.h> 118 #include <sys/mem.h> 119 #include <sys/dumphdr.h> 120 #include <sys/compress.h> 121 #include <sys/cpu_module.h> 122 #if defined(__xpv) 123 #include <sys/hypervisor.h> 124 #include <sys/xpv_panic.h> 125 #endif 126 127 #include <sys/fastboot.h> 128 #include <sys/machelf.h> 129 #include <sys/kobj.h> 130 #include <sys/multiboot.h> 131 132 #ifdef TRAPTRACE 133 #include <sys/traptrace.h> 134 #endif /* TRAPTRACE */ 135 136 #include <c2/audit.h> 137 #include <sys/clock_impl.h> 138 139 extern void audit_enterprom(int); 140 extern void audit_exitprom(int); 141 142 /* 143 * Tunable to enable apix PSM; if set to 0, pcplusmp PSM will be used. 144 */ 145 int apix_enable = 1; 146 147 int apic_nvidia_io_max = 0; /* no. of NVIDIA i/o apics */ 148 149 /* 150 * Occassionally the kernel knows better whether to power-off or reboot. 151 */ 152 int force_shutdown_method = AD_UNKNOWN; 153 154 /* 155 * The panicbuf array is used to record messages and state: 156 */ 157 char panicbuf[PANICBUFSIZE]; 158 159 /* 160 * Flags to control Dynamic Reconfiguration features. 161 */ 162 uint64_t plat_dr_options; 163 164 /* 165 * Maximum physical address for memory DR operations. 166 */ 167 uint64_t plat_dr_physmax; 168 169 /* 170 * maxphys - used during physio 171 * klustsize - used for klustering by swapfs and specfs 172 */ 173 int maxphys = 56 * 1024; /* XXX See vm_subr.c - max b_count in physio */ 174 int klustsize = 56 * 1024; 175 176 caddr_t p0_va; /* Virtual address for accessing physical page 0 */ 177 178 /* 179 * defined here, though unused on x86, 180 * to make kstat_fr.c happy. 181 */ 182 int vac; 183 184 void debug_enter(char *); 185 186 extern void pm_cfb_check_and_powerup(void); 187 extern void pm_cfb_rele(void); 188 189 extern fastboot_info_t newkernel; 190 191 /* 192 * Machine dependent code to reboot. 193 * "mdep" is interpreted as a character pointer; if non-null, it is a pointer 194 * to a string to be used as the argument string when rebooting. 195 * 196 * "invoke_cb" is a boolean. It is set to true when mdboot() can safely 197 * invoke CB_CL_MDBOOT callbacks before shutting the system down, i.e. when 198 * we are in a normal shutdown sequence (interrupts are not blocked, the 199 * system is not panic'ing or being suspended). 200 */ 201 /*ARGSUSED*/ 202 void 203 mdboot(int cmd, int fcn, char *mdep, boolean_t invoke_cb) 204 { 205 processorid_t bootcpuid = 0; 206 static int is_first_quiesce = 1; 207 static int is_first_reset = 1; 208 int reset_status = 0; 209 static char fallback_str[] = "Falling back to regular reboot.\n"; 210 211 if (fcn == AD_FASTREBOOT && !newkernel.fi_valid) 212 fcn = AD_BOOT; 213 214 if (!panicstr) { 215 kpreempt_disable(); 216 if (fcn == AD_FASTREBOOT) { 217 mutex_enter(&cpu_lock); 218 if (CPU_ACTIVE(cpu_get(bootcpuid))) { 219 affinity_set(bootcpuid); 220 } 221 mutex_exit(&cpu_lock); 222 } else { 223 affinity_set(CPU_CURRENT); 224 } 225 } 226 227 if (force_shutdown_method != AD_UNKNOWN) 228 fcn = force_shutdown_method; 229 230 /* 231 * XXX - rconsvp is set to NULL to ensure that output messages 232 * are sent to the underlying "hardware" device using the 233 * monitor's printf routine since we are in the process of 234 * either rebooting or halting the machine. 235 */ 236 rconsvp = NULL; 237 238 /* 239 * Print the reboot message now, before pausing other cpus. 240 * There is a race condition in the printing support that 241 * can deadlock multiprocessor machines. 242 */ 243 if (!(fcn == AD_HALT || fcn == AD_POWEROFF)) 244 prom_printf("rebooting...\n"); 245 246 if (IN_XPV_PANIC()) 247 reset(); 248 249 /* 250 * We can't bring up the console from above lock level, so do it now 251 */ 252 pm_cfb_check_and_powerup(); 253 254 /* make sure there are no more changes to the device tree */ 255 devtree_freeze(); 256 257 if (invoke_cb) 258 (void) callb_execute_class(CB_CL_MDBOOT, NULL); 259 260 /* 261 * Clear any unresolved UEs from memory. 262 */ 263 page_retire_mdboot(); 264 265 #if defined(__xpv) 266 /* 267 * XXPV Should probably think some more about how we deal 268 * with panicing before it's really safe to panic. 269 * On hypervisors, we reboot very quickly.. Perhaps panic 270 * should only attempt to recover by rebooting if, 271 * say, we were able to mount the root filesystem, 272 * or if we successfully launched init(1m). 273 */ 274 if (panicstr && proc_init == NULL) 275 (void) HYPERVISOR_shutdown(SHUTDOWN_poweroff); 276 #endif 277 /* 278 * stop other cpus and raise our priority. since there is only 279 * one active cpu after this, and our priority will be too high 280 * for us to be preempted, we're essentially single threaded 281 * from here on out. 282 */ 283 (void) spl6(); 284 if (!panicstr) { 285 mutex_enter(&cpu_lock); 286 pause_cpus(NULL, NULL); 287 mutex_exit(&cpu_lock); 288 } 289 290 /* 291 * If the system is panicking, the preloaded kernel is valid, and 292 * fastreboot_onpanic has been set, and the system has been up for 293 * longer than fastreboot_onpanic_uptime (default to 10 minutes), 294 * choose Fast Reboot. 295 */ 296 if (fcn == AD_BOOT && panicstr && newkernel.fi_valid && 297 fastreboot_onpanic && 298 (panic_lbolt - lbolt_at_boot) > fastreboot_onpanic_uptime) { 299 fcn = AD_FASTREBOOT; 300 } 301 302 /* 303 * Try to quiesce devices. 304 */ 305 if (is_first_quiesce) { 306 /* 307 * Clear is_first_quiesce before calling quiesce_devices() 308 * so that if quiesce_devices() causes panics, it will not 309 * be invoked again. 310 */ 311 is_first_quiesce = 0; 312 313 quiesce_active = 1; 314 quiesce_devices(ddi_root_node(), &reset_status); 315 if (reset_status == -1) { 316 if (fcn == AD_FASTREBOOT && !force_fastreboot) { 317 prom_printf("Driver(s) not capable of fast " 318 "reboot.\n"); 319 prom_printf(fallback_str); 320 fastreboot_capable = 0; 321 fcn = AD_BOOT; 322 } else if (fcn != AD_FASTREBOOT) 323 fastreboot_capable = 0; 324 } 325 quiesce_active = 0; 326 } 327 328 /* 329 * Try to reset devices. reset_leaves() should only be called 330 * a) when there are no other threads that could be accessing devices, 331 * and 332 * b) on a system that's not capable of fast reboot (fastreboot_capable 333 * being 0), or on a system where quiesce_devices() failed to 334 * complete (quiesce_active being 1). 335 */ 336 if (is_first_reset && (!fastreboot_capable || quiesce_active)) { 337 /* 338 * Clear is_first_reset before calling reset_devices() 339 * so that if reset_devices() causes panics, it will not 340 * be invoked again. 341 */ 342 is_first_reset = 0; 343 reset_leaves(); 344 } 345 346 /* Verify newkernel checksum */ 347 if (fastreboot_capable && fcn == AD_FASTREBOOT && 348 fastboot_cksum_verify(&newkernel) != 0) { 349 fastreboot_capable = 0; 350 prom_printf("Fast reboot: checksum failed for the new " 351 "kernel.\n"); 352 prom_printf(fallback_str); 353 } 354 355 (void) spl8(); 356 357 if (fastreboot_capable && fcn == AD_FASTREBOOT) { 358 /* 359 * psm_shutdown is called within fast_reboot() 360 */ 361 fast_reboot(); 362 } else { 363 (*psm_shutdownf)(cmd, fcn); 364 365 if (fcn == AD_HALT || fcn == AD_POWEROFF) 366 halt((char *)NULL); 367 else 368 prom_reboot(""); 369 } 370 /*NOTREACHED*/ 371 } 372 373 /* mdpreboot - may be called prior to mdboot while root fs still mounted */ 374 /*ARGSUSED*/ 375 void 376 mdpreboot(int cmd, int fcn, char *mdep) 377 { 378 if (fcn == AD_FASTREBOOT && !fastreboot_capable) { 379 fcn = AD_BOOT; 380 #ifdef __xpv 381 cmn_err(CE_WARN, "Fast reboot is not supported on xVM"); 382 #else 383 cmn_err(CE_WARN, 384 "Fast reboot is not supported on this platform%s", 385 fastreboot_nosup_message()); 386 #endif 387 } 388 389 if (fcn == AD_FASTREBOOT) { 390 fastboot_load_kernel(mdep); 391 if (!newkernel.fi_valid) 392 fcn = AD_BOOT; 393 } 394 395 (*psm_preshutdownf)(cmd, fcn); 396 } 397 398 static void 399 stop_other_cpus(void) 400 { 401 ulong_t s = clear_int_flag(); /* fast way to keep CPU from changing */ 402 cpuset_t xcset; 403 404 CPUSET_ALL_BUT(xcset, CPU->cpu_id); 405 xc_priority(0, 0, 0, CPUSET2BV(xcset), (xc_func_t)mach_cpu_halt); 406 restore_int_flag(s); 407 } 408 409 /* 410 * Machine dependent abort sequence handling 411 */ 412 void 413 abort_sequence_enter(char *msg) 414 { 415 if (abort_enable == 0) { 416 if (AU_ZONE_AUDITING(GET_KCTX_GZ)) 417 audit_enterprom(0); 418 return; 419 } 420 if (AU_ZONE_AUDITING(GET_KCTX_GZ)) 421 audit_enterprom(1); 422 debug_enter(msg); 423 if (AU_ZONE_AUDITING(GET_KCTX_GZ)) 424 audit_exitprom(1); 425 } 426 427 /* 428 * Enter debugger. Called when the user types ctrl-alt-d or whenever 429 * code wants to enter the debugger and possibly resume later. 430 */ 431 void 432 debug_enter( 433 char *msg) /* message to print, possibly NULL */ 434 { 435 if (dtrace_debugger_init != NULL) 436 (*dtrace_debugger_init)(); 437 438 if (msg) 439 prom_printf("%s\n", msg); 440 441 if (boothowto & RB_DEBUG) 442 kmdb_enter(); 443 444 if (dtrace_debugger_fini != NULL) 445 (*dtrace_debugger_fini)(); 446 } 447 448 void 449 reset(void) 450 { 451 extern void acpi_reset_system(); 452 #if !defined(__xpv) 453 ushort_t *bios_memchk; 454 455 /* 456 * Can't use psm_map_phys or acpi_reset_system before the hat is 457 * initialized. 458 */ 459 if (khat_running) { 460 bios_memchk = (ushort_t *)psm_map_phys(0x472, 461 sizeof (ushort_t), PROT_READ | PROT_WRITE); 462 if (bios_memchk) 463 *bios_memchk = 0x1234; /* bios memory check disable */ 464 465 if (options_dip != NULL && 466 ddi_prop_exists(DDI_DEV_T_ANY, ddi_root_node(), 0, 467 "efi-systab")) { 468 efi_reset(); 469 } 470 471 /* 472 * The problem with using stubs is that we can call 473 * acpi_reset_system only after the kernel is up and running. 474 * 475 * We should create a global state to keep track of how far 476 * up the kernel is but for the time being we will depend on 477 * bootops. bootops cleared in startup_end(). 478 */ 479 if (bootops == NULL) 480 acpi_reset_system(); 481 } 482 483 pc_reset(); 484 #else 485 if (IN_XPV_PANIC()) { 486 if (khat_running && bootops == NULL) { 487 acpi_reset_system(); 488 } 489 490 pc_reset(); 491 } 492 493 (void) HYPERVISOR_shutdown(SHUTDOWN_reboot); 494 panic("HYPERVISOR_shutdown() failed"); 495 #endif 496 /*NOTREACHED*/ 497 } 498 499 /* 500 * Halt the machine and return to the monitor 501 */ 502 void 503 halt(char *s) 504 { 505 stop_other_cpus(); /* send stop signal to other CPUs */ 506 if (s) 507 prom_printf("(%s) \n", s); 508 prom_exit_to_mon(); 509 /*NOTREACHED*/ 510 } 511 512 /* 513 * Initiate interrupt redistribution. 514 */ 515 void 516 i_ddi_intr_redist_all_cpus() 517 { 518 } 519 520 /* 521 * XXX These probably ought to live somewhere else 522 * XXX They are called from mem.c 523 */ 524 525 /* 526 * Convert page frame number to an OBMEM page frame number 527 * (i.e. put in the type bits -- zero for this implementation) 528 */ 529 pfn_t 530 impl_obmem_pfnum(pfn_t pf) 531 { 532 return (pf); 533 } 534 535 #ifdef NM_DEBUG 536 int nmi_test = 0; /* checked in intentry.s during clock int */ 537 int nmtest = -1; 538 nmfunc1(arg, rp) 539 int arg; 540 struct regs *rp; 541 { 542 printf("nmi called with arg = %x, regs = %x\n", arg, rp); 543 nmtest += 50; 544 if (arg == nmtest) { 545 printf("ip = %x\n", rp->r_pc); 546 return (1); 547 } 548 return (0); 549 } 550 551 #endif 552 553 #include <sys/bootsvcs.h> 554 555 /* Hacked up initialization for initial kernel check out is HERE. */ 556 /* The basic steps are: */ 557 /* kernel bootfuncs definition/initialization for KADB */ 558 /* kadb bootfuncs pointer initialization */ 559 /* putchar/getchar (interrupts disabled) */ 560 561 /* kadb bootfuncs pointer initialization */ 562 563 int 564 sysp_getchar() 565 { 566 int i; 567 ulong_t s; 568 569 if (cons_polledio == NULL) { 570 /* Uh oh */ 571 prom_printf("getchar called with no console\n"); 572 for (;;) 573 /* LOOP FOREVER */; 574 } 575 576 s = clear_int_flag(); 577 i = cons_polledio->cons_polledio_getchar( 578 cons_polledio->cons_polledio_argument); 579 restore_int_flag(s); 580 return (i); 581 } 582 583 void 584 sysp_putchar(int c) 585 { 586 ulong_t s; 587 588 /* 589 * We have no alternative but to drop the output on the floor. 590 */ 591 if (cons_polledio == NULL || 592 cons_polledio->cons_polledio_putchar == NULL) 593 return; 594 595 s = clear_int_flag(); 596 cons_polledio->cons_polledio_putchar( 597 cons_polledio->cons_polledio_argument, c); 598 restore_int_flag(s); 599 } 600 601 int 602 sysp_ischar() 603 { 604 int i; 605 ulong_t s; 606 607 if (cons_polledio == NULL || 608 cons_polledio->cons_polledio_ischar == NULL) 609 return (0); 610 611 s = clear_int_flag(); 612 i = cons_polledio->cons_polledio_ischar( 613 cons_polledio->cons_polledio_argument); 614 restore_int_flag(s); 615 return (i); 616 } 617 618 int 619 goany(void) 620 { 621 prom_printf("Type any key to continue "); 622 (void) prom_getchar(); 623 prom_printf("\n"); 624 return (1); 625 } 626 627 static struct boot_syscalls kern_sysp = { 628 sysp_getchar, /* unchar (*getchar)(); 7 */ 629 sysp_putchar, /* int (*putchar)(); 8 */ 630 sysp_ischar, /* int (*ischar)(); 9 */ 631 }; 632 633 #if defined(__xpv) 634 int using_kern_polledio; 635 #endif 636 637 void 638 kadb_uses_kernel() 639 { 640 /* 641 * This routine is now totally misnamed, since it does not in fact 642 * control kadb's I/O; it only controls the kernel's prom_* I/O. 643 */ 644 sysp = &kern_sysp; 645 #if defined(__xpv) 646 using_kern_polledio = 1; 647 #endif 648 } 649 650 /* 651 * the interface to the outside world 652 */ 653 654 /* 655 * poll_port -- wait for a register to achieve a 656 * specific state. Arguments are a mask of bits we care about, 657 * and two sub-masks. To return normally, all the bits in the 658 * first sub-mask must be ON, all the bits in the second sub- 659 * mask must be OFF. If about seconds pass without the register 660 * achieving the desired bit configuration, we return 1, else 661 * 0. 662 */ 663 int 664 poll_port(ushort_t port, ushort_t mask, ushort_t onbits, ushort_t offbits) 665 { 666 int i; 667 ushort_t maskval; 668 669 for (i = 500000; i; i--) { 670 maskval = inb(port) & mask; 671 if (((maskval & onbits) == onbits) && 672 ((maskval & offbits) == 0)) 673 return (0); 674 drv_usecwait(10); 675 } 676 return (1); 677 } 678 679 /* 680 * set_idle_cpu is called from idle() when a CPU becomes idle. 681 */ 682 /*LINTED: static unused */ 683 static uint_t last_idle_cpu; 684 685 /*ARGSUSED*/ 686 void 687 set_idle_cpu(int cpun) 688 { 689 last_idle_cpu = cpun; 690 (*psm_set_idle_cpuf)(cpun); 691 } 692 693 /* 694 * unset_idle_cpu is called from idle() when a CPU is no longer idle. 695 */ 696 /*ARGSUSED*/ 697 void 698 unset_idle_cpu(int cpun) 699 { 700 (*psm_unset_idle_cpuf)(cpun); 701 } 702 703 /* 704 * This routine is almost correct now, but not quite. It still needs the 705 * equivalent concept of "hres_last_tick", just like on the sparc side. 706 * The idea is to take a snapshot of the hi-res timer while doing the 707 * hrestime_adj updates under hres_lock in locore, so that the small 708 * interval between interrupt assertion and interrupt processing is 709 * accounted for correctly. Once we have this, the code below should 710 * be modified to subtract off hres_last_tick rather than hrtime_base. 711 * 712 * I'd have done this myself, but I don't have source to all of the 713 * vendor-specific hi-res timer routines (grrr...). The generic hook I 714 * need is something like "gethrtime_unlocked()", which would be just like 715 * gethrtime() but would assume that you're already holding CLOCK_LOCK(). 716 * This is what the GET_HRTIME() macro is for on sparc (although it also 717 * serves the function of making time available without a function call 718 * so you don't take a register window overflow while traps are disabled). 719 */ 720 void 721 pc_gethrestime(timestruc_t *tp) 722 { 723 int lock_prev; 724 timestruc_t now; 725 int nslt; /* nsec since last tick */ 726 int adj; /* amount of adjustment to apply */ 727 728 loop: 729 lock_prev = hres_lock; 730 now = hrestime; 731 nslt = (int)(gethrtime() - hres_last_tick); 732 if (nslt < 0) { 733 /* 734 * nslt < 0 means a tick came between sampling 735 * gethrtime() and hres_last_tick; restart the loop 736 */ 737 738 goto loop; 739 } 740 now.tv_nsec += nslt; 741 if (hrestime_adj != 0) { 742 if (hrestime_adj > 0) { 743 adj = (nslt >> ADJ_SHIFT); 744 if (adj > hrestime_adj) 745 adj = (int)hrestime_adj; 746 } else { 747 adj = -(nslt >> ADJ_SHIFT); 748 if (adj < hrestime_adj) 749 adj = (int)hrestime_adj; 750 } 751 now.tv_nsec += adj; 752 } 753 while ((unsigned long)now.tv_nsec >= NANOSEC) { 754 755 /* 756 * We might have a large adjustment or have been in the 757 * debugger for a long time; take care of (at most) four 758 * of those missed seconds (tv_nsec is 32 bits, so 759 * anything >4s will be wrapping around). However, 760 * anything more than 2 seconds out of sync will trigger 761 * timedelta from clock() to go correct the time anyway, 762 * so do what we can, and let the big crowbar do the 763 * rest. A similar correction while loop exists inside 764 * hres_tick(); in all cases we'd like tv_nsec to 765 * satisfy 0 <= tv_nsec < NANOSEC to avoid confusing 766 * user processes, but if tv_sec's a little behind for a 767 * little while, that's OK; time still monotonically 768 * increases. 769 */ 770 771 now.tv_nsec -= NANOSEC; 772 now.tv_sec++; 773 } 774 if ((hres_lock & ~1) != lock_prev) 775 goto loop; 776 777 *tp = now; 778 } 779 780 void 781 gethrestime_lasttick(timespec_t *tp) 782 { 783 int s; 784 785 s = hr_clock_lock(); 786 *tp = hrestime; 787 hr_clock_unlock(s); 788 } 789 790 time_t 791 gethrestime_sec(void) 792 { 793 timestruc_t now; 794 795 gethrestime(&now); 796 return (now.tv_sec); 797 } 798 799 /* 800 * Initialize a kernel thread's stack 801 */ 802 803 caddr_t 804 thread_stk_init(caddr_t stk) 805 { 806 ASSERT(((uintptr_t)stk & (STACK_ALIGN - 1)) == 0); 807 return (stk - SA(MINFRAME)); 808 } 809 810 /* 811 * Initialize lwp's kernel stack. 812 */ 813 814 #ifdef TRAPTRACE 815 /* 816 * There's a tricky interdependency here between use of sysenter and 817 * TRAPTRACE which needs recording to avoid future confusion (this is 818 * about the third time I've re-figured this out ..) 819 * 820 * Here's how debugging lcall works with TRAPTRACE. 821 * 822 * 1 We're in userland with a breakpoint on the lcall instruction. 823 * 2 We execute the instruction - the instruction pushes the userland 824 * %ss, %esp, %efl, %cs, %eip on the stack and zips into the kernel 825 * via the call gate. 826 * 3 The hardware raises a debug trap in kernel mode, the hardware 827 * pushes %efl, %cs, %eip and gets to dbgtrap via the idt. 828 * 4 dbgtrap pushes the error code and trapno and calls cmntrap 829 * 5 cmntrap finishes building a trap frame 830 * 6 The TRACE_REGS macros in cmntrap copy a REGSIZE worth chunk 831 * off the stack into the traptrace buffer. 832 * 833 * This means that the traptrace buffer contains the wrong values in 834 * %esp and %ss, but everything else in there is correct. 835 * 836 * Here's how debugging sysenter works with TRAPTRACE. 837 * 838 * a We're in userland with a breakpoint on the sysenter instruction. 839 * b We execute the instruction - the instruction pushes -nothing- 840 * on the stack, but sets %cs, %eip, %ss, %esp to prearranged 841 * values to take us to sys_sysenter, at the top of the lwp's 842 * stack. 843 * c goto 3 844 * 845 * At this point, because we got into the kernel without the requisite 846 * five pushes on the stack, if we didn't make extra room, we'd 847 * end up with the TRACE_REGS macro fetching the saved %ss and %esp 848 * values from negative (unmapped) stack addresses -- which really bites. 849 * That's why we do the '-= 8' below. 850 * 851 * XXX Note that reading "up" lwp0's stack works because t0 is declared 852 * right next to t0stack in locore.s 853 */ 854 #endif 855 856 caddr_t 857 lwp_stk_init(klwp_t *lwp, caddr_t stk) 858 { 859 caddr_t oldstk; 860 struct pcb *pcb = &lwp->lwp_pcb; 861 862 oldstk = stk; 863 stk -= SA(sizeof (struct regs) + SA(MINFRAME)); 864 #ifdef TRAPTRACE 865 stk -= 2 * sizeof (greg_t); /* space for phony %ss:%sp (see above) */ 866 #endif 867 stk = (caddr_t)((uintptr_t)stk & ~(STACK_ALIGN - 1ul)); 868 bzero(stk, oldstk - stk); 869 lwp->lwp_regs = (void *)(stk + SA(MINFRAME)); 870 871 /* 872 * Arrange that the virtualized %fs and %gs GDT descriptors 873 * have a well-defined initial state (present, ring 3 874 * and of type data). 875 */ 876 #if defined(__amd64) 877 if (lwp_getdatamodel(lwp) == DATAMODEL_NATIVE) 878 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc; 879 else 880 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_u32desc; 881 #elif defined(__i386) 882 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc; 883 #endif /* __i386 */ 884 lwp_installctx(lwp); 885 return (stk); 886 } 887 888 /*ARGSUSED*/ 889 void 890 lwp_stk_fini(klwp_t *lwp) 891 {} 892 893 /* 894 * If we're not the panic CPU, we wait in panic_idle for reboot. 895 */ 896 void 897 panic_idle(void) 898 { 899 splx(ipltospl(CLOCK_LEVEL)); 900 (void) setjmp(&curthread->t_pcb); 901 902 dumpsys_helper(); 903 904 #ifndef __xpv 905 for (;;) 906 i86_halt(); 907 #else 908 for (;;) 909 ; 910 #endif 911 } 912 913 /* 914 * Stop the other CPUs by cross-calling them and forcing them to enter 915 * the panic_idle() loop above. 916 */ 917 /*ARGSUSED*/ 918 void 919 panic_stopcpus(cpu_t *cp, kthread_t *t, int spl) 920 { 921 processorid_t i; 922 cpuset_t xcset; 923 924 /* 925 * In the case of a Xen panic, the hypervisor has already stopped 926 * all of the CPUs. 927 */ 928 if (!IN_XPV_PANIC()) { 929 (void) splzs(); 930 931 CPUSET_ALL_BUT(xcset, cp->cpu_id); 932 xc_priority(0, 0, 0, CPUSET2BV(xcset), (xc_func_t)panic_idle); 933 } 934 935 for (i = 0; i < NCPU; i++) { 936 if (i != cp->cpu_id && cpu[i] != NULL && 937 (cpu[i]->cpu_flags & CPU_EXISTS)) 938 cpu[i]->cpu_flags |= CPU_QUIESCED; 939 } 940 } 941 942 /* 943 * Platform callback following each entry to panicsys(). 944 */ 945 /*ARGSUSED*/ 946 void 947 panic_enter_hw(int spl) 948 { 949 /* Nothing to do here */ 950 } 951 952 /* 953 * Platform-specific code to execute after panicstr is set: we invoke 954 * the PSM entry point to indicate that a panic has occurred. 955 */ 956 /*ARGSUSED*/ 957 void 958 panic_quiesce_hw(panic_data_t *pdp) 959 { 960 psm_notifyf(PSM_PANIC_ENTER); 961 962 cmi_panic_callback(); 963 964 #ifdef TRAPTRACE 965 /* 966 * Turn off TRAPTRACE 967 */ 968 TRAPTRACE_FREEZE; 969 #endif /* TRAPTRACE */ 970 } 971 972 /* 973 * Platform callback prior to writing crash dump. 974 */ 975 /*ARGSUSED*/ 976 void 977 panic_dump_hw(int spl) 978 { 979 /* Nothing to do here */ 980 } 981 982 void * 983 plat_traceback(void *fpreg) 984 { 985 #ifdef __xpv 986 if (IN_XPV_PANIC()) 987 return (xpv_traceback(fpreg)); 988 #endif 989 return (fpreg); 990 } 991 992 /*ARGSUSED*/ 993 void 994 plat_tod_fault(enum tod_fault_type tod_bad) 995 {} 996 997 /*ARGSUSED*/ 998 int 999 blacklist(int cmd, const char *scheme, nvlist_t *fmri, const char *class) 1000 { 1001 return (ENOTSUP); 1002 } 1003 1004 /* 1005 * The underlying console output routines are protected by raising IPL in case 1006 * we are still calling into the early boot services. Once we start calling 1007 * the kernel console emulator, it will disable interrupts completely during 1008 * character rendering (see sysp_putchar, for example). Refer to the comments 1009 * and code in common/os/console.c for more information on these callbacks. 1010 */ 1011 /*ARGSUSED*/ 1012 int 1013 console_enter(int busy) 1014 { 1015 return (splzs()); 1016 } 1017 1018 /*ARGSUSED*/ 1019 void 1020 console_exit(int busy, int spl) 1021 { 1022 splx(spl); 1023 } 1024 1025 /* 1026 * Allocate a region of virtual address space, unmapped. 1027 * Stubbed out except on sparc, at least for now. 1028 */ 1029 /*ARGSUSED*/ 1030 void * 1031 boot_virt_alloc(void *addr, size_t size) 1032 { 1033 return (addr); 1034 } 1035 1036 volatile unsigned long tenmicrodata; 1037 1038 void 1039 tenmicrosec(void) 1040 { 1041 extern int gethrtime_hires; 1042 1043 if (gethrtime_hires) { 1044 hrtime_t start, end; 1045 start = end = gethrtime(); 1046 while ((end - start) < (10 * (NANOSEC / MICROSEC))) { 1047 SMT_PAUSE(); 1048 end = gethrtime(); 1049 } 1050 } else { 1051 #if defined(__xpv) 1052 hrtime_t newtime; 1053 1054 newtime = xpv_gethrtime() + 10000; /* now + 10 us */ 1055 while (xpv_gethrtime() < newtime) 1056 SMT_PAUSE(); 1057 #else /* __xpv */ 1058 int i; 1059 1060 /* 1061 * Artificial loop to induce delay. 1062 */ 1063 for (i = 0; i < microdata; i++) 1064 tenmicrodata = microdata; 1065 #endif /* __xpv */ 1066 } 1067 } 1068 1069 /* 1070 * get_cpu_mstate() is passed an array of timestamps, NCMSTATES 1071 * long, and it fills in the array with the time spent on cpu in 1072 * each of the mstates, where time is returned in nsec. 1073 * 1074 * No guarantee is made that the returned values in times[] will 1075 * monotonically increase on sequential calls, although this will 1076 * be true in the long run. Any such guarantee must be handled by 1077 * the caller, if needed. This can happen if we fail to account 1078 * for elapsed time due to a generation counter conflict, yet we 1079 * did account for it on a prior call (see below). 1080 * 1081 * The complication is that the cpu in question may be updating 1082 * its microstate at the same time that we are reading it. 1083 * Because the microstate is only updated when the CPU's state 1084 * changes, the values in cpu_intracct[] can be indefinitely out 1085 * of date. To determine true current values, it is necessary to 1086 * compare the current time with cpu_mstate_start, and add the 1087 * difference to times[cpu_mstate]. 1088 * 1089 * This can be a problem if those values are changing out from 1090 * under us. Because the code path in new_cpu_mstate() is 1091 * performance critical, we have not added a lock to it. Instead, 1092 * we have added a generation counter. Before beginning 1093 * modifications, the counter is set to 0. After modifications, 1094 * it is set to the old value plus one. 1095 * 1096 * get_cpu_mstate() will not consider the values of cpu_mstate 1097 * and cpu_mstate_start to be usable unless the value of 1098 * cpu_mstate_gen is both non-zero and unchanged, both before and 1099 * after reading the mstate information. Note that we must 1100 * protect against out-of-order loads around accesses to the 1101 * generation counter. Also, this is a best effort approach in 1102 * that we do not retry should the counter be found to have 1103 * changed. 1104 * 1105 * cpu_intracct[] is used to identify time spent in each CPU 1106 * mstate while handling interrupts. Such time should be reported 1107 * against system time, and so is subtracted out from its 1108 * corresponding cpu_acct[] time and added to 1109 * cpu_acct[CMS_SYSTEM]. 1110 */ 1111 1112 void 1113 get_cpu_mstate(cpu_t *cpu, hrtime_t *times) 1114 { 1115 int i; 1116 hrtime_t now, start; 1117 uint16_t gen; 1118 uint16_t state; 1119 hrtime_t intracct[NCMSTATES]; 1120 1121 /* 1122 * Load all volatile state under the protection of membar. 1123 * cpu_acct[cpu_mstate] must be loaded to avoid double counting 1124 * of (now - cpu_mstate_start) by a change in CPU mstate that 1125 * arrives after we make our last check of cpu_mstate_gen. 1126 */ 1127 1128 now = gethrtime_unscaled(); 1129 gen = cpu->cpu_mstate_gen; 1130 1131 membar_consumer(); /* guarantee load ordering */ 1132 start = cpu->cpu_mstate_start; 1133 state = cpu->cpu_mstate; 1134 for (i = 0; i < NCMSTATES; i++) { 1135 intracct[i] = cpu->cpu_intracct[i]; 1136 times[i] = cpu->cpu_acct[i]; 1137 } 1138 membar_consumer(); /* guarantee load ordering */ 1139 1140 if (gen != 0 && gen == cpu->cpu_mstate_gen && now > start) 1141 times[state] += now - start; 1142 1143 for (i = 0; i < NCMSTATES; i++) { 1144 if (i == CMS_SYSTEM) 1145 continue; 1146 times[i] -= intracct[i]; 1147 if (times[i] < 0) { 1148 intracct[i] += times[i]; 1149 times[i] = 0; 1150 } 1151 times[CMS_SYSTEM] += intracct[i]; 1152 scalehrtime(×[i]); 1153 } 1154 scalehrtime(×[CMS_SYSTEM]); 1155 } 1156 1157 /* 1158 * This is a version of the rdmsr instruction that allows 1159 * an error code to be returned in the case of failure. 1160 */ 1161 int 1162 checked_rdmsr(uint_t msr, uint64_t *value) 1163 { 1164 if (!is_x86_feature(x86_featureset, X86FSET_MSR)) 1165 return (ENOTSUP); 1166 *value = rdmsr(msr); 1167 return (0); 1168 } 1169 1170 /* 1171 * This is a version of the wrmsr instruction that allows 1172 * an error code to be returned in the case of failure. 1173 */ 1174 int 1175 checked_wrmsr(uint_t msr, uint64_t value) 1176 { 1177 if (!is_x86_feature(x86_featureset, X86FSET_MSR)) 1178 return (ENOTSUP); 1179 wrmsr(msr, value); 1180 return (0); 1181 } 1182 1183 /* 1184 * The mem driver's usual method of using hat_devload() to establish a 1185 * temporary mapping will not work for foreign pages mapped into this 1186 * domain or for the special hypervisor-provided pages. For the foreign 1187 * pages, we often don't know which domain owns them, so we can't ask the 1188 * hypervisor to set up a new mapping. For the other pages, we don't have 1189 * a pfn, so we can't create a new PTE. For these special cases, we do a 1190 * direct uiomove() from the existing kernel virtual address. 1191 */ 1192 /*ARGSUSED*/ 1193 int 1194 plat_mem_do_mmio(struct uio *uio, enum uio_rw rw) 1195 { 1196 #if defined(__xpv) 1197 void *va = (void *)(uintptr_t)uio->uio_loffset; 1198 off_t pageoff = uio->uio_loffset & PAGEOFFSET; 1199 size_t nbytes = MIN((size_t)(PAGESIZE - pageoff), 1200 (size_t)uio->uio_iov->iov_len); 1201 1202 if ((rw == UIO_READ && 1203 (va == HYPERVISOR_shared_info || va == xen_info)) || 1204 (pfn_is_foreign(hat_getpfnum(kas.a_hat, va)))) 1205 return (uiomove(va, nbytes, rw, uio)); 1206 #endif 1207 return (ENOTSUP); 1208 } 1209 1210 pgcnt_t 1211 num_phys_pages() 1212 { 1213 pgcnt_t npages = 0; 1214 struct memlist *mp; 1215 1216 #if defined(__xpv) 1217 if (DOMAIN_IS_INITDOMAIN(xen_info)) 1218 return (xpv_nr_phys_pages()); 1219 #endif /* __xpv */ 1220 1221 for (mp = phys_install; mp != NULL; mp = mp->ml_next) 1222 npages += mp->ml_size >> PAGESHIFT; 1223 1224 return (npages); 1225 } 1226 1227 /* cpu threshold for compressed dumps */ 1228 #ifdef _LP64 1229 uint_t dump_plat_mincpu_default = DUMP_PLAT_X86_64_MINCPU; 1230 #else 1231 uint_t dump_plat_mincpu_default = DUMP_PLAT_X86_32_MINCPU; 1232 #endif 1233 1234 int 1235 dump_plat_addr() 1236 { 1237 #ifdef __xpv 1238 pfn_t pfn = mmu_btop(xen_info->shared_info) | PFN_IS_FOREIGN_MFN; 1239 mem_vtop_t mem_vtop; 1240 int cnt; 1241 1242 /* 1243 * On the hypervisor, we want to dump the page with shared_info on it. 1244 */ 1245 if (!IN_XPV_PANIC()) { 1246 mem_vtop.m_as = &kas; 1247 mem_vtop.m_va = HYPERVISOR_shared_info; 1248 mem_vtop.m_pfn = pfn; 1249 dumpvp_write(&mem_vtop, sizeof (mem_vtop_t)); 1250 cnt = 1; 1251 } else { 1252 cnt = dump_xpv_addr(); 1253 } 1254 return (cnt); 1255 #else 1256 return (0); 1257 #endif 1258 } 1259 1260 void 1261 dump_plat_pfn() 1262 { 1263 #ifdef __xpv 1264 pfn_t pfn = mmu_btop(xen_info->shared_info) | PFN_IS_FOREIGN_MFN; 1265 1266 if (!IN_XPV_PANIC()) 1267 dumpvp_write(&pfn, sizeof (pfn)); 1268 else 1269 dump_xpv_pfn(); 1270 #endif 1271 } 1272 1273 /*ARGSUSED*/ 1274 int 1275 dump_plat_data(void *dump_cbuf) 1276 { 1277 #ifdef __xpv 1278 uint32_t csize; 1279 int cnt; 1280 1281 if (!IN_XPV_PANIC()) { 1282 csize = (uint32_t)compress(HYPERVISOR_shared_info, dump_cbuf, 1283 PAGESIZE); 1284 dumpvp_write(&csize, sizeof (uint32_t)); 1285 dumpvp_write(dump_cbuf, csize); 1286 cnt = 1; 1287 } else { 1288 cnt = dump_xpv_data(dump_cbuf); 1289 } 1290 return (cnt); 1291 #else 1292 return (0); 1293 #endif 1294 } 1295 1296 /* 1297 * Calculates a linear address, given the CS selector and PC values 1298 * by looking up the %cs selector process's LDT or the CPU's GDT. 1299 * proc->p_ldtlock must be held across this call. 1300 */ 1301 int 1302 linear_pc(struct regs *rp, proc_t *p, caddr_t *linearp) 1303 { 1304 user_desc_t *descrp; 1305 caddr_t baseaddr; 1306 uint16_t idx = SELTOIDX(rp->r_cs); 1307 1308 ASSERT(rp->r_cs <= 0xFFFF); 1309 ASSERT(MUTEX_HELD(&p->p_ldtlock)); 1310 1311 if (SELISLDT(rp->r_cs)) { 1312 /* 1313 * Currently 64 bit processes cannot have private LDTs. 1314 */ 1315 ASSERT(p->p_model != DATAMODEL_LP64); 1316 1317 if (p->p_ldt == NULL) 1318 return (-1); 1319 1320 descrp = &p->p_ldt[idx]; 1321 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp); 1322 1323 /* 1324 * Calculate the linear address (wraparound is not only ok, 1325 * it's expected behavior). The cast to uint32_t is because 1326 * LDT selectors are only allowed in 32-bit processes. 1327 */ 1328 *linearp = (caddr_t)(uintptr_t)(uint32_t)((uintptr_t)baseaddr + 1329 rp->r_pc); 1330 } else { 1331 #ifdef DEBUG 1332 descrp = &CPU->cpu_gdt[idx]; 1333 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp); 1334 /* GDT-based descriptors' base addresses should always be 0 */ 1335 ASSERT(baseaddr == 0); 1336 #endif 1337 *linearp = (caddr_t)(uintptr_t)rp->r_pc; 1338 } 1339 1340 return (0); 1341 } 1342 1343 /* 1344 * The implementation of dtrace_linear_pc is similar to the that of 1345 * linear_pc, above, but here we acquire p_ldtlock before accessing 1346 * p_ldt. This implementation is used by the pid provider; we prefix 1347 * it with "dtrace_" to avoid inducing spurious tracing events. 1348 */ 1349 int 1350 dtrace_linear_pc(struct regs *rp, proc_t *p, caddr_t *linearp) 1351 { 1352 user_desc_t *descrp; 1353 caddr_t baseaddr; 1354 uint16_t idx = SELTOIDX(rp->r_cs); 1355 1356 ASSERT(rp->r_cs <= 0xFFFF); 1357 1358 if (SELISLDT(rp->r_cs)) { 1359 /* 1360 * Currently 64 bit processes cannot have private LDTs. 1361 */ 1362 ASSERT(p->p_model != DATAMODEL_LP64); 1363 1364 mutex_enter(&p->p_ldtlock); 1365 if (p->p_ldt == NULL) { 1366 mutex_exit(&p->p_ldtlock); 1367 return (-1); 1368 } 1369 descrp = &p->p_ldt[idx]; 1370 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp); 1371 mutex_exit(&p->p_ldtlock); 1372 1373 /* 1374 * Calculate the linear address (wraparound is not only ok, 1375 * it's expected behavior). The cast to uint32_t is because 1376 * LDT selectors are only allowed in 32-bit processes. 1377 */ 1378 *linearp = (caddr_t)(uintptr_t)(uint32_t)((uintptr_t)baseaddr + 1379 rp->r_pc); 1380 } else { 1381 #ifdef DEBUG 1382 descrp = &CPU->cpu_gdt[idx]; 1383 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp); 1384 /* GDT-based descriptors' base addresses should always be 0 */ 1385 ASSERT(baseaddr == 0); 1386 #endif 1387 *linearp = (caddr_t)(uintptr_t)rp->r_pc; 1388 } 1389 1390 return (0); 1391 } 1392 1393 /* 1394 * We need to post a soft interrupt to reprogram the lbolt cyclic when 1395 * switching from event to cyclic driven lbolt. The following code adds 1396 * and posts the softint for x86. 1397 */ 1398 static ddi_softint_hdl_impl_t lbolt_softint_hdl = 1399 {0, NULL, NULL, NULL, 0, NULL, NULL, NULL}; 1400 1401 void 1402 lbolt_softint_add(void) 1403 { 1404 (void) add_avsoftintr((void *)&lbolt_softint_hdl, LOCK_LEVEL, 1405 (avfunc)lbolt_ev_to_cyclic, "lbolt_ev_to_cyclic", NULL, NULL); 1406 } 1407 1408 void 1409 lbolt_softint_post(void) 1410 { 1411 (*setsoftint)(CBE_LOCK_PIL, lbolt_softint_hdl.ih_pending); 1412 } 1413 1414 boolean_t 1415 plat_dr_check_capability(uint64_t features) 1416 { 1417 return ((plat_dr_options & features) == features); 1418 } 1419 1420 boolean_t 1421 plat_dr_support_cpu(void) 1422 { 1423 return (plat_dr_options & PLAT_DR_FEATURE_CPU); 1424 } 1425 1426 boolean_t 1427 plat_dr_support_memory(void) 1428 { 1429 return (plat_dr_options & PLAT_DR_FEATURE_MEMORY); 1430 } 1431 1432 void 1433 plat_dr_enable_capability(uint64_t features) 1434 { 1435 atomic_or_64(&plat_dr_options, features); 1436 } 1437 1438 void 1439 plat_dr_disable_capability(uint64_t features) 1440 { 1441 atomic_and_64(&plat_dr_options, ~features); 1442 }