1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 /* 25 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 26 * Copyright (c) 2011 Bayard G. Bell. All rights reserved. 27 * Copyright 2012 Garrett D'Amore <garrett@damore.org>. All rights reserved. 28 */ 29 30 /* 31 * x86 root nexus driver 32 */ 33 34 #include <sys/sysmacros.h> 35 #include <sys/conf.h> 36 #include <sys/autoconf.h> 37 #include <sys/sysmacros.h> 38 #include <sys/debug.h> 39 #include <sys/psw.h> 40 #include <sys/ddidmareq.h> 41 #include <sys/promif.h> 42 #include <sys/devops.h> 43 #include <sys/kmem.h> 44 #include <sys/cmn_err.h> 45 #include <vm/seg.h> 46 #include <vm/seg_kmem.h> 47 #include <vm/seg_dev.h> 48 #include <sys/vmem.h> 49 #include <sys/mman.h> 50 #include <vm/hat.h> 51 #include <vm/as.h> 52 #include <vm/page.h> 53 #include <sys/avintr.h> 54 #include <sys/errno.h> 55 #include <sys/modctl.h> 56 #include <sys/ddi_impldefs.h> 57 #include <sys/sunddi.h> 58 #include <sys/sunndi.h> 59 #include <sys/mach_intr.h> 60 #include <sys/psm.h> 61 #include <sys/ontrap.h> 62 #include <sys/atomic.h> 63 #include <sys/sdt.h> 64 #include <sys/rootnex.h> 65 #include <vm/hat_i86.h> 66 #include <sys/ddifm.h> 67 #include <sys/ddi_isa.h> 68 #include <sys/apic.h> 69 70 #ifdef __xpv 71 #include <sys/bootinfo.h> 72 #include <sys/hypervisor.h> 73 #include <sys/bootconf.h> 74 #include <vm/kboot_mmu.h> 75 #endif 76 77 #if defined(__amd64) && !defined(__xpv) 78 #include <sys/immu.h> 79 #endif 80 81 82 /* 83 * enable/disable extra checking of function parameters. Useful for debugging 84 * drivers. 85 */ 86 #ifdef DEBUG 87 int rootnex_alloc_check_parms = 1; 88 int rootnex_bind_check_parms = 1; 89 int rootnex_bind_check_inuse = 1; 90 int rootnex_unbind_verify_buffer = 0; 91 int rootnex_sync_check_parms = 1; 92 #else 93 int rootnex_alloc_check_parms = 0; 94 int rootnex_bind_check_parms = 0; 95 int rootnex_bind_check_inuse = 0; 96 int rootnex_unbind_verify_buffer = 0; 97 int rootnex_sync_check_parms = 0; 98 #endif 99 100 boolean_t rootnex_dmar_not_setup; 101 102 /* Master Abort and Target Abort panic flag */ 103 int rootnex_fm_ma_ta_panic_flag = 0; 104 105 /* Semi-temporary patchables to phase in bug fixes, test drivers, etc. */ 106 int rootnex_bind_fail = 1; 107 int rootnex_bind_warn = 1; 108 uint8_t *rootnex_warn_list; 109 /* bitmasks for rootnex_warn_list. Up to 8 different warnings with uint8_t */ 110 #define ROOTNEX_BIND_WARNING (0x1 << 0) 111 112 /* 113 * revert back to old broken behavior of always sync'ing entire copy buffer. 114 * This is useful if be have a buggy driver which doesn't correctly pass in 115 * the offset and size into ddi_dma_sync(). 116 */ 117 int rootnex_sync_ignore_params = 0; 118 119 /* 120 * For the 64-bit kernel, pre-alloc enough cookies for a 256K buffer plus 1 121 * page for alignment. For the 32-bit kernel, pre-alloc enough cookies for a 122 * 64K buffer plus 1 page for alignment (we have less kernel space in a 32-bit 123 * kernel). Allocate enough windows to handle a 256K buffer w/ at least 65 124 * sgllen DMA engine, and enough copybuf buffer state pages to handle 2 pages 125 * (< 8K). We will still need to allocate the copy buffer during bind though 126 * (if we need one). These can only be modified in /etc/system before rootnex 127 * attach. 128 */ 129 #if defined(__amd64) 130 int rootnex_prealloc_cookies = 65; 131 int rootnex_prealloc_windows = 4; 132 int rootnex_prealloc_copybuf = 2; 133 #else 134 int rootnex_prealloc_cookies = 33; 135 int rootnex_prealloc_windows = 4; 136 int rootnex_prealloc_copybuf = 2; 137 #endif 138 139 /* driver global state */ 140 static rootnex_state_t *rootnex_state; 141 142 #ifdef DEBUG 143 /* shortcut to rootnex counters */ 144 static uint64_t *rootnex_cnt; 145 #endif 146 147 /* 148 * XXX - does x86 even need these or are they left over from the SPARC days? 149 */ 150 /* statically defined integer/boolean properties for the root node */ 151 static rootnex_intprop_t rootnex_intprp[] = { 152 { "PAGESIZE", PAGESIZE }, 153 { "MMU_PAGESIZE", MMU_PAGESIZE }, 154 { "MMU_PAGEOFFSET", MMU_PAGEOFFSET }, 155 { DDI_RELATIVE_ADDRESSING, 1 }, 156 }; 157 #define NROOT_INTPROPS (sizeof (rootnex_intprp) / sizeof (rootnex_intprop_t)) 158 159 /* 160 * If we're dom0, we're using a real device so we need to load 161 * the cookies with MFNs instead of PFNs. 162 */ 163 #ifdef __xpv 164 typedef maddr_t rootnex_addr_t; 165 #define ROOTNEX_PADDR_TO_RBASE(pa) \ 166 (DOMAIN_IS_INITDOMAIN(xen_info) ? pa_to_ma(pa) : (pa)) 167 #else 168 typedef paddr_t rootnex_addr_t; 169 #define ROOTNEX_PADDR_TO_RBASE(pa) (pa) 170 #endif 171 172 static struct cb_ops rootnex_cb_ops = { 173 nodev, /* open */ 174 nodev, /* close */ 175 nodev, /* strategy */ 176 nodev, /* print */ 177 nodev, /* dump */ 178 nodev, /* read */ 179 nodev, /* write */ 180 nodev, /* ioctl */ 181 nodev, /* devmap */ 182 nodev, /* mmap */ 183 nodev, /* segmap */ 184 nochpoll, /* chpoll */ 185 ddi_prop_op, /* cb_prop_op */ 186 NULL, /* struct streamtab */ 187 D_NEW | D_MP | D_HOTPLUG, /* compatibility flags */ 188 CB_REV, /* Rev */ 189 nodev, /* cb_aread */ 190 nodev /* cb_awrite */ 191 }; 192 193 static int rootnex_map(dev_info_t *dip, dev_info_t *rdip, ddi_map_req_t *mp, 194 off_t offset, off_t len, caddr_t *vaddrp); 195 static int rootnex_map_fault(dev_info_t *dip, dev_info_t *rdip, 196 struct hat *hat, struct seg *seg, caddr_t addr, 197 struct devpage *dp, pfn_t pfn, uint_t prot, uint_t lock); 198 static int rootnex_dma_allochdl(dev_info_t *dip, dev_info_t *rdip, 199 ddi_dma_attr_t *attr, int (*waitfp)(caddr_t), caddr_t arg, 200 ddi_dma_handle_t *handlep); 201 static int rootnex_dma_freehdl(dev_info_t *dip, dev_info_t *rdip, 202 ddi_dma_handle_t handle); 203 static int rootnex_dma_bindhdl(dev_info_t *dip, dev_info_t *rdip, 204 ddi_dma_handle_t handle, struct ddi_dma_req *dmareq, 205 ddi_dma_cookie_t *cookiep, uint_t *ccountp); 206 static int rootnex_dma_unbindhdl(dev_info_t *dip, dev_info_t *rdip, 207 ddi_dma_handle_t handle); 208 static int rootnex_dma_sync(dev_info_t *dip, dev_info_t *rdip, 209 ddi_dma_handle_t handle, off_t off, size_t len, uint_t cache_flags); 210 static int rootnex_dma_win(dev_info_t *dip, dev_info_t *rdip, 211 ddi_dma_handle_t handle, uint_t win, off_t *offp, size_t *lenp, 212 ddi_dma_cookie_t *cookiep, uint_t *ccountp); 213 static int rootnex_dma_mctl(dev_info_t *dip, dev_info_t *rdip, 214 ddi_dma_handle_t handle, enum ddi_dma_ctlops request, 215 off_t *offp, size_t *lenp, caddr_t *objp, uint_t cache_flags); 216 static int rootnex_ctlops(dev_info_t *dip, dev_info_t *rdip, 217 ddi_ctl_enum_t ctlop, void *arg, void *result); 218 static int rootnex_fm_init(dev_info_t *dip, dev_info_t *tdip, int tcap, 219 ddi_iblock_cookie_t *ibc); 220 static int rootnex_intr_ops(dev_info_t *pdip, dev_info_t *rdip, 221 ddi_intr_op_t intr_op, ddi_intr_handle_impl_t *hdlp, void *result); 222 static int rootnex_alloc_intr_fixed(dev_info_t *, ddi_intr_handle_impl_t *, 223 void *); 224 static int rootnex_free_intr_fixed(dev_info_t *, ddi_intr_handle_impl_t *); 225 226 static int rootnex_coredma_allochdl(dev_info_t *dip, dev_info_t *rdip, 227 ddi_dma_attr_t *attr, int (*waitfp)(caddr_t), caddr_t arg, 228 ddi_dma_handle_t *handlep); 229 static int rootnex_coredma_freehdl(dev_info_t *dip, dev_info_t *rdip, 230 ddi_dma_handle_t handle); 231 static int rootnex_coredma_bindhdl(dev_info_t *dip, dev_info_t *rdip, 232 ddi_dma_handle_t handle, struct ddi_dma_req *dmareq, 233 ddi_dma_cookie_t *cookiep, uint_t *ccountp); 234 static int rootnex_coredma_unbindhdl(dev_info_t *dip, dev_info_t *rdip, 235 ddi_dma_handle_t handle); 236 #if defined(__amd64) && !defined(__xpv) 237 static void rootnex_coredma_reset_cookies(dev_info_t *dip, 238 ddi_dma_handle_t handle); 239 static int rootnex_coredma_get_cookies(dev_info_t *dip, ddi_dma_handle_t handle, 240 ddi_dma_cookie_t **cookiepp, uint_t *ccountp); 241 static int rootnex_coredma_set_cookies(dev_info_t *dip, ddi_dma_handle_t handle, 242 ddi_dma_cookie_t *cookiep, uint_t ccount); 243 static int rootnex_coredma_clear_cookies(dev_info_t *dip, 244 ddi_dma_handle_t handle); 245 static int rootnex_coredma_get_sleep_flags(ddi_dma_handle_t handle); 246 #endif 247 static int rootnex_coredma_sync(dev_info_t *dip, dev_info_t *rdip, 248 ddi_dma_handle_t handle, off_t off, size_t len, uint_t cache_flags); 249 static int rootnex_coredma_win(dev_info_t *dip, dev_info_t *rdip, 250 ddi_dma_handle_t handle, uint_t win, off_t *offp, size_t *lenp, 251 ddi_dma_cookie_t *cookiep, uint_t *ccountp); 252 253 #if defined(__amd64) && !defined(__xpv) 254 static int rootnex_coredma_hdl_setprivate(dev_info_t *dip, dev_info_t *rdip, 255 ddi_dma_handle_t handle, void *v); 256 static void *rootnex_coredma_hdl_getprivate(dev_info_t *dip, dev_info_t *rdip, 257 ddi_dma_handle_t handle); 258 #endif 259 260 261 static struct bus_ops rootnex_bus_ops = { 262 BUSO_REV, 263 rootnex_map, 264 NULL, 265 NULL, 266 NULL, 267 rootnex_map_fault, 268 0, 269 rootnex_dma_allochdl, 270 rootnex_dma_freehdl, 271 rootnex_dma_bindhdl, 272 rootnex_dma_unbindhdl, 273 rootnex_dma_sync, 274 rootnex_dma_win, 275 rootnex_dma_mctl, 276 rootnex_ctlops, 277 ddi_bus_prop_op, 278 i_ddi_rootnex_get_eventcookie, 279 i_ddi_rootnex_add_eventcall, 280 i_ddi_rootnex_remove_eventcall, 281 i_ddi_rootnex_post_event, 282 0, /* bus_intr_ctl */ 283 0, /* bus_config */ 284 0, /* bus_unconfig */ 285 rootnex_fm_init, /* bus_fm_init */ 286 NULL, /* bus_fm_fini */ 287 NULL, /* bus_fm_access_enter */ 288 NULL, /* bus_fm_access_exit */ 289 NULL, /* bus_powr */ 290 rootnex_intr_ops /* bus_intr_op */ 291 }; 292 293 static int rootnex_attach(dev_info_t *dip, ddi_attach_cmd_t cmd); 294 static int rootnex_detach(dev_info_t *dip, ddi_detach_cmd_t cmd); 295 static int rootnex_quiesce(dev_info_t *dip); 296 297 static struct dev_ops rootnex_ops = { 298 DEVO_REV, 299 0, 300 ddi_no_info, 301 nulldev, 302 nulldev, 303 rootnex_attach, 304 rootnex_detach, 305 nulldev, 306 &rootnex_cb_ops, 307 &rootnex_bus_ops, 308 NULL, 309 rootnex_quiesce, /* quiesce */ 310 }; 311 312 static struct modldrv rootnex_modldrv = { 313 &mod_driverops, 314 "i86pc root nexus", 315 &rootnex_ops 316 }; 317 318 static struct modlinkage rootnex_modlinkage = { 319 MODREV_1, 320 { (void *)&rootnex_modldrv, NULL } 321 }; 322 323 #if defined(__amd64) && !defined(__xpv) 324 static iommulib_nexops_t iommulib_nexops = { 325 IOMMU_NEXOPS_VERSION, 326 "Rootnex IOMMU ops Vers 1.1", 327 NULL, 328 rootnex_coredma_allochdl, 329 rootnex_coredma_freehdl, 330 rootnex_coredma_bindhdl, 331 rootnex_coredma_unbindhdl, 332 rootnex_coredma_reset_cookies, 333 rootnex_coredma_get_cookies, 334 rootnex_coredma_set_cookies, 335 rootnex_coredma_clear_cookies, 336 rootnex_coredma_get_sleep_flags, 337 rootnex_coredma_sync, 338 rootnex_coredma_win, 339 rootnex_coredma_hdl_setprivate, 340 rootnex_coredma_hdl_getprivate 341 }; 342 #endif 343 344 /* 345 * extern hacks 346 */ 347 extern struct seg_ops segdev_ops; 348 extern int ignore_hardware_nodes; /* force flag from ddi_impl.c */ 349 #ifdef DDI_MAP_DEBUG 350 extern int ddi_map_debug_flag; 351 #define ddi_map_debug if (ddi_map_debug_flag) prom_printf 352 #endif 353 extern void i86_pp_map(page_t *pp, caddr_t kaddr); 354 extern void i86_va_map(caddr_t vaddr, struct as *asp, caddr_t kaddr); 355 extern int (*psm_intr_ops)(dev_info_t *, ddi_intr_handle_impl_t *, 356 psm_intr_op_t, int *); 357 extern int impl_ddi_sunbus_initchild(dev_info_t *dip); 358 extern void impl_ddi_sunbus_removechild(dev_info_t *dip); 359 360 /* 361 * Use device arena to use for device control register mappings. 362 * Various kernel memory walkers (debugger, dtrace) need to know 363 * to avoid this address range to prevent undesired device activity. 364 */ 365 extern void *device_arena_alloc(size_t size, int vm_flag); 366 extern void device_arena_free(void * vaddr, size_t size); 367 368 369 /* 370 * Internal functions 371 */ 372 static int rootnex_dma_init(); 373 static void rootnex_add_props(dev_info_t *); 374 static int rootnex_ctl_reportdev(dev_info_t *dip); 375 static struct intrspec *rootnex_get_ispec(dev_info_t *rdip, int inum); 376 static int rootnex_map_regspec(ddi_map_req_t *mp, caddr_t *vaddrp); 377 static int rootnex_unmap_regspec(ddi_map_req_t *mp, caddr_t *vaddrp); 378 static int rootnex_map_handle(ddi_map_req_t *mp); 379 static void rootnex_clean_dmahdl(ddi_dma_impl_t *hp); 380 static int rootnex_valid_alloc_parms(ddi_dma_attr_t *attr, uint_t maxsegsize); 381 static int rootnex_valid_bind_parms(ddi_dma_req_t *dmareq, 382 ddi_dma_attr_t *attr); 383 static void rootnex_get_sgl(ddi_dma_obj_t *dmar_object, ddi_dma_cookie_t *sgl, 384 rootnex_sglinfo_t *sglinfo); 385 static void rootnex_dvma_get_sgl(ddi_dma_obj_t *dmar_object, 386 ddi_dma_cookie_t *sgl, rootnex_sglinfo_t *sglinfo); 387 static int rootnex_bind_slowpath(ddi_dma_impl_t *hp, struct ddi_dma_req *dmareq, 388 rootnex_dma_t *dma, ddi_dma_attr_t *attr, ddi_dma_obj_t *dmao, int kmflag); 389 static int rootnex_setup_copybuf(ddi_dma_impl_t *hp, struct ddi_dma_req *dmareq, 390 rootnex_dma_t *dma, ddi_dma_attr_t *attr); 391 static void rootnex_teardown_copybuf(rootnex_dma_t *dma); 392 static int rootnex_setup_windows(ddi_dma_impl_t *hp, rootnex_dma_t *dma, 393 ddi_dma_attr_t *attr, ddi_dma_obj_t *dmao, int kmflag); 394 static void rootnex_teardown_windows(rootnex_dma_t *dma); 395 static void rootnex_init_win(ddi_dma_impl_t *hp, rootnex_dma_t *dma, 396 rootnex_window_t *window, ddi_dma_cookie_t *cookie, off_t cur_offset); 397 static void rootnex_setup_cookie(ddi_dma_obj_t *dmar_object, 398 rootnex_dma_t *dma, ddi_dma_cookie_t *cookie, off_t cur_offset, 399 size_t *copybuf_used, page_t **cur_pp); 400 static int rootnex_sgllen_window_boundary(ddi_dma_impl_t *hp, 401 rootnex_dma_t *dma, rootnex_window_t **windowp, ddi_dma_cookie_t *cookie, 402 ddi_dma_attr_t *attr, off_t cur_offset); 403 static int rootnex_copybuf_window_boundary(ddi_dma_impl_t *hp, 404 rootnex_dma_t *dma, rootnex_window_t **windowp, 405 ddi_dma_cookie_t *cookie, off_t cur_offset, size_t *copybuf_used); 406 static int rootnex_maxxfer_window_boundary(ddi_dma_impl_t *hp, 407 rootnex_dma_t *dma, rootnex_window_t **windowp, ddi_dma_cookie_t *cookie); 408 static int rootnex_valid_sync_parms(ddi_dma_impl_t *hp, rootnex_window_t *win, 409 off_t offset, size_t size, uint_t cache_flags); 410 static int rootnex_verify_buffer(rootnex_dma_t *dma); 411 static int rootnex_dma_check(dev_info_t *dip, const void *handle, 412 const void *comp_addr, const void *not_used); 413 static boolean_t rootnex_need_bounce_seg(ddi_dma_obj_t *dmar_object, 414 rootnex_sglinfo_t *sglinfo); 415 static struct as *rootnex_get_as(ddi_dma_obj_t *dmar_object); 416 417 /* 418 * _init() 419 * 420 */ 421 int 422 _init(void) 423 { 424 425 rootnex_state = NULL; 426 return (mod_install(&rootnex_modlinkage)); 427 } 428 429 430 /* 431 * _info() 432 * 433 */ 434 int 435 _info(struct modinfo *modinfop) 436 { 437 return (mod_info(&rootnex_modlinkage, modinfop)); 438 } 439 440 441 /* 442 * _fini() 443 * 444 */ 445 int 446 _fini(void) 447 { 448 return (EBUSY); 449 } 450 451 452 /* 453 * rootnex_attach() 454 * 455 */ 456 static int 457 rootnex_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) 458 { 459 int fmcap; 460 int e; 461 462 switch (cmd) { 463 case DDI_ATTACH: 464 break; 465 case DDI_RESUME: 466 #if defined(__amd64) && !defined(__xpv) 467 return (immu_unquiesce()); 468 #else 469 return (DDI_SUCCESS); 470 #endif 471 default: 472 return (DDI_FAILURE); 473 } 474 475 /* 476 * We should only have one instance of rootnex. Save it away since we 477 * don't have an easy way to get it back later. 478 */ 479 ASSERT(rootnex_state == NULL); 480 rootnex_state = kmem_zalloc(sizeof (rootnex_state_t), KM_SLEEP); 481 482 rootnex_state->r_dip = dip; 483 rootnex_state->r_err_ibc = (ddi_iblock_cookie_t)ipltospl(15); 484 rootnex_state->r_reserved_msg_printed = B_FALSE; 485 #ifdef DEBUG 486 rootnex_cnt = &rootnex_state->r_counters[0]; 487 #endif 488 489 /* 490 * Set minimum fm capability level for i86pc platforms and then 491 * initialize error handling. Since we're the rootnex, we don't 492 * care what's returned in the fmcap field. 493 */ 494 ddi_system_fmcap = DDI_FM_EREPORT_CAPABLE | DDI_FM_ERRCB_CAPABLE | 495 DDI_FM_ACCCHK_CAPABLE | DDI_FM_DMACHK_CAPABLE; 496 fmcap = ddi_system_fmcap; 497 ddi_fm_init(dip, &fmcap, &rootnex_state->r_err_ibc); 498 499 /* initialize DMA related state */ 500 e = rootnex_dma_init(); 501 if (e != DDI_SUCCESS) { 502 kmem_free(rootnex_state, sizeof (rootnex_state_t)); 503 return (DDI_FAILURE); 504 } 505 506 /* Add static root node properties */ 507 rootnex_add_props(dip); 508 509 /* since we can't call ddi_report_dev() */ 510 cmn_err(CE_CONT, "?root nexus = %s\n", ddi_get_name(dip)); 511 512 /* Initialize rootnex event handle */ 513 i_ddi_rootnex_init_events(dip); 514 515 #if defined(__amd64) && !defined(__xpv) 516 e = iommulib_nexus_register(dip, &iommulib_nexops, 517 &rootnex_state->r_iommulib_handle); 518 519 ASSERT(e == DDI_SUCCESS); 520 #endif 521 522 return (DDI_SUCCESS); 523 } 524 525 526 /* 527 * rootnex_detach() 528 * 529 */ 530 /*ARGSUSED*/ 531 static int 532 rootnex_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 533 { 534 switch (cmd) { 535 case DDI_SUSPEND: 536 #if defined(__amd64) && !defined(__xpv) 537 return (immu_quiesce()); 538 #else 539 return (DDI_SUCCESS); 540 #endif 541 default: 542 return (DDI_FAILURE); 543 } 544 /*NOTREACHED*/ 545 546 } 547 548 549 /* 550 * rootnex_dma_init() 551 * 552 */ 553 /*ARGSUSED*/ 554 static int 555 rootnex_dma_init() 556 { 557 size_t bufsize; 558 559 560 /* 561 * size of our cookie/window/copybuf state needed in dma bind that we 562 * pre-alloc in dma_alloc_handle 563 */ 564 rootnex_state->r_prealloc_cookies = rootnex_prealloc_cookies; 565 rootnex_state->r_prealloc_size = 566 (rootnex_state->r_prealloc_cookies * sizeof (ddi_dma_cookie_t)) + 567 (rootnex_prealloc_windows * sizeof (rootnex_window_t)) + 568 (rootnex_prealloc_copybuf * sizeof (rootnex_pgmap_t)); 569 570 /* 571 * setup DDI DMA handle kmem cache, align each handle on 64 bytes, 572 * allocate 16 extra bytes for struct pointer alignment 573 * (p->dmai_private & dma->dp_prealloc_buffer) 574 */ 575 bufsize = sizeof (ddi_dma_impl_t) + sizeof (rootnex_dma_t) + 576 rootnex_state->r_prealloc_size + 0x10; 577 rootnex_state->r_dmahdl_cache = kmem_cache_create("rootnex_dmahdl", 578 bufsize, 64, NULL, NULL, NULL, NULL, NULL, 0); 579 if (rootnex_state->r_dmahdl_cache == NULL) { 580 return (DDI_FAILURE); 581 } 582 583 /* 584 * allocate array to track which major numbers we have printed warnings 585 * for. 586 */ 587 rootnex_warn_list = kmem_zalloc(devcnt * sizeof (*rootnex_warn_list), 588 KM_SLEEP); 589 590 return (DDI_SUCCESS); 591 } 592 593 594 /* 595 * rootnex_add_props() 596 * 597 */ 598 static void 599 rootnex_add_props(dev_info_t *dip) 600 { 601 rootnex_intprop_t *rpp; 602 int i; 603 604 /* Add static integer/boolean properties to the root node */ 605 rpp = rootnex_intprp; 606 for (i = 0; i < NROOT_INTPROPS; i++) { 607 (void) e_ddi_prop_update_int(DDI_DEV_T_NONE, dip, 608 rpp[i].prop_name, rpp[i].prop_value); 609 } 610 } 611 612 613 614 /* 615 * ************************* 616 * ctlops related routines 617 * ************************* 618 */ 619 620 /* 621 * rootnex_ctlops() 622 * 623 */ 624 /*ARGSUSED*/ 625 static int 626 rootnex_ctlops(dev_info_t *dip, dev_info_t *rdip, ddi_ctl_enum_t ctlop, 627 void *arg, void *result) 628 { 629 int n, *ptr; 630 struct ddi_parent_private_data *pdp; 631 632 switch (ctlop) { 633 case DDI_CTLOPS_DMAPMAPC: 634 /* 635 * Return 'partial' to indicate that dma mapping 636 * has to be done in the main MMU. 637 */ 638 return (DDI_DMA_PARTIAL); 639 640 case DDI_CTLOPS_BTOP: 641 /* 642 * Convert byte count input to physical page units. 643 * (byte counts that are not a page-size multiple 644 * are rounded down) 645 */ 646 *(ulong_t *)result = btop(*(ulong_t *)arg); 647 return (DDI_SUCCESS); 648 649 case DDI_CTLOPS_PTOB: 650 /* 651 * Convert size in physical pages to bytes 652 */ 653 *(ulong_t *)result = ptob(*(ulong_t *)arg); 654 return (DDI_SUCCESS); 655 656 case DDI_CTLOPS_BTOPR: 657 /* 658 * Convert byte count input to physical page units 659 * (byte counts that are not a page-size multiple 660 * are rounded up) 661 */ 662 *(ulong_t *)result = btopr(*(ulong_t *)arg); 663 return (DDI_SUCCESS); 664 665 case DDI_CTLOPS_INITCHILD: 666 return (impl_ddi_sunbus_initchild(arg)); 667 668 case DDI_CTLOPS_UNINITCHILD: 669 impl_ddi_sunbus_removechild(arg); 670 return (DDI_SUCCESS); 671 672 case DDI_CTLOPS_REPORTDEV: 673 return (rootnex_ctl_reportdev(rdip)); 674 675 case DDI_CTLOPS_IOMIN: 676 /* 677 * Nothing to do here but reflect back.. 678 */ 679 return (DDI_SUCCESS); 680 681 case DDI_CTLOPS_REGSIZE: 682 case DDI_CTLOPS_NREGS: 683 break; 684 685 case DDI_CTLOPS_SIDDEV: 686 if (ndi_dev_is_prom_node(rdip)) 687 return (DDI_SUCCESS); 688 if (ndi_dev_is_persistent_node(rdip)) 689 return (DDI_SUCCESS); 690 return (DDI_FAILURE); 691 692 case DDI_CTLOPS_POWER: 693 return ((*pm_platform_power)((power_req_t *)arg)); 694 695 case DDI_CTLOPS_RESERVED0: /* Was DDI_CTLOPS_NINTRS, obsolete */ 696 case DDI_CTLOPS_RESERVED1: /* Was DDI_CTLOPS_POKE_INIT, obsolete */ 697 case DDI_CTLOPS_RESERVED2: /* Was DDI_CTLOPS_POKE_FLUSH, obsolete */ 698 case DDI_CTLOPS_RESERVED3: /* Was DDI_CTLOPS_POKE_FINI, obsolete */ 699 case DDI_CTLOPS_RESERVED4: /* Was DDI_CTLOPS_INTR_HILEVEL, obsolete */ 700 case DDI_CTLOPS_RESERVED5: /* Was DDI_CTLOPS_XLATE_INTRS, obsolete */ 701 if (!rootnex_state->r_reserved_msg_printed) { 702 rootnex_state->r_reserved_msg_printed = B_TRUE; 703 cmn_err(CE_WARN, "Failing ddi_ctlops call(s) for " 704 "1 or more reserved/obsolete operations."); 705 } 706 return (DDI_FAILURE); 707 708 default: 709 return (DDI_FAILURE); 710 } 711 /* 712 * The rest are for "hardware" properties 713 */ 714 if ((pdp = ddi_get_parent_data(rdip)) == NULL) 715 return (DDI_FAILURE); 716 717 if (ctlop == DDI_CTLOPS_NREGS) { 718 ptr = (int *)result; 719 *ptr = pdp->par_nreg; 720 } else { 721 off_t *size = (off_t *)result; 722 723 ptr = (int *)arg; 724 n = *ptr; 725 if (n >= pdp->par_nreg) { 726 return (DDI_FAILURE); 727 } 728 *size = (off_t)pdp->par_reg[n].regspec_size; 729 } 730 return (DDI_SUCCESS); 731 } 732 733 734 /* 735 * rootnex_ctl_reportdev() 736 * 737 */ 738 static int 739 rootnex_ctl_reportdev(dev_info_t *dev) 740 { 741 int i, n, len, f_len = 0; 742 char *buf; 743 744 buf = kmem_alloc(REPORTDEV_BUFSIZE, KM_SLEEP); 745 f_len += snprintf(buf, REPORTDEV_BUFSIZE, 746 "%s%d at root", ddi_driver_name(dev), ddi_get_instance(dev)); 747 len = strlen(buf); 748 749 for (i = 0; i < sparc_pd_getnreg(dev); i++) { 750 751 struct regspec *rp = sparc_pd_getreg(dev, i); 752 753 if (i == 0) 754 f_len += snprintf(buf + len, REPORTDEV_BUFSIZE - len, 755 ": "); 756 else 757 f_len += snprintf(buf + len, REPORTDEV_BUFSIZE - len, 758 " and "); 759 len = strlen(buf); 760 761 switch (rp->regspec_bustype) { 762 763 case BTEISA: 764 f_len += snprintf(buf + len, REPORTDEV_BUFSIZE - len, 765 "%s 0x%x", DEVI_EISA_NEXNAME, rp->regspec_addr); 766 break; 767 768 case BTISA: 769 f_len += snprintf(buf + len, REPORTDEV_BUFSIZE - len, 770 "%s 0x%x", DEVI_ISA_NEXNAME, rp->regspec_addr); 771 break; 772 773 default: 774 f_len += snprintf(buf + len, REPORTDEV_BUFSIZE - len, 775 "space %x offset %x", 776 rp->regspec_bustype, rp->regspec_addr); 777 break; 778 } 779 len = strlen(buf); 780 } 781 for (i = 0, n = sparc_pd_getnintr(dev); i < n; i++) { 782 int pri; 783 784 if (i != 0) { 785 f_len += snprintf(buf + len, REPORTDEV_BUFSIZE - len, 786 ","); 787 len = strlen(buf); 788 } 789 pri = INT_IPL(sparc_pd_getintr(dev, i)->intrspec_pri); 790 f_len += snprintf(buf + len, REPORTDEV_BUFSIZE - len, 791 " sparc ipl %d", pri); 792 len = strlen(buf); 793 } 794 #ifdef DEBUG 795 if (f_len + 1 >= REPORTDEV_BUFSIZE) { 796 cmn_err(CE_NOTE, "next message is truncated: " 797 "printed length 1024, real length %d", f_len); 798 } 799 #endif /* DEBUG */ 800 cmn_err(CE_CONT, "?%s\n", buf); 801 kmem_free(buf, REPORTDEV_BUFSIZE); 802 return (DDI_SUCCESS); 803 } 804 805 806 /* 807 * ****************** 808 * map related code 809 * ****************** 810 */ 811 812 /* 813 * rootnex_map() 814 * 815 */ 816 static int 817 rootnex_map(dev_info_t *dip, dev_info_t *rdip, ddi_map_req_t *mp, off_t offset, 818 off_t len, caddr_t *vaddrp) 819 { 820 struct regspec *rp, tmp_reg; 821 ddi_map_req_t mr = *mp; /* Get private copy of request */ 822 int error; 823 824 mp = &mr; 825 826 switch (mp->map_op) { 827 case DDI_MO_MAP_LOCKED: 828 case DDI_MO_UNMAP: 829 case DDI_MO_MAP_HANDLE: 830 break; 831 default: 832 #ifdef DDI_MAP_DEBUG 833 cmn_err(CE_WARN, "rootnex_map: unimplemented map op %d.", 834 mp->map_op); 835 #endif /* DDI_MAP_DEBUG */ 836 return (DDI_ME_UNIMPLEMENTED); 837 } 838 839 if (mp->map_flags & DDI_MF_USER_MAPPING) { 840 #ifdef DDI_MAP_DEBUG 841 cmn_err(CE_WARN, "rootnex_map: unimplemented map type: user."); 842 #endif /* DDI_MAP_DEBUG */ 843 return (DDI_ME_UNIMPLEMENTED); 844 } 845 846 /* 847 * First, if given an rnumber, convert it to a regspec... 848 * (Presumably, this is on behalf of a child of the root node?) 849 */ 850 851 if (mp->map_type == DDI_MT_RNUMBER) { 852 853 int rnumber = mp->map_obj.rnumber; 854 #ifdef DDI_MAP_DEBUG 855 static char *out_of_range = 856 "rootnex_map: Out of range rnumber <%d>, device <%s>"; 857 #endif /* DDI_MAP_DEBUG */ 858 859 rp = i_ddi_rnumber_to_regspec(rdip, rnumber); 860 if (rp == NULL) { 861 #ifdef DDI_MAP_DEBUG 862 cmn_err(CE_WARN, out_of_range, rnumber, 863 ddi_get_name(rdip)); 864 #endif /* DDI_MAP_DEBUG */ 865 return (DDI_ME_RNUMBER_RANGE); 866 } 867 868 /* 869 * Convert the given ddi_map_req_t from rnumber to regspec... 870 */ 871 872 mp->map_type = DDI_MT_REGSPEC; 873 mp->map_obj.rp = rp; 874 } 875 876 /* 877 * Adjust offset and length correspnding to called values... 878 * XXX: A non-zero length means override the one in the regspec 879 * XXX: (regardless of what's in the parent's range?) 880 */ 881 882 tmp_reg = *(mp->map_obj.rp); /* Preserve underlying data */ 883 rp = mp->map_obj.rp = &tmp_reg; /* Use tmp_reg in request */ 884 885 #ifdef DDI_MAP_DEBUG 886 cmn_err(CE_CONT, "rootnex: <%s,%s> <0x%x, 0x%x, 0x%d> offset %d len %d " 887 "handle 0x%x\n", ddi_get_name(dip), ddi_get_name(rdip), 888 rp->regspec_bustype, rp->regspec_addr, rp->regspec_size, offset, 889 len, mp->map_handlep); 890 #endif /* DDI_MAP_DEBUG */ 891 892 /* 893 * I/O or memory mapping: 894 * 895 * <bustype=0, addr=x, len=x>: memory 896 * <bustype=1, addr=x, len=x>: i/o 897 * <bustype>1, addr=0, len=x>: x86-compatibility i/o 898 */ 899 900 if (rp->regspec_bustype > 1 && rp->regspec_addr != 0) { 901 cmn_err(CE_WARN, "<%s,%s> invalid register spec" 902 " <0x%x, 0x%x, 0x%x>", ddi_get_name(dip), 903 ddi_get_name(rdip), rp->regspec_bustype, 904 rp->regspec_addr, rp->regspec_size); 905 return (DDI_ME_INVAL); 906 } 907 908 if (rp->regspec_bustype > 1 && rp->regspec_addr == 0) { 909 /* 910 * compatibility i/o mapping 911 */ 912 rp->regspec_bustype += (uint_t)offset; 913 } else { 914 /* 915 * Normal memory or i/o mapping 916 */ 917 rp->regspec_addr += (uint_t)offset; 918 } 919 920 if (len != 0) 921 rp->regspec_size = (uint_t)len; 922 923 #ifdef DDI_MAP_DEBUG 924 cmn_err(CE_CONT, " <%s,%s> <0x%x, 0x%x, 0x%d> offset %d " 925 "len %d handle 0x%x\n", ddi_get_name(dip), ddi_get_name(rdip), 926 rp->regspec_bustype, rp->regspec_addr, rp->regspec_size, 927 offset, len, mp->map_handlep); 928 #endif /* DDI_MAP_DEBUG */ 929 930 /* 931 * Apply any parent ranges at this level, if applicable. 932 * (This is where nexus specific regspec translation takes place. 933 * Use of this function is implicit agreement that translation is 934 * provided via ddi_apply_range.) 935 */ 936 937 #ifdef DDI_MAP_DEBUG 938 ddi_map_debug("applying range of parent <%s> to child <%s>...\n", 939 ddi_get_name(dip), ddi_get_name(rdip)); 940 #endif /* DDI_MAP_DEBUG */ 941 942 if ((error = i_ddi_apply_range(dip, rdip, mp->map_obj.rp)) != 0) 943 return (error); 944 945 switch (mp->map_op) { 946 case DDI_MO_MAP_LOCKED: 947 948 /* 949 * Set up the locked down kernel mapping to the regspec... 950 */ 951 952 return (rootnex_map_regspec(mp, vaddrp)); 953 954 case DDI_MO_UNMAP: 955 956 /* 957 * Release mapping... 958 */ 959 960 return (rootnex_unmap_regspec(mp, vaddrp)); 961 962 case DDI_MO_MAP_HANDLE: 963 964 return (rootnex_map_handle(mp)); 965 966 default: 967 return (DDI_ME_UNIMPLEMENTED); 968 } 969 } 970 971 972 /* 973 * rootnex_map_fault() 974 * 975 * fault in mappings for requestors 976 */ 977 /*ARGSUSED*/ 978 static int 979 rootnex_map_fault(dev_info_t *dip, dev_info_t *rdip, struct hat *hat, 980 struct seg *seg, caddr_t addr, struct devpage *dp, pfn_t pfn, uint_t prot, 981 uint_t lock) 982 { 983 984 #ifdef DDI_MAP_DEBUG 985 ddi_map_debug("rootnex_map_fault: address <%x> pfn <%x>", addr, pfn); 986 ddi_map_debug(" Seg <%s>\n", 987 seg->s_ops == &segdev_ops ? "segdev" : 988 seg == &kvseg ? "segkmem" : "NONE!"); 989 #endif /* DDI_MAP_DEBUG */ 990 991 /* 992 * This is all terribly broken, but it is a start 993 * 994 * XXX Note that this test means that segdev_ops 995 * must be exported from seg_dev.c. 996 * XXX What about devices with their own segment drivers? 997 */ 998 if (seg->s_ops == &segdev_ops) { 999 struct segdev_data *sdp = (struct segdev_data *)seg->s_data; 1000 1001 if (hat == NULL) { 1002 /* 1003 * This is one plausible interpretation of 1004 * a null hat i.e. use the first hat on the 1005 * address space hat list which by convention is 1006 * the hat of the system MMU. At alternative 1007 * would be to panic .. this might well be better .. 1008 */ 1009 ASSERT(AS_READ_HELD(seg->s_as)); 1010 hat = seg->s_as->a_hat; 1011 cmn_err(CE_NOTE, "rootnex_map_fault: nil hat"); 1012 } 1013 hat_devload(hat, addr, MMU_PAGESIZE, pfn, prot | sdp->hat_attr, 1014 (lock ? HAT_LOAD_LOCK : HAT_LOAD)); 1015 } else if (seg == &kvseg && dp == NULL) { 1016 hat_devload(kas.a_hat, addr, MMU_PAGESIZE, pfn, prot, 1017 HAT_LOAD_LOCK); 1018 } else 1019 return (DDI_FAILURE); 1020 return (DDI_SUCCESS); 1021 } 1022 1023 1024 /* 1025 * rootnex_map_regspec() 1026 * we don't support mapping of I/O cards above 4Gb 1027 */ 1028 static int 1029 rootnex_map_regspec(ddi_map_req_t *mp, caddr_t *vaddrp) 1030 { 1031 rootnex_addr_t rbase; 1032 void *cvaddr; 1033 uint_t npages, pgoffset; 1034 struct regspec *rp; 1035 ddi_acc_hdl_t *hp; 1036 ddi_acc_impl_t *ap; 1037 uint_t hat_acc_flags; 1038 paddr_t pbase; 1039 1040 rp = mp->map_obj.rp; 1041 hp = mp->map_handlep; 1042 1043 #ifdef DDI_MAP_DEBUG 1044 ddi_map_debug( 1045 "rootnex_map_regspec: <0x%x 0x%x 0x%x> handle 0x%x\n", 1046 rp->regspec_bustype, rp->regspec_addr, 1047 rp->regspec_size, mp->map_handlep); 1048 #endif /* DDI_MAP_DEBUG */ 1049 1050 /* 1051 * I/O or memory mapping 1052 * 1053 * <bustype=0, addr=x, len=x>: memory 1054 * <bustype=1, addr=x, len=x>: i/o 1055 * <bustype>1, addr=0, len=x>: x86-compatibility i/o 1056 */ 1057 1058 if (rp->regspec_bustype > 1 && rp->regspec_addr != 0) { 1059 cmn_err(CE_WARN, "rootnex: invalid register spec" 1060 " <0x%x, 0x%x, 0x%x>", rp->regspec_bustype, 1061 rp->regspec_addr, rp->regspec_size); 1062 return (DDI_FAILURE); 1063 } 1064 1065 if (rp->regspec_bustype != 0) { 1066 /* 1067 * I/O space - needs a handle. 1068 */ 1069 if (hp == NULL) { 1070 return (DDI_FAILURE); 1071 } 1072 ap = (ddi_acc_impl_t *)hp->ah_platform_private; 1073 ap->ahi_acc_attr |= DDI_ACCATTR_IO_SPACE; 1074 impl_acc_hdl_init(hp); 1075 1076 if (mp->map_flags & DDI_MF_DEVICE_MAPPING) { 1077 #ifdef DDI_MAP_DEBUG 1078 ddi_map_debug("rootnex_map_regspec: mmap() " 1079 "to I/O space is not supported.\n"); 1080 #endif /* DDI_MAP_DEBUG */ 1081 return (DDI_ME_INVAL); 1082 } else { 1083 /* 1084 * 1275-compliant vs. compatibility i/o mapping 1085 */ 1086 *vaddrp = 1087 (rp->regspec_bustype > 1 && rp->regspec_addr == 0) ? 1088 ((caddr_t)(uintptr_t)rp->regspec_bustype) : 1089 ((caddr_t)(uintptr_t)rp->regspec_addr); 1090 #ifdef __xpv 1091 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 1092 hp->ah_pfn = xen_assign_pfn( 1093 mmu_btop((ulong_t)rp->regspec_addr & 1094 MMU_PAGEMASK)); 1095 } else { 1096 hp->ah_pfn = mmu_btop( 1097 (ulong_t)rp->regspec_addr & MMU_PAGEMASK); 1098 } 1099 #else 1100 hp->ah_pfn = mmu_btop((ulong_t)rp->regspec_addr & 1101 MMU_PAGEMASK); 1102 #endif 1103 hp->ah_pnum = mmu_btopr(rp->regspec_size + 1104 (ulong_t)rp->regspec_addr & MMU_PAGEOFFSET); 1105 } 1106 1107 #ifdef DDI_MAP_DEBUG 1108 ddi_map_debug( 1109 "rootnex_map_regspec: \"Mapping\" %d bytes I/O space at 0x%x\n", 1110 rp->regspec_size, *vaddrp); 1111 #endif /* DDI_MAP_DEBUG */ 1112 return (DDI_SUCCESS); 1113 } 1114 1115 /* 1116 * Memory space 1117 */ 1118 1119 if (hp != NULL) { 1120 /* 1121 * hat layer ignores 1122 * hp->ah_acc.devacc_attr_endian_flags. 1123 */ 1124 switch (hp->ah_acc.devacc_attr_dataorder) { 1125 case DDI_STRICTORDER_ACC: 1126 hat_acc_flags = HAT_STRICTORDER; 1127 break; 1128 case DDI_UNORDERED_OK_ACC: 1129 hat_acc_flags = HAT_UNORDERED_OK; 1130 break; 1131 case DDI_MERGING_OK_ACC: 1132 hat_acc_flags = HAT_MERGING_OK; 1133 break; 1134 case DDI_LOADCACHING_OK_ACC: 1135 hat_acc_flags = HAT_LOADCACHING_OK; 1136 break; 1137 case DDI_STORECACHING_OK_ACC: 1138 hat_acc_flags = HAT_STORECACHING_OK; 1139 break; 1140 } 1141 ap = (ddi_acc_impl_t *)hp->ah_platform_private; 1142 ap->ahi_acc_attr |= DDI_ACCATTR_CPU_VADDR; 1143 impl_acc_hdl_init(hp); 1144 hp->ah_hat_flags = hat_acc_flags; 1145 } else { 1146 hat_acc_flags = HAT_STRICTORDER; 1147 } 1148 1149 rbase = (rootnex_addr_t)(rp->regspec_addr & MMU_PAGEMASK); 1150 #ifdef __xpv 1151 /* 1152 * If we're dom0, we're using a real device so we need to translate 1153 * the MA to a PA. 1154 */ 1155 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 1156 pbase = pfn_to_pa(xen_assign_pfn(mmu_btop(rbase))); 1157 } else { 1158 pbase = rbase; 1159 } 1160 #else 1161 pbase = rbase; 1162 #endif 1163 pgoffset = (ulong_t)rp->regspec_addr & MMU_PAGEOFFSET; 1164 1165 if (rp->regspec_size == 0) { 1166 #ifdef DDI_MAP_DEBUG 1167 ddi_map_debug("rootnex_map_regspec: zero regspec_size\n"); 1168 #endif /* DDI_MAP_DEBUG */ 1169 return (DDI_ME_INVAL); 1170 } 1171 1172 if (mp->map_flags & DDI_MF_DEVICE_MAPPING) { 1173 /* extra cast to make gcc happy */ 1174 *vaddrp = (caddr_t)((uintptr_t)mmu_btop(pbase)); 1175 } else { 1176 npages = mmu_btopr(rp->regspec_size + pgoffset); 1177 1178 #ifdef DDI_MAP_DEBUG 1179 ddi_map_debug("rootnex_map_regspec: Mapping %d pages " 1180 "physical %llx", npages, pbase); 1181 #endif /* DDI_MAP_DEBUG */ 1182 1183 cvaddr = device_arena_alloc(ptob(npages), VM_NOSLEEP); 1184 if (cvaddr == NULL) 1185 return (DDI_ME_NORESOURCES); 1186 1187 /* 1188 * Now map in the pages we've allocated... 1189 */ 1190 hat_devload(kas.a_hat, cvaddr, mmu_ptob(npages), 1191 mmu_btop(pbase), mp->map_prot | hat_acc_flags, 1192 HAT_LOAD_LOCK); 1193 *vaddrp = (caddr_t)cvaddr + pgoffset; 1194 1195 /* save away pfn and npages for FMA */ 1196 hp = mp->map_handlep; 1197 if (hp) { 1198 hp->ah_pfn = mmu_btop(pbase); 1199 hp->ah_pnum = npages; 1200 } 1201 } 1202 1203 #ifdef DDI_MAP_DEBUG 1204 ddi_map_debug("at virtual 0x%x\n", *vaddrp); 1205 #endif /* DDI_MAP_DEBUG */ 1206 return (DDI_SUCCESS); 1207 } 1208 1209 1210 /* 1211 * rootnex_unmap_regspec() 1212 * 1213 */ 1214 static int 1215 rootnex_unmap_regspec(ddi_map_req_t *mp, caddr_t *vaddrp) 1216 { 1217 caddr_t addr = (caddr_t)*vaddrp; 1218 uint_t npages, pgoffset; 1219 struct regspec *rp; 1220 1221 if (mp->map_flags & DDI_MF_DEVICE_MAPPING) 1222 return (0); 1223 1224 rp = mp->map_obj.rp; 1225 1226 if (rp->regspec_size == 0) { 1227 #ifdef DDI_MAP_DEBUG 1228 ddi_map_debug("rootnex_unmap_regspec: zero regspec_size\n"); 1229 #endif /* DDI_MAP_DEBUG */ 1230 return (DDI_ME_INVAL); 1231 } 1232 1233 /* 1234 * I/O or memory mapping: 1235 * 1236 * <bustype=0, addr=x, len=x>: memory 1237 * <bustype=1, addr=x, len=x>: i/o 1238 * <bustype>1, addr=0, len=x>: x86-compatibility i/o 1239 */ 1240 if (rp->regspec_bustype != 0) { 1241 /* 1242 * This is I/O space, which requires no particular 1243 * processing on unmap since it isn't mapped in the 1244 * first place. 1245 */ 1246 return (DDI_SUCCESS); 1247 } 1248 1249 /* 1250 * Memory space 1251 */ 1252 pgoffset = (uintptr_t)addr & MMU_PAGEOFFSET; 1253 npages = mmu_btopr(rp->regspec_size + pgoffset); 1254 hat_unload(kas.a_hat, addr - pgoffset, ptob(npages), HAT_UNLOAD_UNLOCK); 1255 device_arena_free(addr - pgoffset, ptob(npages)); 1256 1257 /* 1258 * Destroy the pointer - the mapping has logically gone 1259 */ 1260 *vaddrp = NULL; 1261 1262 return (DDI_SUCCESS); 1263 } 1264 1265 1266 /* 1267 * rootnex_map_handle() 1268 * 1269 */ 1270 static int 1271 rootnex_map_handle(ddi_map_req_t *mp) 1272 { 1273 rootnex_addr_t rbase; 1274 ddi_acc_hdl_t *hp; 1275 uint_t pgoffset; 1276 struct regspec *rp; 1277 paddr_t pbase; 1278 1279 rp = mp->map_obj.rp; 1280 1281 #ifdef DDI_MAP_DEBUG 1282 ddi_map_debug( 1283 "rootnex_map_handle: <0x%x 0x%x 0x%x> handle 0x%x\n", 1284 rp->regspec_bustype, rp->regspec_addr, 1285 rp->regspec_size, mp->map_handlep); 1286 #endif /* DDI_MAP_DEBUG */ 1287 1288 /* 1289 * I/O or memory mapping: 1290 * 1291 * <bustype=0, addr=x, len=x>: memory 1292 * <bustype=1, addr=x, len=x>: i/o 1293 * <bustype>1, addr=0, len=x>: x86-compatibility i/o 1294 */ 1295 if (rp->regspec_bustype != 0) { 1296 /* 1297 * This refers to I/O space, and we don't support "mapping" 1298 * I/O space to a user. 1299 */ 1300 return (DDI_FAILURE); 1301 } 1302 1303 /* 1304 * Set up the hat_flags for the mapping. 1305 */ 1306 hp = mp->map_handlep; 1307 1308 switch (hp->ah_acc.devacc_attr_endian_flags) { 1309 case DDI_NEVERSWAP_ACC: 1310 hp->ah_hat_flags = HAT_NEVERSWAP | HAT_STRICTORDER; 1311 break; 1312 case DDI_STRUCTURE_LE_ACC: 1313 hp->ah_hat_flags = HAT_STRUCTURE_LE; 1314 break; 1315 case DDI_STRUCTURE_BE_ACC: 1316 return (DDI_FAILURE); 1317 default: 1318 return (DDI_REGS_ACC_CONFLICT); 1319 } 1320 1321 switch (hp->ah_acc.devacc_attr_dataorder) { 1322 case DDI_STRICTORDER_ACC: 1323 break; 1324 case DDI_UNORDERED_OK_ACC: 1325 hp->ah_hat_flags |= HAT_UNORDERED_OK; 1326 break; 1327 case DDI_MERGING_OK_ACC: 1328 hp->ah_hat_flags |= HAT_MERGING_OK; 1329 break; 1330 case DDI_LOADCACHING_OK_ACC: 1331 hp->ah_hat_flags |= HAT_LOADCACHING_OK; 1332 break; 1333 case DDI_STORECACHING_OK_ACC: 1334 hp->ah_hat_flags |= HAT_STORECACHING_OK; 1335 break; 1336 default: 1337 return (DDI_FAILURE); 1338 } 1339 1340 rbase = (rootnex_addr_t)rp->regspec_addr & 1341 (~(rootnex_addr_t)MMU_PAGEOFFSET); 1342 pgoffset = (ulong_t)rp->regspec_addr & MMU_PAGEOFFSET; 1343 1344 if (rp->regspec_size == 0) 1345 return (DDI_ME_INVAL); 1346 1347 #ifdef __xpv 1348 /* 1349 * If we're dom0, we're using a real device so we need to translate 1350 * the MA to a PA. 1351 */ 1352 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 1353 pbase = pfn_to_pa(xen_assign_pfn(mmu_btop(rbase))) | 1354 (rbase & MMU_PAGEOFFSET); 1355 } else { 1356 pbase = rbase; 1357 } 1358 #else 1359 pbase = rbase; 1360 #endif 1361 1362 hp->ah_pfn = mmu_btop(pbase); 1363 hp->ah_pnum = mmu_btopr(rp->regspec_size + pgoffset); 1364 1365 return (DDI_SUCCESS); 1366 } 1367 1368 1369 1370 /* 1371 * ************************ 1372 * interrupt related code 1373 * ************************ 1374 */ 1375 1376 /* 1377 * rootnex_intr_ops() 1378 * bus_intr_op() function for interrupt support 1379 */ 1380 /* ARGSUSED */ 1381 static int 1382 rootnex_intr_ops(dev_info_t *pdip, dev_info_t *rdip, ddi_intr_op_t intr_op, 1383 ddi_intr_handle_impl_t *hdlp, void *result) 1384 { 1385 struct intrspec *ispec; 1386 1387 DDI_INTR_NEXDBG((CE_CONT, 1388 "rootnex_intr_ops: pdip = %p, rdip = %p, intr_op = %x, hdlp = %p\n", 1389 (void *)pdip, (void *)rdip, intr_op, (void *)hdlp)); 1390 1391 /* Process the interrupt operation */ 1392 switch (intr_op) { 1393 case DDI_INTROP_GETCAP: 1394 /* First check with pcplusmp */ 1395 if (psm_intr_ops == NULL) 1396 return (DDI_FAILURE); 1397 1398 if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_GET_CAP, result)) { 1399 *(int *)result = 0; 1400 return (DDI_FAILURE); 1401 } 1402 break; 1403 case DDI_INTROP_SETCAP: 1404 if (psm_intr_ops == NULL) 1405 return (DDI_FAILURE); 1406 1407 if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_SET_CAP, result)) 1408 return (DDI_FAILURE); 1409 break; 1410 case DDI_INTROP_ALLOC: 1411 ASSERT(hdlp->ih_type == DDI_INTR_TYPE_FIXED); 1412 return (rootnex_alloc_intr_fixed(rdip, hdlp, result)); 1413 case DDI_INTROP_FREE: 1414 ASSERT(hdlp->ih_type == DDI_INTR_TYPE_FIXED); 1415 return (rootnex_free_intr_fixed(rdip, hdlp)); 1416 case DDI_INTROP_GETPRI: 1417 if ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL) 1418 return (DDI_FAILURE); 1419 *(int *)result = ispec->intrspec_pri; 1420 break; 1421 case DDI_INTROP_SETPRI: 1422 /* Validate the interrupt priority passed to us */ 1423 if (*(int *)result > LOCK_LEVEL) 1424 return (DDI_FAILURE); 1425 1426 /* Ensure that PSM is all initialized and ispec is ok */ 1427 if ((psm_intr_ops == NULL) || 1428 ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL)) 1429 return (DDI_FAILURE); 1430 1431 /* Change the priority */ 1432 if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_SET_PRI, result) == 1433 PSM_FAILURE) 1434 return (DDI_FAILURE); 1435 1436 /* update the ispec with the new priority */ 1437 ispec->intrspec_pri = *(int *)result; 1438 break; 1439 case DDI_INTROP_ADDISR: 1440 if ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL) 1441 return (DDI_FAILURE); 1442 ispec->intrspec_func = hdlp->ih_cb_func; 1443 break; 1444 case DDI_INTROP_REMISR: 1445 if ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL) 1446 return (DDI_FAILURE); 1447 ispec->intrspec_func = (uint_t (*)()) 0; 1448 break; 1449 case DDI_INTROP_ENABLE: 1450 if ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL) 1451 return (DDI_FAILURE); 1452 1453 /* Call psmi to translate irq with the dip */ 1454 if (psm_intr_ops == NULL) 1455 return (DDI_FAILURE); 1456 1457 ((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp = ispec; 1458 if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_XLATE_VECTOR, 1459 (int *)&hdlp->ih_vector) == PSM_FAILURE) 1460 return (DDI_FAILURE); 1461 1462 /* Add the interrupt handler */ 1463 if (!add_avintr((void *)hdlp, ispec->intrspec_pri, 1464 hdlp->ih_cb_func, DEVI(rdip)->devi_name, hdlp->ih_vector, 1465 hdlp->ih_cb_arg1, hdlp->ih_cb_arg2, NULL, rdip)) 1466 return (DDI_FAILURE); 1467 break; 1468 case DDI_INTROP_DISABLE: 1469 if ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL) 1470 return (DDI_FAILURE); 1471 1472 /* Call psm_ops() to translate irq with the dip */ 1473 if (psm_intr_ops == NULL) 1474 return (DDI_FAILURE); 1475 1476 ((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp = ispec; 1477 (void) (*psm_intr_ops)(rdip, hdlp, 1478 PSM_INTR_OP_XLATE_VECTOR, (int *)&hdlp->ih_vector); 1479 1480 /* Remove the interrupt handler */ 1481 rem_avintr((void *)hdlp, ispec->intrspec_pri, 1482 hdlp->ih_cb_func, hdlp->ih_vector); 1483 break; 1484 case DDI_INTROP_SETMASK: 1485 if (psm_intr_ops == NULL) 1486 return (DDI_FAILURE); 1487 1488 if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_SET_MASK, NULL)) 1489 return (DDI_FAILURE); 1490 break; 1491 case DDI_INTROP_CLRMASK: 1492 if (psm_intr_ops == NULL) 1493 return (DDI_FAILURE); 1494 1495 if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_CLEAR_MASK, NULL)) 1496 return (DDI_FAILURE); 1497 break; 1498 case DDI_INTROP_GETPENDING: 1499 if (psm_intr_ops == NULL) 1500 return (DDI_FAILURE); 1501 1502 if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_GET_PENDING, 1503 result)) { 1504 *(int *)result = 0; 1505 return (DDI_FAILURE); 1506 } 1507 break; 1508 case DDI_INTROP_NAVAIL: 1509 case DDI_INTROP_NINTRS: 1510 *(int *)result = i_ddi_get_intx_nintrs(rdip); 1511 if (*(int *)result == 0) { 1512 /* 1513 * Special case for 'pcic' driver' only. This driver 1514 * driver is a child of 'isa' and 'rootnex' drivers. 1515 * 1516 * See detailed comments on this in the function 1517 * rootnex_get_ispec(). 1518 * 1519 * Children of 'pcic' send 'NINITR' request all the 1520 * way to rootnex driver. But, the 'pdp->par_nintr' 1521 * field may not initialized. So, we fake it here 1522 * to return 1 (a la what PCMCIA nexus does). 1523 */ 1524 if (strcmp(ddi_get_name(rdip), "pcic") == 0) 1525 *(int *)result = 1; 1526 else 1527 return (DDI_FAILURE); 1528 } 1529 break; 1530 case DDI_INTROP_SUPPORTED_TYPES: 1531 *(int *)result = DDI_INTR_TYPE_FIXED; /* Always ... */ 1532 break; 1533 default: 1534 return (DDI_FAILURE); 1535 } 1536 1537 return (DDI_SUCCESS); 1538 } 1539 1540 1541 /* 1542 * rootnex_get_ispec() 1543 * convert an interrupt number to an interrupt specification. 1544 * The interrupt number determines which interrupt spec will be 1545 * returned if more than one exists. 1546 * 1547 * Look into the parent private data area of the 'rdip' to find out 1548 * the interrupt specification. First check to make sure there is 1549 * one that matchs "inumber" and then return a pointer to it. 1550 * 1551 * Return NULL if one could not be found. 1552 * 1553 * NOTE: This is needed for rootnex_intr_ops() 1554 */ 1555 static struct intrspec * 1556 rootnex_get_ispec(dev_info_t *rdip, int inum) 1557 { 1558 struct ddi_parent_private_data *pdp = ddi_get_parent_data(rdip); 1559 1560 /* 1561 * Special case handling for drivers that provide their own 1562 * intrspec structures instead of relying on the DDI framework. 1563 * 1564 * A broken hardware driver in ON could potentially provide its 1565 * own intrspec structure, instead of relying on the hardware. 1566 * If these drivers are children of 'rootnex' then we need to 1567 * continue to provide backward compatibility to them here. 1568 * 1569 * Following check is a special case for 'pcic' driver which 1570 * was found to have broken hardwre andby provides its own intrspec. 1571 * 1572 * Verbatim comments from this driver are shown here: 1573 * "Don't use the ddi_add_intr since we don't have a 1574 * default intrspec in all cases." 1575 * 1576 * Since an 'ispec' may not be always created for it, 1577 * check for that and create one if so. 1578 * 1579 * NOTE: Currently 'pcic' is the only driver found to do this. 1580 */ 1581 if (!pdp->par_intr && strcmp(ddi_get_name(rdip), "pcic") == 0) { 1582 pdp->par_nintr = 1; 1583 pdp->par_intr = kmem_zalloc(sizeof (struct intrspec) * 1584 pdp->par_nintr, KM_SLEEP); 1585 } 1586 1587 /* Validate the interrupt number */ 1588 if (inum >= pdp->par_nintr) 1589 return (NULL); 1590 1591 /* Get the interrupt structure pointer and return that */ 1592 return ((struct intrspec *)&pdp->par_intr[inum]); 1593 } 1594 1595 /* 1596 * Allocate interrupt vector for FIXED (legacy) type. 1597 */ 1598 static int 1599 rootnex_alloc_intr_fixed(dev_info_t *rdip, ddi_intr_handle_impl_t *hdlp, 1600 void *result) 1601 { 1602 struct intrspec *ispec; 1603 ddi_intr_handle_impl_t info_hdl; 1604 int ret; 1605 int free_phdl = 0; 1606 apic_get_type_t type_info; 1607 1608 if (psm_intr_ops == NULL) 1609 return (DDI_FAILURE); 1610 1611 if ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL) 1612 return (DDI_FAILURE); 1613 1614 /* 1615 * If the PSM module is "APIX" then pass the request for it 1616 * to allocate the vector now. 1617 */ 1618 bzero(&info_hdl, sizeof (ddi_intr_handle_impl_t)); 1619 info_hdl.ih_private = &type_info; 1620 if ((*psm_intr_ops)(NULL, &info_hdl, PSM_INTR_OP_APIC_TYPE, NULL) == 1621 PSM_SUCCESS && strcmp(type_info.avgi_type, APIC_APIX_NAME) == 0) { 1622 if (hdlp->ih_private == NULL) { /* allocate phdl structure */ 1623 free_phdl = 1; 1624 i_ddi_alloc_intr_phdl(hdlp); 1625 } 1626 ((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp = ispec; 1627 ret = (*psm_intr_ops)(rdip, hdlp, 1628 PSM_INTR_OP_ALLOC_VECTORS, result); 1629 if (free_phdl) { /* free up the phdl structure */ 1630 free_phdl = 0; 1631 i_ddi_free_intr_phdl(hdlp); 1632 hdlp->ih_private = NULL; 1633 } 1634 } else { 1635 /* 1636 * No APIX module; fall back to the old scheme where the 1637 * interrupt vector is allocated during ddi_enable_intr() call. 1638 */ 1639 hdlp->ih_pri = ispec->intrspec_pri; 1640 *(int *)result = hdlp->ih_scratch1; 1641 ret = DDI_SUCCESS; 1642 } 1643 1644 return (ret); 1645 } 1646 1647 /* 1648 * Free up interrupt vector for FIXED (legacy) type. 1649 */ 1650 static int 1651 rootnex_free_intr_fixed(dev_info_t *rdip, ddi_intr_handle_impl_t *hdlp) 1652 { 1653 struct intrspec *ispec; 1654 struct ddi_parent_private_data *pdp; 1655 ddi_intr_handle_impl_t info_hdl; 1656 int ret; 1657 apic_get_type_t type_info; 1658 1659 if (psm_intr_ops == NULL) 1660 return (DDI_FAILURE); 1661 1662 /* 1663 * If the PSM module is "APIX" then pass the request for it 1664 * to free up the vector now. 1665 */ 1666 bzero(&info_hdl, sizeof (ddi_intr_handle_impl_t)); 1667 info_hdl.ih_private = &type_info; 1668 if ((*psm_intr_ops)(NULL, &info_hdl, PSM_INTR_OP_APIC_TYPE, NULL) == 1669 PSM_SUCCESS && strcmp(type_info.avgi_type, APIC_APIX_NAME) == 0) { 1670 if ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL) 1671 return (DDI_FAILURE); 1672 ((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp = ispec; 1673 ret = (*psm_intr_ops)(rdip, hdlp, 1674 PSM_INTR_OP_FREE_VECTORS, NULL); 1675 } else { 1676 /* 1677 * No APIX module; fall back to the old scheme where 1678 * the interrupt vector was already freed during 1679 * ddi_disable_intr() call. 1680 */ 1681 ret = DDI_SUCCESS; 1682 } 1683 1684 pdp = ddi_get_parent_data(rdip); 1685 1686 /* 1687 * Special case for 'pcic' driver' only. 1688 * If an intrspec was created for it, clean it up here 1689 * See detailed comments on this in the function 1690 * rootnex_get_ispec(). 1691 */ 1692 if (pdp->par_intr && strcmp(ddi_get_name(rdip), "pcic") == 0) { 1693 kmem_free(pdp->par_intr, sizeof (struct intrspec) * 1694 pdp->par_nintr); 1695 /* 1696 * Set it to zero; so that 1697 * DDI framework doesn't free it again 1698 */ 1699 pdp->par_intr = NULL; 1700 pdp->par_nintr = 0; 1701 } 1702 1703 return (ret); 1704 } 1705 1706 1707 /* 1708 * ****************** 1709 * dma related code 1710 * ****************** 1711 */ 1712 1713 /*ARGSUSED*/ 1714 static int 1715 rootnex_coredma_allochdl(dev_info_t *dip, dev_info_t *rdip, 1716 ddi_dma_attr_t *attr, int (*waitfp)(caddr_t), caddr_t arg, 1717 ddi_dma_handle_t *handlep) 1718 { 1719 uint64_t maxsegmentsize_ll; 1720 uint_t maxsegmentsize; 1721 ddi_dma_impl_t *hp; 1722 rootnex_dma_t *dma; 1723 uint64_t count_max; 1724 uint64_t seg; 1725 int kmflag; 1726 int e; 1727 1728 1729 /* convert our sleep flags */ 1730 if (waitfp == DDI_DMA_SLEEP) { 1731 kmflag = KM_SLEEP; 1732 } else { 1733 kmflag = KM_NOSLEEP; 1734 } 1735 1736 /* 1737 * We try to do only one memory allocation here. We'll do a little 1738 * pointer manipulation later. If the bind ends up taking more than 1739 * our prealloc's space, we'll have to allocate more memory in the 1740 * bind operation. Not great, but much better than before and the 1741 * best we can do with the current bind interfaces. 1742 */ 1743 hp = kmem_cache_alloc(rootnex_state->r_dmahdl_cache, kmflag); 1744 if (hp == NULL) 1745 return (DDI_DMA_NORESOURCES); 1746 1747 /* Do our pointer manipulation now, align the structures */ 1748 hp->dmai_private = (void *)(((uintptr_t)hp + 1749 (uintptr_t)sizeof (ddi_dma_impl_t) + 0x7) & ~0x7); 1750 dma = (rootnex_dma_t *)hp->dmai_private; 1751 dma->dp_prealloc_buffer = (uchar_t *)(((uintptr_t)dma + 1752 sizeof (rootnex_dma_t) + 0x7) & ~0x7); 1753 1754 /* setup the handle */ 1755 rootnex_clean_dmahdl(hp); 1756 hp->dmai_error.err_fep = NULL; 1757 hp->dmai_error.err_cf = NULL; 1758 dma->dp_dip = rdip; 1759 dma->dp_sglinfo.si_flags = attr->dma_attr_flags; 1760 dma->dp_sglinfo.si_min_addr = attr->dma_attr_addr_lo; 1761 1762 /* 1763 * The BOUNCE_ON_SEG workaround is not needed when an IOMMU 1764 * is being used. Set the upper limit to the seg value. 1765 * There will be enough DVMA space to always get addresses 1766 * that will match the constraints. 1767 */ 1768 if (IOMMU_USED(rdip) && 1769 (attr->dma_attr_flags & _DDI_DMA_BOUNCE_ON_SEG)) { 1770 dma->dp_sglinfo.si_max_addr = attr->dma_attr_seg; 1771 dma->dp_sglinfo.si_flags &= ~_DDI_DMA_BOUNCE_ON_SEG; 1772 } else 1773 dma->dp_sglinfo.si_max_addr = attr->dma_attr_addr_hi; 1774 1775 hp->dmai_minxfer = attr->dma_attr_minxfer; 1776 hp->dmai_burstsizes = attr->dma_attr_burstsizes; 1777 hp->dmai_rdip = rdip; 1778 hp->dmai_attr = *attr; 1779 1780 if (attr->dma_attr_seg >= dma->dp_sglinfo.si_max_addr) 1781 dma->dp_sglinfo.si_cancross = B_FALSE; 1782 else 1783 dma->dp_sglinfo.si_cancross = B_TRUE; 1784 1785 /* we don't need to worry about the SPL since we do a tryenter */ 1786 mutex_init(&dma->dp_mutex, NULL, MUTEX_DRIVER, NULL); 1787 1788 /* 1789 * Figure out our maximum segment size. If the segment size is greater 1790 * than 4G, we will limit it to (4G - 1) since the max size of a dma 1791 * object (ddi_dma_obj_t.dmao_size) is 32 bits. dma_attr_seg and 1792 * dma_attr_count_max are size-1 type values. 1793 * 1794 * Maximum segment size is the largest physically contiguous chunk of 1795 * memory that we can return from a bind (i.e. the maximum size of a 1796 * single cookie). 1797 */ 1798 1799 /* handle the rollover cases */ 1800 seg = attr->dma_attr_seg + 1; 1801 if (seg < attr->dma_attr_seg) { 1802 seg = attr->dma_attr_seg; 1803 } 1804 count_max = attr->dma_attr_count_max + 1; 1805 if (count_max < attr->dma_attr_count_max) { 1806 count_max = attr->dma_attr_count_max; 1807 } 1808 1809 /* 1810 * granularity may or may not be a power of two. If it isn't, we can't 1811 * use a simple mask. 1812 */ 1813 if (!ISP2(attr->dma_attr_granular)) { 1814 dma->dp_granularity_power_2 = B_FALSE; 1815 } else { 1816 dma->dp_granularity_power_2 = B_TRUE; 1817 } 1818 1819 /* 1820 * maxxfer should be a whole multiple of granularity. If we're going to 1821 * break up a window because we're greater than maxxfer, we might as 1822 * well make sure it's maxxfer is a whole multiple so we don't have to 1823 * worry about triming the window later on for this case. 1824 */ 1825 if (attr->dma_attr_granular > 1) { 1826 if (dma->dp_granularity_power_2) { 1827 dma->dp_maxxfer = attr->dma_attr_maxxfer - 1828 (attr->dma_attr_maxxfer & 1829 (attr->dma_attr_granular - 1)); 1830 } else { 1831 dma->dp_maxxfer = attr->dma_attr_maxxfer - 1832 (attr->dma_attr_maxxfer % attr->dma_attr_granular); 1833 } 1834 } else { 1835 dma->dp_maxxfer = attr->dma_attr_maxxfer; 1836 } 1837 1838 maxsegmentsize_ll = MIN(seg, dma->dp_maxxfer); 1839 maxsegmentsize_ll = MIN(maxsegmentsize_ll, count_max); 1840 if (maxsegmentsize_ll == 0 || (maxsegmentsize_ll > 0xFFFFFFFF)) { 1841 maxsegmentsize = 0xFFFFFFFF; 1842 } else { 1843 maxsegmentsize = maxsegmentsize_ll; 1844 } 1845 dma->dp_sglinfo.si_max_cookie_size = maxsegmentsize; 1846 dma->dp_sglinfo.si_segmask = attr->dma_attr_seg; 1847 1848 /* check the ddi_dma_attr arg to make sure it makes a little sense */ 1849 if (rootnex_alloc_check_parms) { 1850 e = rootnex_valid_alloc_parms(attr, maxsegmentsize); 1851 if (e != DDI_SUCCESS) { 1852 ROOTNEX_DPROF_INC(&rootnex_cnt[ROOTNEX_CNT_ALLOC_FAIL]); 1853 (void) rootnex_dma_freehdl(dip, rdip, 1854 (ddi_dma_handle_t)hp); 1855 return (e); 1856 } 1857 } 1858 1859 *handlep = (ddi_dma_handle_t)hp; 1860 1861 ROOTNEX_DPROF_INC(&rootnex_cnt[ROOTNEX_CNT_ACTIVE_HDLS]); 1862 ROOTNEX_DPROBE1(rootnex__alloc__handle, uint64_t, 1863 rootnex_cnt[ROOTNEX_CNT_ACTIVE_HDLS]); 1864 1865 return (DDI_SUCCESS); 1866 } 1867 1868 1869 /* 1870 * rootnex_dma_allochdl() 1871 * called from ddi_dma_alloc_handle(). 1872 */ 1873 static int 1874 rootnex_dma_allochdl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_attr_t *attr, 1875 int (*waitfp)(caddr_t), caddr_t arg, ddi_dma_handle_t *handlep) 1876 { 1877 int retval = DDI_SUCCESS; 1878 #if defined(__amd64) && !defined(__xpv) 1879 1880 if (IOMMU_UNITIALIZED(rdip)) { 1881 retval = iommulib_nex_open(dip, rdip); 1882 1883 if (retval != DDI_SUCCESS && retval != DDI_ENOTSUP) 1884 return (retval); 1885 } 1886 1887 if (IOMMU_UNUSED(rdip)) { 1888 retval = rootnex_coredma_allochdl(dip, rdip, attr, waitfp, arg, 1889 handlep); 1890 } else { 1891 retval = iommulib_nexdma_allochdl(dip, rdip, attr, 1892 waitfp, arg, handlep); 1893 } 1894 #else 1895 retval = rootnex_coredma_allochdl(dip, rdip, attr, waitfp, arg, 1896 handlep); 1897 #endif 1898 switch (retval) { 1899 case DDI_DMA_NORESOURCES: 1900 if (waitfp != DDI_DMA_DONTWAIT) { 1901 ddi_set_callback(waitfp, arg, 1902 &rootnex_state->r_dvma_call_list_id); 1903 } 1904 break; 1905 case DDI_SUCCESS: 1906 ndi_fmc_insert(rdip, DMA_HANDLE, *handlep, NULL); 1907 break; 1908 default: 1909 break; 1910 } 1911 return (retval); 1912 } 1913 1914 /*ARGSUSED*/ 1915 static int 1916 rootnex_coredma_freehdl(dev_info_t *dip, dev_info_t *rdip, 1917 ddi_dma_handle_t handle) 1918 { 1919 ddi_dma_impl_t *hp; 1920 rootnex_dma_t *dma; 1921 1922 1923 hp = (ddi_dma_impl_t *)handle; 1924 dma = (rootnex_dma_t *)hp->dmai_private; 1925 1926 /* unbind should have been called first */ 1927 ASSERT(!dma->dp_inuse); 1928 1929 mutex_destroy(&dma->dp_mutex); 1930 kmem_cache_free(rootnex_state->r_dmahdl_cache, hp); 1931 1932 ROOTNEX_DPROF_DEC(&rootnex_cnt[ROOTNEX_CNT_ACTIVE_HDLS]); 1933 ROOTNEX_DPROBE1(rootnex__free__handle, uint64_t, 1934 rootnex_cnt[ROOTNEX_CNT_ACTIVE_HDLS]); 1935 1936 return (DDI_SUCCESS); 1937 } 1938 1939 /* 1940 * rootnex_dma_freehdl() 1941 * called from ddi_dma_free_handle(). 1942 */ 1943 static int 1944 rootnex_dma_freehdl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle) 1945 { 1946 int ret; 1947 1948 ndi_fmc_remove(rdip, DMA_HANDLE, handle); 1949 #if defined(__amd64) && !defined(__xpv) 1950 if (IOMMU_USED(rdip)) 1951 ret = iommulib_nexdma_freehdl(dip, rdip, handle); 1952 else 1953 #endif 1954 ret = rootnex_coredma_freehdl(dip, rdip, handle); 1955 1956 if (rootnex_state->r_dvma_call_list_id) 1957 ddi_run_callback(&rootnex_state->r_dvma_call_list_id); 1958 1959 return (ret); 1960 } 1961 1962 /*ARGSUSED*/ 1963 static int 1964 rootnex_coredma_bindhdl(dev_info_t *dip, dev_info_t *rdip, 1965 ddi_dma_handle_t handle, struct ddi_dma_req *dmareq, 1966 ddi_dma_cookie_t *cookiep, uint_t *ccountp) 1967 { 1968 rootnex_sglinfo_t *sinfo; 1969 ddi_dma_obj_t *dmao; 1970 #if defined(__amd64) && !defined(__xpv) 1971 struct dvmaseg *dvs; 1972 ddi_dma_cookie_t *cookie; 1973 #endif 1974 ddi_dma_attr_t *attr; 1975 ddi_dma_impl_t *hp; 1976 rootnex_dma_t *dma; 1977 int kmflag; 1978 int e; 1979 uint_t ncookies; 1980 1981 hp = (ddi_dma_impl_t *)handle; 1982 dma = (rootnex_dma_t *)hp->dmai_private; 1983 dmao = &dma->dp_dma; 1984 sinfo = &dma->dp_sglinfo; 1985 attr = &hp->dmai_attr; 1986 1987 /* convert the sleep flags */ 1988 if (dmareq->dmar_fp == DDI_DMA_SLEEP) { 1989 dma->dp_sleep_flags = kmflag = KM_SLEEP; 1990 } else { 1991 dma->dp_sleep_flags = kmflag = KM_NOSLEEP; 1992 } 1993 1994 hp->dmai_rflags = dmareq->dmar_flags & DMP_DDIFLAGS; 1995 1996 /* 1997 * This is useful for debugging a driver. Not as useful in a production 1998 * system. The only time this will fail is if you have a driver bug. 1999 */ 2000 if (rootnex_bind_check_inuse) { 2001 /* 2002 * No one else should ever have this lock unless someone else 2003 * is trying to use this handle. So contention on the lock 2004 * is the same as inuse being set. 2005 */ 2006 e = mutex_tryenter(&dma->dp_mutex); 2007 if (e == 0) { 2008 ROOTNEX_DPROF_INC(&rootnex_cnt[ROOTNEX_CNT_BIND_FAIL]); 2009 return (DDI_DMA_INUSE); 2010 } 2011 if (dma->dp_inuse) { 2012 mutex_exit(&dma->dp_mutex); 2013 ROOTNEX_DPROF_INC(&rootnex_cnt[ROOTNEX_CNT_BIND_FAIL]); 2014 return (DDI_DMA_INUSE); 2015 } 2016 dma->dp_inuse = B_TRUE; 2017 mutex_exit(&dma->dp_mutex); 2018 } 2019 2020 /* check the ddi_dma_attr arg to make sure it makes a little sense */ 2021 if (rootnex_bind_check_parms) { 2022 e = rootnex_valid_bind_parms(dmareq, attr); 2023 if (e != DDI_SUCCESS) { 2024 ROOTNEX_DPROF_INC(&rootnex_cnt[ROOTNEX_CNT_BIND_FAIL]); 2025 rootnex_clean_dmahdl(hp); 2026 return (e); 2027 } 2028 } 2029 2030 /* save away the original bind info */ 2031 dma->dp_dma = dmareq->dmar_object; 2032 2033 #if defined(__amd64) && !defined(__xpv) 2034 if (IOMMU_USED(rdip)) { 2035 dmao = &dma->dp_dvma; 2036 e = iommulib_nexdma_mapobject(dip, rdip, handle, dmareq, dmao); 2037 switch (e) { 2038 case DDI_SUCCESS: 2039 if (sinfo->si_cancross || 2040 dmao->dmao_obj.dvma_obj.dv_nseg != 1 || 2041 dmao->dmao_size > sinfo->si_max_cookie_size) { 2042 dma->dp_dvma_used = B_TRUE; 2043 break; 2044 } 2045 sinfo->si_sgl_size = 1; 2046 hp->dmai_rflags |= DMP_NOSYNC; 2047 2048 dma->dp_dvma_used = B_TRUE; 2049 dma->dp_need_to_free_cookie = B_FALSE; 2050 2051 dvs = &dmao->dmao_obj.dvma_obj.dv_seg[0]; 2052 cookie = hp->dmai_cookie = dma->dp_cookies = 2053 (ddi_dma_cookie_t *)dma->dp_prealloc_buffer; 2054 cookie->dmac_laddress = dvs->dvs_start + 2055 dmao->dmao_obj.dvma_obj.dv_off; 2056 cookie->dmac_size = dvs->dvs_len; 2057 cookie->dmac_type = 0; 2058 2059 ROOTNEX_DPROBE1(rootnex__bind__dvmafast, dev_info_t *, 2060 rdip); 2061 goto fast; 2062 case DDI_ENOTSUP: 2063 break; 2064 default: 2065 rootnex_clean_dmahdl(hp); 2066 return (e); 2067 } 2068 } 2069 #endif 2070 2071 /* 2072 * Figure out a rough estimate of what maximum number of pages 2073 * this buffer could use (a high estimate of course). 2074 */ 2075 sinfo->si_max_pages = mmu_btopr(dma->dp_dma.dmao_size) + 1; 2076 2077 if (dma->dp_dvma_used) { 2078 /* 2079 * The number of physical pages is the worst case. 2080 * 2081 * For DVMA, the worst case is the length divided 2082 * by the maximum cookie length, plus 1. Add to that 2083 * the number of segment boundaries potentially crossed, and 2084 * the additional number of DVMA segments that was returned. 2085 * 2086 * In the normal case, for modern devices, si_cancross will 2087 * be false, and dv_nseg will be 1, and the fast path will 2088 * have been taken above. 2089 */ 2090 ncookies = (dma->dp_dma.dmao_size / sinfo->si_max_cookie_size) 2091 + 1; 2092 if (sinfo->si_cancross) 2093 ncookies += 2094 (dma->dp_dma.dmao_size / attr->dma_attr_seg) + 1; 2095 ncookies += (dmao->dmao_obj.dvma_obj.dv_nseg - 1); 2096 2097 sinfo->si_max_pages = MIN(sinfo->si_max_pages, ncookies); 2098 } 2099 2100 /* 2101 * We'll use the pre-allocated cookies for any bind that will *always* 2102 * fit (more important to be consistent, we don't want to create 2103 * additional degenerate cases). 2104 */ 2105 if (sinfo->si_max_pages <= rootnex_state->r_prealloc_cookies) { 2106 dma->dp_cookies = (ddi_dma_cookie_t *)dma->dp_prealloc_buffer; 2107 dma->dp_need_to_free_cookie = B_FALSE; 2108 ROOTNEX_DPROBE2(rootnex__bind__prealloc, dev_info_t *, rdip, 2109 uint_t, sinfo->si_max_pages); 2110 2111 /* 2112 * For anything larger than that, we'll go ahead and allocate the 2113 * maximum number of pages we expect to see. Hopefuly, we won't be 2114 * seeing this path in the fast path for high performance devices very 2115 * frequently. 2116 * 2117 * a ddi bind interface that allowed the driver to provide storage to 2118 * the bind interface would speed this case up. 2119 */ 2120 } else { 2121 /* 2122 * Save away how much memory we allocated. If we're doing a 2123 * nosleep, the alloc could fail... 2124 */ 2125 dma->dp_cookie_size = sinfo->si_max_pages * 2126 sizeof (ddi_dma_cookie_t); 2127 dma->dp_cookies = kmem_alloc(dma->dp_cookie_size, kmflag); 2128 if (dma->dp_cookies == NULL) { 2129 ROOTNEX_DPROF_INC(&rootnex_cnt[ROOTNEX_CNT_BIND_FAIL]); 2130 rootnex_clean_dmahdl(hp); 2131 return (DDI_DMA_NORESOURCES); 2132 } 2133 dma->dp_need_to_free_cookie = B_TRUE; 2134 ROOTNEX_DPROBE2(rootnex__bind__alloc, dev_info_t *, rdip, 2135 uint_t, sinfo->si_max_pages); 2136 } 2137 hp->dmai_cookie = dma->dp_cookies; 2138 2139 /* 2140 * Get the real sgl. rootnex_get_sgl will fill in cookie array while 2141 * looking at the constraints in the dma structure. It will then put 2142 * some additional state about the sgl in the dma struct (i.e. is 2143 * the sgl clean, or do we need to do some munging; how many pages 2144 * need to be copied, etc.) 2145 */ 2146 if (dma->dp_dvma_used) 2147 rootnex_dvma_get_sgl(dmao, dma->dp_cookies, &dma->dp_sglinfo); 2148 else 2149 rootnex_get_sgl(dmao, dma->dp_cookies, &dma->dp_sglinfo); 2150 2151 out: 2152 ASSERT(sinfo->si_sgl_size <= sinfo->si_max_pages); 2153 /* if we don't need a copy buffer, we don't need to sync */ 2154 if (sinfo->si_copybuf_req == 0) { 2155 hp->dmai_rflags |= DMP_NOSYNC; 2156 } 2157 2158 /* 2159 * if we don't need the copybuf and we don't need to do a partial, we 2160 * hit the fast path. All the high performance devices should be trying 2161 * to hit this path. To hit this path, a device should be able to reach 2162 * all of memory, shouldn't try to bind more than it can transfer, and 2163 * the buffer shouldn't require more cookies than the driver/device can 2164 * handle [sgllen]). 2165 * 2166 * Note that negative values of dma_attr_sgllen are supposed 2167 * to mean unlimited, but we just cast them to mean a 2168 * "ridiculous large limit". This saves some extra checks on 2169 * hot paths. 2170 */ 2171 if ((sinfo->si_copybuf_req == 0) && 2172 (sinfo->si_sgl_size <= (unsigned)attr->dma_attr_sgllen) && 2173 (dmao->dmao_size < dma->dp_maxxfer)) { 2174 fast: 2175 /* 2176 * If the driver supports FMA, insert the handle in the FMA DMA 2177 * handle cache. 2178 */ 2179 if (attr->dma_attr_flags & DDI_DMA_FLAGERR) 2180 hp->dmai_error.err_cf = rootnex_dma_check; 2181 2182 /* 2183 * copy out the first cookie and ccountp, set the cookie 2184 * pointer to the second cookie. The first cookie is passed 2185 * back on the stack. Additional cookies are accessed via 2186 * ddi_dma_nextcookie() 2187 */ 2188 *cookiep = dma->dp_cookies[0]; 2189 *ccountp = sinfo->si_sgl_size; 2190 hp->dmai_cookie++; 2191 hp->dmai_rflags &= ~DDI_DMA_PARTIAL; 2192 ROOTNEX_DPROF_INC(&rootnex_cnt[ROOTNEX_CNT_ACTIVE_BINDS]); 2193 ROOTNEX_DPROBE4(rootnex__bind__fast, dev_info_t *, rdip, 2194 uint64_t, rootnex_cnt[ROOTNEX_CNT_ACTIVE_BINDS], 2195 uint_t, dmao->dmao_size, uint_t, *ccountp); 2196 2197 2198 return (DDI_DMA_MAPPED); 2199 } 2200 2201 /* 2202 * go to the slow path, we may need to alloc more memory, create 2203 * multiple windows, and munge up a sgl to make the device happy. 2204 */ 2205 2206 /* 2207 * With the IOMMU mapobject method used, we should never hit 2208 * the slow path. If we do, something is seriously wrong. 2209 * Clean up and return an error. 2210 */ 2211 2212 #if defined(__amd64) && !defined(__xpv) 2213 2214 if (dma->dp_dvma_used) { 2215 (void) iommulib_nexdma_unmapobject(dip, rdip, handle, 2216 &dma->dp_dvma); 2217 e = DDI_DMA_NOMAPPING; 2218 } else { 2219 #endif 2220 e = rootnex_bind_slowpath(hp, dmareq, dma, attr, &dma->dp_dma, 2221 kmflag); 2222 #if defined(__amd64) && !defined(__xpv) 2223 } 2224 #endif 2225 if ((e != DDI_DMA_MAPPED) && (e != DDI_DMA_PARTIAL_MAP)) { 2226 if (dma->dp_need_to_free_cookie) { 2227 kmem_free(dma->dp_cookies, dma->dp_cookie_size); 2228 } 2229 ROOTNEX_DPROF_INC(&rootnex_cnt[ROOTNEX_CNT_BIND_FAIL]); 2230 rootnex_clean_dmahdl(hp); /* must be after free cookie */ 2231 return (e); 2232 } 2233 2234 /* 2235 * If the driver supports FMA, insert the handle in the FMA DMA handle 2236 * cache. 2237 */ 2238 if (attr->dma_attr_flags & DDI_DMA_FLAGERR) 2239 hp->dmai_error.err_cf = rootnex_dma_check; 2240 2241 /* if the first window uses the copy buffer, sync it for the device */ 2242 if ((dma->dp_window[dma->dp_current_win].wd_dosync) && 2243 (hp->dmai_rflags & DDI_DMA_WRITE)) { 2244 (void) rootnex_coredma_sync(dip, rdip, handle, 0, 0, 2245 DDI_DMA_SYNC_FORDEV); 2246 } 2247 2248 /* 2249 * copy out the first cookie and ccountp, set the cookie pointer to the 2250 * second cookie. Make sure the partial flag is set/cleared correctly. 2251 * If we have a partial map (i.e. multiple windows), the number of 2252 * cookies we return is the number of cookies in the first window. 2253 */ 2254 if (e == DDI_DMA_MAPPED) { 2255 hp->dmai_rflags &= ~DDI_DMA_PARTIAL; 2256 *ccountp = sinfo->si_sgl_size; 2257 hp->dmai_nwin = 1; 2258 } else { 2259 hp->dmai_rflags |= DDI_DMA_PARTIAL; 2260 *ccountp = dma->dp_window[dma->dp_current_win].wd_cookie_cnt; 2261 ASSERT(hp->dmai_nwin <= dma->dp_max_win); 2262 } 2263 *cookiep = dma->dp_cookies[0]; 2264 hp->dmai_cookie++; 2265 2266 ROOTNEX_DPROF_INC(&rootnex_cnt[ROOTNEX_CNT_ACTIVE_BINDS]); 2267 ROOTNEX_DPROBE4(rootnex__bind__slow, dev_info_t *, rdip, uint64_t, 2268 rootnex_cnt[ROOTNEX_CNT_ACTIVE_BINDS], uint_t, 2269 dmao->dmao_size, uint_t, *ccountp); 2270 return (e); 2271 } 2272 2273 /* 2274 * rootnex_dma_bindhdl() 2275 * called from ddi_dma_addr_bind_handle() and ddi_dma_buf_bind_handle(). 2276 */ 2277 static int 2278 rootnex_dma_bindhdl(dev_info_t *dip, dev_info_t *rdip, 2279 ddi_dma_handle_t handle, struct ddi_dma_req *dmareq, 2280 ddi_dma_cookie_t *cookiep, uint_t *ccountp) 2281 { 2282 int ret; 2283 #if defined(__amd64) && !defined(__xpv) 2284 if (IOMMU_USED(rdip)) 2285 ret = iommulib_nexdma_bindhdl(dip, rdip, handle, dmareq, 2286 cookiep, ccountp); 2287 else 2288 #endif 2289 ret = rootnex_coredma_bindhdl(dip, rdip, handle, dmareq, 2290 cookiep, ccountp); 2291 2292 if (ret == DDI_DMA_NORESOURCES && dmareq->dmar_fp != DDI_DMA_DONTWAIT) { 2293 ddi_set_callback(dmareq->dmar_fp, dmareq->dmar_arg, 2294 &rootnex_state->r_dvma_call_list_id); 2295 } 2296 2297 return (ret); 2298 } 2299 2300 2301 2302 /*ARGSUSED*/ 2303 static int 2304 rootnex_coredma_unbindhdl(dev_info_t *dip, dev_info_t *rdip, 2305 ddi_dma_handle_t handle) 2306 { 2307 ddi_dma_impl_t *hp; 2308 rootnex_dma_t *dma; 2309 int e; 2310 2311 hp = (ddi_dma_impl_t *)handle; 2312 dma = (rootnex_dma_t *)hp->dmai_private; 2313 2314 /* make sure the buffer wasn't free'd before calling unbind */ 2315 if (rootnex_unbind_verify_buffer) { 2316 e = rootnex_verify_buffer(dma); 2317 if (e != DDI_SUCCESS) { 2318 ASSERT(0); 2319 return (DDI_FAILURE); 2320 } 2321 } 2322 2323 /* sync the current window before unbinding the buffer */ 2324 if (dma->dp_window && dma->dp_window[dma->dp_current_win].wd_dosync && 2325 (hp->dmai_rflags & DDI_DMA_READ)) { 2326 (void) rootnex_coredma_sync(dip, rdip, handle, 0, 0, 2327 DDI_DMA_SYNC_FORCPU); 2328 } 2329 2330 /* 2331 * cleanup and copy buffer or window state. if we didn't use the copy 2332 * buffer or windows, there won't be much to do :-) 2333 */ 2334 rootnex_teardown_copybuf(dma); 2335 rootnex_teardown_windows(dma); 2336 2337 #if defined(__amd64) && !defined(__xpv) 2338 if (IOMMU_USED(rdip)) 2339 (void) iommulib_nexdma_unmapobject(dip, rdip, handle, 2340 &dma->dp_dvma); 2341 #endif 2342 2343 /* 2344 * If we had to allocate space to for the worse case sgl (it didn't 2345 * fit into our pre-allocate buffer), free that up now 2346 */ 2347 if (dma->dp_need_to_free_cookie) { 2348 kmem_free(dma->dp_cookies, dma->dp_cookie_size); 2349 } 2350 2351 /* 2352 * clean up the handle so it's ready for the next bind (i.e. if the 2353 * handle is reused). 2354 */ 2355 rootnex_clean_dmahdl(hp); 2356 hp->dmai_error.err_cf = NULL; 2357 2358 ROOTNEX_DPROF_DEC(&rootnex_cnt[ROOTNEX_CNT_ACTIVE_BINDS]); 2359 ROOTNEX_DPROBE1(rootnex__unbind, uint64_t, 2360 rootnex_cnt[ROOTNEX_CNT_ACTIVE_BINDS]); 2361 2362 return (DDI_SUCCESS); 2363 } 2364 2365 /* 2366 * rootnex_dma_unbindhdl() 2367 * called from ddi_dma_unbind_handle() 2368 */ 2369 /*ARGSUSED*/ 2370 static int 2371 rootnex_dma_unbindhdl(dev_info_t *dip, dev_info_t *rdip, 2372 ddi_dma_handle_t handle) 2373 { 2374 int ret; 2375 2376 #if defined(__amd64) && !defined(__xpv) 2377 if (IOMMU_USED(rdip)) 2378 ret = iommulib_nexdma_unbindhdl(dip, rdip, handle); 2379 else 2380 #endif 2381 ret = rootnex_coredma_unbindhdl(dip, rdip, handle); 2382 2383 if (rootnex_state->r_dvma_call_list_id) 2384 ddi_run_callback(&rootnex_state->r_dvma_call_list_id); 2385 2386 return (ret); 2387 } 2388 2389 #if defined(__amd64) && !defined(__xpv) 2390 2391 static int 2392 rootnex_coredma_get_sleep_flags(ddi_dma_handle_t handle) 2393 { 2394 ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle; 2395 rootnex_dma_t *dma = (rootnex_dma_t *)hp->dmai_private; 2396 2397 if (dma->dp_sleep_flags != KM_SLEEP && 2398 dma->dp_sleep_flags != KM_NOSLEEP) 2399 cmn_err(CE_PANIC, "kmem sleep flags not set in DMA handle"); 2400 return (dma->dp_sleep_flags); 2401 } 2402 /*ARGSUSED*/ 2403 static void 2404 rootnex_coredma_reset_cookies(dev_info_t *dip, ddi_dma_handle_t handle) 2405 { 2406 ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle; 2407 rootnex_dma_t *dma = (rootnex_dma_t *)hp->dmai_private; 2408 rootnex_window_t *window; 2409 2410 if (dma->dp_window) { 2411 window = &dma->dp_window[dma->dp_current_win]; 2412 hp->dmai_cookie = window->wd_first_cookie; 2413 } else { 2414 hp->dmai_cookie = dma->dp_cookies; 2415 } 2416 hp->dmai_cookie++; 2417 } 2418 2419 /*ARGSUSED*/ 2420 static int 2421 rootnex_coredma_get_cookies(dev_info_t *dip, ddi_dma_handle_t handle, 2422 ddi_dma_cookie_t **cookiepp, uint_t *ccountp) 2423 { 2424 int i; 2425 int km_flags; 2426 ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle; 2427 rootnex_dma_t *dma = (rootnex_dma_t *)hp->dmai_private; 2428 rootnex_window_t *window; 2429 ddi_dma_cookie_t *cp; 2430 ddi_dma_cookie_t *cookie; 2431 2432 ASSERT(*cookiepp == NULL); 2433 ASSERT(*ccountp == 0); 2434 2435 if (dma->dp_window) { 2436 window = &dma->dp_window[dma->dp_current_win]; 2437 cp = window->wd_first_cookie; 2438 *ccountp = window->wd_cookie_cnt; 2439 } else { 2440 cp = dma->dp_cookies; 2441 *ccountp = dma->dp_sglinfo.si_sgl_size; 2442 } 2443 2444 km_flags = rootnex_coredma_get_sleep_flags(handle); 2445 cookie = kmem_zalloc(sizeof (ddi_dma_cookie_t) * (*ccountp), km_flags); 2446 if (cookie == NULL) { 2447 return (DDI_DMA_NORESOURCES); 2448 } 2449 2450 for (i = 0; i < *ccountp; i++) { 2451 cookie[i].dmac_notused = cp[i].dmac_notused; 2452 cookie[i].dmac_type = cp[i].dmac_type; 2453 cookie[i].dmac_address = cp[i].dmac_address; 2454 cookie[i].dmac_size = cp[i].dmac_size; 2455 } 2456 2457 *cookiepp = cookie; 2458 2459 return (DDI_SUCCESS); 2460 } 2461 2462 /*ARGSUSED*/ 2463 static int 2464 rootnex_coredma_set_cookies(dev_info_t *dip, ddi_dma_handle_t handle, 2465 ddi_dma_cookie_t *cookiep, uint_t ccount) 2466 { 2467 ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle; 2468 rootnex_dma_t *dma = (rootnex_dma_t *)hp->dmai_private; 2469 rootnex_window_t *window; 2470 ddi_dma_cookie_t *cur_cookiep; 2471 2472 ASSERT(cookiep); 2473 ASSERT(ccount != 0); 2474 ASSERT(dma->dp_need_to_switch_cookies == B_FALSE); 2475 2476 if (dma->dp_window) { 2477 window = &dma->dp_window[dma->dp_current_win]; 2478 dma->dp_saved_cookies = window->wd_first_cookie; 2479 window->wd_first_cookie = cookiep; 2480 ASSERT(ccount == window->wd_cookie_cnt); 2481 cur_cookiep = (hp->dmai_cookie - dma->dp_saved_cookies) 2482 + window->wd_first_cookie; 2483 } else { 2484 dma->dp_saved_cookies = dma->dp_cookies; 2485 dma->dp_cookies = cookiep; 2486 ASSERT(ccount == dma->dp_sglinfo.si_sgl_size); 2487 cur_cookiep = (hp->dmai_cookie - dma->dp_saved_cookies) 2488 + dma->dp_cookies; 2489 } 2490 2491 dma->dp_need_to_switch_cookies = B_TRUE; 2492 hp->dmai_cookie = cur_cookiep; 2493 2494 return (DDI_SUCCESS); 2495 } 2496 2497 /*ARGSUSED*/ 2498 static int 2499 rootnex_coredma_clear_cookies(dev_info_t *dip, ddi_dma_handle_t handle) 2500 { 2501 ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle; 2502 rootnex_dma_t *dma = (rootnex_dma_t *)hp->dmai_private; 2503 rootnex_window_t *window; 2504 ddi_dma_cookie_t *cur_cookiep; 2505 ddi_dma_cookie_t *cookie_array; 2506 uint_t ccount; 2507 2508 /* check if cookies have not been switched */ 2509 if (dma->dp_need_to_switch_cookies == B_FALSE) 2510 return (DDI_SUCCESS); 2511 2512 ASSERT(dma->dp_saved_cookies); 2513 2514 if (dma->dp_window) { 2515 window = &dma->dp_window[dma->dp_current_win]; 2516 cookie_array = window->wd_first_cookie; 2517 window->wd_first_cookie = dma->dp_saved_cookies; 2518 dma->dp_saved_cookies = NULL; 2519 ccount = window->wd_cookie_cnt; 2520 cur_cookiep = (hp->dmai_cookie - cookie_array) 2521 + window->wd_first_cookie; 2522 } else { 2523 cookie_array = dma->dp_cookies; 2524 dma->dp_cookies = dma->dp_saved_cookies; 2525 dma->dp_saved_cookies = NULL; 2526 ccount = dma->dp_sglinfo.si_sgl_size; 2527 cur_cookiep = (hp->dmai_cookie - cookie_array) 2528 + dma->dp_cookies; 2529 } 2530 2531 kmem_free(cookie_array, sizeof (ddi_dma_cookie_t) * ccount); 2532 2533 hp->dmai_cookie = cur_cookiep; 2534 2535 dma->dp_need_to_switch_cookies = B_FALSE; 2536 2537 return (DDI_SUCCESS); 2538 } 2539 2540 #endif 2541 2542 static struct as * 2543 rootnex_get_as(ddi_dma_obj_t *dmao) 2544 { 2545 struct as *asp; 2546 2547 switch (dmao->dmao_type) { 2548 case DMA_OTYP_VADDR: 2549 case DMA_OTYP_BUFVADDR: 2550 asp = dmao->dmao_obj.virt_obj.v_as; 2551 if (asp == NULL) 2552 asp = &kas; 2553 break; 2554 default: 2555 asp = NULL; 2556 break; 2557 } 2558 return (asp); 2559 } 2560 2561 /* 2562 * rootnex_verify_buffer() 2563 * verify buffer wasn't free'd 2564 */ 2565 static int 2566 rootnex_verify_buffer(rootnex_dma_t *dma) 2567 { 2568 page_t **pplist; 2569 caddr_t vaddr; 2570 uint_t pcnt; 2571 uint_t poff; 2572 page_t *pp; 2573 char b; 2574 int i; 2575 2576 /* Figure out how many pages this buffer occupies */ 2577 if (dma->dp_dma.dmao_type == DMA_OTYP_PAGES) { 2578 poff = dma->dp_dma.dmao_obj.pp_obj.pp_offset & MMU_PAGEOFFSET; 2579 } else { 2580 vaddr = dma->dp_dma.dmao_obj.virt_obj.v_addr; 2581 poff = (uintptr_t)vaddr & MMU_PAGEOFFSET; 2582 } 2583 pcnt = mmu_btopr(dma->dp_dma.dmao_size + poff); 2584 2585 switch (dma->dp_dma.dmao_type) { 2586 case DMA_OTYP_PAGES: 2587 /* 2588 * for a linked list of pp's walk through them to make sure 2589 * they're locked and not free. 2590 */ 2591 pp = dma->dp_dma.dmao_obj.pp_obj.pp_pp; 2592 for (i = 0; i < pcnt; i++) { 2593 if (PP_ISFREE(pp) || !PAGE_LOCKED(pp)) { 2594 return (DDI_FAILURE); 2595 } 2596 pp = pp->p_next; 2597 } 2598 break; 2599 2600 case DMA_OTYP_VADDR: 2601 case DMA_OTYP_BUFVADDR: 2602 pplist = dma->dp_dma.dmao_obj.virt_obj.v_priv; 2603 /* 2604 * for an array of pp's walk through them to make sure they're 2605 * not free. It's possible that they may not be locked. 2606 */ 2607 if (pplist) { 2608 for (i = 0; i < pcnt; i++) { 2609 if (PP_ISFREE(pplist[i])) { 2610 return (DDI_FAILURE); 2611 } 2612 } 2613 2614 /* For a virtual address, try to peek at each page */ 2615 } else { 2616 if (rootnex_get_as(&dma->dp_dma) == &kas) { 2617 for (i = 0; i < pcnt; i++) { 2618 if (ddi_peek8(NULL, vaddr, &b) == 2619 DDI_FAILURE) 2620 return (DDI_FAILURE); 2621 vaddr += MMU_PAGESIZE; 2622 } 2623 } 2624 } 2625 break; 2626 2627 default: 2628 cmn_err(CE_PANIC, "rootnex_verify_buffer: bad DMA object"); 2629 break; 2630 } 2631 2632 return (DDI_SUCCESS); 2633 } 2634 2635 2636 /* 2637 * rootnex_clean_dmahdl() 2638 * Clean the dma handle. This should be called on a handle alloc and an 2639 * unbind handle. Set the handle state to the default settings. 2640 */ 2641 static void 2642 rootnex_clean_dmahdl(ddi_dma_impl_t *hp) 2643 { 2644 rootnex_dma_t *dma; 2645 2646 2647 dma = (rootnex_dma_t *)hp->dmai_private; 2648 2649 hp->dmai_nwin = 0; 2650 dma->dp_current_cookie = 0; 2651 dma->dp_copybuf_size = 0; 2652 dma->dp_window = NULL; 2653 dma->dp_cbaddr = NULL; 2654 dma->dp_inuse = B_FALSE; 2655 dma->dp_dvma_used = B_FALSE; 2656 dma->dp_need_to_free_cookie = B_FALSE; 2657 dma->dp_need_to_switch_cookies = B_FALSE; 2658 dma->dp_saved_cookies = NULL; 2659 dma->dp_sleep_flags = KM_PANIC; 2660 dma->dp_need_to_free_window = B_FALSE; 2661 dma->dp_partial_required = B_FALSE; 2662 dma->dp_trim_required = B_FALSE; 2663 dma->dp_sglinfo.si_copybuf_req = 0; 2664 #if !defined(__amd64) 2665 dma->dp_cb_remaping = B_FALSE; 2666 dma->dp_kva = NULL; 2667 #endif 2668 2669 /* FMA related initialization */ 2670 hp->dmai_fault = 0; 2671 hp->dmai_fault_check = NULL; 2672 hp->dmai_fault_notify = NULL; 2673 hp->dmai_error.err_ena = 0; 2674 hp->dmai_error.err_status = DDI_FM_OK; 2675 hp->dmai_error.err_expected = DDI_FM_ERR_UNEXPECTED; 2676 hp->dmai_error.err_ontrap = NULL; 2677 } 2678 2679 2680 /* 2681 * rootnex_valid_alloc_parms() 2682 * Called in ddi_dma_alloc_handle path to validate its parameters. 2683 */ 2684 static int 2685 rootnex_valid_alloc_parms(ddi_dma_attr_t *attr, uint_t maxsegmentsize) 2686 { 2687 if ((attr->dma_attr_seg < MMU_PAGEOFFSET) || 2688 (attr->dma_attr_count_max < MMU_PAGEOFFSET) || 2689 (attr->dma_attr_granular > MMU_PAGESIZE) || 2690 (attr->dma_attr_maxxfer < MMU_PAGESIZE)) { 2691 return (DDI_DMA_BADATTR); 2692 } 2693 2694 if (attr->dma_attr_addr_hi <= attr->dma_attr_addr_lo) { 2695 return (DDI_DMA_BADATTR); 2696 } 2697 2698 if ((attr->dma_attr_seg & MMU_PAGEOFFSET) != MMU_PAGEOFFSET || 2699 MMU_PAGESIZE & (attr->dma_attr_granular - 1) || 2700 attr->dma_attr_sgllen == 0) { 2701 return (DDI_DMA_BADATTR); 2702 } 2703 2704 /* We should be able to DMA into every byte offset in a page */ 2705 if (maxsegmentsize < MMU_PAGESIZE) { 2706 return (DDI_DMA_BADATTR); 2707 } 2708 2709 /* if we're bouncing on seg, seg must be <= addr_hi */ 2710 if ((attr->dma_attr_flags & _DDI_DMA_BOUNCE_ON_SEG) && 2711 (attr->dma_attr_seg > attr->dma_attr_addr_hi)) { 2712 return (DDI_DMA_BADATTR); 2713 } 2714 return (DDI_SUCCESS); 2715 } 2716 2717 /* 2718 * rootnex_valid_bind_parms() 2719 * Called in ddi_dma_*_bind_handle path to validate its parameters. 2720 */ 2721 /* ARGSUSED */ 2722 static int 2723 rootnex_valid_bind_parms(ddi_dma_req_t *dmareq, ddi_dma_attr_t *attr) 2724 { 2725 #if !defined(__amd64) 2726 /* 2727 * we only support up to a 2G-1 transfer size on 32-bit kernels so 2728 * we can track the offset for the obsoleted interfaces. 2729 */ 2730 if (dmareq->dmar_object.dmao_size > 0x7FFFFFFF) { 2731 return (DDI_DMA_TOOBIG); 2732 } 2733 #endif 2734 2735 return (DDI_SUCCESS); 2736 } 2737 2738 2739 /* 2740 * rootnex_need_bounce_seg() 2741 * check to see if the buffer lives on both side of the seg. 2742 */ 2743 static boolean_t 2744 rootnex_need_bounce_seg(ddi_dma_obj_t *dmar_object, rootnex_sglinfo_t *sglinfo) 2745 { 2746 ddi_dma_atyp_t buftype; 2747 rootnex_addr_t raddr; 2748 boolean_t lower_addr; 2749 boolean_t upper_addr; 2750 uint64_t offset; 2751 page_t **pplist; 2752 uint64_t paddr; 2753 uint32_t psize; 2754 uint32_t size; 2755 caddr_t vaddr; 2756 uint_t pcnt; 2757 page_t *pp; 2758 2759 2760 /* shortcuts */ 2761 pplist = dmar_object->dmao_obj.virt_obj.v_priv; 2762 vaddr = dmar_object->dmao_obj.virt_obj.v_addr; 2763 buftype = dmar_object->dmao_type; 2764 size = dmar_object->dmao_size; 2765 2766 lower_addr = B_FALSE; 2767 upper_addr = B_FALSE; 2768 pcnt = 0; 2769 2770 /* 2771 * Process the first page to handle the initial offset of the buffer. 2772 * We'll use the base address we get later when we loop through all 2773 * the pages. 2774 */ 2775 if (buftype == DMA_OTYP_PAGES) { 2776 pp = dmar_object->dmao_obj.pp_obj.pp_pp; 2777 offset = dmar_object->dmao_obj.pp_obj.pp_offset & 2778 MMU_PAGEOFFSET; 2779 paddr = pfn_to_pa(pp->p_pagenum) + offset; 2780 psize = MIN(size, (MMU_PAGESIZE - offset)); 2781 pp = pp->p_next; 2782 sglinfo->si_asp = NULL; 2783 } else if (pplist != NULL) { 2784 offset = (uintptr_t)vaddr & MMU_PAGEOFFSET; 2785 sglinfo->si_asp = dmar_object->dmao_obj.virt_obj.v_as; 2786 if (sglinfo->si_asp == NULL) { 2787 sglinfo->si_asp = &kas; 2788 } 2789 paddr = pfn_to_pa(pplist[pcnt]->p_pagenum); 2790 paddr += offset; 2791 psize = MIN(size, (MMU_PAGESIZE - offset)); 2792 pcnt++; 2793 } else { 2794 offset = (uintptr_t)vaddr & MMU_PAGEOFFSET; 2795 sglinfo->si_asp = dmar_object->dmao_obj.virt_obj.v_as; 2796 if (sglinfo->si_asp == NULL) { 2797 sglinfo->si_asp = &kas; 2798 } 2799 paddr = pfn_to_pa(hat_getpfnum(sglinfo->si_asp->a_hat, vaddr)); 2800 paddr += offset; 2801 psize = MIN(size, (MMU_PAGESIZE - offset)); 2802 vaddr += psize; 2803 } 2804 2805 raddr = ROOTNEX_PADDR_TO_RBASE(paddr); 2806 2807 if ((raddr + psize) > sglinfo->si_segmask) { 2808 upper_addr = B_TRUE; 2809 } else { 2810 lower_addr = B_TRUE; 2811 } 2812 size -= psize; 2813 2814 /* 2815 * Walk through the rest of the pages in the buffer. Track to see 2816 * if we have pages on both sides of the segment boundary. 2817 */ 2818 while (size > 0) { 2819 /* partial or full page */ 2820 psize = MIN(size, MMU_PAGESIZE); 2821 2822 if (buftype == DMA_OTYP_PAGES) { 2823 /* get the paddr from the page_t */ 2824 ASSERT(!PP_ISFREE(pp) && PAGE_LOCKED(pp)); 2825 paddr = pfn_to_pa(pp->p_pagenum); 2826 pp = pp->p_next; 2827 } else if (pplist != NULL) { 2828 /* index into the array of page_t's to get the paddr */ 2829 ASSERT(!PP_ISFREE(pplist[pcnt])); 2830 paddr = pfn_to_pa(pplist[pcnt]->p_pagenum); 2831 pcnt++; 2832 } else { 2833 /* call into the VM to get the paddr */ 2834 paddr = pfn_to_pa(hat_getpfnum(sglinfo->si_asp->a_hat, 2835 vaddr)); 2836 vaddr += psize; 2837 } 2838 2839 raddr = ROOTNEX_PADDR_TO_RBASE(paddr); 2840 2841 if ((raddr + psize) > sglinfo->si_segmask) { 2842 upper_addr = B_TRUE; 2843 } else { 2844 lower_addr = B_TRUE; 2845 } 2846 /* 2847 * if the buffer lives both above and below the segment 2848 * boundary, or the current page is the page immediately 2849 * after the segment, we will use a copy/bounce buffer for 2850 * all pages > seg. 2851 */ 2852 if ((lower_addr && upper_addr) || 2853 (raddr == (sglinfo->si_segmask + 1))) { 2854 return (B_TRUE); 2855 } 2856 2857 size -= psize; 2858 } 2859 2860 return (B_FALSE); 2861 } 2862 2863 /* 2864 * rootnex_get_sgl() 2865 * Called in bind fastpath to get the sgl. Most of this will be replaced 2866 * with a call to the vm layer when vm2.0 comes around... 2867 */ 2868 static void 2869 rootnex_get_sgl(ddi_dma_obj_t *dmar_object, ddi_dma_cookie_t *sgl, 2870 rootnex_sglinfo_t *sglinfo) 2871 { 2872 ddi_dma_atyp_t buftype; 2873 rootnex_addr_t raddr; 2874 uint64_t last_page; 2875 uint64_t offset; 2876 uint64_t addrhi; 2877 uint64_t addrlo; 2878 uint64_t maxseg; 2879 page_t **pplist; 2880 uint64_t paddr; 2881 uint32_t psize; 2882 uint32_t size; 2883 caddr_t vaddr; 2884 uint_t pcnt; 2885 page_t *pp; 2886 uint_t cnt; 2887 2888 2889 /* shortcuts */ 2890 pplist = dmar_object->dmao_obj.virt_obj.v_priv; 2891 vaddr = dmar_object->dmao_obj.virt_obj.v_addr; 2892 maxseg = sglinfo->si_max_cookie_size; 2893 buftype = dmar_object->dmao_type; 2894 addrhi = sglinfo->si_max_addr; 2895 addrlo = sglinfo->si_min_addr; 2896 size = dmar_object->dmao_size; 2897 2898 pcnt = 0; 2899 cnt = 0; 2900 2901 2902 /* 2903 * check to see if we need to use the copy buffer for pages over 2904 * the segment attr. 2905 */ 2906 sglinfo->si_bounce_on_seg = B_FALSE; 2907 if (sglinfo->si_flags & _DDI_DMA_BOUNCE_ON_SEG) { 2908 sglinfo->si_bounce_on_seg = rootnex_need_bounce_seg( 2909 dmar_object, sglinfo); 2910 } 2911 2912 /* 2913 * if we were passed down a linked list of pages, i.e. pointer to 2914 * page_t, use this to get our physical address and buf offset. 2915 */ 2916 if (buftype == DMA_OTYP_PAGES) { 2917 pp = dmar_object->dmao_obj.pp_obj.pp_pp; 2918 ASSERT(!PP_ISFREE(pp) && PAGE_LOCKED(pp)); 2919 offset = dmar_object->dmao_obj.pp_obj.pp_offset & 2920 MMU_PAGEOFFSET; 2921 paddr = pfn_to_pa(pp->p_pagenum) + offset; 2922 psize = MIN(size, (MMU_PAGESIZE - offset)); 2923 pp = pp->p_next; 2924 sglinfo->si_asp = NULL; 2925 2926 /* 2927 * We weren't passed down a linked list of pages, but if we were passed 2928 * down an array of pages, use this to get our physical address and buf 2929 * offset. 2930 */ 2931 } else if (pplist != NULL) { 2932 ASSERT((buftype == DMA_OTYP_VADDR) || 2933 (buftype == DMA_OTYP_BUFVADDR)); 2934 2935 offset = (uintptr_t)vaddr & MMU_PAGEOFFSET; 2936 sglinfo->si_asp = dmar_object->dmao_obj.virt_obj.v_as; 2937 if (sglinfo->si_asp == NULL) { 2938 sglinfo->si_asp = &kas; 2939 } 2940 2941 ASSERT(!PP_ISFREE(pplist[pcnt])); 2942 paddr = pfn_to_pa(pplist[pcnt]->p_pagenum); 2943 paddr += offset; 2944 psize = MIN(size, (MMU_PAGESIZE - offset)); 2945 pcnt++; 2946 2947 /* 2948 * All we have is a virtual address, we'll need to call into the VM 2949 * to get the physical address. 2950 */ 2951 } else { 2952 ASSERT((buftype == DMA_OTYP_VADDR) || 2953 (buftype == DMA_OTYP_BUFVADDR)); 2954 2955 offset = (uintptr_t)vaddr & MMU_PAGEOFFSET; 2956 sglinfo->si_asp = dmar_object->dmao_obj.virt_obj.v_as; 2957 if (sglinfo->si_asp == NULL) { 2958 sglinfo->si_asp = &kas; 2959 } 2960 2961 paddr = pfn_to_pa(hat_getpfnum(sglinfo->si_asp->a_hat, vaddr)); 2962 paddr += offset; 2963 psize = MIN(size, (MMU_PAGESIZE - offset)); 2964 vaddr += psize; 2965 } 2966 2967 raddr = ROOTNEX_PADDR_TO_RBASE(paddr); 2968 2969 /* 2970 * Setup the first cookie with the physical address of the page and the 2971 * size of the page (which takes into account the initial offset into 2972 * the page. 2973 */ 2974 sgl[cnt].dmac_laddress = raddr; 2975 sgl[cnt].dmac_size = psize; 2976 sgl[cnt].dmac_type = 0; 2977 2978 /* 2979 * Save away the buffer offset into the page. We'll need this later in 2980 * the copy buffer code to help figure out the page index within the 2981 * buffer and the offset into the current page. 2982 */ 2983 sglinfo->si_buf_offset = offset; 2984 2985 /* 2986 * If we are using the copy buffer for anything over the segment 2987 * boundary, and this page is over the segment boundary. 2988 * OR 2989 * if the DMA engine can't reach the physical address. 2990 */ 2991 if (((sglinfo->si_bounce_on_seg) && 2992 ((raddr + psize) > sglinfo->si_segmask)) || 2993 ((raddr < addrlo) || ((raddr + psize) > addrhi))) { 2994 /* 2995 * Increase how much copy buffer we use. We always increase by 2996 * pagesize so we don't have to worry about converting offsets. 2997 * Set a flag in the cookies dmac_type to indicate that it uses 2998 * the copy buffer. If this isn't the last cookie, go to the 2999 * next cookie (since we separate each page which uses the copy 3000 * buffer in case the copy buffer is not physically contiguous. 3001 */ 3002 sglinfo->si_copybuf_req += MMU_PAGESIZE; 3003 sgl[cnt].dmac_type = ROOTNEX_USES_COPYBUF; 3004 if ((cnt + 1) < sglinfo->si_max_pages) { 3005 cnt++; 3006 sgl[cnt].dmac_laddress = 0; 3007 sgl[cnt].dmac_size = 0; 3008 sgl[cnt].dmac_type = 0; 3009 } 3010 } 3011 3012 /* 3013 * save this page's physical address so we can figure out if the next 3014 * page is physically contiguous. Keep decrementing size until we are 3015 * done with the buffer. 3016 */ 3017 last_page = raddr & MMU_PAGEMASK; 3018 size -= psize; 3019 3020 while (size > 0) { 3021 /* Get the size for this page (i.e. partial or full page) */ 3022 psize = MIN(size, MMU_PAGESIZE); 3023 3024 if (buftype == DMA_OTYP_PAGES) { 3025 /* get the paddr from the page_t */ 3026 ASSERT(!PP_ISFREE(pp) && PAGE_LOCKED(pp)); 3027 paddr = pfn_to_pa(pp->p_pagenum); 3028 pp = pp->p_next; 3029 } else if (pplist != NULL) { 3030 /* index into the array of page_t's to get the paddr */ 3031 ASSERT(!PP_ISFREE(pplist[pcnt])); 3032 paddr = pfn_to_pa(pplist[pcnt]->p_pagenum); 3033 pcnt++; 3034 } else { 3035 /* call into the VM to get the paddr */ 3036 paddr = pfn_to_pa(hat_getpfnum(sglinfo->si_asp->a_hat, 3037 vaddr)); 3038 vaddr += psize; 3039 } 3040 3041 raddr = ROOTNEX_PADDR_TO_RBASE(paddr); 3042 3043 /* 3044 * If we are using the copy buffer for anything over the 3045 * segment boundary, and this page is over the segment 3046 * boundary. 3047 * OR 3048 * if the DMA engine can't reach the physical address. 3049 */ 3050 if (((sglinfo->si_bounce_on_seg) && 3051 ((raddr + psize) > sglinfo->si_segmask)) || 3052 ((raddr < addrlo) || ((raddr + psize) > addrhi))) { 3053 3054 sglinfo->si_copybuf_req += MMU_PAGESIZE; 3055 3056 /* 3057 * if there is something in the current cookie, go to 3058 * the next one. We only want one page in a cookie which 3059 * uses the copybuf since the copybuf doesn't have to 3060 * be physically contiguous. 3061 */ 3062 if (sgl[cnt].dmac_size != 0) { 3063 cnt++; 3064 } 3065 sgl[cnt].dmac_laddress = raddr; 3066 sgl[cnt].dmac_size = psize; 3067 #if defined(__amd64) 3068 sgl[cnt].dmac_type = ROOTNEX_USES_COPYBUF; 3069 #else 3070 /* 3071 * save the buf offset for 32-bit kernel. used in the 3072 * obsoleted interfaces. 3073 */ 3074 sgl[cnt].dmac_type = ROOTNEX_USES_COPYBUF | 3075 (dmar_object->dmao_size - size); 3076 #endif 3077 /* if this isn't the last cookie, go to the next one */ 3078 if ((cnt + 1) < sglinfo->si_max_pages) { 3079 cnt++; 3080 sgl[cnt].dmac_laddress = 0; 3081 sgl[cnt].dmac_size = 0; 3082 sgl[cnt].dmac_type = 0; 3083 } 3084 3085 /* 3086 * this page didn't need the copy buffer, if it's not physically 3087 * contiguous, or it would put us over a segment boundary, or it 3088 * puts us over the max cookie size, or the current sgl doesn't 3089 * have anything in it. 3090 */ 3091 } else if (((last_page + MMU_PAGESIZE) != raddr) || 3092 !(raddr & sglinfo->si_segmask) || 3093 ((sgl[cnt].dmac_size + psize) > maxseg) || 3094 (sgl[cnt].dmac_size == 0)) { 3095 /* 3096 * if we're not already in a new cookie, go to the next 3097 * cookie. 3098 */ 3099 if (sgl[cnt].dmac_size != 0) { 3100 cnt++; 3101 } 3102 3103 /* save the cookie information */ 3104 sgl[cnt].dmac_laddress = raddr; 3105 sgl[cnt].dmac_size = psize; 3106 #if defined(__amd64) 3107 sgl[cnt].dmac_type = 0; 3108 #else 3109 /* 3110 * save the buf offset for 32-bit kernel. used in the 3111 * obsoleted interfaces. 3112 */ 3113 sgl[cnt].dmac_type = dmar_object->dmao_size - size; 3114 #endif 3115 3116 /* 3117 * this page didn't need the copy buffer, it is physically 3118 * contiguous with the last page, and it's <= the max cookie 3119 * size. 3120 */ 3121 } else { 3122 sgl[cnt].dmac_size += psize; 3123 3124 /* 3125 * if this exactly == the maximum cookie size, and 3126 * it isn't the last cookie, go to the next cookie. 3127 */ 3128 if (((sgl[cnt].dmac_size + psize) == maxseg) && 3129 ((cnt + 1) < sglinfo->si_max_pages)) { 3130 cnt++; 3131 sgl[cnt].dmac_laddress = 0; 3132 sgl[cnt].dmac_size = 0; 3133 sgl[cnt].dmac_type = 0; 3134 } 3135 } 3136 3137 /* 3138 * save this page's physical address so we can figure out if the 3139 * next page is physically contiguous. Keep decrementing size 3140 * until we are done with the buffer. 3141 */ 3142 last_page = raddr; 3143 size -= psize; 3144 } 3145 3146 /* we're done, save away how many cookies the sgl has */ 3147 if (sgl[cnt].dmac_size == 0) { 3148 ASSERT(cnt < sglinfo->si_max_pages); 3149 sglinfo->si_sgl_size = cnt; 3150 } else { 3151 sglinfo->si_sgl_size = cnt + 1; 3152 } 3153 } 3154 3155 static void 3156 rootnex_dvma_get_sgl(ddi_dma_obj_t *dmar_object, ddi_dma_cookie_t *sgl, 3157 rootnex_sglinfo_t *sglinfo) 3158 { 3159 uint64_t offset; 3160 uint64_t maxseg; 3161 uint64_t dvaddr; 3162 struct dvmaseg *dvs; 3163 uint64_t paddr; 3164 uint32_t psize, ssize; 3165 uint32_t size; 3166 uint_t cnt; 3167 int physcontig; 3168 3169 ASSERT(dmar_object->dmao_type == DMA_OTYP_DVADDR); 3170 3171 /* shortcuts */ 3172 maxseg = sglinfo->si_max_cookie_size; 3173 size = dmar_object->dmao_size; 3174 3175 cnt = 0; 3176 sglinfo->si_bounce_on_seg = B_FALSE; 3177 3178 dvs = dmar_object->dmao_obj.dvma_obj.dv_seg; 3179 offset = dmar_object->dmao_obj.dvma_obj.dv_off; 3180 ssize = dvs->dvs_len; 3181 paddr = dvs->dvs_start; 3182 paddr += offset; 3183 psize = MIN(ssize, (maxseg - offset)); 3184 dvaddr = paddr + psize; 3185 ssize -= psize; 3186 3187 sgl[cnt].dmac_laddress = paddr; 3188 sgl[cnt].dmac_size = psize; 3189 sgl[cnt].dmac_type = 0; 3190 3191 size -= psize; 3192 while (size > 0) { 3193 if (ssize == 0) { 3194 dvs++; 3195 ssize = dvs->dvs_len; 3196 dvaddr = dvs->dvs_start; 3197 physcontig = 0; 3198 } else 3199 physcontig = 1; 3200 3201 paddr = dvaddr; 3202 psize = MIN(ssize, maxseg); 3203 dvaddr += psize; 3204 ssize -= psize; 3205 3206 if (!physcontig || !(paddr & sglinfo->si_segmask) || 3207 ((sgl[cnt].dmac_size + psize) > maxseg) || 3208 (sgl[cnt].dmac_size == 0)) { 3209 /* 3210 * if we're not already in a new cookie, go to the next 3211 * cookie. 3212 */ 3213 if (sgl[cnt].dmac_size != 0) { 3214 cnt++; 3215 } 3216 3217 /* save the cookie information */ 3218 sgl[cnt].dmac_laddress = paddr; 3219 sgl[cnt].dmac_size = psize; 3220 sgl[cnt].dmac_type = 0; 3221 } else { 3222 sgl[cnt].dmac_size += psize; 3223 3224 /* 3225 * if this exactly == the maximum cookie size, and 3226 * it isn't the last cookie, go to the next cookie. 3227 */ 3228 if (((sgl[cnt].dmac_size + psize) == maxseg) && 3229 ((cnt + 1) < sglinfo->si_max_pages)) { 3230 cnt++; 3231 sgl[cnt].dmac_laddress = 0; 3232 sgl[cnt].dmac_size = 0; 3233 sgl[cnt].dmac_type = 0; 3234 } 3235 } 3236 size -= psize; 3237 } 3238 3239 /* we're done, save away how many cookies the sgl has */ 3240 if (sgl[cnt].dmac_size == 0) { 3241 sglinfo->si_sgl_size = cnt; 3242 } else { 3243 sglinfo->si_sgl_size = cnt + 1; 3244 } 3245 } 3246 3247 /* 3248 * rootnex_bind_slowpath() 3249 * Call in the bind path if the calling driver can't use the sgl without 3250 * modifying it. We either need to use the copy buffer and/or we will end up 3251 * with a partial bind. 3252 */ 3253 static int 3254 rootnex_bind_slowpath(ddi_dma_impl_t *hp, struct ddi_dma_req *dmareq, 3255 rootnex_dma_t *dma, ddi_dma_attr_t *attr, ddi_dma_obj_t *dmao, int kmflag) 3256 { 3257 rootnex_sglinfo_t *sinfo; 3258 rootnex_window_t *window; 3259 ddi_dma_cookie_t *cookie; 3260 size_t copybuf_used; 3261 size_t dmac_size; 3262 boolean_t partial; 3263 off_t cur_offset; 3264 page_t *cur_pp; 3265 major_t mnum; 3266 int e; 3267 int i; 3268 3269 3270 sinfo = &dma->dp_sglinfo; 3271 copybuf_used = 0; 3272 partial = B_FALSE; 3273 3274 /* 3275 * If we're using the copybuf, set the copybuf state in dma struct. 3276 * Needs to be first since it sets the copy buffer size. 3277 */ 3278 if (sinfo->si_copybuf_req != 0) { 3279 e = rootnex_setup_copybuf(hp, dmareq, dma, attr); 3280 if (e != DDI_SUCCESS) { 3281 return (e); 3282 } 3283 } else { 3284 dma->dp_copybuf_size = 0; 3285 } 3286 3287 /* 3288 * Figure out if we need to do a partial mapping. If so, figure out 3289 * if we need to trim the buffers when we munge the sgl. 3290 */ 3291 if ((dma->dp_copybuf_size < sinfo->si_copybuf_req) || 3292 (dmao->dmao_size > dma->dp_maxxfer) || 3293 ((unsigned)attr->dma_attr_sgllen < sinfo->si_sgl_size)) { 3294 dma->dp_partial_required = B_TRUE; 3295 if (attr->dma_attr_granular != 1) { 3296 dma->dp_trim_required = B_TRUE; 3297 } 3298 } else { 3299 dma->dp_partial_required = B_FALSE; 3300 dma->dp_trim_required = B_FALSE; 3301 } 3302 3303 /* If we need to do a partial bind, make sure the driver supports it */ 3304 if (dma->dp_partial_required && 3305 !(dmareq->dmar_flags & DDI_DMA_PARTIAL)) { 3306 3307 mnum = ddi_driver_major(dma->dp_dip); 3308 /* 3309 * patchable which allows us to print one warning per major 3310 * number. 3311 */ 3312 if ((rootnex_bind_warn) && 3313 ((rootnex_warn_list[mnum] & ROOTNEX_BIND_WARNING) == 0)) { 3314 rootnex_warn_list[mnum] |= ROOTNEX_BIND_WARNING; 3315 cmn_err(CE_WARN, "!%s: coding error detected, the " 3316 "driver is using ddi_dma_attr(9S) incorrectly. " 3317 "There is a small risk of data corruption in " 3318 "particular with large I/Os. The driver should be " 3319 "replaced with a corrected version for proper " 3320 "system operation. To disable this warning, add " 3321 "'set rootnex:rootnex_bind_warn=0' to " 3322 "/etc/system(4).", ddi_driver_name(dma->dp_dip)); 3323 } 3324 return (DDI_DMA_TOOBIG); 3325 } 3326 3327 /* 3328 * we might need multiple windows, setup state to handle them. In this 3329 * code path, we will have at least one window. 3330 */ 3331 e = rootnex_setup_windows(hp, dma, attr, dmao, kmflag); 3332 if (e != DDI_SUCCESS) { 3333 rootnex_teardown_copybuf(dma); 3334 return (e); 3335 } 3336 3337 window = &dma->dp_window[0]; 3338 cookie = &dma->dp_cookies[0]; 3339 cur_offset = 0; 3340 rootnex_init_win(hp, dma, window, cookie, cur_offset); 3341 if (dmao->dmao_type == DMA_OTYP_PAGES) { 3342 cur_pp = dmareq->dmar_object.dmao_obj.pp_obj.pp_pp; 3343 } 3344 3345 /* loop though all the cookies we got back from get_sgl() */ 3346 for (i = 0; i < sinfo->si_sgl_size; i++) { 3347 /* 3348 * If we're using the copy buffer, check this cookie and setup 3349 * its associated copy buffer state. If this cookie uses the 3350 * copy buffer, make sure we sync this window during dma_sync. 3351 */ 3352 if (dma->dp_copybuf_size > 0) { 3353 rootnex_setup_cookie(dmao, dma, cookie, 3354 cur_offset, ©buf_used, &cur_pp); 3355 if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) { 3356 window->wd_dosync = B_TRUE; 3357 } 3358 } 3359 3360 /* 3361 * save away the cookie size, since it could be modified in 3362 * the windowing code. 3363 */ 3364 dmac_size = cookie->dmac_size; 3365 3366 /* if we went over max copybuf size */ 3367 if (dma->dp_copybuf_size && 3368 (copybuf_used > dma->dp_copybuf_size)) { 3369 partial = B_TRUE; 3370 e = rootnex_copybuf_window_boundary(hp, dma, &window, 3371 cookie, cur_offset, ©buf_used); 3372 if (e != DDI_SUCCESS) { 3373 rootnex_teardown_copybuf(dma); 3374 rootnex_teardown_windows(dma); 3375 return (e); 3376 } 3377 3378 /* 3379 * if the coookie uses the copy buffer, make sure the 3380 * new window we just moved to is set to sync. 3381 */ 3382 if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) { 3383 window->wd_dosync = B_TRUE; 3384 } 3385 ROOTNEX_DPROBE1(rootnex__copybuf__window, dev_info_t *, 3386 dma->dp_dip); 3387 3388 /* if the cookie cnt == max sgllen, move to the next window */ 3389 } else if (window->wd_cookie_cnt >= 3390 (unsigned)attr->dma_attr_sgllen) { 3391 partial = B_TRUE; 3392 ASSERT(window->wd_cookie_cnt == attr->dma_attr_sgllen); 3393 e = rootnex_sgllen_window_boundary(hp, dma, &window, 3394 cookie, attr, cur_offset); 3395 if (e != DDI_SUCCESS) { 3396 rootnex_teardown_copybuf(dma); 3397 rootnex_teardown_windows(dma); 3398 return (e); 3399 } 3400 3401 /* 3402 * if the coookie uses the copy buffer, make sure the 3403 * new window we just moved to is set to sync. 3404 */ 3405 if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) { 3406 window->wd_dosync = B_TRUE; 3407 } 3408 ROOTNEX_DPROBE1(rootnex__sgllen__window, dev_info_t *, 3409 dma->dp_dip); 3410 3411 /* else if we will be over maxxfer */ 3412 } else if ((window->wd_size + dmac_size) > 3413 dma->dp_maxxfer) { 3414 partial = B_TRUE; 3415 e = rootnex_maxxfer_window_boundary(hp, dma, &window, 3416 cookie); 3417 if (e != DDI_SUCCESS) { 3418 rootnex_teardown_copybuf(dma); 3419 rootnex_teardown_windows(dma); 3420 return (e); 3421 } 3422 3423 /* 3424 * if the coookie uses the copy buffer, make sure the 3425 * new window we just moved to is set to sync. 3426 */ 3427 if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) { 3428 window->wd_dosync = B_TRUE; 3429 } 3430 ROOTNEX_DPROBE1(rootnex__maxxfer__window, dev_info_t *, 3431 dma->dp_dip); 3432 3433 /* else this cookie fits in the current window */ 3434 } else { 3435 window->wd_cookie_cnt++; 3436 window->wd_size += dmac_size; 3437 } 3438 3439 /* track our offset into the buffer, go to the next cookie */ 3440 ASSERT(dmac_size <= dmao->dmao_size); 3441 ASSERT(cookie->dmac_size <= dmac_size); 3442 cur_offset += dmac_size; 3443 cookie++; 3444 } 3445 3446 /* if we ended up with a zero sized window in the end, clean it up */ 3447 if (window->wd_size == 0) { 3448 hp->dmai_nwin--; 3449 window--; 3450 } 3451 3452 ASSERT(window->wd_trim.tr_trim_last == B_FALSE); 3453 3454 if (!partial) { 3455 return (DDI_DMA_MAPPED); 3456 } 3457 3458 ASSERT(dma->dp_partial_required); 3459 return (DDI_DMA_PARTIAL_MAP); 3460 } 3461 3462 /* 3463 * rootnex_setup_copybuf() 3464 * Called in bind slowpath. Figures out if we're going to use the copy 3465 * buffer, and if we do, sets up the basic state to handle it. 3466 */ 3467 static int 3468 rootnex_setup_copybuf(ddi_dma_impl_t *hp, struct ddi_dma_req *dmareq, 3469 rootnex_dma_t *dma, ddi_dma_attr_t *attr) 3470 { 3471 rootnex_sglinfo_t *sinfo; 3472 ddi_dma_attr_t lattr; 3473 size_t max_copybuf; 3474 int cansleep; 3475 int e; 3476 #if !defined(__amd64) 3477 int vmflag; 3478 #endif 3479 3480 ASSERT(!dma->dp_dvma_used); 3481 3482 sinfo = &dma->dp_sglinfo; 3483 3484 /* read this first so it's consistent through the routine */ 3485 max_copybuf = i_ddi_copybuf_size() & MMU_PAGEMASK; 3486 3487 /* We need to call into the rootnex on ddi_dma_sync() */ 3488 hp->dmai_rflags &= ~DMP_NOSYNC; 3489 3490 /* make sure the copybuf size <= the max size */ 3491 dma->dp_copybuf_size = MIN(sinfo->si_copybuf_req, max_copybuf); 3492 ASSERT((dma->dp_copybuf_size & MMU_PAGEOFFSET) == 0); 3493 3494 #if !defined(__amd64) 3495 /* 3496 * if we don't have kva space to copy to/from, allocate the KVA space 3497 * now. We only do this for the 32-bit kernel. We use seg kpm space for 3498 * the 64-bit kernel. 3499 */ 3500 if ((dmareq->dmar_object.dmao_type == DMA_OTYP_PAGES) || 3501 (dmareq->dmar_object.dmao_obj.virt_obj.v_as != NULL)) { 3502 3503 /* convert the sleep flags */ 3504 if (dmareq->dmar_fp == DDI_DMA_SLEEP) { 3505 vmflag = VM_SLEEP; 3506 } else { 3507 vmflag = VM_NOSLEEP; 3508 } 3509 3510 /* allocate Kernel VA space that we can bcopy to/from */ 3511 dma->dp_kva = vmem_alloc(heap_arena, dma->dp_copybuf_size, 3512 vmflag); 3513 if (dma->dp_kva == NULL) { 3514 return (DDI_DMA_NORESOURCES); 3515 } 3516 } 3517 #endif 3518 3519 /* convert the sleep flags */ 3520 if (dmareq->dmar_fp == DDI_DMA_SLEEP) { 3521 cansleep = 1; 3522 } else { 3523 cansleep = 0; 3524 } 3525 3526 /* 3527 * Allocate the actual copy buffer. This needs to fit within the DMA 3528 * engine limits, so we can't use kmem_alloc... We don't need 3529 * contiguous memory (sgllen) since we will be forcing windows on 3530 * sgllen anyway. 3531 */ 3532 lattr = *attr; 3533 lattr.dma_attr_align = MMU_PAGESIZE; 3534 lattr.dma_attr_sgllen = -1; /* no limit */ 3535 /* 3536 * if we're using the copy buffer because of seg, use that for our 3537 * upper address limit. 3538 */ 3539 if (sinfo->si_bounce_on_seg) { 3540 lattr.dma_attr_addr_hi = lattr.dma_attr_seg; 3541 } 3542 e = i_ddi_mem_alloc(dma->dp_dip, &lattr, dma->dp_copybuf_size, cansleep, 3543 0, NULL, &dma->dp_cbaddr, &dma->dp_cbsize, NULL); 3544 if (e != DDI_SUCCESS) { 3545 #if !defined(__amd64) 3546 if (dma->dp_kva != NULL) { 3547 vmem_free(heap_arena, dma->dp_kva, 3548 dma->dp_copybuf_size); 3549 } 3550 #endif 3551 return (DDI_DMA_NORESOURCES); 3552 } 3553 3554 ROOTNEX_DPROBE2(rootnex__alloc__copybuf, dev_info_t *, dma->dp_dip, 3555 size_t, dma->dp_copybuf_size); 3556 3557 return (DDI_SUCCESS); 3558 } 3559 3560 3561 /* 3562 * rootnex_setup_windows() 3563 * Called in bind slowpath to setup the window state. We always have windows 3564 * in the slowpath. Even if the window count = 1. 3565 */ 3566 static int 3567 rootnex_setup_windows(ddi_dma_impl_t *hp, rootnex_dma_t *dma, 3568 ddi_dma_attr_t *attr, ddi_dma_obj_t *dmao, int kmflag) 3569 { 3570 rootnex_window_t *windowp; 3571 rootnex_sglinfo_t *sinfo; 3572 size_t copy_state_size; 3573 size_t win_state_size; 3574 size_t state_available; 3575 size_t space_needed; 3576 uint_t copybuf_win; 3577 uint_t maxxfer_win; 3578 size_t space_used; 3579 uint_t sglwin; 3580 3581 3582 sinfo = &dma->dp_sglinfo; 3583 3584 dma->dp_current_win = 0; 3585 hp->dmai_nwin = 0; 3586 3587 /* If we don't need to do a partial, we only have one window */ 3588 if (!dma->dp_partial_required) { 3589 dma->dp_max_win = 1; 3590 3591 /* 3592 * we need multiple windows, need to figure out the worse case number 3593 * of windows. 3594 */ 3595 } else { 3596 /* 3597 * if we need windows because we need more copy buffer that 3598 * we allow, the worse case number of windows we could need 3599 * here would be (copybuf space required / copybuf space that 3600 * we have) plus one for remainder, and plus 2 to handle the 3601 * extra pages on the trim for the first and last pages of the 3602 * buffer (a page is the minimum window size so under the right 3603 * attr settings, you could have a window for each page). 3604 * The last page will only be hit here if the size is not a 3605 * multiple of the granularity (which theoretically shouldn't 3606 * be the case but never has been enforced, so we could have 3607 * broken things without it). 3608 */ 3609 if (sinfo->si_copybuf_req > dma->dp_copybuf_size) { 3610 ASSERT(dma->dp_copybuf_size > 0); 3611 copybuf_win = (sinfo->si_copybuf_req / 3612 dma->dp_copybuf_size) + 1 + 2; 3613 } else { 3614 copybuf_win = 0; 3615 } 3616 3617 /* 3618 * if we need windows because we have more cookies than the H/W 3619 * can handle, the number of windows we would need here would 3620 * be (cookie count / cookies count H/W supports minus 1[for 3621 * trim]) plus one for remainder. 3622 */ 3623 if ((unsigned)attr->dma_attr_sgllen < sinfo->si_sgl_size) { 3624 sglwin = (sinfo->si_sgl_size / 3625 (attr->dma_attr_sgllen - 1)) + 1; 3626 } else { 3627 sglwin = 0; 3628 } 3629 3630 /* 3631 * if we need windows because we're binding more memory than the 3632 * H/W can transfer at once, the number of windows we would need 3633 * here would be (xfer count / max xfer H/W supports) plus one 3634 * for remainder, and plus 2 to handle the extra pages on the 3635 * trim (see above comment about trim) 3636 */ 3637 if (dmao->dmao_size > dma->dp_maxxfer) { 3638 maxxfer_win = (dmao->dmao_size / 3639 dma->dp_maxxfer) + 1 + 2; 3640 } else { 3641 maxxfer_win = 0; 3642 } 3643 dma->dp_max_win = copybuf_win + sglwin + maxxfer_win; 3644 ASSERT(dma->dp_max_win > 0); 3645 } 3646 win_state_size = dma->dp_max_win * sizeof (rootnex_window_t); 3647 3648 /* 3649 * Get space for window and potential copy buffer state. Before we 3650 * go and allocate memory, see if we can get away with using what's 3651 * left in the pre-allocted state or the dynamically allocated sgl. 3652 */ 3653 space_used = (uintptr_t)(sinfo->si_sgl_size * 3654 sizeof (ddi_dma_cookie_t)); 3655 3656 /* if we dynamically allocated space for the cookies */ 3657 if (dma->dp_need_to_free_cookie) { 3658 /* if we have more space in the pre-allocted buffer, use it */ 3659 ASSERT(space_used <= dma->dp_cookie_size); 3660 if ((dma->dp_cookie_size - space_used) <= 3661 rootnex_state->r_prealloc_size) { 3662 state_available = rootnex_state->r_prealloc_size; 3663 windowp = (rootnex_window_t *)dma->dp_prealloc_buffer; 3664 3665 /* 3666 * else, we have more free space in the dynamically allocated 3667 * buffer, i.e. the buffer wasn't worse case fragmented so we 3668 * didn't need a lot of cookies. 3669 */ 3670 } else { 3671 state_available = dma->dp_cookie_size - space_used; 3672 windowp = (rootnex_window_t *) 3673 &dma->dp_cookies[sinfo->si_sgl_size]; 3674 } 3675 3676 /* we used the pre-alloced buffer */ 3677 } else { 3678 ASSERT(space_used <= rootnex_state->r_prealloc_size); 3679 state_available = rootnex_state->r_prealloc_size - space_used; 3680 windowp = (rootnex_window_t *) 3681 &dma->dp_cookies[sinfo->si_sgl_size]; 3682 } 3683 3684 /* 3685 * figure out how much state we need to track the copy buffer. Add an 3686 * addition 8 bytes for pointer alignemnt later. 3687 */ 3688 if (dma->dp_copybuf_size > 0) { 3689 copy_state_size = sinfo->si_max_pages * 3690 sizeof (rootnex_pgmap_t); 3691 } else { 3692 copy_state_size = 0; 3693 } 3694 /* add an additional 8 bytes for pointer alignment */ 3695 space_needed = win_state_size + copy_state_size + 0x8; 3696 3697 /* if we have enough space already, use it */ 3698 if (state_available >= space_needed) { 3699 dma->dp_window = windowp; 3700 dma->dp_need_to_free_window = B_FALSE; 3701 3702 /* not enough space, need to allocate more. */ 3703 } else { 3704 dma->dp_window = kmem_alloc(space_needed, kmflag); 3705 if (dma->dp_window == NULL) { 3706 return (DDI_DMA_NORESOURCES); 3707 } 3708 dma->dp_need_to_free_window = B_TRUE; 3709 dma->dp_window_size = space_needed; 3710 ROOTNEX_DPROBE2(rootnex__bind__sp__alloc, dev_info_t *, 3711 dma->dp_dip, size_t, space_needed); 3712 } 3713 3714 /* 3715 * we allocate copy buffer state and window state at the same time. 3716 * setup our copy buffer state pointers. Make sure it's aligned. 3717 */ 3718 if (dma->dp_copybuf_size > 0) { 3719 dma->dp_pgmap = (rootnex_pgmap_t *)(((uintptr_t) 3720 &dma->dp_window[dma->dp_max_win] + 0x7) & ~0x7); 3721 3722 #if !defined(__amd64) 3723 /* 3724 * make sure all pm_mapped, pm_vaddr, and pm_pp are set to 3725 * false/NULL. Should be quicker to bzero vs loop and set. 3726 */ 3727 bzero(dma->dp_pgmap, copy_state_size); 3728 #endif 3729 } else { 3730 dma->dp_pgmap = NULL; 3731 } 3732 3733 return (DDI_SUCCESS); 3734 } 3735 3736 3737 /* 3738 * rootnex_teardown_copybuf() 3739 * cleans up after rootnex_setup_copybuf() 3740 */ 3741 static void 3742 rootnex_teardown_copybuf(rootnex_dma_t *dma) 3743 { 3744 #if !defined(__amd64) 3745 int i; 3746 3747 /* 3748 * if we allocated kernel heap VMEM space, go through all the pages and 3749 * map out any of the ones that we're mapped into the kernel heap VMEM 3750 * arena. Then free the VMEM space. 3751 */ 3752 if (dma->dp_kva != NULL) { 3753 for (i = 0; i < dma->dp_sglinfo.si_max_pages; i++) { 3754 if (dma->dp_pgmap[i].pm_mapped) { 3755 hat_unload(kas.a_hat, dma->dp_pgmap[i].pm_kaddr, 3756 MMU_PAGESIZE, HAT_UNLOAD); 3757 dma->dp_pgmap[i].pm_mapped = B_FALSE; 3758 } 3759 } 3760 3761 vmem_free(heap_arena, dma->dp_kva, dma->dp_copybuf_size); 3762 } 3763 3764 #endif 3765 3766 /* if we allocated a copy buffer, free it */ 3767 if (dma->dp_cbaddr != NULL) { 3768 i_ddi_mem_free(dma->dp_cbaddr, NULL); 3769 } 3770 } 3771 3772 3773 /* 3774 * rootnex_teardown_windows() 3775 * cleans up after rootnex_setup_windows() 3776 */ 3777 static void 3778 rootnex_teardown_windows(rootnex_dma_t *dma) 3779 { 3780 /* 3781 * if we had to allocate window state on the last bind (because we 3782 * didn't have enough pre-allocated space in the handle), free it. 3783 */ 3784 if (dma->dp_need_to_free_window) { 3785 kmem_free(dma->dp_window, dma->dp_window_size); 3786 } 3787 } 3788 3789 3790 /* 3791 * rootnex_init_win() 3792 * Called in bind slow path during creation of a new window. Initializes 3793 * window state to default values. 3794 */ 3795 /*ARGSUSED*/ 3796 static void 3797 rootnex_init_win(ddi_dma_impl_t *hp, rootnex_dma_t *dma, 3798 rootnex_window_t *window, ddi_dma_cookie_t *cookie, off_t cur_offset) 3799 { 3800 hp->dmai_nwin++; 3801 window->wd_dosync = B_FALSE; 3802 window->wd_offset = cur_offset; 3803 window->wd_size = 0; 3804 window->wd_first_cookie = cookie; 3805 window->wd_cookie_cnt = 0; 3806 window->wd_trim.tr_trim_first = B_FALSE; 3807 window->wd_trim.tr_trim_last = B_FALSE; 3808 window->wd_trim.tr_first_copybuf_win = B_FALSE; 3809 window->wd_trim.tr_last_copybuf_win = B_FALSE; 3810 #if !defined(__amd64) 3811 window->wd_remap_copybuf = dma->dp_cb_remaping; 3812 #endif 3813 } 3814 3815 3816 /* 3817 * rootnex_setup_cookie() 3818 * Called in the bind slow path when the sgl uses the copy buffer. If any of 3819 * the sgl uses the copy buffer, we need to go through each cookie, figure 3820 * out if it uses the copy buffer, and if it does, save away everything we'll 3821 * need during sync. 3822 */ 3823 static void 3824 rootnex_setup_cookie(ddi_dma_obj_t *dmar_object, rootnex_dma_t *dma, 3825 ddi_dma_cookie_t *cookie, off_t cur_offset, size_t *copybuf_used, 3826 page_t **cur_pp) 3827 { 3828 boolean_t copybuf_sz_power_2; 3829 rootnex_sglinfo_t *sinfo; 3830 paddr_t paddr; 3831 uint_t pidx; 3832 uint_t pcnt; 3833 off_t poff; 3834 #if defined(__amd64) 3835 pfn_t pfn; 3836 #else 3837 page_t **pplist; 3838 #endif 3839 3840 ASSERT(dmar_object->dmao_type != DMA_OTYP_DVADDR); 3841 3842 sinfo = &dma->dp_sglinfo; 3843 3844 /* 3845 * Calculate the page index relative to the start of the buffer. The 3846 * index to the current page for our buffer is the offset into the 3847 * first page of the buffer plus our current offset into the buffer 3848 * itself, shifted of course... 3849 */ 3850 pidx = (sinfo->si_buf_offset + cur_offset) >> MMU_PAGESHIFT; 3851 ASSERT(pidx < sinfo->si_max_pages); 3852 3853 /* if this cookie uses the copy buffer */ 3854 if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) { 3855 /* 3856 * NOTE: we know that since this cookie uses the copy buffer, it 3857 * is <= MMU_PAGESIZE. 3858 */ 3859 3860 /* 3861 * get the offset into the page. For the 64-bit kernel, get the 3862 * pfn which we'll use with seg kpm. 3863 */ 3864 poff = cookie->dmac_laddress & MMU_PAGEOFFSET; 3865 #if defined(__amd64) 3866 /* mfn_to_pfn() is a NOP on i86pc */ 3867 pfn = mfn_to_pfn(cookie->dmac_laddress >> MMU_PAGESHIFT); 3868 #endif /* __amd64 */ 3869 3870 /* figure out if the copybuf size is a power of 2 */ 3871 if (!ISP2(dma->dp_copybuf_size)) { 3872 copybuf_sz_power_2 = B_FALSE; 3873 } else { 3874 copybuf_sz_power_2 = B_TRUE; 3875 } 3876 3877 /* This page uses the copy buffer */ 3878 dma->dp_pgmap[pidx].pm_uses_copybuf = B_TRUE; 3879 3880 /* 3881 * save the copy buffer KVA that we'll use with this page. 3882 * if we still fit within the copybuf, it's a simple add. 3883 * otherwise, we need to wrap over using & or % accordingly. 3884 */ 3885 if ((*copybuf_used + MMU_PAGESIZE) <= dma->dp_copybuf_size) { 3886 dma->dp_pgmap[pidx].pm_cbaddr = dma->dp_cbaddr + 3887 *copybuf_used; 3888 } else { 3889 if (copybuf_sz_power_2) { 3890 dma->dp_pgmap[pidx].pm_cbaddr = (caddr_t)( 3891 (uintptr_t)dma->dp_cbaddr + 3892 (*copybuf_used & 3893 (dma->dp_copybuf_size - 1))); 3894 } else { 3895 dma->dp_pgmap[pidx].pm_cbaddr = (caddr_t)( 3896 (uintptr_t)dma->dp_cbaddr + 3897 (*copybuf_used % dma->dp_copybuf_size)); 3898 } 3899 } 3900 3901 /* 3902 * over write the cookie physical address with the address of 3903 * the physical address of the copy buffer page that we will 3904 * use. 3905 */ 3906 paddr = pfn_to_pa(hat_getpfnum(kas.a_hat, 3907 dma->dp_pgmap[pidx].pm_cbaddr)) + poff; 3908 3909 cookie->dmac_laddress = ROOTNEX_PADDR_TO_RBASE(paddr); 3910 3911 /* if we have a kernel VA, it's easy, just save that address */ 3912 if ((dmar_object->dmao_type != DMA_OTYP_PAGES) && 3913 (sinfo->si_asp == &kas)) { 3914 /* 3915 * save away the page aligned virtual address of the 3916 * driver buffer. Offsets are handled in the sync code. 3917 */ 3918 dma->dp_pgmap[pidx].pm_kaddr = (caddr_t)(((uintptr_t) 3919 dmar_object->dmao_obj.virt_obj.v_addr + cur_offset) 3920 & MMU_PAGEMASK); 3921 #if !defined(__amd64) 3922 /* 3923 * we didn't need to, and will never need to map this 3924 * page. 3925 */ 3926 dma->dp_pgmap[pidx].pm_mapped = B_FALSE; 3927 #endif 3928 3929 /* we don't have a kernel VA. We need one for the bcopy. */ 3930 } else { 3931 #if defined(__amd64) 3932 /* 3933 * for the 64-bit kernel, it's easy. We use seg kpm to 3934 * get a Kernel VA for the corresponding pfn. 3935 */ 3936 dma->dp_pgmap[pidx].pm_kaddr = hat_kpm_pfn2va(pfn); 3937 #else 3938 /* 3939 * for the 32-bit kernel, this is a pain. First we'll 3940 * save away the page_t or user VA for this page. This 3941 * is needed in rootnex_dma_win() when we switch to a 3942 * new window which requires us to re-map the copy 3943 * buffer. 3944 */ 3945 pplist = dmar_object->dmao_obj.virt_obj.v_priv; 3946 if (dmar_object->dmao_type == DMA_OTYP_PAGES) { 3947 dma->dp_pgmap[pidx].pm_pp = *cur_pp; 3948 dma->dp_pgmap[pidx].pm_vaddr = NULL; 3949 } else if (pplist != NULL) { 3950 dma->dp_pgmap[pidx].pm_pp = pplist[pidx]; 3951 dma->dp_pgmap[pidx].pm_vaddr = NULL; 3952 } else { 3953 dma->dp_pgmap[pidx].pm_pp = NULL; 3954 dma->dp_pgmap[pidx].pm_vaddr = (caddr_t) 3955 (((uintptr_t) 3956 dmar_object->dmao_obj.virt_obj.v_addr + 3957 cur_offset) & MMU_PAGEMASK); 3958 } 3959 3960 /* 3961 * save away the page aligned virtual address which was 3962 * allocated from the kernel heap arena (taking into 3963 * account if we need more copy buffer than we alloced 3964 * and use multiple windows to handle this, i.e. &,%). 3965 * NOTE: there isn't and physical memory backing up this 3966 * virtual address space currently. 3967 */ 3968 if ((*copybuf_used + MMU_PAGESIZE) <= 3969 dma->dp_copybuf_size) { 3970 dma->dp_pgmap[pidx].pm_kaddr = (caddr_t) 3971 (((uintptr_t)dma->dp_kva + *copybuf_used) & 3972 MMU_PAGEMASK); 3973 } else { 3974 if (copybuf_sz_power_2) { 3975 dma->dp_pgmap[pidx].pm_kaddr = (caddr_t) 3976 (((uintptr_t)dma->dp_kva + 3977 (*copybuf_used & 3978 (dma->dp_copybuf_size - 1))) & 3979 MMU_PAGEMASK); 3980 } else { 3981 dma->dp_pgmap[pidx].pm_kaddr = (caddr_t) 3982 (((uintptr_t)dma->dp_kva + 3983 (*copybuf_used % 3984 dma->dp_copybuf_size)) & 3985 MMU_PAGEMASK); 3986 } 3987 } 3988 3989 /* 3990 * if we haven't used up the available copy buffer yet, 3991 * map the kva to the physical page. 3992 */ 3993 if (!dma->dp_cb_remaping && ((*copybuf_used + 3994 MMU_PAGESIZE) <= dma->dp_copybuf_size)) { 3995 dma->dp_pgmap[pidx].pm_mapped = B_TRUE; 3996 if (dma->dp_pgmap[pidx].pm_pp != NULL) { 3997 i86_pp_map(dma->dp_pgmap[pidx].pm_pp, 3998 dma->dp_pgmap[pidx].pm_kaddr); 3999 } else { 4000 i86_va_map(dma->dp_pgmap[pidx].pm_vaddr, 4001 sinfo->si_asp, 4002 dma->dp_pgmap[pidx].pm_kaddr); 4003 } 4004 4005 /* 4006 * we've used up the available copy buffer, this page 4007 * will have to be mapped during rootnex_dma_win() when 4008 * we switch to a new window which requires a re-map 4009 * the copy buffer. (32-bit kernel only) 4010 */ 4011 } else { 4012 dma->dp_pgmap[pidx].pm_mapped = B_FALSE; 4013 } 4014 #endif 4015 /* go to the next page_t */ 4016 if (dmar_object->dmao_type == DMA_OTYP_PAGES) { 4017 *cur_pp = (*cur_pp)->p_next; 4018 } 4019 } 4020 4021 /* add to the copy buffer count */ 4022 *copybuf_used += MMU_PAGESIZE; 4023 4024 /* 4025 * This cookie doesn't use the copy buffer. Walk through the pages this 4026 * cookie occupies to reflect this. 4027 */ 4028 } else { 4029 /* 4030 * figure out how many pages the cookie occupies. We need to 4031 * use the original page offset of the buffer and the cookies 4032 * offset in the buffer to do this. 4033 */ 4034 poff = (sinfo->si_buf_offset + cur_offset) & MMU_PAGEOFFSET; 4035 pcnt = mmu_btopr(cookie->dmac_size + poff); 4036 4037 while (pcnt > 0) { 4038 #if !defined(__amd64) 4039 /* 4040 * the 32-bit kernel doesn't have seg kpm, so we need 4041 * to map in the driver buffer (if it didn't come down 4042 * with a kernel VA) on the fly. Since this page doesn't 4043 * use the copy buffer, it's not, or will it ever, have 4044 * to be mapped in. 4045 */ 4046 dma->dp_pgmap[pidx].pm_mapped = B_FALSE; 4047 #endif 4048 dma->dp_pgmap[pidx].pm_uses_copybuf = B_FALSE; 4049 4050 /* 4051 * we need to update pidx and cur_pp or we'll loose 4052 * track of where we are. 4053 */ 4054 if (dmar_object->dmao_type == DMA_OTYP_PAGES) { 4055 *cur_pp = (*cur_pp)->p_next; 4056 } 4057 pidx++; 4058 pcnt--; 4059 } 4060 } 4061 } 4062 4063 4064 /* 4065 * rootnex_sgllen_window_boundary() 4066 * Called in the bind slow path when the next cookie causes us to exceed (in 4067 * this case == since we start at 0 and sgllen starts at 1) the maximum sgl 4068 * length supported by the DMA H/W. 4069 */ 4070 static int 4071 rootnex_sgllen_window_boundary(ddi_dma_impl_t *hp, rootnex_dma_t *dma, 4072 rootnex_window_t **windowp, ddi_dma_cookie_t *cookie, ddi_dma_attr_t *attr, 4073 off_t cur_offset) 4074 { 4075 off_t new_offset; 4076 size_t trim_sz; 4077 off_t coffset; 4078 4079 4080 /* 4081 * if we know we'll never have to trim, it's pretty easy. Just move to 4082 * the next window and init it. We're done. 4083 */ 4084 if (!dma->dp_trim_required) { 4085 (*windowp)++; 4086 rootnex_init_win(hp, dma, *windowp, cookie, cur_offset); 4087 (*windowp)->wd_cookie_cnt++; 4088 (*windowp)->wd_size = cookie->dmac_size; 4089 return (DDI_SUCCESS); 4090 } 4091 4092 /* figure out how much we need to trim from the window */ 4093 ASSERT(attr->dma_attr_granular != 0); 4094 if (dma->dp_granularity_power_2) { 4095 trim_sz = (*windowp)->wd_size & (attr->dma_attr_granular - 1); 4096 } else { 4097 trim_sz = (*windowp)->wd_size % attr->dma_attr_granular; 4098 } 4099 4100 /* The window's a whole multiple of granularity. We're done */ 4101 if (trim_sz == 0) { 4102 (*windowp)++; 4103 rootnex_init_win(hp, dma, *windowp, cookie, cur_offset); 4104 (*windowp)->wd_cookie_cnt++; 4105 (*windowp)->wd_size = cookie->dmac_size; 4106 return (DDI_SUCCESS); 4107 } 4108 4109 /* 4110 * The window's not a whole multiple of granularity, since we know this 4111 * is due to the sgllen, we need to go back to the last cookie and trim 4112 * that one, add the left over part of the old cookie into the new 4113 * window, and then add in the new cookie into the new window. 4114 */ 4115 4116 /* 4117 * make sure the driver isn't making us do something bad... Trimming and 4118 * sgllen == 1 don't go together. 4119 */ 4120 if (attr->dma_attr_sgllen == 1) { 4121 return (DDI_DMA_NOMAPPING); 4122 } 4123 4124 /* 4125 * first, setup the current window to account for the trim. Need to go 4126 * back to the last cookie for this. 4127 */ 4128 cookie--; 4129 (*windowp)->wd_trim.tr_trim_last = B_TRUE; 4130 (*windowp)->wd_trim.tr_last_cookie = cookie; 4131 (*windowp)->wd_trim.tr_last_paddr = cookie->dmac_laddress; 4132 ASSERT(cookie->dmac_size > trim_sz); 4133 (*windowp)->wd_trim.tr_last_size = cookie->dmac_size - trim_sz; 4134 (*windowp)->wd_size -= trim_sz; 4135 4136 /* save the buffer offsets for the next window */ 4137 coffset = cookie->dmac_size - trim_sz; 4138 new_offset = (*windowp)->wd_offset + (*windowp)->wd_size; 4139 4140 /* 4141 * set this now in case this is the first window. all other cases are 4142 * set in dma_win() 4143 */ 4144 cookie->dmac_size = (*windowp)->wd_trim.tr_last_size; 4145 4146 /* 4147 * initialize the next window using what's left over in the previous 4148 * cookie. 4149 */ 4150 (*windowp)++; 4151 rootnex_init_win(hp, dma, *windowp, cookie, new_offset); 4152 (*windowp)->wd_cookie_cnt++; 4153 (*windowp)->wd_trim.tr_trim_first = B_TRUE; 4154 (*windowp)->wd_trim.tr_first_paddr = cookie->dmac_laddress + coffset; 4155 (*windowp)->wd_trim.tr_first_size = trim_sz; 4156 if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) { 4157 (*windowp)->wd_dosync = B_TRUE; 4158 } 4159 4160 /* 4161 * now go back to the current cookie and add it to the new window. set 4162 * the new window size to the what was left over from the previous 4163 * cookie and what's in the current cookie. 4164 */ 4165 cookie++; 4166 (*windowp)->wd_cookie_cnt++; 4167 (*windowp)->wd_size = trim_sz + cookie->dmac_size; 4168 4169 /* 4170 * trim plus the next cookie could put us over maxxfer (a cookie can be 4171 * a max size of maxxfer). Handle that case. 4172 */ 4173 if ((*windowp)->wd_size > dma->dp_maxxfer) { 4174 /* 4175 * maxxfer is already a whole multiple of granularity, and this 4176 * trim will be <= the previous trim (since a cookie can't be 4177 * larger than maxxfer). Make things simple here. 4178 */ 4179 trim_sz = (*windowp)->wd_size - dma->dp_maxxfer; 4180 (*windowp)->wd_trim.tr_trim_last = B_TRUE; 4181 (*windowp)->wd_trim.tr_last_cookie = cookie; 4182 (*windowp)->wd_trim.tr_last_paddr = cookie->dmac_laddress; 4183 (*windowp)->wd_trim.tr_last_size = cookie->dmac_size - trim_sz; 4184 (*windowp)->wd_size -= trim_sz; 4185 ASSERT((*windowp)->wd_size == dma->dp_maxxfer); 4186 4187 /* save the buffer offsets for the next window */ 4188 coffset = cookie->dmac_size - trim_sz; 4189 new_offset = (*windowp)->wd_offset + (*windowp)->wd_size; 4190 4191 /* setup the next window */ 4192 (*windowp)++; 4193 rootnex_init_win(hp, dma, *windowp, cookie, new_offset); 4194 (*windowp)->wd_cookie_cnt++; 4195 (*windowp)->wd_trim.tr_trim_first = B_TRUE; 4196 (*windowp)->wd_trim.tr_first_paddr = cookie->dmac_laddress + 4197 coffset; 4198 (*windowp)->wd_trim.tr_first_size = trim_sz; 4199 } 4200 4201 return (DDI_SUCCESS); 4202 } 4203 4204 4205 /* 4206 * rootnex_copybuf_window_boundary() 4207 * Called in bind slowpath when we get to a window boundary because we used 4208 * up all the copy buffer that we have. 4209 */ 4210 static int 4211 rootnex_copybuf_window_boundary(ddi_dma_impl_t *hp, rootnex_dma_t *dma, 4212 rootnex_window_t **windowp, ddi_dma_cookie_t *cookie, off_t cur_offset, 4213 size_t *copybuf_used) 4214 { 4215 rootnex_sglinfo_t *sinfo; 4216 off_t new_offset; 4217 size_t trim_sz; 4218 paddr_t paddr; 4219 off_t coffset; 4220 uint_t pidx; 4221 off_t poff; 4222 4223 4224 sinfo = &dma->dp_sglinfo; 4225 4226 /* 4227 * the copy buffer should be a whole multiple of page size. We know that 4228 * this cookie is <= MMU_PAGESIZE. 4229 */ 4230 ASSERT(cookie->dmac_size <= MMU_PAGESIZE); 4231 4232 /* 4233 * from now on, all new windows in this bind need to be re-mapped during 4234 * ddi_dma_getwin() (32-bit kernel only). i.e. we ran out out copybuf 4235 * space... 4236 */ 4237 #if !defined(__amd64) 4238 dma->dp_cb_remaping = B_TRUE; 4239 #endif 4240 4241 /* reset copybuf used */ 4242 *copybuf_used = 0; 4243 4244 /* 4245 * if we don't have to trim (since granularity is set to 1), go to the 4246 * next window and add the current cookie to it. We know the current 4247 * cookie uses the copy buffer since we're in this code path. 4248 */ 4249 if (!dma->dp_trim_required) { 4250 (*windowp)++; 4251 rootnex_init_win(hp, dma, *windowp, cookie, cur_offset); 4252 4253 /* Add this cookie to the new window */ 4254 (*windowp)->wd_cookie_cnt++; 4255 (*windowp)->wd_size += cookie->dmac_size; 4256 *copybuf_used += MMU_PAGESIZE; 4257 return (DDI_SUCCESS); 4258 } 4259 4260 /* 4261 * *** may need to trim, figure it out. 4262 */ 4263 4264 /* figure out how much we need to trim from the window */ 4265 if (dma->dp_granularity_power_2) { 4266 trim_sz = (*windowp)->wd_size & 4267 (hp->dmai_attr.dma_attr_granular - 1); 4268 } else { 4269 trim_sz = (*windowp)->wd_size % hp->dmai_attr.dma_attr_granular; 4270 } 4271 4272 /* 4273 * if the window's a whole multiple of granularity, go to the next 4274 * window, init it, then add in the current cookie. We know the current 4275 * cookie uses the copy buffer since we're in this code path. 4276 */ 4277 if (trim_sz == 0) { 4278 (*windowp)++; 4279 rootnex_init_win(hp, dma, *windowp, cookie, cur_offset); 4280 4281 /* Add this cookie to the new window */ 4282 (*windowp)->wd_cookie_cnt++; 4283 (*windowp)->wd_size += cookie->dmac_size; 4284 *copybuf_used += MMU_PAGESIZE; 4285 return (DDI_SUCCESS); 4286 } 4287 4288 /* 4289 * *** We figured it out, we definitly need to trim 4290 */ 4291 4292 /* 4293 * make sure the driver isn't making us do something bad... 4294 * Trimming and sgllen == 1 don't go together. 4295 */ 4296 if (hp->dmai_attr.dma_attr_sgllen == 1) { 4297 return (DDI_DMA_NOMAPPING); 4298 } 4299 4300 /* 4301 * first, setup the current window to account for the trim. Need to go 4302 * back to the last cookie for this. Some of the last cookie will be in 4303 * the current window, and some of the last cookie will be in the new 4304 * window. All of the current cookie will be in the new window. 4305 */ 4306 cookie--; 4307 (*windowp)->wd_trim.tr_trim_last = B_TRUE; 4308 (*windowp)->wd_trim.tr_last_cookie = cookie; 4309 (*windowp)->wd_trim.tr_last_paddr = cookie->dmac_laddress; 4310 ASSERT(cookie->dmac_size > trim_sz); 4311 (*windowp)->wd_trim.tr_last_size = cookie->dmac_size - trim_sz; 4312 (*windowp)->wd_size -= trim_sz; 4313 4314 /* 4315 * we're trimming the last cookie (not the current cookie). So that 4316 * last cookie may have or may not have been using the copy buffer ( 4317 * we know the cookie passed in uses the copy buffer since we're in 4318 * this code path). 4319 * 4320 * If the last cookie doesn't use the copy buffer, nothing special to 4321 * do. However, if it does uses the copy buffer, it will be both the 4322 * last page in the current window and the first page in the next 4323 * window. Since we are reusing the copy buffer (and KVA space on the 4324 * 32-bit kernel), this page will use the end of the copy buffer in the 4325 * current window, and the start of the copy buffer in the next window. 4326 * Track that info... The cookie physical address was already set to 4327 * the copy buffer physical address in setup_cookie.. 4328 */ 4329 if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) { 4330 pidx = (sinfo->si_buf_offset + (*windowp)->wd_offset + 4331 (*windowp)->wd_size) >> MMU_PAGESHIFT; 4332 (*windowp)->wd_trim.tr_last_copybuf_win = B_TRUE; 4333 (*windowp)->wd_trim.tr_last_pidx = pidx; 4334 (*windowp)->wd_trim.tr_last_cbaddr = 4335 dma->dp_pgmap[pidx].pm_cbaddr; 4336 #if !defined(__amd64) 4337 (*windowp)->wd_trim.tr_last_kaddr = 4338 dma->dp_pgmap[pidx].pm_kaddr; 4339 #endif 4340 } 4341 4342 /* save the buffer offsets for the next window */ 4343 coffset = cookie->dmac_size - trim_sz; 4344 new_offset = (*windowp)->wd_offset + (*windowp)->wd_size; 4345 4346 /* 4347 * set this now in case this is the first window. all other cases are 4348 * set in dma_win() 4349 */ 4350 cookie->dmac_size = (*windowp)->wd_trim.tr_last_size; 4351 4352 /* 4353 * initialize the next window using what's left over in the previous 4354 * cookie. 4355 */ 4356 (*windowp)++; 4357 rootnex_init_win(hp, dma, *windowp, cookie, new_offset); 4358 (*windowp)->wd_cookie_cnt++; 4359 (*windowp)->wd_trim.tr_trim_first = B_TRUE; 4360 (*windowp)->wd_trim.tr_first_paddr = cookie->dmac_laddress + coffset; 4361 (*windowp)->wd_trim.tr_first_size = trim_sz; 4362 4363 /* 4364 * again, we're tracking if the last cookie uses the copy buffer. 4365 * read the comment above for more info on why we need to track 4366 * additional state. 4367 * 4368 * For the first cookie in the new window, we need reset the physical 4369 * address to DMA into to the start of the copy buffer plus any 4370 * initial page offset which may be present. 4371 */ 4372 if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) { 4373 (*windowp)->wd_dosync = B_TRUE; 4374 (*windowp)->wd_trim.tr_first_copybuf_win = B_TRUE; 4375 (*windowp)->wd_trim.tr_first_pidx = pidx; 4376 (*windowp)->wd_trim.tr_first_cbaddr = dma->dp_cbaddr; 4377 poff = (*windowp)->wd_trim.tr_first_paddr & MMU_PAGEOFFSET; 4378 4379 paddr = pfn_to_pa(hat_getpfnum(kas.a_hat, dma->dp_cbaddr)) + 4380 poff; 4381 (*windowp)->wd_trim.tr_first_paddr = 4382 ROOTNEX_PADDR_TO_RBASE(paddr); 4383 4384 #if !defined(__amd64) 4385 (*windowp)->wd_trim.tr_first_kaddr = dma->dp_kva; 4386 #endif 4387 /* account for the cookie copybuf usage in the new window */ 4388 *copybuf_used += MMU_PAGESIZE; 4389 4390 /* 4391 * every piece of code has to have a hack, and here is this 4392 * ones :-) 4393 * 4394 * There is a complex interaction between setup_cookie and the 4395 * copybuf window boundary. The complexity had to be in either 4396 * the maxxfer window, or the copybuf window, and I chose the 4397 * copybuf code. 4398 * 4399 * So in this code path, we have taken the last cookie, 4400 * virtually broken it in half due to the trim, and it happens 4401 * to use the copybuf which further complicates life. At the 4402 * same time, we have already setup the current cookie, which 4403 * is now wrong. More background info: the current cookie uses 4404 * the copybuf, so it is only a page long max. So we need to 4405 * fix the current cookies copy buffer address, physical 4406 * address, and kva for the 32-bit kernel. We due this by 4407 * bumping them by page size (of course, we can't due this on 4408 * the physical address since the copy buffer may not be 4409 * physically contiguous). 4410 */ 4411 cookie++; 4412 dma->dp_pgmap[pidx + 1].pm_cbaddr += MMU_PAGESIZE; 4413 poff = cookie->dmac_laddress & MMU_PAGEOFFSET; 4414 4415 paddr = pfn_to_pa(hat_getpfnum(kas.a_hat, 4416 dma->dp_pgmap[pidx + 1].pm_cbaddr)) + poff; 4417 cookie->dmac_laddress = ROOTNEX_PADDR_TO_RBASE(paddr); 4418 4419 #if !defined(__amd64) 4420 ASSERT(dma->dp_pgmap[pidx + 1].pm_mapped == B_FALSE); 4421 dma->dp_pgmap[pidx + 1].pm_kaddr += MMU_PAGESIZE; 4422 #endif 4423 } else { 4424 /* go back to the current cookie */ 4425 cookie++; 4426 } 4427 4428 /* 4429 * add the current cookie to the new window. set the new window size to 4430 * the what was left over from the previous cookie and what's in the 4431 * current cookie. 4432 */ 4433 (*windowp)->wd_cookie_cnt++; 4434 (*windowp)->wd_size = trim_sz + cookie->dmac_size; 4435 ASSERT((*windowp)->wd_size < dma->dp_maxxfer); 4436 4437 /* 4438 * we know that the cookie passed in always uses the copy buffer. We 4439 * wouldn't be here if it didn't. 4440 */ 4441 *copybuf_used += MMU_PAGESIZE; 4442 4443 return (DDI_SUCCESS); 4444 } 4445 4446 4447 /* 4448 * rootnex_maxxfer_window_boundary() 4449 * Called in bind slowpath when we get to a window boundary because we will 4450 * go over maxxfer. 4451 */ 4452 static int 4453 rootnex_maxxfer_window_boundary(ddi_dma_impl_t *hp, rootnex_dma_t *dma, 4454 rootnex_window_t **windowp, ddi_dma_cookie_t *cookie) 4455 { 4456 size_t dmac_size; 4457 off_t new_offset; 4458 size_t trim_sz; 4459 off_t coffset; 4460 4461 4462 /* 4463 * calculate how much we have to trim off of the current cookie to equal 4464 * maxxfer. We don't have to account for granularity here since our 4465 * maxxfer already takes that into account. 4466 */ 4467 trim_sz = ((*windowp)->wd_size + cookie->dmac_size) - dma->dp_maxxfer; 4468 ASSERT(trim_sz <= cookie->dmac_size); 4469 ASSERT(trim_sz <= dma->dp_maxxfer); 4470 4471 /* save cookie size since we need it later and we might change it */ 4472 dmac_size = cookie->dmac_size; 4473 4474 /* 4475 * if we're not trimming the entire cookie, setup the current window to 4476 * account for the trim. 4477 */ 4478 if (trim_sz < cookie->dmac_size) { 4479 (*windowp)->wd_cookie_cnt++; 4480 (*windowp)->wd_trim.tr_trim_last = B_TRUE; 4481 (*windowp)->wd_trim.tr_last_cookie = cookie; 4482 (*windowp)->wd_trim.tr_last_paddr = cookie->dmac_laddress; 4483 (*windowp)->wd_trim.tr_last_size = cookie->dmac_size - trim_sz; 4484 (*windowp)->wd_size = dma->dp_maxxfer; 4485 4486 /* 4487 * set the adjusted cookie size now in case this is the first 4488 * window. All other windows are taken care of in get win 4489 */ 4490 cookie->dmac_size = (*windowp)->wd_trim.tr_last_size; 4491 } 4492 4493 /* 4494 * coffset is the current offset within the cookie, new_offset is the 4495 * current offset with the entire buffer. 4496 */ 4497 coffset = dmac_size - trim_sz; 4498 new_offset = (*windowp)->wd_offset + (*windowp)->wd_size; 4499 4500 /* initialize the next window */ 4501 (*windowp)++; 4502 rootnex_init_win(hp, dma, *windowp, cookie, new_offset); 4503 (*windowp)->wd_cookie_cnt++; 4504 (*windowp)->wd_size = trim_sz; 4505 if (trim_sz < dmac_size) { 4506 (*windowp)->wd_trim.tr_trim_first = B_TRUE; 4507 (*windowp)->wd_trim.tr_first_paddr = cookie->dmac_laddress + 4508 coffset; 4509 (*windowp)->wd_trim.tr_first_size = trim_sz; 4510 } 4511 4512 return (DDI_SUCCESS); 4513 } 4514 4515 4516 /*ARGSUSED*/ 4517 static int 4518 rootnex_coredma_sync(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle, 4519 off_t off, size_t len, uint_t cache_flags) 4520 { 4521 rootnex_sglinfo_t *sinfo; 4522 rootnex_pgmap_t *cbpage; 4523 rootnex_window_t *win; 4524 ddi_dma_impl_t *hp; 4525 rootnex_dma_t *dma; 4526 caddr_t fromaddr; 4527 caddr_t toaddr; 4528 uint_t psize; 4529 off_t offset; 4530 uint_t pidx; 4531 size_t size; 4532 off_t poff; 4533 int e; 4534 4535 4536 hp = (ddi_dma_impl_t *)handle; 4537 dma = (rootnex_dma_t *)hp->dmai_private; 4538 sinfo = &dma->dp_sglinfo; 4539 4540 /* 4541 * if we don't have any windows, we don't need to sync. A copybuf 4542 * will cause us to have at least one window. 4543 */ 4544 if (dma->dp_window == NULL) { 4545 return (DDI_SUCCESS); 4546 } 4547 4548 /* This window may not need to be sync'd */ 4549 win = &dma->dp_window[dma->dp_current_win]; 4550 if (!win->wd_dosync) { 4551 return (DDI_SUCCESS); 4552 } 4553 4554 /* handle off and len special cases */ 4555 if ((off == 0) || (rootnex_sync_ignore_params)) { 4556 offset = win->wd_offset; 4557 } else { 4558 offset = off; 4559 } 4560 if ((len == 0) || (rootnex_sync_ignore_params)) { 4561 size = win->wd_size; 4562 } else { 4563 size = len; 4564 } 4565 4566 /* check the sync args to make sure they make a little sense */ 4567 if (rootnex_sync_check_parms) { 4568 e = rootnex_valid_sync_parms(hp, win, offset, size, 4569 cache_flags); 4570 if (e != DDI_SUCCESS) { 4571 ROOTNEX_DPROF_INC(&rootnex_cnt[ROOTNEX_CNT_SYNC_FAIL]); 4572 return (DDI_FAILURE); 4573 } 4574 } 4575 4576 /* 4577 * special case the first page to handle the offset into the page. The 4578 * offset to the current page for our buffer is the offset into the 4579 * first page of the buffer plus our current offset into the buffer 4580 * itself, masked of course. 4581 */ 4582 poff = (sinfo->si_buf_offset + offset) & MMU_PAGEOFFSET; 4583 psize = MIN((MMU_PAGESIZE - poff), size); 4584 4585 /* go through all the pages that we want to sync */ 4586 while (size > 0) { 4587 /* 4588 * Calculate the page index relative to the start of the buffer. 4589 * The index to the current page for our buffer is the offset 4590 * into the first page of the buffer plus our current offset 4591 * into the buffer itself, shifted of course... 4592 */ 4593 pidx = (sinfo->si_buf_offset + offset) >> MMU_PAGESHIFT; 4594 ASSERT(pidx < sinfo->si_max_pages); 4595 4596 /* 4597 * if this page uses the copy buffer, we need to sync it, 4598 * otherwise, go on to the next page. 4599 */ 4600 cbpage = &dma->dp_pgmap[pidx]; 4601 ASSERT((cbpage->pm_uses_copybuf == B_TRUE) || 4602 (cbpage->pm_uses_copybuf == B_FALSE)); 4603 if (cbpage->pm_uses_copybuf) { 4604 /* cbaddr and kaddr should be page aligned */ 4605 ASSERT(((uintptr_t)cbpage->pm_cbaddr & 4606 MMU_PAGEOFFSET) == 0); 4607 ASSERT(((uintptr_t)cbpage->pm_kaddr & 4608 MMU_PAGEOFFSET) == 0); 4609 4610 /* 4611 * if we're copying for the device, we are going to 4612 * copy from the drivers buffer and to the rootnex 4613 * allocated copy buffer. 4614 */ 4615 if (cache_flags == DDI_DMA_SYNC_FORDEV) { 4616 fromaddr = cbpage->pm_kaddr + poff; 4617 toaddr = cbpage->pm_cbaddr + poff; 4618 ROOTNEX_DPROBE2(rootnex__sync__dev, 4619 dev_info_t *, dma->dp_dip, size_t, psize); 4620 4621 /* 4622 * if we're copying for the cpu/kernel, we are going to 4623 * copy from the rootnex allocated copy buffer to the 4624 * drivers buffer. 4625 */ 4626 } else { 4627 fromaddr = cbpage->pm_cbaddr + poff; 4628 toaddr = cbpage->pm_kaddr + poff; 4629 ROOTNEX_DPROBE2(rootnex__sync__cpu, 4630 dev_info_t *, dma->dp_dip, size_t, psize); 4631 } 4632 4633 bcopy(fromaddr, toaddr, psize); 4634 } 4635 4636 /* 4637 * decrement size until we're done, update our offset into the 4638 * buffer, and get the next page size. 4639 */ 4640 size -= psize; 4641 offset += psize; 4642 psize = MIN(MMU_PAGESIZE, size); 4643 4644 /* page offset is zero for the rest of this loop */ 4645 poff = 0; 4646 } 4647 4648 return (DDI_SUCCESS); 4649 } 4650 4651 /* 4652 * rootnex_dma_sync() 4653 * called from ddi_dma_sync() if DMP_NOSYNC is not set in hp->dmai_rflags. 4654 * We set DMP_NOSYNC if we're not using the copy buffer. If DMP_NOSYNC 4655 * is set, ddi_dma_sync() returns immediately passing back success. 4656 */ 4657 /*ARGSUSED*/ 4658 static int 4659 rootnex_dma_sync(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle, 4660 off_t off, size_t len, uint_t cache_flags) 4661 { 4662 #if defined(__amd64) && !defined(__xpv) 4663 if (IOMMU_USED(rdip)) { 4664 return (iommulib_nexdma_sync(dip, rdip, handle, off, len, 4665 cache_flags)); 4666 } 4667 #endif 4668 return (rootnex_coredma_sync(dip, rdip, handle, off, len, 4669 cache_flags)); 4670 } 4671 4672 /* 4673 * rootnex_valid_sync_parms() 4674 * checks the parameters passed to sync to verify they are correct. 4675 */ 4676 static int 4677 rootnex_valid_sync_parms(ddi_dma_impl_t *hp, rootnex_window_t *win, 4678 off_t offset, size_t size, uint_t cache_flags) 4679 { 4680 off_t woffset; 4681 4682 4683 /* 4684 * the first part of the test to make sure the offset passed in is 4685 * within the window. 4686 */ 4687 if (offset < win->wd_offset) { 4688 return (DDI_FAILURE); 4689 } 4690 4691 /* 4692 * second and last part of the test to make sure the offset and length 4693 * passed in is within the window. 4694 */ 4695 woffset = offset - win->wd_offset; 4696 if ((woffset + size) > win->wd_size) { 4697 return (DDI_FAILURE); 4698 } 4699 4700 /* 4701 * if we are sync'ing for the device, the DDI_DMA_WRITE flag should 4702 * be set too. 4703 */ 4704 if ((cache_flags == DDI_DMA_SYNC_FORDEV) && 4705 (hp->dmai_rflags & DDI_DMA_WRITE)) { 4706 return (DDI_SUCCESS); 4707 } 4708 4709 /* 4710 * at this point, either DDI_DMA_SYNC_FORCPU or DDI_DMA_SYNC_FORKERNEL 4711 * should be set. Also DDI_DMA_READ should be set in the flags. 4712 */ 4713 if (((cache_flags == DDI_DMA_SYNC_FORCPU) || 4714 (cache_flags == DDI_DMA_SYNC_FORKERNEL)) && 4715 (hp->dmai_rflags & DDI_DMA_READ)) { 4716 return (DDI_SUCCESS); 4717 } 4718 4719 return (DDI_FAILURE); 4720 } 4721 4722 4723 /*ARGSUSED*/ 4724 static int 4725 rootnex_coredma_win(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle, 4726 uint_t win, off_t *offp, size_t *lenp, ddi_dma_cookie_t *cookiep, 4727 uint_t *ccountp) 4728 { 4729 rootnex_window_t *window; 4730 rootnex_trim_t *trim; 4731 ddi_dma_impl_t *hp; 4732 rootnex_dma_t *dma; 4733 ddi_dma_obj_t *dmao; 4734 #if !defined(__amd64) 4735 rootnex_sglinfo_t *sinfo; 4736 rootnex_pgmap_t *pmap; 4737 uint_t pidx; 4738 uint_t pcnt; 4739 off_t poff; 4740 int i; 4741 #endif 4742 4743 4744 hp = (ddi_dma_impl_t *)handle; 4745 dma = (rootnex_dma_t *)hp->dmai_private; 4746 #if !defined(__amd64) 4747 sinfo = &dma->dp_sglinfo; 4748 #endif 4749 4750 /* If we try and get a window which doesn't exist, return failure */ 4751 if (win >= hp->dmai_nwin) { 4752 ROOTNEX_DPROF_INC(&rootnex_cnt[ROOTNEX_CNT_GETWIN_FAIL]); 4753 return (DDI_FAILURE); 4754 } 4755 4756 dmao = dma->dp_dvma_used ? &dma->dp_dvma : &dma->dp_dma; 4757 4758 /* 4759 * if we don't have any windows, and they're asking for the first 4760 * window, setup the cookie pointer to the first cookie in the bind. 4761 * setup our return values, then increment the cookie since we return 4762 * the first cookie on the stack. 4763 */ 4764 if (dma->dp_window == NULL) { 4765 if (win != 0) { 4766 ROOTNEX_DPROF_INC( 4767 &rootnex_cnt[ROOTNEX_CNT_GETWIN_FAIL]); 4768 return (DDI_FAILURE); 4769 } 4770 hp->dmai_cookie = dma->dp_cookies; 4771 *offp = 0; 4772 *lenp = dmao->dmao_size; 4773 *ccountp = dma->dp_sglinfo.si_sgl_size; 4774 *cookiep = hp->dmai_cookie[0]; 4775 hp->dmai_cookie++; 4776 return (DDI_SUCCESS); 4777 } 4778 4779 /* sync the old window before moving on to the new one */ 4780 window = &dma->dp_window[dma->dp_current_win]; 4781 if ((window->wd_dosync) && (hp->dmai_rflags & DDI_DMA_READ)) { 4782 (void) rootnex_coredma_sync(dip, rdip, handle, 0, 0, 4783 DDI_DMA_SYNC_FORCPU); 4784 } 4785 4786 #if !defined(__amd64) 4787 /* 4788 * before we move to the next window, if we need to re-map, unmap all 4789 * the pages in this window. 4790 */ 4791 if (dma->dp_cb_remaping) { 4792 /* 4793 * If we switch to this window again, we'll need to map in 4794 * on the fly next time. 4795 */ 4796 window->wd_remap_copybuf = B_TRUE; 4797 4798 /* 4799 * calculate the page index into the buffer where this window 4800 * starts, and the number of pages this window takes up. 4801 */ 4802 pidx = (sinfo->si_buf_offset + window->wd_offset) >> 4803 MMU_PAGESHIFT; 4804 poff = (sinfo->si_buf_offset + window->wd_offset) & 4805 MMU_PAGEOFFSET; 4806 pcnt = mmu_btopr(window->wd_size + poff); 4807 ASSERT((pidx + pcnt) <= sinfo->si_max_pages); 4808 4809 /* unmap pages which are currently mapped in this window */ 4810 for (i = 0; i < pcnt; i++) { 4811 if (dma->dp_pgmap[pidx].pm_mapped) { 4812 hat_unload(kas.a_hat, 4813 dma->dp_pgmap[pidx].pm_kaddr, MMU_PAGESIZE, 4814 HAT_UNLOAD); 4815 dma->dp_pgmap[pidx].pm_mapped = B_FALSE; 4816 } 4817 pidx++; 4818 } 4819 } 4820 #endif 4821 4822 /* 4823 * Move to the new window. 4824 * NOTE: current_win must be set for sync to work right 4825 */ 4826 dma->dp_current_win = win; 4827 window = &dma->dp_window[win]; 4828 4829 /* if needed, adjust the first and/or last cookies for trim */ 4830 trim = &window->wd_trim; 4831 if (trim->tr_trim_first) { 4832 window->wd_first_cookie->dmac_laddress = trim->tr_first_paddr; 4833 window->wd_first_cookie->dmac_size = trim->tr_first_size; 4834 #if !defined(__amd64) 4835 window->wd_first_cookie->dmac_type = 4836 (window->wd_first_cookie->dmac_type & 4837 ROOTNEX_USES_COPYBUF) + window->wd_offset; 4838 #endif 4839 if (trim->tr_first_copybuf_win) { 4840 dma->dp_pgmap[trim->tr_first_pidx].pm_cbaddr = 4841 trim->tr_first_cbaddr; 4842 #if !defined(__amd64) 4843 dma->dp_pgmap[trim->tr_first_pidx].pm_kaddr = 4844 trim->tr_first_kaddr; 4845 #endif 4846 } 4847 } 4848 if (trim->tr_trim_last) { 4849 trim->tr_last_cookie->dmac_laddress = trim->tr_last_paddr; 4850 trim->tr_last_cookie->dmac_size = trim->tr_last_size; 4851 if (trim->tr_last_copybuf_win) { 4852 dma->dp_pgmap[trim->tr_last_pidx].pm_cbaddr = 4853 trim->tr_last_cbaddr; 4854 #if !defined(__amd64) 4855 dma->dp_pgmap[trim->tr_last_pidx].pm_kaddr = 4856 trim->tr_last_kaddr; 4857 #endif 4858 } 4859 } 4860 4861 /* 4862 * setup the cookie pointer to the first cookie in the window. setup 4863 * our return values, then increment the cookie since we return the 4864 * first cookie on the stack. 4865 */ 4866 hp->dmai_cookie = window->wd_first_cookie; 4867 *offp = window->wd_offset; 4868 *lenp = window->wd_size; 4869 *ccountp = window->wd_cookie_cnt; 4870 *cookiep = hp->dmai_cookie[0]; 4871 hp->dmai_cookie++; 4872 4873 #if !defined(__amd64) 4874 /* re-map copybuf if required for this window */ 4875 if (dma->dp_cb_remaping) { 4876 /* 4877 * calculate the page index into the buffer where this 4878 * window starts. 4879 */ 4880 pidx = (sinfo->si_buf_offset + window->wd_offset) >> 4881 MMU_PAGESHIFT; 4882 ASSERT(pidx < sinfo->si_max_pages); 4883 4884 /* 4885 * the first page can get unmapped if it's shared with the 4886 * previous window. Even if the rest of this window is already 4887 * mapped in, we need to still check this one. 4888 */ 4889 pmap = &dma->dp_pgmap[pidx]; 4890 if ((pmap->pm_uses_copybuf) && (pmap->pm_mapped == B_FALSE)) { 4891 if (pmap->pm_pp != NULL) { 4892 pmap->pm_mapped = B_TRUE; 4893 i86_pp_map(pmap->pm_pp, pmap->pm_kaddr); 4894 } else if (pmap->pm_vaddr != NULL) { 4895 pmap->pm_mapped = B_TRUE; 4896 i86_va_map(pmap->pm_vaddr, sinfo->si_asp, 4897 pmap->pm_kaddr); 4898 } 4899 } 4900 pidx++; 4901 4902 /* map in the rest of the pages if required */ 4903 if (window->wd_remap_copybuf) { 4904 window->wd_remap_copybuf = B_FALSE; 4905 4906 /* figure out many pages this window takes up */ 4907 poff = (sinfo->si_buf_offset + window->wd_offset) & 4908 MMU_PAGEOFFSET; 4909 pcnt = mmu_btopr(window->wd_size + poff); 4910 ASSERT(((pidx - 1) + pcnt) <= sinfo->si_max_pages); 4911 4912 /* map pages which require it */ 4913 for (i = 1; i < pcnt; i++) { 4914 pmap = &dma->dp_pgmap[pidx]; 4915 if (pmap->pm_uses_copybuf) { 4916 ASSERT(pmap->pm_mapped == B_FALSE); 4917 if (pmap->pm_pp != NULL) { 4918 pmap->pm_mapped = B_TRUE; 4919 i86_pp_map(pmap->pm_pp, 4920 pmap->pm_kaddr); 4921 } else if (pmap->pm_vaddr != NULL) { 4922 pmap->pm_mapped = B_TRUE; 4923 i86_va_map(pmap->pm_vaddr, 4924 sinfo->si_asp, 4925 pmap->pm_kaddr); 4926 } 4927 } 4928 pidx++; 4929 } 4930 } 4931 } 4932 #endif 4933 4934 /* if the new window uses the copy buffer, sync it for the device */ 4935 if ((window->wd_dosync) && (hp->dmai_rflags & DDI_DMA_WRITE)) { 4936 (void) rootnex_coredma_sync(dip, rdip, handle, 0, 0, 4937 DDI_DMA_SYNC_FORDEV); 4938 } 4939 4940 return (DDI_SUCCESS); 4941 } 4942 4943 /* 4944 * rootnex_dma_win() 4945 * called from ddi_dma_getwin() 4946 */ 4947 /*ARGSUSED*/ 4948 static int 4949 rootnex_dma_win(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle, 4950 uint_t win, off_t *offp, size_t *lenp, ddi_dma_cookie_t *cookiep, 4951 uint_t *ccountp) 4952 { 4953 #if defined(__amd64) && !defined(__xpv) 4954 if (IOMMU_USED(rdip)) { 4955 return (iommulib_nexdma_win(dip, rdip, handle, win, offp, lenp, 4956 cookiep, ccountp)); 4957 } 4958 #endif 4959 4960 return (rootnex_coredma_win(dip, rdip, handle, win, offp, lenp, 4961 cookiep, ccountp)); 4962 } 4963 4964 #if defined(__amd64) && !defined(__xpv) 4965 /*ARGSUSED*/ 4966 static int 4967 rootnex_coredma_hdl_setprivate(dev_info_t *dip, dev_info_t *rdip, 4968 ddi_dma_handle_t handle, void *v) 4969 { 4970 ddi_dma_impl_t *hp; 4971 rootnex_dma_t *dma; 4972 4973 hp = (ddi_dma_impl_t *)handle; 4974 dma = (rootnex_dma_t *)hp->dmai_private; 4975 dma->dp_iommu_private = v; 4976 4977 return (DDI_SUCCESS); 4978 } 4979 4980 /*ARGSUSED*/ 4981 static void * 4982 rootnex_coredma_hdl_getprivate(dev_info_t *dip, dev_info_t *rdip, 4983 ddi_dma_handle_t handle) 4984 { 4985 ddi_dma_impl_t *hp; 4986 rootnex_dma_t *dma; 4987 4988 hp = (ddi_dma_impl_t *)handle; 4989 dma = (rootnex_dma_t *)hp->dmai_private; 4990 4991 return (dma->dp_iommu_private); 4992 } 4993 #endif 4994 4995 /* 4996 * ************************ 4997 * obsoleted dma routines 4998 * ************************ 4999 */ 5000 5001 /* 5002 * rootnex_dma_mctl() 5003 * 5004 * We don't support this legacy interface any more on x86. 5005 */ 5006 /* ARGSUSED */ 5007 static int 5008 rootnex_dma_mctl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle, 5009 enum ddi_dma_ctlops request, off_t *offp, size_t *lenp, caddr_t *objpp, 5010 uint_t cache_flags) 5011 { 5012 /* 5013 * The only thing dma_mctl is usef for anymore is legacy SPARC 5014 * dvma and sbus-specific routines. 5015 */ 5016 return (DDI_FAILURE); 5017 } 5018 5019 /* 5020 * ********* 5021 * FMA Code 5022 * ********* 5023 */ 5024 5025 /* 5026 * rootnex_fm_init() 5027 * FMA init busop 5028 */ 5029 /* ARGSUSED */ 5030 static int 5031 rootnex_fm_init(dev_info_t *dip, dev_info_t *tdip, int tcap, 5032 ddi_iblock_cookie_t *ibc) 5033 { 5034 *ibc = rootnex_state->r_err_ibc; 5035 5036 return (ddi_system_fmcap); 5037 } 5038 5039 /* 5040 * rootnex_dma_check() 5041 * Function called after a dma fault occurred to find out whether the 5042 * fault address is associated with a driver that is able to handle faults 5043 * and recover from faults. 5044 */ 5045 /* ARGSUSED */ 5046 static int 5047 rootnex_dma_check(dev_info_t *dip, const void *handle, const void *addr, 5048 const void *not_used) 5049 { 5050 rootnex_window_t *window; 5051 uint64_t start_addr; 5052 uint64_t fault_addr; 5053 ddi_dma_impl_t *hp; 5054 rootnex_dma_t *dma; 5055 uint64_t end_addr; 5056 size_t csize; 5057 int i; 5058 int j; 5059 5060 5061 /* The driver has to set DDI_DMA_FLAGERR to recover from dma faults */ 5062 hp = (ddi_dma_impl_t *)handle; 5063 ASSERT(hp); 5064 5065 dma = (rootnex_dma_t *)hp->dmai_private; 5066 5067 /* Get the address that we need to search for */ 5068 fault_addr = *(uint64_t *)addr; 5069 5070 /* 5071 * if we don't have any windows, we can just walk through all the 5072 * cookies. 5073 */ 5074 if (dma->dp_window == NULL) { 5075 /* for each cookie */ 5076 for (i = 0; i < dma->dp_sglinfo.si_sgl_size; i++) { 5077 /* 5078 * if the faulted address is within the physical address 5079 * range of the cookie, return DDI_FM_NONFATAL. 5080 */ 5081 if ((fault_addr >= dma->dp_cookies[i].dmac_laddress) && 5082 (fault_addr <= (dma->dp_cookies[i].dmac_laddress + 5083 dma->dp_cookies[i].dmac_size))) { 5084 return (DDI_FM_NONFATAL); 5085 } 5086 } 5087 5088 /* fault_addr not within this DMA handle */ 5089 return (DDI_FM_UNKNOWN); 5090 } 5091 5092 /* we have mutiple windows, walk through each window */ 5093 for (i = 0; i < hp->dmai_nwin; i++) { 5094 window = &dma->dp_window[i]; 5095 5096 /* Go through all the cookies in the window */ 5097 for (j = 0; j < window->wd_cookie_cnt; j++) { 5098 5099 start_addr = window->wd_first_cookie[j].dmac_laddress; 5100 csize = window->wd_first_cookie[j].dmac_size; 5101 5102 /* 5103 * if we are trimming the first cookie in the window, 5104 * and this is the first cookie, adjust the start 5105 * address and size of the cookie to account for the 5106 * trim. 5107 */ 5108 if (window->wd_trim.tr_trim_first && (j == 0)) { 5109 start_addr = window->wd_trim.tr_first_paddr; 5110 csize = window->wd_trim.tr_first_size; 5111 } 5112 5113 /* 5114 * if we are trimming the last cookie in the window, 5115 * and this is the last cookie, adjust the start 5116 * address and size of the cookie to account for the 5117 * trim. 5118 */ 5119 if (window->wd_trim.tr_trim_last && 5120 (j == (window->wd_cookie_cnt - 1))) { 5121 start_addr = window->wd_trim.tr_last_paddr; 5122 csize = window->wd_trim.tr_last_size; 5123 } 5124 5125 end_addr = start_addr + csize; 5126 5127 /* 5128 * if the faulted address is within the physical 5129 * address of the cookie, return DDI_FM_NONFATAL. 5130 */ 5131 if ((fault_addr >= start_addr) && 5132 (fault_addr <= end_addr)) { 5133 return (DDI_FM_NONFATAL); 5134 } 5135 } 5136 } 5137 5138 /* fault_addr not within this DMA handle */ 5139 return (DDI_FM_UNKNOWN); 5140 } 5141 5142 /*ARGSUSED*/ 5143 static int 5144 rootnex_quiesce(dev_info_t *dip) 5145 { 5146 #if defined(__amd64) && !defined(__xpv) 5147 return (immu_quiesce()); 5148 #else 5149 return (DDI_SUCCESS); 5150 #endif 5151 } 5152 5153 #if defined(__xpv) 5154 void 5155 immu_init(void) 5156 { 5157 ; 5158 } 5159 5160 void 5161 immu_startup(void) 5162 { 5163 ; 5164 } 5165 /*ARGSUSED*/ 5166 void 5167 immu_physmem_update(uint64_t addr, uint64_t size) 5168 { 5169 ; 5170 } 5171 #endif