1 /*
   2  * Copyright (c) 2009, 2010, Oracle and/or its affiliates. All rights reserved.
   3  */
   4 
   5 /*
   6  * This driver was derived from the FreeBSD if_msk.c driver, which
   7  * bears the following copyright attributions and licenses.
   8  */
   9 
  10 /*
  11  *
  12  *      LICENSE:
  13  *      Copyright (C) Marvell International Ltd. and/or its affiliates
  14  *
  15  *      The computer program files contained in this folder ("Files")
  16  *      are provided to you under the BSD-type license terms provided
  17  *      below, and any use of such Files and any derivative works
  18  *      thereof created by you shall be governed by the following terms
  19  *      and conditions:
  20  *
  21  *      - Redistributions of source code must retain the above copyright
  22  *        notice, this list of conditions and the following disclaimer.
  23  *      - Redistributions in binary form must reproduce the above
  24  *        copyright notice, this list of conditions and the following
  25  *        disclaimer in the documentation and/or other materials provided
  26  *        with the distribution.
  27  *      - Neither the name of Marvell nor the names of its contributors
  28  *        may be used to endorse or promote products derived from this
  29  *        software without specific prior written permission.
  30  *
  31  *      THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  32  *      "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  33  *      LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
  34  *      FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
  35  *      COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
  36  *      INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
  37  *      BUT NOT LIMITED TO, PROCUREMENT OF  SUBSTITUTE GOODS OR SERVICES;
  38  *      LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  39  *      HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
  40  *      STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  41  *      ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
  42  *      OF THE POSSIBILITY OF SUCH DAMAGE.
  43  *      /LICENSE
  44  *
  45  */
  46 /*
  47  * Copyright (c) 1997, 1998, 1999, 2000
  48  *      Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
  49  *
  50  * Redistribution and use in source and binary forms, with or without
  51  * modification, are permitted provided that the following conditions
  52  * are met:
  53  * 1. Redistributions of source code must retain the above copyright
  54  *    notice, this list of conditions and the following disclaimer.
  55  * 2. Redistributions in binary form must reproduce the above copyright
  56  *    notice, this list of conditions and the following disclaimer in the
  57  *    documentation and/or other materials provided with the distribution.
  58  * 3. All advertising materials mentioning features or use of this software
  59  *    must display the following acknowledgement:
  60  *      This product includes software developed by Bill Paul.
  61  * 4. Neither the name of the author nor the names of any co-contributors
  62  *    may be used to endorse or promote products derived from this software
  63  *    without specific prior written permission.
  64  *
  65  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
  66  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  67  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  68  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
  69  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  70  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
  71  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
  72  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
  73  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  74  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
  75  * THE POSSIBILITY OF SUCH DAMAGE.
  76  */
  77 /*
  78  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
  79  *
  80  * Permission to use, copy, modify, and distribute this software for any
  81  * purpose with or without fee is hereby granted, provided that the above
  82  * copyright notice and this permission notice appear in all copies.
  83  *
  84  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  85  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  86  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  87  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  88  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  89  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  90  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  91  */
  92 
  93 #include <sys/varargs.h>
  94 #include <sys/types.h>
  95 #include <sys/modctl.h>
  96 #include <sys/conf.h>
  97 #include <sys/devops.h>
  98 #include <sys/stream.h>
  99 #include <sys/strsun.h>
 100 #include <sys/cmn_err.h>
 101 #include <sys/ethernet.h>
 102 #include <sys/kmem.h>
 103 #include <sys/time.h>
 104 #include <sys/pci.h>
 105 #include <sys/mii.h>
 106 #include <sys/miiregs.h>
 107 #include <sys/mac.h>
 108 #include <sys/mac_ether.h>
 109 #include <sys/mac_provider.h>
 110 #include <sys/debug.h>
 111 #include <sys/note.h>
 112 #include <sys/ddi.h>
 113 #include <sys/sunddi.h>
 114 #include <sys/vlan.h>
 115 
 116 #include "yge.h"
 117 
 118 static struct ddi_device_acc_attr yge_regs_attr = {
 119         DDI_DEVICE_ATTR_V0,
 120         DDI_STRUCTURE_LE_ACC,
 121         DDI_STRICTORDER_ACC
 122 };
 123 
 124 static struct ddi_device_acc_attr yge_ring_attr = {
 125         DDI_DEVICE_ATTR_V0,
 126         DDI_STRUCTURE_LE_ACC,
 127         DDI_STRICTORDER_ACC
 128 };
 129 
 130 static struct ddi_device_acc_attr yge_buf_attr = {
 131         DDI_DEVICE_ATTR_V0,
 132         DDI_NEVERSWAP_ACC,
 133         DDI_STRICTORDER_ACC
 134 };
 135 
 136 #define DESC_ALIGN      0x1000
 137 
 138 static ddi_dma_attr_t yge_ring_dma_attr = {
 139         DMA_ATTR_V0,            /* dma_attr_version */
 140         0,                      /* dma_attr_addr_lo */
 141         0x00000000ffffffffull,  /* dma_attr_addr_hi */
 142         0x00000000ffffffffull,  /* dma_attr_count_max */
 143         DESC_ALIGN,             /* dma_attr_align */
 144         0x000007fc,             /* dma_attr_burstsizes */
 145         1,                      /* dma_attr_minxfer */
 146         0x00000000ffffffffull,  /* dma_attr_maxxfer */
 147         0x00000000ffffffffull,  /* dma_attr_seg */
 148         1,                      /* dma_attr_sgllen */
 149         1,                      /* dma_attr_granular */
 150         0                       /* dma_attr_flags */
 151 };
 152 
 153 static ddi_dma_attr_t yge_buf_dma_attr = {
 154         DMA_ATTR_V0,            /* dma_attr_version */
 155         0,                      /* dma_attr_addr_lo */
 156         0x00000000ffffffffull,  /* dma_attr_addr_hi */
 157         0x00000000ffffffffull,  /* dma_attr_count_max */
 158         1,                      /* dma_attr_align */
 159         0x0000fffc,             /* dma_attr_burstsizes */
 160         1,                      /* dma_attr_minxfer */
 161         0x000000000000ffffull,  /* dma_attr_maxxfer */
 162         0x00000000ffffffffull,  /* dma_attr_seg */
 163         8,                      /* dma_attr_sgllen */
 164         1,                      /* dma_attr_granular */
 165         0                       /* dma_attr_flags */
 166 };
 167 
 168 
 169 static int yge_attach(yge_dev_t *);
 170 static void yge_detach(yge_dev_t *);
 171 static int yge_suspend(yge_dev_t *);
 172 static int yge_resume(yge_dev_t *);
 173 
 174 static void yge_reset(yge_dev_t *);
 175 static void yge_setup_rambuffer(yge_dev_t *);
 176 
 177 static int yge_init_port(yge_port_t *);
 178 static void yge_uninit_port(yge_port_t *);
 179 static int yge_register_port(yge_port_t *);
 180 
 181 static void yge_tick(void *);
 182 static uint_t yge_intr(caddr_t, caddr_t);
 183 static int yge_intr_gmac(yge_port_t *);
 184 static void yge_intr_enable(yge_dev_t *);
 185 static void yge_intr_disable(yge_dev_t *);
 186 static boolean_t yge_handle_events(yge_dev_t *, mblk_t **, mblk_t **, int *);
 187 static void yge_handle_hwerr(yge_port_t *, uint32_t);
 188 static void yge_intr_hwerr(yge_dev_t *);
 189 static mblk_t *yge_rxeof(yge_port_t *, uint32_t, int);
 190 static void yge_txeof(yge_port_t *, int);
 191 static boolean_t yge_send(yge_port_t *, mblk_t *);
 192 static void yge_set_prefetch(yge_dev_t *, int, yge_ring_t *);
 193 static void yge_set_rambuffer(yge_port_t *);
 194 static void yge_start_port(yge_port_t *);
 195 static void yge_stop_port(yge_port_t *);
 196 static void yge_phy_power(yge_dev_t *, boolean_t);
 197 static int yge_alloc_ring(yge_port_t *, yge_dev_t *, yge_ring_t *, uint32_t);
 198 static void yge_free_ring(yge_ring_t *);
 199 static uint8_t yge_find_capability(yge_dev_t *, uint8_t);
 200 
 201 static int yge_txrx_dma_alloc(yge_port_t *);
 202 static void yge_txrx_dma_free(yge_port_t *);
 203 static void yge_init_rx_ring(yge_port_t *);
 204 static void yge_init_tx_ring(yge_port_t *);
 205 
 206 static uint16_t yge_mii_readreg(yge_port_t *, uint8_t, uint8_t);
 207 static void yge_mii_writereg(yge_port_t *, uint8_t, uint8_t, uint16_t);
 208 
 209 static uint16_t yge_mii_read(void *, uint8_t, uint8_t);
 210 static void yge_mii_write(void *, uint8_t, uint8_t, uint16_t);
 211 static void yge_mii_notify(void *, link_state_t);
 212 
 213 static void yge_setrxfilt(yge_port_t *);
 214 static void yge_restart_task(yge_dev_t *);
 215 static void yge_task(void *);
 216 static void yge_dispatch(yge_dev_t *, int);
 217 
 218 static void yge_stats_clear(yge_port_t *);
 219 static void yge_stats_update(yge_port_t *);
 220 static uint32_t yge_hashbit(const uint8_t *);
 221 
 222 static int yge_m_unicst(void *, const uint8_t *);
 223 static int yge_m_multicst(void *, boolean_t, const uint8_t *);
 224 static int yge_m_promisc(void *, boolean_t);
 225 static mblk_t *yge_m_tx(void *, mblk_t *);
 226 static int yge_m_stat(void *, uint_t, uint64_t *);
 227 static int yge_m_start(void *);
 228 static void yge_m_stop(void *);
 229 static int yge_m_getprop(void *, const char *, mac_prop_id_t, uint_t, void *);
 230 static void yge_m_propinfo(void *, const char *, mac_prop_id_t,
 231     mac_prop_info_handle_t);
 232 static int yge_m_setprop(void *, const char *, mac_prop_id_t, uint_t,
 233     const void *);
 234 static void yge_m_ioctl(void *, queue_t *, mblk_t *);
 235 
 236 void yge_error(yge_dev_t *, yge_port_t *, char *, ...);
 237 extern void yge_phys_update(yge_port_t *);
 238 extern int yge_phys_restart(yge_port_t *, boolean_t);
 239 extern int yge_phys_init(yge_port_t *, phy_readreg_t, phy_writereg_t);
 240 
 241 static mac_callbacks_t yge_m_callbacks = {
 242         MC_IOCTL | MC_SETPROP | MC_GETPROP | MC_PROPINFO,
 243         yge_m_stat,
 244         yge_m_start,
 245         yge_m_stop,
 246         yge_m_promisc,
 247         yge_m_multicst,
 248         yge_m_unicst,
 249         yge_m_tx,
 250         NULL,
 251         yge_m_ioctl,
 252         NULL,           /* mc_getcapab */
 253         NULL,           /* mc_open */
 254         NULL,           /* mc_close */
 255         yge_m_setprop,
 256         yge_m_getprop,
 257         yge_m_propinfo
 258 };
 259 
 260 static mii_ops_t yge_mii_ops = {
 261         MII_OPS_VERSION,
 262         yge_mii_read,
 263         yge_mii_write,
 264         yge_mii_notify,
 265         NULL    /* reset */
 266 };
 267 
 268 /*
 269  * This is the low level interface routine to read from the PHY
 270  * MII registers. There is multiple steps to these accesses. First
 271  * the register number is written to an address register. Then after
 272  * a specified delay status is checked until the data is present.
 273  */
 274 static uint16_t
 275 yge_mii_readreg(yge_port_t *port, uint8_t phy, uint8_t reg)
 276 {
 277         yge_dev_t *dev = port->p_dev;
 278         int pnum = port->p_port;
 279         uint16_t val;
 280 
 281         GMAC_WRITE_2(dev, pnum, GM_SMI_CTRL,
 282             GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
 283 
 284         for (int i = 0; i < YGE_TIMEOUT; i += 10) {
 285                 drv_usecwait(10);
 286                 val = GMAC_READ_2(dev, pnum, GM_SMI_CTRL);
 287                 if ((val & GM_SMI_CT_RD_VAL) != 0) {
 288                         val = GMAC_READ_2(dev, pnum, GM_SMI_DATA);
 289                         return (val);
 290                 }
 291         }
 292 
 293         return (0xffff);
 294 }
 295 
 296 /*
 297  * This is the low level interface routine to write to the PHY
 298  * MII registers. There is multiple steps to these accesses. The
 299  * data and the target registers address are written to the PHY.
 300  * Then the PHY is polled until it is done with the write. Note
 301  * that the delays are specified and required!
 302  */
 303 static void
 304 yge_mii_writereg(yge_port_t *port, uint8_t phy, uint8_t reg, uint16_t val)
 305 {
 306         yge_dev_t *dev = port->p_dev;
 307         int pnum = port->p_port;
 308 
 309         GMAC_WRITE_2(dev, pnum, GM_SMI_DATA, val);
 310         GMAC_WRITE_2(dev, pnum, GM_SMI_CTRL,
 311             GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg));
 312 
 313         for (int i = 0; i < YGE_TIMEOUT; i += 10) {
 314                 drv_usecwait(10);
 315                 if ((GMAC_READ_2(dev, pnum, GM_SMI_CTRL) & GM_SMI_CT_BUSY) == 0)
 316                         return;
 317         }
 318 
 319         yge_error(NULL, port, "phy write timeout");
 320 }
 321 
 322 static uint16_t
 323 yge_mii_read(void *arg, uint8_t phy, uint8_t reg)
 324 {
 325         yge_port_t *port = arg;
 326         uint16_t rv;
 327 
 328         PHY_LOCK(port->p_dev);
 329         rv = yge_mii_readreg(port, phy, reg);
 330         PHY_UNLOCK(port->p_dev);
 331         return (rv);
 332 }
 333 
 334 static void
 335 yge_mii_write(void *arg, uint8_t phy, uint8_t reg, uint16_t val)
 336 {
 337         yge_port_t *port = arg;
 338 
 339         PHY_LOCK(port->p_dev);
 340         yge_mii_writereg(port, phy, reg, val);
 341         PHY_UNLOCK(port->p_dev);
 342 }
 343 
 344 /*
 345  * The MII common code calls this function to let the MAC driver
 346  * know when there has been a change in status.
 347  */
 348 void
 349 yge_mii_notify(void *arg, link_state_t link)
 350 {
 351         yge_port_t *port = arg;
 352         yge_dev_t *dev = port->p_dev;
 353         uint32_t gmac;
 354         uint32_t gpcr;
 355         link_flowctrl_t fc;
 356         link_duplex_t duplex;
 357         int speed;
 358 
 359         fc = mii_get_flowctrl(port->p_mii);
 360         duplex = mii_get_duplex(port->p_mii);
 361         speed = mii_get_speed(port->p_mii);
 362 
 363         DEV_LOCK(dev);
 364 
 365         if (link == LINK_STATE_UP) {
 366 
 367                 /* Enable Tx FIFO Underrun. */
 368                 CSR_WRITE_1(dev, MR_ADDR(port->p_port, GMAC_IRQ_MSK),
 369                     GM_IS_TX_FF_UR |    /* TX FIFO underflow */
 370                     GM_IS_RX_FF_OR);    /* RX FIFO overflow */
 371 
 372                 gpcr = GM_GPCR_AU_ALL_DIS;
 373 
 374                 switch (fc) {
 375                 case LINK_FLOWCTRL_BI:
 376                         gmac = GMC_PAUSE_ON;
 377                         gpcr &= ~(GM_GPCR_FC_RX_DIS | GM_GPCR_FC_TX_DIS);
 378                         break;
 379                 case LINK_FLOWCTRL_TX:
 380                         gmac = GMC_PAUSE_ON;
 381                         gpcr |= GM_GPCR_FC_RX_DIS;
 382                         break;
 383                 case LINK_FLOWCTRL_RX:
 384                         gmac = GMC_PAUSE_ON;
 385                         gpcr |= GM_GPCR_FC_TX_DIS;
 386                         break;
 387                 case LINK_FLOWCTRL_NONE:
 388                 default:
 389                         gmac = GMC_PAUSE_OFF;
 390                         gpcr |= GM_GPCR_FC_RX_DIS;
 391                         gpcr |= GM_GPCR_FC_TX_DIS;
 392                         break;
 393                 }
 394 
 395                 gpcr &= ~((GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100));
 396                 switch (speed) {
 397                 case 1000:
 398                         gpcr |= GM_GPCR_SPEED_1000;
 399                         break;
 400                 case 100:
 401                         gpcr |= GM_GPCR_SPEED_100;
 402                         break;
 403                 case 10:
 404                 default:
 405                         break;
 406                 }
 407 
 408                 if (duplex == LINK_DUPLEX_FULL) {
 409                         gpcr |= GM_GPCR_DUP_FULL;
 410                 } else {
 411                         gpcr &= ~(GM_GPCR_DUP_FULL);
 412                         gmac = GMC_PAUSE_OFF;
 413                         gpcr |= GM_GPCR_FC_RX_DIS;
 414                         gpcr |= GM_GPCR_FC_TX_DIS;
 415                 }
 416 
 417                 gpcr |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
 418                 GMAC_WRITE_2(dev, port->p_port, GM_GP_CTRL, gpcr);
 419 
 420                 /* Read again to ensure writing. */
 421                 (void) GMAC_READ_2(dev, port->p_port, GM_GP_CTRL);
 422 
 423                 /* write out the flow control gmac setting */
 424                 CSR_WRITE_4(dev, MR_ADDR(port->p_port, GMAC_CTRL), gmac);
 425 
 426         } else {
 427                 /* Disable Rx/Tx MAC. */
 428                 gpcr = GMAC_READ_2(dev, port->p_port, GM_GP_CTRL);
 429                 gpcr &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
 430                 GMAC_WRITE_2(dev, port->p_port, GM_GP_CTRL, gpcr);
 431 
 432                 /* Read again to ensure writing. */
 433                 (void) GMAC_READ_2(dev, port->p_port, GM_GP_CTRL);
 434         }
 435 
 436         DEV_UNLOCK(dev);
 437 
 438         mac_link_update(port->p_mh, link);
 439 
 440         if (port->p_running && (link == LINK_STATE_UP)) {
 441                 mac_tx_update(port->p_mh);
 442         }
 443 }
 444 
 445 static void
 446 yge_setrxfilt(yge_port_t *port)
 447 {
 448         yge_dev_t       *dev;
 449         uint16_t        mode;
 450         uint8_t         *ea;
 451         uint32_t        *mchash;
 452         int             pnum;
 453 
 454         dev = port->p_dev;
 455         pnum = port->p_port;
 456         ea = port->p_curraddr;
 457         mchash = port->p_mchash;
 458 
 459         if (dev->d_suspended)
 460                 return;
 461 
 462         /* Set station address. */
 463         for (int i = 0; i < (ETHERADDRL / 2); i++) {
 464                 GMAC_WRITE_2(dev, pnum, GM_SRC_ADDR_1L + i * 4,
 465                     ((uint16_t)ea[i * 2] | ((uint16_t)ea[(i * 2) + 1] << 8)));
 466         }
 467         for (int i = 0; i < (ETHERADDRL / 2); i++) {
 468                 GMAC_WRITE_2(dev, pnum, GM_SRC_ADDR_2L + i * 4,
 469                     ((uint16_t)ea[i * 2] | ((uint16_t)ea[(i * 2) + 1] << 8)));
 470         }
 471 
 472         /* Figure out receive filtering mode. */
 473         mode = GMAC_READ_2(dev, pnum, GM_RX_CTRL);
 474         if (port->p_promisc) {
 475                 mode &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
 476         } else {
 477                 mode |= (GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
 478         }
 479         /* Write the multicast filter. */
 480         GMAC_WRITE_2(dev, pnum, GM_MC_ADDR_H1, mchash[0] & 0xffff);
 481         GMAC_WRITE_2(dev, pnum, GM_MC_ADDR_H2, (mchash[0] >> 16) & 0xffff);
 482         GMAC_WRITE_2(dev, pnum, GM_MC_ADDR_H3, mchash[1] & 0xffff);
 483         GMAC_WRITE_2(dev, pnum, GM_MC_ADDR_H4, (mchash[1] >> 16) & 0xffff);
 484         /* Write the receive filtering mode. */
 485         GMAC_WRITE_2(dev, pnum, GM_RX_CTRL, mode);
 486 }
 487 
 488 static void
 489 yge_init_rx_ring(yge_port_t *port)
 490 {
 491         yge_buf_t *rxb;
 492         yge_ring_t *ring;
 493         int prod;
 494 
 495         port->p_rx_cons = 0;
 496         port->p_rx_putwm = YGE_PUT_WM;
 497         ring = &port->p_rx_ring;
 498 
 499         /* ala bzero, but uses safer acch access */
 500         CLEARRING(ring);
 501 
 502         for (prod = 0; prod < YGE_RX_RING_CNT; prod++) {
 503                 /* Hang out receive buffers. */
 504                 rxb = &port->p_rx_buf[prod];
 505 
 506                 PUTADDR(ring, prod, rxb->b_paddr);
 507                 PUTCTRL(ring, prod, port->p_framesize | OP_PACKET | HW_OWNER);
 508         }
 509 
 510         SYNCRING(ring, DDI_DMA_SYNC_FORDEV);
 511 
 512         yge_set_prefetch(port->p_dev, port->p_rxq, ring);
 513 
 514         /* Update prefetch unit. */
 515         CSR_WRITE_2(port->p_dev,
 516             Y2_PREF_Q_ADDR(port->p_rxq, PREF_UNIT_PUT_IDX_REG),
 517             YGE_RX_RING_CNT - 1);
 518 }
 519 
 520 static void
 521 yge_init_tx_ring(yge_port_t *port)
 522 {
 523         yge_ring_t *ring = &port->p_tx_ring;
 524 
 525         port->p_tx_prod = 0;
 526         port->p_tx_cons = 0;
 527         port->p_tx_cnt = 0;
 528 
 529         CLEARRING(ring);
 530         SYNCRING(ring, DDI_DMA_SYNC_FORDEV);
 531 
 532         yge_set_prefetch(port->p_dev, port->p_txq, ring);
 533 }
 534 
 535 static void
 536 yge_setup_rambuffer(yge_dev_t *dev)
 537 {
 538         int next;
 539         int i;
 540 
 541         /* Get adapter SRAM size. */
 542         dev->d_ramsize = CSR_READ_1(dev, B2_E_0) * 4;
 543         if (dev->d_ramsize == 0)
 544                 return;
 545 
 546         dev->d_pflags |= PORT_FLAG_RAMBUF;
 547         /*
 548          * Give receiver 2/3 of memory and round down to the multiple
 549          * of 1024. Tx/Rx RAM buffer size of Yukon 2 should be multiple
 550          * of 1024.
 551          */
 552         dev->d_rxqsize = (((dev->d_ramsize * 1024 * 2) / 3) & ~(1024 - 1));
 553         dev->d_txqsize = (dev->d_ramsize * 1024) - dev->d_rxqsize;
 554 
 555         for (i = 0, next = 0; i < dev->d_num_port; i++) {
 556                 dev->d_rxqstart[i] = next;
 557                 dev->d_rxqend[i] = next + dev->d_rxqsize - 1;
 558                 next = dev->d_rxqend[i] + 1;
 559                 dev->d_txqstart[i] = next;
 560                 dev->d_txqend[i] = next + dev->d_txqsize - 1;
 561                 next = dev->d_txqend[i] + 1;
 562         }
 563 }
 564 
 565 static void
 566 yge_phy_power(yge_dev_t *dev, boolean_t powerup)
 567 {
 568         uint32_t val;
 569         int i;
 570 
 571         if (powerup) {
 572                 /* Switch power to VCC (WA for VAUX problem). */
 573                 CSR_WRITE_1(dev, B0_POWER_CTRL,
 574                     PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
 575                 /* Disable Core Clock Division, set Clock Select to 0. */
 576                 CSR_WRITE_4(dev, B2_Y2_CLK_CTRL, Y2_CLK_DIV_DIS);
 577 
 578                 val = 0;
 579                 if (dev->d_hw_id == CHIP_ID_YUKON_XL &&
 580                     dev->d_hw_rev > CHIP_REV_YU_XL_A1) {
 581                         /* Enable bits are inverted. */
 582                         val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
 583                             Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
 584                             Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
 585                 }
 586                 /*
 587                  * Enable PCI & Core Clock, enable clock gating for both Links.
 588                  */
 589                 CSR_WRITE_1(dev, B2_Y2_CLK_GATE, val);
 590 
 591                 val = pci_config_get32(dev->d_pcih, PCI_OUR_REG_1);
 592                 val &= ~(PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD);
 593                 if (dev->d_hw_id == CHIP_ID_YUKON_XL &&
 594                     dev->d_hw_rev > CHIP_REV_YU_XL_A1) {
 595                         /* Deassert Low Power for 1st PHY. */
 596                         val |= PCI_Y2_PHY1_COMA;
 597                         if (dev->d_num_port > 1)
 598                                 val |= PCI_Y2_PHY2_COMA;
 599                 }
 600 
 601                 /* Release PHY from PowerDown/COMA mode. */
 602                 pci_config_put32(dev->d_pcih, PCI_OUR_REG_1, val);
 603 
 604                 switch (dev->d_hw_id) {
 605                 case CHIP_ID_YUKON_EC_U:
 606                 case CHIP_ID_YUKON_EX:
 607                 case CHIP_ID_YUKON_FE_P: {
 608                         uint32_t our;
 609 
 610                         CSR_WRITE_2(dev, B0_CTST, Y2_HW_WOL_OFF);
 611 
 612                         /* Enable all clocks. */
 613                         pci_config_put32(dev->d_pcih, PCI_OUR_REG_3, 0);
 614 
 615                         our = pci_config_get32(dev->d_pcih, PCI_OUR_REG_4);
 616                         our &= (PCI_FORCE_ASPM_REQUEST|PCI_ASPM_GPHY_LINK_DOWN|
 617                             PCI_ASPM_INT_FIFO_EMPTY|PCI_ASPM_CLKRUN_REQUEST);
 618                         /* Set all bits to 0 except bits 15..12. */
 619                         pci_config_put32(dev->d_pcih, PCI_OUR_REG_4, our);
 620 
 621                         /* Set to default value. */
 622                         our = pci_config_get32(dev->d_pcih, PCI_OUR_REG_5);
 623                         our &= P_CTL_TIM_VMAIN_AV_MSK;
 624                         pci_config_put32(dev->d_pcih, PCI_OUR_REG_5, our);
 625 
 626                         pci_config_put32(dev->d_pcih, PCI_OUR_REG_1, 0);
 627 
 628                         /*
 629                          * Enable workaround for dev 4.107 on Yukon-Ultra
 630                          * and Extreme
 631                          */
 632                         our = CSR_READ_4(dev, B2_GP_IO);
 633                         our |= GLB_GPIO_STAT_RACE_DIS;
 634                         CSR_WRITE_4(dev, B2_GP_IO, our);
 635 
 636                         (void) CSR_READ_4(dev, B2_GP_IO);
 637                         break;
 638                 }
 639                 default:
 640                         break;
 641                 }
 642 
 643                 for (i = 0; i < dev->d_num_port; i++) {
 644                         CSR_WRITE_2(dev, MR_ADDR(i, GMAC_LINK_CTRL),
 645                             GMLC_RST_SET);
 646                         CSR_WRITE_2(dev, MR_ADDR(i, GMAC_LINK_CTRL),
 647                             GMLC_RST_CLR);
 648                 }
 649         } else {
 650                 val = pci_config_get32(dev->d_pcih, PCI_OUR_REG_1);
 651                 if (dev->d_hw_id == CHIP_ID_YUKON_XL &&
 652                     dev->d_hw_rev > CHIP_REV_YU_XL_A1) {
 653                         val &= ~PCI_Y2_PHY1_COMA;
 654                         if (dev->d_num_port > 1)
 655                                 val &= ~PCI_Y2_PHY2_COMA;
 656                         val &= ~(PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD);
 657                 } else {
 658                         val |= (PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD);
 659                 }
 660                 pci_config_put32(dev->d_pcih, PCI_OUR_REG_1, val);
 661 
 662                 val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
 663                     Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
 664                     Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
 665                 if (dev->d_hw_id == CHIP_ID_YUKON_XL &&
 666                     dev->d_hw_rev > CHIP_REV_YU_XL_A1) {
 667                         /* Enable bits are inverted. */
 668                         val = 0;
 669                 }
 670                 /*
 671                  * Disable PCI & Core Clock, disable clock gating for
 672                  * both Links.
 673                  */
 674                 CSR_WRITE_1(dev, B2_Y2_CLK_GATE, val);
 675                 CSR_WRITE_1(dev, B0_POWER_CTRL,
 676                     PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
 677         }
 678 }
 679 
 680 static void
 681 yge_reset(yge_dev_t *dev)
 682 {
 683         uint64_t addr;
 684         uint16_t status;
 685         uint32_t val;
 686         int i;
 687         ddi_acc_handle_t        pcih = dev->d_pcih;
 688 
 689         /* Turn off ASF */
 690         if (dev->d_hw_id == CHIP_ID_YUKON_EX) {
 691                 status = CSR_READ_2(dev, B28_Y2_ASF_STAT_CMD);
 692                 /* Clear AHB bridge & microcontroller reset */
 693                 status &= ~Y2_ASF_CPU_MODE;
 694                 status &= ~Y2_ASF_AHB_RST;
 695                 /* Clear ASF microcontroller state */
 696                 status &= ~Y2_ASF_STAT_MSK;
 697                 CSR_WRITE_2(dev, B28_Y2_ASF_STAT_CMD, status);
 698         } else {
 699                 CSR_WRITE_1(dev, B28_Y2_ASF_STAT_CMD, Y2_ASF_RESET);
 700         }
 701         CSR_WRITE_2(dev, B0_CTST, Y2_ASF_DISABLE);
 702 
 703         /*
 704          * Since we disabled ASF, S/W reset is required for Power Management.
 705          */
 706         CSR_WRITE_1(dev, B0_CTST, CS_RST_SET);
 707         CSR_WRITE_1(dev, B0_CTST, CS_RST_CLR);
 708 
 709         /* Allow writes to PCI config space */
 710         CSR_WRITE_1(dev, B2_TST_CTRL1, TST_CFG_WRITE_ON);
 711 
 712         /* Clear all error bits in the PCI status register. */
 713         status = pci_config_get16(pcih, PCI_CONF_STAT);
 714         CSR_WRITE_1(dev, B2_TST_CTRL1, TST_CFG_WRITE_ON);
 715 
 716         status |= (PCI_STAT_S_PERROR | PCI_STAT_S_SYSERR | PCI_STAT_R_MAST_AB |
 717             PCI_STAT_R_TARG_AB | PCI_STAT_PERROR);
 718         pci_config_put16(pcih, PCI_CONF_STAT, status);
 719 
 720         CSR_WRITE_1(dev, B0_CTST, CS_MRST_CLR);
 721 
 722         switch (dev->d_bustype) {
 723         case PEX_BUS:
 724                 /* Clear all PEX errors. */
 725                 CSR_PCI_WRITE_4(dev, Y2_CFG_AER + AER_UNCOR_ERR, 0xffffffff);
 726 
 727                 /* is error bit status stuck? */
 728                 val = CSR_PCI_READ_4(dev, PEX_UNC_ERR_STAT);
 729                 if ((val & PEX_RX_OV) != 0) {
 730                         dev->d_intrmask &= ~Y2_IS_HW_ERR;
 731                         dev->d_intrhwemask &= ~Y2_IS_PCI_EXP;
 732                 }
 733                 break;
 734         case PCI_BUS:
 735                 /* Set Cache Line Size to 2 (8 bytes) if configured to 0. */
 736                 if (pci_config_get8(pcih, PCI_CONF_CACHE_LINESZ) == 0)
 737                         pci_config_put16(pcih, PCI_CONF_CACHE_LINESZ, 2);
 738                 break;
 739         case PCIX_BUS:
 740                 /* Set Cache Line Size to 2 (8 bytes) if configured to 0. */
 741                 if (pci_config_get8(pcih, PCI_CONF_CACHE_LINESZ) == 0)
 742                         pci_config_put16(pcih, PCI_CONF_CACHE_LINESZ, 2);
 743 
 744                 /* Set Cache Line Size opt. */
 745                 val = pci_config_get32(pcih, PCI_OUR_REG_1);
 746                 val |= PCI_CLS_OPT;
 747                 pci_config_put32(pcih, PCI_OUR_REG_1, val);
 748                 break;
 749         }
 750 
 751         /* Set PHY power state. */
 752         yge_phy_power(dev, B_TRUE);
 753 
 754         /* Reset GPHY/GMAC Control */
 755         for (i = 0; i < dev->d_num_port; i++) {
 756                 /* GPHY Control reset. */
 757                 CSR_WRITE_4(dev, MR_ADDR(i, GPHY_CTRL), GPC_RST_SET);
 758                 CSR_WRITE_4(dev, MR_ADDR(i, GPHY_CTRL), GPC_RST_CLR);
 759                 /* GMAC Control reset. */
 760                 CSR_WRITE_4(dev, MR_ADDR(i, GMAC_CTRL), GMC_RST_SET);
 761                 CSR_WRITE_4(dev, MR_ADDR(i, GMAC_CTRL), GMC_RST_CLR);
 762                 if (dev->d_hw_id == CHIP_ID_YUKON_EX ||
 763                     dev->d_hw_id == CHIP_ID_YUKON_SUPR) {
 764                         CSR_WRITE_2(dev, MR_ADDR(i, GMAC_CTRL),
 765                             (GMC_BYP_RETR_ON | GMC_BYP_MACSECRX_ON |
 766                             GMC_BYP_MACSECTX_ON));
 767                 }
 768                 CSR_WRITE_2(dev, MR_ADDR(i, GMAC_CTRL), GMC_F_LOOPB_OFF);
 769 
 770         }
 771         CSR_WRITE_1(dev, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
 772 
 773         /* LED On. */
 774         CSR_WRITE_2(dev, B0_CTST, Y2_LED_STAT_ON);
 775 
 776         /* Clear TWSI IRQ. */
 777         CSR_WRITE_4(dev, B2_I2C_IRQ, I2C_CLR_IRQ);
 778 
 779         /* Turn off hardware timer. */
 780         CSR_WRITE_1(dev, B2_TI_CTRL, TIM_STOP);
 781         CSR_WRITE_1(dev, B2_TI_CTRL, TIM_CLR_IRQ);
 782 
 783         /* Turn off descriptor polling. */
 784         CSR_WRITE_1(dev, B28_DPT_CTRL, DPT_STOP);
 785 
 786         /* Turn off time stamps. */
 787         CSR_WRITE_1(dev, GMAC_TI_ST_CTRL, GMT_ST_STOP);
 788         CSR_WRITE_1(dev, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
 789 
 790         /* Don't permit config space writing */
 791         CSR_WRITE_1(dev, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
 792 
 793         /* enable TX Arbiters */
 794         for (i = 0; i < dev->d_num_port; i++)
 795                 CSR_WRITE_1(dev, MR_ADDR(i, TXA_CTRL), TXA_ENA_ARB);
 796 
 797         /* Configure timeout values. */
 798         for (i = 0; i < dev->d_num_port; i++) {
 799                 CSR_WRITE_1(dev, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_CLR);
 800 
 801                 CSR_WRITE_1(dev, SELECT_RAM_BUFFER(i, B3_RI_WTO_R1), RI_TO_53);
 802                 CSR_WRITE_1(dev, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA1), RI_TO_53);
 803                 CSR_WRITE_1(dev, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS1), RI_TO_53);
 804                 CSR_WRITE_1(dev, SELECT_RAM_BUFFER(i, B3_RI_RTO_R1), RI_TO_53);
 805                 CSR_WRITE_1(dev, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA1), RI_TO_53);
 806                 CSR_WRITE_1(dev, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS1), RI_TO_53);
 807                 CSR_WRITE_1(dev, SELECT_RAM_BUFFER(i, B3_RI_WTO_R2), RI_TO_53);
 808                 CSR_WRITE_1(dev, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA2), RI_TO_53);
 809                 CSR_WRITE_1(dev, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS2), RI_TO_53);
 810                 CSR_WRITE_1(dev, SELECT_RAM_BUFFER(i, B3_RI_RTO_R2), RI_TO_53);
 811                 CSR_WRITE_1(dev, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA2), RI_TO_53);
 812                 CSR_WRITE_1(dev, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS2), RI_TO_53);
 813         }
 814 
 815         /* Disable all interrupts. */
 816         CSR_WRITE_4(dev, B0_HWE_IMSK, 0);
 817         (void) CSR_READ_4(dev, B0_HWE_IMSK);
 818         CSR_WRITE_4(dev, B0_IMSK, 0);
 819         (void) CSR_READ_4(dev, B0_IMSK);
 820 
 821         /*
 822          * On dual port PCI-X card, there is an problem where status
 823          * can be received out of order due to split transactions.
 824          */
 825         if (dev->d_bustype == PCIX_BUS && dev->d_num_port > 1) {
 826                 int pcix;
 827                 uint16_t pcix_cmd;
 828 
 829                 if ((pcix = yge_find_capability(dev, PCI_CAP_ID_PCIX)) != 0) {
 830                         pcix_cmd = pci_config_get16(pcih, pcix + 2);
 831                         /* Clear Max Outstanding Split Transactions. */
 832                         pcix_cmd &= ~0x70;
 833                         CSR_WRITE_1(dev, B2_TST_CTRL1, TST_CFG_WRITE_ON);
 834                         pci_config_put16(pcih, pcix + 2, pcix_cmd);
 835                         CSR_WRITE_1(dev, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
 836                 }
 837         }
 838         if (dev->d_bustype == PEX_BUS) {
 839                 uint16_t v, width;
 840 
 841                 v = pci_config_get16(pcih, PEX_DEV_CTRL);
 842                 /* Change Max. Read Request Size to 4096 bytes. */
 843                 v &= ~PEX_DC_MAX_RRS_MSK;
 844                 v |= PEX_DC_MAX_RD_RQ_SIZE(5);
 845                 pci_config_put16(pcih, PEX_DEV_CTRL, v);
 846                 width = pci_config_get16(pcih, PEX_LNK_STAT);
 847                 width = (width & PEX_LS_LINK_WI_MSK) >> 4;
 848                 v = pci_config_get16(pcih, PEX_LNK_CAP);
 849                 v = (v & PEX_LS_LINK_WI_MSK) >> 4;
 850                 if (v != width)
 851                         yge_error(dev, NULL,
 852                             "Negotiated width of PCIe link(x%d) != "
 853                             "max. width of link(x%d)\n", width, v);
 854         }
 855 
 856         /* Clear status list. */
 857         CLEARRING(&dev->d_status_ring);
 858         SYNCRING(&dev->d_status_ring, DDI_DMA_SYNC_FORDEV);
 859 
 860         dev->d_stat_cons = 0;
 861 
 862         CSR_WRITE_4(dev, STAT_CTRL, SC_STAT_RST_SET);
 863         CSR_WRITE_4(dev, STAT_CTRL, SC_STAT_RST_CLR);
 864 
 865         /* Set the status list base address. */
 866         addr = dev->d_status_ring.r_paddr;
 867         CSR_WRITE_4(dev, STAT_LIST_ADDR_LO, YGE_ADDR_LO(addr));
 868         CSR_WRITE_4(dev, STAT_LIST_ADDR_HI, YGE_ADDR_HI(addr));
 869 
 870         /* Set the status list last index. */
 871         CSR_WRITE_2(dev, STAT_LAST_IDX, YGE_STAT_RING_CNT - 1);
 872         CSR_WRITE_2(dev, STAT_PUT_IDX, 0);
 873 
 874         if (dev->d_hw_id == CHIP_ID_YUKON_EC &&
 875             dev->d_hw_rev == CHIP_REV_YU_EC_A1) {
 876                 /* WA for dev. #4.3 */
 877                 CSR_WRITE_2(dev, STAT_TX_IDX_TH, ST_TXTH_IDX_MASK);
 878                 /* WA for dev #4.18 */
 879                 CSR_WRITE_1(dev, STAT_FIFO_WM, 0x21);
 880                 CSR_WRITE_1(dev, STAT_FIFO_ISR_WM, 7);
 881         } else {
 882                 CSR_WRITE_2(dev, STAT_TX_IDX_TH, 10);
 883                 CSR_WRITE_1(dev, STAT_FIFO_WM, 16);
 884 
 885                 /* ISR status FIFO watermark */
 886                 if (dev->d_hw_id == CHIP_ID_YUKON_XL &&
 887                     dev->d_hw_rev == CHIP_REV_YU_XL_A0)
 888                         CSR_WRITE_1(dev, STAT_FIFO_ISR_WM, 4);
 889                 else
 890                         CSR_WRITE_1(dev, STAT_FIFO_ISR_WM, 16);
 891 
 892                 CSR_WRITE_4(dev, STAT_ISR_TIMER_INI, 0x0190);
 893         }
 894 
 895         /*
 896          * Use default value for STAT_ISR_TIMER_INI, STAT_LEV_TIMER_INI.
 897          */
 898         CSR_WRITE_4(dev, STAT_TX_TIMER_INI, YGE_USECS(dev, 1000));
 899 
 900         /* Enable status unit. */
 901         CSR_WRITE_4(dev, STAT_CTRL, SC_STAT_OP_ON);
 902 
 903         CSR_WRITE_1(dev, STAT_TX_TIMER_CTRL, TIM_START);
 904         CSR_WRITE_1(dev, STAT_LEV_TIMER_CTRL, TIM_START);
 905         CSR_WRITE_1(dev, STAT_ISR_TIMER_CTRL, TIM_START);
 906 }
 907 
 908 static int
 909 yge_init_port(yge_port_t *port)
 910 {
 911         yge_dev_t *dev = port->p_dev;
 912         int i;
 913         mac_register_t *macp;
 914 
 915         port->p_flags = dev->d_pflags;
 916         port->p_ppa = ddi_get_instance(dev->d_dip) + (port->p_port * 100);
 917 
 918         port->p_tx_buf = kmem_zalloc(sizeof (yge_buf_t) * YGE_TX_RING_CNT,
 919             KM_SLEEP);
 920         port->p_rx_buf = kmem_zalloc(sizeof (yge_buf_t) * YGE_RX_RING_CNT,
 921             KM_SLEEP);
 922 
 923         /* Setup Tx/Rx queue register offsets. */
 924         if (port->p_port == YGE_PORT_A) {
 925                 port->p_txq = Q_XA1;
 926                 port->p_txsq = Q_XS1;
 927                 port->p_rxq = Q_R1;
 928         } else {
 929                 port->p_txq = Q_XA2;
 930                 port->p_txsq = Q_XS2;
 931                 port->p_rxq = Q_R2;
 932         }
 933 
 934         /* Disable jumbo frame for Yukon FE. */
 935         if (dev->d_hw_id == CHIP_ID_YUKON_FE)
 936                 port->p_flags |= PORT_FLAG_NOJUMBO;
 937 
 938         /*
 939          * Start out assuming a regular MTU.  Users can change this
 940          * with dladm.  The dladm daemon is supposed to issue commands
 941          * to change the default MTU using m_setprop during early boot
 942          * (before the interface is plumbed) if the user has so
 943          * requested.
 944          */
 945         port->p_mtu = ETHERMTU;
 946 
 947         port->p_mii = mii_alloc(port, dev->d_dip, &yge_mii_ops);
 948         if (port->p_mii == NULL) {
 949                 yge_error(NULL, port, "MII handle allocation failed");
 950                 return (DDI_FAILURE);
 951         }
 952         /* We assume all parts support asymmetric pause */
 953         mii_set_pauseable(port->p_mii, B_TRUE, B_TRUE);
 954 
 955         /*
 956          * Get station address for this interface. Note that
 957          * dual port cards actually come with three station
 958          * addresses: one for each port, plus an extra. The
 959          * extra one is used by the SysKonnect driver software
 960          * as a 'virtual' station address for when both ports
 961          * are operating in failover mode. Currently we don't
 962          * use this extra address.
 963          */
 964         for (i = 0; i < ETHERADDRL; i++) {
 965                 port->p_curraddr[i] =
 966                     CSR_READ_1(dev, B2_MAC_1 + (port->p_port * 8) + i);
 967         }
 968 
 969         /* Register with Nemo. */
 970         if ((macp = mac_alloc(MAC_VERSION)) == NULL) {
 971                 yge_error(NULL, port, "MAC handle allocation failed");
 972                 return (DDI_FAILURE);
 973         }
 974         macp->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
 975         macp->m_driver = port;
 976         macp->m_dip = dev->d_dip;
 977         macp->m_src_addr = port->p_curraddr;
 978         macp->m_callbacks = &yge_m_callbacks;
 979         macp->m_min_sdu = 0;
 980         macp->m_max_sdu = port->p_mtu;
 981         macp->m_instance = port->p_ppa;
 982         macp->m_margin = VLAN_TAGSZ;
 983 
 984         port->p_mreg = macp;
 985 
 986         return (DDI_SUCCESS);
 987 }
 988 
 989 static int
 990 yge_add_intr(yge_dev_t *dev, int intr_type)
 991 {
 992         dev_info_t              *dip;
 993         int                     count;
 994         int                     actual;
 995         int                     rv;
 996         int                     i, j;
 997 
 998         dip = dev->d_dip;
 999 
1000         rv = ddi_intr_get_nintrs(dip, intr_type, &count);
1001         if ((rv != DDI_SUCCESS) || (count == 0)) {
1002                 yge_error(dev, NULL,
1003                     "ddi_intr_get_nintrs failed, rv %d, count %d", rv, count);
1004                 return (DDI_FAILURE);
1005         }
1006 
1007         /*
1008          * Allocate the interrupt.  Note that we only bother with a single
1009          * interrupt.  One could argue that for MSI devices with dual ports,
1010          * it would be nice to have a separate interrupt per port.  But right
1011          * now I don't know how to configure that, so we'll just settle for
1012          * a single interrupt.
1013          */
1014         dev->d_intrcnt = 1;
1015 
1016         dev->d_intrsize = count * sizeof (ddi_intr_handle_t);
1017         dev->d_intrh = kmem_zalloc(dev->d_intrsize, KM_SLEEP);
1018         if (dev->d_intrh == NULL) {
1019                 yge_error(dev, NULL, "Unable to allocate interrupt handle");
1020                 return (DDI_FAILURE);
1021         }
1022 
1023         rv = ddi_intr_alloc(dip, dev->d_intrh, intr_type, 0, dev->d_intrcnt,
1024             &actual, DDI_INTR_ALLOC_STRICT);
1025         if ((rv != DDI_SUCCESS) || (actual == 0)) {
1026                 yge_error(dev, NULL,
1027                     "Unable to allocate interrupt, %d, count %d",
1028                     rv, actual);
1029                 kmem_free(dev->d_intrh, dev->d_intrsize);
1030                 return (DDI_FAILURE);
1031         }
1032 
1033         if ((rv = ddi_intr_get_pri(dev->d_intrh[0], &dev->d_intrpri)) !=
1034             DDI_SUCCESS) {
1035                 for (i = 0; i < dev->d_intrcnt; i++)
1036                         (void) ddi_intr_free(dev->d_intrh[i]);
1037                 yge_error(dev, NULL,
1038                     "Unable to get interrupt priority, %d", rv);
1039                 kmem_free(dev->d_intrh, dev->d_intrsize);
1040                 return (DDI_FAILURE);
1041         }
1042 
1043         if ((rv = ddi_intr_get_cap(dev->d_intrh[0], &dev->d_intrcap)) !=
1044             DDI_SUCCESS) {
1045                 yge_error(dev, NULL,
1046                     "Unable to get interrupt capabilities, %d", rv);
1047                 for (i = 0; i < dev->d_intrcnt; i++)
1048                         (void) ddi_intr_free(dev->d_intrh[i]);
1049                 kmem_free(dev->d_intrh, dev->d_intrsize);
1050                 return (DDI_FAILURE);
1051         }
1052 
1053         /* register interrupt handler to kernel */
1054         for (i = 0; i < dev->d_intrcnt; i++) {
1055                 if ((rv = ddi_intr_add_handler(dev->d_intrh[i], yge_intr,
1056                     dev, NULL)) != DDI_SUCCESS) {
1057                         yge_error(dev, NULL,
1058                             "Unable to add interrupt handler, %d", rv);
1059                         for (j = 0; j < i; j++)
1060                                 (void) ddi_intr_remove_handler(dev->d_intrh[j]);
1061                         for (i = 0; i < dev->d_intrcnt; i++)
1062                                 (void) ddi_intr_free(dev->d_intrh[i]);
1063                         kmem_free(dev->d_intrh, dev->d_intrsize);
1064                         return (DDI_FAILURE);
1065                 }
1066         }
1067 
1068         mutex_init(&dev->d_rxlock, NULL, MUTEX_DRIVER,
1069             DDI_INTR_PRI(dev->d_intrpri));
1070         mutex_init(&dev->d_txlock, NULL, MUTEX_DRIVER,
1071             DDI_INTR_PRI(dev->d_intrpri));
1072         mutex_init(&dev->d_phylock, NULL, MUTEX_DRIVER,
1073             DDI_INTR_PRI(dev->d_intrpri));
1074         mutex_init(&dev->d_task_mtx, NULL, MUTEX_DRIVER,
1075             DDI_INTR_PRI(dev->d_intrpri));
1076 
1077         return (DDI_SUCCESS);
1078 }
1079 
1080 static int
1081 yge_attach_intr(yge_dev_t *dev)
1082 {
1083         dev_info_t *dip = dev->d_dip;
1084         int intr_types;
1085         int rv;
1086 
1087         /* Allocate IRQ resources. */
1088         rv = ddi_intr_get_supported_types(dip, &intr_types);
1089         if (rv != DDI_SUCCESS) {
1090                 yge_error(dev, NULL,
1091                     "Unable to determine supported interrupt types, %d", rv);
1092                 return (DDI_FAILURE);
1093         }
1094 
1095         /*
1096          * We default to not supporting MSI.  We've found some device
1097          * and motherboard combinations don't always work well with
1098          * MSI interrupts.  Users may override this if they choose.
1099          */
1100         if (ddi_prop_get_int(DDI_DEV_T_ANY, dip, 0, "msi_enable", 0) == 0) {
1101                 /* If msi disable property present, disable both msix/msi. */
1102                 if (intr_types & DDI_INTR_TYPE_FIXED) {
1103                         intr_types &= ~(DDI_INTR_TYPE_MSI | DDI_INTR_TYPE_MSIX);
1104                 }
1105         }
1106 
1107         if (intr_types & DDI_INTR_TYPE_MSIX) {
1108                 if ((rv = yge_add_intr(dev, DDI_INTR_TYPE_MSIX)) ==
1109                     DDI_SUCCESS)
1110                         return (DDI_SUCCESS);
1111         }
1112 
1113         if (intr_types & DDI_INTR_TYPE_MSI) {
1114                 if ((rv = yge_add_intr(dev, DDI_INTR_TYPE_MSI)) ==
1115                     DDI_SUCCESS)
1116                         return (DDI_SUCCESS);
1117         }
1118 
1119         if (intr_types & DDI_INTR_TYPE_FIXED) {
1120                 if ((rv = yge_add_intr(dev, DDI_INTR_TYPE_FIXED)) ==
1121                     DDI_SUCCESS)
1122                         return (DDI_SUCCESS);
1123         }
1124 
1125         yge_error(dev, NULL, "Unable to configure any interrupts");
1126         return (DDI_FAILURE);
1127 }
1128 
1129 static void
1130 yge_intr_enable(yge_dev_t *dev)
1131 {
1132         int i;
1133         if (dev->d_intrcap & DDI_INTR_FLAG_BLOCK) {
1134                 /* Call ddi_intr_block_enable() for MSI interrupts */
1135                 (void) ddi_intr_block_enable(dev->d_intrh, dev->d_intrcnt);
1136         } else {
1137                 /* Call ddi_intr_enable for FIXED interrupts */
1138                 for (i = 0; i < dev->d_intrcnt; i++)
1139                         (void) ddi_intr_enable(dev->d_intrh[i]);
1140         }
1141 }
1142 
1143 void
1144 yge_intr_disable(yge_dev_t *dev)
1145 {
1146         int i;
1147 
1148         if (dev->d_intrcap & DDI_INTR_FLAG_BLOCK) {
1149                 (void) ddi_intr_block_disable(dev->d_intrh, dev->d_intrcnt);
1150         } else {
1151                 for (i = 0; i < dev->d_intrcnt; i++)
1152                         (void) ddi_intr_disable(dev->d_intrh[i]);
1153         }
1154 }
1155 
1156 static uint8_t
1157 yge_find_capability(yge_dev_t *dev, uint8_t cap)
1158 {
1159         uint8_t ptr;
1160         uint16_t capit;
1161         ddi_acc_handle_t pcih = dev->d_pcih;
1162 
1163         if ((pci_config_get16(pcih, PCI_CONF_STAT) & PCI_STAT_CAP) == 0) {
1164                 return (0);
1165         }
1166         /* This assumes PCI, and not CardBus. */
1167         ptr = pci_config_get8(pcih, PCI_CONF_CAP_PTR);
1168         while (ptr != 0) {
1169                 capit = pci_config_get8(pcih, ptr + PCI_CAP_ID);
1170                 if (capit == cap) {
1171                         return (ptr);
1172                 }
1173                 ptr = pci_config_get8(pcih, ptr + PCI_CAP_NEXT_PTR);
1174         }
1175         return (0);
1176 }
1177 
1178 static int
1179 yge_attach(yge_dev_t *dev)
1180 {
1181         dev_info_t      *dip = dev->d_dip;
1182         int             rv;
1183         int             nattached;
1184         uint8_t         pm_cap;
1185 
1186         if (pci_config_setup(dip, &dev->d_pcih) != DDI_SUCCESS) {
1187                 yge_error(dev, NULL, "Unable to map PCI configuration space");
1188                 goto fail;
1189         }
1190 
1191         /*
1192          * Map control/status registers.
1193          */
1194 
1195         /* ensure the pmcsr status is D0 state */
1196         pm_cap = yge_find_capability(dev, PCI_CAP_ID_PM);
1197         if (pm_cap != 0) {
1198                 uint16_t pmcsr;
1199                 pmcsr = pci_config_get16(dev->d_pcih, pm_cap + PCI_PMCSR);
1200                 pmcsr &= ~PCI_PMCSR_STATE_MASK;
1201                 pci_config_put16(dev->d_pcih, pm_cap + PCI_PMCSR,
1202                     pmcsr | PCI_PMCSR_D0);
1203         }
1204 
1205         /* Enable PCI access and bus master. */
1206         pci_config_put16(dev->d_pcih, PCI_CONF_COMM,
1207             pci_config_get16(dev->d_pcih, PCI_CONF_COMM) |
1208             PCI_COMM_IO | PCI_COMM_MAE | PCI_COMM_ME);
1209 
1210 
1211         /* Allocate I/O resource */
1212         rv = ddi_regs_map_setup(dip, 1, &dev->d_regs, 0, 0, &yge_regs_attr,
1213             &dev->d_regsh);
1214         if (rv != DDI_SUCCESS) {
1215                 yge_error(dev, NULL, "Unable to map device registers");
1216                 goto fail;
1217         }
1218 
1219 
1220         /* Enable all clocks. */
1221         CSR_WRITE_1(dev, B2_TST_CTRL1, TST_CFG_WRITE_ON);
1222         pci_config_put32(dev->d_pcih, PCI_OUR_REG_3, 0);
1223         CSR_WRITE_1(dev, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
1224 
1225         CSR_WRITE_2(dev, B0_CTST, CS_RST_CLR);
1226         dev->d_hw_id = CSR_READ_1(dev, B2_CHIP_ID);
1227         dev->d_hw_rev = (CSR_READ_1(dev, B2_MAC_CFG) >> 4) & 0x0f;
1228 
1229 
1230         /*
1231          * Bail out if chip is not recognized.  Note that we only enforce
1232          * this in production builds.  The Ultra-2 (88e8057) has a problem
1233          * right now where TX works fine, but RX seems not to.  So we've
1234          * disabled that for now.
1235          */
1236         if (dev->d_hw_id < CHIP_ID_YUKON_XL ||
1237             dev->d_hw_id >= CHIP_ID_YUKON_UL_2) {
1238                 yge_error(dev, NULL, "Unknown device: id=0x%02x, rev=0x%02x",
1239                     dev->d_hw_id, dev->d_hw_rev);
1240 #ifndef DEBUG
1241                 goto fail;
1242 #endif
1243         }
1244 
1245         /* Soft reset. */
1246         CSR_WRITE_2(dev, B0_CTST, CS_RST_SET);
1247         CSR_WRITE_2(dev, B0_CTST, CS_RST_CLR);
1248         dev->d_pmd = CSR_READ_1(dev, B2_PMD_TYP);
1249         if (dev->d_pmd == 'L' || dev->d_pmd == 'S' || dev->d_pmd == 'P')
1250                 dev->d_coppertype = 0;
1251         else
1252                 dev->d_coppertype = 1;
1253         /* Check number of MACs. */
1254         dev->d_num_port = 1;
1255         if ((CSR_READ_1(dev, B2_Y2_HW_RES) & CFG_DUAL_MAC_MSK) ==
1256             CFG_DUAL_MAC_MSK) {
1257                 if (!(CSR_READ_1(dev, B2_Y2_CLK_GATE) & Y2_STATUS_LNK2_INAC))
1258                         dev->d_num_port++;
1259         }
1260 
1261         /* Check bus type. */
1262         if (yge_find_capability(dev, PCI_CAP_ID_PCI_E) != 0) {
1263                 dev->d_bustype = PEX_BUS;
1264         } else if (yge_find_capability(dev, PCI_CAP_ID_PCIX) != 0) {
1265                 dev->d_bustype = PCIX_BUS;
1266         } else {
1267                 dev->d_bustype = PCI_BUS;
1268         }
1269 
1270         switch (dev->d_hw_id) {
1271         case CHIP_ID_YUKON_EC:
1272                 dev->d_clock = 125;  /* 125 Mhz */
1273                 break;
1274         case CHIP_ID_YUKON_UL_2:
1275                 dev->d_clock = 125;  /* 125 Mhz */
1276                 break;
1277         case CHIP_ID_YUKON_SUPR:
1278                 dev->d_clock = 125;  /* 125 Mhz */
1279                 break;
1280         case CHIP_ID_YUKON_EC_U:
1281                 dev->d_clock = 125;  /* 125 Mhz */
1282                 break;
1283         case CHIP_ID_YUKON_EX:
1284                 dev->d_clock = 125;  /* 125 Mhz */
1285                 break;
1286         case CHIP_ID_YUKON_FE:
1287                 dev->d_clock = 100;  /* 100 Mhz */
1288                 break;
1289         case CHIP_ID_YUKON_FE_P:
1290                 dev->d_clock = 50;   /* 50 Mhz */
1291                 break;
1292         case CHIP_ID_YUKON_XL:
1293                 dev->d_clock = 156;  /* 156 Mhz */
1294                 break;
1295         default:
1296                 dev->d_clock = 156;  /* 156 Mhz */
1297                 break;
1298         }
1299 
1300         dev->d_process_limit = YGE_RX_RING_CNT/2;
1301 
1302         rv = yge_alloc_ring(NULL, dev, &dev->d_status_ring, YGE_STAT_RING_CNT);
1303         if (rv != DDI_SUCCESS)
1304                 goto fail;
1305 
1306         /* Setup event taskq. */
1307         dev->d_task_q = ddi_taskq_create(dip, "tq", 1, TASKQ_DEFAULTPRI, 0);
1308         if (dev->d_task_q == NULL) {
1309                 yge_error(dev, NULL, "failed to create taskq");
1310                 goto fail;
1311         }
1312 
1313         /* Init the condition variable */
1314         cv_init(&dev->d_task_cv, NULL, CV_DRIVER, NULL);
1315 
1316         /* Allocate IRQ resources. */
1317         if ((rv = yge_attach_intr(dev)) != DDI_SUCCESS) {
1318                 goto fail;
1319         }
1320 
1321         /* Set base interrupt mask. */
1322         dev->d_intrmask = Y2_IS_HW_ERR | Y2_IS_STAT_BMU;
1323         dev->d_intrhwemask = Y2_IS_TIST_OV | Y2_IS_MST_ERR |
1324             Y2_IS_IRQ_STAT | Y2_IS_PCI_EXP | Y2_IS_PCI_NEXP;
1325 
1326         /* Reset the adapter. */
1327         yge_reset(dev);
1328 
1329         yge_setup_rambuffer(dev);
1330 
1331         nattached = 0;
1332         for (int i = 0; i < dev->d_num_port; i++) {
1333                 yge_port_t *port = dev->d_port[i];
1334                 if (yge_init_port(port) != DDI_SUCCESS) {
1335                         goto fail;
1336                 }
1337         }
1338 
1339         yge_intr_enable(dev);
1340 
1341         /* set up the periodic to run once per second */
1342         dev->d_periodic = ddi_periodic_add(yge_tick, dev, 1000000000, 0);
1343 
1344         for (int i = 0; i < dev->d_num_port; i++) {
1345                 yge_port_t *port = dev->d_port[i];
1346                 if (yge_register_port(port) == DDI_SUCCESS) {
1347                         nattached++;
1348                 }
1349         }
1350 
1351         if (nattached == 0) {
1352                 goto fail;
1353         }
1354 
1355         /* Dispatch the taskq */
1356         if (ddi_taskq_dispatch(dev->d_task_q, yge_task, dev, DDI_SLEEP) !=
1357             DDI_SUCCESS) {
1358                 yge_error(dev, NULL, "failed to start taskq");
1359                 goto fail;
1360         }
1361 
1362         ddi_report_dev(dip);
1363 
1364         return (DDI_SUCCESS);
1365 
1366 fail:
1367         yge_detach(dev);
1368         return (DDI_FAILURE);
1369 }
1370 
1371 static int
1372 yge_register_port(yge_port_t *port)
1373 {
1374         if (mac_register(port->p_mreg, &port->p_mh) != DDI_SUCCESS) {
1375                 yge_error(NULL, port, "MAC registration failed");
1376                 return (DDI_FAILURE);
1377         }
1378 
1379         return (DDI_SUCCESS);
1380 }
1381 
1382 /*
1383  * Free up port specific resources. This is called only when the
1384  * port is not registered (and hence not running).
1385  */
1386 static void
1387 yge_uninit_port(yge_port_t *port)
1388 {
1389         ASSERT(!port->p_running);
1390 
1391         if (port->p_mreg)
1392                 mac_free(port->p_mreg);
1393 
1394         if (port->p_mii)
1395                 mii_free(port->p_mii);
1396 
1397         yge_txrx_dma_free(port);
1398 
1399         if (port->p_tx_buf)
1400                 kmem_free(port->p_tx_buf,
1401                     sizeof (yge_buf_t) * YGE_TX_RING_CNT);
1402         if (port->p_rx_buf)
1403                 kmem_free(port->p_rx_buf,
1404                     sizeof (yge_buf_t) * YGE_RX_RING_CNT);
1405 }
1406 
1407 static void
1408 yge_detach(yge_dev_t *dev)
1409 {
1410         /*
1411          * Turn off the periodic.
1412          */
1413         if (dev->d_periodic)
1414                 ddi_periodic_delete(dev->d_periodic);
1415 
1416         for (int i = 0; i < dev->d_num_port; i++) {
1417                 yge_uninit_port(dev->d_port[i]);
1418         }
1419 
1420         /*
1421          * Make sure all interrupts are disabled.
1422          */
1423         CSR_WRITE_4(dev, B0_IMSK, 0);
1424         (void) CSR_READ_4(dev, B0_IMSK);
1425         CSR_WRITE_4(dev, B0_HWE_IMSK, 0);
1426         (void) CSR_READ_4(dev, B0_HWE_IMSK);
1427 
1428         /* LED Off. */
1429         CSR_WRITE_2(dev, B0_CTST, Y2_LED_STAT_OFF);
1430 
1431         /* Put hardware reset. */
1432         CSR_WRITE_2(dev, B0_CTST, CS_RST_SET);
1433 
1434         yge_free_ring(&dev->d_status_ring);
1435 
1436         if (dev->d_task_q != NULL) {
1437                 yge_dispatch(dev, YGE_TASK_EXIT);
1438                 ddi_taskq_destroy(dev->d_task_q);
1439                 dev->d_task_q = NULL;
1440         }
1441 
1442         cv_destroy(&dev->d_task_cv);
1443 
1444         yge_intr_disable(dev);
1445 
1446         if (dev->d_intrh != NULL) {
1447                 for (int i = 0; i < dev->d_intrcnt; i++) {
1448                         (void) ddi_intr_remove_handler(dev->d_intrh[i]);
1449                         (void) ddi_intr_free(dev->d_intrh[i]);
1450                 }
1451                 kmem_free(dev->d_intrh, dev->d_intrsize);
1452                 mutex_destroy(&dev->d_phylock);
1453                 mutex_destroy(&dev->d_txlock);
1454                 mutex_destroy(&dev->d_rxlock);
1455                 mutex_destroy(&dev->d_task_mtx);
1456         }
1457         if (dev->d_regsh != NULL)
1458                 ddi_regs_map_free(&dev->d_regsh);
1459 
1460         if (dev->d_pcih != NULL)
1461                 pci_config_teardown(&dev->d_pcih);
1462 }
1463 
1464 static int
1465 yge_alloc_ring(yge_port_t *port, yge_dev_t *dev, yge_ring_t *ring, uint32_t num)
1466 {
1467         dev_info_t              *dip;
1468         caddr_t                 kaddr;
1469         size_t                  len;
1470         int                     rv;
1471         ddi_dma_cookie_t        dmac;
1472         unsigned                ndmac;
1473 
1474         if (port && !dev)
1475                 dev = port->p_dev;
1476         dip = dev->d_dip;
1477 
1478         ring->r_num = num;
1479 
1480         rv = ddi_dma_alloc_handle(dip, &yge_ring_dma_attr, DDI_DMA_DONTWAIT,
1481             NULL, &ring->r_dmah);
1482         if (rv != DDI_SUCCESS) {
1483                 yge_error(dev, port, "Unable to allocate ring DMA handle");
1484                 return (DDI_FAILURE);
1485         }
1486 
1487         rv = ddi_dma_mem_alloc(ring->r_dmah, num * sizeof (yge_desc_t),
1488             &yge_ring_attr, DDI_DMA_CONSISTENT, DDI_DMA_DONTWAIT, NULL,
1489             &kaddr, &len, &ring->r_acch);
1490         if (rv != DDI_SUCCESS) {
1491                 yge_error(dev, port, "Unable to allocate ring DMA memory");
1492                 return (DDI_FAILURE);
1493         }
1494         ring->r_size = len;
1495         ring->r_kaddr = (void *)kaddr;
1496 
1497         bzero(kaddr, len);
1498 
1499         rv = ddi_dma_addr_bind_handle(ring->r_dmah, NULL, kaddr,
1500             len, DDI_DMA_RDWR | DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL,
1501             &dmac, &ndmac);
1502         if (rv != DDI_DMA_MAPPED) {
1503                 yge_error(dev, port, "Unable to bind ring DMA handle");
1504                 return (DDI_FAILURE);
1505         }
1506         ASSERT(ndmac == 1);
1507         ring->r_paddr = dmac.dmac_address;
1508 
1509         return (DDI_SUCCESS);
1510 }
1511 
1512 static void
1513 yge_free_ring(yge_ring_t *ring)
1514 {
1515         if (ring->r_paddr)
1516                 (void) ddi_dma_unbind_handle(ring->r_dmah);
1517         ring->r_paddr = 0;
1518         if (ring->r_acch)
1519                 ddi_dma_mem_free(&ring->r_acch);
1520         ring->r_kaddr = NULL;
1521         ring->r_acch = NULL;
1522         if (ring->r_dmah)
1523                 ddi_dma_free_handle(&ring->r_dmah);
1524         ring->r_dmah = NULL;
1525 }
1526 
1527 static int
1528 yge_alloc_buf(yge_port_t *port, yge_buf_t *b, size_t bufsz, int flag)
1529 {
1530         yge_dev_t       *dev = port->p_dev;
1531         size_t          l;
1532         int             sflag;
1533         int             rv;
1534         ddi_dma_cookie_t        dmac;
1535         unsigned                ndmac;
1536 
1537         sflag = flag & (DDI_DMA_STREAMING | DDI_DMA_CONSISTENT);
1538 
1539         /* Now allocate Tx buffers. */
1540         rv = ddi_dma_alloc_handle(dev->d_dip, &yge_buf_dma_attr,
1541             DDI_DMA_DONTWAIT, NULL, &b->b_dmah);
1542         if (rv != DDI_SUCCESS) {
1543                 yge_error(NULL, port, "Unable to alloc DMA handle for buffer");
1544                 return (DDI_FAILURE);
1545         }
1546 
1547         rv = ddi_dma_mem_alloc(b->b_dmah, bufsz, &yge_buf_attr,
1548             sflag, DDI_DMA_DONTWAIT, NULL, &b->b_buf, &l, &b->b_acch);
1549         if (rv != DDI_SUCCESS) {
1550                 yge_error(NULL, port, "Unable to alloc DMA memory for buffer");
1551                 return (DDI_FAILURE);
1552         }
1553 
1554         rv = ddi_dma_addr_bind_handle(b->b_dmah, NULL, b->b_buf, l, flag,
1555             DDI_DMA_DONTWAIT, NULL, &dmac, &ndmac);
1556         if (rv != DDI_DMA_MAPPED) {
1557                 yge_error(NULL, port, "Unable to bind DMA handle for buffer");
1558                 return (DDI_FAILURE);
1559         }
1560         ASSERT(ndmac == 1);
1561         b->b_paddr = dmac.dmac_address;
1562         return (DDI_SUCCESS);
1563 }
1564 
1565 static void
1566 yge_free_buf(yge_buf_t *b)
1567 {
1568         if (b->b_paddr)
1569                 (void) ddi_dma_unbind_handle(b->b_dmah);
1570         b->b_paddr = 0;
1571         if (b->b_acch)
1572                 ddi_dma_mem_free(&b->b_acch);
1573         b->b_buf = NULL;
1574         b->b_acch = NULL;
1575         if (b->b_dmah)
1576                 ddi_dma_free_handle(&b->b_dmah);
1577         b->b_dmah = NULL;
1578 }
1579 
1580 static int
1581 yge_txrx_dma_alloc(yge_port_t *port)
1582 {
1583         uint32_t                bufsz;
1584         int                     rv;
1585         int                     i;
1586         yge_buf_t               *b;
1587 
1588         /*
1589          * It seems that Yukon II supports full 64 bit DMA operations.
1590          * But we limit it to 32 bits only for now.  The 64 bit
1591          * operation would require substantially more complex
1592          * descriptor handling, since in such a case we would need two
1593          * LEs to represent a single physical address.
1594          *
1595          * If we find that this is limiting us, then we should go back
1596          * and re-examine it.
1597          */
1598 
1599         /* Note our preferred buffer size. */
1600         bufsz = port->p_mtu;
1601 
1602         /* Allocate Tx ring. */
1603         rv = yge_alloc_ring(port, NULL, &port->p_tx_ring, YGE_TX_RING_CNT);
1604         if (rv != DDI_SUCCESS) {
1605                 return (DDI_FAILURE);
1606         }
1607 
1608         /* Now allocate Tx buffers. */
1609         b = port->p_tx_buf;
1610         for (i = 0; i < YGE_TX_RING_CNT; i++) {
1611                 rv = yge_alloc_buf(port, b, bufsz,
1612                     DDI_DMA_STREAMING | DDI_DMA_WRITE);
1613                 if (rv != DDI_SUCCESS) {
1614                         return (DDI_FAILURE);
1615                 }
1616                 b++;
1617         }
1618 
1619         /* Allocate Rx ring. */
1620         rv = yge_alloc_ring(port, NULL, &port->p_rx_ring, YGE_RX_RING_CNT);
1621         if (rv != DDI_SUCCESS) {
1622                 return (DDI_FAILURE);
1623         }
1624 
1625         /* Now allocate Rx buffers. */
1626         b = port->p_rx_buf;
1627         for (i = 0; i < YGE_RX_RING_CNT; i++) {
1628                 rv =  yge_alloc_buf(port, b, bufsz,
1629                     DDI_DMA_STREAMING | DDI_DMA_READ);
1630                 if (rv != DDI_SUCCESS) {
1631                         return (DDI_FAILURE);
1632                 }
1633                 b++;
1634         }
1635 
1636         return (DDI_SUCCESS);
1637 }
1638 
1639 static void
1640 yge_txrx_dma_free(yge_port_t *port)
1641 {
1642         yge_buf_t       *b;
1643 
1644         /* Tx ring. */
1645         yge_free_ring(&port->p_tx_ring);
1646 
1647         /* Rx ring. */
1648         yge_free_ring(&port->p_rx_ring);
1649 
1650         /* Tx buffers. */
1651         b = port->p_tx_buf;
1652         for (int i = 0; i < YGE_TX_RING_CNT; i++, b++) {
1653                 yge_free_buf(b);
1654         }
1655         /* Rx buffers. */
1656         b = port->p_rx_buf;
1657         for (int i = 0; i < YGE_RX_RING_CNT; i++, b++) {
1658                 yge_free_buf(b);
1659         }
1660 }
1661 
1662 boolean_t
1663 yge_send(yge_port_t *port, mblk_t *mp)
1664 {
1665         yge_ring_t *ring = &port->p_tx_ring;
1666         yge_buf_t *txb;
1667         int16_t prod;
1668         size_t len;
1669 
1670         /*
1671          * For now we're not going to support checksum offload or LSO.
1672          */
1673 
1674         len = msgsize(mp);
1675         if (len > port->p_framesize) {
1676                 /* too big! */
1677                 freemsg(mp);
1678                 return (B_TRUE);
1679         }
1680 
1681         /* Check number of available descriptors. */
1682         if (port->p_tx_cnt + 1 >=
1683             (YGE_TX_RING_CNT - YGE_RESERVED_TX_DESC_CNT)) {
1684                 port->p_wantw = B_TRUE;
1685                 return (B_FALSE);
1686         }
1687 
1688         prod = port->p_tx_prod;
1689 
1690         txb = &port->p_tx_buf[prod];
1691         mcopymsg(mp, txb->b_buf);
1692         SYNCBUF(txb, DDI_DMA_SYNC_FORDEV);
1693 
1694         PUTADDR(ring, prod, txb->b_paddr);
1695         PUTCTRL(ring, prod, len | OP_PACKET | HW_OWNER | EOP);
1696         SYNCENTRY(ring, prod, DDI_DMA_SYNC_FORDEV);
1697         port->p_tx_cnt++;
1698 
1699         YGE_INC(prod, YGE_TX_RING_CNT);
1700 
1701         /* Update producer index. */
1702         port->p_tx_prod = prod;
1703 
1704         return (B_TRUE);
1705 }
1706 
1707 static int
1708 yge_suspend(yge_dev_t *dev)
1709 {
1710         for (int i = 0; i < dev->d_num_port; i++) {
1711                 yge_port_t *port = dev->d_port[i];
1712                 mii_suspend(port->p_mii);
1713         }
1714 
1715 
1716         DEV_LOCK(dev);
1717 
1718         for (int i = 0; i < dev->d_num_port; i++) {
1719                 yge_port_t *port = dev->d_port[i];
1720 
1721                 if (port->p_running) {
1722                         yge_stop_port(port);
1723                 }
1724         }
1725 
1726         /* Disable all interrupts. */
1727         CSR_WRITE_4(dev, B0_IMSK, 0);
1728         (void) CSR_READ_4(dev, B0_IMSK);
1729         CSR_WRITE_4(dev, B0_HWE_IMSK, 0);
1730         (void) CSR_READ_4(dev, B0_HWE_IMSK);
1731 
1732         yge_phy_power(dev, B_FALSE);
1733 
1734         /* Put hardware reset. */
1735         CSR_WRITE_2(dev, B0_CTST, CS_RST_SET);
1736         dev->d_suspended = B_TRUE;
1737 
1738         DEV_UNLOCK(dev);
1739 
1740         return (DDI_SUCCESS);
1741 }
1742 
1743 static int
1744 yge_resume(yge_dev_t *dev)
1745 {
1746         uint8_t pm_cap;
1747 
1748         DEV_LOCK(dev);
1749 
1750         /* ensure the pmcsr status is D0 state */
1751         CSR_WRITE_1(dev, B2_TST_CTRL1, TST_CFG_WRITE_ON);
1752 
1753         if ((pm_cap = yge_find_capability(dev, PCI_CAP_ID_PM)) != 0) {
1754                 uint16_t pmcsr;
1755                 pmcsr = pci_config_get16(dev->d_pcih, pm_cap + PCI_PMCSR);
1756                 pmcsr &= ~PCI_PMCSR_STATE_MASK;
1757                 pci_config_put16(dev->d_pcih, pm_cap + PCI_PMCSR,
1758                     pmcsr | PCI_PMCSR_D0);
1759         }
1760 
1761         /* Enable PCI access and bus master. */
1762         pci_config_put16(dev->d_pcih, PCI_CONF_COMM,
1763             pci_config_get16(dev->d_pcih, PCI_CONF_COMM) |
1764             PCI_COMM_IO | PCI_COMM_MAE | PCI_COMM_ME);
1765 
1766         /* Enable all clocks. */
1767         switch (dev->d_hw_id) {
1768         case CHIP_ID_YUKON_EX:
1769         case CHIP_ID_YUKON_EC_U:
1770         case CHIP_ID_YUKON_FE_P:
1771                 pci_config_put32(dev->d_pcih, PCI_OUR_REG_3, 0);
1772                 break;
1773         }
1774 
1775         CSR_WRITE_1(dev, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
1776 
1777         yge_reset(dev);
1778 
1779         /* Make sure interrupts are reenabled */
1780         CSR_WRITE_4(dev, B0_IMSK, 0);
1781         CSR_WRITE_4(dev, B0_IMSK, Y2_IS_HW_ERR | Y2_IS_STAT_BMU);
1782         CSR_WRITE_4(dev, B0_HWE_IMSK,
1783             Y2_IS_TIST_OV | Y2_IS_MST_ERR |
1784             Y2_IS_IRQ_STAT | Y2_IS_PCI_EXP | Y2_IS_PCI_NEXP);
1785 
1786         for (int i = 0; i < dev->d_num_port; i++) {
1787                 yge_port_t *port = dev->d_port[i];
1788 
1789                 if (port != NULL && port->p_running) {
1790                         yge_start_port(port);
1791                 }
1792         }
1793         dev->d_suspended = B_FALSE;
1794 
1795         DEV_UNLOCK(dev);
1796 
1797         /* Reset MII layer */
1798         for (int i = 0; i < dev->d_num_port; i++) {
1799                 yge_port_t *port = dev->d_port[i];
1800 
1801                 if (port->p_running) {
1802                         mii_resume(port->p_mii);
1803                         mac_tx_update(port->p_mh);
1804                 }
1805         }
1806 
1807         return (DDI_SUCCESS);
1808 }
1809 
1810 static mblk_t *
1811 yge_rxeof(yge_port_t *port, uint32_t status, int len)
1812 {
1813         yge_dev_t *dev = port->p_dev;
1814         mblk_t  *mp;
1815         int cons, rxlen;
1816         yge_buf_t *rxb;
1817         yge_ring_t *ring;
1818 
1819         ASSERT(mutex_owned(&dev->d_rxlock));
1820 
1821         if (!port->p_running)
1822                 return (NULL);
1823 
1824         ring = &port->p_rx_ring;
1825         cons = port->p_rx_cons;
1826         rxlen = status >> 16;
1827         rxb = &port->p_rx_buf[cons];
1828         mp = NULL;
1829 
1830 
1831         if ((dev->d_hw_id == CHIP_ID_YUKON_FE_P) &&
1832             (dev->d_hw_rev == CHIP_REV_YU_FE2_A0)) {
1833                 /*
1834                  * Apparently the status for this chip is not reliable.
1835                  * Only perform minimal consistency checking; the MAC
1836                  * and upper protocols will have to filter any garbage.
1837                  */
1838                 if ((len > port->p_framesize) || (rxlen != len)) {
1839                         goto bad;
1840                 }
1841         } else {
1842                 if ((len > port->p_framesize) || (rxlen != len) ||
1843                     ((status & GMR_FS_ANY_ERR) != 0) ||
1844                     ((status & GMR_FS_RX_OK) == 0)) {
1845                         goto bad;
1846                 }
1847         }
1848 
1849         if ((mp = allocb(len + YGE_HEADROOM, BPRI_HI)) != NULL) {
1850 
1851                 /* good packet - yay */
1852                 mp->b_rptr += YGE_HEADROOM;
1853                 SYNCBUF(rxb, DDI_DMA_SYNC_FORKERNEL);
1854                 bcopy(rxb->b_buf, mp->b_rptr, len);
1855                 mp->b_wptr = mp->b_rptr + len;
1856         } else {
1857                 port->p_stats.rx_nobuf++;
1858         }
1859 
1860 bad:
1861 
1862         PUTCTRL(ring, cons, port->p_framesize | OP_PACKET | HW_OWNER);
1863         SYNCENTRY(ring, cons, DDI_DMA_SYNC_FORDEV);
1864 
1865         CSR_WRITE_2(dev,
1866             Y2_PREF_Q_ADDR(port->p_rxq, PREF_UNIT_PUT_IDX_REG),
1867             cons);
1868 
1869         YGE_INC(port->p_rx_cons, YGE_RX_RING_CNT);
1870 
1871         return (mp);
1872 }
1873 
1874 static boolean_t
1875 yge_txeof_locked(yge_port_t *port, int idx)
1876 {
1877         int prog;
1878         int16_t cons;
1879         boolean_t resched;
1880 
1881         if (!port->p_running) {
1882                 return (B_FALSE);
1883         }
1884 
1885         cons = port->p_tx_cons;
1886         prog = 0;
1887         for (; cons != idx; YGE_INC(cons, YGE_TX_RING_CNT)) {
1888                 if (port->p_tx_cnt <= 0)
1889                         break;
1890                 prog++;
1891                 port->p_tx_cnt--;
1892                 /* No need to sync LEs as we didn't update LEs. */
1893         }
1894 
1895         port->p_tx_cons = cons;
1896 
1897         if (prog > 0) {
1898                 resched = port->p_wantw;
1899                 port->p_tx_wdog = 0;
1900                 port->p_wantw = B_FALSE;
1901                 return (resched);
1902         } else {
1903                 return (B_FALSE);
1904         }
1905 }
1906 
1907 static void
1908 yge_txeof(yge_port_t *port, int idx)
1909 {
1910         boolean_t resched;
1911 
1912         TX_LOCK(port->p_dev);
1913 
1914         resched = yge_txeof_locked(port, idx);
1915 
1916         TX_UNLOCK(port->p_dev);
1917 
1918         if (resched && port->p_running) {
1919                 mac_tx_update(port->p_mh);
1920         }
1921 }
1922 
1923 static void
1924 yge_restart_task(yge_dev_t *dev)
1925 {
1926         yge_port_t *port;
1927 
1928         DEV_LOCK(dev);
1929 
1930         /* Cancel pending I/O and free all Rx/Tx buffers. */
1931         for (int i = 0; i < dev->d_num_port; i++) {
1932                 port = dev->d_port[i];
1933                 if (port->p_running)
1934                         yge_stop_port(dev->d_port[i]);
1935         }
1936         yge_reset(dev);
1937         for (int i = 0; i < dev->d_num_port; i++) {
1938                 port = dev->d_port[i];
1939 
1940                 if (port->p_running)
1941                         yge_start_port(port);
1942         }
1943 
1944         DEV_UNLOCK(dev);
1945 
1946         for (int i = 0; i < dev->d_num_port; i++) {
1947                 port = dev->d_port[i];
1948 
1949                 mii_reset(port->p_mii);
1950                 if (port->p_running)
1951                         mac_tx_update(port->p_mh);
1952         }
1953 }
1954 
1955 static void
1956 yge_tick(void *arg)
1957 {
1958         yge_dev_t *dev = arg;
1959         yge_port_t *port;
1960         boolean_t restart = B_FALSE;
1961         boolean_t resched = B_FALSE;
1962         int idx;
1963 
1964         DEV_LOCK(dev);
1965 
1966         if (dev->d_suspended) {
1967                 DEV_UNLOCK(dev);
1968                 return;
1969         }
1970 
1971         for (int i = 0; i < dev->d_num_port; i++) {
1972                 port = dev->d_port[i];
1973 
1974                 if (!port->p_running)
1975                         continue;
1976 
1977                 if (port->p_tx_cnt) {
1978                         uint32_t ridx;
1979 
1980                         /*
1981                          * Reclaim first as there is a possibility of losing
1982                          * Tx completion interrupts.
1983                          */
1984                         ridx = port->p_port == YGE_PORT_A ?
1985                             STAT_TXA1_RIDX : STAT_TXA2_RIDX;
1986                         idx = CSR_READ_2(dev, ridx);
1987                         if (port->p_tx_cons != idx) {
1988                                 resched = yge_txeof_locked(port, idx);
1989 
1990                         } else {
1991 
1992                                 /* detect TX hang */
1993                                 port->p_tx_wdog++;
1994                                 if (port->p_tx_wdog > YGE_TX_TIMEOUT) {
1995                                         port->p_tx_wdog = 0;
1996                                         yge_error(NULL, port,
1997                                             "TX hang detected!");
1998                                         restart = B_TRUE;
1999                                 }
2000                         }
2001                 }
2002         }
2003 
2004         DEV_UNLOCK(dev);
2005         if (restart) {
2006                 yge_dispatch(dev, YGE_TASK_RESTART);
2007         } else {
2008                 if (resched) {
2009                         for (int i = 0; i < dev->d_num_port; i++) {
2010                                 port = dev->d_port[i];
2011 
2012                                 if (port->p_running)
2013                                         mac_tx_update(port->p_mh);
2014                         }
2015                 }
2016         }
2017 }
2018 
2019 static int
2020 yge_intr_gmac(yge_port_t *port)
2021 {
2022         yge_dev_t *dev = port->p_dev;
2023         int pnum = port->p_port;
2024         uint8_t status;
2025         int dispatch_wrk = 0;
2026 
2027         status = CSR_READ_1(dev, MR_ADDR(pnum, GMAC_IRQ_SRC));
2028 
2029         /* GMAC Rx FIFO overrun. */
2030         if ((status & GM_IS_RX_FF_OR) != 0) {
2031                 CSR_WRITE_4(dev, MR_ADDR(pnum, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
2032                 yge_error(NULL, port, "Rx FIFO overrun!");
2033                 dispatch_wrk |= YGE_TASK_RESTART;
2034         }
2035         /* GMAC Tx FIFO underrun. */
2036         if ((status & GM_IS_TX_FF_UR) != 0) {
2037                 CSR_WRITE_4(dev, MR_ADDR(pnum, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
2038                 yge_error(NULL, port, "Tx FIFO underrun!");
2039                 /*
2040                  * In case of Tx underrun, we may need to flush/reset
2041                  * Tx MAC but that would also require
2042                  * resynchronization with status LEs. Reinitializing
2043                  * status LEs would affect the other port in dual MAC
2044                  * configuration so it should be avoided if we can.
2045                  * Due to lack of documentation it's all vague guess
2046                  * but it needs more investigation.
2047                  */
2048         }
2049         return (dispatch_wrk);
2050 }
2051 
2052 static void
2053 yge_handle_hwerr(yge_port_t *port, uint32_t status)
2054 {
2055         yge_dev_t       *dev = port->p_dev;
2056 
2057         if ((status & Y2_IS_PAR_RD1) != 0) {
2058                 yge_error(NULL, port, "RAM buffer read parity error");
2059                 /* Clear IRQ. */
2060                 CSR_WRITE_2(dev, SELECT_RAM_BUFFER(port->p_port, B3_RI_CTRL),
2061                     RI_CLR_RD_PERR);
2062         }
2063         if ((status & Y2_IS_PAR_WR1) != 0) {
2064                 yge_error(NULL, port, "RAM buffer write parity error");
2065                 /* Clear IRQ. */
2066                 CSR_WRITE_2(dev, SELECT_RAM_BUFFER(port->p_port, B3_RI_CTRL),
2067                     RI_CLR_WR_PERR);
2068         }
2069         if ((status & Y2_IS_PAR_MAC1) != 0) {
2070                 yge_error(NULL, port, "Tx MAC parity error");
2071                 /* Clear IRQ. */
2072                 CSR_WRITE_4(dev, MR_ADDR(port->p_port, TX_GMF_CTRL_T),
2073                     GMF_CLI_TX_PE);
2074         }
2075         if ((status & Y2_IS_PAR_RX1) != 0) {
2076                 yge_error(NULL, port, "Rx parity error");
2077                 /* Clear IRQ. */
2078                 CSR_WRITE_4(dev, Q_ADDR(port->p_rxq, Q_CSR), BMU_CLR_IRQ_PAR);
2079         }
2080         if ((status & (Y2_IS_TCP_TXS1 | Y2_IS_TCP_TXA1)) != 0) {
2081                 yge_error(NULL, port, "TCP segmentation error");
2082                 /* Clear IRQ. */
2083                 CSR_WRITE_4(dev, Q_ADDR(port->p_txq, Q_CSR), BMU_CLR_IRQ_TCP);
2084         }
2085 }
2086 
2087 static void
2088 yge_intr_hwerr(yge_dev_t *dev)
2089 {
2090         uint32_t status;
2091         uint32_t tlphead[4];
2092 
2093         status = CSR_READ_4(dev, B0_HWE_ISRC);
2094         /* Time Stamp timer overflow. */
2095         if ((status & Y2_IS_TIST_OV) != 0)
2096                 CSR_WRITE_1(dev, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
2097         if ((status & Y2_IS_PCI_NEXP) != 0) {
2098                 /*
2099                  * PCI Express Error occurred which is not described in PEX
2100                  * spec.
2101                  * This error is also mapped either to Master Abort(
2102                  * Y2_IS_MST_ERR) or Target Abort (Y2_IS_IRQ_STAT) bit and
2103                  * can only be cleared there.
2104                  */
2105                 yge_error(dev, NULL, "PCI Express protocol violation error");
2106         }
2107 
2108         if ((status & (Y2_IS_MST_ERR | Y2_IS_IRQ_STAT)) != 0) {
2109                 uint16_t v16;
2110 
2111                 if ((status & Y2_IS_IRQ_STAT) != 0)
2112                         yge_error(dev, NULL, "Unexpected IRQ Status error");
2113                 if ((status & Y2_IS_MST_ERR) != 0)
2114                         yge_error(dev, NULL, "Unexpected IRQ Master error");
2115                 /* Reset all bits in the PCI status register. */
2116                 v16 = pci_config_get16(dev->d_pcih, PCI_CONF_STAT);
2117                 CSR_WRITE_1(dev, B2_TST_CTRL1, TST_CFG_WRITE_ON);
2118                 pci_config_put16(dev->d_pcih, PCI_CONF_STAT, v16 |
2119                     PCI_STAT_S_PERROR | PCI_STAT_S_SYSERR | PCI_STAT_R_MAST_AB |
2120                     PCI_STAT_R_TARG_AB | PCI_STAT_PERROR);
2121                 CSR_WRITE_1(dev, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
2122         }
2123 
2124         /* Check for PCI Express Uncorrectable Error. */
2125         if ((status & Y2_IS_PCI_EXP) != 0) {
2126                 uint32_t v32;
2127 
2128                 /*
2129                  * On PCI Express bus bridges are called root complexes (RC).
2130                  * PCI Express errors are recognized by the root complex too,
2131                  * which requests the system to handle the problem. After
2132                  * error occurrence it may be that no access to the adapter
2133                  * may be performed any longer.
2134                  */
2135 
2136                 v32 = CSR_PCI_READ_4(dev, PEX_UNC_ERR_STAT);
2137                 if ((v32 & PEX_UNSUP_REQ) != 0) {
2138                         /* Ignore unsupported request error. */
2139                         yge_error(dev, NULL,
2140                             "Uncorrectable PCI Express error");
2141                 }
2142                 if ((v32 & (PEX_FATAL_ERRORS | PEX_POIS_TLP)) != 0) {
2143                         int i;
2144 
2145                         /* Get TLP header form Log Registers. */
2146                         for (i = 0; i < 4; i++)
2147                                 tlphead[i] = CSR_PCI_READ_4(dev,
2148                                     PEX_HEADER_LOG + i * 4);
2149                         /* Check for vendor defined broadcast message. */
2150                         if (!(tlphead[0] == 0x73004001 && tlphead[1] == 0x7f)) {
2151                                 dev->d_intrhwemask &= ~Y2_IS_PCI_EXP;
2152                                 CSR_WRITE_4(dev, B0_HWE_IMSK,
2153                                     dev->d_intrhwemask);
2154                                 (void) CSR_READ_4(dev, B0_HWE_IMSK);
2155                         }
2156                 }
2157                 /* Clear the interrupt. */
2158                 CSR_WRITE_1(dev, B2_TST_CTRL1, TST_CFG_WRITE_ON);
2159                 CSR_PCI_WRITE_4(dev, PEX_UNC_ERR_STAT, 0xffffffff);
2160                 CSR_WRITE_1(dev, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
2161         }
2162 
2163         if ((status & Y2_HWE_L1_MASK) != 0 && dev->d_port[YGE_PORT_A] != NULL)
2164                 yge_handle_hwerr(dev->d_port[YGE_PORT_A], status);
2165         if ((status & Y2_HWE_L2_MASK) != 0 && dev->d_port[YGE_PORT_B] != NULL)
2166                 yge_handle_hwerr(dev->d_port[YGE_PORT_B], status >> 8);
2167 }
2168 
2169 /*
2170  * Returns B_TRUE if there is potentially more work to do.
2171  */
2172 static boolean_t
2173 yge_handle_events(yge_dev_t *dev, mblk_t **heads, mblk_t **tails, int *txindex)
2174 {
2175         yge_port_t *port;
2176         yge_ring_t *ring;
2177         uint32_t control, status;
2178         int cons, idx, len, pnum;
2179         mblk_t *mp;
2180         uint32_t rxprogs[2];
2181 
2182         rxprogs[0] = rxprogs[1] = 0;
2183 
2184         idx = CSR_READ_2(dev, STAT_PUT_IDX);
2185         if (idx == dev->d_stat_cons) {
2186                 return (B_FALSE);
2187         }
2188 
2189         ring = &dev->d_status_ring;
2190 
2191         for (cons = dev->d_stat_cons; cons != idx; ) {
2192                 /* Sync status LE. */
2193                 SYNCENTRY(ring, cons, DDI_DMA_SYNC_FORKERNEL);
2194                 control = GETCTRL(ring, cons);
2195                 if ((control & HW_OWNER) == 0) {
2196                         yge_error(dev, NULL, "Status descriptor error: "
2197                             "index %d, control %x", cons, control);
2198                         break;
2199                 }
2200 
2201                 status = GETSTAT(ring, cons);
2202 
2203                 control &= ~HW_OWNER;
2204                 len = control & STLE_LEN_MASK;
2205                 pnum = ((control >> 16) & 0x01);
2206                 port = dev->d_port[pnum];
2207                 if (port == NULL) {
2208                         yge_error(dev, NULL, "Invalid port opcode: 0x%08x",
2209                             control & STLE_OP_MASK);
2210                         goto finish;
2211                 }
2212 
2213                 switch (control & STLE_OP_MASK) {
2214                 case OP_RXSTAT:
2215                         mp = yge_rxeof(port, status, len);
2216                         if (mp != NULL) {
2217                                 if (heads[pnum] == NULL)
2218                                         heads[pnum] = mp;
2219                                 else
2220                                         tails[pnum]->b_next = mp;
2221                                 tails[pnum] = mp;
2222                         }
2223 
2224                         rxprogs[pnum]++;
2225                         break;
2226 
2227                 case OP_TXINDEXLE:
2228                         txindex[0] = status & STLE_TXA1_MSKL;
2229                         txindex[1] =
2230                             ((status & STLE_TXA2_MSKL) >> STLE_TXA2_SHIFTL) |
2231                             ((len & STLE_TXA2_MSKH) << STLE_TXA2_SHIFTH);
2232                         break;
2233                 default:
2234                         yge_error(dev, NULL, "Unhandled opcode: 0x%08x",
2235                             control & STLE_OP_MASK);
2236                         break;
2237                 }
2238 finish:
2239 
2240                 /* Give it back to HW. */
2241                 PUTCTRL(ring, cons, control);
2242                 SYNCENTRY(ring, cons, DDI_DMA_SYNC_FORDEV);
2243 
2244                 YGE_INC(cons, YGE_STAT_RING_CNT);
2245                 if (rxprogs[pnum] > dev->d_process_limit) {
2246                         break;
2247                 }
2248         }
2249 
2250         dev->d_stat_cons = cons;
2251         if (dev->d_stat_cons != CSR_READ_2(dev, STAT_PUT_IDX))
2252                 return (B_TRUE);
2253         else
2254                 return (B_FALSE);
2255 }
2256 
2257 /*ARGSUSED1*/
2258 static uint_t
2259 yge_intr(caddr_t arg1, caddr_t arg2)
2260 {
2261         yge_dev_t       *dev;
2262         yge_port_t      *port1;
2263         yge_port_t      *port2;
2264         uint32_t        status;
2265         mblk_t          *heads[2], *tails[2];
2266         int             txindex[2];
2267         int             dispatch_wrk;
2268 
2269         dev = (void *)arg1;
2270 
2271         heads[0] = heads[1] = NULL;
2272         tails[0] = tails[1] = NULL;
2273         txindex[0] = txindex[1] = -1;
2274         dispatch_wrk = 0;
2275 
2276         port1 = dev->d_port[YGE_PORT_A];
2277         port2 = dev->d_port[YGE_PORT_B];
2278 
2279         RX_LOCK(dev);
2280 
2281         if (dev->d_suspended) {
2282                 RX_UNLOCK(dev);
2283                 return (DDI_INTR_UNCLAIMED);
2284         }
2285 
2286         /* Get interrupt source. */
2287         status = CSR_READ_4(dev, B0_Y2_SP_ISRC2);
2288         if (status == 0 || status == 0xffffffff ||
2289             (status & dev->d_intrmask) == 0) { /* Stray interrupt ? */
2290                 /* Reenable interrupts. */
2291                 CSR_WRITE_4(dev, B0_Y2_SP_ICR, 2);
2292                 RX_UNLOCK(dev);
2293                 return (DDI_INTR_UNCLAIMED);
2294         }
2295 
2296         if ((status & Y2_IS_HW_ERR) != 0) {
2297                 yge_intr_hwerr(dev);
2298         }
2299 
2300         if (status & Y2_IS_IRQ_MAC1) {
2301                 dispatch_wrk |= yge_intr_gmac(port1);
2302         }
2303         if (status & Y2_IS_IRQ_MAC2) {
2304                 dispatch_wrk |= yge_intr_gmac(port2);
2305         }
2306 
2307         if ((status & (Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2)) != 0) {
2308                 yge_error(NULL, status & Y2_IS_CHK_RX1 ? port1 : port2,
2309                     "Rx descriptor error");
2310                 dev->d_intrmask &= ~(Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2);
2311                 CSR_WRITE_4(dev, B0_IMSK, dev->d_intrmask);
2312                 (void) CSR_READ_4(dev, B0_IMSK);
2313         }
2314         if ((status & (Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2)) != 0) {
2315                 yge_error(NULL, status & Y2_IS_CHK_TXA1 ? port1 : port2,
2316                     "Tx descriptor error");
2317                 dev->d_intrmask &= ~(Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2);
2318                 CSR_WRITE_4(dev, B0_IMSK, dev->d_intrmask);
2319                 (void) CSR_READ_4(dev, B0_IMSK);
2320         }
2321 
2322         /* handle events until it returns false */
2323         while (yge_handle_events(dev, heads, tails, txindex))
2324                 /* NOP */;
2325 
2326         /* Do receive/transmit events */
2327         if ((status & Y2_IS_STAT_BMU)) {
2328                 CSR_WRITE_4(dev, STAT_CTRL, SC_STAT_CLR_IRQ);
2329         }
2330 
2331         /* Reenable interrupts. */
2332         CSR_WRITE_4(dev, B0_Y2_SP_ICR, 2);
2333 
2334         RX_UNLOCK(dev);
2335 
2336         if (dispatch_wrk) {
2337                 yge_dispatch(dev, dispatch_wrk);
2338         }
2339 
2340         if (port1->p_running) {
2341                 if (txindex[0] >= 0) {
2342                         yge_txeof(port1, txindex[0]);
2343                 }
2344                 if (heads[0])
2345                         mac_rx(port1->p_mh, NULL, heads[0]);
2346         } else {
2347                 if (heads[0]) {
2348                         mblk_t *mp;
2349                         while ((mp = heads[0]) != NULL) {
2350                                 heads[0] = mp->b_next;
2351                                 freemsg(mp);
2352                         }
2353                 }
2354         }
2355 
2356         if (port2->p_running) {
2357                 if (txindex[1] >= 0) {
2358                         yge_txeof(port2, txindex[1]);
2359                 }
2360                 if (heads[1])
2361                         mac_rx(port2->p_mh, NULL, heads[1]);
2362         } else {
2363                 if (heads[1]) {
2364                         mblk_t *mp;
2365                         while ((mp = heads[1]) != NULL) {
2366                                 heads[1] = mp->b_next;
2367                                 freemsg(mp);
2368                         }
2369                 }
2370         }
2371 
2372         return (DDI_INTR_CLAIMED);
2373 }
2374 
2375 static void
2376 yge_set_tx_stfwd(yge_port_t *port)
2377 {
2378         yge_dev_t *dev = port->p_dev;
2379         int pnum = port->p_port;
2380 
2381         switch (dev->d_hw_id) {
2382         case CHIP_ID_YUKON_EX:
2383                 if (dev->d_hw_rev == CHIP_REV_YU_EX_A0)
2384                         goto yukon_ex_workaround;
2385 
2386                 if (port->p_mtu > ETHERMTU)
2387                         CSR_WRITE_4(dev, MR_ADDR(pnum, TX_GMF_CTRL_T),
2388                             TX_JUMBO_ENA | TX_STFW_ENA);
2389                 else
2390                         CSR_WRITE_4(dev, MR_ADDR(pnum, TX_GMF_CTRL_T),
2391                             TX_JUMBO_DIS | TX_STFW_ENA);
2392                 break;
2393         default:
2394 yukon_ex_workaround:
2395                 if (port->p_mtu > ETHERMTU) {
2396                         /* Set Tx GMAC FIFO Almost Empty Threshold. */
2397                         CSR_WRITE_4(dev, MR_ADDR(pnum, TX_GMF_AE_THR),
2398                             MSK_ECU_JUMBO_WM << 16 | MSK_ECU_AE_THR);
2399                         /* Disable Store & Forward mode for Tx. */
2400                         CSR_WRITE_4(dev, MR_ADDR(pnum, TX_GMF_CTRL_T),
2401                             TX_JUMBO_ENA | TX_STFW_DIS);
2402                 } else {
2403                         /* Enable Store & Forward mode for Tx. */
2404                         CSR_WRITE_4(dev, MR_ADDR(pnum, TX_GMF_CTRL_T),
2405                             TX_JUMBO_DIS | TX_STFW_ENA);
2406                 }
2407                 break;
2408         }
2409 }
2410 
2411 static void
2412 yge_start_port(yge_port_t *port)
2413 {
2414         yge_dev_t *dev = port->p_dev;
2415         uint16_t gmac;
2416         int32_t pnum;
2417         int32_t rxq;
2418         int32_t txq;
2419         uint32_t reg;
2420 
2421         pnum = port->p_port;
2422         txq = port->p_txq;
2423         rxq = port->p_rxq;
2424 
2425         if (port->p_mtu < ETHERMTU)
2426                 port->p_framesize = ETHERMTU;
2427         else
2428                 port->p_framesize = port->p_mtu;
2429         port->p_framesize += sizeof (struct ether_vlan_header);
2430 
2431         /*
2432          * Note for the future, if we enable offloads:
2433          * In Yukon EC Ultra, TSO & checksum offload is not
2434          * supported for jumbo frame.
2435          */
2436 
2437         /* GMAC Control reset */
2438         CSR_WRITE_4(dev, MR_ADDR(pnum, GMAC_CTRL), GMC_RST_SET);
2439         CSR_WRITE_4(dev, MR_ADDR(pnum, GMAC_CTRL), GMC_RST_CLR);
2440         CSR_WRITE_4(dev, MR_ADDR(pnum, GMAC_CTRL), GMC_F_LOOPB_OFF);
2441         if (dev->d_hw_id == CHIP_ID_YUKON_EX)
2442                 CSR_WRITE_4(dev, MR_ADDR(pnum, GMAC_CTRL),
2443                     GMC_BYP_MACSECRX_ON | GMC_BYP_MACSECTX_ON |
2444                     GMC_BYP_RETR_ON);
2445         /*
2446          * Initialize GMAC first such that speed/duplex/flow-control
2447          * parameters are renegotiated with the interface is brought up.
2448          */
2449         GMAC_WRITE_2(dev, pnum, GM_GP_CTRL, 0);
2450 
2451         /* Dummy read the Interrupt Source Register. */
2452         (void) CSR_READ_1(dev, MR_ADDR(pnum, GMAC_IRQ_SRC));
2453 
2454         /* Clear MIB stats. */
2455         yge_stats_clear(port);
2456 
2457         /* Disable FCS. */
2458         GMAC_WRITE_2(dev, pnum, GM_RX_CTRL, GM_RXCR_CRC_DIS);
2459 
2460         /* Setup Transmit Control Register. */
2461         GMAC_WRITE_2(dev, pnum, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
2462 
2463         /* Setup Transmit Flow Control Register. */
2464         GMAC_WRITE_2(dev, pnum, GM_TX_FLOW_CTRL, 0xffff);
2465 
2466         /* Setup Transmit Parameter Register. */
2467         GMAC_WRITE_2(dev, pnum, GM_TX_PARAM,
2468             TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) | TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
2469             TX_IPG_JAM_DATA(TX_IPG_JAM_DEF) | TX_BACK_OFF_LIM(TX_BOF_LIM_DEF));
2470 
2471         gmac = DATA_BLIND_VAL(DATA_BLIND_DEF) |
2472             GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
2473 
2474         if (port->p_mtu > ETHERMTU)
2475                 gmac |= GM_SMOD_JUMBO_ENA;
2476         GMAC_WRITE_2(dev, pnum, GM_SERIAL_MODE, gmac);
2477 
2478         /* Disable interrupts for counter overflows. */
2479         GMAC_WRITE_2(dev, pnum, GM_TX_IRQ_MSK, 0);
2480         GMAC_WRITE_2(dev, pnum, GM_RX_IRQ_MSK, 0);
2481         GMAC_WRITE_2(dev, pnum, GM_TR_IRQ_MSK, 0);
2482 
2483         /* Configure Rx MAC FIFO. */
2484         CSR_WRITE_4(dev, MR_ADDR(pnum, RX_GMF_CTRL_T), GMF_RST_SET);
2485         CSR_WRITE_4(dev, MR_ADDR(pnum, RX_GMF_CTRL_T), GMF_RST_CLR);
2486         reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
2487         if (dev->d_hw_id == CHIP_ID_YUKON_FE_P ||
2488             dev->d_hw_id == CHIP_ID_YUKON_EX)
2489                 reg |= GMF_RX_OVER_ON;
2490         CSR_WRITE_4(dev, MR_ADDR(pnum, RX_GMF_CTRL_T), reg);
2491 
2492         /* Set receive filter. */
2493         yge_setrxfilt(port);
2494 
2495         /* Flush Rx MAC FIFO on any flow control or error. */
2496         CSR_WRITE_4(dev, MR_ADDR(pnum, RX_GMF_FL_MSK), GMR_FS_ANY_ERR);
2497 
2498         /*
2499          * Set Rx FIFO flush threshold to 64 bytes + 1 FIFO word
2500          * due to hardware hang on receipt of pause frames.
2501          */
2502         reg = RX_GMF_FL_THR_DEF + 1;
2503         /* FE+ magic */
2504         if ((dev->d_hw_id == CHIP_ID_YUKON_FE_P) &&
2505             (dev->d_hw_rev == CHIP_REV_YU_FE2_A0))
2506                 reg = 0x178;
2507 
2508         CSR_WRITE_4(dev, MR_ADDR(pnum, RX_GMF_FL_THR), reg);
2509 
2510         /* Configure Tx MAC FIFO. */
2511         CSR_WRITE_4(dev, MR_ADDR(pnum, TX_GMF_CTRL_T), GMF_RST_SET);
2512         CSR_WRITE_4(dev, MR_ADDR(pnum, TX_GMF_CTRL_T), GMF_RST_CLR);
2513         CSR_WRITE_4(dev, MR_ADDR(pnum, TX_GMF_CTRL_T), GMF_OPER_ON);
2514 
2515         /* Disable hardware VLAN tag insertion/stripping. */
2516         CSR_WRITE_4(dev, MR_ADDR(pnum, RX_GMF_CTRL_T), RX_VLAN_STRIP_OFF);
2517         CSR_WRITE_4(dev, MR_ADDR(pnum, TX_GMF_CTRL_T), TX_VLAN_TAG_OFF);
2518 
2519         if ((port->p_flags & PORT_FLAG_RAMBUF) == 0) {
2520                 /* Set Rx Pause threshold. */
2521                 if ((dev->d_hw_id == CHIP_ID_YUKON_FE_P) &&
2522                     (dev->d_hw_rev == CHIP_REV_YU_FE2_A0)) {
2523                         CSR_WRITE_1(dev, MR_ADDR(pnum, RX_GMF_LP_THR),
2524                             MSK_ECU_LLPP);
2525                         CSR_WRITE_1(dev, MR_ADDR(pnum, RX_GMF_UP_THR),
2526                             MSK_FEP_ULPP);
2527                 } else {
2528                         CSR_WRITE_1(dev, MR_ADDR(pnum, RX_GMF_LP_THR),
2529                             MSK_ECU_LLPP);
2530                         CSR_WRITE_1(dev, MR_ADDR(pnum, RX_GMF_UP_THR),
2531                             MSK_ECU_ULPP);
2532                 }
2533                 /* Configure store-and-forward for TX */
2534                 yge_set_tx_stfwd(port);
2535         }
2536 
2537         if ((dev->d_hw_id == CHIP_ID_YUKON_FE_P) &&
2538             (dev->d_hw_rev == CHIP_REV_YU_FE2_A0)) {
2539                 /* Disable dynamic watermark */
2540                 reg = CSR_READ_4(dev, MR_ADDR(pnum, TX_GMF_EA));
2541                 reg &= ~TX_DYN_WM_ENA;
2542                 CSR_WRITE_4(dev, MR_ADDR(pnum, TX_GMF_EA), reg);
2543         }
2544 
2545         /*
2546          * Disable Force Sync bit and Alloc bit in Tx RAM interface
2547          * arbiter as we don't use Sync Tx queue.
2548          */
2549         CSR_WRITE_1(dev, MR_ADDR(pnum, TXA_CTRL),
2550             TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
2551         /* Enable the RAM Interface Arbiter. */
2552         CSR_WRITE_1(dev, MR_ADDR(pnum, TXA_CTRL), TXA_ENA_ARB);
2553 
2554         /* Setup RAM buffer. */
2555         yge_set_rambuffer(port);
2556 
2557         /* Disable Tx sync Queue. */
2558         CSR_WRITE_1(dev, RB_ADDR(port->p_txsq, RB_CTRL), RB_RST_SET);
2559 
2560         /* Setup Tx Queue Bus Memory Interface. */
2561         CSR_WRITE_4(dev, Q_ADDR(txq, Q_CSR), BMU_CLR_RESET);
2562         CSR_WRITE_4(dev, Q_ADDR(txq, Q_CSR), BMU_OPER_INIT);
2563         CSR_WRITE_4(dev, Q_ADDR(txq, Q_CSR), BMU_FIFO_OP_ON);
2564         CSR_WRITE_2(dev, Q_ADDR(txq, Q_WM), MSK_BMU_TX_WM);
2565 
2566         switch (dev->d_hw_id) {
2567         case CHIP_ID_YUKON_EC_U:
2568                 if (dev->d_hw_rev == CHIP_REV_YU_EC_U_A0) {
2569                         /* Fix for Yukon-EC Ultra: set BMU FIFO level */
2570                         CSR_WRITE_2(dev, Q_ADDR(txq, Q_AL), MSK_ECU_TXFF_LEV);
2571                 }
2572                 break;
2573         case CHIP_ID_YUKON_EX:
2574                 /*
2575                  * Yukon Extreme seems to have silicon bug for
2576                  * automatic Tx checksum calculation capability.
2577                  */
2578                 if (dev->d_hw_rev == CHIP_REV_YU_EX_B0)
2579                         CSR_WRITE_4(dev, Q_ADDR(txq, Q_F), F_TX_CHK_AUTO_OFF);
2580                 break;
2581         }
2582 
2583         /* Setup Rx Queue Bus Memory Interface. */
2584         CSR_WRITE_4(dev, Q_ADDR(rxq, Q_CSR), BMU_CLR_RESET);
2585         CSR_WRITE_4(dev, Q_ADDR(rxq, Q_CSR), BMU_OPER_INIT);
2586         CSR_WRITE_4(dev, Q_ADDR(rxq, Q_CSR), BMU_FIFO_OP_ON);
2587         if (dev->d_bustype == PEX_BUS) {
2588                 CSR_WRITE_2(dev, Q_ADDR(rxq, Q_WM), 0x80);
2589         } else {
2590                 CSR_WRITE_2(dev, Q_ADDR(rxq, Q_WM), MSK_BMU_RX_WM);
2591         }
2592         if (dev->d_hw_id == CHIP_ID_YUKON_EC_U &&
2593             dev->d_hw_rev >= CHIP_REV_YU_EC_U_A1) {
2594                 /* MAC Rx RAM Read is controlled by hardware. */
2595                 CSR_WRITE_4(dev, Q_ADDR(rxq, Q_F), F_M_RX_RAM_DIS);
2596         }
2597 
2598         yge_init_tx_ring(port);
2599 
2600         /* Disable Rx checksum offload and RSS hash. */
2601         CSR_WRITE_4(dev, Q_ADDR(rxq, Q_CSR),
2602             BMU_DIS_RX_CHKSUM | BMU_DIS_RX_RSS_HASH);
2603 
2604         yge_init_rx_ring(port);
2605 
2606         /* Configure interrupt handling. */
2607         if (port == dev->d_port[YGE_PORT_A]) {
2608                 dev->d_intrmask |= Y2_IS_PORT_A;
2609                 dev->d_intrhwemask |= Y2_HWE_L1_MASK;
2610         } else if (port == dev->d_port[YGE_PORT_B]) {
2611                 dev->d_intrmask |= Y2_IS_PORT_B;
2612                 dev->d_intrhwemask |= Y2_HWE_L2_MASK;
2613         }
2614         CSR_WRITE_4(dev, B0_HWE_IMSK, dev->d_intrhwemask);
2615         (void) CSR_READ_4(dev, B0_HWE_IMSK);
2616         CSR_WRITE_4(dev, B0_IMSK, dev->d_intrmask);
2617         (void) CSR_READ_4(dev, B0_IMSK);
2618 
2619         /* Enable RX/TX GMAC */
2620         gmac = GMAC_READ_2(dev, pnum, GM_GP_CTRL);
2621         gmac |= (GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
2622         GMAC_WRITE_2(port->p_dev, port->p_port, GM_GP_CTRL, gmac);
2623         /* Read again to ensure writing. */
2624         (void) GMAC_READ_2(dev, pnum, GM_GP_CTRL);
2625 
2626         /* Reset TX timer */
2627         port->p_tx_wdog = 0;
2628 }
2629 
2630 static void
2631 yge_set_rambuffer(yge_port_t *port)
2632 {
2633         yge_dev_t *dev;
2634         int ltpp, utpp;
2635         int pnum;
2636         uint32_t rxq;
2637         uint32_t txq;
2638 
2639         dev = port->p_dev;
2640         pnum = port->p_port;
2641         rxq = port->p_rxq;
2642         txq = port->p_txq;
2643 
2644         if ((port->p_flags & PORT_FLAG_RAMBUF) == 0)
2645                 return;
2646 
2647         /* Setup Rx Queue. */
2648         CSR_WRITE_1(dev, RB_ADDR(rxq, RB_CTRL), RB_RST_CLR);
2649         CSR_WRITE_4(dev, RB_ADDR(rxq, RB_START), dev->d_rxqstart[pnum] / 8);
2650         CSR_WRITE_4(dev, RB_ADDR(rxq, RB_END), dev->d_rxqend[pnum] / 8);
2651         CSR_WRITE_4(dev, RB_ADDR(rxq, RB_WP), dev->d_rxqstart[pnum] / 8);
2652         CSR_WRITE_4(dev, RB_ADDR(rxq, RB_RP), dev->d_rxqstart[pnum] / 8);
2653 
2654         utpp =
2655             (dev->d_rxqend[pnum] + 1 - dev->d_rxqstart[pnum] - RB_ULPP) / 8;
2656         ltpp =
2657             (dev->d_rxqend[pnum] + 1 - dev->d_rxqstart[pnum] - RB_LLPP_B) / 8;
2658 
2659         if (dev->d_rxqsize < MSK_MIN_RXQ_SIZE)
2660                 ltpp += (RB_LLPP_B - RB_LLPP_S) / 8;
2661 
2662         CSR_WRITE_4(dev, RB_ADDR(rxq, RB_RX_UTPP), utpp);
2663         CSR_WRITE_4(dev, RB_ADDR(rxq, RB_RX_LTPP), ltpp);
2664         /* Set Rx priority(RB_RX_UTHP/RB_RX_LTHP) thresholds? */
2665 
2666         CSR_WRITE_1(dev, RB_ADDR(rxq, RB_CTRL), RB_ENA_OP_MD);
2667         (void) CSR_READ_1(dev, RB_ADDR(rxq, RB_CTRL));
2668 
2669         /* Setup Tx Queue. */
2670         CSR_WRITE_1(dev, RB_ADDR(txq, RB_CTRL), RB_RST_CLR);
2671         CSR_WRITE_4(dev, RB_ADDR(txq, RB_START), dev->d_txqstart[pnum] / 8);
2672         CSR_WRITE_4(dev, RB_ADDR(txq, RB_END),  dev->d_txqend[pnum] / 8);
2673         CSR_WRITE_4(dev, RB_ADDR(txq, RB_WP), dev->d_txqstart[pnum] / 8);
2674         CSR_WRITE_4(dev, RB_ADDR(txq, RB_RP), dev->d_txqstart[pnum] / 8);
2675         /* Enable Store & Forward for Tx side. */
2676         CSR_WRITE_1(dev, RB_ADDR(txq, RB_CTRL), RB_ENA_STFWD);
2677         CSR_WRITE_1(dev, RB_ADDR(txq, RB_CTRL), RB_ENA_OP_MD);
2678         (void) CSR_READ_1(dev, RB_ADDR(txq, RB_CTRL));
2679 }
2680 
2681 static void
2682 yge_set_prefetch(yge_dev_t *dev, int qaddr, yge_ring_t *ring)
2683 {
2684         /* Reset the prefetch unit. */
2685         CSR_WRITE_4(dev, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
2686             PREF_UNIT_RST_SET);
2687         CSR_WRITE_4(dev, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
2688             PREF_UNIT_RST_CLR);
2689         /* Set LE base address. */
2690         CSR_WRITE_4(dev, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_LOW_REG),
2691             YGE_ADDR_LO(ring->r_paddr));
2692         CSR_WRITE_4(dev, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_HI_REG),
2693             YGE_ADDR_HI(ring->r_paddr));
2694         /* Set the list last index. */
2695         CSR_WRITE_2(dev, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_LAST_IDX_REG),
2696             ring->r_num - 1);
2697         /* Turn on prefetch unit. */
2698         CSR_WRITE_4(dev, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
2699             PREF_UNIT_OP_ON);
2700         /* Dummy read to ensure write. */
2701         (void) CSR_READ_4(dev, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG));
2702 }
2703 
2704 static void
2705 yge_stop_port(yge_port_t *port)
2706 {
2707         yge_dev_t *dev = port->p_dev;
2708         int pnum = port->p_port;
2709         uint32_t txq = port->p_txq;
2710         uint32_t rxq = port->p_rxq;
2711         uint32_t val;
2712         int i;
2713 
2714         dev = port->p_dev;
2715 
2716         /*
2717          * shutdown timeout
2718          */
2719         port->p_tx_wdog = 0;
2720 
2721         /* Disable interrupts. */
2722         if (pnum == YGE_PORT_A) {
2723                 dev->d_intrmask &= ~Y2_IS_PORT_A;
2724                 dev->d_intrhwemask &= ~Y2_HWE_L1_MASK;
2725         } else {
2726                 dev->d_intrmask &= ~Y2_IS_PORT_B;
2727                 dev->d_intrhwemask &= ~Y2_HWE_L2_MASK;
2728         }
2729         CSR_WRITE_4(dev, B0_HWE_IMSK, dev->d_intrhwemask);
2730         (void) CSR_READ_4(dev, B0_HWE_IMSK);
2731         CSR_WRITE_4(dev, B0_IMSK, dev->d_intrmask);
2732         (void) CSR_READ_4(dev, B0_IMSK);
2733 
2734         /* Disable Tx/Rx MAC. */
2735         val = GMAC_READ_2(dev, pnum, GM_GP_CTRL);
2736         val &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
2737         GMAC_WRITE_2(dev, pnum, GM_GP_CTRL, val);
2738         /* Read again to ensure writing. */
2739         (void) GMAC_READ_2(dev, pnum, GM_GP_CTRL);
2740 
2741         /* Update stats and clear counters. */
2742         yge_stats_update(port);
2743 
2744         /* Stop Tx BMU. */
2745         CSR_WRITE_4(dev, Q_ADDR(txq, Q_CSR), BMU_STOP);
2746         val = CSR_READ_4(dev, Q_ADDR(txq, Q_CSR));
2747         for (i = 0; i < YGE_TIMEOUT; i += 10) {
2748                 if ((val & (BMU_STOP | BMU_IDLE)) == 0) {
2749                         CSR_WRITE_4(dev, Q_ADDR(txq, Q_CSR), BMU_STOP);
2750                         val = CSR_READ_4(dev, Q_ADDR(txq, Q_CSR));
2751                 } else
2752                         break;
2753                 drv_usecwait(10);
2754         }
2755         /* This is probably fairly catastrophic. */
2756         if ((val & (BMU_STOP | BMU_IDLE)) == 0)
2757                 yge_error(NULL, port, "Tx BMU stop failed");
2758 
2759         CSR_WRITE_1(dev, RB_ADDR(txq, RB_CTRL), RB_RST_SET | RB_DIS_OP_MD);
2760 
2761         /* Disable all GMAC interrupt. */
2762         CSR_WRITE_1(dev, MR_ADDR(pnum, GMAC_IRQ_MSK), 0);
2763 
2764         /* Disable the RAM Interface Arbiter. */
2765         CSR_WRITE_1(dev, MR_ADDR(pnum, TXA_CTRL), TXA_DIS_ARB);
2766 
2767         /* Reset the PCI FIFO of the async Tx queue */
2768         CSR_WRITE_4(dev, Q_ADDR(txq, Q_CSR), BMU_RST_SET | BMU_FIFO_RST);
2769 
2770         /* Reset the Tx prefetch units. */
2771         CSR_WRITE_4(dev, Y2_PREF_Q_ADDR(txq, PREF_UNIT_CTRL_REG),
2772             PREF_UNIT_RST_SET);
2773 
2774         /* Reset the RAM Buffer async Tx queue. */
2775         CSR_WRITE_1(dev, RB_ADDR(txq, RB_CTRL), RB_RST_SET);
2776 
2777         /* Reset Tx MAC FIFO. */
2778         CSR_WRITE_4(dev, MR_ADDR(pnum, TX_GMF_CTRL_T), GMF_RST_SET);
2779         /* Set Pause Off. */
2780         CSR_WRITE_4(dev, MR_ADDR(pnum, GMAC_CTRL), GMC_PAUSE_OFF);
2781 
2782         /*
2783          * The Rx Stop command will not work for Yukon-2 if the BMU does not
2784          * reach the end of packet and since we can't make sure that we have
2785          * incoming data, we must reset the BMU while it is not during a DMA
2786          * transfer. Since it is possible that the Rx path is still active,
2787          * the Rx RAM buffer will be stopped first, so any possible incoming
2788          * data will not trigger a DMA. After the RAM buffer is stopped, the
2789          * BMU is polled until any DMA in progress is ended and only then it
2790          * will be reset.
2791          */
2792 
2793         /* Disable the RAM Buffer receive queue. */
2794         CSR_WRITE_1(dev, RB_ADDR(rxq, RB_CTRL), RB_DIS_OP_MD);
2795         for (i = 0; i < YGE_TIMEOUT; i += 10) {
2796                 if (CSR_READ_1(dev, RB_ADDR(rxq, Q_RSL)) ==
2797                     CSR_READ_1(dev, RB_ADDR(rxq, Q_RL)))
2798                         break;
2799                 drv_usecwait(10);
2800         }
2801         /* This is probably nearly a fatal error. */
2802         if (i == YGE_TIMEOUT)
2803                 yge_error(NULL, port, "Rx BMU stop failed");
2804 
2805         CSR_WRITE_4(dev, Q_ADDR(rxq, Q_CSR), BMU_RST_SET | BMU_FIFO_RST);
2806         /* Reset the Rx prefetch unit. */
2807         CSR_WRITE_4(dev, Y2_PREF_Q_ADDR(rxq, PREF_UNIT_CTRL_REG),
2808             PREF_UNIT_RST_SET);
2809         /* Reset the RAM Buffer receive queue. */
2810         CSR_WRITE_1(dev, RB_ADDR(rxq, RB_CTRL), RB_RST_SET);
2811         /* Reset Rx MAC FIFO. */
2812         CSR_WRITE_4(dev, MR_ADDR(pnum, RX_GMF_CTRL_T), GMF_RST_SET);
2813 }
2814 
2815 /*
2816  * When GM_PAR_MIB_CLR bit of GM_PHY_ADDR is set, reading lower
2817  * counter clears high 16 bits of the counter such that accessing
2818  * lower 16 bits should be the last operation.
2819  */
2820 #define YGE_READ_MIB32(x, y)                                    \
2821         GMAC_READ_4(dev, x, y)
2822 
2823 #define YGE_READ_MIB64(x, y)                                    \
2824         ((((uint64_t)YGE_READ_MIB32(x, (y) + 8)) << 32) + \
2825             (uint64_t)YGE_READ_MIB32(x, y))
2826 
2827 static void
2828 yge_stats_clear(yge_port_t *port)
2829 {
2830         yge_dev_t *dev;
2831         uint16_t gmac;
2832         int32_t pnum;
2833 
2834         pnum = port->p_port;
2835         dev = port->p_dev;
2836 
2837         /* Set MIB Clear Counter Mode. */
2838         gmac = GMAC_READ_2(dev, pnum, GM_PHY_ADDR);
2839         GMAC_WRITE_2(dev, pnum, GM_PHY_ADDR, gmac | GM_PAR_MIB_CLR);
2840         /* Read all MIB Counters with Clear Mode set. */
2841         for (int i = GM_RXF_UC_OK; i <= GM_TXE_FIFO_UR; i += 4)
2842                 (void) YGE_READ_MIB32(pnum, i);
2843         /* Clear MIB Clear Counter Mode. */
2844         gmac &= ~GM_PAR_MIB_CLR;
2845         GMAC_WRITE_2(dev, pnum, GM_PHY_ADDR, gmac);
2846 }
2847 
2848 static void
2849 yge_stats_update(yge_port_t *port)
2850 {
2851         yge_dev_t *dev;
2852         struct yge_hw_stats *stats;
2853         uint16_t gmac;
2854         int32_t pnum;
2855 
2856         dev = port->p_dev;
2857         pnum = port->p_port;
2858 
2859         if (dev->d_suspended || !port->p_running) {
2860                 return;
2861         }
2862         stats = &port->p_stats;
2863         /* Set MIB Clear Counter Mode. */
2864         gmac = GMAC_READ_2(dev, pnum, GM_PHY_ADDR);
2865         GMAC_WRITE_2(dev, pnum, GM_PHY_ADDR, gmac | GM_PAR_MIB_CLR);
2866 
2867         /* Rx stats. */
2868         stats->rx_ucast_frames +=    YGE_READ_MIB32(pnum, GM_RXF_UC_OK);
2869         stats->rx_bcast_frames +=    YGE_READ_MIB32(pnum, GM_RXF_BC_OK);
2870         stats->rx_pause_frames +=    YGE_READ_MIB32(pnum, GM_RXF_MPAUSE);
2871         stats->rx_mcast_frames +=    YGE_READ_MIB32(pnum, GM_RXF_MC_OK);
2872         stats->rx_crc_errs +=                YGE_READ_MIB32(pnum, GM_RXF_FCS_ERR);
2873         (void) YGE_READ_MIB32(pnum, GM_RXF_SPARE1);
2874         stats->rx_good_octets +=     YGE_READ_MIB64(pnum, GM_RXO_OK_LO);
2875         stats->rx_bad_octets +=              YGE_READ_MIB64(pnum, GM_RXO_ERR_LO);
2876         stats->rx_runts +=           YGE_READ_MIB32(pnum, GM_RXF_SHT);
2877         stats->rx_runt_errs +=               YGE_READ_MIB32(pnum, GM_RXE_FRAG);
2878         stats->rx_pkts_64 +=         YGE_READ_MIB32(pnum, GM_RXF_64B);
2879         stats->rx_pkts_65_127 +=     YGE_READ_MIB32(pnum, GM_RXF_127B);
2880         stats->rx_pkts_128_255 +=    YGE_READ_MIB32(pnum, GM_RXF_255B);
2881         stats->rx_pkts_256_511 +=    YGE_READ_MIB32(pnum, GM_RXF_511B);
2882         stats->rx_pkts_512_1023 +=   YGE_READ_MIB32(pnum, GM_RXF_1023B);
2883         stats->rx_pkts_1024_1518 +=  YGE_READ_MIB32(pnum, GM_RXF_1518B);
2884         stats->rx_pkts_1519_max +=   YGE_READ_MIB32(pnum, GM_RXF_MAX_SZ);
2885         stats->rx_pkts_too_long +=   YGE_READ_MIB32(pnum, GM_RXF_LNG_ERR);
2886         stats->rx_pkts_jabbers +=    YGE_READ_MIB32(pnum, GM_RXF_JAB_PKT);
2887         (void) YGE_READ_MIB32(pnum, GM_RXF_SPARE2);
2888         stats->rx_fifo_oflows +=     YGE_READ_MIB32(pnum, GM_RXE_FIFO_OV);
2889         (void) YGE_READ_MIB32(pnum, GM_RXF_SPARE3);
2890 
2891         /* Tx stats. */
2892         stats->tx_ucast_frames +=    YGE_READ_MIB32(pnum, GM_TXF_UC_OK);
2893         stats->tx_bcast_frames +=    YGE_READ_MIB32(pnum, GM_TXF_BC_OK);
2894         stats->tx_pause_frames +=    YGE_READ_MIB32(pnum, GM_TXF_MPAUSE);
2895         stats->tx_mcast_frames +=    YGE_READ_MIB32(pnum, GM_TXF_MC_OK);
2896         stats->tx_octets +=          YGE_READ_MIB64(pnum, GM_TXO_OK_LO);
2897         stats->tx_pkts_64 +=         YGE_READ_MIB32(pnum, GM_TXF_64B);
2898         stats->tx_pkts_65_127 +=     YGE_READ_MIB32(pnum, GM_TXF_127B);
2899         stats->tx_pkts_128_255 +=    YGE_READ_MIB32(pnum, GM_TXF_255B);
2900         stats->tx_pkts_256_511 +=    YGE_READ_MIB32(pnum, GM_TXF_511B);
2901         stats->tx_pkts_512_1023 +=   YGE_READ_MIB32(pnum, GM_TXF_1023B);
2902         stats->tx_pkts_1024_1518 +=  YGE_READ_MIB32(pnum, GM_TXF_1518B);
2903         stats->tx_pkts_1519_max +=   YGE_READ_MIB32(pnum, GM_TXF_MAX_SZ);
2904         (void) YGE_READ_MIB32(pnum, GM_TXF_SPARE1);
2905         stats->tx_colls +=           YGE_READ_MIB32(pnum, GM_TXF_COL);
2906         stats->tx_late_colls +=              YGE_READ_MIB32(pnum, GM_TXF_LAT_COL);
2907         stats->tx_excess_colls +=    YGE_READ_MIB32(pnum, GM_TXF_ABO_COL);
2908         stats->tx_multi_colls +=     YGE_READ_MIB32(pnum, GM_TXF_MUL_COL);
2909         stats->tx_single_colls +=    YGE_READ_MIB32(pnum, GM_TXF_SNG_COL);
2910         stats->tx_underflows +=              YGE_READ_MIB32(pnum, GM_TXE_FIFO_UR);
2911         /* Clear MIB Clear Counter Mode. */
2912         gmac &= ~GM_PAR_MIB_CLR;
2913         GMAC_WRITE_2(dev, pnum, GM_PHY_ADDR, gmac);
2914 }
2915 
2916 #undef YGE_READ_MIB32
2917 #undef YGE_READ_MIB64
2918 
2919 uint32_t
2920 yge_hashbit(const uint8_t *addr)
2921 {
2922         int             idx;
2923         int             bit;
2924         uint_t          data;
2925         uint32_t        crc;
2926 #define POLY_BE 0x04c11db7
2927 
2928         crc = 0xffffffff;
2929         for (idx = 0; idx < 6; idx++) {
2930                 for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1) {
2931                         crc = (crc << 1)
2932                             ^ ((((crc >> 31) ^ data) & 1) ? POLY_BE : 0);
2933                 }
2934         }
2935 #undef  POLY_BE
2936 
2937         return (crc % 64);
2938 }
2939 
2940 int
2941 yge_m_stat(void *arg, uint_t stat, uint64_t *val)
2942 {
2943         yge_port_t      *port = arg;
2944         struct yge_hw_stats *stats = &port->p_stats;
2945 
2946         if (stat == MAC_STAT_IFSPEED) {
2947                 /*
2948                  * This is the first stat we are asked about.  We update only
2949                  * for this stat, to avoid paying the hefty cost of the update
2950                  * once for each stat.
2951                  */
2952                 DEV_LOCK(port->p_dev);
2953                 yge_stats_update(port);
2954                 DEV_UNLOCK(port->p_dev);
2955         }
2956 
2957         if (mii_m_getstat(port->p_mii, stat, val) == 0) {
2958                 return (0);
2959         }
2960 
2961         switch (stat) {
2962         case MAC_STAT_MULTIRCV:
2963                 *val = stats->rx_mcast_frames;
2964                 break;
2965 
2966         case MAC_STAT_BRDCSTRCV:
2967                 *val = stats->rx_bcast_frames;
2968                 break;
2969 
2970         case MAC_STAT_MULTIXMT:
2971                 *val = stats->tx_mcast_frames;
2972                 break;
2973 
2974         case MAC_STAT_BRDCSTXMT:
2975                 *val = stats->tx_bcast_frames;
2976                 break;
2977 
2978         case MAC_STAT_IPACKETS:
2979                 *val = stats->rx_ucast_frames;
2980                 break;
2981 
2982         case MAC_STAT_RBYTES:
2983                 *val = stats->rx_good_octets;
2984                 break;
2985 
2986         case MAC_STAT_OPACKETS:
2987                 *val = stats->tx_ucast_frames;
2988                 break;
2989 
2990         case MAC_STAT_OBYTES:
2991                 *val = stats->tx_octets;
2992                 break;
2993 
2994         case MAC_STAT_NORCVBUF:
2995                 *val = stats->rx_nobuf;
2996                 break;
2997 
2998         case MAC_STAT_COLLISIONS:
2999                 *val = stats->tx_colls;
3000                 break;
3001 
3002         case ETHER_STAT_ALIGN_ERRORS:
3003                 *val = stats->rx_runt_errs;
3004                 break;
3005 
3006         case ETHER_STAT_FCS_ERRORS:
3007                 *val = stats->rx_crc_errs;
3008                 break;
3009 
3010         case ETHER_STAT_FIRST_COLLISIONS:
3011                 *val  = stats->tx_single_colls;
3012                 break;
3013 
3014         case ETHER_STAT_MULTI_COLLISIONS:
3015                 *val = stats->tx_multi_colls;
3016                 break;
3017 
3018         case ETHER_STAT_TX_LATE_COLLISIONS:
3019                 *val = stats->tx_late_colls;
3020                 break;
3021 
3022         case ETHER_STAT_EX_COLLISIONS:
3023                 *val = stats->tx_excess_colls;
3024                 break;
3025 
3026         case ETHER_STAT_TOOLONG_ERRORS:
3027                 *val = stats->rx_pkts_too_long;
3028                 break;
3029 
3030         case MAC_STAT_OVERFLOWS:
3031                 *val = stats->rx_fifo_oflows;
3032                 break;
3033 
3034         case MAC_STAT_UNDERFLOWS:
3035                 *val = stats->tx_underflows;
3036                 break;
3037 
3038         case ETHER_STAT_TOOSHORT_ERRORS:
3039                 *val = stats->rx_runts;
3040                 break;
3041 
3042         case ETHER_STAT_JABBER_ERRORS:
3043                 *val = stats->rx_pkts_jabbers;
3044                 break;
3045 
3046         default:
3047                 return (ENOTSUP);
3048         }
3049         return (0);
3050 }
3051 
3052 int
3053 yge_m_start(void *arg)
3054 {
3055         yge_port_t      *port = arg;
3056 
3057         DEV_LOCK(port->p_dev);
3058 
3059         /*
3060          * We defer resource allocation to this point, because we
3061          * don't want to waste DMA resources that might better be used
3062          * elsewhere, if the port is not actually being used.
3063          *
3064          * Furthermore, this gives us a more graceful handling of dynamic
3065          * MTU modification.
3066          */
3067         if (yge_txrx_dma_alloc(port) != DDI_SUCCESS) {
3068                 /* Make sure we free up partially allocated resources. */
3069                 yge_txrx_dma_free(port);
3070                 DEV_UNLOCK(port->p_dev);
3071                 return (ENOMEM);
3072         }
3073 
3074         if (!port->p_dev->d_suspended)
3075                 yge_start_port(port);
3076         port->p_running = B_TRUE;
3077         DEV_UNLOCK(port->p_dev);
3078 
3079         mii_start(port->p_mii);
3080 
3081         return (0);
3082 }
3083 
3084 void
3085 yge_m_stop(void *arg)
3086 {
3087         yge_port_t      *port = arg;
3088         yge_dev_t       *dev = port->p_dev;
3089 
3090         DEV_LOCK(dev);
3091         if (!dev->d_suspended)
3092                 yge_stop_port(port);
3093 
3094         port->p_running = B_FALSE;
3095 
3096         /* Release resources we don't need */
3097         yge_txrx_dma_free(port);
3098         DEV_UNLOCK(dev);
3099 }
3100 
3101 int
3102 yge_m_promisc(void *arg, boolean_t on)
3103 {
3104         yge_port_t      *port = arg;
3105 
3106         DEV_LOCK(port->p_dev);
3107 
3108         /* Save current promiscuous mode. */
3109         port->p_promisc = on;
3110         yge_setrxfilt(port);
3111 
3112         DEV_UNLOCK(port->p_dev);
3113 
3114         return (0);
3115 }
3116 
3117 int
3118 yge_m_multicst(void *arg, boolean_t add, const uint8_t *addr)
3119 {
3120         yge_port_t      *port = arg;
3121         int             bit;
3122         boolean_t       update;
3123 
3124         bit = yge_hashbit(addr);
3125         ASSERT(bit < 64);
3126 
3127         DEV_LOCK(port->p_dev);
3128         if (add) {
3129                 if (port->p_mccount[bit] == 0) {
3130                         /* Set the corresponding bit in the hash table. */
3131                         port->p_mchash[bit / 32] |= (1 << (bit % 32));
3132                         update = B_TRUE;
3133                 }
3134                 port->p_mccount[bit]++;
3135         } else {
3136                 ASSERT(port->p_mccount[bit] > 0);
3137                 port->p_mccount[bit]--;
3138                 if (port->p_mccount[bit] == 0) {
3139                         port->p_mchash[bit / 32] &= ~(1 << (bit % 32));
3140                         update = B_TRUE;
3141                 }
3142         }
3143 
3144         if (update) {
3145                 yge_setrxfilt(port);
3146         }
3147         DEV_UNLOCK(port->p_dev);
3148         return (0);
3149 }
3150 
3151 int
3152 yge_m_unicst(void *arg, const uint8_t *macaddr)
3153 {
3154         yge_port_t      *port = arg;
3155 
3156         DEV_LOCK(port->p_dev);
3157 
3158         bcopy(macaddr, port->p_curraddr, ETHERADDRL);
3159         yge_setrxfilt(port);
3160 
3161         DEV_UNLOCK(port->p_dev);
3162 
3163         return (0);
3164 }
3165 
3166 mblk_t *
3167 yge_m_tx(void *arg, mblk_t *mp)
3168 {
3169         yge_port_t      *port = arg;
3170         mblk_t          *nmp;
3171         int             enq = 0;
3172         uint32_t        ridx;
3173         int             idx;
3174         boolean_t       resched = B_FALSE;
3175 
3176         TX_LOCK(port->p_dev);
3177 
3178         if (port->p_dev->d_suspended) {
3179 
3180                 TX_UNLOCK(port->p_dev);
3181 
3182                 while ((nmp = mp) != NULL) {
3183                         /* carrier_errors++; */
3184                         mp = mp->b_next;
3185                         freemsg(nmp);
3186                 }
3187                 return (NULL);
3188         }
3189 
3190         /* attempt a reclaim */
3191         ridx = port->p_port == YGE_PORT_A ?
3192             STAT_TXA1_RIDX : STAT_TXA2_RIDX;
3193         idx = CSR_READ_2(port->p_dev, ridx);
3194         if (port->p_tx_cons != idx)
3195                 resched = yge_txeof_locked(port, idx);
3196 
3197         while (mp != NULL) {
3198                 nmp = mp->b_next;
3199                 mp->b_next = NULL;
3200 
3201                 if (!yge_send(port, mp)) {
3202                         mp->b_next = nmp;
3203                         break;
3204                 }
3205                 enq++;
3206                 mp = nmp;
3207 
3208         }
3209         if (enq > 0) {
3210                 /* Transmit */
3211                 CSR_WRITE_2(port->p_dev,
3212                     Y2_PREF_Q_ADDR(port->p_txq, PREF_UNIT_PUT_IDX_REG),
3213                     port->p_tx_prod);
3214         }
3215 
3216         TX_UNLOCK(port->p_dev);
3217 
3218         if (resched)
3219                 mac_tx_update(port->p_mh);
3220 
3221         return (mp);
3222 }
3223 
3224 void
3225 yge_m_ioctl(void *arg, queue_t *wq, mblk_t *mp)
3226 {
3227 #ifdef  YGE_MII_LOOPBACK
3228         /* LINTED E_FUNC_SET_NOT_USED */
3229         yge_port_t      *port = arg;
3230 
3231         /*
3232          * Right now, the MII common layer does not properly handle
3233          * loopback on these PHYs.  Fixing this should be done at some
3234          * point in the future.
3235          */
3236         if (mii_m_loop_ioctl(port->p_mii, wq, mp))
3237                 return;
3238 #else
3239         _NOTE(ARGUNUSED(arg));
3240 #endif
3241 
3242         miocnak(wq, mp, 0, EINVAL);
3243 }
3244 
3245 int
3246 yge_m_setprop(void *arg, const char *pr_name, mac_prop_id_t pr_num,
3247     uint_t pr_valsize, const void *pr_val)
3248 {
3249         yge_port_t      *port = arg;
3250         uint32_t        new_mtu;
3251         int err = 0;
3252 
3253         err = mii_m_setprop(port->p_mii, pr_name, pr_num, pr_valsize, pr_val);
3254         if (err != ENOTSUP) {
3255                 return (err);
3256         }
3257 
3258         DEV_LOCK(port->p_dev);
3259 
3260         switch (pr_num) {
3261         case MAC_PROP_MTU:
3262                 if (pr_valsize < sizeof (new_mtu)) {
3263                         err = EINVAL;
3264                         break;
3265                 }
3266                 bcopy(pr_val, &new_mtu, sizeof (new_mtu));
3267                 if (new_mtu == port->p_mtu) {
3268                         /* no change */
3269                         err = 0;
3270                         break;
3271                 }
3272                 if (new_mtu < ETHERMTU) {
3273                         yge_error(NULL, port,
3274                             "Maximum MTU size too small: %d", new_mtu);
3275                         err = EINVAL;
3276                         break;
3277                 }
3278                 if (new_mtu > (port->p_flags & PORT_FLAG_NOJUMBO ?
3279                     ETHERMTU : YGE_JUMBO_MTU)) {
3280                         yge_error(NULL, port,
3281                             "Maximum MTU size too big: %d", new_mtu);
3282                         err = EINVAL;
3283                         break;
3284                 }
3285                 if (port->p_running) {
3286                         yge_error(NULL, port,
3287                             "Unable to change maximum MTU while running");
3288                         err = EBUSY;
3289                         break;
3290                 }
3291 
3292 
3293                 /*
3294                  * NB: It would probably be better not to hold the
3295                  * DEVLOCK, but releasing it creates a potential race
3296                  * if m_start is called concurrently.
3297                  *
3298                  * It turns out that the MAC layer guarantees safety
3299                  * for us here by using a cut out for this kind of
3300                  * notification call back anyway.
3301                  *
3302                  * See R8. and R14. in mac.c locking comments, which read
3303                  * as follows:
3304                  *
3305                  * R8. Since it is not guaranteed (see R14) that
3306                  * drivers won't hold locks across mac driver
3307                  * interfaces, the MAC layer must provide a cut out
3308                  * for control interfaces like upcall notifications
3309                  * and start them in a separate thread.
3310                  *
3311                  * R14. It would be preferable if MAC drivers don't
3312                  * hold any locks across any mac call. However at a
3313                  * minimum they must not hold any locks across data
3314                  * upcalls. They must also make sure that all
3315                  * references to mac data structures are cleaned up
3316                  * and that it is single threaded at mac_unregister
3317                  * time.
3318                  */
3319                 err = mac_maxsdu_update(port->p_mh, new_mtu);
3320                 if (err != 0) {
3321                         /* This should never occur! */
3322                         yge_error(NULL, port,
3323                             "Failed notifying GLDv3 of new maximum MTU");
3324                 } else {
3325                         port->p_mtu = new_mtu;
3326                 }
3327                 break;
3328 
3329         default:
3330                 err = ENOTSUP;
3331                 break;
3332         }
3333 
3334 err:
3335         DEV_UNLOCK(port->p_dev);
3336 
3337         return (err);
3338 }
3339 
3340 int
3341 yge_m_getprop(void *arg, const char *pr_name, mac_prop_id_t pr_num,
3342     uint_t pr_valsize, void *pr_val)
3343 {
3344         yge_port_t      *port = arg;
3345 
3346         return (mii_m_getprop(port->p_mii, pr_name, pr_num, pr_valsize,
3347             pr_val));
3348 }
3349 
3350 static void
3351 yge_m_propinfo(void *arg, const char *pr_name, mac_prop_id_t pr_num,
3352     mac_prop_info_handle_t prh)
3353 {
3354         yge_port_t      *port = arg;
3355 
3356         switch (pr_num) {
3357         case MAC_PROP_MTU:
3358                 mac_prop_info_set_range_uint32(prh, ETHERMTU,
3359                     port->p_flags & PORT_FLAG_NOJUMBO ?
3360                     ETHERMTU : YGE_JUMBO_MTU);
3361                 break;
3362         default:
3363                 mii_m_propinfo(port->p_mii, pr_name, pr_num, prh);
3364                 break;
3365         }
3366 }
3367 
3368 void
3369 yge_dispatch(yge_dev_t *dev, int flag)
3370 {
3371         TASK_LOCK(dev);
3372         dev->d_task_flags |= flag;
3373         TASK_SIGNAL(dev);
3374         TASK_UNLOCK(dev);
3375 }
3376 
3377 void
3378 yge_task(void *arg)
3379 {
3380         yge_dev_t       *dev = arg;
3381         int             flags;
3382 
3383         for (;;) {
3384 
3385                 TASK_LOCK(dev);
3386                 while ((flags = dev->d_task_flags) == 0)
3387                         TASK_WAIT(dev);
3388 
3389                 dev->d_task_flags = 0;
3390                 TASK_UNLOCK(dev);
3391 
3392                 /*
3393                  * This should be the first thing after the sleep so if we are
3394                  * requested to exit we do that and not waste time doing work
3395                  * we will then abandone.
3396                  */
3397                 if (flags & YGE_TASK_EXIT)
3398                         break;
3399 
3400                 /* all processing done without holding locks */
3401                 if (flags & YGE_TASK_RESTART)
3402                         yge_restart_task(dev);
3403         }
3404 }
3405 
3406 void
3407 yge_error(yge_dev_t *dev, yge_port_t *port, char *fmt, ...)
3408 {
3409         va_list         ap;
3410         char            buf[256];
3411         int             ppa;
3412 
3413         va_start(ap, fmt);
3414         (void) vsnprintf(buf, sizeof (buf), fmt, ap);
3415         va_end(ap);
3416 
3417         if (dev == NULL && port == NULL) {
3418                 cmn_err(CE_WARN, "yge: %s", buf);
3419         } else {
3420                 if (port != NULL)
3421                         ppa = port->p_ppa;
3422                 else
3423                         ppa = ddi_get_instance(dev->d_dip);
3424                 cmn_err(CE_WARN, "yge%d: %s", ppa, buf);
3425         }
3426 }
3427 
3428 static int
3429 yge_ddi_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
3430 {
3431         yge_dev_t       *dev;
3432         int             rv;
3433 
3434         switch (cmd) {
3435         case DDI_ATTACH:
3436                 dev = kmem_zalloc(sizeof (*dev), KM_SLEEP);
3437                 dev->d_port[0] = kmem_zalloc(sizeof (yge_port_t), KM_SLEEP);
3438                 dev->d_port[1] = kmem_zalloc(sizeof (yge_port_t), KM_SLEEP);
3439                 dev->d_dip = dip;
3440                 ddi_set_driver_private(dip, dev);
3441 
3442                 dev->d_port[0]->p_port = 0;
3443                 dev->d_port[0]->p_dev = dev;
3444                 dev->d_port[1]->p_port = 0;
3445                 dev->d_port[1]->p_dev = dev;
3446 
3447                 rv = yge_attach(dev);
3448                 if (rv != DDI_SUCCESS) {
3449                         ddi_set_driver_private(dip, 0);
3450                         kmem_free(dev->d_port[1], sizeof (yge_port_t));
3451                         kmem_free(dev->d_port[0], sizeof (yge_port_t));
3452                         kmem_free(dev, sizeof (*dev));
3453                 }
3454                 return (rv);
3455 
3456         case DDI_RESUME:
3457                 dev = ddi_get_driver_private(dip);
3458                 ASSERT(dev != NULL);
3459                 return (yge_resume(dev));
3460 
3461         default:
3462                 return (DDI_FAILURE);
3463         }
3464 }
3465 
3466 static int
3467 yge_ddi_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
3468 {
3469         yge_dev_t       *dev;
3470         mac_handle_t    mh;
3471 
3472         switch (cmd) {
3473         case DDI_DETACH:
3474 
3475                 dev = ddi_get_driver_private(dip);
3476 
3477                 /* attempt to unregister MACs from Nemo */
3478                 for (int i = 0; i < dev->d_num_port; i++) {
3479 
3480                         if (((mh = dev->d_port[i]->p_mh) != NULL) &&
3481                             (mac_disable(mh) != 0)) {
3482                                 /*
3483                                  * We'd really like a mac_enable to reenable
3484                                  * any MACs that we previously disabled.  Too
3485                                  * bad GLDv3 doesn't have one.
3486                                  */
3487                                 return (DDI_FAILURE);
3488                         }
3489                 }
3490 
3491                 ASSERT(dip == dev->d_dip);
3492                 yge_detach(dev);
3493                 ddi_set_driver_private(dip, 0);
3494                 for (int i = 0; i < dev->d_num_port; i++) {
3495                         if ((mh = dev->d_port[i]->p_mh) != NULL) {
3496                                 /* This can't fail after mac_disable above. */
3497                                 (void) mac_unregister(mh);
3498                         }
3499                 }
3500                 kmem_free(dev->d_port[1], sizeof (yge_port_t));
3501                 kmem_free(dev->d_port[0], sizeof (yge_port_t));
3502                 kmem_free(dev, sizeof (*dev));
3503                 return (DDI_SUCCESS);
3504 
3505         case DDI_SUSPEND:
3506                 dev = ddi_get_driver_private(dip);
3507                 ASSERT(dev != NULL);
3508                 return (yge_suspend(dev));
3509 
3510         default:
3511                 return (DDI_FAILURE);
3512         }
3513 }
3514 
3515 static int
3516 yge_quiesce(dev_info_t *dip)
3517 {
3518         yge_dev_t *dev;
3519 
3520         dev = ddi_get_driver_private(dip);
3521         ASSERT(dev != NULL);
3522 
3523         /* NB: No locking!  We are called in single threaded context */
3524         for (int i = 0; i < dev->d_num_port; i++) {
3525                 yge_port_t *port = dev->d_port[i];
3526                 if (port->p_running)
3527                         yge_stop_port(port);
3528         }
3529 
3530         /* Disable all interrupts. */
3531         CSR_WRITE_4(dev, B0_IMSK, 0);
3532         (void) CSR_READ_4(dev, B0_IMSK);
3533         CSR_WRITE_4(dev, B0_HWE_IMSK, 0);
3534         (void) CSR_READ_4(dev, B0_HWE_IMSK);
3535 
3536         /* Put hardware into reset. */
3537         CSR_WRITE_2(dev, B0_CTST, CS_RST_SET);
3538 
3539         return (DDI_SUCCESS);
3540 }
3541 
3542 /*
3543  * Stream information
3544  */
3545 DDI_DEFINE_STREAM_OPS(yge_devops, nulldev, nulldev, yge_ddi_attach,
3546     yge_ddi_detach, nodev, NULL, D_MP, NULL, yge_quiesce);
3547 
3548 /*
3549  * Module linkage information.
3550  */
3551 
3552 static struct modldrv yge_modldrv = {
3553         &mod_driverops,                     /* drv_modops */
3554         "Yukon 2 Ethernet",             /* drv_linkinfo */
3555         &yge_devops                 /* drv_dev_ops */
3556 };
3557 
3558 static struct modlinkage yge_modlinkage = {
3559         MODREV_1,               /* ml_rev */
3560         &yge_modldrv,               /* ml_linkage */
3561         NULL
3562 };
3563 
3564 /*
3565  * DDI entry points.
3566  */
3567 int
3568 _init(void)
3569 {
3570         int     rv;
3571         mac_init_ops(&yge_devops, "yge");
3572         if ((rv = mod_install(&yge_modlinkage)) != DDI_SUCCESS) {
3573                 mac_fini_ops(&yge_devops);
3574         }
3575         return (rv);
3576 }
3577 
3578 int
3579 _fini(void)
3580 {
3581         int     rv;
3582         if ((rv = mod_remove(&yge_modlinkage)) == DDI_SUCCESS) {
3583                 mac_fini_ops(&yge_devops);
3584         }
3585         return (rv);
3586 }
3587 
3588 int
3589 _info(struct modinfo *modinfop)
3590 {
3591         return (mod_info(&yge_modlinkage, modinfop));
3592 }