1 /* 2 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 3 * Use is subject to license terms. 4 */ 5 6 /* 7 * Copyright (c) 2006 8 * Damien Bergamini <damien.bergamini@free.fr> 9 * 10 * Permission to use, copy, modify, and distribute this software for any 11 * purpose with or without fee is hereby granted, provided that the above 12 * copyright notice and this permission notice appear in all copies. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 21 */ 22 23 /* 24 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters. 25 */ 26 27 #include <sys/types.h> 28 #include <sys/byteorder.h> 29 #include <sys/conf.h> 30 #include <sys/cmn_err.h> 31 #include <sys/stat.h> 32 #include <sys/ddi.h> 33 #include <sys/sunddi.h> 34 #include <sys/strsubr.h> 35 #include <sys/ethernet.h> 36 #include <inet/common.h> 37 #include <inet/nd.h> 38 #include <inet/mi.h> 39 #include <sys/note.h> 40 #include <sys/stream.h> 41 #include <sys/strsun.h> 42 #include <sys/modctl.h> 43 #include <sys/devops.h> 44 #include <sys/dlpi.h> 45 #include <sys/mac_provider.h> 46 #include <sys/mac_wifi.h> 47 #include <sys/net80211.h> 48 #include <sys/net80211_proto.h> 49 #include <sys/varargs.h> 50 #include <sys/policy.h> 51 #include <sys/pci.h> 52 53 #include "wpireg.h" 54 #include "wpivar.h" 55 #include <inet/wifi_ioctl.h> 56 57 #ifdef DEBUG 58 #define WPI_DEBUG_80211 (1 << 0) 59 #define WPI_DEBUG_CMD (1 << 1) 60 #define WPI_DEBUG_DMA (1 << 2) 61 #define WPI_DEBUG_EEPROM (1 << 3) 62 #define WPI_DEBUG_FW (1 << 4) 63 #define WPI_DEBUG_HW (1 << 5) 64 #define WPI_DEBUG_INTR (1 << 6) 65 #define WPI_DEBUG_MRR (1 << 7) 66 #define WPI_DEBUG_PIO (1 << 8) 67 #define WPI_DEBUG_RX (1 << 9) 68 #define WPI_DEBUG_SCAN (1 << 10) 69 #define WPI_DEBUG_TX (1 << 11) 70 #define WPI_DEBUG_RATECTL (1 << 12) 71 #define WPI_DEBUG_RADIO (1 << 13) 72 #define WPI_DEBUG_RESUME (1 << 14) 73 uint32_t wpi_dbg_flags = 0; 74 #define WPI_DBG(x) \ 75 wpi_dbg x 76 #else 77 #define WPI_DBG(x) 78 #endif 79 80 static void *wpi_soft_state_p = NULL; 81 static uint8_t wpi_fw_bin [] = { 82 #include "fw-wpi/ipw3945.ucode.hex" 83 }; 84 85 /* DMA attributes for a shared page */ 86 static ddi_dma_attr_t sh_dma_attr = { 87 DMA_ATTR_V0, /* version of this structure */ 88 0, /* lowest usable address */ 89 0xffffffffU, /* highest usable address */ 90 0xffffffffU, /* maximum DMAable byte count */ 91 0x1000, /* alignment in bytes */ 92 0x1000, /* burst sizes (any?) */ 93 1, /* minimum transfer */ 94 0xffffffffU, /* maximum transfer */ 95 0xffffffffU, /* maximum segment length */ 96 1, /* maximum number of segments */ 97 1, /* granularity */ 98 0, /* flags (reserved) */ 99 }; 100 101 /* DMA attributes for a ring descriptor */ 102 static ddi_dma_attr_t ring_desc_dma_attr = { 103 DMA_ATTR_V0, /* version of this structure */ 104 0, /* lowest usable address */ 105 0xffffffffU, /* highest usable address */ 106 0xffffffffU, /* maximum DMAable byte count */ 107 0x4000, /* alignment in bytes */ 108 0x100, /* burst sizes (any?) */ 109 1, /* minimum transfer */ 110 0xffffffffU, /* maximum transfer */ 111 0xffffffffU, /* maximum segment length */ 112 1, /* maximum number of segments */ 113 1, /* granularity */ 114 0, /* flags (reserved) */ 115 }; 116 117 118 /* DMA attributes for a tx cmd */ 119 static ddi_dma_attr_t tx_cmd_dma_attr = { 120 DMA_ATTR_V0, /* version of this structure */ 121 0, /* lowest usable address */ 122 0xffffffffU, /* highest usable address */ 123 0xffffffffU, /* maximum DMAable byte count */ 124 4, /* alignment in bytes */ 125 0x100, /* burst sizes (any?) */ 126 1, /* minimum transfer */ 127 0xffffffffU, /* maximum transfer */ 128 0xffffffffU, /* maximum segment length */ 129 1, /* maximum number of segments */ 130 1, /* granularity */ 131 0, /* flags (reserved) */ 132 }; 133 134 /* DMA attributes for a rx buffer */ 135 static ddi_dma_attr_t rx_buffer_dma_attr = { 136 DMA_ATTR_V0, /* version of this structure */ 137 0, /* lowest usable address */ 138 0xffffffffU, /* highest usable address */ 139 0xffffffffU, /* maximum DMAable byte count */ 140 1, /* alignment in bytes */ 141 0x100, /* burst sizes (any?) */ 142 1, /* minimum transfer */ 143 0xffffffffU, /* maximum transfer */ 144 0xffffffffU, /* maximum segment length */ 145 1, /* maximum number of segments */ 146 1, /* granularity */ 147 0, /* flags (reserved) */ 148 }; 149 150 /* 151 * DMA attributes for a tx buffer. 152 * the maximum number of segments is 4 for the hardware. 153 * now all the wifi drivers put the whole frame in a single 154 * descriptor, so we define the maximum number of segments 4, 155 * just the same as the rx_buffer. we consider leverage the HW 156 * ability in the future, that is why we don't define rx and tx 157 * buffer_dma_attr as the same. 158 */ 159 static ddi_dma_attr_t tx_buffer_dma_attr = { 160 DMA_ATTR_V0, /* version of this structure */ 161 0, /* lowest usable address */ 162 0xffffffffU, /* highest usable address */ 163 0xffffffffU, /* maximum DMAable byte count */ 164 1, /* alignment in bytes */ 165 0x100, /* burst sizes (any?) */ 166 1, /* minimum transfer */ 167 0xffffffffU, /* maximum transfer */ 168 0xffffffffU, /* maximum segment length */ 169 1, /* maximum number of segments */ 170 1, /* granularity */ 171 0, /* flags (reserved) */ 172 }; 173 174 /* DMA attributes for a load firmware */ 175 static ddi_dma_attr_t fw_buffer_dma_attr = { 176 DMA_ATTR_V0, /* version of this structure */ 177 0, /* lowest usable address */ 178 0xffffffffU, /* highest usable address */ 179 0x7fffffff, /* maximum DMAable byte count */ 180 4, /* alignment in bytes */ 181 0x100, /* burst sizes (any?) */ 182 1, /* minimum transfer */ 183 0xffffffffU, /* maximum transfer */ 184 0xffffffffU, /* maximum segment length */ 185 4, /* maximum number of segments */ 186 1, /* granularity */ 187 0, /* flags (reserved) */ 188 }; 189 190 /* regs access attributes */ 191 static ddi_device_acc_attr_t wpi_reg_accattr = { 192 DDI_DEVICE_ATTR_V0, 193 DDI_STRUCTURE_LE_ACC, 194 DDI_STRICTORDER_ACC, 195 DDI_DEFAULT_ACC 196 }; 197 198 /* DMA access attributes */ 199 static ddi_device_acc_attr_t wpi_dma_accattr = { 200 DDI_DEVICE_ATTR_V0, 201 DDI_NEVERSWAP_ACC, 202 DDI_STRICTORDER_ACC, 203 DDI_DEFAULT_ACC 204 }; 205 206 static int wpi_ring_init(wpi_sc_t *); 207 static void wpi_ring_free(wpi_sc_t *); 208 static int wpi_alloc_shared(wpi_sc_t *); 209 static void wpi_free_shared(wpi_sc_t *); 210 static int wpi_alloc_fw_dma(wpi_sc_t *); 211 static void wpi_free_fw_dma(wpi_sc_t *); 212 static int wpi_alloc_rx_ring(wpi_sc_t *); 213 static void wpi_reset_rx_ring(wpi_sc_t *); 214 static void wpi_free_rx_ring(wpi_sc_t *); 215 static int wpi_alloc_tx_ring(wpi_sc_t *, wpi_tx_ring_t *, int, int); 216 static void wpi_reset_tx_ring(wpi_sc_t *, wpi_tx_ring_t *); 217 static void wpi_free_tx_ring(wpi_sc_t *, wpi_tx_ring_t *); 218 219 static ieee80211_node_t *wpi_node_alloc(ieee80211com_t *); 220 static void wpi_node_free(ieee80211_node_t *); 221 static int wpi_newstate(ieee80211com_t *, enum ieee80211_state, int); 222 static int wpi_key_set(ieee80211com_t *, const struct ieee80211_key *, 223 const uint8_t mac[IEEE80211_ADDR_LEN]); 224 static void wpi_mem_lock(wpi_sc_t *); 225 static void wpi_mem_unlock(wpi_sc_t *); 226 static uint32_t wpi_mem_read(wpi_sc_t *, uint16_t); 227 static void wpi_mem_write(wpi_sc_t *, uint16_t, uint32_t); 228 static void wpi_mem_write_region_4(wpi_sc_t *, uint16_t, 229 const uint32_t *, int); 230 static uint16_t wpi_read_prom_word(wpi_sc_t *, uint32_t); 231 static int wpi_load_microcode(wpi_sc_t *); 232 static int wpi_load_firmware(wpi_sc_t *, uint32_t); 233 static void wpi_rx_intr(wpi_sc_t *, wpi_rx_desc_t *, 234 wpi_rx_data_t *); 235 static void wpi_tx_intr(wpi_sc_t *, wpi_rx_desc_t *, 236 wpi_rx_data_t *); 237 static void wpi_cmd_intr(wpi_sc_t *, wpi_rx_desc_t *); 238 static uint_t wpi_intr(caddr_t); 239 static uint_t wpi_notif_softintr(caddr_t); 240 static uint8_t wpi_plcp_signal(int); 241 static void wpi_read_eeprom(wpi_sc_t *); 242 static int wpi_cmd(wpi_sc_t *, int, const void *, int, int); 243 static int wpi_mrr_setup(wpi_sc_t *); 244 static void wpi_set_led(wpi_sc_t *, uint8_t, uint8_t, uint8_t); 245 static int wpi_auth(wpi_sc_t *); 246 static int wpi_scan(wpi_sc_t *); 247 static int wpi_config(wpi_sc_t *); 248 static void wpi_stop_master(wpi_sc_t *); 249 static int wpi_power_up(wpi_sc_t *); 250 static int wpi_reset(wpi_sc_t *); 251 static void wpi_hw_config(wpi_sc_t *); 252 static int wpi_init(wpi_sc_t *); 253 static void wpi_stop(wpi_sc_t *); 254 static int wpi_quiesce(dev_info_t *dip); 255 static void wpi_amrr_init(wpi_amrr_t *); 256 static void wpi_amrr_timeout(wpi_sc_t *); 257 static void wpi_amrr_ratectl(void *, ieee80211_node_t *); 258 259 static int wpi_attach(dev_info_t *dip, ddi_attach_cmd_t cmd); 260 static int wpi_detach(dev_info_t *dip, ddi_detach_cmd_t cmd); 261 262 /* 263 * GLD specific operations 264 */ 265 static int wpi_m_stat(void *arg, uint_t stat, uint64_t *val); 266 static int wpi_m_start(void *arg); 267 static void wpi_m_stop(void *arg); 268 static int wpi_m_unicst(void *arg, const uint8_t *macaddr); 269 static int wpi_m_multicst(void *arg, boolean_t add, const uint8_t *m); 270 static int wpi_m_promisc(void *arg, boolean_t on); 271 static mblk_t *wpi_m_tx(void *arg, mblk_t *mp); 272 static void wpi_m_ioctl(void *arg, queue_t *wq, mblk_t *mp); 273 static int wpi_m_setprop(void *arg, const char *pr_name, 274 mac_prop_id_t wldp_pr_num, uint_t wldp_length, const void *wldp_buf); 275 static int wpi_m_getprop(void *arg, const char *pr_name, 276 mac_prop_id_t wldp_pr_num, uint_t wldp_lenth, void *wldp_buf); 277 static void wpi_m_propinfo(void *arg, const char *pr_name, 278 mac_prop_id_t wldp_pr_num, mac_prop_info_handle_t mph); 279 static void wpi_destroy_locks(wpi_sc_t *sc); 280 static int wpi_send(ieee80211com_t *ic, mblk_t *mp, uint8_t type); 281 static void wpi_thread(wpi_sc_t *sc); 282 static int wpi_fast_recover(wpi_sc_t *sc); 283 284 /* 285 * Supported rates for 802.11a/b/g modes (in 500Kbps unit). 286 */ 287 static const struct ieee80211_rateset wpi_rateset_11b = 288 { 4, { 2, 4, 11, 22 } }; 289 290 static const struct ieee80211_rateset wpi_rateset_11g = 291 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } }; 292 293 static const uint8_t wpi_ridx_to_signal[] = { 294 /* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */ 295 /* R1-R4 (ral/ural is R4-R1) */ 296 0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3, 297 /* CCK: device-dependent */ 298 10, 20, 55, 110 299 }; 300 301 /* 302 * For mfthread only 303 */ 304 extern pri_t minclsyspri; 305 306 /* 307 * Module Loading Data & Entry Points 308 */ 309 DDI_DEFINE_STREAM_OPS(wpi_devops, nulldev, nulldev, wpi_attach, 310 wpi_detach, nodev, NULL, D_MP, NULL, wpi_quiesce); 311 312 static struct modldrv wpi_modldrv = { 313 &mod_driverops, 314 "Intel(R) PRO/Wireless 3945ABG driver", 315 &wpi_devops 316 }; 317 318 static struct modlinkage wpi_modlinkage = { 319 MODREV_1, 320 &wpi_modldrv, 321 NULL 322 }; 323 324 int 325 _init(void) 326 { 327 int status; 328 329 status = ddi_soft_state_init(&wpi_soft_state_p, 330 sizeof (wpi_sc_t), 1); 331 if (status != DDI_SUCCESS) 332 return (status); 333 334 mac_init_ops(&wpi_devops, "wpi"); 335 status = mod_install(&wpi_modlinkage); 336 if (status != DDI_SUCCESS) { 337 mac_fini_ops(&wpi_devops); 338 ddi_soft_state_fini(&wpi_soft_state_p); 339 } 340 341 return (status); 342 } 343 344 int 345 _fini(void) 346 { 347 int status; 348 349 status = mod_remove(&wpi_modlinkage); 350 if (status == DDI_SUCCESS) { 351 mac_fini_ops(&wpi_devops); 352 ddi_soft_state_fini(&wpi_soft_state_p); 353 } 354 355 return (status); 356 } 357 358 int 359 _info(struct modinfo *mip) 360 { 361 return (mod_info(&wpi_modlinkage, mip)); 362 } 363 364 /* 365 * Mac Call Back entries 366 */ 367 mac_callbacks_t wpi_m_callbacks = { 368 MC_IOCTL | MC_SETPROP | MC_GETPROP | MC_PROPINFO, 369 wpi_m_stat, 370 wpi_m_start, 371 wpi_m_stop, 372 wpi_m_promisc, 373 wpi_m_multicst, 374 wpi_m_unicst, 375 wpi_m_tx, 376 NULL, 377 wpi_m_ioctl, 378 NULL, 379 NULL, 380 NULL, 381 wpi_m_setprop, 382 wpi_m_getprop, 383 wpi_m_propinfo 384 }; 385 386 #ifdef DEBUG 387 void 388 wpi_dbg(uint32_t flags, const char *fmt, ...) 389 { 390 va_list ap; 391 392 if (flags & wpi_dbg_flags) { 393 va_start(ap, fmt); 394 vcmn_err(CE_NOTE, fmt, ap); 395 va_end(ap); 396 } 397 } 398 #endif 399 /* 400 * device operations 401 */ 402 int 403 wpi_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) 404 { 405 wpi_sc_t *sc; 406 ddi_acc_handle_t cfg_handle; 407 caddr_t cfg_base; 408 ieee80211com_t *ic; 409 int instance, err, i; 410 char strbuf[32]; 411 wifi_data_t wd = { 0 }; 412 mac_register_t *macp; 413 414 switch (cmd) { 415 case DDI_ATTACH: 416 break; 417 case DDI_RESUME: 418 sc = ddi_get_soft_state(wpi_soft_state_p, 419 ddi_get_instance(dip)); 420 ASSERT(sc != NULL); 421 422 mutex_enter(&sc->sc_glock); 423 sc->sc_flags &= ~WPI_F_SUSPEND; 424 mutex_exit(&sc->sc_glock); 425 426 if (sc->sc_flags & WPI_F_RUNNING) 427 (void) wpi_init(sc); 428 429 mutex_enter(&sc->sc_glock); 430 sc->sc_flags |= WPI_F_LAZY_RESUME; 431 mutex_exit(&sc->sc_glock); 432 433 WPI_DBG((WPI_DEBUG_RESUME, "wpi: resume \n")); 434 return (DDI_SUCCESS); 435 default: 436 err = DDI_FAILURE; 437 goto attach_fail1; 438 } 439 440 instance = ddi_get_instance(dip); 441 err = ddi_soft_state_zalloc(wpi_soft_state_p, instance); 442 if (err != DDI_SUCCESS) { 443 cmn_err(CE_WARN, 444 "wpi_attach(): failed to allocate soft state\n"); 445 goto attach_fail1; 446 } 447 sc = ddi_get_soft_state(wpi_soft_state_p, instance); 448 sc->sc_dip = dip; 449 450 err = ddi_regs_map_setup(dip, 0, &cfg_base, 0, 0, 451 &wpi_reg_accattr, &cfg_handle); 452 if (err != DDI_SUCCESS) { 453 cmn_err(CE_WARN, 454 "wpi_attach(): failed to map config spaces regs\n"); 455 goto attach_fail2; 456 } 457 sc->sc_rev = ddi_get8(cfg_handle, 458 (uint8_t *)(cfg_base + PCI_CONF_REVID)); 459 ddi_put8(cfg_handle, (uint8_t *)(cfg_base + 0x41), 0); 460 sc->sc_clsz = ddi_get16(cfg_handle, 461 (uint16_t *)(cfg_base + PCI_CONF_CACHE_LINESZ)); 462 ddi_regs_map_free(&cfg_handle); 463 if (!sc->sc_clsz) 464 sc->sc_clsz = 16; 465 sc->sc_clsz = (sc->sc_clsz << 2); 466 sc->sc_dmabuf_sz = roundup(0x1000 + sizeof (struct ieee80211_frame) + 467 IEEE80211_MTU + IEEE80211_CRC_LEN + 468 (IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + 469 IEEE80211_WEP_CRCLEN), sc->sc_clsz); 470 /* 471 * Map operating registers 472 */ 473 err = ddi_regs_map_setup(dip, 1, &sc->sc_base, 474 0, 0, &wpi_reg_accattr, &sc->sc_handle); 475 if (err != DDI_SUCCESS) { 476 cmn_err(CE_WARN, 477 "wpi_attach(): failed to map device regs\n"); 478 goto attach_fail2; 479 } 480 481 /* 482 * Allocate shared page. 483 */ 484 err = wpi_alloc_shared(sc); 485 if (err != DDI_SUCCESS) { 486 cmn_err(CE_WARN, "failed to allocate shared page\n"); 487 goto attach_fail3; 488 } 489 490 /* 491 * Get the hw conf, including MAC address, then init all rings. 492 */ 493 wpi_read_eeprom(sc); 494 err = wpi_ring_init(sc); 495 if (err != DDI_SUCCESS) { 496 cmn_err(CE_WARN, "wpi_attach(): " 497 "failed to allocate and initialize ring\n"); 498 goto attach_fail4; 499 } 500 501 sc->sc_hdr = (const wpi_firmware_hdr_t *)wpi_fw_bin; 502 503 /* firmware image layout: |HDR|<--TEXT-->|<--DATA-->|<--BOOT-->| */ 504 sc->sc_text = (const char *)(sc->sc_hdr + 1); 505 sc->sc_data = sc->sc_text + LE_32(sc->sc_hdr->textsz); 506 sc->sc_boot = sc->sc_data + LE_32(sc->sc_hdr->datasz); 507 err = wpi_alloc_fw_dma(sc); 508 if (err != DDI_SUCCESS) { 509 cmn_err(CE_WARN, "wpi_attach(): " 510 "failed to allocate firmware dma\n"); 511 goto attach_fail5; 512 } 513 514 /* 515 * Initialize mutexs and condvars 516 */ 517 err = ddi_get_iblock_cookie(dip, 0, &sc->sc_iblk); 518 if (err != DDI_SUCCESS) { 519 cmn_err(CE_WARN, 520 "wpi_attach(): failed to do ddi_get_iblock_cookie()\n"); 521 goto attach_fail6; 522 } 523 mutex_init(&sc->sc_glock, NULL, MUTEX_DRIVER, sc->sc_iblk); 524 mutex_init(&sc->sc_tx_lock, NULL, MUTEX_DRIVER, sc->sc_iblk); 525 cv_init(&sc->sc_fw_cv, NULL, CV_DRIVER, NULL); 526 cv_init(&sc->sc_cmd_cv, NULL, CV_DRIVER, NULL); 527 528 /* 529 * initialize the mfthread 530 */ 531 mutex_init(&sc->sc_mt_lock, NULL, MUTEX_DRIVER, 532 (void *) sc->sc_iblk); 533 cv_init(&sc->sc_mt_cv, NULL, CV_DRIVER, NULL); 534 sc->sc_mf_thread = NULL; 535 sc->sc_mf_thread_switch = 0; 536 /* 537 * Initialize the wifi part, which will be used by 538 * generic layer 539 */ 540 ic = &sc->sc_ic; 541 ic->ic_phytype = IEEE80211_T_OFDM; 542 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 543 ic->ic_state = IEEE80211_S_INIT; 544 ic->ic_maxrssi = 70; /* experimental number */ 545 ic->ic_caps = IEEE80211_C_SHPREAMBLE | IEEE80211_C_TXPMGT | 546 IEEE80211_C_PMGT | IEEE80211_C_SHSLOT; 547 548 /* 549 * use software WEP and TKIP, hardware CCMP; 550 */ 551 ic->ic_caps |= IEEE80211_C_AES_CCM; 552 ic->ic_caps |= IEEE80211_C_WPA; /* Support WPA/WPA2 */ 553 554 /* set supported .11b and .11g rates */ 555 ic->ic_sup_rates[IEEE80211_MODE_11B] = wpi_rateset_11b; 556 ic->ic_sup_rates[IEEE80211_MODE_11G] = wpi_rateset_11g; 557 558 /* set supported .11b and .11g channels (1 through 14) */ 559 for (i = 1; i <= 14; i++) { 560 ic->ic_sup_channels[i].ich_freq = 561 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); 562 ic->ic_sup_channels[i].ich_flags = 563 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | 564 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ | 565 IEEE80211_CHAN_PASSIVE; 566 } 567 ic->ic_ibss_chan = &ic->ic_sup_channels[0]; 568 ic->ic_xmit = wpi_send; 569 /* 570 * init Wifi layer 571 */ 572 ieee80211_attach(ic); 573 574 /* register WPA door */ 575 ieee80211_register_door(ic, ddi_driver_name(dip), 576 ddi_get_instance(dip)); 577 578 /* 579 * Override 80211 default routines 580 */ 581 sc->sc_newstate = ic->ic_newstate; 582 ic->ic_newstate = wpi_newstate; 583 ic->ic_node_alloc = wpi_node_alloc; 584 ic->ic_node_free = wpi_node_free; 585 ic->ic_crypto.cs_key_set = wpi_key_set; 586 ieee80211_media_init(ic); 587 /* 588 * initialize default tx key 589 */ 590 ic->ic_def_txkey = 0; 591 592 err = ddi_add_softintr(dip, DDI_SOFTINT_LOW, 593 &sc->sc_notif_softint_id, &sc->sc_iblk, NULL, wpi_notif_softintr, 594 (caddr_t)sc); 595 if (err != DDI_SUCCESS) { 596 cmn_err(CE_WARN, 597 "wpi_attach(): failed to do ddi_add_softintr()\n"); 598 goto attach_fail7; 599 } 600 601 /* 602 * Add the interrupt handler 603 */ 604 err = ddi_add_intr(dip, 0, &sc->sc_iblk, NULL, 605 wpi_intr, (caddr_t)sc); 606 if (err != DDI_SUCCESS) { 607 cmn_err(CE_WARN, 608 "wpi_attach(): failed to do ddi_add_intr()\n"); 609 goto attach_fail8; 610 } 611 612 /* 613 * Initialize pointer to device specific functions 614 */ 615 wd.wd_secalloc = WIFI_SEC_NONE; 616 wd.wd_opmode = ic->ic_opmode; 617 IEEE80211_ADDR_COPY(wd.wd_bssid, ic->ic_macaddr); 618 619 macp = mac_alloc(MAC_VERSION); 620 if (err != DDI_SUCCESS) { 621 cmn_err(CE_WARN, 622 "wpi_attach(): failed to do mac_alloc()\n"); 623 goto attach_fail9; 624 } 625 626 macp->m_type_ident = MAC_PLUGIN_IDENT_WIFI; 627 macp->m_driver = sc; 628 macp->m_dip = dip; 629 macp->m_src_addr = ic->ic_macaddr; 630 macp->m_callbacks = &wpi_m_callbacks; 631 macp->m_min_sdu = 0; 632 macp->m_max_sdu = IEEE80211_MTU; 633 macp->m_pdata = &wd; 634 macp->m_pdata_size = sizeof (wd); 635 636 /* 637 * Register the macp to mac 638 */ 639 err = mac_register(macp, &ic->ic_mach); 640 mac_free(macp); 641 if (err != DDI_SUCCESS) { 642 cmn_err(CE_WARN, 643 "wpi_attach(): failed to do mac_register()\n"); 644 goto attach_fail9; 645 } 646 647 /* 648 * Create minor node of type DDI_NT_NET_WIFI 649 */ 650 (void) snprintf(strbuf, sizeof (strbuf), "wpi%d", instance); 651 err = ddi_create_minor_node(dip, strbuf, S_IFCHR, 652 instance + 1, DDI_NT_NET_WIFI, 0); 653 if (err != DDI_SUCCESS) 654 cmn_err(CE_WARN, 655 "wpi_attach(): failed to do ddi_create_minor_node()\n"); 656 657 /* 658 * Notify link is down now 659 */ 660 mac_link_update(ic->ic_mach, LINK_STATE_DOWN); 661 662 /* 663 * create the mf thread to handle the link status, 664 * recovery fatal error, etc. 665 */ 666 667 sc->sc_mf_thread_switch = 1; 668 if (sc->sc_mf_thread == NULL) 669 sc->sc_mf_thread = thread_create((caddr_t)NULL, 0, 670 wpi_thread, sc, 0, &p0, TS_RUN, minclsyspri); 671 672 sc->sc_flags |= WPI_F_ATTACHED; 673 674 return (DDI_SUCCESS); 675 attach_fail9: 676 ddi_remove_intr(dip, 0, sc->sc_iblk); 677 attach_fail8: 678 ddi_remove_softintr(sc->sc_notif_softint_id); 679 sc->sc_notif_softint_id = NULL; 680 attach_fail7: 681 ieee80211_detach(ic); 682 wpi_destroy_locks(sc); 683 attach_fail6: 684 wpi_free_fw_dma(sc); 685 attach_fail5: 686 wpi_ring_free(sc); 687 attach_fail4: 688 wpi_free_shared(sc); 689 attach_fail3: 690 ddi_regs_map_free(&sc->sc_handle); 691 attach_fail2: 692 ddi_soft_state_free(wpi_soft_state_p, instance); 693 attach_fail1: 694 return (err); 695 } 696 697 int 698 wpi_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 699 { 700 wpi_sc_t *sc; 701 int err; 702 703 sc = ddi_get_soft_state(wpi_soft_state_p, ddi_get_instance(dip)); 704 ASSERT(sc != NULL); 705 706 switch (cmd) { 707 case DDI_DETACH: 708 break; 709 case DDI_SUSPEND: 710 mutex_enter(&sc->sc_glock); 711 sc->sc_flags |= WPI_F_SUSPEND; 712 mutex_exit(&sc->sc_glock); 713 714 if (sc->sc_flags & WPI_F_RUNNING) { 715 wpi_stop(sc); 716 } 717 718 WPI_DBG((WPI_DEBUG_RESUME, "wpi: suspend \n")); 719 return (DDI_SUCCESS); 720 default: 721 return (DDI_FAILURE); 722 } 723 if (!(sc->sc_flags & WPI_F_ATTACHED)) 724 return (DDI_FAILURE); 725 726 err = mac_disable(sc->sc_ic.ic_mach); 727 if (err != DDI_SUCCESS) 728 return (err); 729 730 /* 731 * Destroy the mf_thread 732 */ 733 mutex_enter(&sc->sc_mt_lock); 734 sc->sc_mf_thread_switch = 0; 735 while (sc->sc_mf_thread != NULL) { 736 if (cv_wait_sig(&sc->sc_mt_cv, &sc->sc_mt_lock) == 0) 737 break; 738 } 739 mutex_exit(&sc->sc_mt_lock); 740 741 wpi_stop(sc); 742 743 /* 744 * Unregiste from the MAC layer subsystem 745 */ 746 (void) mac_unregister(sc->sc_ic.ic_mach); 747 748 mutex_enter(&sc->sc_glock); 749 wpi_free_fw_dma(sc); 750 wpi_ring_free(sc); 751 wpi_free_shared(sc); 752 mutex_exit(&sc->sc_glock); 753 754 ddi_remove_intr(dip, 0, sc->sc_iblk); 755 ddi_remove_softintr(sc->sc_notif_softint_id); 756 sc->sc_notif_softint_id = NULL; 757 758 /* 759 * detach ieee80211 760 */ 761 ieee80211_detach(&sc->sc_ic); 762 763 wpi_destroy_locks(sc); 764 765 ddi_regs_map_free(&sc->sc_handle); 766 ddi_remove_minor_node(dip, NULL); 767 ddi_soft_state_free(wpi_soft_state_p, ddi_get_instance(dip)); 768 769 return (DDI_SUCCESS); 770 } 771 772 static void 773 wpi_destroy_locks(wpi_sc_t *sc) 774 { 775 cv_destroy(&sc->sc_mt_cv); 776 mutex_destroy(&sc->sc_mt_lock); 777 cv_destroy(&sc->sc_cmd_cv); 778 cv_destroy(&sc->sc_fw_cv); 779 mutex_destroy(&sc->sc_tx_lock); 780 mutex_destroy(&sc->sc_glock); 781 } 782 783 /* 784 * Allocate an area of memory and a DMA handle for accessing it 785 */ 786 static int 787 wpi_alloc_dma_mem(wpi_sc_t *sc, size_t memsize, ddi_dma_attr_t *dma_attr_p, 788 ddi_device_acc_attr_t *acc_attr_p, uint_t dma_flags, wpi_dma_t *dma_p) 789 { 790 caddr_t vaddr; 791 int err; 792 793 /* 794 * Allocate handle 795 */ 796 err = ddi_dma_alloc_handle(sc->sc_dip, dma_attr_p, 797 DDI_DMA_SLEEP, NULL, &dma_p->dma_hdl); 798 if (err != DDI_SUCCESS) { 799 dma_p->dma_hdl = NULL; 800 return (DDI_FAILURE); 801 } 802 803 /* 804 * Allocate memory 805 */ 806 err = ddi_dma_mem_alloc(dma_p->dma_hdl, memsize, acc_attr_p, 807 dma_flags & (DDI_DMA_CONSISTENT | DDI_DMA_STREAMING), 808 DDI_DMA_SLEEP, NULL, &vaddr, &dma_p->alength, &dma_p->acc_hdl); 809 if (err != DDI_SUCCESS) { 810 ddi_dma_free_handle(&dma_p->dma_hdl); 811 dma_p->dma_hdl = NULL; 812 dma_p->acc_hdl = NULL; 813 return (DDI_FAILURE); 814 } 815 816 /* 817 * Bind the two together 818 */ 819 dma_p->mem_va = vaddr; 820 err = ddi_dma_addr_bind_handle(dma_p->dma_hdl, NULL, 821 vaddr, dma_p->alength, dma_flags, DDI_DMA_SLEEP, NULL, 822 &dma_p->cookie, &dma_p->ncookies); 823 if (err != DDI_DMA_MAPPED) { 824 ddi_dma_mem_free(&dma_p->acc_hdl); 825 ddi_dma_free_handle(&dma_p->dma_hdl); 826 dma_p->acc_hdl = NULL; 827 dma_p->dma_hdl = NULL; 828 return (DDI_FAILURE); 829 } 830 831 dma_p->nslots = ~0U; 832 dma_p->size = ~0U; 833 dma_p->token = ~0U; 834 dma_p->offset = 0; 835 return (DDI_SUCCESS); 836 } 837 838 /* 839 * Free one allocated area of DMAable memory 840 */ 841 static void 842 wpi_free_dma_mem(wpi_dma_t *dma_p) 843 { 844 if (dma_p->dma_hdl != NULL) { 845 if (dma_p->ncookies) { 846 (void) ddi_dma_unbind_handle(dma_p->dma_hdl); 847 dma_p->ncookies = 0; 848 } 849 ddi_dma_free_handle(&dma_p->dma_hdl); 850 dma_p->dma_hdl = NULL; 851 } 852 853 if (dma_p->acc_hdl != NULL) { 854 ddi_dma_mem_free(&dma_p->acc_hdl); 855 dma_p->acc_hdl = NULL; 856 } 857 } 858 859 /* 860 * Allocate an area of dma memory for firmware load. 861 * Idealy, this allocation should be a one time action, that is, 862 * the memory will be freed after the firmware is uploaded to the 863 * card. but since a recovery mechanism for the fatal firmware need 864 * reload the firmware, and re-allocate dma at run time may be failed, 865 * so we allocate it at attach and keep it in the whole lifecycle of 866 * the driver. 867 */ 868 static int 869 wpi_alloc_fw_dma(wpi_sc_t *sc) 870 { 871 int i, err = DDI_SUCCESS; 872 wpi_dma_t *dma_p; 873 874 err = wpi_alloc_dma_mem(sc, LE_32(sc->sc_hdr->textsz), 875 &fw_buffer_dma_attr, &wpi_dma_accattr, 876 DDI_DMA_RDWR | DDI_DMA_CONSISTENT, 877 &sc->sc_dma_fw_text); 878 dma_p = &sc->sc_dma_fw_text; 879 WPI_DBG((WPI_DEBUG_DMA, "ncookies:%d addr1:%x size1:%x\n", 880 dma_p->ncookies, dma_p->cookie.dmac_address, 881 dma_p->cookie.dmac_size)); 882 if (err != DDI_SUCCESS) { 883 cmn_err(CE_WARN, "wpi_alloc_fw_dma(): failed to alloc" 884 "text dma memory"); 885 goto fail; 886 } 887 for (i = 0; i < dma_p->ncookies; i++) { 888 sc->sc_fw_text_cookie[i] = dma_p->cookie; 889 ddi_dma_nextcookie(dma_p->dma_hdl, &dma_p->cookie); 890 } 891 err = wpi_alloc_dma_mem(sc, LE_32(sc->sc_hdr->datasz), 892 &fw_buffer_dma_attr, &wpi_dma_accattr, 893 DDI_DMA_RDWR | DDI_DMA_CONSISTENT, 894 &sc->sc_dma_fw_data); 895 dma_p = &sc->sc_dma_fw_data; 896 WPI_DBG((WPI_DEBUG_DMA, "ncookies:%d addr1:%x size1:%x\n", 897 dma_p->ncookies, dma_p->cookie.dmac_address, 898 dma_p->cookie.dmac_size)); 899 if (err != DDI_SUCCESS) { 900 cmn_err(CE_WARN, "wpi_alloc_fw_dma(): failed to alloc" 901 "data dma memory"); 902 goto fail; 903 } 904 for (i = 0; i < dma_p->ncookies; i++) { 905 sc->sc_fw_data_cookie[i] = dma_p->cookie; 906 ddi_dma_nextcookie(dma_p->dma_hdl, &dma_p->cookie); 907 } 908 fail: 909 return (err); 910 } 911 912 static void 913 wpi_free_fw_dma(wpi_sc_t *sc) 914 { 915 wpi_free_dma_mem(&sc->sc_dma_fw_text); 916 wpi_free_dma_mem(&sc->sc_dma_fw_data); 917 } 918 919 /* 920 * Allocate a shared page between host and NIC. 921 */ 922 static int 923 wpi_alloc_shared(wpi_sc_t *sc) 924 { 925 int err = DDI_SUCCESS; 926 927 /* must be aligned on a 4K-page boundary */ 928 err = wpi_alloc_dma_mem(sc, sizeof (wpi_shared_t), 929 &sh_dma_attr, &wpi_dma_accattr, 930 DDI_DMA_RDWR | DDI_DMA_CONSISTENT, 931 &sc->sc_dma_sh); 932 if (err != DDI_SUCCESS) 933 goto fail; 934 sc->sc_shared = (wpi_shared_t *)sc->sc_dma_sh.mem_va; 935 return (err); 936 937 fail: 938 wpi_free_shared(sc); 939 return (err); 940 } 941 942 static void 943 wpi_free_shared(wpi_sc_t *sc) 944 { 945 wpi_free_dma_mem(&sc->sc_dma_sh); 946 } 947 948 static int 949 wpi_alloc_rx_ring(wpi_sc_t *sc) 950 { 951 wpi_rx_ring_t *ring; 952 wpi_rx_data_t *data; 953 int i, err = DDI_SUCCESS; 954 955 ring = &sc->sc_rxq; 956 ring->cur = 0; 957 958 err = wpi_alloc_dma_mem(sc, WPI_RX_RING_COUNT * sizeof (uint32_t), 959 &ring_desc_dma_attr, &wpi_dma_accattr, 960 DDI_DMA_RDWR | DDI_DMA_CONSISTENT, 961 &ring->dma_desc); 962 if (err != DDI_SUCCESS) { 963 WPI_DBG((WPI_DEBUG_DMA, "dma alloc rx ring desc failed\n")); 964 goto fail; 965 } 966 ring->desc = (uint32_t *)ring->dma_desc.mem_va; 967 968 /* 969 * Allocate Rx buffers. 970 */ 971 for (i = 0; i < WPI_RX_RING_COUNT; i++) { 972 data = &ring->data[i]; 973 err = wpi_alloc_dma_mem(sc, sc->sc_dmabuf_sz, 974 &rx_buffer_dma_attr, &wpi_dma_accattr, 975 DDI_DMA_READ | DDI_DMA_STREAMING, 976 &data->dma_data); 977 if (err != DDI_SUCCESS) { 978 WPI_DBG((WPI_DEBUG_DMA, "dma alloc rx ring buf[%d] " 979 "failed\n", i)); 980 goto fail; 981 } 982 983 ring->desc[i] = LE_32(data->dma_data.cookie.dmac_address); 984 } 985 986 WPI_DMA_SYNC(ring->dma_desc, DDI_DMA_SYNC_FORDEV); 987 988 return (err); 989 990 fail: 991 wpi_free_rx_ring(sc); 992 return (err); 993 } 994 995 static void 996 wpi_reset_rx_ring(wpi_sc_t *sc) 997 { 998 int ntries; 999 1000 wpi_mem_lock(sc); 1001 1002 WPI_WRITE(sc, WPI_RX_CONFIG, 0); 1003 for (ntries = 0; ntries < 2000; ntries++) { 1004 if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE) 1005 break; 1006 DELAY(1000); 1007 } 1008 if (ntries == 2000) 1009 WPI_DBG((WPI_DEBUG_DMA, "timeout resetting Rx ring\n")); 1010 1011 wpi_mem_unlock(sc); 1012 1013 sc->sc_rxq.cur = 0; 1014 } 1015 1016 static void 1017 wpi_free_rx_ring(wpi_sc_t *sc) 1018 { 1019 int i; 1020 1021 for (i = 0; i < WPI_RX_RING_COUNT; i++) { 1022 if (sc->sc_rxq.data[i].dma_data.dma_hdl) 1023 WPI_DMA_SYNC(sc->sc_rxq.data[i].dma_data, 1024 DDI_DMA_SYNC_FORCPU); 1025 wpi_free_dma_mem(&sc->sc_rxq.data[i].dma_data); 1026 } 1027 1028 if (sc->sc_rxq.dma_desc.dma_hdl) 1029 WPI_DMA_SYNC(sc->sc_rxq.dma_desc, DDI_DMA_SYNC_FORDEV); 1030 wpi_free_dma_mem(&sc->sc_rxq.dma_desc); 1031 } 1032 1033 static int 1034 wpi_alloc_tx_ring(wpi_sc_t *sc, wpi_tx_ring_t *ring, int count, int qid) 1035 { 1036 wpi_tx_data_t *data; 1037 wpi_tx_desc_t *desc_h; 1038 uint32_t paddr_desc_h; 1039 wpi_tx_cmd_t *cmd_h; 1040 uint32_t paddr_cmd_h; 1041 int i, err = DDI_SUCCESS; 1042 1043 ring->qid = qid; 1044 ring->count = count; 1045 ring->queued = 0; 1046 ring->cur = 0; 1047 1048 err = wpi_alloc_dma_mem(sc, count * sizeof (wpi_tx_desc_t), 1049 &ring_desc_dma_attr, &wpi_dma_accattr, 1050 DDI_DMA_RDWR | DDI_DMA_CONSISTENT, 1051 &ring->dma_desc); 1052 if (err != DDI_SUCCESS) { 1053 WPI_DBG((WPI_DEBUG_DMA, "dma alloc tx ring desc[%d] failed\n", 1054 qid)); 1055 goto fail; 1056 } 1057 1058 /* update shared page with ring's base address */ 1059 sc->sc_shared->txbase[qid] = ring->dma_desc.cookie.dmac_address; 1060 1061 desc_h = (wpi_tx_desc_t *)ring->dma_desc.mem_va; 1062 paddr_desc_h = ring->dma_desc.cookie.dmac_address; 1063 1064 err = wpi_alloc_dma_mem(sc, count * sizeof (wpi_tx_cmd_t), 1065 &tx_cmd_dma_attr, &wpi_dma_accattr, 1066 DDI_DMA_RDWR | DDI_DMA_CONSISTENT, 1067 &ring->dma_cmd); 1068 if (err != DDI_SUCCESS) { 1069 WPI_DBG((WPI_DEBUG_DMA, "dma alloc tx ring cmd[%d] failed\n", 1070 qid)); 1071 goto fail; 1072 } 1073 1074 cmd_h = (wpi_tx_cmd_t *)ring->dma_cmd.mem_va; 1075 paddr_cmd_h = ring->dma_cmd.cookie.dmac_address; 1076 1077 /* 1078 * Allocate Tx buffers. 1079 */ 1080 ring->data = kmem_zalloc(sizeof (wpi_tx_data_t) * count, KM_NOSLEEP); 1081 if (ring->data == NULL) { 1082 WPI_DBG((WPI_DEBUG_DMA, "could not allocate tx data slots\n")); 1083 goto fail; 1084 } 1085 1086 for (i = 0; i < count; i++) { 1087 data = &ring->data[i]; 1088 err = wpi_alloc_dma_mem(sc, sc->sc_dmabuf_sz, 1089 &tx_buffer_dma_attr, &wpi_dma_accattr, 1090 DDI_DMA_WRITE | DDI_DMA_STREAMING, 1091 &data->dma_data); 1092 if (err != DDI_SUCCESS) { 1093 WPI_DBG((WPI_DEBUG_DMA, "dma alloc tx ring buf[%d] " 1094 "failed\n", i)); 1095 goto fail; 1096 } 1097 1098 data->desc = desc_h + i; 1099 data->paddr_desc = paddr_desc_h + 1100 ((uintptr_t)data->desc - (uintptr_t)desc_h); 1101 data->cmd = cmd_h + i; 1102 data->paddr_cmd = paddr_cmd_h + 1103 ((uintptr_t)data->cmd - (uintptr_t)cmd_h); 1104 } 1105 1106 return (err); 1107 1108 fail: 1109 wpi_free_tx_ring(sc, ring); 1110 return (err); 1111 } 1112 1113 static void 1114 wpi_reset_tx_ring(wpi_sc_t *sc, wpi_tx_ring_t *ring) 1115 { 1116 wpi_tx_data_t *data; 1117 int i, ntries; 1118 1119 wpi_mem_lock(sc); 1120 1121 WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0); 1122 for (ntries = 0; ntries < 100; ntries++) { 1123 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid)) 1124 break; 1125 DELAY(10); 1126 } 1127 #ifdef DEBUG 1128 if (ntries == 100 && wpi_dbg_flags > 0) { 1129 WPI_DBG((WPI_DEBUG_DMA, "timeout resetting Tx ring %d\n", 1130 ring->qid)); 1131 } 1132 #endif 1133 wpi_mem_unlock(sc); 1134 1135 if (!(sc->sc_flags & WPI_F_QUIESCED)) { 1136 for (i = 0; i < ring->count; i++) { 1137 data = &ring->data[i]; 1138 WPI_DMA_SYNC(data->dma_data, DDI_DMA_SYNC_FORDEV); 1139 } 1140 } 1141 1142 ring->queued = 0; 1143 ring->cur = 0; 1144 } 1145 1146 /*ARGSUSED*/ 1147 static void 1148 wpi_free_tx_ring(wpi_sc_t *sc, wpi_tx_ring_t *ring) 1149 { 1150 int i; 1151 1152 if (ring->dma_desc.dma_hdl != NULL) 1153 WPI_DMA_SYNC(ring->dma_desc, DDI_DMA_SYNC_FORDEV); 1154 wpi_free_dma_mem(&ring->dma_desc); 1155 1156 if (ring->dma_cmd.dma_hdl != NULL) 1157 WPI_DMA_SYNC(ring->dma_cmd, DDI_DMA_SYNC_FORDEV); 1158 wpi_free_dma_mem(&ring->dma_cmd); 1159 1160 if (ring->data != NULL) { 1161 for (i = 0; i < ring->count; i++) { 1162 if (ring->data[i].dma_data.dma_hdl) 1163 WPI_DMA_SYNC(ring->data[i].dma_data, 1164 DDI_DMA_SYNC_FORDEV); 1165 wpi_free_dma_mem(&ring->data[i].dma_data); 1166 } 1167 kmem_free(ring->data, ring->count * sizeof (wpi_tx_data_t)); 1168 ring->data = NULL; 1169 } 1170 } 1171 1172 static int 1173 wpi_ring_init(wpi_sc_t *sc) 1174 { 1175 int i, err = DDI_SUCCESS; 1176 1177 for (i = 0; i < 4; i++) { 1178 err = wpi_alloc_tx_ring(sc, &sc->sc_txq[i], WPI_TX_RING_COUNT, 1179 i); 1180 if (err != DDI_SUCCESS) 1181 goto fail; 1182 } 1183 err = wpi_alloc_tx_ring(sc, &sc->sc_cmdq, WPI_CMD_RING_COUNT, 4); 1184 if (err != DDI_SUCCESS) 1185 goto fail; 1186 err = wpi_alloc_tx_ring(sc, &sc->sc_svcq, WPI_SVC_RING_COUNT, 5); 1187 if (err != DDI_SUCCESS) 1188 goto fail; 1189 err = wpi_alloc_rx_ring(sc); 1190 if (err != DDI_SUCCESS) 1191 goto fail; 1192 return (err); 1193 1194 fail: 1195 return (err); 1196 } 1197 1198 static void 1199 wpi_ring_free(wpi_sc_t *sc) 1200 { 1201 int i = 4; 1202 1203 wpi_free_rx_ring(sc); 1204 wpi_free_tx_ring(sc, &sc->sc_svcq); 1205 wpi_free_tx_ring(sc, &sc->sc_cmdq); 1206 while (--i >= 0) { 1207 wpi_free_tx_ring(sc, &sc->sc_txq[i]); 1208 } 1209 } 1210 1211 /* ARGSUSED */ 1212 static ieee80211_node_t * 1213 wpi_node_alloc(ieee80211com_t *ic) 1214 { 1215 wpi_amrr_t *amrr; 1216 1217 amrr = kmem_zalloc(sizeof (wpi_amrr_t), KM_SLEEP); 1218 if (amrr != NULL) 1219 wpi_amrr_init(amrr); 1220 return (&amrr->in); 1221 } 1222 1223 static void 1224 wpi_node_free(ieee80211_node_t *in) 1225 { 1226 ieee80211com_t *ic = in->in_ic; 1227 1228 ic->ic_node_cleanup(in); 1229 if (in->in_wpa_ie != NULL) 1230 ieee80211_free(in->in_wpa_ie); 1231 kmem_free(in, sizeof (wpi_amrr_t)); 1232 } 1233 1234 /*ARGSUSED*/ 1235 static int 1236 wpi_newstate(ieee80211com_t *ic, enum ieee80211_state nstate, int arg) 1237 { 1238 wpi_sc_t *sc = (wpi_sc_t *)ic; 1239 ieee80211_node_t *in = ic->ic_bss; 1240 enum ieee80211_state ostate; 1241 int i, err = WPI_SUCCESS; 1242 1243 mutex_enter(&sc->sc_glock); 1244 ostate = ic->ic_state; 1245 switch (nstate) { 1246 case IEEE80211_S_SCAN: 1247 switch (ostate) { 1248 case IEEE80211_S_INIT: 1249 { 1250 wpi_node_t node; 1251 1252 sc->sc_flags |= WPI_F_SCANNING; 1253 sc->sc_scan_next = 0; 1254 1255 /* make the link LED blink while we're scanning */ 1256 wpi_set_led(sc, WPI_LED_LINK, 20, 2); 1257 1258 /* 1259 * clear association to receive beacons from all 1260 * BSS'es 1261 */ 1262 sc->sc_config.state = 0; 1263 sc->sc_config.filter &= ~LE_32(WPI_FILTER_BSS); 1264 1265 WPI_DBG((WPI_DEBUG_80211, "config chan %d flags %x " 1266 "filter %x\n", 1267 sc->sc_config.chan, sc->sc_config.flags, 1268 sc->sc_config.filter)); 1269 1270 err = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->sc_config, 1271 sizeof (wpi_config_t), 1); 1272 if (err != WPI_SUCCESS) { 1273 cmn_err(CE_WARN, 1274 "could not clear association\n"); 1275 sc->sc_flags &= ~WPI_F_SCANNING; 1276 mutex_exit(&sc->sc_glock); 1277 return (err); 1278 } 1279 1280 /* add broadcast node to send probe request */ 1281 (void) memset(&node, 0, sizeof (node)); 1282 (void) memset(&node.bssid, 0xff, IEEE80211_ADDR_LEN); 1283 node.id = WPI_ID_BROADCAST; 1284 1285 err = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, 1286 sizeof (node), 1); 1287 if (err != WPI_SUCCESS) { 1288 cmn_err(CE_WARN, 1289 "could not add broadcast node\n"); 1290 sc->sc_flags &= ~WPI_F_SCANNING; 1291 mutex_exit(&sc->sc_glock); 1292 return (err); 1293 } 1294 break; 1295 } 1296 case IEEE80211_S_SCAN: 1297 mutex_exit(&sc->sc_glock); 1298 /* step to next channel before actual FW scan */ 1299 err = sc->sc_newstate(ic, nstate, arg); 1300 mutex_enter(&sc->sc_glock); 1301 if ((err != 0) || ((err = wpi_scan(sc)) != 0)) { 1302 cmn_err(CE_WARN, 1303 "could not initiate scan\n"); 1304 sc->sc_flags &= ~WPI_F_SCANNING; 1305 ieee80211_cancel_scan(ic); 1306 } 1307 mutex_exit(&sc->sc_glock); 1308 return (err); 1309 default: 1310 break; 1311 } 1312 sc->sc_clk = 0; 1313 break; 1314 1315 case IEEE80211_S_AUTH: 1316 if (ostate == IEEE80211_S_SCAN) { 1317 sc->sc_flags &= ~WPI_F_SCANNING; 1318 } 1319 1320 /* reset state to handle reassociations correctly */ 1321 sc->sc_config.state = 0; 1322 sc->sc_config.filter &= ~LE_32(WPI_FILTER_BSS); 1323 1324 if ((err = wpi_auth(sc)) != 0) { 1325 WPI_DBG((WPI_DEBUG_80211, 1326 "could not send authentication request\n")); 1327 mutex_exit(&sc->sc_glock); 1328 return (err); 1329 } 1330 break; 1331 1332 case IEEE80211_S_RUN: 1333 if (ostate == IEEE80211_S_SCAN) { 1334 sc->sc_flags &= ~WPI_F_SCANNING; 1335 } 1336 1337 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 1338 /* link LED blinks while monitoring */ 1339 wpi_set_led(sc, WPI_LED_LINK, 5, 5); 1340 break; 1341 } 1342 1343 if (ic->ic_opmode != IEEE80211_M_STA) { 1344 (void) wpi_auth(sc); 1345 /* need setup beacon here */ 1346 } 1347 WPI_DBG((WPI_DEBUG_80211, "wpi: associated.")); 1348 1349 /* update adapter's configuration */ 1350 sc->sc_config.state = LE_16(WPI_CONFIG_ASSOCIATED); 1351 /* short preamble/slot time are negotiated when associating */ 1352 sc->sc_config.flags &= ~LE_32(WPI_CONFIG_SHPREAMBLE | 1353 WPI_CONFIG_SHSLOT); 1354 if (ic->ic_flags & IEEE80211_F_SHSLOT) 1355 sc->sc_config.flags |= LE_32(WPI_CONFIG_SHSLOT); 1356 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 1357 sc->sc_config.flags |= LE_32(WPI_CONFIG_SHPREAMBLE); 1358 sc->sc_config.filter |= LE_32(WPI_FILTER_BSS); 1359 if (ic->ic_opmode != IEEE80211_M_STA) 1360 sc->sc_config.filter |= LE_32(WPI_FILTER_BEACON); 1361 1362 WPI_DBG((WPI_DEBUG_80211, "config chan %d flags %x\n", 1363 sc->sc_config.chan, sc->sc_config.flags)); 1364 err = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->sc_config, 1365 sizeof (wpi_config_t), 1); 1366 if (err != WPI_SUCCESS) { 1367 WPI_DBG((WPI_DEBUG_80211, 1368 "could not update configuration\n")); 1369 mutex_exit(&sc->sc_glock); 1370 return (err); 1371 } 1372 1373 /* start automatic rate control */ 1374 mutex_enter(&sc->sc_mt_lock); 1375 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) { 1376 sc->sc_flags |= WPI_F_RATE_AUTO_CTL; 1377 /* set rate to some reasonable initial value */ 1378 i = in->in_rates.ir_nrates - 1; 1379 while (i > 0 && IEEE80211_RATE(i) > 72) 1380 i--; 1381 in->in_txrate = i; 1382 } else { 1383 sc->sc_flags &= ~WPI_F_RATE_AUTO_CTL; 1384 } 1385 mutex_exit(&sc->sc_mt_lock); 1386 1387 /* link LED always on while associated */ 1388 wpi_set_led(sc, WPI_LED_LINK, 0, 1); 1389 break; 1390 1391 case IEEE80211_S_INIT: 1392 sc->sc_flags &= ~WPI_F_SCANNING; 1393 break; 1394 1395 case IEEE80211_S_ASSOC: 1396 sc->sc_flags &= ~WPI_F_SCANNING; 1397 break; 1398 } 1399 1400 mutex_exit(&sc->sc_glock); 1401 return (sc->sc_newstate(ic, nstate, arg)); 1402 } 1403 1404 /*ARGSUSED*/ 1405 static int wpi_key_set(ieee80211com_t *ic, const struct ieee80211_key *k, 1406 const uint8_t mac[IEEE80211_ADDR_LEN]) 1407 { 1408 wpi_sc_t *sc = (wpi_sc_t *)ic; 1409 wpi_node_t node; 1410 int err; 1411 1412 switch (k->wk_cipher->ic_cipher) { 1413 case IEEE80211_CIPHER_WEP: 1414 case IEEE80211_CIPHER_TKIP: 1415 return (1); /* sofeware do it. */ 1416 case IEEE80211_CIPHER_AES_CCM: 1417 break; 1418 default: 1419 return (0); 1420 } 1421 sc->sc_config.filter &= ~(WPI_FILTER_NODECRYPTUNI | 1422 WPI_FILTER_NODECRYPTMUL); 1423 1424 mutex_enter(&sc->sc_glock); 1425 1426 /* update ap/multicast node */ 1427 (void) memset(&node, 0, sizeof (node)); 1428 if (IEEE80211_IS_MULTICAST(mac)) { 1429 (void) memset(node.bssid, 0xff, 6); 1430 node.id = WPI_ID_BROADCAST; 1431 } else { 1432 IEEE80211_ADDR_COPY(node.bssid, ic->ic_bss->in_bssid); 1433 node.id = WPI_ID_BSS; 1434 } 1435 if (k->wk_flags & IEEE80211_KEY_XMIT) { 1436 node.key_flags = 0; 1437 node.keyp = k->wk_keyix; 1438 } else { 1439 node.key_flags = (1 << 14); 1440 node.keyp = k->wk_keyix + 4; 1441 } 1442 (void) memcpy(node.key, k->wk_key, k->wk_keylen); 1443 node.key_flags |= (2 | (1 << 3) | (k->wk_keyix << 8)); 1444 node.sta_mask = 1; 1445 node.control = 1; 1446 err = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof (node), 1); 1447 if (err != WPI_SUCCESS) { 1448 cmn_err(CE_WARN, "wpi_key_set():" 1449 "failed to update ap node\n"); 1450 mutex_exit(&sc->sc_glock); 1451 return (0); 1452 } 1453 mutex_exit(&sc->sc_glock); 1454 return (1); 1455 } 1456 1457 /* 1458 * Grab exclusive access to NIC memory. 1459 */ 1460 static void 1461 wpi_mem_lock(wpi_sc_t *sc) 1462 { 1463 uint32_t tmp; 1464 int ntries; 1465 1466 tmp = WPI_READ(sc, WPI_GPIO_CTL); 1467 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC); 1468 1469 /* spin until we actually get the lock */ 1470 for (ntries = 0; ntries < 1000; ntries++) { 1471 if ((WPI_READ(sc, WPI_GPIO_CTL) & 1472 (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK) 1473 break; 1474 DELAY(10); 1475 } 1476 if (ntries == 1000) 1477 WPI_DBG((WPI_DEBUG_PIO, "could not lock memory\n")); 1478 } 1479 1480 /* 1481 * Release lock on NIC memory. 1482 */ 1483 static void 1484 wpi_mem_unlock(wpi_sc_t *sc) 1485 { 1486 uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL); 1487 WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC); 1488 } 1489 1490 static uint32_t 1491 wpi_mem_read(wpi_sc_t *sc, uint16_t addr) 1492 { 1493 WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr); 1494 return (WPI_READ(sc, WPI_READ_MEM_DATA)); 1495 } 1496 1497 static void 1498 wpi_mem_write(wpi_sc_t *sc, uint16_t addr, uint32_t data) 1499 { 1500 WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr); 1501 WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data); 1502 } 1503 1504 static void 1505 wpi_mem_write_region_4(wpi_sc_t *sc, uint16_t addr, 1506 const uint32_t *data, int wlen) 1507 { 1508 for (; wlen > 0; wlen--, data++, addr += 4) 1509 wpi_mem_write(sc, addr, *data); 1510 } 1511 1512 /* 1513 * Read 16 bits from the EEPROM. We access EEPROM through the MAC instead of 1514 * using the traditional bit-bang method. 1515 */ 1516 static uint16_t 1517 wpi_read_prom_word(wpi_sc_t *sc, uint32_t addr) 1518 { 1519 uint32_t val; 1520 int ntries; 1521 1522 WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2); 1523 1524 wpi_mem_lock(sc); 1525 for (ntries = 0; ntries < 10; ntries++) { 1526 if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY) 1527 break; 1528 DELAY(10); 1529 } 1530 wpi_mem_unlock(sc); 1531 1532 if (ntries == 10) { 1533 WPI_DBG((WPI_DEBUG_PIO, "could not read EEPROM\n")); 1534 return (0xdead); 1535 } 1536 return (val >> 16); 1537 } 1538 1539 /* 1540 * The firmware boot code is small and is intended to be copied directly into 1541 * the NIC internal memory. 1542 */ 1543 static int 1544 wpi_load_microcode(wpi_sc_t *sc) 1545 { 1546 const char *ucode; 1547 int size; 1548 1549 ucode = sc->sc_boot; 1550 size = LE_32(sc->sc_hdr->bootsz); 1551 /* check that microcode size is a multiple of 4 */ 1552 if (size & 3) 1553 return (EINVAL); 1554 1555 size /= sizeof (uint32_t); 1556 1557 wpi_mem_lock(sc); 1558 1559 /* copy microcode image into NIC memory */ 1560 wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE, (const uint32_t *)ucode, 1561 size); 1562 1563 wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0); 1564 wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT); 1565 wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size); 1566 1567 /* run microcode */ 1568 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN); 1569 1570 wpi_mem_unlock(sc); 1571 1572 return (WPI_SUCCESS); 1573 } 1574 1575 /* 1576 * The firmware text and data segments are transferred to the NIC using DMA. 1577 * The driver just copies the firmware into DMA-safe memory and tells the NIC 1578 * where to find it. Once the NIC has copied the firmware into its internal 1579 * memory, we can free our local copy in the driver. 1580 */ 1581 static int 1582 wpi_load_firmware(wpi_sc_t *sc, uint32_t target) 1583 { 1584 const char *fw; 1585 int size; 1586 wpi_dma_t *dma_p; 1587 ddi_dma_cookie_t *cookie; 1588 wpi_tx_desc_t desc; 1589 int i, ntries, err = WPI_SUCCESS; 1590 1591 /* only text and data here */ 1592 if (target == WPI_FW_TEXT) { 1593 fw = sc->sc_text; 1594 size = LE_32(sc->sc_hdr->textsz); 1595 dma_p = &sc->sc_dma_fw_text; 1596 cookie = sc->sc_fw_text_cookie; 1597 } else { 1598 fw = sc->sc_data; 1599 size = LE_32(sc->sc_hdr->datasz); 1600 dma_p = &sc->sc_dma_fw_data; 1601 cookie = sc->sc_fw_data_cookie; 1602 } 1603 1604 /* copy firmware image to DMA-safe memory */ 1605 (void) memcpy(dma_p->mem_va, fw, size); 1606 1607 /* make sure the adapter will get up-to-date values */ 1608 (void) ddi_dma_sync(dma_p->dma_hdl, 0, size, DDI_DMA_SYNC_FORDEV); 1609 1610 (void) memset(&desc, 0, sizeof (desc)); 1611 desc.flags = LE_32(WPI_PAD32(size) << 28 | dma_p->ncookies << 24); 1612 for (i = 0; i < dma_p->ncookies; i++) { 1613 WPI_DBG((WPI_DEBUG_DMA, "cookie%d addr:%x size:%x\n", 1614 i, cookie[i].dmac_address, cookie[i].dmac_size)); 1615 desc.segs[i].addr = cookie[i].dmac_address; 1616 desc.segs[i].len = (uint32_t)cookie[i].dmac_size; 1617 } 1618 1619 wpi_mem_lock(sc); 1620 1621 /* tell adapter where to copy image in its internal memory */ 1622 WPI_WRITE(sc, WPI_FW_TARGET, target); 1623 1624 WPI_WRITE(sc, WPI_TX_CONFIG(6), 0); 1625 1626 /* copy firmware descriptor into NIC memory */ 1627 WPI_WRITE_REGION_4(sc, WPI_TX_DESC(6), (uint32_t *)&desc, 1628 sizeof desc / sizeof (uint32_t)); 1629 1630 WPI_WRITE(sc, WPI_TX_CREDIT(6), 0xfffff); 1631 WPI_WRITE(sc, WPI_TX_STATE(6), 0x4001); 1632 WPI_WRITE(sc, WPI_TX_CONFIG(6), 0x80000001); 1633 1634 /* wait while the adapter is busy copying the firmware */ 1635 for (ntries = 0; ntries < 100; ntries++) { 1636 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(6)) 1637 break; 1638 DELAY(1000); 1639 } 1640 if (ntries == 100) { 1641 WPI_DBG((WPI_DEBUG_FW, "timeout transferring firmware\n")); 1642 err = ETIMEDOUT; 1643 } 1644 1645 WPI_WRITE(sc, WPI_TX_CREDIT(6), 0); 1646 1647 wpi_mem_unlock(sc); 1648 1649 return (err); 1650 } 1651 1652 /*ARGSUSED*/ 1653 static void 1654 wpi_rx_intr(wpi_sc_t *sc, wpi_rx_desc_t *desc, wpi_rx_data_t *data) 1655 { 1656 ieee80211com_t *ic = &sc->sc_ic; 1657 wpi_rx_ring_t *ring = &sc->sc_rxq; 1658 wpi_rx_stat_t *stat; 1659 wpi_rx_head_t *head; 1660 wpi_rx_tail_t *tail; 1661 ieee80211_node_t *in; 1662 struct ieee80211_frame *wh; 1663 mblk_t *mp; 1664 uint16_t len; 1665 1666 stat = (wpi_rx_stat_t *)(desc + 1); 1667 1668 if (stat->len > WPI_STAT_MAXLEN) { 1669 WPI_DBG((WPI_DEBUG_RX, "invalid rx statistic header\n")); 1670 return; 1671 } 1672 1673 head = (wpi_rx_head_t *)((caddr_t)(stat + 1) + stat->len); 1674 tail = (wpi_rx_tail_t *)((caddr_t)(head + 1) + LE_16(head->len)); 1675 1676 len = LE_16(head->len); 1677 1678 WPI_DBG((WPI_DEBUG_RX, "rx intr: idx=%d len=%d stat len=%d rssi=%d " 1679 "rate=%x chan=%d tstamp=%llu", ring->cur, LE_32(desc->len), 1680 len, (int8_t)stat->rssi, head->rate, head->chan, 1681 LE_64(tail->tstamp))); 1682 1683 if ((len < 20) || (len > sc->sc_dmabuf_sz)) { 1684 sc->sc_rx_err++; 1685 return; 1686 } 1687 1688 /* 1689 * Discard Rx frames with bad CRC early 1690 */ 1691 if ((LE_32(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) { 1692 WPI_DBG((WPI_DEBUG_RX, "rx tail flags error %x\n", 1693 LE_32(tail->flags))); 1694 sc->sc_rx_err++; 1695 return; 1696 } 1697 1698 /* update Rx descriptor */ 1699 /* ring->desc[ring->cur] = LE_32(data->dma_data.cookie.dmac_address); */ 1700 1701 #ifdef WPI_BPF 1702 #ifndef WPI_CURRENT 1703 if (sc->sc_drvbpf != NULL) { 1704 #else 1705 if (bpf_peers_present(sc->sc_drvbpf)) { 1706 #endif 1707 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap; 1708 1709 tap->wr_flags = 0; 1710 tap->wr_rate = head->rate; 1711 tap->wr_chan_freq = 1712 LE_16(ic->ic_channels[head->chan].ic_freq); 1713 tap->wr_chan_flags = 1714 LE_16(ic->ic_channels[head->chan].ic_flags); 1715 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET); 1716 tap->wr_dbm_antnoise = (int8_t)LE_16(stat->noise); 1717 tap->wr_tsft = tail->tstamp; 1718 tap->wr_antenna = (LE_16(head->flags) >> 4) & 0xf; 1719 switch (head->rate) { 1720 /* CCK rates */ 1721 case 10: tap->wr_rate = 2; break; 1722 case 20: tap->wr_rate = 4; break; 1723 case 55: tap->wr_rate = 11; break; 1724 case 110: tap->wr_rate = 22; break; 1725 /* OFDM rates */ 1726 case 0xd: tap->wr_rate = 12; break; 1727 case 0xf: tap->wr_rate = 18; break; 1728 case 0x5: tap->wr_rate = 24; break; 1729 case 0x7: tap->wr_rate = 36; break; 1730 case 0x9: tap->wr_rate = 48; break; 1731 case 0xb: tap->wr_rate = 72; break; 1732 case 0x1: tap->wr_rate = 96; break; 1733 case 0x3: tap->wr_rate = 108; break; 1734 /* unknown rate: should not happen */ 1735 default: tap->wr_rate = 0; 1736 } 1737 if (LE_16(head->flags) & 0x4) 1738 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 1739 1740 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m); 1741 } 1742 #endif 1743 /* grab a reference to the source node */ 1744 wh = (struct ieee80211_frame *)(head + 1); 1745 1746 #ifdef DEBUG 1747 if (wpi_dbg_flags & WPI_DEBUG_RX) 1748 ieee80211_dump_pkt((uint8_t *)wh, len, 0, 0); 1749 #endif 1750 1751 in = ieee80211_find_rxnode(ic, wh); 1752 mp = allocb(len, BPRI_MED); 1753 if (mp) { 1754 (void) memcpy(mp->b_wptr, wh, len); 1755 mp->b_wptr += len; 1756 1757 /* send the frame to the 802.11 layer */ 1758 (void) ieee80211_input(ic, mp, in, stat->rssi, 0); 1759 } else { 1760 sc->sc_rx_nobuf++; 1761 WPI_DBG((WPI_DEBUG_RX, 1762 "wpi_rx_intr(): alloc rx buf failed\n")); 1763 } 1764 /* release node reference */ 1765 ieee80211_free_node(in); 1766 } 1767 1768 /*ARGSUSED*/ 1769 static void 1770 wpi_tx_intr(wpi_sc_t *sc, wpi_rx_desc_t *desc, wpi_rx_data_t *data) 1771 { 1772 ieee80211com_t *ic = &sc->sc_ic; 1773 wpi_tx_ring_t *ring = &sc->sc_txq[desc->qid & 0x3]; 1774 /* wpi_tx_data_t *txdata = &ring->data[desc->idx]; */ 1775 wpi_tx_stat_t *stat = (wpi_tx_stat_t *)(desc + 1); 1776 wpi_amrr_t *amrr = (wpi_amrr_t *)ic->ic_bss; 1777 1778 WPI_DBG((WPI_DEBUG_TX, "tx done: qid=%d idx=%d retries=%d nkill=%d " 1779 "rate=%x duration=%d status=%x\n", 1780 desc->qid, desc->idx, stat->ntries, stat->nkill, stat->rate, 1781 LE_32(stat->duration), LE_32(stat->status))); 1782 1783 amrr->txcnt++; 1784 WPI_DBG((WPI_DEBUG_RATECTL, "tx: %d cnt\n", amrr->txcnt)); 1785 if (stat->ntries > 0) { 1786 amrr->retrycnt++; 1787 sc->sc_tx_retries++; 1788 WPI_DBG((WPI_DEBUG_RATECTL, "tx: %d retries\n", 1789 amrr->retrycnt)); 1790 } 1791 1792 sc->sc_tx_timer = 0; 1793 1794 mutex_enter(&sc->sc_tx_lock); 1795 ring->queued--; 1796 if (ring->queued < 0) 1797 ring->queued = 0; 1798 if ((sc->sc_need_reschedule) && (ring->queued <= (ring->count << 3))) { 1799 sc->sc_need_reschedule = 0; 1800 mutex_exit(&sc->sc_tx_lock); 1801 mac_tx_update(ic->ic_mach); 1802 mutex_enter(&sc->sc_tx_lock); 1803 } 1804 mutex_exit(&sc->sc_tx_lock); 1805 } 1806 1807 static void 1808 wpi_cmd_intr(wpi_sc_t *sc, wpi_rx_desc_t *desc) 1809 { 1810 if ((desc->qid & 7) != 4) { 1811 return; /* not a command ack */ 1812 } 1813 mutex_enter(&sc->sc_glock); 1814 sc->sc_flags |= WPI_F_CMD_DONE; 1815 cv_signal(&sc->sc_cmd_cv); 1816 mutex_exit(&sc->sc_glock); 1817 } 1818 1819 static uint_t 1820 wpi_notif_softintr(caddr_t arg) 1821 { 1822 wpi_sc_t *sc = (wpi_sc_t *)arg; 1823 wpi_rx_desc_t *desc; 1824 wpi_rx_data_t *data; 1825 uint32_t hw; 1826 1827 mutex_enter(&sc->sc_glock); 1828 if (sc->sc_notif_softint_pending != 1) { 1829 mutex_exit(&sc->sc_glock); 1830 return (DDI_INTR_UNCLAIMED); 1831 } 1832 mutex_exit(&sc->sc_glock); 1833 1834 hw = LE_32(sc->sc_shared->next); 1835 1836 while (sc->sc_rxq.cur != hw) { 1837 data = &sc->sc_rxq.data[sc->sc_rxq.cur]; 1838 desc = (wpi_rx_desc_t *)data->dma_data.mem_va; 1839 1840 WPI_DBG((WPI_DEBUG_INTR, "rx notification hw = %d cur = %d " 1841 "qid=%x idx=%d flags=%x type=%d len=%d\n", 1842 hw, sc->sc_rxq.cur, desc->qid, desc->idx, desc->flags, 1843 desc->type, LE_32(desc->len))); 1844 1845 if (!(desc->qid & 0x80)) /* reply to a command */ 1846 wpi_cmd_intr(sc, desc); 1847 1848 switch (desc->type) { 1849 case WPI_RX_DONE: 1850 /* a 802.11 frame was received */ 1851 wpi_rx_intr(sc, desc, data); 1852 break; 1853 1854 case WPI_TX_DONE: 1855 /* a 802.11 frame has been transmitted */ 1856 wpi_tx_intr(sc, desc, data); 1857 break; 1858 1859 case WPI_UC_READY: 1860 { 1861 wpi_ucode_info_t *uc = 1862 (wpi_ucode_info_t *)(desc + 1); 1863 1864 /* the microcontroller is ready */ 1865 WPI_DBG((WPI_DEBUG_FW, 1866 "microcode alive notification version %x " 1867 "alive %x\n", LE_32(uc->version), 1868 LE_32(uc->valid))); 1869 1870 if (LE_32(uc->valid) != 1) { 1871 WPI_DBG((WPI_DEBUG_FW, 1872 "microcontroller initialization failed\n")); 1873 } 1874 break; 1875 } 1876 case WPI_STATE_CHANGED: 1877 { 1878 uint32_t *status = (uint32_t *)(desc + 1); 1879 1880 /* enabled/disabled notification */ 1881 WPI_DBG((WPI_DEBUG_RADIO, "state changed to %x\n", 1882 LE_32(*status))); 1883 1884 if (LE_32(*status) & 1) { 1885 /* 1886 * the radio button has to be pushed(OFF). It 1887 * is considered as a hw error, the 1888 * wpi_thread() tries to recover it after the 1889 * button is pushed again(ON) 1890 */ 1891 cmn_err(CE_NOTE, 1892 "wpi: Radio transmitter is off\n"); 1893 sc->sc_ostate = sc->sc_ic.ic_state; 1894 ieee80211_new_state(&sc->sc_ic, 1895 IEEE80211_S_INIT, -1); 1896 sc->sc_flags |= 1897 (WPI_F_HW_ERR_RECOVER | WPI_F_RADIO_OFF); 1898 } 1899 break; 1900 } 1901 case WPI_START_SCAN: 1902 { 1903 wpi_start_scan_t *scan = 1904 (wpi_start_scan_t *)(desc + 1); 1905 1906 WPI_DBG((WPI_DEBUG_SCAN, 1907 "scanning channel %d status %x\n", 1908 scan->chan, LE_32(scan->status))); 1909 1910 break; 1911 } 1912 case WPI_STOP_SCAN: 1913 { 1914 wpi_stop_scan_t *scan = 1915 (wpi_stop_scan_t *)(desc + 1); 1916 1917 WPI_DBG((WPI_DEBUG_SCAN, 1918 "completed channel %d (burst of %d) status %02x\n", 1919 scan->chan, scan->nchan, scan->status)); 1920 1921 sc->sc_scan_pending = 0; 1922 sc->sc_scan_next++; 1923 break; 1924 } 1925 default: 1926 break; 1927 } 1928 1929 sc->sc_rxq.cur = (sc->sc_rxq.cur + 1) % WPI_RX_RING_COUNT; 1930 } 1931 1932 /* tell the firmware what we have processed */ 1933 hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1; 1934 WPI_WRITE(sc, WPI_RX_WIDX, hw & (~7)); 1935 mutex_enter(&sc->sc_glock); 1936 sc->sc_notif_softint_pending = 0; 1937 mutex_exit(&sc->sc_glock); 1938 1939 return (DDI_INTR_CLAIMED); 1940 } 1941 1942 static uint_t 1943 wpi_intr(caddr_t arg) 1944 { 1945 wpi_sc_t *sc = (wpi_sc_t *)arg; 1946 uint32_t r, rfh; 1947 1948 mutex_enter(&sc->sc_glock); 1949 if (sc->sc_flags & WPI_F_SUSPEND) { 1950 mutex_exit(&sc->sc_glock); 1951 return (DDI_INTR_UNCLAIMED); 1952 } 1953 1954 r = WPI_READ(sc, WPI_INTR); 1955 if (r == 0 || r == 0xffffffff) { 1956 mutex_exit(&sc->sc_glock); 1957 return (DDI_INTR_UNCLAIMED); 1958 } 1959 1960 WPI_DBG((WPI_DEBUG_INTR, "interrupt reg %x\n", r)); 1961 1962 rfh = WPI_READ(sc, WPI_INTR_STATUS); 1963 /* disable interrupts */ 1964 WPI_WRITE(sc, WPI_MASK, 0); 1965 /* ack interrupts */ 1966 WPI_WRITE(sc, WPI_INTR, r); 1967 WPI_WRITE(sc, WPI_INTR_STATUS, rfh); 1968 1969 if (sc->sc_notif_softint_id == NULL) { 1970 mutex_exit(&sc->sc_glock); 1971 return (DDI_INTR_CLAIMED); 1972 } 1973 1974 if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) { 1975 WPI_DBG((WPI_DEBUG_FW, "fatal firmware error\n")); 1976 mutex_exit(&sc->sc_glock); 1977 wpi_stop(sc); 1978 if (!(sc->sc_flags & WPI_F_HW_ERR_RECOVER)) { 1979 sc->sc_ostate = sc->sc_ic.ic_state; 1980 } 1981 1982 /* not capable of fast recovery */ 1983 if (!WPI_CHK_FAST_RECOVER(sc)) 1984 ieee80211_new_state(&sc->sc_ic, IEEE80211_S_INIT, -1); 1985 1986 sc->sc_flags |= WPI_F_HW_ERR_RECOVER; 1987 return (DDI_INTR_CLAIMED); 1988 } 1989 1990 if ((r & (WPI_RX_INTR | WPI_RX_SWINT)) || 1991 (rfh & 0x40070000)) { 1992 sc->sc_notif_softint_pending = 1; 1993 ddi_trigger_softintr(sc->sc_notif_softint_id); 1994 } 1995 1996 if (r & WPI_ALIVE_INTR) { /* firmware initialized */ 1997 sc->sc_flags |= WPI_F_FW_INIT; 1998 cv_signal(&sc->sc_fw_cv); 1999 } 2000 2001 /* re-enable interrupts */ 2002 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK); 2003 mutex_exit(&sc->sc_glock); 2004 2005 return (DDI_INTR_CLAIMED); 2006 } 2007 2008 static uint8_t 2009 wpi_plcp_signal(int rate) 2010 { 2011 switch (rate) { 2012 /* CCK rates (returned values are device-dependent) */ 2013 case 2: return (10); 2014 case 4: return (20); 2015 case 11: return (55); 2016 case 22: return (110); 2017 2018 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 2019 /* R1-R4 (ral/ural is R4-R1) */ 2020 case 12: return (0xd); 2021 case 18: return (0xf); 2022 case 24: return (0x5); 2023 case 36: return (0x7); 2024 case 48: return (0x9); 2025 case 72: return (0xb); 2026 case 96: return (0x1); 2027 case 108: return (0x3); 2028 2029 /* unsupported rates (should not get there) */ 2030 default: return (0); 2031 } 2032 } 2033 2034 static mblk_t * 2035 wpi_m_tx(void *arg, mblk_t *mp) 2036 { 2037 wpi_sc_t *sc = (wpi_sc_t *)arg; 2038 ieee80211com_t *ic = &sc->sc_ic; 2039 mblk_t *next; 2040 2041 if (sc->sc_flags & WPI_F_SUSPEND) { 2042 freemsgchain(mp); 2043 return (NULL); 2044 } 2045 2046 if (ic->ic_state != IEEE80211_S_RUN) { 2047 freemsgchain(mp); 2048 return (NULL); 2049 } 2050 2051 if ((sc->sc_flags & WPI_F_HW_ERR_RECOVER) && 2052 WPI_CHK_FAST_RECOVER(sc)) { 2053 WPI_DBG((WPI_DEBUG_FW, "wpi_m_tx(): hold queue\n")); 2054 return (mp); 2055 } 2056 2057 while (mp != NULL) { 2058 next = mp->b_next; 2059 mp->b_next = NULL; 2060 if (wpi_send(ic, mp, IEEE80211_FC0_TYPE_DATA) != 0) { 2061 mp->b_next = next; 2062 break; 2063 } 2064 mp = next; 2065 } 2066 return (mp); 2067 } 2068 2069 /* ARGSUSED */ 2070 static int 2071 wpi_send(ieee80211com_t *ic, mblk_t *mp, uint8_t type) 2072 { 2073 wpi_sc_t *sc = (wpi_sc_t *)ic; 2074 wpi_tx_ring_t *ring; 2075 wpi_tx_desc_t *desc; 2076 wpi_tx_data_t *data; 2077 wpi_tx_cmd_t *cmd; 2078 wpi_cmd_data_t *tx; 2079 ieee80211_node_t *in; 2080 struct ieee80211_frame *wh; 2081 struct ieee80211_key *k; 2082 mblk_t *m, *m0; 2083 int rate, hdrlen, len, mblen, off, err = WPI_SUCCESS; 2084 2085 ring = ((type & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_DATA) ? 2086 (&sc->sc_txq[0]) : (&sc->sc_txq[1]); 2087 data = &ring->data[ring->cur]; 2088 desc = data->desc; 2089 cmd = data->cmd; 2090 bzero(desc, sizeof (*desc)); 2091 bzero(cmd, sizeof (*cmd)); 2092 2093 mutex_enter(&sc->sc_tx_lock); 2094 if (sc->sc_flags & WPI_F_SUSPEND) { 2095 mutex_exit(&sc->sc_tx_lock); 2096 if ((type & IEEE80211_FC0_TYPE_MASK) != 2097 IEEE80211_FC0_TYPE_DATA) { 2098 freemsg(mp); 2099 } 2100 err = ENXIO; 2101 goto exit; 2102 } 2103 2104 if (ring->queued > ring->count - 64) { 2105 WPI_DBG((WPI_DEBUG_TX, "wpi_send(): no txbuf\n")); 2106 sc->sc_need_reschedule = 1; 2107 mutex_exit(&sc->sc_tx_lock); 2108 if ((type & IEEE80211_FC0_TYPE_MASK) != 2109 IEEE80211_FC0_TYPE_DATA) { 2110 freemsg(mp); 2111 } 2112 sc->sc_tx_nobuf++; 2113 err = ENOMEM; 2114 goto exit; 2115 } 2116 mutex_exit(&sc->sc_tx_lock); 2117 2118 hdrlen = sizeof (struct ieee80211_frame); 2119 2120 m = allocb(msgdsize(mp) + 32, BPRI_MED); 2121 if (m == NULL) { /* can not alloc buf, drop this package */ 2122 cmn_err(CE_WARN, 2123 "wpi_send(): failed to allocate msgbuf\n"); 2124 freemsg(mp); 2125 err = WPI_SUCCESS; 2126 goto exit; 2127 } 2128 for (off = 0, m0 = mp; m0 != NULL; m0 = m0->b_cont) { 2129 mblen = MBLKL(m0); 2130 (void) memcpy(m->b_rptr + off, m0->b_rptr, mblen); 2131 off += mblen; 2132 } 2133 m->b_wptr += off; 2134 freemsg(mp); 2135 2136 wh = (struct ieee80211_frame *)m->b_rptr; 2137 2138 in = ieee80211_find_txnode(ic, wh->i_addr1); 2139 if (in == NULL) { 2140 cmn_err(CE_WARN, "wpi_send(): failed to find tx node\n"); 2141 freemsg(m); 2142 sc->sc_tx_err++; 2143 err = WPI_SUCCESS; 2144 goto exit; 2145 } 2146 2147 (void) ieee80211_encap(ic, m, in); 2148 2149 cmd->code = WPI_CMD_TX_DATA; 2150 cmd->flags = 0; 2151 cmd->qid = ring->qid; 2152 cmd->idx = ring->cur; 2153 2154 tx = (wpi_cmd_data_t *)cmd->data; 2155 tx->flags = 0; 2156 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 2157 tx->flags |= LE_32(WPI_TX_NEED_ACK); 2158 } else { 2159 tx->flags &= ~(LE_32(WPI_TX_NEED_ACK)); 2160 } 2161 2162 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 2163 k = ieee80211_crypto_encap(ic, m); 2164 if (k == NULL) { 2165 freemsg(m); 2166 sc->sc_tx_err++; 2167 err = WPI_SUCCESS; 2168 goto exit; 2169 } 2170 2171 if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_AES_CCM) { 2172 tx->security = 2; /* for CCMP */ 2173 tx->flags |= LE_32(WPI_TX_NEED_ACK); 2174 (void) memcpy(&tx->key, k->wk_key, k->wk_keylen); 2175 } 2176 2177 /* packet header may have moved, reset our local pointer */ 2178 wh = (struct ieee80211_frame *)m->b_rptr; 2179 } 2180 2181 len = msgdsize(m); 2182 2183 #ifdef DEBUG 2184 if (wpi_dbg_flags & WPI_DEBUG_TX) 2185 ieee80211_dump_pkt((uint8_t *)wh, hdrlen, 0, 0); 2186 #endif 2187 2188 /* pickup a rate */ 2189 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == 2190 IEEE80211_FC0_TYPE_MGT) { 2191 /* mgmt frames are sent at the lowest available bit-rate */ 2192 rate = 2; 2193 } else { 2194 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) { 2195 rate = ic->ic_fixed_rate; 2196 } else 2197 rate = in->in_rates.ir_rates[in->in_txrate]; 2198 } 2199 rate &= IEEE80211_RATE_VAL; 2200 WPI_DBG((WPI_DEBUG_RATECTL, "tx rate[%d of %d] = %x", 2201 in->in_txrate, in->in_rates.ir_nrates, rate)); 2202 #ifdef WPI_BPF 2203 #ifndef WPI_CURRENT 2204 if (sc->sc_drvbpf != NULL) { 2205 #else 2206 if (bpf_peers_present(sc->sc_drvbpf)) { 2207 #endif 2208 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap; 2209 2210 tap->wt_flags = 0; 2211 tap->wt_chan_freq = LE_16(ic->ic_curchan->ic_freq); 2212 tap->wt_chan_flags = LE_16(ic->ic_curchan->ic_flags); 2213 tap->wt_rate = rate; 2214 if (wh->i_fc[1] & IEEE80211_FC1_WEP) 2215 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; 2216 2217 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); 2218 } 2219 #endif 2220 2221 tx->flags |= (LE_32(WPI_TX_AUTO_SEQ)); 2222 tx->flags |= LE_32(WPI_TX_BT_DISABLE | WPI_TX_CALIBRATION); 2223 2224 /* retrieve destination node's id */ 2225 tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST : 2226 WPI_ID_BSS; 2227 2228 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == 2229 IEEE80211_FC0_TYPE_MGT) { 2230 /* tell h/w to set timestamp in probe responses */ 2231 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == 2232 IEEE80211_FC0_SUBTYPE_PROBE_RESP) 2233 tx->flags |= LE_32(WPI_TX_INSERT_TSTAMP); 2234 2235 if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == 2236 IEEE80211_FC0_SUBTYPE_ASSOC_REQ) || 2237 ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == 2238 IEEE80211_FC0_SUBTYPE_REASSOC_REQ)) 2239 tx->timeout = 3; 2240 else 2241 tx->timeout = 2; 2242 } else 2243 tx->timeout = 0; 2244 2245 tx->rate = wpi_plcp_signal(rate); 2246 2247 /* be very persistant at sending frames out */ 2248 tx->rts_ntries = 7; 2249 tx->data_ntries = 15; 2250 2251 tx->cck_mask = 0x0f; 2252 tx->ofdm_mask = 0xff; 2253 tx->lifetime = LE_32(0xffffffff); 2254 2255 tx->len = LE_16(len); 2256 2257 /* save and trim IEEE802.11 header */ 2258 (void) memcpy(tx + 1, m->b_rptr, hdrlen); 2259 m->b_rptr += hdrlen; 2260 (void) memcpy(data->dma_data.mem_va, m->b_rptr, len - hdrlen); 2261 2262 WPI_DBG((WPI_DEBUG_TX, "sending data: qid=%d idx=%d len=%d", ring->qid, 2263 ring->cur, len)); 2264 2265 /* first scatter/gather segment is used by the tx data command */ 2266 desc->flags = LE_32(WPI_PAD32(len) << 28 | (2) << 24); 2267 desc->segs[0].addr = LE_32(data->paddr_cmd); 2268 desc->segs[0].len = LE_32( 2269 roundup(4 + sizeof (wpi_cmd_data_t) + hdrlen, 4)); 2270 desc->segs[1].addr = LE_32(data->dma_data.cookie.dmac_address); 2271 desc->segs[1].len = LE_32(len - hdrlen); 2272 2273 WPI_DMA_SYNC(data->dma_data, DDI_DMA_SYNC_FORDEV); 2274 WPI_DMA_SYNC(ring->dma_desc, DDI_DMA_SYNC_FORDEV); 2275 2276 mutex_enter(&sc->sc_tx_lock); 2277 ring->queued++; 2278 mutex_exit(&sc->sc_tx_lock); 2279 2280 /* kick ring */ 2281 ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT; 2282 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2283 freemsg(m); 2284 /* release node reference */ 2285 ieee80211_free_node(in); 2286 2287 ic->ic_stats.is_tx_bytes += len; 2288 ic->ic_stats.is_tx_frags++; 2289 2290 if (sc->sc_tx_timer == 0) 2291 sc->sc_tx_timer = 5; 2292 exit: 2293 return (err); 2294 } 2295 2296 static void 2297 wpi_m_ioctl(void* arg, queue_t *wq, mblk_t *mp) 2298 { 2299 wpi_sc_t *sc = (wpi_sc_t *)arg; 2300 ieee80211com_t *ic = &sc->sc_ic; 2301 int err; 2302 2303 err = ieee80211_ioctl(ic, wq, mp); 2304 if (err == ENETRESET) { 2305 /* 2306 * This is special for the hidden AP connection. 2307 * In any case, we should make sure only one 'scan' 2308 * in the driver for a 'connect' CLI command. So 2309 * when connecting to a hidden AP, the scan is just 2310 * sent out to the air when we know the desired 2311 * essid of the AP we want to connect. 2312 */ 2313 if (ic->ic_des_esslen) { 2314 if (sc->sc_flags & WPI_F_RUNNING) { 2315 wpi_m_stop(sc); 2316 (void) wpi_m_start(sc); 2317 (void) ieee80211_new_state(ic, 2318 IEEE80211_S_SCAN, -1); 2319 } 2320 } 2321 } 2322 } 2323 2324 /* 2325 * Callback functions for get/set properties 2326 */ 2327 /* ARGSUSED */ 2328 static int 2329 wpi_m_getprop(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_name, 2330 uint_t wldp_length, void *wldp_buf) 2331 { 2332 int err = 0; 2333 wpi_sc_t *sc = (wpi_sc_t *)arg; 2334 2335 err = ieee80211_getprop(&sc->sc_ic, pr_name, wldp_pr_name, 2336 wldp_length, wldp_buf); 2337 2338 return (err); 2339 } 2340 2341 static void 2342 wpi_m_propinfo(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_num, 2343 mac_prop_info_handle_t mph) 2344 { 2345 wpi_sc_t *sc = (wpi_sc_t *)arg; 2346 2347 ieee80211_propinfo(&sc->sc_ic, pr_name, wldp_pr_num, mph); 2348 } 2349 2350 static int 2351 wpi_m_setprop(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_name, 2352 uint_t wldp_length, const void *wldp_buf) 2353 { 2354 int err; 2355 wpi_sc_t *sc = (wpi_sc_t *)arg; 2356 ieee80211com_t *ic = &sc->sc_ic; 2357 2358 err = ieee80211_setprop(ic, pr_name, wldp_pr_name, 2359 wldp_length, wldp_buf); 2360 2361 if (err == ENETRESET) { 2362 if (ic->ic_des_esslen) { 2363 if (sc->sc_flags & WPI_F_RUNNING) { 2364 wpi_m_stop(sc); 2365 (void) wpi_m_start(sc); 2366 (void) ieee80211_new_state(ic, 2367 IEEE80211_S_SCAN, -1); 2368 } 2369 } 2370 2371 err = 0; 2372 } 2373 2374 return (err); 2375 } 2376 2377 /*ARGSUSED*/ 2378 static int 2379 wpi_m_stat(void *arg, uint_t stat, uint64_t *val) 2380 { 2381 wpi_sc_t *sc = (wpi_sc_t *)arg; 2382 ieee80211com_t *ic = &sc->sc_ic; 2383 ieee80211_node_t *in; 2384 2385 mutex_enter(&sc->sc_glock); 2386 switch (stat) { 2387 case MAC_STAT_IFSPEED: 2388 in = ic->ic_bss; 2389 *val = ((ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) ? 2390 IEEE80211_RATE(in->in_txrate) : 2391 ic->ic_fixed_rate) / 2 * 1000000; 2392 break; 2393 case MAC_STAT_NOXMTBUF: 2394 *val = sc->sc_tx_nobuf; 2395 break; 2396 case MAC_STAT_NORCVBUF: 2397 *val = sc->sc_rx_nobuf; 2398 break; 2399 case MAC_STAT_IERRORS: 2400 *val = sc->sc_rx_err; 2401 break; 2402 case MAC_STAT_RBYTES: 2403 *val = ic->ic_stats.is_rx_bytes; 2404 break; 2405 case MAC_STAT_IPACKETS: 2406 *val = ic->ic_stats.is_rx_frags; 2407 break; 2408 case MAC_STAT_OBYTES: 2409 *val = ic->ic_stats.is_tx_bytes; 2410 break; 2411 case MAC_STAT_OPACKETS: 2412 *val = ic->ic_stats.is_tx_frags; 2413 break; 2414 case MAC_STAT_OERRORS: 2415 case WIFI_STAT_TX_FAILED: 2416 *val = sc->sc_tx_err; 2417 break; 2418 case WIFI_STAT_TX_RETRANS: 2419 *val = sc->sc_tx_retries; 2420 break; 2421 case WIFI_STAT_FCS_ERRORS: 2422 case WIFI_STAT_WEP_ERRORS: 2423 case WIFI_STAT_TX_FRAGS: 2424 case WIFI_STAT_MCAST_TX: 2425 case WIFI_STAT_RTS_SUCCESS: 2426 case WIFI_STAT_RTS_FAILURE: 2427 case WIFI_STAT_ACK_FAILURE: 2428 case WIFI_STAT_RX_FRAGS: 2429 case WIFI_STAT_MCAST_RX: 2430 case WIFI_STAT_RX_DUPS: 2431 mutex_exit(&sc->sc_glock); 2432 return (ieee80211_stat(ic, stat, val)); 2433 default: 2434 mutex_exit(&sc->sc_glock); 2435 return (ENOTSUP); 2436 } 2437 mutex_exit(&sc->sc_glock); 2438 2439 return (WPI_SUCCESS); 2440 2441 } 2442 2443 static int 2444 wpi_m_start(void *arg) 2445 { 2446 wpi_sc_t *sc = (wpi_sc_t *)arg; 2447 ieee80211com_t *ic = &sc->sc_ic; 2448 int err; 2449 2450 err = wpi_init(sc); 2451 if (err != WPI_SUCCESS) { 2452 wpi_stop(sc); 2453 DELAY(1000000); 2454 err = wpi_init(sc); 2455 } 2456 2457 if (err) { 2458 /* 2459 * The hw init err(eg. RF is OFF). Return Success to make 2460 * the 'plumb' succeed. The wpi_thread() tries to re-init 2461 * background. 2462 */ 2463 mutex_enter(&sc->sc_glock); 2464 sc->sc_flags |= WPI_F_HW_ERR_RECOVER; 2465 mutex_exit(&sc->sc_glock); 2466 return (WPI_SUCCESS); 2467 } 2468 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 2469 mutex_enter(&sc->sc_glock); 2470 sc->sc_flags |= WPI_F_RUNNING; 2471 mutex_exit(&sc->sc_glock); 2472 2473 return (WPI_SUCCESS); 2474 } 2475 2476 static void 2477 wpi_m_stop(void *arg) 2478 { 2479 wpi_sc_t *sc = (wpi_sc_t *)arg; 2480 ieee80211com_t *ic = &sc->sc_ic; 2481 2482 wpi_stop(sc); 2483 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 2484 mutex_enter(&sc->sc_mt_lock); 2485 sc->sc_flags &= ~WPI_F_HW_ERR_RECOVER; 2486 sc->sc_flags &= ~WPI_F_RATE_AUTO_CTL; 2487 mutex_exit(&sc->sc_mt_lock); 2488 mutex_enter(&sc->sc_glock); 2489 sc->sc_flags &= ~WPI_F_RUNNING; 2490 mutex_exit(&sc->sc_glock); 2491 } 2492 2493 /*ARGSUSED*/ 2494 static int 2495 wpi_m_unicst(void *arg, const uint8_t *macaddr) 2496 { 2497 wpi_sc_t *sc = (wpi_sc_t *)arg; 2498 ieee80211com_t *ic = &sc->sc_ic; 2499 int err; 2500 2501 if (!IEEE80211_ADDR_EQ(ic->ic_macaddr, macaddr)) { 2502 IEEE80211_ADDR_COPY(ic->ic_macaddr, macaddr); 2503 mutex_enter(&sc->sc_glock); 2504 err = wpi_config(sc); 2505 mutex_exit(&sc->sc_glock); 2506 if (err != WPI_SUCCESS) { 2507 cmn_err(CE_WARN, 2508 "wpi_m_unicst(): " 2509 "failed to configure device\n"); 2510 goto fail; 2511 } 2512 } 2513 return (WPI_SUCCESS); 2514 fail: 2515 return (err); 2516 } 2517 2518 /*ARGSUSED*/ 2519 static int 2520 wpi_m_multicst(void *arg, boolean_t add, const uint8_t *m) 2521 { 2522 return (WPI_SUCCESS); 2523 } 2524 2525 /*ARGSUSED*/ 2526 static int 2527 wpi_m_promisc(void *arg, boolean_t on) 2528 { 2529 return (WPI_SUCCESS); 2530 } 2531 2532 static void 2533 wpi_thread(wpi_sc_t *sc) 2534 { 2535 ieee80211com_t *ic = &sc->sc_ic; 2536 clock_t clk; 2537 int times = 0, err, n = 0, timeout = 0; 2538 uint32_t tmp; 2539 2540 mutex_enter(&sc->sc_mt_lock); 2541 while (sc->sc_mf_thread_switch) { 2542 tmp = WPI_READ(sc, WPI_GPIO_CTL); 2543 if (tmp & WPI_GPIO_HW_RF_KILL) { 2544 sc->sc_flags &= ~WPI_F_RADIO_OFF; 2545 } else { 2546 sc->sc_flags |= WPI_F_RADIO_OFF; 2547 } 2548 /* 2549 * If in SUSPEND or the RF is OFF, do nothing 2550 */ 2551 if ((sc->sc_flags & WPI_F_SUSPEND) || 2552 (sc->sc_flags & WPI_F_RADIO_OFF)) { 2553 mutex_exit(&sc->sc_mt_lock); 2554 delay(drv_usectohz(100000)); 2555 mutex_enter(&sc->sc_mt_lock); 2556 continue; 2557 } 2558 2559 /* 2560 * recovery fatal error 2561 */ 2562 if (ic->ic_mach && 2563 (sc->sc_flags & WPI_F_HW_ERR_RECOVER)) { 2564 2565 WPI_DBG((WPI_DEBUG_FW, 2566 "wpi_thread(): " 2567 "try to recover fatal hw error: %d\n", times++)); 2568 2569 wpi_stop(sc); 2570 2571 if (WPI_CHK_FAST_RECOVER(sc)) { 2572 /* save runtime configuration */ 2573 bcopy(&sc->sc_config, &sc->sc_config_save, 2574 sizeof (sc->sc_config)); 2575 } else { 2576 mutex_exit(&sc->sc_mt_lock); 2577 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 2578 delay(drv_usectohz(2000000)); 2579 mutex_enter(&sc->sc_mt_lock); 2580 } 2581 2582 err = wpi_init(sc); 2583 if (err != WPI_SUCCESS) { 2584 n++; 2585 if (n < 3) 2586 continue; 2587 } 2588 n = 0; 2589 if (!err) 2590 sc->sc_flags |= WPI_F_RUNNING; 2591 2592 if (!WPI_CHK_FAST_RECOVER(sc) || 2593 wpi_fast_recover(sc) != WPI_SUCCESS) { 2594 sc->sc_flags &= ~WPI_F_HW_ERR_RECOVER; 2595 2596 mutex_exit(&sc->sc_mt_lock); 2597 delay(drv_usectohz(2000000)); 2598 if (sc->sc_ostate != IEEE80211_S_INIT) 2599 ieee80211_new_state(ic, 2600 IEEE80211_S_SCAN, 0); 2601 mutex_enter(&sc->sc_mt_lock); 2602 } 2603 } 2604 2605 if (ic->ic_mach && (sc->sc_flags & WPI_F_LAZY_RESUME)) { 2606 WPI_DBG((WPI_DEBUG_RESUME, 2607 "wpi_thread(): " 2608 "lazy resume\n")); 2609 sc->sc_flags &= ~WPI_F_LAZY_RESUME; 2610 mutex_exit(&sc->sc_mt_lock); 2611 /* 2612 * NB: under WPA mode, this call hangs (door problem?) 2613 * when called in wpi_attach() and wpi_detach() while 2614 * system is in the procedure of CPR. To be safe, let 2615 * the thread do this. 2616 */ 2617 ieee80211_new_state(&sc->sc_ic, IEEE80211_S_INIT, -1); 2618 mutex_enter(&sc->sc_mt_lock); 2619 } 2620 2621 /* 2622 * scan next channel 2623 */ 2624 if (ic->ic_mach && 2625 (sc->sc_flags & WPI_F_SCANNING) && sc->sc_scan_next) { 2626 2627 WPI_DBG((WPI_DEBUG_SCAN, 2628 "wpi_thread(): " 2629 "wait for probe response\n")); 2630 2631 sc->sc_scan_next--; 2632 mutex_exit(&sc->sc_mt_lock); 2633 delay(drv_usectohz(200000)); 2634 if (sc->sc_flags & WPI_F_SCANNING) 2635 ieee80211_next_scan(ic); 2636 mutex_enter(&sc->sc_mt_lock); 2637 } 2638 2639 /* 2640 * rate ctl 2641 */ 2642 if (ic->ic_mach && 2643 (sc->sc_flags & WPI_F_RATE_AUTO_CTL)) { 2644 clk = ddi_get_lbolt(); 2645 if (clk > sc->sc_clk + drv_usectohz(500000)) { 2646 wpi_amrr_timeout(sc); 2647 } 2648 } 2649 mutex_exit(&sc->sc_mt_lock); 2650 delay(drv_usectohz(100000)); 2651 mutex_enter(&sc->sc_mt_lock); 2652 if (sc->sc_tx_timer) { 2653 timeout++; 2654 if (timeout == 10) { 2655 sc->sc_tx_timer--; 2656 if (sc->sc_tx_timer == 0) { 2657 sc->sc_flags |= WPI_F_HW_ERR_RECOVER; 2658 sc->sc_ostate = IEEE80211_S_RUN; 2659 WPI_DBG((WPI_DEBUG_FW, 2660 "wpi_thread(): send fail\n")); 2661 } 2662 timeout = 0; 2663 } 2664 } 2665 } 2666 sc->sc_mf_thread = NULL; 2667 cv_signal(&sc->sc_mt_cv); 2668 mutex_exit(&sc->sc_mt_lock); 2669 } 2670 2671 /* 2672 * Extract various information from EEPROM. 2673 */ 2674 static void 2675 wpi_read_eeprom(wpi_sc_t *sc) 2676 { 2677 ieee80211com_t *ic = &sc->sc_ic; 2678 uint16_t val; 2679 int i; 2680 2681 /* read MAC address */ 2682 val = wpi_read_prom_word(sc, WPI_EEPROM_MAC + 0); 2683 ic->ic_macaddr[0] = val & 0xff; 2684 ic->ic_macaddr[1] = val >> 8; 2685 val = wpi_read_prom_word(sc, WPI_EEPROM_MAC + 1); 2686 ic->ic_macaddr[2] = val & 0xff; 2687 ic->ic_macaddr[3] = val >> 8; 2688 val = wpi_read_prom_word(sc, WPI_EEPROM_MAC + 2); 2689 ic->ic_macaddr[4] = val & 0xff; 2690 ic->ic_macaddr[5] = val >> 8; 2691 2692 WPI_DBG((WPI_DEBUG_EEPROM, 2693 "mac:%2x:%2x:%2x:%2x:%2x:%2x\n", 2694 ic->ic_macaddr[0], ic->ic_macaddr[1], 2695 ic->ic_macaddr[2], ic->ic_macaddr[3], 2696 ic->ic_macaddr[4], ic->ic_macaddr[5])); 2697 /* read power settings for 2.4GHz channels */ 2698 for (i = 0; i < 14; i++) { 2699 sc->sc_pwr1[i] = wpi_read_prom_word(sc, WPI_EEPROM_PWR1 + i); 2700 sc->sc_pwr2[i] = wpi_read_prom_word(sc, WPI_EEPROM_PWR2 + i); 2701 WPI_DBG((WPI_DEBUG_EEPROM, 2702 "channel %d pwr1 0x%04x pwr2 0x%04x\n", i + 1, 2703 sc->sc_pwr1[i], sc->sc_pwr2[i])); 2704 } 2705 } 2706 2707 /* 2708 * Send a command to the firmware. 2709 */ 2710 static int 2711 wpi_cmd(wpi_sc_t *sc, int code, const void *buf, int size, int async) 2712 { 2713 wpi_tx_ring_t *ring = &sc->sc_cmdq; 2714 wpi_tx_desc_t *desc; 2715 wpi_tx_cmd_t *cmd; 2716 2717 ASSERT(size <= sizeof (cmd->data)); 2718 ASSERT(mutex_owned(&sc->sc_glock)); 2719 2720 WPI_DBG((WPI_DEBUG_CMD, "wpi_cmd() # code[%d]", code)); 2721 desc = ring->data[ring->cur].desc; 2722 cmd = ring->data[ring->cur].cmd; 2723 2724 cmd->code = (uint8_t)code; 2725 cmd->flags = 0; 2726 cmd->qid = ring->qid; 2727 cmd->idx = ring->cur; 2728 (void) memcpy(cmd->data, buf, size); 2729 2730 desc->flags = LE_32(WPI_PAD32(size) << 28 | 1 << 24); 2731 desc->segs[0].addr = ring->data[ring->cur].paddr_cmd; 2732 desc->segs[0].len = 4 + size; 2733 2734 /* kick cmd ring */ 2735 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2736 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2737 2738 if (async) 2739 return (WPI_SUCCESS); 2740 else { 2741 clock_t clk; 2742 sc->sc_flags &= ~WPI_F_CMD_DONE; 2743 clk = ddi_get_lbolt() + drv_usectohz(2000000); 2744 while (!(sc->sc_flags & WPI_F_CMD_DONE)) { 2745 if (cv_timedwait(&sc->sc_cmd_cv, &sc->sc_glock, clk) 2746 < 0) 2747 break; 2748 } 2749 if (sc->sc_flags & WPI_F_CMD_DONE) 2750 return (WPI_SUCCESS); 2751 else 2752 return (WPI_FAIL); 2753 } 2754 } 2755 2756 /* 2757 * Configure h/w multi-rate retries. 2758 */ 2759 static int 2760 wpi_mrr_setup(wpi_sc_t *sc) 2761 { 2762 wpi_mrr_setup_t mrr; 2763 int i, err; 2764 2765 /* CCK rates (not used with 802.11a) */ 2766 for (i = WPI_CCK1; i <= WPI_CCK11; i++) { 2767 mrr.rates[i].flags = 0; 2768 mrr.rates[i].signal = wpi_ridx_to_signal[i]; 2769 /* fallback to the immediate lower CCK rate (if any) */ 2770 mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1; 2771 /* try one time at this rate before falling back to "next" */ 2772 mrr.rates[i].ntries = 1; 2773 } 2774 2775 /* OFDM rates (not used with 802.11b) */ 2776 for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) { 2777 mrr.rates[i].flags = 0; 2778 mrr.rates[i].signal = wpi_ridx_to_signal[i]; 2779 /* fallback to the immediate lower OFDM rate (if any) */ 2780 mrr.rates[i].next = (i == WPI_OFDM6) ? WPI_OFDM6 : i - 1; 2781 /* try one time at this rate before falling back to "next" */ 2782 mrr.rates[i].ntries = 1; 2783 } 2784 2785 /* setup MRR for control frames */ 2786 mrr.which = LE_32(WPI_MRR_CTL); 2787 err = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof (mrr), 1); 2788 if (err != WPI_SUCCESS) { 2789 WPI_DBG((WPI_DEBUG_MRR, 2790 "could not setup MRR for control frames\n")); 2791 return (err); 2792 } 2793 2794 /* setup MRR for data frames */ 2795 mrr.which = LE_32(WPI_MRR_DATA); 2796 err = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof (mrr), 1); 2797 if (err != WPI_SUCCESS) { 2798 WPI_DBG((WPI_DEBUG_MRR, 2799 "could not setup MRR for data frames\n")); 2800 return (err); 2801 } 2802 2803 return (WPI_SUCCESS); 2804 } 2805 2806 static void 2807 wpi_set_led(wpi_sc_t *sc, uint8_t which, uint8_t off, uint8_t on) 2808 { 2809 wpi_cmd_led_t led; 2810 2811 led.which = which; 2812 led.unit = LE_32(100000); /* on/off in unit of 100ms */ 2813 led.off = off; 2814 led.on = on; 2815 2816 (void) wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof (led), 1); 2817 } 2818 2819 static int 2820 wpi_auth(wpi_sc_t *sc) 2821 { 2822 ieee80211com_t *ic = &sc->sc_ic; 2823 ieee80211_node_t *in = ic->ic_bss; 2824 wpi_node_t node; 2825 int err; 2826 2827 /* update adapter's configuration */ 2828 IEEE80211_ADDR_COPY(sc->sc_config.bssid, in->in_bssid); 2829 sc->sc_config.chan = ieee80211_chan2ieee(ic, in->in_chan); 2830 if (ic->ic_curmode == IEEE80211_MODE_11B) { 2831 sc->sc_config.cck_mask = 0x03; 2832 sc->sc_config.ofdm_mask = 0; 2833 } else if ((in->in_chan != IEEE80211_CHAN_ANYC) && 2834 (IEEE80211_IS_CHAN_5GHZ(in->in_chan))) { 2835 sc->sc_config.cck_mask = 0; 2836 sc->sc_config.ofdm_mask = 0x15; 2837 } else { /* assume 802.11b/g */ 2838 sc->sc_config.cck_mask = 0x0f; 2839 sc->sc_config.ofdm_mask = 0xff; 2840 } 2841 2842 WPI_DBG((WPI_DEBUG_80211, "config chan %d flags %x cck %x ofdm %x" 2843 " bssid:%02x:%02x:%02x:%02x:%02x:%2x\n", 2844 sc->sc_config.chan, sc->sc_config.flags, 2845 sc->sc_config.cck_mask, sc->sc_config.ofdm_mask, 2846 sc->sc_config.bssid[0], sc->sc_config.bssid[1], 2847 sc->sc_config.bssid[2], sc->sc_config.bssid[3], 2848 sc->sc_config.bssid[4], sc->sc_config.bssid[5])); 2849 err = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->sc_config, 2850 sizeof (wpi_config_t), 1); 2851 if (err != WPI_SUCCESS) { 2852 cmn_err(CE_WARN, "wpi_auth(): failed to configurate chan%d\n", 2853 sc->sc_config.chan); 2854 return (err); 2855 } 2856 2857 /* add default node */ 2858 (void) memset(&node, 0, sizeof (node)); 2859 IEEE80211_ADDR_COPY(node.bssid, in->in_bssid); 2860 node.id = WPI_ID_BSS; 2861 node.rate = wpi_plcp_signal(2); 2862 err = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof (node), 1); 2863 if (err != WPI_SUCCESS) { 2864 cmn_err(CE_WARN, "wpi_auth(): failed to add BSS node\n"); 2865 return (err); 2866 } 2867 2868 err = wpi_mrr_setup(sc); 2869 if (err != WPI_SUCCESS) { 2870 cmn_err(CE_WARN, "wpi_auth(): failed to setup MRR\n"); 2871 return (err); 2872 } 2873 2874 return (WPI_SUCCESS); 2875 } 2876 2877 /* 2878 * Send a scan request to the firmware. 2879 */ 2880 static int 2881 wpi_scan(wpi_sc_t *sc) 2882 { 2883 ieee80211com_t *ic = &sc->sc_ic; 2884 wpi_tx_ring_t *ring = &sc->sc_cmdq; 2885 wpi_tx_desc_t *desc; 2886 wpi_tx_data_t *data; 2887 wpi_tx_cmd_t *cmd; 2888 wpi_scan_hdr_t *hdr; 2889 wpi_scan_chan_t *chan; 2890 struct ieee80211_frame *wh; 2891 ieee80211_node_t *in = ic->ic_bss; 2892 uint8_t essid[IEEE80211_NWID_LEN+1]; 2893 struct ieee80211_rateset *rs; 2894 enum ieee80211_phymode mode; 2895 uint8_t *frm; 2896 int i, pktlen, nrates; 2897 2898 /* previous scan not completed */ 2899 if (sc->sc_scan_pending) { 2900 WPI_DBG((WPI_DEBUG_SCAN, "previous scan not completed\n")); 2901 return (WPI_SUCCESS); 2902 } 2903 2904 data = &ring->data[ring->cur]; 2905 desc = data->desc; 2906 cmd = (wpi_tx_cmd_t *)data->dma_data.mem_va; 2907 2908 cmd->code = WPI_CMD_SCAN; 2909 cmd->flags = 0; 2910 cmd->qid = ring->qid; 2911 cmd->idx = ring->cur; 2912 2913 hdr = (wpi_scan_hdr_t *)cmd->data; 2914 (void) memset(hdr, 0, sizeof (wpi_scan_hdr_t)); 2915 hdr->first = 1; 2916 hdr->nchan = 1; 2917 hdr->len = hdr->nchan * sizeof (wpi_scan_chan_t); 2918 hdr->quiet = LE_16(50); 2919 hdr->threshold = LE_16(1); 2920 hdr->filter = LE_32(5); 2921 hdr->rate = wpi_plcp_signal(2); 2922 hdr->id = WPI_ID_BROADCAST; 2923 hdr->mask = LE_32(0xffffffff); 2924 hdr->esslen = ic->ic_des_esslen; 2925 2926 if (ic->ic_des_esslen) { 2927 bcopy(ic->ic_des_essid, essid, ic->ic_des_esslen); 2928 essid[ic->ic_des_esslen] = '\0'; 2929 WPI_DBG((WPI_DEBUG_SCAN, "directed scan %s\n", essid)); 2930 2931 bcopy(ic->ic_des_essid, hdr->essid, ic->ic_des_esslen); 2932 } else { 2933 bzero(hdr->essid, sizeof (hdr->essid)); 2934 } 2935 2936 /* 2937 * Build a probe request frame. Most of the following code is a 2938 * copy & paste of what is done in net80211. Unfortunately, the 2939 * functions to add IEs are static and thus can't be reused here. 2940 */ 2941 wh = (struct ieee80211_frame *)(hdr + 1); 2942 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 2943 IEEE80211_FC0_SUBTYPE_PROBE_REQ; 2944 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 2945 (void) memset(wh->i_addr1, 0xff, 6); 2946 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_macaddr); 2947 (void) memset(wh->i_addr3, 0xff, 6); 2948 *(uint16_t *)&wh->i_dur[0] = 0; /* filled by h/w */ 2949 *(uint16_t *)&wh->i_seq[0] = 0; /* filled by h/w */ 2950 2951 frm = (uint8_t *)(wh + 1); 2952 2953 /* add essid IE */ 2954 if (in->in_esslen) { 2955 bcopy(in->in_essid, essid, in->in_esslen); 2956 essid[in->in_esslen] = '\0'; 2957 WPI_DBG((WPI_DEBUG_SCAN, "probe with ESSID %s\n", 2958 essid)); 2959 } 2960 *frm++ = IEEE80211_ELEMID_SSID; 2961 *frm++ = in->in_esslen; 2962 (void) memcpy(frm, in->in_essid, in->in_esslen); 2963 frm += in->in_esslen; 2964 2965 mode = ieee80211_chan2mode(ic, ic->ic_curchan); 2966 rs = &ic->ic_sup_rates[mode]; 2967 2968 /* add supported rates IE */ 2969 *frm++ = IEEE80211_ELEMID_RATES; 2970 nrates = rs->ir_nrates; 2971 if (nrates > IEEE80211_RATE_SIZE) 2972 nrates = IEEE80211_RATE_SIZE; 2973 *frm++ = (uint8_t)nrates; 2974 (void) memcpy(frm, rs->ir_rates, nrates); 2975 frm += nrates; 2976 2977 /* add supported xrates IE */ 2978 if (rs->ir_nrates > IEEE80211_RATE_SIZE) { 2979 nrates = rs->ir_nrates - IEEE80211_RATE_SIZE; 2980 *frm++ = IEEE80211_ELEMID_XRATES; 2981 *frm++ = (uint8_t)nrates; 2982 (void) memcpy(frm, rs->ir_rates + IEEE80211_RATE_SIZE, nrates); 2983 frm += nrates; 2984 } 2985 2986 /* add optionnal IE (usually an RSN IE) */ 2987 if (ic->ic_opt_ie != NULL) { 2988 (void) memcpy(frm, ic->ic_opt_ie, ic->ic_opt_ie_len); 2989 frm += ic->ic_opt_ie_len; 2990 } 2991 2992 /* setup length of probe request */ 2993 hdr->pbrlen = LE_16((uintptr_t)frm - (uintptr_t)wh); 2994 2995 /* align on a 4-byte boundary */ 2996 chan = (wpi_scan_chan_t *)frm; 2997 for (i = 1; i <= hdr->nchan; i++, chan++) { 2998 if (ic->ic_des_esslen) { 2999 chan->flags = 0x3; 3000 } else { 3001 chan->flags = 0x1; 3002 } 3003 chan->chan = ieee80211_chan2ieee(ic, ic->ic_curchan); 3004 chan->magic = LE_16(0x62ab); 3005 chan->active = LE_16(50); 3006 chan->passive = LE_16(120); 3007 3008 frm += sizeof (wpi_scan_chan_t); 3009 } 3010 3011 pktlen = (uintptr_t)frm - (uintptr_t)cmd; 3012 3013 desc->flags = LE_32(WPI_PAD32(pktlen) << 28 | 1 << 24); 3014 desc->segs[0].addr = LE_32(data->dma_data.cookie.dmac_address); 3015 desc->segs[0].len = LE_32(pktlen); 3016 3017 WPI_DMA_SYNC(data->dma_data, DDI_DMA_SYNC_FORDEV); 3018 WPI_DMA_SYNC(ring->dma_desc, DDI_DMA_SYNC_FORDEV); 3019 3020 /* kick cmd ring */ 3021 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 3022 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 3023 3024 sc->sc_scan_pending = 1; 3025 3026 return (WPI_SUCCESS); /* will be notified async. of failure/success */ 3027 } 3028 3029 static int 3030 wpi_config(wpi_sc_t *sc) 3031 { 3032 ieee80211com_t *ic = &sc->sc_ic; 3033 wpi_txpower_t txpower; 3034 wpi_power_t power; 3035 #ifdef WPI_BLUE_COEXISTENCE 3036 wpi_bluetooth_t bluetooth; 3037 #endif 3038 wpi_node_t node; 3039 int err; 3040 3041 /* Intel's binary only daemon is a joke.. */ 3042 3043 /* set Tx power for 2.4GHz channels (values read from EEPROM) */ 3044 (void) memset(&txpower, 0, sizeof (txpower)); 3045 (void) memcpy(txpower.pwr1, sc->sc_pwr1, 14 * sizeof (uint16_t)); 3046 (void) memcpy(txpower.pwr2, sc->sc_pwr2, 14 * sizeof (uint16_t)); 3047 err = wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof (txpower), 0); 3048 if (err != WPI_SUCCESS) { 3049 cmn_err(CE_WARN, "wpi_config(): failed to set txpower\n"); 3050 return (err); 3051 } 3052 3053 /* set power mode */ 3054 (void) memset(&power, 0, sizeof (power)); 3055 power.flags = LE_32(0x8); 3056 err = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof (power), 0); 3057 if (err != WPI_SUCCESS) { 3058 cmn_err(CE_WARN, "wpi_config(): failed to set power mode\n"); 3059 return (err); 3060 } 3061 #ifdef WPI_BLUE_COEXISTENCE 3062 /* configure bluetooth coexistence */ 3063 (void) memset(&bluetooth, 0, sizeof (bluetooth)); 3064 bluetooth.flags = 3; 3065 bluetooth.lead = 0xaa; 3066 bluetooth.kill = 1; 3067 err = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, 3068 sizeof (bluetooth), 0); 3069 if (err != WPI_SUCCESS) { 3070 cmn_err(CE_WARN, 3071 "wpi_config(): " 3072 "failed to configurate bluetooth coexistence\n"); 3073 return (err); 3074 } 3075 #endif 3076 /* configure adapter */ 3077 (void) memset(&sc->sc_config, 0, sizeof (wpi_config_t)); 3078 IEEE80211_ADDR_COPY(sc->sc_config.myaddr, ic->ic_macaddr); 3079 sc->sc_config.chan = ieee80211_chan2ieee(ic, ic->ic_curchan); 3080 sc->sc_config.flags = LE_32(WPI_CONFIG_TSF | WPI_CONFIG_AUTO | 3081 WPI_CONFIG_24GHZ); 3082 sc->sc_config.filter = 0; 3083 switch (ic->ic_opmode) { 3084 case IEEE80211_M_STA: 3085 sc->sc_config.mode = WPI_MODE_STA; 3086 sc->sc_config.filter |= LE_32(WPI_FILTER_MULTICAST); 3087 break; 3088 case IEEE80211_M_IBSS: 3089 case IEEE80211_M_AHDEMO: 3090 sc->sc_config.mode = WPI_MODE_IBSS; 3091 break; 3092 case IEEE80211_M_HOSTAP: 3093 sc->sc_config.mode = WPI_MODE_HOSTAP; 3094 break; 3095 case IEEE80211_M_MONITOR: 3096 sc->sc_config.mode = WPI_MODE_MONITOR; 3097 sc->sc_config.filter |= LE_32(WPI_FILTER_MULTICAST | 3098 WPI_FILTER_CTL | WPI_FILTER_PROMISC); 3099 break; 3100 } 3101 sc->sc_config.cck_mask = 0x0f; /* not yet negotiated */ 3102 sc->sc_config.ofdm_mask = 0xff; /* not yet negotiated */ 3103 err = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->sc_config, 3104 sizeof (wpi_config_t), 0); 3105 if (err != WPI_SUCCESS) { 3106 cmn_err(CE_WARN, "wpi_config(): " 3107 "failed to set configure command\n"); 3108 return (err); 3109 } 3110 3111 /* add broadcast node */ 3112 (void) memset(&node, 0, sizeof (node)); 3113 (void) memset(node.bssid, 0xff, 6); 3114 node.id = WPI_ID_BROADCAST; 3115 node.rate = wpi_plcp_signal(2); 3116 err = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof (node), 0); 3117 if (err != WPI_SUCCESS) { 3118 cmn_err(CE_WARN, "wpi_config(): " 3119 "failed to add broadcast node\n"); 3120 return (err); 3121 } 3122 3123 return (WPI_SUCCESS); 3124 } 3125 3126 static void 3127 wpi_stop_master(wpi_sc_t *sc) 3128 { 3129 uint32_t tmp; 3130 int ntries; 3131 3132 tmp = WPI_READ(sc, WPI_RESET); 3133 WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER); 3134 3135 tmp = WPI_READ(sc, WPI_GPIO_CTL); 3136 if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP) 3137 return; /* already asleep */ 3138 3139 for (ntries = 0; ntries < 2000; ntries++) { 3140 if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED) 3141 break; 3142 DELAY(1000); 3143 } 3144 if (ntries == 2000) 3145 WPI_DBG((WPI_DEBUG_HW, "timeout waiting for master\n")); 3146 } 3147 3148 static int 3149 wpi_power_up(wpi_sc_t *sc) 3150 { 3151 uint32_t tmp; 3152 int ntries; 3153 3154 wpi_mem_lock(sc); 3155 tmp = wpi_mem_read(sc, WPI_MEM_POWER); 3156 wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000); 3157 wpi_mem_unlock(sc); 3158 3159 for (ntries = 0; ntries < 5000; ntries++) { 3160 if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED) 3161 break; 3162 DELAY(10); 3163 } 3164 if (ntries == 5000) { 3165 cmn_err(CE_WARN, 3166 "wpi_power_up(): timeout waiting for NIC to power up\n"); 3167 return (ETIMEDOUT); 3168 } 3169 return (WPI_SUCCESS); 3170 } 3171 3172 static int 3173 wpi_reset(wpi_sc_t *sc) 3174 { 3175 uint32_t tmp; 3176 int ntries; 3177 3178 /* clear any pending interrupts */ 3179 WPI_WRITE(sc, WPI_INTR, 0xffffffff); 3180 3181 tmp = WPI_READ(sc, WPI_PLL_CTL); 3182 WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT); 3183 3184 tmp = WPI_READ(sc, WPI_CHICKEN); 3185 WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS); 3186 3187 tmp = WPI_READ(sc, WPI_GPIO_CTL); 3188 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT); 3189 3190 /* wait for clock stabilization */ 3191 for (ntries = 0; ntries < 1000; ntries++) { 3192 if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK) 3193 break; 3194 DELAY(10); 3195 } 3196 if (ntries == 1000) { 3197 cmn_err(CE_WARN, 3198 "wpi_reset(): timeout waiting for clock stabilization\n"); 3199 return (ETIMEDOUT); 3200 } 3201 3202 /* initialize EEPROM */ 3203 tmp = WPI_READ(sc, WPI_EEPROM_STATUS); 3204 if ((tmp & WPI_EEPROM_VERSION) == 0) { 3205 cmn_err(CE_WARN, "wpi_reset(): EEPROM not found\n"); 3206 return (EIO); 3207 } 3208 WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED); 3209 3210 return (WPI_SUCCESS); 3211 } 3212 3213 static void 3214 wpi_hw_config(wpi_sc_t *sc) 3215 { 3216 uint16_t val; 3217 uint32_t hw; 3218 3219 /* voodoo from the Linux "driver".. */ 3220 hw = WPI_READ(sc, WPI_HWCONFIG); 3221 3222 if ((sc->sc_rev & 0xc0) == 0x40) 3223 hw |= WPI_HW_ALM_MB; 3224 else if (!(sc->sc_rev & 0x80)) 3225 hw |= WPI_HW_ALM_MM; 3226 3227 val = wpi_read_prom_word(sc, WPI_EEPROM_CAPABILITIES); 3228 if ((val & 0xff) == 0x80) 3229 hw |= WPI_HW_SKU_MRC; 3230 3231 val = wpi_read_prom_word(sc, WPI_EEPROM_REVISION); 3232 hw &= ~WPI_HW_REV_D; 3233 if ((val & 0xf0) == 0xd0) 3234 hw |= WPI_HW_REV_D; 3235 3236 val = wpi_read_prom_word(sc, WPI_EEPROM_TYPE); 3237 if ((val & 0xff) > 1) 3238 hw |= WPI_HW_TYPE_B; 3239 3240 WPI_DBG((WPI_DEBUG_HW, "setting h/w config %x\n", hw)); 3241 WPI_WRITE(sc, WPI_HWCONFIG, hw); 3242 } 3243 3244 static int 3245 wpi_init(wpi_sc_t *sc) 3246 { 3247 uint32_t tmp; 3248 int qid, ntries, err; 3249 clock_t clk; 3250 3251 mutex_enter(&sc->sc_glock); 3252 sc->sc_flags &= ~WPI_F_FW_INIT; 3253 3254 (void) wpi_reset(sc); 3255 3256 wpi_mem_lock(sc); 3257 wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00); 3258 DELAY(20); 3259 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV); 3260 wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800); 3261 wpi_mem_unlock(sc); 3262 3263 (void) wpi_power_up(sc); 3264 wpi_hw_config(sc); 3265 3266 tmp = WPI_READ(sc, WPI_GPIO_CTL); 3267 if (!(tmp & WPI_GPIO_HW_RF_KILL)) { 3268 cmn_err(CE_WARN, "wpi_init(): Radio transmitter is off\n"); 3269 goto fail1; 3270 } 3271 3272 /* init Rx ring */ 3273 wpi_mem_lock(sc); 3274 WPI_WRITE(sc, WPI_RX_BASE, sc->sc_rxq.dma_desc.cookie.dmac_address); 3275 WPI_WRITE(sc, WPI_RX_RIDX_PTR, 3276 (uint32_t)(sc->sc_dma_sh.cookie.dmac_address + 3277 offsetof(wpi_shared_t, next))); 3278 WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & (~7)); 3279 WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010); 3280 wpi_mem_unlock(sc); 3281 3282 /* init Tx rings */ 3283 wpi_mem_lock(sc); 3284 wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */ 3285 wpi_mem_write(sc, WPI_MEM_RA, 1); /* enable RA0 */ 3286 wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */ 3287 wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000); 3288 wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002); 3289 wpi_mem_write(sc, WPI_MEM_MAGIC4, 4); 3290 wpi_mem_write(sc, WPI_MEM_MAGIC5, 5); 3291 3292 WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->sc_dma_sh.cookie.dmac_address); 3293 WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5); 3294 3295 for (qid = 0; qid < 6; qid++) { 3296 WPI_WRITE(sc, WPI_TX_CTL(qid), 0); 3297 WPI_WRITE(sc, WPI_TX_BASE(qid), 0); 3298 WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008); 3299 } 3300 wpi_mem_unlock(sc); 3301 3302 /* clear "radio off" and "disable command" bits (reversed logic) */ 3303 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3304 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD); 3305 3306 /* clear any pending interrupts */ 3307 WPI_WRITE(sc, WPI_INTR, 0xffffffff); 3308 3309 /* enable interrupts */ 3310 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK); 3311 3312 /* load firmware boot code into NIC */ 3313 err = wpi_load_microcode(sc); 3314 if (err != WPI_SUCCESS) { 3315 cmn_err(CE_WARN, "wpi_init(): failed to load microcode\n"); 3316 goto fail1; 3317 } 3318 3319 /* load firmware .text segment into NIC */ 3320 err = wpi_load_firmware(sc, WPI_FW_TEXT); 3321 if (err != WPI_SUCCESS) { 3322 cmn_err(CE_WARN, "wpi_init(): " 3323 "failed to load firmware(text)\n"); 3324 goto fail1; 3325 } 3326 3327 /* load firmware .data segment into NIC */ 3328 err = wpi_load_firmware(sc, WPI_FW_DATA); 3329 if (err != WPI_SUCCESS) { 3330 cmn_err(CE_WARN, "wpi_init(): " 3331 "failed to load firmware(data)\n"); 3332 goto fail1; 3333 } 3334 3335 /* now press "execute" ;-) */ 3336 tmp = WPI_READ(sc, WPI_RESET); 3337 tmp &= ~(WPI_MASTER_DISABLED | WPI_STOP_MASTER | WPI_NEVO_RESET); 3338 WPI_WRITE(sc, WPI_RESET, tmp); 3339 3340 /* ..and wait at most one second for adapter to initialize */ 3341 clk = ddi_get_lbolt() + drv_usectohz(2000000); 3342 while (!(sc->sc_flags & WPI_F_FW_INIT)) { 3343 if (cv_timedwait(&sc->sc_fw_cv, &sc->sc_glock, clk) < 0) 3344 break; 3345 } 3346 if (!(sc->sc_flags & WPI_F_FW_INIT)) { 3347 cmn_err(CE_WARN, 3348 "wpi_init(): timeout waiting for firmware init\n"); 3349 goto fail1; 3350 } 3351 3352 /* wait for thermal sensors to calibrate */ 3353 for (ntries = 0; ntries < 1000; ntries++) { 3354 if (WPI_READ(sc, WPI_TEMPERATURE) != 0) 3355 break; 3356 DELAY(10); 3357 } 3358 3359 if (ntries == 1000) { 3360 WPI_DBG((WPI_DEBUG_HW, 3361 "wpi_init(): timeout waiting for thermal sensors " 3362 "calibration\n")); 3363 } 3364 3365 WPI_DBG((WPI_DEBUG_HW, "temperature %d\n", 3366 (int)WPI_READ(sc, WPI_TEMPERATURE))); 3367 3368 err = wpi_config(sc); 3369 if (err) { 3370 cmn_err(CE_WARN, "wpi_init(): failed to configure device\n"); 3371 goto fail1; 3372 } 3373 3374 mutex_exit(&sc->sc_glock); 3375 return (WPI_SUCCESS); 3376 3377 fail1: 3378 err = WPI_FAIL; 3379 mutex_exit(&sc->sc_glock); 3380 return (err); 3381 } 3382 3383 static int 3384 wpi_fast_recover(wpi_sc_t *sc) 3385 { 3386 ieee80211com_t *ic = &sc->sc_ic; 3387 int err; 3388 3389 mutex_enter(&sc->sc_glock); 3390 3391 /* restore runtime configuration */ 3392 bcopy(&sc->sc_config_save, &sc->sc_config, 3393 sizeof (sc->sc_config)); 3394 3395 sc->sc_config.state = 0; 3396 sc->sc_config.filter &= ~LE_32(WPI_FILTER_BSS); 3397 3398 if ((err = wpi_auth(sc)) != 0) { 3399 cmn_err(CE_WARN, "wpi_fast_recover(): " 3400 "failed to setup authentication\n"); 3401 mutex_exit(&sc->sc_glock); 3402 return (err); 3403 } 3404 3405 sc->sc_config.state = LE_16(WPI_CONFIG_ASSOCIATED); 3406 sc->sc_config.flags &= ~LE_32(WPI_CONFIG_SHPREAMBLE | 3407 WPI_CONFIG_SHSLOT); 3408 if (ic->ic_flags & IEEE80211_F_SHSLOT) 3409 sc->sc_config.flags |= LE_32(WPI_CONFIG_SHSLOT); 3410 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 3411 sc->sc_config.flags |= LE_32(WPI_CONFIG_SHPREAMBLE); 3412 sc->sc_config.filter |= LE_32(WPI_FILTER_BSS); 3413 if (ic->ic_opmode != IEEE80211_M_STA) 3414 sc->sc_config.filter |= LE_32(WPI_FILTER_BEACON); 3415 3416 WPI_DBG((WPI_DEBUG_80211, "config chan %d flags %x\n", 3417 sc->sc_config.chan, sc->sc_config.flags)); 3418 err = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->sc_config, 3419 sizeof (wpi_config_t), 1); 3420 if (err != WPI_SUCCESS) { 3421 cmn_err(CE_WARN, "failed to setup association\n"); 3422 mutex_exit(&sc->sc_glock); 3423 return (err); 3424 } 3425 /* link LED on */ 3426 wpi_set_led(sc, WPI_LED_LINK, 0, 1); 3427 3428 mutex_exit(&sc->sc_glock); 3429 3430 /* update keys */ 3431 if (ic->ic_flags & IEEE80211_F_PRIVACY) { 3432 for (int i = 0; i < IEEE80211_KEY_MAX; i++) { 3433 if (ic->ic_nw_keys[i].wk_keyix == IEEE80211_KEYIX_NONE) 3434 continue; 3435 err = wpi_key_set(ic, &ic->ic_nw_keys[i], 3436 ic->ic_bss->in_macaddr); 3437 /* failure */ 3438 if (err == 0) { 3439 cmn_err(CE_WARN, "wpi_fast_recover(): " 3440 "failed to setup hardware keys\n"); 3441 return (WPI_FAIL); 3442 } 3443 } 3444 } 3445 3446 sc->sc_flags &= ~WPI_F_HW_ERR_RECOVER; 3447 3448 /* start queue */ 3449 WPI_DBG((WPI_DEBUG_FW, "wpi_fast_recover(): resume xmit\n")); 3450 mac_tx_update(ic->ic_mach); 3451 3452 return (WPI_SUCCESS); 3453 } 3454 3455 /* 3456 * quiesce(9E) entry point. 3457 * This function is called when the system is single-threaded at high 3458 * PIL with preemption disabled. Therefore, this function must not be 3459 * blocked. 3460 * This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure. 3461 * DDI_FAILURE indicates an error condition and should almost never happen. 3462 */ 3463 static int 3464 wpi_quiesce(dev_info_t *dip) 3465 { 3466 wpi_sc_t *sc; 3467 3468 sc = ddi_get_soft_state(wpi_soft_state_p, ddi_get_instance(dip)); 3469 if (sc == NULL) 3470 return (DDI_FAILURE); 3471 3472 #ifdef DEBUG 3473 /* by pass any messages, if it's quiesce */ 3474 wpi_dbg_flags = 0; 3475 #endif 3476 3477 /* 3478 * No more blocking is allowed while we are in the 3479 * quiesce(9E) entry point. 3480 */ 3481 sc->sc_flags |= WPI_F_QUIESCED; 3482 3483 /* 3484 * Disable and mask all interrupts. 3485 */ 3486 wpi_stop(sc); 3487 return (DDI_SUCCESS); 3488 } 3489 3490 static void 3491 wpi_stop(wpi_sc_t *sc) 3492 { 3493 uint32_t tmp; 3494 int ac; 3495 3496 /* no mutex operation, if it's quiesced */ 3497 if (!(sc->sc_flags & WPI_F_QUIESCED)) 3498 mutex_enter(&sc->sc_glock); 3499 3500 /* disable interrupts */ 3501 WPI_WRITE(sc, WPI_MASK, 0); 3502 WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK); 3503 WPI_WRITE(sc, WPI_INTR_STATUS, 0xff); 3504 WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000); 3505 3506 wpi_mem_lock(sc); 3507 wpi_mem_write(sc, WPI_MEM_MODE, 0); 3508 wpi_mem_unlock(sc); 3509 3510 /* reset all Tx rings */ 3511 for (ac = 0; ac < 4; ac++) 3512 wpi_reset_tx_ring(sc, &sc->sc_txq[ac]); 3513 wpi_reset_tx_ring(sc, &sc->sc_cmdq); 3514 wpi_reset_tx_ring(sc, &sc->sc_svcq); 3515 3516 /* reset Rx ring */ 3517 wpi_reset_rx_ring(sc); 3518 3519 wpi_mem_lock(sc); 3520 wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200); 3521 wpi_mem_unlock(sc); 3522 3523 DELAY(5); 3524 3525 wpi_stop_master(sc); 3526 3527 sc->sc_tx_timer = 0; 3528 sc->sc_flags &= ~WPI_F_SCANNING; 3529 sc->sc_scan_pending = 0; 3530 sc->sc_scan_next = 0; 3531 3532 tmp = WPI_READ(sc, WPI_RESET); 3533 WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET); 3534 3535 /* no mutex operation, if it's quiesced */ 3536 if (!(sc->sc_flags & WPI_F_QUIESCED)) 3537 mutex_exit(&sc->sc_glock); 3538 } 3539 3540 /* 3541 * Naive implementation of the Adaptive Multi Rate Retry algorithm: 3542 * "IEEE 802.11 Rate Adaptation: A Practical Approach" 3543 * Mathieu Lacage, Hossein Manshaei, Thierry Turletti 3544 * INRIA Sophia - Projet Planete 3545 * http://www-sop.inria.fr/rapports/sophia/RR-5208.html 3546 */ 3547 #define is_success(amrr) \ 3548 ((amrr)->retrycnt < (amrr)->txcnt / 10) 3549 #define is_failure(amrr) \ 3550 ((amrr)->retrycnt > (amrr)->txcnt / 3) 3551 #define is_enough(amrr) \ 3552 ((amrr)->txcnt > 100) 3553 #define is_min_rate(in) \ 3554 ((in)->in_txrate == 0) 3555 #define is_max_rate(in) \ 3556 ((in)->in_txrate == (in)->in_rates.ir_nrates - 1) 3557 #define increase_rate(in) \ 3558 ((in)->in_txrate++) 3559 #define decrease_rate(in) \ 3560 ((in)->in_txrate--) 3561 #define reset_cnt(amrr) \ 3562 { (amrr)->txcnt = (amrr)->retrycnt = 0; } 3563 3564 #define WPI_AMRR_MIN_SUCCESS_THRESHOLD 1 3565 #define WPI_AMRR_MAX_SUCCESS_THRESHOLD 15 3566 3567 static void 3568 wpi_amrr_init(wpi_amrr_t *amrr) 3569 { 3570 amrr->success = 0; 3571 amrr->recovery = 0; 3572 amrr->txcnt = amrr->retrycnt = 0; 3573 amrr->success_threshold = WPI_AMRR_MIN_SUCCESS_THRESHOLD; 3574 } 3575 3576 static void 3577 wpi_amrr_timeout(wpi_sc_t *sc) 3578 { 3579 ieee80211com_t *ic = &sc->sc_ic; 3580 3581 WPI_DBG((WPI_DEBUG_RATECTL, "wpi_amrr_timeout() enter\n")); 3582 if (ic->ic_opmode == IEEE80211_M_STA) 3583 wpi_amrr_ratectl(NULL, ic->ic_bss); 3584 else 3585 ieee80211_iterate_nodes(&ic->ic_sta, wpi_amrr_ratectl, NULL); 3586 sc->sc_clk = ddi_get_lbolt(); 3587 } 3588 3589 /* ARGSUSED */ 3590 static void 3591 wpi_amrr_ratectl(void *arg, ieee80211_node_t *in) 3592 { 3593 wpi_amrr_t *amrr = (wpi_amrr_t *)in; 3594 int need_change = 0; 3595 3596 if (is_success(amrr) && is_enough(amrr)) { 3597 amrr->success++; 3598 if (amrr->success >= amrr->success_threshold && 3599 !is_max_rate(in)) { 3600 amrr->recovery = 1; 3601 amrr->success = 0; 3602 increase_rate(in); 3603 WPI_DBG((WPI_DEBUG_RATECTL, 3604 "AMRR increasing rate %d (txcnt=%d retrycnt=%d)\n", 3605 in->in_txrate, amrr->txcnt, amrr->retrycnt)); 3606 need_change = 1; 3607 } else { 3608 amrr->recovery = 0; 3609 } 3610 } else if (is_failure(amrr)) { 3611 amrr->success = 0; 3612 if (!is_min_rate(in)) { 3613 if (amrr->recovery) { 3614 amrr->success_threshold++; 3615 if (amrr->success_threshold > 3616 WPI_AMRR_MAX_SUCCESS_THRESHOLD) 3617 amrr->success_threshold = 3618 WPI_AMRR_MAX_SUCCESS_THRESHOLD; 3619 } else { 3620 amrr->success_threshold = 3621 WPI_AMRR_MIN_SUCCESS_THRESHOLD; 3622 } 3623 decrease_rate(in); 3624 WPI_DBG((WPI_DEBUG_RATECTL, 3625 "AMRR decreasing rate %d (txcnt=%d retrycnt=%d)\n", 3626 in->in_txrate, amrr->txcnt, amrr->retrycnt)); 3627 need_change = 1; 3628 } 3629 amrr->recovery = 0; /* paper is incorrect */ 3630 } 3631 3632 if (is_enough(amrr) || need_change) 3633 reset_cnt(amrr); 3634 }