1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1990, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 26 #include <sys/scsi/scsi.h> 27 #include <sys/file.h> 28 29 /* 30 * Utility SCSI routines 31 */ 32 33 /* 34 * Polling support routines 35 */ 36 37 int scsi_pkt_allow_naca = 0; 38 extern uintptr_t scsi_callback_id; 39 40 extern uchar_t scsi_cdb_size[]; 41 42 /* 43 * Common buffer for scsi_log 44 */ 45 46 extern kmutex_t scsi_log_mutex; 47 static char scsi_log_buffer[MAXPATHLEN + 1]; 48 49 50 #define A_TO_TRAN(ap) (ap->a_hba_tran) 51 #define P_TO_TRAN(pkt) ((pkt)->pkt_address.a_hba_tran) 52 #define P_TO_ADDR(pkt) (&((pkt)->pkt_address)) 53 54 #define CSEC 10000 /* usecs */ 55 #define SEC_TO_CSEC (1000000/CSEC) 56 57 extern ddi_dma_attr_t scsi_alloc_attr; 58 59 /*PRINTFLIKE4*/ 60 static void impl_scsi_log(dev_info_t *dev, char *label, uint_t level, 61 const char *fmt, ...) __KPRINTFLIKE(4); 62 /*PRINTFLIKE4*/ 63 static void v_scsi_log(dev_info_t *dev, char *label, uint_t level, 64 const char *fmt, va_list ap) __KVPRINTFLIKE(4); 65 66 static int 67 scsi_get_next_descr(uint8_t *sdsp, 68 int sense_buf_len, struct scsi_descr_template **descrpp); 69 70 #define DESCR_GOOD 0 71 #define DESCR_PARTIAL 1 72 #define DESCR_END 2 73 74 static int 75 scsi_validate_descr(struct scsi_descr_sense_hdr *sdsp, 76 int valid_sense_length, struct scsi_descr_template *descrp); 77 78 int 79 scsi_poll(struct scsi_pkt *pkt) 80 { 81 int rval = -1; 82 int savef; 83 long savet; 84 void (*savec)(); 85 int timeout; 86 int busy_count; 87 int poll_delay; 88 int rc; 89 uint8_t *sensep; 90 struct scsi_arq_status *arqstat; 91 extern int do_polled_io; 92 93 ASSERT(pkt->pkt_scbp); 94 95 /* 96 * save old flags.. 97 */ 98 savef = pkt->pkt_flags; 99 savec = pkt->pkt_comp; 100 savet = pkt->pkt_time; 101 102 pkt->pkt_flags |= FLAG_NOINTR; 103 104 /* 105 * XXX there is nothing in the SCSA spec that states that we should not 106 * do a callback for polled cmds; however, removing this will break sd 107 * and probably other target drivers 108 */ 109 pkt->pkt_comp = NULL; 110 111 /* 112 * we don't like a polled command without timeout. 113 * 60 seconds seems long enough. 114 */ 115 if (pkt->pkt_time == 0) 116 pkt->pkt_time = SCSI_POLL_TIMEOUT; 117 118 /* 119 * Send polled cmd. 120 * 121 * We do some error recovery for various errors. Tran_busy, 122 * queue full, and non-dispatched commands are retried every 10 msec. 123 * as they are typically transient failures. Busy status and Not 124 * Ready are retried every second as this status takes a while to 125 * change. 126 */ 127 timeout = pkt->pkt_time * SEC_TO_CSEC; 128 129 for (busy_count = 0; busy_count < timeout; busy_count++) { 130 /* 131 * Initialize pkt status variables. 132 */ 133 *pkt->pkt_scbp = pkt->pkt_reason = pkt->pkt_state = 0; 134 135 if ((rc = scsi_transport(pkt)) != TRAN_ACCEPT) { 136 if (rc != TRAN_BUSY) { 137 /* Transport failed - give up. */ 138 break; 139 } else { 140 /* Transport busy - try again. */ 141 poll_delay = 1 * CSEC; /* 10 msec. */ 142 } 143 } else { 144 /* 145 * Transport accepted - check pkt status. 146 */ 147 rc = (*pkt->pkt_scbp) & STATUS_MASK; 148 if ((pkt->pkt_reason == CMD_CMPLT) && 149 (rc == STATUS_CHECK) && 150 (pkt->pkt_state & STATE_ARQ_DONE)) { 151 arqstat = 152 (struct scsi_arq_status *)(pkt->pkt_scbp); 153 sensep = (uint8_t *)&arqstat->sts_sensedata; 154 } else { 155 sensep = NULL; 156 } 157 158 if ((pkt->pkt_reason == CMD_CMPLT) && 159 (rc == STATUS_GOOD)) { 160 /* No error - we're done */ 161 rval = 0; 162 break; 163 164 } else if (pkt->pkt_reason == CMD_DEV_GONE) { 165 /* Lost connection - give up */ 166 break; 167 168 } else if ((pkt->pkt_reason == CMD_INCOMPLETE) && 169 (pkt->pkt_state == 0)) { 170 /* Pkt not dispatched - try again. */ 171 poll_delay = 1 * CSEC; /* 10 msec. */ 172 173 } else if ((pkt->pkt_reason == CMD_CMPLT) && 174 (rc == STATUS_QFULL)) { 175 /* Queue full - try again. */ 176 poll_delay = 1 * CSEC; /* 10 msec. */ 177 178 } else if ((pkt->pkt_reason == CMD_CMPLT) && 179 (rc == STATUS_BUSY)) { 180 /* Busy - try again. */ 181 poll_delay = 100 * CSEC; /* 1 sec. */ 182 busy_count += (SEC_TO_CSEC - 1); 183 184 } else if ((sensep != NULL) && 185 (scsi_sense_key(sensep) == KEY_NOT_READY) && 186 (scsi_sense_asc(sensep) == 0x04) && 187 (scsi_sense_ascq(sensep) == 0x01)) { 188 /* 189 * Not ready -> ready - try again. 190 * 04h/01h: LUN IS IN PROCESS OF BECOMING READY 191 * ...same as STATUS_BUSY 192 */ 193 poll_delay = 100 * CSEC; /* 1 sec. */ 194 busy_count += (SEC_TO_CSEC - 1); 195 196 } else { 197 /* BAD status - give up. */ 198 break; 199 } 200 } 201 202 if (((curthread->t_flag & T_INTR_THREAD) == 0) && 203 !do_polled_io) { 204 delay(drv_usectohz(poll_delay)); 205 } else { 206 /* we busy wait during cpr_dump or interrupt threads */ 207 drv_usecwait(poll_delay); 208 } 209 } 210 211 pkt->pkt_flags = savef; 212 pkt->pkt_comp = savec; 213 pkt->pkt_time = savet; 214 215 /* return on error */ 216 if (rval) 217 return (rval); 218 219 /* 220 * This is not a performance critical code path. 221 * 222 * As an accommodation for scsi_poll callers, to avoid ddi_dma_sync() 223 * issues associated with looking at DMA memory prior to 224 * scsi_pkt_destroy(), we scsi_sync_pkt() prior to return. 225 */ 226 scsi_sync_pkt(pkt); 227 return (0); 228 } 229 230 /* 231 * Command packaging routines. 232 * 233 * makecom_g*() are original routines and scsi_setup_cdb() 234 * is the new and preferred routine. 235 */ 236 237 /* 238 * These routines put LUN information in CDB byte 1 bits 7-5. 239 * This was required in SCSI-1. SCSI-2 allowed it but it preferred 240 * sending LUN information as part of IDENTIFY message. 241 * This is not allowed in SCSI-3. 242 */ 243 244 void 245 makecom_g0(struct scsi_pkt *pkt, struct scsi_device *devp, 246 int flag, int cmd, int addr, int cnt) 247 { 248 MAKECOM_G0(pkt, devp, flag, cmd, addr, (uchar_t)cnt); 249 } 250 251 void 252 makecom_g0_s(struct scsi_pkt *pkt, struct scsi_device *devp, 253 int flag, int cmd, int cnt, int fixbit) 254 { 255 MAKECOM_G0_S(pkt, devp, flag, cmd, cnt, (uchar_t)fixbit); 256 } 257 258 void 259 makecom_g1(struct scsi_pkt *pkt, struct scsi_device *devp, 260 int flag, int cmd, int addr, int cnt) 261 { 262 MAKECOM_G1(pkt, devp, flag, cmd, addr, cnt); 263 } 264 265 void 266 makecom_g5(struct scsi_pkt *pkt, struct scsi_device *devp, 267 int flag, int cmd, int addr, int cnt) 268 { 269 MAKECOM_G5(pkt, devp, flag, cmd, addr, cnt); 270 } 271 272 /* 273 * Following routine does not put LUN information in CDB. 274 * This interface must be used for SCSI-2 targets having 275 * more than 8 LUNs or a SCSI-3 target. 276 */ 277 int 278 scsi_setup_cdb(union scsi_cdb *cdbp, uchar_t cmd, uint_t addr, uint_t cnt, 279 uint_t addtl_cdb_data) 280 { 281 uint_t addr_cnt; 282 283 cdbp->scc_cmd = cmd; 284 285 switch (CDB_GROUPID(cmd)) { 286 case CDB_GROUPID_0: 287 /* 288 * The following calculation is to take care of 289 * the fact that format of some 6 bytes tape 290 * command is different (compare 6 bytes disk and 291 * tape read commands). 292 */ 293 addr_cnt = (addr << 8) + cnt; 294 addr = (addr_cnt & 0x1fffff00) >> 8; 295 cnt = addr_cnt & 0xff; 296 FORMG0ADDR(cdbp, addr); 297 FORMG0COUNT(cdbp, cnt); 298 break; 299 300 case CDB_GROUPID_1: 301 case CDB_GROUPID_2: 302 FORMG1ADDR(cdbp, addr); 303 FORMG1COUNT(cdbp, cnt); 304 break; 305 306 case CDB_GROUPID_4: 307 FORMG4ADDR(cdbp, addr); 308 FORMG4COUNT(cdbp, cnt); 309 FORMG4ADDTL(cdbp, addtl_cdb_data); 310 break; 311 312 case CDB_GROUPID_5: 313 FORMG5ADDR(cdbp, addr); 314 FORMG5COUNT(cdbp, cnt); 315 break; 316 317 default: 318 return (0); 319 } 320 321 return (1); 322 } 323 324 325 /* 326 * Common iopbmap data area packet allocation routines 327 */ 328 329 struct scsi_pkt * 330 get_pktiopb(struct scsi_address *ap, caddr_t *datap, int cdblen, int statuslen, 331 int datalen, int readflag, int (*func)()) 332 { 333 scsi_hba_tran_t *tran = A_TO_TRAN(ap); 334 dev_info_t *pdip = tran->tran_hba_dip; 335 struct scsi_pkt *pkt = NULL; 336 struct buf local; 337 size_t rlen; 338 339 if (!datap) 340 return (pkt); 341 *datap = (caddr_t)0; 342 bzero((caddr_t)&local, sizeof (struct buf)); 343 344 /* 345 * use i_ddi_mem_alloc() for now until we have an interface to allocate 346 * memory for DMA which doesn't require a DMA handle. 347 */ 348 if (i_ddi_mem_alloc(pdip, &scsi_alloc_attr, datalen, 349 ((func == SLEEP_FUNC) ? 1 : 0), 0, NULL, &local.b_un.b_addr, &rlen, 350 NULL) != DDI_SUCCESS) { 351 return (pkt); 352 } 353 if (readflag) 354 local.b_flags = B_READ; 355 local.b_bcount = datalen; 356 pkt = (*tran->tran_init_pkt) (ap, NULL, &local, 357 cdblen, statuslen, 0, PKT_CONSISTENT, 358 (func == SLEEP_FUNC) ? SLEEP_FUNC : NULL_FUNC, NULL); 359 if (!pkt) { 360 i_ddi_mem_free(local.b_un.b_addr, NULL); 361 if (func != NULL_FUNC) { 362 ddi_set_callback(func, NULL, &scsi_callback_id); 363 } 364 } else { 365 *datap = local.b_un.b_addr; 366 } 367 return (pkt); 368 } 369 370 /* 371 * Equivalent deallocation wrapper 372 */ 373 374 void 375 free_pktiopb(struct scsi_pkt *pkt, caddr_t datap, int datalen) 376 { 377 register struct scsi_address *ap = P_TO_ADDR(pkt); 378 register scsi_hba_tran_t *tran = A_TO_TRAN(ap); 379 380 (*tran->tran_destroy_pkt)(ap, pkt); 381 if (datap && datalen) { 382 i_ddi_mem_free(datap, NULL); 383 } 384 if (scsi_callback_id != 0) { 385 ddi_run_callback(&scsi_callback_id); 386 } 387 } 388 389 /* 390 * Common naming functions 391 */ 392 393 static char scsi_tmpname[64]; 394 395 char * 396 scsi_dname(int dtyp) 397 { 398 static char *dnames[] = DTYPE_ASCII; 399 char *dname = NULL; 400 401 if ((dtyp & DTYPE_MASK) < (sizeof (dnames) / sizeof (*dnames))) 402 dname = dnames[dtyp&DTYPE_MASK]; 403 else if (dtyp == DTYPE_NOTPRESENT) 404 dname = "Not Present"; 405 if ((dname == NULL) || (*dname == '\0')) 406 dname = "<unknown device type>"; 407 return (dname); 408 } 409 410 char * 411 scsi_rname(uchar_t reason) 412 { 413 static char *rnames[] = CMD_REASON_ASCII; 414 char *rname = NULL; 415 416 if (reason < (sizeof (rnames) / sizeof (*rnames))) 417 rname = rnames[reason]; 418 if ((rname == NULL) || (*rname == '\0')) 419 rname = "<unknown reason>"; 420 return (rname); 421 } 422 423 char * 424 scsi_mname(uchar_t msg) 425 { 426 static char *imsgs[23] = { 427 "COMMAND COMPLETE", 428 "EXTENDED", 429 "SAVE DATA POINTER", 430 "RESTORE POINTERS", 431 "DISCONNECT", 432 "INITIATOR DETECTED ERROR", 433 "ABORT", 434 "REJECT", 435 "NO-OP", 436 "MESSAGE PARITY", 437 "LINKED COMMAND COMPLETE", 438 "LINKED COMMAND COMPLETE (W/FLAG)", 439 "BUS DEVICE RESET", 440 "ABORT TAG", 441 "CLEAR QUEUE", 442 "INITIATE RECOVERY", 443 "RELEASE RECOVERY", 444 "TERMINATE PROCESS", 445 "CONTINUE TASK", 446 "TARGET TRANSFER DISABLE", 447 "RESERVED (0x14)", 448 "RESERVED (0x15)", 449 "CLEAR ACA" 450 }; 451 static char *imsgs_2[6] = { 452 "SIMPLE QUEUE TAG", 453 "HEAD OF QUEUE TAG", 454 "ORDERED QUEUE TAG", 455 "IGNORE WIDE RESIDUE", 456 "ACA", 457 "LOGICAL UNIT RESET" 458 }; 459 460 if (msg < 23) { 461 return (imsgs[msg]); 462 } else if (IS_IDENTIFY_MSG(msg)) { 463 return ("IDENTIFY"); 464 } else if (IS_2BYTE_MSG(msg) && 465 (int)((msg) & 0xF) < (sizeof (imsgs_2) / sizeof (char *))) { 466 return (imsgs_2[msg & 0xF]); 467 } else { 468 return ("<unknown msg>"); 469 } 470 471 } 472 473 char * 474 scsi_cname(uchar_t cmd, register char **cmdvec) 475 { 476 while (*cmdvec != (char *)0) { 477 if (cmd == **cmdvec) { 478 return ((char *)((long)(*cmdvec)+1)); 479 } 480 cmdvec++; 481 } 482 return (sprintf(scsi_tmpname, "<undecoded cmd 0x%x>", cmd)); 483 } 484 485 char * 486 scsi_cmd_name(uchar_t cmd, struct scsi_key_strings *cmdlist, char *tmpstr) 487 { 488 int i = 0; 489 490 while (cmdlist[i].key != -1) { 491 if (cmd == cmdlist[i].key) { 492 return ((char *)cmdlist[i].message); 493 } 494 i++; 495 } 496 return (sprintf(tmpstr, "<undecoded cmd 0x%x>", cmd)); 497 } 498 499 static struct scsi_asq_key_strings extended_sense_list[] = { 500 { 0x00, 0x00, "no additional sense info" }, 501 { 0x00, 0x01, "filemark detected" }, 502 { 0x00, 0x02, "end of partition/medium detected" }, 503 { 0x00, 0x03, "setmark detected" }, 504 { 0x00, 0x04, "beginning of partition/medium detected" }, 505 { 0x00, 0x05, "end of data detected" }, 506 { 0x00, 0x06, "i/o process terminated" }, 507 { 0x00, 0x11, "audio play operation in progress" }, 508 { 0x00, 0x12, "audio play operation paused" }, 509 { 0x00, 0x13, "audio play operation successfully completed" }, 510 { 0x00, 0x14, "audio play operation stopped due to error" }, 511 { 0x00, 0x15, "no current audio status to return" }, 512 { 0x00, 0x16, "operation in progress" }, 513 { 0x00, 0x17, "cleaning requested" }, 514 { 0x00, 0x18, "erase operation in progress" }, 515 { 0x00, 0x19, "locate operation in progress" }, 516 { 0x00, 0x1A, "rewind operation in progress" }, 517 { 0x00, 0x1B, "set capacity operation in progress" }, 518 { 0x00, 0x1C, "verify operation in progress" }, 519 { 0x00, 0x1D, "ATA passthrough information available" }, 520 { 0x01, 0x00, "no index/sector signal" }, 521 { 0x02, 0x00, "no seek complete" }, 522 { 0x03, 0x00, "peripheral device write fault" }, 523 { 0x03, 0x01, "no write current" }, 524 { 0x03, 0x02, "excessive write errors" }, 525 { 0x04, 0x00, "LUN not ready" }, 526 { 0x04, 0x01, "LUN is becoming ready" }, 527 { 0x04, 0x02, "LUN initializing command required" }, 528 { 0x04, 0x03, "LUN not ready intervention required" }, 529 { 0x04, 0x04, "LUN not ready format in progress" }, 530 { 0x04, 0x05, "LUN not ready, rebuild in progress" }, 531 { 0x04, 0x06, "LUN not ready, recalculation in progress" }, 532 { 0x04, 0x07, "LUN not ready, operation in progress" }, 533 { 0x04, 0x08, "LUN not ready, long write in progress" }, 534 { 0x04, 0x09, "LUN not ready, self-test in progress" }, 535 { 0x04, 0x0A, "LUN not accessible, asymmetric access state transition" }, 536 { 0x04, 0x0B, "LUN not accessible, target port in standby state" }, 537 { 0x04, 0x0C, "LUN not accessible, target port in unavailable state" }, 538 { 0x04, 0x10, "LUN not ready, auxiliary memory not accessible" }, 539 { 0x05, 0x00, "LUN does not respond to selection" }, 540 { 0x06, 0x00, "reference position found" }, 541 { 0x07, 0x00, "multiple peripheral devices selected" }, 542 { 0x08, 0x00, "LUN communication failure" }, 543 { 0x08, 0x01, "LUN communication time-out" }, 544 { 0x08, 0x02, "LUN communication parity error" }, 545 { 0x08, 0x03, "LUN communication crc error (ultra-DMA/32)" }, 546 { 0x08, 0x04, "unreachable copy target" }, 547 { 0x09, 0x00, "track following error" }, 548 { 0x09, 0x01, "tracking servo failure" }, 549 { 0x09, 0x02, "focus servo failure" }, 550 { 0x09, 0x03, "spindle servo failure" }, 551 { 0x09, 0x04, "head select fault" }, 552 { 0x0a, 0x00, "error log overflow" }, 553 { 0x0b, 0x00, "warning" }, 554 { 0x0b, 0x01, "warning - specified temperature exceeded" }, 555 { 0x0b, 0x02, "warning - enclosure degraded" }, 556 { 0x0c, 0x00, "write error" }, 557 { 0x0c, 0x01, "write error - recovered with auto reallocation" }, 558 { 0x0c, 0x02, "write error - auto reallocation failed" }, 559 { 0x0c, 0x03, "write error - recommend reassignment" }, 560 { 0x0c, 0x04, "compression check miscompare error" }, 561 { 0x0c, 0x05, "data expansion occurred during compression" }, 562 { 0x0c, 0x06, "block not compressible" }, 563 { 0x0c, 0x07, "write error - recovery needed" }, 564 { 0x0c, 0x08, "write error - recovery failed" }, 565 { 0x0c, 0x09, "write error - loss of streaming" }, 566 { 0x0c, 0x0a, "write error - padding blocks added" }, 567 { 0x0c, 0x0b, "auxiliary memory write error" }, 568 { 0x0c, 0x0c, "write error - unexpected unsolicited data" }, 569 { 0x0c, 0x0d, "write error - not enough unsolicited data" }, 570 { 0x0d, 0x00, "error detected by third party temporary initiator" }, 571 { 0x0d, 0x01, "third party device failure" }, 572 { 0x0d, 0x02, "copy target device not reachable" }, 573 { 0x0d, 0x03, "incorrect copy target device type" }, 574 { 0x0d, 0x04, "copy target device data underrun" }, 575 { 0x0d, 0x05, "copy target device data overrun" }, 576 { 0x0e, 0x00, "invalid information unit" }, 577 { 0x0e, 0x01, "information unit too short" }, 578 { 0x0e, 0x02, "information unit too long" }, 579 { 0x10, 0x00, "ID CRC or ECC error" }, 580 { 0x11, 0x00, "unrecovered read error" }, 581 { 0x11, 0x01, "read retries exhausted" }, 582 { 0x11, 0x02, "error too long to correct" }, 583 { 0x11, 0x03, "multiple read errors" }, 584 { 0x11, 0x04, "unrecovered read error - auto reallocate failed" }, 585 { 0x11, 0x05, "L-EC uncorrectable error" }, 586 { 0x11, 0x06, "CIRC unrecovered error" }, 587 { 0x11, 0x07, "data re-synchronization error" }, 588 { 0x11, 0x08, "incomplete block read" }, 589 { 0x11, 0x09, "no gap found" }, 590 { 0x11, 0x0a, "miscorrected error" }, 591 { 0x11, 0x0b, "unrecovered read error - recommend reassignment" }, 592 { 0x11, 0x0c, "unrecovered read error - recommend rewrite the data" }, 593 { 0x11, 0x0d, "de-compression crc error" }, 594 { 0x11, 0x0e, "cannot decompress using declared algorithm" }, 595 { 0x11, 0x0f, "error reading UPC/EAN number" }, 596 { 0x11, 0x10, "error reading ISRC number" }, 597 { 0x11, 0x11, "read error - loss of streaming" }, 598 { 0x11, 0x12, "auxiliary memory read error" }, 599 { 0x11, 0x13, "read error - failed retransmission request" }, 600 { 0x12, 0x00, "address mark not found for ID field" }, 601 { 0x13, 0x00, "address mark not found for data field" }, 602 { 0x14, 0x00, "recorded entity not found" }, 603 { 0x14, 0x01, "record not found" }, 604 { 0x14, 0x02, "filemark or setmark not found" }, 605 { 0x14, 0x03, "end-of-data not found" }, 606 { 0x14, 0x04, "block sequence error" }, 607 { 0x14, 0x05, "record not found - recommend reassignment" }, 608 { 0x14, 0x06, "record not found - data auto-reallocated" }, 609 { 0x14, 0x07, "locate operation failure" }, 610 { 0x15, 0x00, "random positioning error" }, 611 { 0x15, 0x01, "mechanical positioning error" }, 612 { 0x15, 0x02, "positioning error detected by read of medium" }, 613 { 0x16, 0x00, "data sync mark error" }, 614 { 0x16, 0x01, "data sync error - data rewritten" }, 615 { 0x16, 0x02, "data sync error - recommend rewrite" }, 616 { 0x16, 0x03, "data sync error - data auto-reallocated" }, 617 { 0x16, 0x04, "data sync error - recommend reassignment" }, 618 { 0x17, 0x00, "recovered data with no error correction" }, 619 { 0x17, 0x01, "recovered data with retries" }, 620 { 0x17, 0x02, "recovered data with positive head offset" }, 621 { 0x17, 0x03, "recovered data with negative head offset" }, 622 { 0x17, 0x04, "recovered data with retries and/or CIRC applied" }, 623 { 0x17, 0x05, "recovered data using previous sector id" }, 624 { 0x17, 0x06, "recovered data without ECC - data auto-reallocated" }, 625 { 0x17, 0x07, "recovered data without ECC - recommend reassignment" }, 626 { 0x17, 0x08, "recovered data without ECC - recommend rewrite" }, 627 { 0x17, 0x09, "recovered data without ECC - data rewritten" }, 628 { 0x18, 0x00, "recovered data with error correction" }, 629 { 0x18, 0x01, "recovered data with error corr. & retries applied" }, 630 { 0x18, 0x02, "recovered data - data auto-reallocated" }, 631 { 0x18, 0x03, "recovered data with CIRC" }, 632 { 0x18, 0x04, "recovered data with L-EC" }, 633 { 0x18, 0x05, "recovered data - recommend reassignment" }, 634 { 0x18, 0x06, "recovered data - recommend rewrite" }, 635 { 0x18, 0x07, "recovered data with ECC - data rewritten" }, 636 { 0x18, 0x08, "recovered data with linking" }, 637 { 0x19, 0x00, "defect list error" }, 638 { 0x1a, 0x00, "parameter list length error" }, 639 { 0x1b, 0x00, "synchronous data xfer error" }, 640 { 0x1c, 0x00, "defect list not found" }, 641 { 0x1c, 0x01, "primary defect list not found" }, 642 { 0x1c, 0x02, "grown defect list not found" }, 643 { 0x1d, 0x00, "miscompare during verify" }, 644 { 0x1e, 0x00, "recovered ID with ECC" }, 645 { 0x1f, 0x00, "partial defect list transfer" }, 646 { 0x20, 0x00, "invalid command operation code" }, 647 { 0x20, 0x01, "access denied - initiator pending-enrolled" }, 648 { 0x20, 0x02, "access denied - no access rights" }, 649 { 0x20, 0x03, "access denied - invalid mgmt id key" }, 650 { 0x20, 0x04, "illegal command while in write capable state" }, 651 { 0x20, 0x06, "illegal command while in explicit address mode" }, 652 { 0x20, 0x07, "illegal command while in implicit address mode" }, 653 { 0x20, 0x08, "access denied - enrollment conflict" }, 654 { 0x20, 0x09, "access denied - invalid lu identifier" }, 655 { 0x20, 0x0a, "access denied - invalid proxy token" }, 656 { 0x20, 0x0b, "access denied - ACL LUN conflict" }, 657 { 0x21, 0x00, "logical block address out of range" }, 658 { 0x21, 0x01, "invalid element address" }, 659 { 0x21, 0x02, "invalid address for write" }, 660 { 0x22, 0x00, "illegal function" }, 661 { 0x24, 0x00, "invalid field in cdb" }, 662 { 0x24, 0x01, "cdb decryption error" }, 663 { 0x25, 0x00, "LUN not supported" }, 664 { 0x26, 0x00, "invalid field in param list" }, 665 { 0x26, 0x01, "parameter not supported" }, 666 { 0x26, 0x02, "parameter value invalid" }, 667 { 0x26, 0x03, "threshold parameters not supported" }, 668 { 0x26, 0x04, "invalid release of persistent reservation" }, 669 { 0x26, 0x05, "data decryption error" }, 670 { 0x26, 0x06, "too many target descriptors" }, 671 { 0x26, 0x07, "unsupported target descriptor type code" }, 672 { 0x26, 0x08, "too many segment descriptors" }, 673 { 0x26, 0x09, "unsupported segment descriptor type code" }, 674 { 0x26, 0x0a, "unexpected inexact segment" }, 675 { 0x26, 0x0b, "inline data length exceeded" }, 676 { 0x26, 0x0c, "invalid operation for copy source or destination" }, 677 { 0x26, 0x0d, "copy segment granularity violation" }, 678 { 0x27, 0x00, "write protected" }, 679 { 0x27, 0x01, "hardware write protected" }, 680 { 0x27, 0x02, "LUN software write protected" }, 681 { 0x27, 0x03, "associated write protect" }, 682 { 0x27, 0x04, "persistent write protect" }, 683 { 0x27, 0x05, "permanent write protect" }, 684 { 0x27, 0x06, "conditional write protect" }, 685 { 0x27, 0x80, "unable to overwrite data" }, 686 { 0x28, 0x00, "medium may have changed" }, 687 { 0x28, 0x01, "import or export element accessed" }, 688 { 0x29, 0x00, "power on, reset, or bus reset occurred" }, 689 { 0x29, 0x01, "power on occurred" }, 690 { 0x29, 0x02, "scsi bus reset occurred" }, 691 { 0x29, 0x03, "bus device reset message occurred" }, 692 { 0x29, 0x04, "device internal reset" }, 693 { 0x29, 0x05, "transceiver mode changed to single-ended" }, 694 { 0x29, 0x06, "transceiver mode changed to LVD" }, 695 { 0x29, 0x07, "i_t nexus loss occurred" }, 696 { 0x2a, 0x00, "parameters changed" }, 697 { 0x2a, 0x01, "mode parameters changed" }, 698 { 0x2a, 0x02, "log parameters changed" }, 699 { 0x2a, 0x03, "reservations preempted" }, 700 { 0x2a, 0x04, "reservations released" }, 701 { 0x2a, 0x05, "registrations preempted" }, 702 { 0x2a, 0x06, "asymmetric access state changed" }, 703 { 0x2a, 0x07, "implicit asymmetric access state transition failed" }, 704 { 0x2b, 0x00, "copy cannot execute since host cannot disconnect" }, 705 { 0x2c, 0x00, "command sequence error" }, 706 { 0x2c, 0x03, "current program area is not empty" }, 707 { 0x2c, 0x04, "current program area is empty" }, 708 { 0x2c, 0x06, "persistent prevent conflict" }, 709 { 0x2c, 0x07, "previous busy status" }, 710 { 0x2c, 0x08, "previous task set full status" }, 711 { 0x2c, 0x09, "previous reservation conflict status" }, 712 { 0x2d, 0x00, "overwrite error on update in place" }, 713 { 0x2e, 0x00, "insufficient time for operation" }, 714 { 0x2f, 0x00, "commands cleared by another initiator" }, 715 { 0x30, 0x00, "incompatible medium installed" }, 716 { 0x30, 0x01, "cannot read medium - unknown format" }, 717 { 0x30, 0x02, "cannot read medium - incompatible format" }, 718 { 0x30, 0x03, "cleaning cartridge installed" }, 719 { 0x30, 0x04, "cannot write medium - unknown format" }, 720 { 0x30, 0x05, "cannot write medium - incompatible format" }, 721 { 0x30, 0x06, "cannot format medium - incompatible medium" }, 722 { 0x30, 0x07, "cleaning failure" }, 723 { 0x30, 0x08, "cannot write - application code mismatch" }, 724 { 0x30, 0x09, "current session not fixated for append" }, 725 { 0x30, 0x0b, "WORM medium - Overwrite attempted" }, 726 { 0x30, 0x0c, "WORM medium - Cannot Erase" }, 727 { 0x30, 0x0d, "WORM medium - Integrity Check" }, 728 { 0x30, 0x10, "medium not formatted" }, 729 { 0x31, 0x00, "medium format corrupted" }, 730 { 0x31, 0x01, "format command failed" }, 731 { 0x31, 0x02, "zoned formatting failed due to spare linking" }, 732 { 0x31, 0x94, "WORM media corrupted" }, 733 { 0x32, 0x00, "no defect spare location available" }, 734 { 0x32, 0x01, "defect list update failure" }, 735 { 0x33, 0x00, "tape length error" }, 736 { 0x34, 0x00, "enclosure failure" }, 737 { 0x35, 0x00, "enclosure services failure" }, 738 { 0x35, 0x01, "unsupported enclosure function" }, 739 { 0x35, 0x02, "enclosure services unavailable" }, 740 { 0x35, 0x03, "enclosure services transfer failure" }, 741 { 0x35, 0x04, "enclosure services transfer refused" }, 742 { 0x36, 0x00, "ribbon, ink, or toner failure" }, 743 { 0x37, 0x00, "rounded parameter" }, 744 { 0x39, 0x00, "saving parameters not supported" }, 745 { 0x3a, 0x00, "medium not present" }, 746 { 0x3a, 0x01, "medium not present - tray closed" }, 747 { 0x3a, 0x02, "medium not present - tray open" }, 748 { 0x3a, 0x03, "medium not present - loadable" }, 749 { 0x3a, 0x04, "medium not present - medium auxiliary memory accessible" }, 750 { 0x3b, 0x00, "sequential positioning error" }, 751 { 0x3b, 0x01, "tape position error at beginning-of-medium" }, 752 { 0x3b, 0x02, "tape position error at end-of-medium" }, 753 { 0x3b, 0x08, "reposition error" }, 754 { 0x3b, 0x0c, "position past beginning of medium" }, 755 { 0x3b, 0x0d, "medium destination element full" }, 756 { 0x3b, 0x0e, "medium source element empty" }, 757 { 0x3b, 0x0f, "end of medium reached" }, 758 { 0x3b, 0x11, "medium magazine not accessible" }, 759 { 0x3b, 0x12, "medium magazine removed" }, 760 { 0x3b, 0x13, "medium magazine inserted" }, 761 { 0x3b, 0x14, "medium magazine locked" }, 762 { 0x3b, 0x15, "medium magazine unlocked" }, 763 { 0x3b, 0x16, "mechanical positioning or changer error" }, 764 { 0x3d, 0x00, "invalid bits in indentify message" }, 765 { 0x3e, 0x00, "LUN has not self-configured yet" }, 766 { 0x3e, 0x01, "LUN failure" }, 767 { 0x3e, 0x02, "timeout on LUN" }, 768 { 0x3e, 0x03, "LUN failed self-test" }, 769 { 0x3e, 0x04, "LUN unable to update self-test log" }, 770 { 0x3f, 0x00, "target operating conditions have changed" }, 771 { 0x3f, 0x01, "microcode has been changed" }, 772 { 0x3f, 0x02, "changed operating definition" }, 773 { 0x3f, 0x03, "inquiry data has changed" }, 774 { 0x3f, 0x04, "component device attached" }, 775 { 0x3f, 0x05, "device identifier changed" }, 776 { 0x3f, 0x06, "redundancy group created or modified" }, 777 { 0x3f, 0x07, "redundancy group deleted" }, 778 { 0x3f, 0x08, "spare created or modified" }, 779 { 0x3f, 0x09, "spare deleted" }, 780 { 0x3f, 0x0a, "volume set created or modified" }, 781 { 0x3f, 0x0b, "volume set deleted" }, 782 { 0x3f, 0x0c, "volume set deassigned" }, 783 { 0x3f, 0x0d, "volume set reassigned" }, 784 { 0x3f, 0x0e, "reported LUNs data has changed" }, 785 { 0x3f, 0x0f, "echo buffer overwritten" }, 786 { 0x3f, 0x10, "medium loadable" }, 787 { 0x3f, 0x11, "medium auxiliary memory accessible" }, 788 { 0x40, 0x00, "ram failure" }, 789 { 0x41, 0x00, "data path failure" }, 790 { 0x42, 0x00, "power-on or self-test failure" }, 791 { 0x43, 0x00, "message error" }, 792 { 0x44, 0x00, "internal target failure" }, 793 { 0x45, 0x00, "select or reselect failure" }, 794 { 0x46, 0x00, "unsuccessful soft reset" }, 795 { 0x47, 0x00, "scsi parity error" }, 796 { 0x47, 0x01, "data phase crc error detected" }, 797 { 0x47, 0x02, "scsi parity error detected during st data phase" }, 798 { 0x47, 0x03, "information unit iucrc error detected" }, 799 { 0x47, 0x04, "asynchronous information protection error detected" }, 800 { 0x47, 0x05, "protocol service crc error" }, 801 { 0x47, 0x7f, "some commands cleared by iscsi protocol event" }, 802 { 0x48, 0x00, "initiator detected error message received" }, 803 { 0x49, 0x00, "invalid message error" }, 804 { 0x4a, 0x00, "command phase error" }, 805 { 0x4b, 0x00, "data phase error" }, 806 { 0x4b, 0x01, "invalid target port transfer tag received" }, 807 { 0x4b, 0x02, "too much write data" }, 808 { 0x4b, 0x03, "ack/nak timeout" }, 809 { 0x4b, 0x04, "nak received" }, 810 { 0x4b, 0x05, "data offset error" }, 811 { 0x4c, 0x00, "logical unit failed self-configuration" }, 812 { 0x4d, 0x00, "tagged overlapped commands (ASCQ = queue tag)" }, 813 { 0x4e, 0x00, "overlapped commands attempted" }, 814 { 0x50, 0x00, "write append error" }, 815 { 0x50, 0x01, "data protect write append error" }, 816 { 0x50, 0x95, "data protect write append error" }, 817 { 0x51, 0x00, "erase failure" }, 818 { 0x52, 0x00, "cartridge fault" }, 819 { 0x53, 0x00, "media load or eject failed" }, 820 { 0x53, 0x01, "unload tape failure" }, 821 { 0x53, 0x02, "medium removal prevented" }, 822 { 0x54, 0x00, "scsi to host system interface failure" }, 823 { 0x55, 0x00, "system resource failure" }, 824 { 0x55, 0x01, "system buffer full" }, 825 { 0x55, 0x02, "insufficient reservation resources" }, 826 { 0x55, 0x03, "insufficient resources" }, 827 { 0x55, 0x04, "insufficient registration resources" }, 828 { 0x55, 0x05, "insufficient access control resources" }, 829 { 0x55, 0x06, "auxiliary memory out of space" }, 830 { 0x57, 0x00, "unable to recover TOC" }, 831 { 0x58, 0x00, "generation does not exist" }, 832 { 0x59, 0x00, "updated block read" }, 833 { 0x5a, 0x00, "operator request or state change input" }, 834 { 0x5a, 0x01, "operator medium removal request" }, 835 { 0x5a, 0x02, "operator selected write protect" }, 836 { 0x5a, 0x03, "operator selected write permit" }, 837 { 0x5b, 0x00, "log exception" }, 838 { 0x5b, 0x01, "threshold condition met" }, 839 { 0x5b, 0x02, "log counter at maximum" }, 840 { 0x5b, 0x03, "log list codes exhausted" }, 841 { 0x5c, 0x00, "RPL status change" }, 842 { 0x5c, 0x01, "spindles synchronized" }, 843 { 0x5c, 0x02, "spindles not synchronized" }, 844 { 0x5d, 0x00, "drive operation marginal, service immediately" 845 " (failure prediction threshold exceeded)" }, 846 { 0x5d, 0x01, "media failure prediction threshold exceeded" }, 847 { 0x5d, 0x02, "LUN failure prediction threshold exceeded" }, 848 { 0x5d, 0x03, "spare area exhaustion prediction threshold exceeded" }, 849 { 0x5d, 0x10, "hardware impending failure general hard drive failure" }, 850 { 0x5d, 0x11, "hardware impending failure drive error rate too high" }, 851 { 0x5d, 0x12, "hardware impending failure data error rate too high" }, 852 { 0x5d, 0x13, "hardware impending failure seek error rate too high" }, 853 { 0x5d, 0x14, "hardware impending failure too many block reassigns" }, 854 { 0x5d, 0x15, "hardware impending failure access times too high" }, 855 { 0x5d, 0x16, "hardware impending failure start unit times too high" }, 856 { 0x5d, 0x17, "hardware impending failure channel parametrics" }, 857 { 0x5d, 0x18, "hardware impending failure controller detected" }, 858 { 0x5d, 0x19, "hardware impending failure throughput performance" }, 859 { 0x5d, 0x1a, "hardware impending failure seek time performance" }, 860 { 0x5d, 0x1b, "hardware impending failure spin-up retry count" }, 861 { 0x5d, 0x1c, "hardware impending failure drive calibration retry count" }, 862 { 0x5d, 0x20, "controller impending failure general hard drive failure" }, 863 { 0x5d, 0x21, "controller impending failure drive error rate too high" }, 864 { 0x5d, 0x22, "controller impending failure data error rate too high" }, 865 { 0x5d, 0x23, "controller impending failure seek error rate too high" }, 866 { 0x5d, 0x24, "controller impending failure too many block reassigns" }, 867 { 0x5d, 0x25, "controller impending failure access times too high" }, 868 { 0x5d, 0x26, "controller impending failure start unit times too high" }, 869 { 0x5d, 0x27, "controller impending failure channel parametrics" }, 870 { 0x5d, 0x28, "controller impending failure controller detected" }, 871 { 0x5d, 0x29, "controller impending failure throughput performance" }, 872 { 0x5d, 0x2a, "controller impending failure seek time performance" }, 873 { 0x5d, 0x2b, "controller impending failure spin-up retry count" }, 874 { 0x5d, 0x2c, "controller impending failure drive calibration retry cnt" }, 875 { 0x5d, 0x30, "data channel impending failure general hard drive failure" }, 876 { 0x5d, 0x31, "data channel impending failure drive error rate too high" }, 877 { 0x5d, 0x32, "data channel impending failure data error rate too high" }, 878 { 0x5d, 0x33, "data channel impending failure seek error rate too high" }, 879 { 0x5d, 0x34, "data channel impending failure too many block reassigns" }, 880 { 0x5d, 0x35, "data channel impending failure access times too high" }, 881 { 0x5d, 0x36, "data channel impending failure start unit times too high" }, 882 { 0x5d, 0x37, "data channel impending failure channel parametrics" }, 883 { 0x5d, 0x38, "data channel impending failure controller detected" }, 884 { 0x5d, 0x39, "data channel impending failure throughput performance" }, 885 { 0x5d, 0x3a, "data channel impending failure seek time performance" }, 886 { 0x5d, 0x3b, "data channel impending failure spin-up retry count" }, 887 { 0x5d, 0x3c, "data channel impending failure drive calibrate retry cnt" }, 888 { 0x5d, 0x40, "servo impending failure general hard drive failure" }, 889 { 0x5d, 0x41, "servo impending failure drive error rate too high" }, 890 { 0x5d, 0x42, "servo impending failure data error rate too high" }, 891 { 0x5d, 0x43, "servo impending failure seek error rate too high" }, 892 { 0x5d, 0x44, "servo impending failure too many block reassigns" }, 893 { 0x5d, 0x45, "servo impending failure access times too high" }, 894 { 0x5d, 0x46, "servo impending failure start unit times too high" }, 895 { 0x5d, 0x47, "servo impending failure channel parametrics" }, 896 { 0x5d, 0x48, "servo impending failure controller detected" }, 897 { 0x5d, 0x49, "servo impending failure throughput performance" }, 898 { 0x5d, 0x4a, "servo impending failure seek time performance" }, 899 { 0x5d, 0x4b, "servo impending failure spin-up retry count" }, 900 { 0x5d, 0x4c, "servo impending failure drive calibration retry count" }, 901 { 0x5d, 0x50, "spindle impending failure general hard drive failure" }, 902 { 0x5d, 0x51, "spindle impending failure drive error rate too high" }, 903 { 0x5d, 0x52, "spindle impending failure data error rate too high" }, 904 { 0x5d, 0x53, "spindle impending failure seek error rate too high" }, 905 { 0x5d, 0x54, "spindle impending failure too many block reassigns" }, 906 { 0x5d, 0x55, "spindle impending failure access times too high" }, 907 { 0x5d, 0x56, "spindle impending failure start unit times too high" }, 908 { 0x5d, 0x57, "spindle impending failure channel parametrics" }, 909 { 0x5d, 0x58, "spindle impending failure controller detected" }, 910 { 0x5d, 0x59, "spindle impending failure throughput performance" }, 911 { 0x5d, 0x5a, "spindle impending failure seek time performance" }, 912 { 0x5d, 0x5b, "spindle impending failure spin-up retry count" }, 913 { 0x5d, 0x5c, "spindle impending failure drive calibration retry count" }, 914 { 0x5d, 0x60, "firmware impending failure general hard drive failure" }, 915 { 0x5d, 0x61, "firmware impending failure drive error rate too high" }, 916 { 0x5d, 0x62, "firmware impending failure data error rate too high" }, 917 { 0x5d, 0x63, "firmware impending failure seek error rate too high" }, 918 { 0x5d, 0x64, "firmware impending failure too many block reassigns" }, 919 { 0x5d, 0x65, "firmware impending failure access times too high" }, 920 { 0x5d, 0x66, "firmware impending failure start unit times too high" }, 921 { 0x5d, 0x67, "firmware impending failure channel parametrics" }, 922 { 0x5d, 0x68, "firmware impending failure controller detected" }, 923 { 0x5d, 0x69, "firmware impending failure throughput performance" }, 924 { 0x5d, 0x6a, "firmware impending failure seek time performance" }, 925 { 0x5d, 0x6b, "firmware impending failure spin-up retry count" }, 926 { 0x5d, 0x6c, "firmware impending failure drive calibration retry count" }, 927 { 0x5d, 0xff, "failure prediction threshold exceeded (false)" }, 928 { 0x5e, 0x00, "low power condition active" }, 929 { 0x5e, 0x01, "idle condition activated by timer" }, 930 { 0x5e, 0x02, "standby condition activated by timer" }, 931 { 0x5e, 0x03, "idle condition activated by command" }, 932 { 0x5e, 0x04, "standby condition activated by command" }, 933 { 0x60, 0x00, "lamp failure" }, 934 { 0x61, 0x00, "video acquisition error" }, 935 { 0x62, 0x00, "scan head positioning error" }, 936 { 0x63, 0x00, "end of user area encountered on this track" }, 937 { 0x63, 0x01, "packet does not fit in available space" }, 938 { 0x64, 0x00, "illegal mode for this track" }, 939 { 0x64, 0x01, "invalid packet size" }, 940 { 0x65, 0x00, "voltage fault" }, 941 { 0x66, 0x00, "automatic document feeder cover up" }, 942 { 0x67, 0x00, "configuration failure" }, 943 { 0x67, 0x01, "configuration of incapable LUNs failed" }, 944 { 0x67, 0x02, "add LUN failed" }, 945 { 0x67, 0x03, "modification of LUN failed" }, 946 { 0x67, 0x04, "exchange of LUN failed" }, 947 { 0x67, 0x05, "remove of LUN failed" }, 948 { 0x67, 0x06, "attachment of LUN failed" }, 949 { 0x67, 0x07, "creation of LUN failed" }, 950 { 0x67, 0x08, "assign failure occurred" }, 951 { 0x67, 0x09, "multiply assigned LUN" }, 952 { 0x67, 0x0a, "set target port groups command failed" }, 953 { 0x68, 0x00, "logical unit not configured" }, 954 { 0x69, 0x00, "data loss on logical unit" }, 955 { 0x69, 0x01, "multiple LUN failures" }, 956 { 0x69, 0x02, "parity/data mismatch" }, 957 { 0x6a, 0x00, "informational, refer to log" }, 958 { 0x6b, 0x00, "state change has occurred" }, 959 { 0x6b, 0x01, "redundancy level got better" }, 960 { 0x6b, 0x02, "redundancy level got worse" }, 961 { 0x6c, 0x00, "rebuild failure occurred" }, 962 { 0x6d, 0x00, "recalculate failure occurred" }, 963 { 0x6e, 0x00, "command to logical unit failed" }, 964 { 0x6f, 0x00, "copy protect key exchange failure authentication failure" }, 965 { 0x6f, 0x01, "copy protect key exchange failure key not present" }, 966 { 0x6f, 0x02, "copy protect key exchange failure key not established" }, 967 { 0x6f, 0x03, "read of scrambled sector without authentication" }, 968 { 0x6f, 0x04, "media region code is mismatched to LUN region" }, 969 { 0x6f, 0x05, "drive region must be permanent/region reset count error" }, 970 { 0x70, 0xffff, "decompression exception short algorithm id of ASCQ" }, 971 { 0x71, 0x00, "decompression exception long algorithm id" }, 972 { 0x72, 0x00, "session fixation error" }, 973 { 0x72, 0x01, "session fixation error writing lead-in" }, 974 { 0x72, 0x02, "session fixation error writing lead-out" }, 975 { 0x72, 0x03, "session fixation error - incomplete track in session" }, 976 { 0x72, 0x04, "empty or partially written reserved track" }, 977 { 0x72, 0x05, "no more track reservations allowed" }, 978 { 0x73, 0x00, "cd control error" }, 979 { 0x73, 0x01, "power calibration area almost full" }, 980 { 0x73, 0x02, "power calibration area is full" }, 981 { 0x73, 0x03, "power calibration area error" }, 982 { 0x73, 0x04, "program memory area update failure" }, 983 { 0x73, 0x05, "program memory area is full" }, 984 { 0x73, 0x06, "rma/pma is almost full" }, 985 { 0xffff, 0xffff, NULL } 986 }; 987 988 char * 989 scsi_esname(uint_t key, char *tmpstr) 990 { 991 int i = 0; 992 993 while (extended_sense_list[i].asc != 0xffff) { 994 if (key == extended_sense_list[i].asc) { 995 return ((char *)extended_sense_list[i].message); 996 } 997 i++; 998 } 999 return (sprintf(tmpstr, "<vendor unique code 0x%x>", key)); 1000 } 1001 1002 char * 1003 scsi_asc_name(uint_t asc, uint_t ascq, char *tmpstr) 1004 { 1005 int i = 0; 1006 1007 while (extended_sense_list[i].asc != 0xffff) { 1008 if ((asc == extended_sense_list[i].asc) && 1009 ((ascq == extended_sense_list[i].ascq) || 1010 (extended_sense_list[i].ascq == 0xffff))) { 1011 return ((char *)extended_sense_list[i].message); 1012 } 1013 i++; 1014 } 1015 return (sprintf(tmpstr, "<vendor unique code 0x%x>", asc)); 1016 } 1017 1018 char * 1019 scsi_sname(uchar_t sense_key) 1020 { 1021 if (sense_key >= (uchar_t)(NUM_SENSE_KEYS+NUM_IMPL_SENSE_KEYS)) { 1022 return ("<unknown sense key>"); 1023 } else { 1024 return (sense_keys[sense_key]); 1025 } 1026 } 1027 1028 1029 /* 1030 * Print a piece of inquiry data- cleaned up for non-printable characters. 1031 */ 1032 static void 1033 inq_fill(char *p, int l, char *s) 1034 { 1035 register unsigned i = 0; 1036 char c; 1037 1038 if (!p) 1039 return; 1040 1041 while (i++ < l) { 1042 /* clean string of non-printing chars */ 1043 if ((c = *p++) < ' ' || c >= 0177) { 1044 c = ' '; 1045 } 1046 *s++ = c; 1047 } 1048 *s++ = 0; 1049 } 1050 1051 static char * 1052 scsi_asc_search(uint_t asc, uint_t ascq, 1053 struct scsi_asq_key_strings *list) 1054 { 1055 int i = 0; 1056 1057 while (list[i].asc != 0xffff) { 1058 if ((asc == list[i].asc) && 1059 ((ascq == list[i].ascq) || 1060 (list[i].ascq == 0xffff))) { 1061 return ((char *)list[i].message); 1062 } 1063 i++; 1064 } 1065 return (NULL); 1066 } 1067 1068 static char * 1069 scsi_asc_ascq_name(uint_t asc, uint_t ascq, char *tmpstr, 1070 struct scsi_asq_key_strings *list) 1071 { 1072 char *message; 1073 1074 if (list) { 1075 if (message = scsi_asc_search(asc, ascq, list)) { 1076 return (message); 1077 } 1078 } 1079 if (message = scsi_asc_search(asc, ascq, extended_sense_list)) { 1080 return (message); 1081 } 1082 1083 return (sprintf(tmpstr, "<vendor unique code 0x%x>", asc)); 1084 } 1085 1086 /* 1087 * The first part/column of the error message will be at least this length. 1088 * This number has been calculated so that each line fits in 80 chars. 1089 */ 1090 #define SCSI_ERRMSG_COLUMN_LEN 42 1091 #define SCSI_ERRMSG_BUF_LEN 256 1092 1093 void 1094 scsi_generic_errmsg(struct scsi_device *devp, char *label, int severity, 1095 daddr_t blkno, daddr_t err_blkno, 1096 uchar_t cmd_name, struct scsi_key_strings *cmdlist, 1097 uint8_t *sensep, struct scsi_asq_key_strings *asc_list, 1098 char *(*decode_fru)(struct scsi_device *, char *, int, uchar_t)) 1099 { 1100 uchar_t com; 1101 static char buf[SCSI_ERRMSG_BUF_LEN]; 1102 static char buf1[SCSI_ERRMSG_BUF_LEN]; 1103 static char tmpbuf[64]; 1104 static char pad[SCSI_ERRMSG_COLUMN_LEN]; 1105 dev_info_t *dev = devp->sd_dev; 1106 static char *error_classes[] = { 1107 "All", "Unknown", "Informational", 1108 "Recovered", "Retryable", "Fatal" 1109 }; 1110 uchar_t sense_key, asc, ascq, fru_code; 1111 uchar_t *fru_code_ptr; 1112 int i, buflen; 1113 1114 mutex_enter(&scsi_log_mutex); 1115 1116 /* 1117 * We need to put our space padding code because kernel version 1118 * of sprintf(9F) doesn't support %-<number>s type of left alignment. 1119 */ 1120 for (i = 0; i < SCSI_ERRMSG_COLUMN_LEN; i++) { 1121 pad[i] = ' '; 1122 } 1123 1124 bzero(buf, SCSI_ERRMSG_BUF_LEN); 1125 com = cmd_name; 1126 (void) sprintf(buf, "Error for Command: %s", 1127 scsi_cmd_name(com, cmdlist, tmpbuf)); 1128 buflen = strlen(buf); 1129 if (buflen < SCSI_ERRMSG_COLUMN_LEN) { 1130 pad[SCSI_ERRMSG_COLUMN_LEN - buflen] = '\0'; 1131 (void) sprintf(&buf[buflen], "%s Error Level: %s", 1132 pad, error_classes[severity]); 1133 pad[SCSI_ERRMSG_COLUMN_LEN - buflen] = ' '; 1134 } else { 1135 (void) sprintf(&buf[buflen], " Error Level: %s", 1136 error_classes[severity]); 1137 } 1138 impl_scsi_log(dev, label, CE_WARN, buf); 1139 1140 if (blkno != -1 || err_blkno != -1 && 1141 ((com & 0xf) == SCMD_READ) || ((com & 0xf) == SCMD_WRITE)) { 1142 bzero(buf, SCSI_ERRMSG_BUF_LEN); 1143 (void) sprintf(buf, "Requested Block: %ld", blkno); 1144 buflen = strlen(buf); 1145 if (buflen < SCSI_ERRMSG_COLUMN_LEN) { 1146 pad[SCSI_ERRMSG_COLUMN_LEN - buflen] = '\0'; 1147 (void) sprintf(&buf[buflen], "%s Error Block: %ld\n", 1148 pad, err_blkno); 1149 pad[SCSI_ERRMSG_COLUMN_LEN - buflen] = ' '; 1150 } else { 1151 (void) sprintf(&buf[buflen], " Error Block: %ld\n", 1152 err_blkno); 1153 } 1154 impl_scsi_log(dev, label, CE_CONT, buf); 1155 } 1156 1157 bzero(buf, SCSI_ERRMSG_BUF_LEN); 1158 (void) strcpy(buf, "Vendor: "); 1159 inq_fill(devp->sd_inq->inq_vid, 8, &buf[strlen(buf)]); 1160 buflen = strlen(buf); 1161 if (buflen < SCSI_ERRMSG_COLUMN_LEN) { 1162 pad[SCSI_ERRMSG_COLUMN_LEN - buflen] = '\0'; 1163 (void) sprintf(&buf[strlen(buf)], "%s Serial Number: ", pad); 1164 pad[SCSI_ERRMSG_COLUMN_LEN - buflen] = ' '; 1165 } else { 1166 (void) sprintf(&buf[strlen(buf)], " Serial Number: "); 1167 } 1168 inq_fill(devp->sd_inq->inq_serial, 12, &buf[strlen(buf)]); 1169 impl_scsi_log(dev, label, CE_CONT, "%s\n", buf); 1170 1171 if (sensep) { 1172 sense_key = scsi_sense_key(sensep); 1173 asc = scsi_sense_asc(sensep); 1174 ascq = scsi_sense_ascq(sensep); 1175 scsi_ext_sense_fields(sensep, SENSE_LENGTH, 1176 NULL, NULL, &fru_code_ptr, NULL, NULL); 1177 fru_code = (fru_code_ptr ? *fru_code_ptr : 0); 1178 1179 bzero(buf, SCSI_ERRMSG_BUF_LEN); 1180 (void) sprintf(buf, "Sense Key: %s\n", 1181 sense_keys[sense_key]); 1182 impl_scsi_log(dev, label, CE_CONT, buf); 1183 1184 bzero(buf, SCSI_ERRMSG_BUF_LEN); 1185 if ((fru_code != 0) && 1186 (decode_fru != NULL)) { 1187 (*decode_fru)(devp, buf, SCSI_ERRMSG_BUF_LEN, 1188 fru_code); 1189 if (buf[0] != NULL) { 1190 bzero(buf1, SCSI_ERRMSG_BUF_LEN); 1191 (void) sprintf(&buf1[strlen(buf1)], 1192 "ASC: 0x%x (%s)", asc, 1193 scsi_asc_ascq_name(asc, ascq, 1194 tmpbuf, asc_list)); 1195 buflen = strlen(buf1); 1196 if (buflen < SCSI_ERRMSG_COLUMN_LEN) { 1197 pad[SCSI_ERRMSG_COLUMN_LEN - buflen] = 1198 '\0'; 1199 (void) sprintf(&buf1[buflen], 1200 "%s ASCQ: 0x%x", pad, ascq); 1201 } else { 1202 (void) sprintf(&buf1[buflen], 1203 " ASCQ: 0x%x", ascq); 1204 } 1205 impl_scsi_log(dev, 1206 label, CE_CONT, "%s\n", buf1); 1207 impl_scsi_log(dev, 1208 label, CE_CONT, "FRU: 0x%x (%s)\n", 1209 fru_code, buf); 1210 mutex_exit(&scsi_log_mutex); 1211 return; 1212 } 1213 } 1214 (void) sprintf(&buf[strlen(buf)], 1215 "ASC: 0x%x (%s), ASCQ: 0x%x, FRU: 0x%x", 1216 asc, scsi_asc_ascq_name(asc, ascq, tmpbuf, asc_list), 1217 ascq, fru_code); 1218 impl_scsi_log(dev, label, CE_CONT, "%s\n", buf); 1219 } 1220 mutex_exit(&scsi_log_mutex); 1221 } 1222 1223 void 1224 scsi_vu_errmsg(struct scsi_device *devp, struct scsi_pkt *pkt, char *label, 1225 int severity, daddr_t blkno, daddr_t err_blkno, 1226 struct scsi_key_strings *cmdlist, struct scsi_extended_sense *sensep, 1227 struct scsi_asq_key_strings *asc_list, 1228 char *(*decode_fru)(struct scsi_device *, char *, int, uchar_t)) 1229 { 1230 uchar_t com; 1231 1232 com = ((union scsi_cdb *)pkt->pkt_cdbp)->scc_cmd; 1233 1234 scsi_generic_errmsg(devp, label, severity, blkno, err_blkno, 1235 com, cmdlist, (uint8_t *)sensep, asc_list, decode_fru); 1236 1237 1238 } 1239 1240 void 1241 scsi_errmsg(struct scsi_device *devp, struct scsi_pkt *pkt, char *label, 1242 int severity, daddr_t blkno, daddr_t err_blkno, 1243 struct scsi_key_strings *cmdlist, struct scsi_extended_sense *sensep) 1244 { 1245 scsi_vu_errmsg(devp, pkt, label, severity, blkno, 1246 err_blkno, cmdlist, sensep, NULL, NULL); 1247 } 1248 1249 /*PRINTFLIKE4*/ 1250 void 1251 scsi_log(dev_info_t *dev, char *label, uint_t level, 1252 const char *fmt, ...) 1253 { 1254 va_list ap; 1255 1256 va_start(ap, fmt); 1257 mutex_enter(&scsi_log_mutex); 1258 v_scsi_log(dev, label, level, fmt, ap); 1259 mutex_exit(&scsi_log_mutex); 1260 va_end(ap); 1261 } 1262 1263 /*PRINTFLIKE4*/ 1264 static void 1265 impl_scsi_log(dev_info_t *dev, char *label, uint_t level, 1266 const char *fmt, ...) 1267 { 1268 va_list ap; 1269 1270 ASSERT(mutex_owned(&scsi_log_mutex)); 1271 1272 va_start(ap, fmt); 1273 v_scsi_log(dev, label, level, fmt, ap); 1274 va_end(ap); 1275 } 1276 1277 1278 char *ddi_pathname(dev_info_t *dip, char *path); 1279 1280 /*PRINTFLIKE4*/ 1281 static void 1282 v_scsi_log(dev_info_t *dev, char *label, uint_t level, 1283 const char *fmt, va_list ap) 1284 { 1285 static char name[256]; 1286 int log_only = 0; 1287 int boot_only = 0; 1288 int console_only = 0; 1289 1290 ASSERT(mutex_owned(&scsi_log_mutex)); 1291 1292 if (dev) { 1293 if (level == CE_PANIC || level == CE_WARN || 1294 level == CE_NOTE) { 1295 (void) sprintf(name, "%s (%s%d):\n", 1296 ddi_pathname(dev, scsi_log_buffer), 1297 label, ddi_get_instance(dev)); 1298 } else if (level >= (uint_t)SCSI_DEBUG) { 1299 (void) sprintf(name, 1300 "%s%d:", label, ddi_get_instance(dev)); 1301 } else { 1302 name[0] = '\0'; 1303 } 1304 } else { 1305 (void) sprintf(name, "%s:", label); 1306 } 1307 1308 (void) vsprintf(scsi_log_buffer, fmt, ap); 1309 1310 switch (scsi_log_buffer[0]) { 1311 case '!': 1312 log_only = 1; 1313 break; 1314 case '?': 1315 boot_only = 1; 1316 break; 1317 case '^': 1318 console_only = 1; 1319 break; 1320 } 1321 1322 switch (level) { 1323 case CE_NOTE: 1324 level = CE_CONT; 1325 /* FALLTHROUGH */ 1326 case CE_CONT: 1327 case CE_WARN: 1328 case CE_PANIC: 1329 if (boot_only) { 1330 cmn_err(level, "?%s\t%s", name, &scsi_log_buffer[1]); 1331 } else if (console_only) { 1332 cmn_err(level, "^%s\t%s", name, &scsi_log_buffer[1]); 1333 } else if (log_only) { 1334 cmn_err(level, "!%s\t%s", name, &scsi_log_buffer[1]); 1335 } else { 1336 cmn_err(level, "%s\t%s", name, scsi_log_buffer); 1337 } 1338 break; 1339 case (uint_t)SCSI_DEBUG: 1340 default: 1341 cmn_err(CE_CONT, "^DEBUG: %s\t%s", name, scsi_log_buffer); 1342 break; 1343 } 1344 } 1345 1346 /* 1347 * Lookup the 'prop_name' string array property and walk thru its list of 1348 * tuple values looking for a tuple who's VID/PID string (first part of tuple) 1349 * matches the inquiry VID/PID information for the scsi_device. On a match, 1350 * return a duplicate of the second part of the tuple. If no match is found, 1351 * return NULL. On non-NULL return, caller is responsible for freeing return 1352 * result via: 1353 * kmem_free(string, strlen(string) + 1); 1354 * 1355 * This interface can either be used directly, or indirectly by 1356 * scsi_get_device_type_scsi_options. 1357 */ 1358 char * 1359 scsi_get_device_type_string(char *prop_name, 1360 dev_info_t *dip, struct scsi_device *devp) 1361 { 1362 struct scsi_inquiry *inq = devp->sd_inq; 1363 char **tuples; 1364 uint_t ntuples; 1365 int i; 1366 char *tvp; /* tuple vid/pid */ 1367 char *trs; /* tuple return string */ 1368 int tvp_len; 1369 1370 /* if we have no inquiry data then we can't do this */ 1371 if (inq == NULL) 1372 return (NULL); 1373 1374 /* 1375 * So that we can establish a 'prop_name' for all instances of a 1376 * device in the system in a single place if needed (via options.conf), 1377 * we loop going up to the root ourself. This way root lookup does 1378 * *not* specify DDI_PROP_DONTPASS, and the code will look on the 1379 * options node. 1380 */ 1381 do { 1382 if (ddi_prop_lookup_string_array(DDI_DEV_T_ANY, dip, 1383 (ddi_get_parent(dip) ? DDI_PROP_DONTPASS : 0) | 1384 DDI_PROP_NOTPROM, prop_name, &tuples, &ntuples) == 1385 DDI_PROP_SUCCESS) { 1386 1387 /* loop over tuples */ 1388 for (i = 0; i < (ntuples/2); i++) { 1389 /* split into vid/pid and return-string */ 1390 tvp = tuples[i * 2]; 1391 trs = tuples[(i * 2) + 1]; 1392 tvp_len = strlen(tvp); 1393 1394 /* check for vid/pid match */ 1395 if ((tvp_len == 0) || 1396 bcmp(tvp, inq->inq_vid, tvp_len)) 1397 continue; /* no match */ 1398 1399 /* match, dup return-string */ 1400 trs = i_ddi_strdup(trs, KM_SLEEP); 1401 ddi_prop_free(tuples); 1402 return (trs); 1403 } 1404 ddi_prop_free(tuples); 1405 } 1406 1407 /* climb up to root one step at a time */ 1408 dip = ddi_get_parent(dip); 1409 } while (dip); 1410 1411 return (NULL); 1412 } 1413 1414 /* 1415 * The 'device-type-scsi-options' mechanism can be used to establish a device 1416 * specific scsi_options value for a particular device. This mechanism uses 1417 * paired strings ("vendor_info", "options_property_name") from the string 1418 * array "device-type-scsi-options" definition. A bcmp of the vendor info is 1419 * done against the inquiry data (inq_vid). Here is an example of use: 1420 * 1421 * device-type-scsi-options-list = 1422 * "FOOLCO Special x1000", "foolco-scsi-options", 1423 * "FOOLCO Special y1000", "foolco-scsi-options"; 1424 * foolco-scsi-options = 0xXXXXXXXX; 1425 */ 1426 int 1427 scsi_get_device_type_scsi_options(dev_info_t *dip, 1428 struct scsi_device *devp, int options) 1429 { 1430 char *string; 1431 1432 if ((string = scsi_get_device_type_string( 1433 "device-type-scsi-options-list", dip, devp)) != NULL) { 1434 options = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 0, 1435 string, options); 1436 kmem_free(string, strlen(string) + 1); 1437 } 1438 return (options); 1439 } 1440 1441 /* 1442 * Find the scsi_options for a scsi_device. The precedence is: 1443 * 1444 * target<%d>-scsi-options highest 1445 * device-type-scsi-options 1446 * per bus scsi-options (parent) 1447 * global scsi-options 1448 * default_scsi_options argument lowest 1449 * 1450 * If the global is used then it has already been established 1451 * on the parent scsi_hba_attach_setup. 1452 */ 1453 int 1454 scsi_get_scsi_options(struct scsi_device *sd, int default_scsi_options) 1455 { 1456 dev_info_t *parent; 1457 int options = -1; 1458 int tgt; 1459 char topt[32]; 1460 1461 if ((sd == NULL) || (sd->sd_dev == NULL)) 1462 return (default_scsi_options); 1463 1464 parent = ddi_get_parent(sd->sd_dev); 1465 1466 if ((tgt = ddi_prop_get_int(DDI_DEV_T_ANY, sd->sd_dev, 1467 DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, "target", -1)) != -1) { 1468 (void) sprintf(topt, "target%d-scsi-options", tgt); 1469 options = ddi_prop_get_int(DDI_DEV_T_ANY, parent, 1470 DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, topt, -1); 1471 } 1472 1473 if (options == -1) 1474 options = scsi_get_device_type_scsi_options(parent, sd, -1); 1475 1476 if (options == -1) 1477 options = ddi_prop_get_int(DDI_DEV_T_ANY, parent, 1478 DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, "scsi-options", -1); 1479 1480 if (options == -1) 1481 options = default_scsi_options; 1482 1483 return (options); 1484 } 1485 1486 /* 1487 * Use scsi-options to return the maximum number of LUNs. 1488 */ 1489 int 1490 scsi_get_scsi_maxluns(struct scsi_device *sd) 1491 { 1492 int options; 1493 int maxluns; 1494 1495 ASSERT(sd && sd->sd_inq); 1496 options = scsi_get_scsi_options(sd, SCSI_OPTIONS_NLUNS_DEFAULT); 1497 1498 switch (SCSI_OPTIONS_NLUNS(options)) { 1499 default: 1500 case SCSI_OPTIONS_NLUNS_DEFAULT: 1501 /* based on scsi version of target */ 1502 if (sd->sd_inq->inq_ansi < SCSI_VERSION_3) 1503 maxluns = SCSI_8LUN_PER_TARGET; /* 8 */ 1504 else 1505 maxluns = SCSI_16LUNS_PER_TARGET; /* 16 */ 1506 break; 1507 case SCSI_OPTIONS_NLUNS_1: 1508 maxluns = SCSI_1LUN_PER_TARGET; /* 1 */ 1509 break; 1510 case SCSI_OPTIONS_NLUNS_8: 1511 maxluns = SCSI_8LUN_PER_TARGET; /* 8 */ 1512 break; 1513 case SCSI_OPTIONS_NLUNS_16: 1514 maxluns = SCSI_16LUNS_PER_TARGET; /* 16 */ 1515 break; 1516 case SCSI_OPTIONS_NLUNS_32: 1517 maxluns = SCSI_32LUNS_PER_TARGET; /* 32 */ 1518 break; 1519 } 1520 1521 /* For SCSI-1 we never support > 8 LUNs */ 1522 if ((sd->sd_inq->inq_ansi <= SCSI_VERSION_1) && 1523 (maxluns > SCSI_8LUN_PER_TARGET)) 1524 maxluns = SCSI_8LUN_PER_TARGET; 1525 1526 return (maxluns); 1527 } 1528 1529 /* 1530 * Functions for format-neutral sense data functions 1531 */ 1532 int 1533 scsi_validate_sense(uint8_t *sense_buffer, int sense_buf_len, int *flags) 1534 { 1535 int result; 1536 struct scsi_extended_sense *es = 1537 (struct scsi_extended_sense *)sense_buffer; 1538 1539 /* 1540 * Init flags if present 1541 */ 1542 if (flags != NULL) { 1543 *flags = 0; 1544 } 1545 1546 /* 1547 * Check response code (Solaris breaks this into a 3-bit class 1548 * and 4-bit code field. 1549 */ 1550 if ((es->es_class != CLASS_EXTENDED_SENSE) || 1551 ((es->es_code != CODE_FMT_FIXED_CURRENT) && 1552 (es->es_code != CODE_FMT_FIXED_DEFERRED) && 1553 (es->es_code != CODE_FMT_DESCR_CURRENT) && 1554 (es->es_code != CODE_FMT_DESCR_DEFERRED))) { 1555 /* 1556 * Sense data (if there's actually anything here) is not 1557 * in a format we can handle). 1558 */ 1559 return (SENSE_UNUSABLE); 1560 } 1561 1562 /* 1563 * Check if this is deferred sense 1564 */ 1565 if ((flags != NULL) && 1566 ((es->es_code == CODE_FMT_FIXED_DEFERRED) || 1567 (es->es_code == CODE_FMT_DESCR_DEFERRED))) { 1568 *flags |= SNS_BUF_DEFERRED; 1569 } 1570 1571 /* 1572 * Make sure length is OK 1573 */ 1574 if (es->es_code == CODE_FMT_FIXED_CURRENT || 1575 es->es_code == CODE_FMT_FIXED_DEFERRED) { 1576 /* 1577 * We can get by with a buffer that only includes the key, 1578 * asc, and ascq. In reality the minimum length we should 1579 * ever see is 18 bytes. 1580 */ 1581 if ((sense_buf_len < MIN_FIXED_SENSE_LEN) || 1582 ((es->es_add_len + ADDL_SENSE_ADJUST) < 1583 MIN_FIXED_SENSE_LEN)) { 1584 result = SENSE_UNUSABLE; 1585 } else { 1586 /* 1587 * The es_add_len field contains the number of sense 1588 * data bytes that follow the es_add_len field. 1589 */ 1590 if ((flags != NULL) && 1591 (sense_buf_len < 1592 (es->es_add_len + ADDL_SENSE_ADJUST))) { 1593 *flags |= SNS_BUF_OVERFLOW; 1594 } 1595 1596 result = SENSE_FIXED_FORMAT; 1597 } 1598 } else { 1599 struct scsi_descr_sense_hdr *ds = 1600 (struct scsi_descr_sense_hdr *)sense_buffer; 1601 1602 /* 1603 * For descriptor format we need at least the descriptor 1604 * header 1605 */ 1606 if (sense_buf_len < sizeof (struct scsi_descr_sense_hdr)) { 1607 result = SENSE_UNUSABLE; 1608 } else { 1609 /* 1610 * Check for overflow 1611 */ 1612 if ((flags != NULL) && 1613 (sense_buf_len < 1614 (ds->ds_addl_sense_length + sizeof (*ds)))) { 1615 *flags |= SNS_BUF_OVERFLOW; 1616 } 1617 1618 result = SENSE_DESCR_FORMAT; 1619 } 1620 } 1621 1622 return (result); 1623 } 1624 1625 1626 uint8_t 1627 scsi_sense_key(uint8_t *sense_buffer) 1628 { 1629 uint8_t skey; 1630 if (SCSI_IS_DESCR_SENSE(sense_buffer)) { 1631 struct scsi_descr_sense_hdr *sdsp = 1632 (struct scsi_descr_sense_hdr *)sense_buffer; 1633 skey = sdsp->ds_key; 1634 } else { 1635 struct scsi_extended_sense *ext_sensep = 1636 (struct scsi_extended_sense *)sense_buffer; 1637 skey = ext_sensep->es_key; 1638 } 1639 return (skey); 1640 } 1641 1642 uint8_t 1643 scsi_sense_asc(uint8_t *sense_buffer) 1644 { 1645 uint8_t asc; 1646 if (SCSI_IS_DESCR_SENSE(sense_buffer)) { 1647 struct scsi_descr_sense_hdr *sdsp = 1648 (struct scsi_descr_sense_hdr *)sense_buffer; 1649 asc = sdsp->ds_add_code; 1650 } else { 1651 struct scsi_extended_sense *ext_sensep = 1652 (struct scsi_extended_sense *)sense_buffer; 1653 asc = ext_sensep->es_add_code; 1654 } 1655 return (asc); 1656 } 1657 1658 uint8_t 1659 scsi_sense_ascq(uint8_t *sense_buffer) 1660 { 1661 uint8_t ascq; 1662 if (SCSI_IS_DESCR_SENSE(sense_buffer)) { 1663 struct scsi_descr_sense_hdr *sdsp = 1664 (struct scsi_descr_sense_hdr *)sense_buffer; 1665 ascq = sdsp->ds_qual_code; 1666 } else { 1667 struct scsi_extended_sense *ext_sensep = 1668 (struct scsi_extended_sense *)sense_buffer; 1669 ascq = ext_sensep->es_qual_code; 1670 } 1671 return (ascq); 1672 } 1673 1674 void scsi_ext_sense_fields(uint8_t *sense_buffer, int sense_buf_len, 1675 uint8_t **information, uint8_t **cmd_spec_info, uint8_t **fru_code, 1676 uint8_t **sk_specific, uint8_t **stream_flags) 1677 { 1678 int sense_fmt; 1679 1680 /* 1681 * Sanity check sense data and determine the format 1682 */ 1683 sense_fmt = scsi_validate_sense(sense_buffer, sense_buf_len, NULL); 1684 1685 /* 1686 * Initialize any requested data to 0 1687 */ 1688 if (information) { 1689 *information = NULL; 1690 } 1691 if (cmd_spec_info) { 1692 *cmd_spec_info = NULL; 1693 } 1694 if (fru_code) { 1695 *fru_code = NULL; 1696 } 1697 if (sk_specific) { 1698 *sk_specific = NULL; 1699 } 1700 if (stream_flags) { 1701 *stream_flags = NULL; 1702 } 1703 1704 if (sense_fmt == SENSE_DESCR_FORMAT) { 1705 struct scsi_descr_template *sdt = NULL; 1706 1707 while (scsi_get_next_descr(sense_buffer, 1708 sense_buf_len, &sdt) != -1) { 1709 switch (sdt->sdt_descr_type) { 1710 case DESCR_INFORMATION: { 1711 struct scsi_information_sense_descr *isd = 1712 (struct scsi_information_sense_descr *) 1713 sdt; 1714 if (information) { 1715 *information = 1716 &isd->isd_information[0]; 1717 } 1718 break; 1719 } 1720 case DESCR_COMMAND_SPECIFIC: { 1721 struct scsi_cmd_specific_sense_descr *csd = 1722 (struct scsi_cmd_specific_sense_descr *) 1723 sdt; 1724 if (cmd_spec_info) { 1725 *cmd_spec_info = 1726 &csd->css_cmd_specific_info[0]; 1727 } 1728 break; 1729 } 1730 case DESCR_SENSE_KEY_SPECIFIC: { 1731 struct scsi_sk_specific_sense_descr *ssd = 1732 (struct scsi_sk_specific_sense_descr *) 1733 sdt; 1734 if (sk_specific) { 1735 *sk_specific = 1736 (uint8_t *)&ssd->sss_data; 1737 } 1738 break; 1739 } 1740 case DESCR_FRU: { 1741 struct scsi_fru_sense_descr *fsd = 1742 (struct scsi_fru_sense_descr *) 1743 sdt; 1744 if (fru_code) { 1745 *fru_code = &fsd->fs_fru_code; 1746 } 1747 break; 1748 } 1749 case DESCR_STREAM_COMMANDS: { 1750 struct scsi_stream_cmd_sense_descr *strsd = 1751 (struct scsi_stream_cmd_sense_descr *) 1752 sdt; 1753 if (stream_flags) { 1754 *stream_flags = 1755 (uint8_t *)&strsd->scs_data; 1756 } 1757 break; 1758 } 1759 case DESCR_BLOCK_COMMANDS: { 1760 struct scsi_block_cmd_sense_descr *bsd = 1761 (struct scsi_block_cmd_sense_descr *) 1762 sdt; 1763 /* 1764 * The "Block Command" sense descriptor 1765 * contains an ili bit that we can store 1766 * in the stream specific data if it is 1767 * available. We shouldn't see both 1768 * a block command and a stream command 1769 * descriptor in the same collection 1770 * of sense data. 1771 */ 1772 if (stream_flags) { 1773 /* 1774 * Can't take an address of a bitfield, 1775 * but the flags are just after the 1776 * bcs_reserved field. 1777 */ 1778 *stream_flags = 1779 (uint8_t *)&bsd->bcs_reserved + 1; 1780 } 1781 break; 1782 } 1783 } 1784 } 1785 } else { 1786 struct scsi_extended_sense *es = 1787 (struct scsi_extended_sense *)sense_buffer; 1788 1789 /* Get data from fixed sense buffer */ 1790 if (information && es->es_valid) { 1791 *information = &es->es_info_1; 1792 } 1793 if (cmd_spec_info && es->es_valid) { 1794 *cmd_spec_info = &es->es_cmd_info[0]; 1795 } 1796 if (fru_code) { 1797 *fru_code = &es->es_fru_code; 1798 } 1799 if (sk_specific) { 1800 *sk_specific = &es->es_skey_specific[0]; 1801 } 1802 if (stream_flags) { 1803 /* 1804 * Can't take the address of a bit field, 1805 * but the stream flags are located just after 1806 * the es_segnum field; 1807 */ 1808 *stream_flags = &es->es_segnum + 1; 1809 } 1810 } 1811 } 1812 1813 boolean_t 1814 scsi_sense_info_uint64(uint8_t *sense_buffer, int sense_buf_len, 1815 uint64_t *information) 1816 { 1817 boolean_t valid; 1818 int sense_fmt; 1819 1820 ASSERT(sense_buffer != NULL); 1821 ASSERT(information != NULL); 1822 1823 /* Validate sense data and get format */ 1824 sense_fmt = scsi_validate_sense(sense_buffer, sense_buf_len, NULL); 1825 1826 if (sense_fmt == SENSE_UNUSABLE) { 1827 /* Information is not valid */ 1828 valid = 0; 1829 } else if (sense_fmt == SENSE_FIXED_FORMAT) { 1830 struct scsi_extended_sense *es = 1831 (struct scsi_extended_sense *)sense_buffer; 1832 1833 *information = (uint64_t)SCSI_READ32(&es->es_info_1); 1834 1835 valid = es->es_valid; 1836 } else { 1837 /* Sense data is descriptor format */ 1838 struct scsi_information_sense_descr *isd; 1839 1840 isd = (struct scsi_information_sense_descr *) 1841 scsi_find_sense_descr(sense_buffer, sense_buf_len, 1842 DESCR_INFORMATION); 1843 1844 if (isd) { 1845 *information = SCSI_READ64(isd->isd_information); 1846 valid = 1; 1847 } else { 1848 valid = 0; 1849 } 1850 } 1851 1852 return (valid); 1853 } 1854 1855 boolean_t 1856 scsi_sense_cmdspecific_uint64(uint8_t *sense_buffer, int sense_buf_len, 1857 uint64_t *cmd_specific_info) 1858 { 1859 boolean_t valid; 1860 int sense_fmt; 1861 1862 ASSERT(sense_buffer != NULL); 1863 ASSERT(cmd_specific_info != NULL); 1864 1865 /* Validate sense data and get format */ 1866 sense_fmt = scsi_validate_sense(sense_buffer, sense_buf_len, NULL); 1867 1868 if (sense_fmt == SENSE_UNUSABLE) { 1869 /* Command specific info is not valid */ 1870 valid = 0; 1871 } else if (sense_fmt == SENSE_FIXED_FORMAT) { 1872 struct scsi_extended_sense *es = 1873 (struct scsi_extended_sense *)sense_buffer; 1874 1875 *cmd_specific_info = (uint64_t)SCSI_READ32(es->es_cmd_info); 1876 1877 valid = es->es_valid; 1878 } else { 1879 /* Sense data is descriptor format */ 1880 struct scsi_cmd_specific_sense_descr *c; 1881 1882 c = (struct scsi_cmd_specific_sense_descr *) 1883 scsi_find_sense_descr(sense_buffer, sense_buf_len, 1884 DESCR_COMMAND_SPECIFIC); 1885 1886 if (c) { 1887 valid = 1; 1888 *cmd_specific_info = 1889 SCSI_READ64(c->css_cmd_specific_info); 1890 } else { 1891 valid = 0; 1892 } 1893 } 1894 1895 return (valid); 1896 } 1897 1898 uint8_t * 1899 scsi_find_sense_descr(uint8_t *sdsp, int sense_buf_len, int req_descr_type) 1900 { 1901 struct scsi_descr_template *sdt = NULL; 1902 1903 while (scsi_get_next_descr(sdsp, sense_buf_len, &sdt) != -1) { 1904 ASSERT(sdt != NULL); 1905 if (sdt->sdt_descr_type == req_descr_type) { 1906 /* Found requested descriptor type */ 1907 break; 1908 } 1909 } 1910 1911 return ((uint8_t *)sdt); 1912 } 1913 1914 /* 1915 * Sense Descriptor format is: 1916 * 1917 * <Descriptor type> <Descriptor length> <Descriptor data> ... 1918 * 1919 * 2 must be added to the descriptor length value to get the 1920 * total descriptor length sense the stored length does not 1921 * include the "type" and "additional length" fields. 1922 */ 1923 1924 #define NEXT_DESCR_PTR(ndp_descr) \ 1925 ((struct scsi_descr_template *)(((uint8_t *)(ndp_descr)) + \ 1926 ((ndp_descr)->sdt_addl_length + \ 1927 sizeof (struct scsi_descr_template)))) 1928 1929 static int 1930 scsi_get_next_descr(uint8_t *sense_buffer, 1931 int sense_buf_len, struct scsi_descr_template **descrpp) 1932 { 1933 struct scsi_descr_sense_hdr *sdsp = 1934 (struct scsi_descr_sense_hdr *)sense_buffer; 1935 struct scsi_descr_template *cur_descr; 1936 boolean_t find_first; 1937 int valid_sense_length; 1938 1939 ASSERT(descrpp != NULL); 1940 find_first = (*descrpp == NULL); 1941 1942 /* 1943 * If no descriptor is passed in then return the first 1944 * descriptor 1945 */ 1946 if (find_first) { 1947 /* 1948 * The first descriptor will immediately follow the header 1949 * (Pointer arithmetic) 1950 */ 1951 cur_descr = (struct scsi_descr_template *)(sdsp+1); 1952 } else { 1953 cur_descr = *descrpp; 1954 ASSERT(cur_descr > (struct scsi_descr_template *)sdsp); 1955 } 1956 1957 /* Assume no more descriptors are available */ 1958 *descrpp = NULL; 1959 1960 /* 1961 * Calculate the amount of valid sense data -- make sure the length 1962 * byte in this descriptor lies within the valid sense data. 1963 */ 1964 valid_sense_length = 1965 min((sizeof (struct scsi_descr_sense_hdr) + 1966 sdsp->ds_addl_sense_length), 1967 sense_buf_len); 1968 1969 /* 1970 * Make sure this descriptor is complete (either the first 1971 * descriptor or the descriptor passed in) 1972 */ 1973 if (scsi_validate_descr(sdsp, valid_sense_length, cur_descr) != 1974 DESCR_GOOD) { 1975 return (-1); 1976 } 1977 1978 /* 1979 * If we were looking for the first descriptor go ahead and return it 1980 */ 1981 if (find_first) { 1982 *descrpp = cur_descr; 1983 return ((*descrpp)->sdt_descr_type); 1984 } 1985 1986 /* 1987 * Get pointer to next descriptor 1988 */ 1989 cur_descr = NEXT_DESCR_PTR(cur_descr); 1990 1991 /* 1992 * Make sure this descriptor is also complete. 1993 */ 1994 if (scsi_validate_descr(sdsp, valid_sense_length, cur_descr) != 1995 DESCR_GOOD) { 1996 return (-1); 1997 } 1998 1999 *descrpp = (struct scsi_descr_template *)cur_descr; 2000 return ((*descrpp)->sdt_descr_type); 2001 } 2002 2003 static int 2004 scsi_validate_descr(struct scsi_descr_sense_hdr *sdsp, 2005 int valid_sense_length, struct scsi_descr_template *descrp) 2006 { 2007 int descr_offset, next_descr_offset; 2008 2009 /* 2010 * Make sure length is present 2011 */ 2012 descr_offset = (uint8_t *)descrp - (uint8_t *)sdsp; 2013 if (descr_offset + sizeof (struct scsi_descr_template) > 2014 valid_sense_length) { 2015 return (DESCR_PARTIAL); 2016 } 2017 2018 /* 2019 * Check if length is 0 (no more descriptors) 2020 */ 2021 if (descrp->sdt_addl_length == 0) { 2022 return (DESCR_END); 2023 } 2024 2025 /* 2026 * Make sure the rest of the descriptor is present 2027 */ 2028 next_descr_offset = 2029 (uint8_t *)NEXT_DESCR_PTR(descrp) - (uint8_t *)sdsp; 2030 if (next_descr_offset > valid_sense_length) { 2031 return (DESCR_PARTIAL); 2032 } 2033 2034 return (DESCR_GOOD); 2035 } 2036 2037 /* 2038 * Internal data structure for handling uscsi command. 2039 */ 2040 typedef struct uscsi_i_cmd { 2041 struct uscsi_cmd uic_cmd; 2042 caddr_t uic_rqbuf; 2043 uchar_t uic_rqlen; 2044 caddr_t uic_cdb; 2045 int uic_flag; 2046 struct scsi_address *uic_ap; 2047 } uscsi_i_cmd_t; 2048 2049 #if !defined(lint) 2050 _NOTE(SCHEME_PROTECTS_DATA("unshared data", uscsi_i_cmd)) 2051 #endif 2052 2053 /*ARGSUSED*/ 2054 static void 2055 scsi_uscsi_mincnt(struct buf *bp) 2056 { 2057 /* 2058 * Do not break up because the CDB count would then be 2059 * incorrect and create spurious data underrun errors. 2060 */ 2061 } 2062 2063 /* 2064 * Function: scsi_uscsi_alloc_and_copyin 2065 * 2066 * Description: Target drivers call this function to allocate memeory, 2067 * copy in, and convert ILP32/LP64 to make preparations for handling 2068 * uscsi commands. 2069 * 2070 * Arguments: 2071 * arg - pointer to the caller's uscsi command struct 2072 * flag - mode, corresponds to ioctl(9e) 'mode' 2073 * ap - SCSI address structure 2074 * uscmdp - pointer to the converted uscsi command 2075 * 2076 * Return code: 0 2077 * EFAULT 2078 * EINVAL 2079 * 2080 * Context: Never called at interrupt context. 2081 */ 2082 2083 int 2084 scsi_uscsi_alloc_and_copyin(intptr_t arg, int flag, struct scsi_address *ap, 2085 struct uscsi_cmd **uscmdp) 2086 { 2087 int rval = 0; 2088 struct uscsi_cmd *uscmd; 2089 2090 /* 2091 * In order to not worry about where the uscsi structure came 2092 * from (or where the cdb it points to came from) we're going 2093 * to make kmem_alloc'd copies of them here. This will also 2094 * allow reference to the data they contain long after this 2095 * process has gone to sleep and its kernel stack has been 2096 * unmapped, etc. First get some memory for the uscsi_cmd 2097 * struct and copy the contents of the given uscsi_cmd struct 2098 * into it. We also save infos of the uscsi command by using 2099 * uicmd to supply referrence for the copyout operation. 2100 */ 2101 uscmd = scsi_uscsi_alloc(); 2102 2103 if ((rval = scsi_uscsi_copyin(arg, flag, ap, &uscmd)) != 0) { 2104 scsi_uscsi_free(uscmd); 2105 *uscmdp = NULL; 2106 rval = EFAULT; 2107 } else { 2108 *uscmdp = uscmd; 2109 } 2110 2111 return (rval); 2112 } 2113 2114 struct uscsi_cmd * 2115 scsi_uscsi_alloc() 2116 { 2117 struct uscsi_i_cmd *uicmd; 2118 2119 uicmd = (struct uscsi_i_cmd *) 2120 kmem_zalloc(sizeof (struct uscsi_i_cmd), KM_SLEEP); 2121 2122 /* 2123 * It is supposed that the uscsi_cmd has been alloced correctly, 2124 * we need to check is it NULL or mis-created. 2125 */ 2126 ASSERT(uicmd && (offsetof(struct uscsi_i_cmd, uic_cmd) == 0)); 2127 2128 return (&uicmd->uic_cmd); 2129 } 2130 2131 int 2132 scsi_uscsi_copyin(intptr_t arg, int flag, struct scsi_address *ap, 2133 struct uscsi_cmd **uscmdp) 2134 { 2135 #ifdef _MULTI_DATAMODEL 2136 /* 2137 * For use when a 32 bit app makes a call into a 2138 * 64 bit ioctl 2139 */ 2140 struct uscsi_cmd32 uscsi_cmd_32_for_64; 2141 struct uscsi_cmd32 *ucmd32 = &uscsi_cmd_32_for_64; 2142 #endif /* _MULTI_DATAMODEL */ 2143 struct uscsi_cmd *uscmd = *uscmdp; 2144 struct uscsi_i_cmd *uicmd = (struct uscsi_i_cmd *)(uscmd); 2145 int max_hba_cdb; 2146 int rval; 2147 extern dev_info_t *scsi_vhci_dip; 2148 2149 ASSERT(uscmd != NULL); 2150 ASSERT(uicmd != NULL); 2151 2152 /* 2153 * To be able to issue multiple commands off a single uscmdp 2154 * We need to free the original cdb, rqbuf and bzero the uscmdp 2155 * if the cdb, rqbuf and uscmdp is not NULL 2156 */ 2157 if (uscmd->uscsi_rqbuf != NULL) 2158 kmem_free(uscmd->uscsi_rqbuf, uscmd->uscsi_rqlen); 2159 if (uscmd->uscsi_cdb != NULL) 2160 kmem_free(uscmd->uscsi_cdb, uscmd->uscsi_cdblen); 2161 bzero(uscmd, sizeof (struct uscsi_cmd)); 2162 2163 2164 #ifdef _MULTI_DATAMODEL 2165 switch (ddi_model_convert_from(flag & FMODELS)) { 2166 case DDI_MODEL_ILP32: 2167 if (ddi_copyin((void *)arg, ucmd32, sizeof (*ucmd32), flag)) { 2168 rval = EFAULT; 2169 goto scsi_uscsi_copyin_failed; 2170 } 2171 /* 2172 * Convert the ILP32 uscsi data from the 2173 * application to LP64 for internal use. 2174 */ 2175 uscsi_cmd32touscsi_cmd(ucmd32, uscmd); 2176 break; 2177 case DDI_MODEL_NONE: 2178 if (ddi_copyin((void *)arg, uscmd, sizeof (*uscmd), flag)) { 2179 rval = EFAULT; 2180 goto scsi_uscsi_copyin_failed; 2181 } 2182 break; 2183 default: 2184 rval = EFAULT; 2185 goto scsi_uscsi_copyin_failed; 2186 } 2187 #else /* ! _MULTI_DATAMODEL */ 2188 if (ddi_copyin((void *)arg, uscmd, sizeof (*uscmd), flag)) { 2189 rval = EFAULT; 2190 goto scsi_uscsi_copyin_failed; 2191 } 2192 #endif /* _MULTI_DATAMODEL */ 2193 2194 /* 2195 * We are going to allocate kernel virtual addresses for 2196 * uscsi_rqbuf and uscsi_cdb pointers, so save off the 2197 * original, possibly user virtual, uscsi_addresses 2198 * in uic_fields 2199 */ 2200 uicmd->uic_rqbuf = uscmd->uscsi_rqbuf; 2201 uicmd->uic_rqlen = uscmd->uscsi_rqlen; 2202 uicmd->uic_cdb = uscmd->uscsi_cdb; 2203 uicmd->uic_flag = flag; 2204 uicmd->uic_ap = ap; 2205 2206 /* 2207 * Skip the following steps if we meet RESET commands. 2208 */ 2209 if (uscmd->uscsi_flags & 2210 (USCSI_RESET_LUN | USCSI_RESET_TARGET | USCSI_RESET_ALL)) { 2211 uscmd->uscsi_rqbuf = NULL; 2212 uscmd->uscsi_cdb = NULL; 2213 return (0); 2214 } 2215 2216 /* 2217 * Currently, USCSI_PATH_INSTANCE is only valid when directed 2218 * to scsi_vhci. 2219 */ 2220 if ((uscmd->uscsi_flags & USCSI_PATH_INSTANCE) && 2221 (A_TO_TRAN(ap)->tran_hba_dip != scsi_vhci_dip)) { 2222 rval = EFAULT; 2223 goto scsi_uscsi_copyin_failed; 2224 } 2225 2226 /* 2227 * Perfunctory sanity checks. Get the maximum hba supported 2228 * cdb length first. 2229 */ 2230 max_hba_cdb = scsi_ifgetcap(ap, "max-cdb-length", 1); 2231 if (max_hba_cdb < CDB_GROUP0) { 2232 max_hba_cdb = CDB_GROUP4; 2233 } 2234 if (uscmd->uscsi_cdblen < CDB_GROUP0 || 2235 uscmd->uscsi_cdblen > max_hba_cdb) { 2236 rval = EINVAL; 2237 goto scsi_uscsi_copyin_failed; 2238 } 2239 if ((uscmd->uscsi_flags & USCSI_RQENABLE) && 2240 (uscmd->uscsi_rqlen == 0 || uscmd->uscsi_rqbuf == NULL)) { 2241 rval = EINVAL; 2242 goto scsi_uscsi_copyin_failed; 2243 } 2244 2245 /* 2246 * To extend uscsi_cmd in the future, we need to ensure current 2247 * reserved bits remain unused (zero). 2248 */ 2249 if (uscmd->uscsi_flags & USCSI_RESERVED) { 2250 rval = EINVAL; 2251 goto scsi_uscsi_copyin_failed; 2252 } 2253 2254 /* 2255 * Now we get some space for the CDB, and copy the given CDB into 2256 * it. Use ddi_copyin() in case the data is in user space. 2257 */ 2258 uscmd->uscsi_cdb = kmem_zalloc((size_t)uscmd->uscsi_cdblen, KM_SLEEP); 2259 if (ddi_copyin(uicmd->uic_cdb, uscmd->uscsi_cdb, 2260 (uint_t)uscmd->uscsi_cdblen, flag) != 0) { 2261 kmem_free(uscmd->uscsi_cdb, (size_t)uscmd->uscsi_cdblen); 2262 rval = EFAULT; 2263 goto scsi_uscsi_copyin_failed; 2264 } 2265 2266 if (uscmd->uscsi_cdb[0] != SCMD_VAR_LEN) { 2267 if (uscmd->uscsi_cdblen > SCSI_CDB_SIZE || 2268 scsi_cdb_size[CDB_GROUPID(uscmd->uscsi_cdb[0])] > 2269 uscmd->uscsi_cdblen) { 2270 kmem_free(uscmd->uscsi_cdb, 2271 (size_t)uscmd->uscsi_cdblen); 2272 rval = EINVAL; 2273 goto scsi_uscsi_copyin_failed; 2274 } 2275 } else { 2276 if ((uscmd->uscsi_cdblen % 4) != 0) { 2277 kmem_free(uscmd->uscsi_cdb, 2278 (size_t)uscmd->uscsi_cdblen); 2279 rval = EINVAL; 2280 goto scsi_uscsi_copyin_failed; 2281 } 2282 } 2283 2284 /* 2285 * Initialize Request Sense buffering, if requested. 2286 */ 2287 if (uscmd->uscsi_flags & USCSI_RQENABLE) { 2288 /* 2289 * Here uscmd->uscsi_rqbuf currently points to the caller's 2290 * buffer, but we replace this with a kernel buffer that 2291 * we allocate to use with the sense data. The sense data 2292 * (if present) gets copied into this new buffer before the 2293 * command is completed. Then we copy the sense data from 2294 * our allocated buf into the caller's buffer below. Note 2295 * that uscmd->uscsi_rqbuf and uscmd->uscsi_rqlen are used 2296 * below to perform the copy back to the caller's buf. 2297 */ 2298 if (uicmd->uic_rqlen <= SENSE_LENGTH) { 2299 uscmd->uscsi_rqlen = SENSE_LENGTH; 2300 uscmd->uscsi_rqbuf = kmem_zalloc(SENSE_LENGTH, 2301 KM_SLEEP); 2302 } else { 2303 uscmd->uscsi_rqlen = MAX_SENSE_LENGTH; 2304 uscmd->uscsi_rqbuf = kmem_zalloc(MAX_SENSE_LENGTH, 2305 KM_SLEEP); 2306 } 2307 uscmd->uscsi_rqresid = uscmd->uscsi_rqlen; 2308 } else { 2309 uscmd->uscsi_rqbuf = NULL; 2310 uscmd->uscsi_rqlen = 0; 2311 uscmd->uscsi_rqresid = 0; 2312 } 2313 return (0); 2314 2315 scsi_uscsi_copyin_failed: 2316 /* 2317 * The uscsi_rqbuf and uscsi_cdb is refering to user-land 2318 * address now, no need to free them. 2319 */ 2320 uscmd->uscsi_rqbuf = NULL; 2321 uscmd->uscsi_cdb = NULL; 2322 2323 return (rval); 2324 } 2325 2326 /* 2327 * Function: scsi_uscsi_handle_cmd 2328 * 2329 * Description: Target drivers call this function to handle uscsi commands. 2330 * 2331 * Arguments: 2332 * dev - device number 2333 * dataspace - UIO_USERSPACE or UIO_SYSSPACE 2334 * uscmd - pointer to the converted uscsi command 2335 * strat - pointer to the driver's strategy routine 2336 * bp - buf struct ptr 2337 * private_data - pointer to bp->b_private 2338 * 2339 * Return code: 0 2340 * EIO - scsi_reset() failed, or see biowait()/physio() codes. 2341 * EINVAL 2342 * return code of biowait(9F) or physio(9F): 2343 * EIO - IO error 2344 * ENXIO 2345 * EACCES - reservation conflict 2346 * 2347 * Context: Never called at interrupt context. 2348 */ 2349 2350 int 2351 scsi_uscsi_handle_cmd(dev_t dev, enum uio_seg dataspace, 2352 struct uscsi_cmd *uscmd, int (*strat)(struct buf *), 2353 struct buf *bp, void *private_data) 2354 { 2355 struct uscsi_i_cmd *uicmd = (struct uscsi_i_cmd *)uscmd; 2356 int bp_alloc_flag = 0; 2357 int rval; 2358 2359 /* 2360 * Perform resets directly; no need to generate a command to do it. 2361 */ 2362 if (uscmd->uscsi_flags & 2363 (USCSI_RESET_LUN | USCSI_RESET_TARGET | USCSI_RESET_ALL)) { 2364 int flags = (uscmd->uscsi_flags & USCSI_RESET_ALL) ? 2365 RESET_ALL : ((uscmd->uscsi_flags & USCSI_RESET_TARGET) ? 2366 RESET_TARGET : RESET_LUN); 2367 if (scsi_reset(uicmd->uic_ap, flags) == 0) { 2368 /* Reset attempt was unsuccessful */ 2369 return (EIO); 2370 } 2371 return (0); 2372 } 2373 2374 /* 2375 * Force asynchronous mode, if necessary. Doing this here 2376 * has the unfortunate effect of running other queued 2377 * commands async also, but since the main purpose of this 2378 * capability is downloading new drive firmware, we can 2379 * probably live with it. 2380 */ 2381 if (uscmd->uscsi_flags & USCSI_ASYNC) { 2382 if (scsi_ifgetcap(uicmd->uic_ap, "synchronous", 1) == 1) { 2383 if (scsi_ifsetcap(uicmd->uic_ap, "synchronous", 2384 0, 1) != 1) { 2385 return (EINVAL); 2386 } 2387 } 2388 } 2389 2390 /* 2391 * Re-enable synchronous mode, if requested. 2392 */ 2393 if (uscmd->uscsi_flags & USCSI_SYNC) { 2394 if (scsi_ifgetcap(uicmd->uic_ap, "synchronous", 1) == 0) { 2395 rval = scsi_ifsetcap(uicmd->uic_ap, "synchronous", 2396 1, 1); 2397 } 2398 } 2399 2400 /* 2401 * If bp is NULL, allocate space here. 2402 */ 2403 if (bp == NULL) { 2404 bp = getrbuf(KM_SLEEP); 2405 bp->b_private = private_data; 2406 bp_alloc_flag = 1; 2407 } 2408 2409 /* 2410 * If we're going to do actual I/O, let physio do all the right things. 2411 */ 2412 if (uscmd->uscsi_buflen != 0) { 2413 struct iovec aiov; 2414 struct uio auio; 2415 struct uio *uio = &auio; 2416 2417 bzero(&auio, sizeof (struct uio)); 2418 bzero(&aiov, sizeof (struct iovec)); 2419 aiov.iov_base = uscmd->uscsi_bufaddr; 2420 aiov.iov_len = uscmd->uscsi_buflen; 2421 uio->uio_iov = &aiov; 2422 2423 uio->uio_iovcnt = 1; 2424 uio->uio_resid = uscmd->uscsi_buflen; 2425 uio->uio_segflg = dataspace; 2426 2427 /* 2428 * physio() will block here until the command completes.... 2429 */ 2430 rval = physio(strat, bp, dev, 2431 ((uscmd->uscsi_flags & USCSI_READ) ? B_READ : B_WRITE), 2432 scsi_uscsi_mincnt, uio); 2433 } else { 2434 /* 2435 * We have to mimic that physio would do here! Argh! 2436 */ 2437 bp->b_flags = B_BUSY | 2438 ((uscmd->uscsi_flags & USCSI_READ) ? B_READ : B_WRITE); 2439 bp->b_edev = dev; 2440 bp->b_dev = cmpdev(dev); /* maybe unnecessary? */ 2441 bp->b_bcount = 0; 2442 bp->b_blkno = 0; 2443 bp->b_resid = 0; 2444 2445 (void) (*strat)(bp); 2446 rval = biowait(bp); 2447 } 2448 uscmd->uscsi_resid = bp->b_resid; 2449 2450 if (bp_alloc_flag == 1) { 2451 bp_mapout(bp); 2452 freerbuf(bp); 2453 } 2454 2455 return (rval); 2456 } 2457 2458 /* 2459 * Function: scsi_uscsi_pktinit 2460 * 2461 * Description: Target drivers call this function to transfer uscsi_cmd 2462 * information into a scsi_pkt before sending the scsi_pkt. 2463 * 2464 * NB: At this point the implementation is limited to path_instance. 2465 * At some point more code could be removed from the target driver by 2466 * enhancing this function - with the added benifit of making the uscsi 2467 * implementation more consistent accross all drivers. 2468 * 2469 * Arguments: 2470 * uscmd - pointer to the uscsi command 2471 * pkt - pointer to the scsi_pkt 2472 * 2473 * Return code: 1 on successfull transfer, 0 on failure. 2474 */ 2475 int 2476 scsi_uscsi_pktinit(struct uscsi_cmd *uscmd, struct scsi_pkt *pkt) 2477 { 2478 2479 /* 2480 * Check if the NACA flag is set. If one initiator sets it 2481 * but does not clear it, other initiators would end up 2482 * waiting indefinitely for the first to clear NACA. If the 2483 * the system allows NACA to be set, then warn the user but 2484 * still pass the command down, otherwise, clear the flag. 2485 */ 2486 if (uscmd->uscsi_cdb[uscmd->uscsi_cdblen - 1] & CDB_FLAG_NACA) { 2487 if (scsi_pkt_allow_naca) { 2488 cmn_err(CE_WARN, "scsi_uscsi_pktinit: " 2489 "NACA flag is set"); 2490 } else { 2491 uscmd->uscsi_cdb[uscmd->uscsi_cdblen - 1] &= 2492 ~CDB_FLAG_NACA; 2493 cmn_err(CE_WARN, "scsi_uscsi_pktinit: " 2494 "NACA flag is cleared"); 2495 } 2496 } 2497 2498 /* 2499 * See if path_instance was requested in uscsi_cmd. 2500 */ 2501 if ((uscmd->uscsi_flags & USCSI_PATH_INSTANCE) && 2502 (uscmd->uscsi_path_instance != 0)) { 2503 /* 2504 * Check to make sure the scsi_pkt was allocated correctly 2505 * before transferring uscsi(7i) path_instance to scsi_pkt(9S). 2506 */ 2507 if (scsi_pkt_allocated_correctly(pkt)) { 2508 /* set pkt_path_instance and flag. */ 2509 pkt->pkt_flags |= FLAG_PKT_PATH_INSTANCE; 2510 pkt->pkt_path_instance = uscmd->uscsi_path_instance; 2511 } else { 2512 return (0); /* failure */ 2513 } 2514 } else { 2515 /* 2516 * Can only use pkt_path_instance if the packet 2517 * was correctly allocated. 2518 */ 2519 if (scsi_pkt_allocated_correctly(pkt)) { 2520 pkt->pkt_path_instance = 0; 2521 } 2522 pkt->pkt_flags &= ~FLAG_PKT_PATH_INSTANCE; 2523 } 2524 2525 return (1); /* success */ 2526 } 2527 2528 /* 2529 * Function: scsi_uscsi_pktfini 2530 * 2531 * Description: Target drivers call this function to transfer completed 2532 * scsi_pkt information back into uscsi_cmd. 2533 * 2534 * NB: At this point the implementation is limited to path_instance. 2535 * At some point more code could be removed from the target driver by 2536 * enhancing this function - with the added benifit of making the uscsi 2537 * implementation more consistent accross all drivers. 2538 * 2539 * Arguments: 2540 * pkt - pointer to the scsi_pkt 2541 * uscmd - pointer to the uscsi command 2542 * 2543 * Return code: 1 on successfull transfer, 0 on failure. 2544 */ 2545 int 2546 scsi_uscsi_pktfini(struct scsi_pkt *pkt, struct uscsi_cmd *uscmd) 2547 { 2548 /* 2549 * Check to make sure the scsi_pkt was allocated correctly before 2550 * transferring scsi_pkt(9S) path_instance to uscsi(7i). 2551 */ 2552 if (!scsi_pkt_allocated_correctly(pkt)) { 2553 uscmd->uscsi_path_instance = 0; 2554 return (0); /* failure */ 2555 } 2556 2557 uscmd->uscsi_path_instance = pkt->pkt_path_instance; 2558 /* reset path_instance */ 2559 pkt->pkt_flags &= ~FLAG_PKT_PATH_INSTANCE; 2560 pkt->pkt_path_instance = 0; 2561 return (1); /* success */ 2562 } 2563 2564 /* 2565 * Function: scsi_uscsi_copyout_and_free 2566 * 2567 * Description: Target drivers call this function to undo what was done by 2568 * scsi_uscsi_alloc_and_copyin. 2569 * 2570 * Arguments: arg - pointer to the uscsi command to be returned 2571 * uscmd - pointer to the converted uscsi command 2572 * 2573 * Return code: 0 2574 * EFAULT 2575 * 2576 * Context: Never called at interrupt context. 2577 */ 2578 int 2579 scsi_uscsi_copyout_and_free(intptr_t arg, struct uscsi_cmd *uscmd) 2580 { 2581 int rval = 0; 2582 2583 rval = scsi_uscsi_copyout(arg, uscmd); 2584 2585 scsi_uscsi_free(uscmd); 2586 2587 return (rval); 2588 } 2589 2590 int 2591 scsi_uscsi_copyout(intptr_t arg, struct uscsi_cmd *uscmd) 2592 { 2593 #ifdef _MULTI_DATAMODEL 2594 /* 2595 * For use when a 32 bit app makes a call into a 2596 * 64 bit ioctl. 2597 */ 2598 struct uscsi_cmd32 uscsi_cmd_32_for_64; 2599 struct uscsi_cmd32 *ucmd32 = &uscsi_cmd_32_for_64; 2600 #endif /* _MULTI_DATAMODEL */ 2601 struct uscsi_i_cmd *uicmd = (struct uscsi_i_cmd *)uscmd; 2602 caddr_t k_rqbuf; 2603 int k_rqlen; 2604 caddr_t k_cdb; 2605 int rval = 0; 2606 2607 /* 2608 * If the caller wants sense data, copy back whatever sense data 2609 * we may have gotten, and update the relevant rqsense info. 2610 */ 2611 if ((uscmd->uscsi_flags & USCSI_RQENABLE) && 2612 (uscmd->uscsi_rqbuf != NULL)) { 2613 int rqlen = uscmd->uscsi_rqlen - uscmd->uscsi_rqresid; 2614 rqlen = min(((int)uicmd->uic_rqlen), rqlen); 2615 uscmd->uscsi_rqresid = uicmd->uic_rqlen - rqlen; 2616 /* 2617 * Copy out the sense data for user process. 2618 */ 2619 if ((uicmd->uic_rqbuf != NULL) && (rqlen != 0)) { 2620 if (ddi_copyout(uscmd->uscsi_rqbuf, 2621 uicmd->uic_rqbuf, rqlen, uicmd->uic_flag) != 0) { 2622 rval = EFAULT; 2623 } 2624 } 2625 } 2626 2627 /* 2628 * Restore original uscsi_values, saved in uic_fields for 2629 * copyout (so caller does not experience a change in these 2630 * fields) 2631 */ 2632 k_rqbuf = uscmd->uscsi_rqbuf; 2633 k_rqlen = uscmd->uscsi_rqlen; 2634 k_cdb = uscmd->uscsi_cdb; 2635 uscmd->uscsi_rqbuf = uicmd->uic_rqbuf; 2636 uscmd->uscsi_rqlen = uicmd->uic_rqlen; 2637 uscmd->uscsi_cdb = uicmd->uic_cdb; 2638 2639 #ifdef _MULTI_DATAMODEL 2640 switch (ddi_model_convert_from(uicmd->uic_flag & FMODELS)) { 2641 case DDI_MODEL_ILP32: 2642 /* 2643 * Convert back to ILP32 before copyout to the 2644 * application 2645 */ 2646 uscsi_cmdtouscsi_cmd32(uscmd, ucmd32); 2647 if (ddi_copyout(ucmd32, (void *)arg, sizeof (*ucmd32), 2648 uicmd->uic_flag)) { 2649 rval = EFAULT; 2650 } 2651 break; 2652 case DDI_MODEL_NONE: 2653 if (ddi_copyout(uscmd, (void *)arg, sizeof (*uscmd), 2654 uicmd->uic_flag)) { 2655 rval = EFAULT; 2656 } 2657 break; 2658 default: 2659 rval = EFAULT; 2660 } 2661 #else /* _MULTI_DATAMODE */ 2662 if (ddi_copyout(uscmd, (void *)arg, sizeof (*uscmd), uicmd->uic_flag)) { 2663 rval = EFAULT; 2664 } 2665 #endif /* _MULTI_DATAMODE */ 2666 2667 /* 2668 * Copyout done, restore kernel virtual addresses for further 2669 * scsi_uscsi_free(). 2670 */ 2671 uscmd->uscsi_rqbuf = k_rqbuf; 2672 uscmd->uscsi_rqlen = k_rqlen; 2673 uscmd->uscsi_cdb = k_cdb; 2674 2675 return (rval); 2676 } 2677 2678 void 2679 scsi_uscsi_free(struct uscsi_cmd *uscmd) 2680 { 2681 struct uscsi_i_cmd *uicmd = (struct uscsi_i_cmd *)uscmd; 2682 2683 ASSERT(uicmd != NULL); 2684 2685 if ((uscmd->uscsi_rqbuf != NULL) && (uscmd->uscsi_rqlen != 0)) { 2686 kmem_free(uscmd->uscsi_rqbuf, (size_t)uscmd->uscsi_rqlen); 2687 uscmd->uscsi_rqbuf = NULL; 2688 } 2689 2690 if ((uscmd->uscsi_cdb != NULL) && (uscmd->uscsi_cdblen != 0)) { 2691 kmem_free(uscmd->uscsi_cdb, (size_t)uscmd->uscsi_cdblen); 2692 uscmd->uscsi_cdb = NULL; 2693 } 2694 2695 kmem_free(uicmd, sizeof (struct uscsi_i_cmd)); 2696 }