1 /*
   2  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
   3  * Use is subject to license terms.
   4  */
   5 
   6 /*
   7  * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr>
   8  * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org>
   9  *
  10  * Permission to use, copy, modify, and distribute this software for any
  11  * purpose with or without fee is hereby granted, provided that the above
  12  * copyright notice and this permission notice appear in all copies.
  13  *
  14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  21  */
  22 
  23 /*
  24  * Ralink Technology RT2501USB/RT2601USB chipset driver
  25  * http://www.ralinktech.com.tw/
  26  */
  27 #include <sys/types.h>
  28 #include <sys/cmn_err.h>
  29 #include <sys/strsubr.h>
  30 #include <sys/modctl.h>
  31 #include <sys/devops.h>
  32 #include <sys/mac_provider.h>
  33 #include <sys/mac_wifi.h>
  34 #include <sys/net80211.h>
  35 #include <sys/byteorder.h>
  36 
  37 #define USBDRV_MAJOR_VER        2
  38 #define USBDRV_MINOR_VER        0
  39 #include <sys/usb/usba.h>
  40 #include <sys/usb/usba/usba_types.h>
  41 
  42 #include "rum_reg.h"
  43 #include "rum_var.h"
  44 #include "rt2573_ucode.h"
  45 
  46 static void *rum_soft_state_p = NULL;
  47 
  48 #define RAL_TXBUF_SIZE          (IEEE80211_MAX_LEN)
  49 #define RAL_RXBUF_SIZE          (IEEE80211_MAX_LEN)
  50 
  51 /* quickly determine if a given rate is CCK or OFDM */
  52 #define RUM_RATE_IS_OFDM(rate)  ((rate) >= 12 && (rate) != 22)
  53 #define RUM_ACK_SIZE    14      /* 10 + 4(FCS) */
  54 #define RUM_CTS_SIZE    14      /* 10 + 4(FCS) */
  55 
  56 #define RUM_N(a)                (sizeof (a) / sizeof ((a)[0]))
  57 
  58 /*
  59  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
  60  */
  61 static const struct ieee80211_rateset rum_rateset_11a =
  62         { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
  63 
  64 static const struct ieee80211_rateset rum_rateset_11b =
  65         { 4, { 2, 4, 11, 22 } };
  66 
  67 static const struct ieee80211_rateset rum_rateset_11g =
  68         { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
  69 
  70 static const struct {
  71         uint32_t        reg;
  72         uint32_t        val;
  73 } rum_def_mac[] = {
  74         { RT2573_TXRX_CSR0,  0x025fb032 },
  75         { RT2573_TXRX_CSR1,  0x9eaa9eaf },
  76         { RT2573_TXRX_CSR2,  0x8a8b8c8d },
  77         { RT2573_TXRX_CSR3,  0x00858687 },
  78         { RT2573_TXRX_CSR7,  0x2e31353b },
  79         { RT2573_TXRX_CSR8,  0x2a2a2a2c },
  80         { RT2573_TXRX_CSR15, 0x0000000f },
  81         { RT2573_MAC_CSR6,   0x00000fff },
  82         { RT2573_MAC_CSR8,   0x016c030a },
  83         { RT2573_MAC_CSR10,  0x00000718 },
  84         { RT2573_MAC_CSR12,  0x00000004 },
  85         { RT2573_MAC_CSR13,  0x00007f00 },
  86         { RT2573_SEC_CSR0,   0x00000000 },
  87         { RT2573_SEC_CSR1,   0x00000000 },
  88         { RT2573_SEC_CSR5,   0x00000000 },
  89         { RT2573_PHY_CSR1,   0x000023b0 },
  90         { RT2573_PHY_CSR5,   0x00040a06 },
  91         { RT2573_PHY_CSR6,   0x00080606 },
  92         { RT2573_PHY_CSR7,   0x00000408 },
  93         { RT2573_AIFSN_CSR,  0x00002273 },
  94         { RT2573_CWMIN_CSR,  0x00002344 },
  95         { RT2573_CWMAX_CSR,  0x000034aa }
  96 };
  97 
  98 static const struct {
  99         uint8_t reg;
 100         uint8_t val;
 101 } rum_def_bbp[] = {
 102         {   3, 0x80 },
 103         {  15, 0x30 },
 104         {  17, 0x20 },
 105         {  21, 0xc8 },
 106         {  22, 0x38 },
 107         {  23, 0x06 },
 108         {  24, 0xfe },
 109         {  25, 0x0a },
 110         {  26, 0x0d },
 111         {  32, 0x0b },
 112         {  34, 0x12 },
 113         {  37, 0x07 },
 114         {  39, 0xf8 },
 115         {  41, 0x60 },
 116         {  53, 0x10 },
 117         {  54, 0x18 },
 118         {  60, 0x10 },
 119         {  61, 0x04 },
 120         {  62, 0x04 },
 121         {  75, 0xfe },
 122         {  86, 0xfe },
 123         {  88, 0xfe },
 124         {  90, 0x0f },
 125         {  99, 0x00 },
 126         { 102, 0x16 },
 127         { 107, 0x04 }
 128 };
 129 
 130 static const struct rfprog {
 131         uint8_t         chan;
 132         uint32_t        r1, r2, r3, r4;
 133 }  rum_rf5226[] = {
 134         {   1, 0x00b03, 0x001e1, 0x1a014, 0x30282 },
 135         {   2, 0x00b03, 0x001e1, 0x1a014, 0x30287 },
 136         {   3, 0x00b03, 0x001e2, 0x1a014, 0x30282 },
 137         {   4, 0x00b03, 0x001e2, 0x1a014, 0x30287 },
 138         {   5, 0x00b03, 0x001e3, 0x1a014, 0x30282 },
 139         {   6, 0x00b03, 0x001e3, 0x1a014, 0x30287 },
 140         {   7, 0x00b03, 0x001e4, 0x1a014, 0x30282 },
 141         {   8, 0x00b03, 0x001e4, 0x1a014, 0x30287 },
 142         {   9, 0x00b03, 0x001e5, 0x1a014, 0x30282 },
 143         {  10, 0x00b03, 0x001e5, 0x1a014, 0x30287 },
 144         {  11, 0x00b03, 0x001e6, 0x1a014, 0x30282 },
 145         {  12, 0x00b03, 0x001e6, 0x1a014, 0x30287 },
 146         {  13, 0x00b03, 0x001e7, 0x1a014, 0x30282 },
 147         {  14, 0x00b03, 0x001e8, 0x1a014, 0x30284 },
 148 
 149         {  34, 0x00b03, 0x20266, 0x36014, 0x30282 },
 150         {  38, 0x00b03, 0x20267, 0x36014, 0x30284 },
 151         {  42, 0x00b03, 0x20268, 0x36014, 0x30286 },
 152         {  46, 0x00b03, 0x20269, 0x36014, 0x30288 },
 153 
 154         {  36, 0x00b03, 0x00266, 0x26014, 0x30288 },
 155         {  40, 0x00b03, 0x00268, 0x26014, 0x30280 },
 156         {  44, 0x00b03, 0x00269, 0x26014, 0x30282 },
 157         {  48, 0x00b03, 0x0026a, 0x26014, 0x30284 },
 158         {  52, 0x00b03, 0x0026b, 0x26014, 0x30286 },
 159         {  56, 0x00b03, 0x0026c, 0x26014, 0x30288 },
 160         {  60, 0x00b03, 0x0026e, 0x26014, 0x30280 },
 161         {  64, 0x00b03, 0x0026f, 0x26014, 0x30282 },
 162 
 163         { 100, 0x00b03, 0x0028a, 0x2e014, 0x30280 },
 164         { 104, 0x00b03, 0x0028b, 0x2e014, 0x30282 },
 165         { 108, 0x00b03, 0x0028c, 0x2e014, 0x30284 },
 166         { 112, 0x00b03, 0x0028d, 0x2e014, 0x30286 },
 167         { 116, 0x00b03, 0x0028e, 0x2e014, 0x30288 },
 168         { 120, 0x00b03, 0x002a0, 0x2e014, 0x30280 },
 169         { 124, 0x00b03, 0x002a1, 0x2e014, 0x30282 },
 170         { 128, 0x00b03, 0x002a2, 0x2e014, 0x30284 },
 171         { 132, 0x00b03, 0x002a3, 0x2e014, 0x30286 },
 172         { 136, 0x00b03, 0x002a4, 0x2e014, 0x30288 },
 173         { 140, 0x00b03, 0x002a6, 0x2e014, 0x30280 },
 174 
 175         { 149, 0x00b03, 0x002a8, 0x2e014, 0x30287 },
 176         { 153, 0x00b03, 0x002a9, 0x2e014, 0x30289 },
 177         { 157, 0x00b03, 0x002ab, 0x2e014, 0x30281 },
 178         { 161, 0x00b03, 0x002ac, 0x2e014, 0x30283 },
 179         { 165, 0x00b03, 0x002ad, 0x2e014, 0x30285 }
 180 }, rum_rf5225[] = {
 181         {   1, 0x00b33, 0x011e1, 0x1a014, 0x30282 },
 182         {   2, 0x00b33, 0x011e1, 0x1a014, 0x30287 },
 183         {   3, 0x00b33, 0x011e2, 0x1a014, 0x30282 },
 184         {   4, 0x00b33, 0x011e2, 0x1a014, 0x30287 },
 185         {   5, 0x00b33, 0x011e3, 0x1a014, 0x30282 },
 186         {   6, 0x00b33, 0x011e3, 0x1a014, 0x30287 },
 187         {   7, 0x00b33, 0x011e4, 0x1a014, 0x30282 },
 188         {   8, 0x00b33, 0x011e4, 0x1a014, 0x30287 },
 189         {   9, 0x00b33, 0x011e5, 0x1a014, 0x30282 },
 190         {  10, 0x00b33, 0x011e5, 0x1a014, 0x30287 },
 191         {  11, 0x00b33, 0x011e6, 0x1a014, 0x30282 },
 192         {  12, 0x00b33, 0x011e6, 0x1a014, 0x30287 },
 193         {  13, 0x00b33, 0x011e7, 0x1a014, 0x30282 },
 194         {  14, 0x00b33, 0x011e8, 0x1a014, 0x30284 },
 195 
 196         {  34, 0x00b33, 0x01266, 0x26014, 0x30282 },
 197         {  38, 0x00b33, 0x01267, 0x26014, 0x30284 },
 198         {  42, 0x00b33, 0x01268, 0x26014, 0x30286 },
 199         {  46, 0x00b33, 0x01269, 0x26014, 0x30288 },
 200 
 201         {  36, 0x00b33, 0x01266, 0x26014, 0x30288 },
 202         {  40, 0x00b33, 0x01268, 0x26014, 0x30280 },
 203         {  44, 0x00b33, 0x01269, 0x26014, 0x30282 },
 204         {  48, 0x00b33, 0x0126a, 0x26014, 0x30284 },
 205         {  52, 0x00b33, 0x0126b, 0x26014, 0x30286 },
 206         {  56, 0x00b33, 0x0126c, 0x26014, 0x30288 },
 207         {  60, 0x00b33, 0x0126e, 0x26014, 0x30280 },
 208         {  64, 0x00b33, 0x0126f, 0x26014, 0x30282 },
 209 
 210         { 100, 0x00b33, 0x0128a, 0x2e014, 0x30280 },
 211         { 104, 0x00b33, 0x0128b, 0x2e014, 0x30282 },
 212         { 108, 0x00b33, 0x0128c, 0x2e014, 0x30284 },
 213         { 112, 0x00b33, 0x0128d, 0x2e014, 0x30286 },
 214         { 116, 0x00b33, 0x0128e, 0x2e014, 0x30288 },
 215         { 120, 0x00b33, 0x012a0, 0x2e014, 0x30280 },
 216         { 124, 0x00b33, 0x012a1, 0x2e014, 0x30282 },
 217         { 128, 0x00b33, 0x012a2, 0x2e014, 0x30284 },
 218         { 132, 0x00b33, 0x012a3, 0x2e014, 0x30286 },
 219         { 136, 0x00b33, 0x012a4, 0x2e014, 0x30288 },
 220         { 140, 0x00b33, 0x012a6, 0x2e014, 0x30280 },
 221 
 222         { 149, 0x00b33, 0x012a8, 0x2e014, 0x30287 },
 223         { 153, 0x00b33, 0x012a9, 0x2e014, 0x30289 },
 224         { 157, 0x00b33, 0x012ab, 0x2e014, 0x30281 },
 225         { 161, 0x00b33, 0x012ac, 0x2e014, 0x30283 },
 226         { 165, 0x00b33, 0x012ad, 0x2e014, 0x30285 }
 227 };
 228 
 229 /*
 230  * device operations
 231  */
 232 static int rum_attach(dev_info_t *, ddi_attach_cmd_t);
 233 static int rum_detach(dev_info_t *, ddi_detach_cmd_t);
 234 
 235 /*
 236  * Module Loading Data & Entry Points
 237  */
 238 DDI_DEFINE_STREAM_OPS(rum_dev_ops, nulldev, nulldev, rum_attach,
 239     rum_detach, nodev, NULL, D_MP, NULL, ddi_quiesce_not_needed);
 240 
 241 static struct modldrv rum_modldrv = {
 242         &mod_driverops,             /* Type of module.  This one is a driver */
 243         "rum driver v1.2",      /* short description */
 244         &rum_dev_ops                /* driver specific ops */
 245 };
 246 
 247 static struct modlinkage modlinkage = {
 248         MODREV_1,
 249         { (void *)&rum_modldrv, NULL }
 250 };
 251 
 252 static int      rum_m_stat(void *,  uint_t, uint64_t *);
 253 static int      rum_m_start(void *);
 254 static void     rum_m_stop(void *);
 255 static int      rum_m_promisc(void *, boolean_t);
 256 static int      rum_m_multicst(void *, boolean_t, const uint8_t *);
 257 static int      rum_m_unicst(void *, const uint8_t *);
 258 static mblk_t   *rum_m_tx(void *, mblk_t *);
 259 static void     rum_m_ioctl(void *, queue_t *, mblk_t *);
 260 static int      rum_m_setprop(void *, const char *, mac_prop_id_t,
 261     uint_t, const void *);
 262 static int      rum_m_getprop(void *, const char *, mac_prop_id_t,
 263     uint_t, void *);
 264 static void     rum_m_propinfo(void *, const char *, mac_prop_id_t,
 265     mac_prop_info_handle_t);
 266 
 267 static mac_callbacks_t rum_m_callbacks = {
 268         MC_IOCTL | MC_SETPROP | MC_GETPROP | MC_PROPINFO,
 269         rum_m_stat,
 270         rum_m_start,
 271         rum_m_stop,
 272         rum_m_promisc,
 273         rum_m_multicst,
 274         rum_m_unicst,
 275         rum_m_tx,
 276         NULL,
 277         rum_m_ioctl,
 278         NULL,           /* mc_getcapab */
 279         NULL,
 280         NULL,
 281         rum_m_setprop,
 282         rum_m_getprop,
 283         rum_m_propinfo
 284 };
 285 
 286 static void rum_amrr_start(struct rum_softc *, struct ieee80211_node *);
 287 static int  rum_tx_trigger(struct rum_softc *, mblk_t *);
 288 static int  rum_rx_trigger(struct rum_softc *);
 289 
 290 uint32_t rum_dbg_flags = 0;
 291 
 292 void
 293 ral_debug(uint32_t dbg_flags, const int8_t *fmt, ...)
 294 {
 295         va_list args;
 296 
 297         if (dbg_flags & rum_dbg_flags) {
 298                 va_start(args, fmt);
 299                 vcmn_err(CE_CONT, fmt, args);
 300                 va_end(args);
 301         }
 302 }
 303 
 304 static void
 305 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
 306 {
 307         usb_ctrl_setup_t req;
 308         usb_cr_t cr;
 309         usb_cb_flags_t cf;
 310         mblk_t *mp;
 311         int err;
 312 
 313         bzero(&req, sizeof (req));
 314         req.bmRequestType = USB_DEV_REQ_TYPE_VENDOR | USB_DEV_REQ_DEV_TO_HOST;
 315         req.bRequest = RT2573_READ_MULTI_MAC;
 316         req.wValue = 0;
 317         req.wIndex = reg;
 318         req.wLength = (uint16_t)len;
 319         req.attrs = USB_ATTRS_AUTOCLEARING;
 320 
 321         mp = NULL;
 322         err = usb_pipe_ctrl_xfer_wait(sc->sc_udev->dev_default_ph, &req, &mp,
 323             &cr, &cf, 0);
 324 
 325         if (err != USB_SUCCESS) {
 326                 ral_debug(RAL_DBG_ERR,
 327                     "rum_read_multi(): could not read MAC register:"
 328                     "cr:%s(%d), cf:(%x)\n",
 329                     usb_str_cr(cr), cr, cf);
 330                 return;
 331         }
 332 
 333         bcopy(mp->b_rptr, buf, len);
 334         freemsg(mp);
 335 }
 336 
 337 static uint32_t
 338 rum_read(struct rum_softc *sc, uint16_t reg)
 339 {
 340         uint32_t val;
 341 
 342         rum_read_multi(sc, reg, &val, sizeof (val));
 343 
 344         return (LE_32(val));
 345 }
 346 
 347 static void
 348 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
 349 {
 350         usb_ctrl_setup_t req;
 351         usb_cr_t cr;
 352         usb_cb_flags_t cf;
 353         mblk_t *mp;
 354         int err;
 355 
 356         bzero(&req, sizeof (req));
 357         req.bmRequestType = USB_DEV_REQ_TYPE_VENDOR | USB_DEV_REQ_HOST_TO_DEV;
 358         req.bRequest = RT2573_WRITE_MULTI_MAC;
 359         req.wValue = 0;
 360         req.wIndex = reg;
 361         req.wLength = (uint16_t)len;
 362         req.attrs = USB_ATTRS_NONE;
 363 
 364         if ((mp = allocb(len, BPRI_HI)) == NULL) {
 365                 ral_debug(RAL_DBG_ERR, "rum_write_multi(): failed alloc mblk.");
 366                 return;
 367         }
 368 
 369         bcopy(buf, mp->b_wptr, len);
 370         mp->b_wptr += len;
 371 
 372         err = usb_pipe_ctrl_xfer_wait(sc->sc_udev->dev_default_ph, &req, &mp,
 373             &cr, &cf, 0);
 374 
 375         if (err != USB_SUCCESS) {
 376                 ral_debug(RAL_DBG_USB,
 377                     "rum_write_multi(): could not write MAC register:"
 378                     "cr:%s(%d), cf:(%x)\n",
 379                     usb_str_cr(cr), cr, cf);
 380         }
 381 
 382         freemsg(mp);
 383 }
 384 
 385 static void
 386 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
 387 {
 388         uint32_t tmp = LE_32(val);
 389 
 390         rum_write_multi(sc, reg, &tmp, sizeof (tmp));
 391 }
 392 
 393 #define UGETDW(w) ((w)[0] | ((w)[1] << 8) | ((w)[2] << 16) | ((w)[3] << 24))
 394 
 395 static int
 396 rum_load_microcode(struct rum_softc *sc)
 397 {
 398         usb_ctrl_setup_t req;
 399         usb_cr_t cr;
 400         usb_cb_flags_t cf;
 401         int err;
 402 
 403         const uint8_t *ucode;
 404         int size;
 405         uint16_t reg = RT2573_MCU_CODE_BASE;
 406 
 407         ucode = rt2573_ucode;
 408         size  = sizeof (rt2573_ucode);
 409 
 410         /* copy firmware image into NIC */
 411         for (; size >= 4; reg += 4, ucode += 4, size -= 4) {
 412                 rum_write(sc, reg, UGETDW(ucode));
 413                 /* rum_write(sc, reg, *(uint32_t *)(ucode)); */
 414         }
 415 
 416         bzero(&req, sizeof (req));
 417         req.bmRequestType = USB_DEV_REQ_TYPE_VENDOR | USB_DEV_REQ_HOST_TO_DEV;
 418         req.bRequest = RT2573_MCU_CNTL;
 419         req.wValue = RT2573_MCU_RUN;
 420         req.wIndex = 0;
 421         req.wLength = 0;
 422         req.attrs = USB_ATTRS_NONE;
 423 
 424         err = usb_pipe_ctrl_xfer_wait(sc->sc_udev->dev_default_ph, &req, NULL,
 425             &cr, &cf, 0);
 426 
 427         if (err != USB_SUCCESS) {
 428                 ral_debug(RAL_DBG_ERR,
 429                     "rum_load_microcode(): could not run firmware: "
 430                     "cr:%s(%d), cf:(%x)\n",
 431                     usb_str_cr(cr), cr, cf);
 432         }
 433 
 434         ral_debug(RAL_DBG_MSG,
 435             "rum_load_microcode(%d): done\n", sizeof (rt2573_ucode));
 436 
 437         return (err);
 438 }
 439 
 440 static void
 441 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
 442 {
 443         usb_ctrl_setup_t req;
 444         usb_cr_t cr;
 445         usb_cb_flags_t cf;
 446         mblk_t *mp;
 447         int err;
 448 
 449         bzero(&req, sizeof (req));
 450         req.bmRequestType = USB_DEV_REQ_TYPE_VENDOR | USB_DEV_REQ_DEV_TO_HOST;
 451         req.bRequest = RT2573_READ_EEPROM;
 452         req.wValue = 0;
 453         req.wIndex = addr;
 454         req.wLength = (uint16_t)len;
 455 
 456         mp = NULL;
 457         err = usb_pipe_ctrl_xfer_wait(sc->sc_udev->dev_default_ph, &req, &mp,
 458             &cr, &cf, 0);
 459 
 460         if (err != USB_SUCCESS) {
 461                 ral_debug(RAL_DBG_USB,
 462                     "rum_eeprom_read(): could not read EEPROM:"
 463                     "cr:%s(%d), cf:(%x)\n",
 464                     usb_str_cr(cr), cr, cf);
 465                 return;
 466         }
 467 
 468         bcopy(mp->b_rptr, buf, len);
 469         freemsg(mp);
 470 }
 471 
 472 /* ARGSUSED */
 473 static void
 474 rum_txeof(usb_pipe_handle_t pipe, usb_bulk_req_t *req)
 475 {
 476         struct rum_softc *sc = (struct rum_softc *)req->bulk_client_private;
 477         struct ieee80211com *ic = &sc->sc_ic;
 478 
 479         ral_debug(RAL_DBG_TX,
 480             "rum_txeof(): cr:%s(%d), flags:0x%x, tx_queued:%d",
 481             usb_str_cr(req->bulk_completion_reason),
 482             req->bulk_completion_reason,
 483             req->bulk_cb_flags,
 484             sc->tx_queued);
 485 
 486         if (req->bulk_completion_reason != USB_CR_OK)
 487                 sc->sc_tx_err++;
 488 
 489         mutex_enter(&sc->tx_lock);
 490 
 491         sc->tx_queued--;
 492         sc->sc_tx_timer = 0;
 493 
 494         if (sc->sc_need_sched) {
 495                 sc->sc_need_sched = 0;
 496                 mac_tx_update(ic->ic_mach);
 497         }
 498 
 499         mutex_exit(&sc->tx_lock);
 500         usb_free_bulk_req(req);
 501 }
 502 
 503 /* ARGSUSED */
 504 static void
 505 rum_rxeof(usb_pipe_handle_t pipe, usb_bulk_req_t *req)
 506 {
 507         struct rum_softc *sc = (struct rum_softc *)req->bulk_client_private;
 508         struct ieee80211com *ic = &sc->sc_ic;
 509 
 510         struct rum_rx_desc *desc;
 511         struct ieee80211_frame *wh;
 512         struct ieee80211_node *ni;
 513 
 514         mblk_t *m, *mp;
 515         int len, pktlen;
 516         char *rxbuf;
 517 
 518         mp = req->bulk_data;
 519         req->bulk_data = NULL;
 520 
 521         ral_debug(RAL_DBG_RX,
 522             "rum_rxeof(): cr:%s(%d), flags:0x%x, rx_queued:%d",
 523             usb_str_cr(req->bulk_completion_reason),
 524             req->bulk_completion_reason,
 525             req->bulk_cb_flags,
 526             sc->rx_queued);
 527 
 528         if (req->bulk_completion_reason != USB_CR_OK) {
 529                 sc->sc_rx_err++;
 530                 goto fail;
 531         }
 532 
 533         len = msgdsize(mp);
 534         rxbuf = (char *)mp->b_rptr;
 535 
 536 
 537         if (len < RT2573_RX_DESC_SIZE + sizeof (struct ieee80211_frame_min)) {
 538                 ral_debug(RAL_DBG_ERR,
 539                     "rum_rxeof(): xfer too short %d\n", len);
 540                 sc->sc_rx_err++;
 541                 goto fail;
 542         }
 543 
 544         /* rx descriptor is located at the head, different from RT2500USB */
 545         desc = (struct rum_rx_desc *)rxbuf;
 546 
 547         if (LE_32(desc->flags) & RT2573_RX_CRC_ERROR) {
 548                 /*
 549                  * This should not happen since we did not request to receive
 550                  * those frames when we filled RT2573_TXRX_CSR0.
 551                  */
 552                 ral_debug(RAL_DBG_ERR, "CRC error\n");
 553                 sc->sc_rx_err++;
 554                 goto fail;
 555         }
 556 
 557         pktlen = (LE_32(desc->flags) >> 16) & 0xfff;
 558 
 559         if (pktlen > (len - RT2573_RX_DESC_SIZE)) {
 560                 ral_debug(RAL_DBG_ERR,
 561                     "rum_rxeof(): pktlen mismatch <%d, %d>.\n", pktlen, len);
 562                 goto fail;
 563         }
 564 
 565         if ((m = allocb(pktlen, BPRI_MED)) == NULL) {
 566                 ral_debug(RAL_DBG_ERR,
 567                     "rum_rxeof(): allocate mblk failed.\n");
 568                 sc->sc_rx_nobuf++;
 569                 goto fail;
 570         }
 571 
 572         bcopy(rxbuf + RT2573_RX_DESC_SIZE, m->b_rptr, pktlen);
 573         m->b_wptr += pktlen;
 574 
 575         wh = (struct ieee80211_frame *)m->b_rptr;
 576         ni = ieee80211_find_rxnode(ic, wh);
 577 
 578         /* send the frame to the 802.11 layer */
 579         (void) ieee80211_input(ic, m, ni, desc->rssi, 0);
 580 
 581         /* node is no longer needed */
 582         ieee80211_free_node(ni);
 583 
 584 fail:
 585         mutex_enter(&sc->rx_lock);
 586         sc->rx_queued--;
 587         mutex_exit(&sc->rx_lock);
 588 
 589         freemsg(mp);
 590         usb_free_bulk_req(req);
 591 
 592         if (RAL_IS_RUNNING(sc))
 593                 (void) rum_rx_trigger(sc);
 594 }
 595 
 596 /*
 597  * Return the expected ack rate for a frame transmitted at rate `rate'.
 598  */
 599 static int
 600 rum_ack_rate(struct ieee80211com *ic, int rate)
 601 {
 602         switch (rate) {
 603         /* CCK rates */
 604         case 2:
 605                 return (2);
 606         case 4:
 607         case 11:
 608         case 22:
 609                 return ((ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate);
 610 
 611         /* OFDM rates */
 612         case 12:
 613         case 18:
 614                 return (12);
 615         case 24:
 616         case 36:
 617                 return (24);
 618         case 48:
 619         case 72:
 620         case 96:
 621         case 108:
 622                 return (48);
 623         }
 624 
 625         /* default to 1Mbps */
 626         return (2);
 627 }
 628 
 629 /*
 630  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
 631  * The function automatically determines the operating mode depending on the
 632  * given rate. `flags' indicates whether short preamble is in use or not.
 633  */
 634 static uint16_t
 635 rum_txtime(int len, int rate, uint32_t flags)
 636 {
 637         uint16_t txtime;
 638 
 639         if (RUM_RATE_IS_OFDM(rate)) {
 640                 /* IEEE Std 802.11a-1999, pp. 37 */
 641                 txtime = (8 + 4 * len + 3 + rate - 1) / rate;
 642                 txtime = 16 + 4 + 4 * txtime + 6;
 643         } else {
 644                 /* IEEE Std 802.11b-1999, pp. 28 */
 645                 txtime = (16 * len + rate - 1) / rate;
 646                 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
 647                         txtime +=  72 + 24;
 648                 else
 649                         txtime += 144 + 48;
 650         }
 651         return (txtime);
 652 }
 653 
 654 static uint8_t
 655 rum_plcp_signal(int rate)
 656 {
 657         switch (rate) {
 658         /* CCK rates (returned values are device-dependent) */
 659         case 2:         return (0x0);
 660         case 4:         return (0x1);
 661         case 11:        return (0x2);
 662         case 22:        return (0x3);
 663 
 664         /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
 665         case 12:        return (0xb);
 666         case 18:        return (0xf);
 667         case 24:        return (0xa);
 668         case 36:        return (0xe);
 669         case 48:        return (0x9);
 670         case 72:        return (0xd);
 671         case 96:        return (0x8);
 672         case 108:       return (0xc);
 673 
 674         /* unsupported rates (should not get there) */
 675         default:        return (0xff);
 676         }
 677 }
 678 
 679 static void
 680 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
 681     uint32_t flags, uint16_t xflags, int len, int rate)
 682 {
 683         struct ieee80211com *ic = &sc->sc_ic;
 684         uint16_t plcp_length;
 685         int remainder;
 686 
 687         desc->flags = LE_32(flags);
 688         desc->flags |= LE_32(RT2573_TX_VALID);
 689         desc->flags |= LE_32(len << 16);
 690 
 691         desc->xflags = LE_16(xflags);
 692 
 693         desc->wme = LE_16(RT2573_QID(0) | RT2573_AIFSN(2) |
 694             RT2573_LOGCWMIN(4) | RT2573_LOGCWMAX(10));
 695 
 696         /* setup PLCP fields */
 697         desc->plcp_signal  = rum_plcp_signal(rate);
 698         desc->plcp_service = 4;
 699 
 700         len += IEEE80211_CRC_LEN;
 701         if (RUM_RATE_IS_OFDM(rate)) {
 702                 desc->flags |= LE_32(RT2573_TX_OFDM);
 703 
 704                 plcp_length = len & 0xfff;
 705                 desc->plcp_length_hi = plcp_length >> 6;
 706                 desc->plcp_length_lo = plcp_length & 0x3f;
 707         } else {
 708                 plcp_length = (16 * len + rate - 1) / rate;
 709                 if (rate == 22) {
 710                         remainder = (16 * len) % 22;
 711                         if (remainder != 0 && remainder < 7)
 712                                 desc->plcp_service |= RT2573_PLCP_LENGEXT;
 713                 }
 714                 desc->plcp_length_hi = plcp_length >> 8;
 715                 desc->plcp_length_lo = plcp_length & 0xff;
 716 
 717                 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
 718                         desc->plcp_signal |= 0x08;
 719         }
 720 }
 721 
 722 #define RUM_TX_TIMEOUT  5
 723 
 724 static int
 725 rum_send(ieee80211com_t *ic, mblk_t *mp, uint8_t type)
 726 {
 727         struct rum_softc *sc = (struct rum_softc *)ic;
 728         struct rum_tx_desc *desc;
 729 
 730         struct ieee80211_frame *wh;
 731         struct ieee80211_key *k;
 732 
 733         uint16_t dur;
 734         uint32_t flags = 0;
 735         int rate, err = DDI_SUCCESS, rv;
 736 
 737         struct ieee80211_node *ni = NULL;
 738         mblk_t *m, *m0;
 739         int off, mblen, pktlen, xferlen;
 740 
 741         /* discard packets while suspending or not inited */
 742         if (!RAL_IS_RUNNING(sc)) {
 743                 freemsg(mp);
 744                 return (ENXIO);
 745         }
 746 
 747         mutex_enter(&sc->tx_lock);
 748 
 749         if (sc->tx_queued > RAL_TX_LIST_COUNT) {
 750                 ral_debug(RAL_DBG_TX, "rum_send(): "
 751                     "no TX buffer available!\n");
 752                 if ((type & IEEE80211_FC0_TYPE_MASK) ==
 753                     IEEE80211_FC0_TYPE_DATA) {
 754                         sc->sc_need_sched = 1;
 755                 }
 756                 sc->sc_tx_nobuf++;
 757                 err = ENOMEM;
 758                 goto fail;
 759         }
 760 
 761         m = allocb(RAL_TXBUF_SIZE + RT2573_TX_DESC_SIZE, BPRI_MED);
 762         if (m == NULL) {
 763                 ral_debug(RAL_DBG_ERR, "rum_send(): can't alloc mblk.\n");
 764                 err = DDI_FAILURE;
 765                 goto fail;
 766         }
 767 
 768         m->b_rptr += RT2573_TX_DESC_SIZE;    /* skip TX descriptor */
 769         m->b_wptr += RT2573_TX_DESC_SIZE;
 770 
 771         for (off = 0, m0 = mp; m0 != NULL; m0 = m0->b_cont) {
 772                 mblen = (uintptr_t)m0->b_wptr - (uintptr_t)m0->b_rptr;
 773                 (void) memcpy(m->b_rptr + off, m0->b_rptr, mblen);
 774                 off += mblen;
 775         }
 776         m->b_wptr += off;
 777 
 778         wh = (struct ieee80211_frame *)m->b_rptr;
 779 
 780         ni = ieee80211_find_txnode(ic, wh->i_addr1);
 781         if (ni == NULL) {
 782                 err = DDI_FAILURE;
 783                 sc->sc_tx_err++;
 784                 freemsg(m);
 785                 goto fail;
 786         }
 787 
 788         if ((type & IEEE80211_FC0_TYPE_MASK) ==
 789             IEEE80211_FC0_TYPE_DATA) {
 790                 (void) ieee80211_encap(ic, m, ni);
 791         }
 792 
 793         if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
 794                 k = ieee80211_crypto_encap(ic, m);
 795                 if (k == NULL) {
 796                         sc->sc_tx_err++;
 797                         err = DDI_FAILURE;
 798                         freemsg(m);
 799                         goto fail;
 800                 }
 801                 /* packet header may have moved, reset our local pointer */
 802                 wh = (struct ieee80211_frame *)m->b_rptr;
 803         }
 804 
 805         m->b_rptr -= RT2573_TX_DESC_SIZE;    /* restore */
 806         desc = (struct rum_tx_desc *)m->b_rptr;
 807 
 808         if ((type & IEEE80211_FC0_TYPE_MASK) ==
 809             IEEE80211_FC0_TYPE_DATA) {  /* DATA */
 810                 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
 811                         rate = ic->ic_bss->in_rates.ir_rates[ic->ic_fixed_rate];
 812                 else
 813                         rate = ni->in_rates.ir_rates[ni->in_txrate];
 814 
 815                 rate &= IEEE80211_RATE_VAL;
 816                 if (rate <= 0) {
 817                         rate = 2;       /* basic rate */
 818                 }
 819 
 820 
 821                 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
 822                         flags |= RT2573_TX_NEED_ACK;
 823                         flags |= RT2573_TX_MORE_FRAG;
 824 
 825                         dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
 826                             ic->ic_flags) + sc->sifs;
 827                         *(uint16_t *)(uintptr_t)wh->i_dur = LE_16(dur);
 828                 }
 829         } else {        /* MGMT */
 830                 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
 831 
 832                 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
 833                         flags |= RT2573_TX_NEED_ACK;
 834 
 835                         dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
 836                             ic->ic_flags) + sc->sifs;
 837                         *(uint16_t *)(uintptr_t)wh->i_dur = LE_16(dur);
 838 
 839                         /* tell hardware to add timestamp for probe responses */
 840                         if ((wh->i_fc[0] &
 841                             (IEEE80211_FC0_TYPE_MASK |
 842                             IEEE80211_FC0_SUBTYPE_MASK)) ==
 843                             (IEEE80211_FC0_TYPE_MGT |
 844                             IEEE80211_FC0_SUBTYPE_PROBE_RESP))
 845                                 flags |= RT2573_TX_TIMESTAMP;
 846                 }
 847         }
 848 
 849         pktlen = msgdsize(m) - RT2573_TX_DESC_SIZE;
 850         rum_setup_tx_desc(sc, desc, flags, 0, pktlen, rate);
 851 
 852         /* align end on a 4-bytes boundary */
 853         xferlen = (RT2573_TX_DESC_SIZE + pktlen + 3) & ~3;
 854 
 855         /*
 856          * No space left in the last URB to store the extra 4 bytes, force
 857          * sending of another URB.
 858          */
 859         if ((xferlen % 64) == 0)
 860                 xferlen += 4;
 861 
 862         m->b_wptr = m->b_rptr + xferlen;
 863 
 864         ral_debug(RAL_DBG_TX, "sending data frame len=%u rate=%u xfer len=%u\n",
 865             pktlen, rate, xferlen);
 866 
 867         rv = rum_tx_trigger(sc, m);
 868 
 869         if (rv == 0) {
 870                 ic->ic_stats.is_tx_frags++;
 871                 ic->ic_stats.is_tx_bytes += pktlen;
 872         }
 873 
 874 fail:
 875         if (ni != NULL)
 876                 ieee80211_free_node(ni);
 877 
 878         if ((type & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_DATA ||
 879             err == 0) {
 880                 freemsg(mp);
 881         }
 882 
 883         mutex_exit(&sc->tx_lock);
 884 
 885         return (err);
 886 }
 887 
 888 static mblk_t *
 889 rum_m_tx(void *arg, mblk_t *mp)
 890 {
 891         struct rum_softc *sc = (struct rum_softc *)arg;
 892         struct ieee80211com *ic = &sc->sc_ic;
 893         mblk_t *next;
 894 
 895         /*
 896          * No data frames go out unless we're associated; this
 897          * should not happen as the 802.11 layer does not enable
 898          * the xmit queue until we enter the RUN state.
 899          */
 900         if (ic->ic_state != IEEE80211_S_RUN) {
 901                 ral_debug(RAL_DBG_ERR, "rum_m_tx(): "
 902                     "discard, state %u\n", ic->ic_state);
 903                 freemsgchain(mp);
 904                 return (NULL);
 905         }
 906 
 907         while (mp != NULL) {
 908                 next = mp->b_next;
 909                 mp->b_next = NULL;
 910                 if (rum_send(ic, mp, IEEE80211_FC0_TYPE_DATA) != DDI_SUCCESS) {
 911                         mp->b_next = next;
 912                         freemsgchain(mp);
 913                         return (NULL);
 914                 }
 915                 mp = next;
 916         }
 917         return (mp);
 918 }
 919 
 920 static void
 921 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
 922 {
 923         uint32_t tmp;
 924         int ntries;
 925 
 926         for (ntries = 0; ntries < 5; ntries++) {
 927                 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
 928                         break;
 929         }
 930         if (ntries == 5) {
 931                 ral_debug(RAL_DBG_ERR,
 932                     "rum_bbp_write(): could not write to BBP\n");
 933                 return;
 934         }
 935 
 936         tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
 937         rum_write(sc, RT2573_PHY_CSR3, tmp);
 938 }
 939 
 940 static uint8_t
 941 rum_bbp_read(struct rum_softc *sc, uint8_t reg)
 942 {
 943         uint32_t val;
 944         int ntries;
 945 
 946         for (ntries = 0; ntries < 5; ntries++) {
 947                 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
 948                         break;
 949         }
 950         if (ntries == 5) {
 951                 ral_debug(RAL_DBG_ERR, "rum_bbp_read(): could not read BBP\n");
 952                 return (0);
 953         }
 954 
 955         val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
 956         rum_write(sc, RT2573_PHY_CSR3, val);
 957 
 958         for (ntries = 0; ntries < 100; ntries++) {
 959                 val = rum_read(sc, RT2573_PHY_CSR3);
 960                 if (!(val & RT2573_BBP_BUSY))
 961                         return (val & 0xff);
 962                 drv_usecwait(1);
 963         }
 964 
 965         ral_debug(RAL_DBG_ERR, "rum_bbp_read(): could not read BBP\n");
 966         return (0);
 967 }
 968 
 969 static void
 970 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
 971 {
 972         uint32_t tmp;
 973         int ntries;
 974 
 975         for (ntries = 0; ntries < 5; ntries++) {
 976                 if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
 977                         break;
 978         }
 979         if (ntries == 5) {
 980                 ral_debug(RAL_DBG_ERR,
 981                     "rum_rf_write(): could not write to RF\n");
 982                 return;
 983         }
 984 
 985         tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
 986             (reg & 3);
 987         rum_write(sc, RT2573_PHY_CSR4, tmp);
 988 
 989         /* remember last written value in sc */
 990         sc->rf_regs[reg] = val;
 991 
 992         ral_debug(RAL_DBG_HW, "RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff);
 993 }
 994 
 995 static void
 996 rum_select_antenna(struct rum_softc *sc)
 997 {
 998         uint8_t bbp4, bbp77;
 999         uint32_t tmp;
1000 
1001         bbp4  = rum_bbp_read(sc, 4);
1002         bbp77 = rum_bbp_read(sc, 77);
1003 
1004         /* make sure Rx is disabled before switching antenna */
1005         tmp = rum_read(sc, RT2573_TXRX_CSR0);
1006         rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
1007 
1008         rum_bbp_write(sc,  4, bbp4);
1009         rum_bbp_write(sc, 77, bbp77);
1010 
1011         rum_write(sc, RT2573_TXRX_CSR0, tmp);
1012 }
1013 
1014 /*
1015  * Enable multi-rate retries for frames sent at OFDM rates.
1016  * In 802.11b/g mode, allow fallback to CCK rates.
1017  */
1018 static void
1019 rum_enable_mrr(struct rum_softc *sc)
1020 {
1021         struct ieee80211com *ic = &sc->sc_ic;
1022         uint32_t tmp;
1023 
1024         tmp = rum_read(sc, RT2573_TXRX_CSR4);
1025 
1026         tmp &= ~RT2573_MRR_CCK_FALLBACK;
1027         if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
1028                 tmp |= RT2573_MRR_CCK_FALLBACK;
1029         tmp |= RT2573_MRR_ENABLED;
1030 
1031         rum_write(sc, RT2573_TXRX_CSR4, tmp);
1032 }
1033 
1034 static void
1035 rum_set_txpreamble(struct rum_softc *sc)
1036 {
1037         uint32_t tmp;
1038 
1039         tmp = rum_read(sc, RT2573_TXRX_CSR4);
1040 
1041         tmp &= ~RT2573_SHORT_PREAMBLE;
1042         if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1043                 tmp |= RT2573_SHORT_PREAMBLE;
1044 
1045         rum_write(sc, RT2573_TXRX_CSR4, tmp);
1046 }
1047 
1048 static void
1049 rum_set_basicrates(struct rum_softc *sc)
1050 {
1051         struct ieee80211com *ic = &sc->sc_ic;
1052 
1053         /* update basic rate set */
1054         if (ic->ic_curmode == IEEE80211_MODE_11B) {
1055                 /* 11b basic rates: 1, 2Mbps */
1056                 rum_write(sc, RT2573_TXRX_CSR5, 0x3);
1057         } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->in_chan)) {
1058                 /* 11a basic rates: 6, 12, 24Mbps */
1059                 rum_write(sc, RT2573_TXRX_CSR5, 0x150);
1060         } else {
1061                 /* 11b/g basic rates: 1, 2, 5.5, 11Mbps */
1062                 rum_write(sc, RT2573_TXRX_CSR5, 0xf);
1063         }
1064 }
1065 
1066 /*
1067  * Reprogram MAC/BBP to switch to a new band.  Values taken from the reference
1068  * driver.
1069  */
1070 static void
1071 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
1072 {
1073         uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
1074         uint32_t tmp;
1075 
1076         /* update all BBP registers that depend on the band */
1077         bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
1078         bbp35 = 0x50; bbp97 = 0x48; bbp98  = 0x48;
1079         if (IEEE80211_IS_CHAN_5GHZ(c)) {
1080                 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
1081                 bbp35 += 0x10; bbp97 += 0x10; bbp98  += 0x10;
1082         }
1083         if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1084             (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1085                 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
1086         }
1087 
1088         sc->bbp17 = bbp17;
1089         rum_bbp_write(sc,  17, bbp17);
1090         rum_bbp_write(sc,  96, bbp96);
1091         rum_bbp_write(sc, 104, bbp104);
1092 
1093         if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1094             (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1095                 rum_bbp_write(sc, 75, 0x80);
1096                 rum_bbp_write(sc, 86, 0x80);
1097                 rum_bbp_write(sc, 88, 0x80);
1098         }
1099 
1100         rum_bbp_write(sc, 35, bbp35);
1101         rum_bbp_write(sc, 97, bbp97);
1102         rum_bbp_write(sc, 98, bbp98);
1103 
1104         tmp = rum_read(sc, RT2573_PHY_CSR0);
1105         tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ);
1106         if (IEEE80211_IS_CHAN_2GHZ(c))
1107                 tmp |= RT2573_PA_PE_2GHZ;
1108         else
1109                 tmp |= RT2573_PA_PE_5GHZ;
1110         rum_write(sc, RT2573_PHY_CSR0, tmp);
1111 
1112         /* 802.11a uses a 16 microseconds short interframe space */
1113         sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
1114 }
1115 
1116 static void
1117 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
1118 {
1119         struct ieee80211com *ic = &sc->sc_ic;
1120         const struct rfprog *rfprog;
1121         uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
1122         int8_t power;
1123         uint_t i, chan;
1124 
1125         chan = ieee80211_chan2ieee(ic, c);
1126         if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1127                 return;
1128 
1129         /* select the appropriate RF settings based on what EEPROM says */
1130         rfprog = (sc->rf_rev == RT2573_RF_5225 ||
1131             sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
1132 
1133         /* find the settings for this channel (we know it exists) */
1134         for (i = 0; rfprog[i].chan != chan; i++) {
1135         }
1136 
1137         power = sc->txpow[i];
1138         if (power < 0) {
1139                 bbp94 += power;
1140                 power = 0;
1141         } else if (power > 31) {
1142                 bbp94 += power - 31;
1143                 power = 31;
1144         }
1145 
1146         /*
1147          * If we are switching from the 2GHz band to the 5GHz band or
1148          * vice-versa, BBP registers need to be reprogrammed.
1149          */
1150         if (c->ich_flags != ic->ic_curchan->ich_flags) {
1151                 rum_select_band(sc, c);
1152                 rum_select_antenna(sc);
1153         }
1154         ic->ic_curchan = c;
1155 
1156         rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1157         rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1158         rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1159         rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1160 
1161         rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1162         rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1163         rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
1164         rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1165 
1166         rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1167         rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1168         rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1169         rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1170 
1171         drv_usecwait(10);
1172 
1173         /* enable smart mode for MIMO-capable RFs */
1174         bbp3 = rum_bbp_read(sc, 3);
1175 
1176         bbp3 &= ~RT2573_SMART_MODE;
1177         if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
1178                 bbp3 |= RT2573_SMART_MODE;
1179 
1180         rum_bbp_write(sc, 3, bbp3);
1181 
1182         if (bbp94 != RT2573_BBPR94_DEFAULT)
1183                 rum_bbp_write(sc, 94, bbp94);
1184 }
1185 
1186 /*
1187  * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
1188  * and HostAP operating modes.
1189  */
1190 static void
1191 rum_enable_tsf_sync(struct rum_softc *sc)
1192 {
1193         struct ieee80211com *ic = &sc->sc_ic;
1194         uint32_t tmp;
1195 
1196         if (ic->ic_opmode != IEEE80211_M_STA) {
1197                 /*
1198                  * Change default 16ms TBTT adjustment to 8ms.
1199                  * Must be done before enabling beacon generation.
1200                  */
1201                 rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8);
1202         }
1203 
1204         tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
1205 
1206         /* set beacon interval (in 1/16ms unit) */
1207         tmp |= ic->ic_bss->in_intval * 16;
1208 
1209         tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT;
1210         if (ic->ic_opmode == IEEE80211_M_STA)
1211                 tmp |= RT2573_TSF_MODE(1);
1212         else
1213                 tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON;
1214 
1215         rum_write(sc, RT2573_TXRX_CSR9, tmp);
1216 }
1217 
1218 /* ARGSUSED */
1219 static void
1220 rum_update_slot(struct ieee80211com *ic, int onoff)
1221 {
1222         struct rum_softc *sc = (struct rum_softc *)ic;
1223         uint8_t slottime;
1224         uint32_t tmp;
1225 
1226         slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1227 
1228         tmp = rum_read(sc, RT2573_MAC_CSR9);
1229         tmp = (tmp & ~0xff) | slottime;
1230         rum_write(sc, RT2573_MAC_CSR9, tmp);
1231 
1232         ral_debug(RAL_DBG_HW, "setting slot time to %uus\n", slottime);
1233 }
1234 
1235 static void
1236 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
1237 {
1238         uint32_t tmp;
1239 
1240         tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
1241         rum_write(sc, RT2573_MAC_CSR4, tmp);
1242 
1243         tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16;
1244         rum_write(sc, RT2573_MAC_CSR5, tmp);
1245 }
1246 
1247 static void
1248 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
1249 {
1250         uint32_t tmp;
1251 
1252         tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
1253         rum_write(sc, RT2573_MAC_CSR2, tmp);
1254 
1255         tmp = addr[4] | addr[5] << 8 | 0xff << 16;
1256         rum_write(sc, RT2573_MAC_CSR3, tmp);
1257 
1258         ral_debug(RAL_DBG_HW,
1259             "setting MAC address to " MACSTR "\n", MAC2STR(addr));
1260 }
1261 
1262 static void
1263 rum_update_promisc(struct rum_softc *sc)
1264 {
1265         uint32_t tmp;
1266 
1267         tmp = rum_read(sc, RT2573_TXRX_CSR0);
1268 
1269         tmp &= ~RT2573_DROP_NOT_TO_ME;
1270         if (!(sc->sc_rcr & RAL_RCR_PROMISC))
1271                 tmp |= RT2573_DROP_NOT_TO_ME;
1272 
1273         rum_write(sc, RT2573_TXRX_CSR0, tmp);
1274 
1275         ral_debug(RAL_DBG_HW, "%s promiscuous mode\n",
1276             (sc->sc_rcr & RAL_RCR_PROMISC) ?  "entering" : "leaving");
1277 }
1278 
1279 static const char *
1280 rum_get_rf(int rev)
1281 {
1282         switch (rev) {
1283         case RT2573_RF_2527:    return ("RT2527 (MIMO XR)");
1284         case RT2573_RF_2528:    return ("RT2528");
1285         case RT2573_RF_5225:    return ("RT5225 (MIMO XR)");
1286         case RT2573_RF_5226:    return ("RT5226");
1287         default:                return ("unknown");
1288         }
1289 }
1290 
1291 static void
1292 rum_read_eeprom(struct rum_softc *sc)
1293 {
1294         struct ieee80211com *ic = &sc->sc_ic;
1295         uint16_t val;
1296 
1297         /* read MAC address */
1298         rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_macaddr, 6);
1299 
1300         rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
1301         val = LE_16(val);
1302         sc->rf_rev =   (val >> 11) & 0x1f;
1303         sc->hw_radio = (val >> 10) & 0x1;
1304         sc->rx_ant =   (val >> 4)  & 0x3;
1305         sc->tx_ant =   (val >> 2)  & 0x3;
1306         sc->nb_ant =   val & 0x3;
1307 
1308         ral_debug(RAL_DBG_HW, "RF revision=%d\n", sc->rf_rev);
1309 
1310         rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
1311         val = LE_16(val);
1312         sc->ext_5ghz_lna = (val >> 6) & 0x1;
1313         sc->ext_2ghz_lna = (val >> 4) & 0x1;
1314 
1315         ral_debug(RAL_DBG_HW, "External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
1316             sc->ext_2ghz_lna, sc->ext_5ghz_lna);
1317 
1318         rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
1319         val = LE_16(val);
1320         if ((val & 0xff) != 0xff)
1321                 sc->rssi_2ghz_corr = (int8_t)(val & 0xff);       /* signed */
1322 
1323         rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
1324         val = LE_16(val);
1325         if ((val & 0xff) != 0xff)
1326                 sc->rssi_5ghz_corr = (int8_t)(val & 0xff);       /* signed */
1327 
1328         ral_debug(RAL_DBG_HW, "RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
1329             sc->rssi_2ghz_corr, sc->rssi_5ghz_corr);
1330 
1331         rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
1332         val = LE_16(val);
1333         if ((val & 0xff) != 0xff)
1334                 sc->rffreq = val & 0xff;
1335 
1336         ral_debug(RAL_DBG_HW, "RF freq=%d\n", sc->rffreq);
1337 
1338         /* read Tx power for all a/b/g channels */
1339         rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
1340         /* default Tx power for 802.11a channels */
1341         (void) memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14);
1342 
1343         /* read default values for BBP registers */
1344         rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1345 }
1346 
1347 static int
1348 rum_bbp_init(struct rum_softc *sc)
1349 {
1350         int i, ntries;
1351 
1352         /* wait for BBP to be ready */
1353         for (ntries = 0; ntries < 100; ntries++) {
1354                 const uint8_t val = rum_bbp_read(sc, 0);
1355                 if (val != 0 && val != 0xff)
1356                         break;
1357                 drv_usecwait(1000);
1358         }
1359         if (ntries == 100) {
1360                 ral_debug(RAL_DBG_ERR, "timeout waiting for BBP\n");
1361                 return (EIO);
1362         }
1363 
1364         /* initialize BBP registers to default values */
1365         for (i = 0; i < RUM_N(rum_def_bbp); i++)
1366                 rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
1367 
1368         /* write vendor-specific BBP values (from EEPROM) */
1369         for (i = 0; i < 16; i++) {
1370                 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1371                         continue;
1372                 rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
1373         }
1374 
1375         return (0);
1376 }
1377 
1378 /*
1379  * This function is called periodically (every 200ms) during scanning to
1380  * switch from one channel to another.
1381  */
1382 static void
1383 rum_next_scan(void *arg)
1384 {
1385         struct rum_softc *sc = arg;
1386         struct ieee80211com *ic = &sc->sc_ic;
1387 
1388         if (ic->ic_state == IEEE80211_S_SCAN)
1389                 ieee80211_next_scan(ic);
1390 }
1391 
1392 static int
1393 rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1394 {
1395         struct rum_softc *sc = (struct rum_softc *)ic;
1396         enum ieee80211_state ostate;
1397         struct ieee80211_node *ni;
1398         int err;
1399         uint32_t tmp;
1400 
1401         RAL_LOCK(sc);
1402 
1403         ostate = ic->ic_state;
1404 
1405         if (sc->sc_scan_id != 0) {
1406                 (void) untimeout(sc->sc_scan_id);
1407                 sc->sc_scan_id = 0;
1408         }
1409 
1410         if (sc->sc_amrr_id != 0) {
1411                 (void) untimeout(sc->sc_amrr_id);
1412                 sc->sc_amrr_id = 0;
1413         }
1414 
1415         switch (nstate) {
1416         case IEEE80211_S_INIT:
1417                 if (ostate == IEEE80211_S_RUN) {
1418                         /* abort TSF synchronization */
1419                         tmp = rum_read(sc, RT2573_TXRX_CSR9);
1420                         rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
1421                 }
1422                 break;
1423 
1424         case IEEE80211_S_SCAN:
1425                 rum_set_chan(sc, ic->ic_curchan);
1426                 sc->sc_scan_id = timeout(rum_next_scan, (void *)sc,
1427                     drv_usectohz(sc->dwelltime * 1000));
1428                 break;
1429 
1430         case IEEE80211_S_AUTH:
1431                 rum_set_chan(sc, ic->ic_curchan);
1432                 break;
1433 
1434         case IEEE80211_S_ASSOC:
1435                 rum_set_chan(sc, ic->ic_curchan);
1436                 break;
1437 
1438         case IEEE80211_S_RUN:
1439                 rum_set_chan(sc, ic->ic_curchan);
1440 
1441                 ni = ic->ic_bss;
1442 
1443                 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1444                         rum_update_slot(ic, 1);
1445                         rum_enable_mrr(sc);
1446                         rum_set_txpreamble(sc);
1447                         rum_set_basicrates(sc);
1448                         rum_set_bssid(sc, ni->in_bssid);
1449                 }
1450 
1451                 if (ic->ic_opmode != IEEE80211_M_MONITOR)
1452                         rum_enable_tsf_sync(sc);
1453 
1454                 /* enable automatic rate adaptation in STA mode */
1455                 if (ic->ic_opmode == IEEE80211_M_STA &&
1456                     ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
1457                         rum_amrr_start(sc, ni);
1458                 break;
1459         }
1460 
1461         RAL_UNLOCK(sc);
1462 
1463         err = sc->sc_newstate(ic, nstate, arg);
1464         /*
1465          * Finally, start any timers.
1466          */
1467         if (nstate == IEEE80211_S_RUN)
1468                 ieee80211_start_watchdog(ic, 1);
1469 
1470         return (err);
1471 }
1472 
1473 static void
1474 rum_close_pipes(struct rum_softc *sc)
1475 {
1476         usb_flags_t flags = USB_FLAGS_SLEEP;
1477 
1478         if (sc->sc_rx_pipeh != NULL) {
1479                 usb_pipe_reset(sc->sc_dev, sc->sc_rx_pipeh, flags, NULL, 0);
1480                 usb_pipe_close(sc->sc_dev, sc->sc_rx_pipeh, flags, NULL, 0);
1481                 sc->sc_rx_pipeh = NULL;
1482         }
1483 
1484         if (sc->sc_tx_pipeh != NULL) {
1485                 usb_pipe_reset(sc->sc_dev, sc->sc_tx_pipeh, flags, NULL, 0);
1486                 usb_pipe_close(sc->sc_dev, sc->sc_tx_pipeh, flags, NULL, 0);
1487                 sc->sc_tx_pipeh = NULL;
1488         }
1489 }
1490 
1491 static int
1492 rum_open_pipes(struct rum_softc *sc)
1493 {
1494         usb_ep_data_t *ep_node;
1495         usb_pipe_policy_t policy;
1496         int err;
1497 
1498         ep_node = usb_lookup_ep_data(sc->sc_dev, sc->sc_udev, 0, 0, 0,
1499             USB_EP_ATTR_BULK, USB_EP_DIR_OUT);
1500 
1501         bzero(&policy, sizeof (usb_pipe_policy_t));
1502         policy.pp_max_async_reqs = RAL_TX_LIST_COUNT;
1503 
1504         if ((err = usb_pipe_open(sc->sc_dev,
1505             &ep_node->ep_descr, &policy, USB_FLAGS_SLEEP,
1506             &sc->sc_tx_pipeh)) != USB_SUCCESS) {
1507                 ral_debug(RAL_DBG_ERR,
1508                     "rum_open_pipes(): %x failed to open tx pipe\n", err);
1509                 goto fail;
1510         }
1511 
1512         ep_node = usb_lookup_ep_data(sc->sc_dev, sc->sc_udev, 0, 0, 0,
1513             USB_EP_ATTR_BULK, USB_EP_DIR_IN);
1514 
1515         bzero(&policy, sizeof (usb_pipe_policy_t));
1516         policy.pp_max_async_reqs = RAL_RX_LIST_COUNT + 32;
1517 
1518         if ((err = usb_pipe_open(sc->sc_dev,
1519             &ep_node->ep_descr, &policy, USB_FLAGS_SLEEP,
1520             &sc->sc_rx_pipeh)) != USB_SUCCESS) {
1521                 ral_debug(RAL_DBG_ERR,
1522                     "rum_open_pipes(): %x failed to open rx pipe\n", err);
1523                 goto fail;
1524         }
1525 
1526         return (USB_SUCCESS);
1527 
1528 fail:
1529         if (sc->sc_rx_pipeh != NULL) {
1530                 usb_pipe_close(sc->sc_dev, sc->sc_rx_pipeh,
1531                     USB_FLAGS_SLEEP, NULL, 0);
1532                 sc->sc_rx_pipeh = NULL;
1533         }
1534 
1535         if (sc->sc_tx_pipeh != NULL) {
1536                 usb_pipe_close(sc->sc_dev, sc->sc_tx_pipeh,
1537                     USB_FLAGS_SLEEP, NULL, 0);
1538                 sc->sc_tx_pipeh = NULL;
1539         }
1540 
1541         return (USB_FAILURE);
1542 }
1543 
1544 static int
1545 rum_tx_trigger(struct rum_softc *sc, mblk_t *mp)
1546 {
1547         usb_bulk_req_t *req;
1548         int err;
1549 
1550         sc->sc_tx_timer = RUM_TX_TIMEOUT;
1551 
1552         req = usb_alloc_bulk_req(sc->sc_dev, 0, USB_FLAGS_SLEEP);
1553         if (req == NULL) {
1554                 ral_debug(RAL_DBG_ERR,
1555                     "rum_tx_trigger(): failed to allocate req");
1556                 freemsg(mp);
1557                 return (-1);
1558         }
1559 
1560         req->bulk_len                = msgdsize(mp);
1561         req->bulk_data               = mp;
1562         req->bulk_client_private = (usb_opaque_t)sc;
1563         req->bulk_timeout    = RUM_TX_TIMEOUT;
1564         req->bulk_attributes = USB_ATTRS_AUTOCLEARING;
1565         req->bulk_cb         = rum_txeof;
1566         req->bulk_exc_cb     = rum_txeof;
1567         req->bulk_completion_reason = 0;
1568         req->bulk_cb_flags   = 0;
1569 
1570         if ((err = usb_pipe_bulk_xfer(sc->sc_tx_pipeh, req, 0))
1571             != USB_SUCCESS) {
1572 
1573                 ral_debug(RAL_DBG_ERR, "rum_tx_trigger(): "
1574                     "failed to do tx xfer, %d", err);
1575                 usb_free_bulk_req(req);
1576                 return (-1);
1577         }
1578 
1579         sc->tx_queued++;
1580 
1581         return (0);
1582 }
1583 
1584 static int
1585 rum_rx_trigger(struct rum_softc *sc)
1586 {
1587         usb_bulk_req_t *req;
1588         int err;
1589 
1590         req = usb_alloc_bulk_req(sc->sc_dev, RAL_RXBUF_SIZE, USB_FLAGS_SLEEP);
1591         if (req == NULL) {
1592                 ral_debug(RAL_DBG_ERR,
1593                     "rum_rx_trigger(): failed to allocate req");
1594                 return (-1);
1595         }
1596 
1597         req->bulk_len                = RAL_RXBUF_SIZE;
1598         req->bulk_client_private = (usb_opaque_t)sc;
1599         req->bulk_timeout    = 0;
1600         req->bulk_attributes = USB_ATTRS_SHORT_XFER_OK
1601             | USB_ATTRS_AUTOCLEARING;
1602         req->bulk_cb         = rum_rxeof;
1603         req->bulk_exc_cb     = rum_rxeof;
1604         req->bulk_completion_reason = 0;
1605         req->bulk_cb_flags   = 0;
1606 
1607         err = usb_pipe_bulk_xfer(sc->sc_rx_pipeh, req, 0);
1608 
1609         if (err != USB_SUCCESS) {
1610                 ral_debug(RAL_DBG_ERR, "rum_rx_trigger(): "
1611                     "failed to do rx xfer, %d", err);
1612                 usb_free_bulk_req(req);
1613 
1614                 return (-1);
1615         }
1616 
1617         mutex_enter(&sc->rx_lock);
1618         sc->rx_queued++;
1619         mutex_exit(&sc->rx_lock);
1620 
1621         return (0);
1622 }
1623 
1624 static void
1625 rum_init_tx_queue(struct rum_softc *sc)
1626 {
1627         sc->tx_queued = 0;
1628 }
1629 
1630 static int
1631 rum_init_rx_queue(struct rum_softc *sc)
1632 {
1633         int     i;
1634 
1635         sc->rx_queued = 0;
1636 
1637         for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
1638                 if (rum_rx_trigger(sc) != 0) {
1639                         return (USB_FAILURE);
1640                 }
1641         }
1642 
1643         return (USB_SUCCESS);
1644 }
1645 
1646 static void
1647 rum_stop(struct rum_softc *sc)
1648 {
1649         struct ieee80211com *ic = &sc->sc_ic;
1650         uint32_t tmp;
1651 
1652         ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1653         ieee80211_stop_watchdog(ic);    /* stop the watchdog */
1654 
1655         RAL_LOCK(sc);
1656 
1657         sc->sc_tx_timer = 0;
1658         sc->sc_flags &= ~RAL_FLAG_RUNNING;       /* STOP */
1659 
1660         /* disable Rx */
1661         tmp = rum_read(sc, RT2573_TXRX_CSR0);
1662         rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
1663 
1664         /* reset ASIC */
1665         rum_write(sc, RT2573_MAC_CSR1, 3);
1666         rum_write(sc, RT2573_MAC_CSR1, 0);
1667 
1668         rum_close_pipes(sc);
1669 
1670         RAL_UNLOCK(sc);
1671 }
1672 
1673 static int
1674 rum_init(struct rum_softc *sc)
1675 {
1676         struct ieee80211com *ic = &sc->sc_ic;
1677         uint32_t tmp;
1678         int i, ntries;
1679 
1680         rum_stop(sc);
1681 
1682         /* initialize MAC registers to default values */
1683         for (i = 0; i < RUM_N(rum_def_mac); i++)
1684                 rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
1685 
1686         /* set host ready */
1687         rum_write(sc, RT2573_MAC_CSR1, 3);
1688         rum_write(sc, RT2573_MAC_CSR1, 0);
1689 
1690         /* wait for BBP/RF to wakeup */
1691         for (ntries = 0; ntries < 1000; ntries++) {
1692                 if (rum_read(sc, RT2573_MAC_CSR12) & 8)
1693                         break;
1694                 rum_write(sc, RT2573_MAC_CSR12, 4);     /* force wakeup */
1695                 drv_usecwait(1000);
1696         }
1697         if (ntries == 1000) {
1698                 ral_debug(RAL_DBG_ERR,
1699                     "rum_init(): timeout waiting for BBP/RF to wakeup\n");
1700                 goto fail;
1701         }
1702 
1703         if (rum_bbp_init(sc) != 0)
1704                 goto fail;
1705 
1706         /* select default channel */
1707         rum_select_band(sc, ic->ic_curchan);
1708         rum_select_antenna(sc);
1709         rum_set_chan(sc, ic->ic_curchan);
1710 
1711         /* clear STA registers */
1712         rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof (sc->sta));
1713 
1714         rum_set_macaddr(sc, ic->ic_macaddr);
1715 
1716         /* initialize ASIC */
1717         rum_write(sc, RT2573_MAC_CSR1, 4);
1718 
1719         if (rum_open_pipes(sc) != USB_SUCCESS) {
1720                 ral_debug(RAL_DBG_ERR, "rum_init(): "
1721                     "could not open pipes.\n");
1722                 goto fail;
1723         }
1724 
1725         rum_init_tx_queue(sc);
1726 
1727         if (rum_init_rx_queue(sc) != USB_SUCCESS)
1728                 goto fail;
1729 
1730         /* update Rx filter */
1731         tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
1732         tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
1733         if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1734                 tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
1735                     RT2573_DROP_ACKCTS;
1736                 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
1737                         tmp |= RT2573_DROP_TODS;
1738                 if (!(sc->sc_rcr & RAL_RCR_PROMISC))
1739                         tmp |= RT2573_DROP_NOT_TO_ME;
1740         }
1741 
1742         rum_write(sc, RT2573_TXRX_CSR0, tmp);
1743         sc->sc_flags |= RAL_FLAG_RUNNING;    /* RUNNING */
1744 
1745         return (DDI_SUCCESS);
1746 fail:
1747         rum_stop(sc);
1748         return (DDI_FAILURE);
1749 }
1750 
1751 static int
1752 rum_disconnect(dev_info_t *devinfo)
1753 {
1754         struct rum_softc *sc;
1755         struct ieee80211com *ic;
1756 
1757         /*
1758          * We can't call rum_stop() here, since the hardware is removed,
1759          * we can't access the register anymore.
1760          */
1761         sc = ddi_get_soft_state(rum_soft_state_p, ddi_get_instance(devinfo));
1762         ASSERT(sc != NULL);
1763 
1764         if (!RAL_IS_RUNNING(sc))        /* different device or not inited */
1765                 return (DDI_SUCCESS);
1766 
1767         ic = &sc->sc_ic;
1768         ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1769         ieee80211_stop_watchdog(ic);    /* stop the watchdog */
1770 
1771         RAL_LOCK(sc);
1772 
1773         sc->sc_tx_timer = 0;
1774         sc->sc_flags &= ~RAL_FLAG_RUNNING;       /* STOP */
1775 
1776         rum_close_pipes(sc);
1777 
1778         RAL_UNLOCK(sc);
1779 
1780         return (DDI_SUCCESS);
1781 }
1782 
1783 static int
1784 rum_reconnect(dev_info_t *devinfo)
1785 {
1786         struct rum_softc *sc;
1787         int err;
1788 
1789         sc = ddi_get_soft_state(rum_soft_state_p, ddi_get_instance(devinfo));
1790         ASSERT(sc != NULL);
1791 
1792         /* check device changes after disconnect */
1793         if (usb_check_same_device(sc->sc_dev, NULL, USB_LOG_L2, -1,
1794             USB_CHK_BASIC | USB_CHK_CFG, NULL) != USB_SUCCESS) {
1795                 ral_debug(RAL_DBG_ERR, "different device connected\n");
1796                 return (DDI_FAILURE);
1797         }
1798 
1799         err = rum_load_microcode(sc);
1800         if (err != USB_SUCCESS) {
1801                 ral_debug(RAL_DBG_ERR, "could not load 8051 microcode\n");
1802                 goto fail;
1803         }
1804 
1805         err = rum_init(sc);
1806 fail:
1807         return (err);
1808 }
1809 
1810 static void
1811 rum_resume(struct rum_softc *sc)
1812 {
1813         int err;
1814 
1815         /* check device changes after suspend */
1816         if (usb_check_same_device(sc->sc_dev, NULL, USB_LOG_L2, -1,
1817             USB_CHK_BASIC | USB_CHK_CFG, NULL) != USB_SUCCESS) {
1818                 ral_debug(RAL_DBG_ERR, "no or different device connected\n");
1819                 return;
1820         }
1821 
1822         err = rum_load_microcode(sc);
1823         if (err != USB_SUCCESS) {
1824                 ral_debug(RAL_DBG_ERR, "could not load 8051 microcode\n");
1825                 return;
1826         }
1827 
1828         (void) rum_init(sc);
1829 }
1830 
1831 #define RUM_AMRR_MIN_SUCCESS_THRESHOLD  1
1832 #define RUM_AMRR_MAX_SUCCESS_THRESHOLD  10
1833 
1834 /*
1835  * Naive implementation of the Adaptive Multi Rate Retry algorithm:
1836  * "IEEE 802.11 Rate Adaptation: A Practical Approach"
1837  * Mathieu Lacage, Hossein Manshaei, Thierry Turletti
1838  * INRIA Sophia - Projet Planete
1839  * http://www-sop.inria.fr/rapports/sophia/RR-5208.html
1840  *
1841  * This algorithm is particularly well suited for rum since it does not
1842  * require per-frame retry statistics.  Note however that since h/w does
1843  * not provide per-frame stats, we can't do per-node rate adaptation and
1844  * thus automatic rate adaptation is only enabled in STA operating mode.
1845  */
1846 #define is_success(amrr)        \
1847         ((amrr)->retrycnt < (amrr)->txcnt / 10)
1848 #define is_failure(amrr)        \
1849         ((amrr)->retrycnt > (amrr)->txcnt / 3)
1850 #define is_enough(amrr)         \
1851         ((amrr)->txcnt > 10)
1852 #define is_min_rate(ni)         \
1853         ((ni)->in_txrate == 0)
1854 #define is_max_rate(ni)         \
1855         ((ni)->in_txrate == (ni)->in_rates.ir_nrates - 1)
1856 #define increase_rate(ni)       \
1857         ((ni)->in_txrate++)
1858 #define decrease_rate(ni)       \
1859         ((ni)->in_txrate--)
1860 #define reset_cnt(amrr) do {    \
1861         (amrr)->txcnt = (amrr)->retrycnt = 0;     \
1862         _NOTE(CONSTCOND)        \
1863 } while (/* CONSTCOND */0)
1864 
1865 static void
1866 rum_ratectl(struct rum_amrr *amrr, struct ieee80211_node *ni)
1867 {
1868         int need_change = 0;
1869 
1870         if (is_success(amrr) && is_enough(amrr)) {
1871                 amrr->success++;
1872                 if (amrr->success >= amrr->success_threshold &&
1873                     !is_max_rate(ni)) {
1874                         amrr->recovery = 1;
1875                         amrr->success = 0;
1876                         increase_rate(ni);
1877                         need_change = 1;
1878                 } else {
1879                         amrr->recovery = 0;
1880                 }
1881         } else if (is_failure(amrr)) {
1882                 amrr->success = 0;
1883                 if (!is_min_rate(ni)) {
1884                         if (amrr->recovery) {
1885                                 amrr->success_threshold *= 2;
1886                                 if (amrr->success_threshold >
1887                                     RUM_AMRR_MAX_SUCCESS_THRESHOLD)
1888                                         amrr->success_threshold =
1889                                             RUM_AMRR_MAX_SUCCESS_THRESHOLD;
1890                         } else {
1891                                 amrr->success_threshold =
1892                                     RUM_AMRR_MIN_SUCCESS_THRESHOLD;
1893                         }
1894                         decrease_rate(ni);
1895                         need_change = 1;
1896                 }
1897                 amrr->recovery = 0;  /* original paper was incorrect */
1898         }
1899 
1900         if (is_enough(amrr) || need_change)
1901                 reset_cnt(amrr);
1902 }
1903 
1904 static void
1905 rum_amrr_timeout(void *arg)
1906 {
1907         struct rum_softc *sc = (struct rum_softc *)arg;
1908         struct rum_amrr *amrr = &sc->amrr;
1909 
1910         rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof (sc->sta));
1911 
1912         /* count TX retry-fail as Tx errors */
1913         sc->sc_tx_err += LE_32(sc->sta[5]) >> 16;
1914         sc->sc_tx_retries += ((LE_32(sc->sta[4]) >> 16) +
1915             (LE_32(sc->sta[5]) & 0xffff));
1916 
1917         amrr->retrycnt =
1918             (LE_32(sc->sta[4]) >> 16) +                /* TX one-retry ok count */
1919             (LE_32(sc->sta[5]) & 0xffff) +       /* TX more-retry ok count */
1920             (LE_32(sc->sta[5]) >> 16);         /* TX retry-fail count */
1921 
1922         amrr->txcnt =
1923             amrr->retrycnt +
1924             (LE_32(sc->sta[4]) & 0xffff);        /* TX no-retry ok count */
1925 
1926         rum_ratectl(amrr, sc->sc_ic.ic_bss);
1927 
1928         sc->sc_amrr_id = timeout(rum_amrr_timeout, (void *)sc,
1929             drv_usectohz(1000 * 1000)); /* 1 second */
1930 }
1931 
1932 static void
1933 rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni)
1934 {
1935         struct rum_amrr *amrr = &sc->amrr;
1936         int i;
1937 
1938         /* clear statistic registers (STA_CSR0 to STA_CSR5) */
1939         rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof (sc->sta));
1940 
1941         amrr->success = 0;
1942         amrr->recovery = 0;
1943         amrr->txcnt = amrr->retrycnt = 0;
1944         amrr->success_threshold = RUM_AMRR_MIN_SUCCESS_THRESHOLD;
1945 
1946         /* set rate to some reasonable initial value */
1947         for (i = ni->in_rates.ir_nrates - 1;
1948             i > 0 && (ni->in_rates.ir_rates[i] & IEEE80211_RATE_VAL) > 72;
1949             i--) {
1950         }
1951 
1952         ni->in_txrate = i;
1953 
1954         sc->sc_amrr_id = timeout(rum_amrr_timeout, (void *)sc,
1955             drv_usectohz(1000 * 1000)); /* 1 second */
1956 }
1957 
1958 void
1959 rum_watchdog(void *arg)
1960 {
1961         struct rum_softc *sc = arg;
1962         struct ieee80211com *ic = &sc->sc_ic;
1963         int ntimer = 0;
1964 
1965         RAL_LOCK(sc);
1966         ic->ic_watchdog_timer = 0;
1967 
1968         if (!RAL_IS_RUNNING(sc)) {
1969                 RAL_UNLOCK(sc);
1970                 return;
1971         }
1972 
1973         if (sc->sc_tx_timer > 0) {
1974                 if (--sc->sc_tx_timer == 0) {
1975                         ral_debug(RAL_DBG_ERR, "tx timer timeout\n");
1976                         RAL_UNLOCK(sc);
1977                         (void) rum_init(sc);
1978                         (void) ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1979                         return;
1980                 }
1981         }
1982 
1983         if (ic->ic_state == IEEE80211_S_RUN)
1984                 ntimer = 1;
1985 
1986         RAL_UNLOCK(sc);
1987 
1988         ieee80211_watchdog(ic);
1989 
1990         if (ntimer)
1991                 ieee80211_start_watchdog(ic, ntimer);
1992 }
1993 
1994 static int
1995 rum_m_start(void *arg)
1996 {
1997         struct rum_softc *sc = (struct rum_softc *)arg;
1998         int err;
1999 
2000         /*
2001          * initialize RT2501USB hardware
2002          */
2003         err = rum_init(sc);
2004         if (err != DDI_SUCCESS) {
2005                 ral_debug(RAL_DBG_ERR, "device configuration failed\n");
2006                 goto fail;
2007         }
2008         sc->sc_flags |= RAL_FLAG_RUNNING;    /* RUNNING */
2009         return (err);
2010 
2011 fail:
2012         rum_stop(sc);
2013         return (err);
2014 }
2015 
2016 static void
2017 rum_m_stop(void *arg)
2018 {
2019         struct rum_softc *sc = (struct rum_softc *)arg;
2020 
2021         (void) rum_stop(sc);
2022         sc->sc_flags &= ~RAL_FLAG_RUNNING;       /* STOP */
2023 }
2024 
2025 static int
2026 rum_m_unicst(void *arg, const uint8_t *macaddr)
2027 {
2028         struct rum_softc *sc = (struct rum_softc *)arg;
2029         struct ieee80211com *ic = &sc->sc_ic;
2030 
2031         ral_debug(RAL_DBG_MSG, "rum_m_unicst(): " MACSTR "\n",
2032             MAC2STR(macaddr));
2033 
2034         IEEE80211_ADDR_COPY(ic->ic_macaddr, macaddr);
2035         (void) rum_set_macaddr(sc, (uint8_t *)macaddr);
2036         (void) rum_init(sc);
2037 
2038         return (0);
2039 }
2040 
2041 /*ARGSUSED*/
2042 static int
2043 rum_m_multicst(void *arg, boolean_t add, const uint8_t *mca)
2044 {
2045         return (0);
2046 }
2047 
2048 static int
2049 rum_m_promisc(void *arg, boolean_t on)
2050 {
2051         struct rum_softc *sc = (struct rum_softc *)arg;
2052 
2053         if (on) {
2054                 sc->sc_rcr |= RAL_RCR_PROMISC;
2055                 sc->sc_rcr |= RAL_RCR_MULTI;
2056         } else {
2057                 sc->sc_rcr &= ~RAL_RCR_PROMISC;
2058                 sc->sc_rcr &= ~RAL_RCR_MULTI;
2059         }
2060 
2061         rum_update_promisc(sc);
2062         return (0);
2063 }
2064 
2065 /*
2066  * callback functions for /get/set properties
2067  */
2068 static int
2069 rum_m_setprop(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_num,
2070     uint_t wldp_length, const void *wldp_buf)
2071 {
2072         struct rum_softc *sc = (struct rum_softc *)arg;
2073         struct ieee80211com *ic = &sc->sc_ic;
2074         int err;
2075 
2076         err = ieee80211_setprop(ic, pr_name, wldp_pr_num,
2077             wldp_length, wldp_buf);
2078         RAL_LOCK(sc);
2079         if (err == ENETRESET) {
2080                 if (RAL_IS_RUNNING(sc)) {
2081                         RAL_UNLOCK(sc);
2082                         (void) rum_init(sc);
2083                         (void) ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2084                         RAL_LOCK(sc);
2085                 }
2086                 err = 0;
2087         }
2088         RAL_UNLOCK(sc);
2089 
2090         return (err);
2091 }
2092 
2093 static int
2094 rum_m_getprop(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_num,
2095     uint_t wldp_length, void *wldp_buf)
2096 {
2097         struct rum_softc *sc = (struct rum_softc *)arg;
2098         int err;
2099 
2100         err = ieee80211_getprop(&sc->sc_ic, pr_name, wldp_pr_num,
2101             wldp_length, wldp_buf);
2102 
2103         return (err);
2104 }
2105 
2106 static void
2107 rum_m_propinfo(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_num,
2108     mac_prop_info_handle_t prh)
2109 {
2110         struct rum_softc *sc = (struct rum_softc *)arg;
2111 
2112         ieee80211_propinfo(&sc->sc_ic, pr_name, wldp_pr_num, prh);
2113 }
2114 
2115 static void
2116 rum_m_ioctl(void* arg, queue_t *wq, mblk_t *mp)
2117 {
2118         struct rum_softc *sc = (struct rum_softc *)arg;
2119         struct ieee80211com *ic = &sc->sc_ic;
2120         int err;
2121 
2122         err = ieee80211_ioctl(ic, wq, mp);
2123         RAL_LOCK(sc);
2124         if (err == ENETRESET) {
2125                 if (RAL_IS_RUNNING(sc)) {
2126                         RAL_UNLOCK(sc);
2127                         (void) rum_init(sc);
2128                         (void) ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2129                         RAL_LOCK(sc);
2130                 }
2131         }
2132         RAL_UNLOCK(sc);
2133 }
2134 
2135 static int
2136 rum_m_stat(void *arg, uint_t stat, uint64_t *val)
2137 {
2138         struct rum_softc *sc  = (struct rum_softc *)arg;
2139         ieee80211com_t  *ic = &sc->sc_ic;
2140         ieee80211_node_t *ni;
2141         struct ieee80211_rateset *rs;
2142 
2143         RAL_LOCK(sc);
2144 
2145         ni = ic->ic_bss;
2146         rs = &ni->in_rates;
2147 
2148         switch (stat) {
2149         case MAC_STAT_IFSPEED:
2150                 *val = ((ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) ?
2151                     (rs->ir_rates[ni->in_txrate] & IEEE80211_RATE_VAL)
2152                     : ic->ic_fixed_rate) * 500000ull;
2153                 break;
2154         case MAC_STAT_NOXMTBUF:
2155                 *val = sc->sc_tx_nobuf;
2156                 break;
2157         case MAC_STAT_NORCVBUF:
2158                 *val = sc->sc_rx_nobuf;
2159                 break;
2160         case MAC_STAT_IERRORS:
2161                 *val = sc->sc_rx_err;
2162                 break;
2163         case MAC_STAT_RBYTES:
2164                 *val = ic->ic_stats.is_rx_bytes;
2165                 break;
2166         case MAC_STAT_IPACKETS:
2167                 *val = ic->ic_stats.is_rx_frags;
2168                 break;
2169         case MAC_STAT_OBYTES:
2170                 *val = ic->ic_stats.is_tx_bytes;
2171                 break;
2172         case MAC_STAT_OPACKETS:
2173                 *val = ic->ic_stats.is_tx_frags;
2174                 break;
2175         case MAC_STAT_OERRORS:
2176         case WIFI_STAT_TX_FAILED:
2177                 *val = sc->sc_tx_err;
2178                 break;
2179         case WIFI_STAT_TX_RETRANS:
2180                 *val = sc->sc_tx_retries;
2181                 break;
2182         case WIFI_STAT_FCS_ERRORS:
2183         case WIFI_STAT_WEP_ERRORS:
2184         case WIFI_STAT_TX_FRAGS:
2185         case WIFI_STAT_MCAST_TX:
2186         case WIFI_STAT_RTS_SUCCESS:
2187         case WIFI_STAT_RTS_FAILURE:
2188         case WIFI_STAT_ACK_FAILURE:
2189         case WIFI_STAT_RX_FRAGS:
2190         case WIFI_STAT_MCAST_RX:
2191         case WIFI_STAT_RX_DUPS:
2192                 RAL_UNLOCK(sc);
2193                 return (ieee80211_stat(ic, stat, val));
2194         default:
2195                 RAL_UNLOCK(sc);
2196                 return (ENOTSUP);
2197         }
2198         RAL_UNLOCK(sc);
2199 
2200         return (0);
2201 }
2202 
2203 static int
2204 rum_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
2205 {
2206         struct rum_softc *sc;
2207         struct ieee80211com *ic;
2208         int err, i, ntries;
2209         uint32_t tmp;
2210         int instance;
2211 
2212         char strbuf[32];
2213 
2214         wifi_data_t wd = { 0 };
2215         mac_register_t *macp;
2216 
2217         switch (cmd) {
2218         case DDI_ATTACH:
2219                 break;
2220         case DDI_RESUME:
2221                 sc = ddi_get_soft_state(rum_soft_state_p,
2222                     ddi_get_instance(devinfo));
2223                 ASSERT(sc != NULL);
2224                 rum_resume(sc);
2225                 return (DDI_SUCCESS);
2226         default:
2227                 return (DDI_FAILURE);
2228         }
2229 
2230         instance = ddi_get_instance(devinfo);
2231 
2232         if (ddi_soft_state_zalloc(rum_soft_state_p, instance) != DDI_SUCCESS) {
2233                 ral_debug(RAL_DBG_MSG, "rum_attach(): "
2234                     "unable to alloc soft_state_p\n");
2235                 return (DDI_FAILURE);
2236         }
2237 
2238         sc = ddi_get_soft_state(rum_soft_state_p, instance);
2239         ic = (ieee80211com_t *)&sc->sc_ic;
2240         sc->sc_dev = devinfo;
2241 
2242         if (usb_client_attach(devinfo, USBDRV_VERSION, 0) != USB_SUCCESS) {
2243                 ral_debug(RAL_DBG_ERR,
2244                     "rum_attach(): usb_client_attach failed\n");
2245                 goto fail1;
2246         }
2247 
2248         if (usb_get_dev_data(devinfo, &sc->sc_udev,
2249             USB_PARSE_LVL_ALL, 0) != USB_SUCCESS) {
2250                 sc->sc_udev = NULL;
2251                 goto fail2;
2252         }
2253 
2254         mutex_init(&sc->sc_genlock, NULL, MUTEX_DRIVER, NULL);
2255         mutex_init(&sc->tx_lock, NULL, MUTEX_DRIVER, NULL);
2256         mutex_init(&sc->rx_lock, NULL, MUTEX_DRIVER, NULL);
2257 
2258         /* retrieve RT2573 rev. no */
2259         for (ntries = 0; ntries < 1000; ntries++) {
2260                 if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
2261                         break;
2262                 drv_usecwait(1000);
2263         }
2264         if (ntries == 1000) {
2265                 ral_debug(RAL_DBG_ERR,
2266                     "rum_attach(): timeout waiting for chip to settle\n");
2267                 goto fail3;
2268         }
2269 
2270         /* retrieve MAC address and various other things from EEPROM */
2271         rum_read_eeprom(sc);
2272 
2273         ral_debug(RAL_DBG_MSG, "rum: MAC/BBP RT2573 (rev 0x%05x), RF %s\n",
2274             tmp, rum_get_rf(sc->rf_rev));
2275 
2276         err = rum_load_microcode(sc);
2277         if (err != USB_SUCCESS) {
2278                 ral_debug(RAL_DBG_ERR, "could not load 8051 microcode\n");
2279                 goto fail3;
2280         }
2281 
2282         ic->ic_phytype = IEEE80211_T_OFDM;   /* not only, but not used */
2283         ic->ic_opmode = IEEE80211_M_STA;     /* default to BSS mode */
2284         ic->ic_state = IEEE80211_S_INIT;
2285 
2286         ic->ic_maxrssi = 63;
2287         ic->ic_set_shortslot = rum_update_slot;
2288         ic->ic_xmit = rum_send;
2289 
2290         /* set device capabilities */
2291         ic->ic_caps =
2292             IEEE80211_C_TXPMGT |        /* tx power management */
2293             IEEE80211_C_SHPREAMBLE |    /* short preamble supported */
2294             IEEE80211_C_SHSLOT;         /* short slot time supported */
2295 
2296         ic->ic_caps |= IEEE80211_C_WPA; /* Support WPA/WPA2 */
2297 
2298 #define IEEE80211_CHAN_A        \
2299         (IEEE80211_CHAN_5GHZ | IEEE80211_CHAN_OFDM)
2300 
2301         if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
2302                 /* set supported .11a rates */
2303                 ic->ic_sup_rates[IEEE80211_MODE_11A] = rum_rateset_11a;
2304 
2305                 /* set supported .11a channels */
2306                 for (i = 34; i <= 46; i += 4) {
2307                         ic->ic_sup_channels[i].ich_freq =
2308                             ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
2309                         ic->ic_sup_channels[i].ich_flags = IEEE80211_CHAN_A;
2310                 }
2311                 for (i = 36; i <= 64; i += 4) {
2312                         ic->ic_sup_channels[i].ich_freq =
2313                             ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
2314                         ic->ic_sup_channels[i].ich_flags = IEEE80211_CHAN_A;
2315                 }
2316                 for (i = 100; i <= 140; i += 4) {
2317                         ic->ic_sup_channels[i].ich_freq =
2318                             ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
2319                         ic->ic_sup_channels[i].ich_flags = IEEE80211_CHAN_A;
2320                 }
2321                 for (i = 149; i <= 165; i += 4) {
2322                         ic->ic_sup_channels[i].ich_freq =
2323                             ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
2324                         ic->ic_sup_channels[i].ich_flags = IEEE80211_CHAN_A;
2325                 }
2326         }
2327 
2328         /* set supported .11b and .11g rates */
2329         ic->ic_sup_rates[IEEE80211_MODE_11B] = rum_rateset_11b;
2330         ic->ic_sup_rates[IEEE80211_MODE_11G] = rum_rateset_11g;
2331 
2332         /* set supported .11b and .11g channels (1 through 14) */
2333         for (i = 1; i <= 14; i++) {
2334                 ic->ic_sup_channels[i].ich_freq =
2335                     ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
2336                 ic->ic_sup_channels[i].ich_flags =
2337                     IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
2338                     IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
2339         }
2340 
2341         ieee80211_attach(ic);
2342 
2343         /* register WPA door */
2344         ieee80211_register_door(ic, ddi_driver_name(devinfo),
2345             ddi_get_instance(devinfo));
2346 
2347         /* override state transition machine */
2348         sc->sc_newstate = ic->ic_newstate;
2349         ic->ic_newstate = rum_newstate;
2350         ic->ic_watchdog = rum_watchdog;
2351         ieee80211_media_init(ic);
2352         ic->ic_def_txkey = 0;
2353 
2354         sc->sc_rcr = 0;
2355         sc->dwelltime = 300;
2356         sc->sc_flags = 0;
2357 
2358         /*
2359          * Provide initial settings for the WiFi plugin; whenever this
2360          * information changes, we need to call mac_plugindata_update()
2361          */
2362         wd.wd_opmode = ic->ic_opmode;
2363         wd.wd_secalloc = WIFI_SEC_NONE;
2364         IEEE80211_ADDR_COPY(wd.wd_bssid, ic->ic_bss->in_bssid);
2365 
2366         if ((macp = mac_alloc(MAC_VERSION)) == NULL) {
2367                 ral_debug(RAL_DBG_ERR, "rum_attach(): "
2368                     "MAC version mismatch\n");
2369                 goto fail3;
2370         }
2371 
2372         macp->m_type_ident   = MAC_PLUGIN_IDENT_WIFI;
2373         macp->m_driver               = sc;
2374         macp->m_dip          = devinfo;
2375         macp->m_src_addr     = ic->ic_macaddr;
2376         macp->m_callbacks    = &rum_m_callbacks;
2377         macp->m_min_sdu              = 0;
2378         macp->m_max_sdu              = IEEE80211_MTU;
2379         macp->m_pdata                = &wd;
2380         macp->m_pdata_size   = sizeof (wd);
2381 
2382         err = mac_register(macp, &ic->ic_mach);
2383         mac_free(macp);
2384         if (err != 0) {
2385                 ral_debug(RAL_DBG_ERR, "rum_attach(): "
2386                     "mac_register() err %x\n", err);
2387                 goto fail3;
2388         }
2389 
2390         if (usb_register_hotplug_cbs(devinfo, rum_disconnect,
2391             rum_reconnect) != USB_SUCCESS) {
2392                 ral_debug(RAL_DBG_ERR,
2393                     "rum_attach() failed to register events");
2394                 goto fail4;
2395         }
2396 
2397         /*
2398          * Create minor node of type DDI_NT_NET_WIFI
2399          */
2400         (void) snprintf(strbuf, sizeof (strbuf), "%s%d",
2401             "rum", instance);
2402         err = ddi_create_minor_node(devinfo, strbuf, S_IFCHR,
2403             instance + 1, DDI_NT_NET_WIFI, 0);
2404 
2405         if (err != DDI_SUCCESS)
2406                 ral_debug(RAL_DBG_ERR, "ddi_create_minor_node() failed\n");
2407 
2408         /*
2409          * Notify link is down now
2410          */
2411         mac_link_update(ic->ic_mach, LINK_STATE_DOWN);
2412         return (DDI_SUCCESS);
2413 
2414 fail4:
2415         (void) mac_unregister(ic->ic_mach);
2416 fail3:
2417         mutex_destroy(&sc->sc_genlock);
2418         mutex_destroy(&sc->tx_lock);
2419         mutex_destroy(&sc->rx_lock);
2420 fail2:
2421         usb_client_detach(sc->sc_dev, sc->sc_udev);
2422 fail1:
2423         ddi_soft_state_free(rum_soft_state_p, ddi_get_instance(devinfo));
2424 
2425         return (DDI_FAILURE);
2426 }
2427 
2428 static int
2429 rum_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
2430 {
2431         struct rum_softc *sc;
2432 
2433         sc = ddi_get_soft_state(rum_soft_state_p, ddi_get_instance(devinfo));
2434         ASSERT(sc != NULL);
2435 
2436         switch (cmd) {
2437         case DDI_DETACH:
2438                 break;
2439         case DDI_SUSPEND:
2440                 if (RAL_IS_RUNNING(sc))
2441                         (void) rum_stop(sc);
2442                 return (DDI_SUCCESS);
2443         default:
2444                 return (DDI_FAILURE);
2445         }
2446 
2447         rum_stop(sc);
2448         usb_unregister_hotplug_cbs(devinfo);
2449 
2450         /*
2451          * Unregister from the MAC layer subsystem
2452          */
2453         if (mac_unregister(sc->sc_ic.ic_mach) != 0)
2454                 return (DDI_FAILURE);
2455 
2456         /*
2457          * detach ieee80211 layer
2458          */
2459         ieee80211_detach(&sc->sc_ic);
2460 
2461         mutex_destroy(&sc->sc_genlock);
2462         mutex_destroy(&sc->tx_lock);
2463         mutex_destroy(&sc->rx_lock);
2464 
2465         /* pipes will be closed in rum_stop() */
2466         usb_client_detach(devinfo, sc->sc_udev);
2467         sc->sc_udev = NULL;
2468 
2469         ddi_remove_minor_node(devinfo, NULL);
2470         ddi_soft_state_free(rum_soft_state_p, ddi_get_instance(devinfo));
2471 
2472         return (DDI_SUCCESS);
2473 }
2474 
2475 int
2476 _info(struct modinfo *modinfop)
2477 {
2478         return (mod_info(&modlinkage, modinfop));
2479 }
2480 
2481 int
2482 _init(void)
2483 {
2484         int status;
2485 
2486         status = ddi_soft_state_init(&rum_soft_state_p,
2487             sizeof (struct rum_softc), 1);
2488         if (status != 0)
2489                 return (status);
2490 
2491         mac_init_ops(&rum_dev_ops, "rum");
2492         status = mod_install(&modlinkage);
2493         if (status != 0) {
2494                 mac_fini_ops(&rum_dev_ops);
2495                 ddi_soft_state_fini(&rum_soft_state_p);
2496         }
2497         return (status);
2498 }
2499 
2500 int
2501 _fini(void)
2502 {
2503         int status;
2504 
2505         status = mod_remove(&modlinkage);
2506         if (status == 0) {
2507                 mac_fini_ops(&rum_dev_ops);
2508                 ddi_soft_state_fini(&rum_soft_state_p);
2509         }
2510         return (status);
2511 }