1 /* 2 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 3 * Use is subject to license terms. 4 */ 5 6 /* 7 * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr> 8 * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org> 9 * 10 * Permission to use, copy, modify, and distribute this software for any 11 * purpose with or without fee is hereby granted, provided that the above 12 * copyright notice and this permission notice appear in all copies. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 21 */ 22 23 /* 24 * Ralink Technology RT2501USB/RT2601USB chipset driver 25 * http://www.ralinktech.com.tw/ 26 */ 27 #include <sys/types.h> 28 #include <sys/cmn_err.h> 29 #include <sys/strsubr.h> 30 #include <sys/modctl.h> 31 #include <sys/devops.h> 32 #include <sys/mac_provider.h> 33 #include <sys/mac_wifi.h> 34 #include <sys/net80211.h> 35 #include <sys/byteorder.h> 36 37 #define USBDRV_MAJOR_VER 2 38 #define USBDRV_MINOR_VER 0 39 #include <sys/usb/usba.h> 40 #include <sys/usb/usba/usba_types.h> 41 42 #include "rum_reg.h" 43 #include "rum_var.h" 44 #include "rt2573_ucode.h" 45 46 static void *rum_soft_state_p = NULL; 47 48 #define RAL_TXBUF_SIZE (IEEE80211_MAX_LEN) 49 #define RAL_RXBUF_SIZE (IEEE80211_MAX_LEN) 50 51 /* quickly determine if a given rate is CCK or OFDM */ 52 #define RUM_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) 53 #define RUM_ACK_SIZE 14 /* 10 + 4(FCS) */ 54 #define RUM_CTS_SIZE 14 /* 10 + 4(FCS) */ 55 56 #define RUM_N(a) (sizeof (a) / sizeof ((a)[0])) 57 58 /* 59 * Supported rates for 802.11a/b/g modes (in 500Kbps unit). 60 */ 61 static const struct ieee80211_rateset rum_rateset_11a = 62 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } }; 63 64 static const struct ieee80211_rateset rum_rateset_11b = 65 { 4, { 2, 4, 11, 22 } }; 66 67 static const struct ieee80211_rateset rum_rateset_11g = 68 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } }; 69 70 static const struct { 71 uint32_t reg; 72 uint32_t val; 73 } rum_def_mac[] = { 74 { RT2573_TXRX_CSR0, 0x025fb032 }, 75 { RT2573_TXRX_CSR1, 0x9eaa9eaf }, 76 { RT2573_TXRX_CSR2, 0x8a8b8c8d }, 77 { RT2573_TXRX_CSR3, 0x00858687 }, 78 { RT2573_TXRX_CSR7, 0x2e31353b }, 79 { RT2573_TXRX_CSR8, 0x2a2a2a2c }, 80 { RT2573_TXRX_CSR15, 0x0000000f }, 81 { RT2573_MAC_CSR6, 0x00000fff }, 82 { RT2573_MAC_CSR8, 0x016c030a }, 83 { RT2573_MAC_CSR10, 0x00000718 }, 84 { RT2573_MAC_CSR12, 0x00000004 }, 85 { RT2573_MAC_CSR13, 0x00007f00 }, 86 { RT2573_SEC_CSR0, 0x00000000 }, 87 { RT2573_SEC_CSR1, 0x00000000 }, 88 { RT2573_SEC_CSR5, 0x00000000 }, 89 { RT2573_PHY_CSR1, 0x000023b0 }, 90 { RT2573_PHY_CSR5, 0x00040a06 }, 91 { RT2573_PHY_CSR6, 0x00080606 }, 92 { RT2573_PHY_CSR7, 0x00000408 }, 93 { RT2573_AIFSN_CSR, 0x00002273 }, 94 { RT2573_CWMIN_CSR, 0x00002344 }, 95 { RT2573_CWMAX_CSR, 0x000034aa } 96 }; 97 98 static const struct { 99 uint8_t reg; 100 uint8_t val; 101 } rum_def_bbp[] = { 102 { 3, 0x80 }, 103 { 15, 0x30 }, 104 { 17, 0x20 }, 105 { 21, 0xc8 }, 106 { 22, 0x38 }, 107 { 23, 0x06 }, 108 { 24, 0xfe }, 109 { 25, 0x0a }, 110 { 26, 0x0d }, 111 { 32, 0x0b }, 112 { 34, 0x12 }, 113 { 37, 0x07 }, 114 { 39, 0xf8 }, 115 { 41, 0x60 }, 116 { 53, 0x10 }, 117 { 54, 0x18 }, 118 { 60, 0x10 }, 119 { 61, 0x04 }, 120 { 62, 0x04 }, 121 { 75, 0xfe }, 122 { 86, 0xfe }, 123 { 88, 0xfe }, 124 { 90, 0x0f }, 125 { 99, 0x00 }, 126 { 102, 0x16 }, 127 { 107, 0x04 } 128 }; 129 130 static const struct rfprog { 131 uint8_t chan; 132 uint32_t r1, r2, r3, r4; 133 } rum_rf5226[] = { 134 { 1, 0x00b03, 0x001e1, 0x1a014, 0x30282 }, 135 { 2, 0x00b03, 0x001e1, 0x1a014, 0x30287 }, 136 { 3, 0x00b03, 0x001e2, 0x1a014, 0x30282 }, 137 { 4, 0x00b03, 0x001e2, 0x1a014, 0x30287 }, 138 { 5, 0x00b03, 0x001e3, 0x1a014, 0x30282 }, 139 { 6, 0x00b03, 0x001e3, 0x1a014, 0x30287 }, 140 { 7, 0x00b03, 0x001e4, 0x1a014, 0x30282 }, 141 { 8, 0x00b03, 0x001e4, 0x1a014, 0x30287 }, 142 { 9, 0x00b03, 0x001e5, 0x1a014, 0x30282 }, 143 { 10, 0x00b03, 0x001e5, 0x1a014, 0x30287 }, 144 { 11, 0x00b03, 0x001e6, 0x1a014, 0x30282 }, 145 { 12, 0x00b03, 0x001e6, 0x1a014, 0x30287 }, 146 { 13, 0x00b03, 0x001e7, 0x1a014, 0x30282 }, 147 { 14, 0x00b03, 0x001e8, 0x1a014, 0x30284 }, 148 149 { 34, 0x00b03, 0x20266, 0x36014, 0x30282 }, 150 { 38, 0x00b03, 0x20267, 0x36014, 0x30284 }, 151 { 42, 0x00b03, 0x20268, 0x36014, 0x30286 }, 152 { 46, 0x00b03, 0x20269, 0x36014, 0x30288 }, 153 154 { 36, 0x00b03, 0x00266, 0x26014, 0x30288 }, 155 { 40, 0x00b03, 0x00268, 0x26014, 0x30280 }, 156 { 44, 0x00b03, 0x00269, 0x26014, 0x30282 }, 157 { 48, 0x00b03, 0x0026a, 0x26014, 0x30284 }, 158 { 52, 0x00b03, 0x0026b, 0x26014, 0x30286 }, 159 { 56, 0x00b03, 0x0026c, 0x26014, 0x30288 }, 160 { 60, 0x00b03, 0x0026e, 0x26014, 0x30280 }, 161 { 64, 0x00b03, 0x0026f, 0x26014, 0x30282 }, 162 163 { 100, 0x00b03, 0x0028a, 0x2e014, 0x30280 }, 164 { 104, 0x00b03, 0x0028b, 0x2e014, 0x30282 }, 165 { 108, 0x00b03, 0x0028c, 0x2e014, 0x30284 }, 166 { 112, 0x00b03, 0x0028d, 0x2e014, 0x30286 }, 167 { 116, 0x00b03, 0x0028e, 0x2e014, 0x30288 }, 168 { 120, 0x00b03, 0x002a0, 0x2e014, 0x30280 }, 169 { 124, 0x00b03, 0x002a1, 0x2e014, 0x30282 }, 170 { 128, 0x00b03, 0x002a2, 0x2e014, 0x30284 }, 171 { 132, 0x00b03, 0x002a3, 0x2e014, 0x30286 }, 172 { 136, 0x00b03, 0x002a4, 0x2e014, 0x30288 }, 173 { 140, 0x00b03, 0x002a6, 0x2e014, 0x30280 }, 174 175 { 149, 0x00b03, 0x002a8, 0x2e014, 0x30287 }, 176 { 153, 0x00b03, 0x002a9, 0x2e014, 0x30289 }, 177 { 157, 0x00b03, 0x002ab, 0x2e014, 0x30281 }, 178 { 161, 0x00b03, 0x002ac, 0x2e014, 0x30283 }, 179 { 165, 0x00b03, 0x002ad, 0x2e014, 0x30285 } 180 }, rum_rf5225[] = { 181 { 1, 0x00b33, 0x011e1, 0x1a014, 0x30282 }, 182 { 2, 0x00b33, 0x011e1, 0x1a014, 0x30287 }, 183 { 3, 0x00b33, 0x011e2, 0x1a014, 0x30282 }, 184 { 4, 0x00b33, 0x011e2, 0x1a014, 0x30287 }, 185 { 5, 0x00b33, 0x011e3, 0x1a014, 0x30282 }, 186 { 6, 0x00b33, 0x011e3, 0x1a014, 0x30287 }, 187 { 7, 0x00b33, 0x011e4, 0x1a014, 0x30282 }, 188 { 8, 0x00b33, 0x011e4, 0x1a014, 0x30287 }, 189 { 9, 0x00b33, 0x011e5, 0x1a014, 0x30282 }, 190 { 10, 0x00b33, 0x011e5, 0x1a014, 0x30287 }, 191 { 11, 0x00b33, 0x011e6, 0x1a014, 0x30282 }, 192 { 12, 0x00b33, 0x011e6, 0x1a014, 0x30287 }, 193 { 13, 0x00b33, 0x011e7, 0x1a014, 0x30282 }, 194 { 14, 0x00b33, 0x011e8, 0x1a014, 0x30284 }, 195 196 { 34, 0x00b33, 0x01266, 0x26014, 0x30282 }, 197 { 38, 0x00b33, 0x01267, 0x26014, 0x30284 }, 198 { 42, 0x00b33, 0x01268, 0x26014, 0x30286 }, 199 { 46, 0x00b33, 0x01269, 0x26014, 0x30288 }, 200 201 { 36, 0x00b33, 0x01266, 0x26014, 0x30288 }, 202 { 40, 0x00b33, 0x01268, 0x26014, 0x30280 }, 203 { 44, 0x00b33, 0x01269, 0x26014, 0x30282 }, 204 { 48, 0x00b33, 0x0126a, 0x26014, 0x30284 }, 205 { 52, 0x00b33, 0x0126b, 0x26014, 0x30286 }, 206 { 56, 0x00b33, 0x0126c, 0x26014, 0x30288 }, 207 { 60, 0x00b33, 0x0126e, 0x26014, 0x30280 }, 208 { 64, 0x00b33, 0x0126f, 0x26014, 0x30282 }, 209 210 { 100, 0x00b33, 0x0128a, 0x2e014, 0x30280 }, 211 { 104, 0x00b33, 0x0128b, 0x2e014, 0x30282 }, 212 { 108, 0x00b33, 0x0128c, 0x2e014, 0x30284 }, 213 { 112, 0x00b33, 0x0128d, 0x2e014, 0x30286 }, 214 { 116, 0x00b33, 0x0128e, 0x2e014, 0x30288 }, 215 { 120, 0x00b33, 0x012a0, 0x2e014, 0x30280 }, 216 { 124, 0x00b33, 0x012a1, 0x2e014, 0x30282 }, 217 { 128, 0x00b33, 0x012a2, 0x2e014, 0x30284 }, 218 { 132, 0x00b33, 0x012a3, 0x2e014, 0x30286 }, 219 { 136, 0x00b33, 0x012a4, 0x2e014, 0x30288 }, 220 { 140, 0x00b33, 0x012a6, 0x2e014, 0x30280 }, 221 222 { 149, 0x00b33, 0x012a8, 0x2e014, 0x30287 }, 223 { 153, 0x00b33, 0x012a9, 0x2e014, 0x30289 }, 224 { 157, 0x00b33, 0x012ab, 0x2e014, 0x30281 }, 225 { 161, 0x00b33, 0x012ac, 0x2e014, 0x30283 }, 226 { 165, 0x00b33, 0x012ad, 0x2e014, 0x30285 } 227 }; 228 229 /* 230 * device operations 231 */ 232 static int rum_attach(dev_info_t *, ddi_attach_cmd_t); 233 static int rum_detach(dev_info_t *, ddi_detach_cmd_t); 234 235 /* 236 * Module Loading Data & Entry Points 237 */ 238 DDI_DEFINE_STREAM_OPS(rum_dev_ops, nulldev, nulldev, rum_attach, 239 rum_detach, nodev, NULL, D_MP, NULL, ddi_quiesce_not_needed); 240 241 static struct modldrv rum_modldrv = { 242 &mod_driverops, /* Type of module. This one is a driver */ 243 "rum driver v1.2", /* short description */ 244 &rum_dev_ops /* driver specific ops */ 245 }; 246 247 static struct modlinkage modlinkage = { 248 MODREV_1, 249 { (void *)&rum_modldrv, NULL } 250 }; 251 252 static int rum_m_stat(void *, uint_t, uint64_t *); 253 static int rum_m_start(void *); 254 static void rum_m_stop(void *); 255 static int rum_m_promisc(void *, boolean_t); 256 static int rum_m_multicst(void *, boolean_t, const uint8_t *); 257 static int rum_m_unicst(void *, const uint8_t *); 258 static mblk_t *rum_m_tx(void *, mblk_t *); 259 static void rum_m_ioctl(void *, queue_t *, mblk_t *); 260 static int rum_m_setprop(void *, const char *, mac_prop_id_t, 261 uint_t, const void *); 262 static int rum_m_getprop(void *, const char *, mac_prop_id_t, 263 uint_t, void *); 264 static void rum_m_propinfo(void *, const char *, mac_prop_id_t, 265 mac_prop_info_handle_t); 266 267 static mac_callbacks_t rum_m_callbacks = { 268 MC_IOCTL | MC_SETPROP | MC_GETPROP | MC_PROPINFO, 269 rum_m_stat, 270 rum_m_start, 271 rum_m_stop, 272 rum_m_promisc, 273 rum_m_multicst, 274 rum_m_unicst, 275 rum_m_tx, 276 NULL, 277 rum_m_ioctl, 278 NULL, /* mc_getcapab */ 279 NULL, 280 NULL, 281 rum_m_setprop, 282 rum_m_getprop, 283 rum_m_propinfo 284 }; 285 286 static void rum_amrr_start(struct rum_softc *, struct ieee80211_node *); 287 static int rum_tx_trigger(struct rum_softc *, mblk_t *); 288 static int rum_rx_trigger(struct rum_softc *); 289 290 uint32_t rum_dbg_flags = 0; 291 292 void 293 ral_debug(uint32_t dbg_flags, const int8_t *fmt, ...) 294 { 295 va_list args; 296 297 if (dbg_flags & rum_dbg_flags) { 298 va_start(args, fmt); 299 vcmn_err(CE_CONT, fmt, args); 300 va_end(args); 301 } 302 } 303 304 static void 305 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len) 306 { 307 usb_ctrl_setup_t req; 308 usb_cr_t cr; 309 usb_cb_flags_t cf; 310 mblk_t *mp; 311 int err; 312 313 bzero(&req, sizeof (req)); 314 req.bmRequestType = USB_DEV_REQ_TYPE_VENDOR | USB_DEV_REQ_DEV_TO_HOST; 315 req.bRequest = RT2573_READ_MULTI_MAC; 316 req.wValue = 0; 317 req.wIndex = reg; 318 req.wLength = (uint16_t)len; 319 req.attrs = USB_ATTRS_AUTOCLEARING; 320 321 mp = NULL; 322 err = usb_pipe_ctrl_xfer_wait(sc->sc_udev->dev_default_ph, &req, &mp, 323 &cr, &cf, 0); 324 325 if (err != USB_SUCCESS) { 326 ral_debug(RAL_DBG_ERR, 327 "rum_read_multi(): could not read MAC register:" 328 "cr:%s(%d), cf:(%x)\n", 329 usb_str_cr(cr), cr, cf); 330 return; 331 } 332 333 bcopy(mp->b_rptr, buf, len); 334 freemsg(mp); 335 } 336 337 static uint32_t 338 rum_read(struct rum_softc *sc, uint16_t reg) 339 { 340 uint32_t val; 341 342 rum_read_multi(sc, reg, &val, sizeof (val)); 343 344 return (LE_32(val)); 345 } 346 347 static void 348 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len) 349 { 350 usb_ctrl_setup_t req; 351 usb_cr_t cr; 352 usb_cb_flags_t cf; 353 mblk_t *mp; 354 int err; 355 356 bzero(&req, sizeof (req)); 357 req.bmRequestType = USB_DEV_REQ_TYPE_VENDOR | USB_DEV_REQ_HOST_TO_DEV; 358 req.bRequest = RT2573_WRITE_MULTI_MAC; 359 req.wValue = 0; 360 req.wIndex = reg; 361 req.wLength = (uint16_t)len; 362 req.attrs = USB_ATTRS_NONE; 363 364 if ((mp = allocb(len, BPRI_HI)) == NULL) { 365 ral_debug(RAL_DBG_ERR, "rum_write_multi(): failed alloc mblk."); 366 return; 367 } 368 369 bcopy(buf, mp->b_wptr, len); 370 mp->b_wptr += len; 371 372 err = usb_pipe_ctrl_xfer_wait(sc->sc_udev->dev_default_ph, &req, &mp, 373 &cr, &cf, 0); 374 375 if (err != USB_SUCCESS) { 376 ral_debug(RAL_DBG_USB, 377 "rum_write_multi(): could not write MAC register:" 378 "cr:%s(%d), cf:(%x)\n", 379 usb_str_cr(cr), cr, cf); 380 } 381 382 freemsg(mp); 383 } 384 385 static void 386 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val) 387 { 388 uint32_t tmp = LE_32(val); 389 390 rum_write_multi(sc, reg, &tmp, sizeof (tmp)); 391 } 392 393 #define UGETDW(w) ((w)[0] | ((w)[1] << 8) | ((w)[2] << 16) | ((w)[3] << 24)) 394 395 static int 396 rum_load_microcode(struct rum_softc *sc) 397 { 398 usb_ctrl_setup_t req; 399 usb_cr_t cr; 400 usb_cb_flags_t cf; 401 int err; 402 403 const uint8_t *ucode; 404 int size; 405 uint16_t reg = RT2573_MCU_CODE_BASE; 406 407 ucode = rt2573_ucode; 408 size = sizeof (rt2573_ucode); 409 410 /* copy firmware image into NIC */ 411 for (; size >= 4; reg += 4, ucode += 4, size -= 4) { 412 rum_write(sc, reg, UGETDW(ucode)); 413 /* rum_write(sc, reg, *(uint32_t *)(ucode)); */ 414 } 415 416 bzero(&req, sizeof (req)); 417 req.bmRequestType = USB_DEV_REQ_TYPE_VENDOR | USB_DEV_REQ_HOST_TO_DEV; 418 req.bRequest = RT2573_MCU_CNTL; 419 req.wValue = RT2573_MCU_RUN; 420 req.wIndex = 0; 421 req.wLength = 0; 422 req.attrs = USB_ATTRS_NONE; 423 424 err = usb_pipe_ctrl_xfer_wait(sc->sc_udev->dev_default_ph, &req, NULL, 425 &cr, &cf, 0); 426 427 if (err != USB_SUCCESS) { 428 ral_debug(RAL_DBG_ERR, 429 "rum_load_microcode(): could not run firmware: " 430 "cr:%s(%d), cf:(%x)\n", 431 usb_str_cr(cr), cr, cf); 432 } 433 434 ral_debug(RAL_DBG_MSG, 435 "rum_load_microcode(%d): done\n", sizeof (rt2573_ucode)); 436 437 return (err); 438 } 439 440 static void 441 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len) 442 { 443 usb_ctrl_setup_t req; 444 usb_cr_t cr; 445 usb_cb_flags_t cf; 446 mblk_t *mp; 447 int err; 448 449 bzero(&req, sizeof (req)); 450 req.bmRequestType = USB_DEV_REQ_TYPE_VENDOR | USB_DEV_REQ_DEV_TO_HOST; 451 req.bRequest = RT2573_READ_EEPROM; 452 req.wValue = 0; 453 req.wIndex = addr; 454 req.wLength = (uint16_t)len; 455 456 mp = NULL; 457 err = usb_pipe_ctrl_xfer_wait(sc->sc_udev->dev_default_ph, &req, &mp, 458 &cr, &cf, 0); 459 460 if (err != USB_SUCCESS) { 461 ral_debug(RAL_DBG_USB, 462 "rum_eeprom_read(): could not read EEPROM:" 463 "cr:%s(%d), cf:(%x)\n", 464 usb_str_cr(cr), cr, cf); 465 return; 466 } 467 468 bcopy(mp->b_rptr, buf, len); 469 freemsg(mp); 470 } 471 472 /* ARGSUSED */ 473 static void 474 rum_txeof(usb_pipe_handle_t pipe, usb_bulk_req_t *req) 475 { 476 struct rum_softc *sc = (struct rum_softc *)req->bulk_client_private; 477 struct ieee80211com *ic = &sc->sc_ic; 478 479 ral_debug(RAL_DBG_TX, 480 "rum_txeof(): cr:%s(%d), flags:0x%x, tx_queued:%d", 481 usb_str_cr(req->bulk_completion_reason), 482 req->bulk_completion_reason, 483 req->bulk_cb_flags, 484 sc->tx_queued); 485 486 if (req->bulk_completion_reason != USB_CR_OK) 487 sc->sc_tx_err++; 488 489 mutex_enter(&sc->tx_lock); 490 491 sc->tx_queued--; 492 sc->sc_tx_timer = 0; 493 494 if (sc->sc_need_sched) { 495 sc->sc_need_sched = 0; 496 mac_tx_update(ic->ic_mach); 497 } 498 499 mutex_exit(&sc->tx_lock); 500 usb_free_bulk_req(req); 501 } 502 503 /* ARGSUSED */ 504 static void 505 rum_rxeof(usb_pipe_handle_t pipe, usb_bulk_req_t *req) 506 { 507 struct rum_softc *sc = (struct rum_softc *)req->bulk_client_private; 508 struct ieee80211com *ic = &sc->sc_ic; 509 510 struct rum_rx_desc *desc; 511 struct ieee80211_frame *wh; 512 struct ieee80211_node *ni; 513 514 mblk_t *m, *mp; 515 int len, pktlen; 516 char *rxbuf; 517 518 mp = req->bulk_data; 519 req->bulk_data = NULL; 520 521 ral_debug(RAL_DBG_RX, 522 "rum_rxeof(): cr:%s(%d), flags:0x%x, rx_queued:%d", 523 usb_str_cr(req->bulk_completion_reason), 524 req->bulk_completion_reason, 525 req->bulk_cb_flags, 526 sc->rx_queued); 527 528 if (req->bulk_completion_reason != USB_CR_OK) { 529 sc->sc_rx_err++; 530 goto fail; 531 } 532 533 len = msgdsize(mp); 534 rxbuf = (char *)mp->b_rptr; 535 536 537 if (len < RT2573_RX_DESC_SIZE + sizeof (struct ieee80211_frame_min)) { 538 ral_debug(RAL_DBG_ERR, 539 "rum_rxeof(): xfer too short %d\n", len); 540 sc->sc_rx_err++; 541 goto fail; 542 } 543 544 /* rx descriptor is located at the head, different from RT2500USB */ 545 desc = (struct rum_rx_desc *)rxbuf; 546 547 if (LE_32(desc->flags) & RT2573_RX_CRC_ERROR) { 548 /* 549 * This should not happen since we did not request to receive 550 * those frames when we filled RT2573_TXRX_CSR0. 551 */ 552 ral_debug(RAL_DBG_ERR, "CRC error\n"); 553 sc->sc_rx_err++; 554 goto fail; 555 } 556 557 pktlen = (LE_32(desc->flags) >> 16) & 0xfff; 558 559 if (pktlen > (len - RT2573_RX_DESC_SIZE)) { 560 ral_debug(RAL_DBG_ERR, 561 "rum_rxeof(): pktlen mismatch <%d, %d>.\n", pktlen, len); 562 goto fail; 563 } 564 565 if ((m = allocb(pktlen, BPRI_MED)) == NULL) { 566 ral_debug(RAL_DBG_ERR, 567 "rum_rxeof(): allocate mblk failed.\n"); 568 sc->sc_rx_nobuf++; 569 goto fail; 570 } 571 572 bcopy(rxbuf + RT2573_RX_DESC_SIZE, m->b_rptr, pktlen); 573 m->b_wptr += pktlen; 574 575 wh = (struct ieee80211_frame *)m->b_rptr; 576 ni = ieee80211_find_rxnode(ic, wh); 577 578 /* send the frame to the 802.11 layer */ 579 (void) ieee80211_input(ic, m, ni, desc->rssi, 0); 580 581 /* node is no longer needed */ 582 ieee80211_free_node(ni); 583 584 fail: 585 mutex_enter(&sc->rx_lock); 586 sc->rx_queued--; 587 mutex_exit(&sc->rx_lock); 588 589 freemsg(mp); 590 usb_free_bulk_req(req); 591 592 if (RAL_IS_RUNNING(sc)) 593 (void) rum_rx_trigger(sc); 594 } 595 596 /* 597 * Return the expected ack rate for a frame transmitted at rate `rate'. 598 */ 599 static int 600 rum_ack_rate(struct ieee80211com *ic, int rate) 601 { 602 switch (rate) { 603 /* CCK rates */ 604 case 2: 605 return (2); 606 case 4: 607 case 11: 608 case 22: 609 return ((ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate); 610 611 /* OFDM rates */ 612 case 12: 613 case 18: 614 return (12); 615 case 24: 616 case 36: 617 return (24); 618 case 48: 619 case 72: 620 case 96: 621 case 108: 622 return (48); 623 } 624 625 /* default to 1Mbps */ 626 return (2); 627 } 628 629 /* 630 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'. 631 * The function automatically determines the operating mode depending on the 632 * given rate. `flags' indicates whether short preamble is in use or not. 633 */ 634 static uint16_t 635 rum_txtime(int len, int rate, uint32_t flags) 636 { 637 uint16_t txtime; 638 639 if (RUM_RATE_IS_OFDM(rate)) { 640 /* IEEE Std 802.11a-1999, pp. 37 */ 641 txtime = (8 + 4 * len + 3 + rate - 1) / rate; 642 txtime = 16 + 4 + 4 * txtime + 6; 643 } else { 644 /* IEEE Std 802.11b-1999, pp. 28 */ 645 txtime = (16 * len + rate - 1) / rate; 646 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE)) 647 txtime += 72 + 24; 648 else 649 txtime += 144 + 48; 650 } 651 return (txtime); 652 } 653 654 static uint8_t 655 rum_plcp_signal(int rate) 656 { 657 switch (rate) { 658 /* CCK rates (returned values are device-dependent) */ 659 case 2: return (0x0); 660 case 4: return (0x1); 661 case 11: return (0x2); 662 case 22: return (0x3); 663 664 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 665 case 12: return (0xb); 666 case 18: return (0xf); 667 case 24: return (0xa); 668 case 36: return (0xe); 669 case 48: return (0x9); 670 case 72: return (0xd); 671 case 96: return (0x8); 672 case 108: return (0xc); 673 674 /* unsupported rates (should not get there) */ 675 default: return (0xff); 676 } 677 } 678 679 static void 680 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc, 681 uint32_t flags, uint16_t xflags, int len, int rate) 682 { 683 struct ieee80211com *ic = &sc->sc_ic; 684 uint16_t plcp_length; 685 int remainder; 686 687 desc->flags = LE_32(flags); 688 desc->flags |= LE_32(RT2573_TX_VALID); 689 desc->flags |= LE_32(len << 16); 690 691 desc->xflags = LE_16(xflags); 692 693 desc->wme = LE_16(RT2573_QID(0) | RT2573_AIFSN(2) | 694 RT2573_LOGCWMIN(4) | RT2573_LOGCWMAX(10)); 695 696 /* setup PLCP fields */ 697 desc->plcp_signal = rum_plcp_signal(rate); 698 desc->plcp_service = 4; 699 700 len += IEEE80211_CRC_LEN; 701 if (RUM_RATE_IS_OFDM(rate)) { 702 desc->flags |= LE_32(RT2573_TX_OFDM); 703 704 plcp_length = len & 0xfff; 705 desc->plcp_length_hi = plcp_length >> 6; 706 desc->plcp_length_lo = plcp_length & 0x3f; 707 } else { 708 plcp_length = (16 * len + rate - 1) / rate; 709 if (rate == 22) { 710 remainder = (16 * len) % 22; 711 if (remainder != 0 && remainder < 7) 712 desc->plcp_service |= RT2573_PLCP_LENGEXT; 713 } 714 desc->plcp_length_hi = plcp_length >> 8; 715 desc->plcp_length_lo = plcp_length & 0xff; 716 717 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 718 desc->plcp_signal |= 0x08; 719 } 720 } 721 722 #define RUM_TX_TIMEOUT 5 723 724 static int 725 rum_send(ieee80211com_t *ic, mblk_t *mp, uint8_t type) 726 { 727 struct rum_softc *sc = (struct rum_softc *)ic; 728 struct rum_tx_desc *desc; 729 730 struct ieee80211_frame *wh; 731 struct ieee80211_key *k; 732 733 uint16_t dur; 734 uint32_t flags = 0; 735 int rate, err = DDI_SUCCESS, rv; 736 737 struct ieee80211_node *ni = NULL; 738 mblk_t *m, *m0; 739 int off, mblen, pktlen, xferlen; 740 741 /* discard packets while suspending or not inited */ 742 if (!RAL_IS_RUNNING(sc)) { 743 freemsg(mp); 744 return (ENXIO); 745 } 746 747 mutex_enter(&sc->tx_lock); 748 749 if (sc->tx_queued > RAL_TX_LIST_COUNT) { 750 ral_debug(RAL_DBG_TX, "rum_send(): " 751 "no TX buffer available!\n"); 752 if ((type & IEEE80211_FC0_TYPE_MASK) == 753 IEEE80211_FC0_TYPE_DATA) { 754 sc->sc_need_sched = 1; 755 } 756 sc->sc_tx_nobuf++; 757 err = ENOMEM; 758 goto fail; 759 } 760 761 m = allocb(RAL_TXBUF_SIZE + RT2573_TX_DESC_SIZE, BPRI_MED); 762 if (m == NULL) { 763 ral_debug(RAL_DBG_ERR, "rum_send(): can't alloc mblk.\n"); 764 err = DDI_FAILURE; 765 goto fail; 766 } 767 768 m->b_rptr += RT2573_TX_DESC_SIZE; /* skip TX descriptor */ 769 m->b_wptr += RT2573_TX_DESC_SIZE; 770 771 for (off = 0, m0 = mp; m0 != NULL; m0 = m0->b_cont) { 772 mblen = (uintptr_t)m0->b_wptr - (uintptr_t)m0->b_rptr; 773 (void) memcpy(m->b_rptr + off, m0->b_rptr, mblen); 774 off += mblen; 775 } 776 m->b_wptr += off; 777 778 wh = (struct ieee80211_frame *)m->b_rptr; 779 780 ni = ieee80211_find_txnode(ic, wh->i_addr1); 781 if (ni == NULL) { 782 err = DDI_FAILURE; 783 sc->sc_tx_err++; 784 freemsg(m); 785 goto fail; 786 } 787 788 if ((type & IEEE80211_FC0_TYPE_MASK) == 789 IEEE80211_FC0_TYPE_DATA) { 790 (void) ieee80211_encap(ic, m, ni); 791 } 792 793 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 794 k = ieee80211_crypto_encap(ic, m); 795 if (k == NULL) { 796 sc->sc_tx_err++; 797 err = DDI_FAILURE; 798 freemsg(m); 799 goto fail; 800 } 801 /* packet header may have moved, reset our local pointer */ 802 wh = (struct ieee80211_frame *)m->b_rptr; 803 } 804 805 m->b_rptr -= RT2573_TX_DESC_SIZE; /* restore */ 806 desc = (struct rum_tx_desc *)m->b_rptr; 807 808 if ((type & IEEE80211_FC0_TYPE_MASK) == 809 IEEE80211_FC0_TYPE_DATA) { /* DATA */ 810 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) 811 rate = ic->ic_bss->in_rates.ir_rates[ic->ic_fixed_rate]; 812 else 813 rate = ni->in_rates.ir_rates[ni->in_txrate]; 814 815 rate &= IEEE80211_RATE_VAL; 816 if (rate <= 0) { 817 rate = 2; /* basic rate */ 818 } 819 820 821 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 822 flags |= RT2573_TX_NEED_ACK; 823 flags |= RT2573_TX_MORE_FRAG; 824 825 dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate), 826 ic->ic_flags) + sc->sifs; 827 *(uint16_t *)(uintptr_t)wh->i_dur = LE_16(dur); 828 } 829 } else { /* MGMT */ 830 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2; 831 832 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 833 flags |= RT2573_TX_NEED_ACK; 834 835 dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate), 836 ic->ic_flags) + sc->sifs; 837 *(uint16_t *)(uintptr_t)wh->i_dur = LE_16(dur); 838 839 /* tell hardware to add timestamp for probe responses */ 840 if ((wh->i_fc[0] & 841 (IEEE80211_FC0_TYPE_MASK | 842 IEEE80211_FC0_SUBTYPE_MASK)) == 843 (IEEE80211_FC0_TYPE_MGT | 844 IEEE80211_FC0_SUBTYPE_PROBE_RESP)) 845 flags |= RT2573_TX_TIMESTAMP; 846 } 847 } 848 849 pktlen = msgdsize(m) - RT2573_TX_DESC_SIZE; 850 rum_setup_tx_desc(sc, desc, flags, 0, pktlen, rate); 851 852 /* align end on a 4-bytes boundary */ 853 xferlen = (RT2573_TX_DESC_SIZE + pktlen + 3) & ~3; 854 855 /* 856 * No space left in the last URB to store the extra 4 bytes, force 857 * sending of another URB. 858 */ 859 if ((xferlen % 64) == 0) 860 xferlen += 4; 861 862 m->b_wptr = m->b_rptr + xferlen; 863 864 ral_debug(RAL_DBG_TX, "sending data frame len=%u rate=%u xfer len=%u\n", 865 pktlen, rate, xferlen); 866 867 rv = rum_tx_trigger(sc, m); 868 869 if (rv == 0) { 870 ic->ic_stats.is_tx_frags++; 871 ic->ic_stats.is_tx_bytes += pktlen; 872 } 873 874 fail: 875 if (ni != NULL) 876 ieee80211_free_node(ni); 877 878 if ((type & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_DATA || 879 err == 0) { 880 freemsg(mp); 881 } 882 883 mutex_exit(&sc->tx_lock); 884 885 return (err); 886 } 887 888 static mblk_t * 889 rum_m_tx(void *arg, mblk_t *mp) 890 { 891 struct rum_softc *sc = (struct rum_softc *)arg; 892 struct ieee80211com *ic = &sc->sc_ic; 893 mblk_t *next; 894 895 /* 896 * No data frames go out unless we're associated; this 897 * should not happen as the 802.11 layer does not enable 898 * the xmit queue until we enter the RUN state. 899 */ 900 if (ic->ic_state != IEEE80211_S_RUN) { 901 ral_debug(RAL_DBG_ERR, "rum_m_tx(): " 902 "discard, state %u\n", ic->ic_state); 903 freemsgchain(mp); 904 return (NULL); 905 } 906 907 while (mp != NULL) { 908 next = mp->b_next; 909 mp->b_next = NULL; 910 if (rum_send(ic, mp, IEEE80211_FC0_TYPE_DATA) != DDI_SUCCESS) { 911 mp->b_next = next; 912 freemsgchain(mp); 913 return (NULL); 914 } 915 mp = next; 916 } 917 return (mp); 918 } 919 920 static void 921 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val) 922 { 923 uint32_t tmp; 924 int ntries; 925 926 for (ntries = 0; ntries < 5; ntries++) { 927 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY)) 928 break; 929 } 930 if (ntries == 5) { 931 ral_debug(RAL_DBG_ERR, 932 "rum_bbp_write(): could not write to BBP\n"); 933 return; 934 } 935 936 tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val; 937 rum_write(sc, RT2573_PHY_CSR3, tmp); 938 } 939 940 static uint8_t 941 rum_bbp_read(struct rum_softc *sc, uint8_t reg) 942 { 943 uint32_t val; 944 int ntries; 945 946 for (ntries = 0; ntries < 5; ntries++) { 947 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY)) 948 break; 949 } 950 if (ntries == 5) { 951 ral_debug(RAL_DBG_ERR, "rum_bbp_read(): could not read BBP\n"); 952 return (0); 953 } 954 955 val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8; 956 rum_write(sc, RT2573_PHY_CSR3, val); 957 958 for (ntries = 0; ntries < 100; ntries++) { 959 val = rum_read(sc, RT2573_PHY_CSR3); 960 if (!(val & RT2573_BBP_BUSY)) 961 return (val & 0xff); 962 drv_usecwait(1); 963 } 964 965 ral_debug(RAL_DBG_ERR, "rum_bbp_read(): could not read BBP\n"); 966 return (0); 967 } 968 969 static void 970 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val) 971 { 972 uint32_t tmp; 973 int ntries; 974 975 for (ntries = 0; ntries < 5; ntries++) { 976 if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY)) 977 break; 978 } 979 if (ntries == 5) { 980 ral_debug(RAL_DBG_ERR, 981 "rum_rf_write(): could not write to RF\n"); 982 return; 983 } 984 985 tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 | 986 (reg & 3); 987 rum_write(sc, RT2573_PHY_CSR4, tmp); 988 989 /* remember last written value in sc */ 990 sc->rf_regs[reg] = val; 991 992 ral_debug(RAL_DBG_HW, "RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff); 993 } 994 995 static void 996 rum_select_antenna(struct rum_softc *sc) 997 { 998 uint8_t bbp4, bbp77; 999 uint32_t tmp; 1000 1001 bbp4 = rum_bbp_read(sc, 4); 1002 bbp77 = rum_bbp_read(sc, 77); 1003 1004 /* make sure Rx is disabled before switching antenna */ 1005 tmp = rum_read(sc, RT2573_TXRX_CSR0); 1006 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX); 1007 1008 rum_bbp_write(sc, 4, bbp4); 1009 rum_bbp_write(sc, 77, bbp77); 1010 1011 rum_write(sc, RT2573_TXRX_CSR0, tmp); 1012 } 1013 1014 /* 1015 * Enable multi-rate retries for frames sent at OFDM rates. 1016 * In 802.11b/g mode, allow fallback to CCK rates. 1017 */ 1018 static void 1019 rum_enable_mrr(struct rum_softc *sc) 1020 { 1021 struct ieee80211com *ic = &sc->sc_ic; 1022 uint32_t tmp; 1023 1024 tmp = rum_read(sc, RT2573_TXRX_CSR4); 1025 1026 tmp &= ~RT2573_MRR_CCK_FALLBACK; 1027 if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) 1028 tmp |= RT2573_MRR_CCK_FALLBACK; 1029 tmp |= RT2573_MRR_ENABLED; 1030 1031 rum_write(sc, RT2573_TXRX_CSR4, tmp); 1032 } 1033 1034 static void 1035 rum_set_txpreamble(struct rum_softc *sc) 1036 { 1037 uint32_t tmp; 1038 1039 tmp = rum_read(sc, RT2573_TXRX_CSR4); 1040 1041 tmp &= ~RT2573_SHORT_PREAMBLE; 1042 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE) 1043 tmp |= RT2573_SHORT_PREAMBLE; 1044 1045 rum_write(sc, RT2573_TXRX_CSR4, tmp); 1046 } 1047 1048 static void 1049 rum_set_basicrates(struct rum_softc *sc) 1050 { 1051 struct ieee80211com *ic = &sc->sc_ic; 1052 1053 /* update basic rate set */ 1054 if (ic->ic_curmode == IEEE80211_MODE_11B) { 1055 /* 11b basic rates: 1, 2Mbps */ 1056 rum_write(sc, RT2573_TXRX_CSR5, 0x3); 1057 } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->in_chan)) { 1058 /* 11a basic rates: 6, 12, 24Mbps */ 1059 rum_write(sc, RT2573_TXRX_CSR5, 0x150); 1060 } else { 1061 /* 11b/g basic rates: 1, 2, 5.5, 11Mbps */ 1062 rum_write(sc, RT2573_TXRX_CSR5, 0xf); 1063 } 1064 } 1065 1066 /* 1067 * Reprogram MAC/BBP to switch to a new band. Values taken from the reference 1068 * driver. 1069 */ 1070 static void 1071 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c) 1072 { 1073 uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104; 1074 uint32_t tmp; 1075 1076 /* update all BBP registers that depend on the band */ 1077 bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c; 1078 bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48; 1079 if (IEEE80211_IS_CHAN_5GHZ(c)) { 1080 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c; 1081 bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10; 1082 } 1083 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || 1084 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { 1085 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10; 1086 } 1087 1088 sc->bbp17 = bbp17; 1089 rum_bbp_write(sc, 17, bbp17); 1090 rum_bbp_write(sc, 96, bbp96); 1091 rum_bbp_write(sc, 104, bbp104); 1092 1093 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || 1094 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { 1095 rum_bbp_write(sc, 75, 0x80); 1096 rum_bbp_write(sc, 86, 0x80); 1097 rum_bbp_write(sc, 88, 0x80); 1098 } 1099 1100 rum_bbp_write(sc, 35, bbp35); 1101 rum_bbp_write(sc, 97, bbp97); 1102 rum_bbp_write(sc, 98, bbp98); 1103 1104 tmp = rum_read(sc, RT2573_PHY_CSR0); 1105 tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ); 1106 if (IEEE80211_IS_CHAN_2GHZ(c)) 1107 tmp |= RT2573_PA_PE_2GHZ; 1108 else 1109 tmp |= RT2573_PA_PE_5GHZ; 1110 rum_write(sc, RT2573_PHY_CSR0, tmp); 1111 1112 /* 802.11a uses a 16 microseconds short interframe space */ 1113 sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10; 1114 } 1115 1116 static void 1117 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c) 1118 { 1119 struct ieee80211com *ic = &sc->sc_ic; 1120 const struct rfprog *rfprog; 1121 uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT; 1122 int8_t power; 1123 uint_t i, chan; 1124 1125 chan = ieee80211_chan2ieee(ic, c); 1126 if (chan == 0 || chan == IEEE80211_CHAN_ANY) 1127 return; 1128 1129 /* select the appropriate RF settings based on what EEPROM says */ 1130 rfprog = (sc->rf_rev == RT2573_RF_5225 || 1131 sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226; 1132 1133 /* find the settings for this channel (we know it exists) */ 1134 for (i = 0; rfprog[i].chan != chan; i++) { 1135 } 1136 1137 power = sc->txpow[i]; 1138 if (power < 0) { 1139 bbp94 += power; 1140 power = 0; 1141 } else if (power > 31) { 1142 bbp94 += power - 31; 1143 power = 31; 1144 } 1145 1146 /* 1147 * If we are switching from the 2GHz band to the 5GHz band or 1148 * vice-versa, BBP registers need to be reprogrammed. 1149 */ 1150 if (c->ich_flags != ic->ic_curchan->ich_flags) { 1151 rum_select_band(sc, c); 1152 rum_select_antenna(sc); 1153 } 1154 ic->ic_curchan = c; 1155 1156 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1157 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1158 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7); 1159 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1160 1161 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1162 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1163 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1); 1164 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1165 1166 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 1167 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 1168 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7); 1169 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 1170 1171 drv_usecwait(10); 1172 1173 /* enable smart mode for MIMO-capable RFs */ 1174 bbp3 = rum_bbp_read(sc, 3); 1175 1176 bbp3 &= ~RT2573_SMART_MODE; 1177 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527) 1178 bbp3 |= RT2573_SMART_MODE; 1179 1180 rum_bbp_write(sc, 3, bbp3); 1181 1182 if (bbp94 != RT2573_BBPR94_DEFAULT) 1183 rum_bbp_write(sc, 94, bbp94); 1184 } 1185 1186 /* 1187 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS 1188 * and HostAP operating modes. 1189 */ 1190 static void 1191 rum_enable_tsf_sync(struct rum_softc *sc) 1192 { 1193 struct ieee80211com *ic = &sc->sc_ic; 1194 uint32_t tmp; 1195 1196 if (ic->ic_opmode != IEEE80211_M_STA) { 1197 /* 1198 * Change default 16ms TBTT adjustment to 8ms. 1199 * Must be done before enabling beacon generation. 1200 */ 1201 rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8); 1202 } 1203 1204 tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000; 1205 1206 /* set beacon interval (in 1/16ms unit) */ 1207 tmp |= ic->ic_bss->in_intval * 16; 1208 1209 tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT; 1210 if (ic->ic_opmode == IEEE80211_M_STA) 1211 tmp |= RT2573_TSF_MODE(1); 1212 else 1213 tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON; 1214 1215 rum_write(sc, RT2573_TXRX_CSR9, tmp); 1216 } 1217 1218 /* ARGSUSED */ 1219 static void 1220 rum_update_slot(struct ieee80211com *ic, int onoff) 1221 { 1222 struct rum_softc *sc = (struct rum_softc *)ic; 1223 uint8_t slottime; 1224 uint32_t tmp; 1225 1226 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20; 1227 1228 tmp = rum_read(sc, RT2573_MAC_CSR9); 1229 tmp = (tmp & ~0xff) | slottime; 1230 rum_write(sc, RT2573_MAC_CSR9, tmp); 1231 1232 ral_debug(RAL_DBG_HW, "setting slot time to %uus\n", slottime); 1233 } 1234 1235 static void 1236 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid) 1237 { 1238 uint32_t tmp; 1239 1240 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24; 1241 rum_write(sc, RT2573_MAC_CSR4, tmp); 1242 1243 tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16; 1244 rum_write(sc, RT2573_MAC_CSR5, tmp); 1245 } 1246 1247 static void 1248 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr) 1249 { 1250 uint32_t tmp; 1251 1252 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24; 1253 rum_write(sc, RT2573_MAC_CSR2, tmp); 1254 1255 tmp = addr[4] | addr[5] << 8 | 0xff << 16; 1256 rum_write(sc, RT2573_MAC_CSR3, tmp); 1257 1258 ral_debug(RAL_DBG_HW, 1259 "setting MAC address to " MACSTR "\n", MAC2STR(addr)); 1260 } 1261 1262 static void 1263 rum_update_promisc(struct rum_softc *sc) 1264 { 1265 uint32_t tmp; 1266 1267 tmp = rum_read(sc, RT2573_TXRX_CSR0); 1268 1269 tmp &= ~RT2573_DROP_NOT_TO_ME; 1270 if (!(sc->sc_rcr & RAL_RCR_PROMISC)) 1271 tmp |= RT2573_DROP_NOT_TO_ME; 1272 1273 rum_write(sc, RT2573_TXRX_CSR0, tmp); 1274 1275 ral_debug(RAL_DBG_HW, "%s promiscuous mode\n", 1276 (sc->sc_rcr & RAL_RCR_PROMISC) ? "entering" : "leaving"); 1277 } 1278 1279 static const char * 1280 rum_get_rf(int rev) 1281 { 1282 switch (rev) { 1283 case RT2573_RF_2527: return ("RT2527 (MIMO XR)"); 1284 case RT2573_RF_2528: return ("RT2528"); 1285 case RT2573_RF_5225: return ("RT5225 (MIMO XR)"); 1286 case RT2573_RF_5226: return ("RT5226"); 1287 default: return ("unknown"); 1288 } 1289 } 1290 1291 static void 1292 rum_read_eeprom(struct rum_softc *sc) 1293 { 1294 struct ieee80211com *ic = &sc->sc_ic; 1295 uint16_t val; 1296 1297 /* read MAC address */ 1298 rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_macaddr, 6); 1299 1300 rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2); 1301 val = LE_16(val); 1302 sc->rf_rev = (val >> 11) & 0x1f; 1303 sc->hw_radio = (val >> 10) & 0x1; 1304 sc->rx_ant = (val >> 4) & 0x3; 1305 sc->tx_ant = (val >> 2) & 0x3; 1306 sc->nb_ant = val & 0x3; 1307 1308 ral_debug(RAL_DBG_HW, "RF revision=%d\n", sc->rf_rev); 1309 1310 rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2); 1311 val = LE_16(val); 1312 sc->ext_5ghz_lna = (val >> 6) & 0x1; 1313 sc->ext_2ghz_lna = (val >> 4) & 0x1; 1314 1315 ral_debug(RAL_DBG_HW, "External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n", 1316 sc->ext_2ghz_lna, sc->ext_5ghz_lna); 1317 1318 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2); 1319 val = LE_16(val); 1320 if ((val & 0xff) != 0xff) 1321 sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */ 1322 1323 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2); 1324 val = LE_16(val); 1325 if ((val & 0xff) != 0xff) 1326 sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */ 1327 1328 ral_debug(RAL_DBG_HW, "RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n", 1329 sc->rssi_2ghz_corr, sc->rssi_5ghz_corr); 1330 1331 rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2); 1332 val = LE_16(val); 1333 if ((val & 0xff) != 0xff) 1334 sc->rffreq = val & 0xff; 1335 1336 ral_debug(RAL_DBG_HW, "RF freq=%d\n", sc->rffreq); 1337 1338 /* read Tx power for all a/b/g channels */ 1339 rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14); 1340 /* default Tx power for 802.11a channels */ 1341 (void) memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14); 1342 1343 /* read default values for BBP registers */ 1344 rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16); 1345 } 1346 1347 static int 1348 rum_bbp_init(struct rum_softc *sc) 1349 { 1350 int i, ntries; 1351 1352 /* wait for BBP to be ready */ 1353 for (ntries = 0; ntries < 100; ntries++) { 1354 const uint8_t val = rum_bbp_read(sc, 0); 1355 if (val != 0 && val != 0xff) 1356 break; 1357 drv_usecwait(1000); 1358 } 1359 if (ntries == 100) { 1360 ral_debug(RAL_DBG_ERR, "timeout waiting for BBP\n"); 1361 return (EIO); 1362 } 1363 1364 /* initialize BBP registers to default values */ 1365 for (i = 0; i < RUM_N(rum_def_bbp); i++) 1366 rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val); 1367 1368 /* write vendor-specific BBP values (from EEPROM) */ 1369 for (i = 0; i < 16; i++) { 1370 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff) 1371 continue; 1372 rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val); 1373 } 1374 1375 return (0); 1376 } 1377 1378 /* 1379 * This function is called periodically (every 200ms) during scanning to 1380 * switch from one channel to another. 1381 */ 1382 static void 1383 rum_next_scan(void *arg) 1384 { 1385 struct rum_softc *sc = arg; 1386 struct ieee80211com *ic = &sc->sc_ic; 1387 1388 if (ic->ic_state == IEEE80211_S_SCAN) 1389 ieee80211_next_scan(ic); 1390 } 1391 1392 static int 1393 rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 1394 { 1395 struct rum_softc *sc = (struct rum_softc *)ic; 1396 enum ieee80211_state ostate; 1397 struct ieee80211_node *ni; 1398 int err; 1399 uint32_t tmp; 1400 1401 RAL_LOCK(sc); 1402 1403 ostate = ic->ic_state; 1404 1405 if (sc->sc_scan_id != 0) { 1406 (void) untimeout(sc->sc_scan_id); 1407 sc->sc_scan_id = 0; 1408 } 1409 1410 if (sc->sc_amrr_id != 0) { 1411 (void) untimeout(sc->sc_amrr_id); 1412 sc->sc_amrr_id = 0; 1413 } 1414 1415 switch (nstate) { 1416 case IEEE80211_S_INIT: 1417 if (ostate == IEEE80211_S_RUN) { 1418 /* abort TSF synchronization */ 1419 tmp = rum_read(sc, RT2573_TXRX_CSR9); 1420 rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff); 1421 } 1422 break; 1423 1424 case IEEE80211_S_SCAN: 1425 rum_set_chan(sc, ic->ic_curchan); 1426 sc->sc_scan_id = timeout(rum_next_scan, (void *)sc, 1427 drv_usectohz(sc->dwelltime * 1000)); 1428 break; 1429 1430 case IEEE80211_S_AUTH: 1431 rum_set_chan(sc, ic->ic_curchan); 1432 break; 1433 1434 case IEEE80211_S_ASSOC: 1435 rum_set_chan(sc, ic->ic_curchan); 1436 break; 1437 1438 case IEEE80211_S_RUN: 1439 rum_set_chan(sc, ic->ic_curchan); 1440 1441 ni = ic->ic_bss; 1442 1443 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 1444 rum_update_slot(ic, 1); 1445 rum_enable_mrr(sc); 1446 rum_set_txpreamble(sc); 1447 rum_set_basicrates(sc); 1448 rum_set_bssid(sc, ni->in_bssid); 1449 } 1450 1451 if (ic->ic_opmode != IEEE80211_M_MONITOR) 1452 rum_enable_tsf_sync(sc); 1453 1454 /* enable automatic rate adaptation in STA mode */ 1455 if (ic->ic_opmode == IEEE80211_M_STA && 1456 ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) 1457 rum_amrr_start(sc, ni); 1458 break; 1459 } 1460 1461 RAL_UNLOCK(sc); 1462 1463 err = sc->sc_newstate(ic, nstate, arg); 1464 /* 1465 * Finally, start any timers. 1466 */ 1467 if (nstate == IEEE80211_S_RUN) 1468 ieee80211_start_watchdog(ic, 1); 1469 1470 return (err); 1471 } 1472 1473 static void 1474 rum_close_pipes(struct rum_softc *sc) 1475 { 1476 usb_flags_t flags = USB_FLAGS_SLEEP; 1477 1478 if (sc->sc_rx_pipeh != NULL) { 1479 usb_pipe_reset(sc->sc_dev, sc->sc_rx_pipeh, flags, NULL, 0); 1480 usb_pipe_close(sc->sc_dev, sc->sc_rx_pipeh, flags, NULL, 0); 1481 sc->sc_rx_pipeh = NULL; 1482 } 1483 1484 if (sc->sc_tx_pipeh != NULL) { 1485 usb_pipe_reset(sc->sc_dev, sc->sc_tx_pipeh, flags, NULL, 0); 1486 usb_pipe_close(sc->sc_dev, sc->sc_tx_pipeh, flags, NULL, 0); 1487 sc->sc_tx_pipeh = NULL; 1488 } 1489 } 1490 1491 static int 1492 rum_open_pipes(struct rum_softc *sc) 1493 { 1494 usb_ep_data_t *ep_node; 1495 usb_pipe_policy_t policy; 1496 int err; 1497 1498 ep_node = usb_lookup_ep_data(sc->sc_dev, sc->sc_udev, 0, 0, 0, 1499 USB_EP_ATTR_BULK, USB_EP_DIR_OUT); 1500 1501 bzero(&policy, sizeof (usb_pipe_policy_t)); 1502 policy.pp_max_async_reqs = RAL_TX_LIST_COUNT; 1503 1504 if ((err = usb_pipe_open(sc->sc_dev, 1505 &ep_node->ep_descr, &policy, USB_FLAGS_SLEEP, 1506 &sc->sc_tx_pipeh)) != USB_SUCCESS) { 1507 ral_debug(RAL_DBG_ERR, 1508 "rum_open_pipes(): %x failed to open tx pipe\n", err); 1509 goto fail; 1510 } 1511 1512 ep_node = usb_lookup_ep_data(sc->sc_dev, sc->sc_udev, 0, 0, 0, 1513 USB_EP_ATTR_BULK, USB_EP_DIR_IN); 1514 1515 bzero(&policy, sizeof (usb_pipe_policy_t)); 1516 policy.pp_max_async_reqs = RAL_RX_LIST_COUNT + 32; 1517 1518 if ((err = usb_pipe_open(sc->sc_dev, 1519 &ep_node->ep_descr, &policy, USB_FLAGS_SLEEP, 1520 &sc->sc_rx_pipeh)) != USB_SUCCESS) { 1521 ral_debug(RAL_DBG_ERR, 1522 "rum_open_pipes(): %x failed to open rx pipe\n", err); 1523 goto fail; 1524 } 1525 1526 return (USB_SUCCESS); 1527 1528 fail: 1529 if (sc->sc_rx_pipeh != NULL) { 1530 usb_pipe_close(sc->sc_dev, sc->sc_rx_pipeh, 1531 USB_FLAGS_SLEEP, NULL, 0); 1532 sc->sc_rx_pipeh = NULL; 1533 } 1534 1535 if (sc->sc_tx_pipeh != NULL) { 1536 usb_pipe_close(sc->sc_dev, sc->sc_tx_pipeh, 1537 USB_FLAGS_SLEEP, NULL, 0); 1538 sc->sc_tx_pipeh = NULL; 1539 } 1540 1541 return (USB_FAILURE); 1542 } 1543 1544 static int 1545 rum_tx_trigger(struct rum_softc *sc, mblk_t *mp) 1546 { 1547 usb_bulk_req_t *req; 1548 int err; 1549 1550 sc->sc_tx_timer = RUM_TX_TIMEOUT; 1551 1552 req = usb_alloc_bulk_req(sc->sc_dev, 0, USB_FLAGS_SLEEP); 1553 if (req == NULL) { 1554 ral_debug(RAL_DBG_ERR, 1555 "rum_tx_trigger(): failed to allocate req"); 1556 freemsg(mp); 1557 return (-1); 1558 } 1559 1560 req->bulk_len = msgdsize(mp); 1561 req->bulk_data = mp; 1562 req->bulk_client_private = (usb_opaque_t)sc; 1563 req->bulk_timeout = RUM_TX_TIMEOUT; 1564 req->bulk_attributes = USB_ATTRS_AUTOCLEARING; 1565 req->bulk_cb = rum_txeof; 1566 req->bulk_exc_cb = rum_txeof; 1567 req->bulk_completion_reason = 0; 1568 req->bulk_cb_flags = 0; 1569 1570 if ((err = usb_pipe_bulk_xfer(sc->sc_tx_pipeh, req, 0)) 1571 != USB_SUCCESS) { 1572 1573 ral_debug(RAL_DBG_ERR, "rum_tx_trigger(): " 1574 "failed to do tx xfer, %d", err); 1575 usb_free_bulk_req(req); 1576 return (-1); 1577 } 1578 1579 sc->tx_queued++; 1580 1581 return (0); 1582 } 1583 1584 static int 1585 rum_rx_trigger(struct rum_softc *sc) 1586 { 1587 usb_bulk_req_t *req; 1588 int err; 1589 1590 req = usb_alloc_bulk_req(sc->sc_dev, RAL_RXBUF_SIZE, USB_FLAGS_SLEEP); 1591 if (req == NULL) { 1592 ral_debug(RAL_DBG_ERR, 1593 "rum_rx_trigger(): failed to allocate req"); 1594 return (-1); 1595 } 1596 1597 req->bulk_len = RAL_RXBUF_SIZE; 1598 req->bulk_client_private = (usb_opaque_t)sc; 1599 req->bulk_timeout = 0; 1600 req->bulk_attributes = USB_ATTRS_SHORT_XFER_OK 1601 | USB_ATTRS_AUTOCLEARING; 1602 req->bulk_cb = rum_rxeof; 1603 req->bulk_exc_cb = rum_rxeof; 1604 req->bulk_completion_reason = 0; 1605 req->bulk_cb_flags = 0; 1606 1607 err = usb_pipe_bulk_xfer(sc->sc_rx_pipeh, req, 0); 1608 1609 if (err != USB_SUCCESS) { 1610 ral_debug(RAL_DBG_ERR, "rum_rx_trigger(): " 1611 "failed to do rx xfer, %d", err); 1612 usb_free_bulk_req(req); 1613 1614 return (-1); 1615 } 1616 1617 mutex_enter(&sc->rx_lock); 1618 sc->rx_queued++; 1619 mutex_exit(&sc->rx_lock); 1620 1621 return (0); 1622 } 1623 1624 static void 1625 rum_init_tx_queue(struct rum_softc *sc) 1626 { 1627 sc->tx_queued = 0; 1628 } 1629 1630 static int 1631 rum_init_rx_queue(struct rum_softc *sc) 1632 { 1633 int i; 1634 1635 sc->rx_queued = 0; 1636 1637 for (i = 0; i < RAL_RX_LIST_COUNT; i++) { 1638 if (rum_rx_trigger(sc) != 0) { 1639 return (USB_FAILURE); 1640 } 1641 } 1642 1643 return (USB_SUCCESS); 1644 } 1645 1646 static void 1647 rum_stop(struct rum_softc *sc) 1648 { 1649 struct ieee80211com *ic = &sc->sc_ic; 1650 uint32_t tmp; 1651 1652 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 1653 ieee80211_stop_watchdog(ic); /* stop the watchdog */ 1654 1655 RAL_LOCK(sc); 1656 1657 sc->sc_tx_timer = 0; 1658 sc->sc_flags &= ~RAL_FLAG_RUNNING; /* STOP */ 1659 1660 /* disable Rx */ 1661 tmp = rum_read(sc, RT2573_TXRX_CSR0); 1662 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX); 1663 1664 /* reset ASIC */ 1665 rum_write(sc, RT2573_MAC_CSR1, 3); 1666 rum_write(sc, RT2573_MAC_CSR1, 0); 1667 1668 rum_close_pipes(sc); 1669 1670 RAL_UNLOCK(sc); 1671 } 1672 1673 static int 1674 rum_init(struct rum_softc *sc) 1675 { 1676 struct ieee80211com *ic = &sc->sc_ic; 1677 uint32_t tmp; 1678 int i, ntries; 1679 1680 rum_stop(sc); 1681 1682 /* initialize MAC registers to default values */ 1683 for (i = 0; i < RUM_N(rum_def_mac); i++) 1684 rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val); 1685 1686 /* set host ready */ 1687 rum_write(sc, RT2573_MAC_CSR1, 3); 1688 rum_write(sc, RT2573_MAC_CSR1, 0); 1689 1690 /* wait for BBP/RF to wakeup */ 1691 for (ntries = 0; ntries < 1000; ntries++) { 1692 if (rum_read(sc, RT2573_MAC_CSR12) & 8) 1693 break; 1694 rum_write(sc, RT2573_MAC_CSR12, 4); /* force wakeup */ 1695 drv_usecwait(1000); 1696 } 1697 if (ntries == 1000) { 1698 ral_debug(RAL_DBG_ERR, 1699 "rum_init(): timeout waiting for BBP/RF to wakeup\n"); 1700 goto fail; 1701 } 1702 1703 if (rum_bbp_init(sc) != 0) 1704 goto fail; 1705 1706 /* select default channel */ 1707 rum_select_band(sc, ic->ic_curchan); 1708 rum_select_antenna(sc); 1709 rum_set_chan(sc, ic->ic_curchan); 1710 1711 /* clear STA registers */ 1712 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof (sc->sta)); 1713 1714 rum_set_macaddr(sc, ic->ic_macaddr); 1715 1716 /* initialize ASIC */ 1717 rum_write(sc, RT2573_MAC_CSR1, 4); 1718 1719 if (rum_open_pipes(sc) != USB_SUCCESS) { 1720 ral_debug(RAL_DBG_ERR, "rum_init(): " 1721 "could not open pipes.\n"); 1722 goto fail; 1723 } 1724 1725 rum_init_tx_queue(sc); 1726 1727 if (rum_init_rx_queue(sc) != USB_SUCCESS) 1728 goto fail; 1729 1730 /* update Rx filter */ 1731 tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff; 1732 tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR; 1733 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 1734 tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR | 1735 RT2573_DROP_ACKCTS; 1736 if (ic->ic_opmode != IEEE80211_M_HOSTAP) 1737 tmp |= RT2573_DROP_TODS; 1738 if (!(sc->sc_rcr & RAL_RCR_PROMISC)) 1739 tmp |= RT2573_DROP_NOT_TO_ME; 1740 } 1741 1742 rum_write(sc, RT2573_TXRX_CSR0, tmp); 1743 sc->sc_flags |= RAL_FLAG_RUNNING; /* RUNNING */ 1744 1745 return (DDI_SUCCESS); 1746 fail: 1747 rum_stop(sc); 1748 return (DDI_FAILURE); 1749 } 1750 1751 static int 1752 rum_disconnect(dev_info_t *devinfo) 1753 { 1754 struct rum_softc *sc; 1755 struct ieee80211com *ic; 1756 1757 /* 1758 * We can't call rum_stop() here, since the hardware is removed, 1759 * we can't access the register anymore. 1760 */ 1761 sc = ddi_get_soft_state(rum_soft_state_p, ddi_get_instance(devinfo)); 1762 ASSERT(sc != NULL); 1763 1764 if (!RAL_IS_RUNNING(sc)) /* different device or not inited */ 1765 return (DDI_SUCCESS); 1766 1767 ic = &sc->sc_ic; 1768 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 1769 ieee80211_stop_watchdog(ic); /* stop the watchdog */ 1770 1771 RAL_LOCK(sc); 1772 1773 sc->sc_tx_timer = 0; 1774 sc->sc_flags &= ~RAL_FLAG_RUNNING; /* STOP */ 1775 1776 rum_close_pipes(sc); 1777 1778 RAL_UNLOCK(sc); 1779 1780 return (DDI_SUCCESS); 1781 } 1782 1783 static int 1784 rum_reconnect(dev_info_t *devinfo) 1785 { 1786 struct rum_softc *sc; 1787 int err; 1788 1789 sc = ddi_get_soft_state(rum_soft_state_p, ddi_get_instance(devinfo)); 1790 ASSERT(sc != NULL); 1791 1792 /* check device changes after disconnect */ 1793 if (usb_check_same_device(sc->sc_dev, NULL, USB_LOG_L2, -1, 1794 USB_CHK_BASIC | USB_CHK_CFG, NULL) != USB_SUCCESS) { 1795 ral_debug(RAL_DBG_ERR, "different device connected\n"); 1796 return (DDI_FAILURE); 1797 } 1798 1799 err = rum_load_microcode(sc); 1800 if (err != USB_SUCCESS) { 1801 ral_debug(RAL_DBG_ERR, "could not load 8051 microcode\n"); 1802 goto fail; 1803 } 1804 1805 err = rum_init(sc); 1806 fail: 1807 return (err); 1808 } 1809 1810 static void 1811 rum_resume(struct rum_softc *sc) 1812 { 1813 int err; 1814 1815 /* check device changes after suspend */ 1816 if (usb_check_same_device(sc->sc_dev, NULL, USB_LOG_L2, -1, 1817 USB_CHK_BASIC | USB_CHK_CFG, NULL) != USB_SUCCESS) { 1818 ral_debug(RAL_DBG_ERR, "no or different device connected\n"); 1819 return; 1820 } 1821 1822 err = rum_load_microcode(sc); 1823 if (err != USB_SUCCESS) { 1824 ral_debug(RAL_DBG_ERR, "could not load 8051 microcode\n"); 1825 return; 1826 } 1827 1828 (void) rum_init(sc); 1829 } 1830 1831 #define RUM_AMRR_MIN_SUCCESS_THRESHOLD 1 1832 #define RUM_AMRR_MAX_SUCCESS_THRESHOLD 10 1833 1834 /* 1835 * Naive implementation of the Adaptive Multi Rate Retry algorithm: 1836 * "IEEE 802.11 Rate Adaptation: A Practical Approach" 1837 * Mathieu Lacage, Hossein Manshaei, Thierry Turletti 1838 * INRIA Sophia - Projet Planete 1839 * http://www-sop.inria.fr/rapports/sophia/RR-5208.html 1840 * 1841 * This algorithm is particularly well suited for rum since it does not 1842 * require per-frame retry statistics. Note however that since h/w does 1843 * not provide per-frame stats, we can't do per-node rate adaptation and 1844 * thus automatic rate adaptation is only enabled in STA operating mode. 1845 */ 1846 #define is_success(amrr) \ 1847 ((amrr)->retrycnt < (amrr)->txcnt / 10) 1848 #define is_failure(amrr) \ 1849 ((amrr)->retrycnt > (amrr)->txcnt / 3) 1850 #define is_enough(amrr) \ 1851 ((amrr)->txcnt > 10) 1852 #define is_min_rate(ni) \ 1853 ((ni)->in_txrate == 0) 1854 #define is_max_rate(ni) \ 1855 ((ni)->in_txrate == (ni)->in_rates.ir_nrates - 1) 1856 #define increase_rate(ni) \ 1857 ((ni)->in_txrate++) 1858 #define decrease_rate(ni) \ 1859 ((ni)->in_txrate--) 1860 #define reset_cnt(amrr) do { \ 1861 (amrr)->txcnt = (amrr)->retrycnt = 0; \ 1862 _NOTE(CONSTCOND) \ 1863 } while (/* CONSTCOND */0) 1864 1865 static void 1866 rum_ratectl(struct rum_amrr *amrr, struct ieee80211_node *ni) 1867 { 1868 int need_change = 0; 1869 1870 if (is_success(amrr) && is_enough(amrr)) { 1871 amrr->success++; 1872 if (amrr->success >= amrr->success_threshold && 1873 !is_max_rate(ni)) { 1874 amrr->recovery = 1; 1875 amrr->success = 0; 1876 increase_rate(ni); 1877 need_change = 1; 1878 } else { 1879 amrr->recovery = 0; 1880 } 1881 } else if (is_failure(amrr)) { 1882 amrr->success = 0; 1883 if (!is_min_rate(ni)) { 1884 if (amrr->recovery) { 1885 amrr->success_threshold *= 2; 1886 if (amrr->success_threshold > 1887 RUM_AMRR_MAX_SUCCESS_THRESHOLD) 1888 amrr->success_threshold = 1889 RUM_AMRR_MAX_SUCCESS_THRESHOLD; 1890 } else { 1891 amrr->success_threshold = 1892 RUM_AMRR_MIN_SUCCESS_THRESHOLD; 1893 } 1894 decrease_rate(ni); 1895 need_change = 1; 1896 } 1897 amrr->recovery = 0; /* original paper was incorrect */ 1898 } 1899 1900 if (is_enough(amrr) || need_change) 1901 reset_cnt(amrr); 1902 } 1903 1904 static void 1905 rum_amrr_timeout(void *arg) 1906 { 1907 struct rum_softc *sc = (struct rum_softc *)arg; 1908 struct rum_amrr *amrr = &sc->amrr; 1909 1910 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof (sc->sta)); 1911 1912 /* count TX retry-fail as Tx errors */ 1913 sc->sc_tx_err += LE_32(sc->sta[5]) >> 16; 1914 sc->sc_tx_retries += ((LE_32(sc->sta[4]) >> 16) + 1915 (LE_32(sc->sta[5]) & 0xffff)); 1916 1917 amrr->retrycnt = 1918 (LE_32(sc->sta[4]) >> 16) + /* TX one-retry ok count */ 1919 (LE_32(sc->sta[5]) & 0xffff) + /* TX more-retry ok count */ 1920 (LE_32(sc->sta[5]) >> 16); /* TX retry-fail count */ 1921 1922 amrr->txcnt = 1923 amrr->retrycnt + 1924 (LE_32(sc->sta[4]) & 0xffff); /* TX no-retry ok count */ 1925 1926 rum_ratectl(amrr, sc->sc_ic.ic_bss); 1927 1928 sc->sc_amrr_id = timeout(rum_amrr_timeout, (void *)sc, 1929 drv_usectohz(1000 * 1000)); /* 1 second */ 1930 } 1931 1932 static void 1933 rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni) 1934 { 1935 struct rum_amrr *amrr = &sc->amrr; 1936 int i; 1937 1938 /* clear statistic registers (STA_CSR0 to STA_CSR5) */ 1939 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof (sc->sta)); 1940 1941 amrr->success = 0; 1942 amrr->recovery = 0; 1943 amrr->txcnt = amrr->retrycnt = 0; 1944 amrr->success_threshold = RUM_AMRR_MIN_SUCCESS_THRESHOLD; 1945 1946 /* set rate to some reasonable initial value */ 1947 for (i = ni->in_rates.ir_nrates - 1; 1948 i > 0 && (ni->in_rates.ir_rates[i] & IEEE80211_RATE_VAL) > 72; 1949 i--) { 1950 } 1951 1952 ni->in_txrate = i; 1953 1954 sc->sc_amrr_id = timeout(rum_amrr_timeout, (void *)sc, 1955 drv_usectohz(1000 * 1000)); /* 1 second */ 1956 } 1957 1958 void 1959 rum_watchdog(void *arg) 1960 { 1961 struct rum_softc *sc = arg; 1962 struct ieee80211com *ic = &sc->sc_ic; 1963 int ntimer = 0; 1964 1965 RAL_LOCK(sc); 1966 ic->ic_watchdog_timer = 0; 1967 1968 if (!RAL_IS_RUNNING(sc)) { 1969 RAL_UNLOCK(sc); 1970 return; 1971 } 1972 1973 if (sc->sc_tx_timer > 0) { 1974 if (--sc->sc_tx_timer == 0) { 1975 ral_debug(RAL_DBG_ERR, "tx timer timeout\n"); 1976 RAL_UNLOCK(sc); 1977 (void) rum_init(sc); 1978 (void) ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 1979 return; 1980 } 1981 } 1982 1983 if (ic->ic_state == IEEE80211_S_RUN) 1984 ntimer = 1; 1985 1986 RAL_UNLOCK(sc); 1987 1988 ieee80211_watchdog(ic); 1989 1990 if (ntimer) 1991 ieee80211_start_watchdog(ic, ntimer); 1992 } 1993 1994 static int 1995 rum_m_start(void *arg) 1996 { 1997 struct rum_softc *sc = (struct rum_softc *)arg; 1998 int err; 1999 2000 /* 2001 * initialize RT2501USB hardware 2002 */ 2003 err = rum_init(sc); 2004 if (err != DDI_SUCCESS) { 2005 ral_debug(RAL_DBG_ERR, "device configuration failed\n"); 2006 goto fail; 2007 } 2008 sc->sc_flags |= RAL_FLAG_RUNNING; /* RUNNING */ 2009 return (err); 2010 2011 fail: 2012 rum_stop(sc); 2013 return (err); 2014 } 2015 2016 static void 2017 rum_m_stop(void *arg) 2018 { 2019 struct rum_softc *sc = (struct rum_softc *)arg; 2020 2021 (void) rum_stop(sc); 2022 sc->sc_flags &= ~RAL_FLAG_RUNNING; /* STOP */ 2023 } 2024 2025 static int 2026 rum_m_unicst(void *arg, const uint8_t *macaddr) 2027 { 2028 struct rum_softc *sc = (struct rum_softc *)arg; 2029 struct ieee80211com *ic = &sc->sc_ic; 2030 2031 ral_debug(RAL_DBG_MSG, "rum_m_unicst(): " MACSTR "\n", 2032 MAC2STR(macaddr)); 2033 2034 IEEE80211_ADDR_COPY(ic->ic_macaddr, macaddr); 2035 (void) rum_set_macaddr(sc, (uint8_t *)macaddr); 2036 (void) rum_init(sc); 2037 2038 return (0); 2039 } 2040 2041 /*ARGSUSED*/ 2042 static int 2043 rum_m_multicst(void *arg, boolean_t add, const uint8_t *mca) 2044 { 2045 return (0); 2046 } 2047 2048 static int 2049 rum_m_promisc(void *arg, boolean_t on) 2050 { 2051 struct rum_softc *sc = (struct rum_softc *)arg; 2052 2053 if (on) { 2054 sc->sc_rcr |= RAL_RCR_PROMISC; 2055 sc->sc_rcr |= RAL_RCR_MULTI; 2056 } else { 2057 sc->sc_rcr &= ~RAL_RCR_PROMISC; 2058 sc->sc_rcr &= ~RAL_RCR_MULTI; 2059 } 2060 2061 rum_update_promisc(sc); 2062 return (0); 2063 } 2064 2065 /* 2066 * callback functions for /get/set properties 2067 */ 2068 static int 2069 rum_m_setprop(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_num, 2070 uint_t wldp_length, const void *wldp_buf) 2071 { 2072 struct rum_softc *sc = (struct rum_softc *)arg; 2073 struct ieee80211com *ic = &sc->sc_ic; 2074 int err; 2075 2076 err = ieee80211_setprop(ic, pr_name, wldp_pr_num, 2077 wldp_length, wldp_buf); 2078 RAL_LOCK(sc); 2079 if (err == ENETRESET) { 2080 if (RAL_IS_RUNNING(sc)) { 2081 RAL_UNLOCK(sc); 2082 (void) rum_init(sc); 2083 (void) ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 2084 RAL_LOCK(sc); 2085 } 2086 err = 0; 2087 } 2088 RAL_UNLOCK(sc); 2089 2090 return (err); 2091 } 2092 2093 static int 2094 rum_m_getprop(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_num, 2095 uint_t wldp_length, void *wldp_buf) 2096 { 2097 struct rum_softc *sc = (struct rum_softc *)arg; 2098 int err; 2099 2100 err = ieee80211_getprop(&sc->sc_ic, pr_name, wldp_pr_num, 2101 wldp_length, wldp_buf); 2102 2103 return (err); 2104 } 2105 2106 static void 2107 rum_m_propinfo(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_num, 2108 mac_prop_info_handle_t prh) 2109 { 2110 struct rum_softc *sc = (struct rum_softc *)arg; 2111 2112 ieee80211_propinfo(&sc->sc_ic, pr_name, wldp_pr_num, prh); 2113 } 2114 2115 static void 2116 rum_m_ioctl(void* arg, queue_t *wq, mblk_t *mp) 2117 { 2118 struct rum_softc *sc = (struct rum_softc *)arg; 2119 struct ieee80211com *ic = &sc->sc_ic; 2120 int err; 2121 2122 err = ieee80211_ioctl(ic, wq, mp); 2123 RAL_LOCK(sc); 2124 if (err == ENETRESET) { 2125 if (RAL_IS_RUNNING(sc)) { 2126 RAL_UNLOCK(sc); 2127 (void) rum_init(sc); 2128 (void) ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 2129 RAL_LOCK(sc); 2130 } 2131 } 2132 RAL_UNLOCK(sc); 2133 } 2134 2135 static int 2136 rum_m_stat(void *arg, uint_t stat, uint64_t *val) 2137 { 2138 struct rum_softc *sc = (struct rum_softc *)arg; 2139 ieee80211com_t *ic = &sc->sc_ic; 2140 ieee80211_node_t *ni; 2141 struct ieee80211_rateset *rs; 2142 2143 RAL_LOCK(sc); 2144 2145 ni = ic->ic_bss; 2146 rs = &ni->in_rates; 2147 2148 switch (stat) { 2149 case MAC_STAT_IFSPEED: 2150 *val = ((ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) ? 2151 (rs->ir_rates[ni->in_txrate] & IEEE80211_RATE_VAL) 2152 : ic->ic_fixed_rate) * 500000ull; 2153 break; 2154 case MAC_STAT_NOXMTBUF: 2155 *val = sc->sc_tx_nobuf; 2156 break; 2157 case MAC_STAT_NORCVBUF: 2158 *val = sc->sc_rx_nobuf; 2159 break; 2160 case MAC_STAT_IERRORS: 2161 *val = sc->sc_rx_err; 2162 break; 2163 case MAC_STAT_RBYTES: 2164 *val = ic->ic_stats.is_rx_bytes; 2165 break; 2166 case MAC_STAT_IPACKETS: 2167 *val = ic->ic_stats.is_rx_frags; 2168 break; 2169 case MAC_STAT_OBYTES: 2170 *val = ic->ic_stats.is_tx_bytes; 2171 break; 2172 case MAC_STAT_OPACKETS: 2173 *val = ic->ic_stats.is_tx_frags; 2174 break; 2175 case MAC_STAT_OERRORS: 2176 case WIFI_STAT_TX_FAILED: 2177 *val = sc->sc_tx_err; 2178 break; 2179 case WIFI_STAT_TX_RETRANS: 2180 *val = sc->sc_tx_retries; 2181 break; 2182 case WIFI_STAT_FCS_ERRORS: 2183 case WIFI_STAT_WEP_ERRORS: 2184 case WIFI_STAT_TX_FRAGS: 2185 case WIFI_STAT_MCAST_TX: 2186 case WIFI_STAT_RTS_SUCCESS: 2187 case WIFI_STAT_RTS_FAILURE: 2188 case WIFI_STAT_ACK_FAILURE: 2189 case WIFI_STAT_RX_FRAGS: 2190 case WIFI_STAT_MCAST_RX: 2191 case WIFI_STAT_RX_DUPS: 2192 RAL_UNLOCK(sc); 2193 return (ieee80211_stat(ic, stat, val)); 2194 default: 2195 RAL_UNLOCK(sc); 2196 return (ENOTSUP); 2197 } 2198 RAL_UNLOCK(sc); 2199 2200 return (0); 2201 } 2202 2203 static int 2204 rum_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd) 2205 { 2206 struct rum_softc *sc; 2207 struct ieee80211com *ic; 2208 int err, i, ntries; 2209 uint32_t tmp; 2210 int instance; 2211 2212 char strbuf[32]; 2213 2214 wifi_data_t wd = { 0 }; 2215 mac_register_t *macp; 2216 2217 switch (cmd) { 2218 case DDI_ATTACH: 2219 break; 2220 case DDI_RESUME: 2221 sc = ddi_get_soft_state(rum_soft_state_p, 2222 ddi_get_instance(devinfo)); 2223 ASSERT(sc != NULL); 2224 rum_resume(sc); 2225 return (DDI_SUCCESS); 2226 default: 2227 return (DDI_FAILURE); 2228 } 2229 2230 instance = ddi_get_instance(devinfo); 2231 2232 if (ddi_soft_state_zalloc(rum_soft_state_p, instance) != DDI_SUCCESS) { 2233 ral_debug(RAL_DBG_MSG, "rum_attach(): " 2234 "unable to alloc soft_state_p\n"); 2235 return (DDI_FAILURE); 2236 } 2237 2238 sc = ddi_get_soft_state(rum_soft_state_p, instance); 2239 ic = (ieee80211com_t *)&sc->sc_ic; 2240 sc->sc_dev = devinfo; 2241 2242 if (usb_client_attach(devinfo, USBDRV_VERSION, 0) != USB_SUCCESS) { 2243 ral_debug(RAL_DBG_ERR, 2244 "rum_attach(): usb_client_attach failed\n"); 2245 goto fail1; 2246 } 2247 2248 if (usb_get_dev_data(devinfo, &sc->sc_udev, 2249 USB_PARSE_LVL_ALL, 0) != USB_SUCCESS) { 2250 sc->sc_udev = NULL; 2251 goto fail2; 2252 } 2253 2254 mutex_init(&sc->sc_genlock, NULL, MUTEX_DRIVER, NULL); 2255 mutex_init(&sc->tx_lock, NULL, MUTEX_DRIVER, NULL); 2256 mutex_init(&sc->rx_lock, NULL, MUTEX_DRIVER, NULL); 2257 2258 /* retrieve RT2573 rev. no */ 2259 for (ntries = 0; ntries < 1000; ntries++) { 2260 if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0) 2261 break; 2262 drv_usecwait(1000); 2263 } 2264 if (ntries == 1000) { 2265 ral_debug(RAL_DBG_ERR, 2266 "rum_attach(): timeout waiting for chip to settle\n"); 2267 goto fail3; 2268 } 2269 2270 /* retrieve MAC address and various other things from EEPROM */ 2271 rum_read_eeprom(sc); 2272 2273 ral_debug(RAL_DBG_MSG, "rum: MAC/BBP RT2573 (rev 0x%05x), RF %s\n", 2274 tmp, rum_get_rf(sc->rf_rev)); 2275 2276 err = rum_load_microcode(sc); 2277 if (err != USB_SUCCESS) { 2278 ral_debug(RAL_DBG_ERR, "could not load 8051 microcode\n"); 2279 goto fail3; 2280 } 2281 2282 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 2283 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 2284 ic->ic_state = IEEE80211_S_INIT; 2285 2286 ic->ic_maxrssi = 63; 2287 ic->ic_set_shortslot = rum_update_slot; 2288 ic->ic_xmit = rum_send; 2289 2290 /* set device capabilities */ 2291 ic->ic_caps = 2292 IEEE80211_C_TXPMGT | /* tx power management */ 2293 IEEE80211_C_SHPREAMBLE | /* short preamble supported */ 2294 IEEE80211_C_SHSLOT; /* short slot time supported */ 2295 2296 ic->ic_caps |= IEEE80211_C_WPA; /* Support WPA/WPA2 */ 2297 2298 #define IEEE80211_CHAN_A \ 2299 (IEEE80211_CHAN_5GHZ | IEEE80211_CHAN_OFDM) 2300 2301 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) { 2302 /* set supported .11a rates */ 2303 ic->ic_sup_rates[IEEE80211_MODE_11A] = rum_rateset_11a; 2304 2305 /* set supported .11a channels */ 2306 for (i = 34; i <= 46; i += 4) { 2307 ic->ic_sup_channels[i].ich_freq = 2308 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 2309 ic->ic_sup_channels[i].ich_flags = IEEE80211_CHAN_A; 2310 } 2311 for (i = 36; i <= 64; i += 4) { 2312 ic->ic_sup_channels[i].ich_freq = 2313 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 2314 ic->ic_sup_channels[i].ich_flags = IEEE80211_CHAN_A; 2315 } 2316 for (i = 100; i <= 140; i += 4) { 2317 ic->ic_sup_channels[i].ich_freq = 2318 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 2319 ic->ic_sup_channels[i].ich_flags = IEEE80211_CHAN_A; 2320 } 2321 for (i = 149; i <= 165; i += 4) { 2322 ic->ic_sup_channels[i].ich_freq = 2323 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 2324 ic->ic_sup_channels[i].ich_flags = IEEE80211_CHAN_A; 2325 } 2326 } 2327 2328 /* set supported .11b and .11g rates */ 2329 ic->ic_sup_rates[IEEE80211_MODE_11B] = rum_rateset_11b; 2330 ic->ic_sup_rates[IEEE80211_MODE_11G] = rum_rateset_11g; 2331 2332 /* set supported .11b and .11g channels (1 through 14) */ 2333 for (i = 1; i <= 14; i++) { 2334 ic->ic_sup_channels[i].ich_freq = 2335 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); 2336 ic->ic_sup_channels[i].ich_flags = 2337 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | 2338 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 2339 } 2340 2341 ieee80211_attach(ic); 2342 2343 /* register WPA door */ 2344 ieee80211_register_door(ic, ddi_driver_name(devinfo), 2345 ddi_get_instance(devinfo)); 2346 2347 /* override state transition machine */ 2348 sc->sc_newstate = ic->ic_newstate; 2349 ic->ic_newstate = rum_newstate; 2350 ic->ic_watchdog = rum_watchdog; 2351 ieee80211_media_init(ic); 2352 ic->ic_def_txkey = 0; 2353 2354 sc->sc_rcr = 0; 2355 sc->dwelltime = 300; 2356 sc->sc_flags = 0; 2357 2358 /* 2359 * Provide initial settings for the WiFi plugin; whenever this 2360 * information changes, we need to call mac_plugindata_update() 2361 */ 2362 wd.wd_opmode = ic->ic_opmode; 2363 wd.wd_secalloc = WIFI_SEC_NONE; 2364 IEEE80211_ADDR_COPY(wd.wd_bssid, ic->ic_bss->in_bssid); 2365 2366 if ((macp = mac_alloc(MAC_VERSION)) == NULL) { 2367 ral_debug(RAL_DBG_ERR, "rum_attach(): " 2368 "MAC version mismatch\n"); 2369 goto fail3; 2370 } 2371 2372 macp->m_type_ident = MAC_PLUGIN_IDENT_WIFI; 2373 macp->m_driver = sc; 2374 macp->m_dip = devinfo; 2375 macp->m_src_addr = ic->ic_macaddr; 2376 macp->m_callbacks = &rum_m_callbacks; 2377 macp->m_min_sdu = 0; 2378 macp->m_max_sdu = IEEE80211_MTU; 2379 macp->m_pdata = &wd; 2380 macp->m_pdata_size = sizeof (wd); 2381 2382 err = mac_register(macp, &ic->ic_mach); 2383 mac_free(macp); 2384 if (err != 0) { 2385 ral_debug(RAL_DBG_ERR, "rum_attach(): " 2386 "mac_register() err %x\n", err); 2387 goto fail3; 2388 } 2389 2390 if (usb_register_hotplug_cbs(devinfo, rum_disconnect, 2391 rum_reconnect) != USB_SUCCESS) { 2392 ral_debug(RAL_DBG_ERR, 2393 "rum_attach() failed to register events"); 2394 goto fail4; 2395 } 2396 2397 /* 2398 * Create minor node of type DDI_NT_NET_WIFI 2399 */ 2400 (void) snprintf(strbuf, sizeof (strbuf), "%s%d", 2401 "rum", instance); 2402 err = ddi_create_minor_node(devinfo, strbuf, S_IFCHR, 2403 instance + 1, DDI_NT_NET_WIFI, 0); 2404 2405 if (err != DDI_SUCCESS) 2406 ral_debug(RAL_DBG_ERR, "ddi_create_minor_node() failed\n"); 2407 2408 /* 2409 * Notify link is down now 2410 */ 2411 mac_link_update(ic->ic_mach, LINK_STATE_DOWN); 2412 return (DDI_SUCCESS); 2413 2414 fail4: 2415 (void) mac_unregister(ic->ic_mach); 2416 fail3: 2417 mutex_destroy(&sc->sc_genlock); 2418 mutex_destroy(&sc->tx_lock); 2419 mutex_destroy(&sc->rx_lock); 2420 fail2: 2421 usb_client_detach(sc->sc_dev, sc->sc_udev); 2422 fail1: 2423 ddi_soft_state_free(rum_soft_state_p, ddi_get_instance(devinfo)); 2424 2425 return (DDI_FAILURE); 2426 } 2427 2428 static int 2429 rum_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd) 2430 { 2431 struct rum_softc *sc; 2432 2433 sc = ddi_get_soft_state(rum_soft_state_p, ddi_get_instance(devinfo)); 2434 ASSERT(sc != NULL); 2435 2436 switch (cmd) { 2437 case DDI_DETACH: 2438 break; 2439 case DDI_SUSPEND: 2440 if (RAL_IS_RUNNING(sc)) 2441 (void) rum_stop(sc); 2442 return (DDI_SUCCESS); 2443 default: 2444 return (DDI_FAILURE); 2445 } 2446 2447 rum_stop(sc); 2448 usb_unregister_hotplug_cbs(devinfo); 2449 2450 /* 2451 * Unregister from the MAC layer subsystem 2452 */ 2453 if (mac_unregister(sc->sc_ic.ic_mach) != 0) 2454 return (DDI_FAILURE); 2455 2456 /* 2457 * detach ieee80211 layer 2458 */ 2459 ieee80211_detach(&sc->sc_ic); 2460 2461 mutex_destroy(&sc->sc_genlock); 2462 mutex_destroy(&sc->tx_lock); 2463 mutex_destroy(&sc->rx_lock); 2464 2465 /* pipes will be closed in rum_stop() */ 2466 usb_client_detach(devinfo, sc->sc_udev); 2467 sc->sc_udev = NULL; 2468 2469 ddi_remove_minor_node(devinfo, NULL); 2470 ddi_soft_state_free(rum_soft_state_p, ddi_get_instance(devinfo)); 2471 2472 return (DDI_SUCCESS); 2473 } 2474 2475 int 2476 _info(struct modinfo *modinfop) 2477 { 2478 return (mod_info(&modlinkage, modinfop)); 2479 } 2480 2481 int 2482 _init(void) 2483 { 2484 int status; 2485 2486 status = ddi_soft_state_init(&rum_soft_state_p, 2487 sizeof (struct rum_softc), 1); 2488 if (status != 0) 2489 return (status); 2490 2491 mac_init_ops(&rum_dev_ops, "rum"); 2492 status = mod_install(&modlinkage); 2493 if (status != 0) { 2494 mac_fini_ops(&rum_dev_ops); 2495 ddi_soft_state_fini(&rum_soft_state_p); 2496 } 2497 return (status); 2498 } 2499 2500 int 2501 _fini(void) 2502 { 2503 int status; 2504 2505 status = mod_remove(&modlinkage); 2506 if (status == 0) { 2507 mac_fini_ops(&rum_dev_ops); 2508 ddi_soft_state_fini(&rum_soft_state_p); 2509 } 2510 return (status); 2511 }