1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 25 /* All Rights Reserved */ 26 27 28 29 /* 30 * Pseudo Terminal Master Driver. 31 * 32 * The pseudo-tty subsystem simulates a terminal connection, where the master 33 * side represents the terminal and the slave represents the user process's 34 * special device end point. The master device is set up as a cloned device 35 * where its major device number is the major for the clone device and its minor 36 * device number is the major for the ptm driver. There are no nodes in the file 37 * system for master devices. The master pseudo driver is opened using the 38 * open(2) system call with /dev/ptmx as the device parameter. The clone open 39 * finds the next available minor device for the ptm major device. 40 * 41 * A master device is available only if it and its corresponding slave device 42 * are not already open. When the master device is opened, the corresponding 43 * slave device is automatically locked out. Only one open is allowed on a 44 * master device. Multiple opens are allowed on the slave device. After both 45 * the master and slave have been opened, the user has two file descriptors 46 * which are the end points of a full duplex connection composed of two streams 47 * which are automatically connected at the master and slave drivers. The user 48 * may then push modules onto either side of the stream pair. 49 * 50 * The master and slave drivers pass all messages to their adjacent queues. 51 * Only the M_FLUSH needs some processing. Because the read queue of one side 52 * is connected to the write queue of the other, the FLUSHR flag is changed to 53 * the FLUSHW flag and vice versa. When the master device is closed an M_HANGUP 54 * message is sent to the slave device which will render the device 55 * unusable. The process on the slave side gets the EIO when attempting to write 56 * on that stream but it will be able to read any data remaining on the stream 57 * head read queue. When all the data has been read, read() returns 0 58 * indicating that the stream can no longer be used. On the last close of the 59 * slave device, a 0-length message is sent to the master device. When the 60 * application on the master side issues a read() or getmsg() and 0 is returned, 61 * the user of the master device decides whether to issue a close() that 62 * dismantles the pseudo-terminal subsystem. If the master device is not closed, 63 * the pseudo-tty subsystem will be available to another user to open the slave 64 * device. 65 * 66 * If O_NONBLOCK or O_NDELAY is set, read on the master side returns -1 with 67 * errno set to EAGAIN if no data is available, and write returns -1 with errno 68 * set to EAGAIN if there is internal flow control. 69 * 70 * IOCTLS: 71 * 72 * ISPTM: determines whether the file descriptor is that of an open master 73 * device. Return code of zero indicates that the file descriptor 74 * represents master device. 75 * 76 * UNLKPT: unlocks the master and slave devices. It returns 0 on success. On 77 * failure, the errno is set to EINVAL indicating that the master 78 * device is not open. 79 * 80 * ZONEPT: sets the zone membership of the associated pts device. 81 * 82 * GRPPT: sets the group owner of the associated pts device. 83 * 84 * Synchronization: 85 * 86 * All global data synchronization between ptm/pts is done via global 87 * ptms_lock mutex which is initialized at system boot time from 88 * ptms_initspace (called from space.c). 89 * 90 * Individual fields of pt_ttys structure (except ptm_rdq, pts_rdq and 91 * pt_nullmsg) are protected by pt_ttys.pt_lock mutex. 92 * 93 * PT_ENTER_READ/PT_ENTER_WRITE are reference counter based read-write locks 94 * which allow reader locks to be reacquired by the same thread (usual 95 * reader/writer locks can't be used for that purpose since it is illegal for 96 * a thread to acquire a lock it already holds, even as a reader). The sole 97 * purpose of these macros is to guarantee that the peer queue will not 98 * disappear (due to closing peer) while it is used. It is safe to use 99 * PT_ENTER_READ/PT_EXIT_READ brackets across calls like putq/putnext (since 100 * they are not real locks but reference counts). 101 * 102 * PT_ENTER_WRITE/PT_EXIT_WRITE brackets are used ONLY in master/slave 103 * open/close paths to modify ptm_rdq and pts_rdq fields. These fields should 104 * be set to appropriate queues *after* qprocson() is called during open (to 105 * prevent peer from accessing the queue with incomplete plumbing) and set to 106 * NULL before qprocsoff() is called during close. 107 * 108 * The pt_nullmsg field is only used in open/close routines and it is also 109 * protected by PT_ENTER_WRITE/PT_EXIT_WRITE brackets to avoid extra mutex 110 * holds. 111 * 112 * Lock Ordering: 113 * 114 * If both ptms_lock and per-pty lock should be held, ptms_lock should always 115 * be entered first, followed by per-pty lock. 116 * 117 * See ptms.h, pts.c and ptms_conf.c for more information. 118 */ 119 120 #include <sys/types.h> 121 #include <sys/param.h> 122 #include <sys/file.h> 123 #include <sys/sysmacros.h> 124 #include <sys/stream.h> 125 #include <sys/stropts.h> 126 #include <sys/proc.h> 127 #include <sys/errno.h> 128 #include <sys/debug.h> 129 #include <sys/cmn_err.h> 130 #include <sys/ptms.h> 131 #include <sys/stat.h> 132 #include <sys/strsun.h> 133 #include <sys/systm.h> 134 #include <sys/modctl.h> 135 #include <sys/conf.h> 136 #include <sys/ddi.h> 137 #include <sys/sunddi.h> 138 #include <sys/zone.h> 139 140 #ifdef DEBUG 141 int ptm_debug = 0; 142 #define DBG(a) if (ptm_debug) cmn_err(CE_NOTE, a) 143 #else 144 #define DBG(a) 145 #endif 146 147 static int ptmopen(queue_t *, dev_t *, int, int, cred_t *); 148 static int ptmclose(queue_t *, int, cred_t *); 149 static void ptmwput(queue_t *, mblk_t *); 150 static void ptmrsrv(queue_t *); 151 static void ptmwsrv(queue_t *); 152 153 /* 154 * Master Stream Pseudo Terminal Module: stream data structure definitions 155 */ 156 157 static struct module_info ptm_info = { 158 0xdead, 159 "ptm", 160 0, 161 512, 162 512, 163 128 164 }; 165 166 static struct qinit ptmrint = { 167 NULL, 168 (int (*)()) ptmrsrv, 169 ptmopen, 170 ptmclose, 171 NULL, 172 &ptm_info, 173 NULL 174 }; 175 176 static struct qinit ptmwint = { 177 (int (*)()) ptmwput, 178 (int (*)()) ptmwsrv, 179 NULL, 180 NULL, 181 NULL, 182 &ptm_info, 183 NULL 184 }; 185 186 static struct streamtab ptminfo = { 187 &ptmrint, 188 &ptmwint, 189 NULL, 190 NULL 191 }; 192 193 static int ptm_attach(dev_info_t *, ddi_attach_cmd_t); 194 static int ptm_detach(dev_info_t *, ddi_detach_cmd_t); 195 static int ptm_devinfo(dev_info_t *, ddi_info_cmd_t, void *, void **); 196 197 static dev_info_t *ptm_dip; /* private devinfo pointer */ 198 199 /* 200 * this will define (struct cb_ops cb_ptm_ops) and (struct dev_ops ptm_ops) 201 */ 202 DDI_DEFINE_STREAM_OPS(ptm_ops, nulldev, nulldev, ptm_attach, ptm_detach, 203 nodev, ptm_devinfo, D_MP, &ptminfo, ddi_quiesce_not_supported); 204 205 /* 206 * Module linkage information for the kernel. 207 */ 208 209 static struct modldrv modldrv = { 210 &mod_driverops, /* Type of module. This one is a pseudo driver */ 211 "Master streams driver 'ptm'", 212 &ptm_ops, /* driver ops */ 213 }; 214 215 static struct modlinkage modlinkage = { 216 MODREV_1, 217 { &modldrv, NULL } 218 }; 219 220 int 221 _init(void) 222 { 223 int rc; 224 225 if ((rc = mod_install(&modlinkage)) == 0) 226 ptms_init(); 227 return (rc); 228 } 229 230 int 231 _fini(void) 232 { 233 return (mod_remove(&modlinkage)); 234 } 235 236 int 237 _info(struct modinfo *modinfop) 238 { 239 return (mod_info(&modlinkage, modinfop)); 240 } 241 242 static int 243 ptm_attach(dev_info_t *devi, ddi_attach_cmd_t cmd) 244 { 245 if (cmd != DDI_ATTACH) 246 return (DDI_FAILURE); 247 248 if (ddi_create_minor_node(devi, "ptmajor", S_IFCHR, 249 0, DDI_PSEUDO, NULL) == DDI_FAILURE) { 250 ddi_remove_minor_node(devi, NULL); 251 return (DDI_FAILURE); 252 } 253 if (ddi_create_minor_node(devi, "ptmx", S_IFCHR, 254 0, DDI_PSEUDO, CLONE_DEV) == DDI_FAILURE) { 255 ddi_remove_minor_node(devi, NULL); 256 return (DDI_FAILURE); 257 } 258 ptm_dip = devi; 259 260 return (DDI_SUCCESS); 261 } 262 263 static int 264 ptm_detach(dev_info_t *devi, ddi_detach_cmd_t cmd) 265 { 266 if (cmd != DDI_DETACH) 267 return (DDI_FAILURE); 268 269 ddi_remove_minor_node(devi, NULL); 270 return (DDI_SUCCESS); 271 } 272 273 /*ARGSUSED*/ 274 static int 275 ptm_devinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, 276 void **result) 277 { 278 int error; 279 280 switch (infocmd) { 281 case DDI_INFO_DEVT2DEVINFO: 282 if (ptm_dip == NULL) { 283 error = DDI_FAILURE; 284 } else { 285 *result = (void *)ptm_dip; 286 error = DDI_SUCCESS; 287 } 288 break; 289 case DDI_INFO_DEVT2INSTANCE: 290 *result = (void *)0; 291 error = DDI_SUCCESS; 292 break; 293 default: 294 error = DDI_FAILURE; 295 } 296 return (error); 297 } 298 299 300 /* ARGSUSED */ 301 /* 302 * Open a minor of the master device. Store the write queue pointer and set the 303 * pt_state field to (PTMOPEN | PTLOCK). 304 * This code will work properly with both clone opens and direct opens of the 305 * master device. 306 */ 307 static int 308 ptmopen( 309 queue_t *rqp, /* pointer to the read side queue */ 310 dev_t *devp, /* pointer to stream tail's dev */ 311 int oflag, /* the user open(2) supplied flags */ 312 int sflag, /* open state flag */ 313 cred_t *credp) /* credentials */ 314 { 315 struct pt_ttys *ptmp; 316 mblk_t *mop; /* ptr to a setopts message block */ 317 struct stroptions *sop; 318 minor_t dminor = getminor(*devp); 319 320 /* Allow reopen */ 321 if (rqp->q_ptr != NULL) 322 return (0); 323 324 if (sflag & MODOPEN) 325 return (ENXIO); 326 327 if (!(sflag & CLONEOPEN) && dminor != 0) { 328 /* 329 * This is a direct open to specific master device through an 330 * artificially created entry with specific minor in 331 * /dev/directory. Such behavior is not supported. 332 */ 333 return (ENXIO); 334 } 335 336 /* 337 * The master open requires that the slave be attached 338 * before it returns so that attempts to open the slave will 339 * succeeed 340 */ 341 if (ptms_attach_slave() != 0) { 342 return (ENXIO); 343 } 344 345 mop = allocb(sizeof (struct stroptions), BPRI_MED); 346 if (mop == NULL) { 347 DDBG("ptmopen(): mop allocation failed\n", 0); 348 return (ENOMEM); 349 } 350 351 if ((ptmp = pt_ttys_alloc()) == NULL) { 352 DDBG("ptmopen(): pty allocation failed\n", 0); 353 freemsg(mop); 354 return (ENOMEM); 355 } 356 357 dminor = ptmp->pt_minor; 358 359 DDBGP("ptmopen(): allocated ptmp %p\n", (uintptr_t)ptmp); 360 DDBG("ptmopen(): allocated minor %d\n", dminor); 361 362 WR(rqp)->q_ptr = rqp->q_ptr = ptmp; 363 364 qprocson(rqp); 365 366 /* Allow slave to send messages to master */ 367 PT_ENTER_WRITE(ptmp); 368 ptmp->ptm_rdq = rqp; 369 PT_EXIT_WRITE(ptmp); 370 371 /* 372 * set up hi/lo water marks on stream head read queue 373 * and add controlling tty if not set 374 */ 375 mop->b_datap->db_type = M_SETOPTS; 376 mop->b_wptr += sizeof (struct stroptions); 377 sop = (struct stroptions *)mop->b_rptr; 378 if (oflag & FNOCTTY) 379 sop->so_flags = SO_HIWAT | SO_LOWAT; 380 else 381 sop->so_flags = SO_HIWAT | SO_LOWAT | SO_ISTTY; 382 sop->so_hiwat = 512; 383 sop->so_lowat = 256; 384 putnext(rqp, mop); 385 386 /* 387 * The input, devp, is a major device number, the output is put 388 * into the same parm as a major,minor pair. 389 */ 390 *devp = makedevice(getmajor(*devp), dminor); 391 392 return (0); 393 } 394 395 396 /* 397 * Find the address to private data identifying the slave's write queue. 398 * Send a hang-up message up the slave's read queue to designate the 399 * master/slave pair is tearing down. Uattach the master and slave by 400 * nulling out the write queue fields in the private data structure. 401 * Finally, unlock the master/slave pair and mark the master as closed. 402 */ 403 /*ARGSUSED1*/ 404 static int 405 ptmclose(queue_t *rqp, int flag, cred_t *credp) 406 { 407 struct pt_ttys *ptmp; 408 queue_t *pts_rdq; 409 410 ASSERT(rqp->q_ptr); 411 412 ptmp = (struct pt_ttys *)rqp->q_ptr; 413 PT_ENTER_READ(ptmp); 414 if (ptmp->pts_rdq) { 415 pts_rdq = ptmp->pts_rdq; 416 if (pts_rdq->q_next) { 417 DBG(("send hangup message to slave\n")); 418 (void) putnextctl(pts_rdq, M_HANGUP); 419 } 420 } 421 PT_EXIT_READ(ptmp); 422 /* 423 * ptm_rdq should be cleared before call to qprocsoff() to prevent pts 424 * write procedure to attempt using ptm_rdq after qprocsoff. 425 */ 426 PT_ENTER_WRITE(ptmp); 427 ptmp->ptm_rdq = NULL; 428 freemsg(ptmp->pt_nullmsg); 429 ptmp->pt_nullmsg = NULL; 430 /* 431 * qenable slave side write queue so that it can flush 432 * its messages as master's read queue is going away 433 */ 434 if (ptmp->pts_rdq) 435 qenable(WR(ptmp->pts_rdq)); 436 PT_EXIT_WRITE(ptmp); 437 438 qprocsoff(rqp); 439 440 /* Finish the close */ 441 rqp->q_ptr = NULL; 442 WR(rqp)->q_ptr = NULL; 443 444 ptms_close(ptmp, PTMOPEN | PTLOCK); 445 446 return (0); 447 } 448 449 /* 450 * The wput procedure will only handle ioctl and flush messages. 451 */ 452 static void 453 ptmwput(queue_t *qp, mblk_t *mp) 454 { 455 struct pt_ttys *ptmp; 456 struct iocblk *iocp; 457 458 DBG(("entering ptmwput\n")); 459 ASSERT(qp->q_ptr); 460 461 ptmp = (struct pt_ttys *)qp->q_ptr; 462 PT_ENTER_READ(ptmp); 463 464 switch (mp->b_datap->db_type) { 465 /* 466 * if write queue request, flush master's write 467 * queue and send FLUSHR up slave side. If read 468 * queue request, convert to FLUSHW and putnext(). 469 */ 470 case M_FLUSH: 471 { 472 unsigned char flush_flg = 0; 473 474 DBG(("ptm got flush request\n")); 475 if (*mp->b_rptr & FLUSHW) { 476 DBG(("got FLUSHW, flush ptm write Q\n")); 477 if (*mp->b_rptr & FLUSHBAND) 478 /* 479 * if it is a FLUSHBAND, do flushband. 480 */ 481 flushband(qp, *(mp->b_rptr + 1), 482 FLUSHDATA); 483 else 484 flushq(qp, FLUSHDATA); 485 flush_flg = (*mp->b_rptr & ~FLUSHW) | FLUSHR; 486 } 487 if (*mp->b_rptr & FLUSHR) { 488 DBG(("got FLUSHR, set FLUSHW\n")); 489 flush_flg |= (*mp->b_rptr & ~FLUSHR) | FLUSHW; 490 } 491 if (flush_flg != 0 && ptmp->pts_rdq && 492 !(ptmp->pt_state & PTLOCK)) { 493 DBG(("putnext to pts\n")); 494 *mp->b_rptr = flush_flg; 495 putnext(ptmp->pts_rdq, mp); 496 } else 497 freemsg(mp); 498 break; 499 } 500 501 case M_IOCTL: 502 iocp = (struct iocblk *)mp->b_rptr; 503 switch (iocp->ioc_cmd) { 504 default: 505 if ((ptmp->pt_state & PTLOCK) || 506 (ptmp->pts_rdq == NULL)) { 507 DBG(("got M_IOCTL but no slave\n")); 508 miocnak(qp, mp, 0, EINVAL); 509 PT_EXIT_READ(ptmp); 510 return; 511 } 512 (void) putq(qp, mp); 513 break; 514 case UNLKPT: 515 mutex_enter(&ptmp->pt_lock); 516 ptmp->pt_state &= ~PTLOCK; 517 mutex_exit(&ptmp->pt_lock); 518 /*FALLTHROUGH*/ 519 case ISPTM: 520 DBG(("ack the UNLKPT/ISPTM\n")); 521 miocack(qp, mp, 0, 0); 522 break; 523 case ZONEPT: 524 { 525 zoneid_t z; 526 int error; 527 528 if ((error = drv_priv(iocp->ioc_cr)) != 0) { 529 miocnak(qp, mp, 0, error); 530 break; 531 } 532 if ((error = miocpullup(mp, sizeof (zoneid_t))) != 0) { 533 miocnak(qp, mp, 0, error); 534 break; 535 } 536 z = *((zoneid_t *)mp->b_cont->b_rptr); 537 if (z < MIN_ZONEID || z > MAX_ZONEID) { 538 miocnak(qp, mp, 0, EINVAL); 539 break; 540 } 541 542 mutex_enter(&ptmp->pt_lock); 543 ptmp->pt_zoneid = z; 544 mutex_exit(&ptmp->pt_lock); 545 miocack(qp, mp, 0, 0); 546 break; 547 } 548 case OWNERPT: 549 { 550 pt_own_t *ptop; 551 int error; 552 zone_t *zone; 553 554 if ((error = miocpullup(mp, sizeof (pt_own_t))) != 0) { 555 miocnak(qp, mp, 0, error); 556 break; 557 } 558 559 zone = zone_find_by_id(ptmp->pt_zoneid); 560 ptop = (pt_own_t *)mp->b_cont->b_rptr; 561 562 if (!VALID_UID(ptop->pto_ruid, zone) || 563 !VALID_GID(ptop->pto_rgid, zone)) { 564 zone_rele(zone); 565 miocnak(qp, mp, 0, EINVAL); 566 break; 567 } 568 zone_rele(zone); 569 mutex_enter(&ptmp->pt_lock); 570 ptmp->pt_ruid = ptop->pto_ruid; 571 ptmp->pt_rgid = ptop->pto_rgid; 572 mutex_exit(&ptmp->pt_lock); 573 miocack(qp, mp, 0, 0); 574 break; 575 } 576 } 577 break; 578 579 case M_READ: 580 /* Caused by ldterm - can not pass to slave */ 581 freemsg(mp); 582 break; 583 584 /* 585 * send other messages to slave 586 */ 587 default: 588 if ((ptmp->pt_state & PTLOCK) || (ptmp->pts_rdq == NULL)) { 589 DBG(("got msg. but no slave\n")); 590 mp = mexchange(NULL, mp, 2, M_ERROR, -1); 591 if (mp != NULL) { 592 mp->b_rptr[0] = NOERROR; 593 mp->b_rptr[1] = EINVAL; 594 qreply(qp, mp); 595 } 596 PT_EXIT_READ(ptmp); 597 return; 598 } 599 DBG(("put msg on master's write queue\n")); 600 (void) putq(qp, mp); 601 break; 602 } 603 DBG(("return from ptmwput()\n")); 604 PT_EXIT_READ(ptmp); 605 } 606 607 608 /* 609 * enable the write side of the slave. This triggers the 610 * slave to send any messages queued on its write side to 611 * the read side of this master. 612 */ 613 static void 614 ptmrsrv(queue_t *qp) 615 { 616 struct pt_ttys *ptmp; 617 618 DBG(("entering ptmrsrv\n")); 619 ASSERT(qp->q_ptr); 620 621 ptmp = (struct pt_ttys *)qp->q_ptr; 622 PT_ENTER_READ(ptmp); 623 if (ptmp->pts_rdq) { 624 qenable(WR(ptmp->pts_rdq)); 625 } 626 PT_EXIT_READ(ptmp); 627 DBG(("leaving ptmrsrv\n")); 628 } 629 630 631 /* 632 * If there are messages on this queue that can be sent to 633 * slave, send them via putnext(). Else, if queued messages 634 * cannot be sent, leave them on this queue. If priority 635 * messages on this queue, send them to slave no matter what. 636 */ 637 static void 638 ptmwsrv(queue_t *qp) 639 { 640 struct pt_ttys *ptmp; 641 mblk_t *mp; 642 643 DBG(("entering ptmwsrv\n")); 644 ASSERT(qp->q_ptr); 645 646 ptmp = (struct pt_ttys *)qp->q_ptr; 647 648 if ((mp = getq(qp)) == NULL) { 649 /* If there are no messages there's nothing to do. */ 650 DBG(("leaving ptmwsrv (no messages)\n")); 651 return; 652 } 653 654 PT_ENTER_READ(ptmp); 655 if ((ptmp->pt_state & PTLOCK) || (ptmp->pts_rdq == NULL)) { 656 DBG(("in master write srv proc but no slave\n")); 657 /* 658 * Free messages on the write queue and send 659 * NAK for any M_IOCTL type messages to wakeup 660 * the user process waiting for ACK/NAK from 661 * the ioctl invocation 662 */ 663 do { 664 if (mp->b_datap->db_type == M_IOCTL) 665 miocnak(qp, mp, 0, EINVAL); 666 else 667 freemsg(mp); 668 } while ((mp = getq(qp)) != NULL); 669 flushq(qp, FLUSHALL); 670 671 mp = mexchange(NULL, NULL, 2, M_ERROR, -1); 672 if (mp != NULL) { 673 mp->b_rptr[0] = NOERROR; 674 mp->b_rptr[1] = EINVAL; 675 qreply(qp, mp); 676 } 677 PT_EXIT_READ(ptmp); 678 return; 679 } 680 /* 681 * while there are messages on this write queue... 682 */ 683 do { 684 /* 685 * if don't have control message and cannot put 686 * msg. on slave's read queue, put it back on 687 * this queue. 688 */ 689 if (mp->b_datap->db_type <= QPCTL && 690 !bcanputnext(ptmp->pts_rdq, mp->b_band)) { 691 DBG(("put msg. back on queue\n")); 692 (void) putbq(qp, mp); 693 break; 694 } 695 /* 696 * else send the message up slave's stream 697 */ 698 DBG(("send message to slave\n")); 699 putnext(ptmp->pts_rdq, mp); 700 } while ((mp = getq(qp)) != NULL); 701 DBG(("leaving ptmwsrv\n")); 702 PT_EXIT_READ(ptmp); 703 }