1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.
10 */
11
12 /*
13 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
14 */
15
16 /*
17 * blkdev driver for NVMe compliant storage devices
18 *
19 * This driver was written to conform to version 1.0e of the NVMe specification.
20 * It may work with newer versions, but that is completely untested and disabled
21 * by default.
22 *
23 * The driver has only been tested on x86 systems and will not work on big-
24 * endian systems without changes to the code accessing registers and data
25 * structures used by the hardware.
26 *
27 *
28 * Interrupt Usage:
29 *
30 * The driver will use a FIXED interrupt while configuring the device as the
31 * specification requires. Later in the attach process it will switch to MSI-X
32 * or MSI if supported. The driver wants to have one interrupt vector per CPU,
33 * but it will work correctly if less are available. Interrupts can be shared
34 * by queues, the interrupt handler will iterate through the I/O queue array by
35 * steps of n_intr_cnt. Usually only the admin queue will share an interrupt
36 * with one I/O queue. The interrupt handler will retrieve completed commands
37 * from all queues sharing an interrupt vector and will post them to a taskq
38 * for completion processing.
39 *
40 *
41 * Command Processing:
42 *
43 * NVMe devices can have up to 65536 I/O queue pairs, with each queue holding up
44 * to 65536 I/O commands. The driver will configure one I/O queue pair per
45 * available interrupt vector, with the queue length usually much smaller than
46 * the maximum of 65536. If the hardware doesn't provide enough queues, fewer
47 * interrupt vectors will be used.
48 *
49 * Additionally the hardware provides a single special admin queue pair that can
50 * hold up to 4096 admin commands.
51 *
52 * From the hardware perspective both queues of a queue pair are independent,
53 * but they share some driver state: the command array (holding pointers to
54 * commands currently being processed by the hardware) and the active command
55 * counter. Access to the submission side of a queue pair and the shared state
56 * is protected by nq_mutex. The completion side of a queue pair does not need
57 * that protection apart from its access to the shared state; it is called only
58 * in the interrupt handler which does not run concurrently for the same
59 * interrupt vector.
60 *
61 * When a command is submitted to a queue pair the active command counter is
62 * incremented and a pointer to the command is stored in the command array. The
63 * array index is used as command identifier (CID) in the submission queue
64 * entry. Some commands may take a very long time to complete, and if the queue
65 * wraps around in that time a submission may find the next array slot to still
66 * be used by a long-running command. In this case the array is sequentially
67 * searched for the next free slot. The length of the command array is the same
68 * as the configured queue length.
69 *
70 *
71 * Namespace Support:
72 *
73 * NVMe devices can have multiple namespaces, each being a independent data
74 * store. The driver supports multiple namespaces and creates a blkdev interface
75 * for each namespace found. Namespaces can have various attributes to support
76 * thin provisioning, extended LBAs, and protection information. This driver
77 * does not support any of this and ignores namespaces that have these
78 * attributes.
79 *
80 *
81 * Blkdev Interface:
82 *
83 * This driver uses blkdev to do all the heavy lifting involved with presenting
84 * a disk device to the system. As a result, the processing of I/O requests is
85 * relatively simple as blkdev takes care of partitioning, boundary checks, DMA
86 * setup, and splitting of transfers into manageable chunks.
87 *
88 * I/O requests coming in from blkdev are turned into NVM commands and posted to
89 * an I/O queue. The queue is selected by taking the CPU id modulo the number of
90 * queues. There is currently no timeout handling of I/O commands.
91 *
92 * Blkdev also supports querying device/media information and generating a
93 * devid. The driver reports the best block size as determined by the namespace
94 * format back to blkdev as physical block size to support partition and block
95 * alignment. The devid is composed using the device vendor ID, model number,
96 * serial number, and the namespace ID.
97 *
98 *
99 * Error Handling:
100 *
101 * Error handling is currently limited to detecting fatal hardware errors,
102 * either by asynchronous events, or synchronously through command status or
103 * admin command timeouts. In case of severe errors the device is fenced off,
104 * all further requests will return EIO. FMA is then called to fault the device.
105 *
106 * The hardware has a limit for outstanding asynchronous event requests. Before
107 * this limit is known the driver assumes it is at least 1 and posts a single
108 * asynchronous request. Later when the limit is known more asynchronous event
109 * requests are posted to allow quicker reception of error information. When an
110 * asynchronous event is posted by the hardware the driver will parse the error
111 * status fields and log information or fault the device, depending on the
112 * severity of the asynchronous event. The asynchronous event request is then
113 * reused and posted to the admin queue again.
114 *
115 * On command completion the command status is checked for errors. In case of
116 * errors indicating a driver bug the driver panics. Almost all other error
117 * status values just cause EIO to be returned.
118 *
119 * Command timeouts are currently detected for all admin commands except
120 * asynchronous event requests. If a command times out and the hardware appears
121 * to be healthy the driver attempts to abort the command. If this fails the
122 * driver assumes the device to be dead, fences it off, and calls FMA to retire
123 * it. In general admin commands are issued at attach time only. No timeout
124 * handling of normal I/O commands is presently done.
125 *
126 * In some cases it may be possible that the ABORT command times out, too. In
127 * that case the device is also declared dead and fenced off.
128 *
129 *
130 * Quiesce / Fast Reboot:
131 *
132 * The driver currently does not support fast reboot. A quiesce(9E) entry point
133 * is still provided which is used to send a shutdown notification to the
134 * device.
135 *
136 *
137 * Driver Configuration:
138 *
139 * The following driver properties can be changed to control some aspects of the
140 * drivers operation:
141 * - strict-version: can be set to 0 to allow devices conforming to newer
142 * versions to be used
143 * - ignore-unknown-vendor-status: can be set to 1 to not handle any vendor
144 * specific command status as a fatal error leading device faulting
145 * - admin-queue-len: the maximum length of the admin queue (16-4096)
146 * - io-queue-len: the maximum length of the I/O queues (16-65536)
147 * - async-event-limit: the maximum number of asynchronous event requests to be
148 * posted by the driver
149 *
150 *
151 * TODO:
152 * - figure out sane default for I/O queue depth reported to blkdev
153 * - polled I/O support to support kernel core dumping
154 * - FMA handling of media errors
155 * - support for the Volatile Write Cache
156 * - support for devices supporting very large I/O requests using chained PRPs
157 * - support for querying log pages from user space
158 * - support for configuring hardware parameters like interrupt coalescing
159 * - support for media formatting and hard partitioning into namespaces
160 * - support for big-endian systems
161 * - support for fast reboot
162 */
163
164 #include <sys/byteorder.h>
165 #ifdef _BIG_ENDIAN
166 #error nvme driver needs porting for big-endian platforms
167 #endif
168
169 #include <sys/modctl.h>
170 #include <sys/conf.h>
171 #include <sys/devops.h>
172 #include <sys/ddi.h>
173 #include <sys/sunddi.h>
174 #include <sys/bitmap.h>
175 #include <sys/sysmacros.h>
176 #include <sys/param.h>
177 #include <sys/varargs.h>
178 #include <sys/cpuvar.h>
179 #include <sys/disp.h>
180 #include <sys/blkdev.h>
181 #include <sys/atomic.h>
182 #include <sys/archsystm.h>
183 #include <sys/sata/sata_hba.h>
184
185 #include "nvme_reg.h"
186 #include "nvme_var.h"
187
188
189 /* NVMe spec version supported */
190 static const int nvme_version_major = 1;
191 static const int nvme_version_minor = 0;
192
193 static int nvme_attach(dev_info_t *, ddi_attach_cmd_t);
194 static int nvme_detach(dev_info_t *, ddi_detach_cmd_t);
195 static int nvme_quiesce(dev_info_t *);
196 static int nvme_fm_errcb(dev_info_t *, ddi_fm_error_t *, const void *);
197 static void nvme_disable_interrupts(nvme_t *);
198 static int nvme_enable_interrupts(nvme_t *);
199 static int nvme_setup_interrupts(nvme_t *, int, int);
200 static void nvme_release_interrupts(nvme_t *);
201 static uint_t nvme_intr(caddr_t, caddr_t);
202
203 static void nvme_shutdown(nvme_t *, int, boolean_t);
204 static boolean_t nvme_reset(nvme_t *, boolean_t);
205 static int nvme_init(nvme_t *);
206 static nvme_cmd_t *nvme_alloc_cmd(nvme_t *, int);
207 static void nvme_free_cmd(nvme_cmd_t *);
208 static nvme_cmd_t *nvme_create_nvm_cmd(nvme_namespace_t *, uint8_t,
209 bd_xfer_t *);
210 static int nvme_admin_cmd(nvme_cmd_t *, int);
211 static int nvme_submit_cmd(nvme_qpair_t *, nvme_cmd_t *);
212 static nvme_cmd_t *nvme_retrieve_cmd(nvme_t *, nvme_qpair_t *);
213 static boolean_t nvme_wait_cmd(nvme_cmd_t *, uint_t);
214 static void nvme_wakeup_cmd(void *);
215 static void nvme_async_event_task(void *);
216
217 static int nvme_check_unknown_cmd_status(nvme_cmd_t *);
218 static int nvme_check_vendor_cmd_status(nvme_cmd_t *);
219 static int nvme_check_integrity_cmd_status(nvme_cmd_t *);
220 static int nvme_check_specific_cmd_status(nvme_cmd_t *);
221 static int nvme_check_generic_cmd_status(nvme_cmd_t *);
222 static inline int nvme_check_cmd_status(nvme_cmd_t *);
223
224 static void nvme_abort_cmd(nvme_cmd_t *);
225 static int nvme_async_event(nvme_t *);
226 static void *nvme_get_logpage(nvme_t *, uint8_t, ...);
227 static void *nvme_identify(nvme_t *, uint32_t);
228 static int nvme_set_nqueues(nvme_t *, uint16_t);
229
230 static void nvme_free_dma(nvme_dma_t *);
231 static int nvme_zalloc_dma(nvme_t *, size_t, uint_t, ddi_dma_attr_t *,
232 nvme_dma_t **);
233 static int nvme_zalloc_queue_dma(nvme_t *, uint32_t, uint16_t, uint_t,
234 nvme_dma_t **);
235 static void nvme_free_qpair(nvme_qpair_t *);
236 static int nvme_alloc_qpair(nvme_t *, uint32_t, nvme_qpair_t **, int);
237 static int nvme_create_io_qpair(nvme_t *, nvme_qpair_t *, uint16_t);
238
239 static inline void nvme_put64(nvme_t *, uintptr_t, uint64_t);
240 static inline void nvme_put32(nvme_t *, uintptr_t, uint32_t);
241 static inline uint64_t nvme_get64(nvme_t *, uintptr_t);
242 static inline uint32_t nvme_get32(nvme_t *, uintptr_t);
243
244 static boolean_t nvme_check_regs_hdl(nvme_t *);
245 static boolean_t nvme_check_dma_hdl(nvme_dma_t *);
246
247 static int nvme_fill_prp(nvme_cmd_t *, bd_xfer_t *);
248
249 static void nvme_bd_xfer_done(void *);
250 static void nvme_bd_driveinfo(void *, bd_drive_t *);
251 static int nvme_bd_mediainfo(void *, bd_media_t *);
252 static int nvme_bd_cmd(nvme_namespace_t *, bd_xfer_t *, uint8_t);
253 static int nvme_bd_read(void *, bd_xfer_t *);
254 static int nvme_bd_write(void *, bd_xfer_t *);
255 static int nvme_bd_sync(void *, bd_xfer_t *);
256 static int nvme_bd_devid(void *, dev_info_t *, ddi_devid_t *);
257
258 static void nvme_prepare_devid(nvme_t *, uint32_t);
259
260 static void *nvme_state;
261 static kmem_cache_t *nvme_cmd_cache;
262
263 /*
264 * DMA attributes for queue DMA memory
265 *
266 * Queue DMA memory must be page aligned. The maximum length of a queue is
267 * 65536 entries, and an entry can be 64 bytes long.
268 */
269 static ddi_dma_attr_t nvme_queue_dma_attr = {
270 .dma_attr_version = DMA_ATTR_V0,
271 .dma_attr_addr_lo = 0,
272 .dma_attr_addr_hi = 0xffffffffffffffffULL,
273 .dma_attr_count_max = (UINT16_MAX + 1) * sizeof (nvme_sqe_t),
274 .dma_attr_align = 0x1000,
275 .dma_attr_burstsizes = 0x7ff,
276 .dma_attr_minxfer = 0x1000,
277 .dma_attr_maxxfer = (UINT16_MAX + 1) * sizeof (nvme_sqe_t),
278 .dma_attr_seg = 0xffffffffffffffffULL,
279 .dma_attr_sgllen = 1,
280 .dma_attr_granular = 1,
281 .dma_attr_flags = 0,
282 };
283
284 /*
285 * DMA attributes for transfers using Physical Region Page (PRP) entries
286 *
287 * A PRP entry describes one page of DMA memory using the page size specified
288 * in the controller configuration's memory page size register (CC.MPS). It uses
289 * a 64bit base address aligned to this page size. There is no limitation on
290 * chaining PRPs together for arbitrarily large DMA transfers.
291 */
292 static ddi_dma_attr_t nvme_prp_dma_attr = {
293 .dma_attr_version = DMA_ATTR_V0,
294 .dma_attr_addr_lo = 0,
295 .dma_attr_addr_hi = 0xffffffffffffffffULL,
296 .dma_attr_count_max = 0xfff,
297 .dma_attr_align = 0x1000,
298 .dma_attr_burstsizes = 0x7ff,
299 .dma_attr_minxfer = 0x1000,
300 .dma_attr_maxxfer = 0x1000,
301 .dma_attr_seg = 0xffffffffffffffffULL,
302 .dma_attr_sgllen = -1,
303 .dma_attr_granular = 1,
304 .dma_attr_flags = 0,
305 };
306
307 /*
308 * DMA attributes for transfers using scatter/gather lists
309 *
310 * A SGL entry describes a chunk of DMA memory using a 64bit base address and a
311 * 32bit length field. SGL Segment and SGL Last Segment entries require the
312 * length to be a multiple of 16 bytes.
313 */
314 static ddi_dma_attr_t nvme_sgl_dma_attr = {
315 .dma_attr_version = DMA_ATTR_V0,
316 .dma_attr_addr_lo = 0,
317 .dma_attr_addr_hi = 0xffffffffffffffffULL,
318 .dma_attr_count_max = 0xffffffffUL,
319 .dma_attr_align = 1,
320 .dma_attr_burstsizes = 0x7ff,
321 .dma_attr_minxfer = 0x10,
322 .dma_attr_maxxfer = 0xfffffffffULL,
323 .dma_attr_seg = 0xffffffffffffffffULL,
324 .dma_attr_sgllen = -1,
325 .dma_attr_granular = 0x10,
326 .dma_attr_flags = 0
327 };
328
329 static ddi_device_acc_attr_t nvme_reg_acc_attr = {
330 .devacc_attr_version = DDI_DEVICE_ATTR_V0,
331 .devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC,
332 .devacc_attr_dataorder = DDI_STRICTORDER_ACC
333 };
334
335 static struct dev_ops nvme_dev_ops = {
336 .devo_rev = DEVO_REV,
337 .devo_refcnt = 0,
338 .devo_getinfo = ddi_no_info,
339 .devo_identify = nulldev,
340 .devo_probe = nulldev,
341 .devo_attach = nvme_attach,
342 .devo_detach = nvme_detach,
343 .devo_reset = nodev,
344 .devo_cb_ops = NULL,
345 .devo_bus_ops = NULL,
346 .devo_power = NULL,
347 .devo_quiesce = nvme_quiesce,
348 };
349
350 static struct modldrv nvme_modldrv = {
351 .drv_modops = &mod_driverops,
352 .drv_linkinfo = "NVMe v1.0e",
353 .drv_dev_ops = &nvme_dev_ops
354 };
355
356 static struct modlinkage nvme_modlinkage = {
357 .ml_rev = MODREV_1,
358 .ml_linkage = { &nvme_modldrv, NULL }
359 };
360
361 static bd_ops_t nvme_bd_ops = {
362 .o_version = BD_OPS_VERSION_0,
363 .o_drive_info = nvme_bd_driveinfo,
364 .o_media_info = nvme_bd_mediainfo,
365 .o_devid_init = nvme_bd_devid,
366 .o_sync_cache = nvme_bd_sync,
367 .o_read = nvme_bd_read,
368 .o_write = nvme_bd_write,
369 };
370
371 int
372 _init(void)
373 {
374 int error;
375
376 error = ddi_soft_state_init(&nvme_state, sizeof (nvme_t), 1);
377 if (error != DDI_SUCCESS)
378 return (error);
379
380 nvme_cmd_cache = kmem_cache_create("nvme_cmd_cache",
381 sizeof (nvme_cmd_t), 64, NULL, NULL, NULL, NULL, NULL, 0);
382
383 bd_mod_init(&nvme_dev_ops);
384
385 error = mod_install(&nvme_modlinkage);
386 if (error != DDI_SUCCESS) {
387 ddi_soft_state_fini(&nvme_state);
388 bd_mod_fini(&nvme_dev_ops);
389 }
390
391 return (error);
392 }
393
394 int
395 _fini(void)
396 {
397 int error;
398
399 error = mod_remove(&nvme_modlinkage);
400 if (error == DDI_SUCCESS) {
401 ddi_soft_state_fini(&nvme_state);
402 kmem_cache_destroy(nvme_cmd_cache);
403 bd_mod_fini(&nvme_dev_ops);
404 }
405
406 return (error);
407 }
408
409 int
410 _info(struct modinfo *modinfop)
411 {
412 return (mod_info(&nvme_modlinkage, modinfop));
413 }
414
415 static inline void
416 nvme_put64(nvme_t *nvme, uintptr_t reg, uint64_t val)
417 {
418 ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0);
419
420 /*LINTED: E_BAD_PTR_CAST_ALIGN*/
421 ddi_put64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg), val);
422 }
423
424 static inline void
425 nvme_put32(nvme_t *nvme, uintptr_t reg, uint32_t val)
426 {
427 ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0);
428
429 /*LINTED: E_BAD_PTR_CAST_ALIGN*/
430 ddi_put32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg), val);
431 }
432
433 static inline uint64_t
434 nvme_get64(nvme_t *nvme, uintptr_t reg)
435 {
436 uint64_t val;
437
438 ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0);
439
440 /*LINTED: E_BAD_PTR_CAST_ALIGN*/
441 val = ddi_get64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg));
442
443 return (val);
444 }
445
446 static inline uint32_t
447 nvme_get32(nvme_t *nvme, uintptr_t reg)
448 {
449 uint32_t val;
450
451 ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0);
452
453 /*LINTED: E_BAD_PTR_CAST_ALIGN*/
454 val = ddi_get32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg));
455
456 return (val);
457 }
458
459 static boolean_t
460 nvme_check_regs_hdl(nvme_t *nvme)
461 {
462 ddi_fm_error_t error;
463
464 ddi_fm_acc_err_get(nvme->n_regh, &error, DDI_FME_VERSION);
465
466 if (error.fme_status != DDI_FM_OK)
467 return (B_TRUE);
468
469 return (B_FALSE);
470 }
471
472 static boolean_t
473 nvme_check_dma_hdl(nvme_dma_t *dma)
474 {
475 ddi_fm_error_t error;
476
477 if (dma == NULL)
478 return (B_FALSE);
479
480 ddi_fm_dma_err_get(dma->nd_dmah, &error, DDI_FME_VERSION);
481
482 if (error.fme_status != DDI_FM_OK)
483 return (B_TRUE);
484
485 return (B_FALSE);
486 }
487
488 static void
489 nvme_free_dma(nvme_dma_t *dma)
490 {
491 if (dma->nd_dmah != NULL)
492 (void) ddi_dma_unbind_handle(dma->nd_dmah);
493 if (dma->nd_acch != NULL)
494 ddi_dma_mem_free(&dma->nd_acch);
495 if (dma->nd_dmah != NULL)
496 ddi_dma_free_handle(&dma->nd_dmah);
497 kmem_free(dma, sizeof (nvme_dma_t));
498 }
499
500 static int
501 nvme_zalloc_dma(nvme_t *nvme, size_t len, uint_t flags,
502 ddi_dma_attr_t *dma_attr, nvme_dma_t **ret)
503 {
504 nvme_dma_t *dma = kmem_zalloc(sizeof (nvme_dma_t), KM_SLEEP);
505
506 if (ddi_dma_alloc_handle(nvme->n_dip, dma_attr, DDI_DMA_SLEEP, NULL,
507 &dma->nd_dmah) != DDI_SUCCESS) {
508 /*
509 * Due to DDI_DMA_SLEEP this can't be DDI_DMA_NORESOURCES, and
510 * the only other possible error is DDI_DMA_BADATTR which
511 * indicates a driver bug which should cause a panic.
512 */
513 dev_err(nvme->n_dip, CE_PANIC,
514 "!failed to get DMA handle, check DMA attributes");
515 return (DDI_FAILURE);
516 }
517
518 /*
519 * ddi_dma_mem_alloc() can only fail when DDI_DMA_NOSLEEP is specified
520 * or the flags are conflicting, which isn't the case here.
521 */
522 (void) ddi_dma_mem_alloc(dma->nd_dmah, len, &nvme->n_reg_acc_attr,
523 DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, &dma->nd_memp,
524 &dma->nd_len, &dma->nd_acch);
525
526 if (ddi_dma_addr_bind_handle(dma->nd_dmah, NULL, dma->nd_memp,
527 dma->nd_len, flags | DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL,
528 &dma->nd_cookie, &dma->nd_ncookie) != DDI_DMA_MAPPED) {
529 dev_err(nvme->n_dip, CE_WARN,
530 "!failed to bind DMA memory");
531 atomic_inc_32(&nvme->n_dma_bind_err);
532 *ret = NULL;
533 nvme_free_dma(dma);
534 return (DDI_FAILURE);
535 }
536
537 bzero(dma->nd_memp, dma->nd_len);
538
539 *ret = dma;
540 return (DDI_SUCCESS);
541 }
542
543 static int
544 nvme_zalloc_queue_dma(nvme_t *nvme, uint32_t nentry, uint16_t qe_len,
545 uint_t flags, nvme_dma_t **dma)
546 {
547 uint32_t len = nentry * qe_len;
548 ddi_dma_attr_t q_dma_attr = nvme->n_queue_dma_attr;
549
550 len = roundup(len, nvme->n_pagesize);
551
552 q_dma_attr.dma_attr_minxfer = len;
553
554 if (nvme_zalloc_dma(nvme, len, flags, &q_dma_attr, dma)
555 != DDI_SUCCESS) {
556 dev_err(nvme->n_dip, CE_WARN,
557 "!failed to get DMA memory for queue");
558 goto fail;
559 }
560
561 if ((*dma)->nd_ncookie != 1) {
562 dev_err(nvme->n_dip, CE_WARN,
563 "!got too many cookies for queue DMA");
564 goto fail;
565 }
566
567 return (DDI_SUCCESS);
568
569 fail:
570 if (*dma) {
571 nvme_free_dma(*dma);
572 *dma = NULL;
573 }
574
575 return (DDI_FAILURE);
576 }
577
578 static void
579 nvme_free_qpair(nvme_qpair_t *qp)
580 {
581 int i;
582
583 mutex_destroy(&qp->nq_mutex);
584
585 if (qp->nq_sqdma != NULL)
586 nvme_free_dma(qp->nq_sqdma);
587 if (qp->nq_cqdma != NULL)
588 nvme_free_dma(qp->nq_cqdma);
589
590 if (qp->nq_active_cmds > 0)
591 for (i = 0; i != qp->nq_nentry; i++)
592 if (qp->nq_cmd[i] != NULL)
593 nvme_free_cmd(qp->nq_cmd[i]);
594
595 if (qp->nq_cmd != NULL)
596 kmem_free(qp->nq_cmd, sizeof (nvme_cmd_t *) * qp->nq_nentry);
597
598 kmem_free(qp, sizeof (nvme_qpair_t));
599 }
600
601 static int
602 nvme_alloc_qpair(nvme_t *nvme, uint32_t nentry, nvme_qpair_t **nqp,
603 int idx)
604 {
605 nvme_qpair_t *qp = kmem_zalloc(sizeof (*qp), KM_SLEEP);
606
607 mutex_init(&qp->nq_mutex, NULL, MUTEX_DRIVER,
608 DDI_INTR_PRI(nvme->n_intr_pri));
609
610 if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_sqe_t),
611 DDI_DMA_WRITE, &qp->nq_sqdma) != DDI_SUCCESS)
612 goto fail;
613
614 if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_cqe_t),
615 DDI_DMA_READ, &qp->nq_cqdma) != DDI_SUCCESS)
616 goto fail;
617
618 qp->nq_sq = (nvme_sqe_t *)qp->nq_sqdma->nd_memp;
619 qp->nq_cq = (nvme_cqe_t *)qp->nq_cqdma->nd_memp;
620 qp->nq_nentry = nentry;
621
622 qp->nq_sqtdbl = NVME_REG_SQTDBL(nvme, idx);
623 qp->nq_cqhdbl = NVME_REG_CQHDBL(nvme, idx);
624
625 qp->nq_cmd = kmem_zalloc(sizeof (nvme_cmd_t *) * nentry, KM_SLEEP);
626 qp->nq_next_cmd = 0;
627
628 *nqp = qp;
629 return (DDI_SUCCESS);
630
631 fail:
632 nvme_free_qpair(qp);
633 *nqp = NULL;
634
635 return (DDI_FAILURE);
636 }
637
638 static nvme_cmd_t *
639 nvme_alloc_cmd(nvme_t *nvme, int kmflag)
640 {
641 nvme_cmd_t *cmd = kmem_cache_alloc(nvme_cmd_cache, kmflag);
642
643 if (cmd == NULL)
644 return (cmd);
645
646 bzero(cmd, sizeof (nvme_cmd_t));
647
648 cmd->nc_nvme = nvme;
649
650 mutex_init(&cmd->nc_mutex, NULL, MUTEX_DRIVER,
651 DDI_INTR_PRI(nvme->n_intr_pri));
652 cv_init(&cmd->nc_cv, NULL, CV_DRIVER, NULL);
653
654 return (cmd);
655 }
656
657 static void
658 nvme_free_cmd(nvme_cmd_t *cmd)
659 {
660 if (cmd->nc_dma) {
661 nvme_free_dma(cmd->nc_dma);
662 cmd->nc_dma = NULL;
663 }
664
665 cv_destroy(&cmd->nc_cv);
666 mutex_destroy(&cmd->nc_mutex);
667
668 kmem_cache_free(nvme_cmd_cache, cmd);
669 }
670
671 static int
672 nvme_submit_cmd(nvme_qpair_t *qp, nvme_cmd_t *cmd)
673 {
674 nvme_reg_sqtdbl_t tail = { {0} };
675
676 mutex_enter(&qp->nq_mutex);
677
678 if (qp->nq_active_cmds == qp->nq_nentry) {
679 mutex_exit(&qp->nq_mutex);
680 return (DDI_FAILURE);
681 }
682
683 cmd->nc_completed = B_FALSE;
684
685 /*
686 * Try to insert the cmd into the active cmd array at the nq_next_cmd
687 * slot. If the slot is already occupied advance to the next slot and
688 * try again. This can happen for long running commands like async event
689 * requests.
690 */
691 while (qp->nq_cmd[qp->nq_next_cmd] != NULL)
692 qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry;
693 qp->nq_cmd[qp->nq_next_cmd] = cmd;
694
695 qp->nq_active_cmds++;
696
697 cmd->nc_sqe.sqe_cid = qp->nq_next_cmd;
698 bcopy(&cmd->nc_sqe, &qp->nq_sq[qp->nq_sqtail], sizeof (nvme_sqe_t));
699 (void) ddi_dma_sync(qp->nq_sqdma->nd_dmah,
700 sizeof (nvme_sqe_t) * qp->nq_sqtail,
701 sizeof (nvme_sqe_t), DDI_DMA_SYNC_FORDEV);
702 qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry;
703
704 tail.b.sqtdbl_sqt = qp->nq_sqtail = (qp->nq_sqtail + 1) % qp->nq_nentry;
705 nvme_put32(cmd->nc_nvme, qp->nq_sqtdbl, tail.r);
706
707 mutex_exit(&qp->nq_mutex);
708 return (DDI_SUCCESS);
709 }
710
711 static nvme_cmd_t *
712 nvme_retrieve_cmd(nvme_t *nvme, nvme_qpair_t *qp)
713 {
714 nvme_reg_cqhdbl_t head = { {0} };
715
716 nvme_cqe_t *cqe;
717 nvme_cmd_t *cmd;
718
719 (void) ddi_dma_sync(qp->nq_cqdma->nd_dmah, 0,
720 sizeof (nvme_cqe_t) * qp->nq_nentry, DDI_DMA_SYNC_FORKERNEL);
721
722 cqe = &qp->nq_cq[qp->nq_cqhead];
723
724 /* Check phase tag of CQE. Hardware inverts it for new entries. */
725 if (cqe->cqe_sf.sf_p == qp->nq_phase)
726 return (NULL);
727
728 ASSERT(nvme->n_ioq[cqe->cqe_sqid] == qp);
729 ASSERT(cqe->cqe_cid < qp->nq_nentry);
730
731 mutex_enter(&qp->nq_mutex);
732 cmd = qp->nq_cmd[cqe->cqe_cid];
733 qp->nq_cmd[cqe->cqe_cid] = NULL;
734 qp->nq_active_cmds--;
735 mutex_exit(&qp->nq_mutex);
736
737 ASSERT(cmd != NULL);
738 ASSERT(cmd->nc_nvme == nvme);
739 ASSERT(cmd->nc_sqid == cqe->cqe_sqid);
740 ASSERT(cmd->nc_sqe.sqe_cid == cqe->cqe_cid);
741 bcopy(cqe, &cmd->nc_cqe, sizeof (nvme_cqe_t));
742
743 qp->nq_sqhead = cqe->cqe_sqhd;
744
745 head.b.cqhdbl_cqh = qp->nq_cqhead = (qp->nq_cqhead + 1) % qp->nq_nentry;
746
747 /* Toggle phase on wrap-around. */
748 if (qp->nq_cqhead == 0)
749 qp->nq_phase = qp->nq_phase ? 0 : 1;
750
751 nvme_put32(cmd->nc_nvme, qp->nq_cqhdbl, head.r);
752
753 return (cmd);
754 }
755
756 static int
757 nvme_check_unknown_cmd_status(nvme_cmd_t *cmd)
758 {
759 nvme_cqe_t *cqe = &cmd->nc_cqe;
760
761 dev_err(cmd->nc_nvme->n_dip, CE_WARN,
762 "!unknown command status received: opc = %x, sqid = %d, cid = %d, "
763 "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc,
764 cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct,
765 cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m);
766
767 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
768
769 if (cmd->nc_nvme->n_strict_version) {
770 cmd->nc_nvme->n_dead = B_TRUE;
771 ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
772 }
773
774 return (EIO);
775 }
776
777 static int
778 nvme_check_vendor_cmd_status(nvme_cmd_t *cmd)
779 {
780 nvme_cqe_t *cqe = &cmd->nc_cqe;
781
782 dev_err(cmd->nc_nvme->n_dip, CE_WARN,
783 "!unknown command status received: opc = %x, sqid = %d, cid = %d, "
784 "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc,
785 cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct,
786 cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m);
787 if (cmd->nc_nvme->n_ignore_unknown_vendor_status) {
788 cmd->nc_nvme->n_dead = B_TRUE;
789 ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
790 }
791
792 return (EIO);
793 }
794
795 static int
796 nvme_check_integrity_cmd_status(nvme_cmd_t *cmd)
797 {
798 nvme_cqe_t *cqe = &cmd->nc_cqe;
799
800 switch (cqe->cqe_sf.sf_sc) {
801 case NVME_CQE_SC_INT_NVM_WRITE:
802 /* write fail */
803 /* TODO: post ereport */
804 bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
805 return (EIO);
806
807 case NVME_CQE_SC_INT_NVM_READ:
808 /* read fail */
809 /* TODO: post ereport */
810 bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
811 return (EIO);
812
813 default:
814 return (nvme_check_unknown_cmd_status(cmd));
815 }
816 }
817
818 static int
819 nvme_check_generic_cmd_status(nvme_cmd_t *cmd)
820 {
821 nvme_cqe_t *cqe = &cmd->nc_cqe;
822
823 switch (cqe->cqe_sf.sf_sc) {
824 case NVME_CQE_SC_GEN_SUCCESS:
825 return (0);
826
827 /*
828 * Errors indicating a bug in the driver should cause a panic.
829 */
830 case NVME_CQE_SC_GEN_INV_OPC:
831 /* Invalid Command Opcode */
832 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
833 "invalid opcode in cmd %p", (void *)cmd);
834 return (0);
835
836 case NVME_CQE_SC_GEN_INV_FLD:
837 /* Invalid Field in Command */
838 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
839 "invalid field in cmd %p", (void *)cmd);
840 return (0);
841
842 case NVME_CQE_SC_GEN_ID_CNFL:
843 /* Command ID Conflict */
844 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
845 "cmd ID conflict in cmd %p", (void *)cmd);
846 return (0);
847
848 case NVME_CQE_SC_GEN_INV_NS:
849 /* Invalid Namespace or Format */
850 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
851 "invalid NS/format in cmd %p", (void *)cmd);
852 return (0);
853
854 case NVME_CQE_SC_GEN_NVM_LBA_RANGE:
855 /* LBA Out Of Range */
856 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
857 "LBA out of range in cmd %p", (void *)cmd);
858 return (0);
859
860 /*
861 * Non-fatal errors, handle gracefully.
862 */
863 case NVME_CQE_SC_GEN_DATA_XFR_ERR:
864 /* Data Transfer Error (DMA) */
865 /* TODO: post ereport */
866 atomic_inc_32(&cmd->nc_nvme->n_data_xfr_err);
867 bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
868 return (EIO);
869
870 case NVME_CQE_SC_GEN_INTERNAL_ERR:
871 /*
872 * Internal Error. The spec (v1.0, section 4.5.1.2) says
873 * detailed error information is returned as async event,
874 * so we pretty much ignore the error here and handle it
875 * in the async event handler.
876 */
877 atomic_inc_32(&cmd->nc_nvme->n_internal_err);
878 bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
879 return (EIO);
880
881 case NVME_CQE_SC_GEN_ABORT_REQUEST:
882 /*
883 * Command Abort Requested. This normally happens only when a
884 * command times out.
885 */
886 /* TODO: post ereport or change blkdev to handle this? */
887 atomic_inc_32(&cmd->nc_nvme->n_abort_rq_err);
888 return (ECANCELED);
889
890 case NVME_CQE_SC_GEN_ABORT_PWRLOSS:
891 /* Command Aborted due to Power Loss Notification */
892 ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
893 cmd->nc_nvme->n_dead = B_TRUE;
894 return (EIO);
895
896 case NVME_CQE_SC_GEN_ABORT_SQ_DEL:
897 /* Command Aborted due to SQ Deletion */
898 atomic_inc_32(&cmd->nc_nvme->n_abort_sq_del);
899 return (EIO);
900
901 case NVME_CQE_SC_GEN_NVM_CAP_EXC:
902 /* Capacity Exceeded */
903 atomic_inc_32(&cmd->nc_nvme->n_nvm_cap_exc);
904 bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
905 return (EIO);
906
907 case NVME_CQE_SC_GEN_NVM_NS_NOTRDY:
908 /* Namespace Not Ready */
909 atomic_inc_32(&cmd->nc_nvme->n_nvm_ns_notrdy);
910 bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
911 return (EIO);
912
913 default:
914 return (nvme_check_unknown_cmd_status(cmd));
915 }
916 }
917
918 static int
919 nvme_check_specific_cmd_status(nvme_cmd_t *cmd)
920 {
921 nvme_cqe_t *cqe = &cmd->nc_cqe;
922
923 switch (cqe->cqe_sf.sf_sc) {
924 case NVME_CQE_SC_SPC_INV_CQ:
925 /* Completion Queue Invalid */
926 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE);
927 atomic_inc_32(&cmd->nc_nvme->n_inv_cq_err);
928 return (EINVAL);
929
930 case NVME_CQE_SC_SPC_INV_QID:
931 /* Invalid Queue Identifier */
932 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE ||
933 cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_SQUEUE ||
934 cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE ||
935 cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE);
936 atomic_inc_32(&cmd->nc_nvme->n_inv_qid_err);
937 return (EINVAL);
938
939 case NVME_CQE_SC_SPC_MAX_QSZ_EXC:
940 /* Max Queue Size Exceeded */
941 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE ||
942 cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE);
943 atomic_inc_32(&cmd->nc_nvme->n_max_qsz_exc);
944 return (EINVAL);
945
946 case NVME_CQE_SC_SPC_ABRT_CMD_EXC:
947 /* Abort Command Limit Exceeded */
948 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT);
949 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
950 "abort command limit exceeded in cmd %p", (void *)cmd);
951 return (0);
952
953 case NVME_CQE_SC_SPC_ASYNC_EVREQ_EXC:
954 /* Async Event Request Limit Exceeded */
955 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ASYNC_EVENT);
956 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
957 "async event request limit exceeded in cmd %p",
958 (void *)cmd);
959 return (0);
960
961 case NVME_CQE_SC_SPC_INV_INT_VECT:
962 /* Invalid Interrupt Vector */
963 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE);
964 atomic_inc_32(&cmd->nc_nvme->n_inv_int_vect);
965 return (EINVAL);
966
967 case NVME_CQE_SC_SPC_INV_LOG_PAGE:
968 /* Invalid Log Page */
969 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_GET_LOG_PAGE);
970 atomic_inc_32(&cmd->nc_nvme->n_inv_log_page);
971 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
972 return (EINVAL);
973
974 case NVME_CQE_SC_SPC_INV_FORMAT:
975 /* Invalid Format */
976 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_FORMAT);
977 atomic_inc_32(&cmd->nc_nvme->n_inv_format);
978 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
979 return (EINVAL);
980
981 case NVME_CQE_SC_SPC_INV_Q_DEL:
982 /* Invalid Queue Deletion */
983 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE);
984 atomic_inc_32(&cmd->nc_nvme->n_inv_q_del);
985 return (EINVAL);
986
987 case NVME_CQE_SC_SPC_NVM_CNFL_ATTR:
988 /* Conflicting Attributes */
989 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_DSET_MGMT ||
990 cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ ||
991 cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
992 atomic_inc_32(&cmd->nc_nvme->n_cnfl_attr);
993 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
994 return (EINVAL);
995
996 case NVME_CQE_SC_SPC_NVM_INV_PROT:
997 /* Invalid Protection Information */
998 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_COMPARE ||
999 cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ ||
1000 cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1001 atomic_inc_32(&cmd->nc_nvme->n_inv_prot);
1002 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1003 return (EINVAL);
1004
1005 case NVME_CQE_SC_SPC_NVM_READONLY:
1006 /* Write to Read Only Range */
1007 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1008 atomic_inc_32(&cmd->nc_nvme->n_readonly);
1009 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1010 return (EROFS);
1011
1012 default:
1013 return (nvme_check_unknown_cmd_status(cmd));
1014 }
1015 }
1016
1017 static inline int
1018 nvme_check_cmd_status(nvme_cmd_t *cmd)
1019 {
1020 nvme_cqe_t *cqe = &cmd->nc_cqe;
1021
1022 /* take a shortcut if everything is alright */
1023 if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1024 cqe->cqe_sf.sf_sc == NVME_CQE_SC_GEN_SUCCESS)
1025 return (0);
1026
1027 if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC)
1028 return (nvme_check_generic_cmd_status(cmd));
1029 else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_SPECIFIC)
1030 return (nvme_check_specific_cmd_status(cmd));
1031 else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_INTEGRITY)
1032 return (nvme_check_integrity_cmd_status(cmd));
1033 else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_VENDOR)
1034 return (nvme_check_vendor_cmd_status(cmd));
1035
1036 return (nvme_check_unknown_cmd_status(cmd));
1037 }
1038
1039 /*
1040 * nvme_abort_cmd_cb -- replaces nc_callback of aborted commands
1041 *
1042 * This functions takes care of cleaning up aborted commands. The command
1043 * status is checked to catch any fatal errors.
1044 */
1045 static void
1046 nvme_abort_cmd_cb(void *arg)
1047 {
1048 nvme_cmd_t *cmd = arg;
1049
1050 /*
1051 * Grab the command mutex. Once we have it we hold the last reference
1052 * to the command and can safely free it.
1053 */
1054 mutex_enter(&cmd->nc_mutex);
1055 (void) nvme_check_cmd_status(cmd);
1056 mutex_exit(&cmd->nc_mutex);
1057
1058 nvme_free_cmd(cmd);
1059 }
1060
1061 static void
1062 nvme_abort_cmd(nvme_cmd_t *abort_cmd)
1063 {
1064 nvme_t *nvme = abort_cmd->nc_nvme;
1065 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1066 nvme_abort_cmd_t ac = { {0} };
1067
1068 sema_p(&nvme->n_abort_sema);
1069
1070 ac.b.ac_cid = abort_cmd->nc_sqe.sqe_cid;
1071 ac.b.ac_sqid = abort_cmd->nc_sqid;
1072
1073 /*
1074 * Drop the mutex of the aborted command. From this point on
1075 * we must assume that the abort callback has freed the command.
1076 */
1077 mutex_exit(&abort_cmd->nc_mutex);
1078
1079 cmd->nc_sqid = 0;
1080 cmd->nc_sqe.sqe_opc = NVME_OPC_ABORT;
1081 cmd->nc_callback = nvme_wakeup_cmd;
1082 cmd->nc_sqe.sqe_cdw10 = ac.r;
1083
1084 /*
1085 * Send the ABORT to the hardware. The ABORT command will return _after_
1086 * the aborted command has completed (aborted or otherwise).
1087 */
1088 if (nvme_admin_cmd(cmd, NVME_ADMIN_CMD_TIMEOUT) != DDI_SUCCESS) {
1089 sema_v(&nvme->n_abort_sema);
1090 dev_err(nvme->n_dip, CE_WARN,
1091 "!nvme_admin_cmd failed for ABORT");
1092 atomic_inc_32(&nvme->n_abort_failed);
1093 return;
1094 }
1095 sema_v(&nvme->n_abort_sema);
1096
1097 if (nvme_check_cmd_status(cmd)) {
1098 dev_err(nvme->n_dip, CE_WARN,
1099 "!ABORT failed with sct = %x, sc = %x",
1100 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1101 atomic_inc_32(&nvme->n_abort_failed);
1102 } else {
1103 atomic_inc_32(&nvme->n_cmd_aborted);
1104 }
1105
1106 nvme_free_cmd(cmd);
1107 }
1108
1109 /*
1110 * nvme_wait_cmd -- wait for command completion or timeout
1111 *
1112 * Returns B_TRUE if the command completed normally.
1113 *
1114 * Returns B_FALSE if the command timed out and an abort was attempted. The
1115 * command mutex will be dropped and the command must be considered freed. The
1116 * freeing of the command is normally done by the abort command callback.
1117 *
1118 * In case of a serious error or a timeout of the abort command the hardware
1119 * will be declared dead and FMA will be notified.
1120 */
1121 static boolean_t
1122 nvme_wait_cmd(nvme_cmd_t *cmd, uint_t usec)
1123 {
1124 clock_t timeout = ddi_get_lbolt() + drv_usectohz(usec);
1125 nvme_t *nvme = cmd->nc_nvme;
1126 nvme_reg_csts_t csts;
1127
1128 ASSERT(mutex_owned(&cmd->nc_mutex));
1129
1130 while (!cmd->nc_completed) {
1131 if (cv_timedwait(&cmd->nc_cv, &cmd->nc_mutex, timeout) == -1)
1132 break;
1133 }
1134
1135 if (cmd->nc_completed)
1136 return (B_TRUE);
1137
1138 /*
1139 * The command timed out. Change the callback to the cleanup function.
1140 */
1141 cmd->nc_callback = nvme_abort_cmd_cb;
1142
1143 /*
1144 * Check controller for fatal status, any errors associated with the
1145 * register or DMA handle, or for a double timeout (abort command timed
1146 * out). If necessary log a warning and call FMA.
1147 */
1148 csts.r = nvme_get32(nvme, NVME_REG_CSTS);
1149 dev_err(nvme->n_dip, CE_WARN, "!command timeout, "
1150 "OPC = %x, CFS = %d", cmd->nc_sqe.sqe_opc, csts.b.csts_cfs);
1151 atomic_inc_32(&nvme->n_cmd_timeout);
1152
1153 if (csts.b.csts_cfs ||
1154 nvme_check_regs_hdl(nvme) ||
1155 nvme_check_dma_hdl(cmd->nc_dma) ||
1156 cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT) {
1157 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1158 nvme->n_dead = B_TRUE;
1159 mutex_exit(&cmd->nc_mutex);
1160 } else {
1161 /*
1162 * Try to abort the command. The command mutex is released by
1163 * nvme_abort_cmd().
1164 * If the abort succeeds it will have freed the aborted command.
1165 * If the abort fails for other reasons we must assume that the
1166 * command may complete at any time, and the callback will free
1167 * it for us.
1168 */
1169 nvme_abort_cmd(cmd);
1170 }
1171
1172 return (B_FALSE);
1173 }
1174
1175 static void
1176 nvme_wakeup_cmd(void *arg)
1177 {
1178 nvme_cmd_t *cmd = arg;
1179
1180 mutex_enter(&cmd->nc_mutex);
1181 /*
1182 * There is a slight chance that this command completed shortly after
1183 * the timeout was hit in nvme_wait_cmd() but before the callback was
1184 * changed. Catch that case here and clean up accordingly.
1185 */
1186 if (cmd->nc_callback == nvme_abort_cmd_cb) {
1187 mutex_exit(&cmd->nc_mutex);
1188 nvme_abort_cmd_cb(cmd);
1189 return;
1190 }
1191
1192 cmd->nc_completed = B_TRUE;
1193 cv_signal(&cmd->nc_cv);
1194 mutex_exit(&cmd->nc_mutex);
1195 }
1196
1197 static void
1198 nvme_async_event_task(void *arg)
1199 {
1200 nvme_cmd_t *cmd = arg;
1201 nvme_t *nvme = cmd->nc_nvme;
1202 nvme_error_log_entry_t *error_log = NULL;
1203 nvme_health_log_t *health_log = NULL;
1204 nvme_async_event_t event;
1205 int ret;
1206
1207 /*
1208 * Check for errors associated with the async request itself. The only
1209 * command-specific error is "async event limit exceeded", which
1210 * indicates a programming error in the driver and causes a panic in
1211 * nvme_check_cmd_status().
1212 *
1213 * Other possible errors are various scenarios where the async request
1214 * was aborted, or internal errors in the device. Internal errors are
1215 * reported to FMA, the command aborts need no special handling here.
1216 */
1217 if (nvme_check_cmd_status(cmd)) {
1218 dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1219 "!async event request returned failure, sct = %x, "
1220 "sc = %x, dnr = %d, m = %d", cmd->nc_cqe.cqe_sf.sf_sct,
1221 cmd->nc_cqe.cqe_sf.sf_sc, cmd->nc_cqe.cqe_sf.sf_dnr,
1222 cmd->nc_cqe.cqe_sf.sf_m);
1223
1224 if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1225 cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INTERNAL_ERR) {
1226 cmd->nc_nvme->n_dead = B_TRUE;
1227 ddi_fm_service_impact(cmd->nc_nvme->n_dip,
1228 DDI_SERVICE_LOST);
1229 }
1230 nvme_free_cmd(cmd);
1231 return;
1232 }
1233
1234
1235 event.r = cmd->nc_cqe.cqe_dw0;
1236
1237 /* Clear CQE and re-submit the async request. */
1238 bzero(&cmd->nc_cqe, sizeof (nvme_cqe_t));
1239 ret = nvme_submit_cmd(nvme->n_adminq, cmd);
1240
1241 if (ret != DDI_SUCCESS) {
1242 dev_err(nvme->n_dip, CE_WARN,
1243 "!failed to resubmit async event request");
1244 atomic_inc_32(&nvme->n_async_resubmit_failed);
1245 nvme_free_cmd(cmd);
1246 }
1247
1248 switch (event.b.ae_type) {
1249 case NVME_ASYNC_TYPE_ERROR:
1250 if (event.b.ae_logpage == NVME_LOGPAGE_ERROR) {
1251 error_log = (nvme_error_log_entry_t *)
1252 nvme_get_logpage(nvme, event.b.ae_logpage);
1253 } else {
1254 dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in "
1255 "async event reply: %d", event.b.ae_logpage);
1256 atomic_inc_32(&nvme->n_wrong_logpage);
1257 }
1258
1259 switch (event.b.ae_info) {
1260 case NVME_ASYNC_ERROR_INV_SQ:
1261 dev_err(nvme->n_dip, CE_PANIC, "programming error: "
1262 "invalid submission queue");
1263 return;
1264
1265 case NVME_ASYNC_ERROR_INV_DBL:
1266 dev_err(nvme->n_dip, CE_PANIC, "programming error: "
1267 "invalid doorbell write value");
1268 return;
1269
1270 case NVME_ASYNC_ERROR_DIAGFAIL:
1271 dev_err(nvme->n_dip, CE_WARN, "!diagnostic failure");
1272 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1273 nvme->n_dead = B_TRUE;
1274 atomic_inc_32(&nvme->n_diagfail_event);
1275 break;
1276
1277 case NVME_ASYNC_ERROR_PERSISTENT:
1278 dev_err(nvme->n_dip, CE_WARN, "!persistent internal "
1279 "device error");
1280 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1281 nvme->n_dead = B_TRUE;
1282 atomic_inc_32(&nvme->n_persistent_event);
1283 break;
1284
1285 case NVME_ASYNC_ERROR_TRANSIENT:
1286 dev_err(nvme->n_dip, CE_WARN, "!transient internal "
1287 "device error");
1288 /* TODO: send ereport */
1289 atomic_inc_32(&nvme->n_transient_event);
1290 break;
1291
1292 case NVME_ASYNC_ERROR_FW_LOAD:
1293 dev_err(nvme->n_dip, CE_WARN,
1294 "!firmware image load error");
1295 atomic_inc_32(&nvme->n_fw_load_event);
1296 break;
1297 }
1298 break;
1299
1300 case NVME_ASYNC_TYPE_HEALTH:
1301 if (event.b.ae_logpage == NVME_LOGPAGE_HEALTH) {
1302 health_log = (nvme_health_log_t *)
1303 nvme_get_logpage(nvme, event.b.ae_logpage, -1);
1304 } else {
1305 dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in "
1306 "async event reply: %d", event.b.ae_logpage);
1307 atomic_inc_32(&nvme->n_wrong_logpage);
1308 }
1309
1310 switch (event.b.ae_info) {
1311 case NVME_ASYNC_HEALTH_RELIABILITY:
1312 dev_err(nvme->n_dip, CE_WARN,
1313 "!device reliability compromised");
1314 /* TODO: send ereport */
1315 atomic_inc_32(&nvme->n_reliability_event);
1316 break;
1317
1318 case NVME_ASYNC_HEALTH_TEMPERATURE:
1319 dev_err(nvme->n_dip, CE_WARN,
1320 "!temperature above threshold");
1321 /* TODO: send ereport */
1322 atomic_inc_32(&nvme->n_temperature_event);
1323 break;
1324
1325 case NVME_ASYNC_HEALTH_SPARE:
1326 dev_err(nvme->n_dip, CE_WARN,
1327 "!spare space below threshold");
1328 /* TODO: send ereport */
1329 atomic_inc_32(&nvme->n_spare_event);
1330 break;
1331 }
1332 break;
1333
1334 case NVME_ASYNC_TYPE_VENDOR:
1335 dev_err(nvme->n_dip, CE_WARN, "!vendor specific async event "
1336 "received, info = %x, logpage = %x", event.b.ae_info,
1337 event.b.ae_logpage);
1338 atomic_inc_32(&nvme->n_vendor_event);
1339 break;
1340
1341 default:
1342 dev_err(nvme->n_dip, CE_WARN, "!unknown async event received, "
1343 "type = %x, info = %x, logpage = %x", event.b.ae_type,
1344 event.b.ae_info, event.b.ae_logpage);
1345 atomic_inc_32(&nvme->n_unknown_event);
1346 break;
1347 }
1348
1349 if (error_log)
1350 kmem_free(error_log, sizeof (nvme_error_log_entry_t) *
1351 nvme->n_error_log_len);
1352
1353 if (health_log)
1354 kmem_free(health_log, sizeof (nvme_health_log_t));
1355 }
1356
1357 static int
1358 nvme_admin_cmd(nvme_cmd_t *cmd, int usec)
1359 {
1360 int ret;
1361
1362 mutex_enter(&cmd->nc_mutex);
1363 ret = nvme_submit_cmd(cmd->nc_nvme->n_adminq, cmd);
1364
1365 if (ret != DDI_SUCCESS) {
1366 mutex_exit(&cmd->nc_mutex);
1367 dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1368 "!nvme_submit_cmd failed");
1369 atomic_inc_32(&cmd->nc_nvme->n_admin_queue_full);
1370 nvme_free_cmd(cmd);
1371 return (DDI_FAILURE);
1372 }
1373
1374 if (nvme_wait_cmd(cmd, usec) == B_FALSE) {
1375 /*
1376 * The command timed out. An abort command was posted that
1377 * will take care of the cleanup.
1378 */
1379 return (DDI_FAILURE);
1380 }
1381 mutex_exit(&cmd->nc_mutex);
1382
1383 return (DDI_SUCCESS);
1384 }
1385
1386 static int
1387 nvme_async_event(nvme_t *nvme)
1388 {
1389 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1390 int ret;
1391
1392 cmd->nc_sqid = 0;
1393 cmd->nc_sqe.sqe_opc = NVME_OPC_ASYNC_EVENT;
1394 cmd->nc_callback = nvme_async_event_task;
1395
1396 ret = nvme_submit_cmd(nvme->n_adminq, cmd);
1397
1398 if (ret != DDI_SUCCESS) {
1399 dev_err(nvme->n_dip, CE_WARN,
1400 "!nvme_submit_cmd failed for ASYNCHRONOUS EVENT");
1401 nvme_free_cmd(cmd);
1402 return (DDI_FAILURE);
1403 }
1404
1405 return (DDI_SUCCESS);
1406 }
1407
1408 static void *
1409 nvme_get_logpage(nvme_t *nvme, uint8_t logpage, ...)
1410 {
1411 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1412 void *buf = NULL;
1413 nvme_getlogpage_t getlogpage;
1414 size_t bufsize;
1415 va_list ap;
1416
1417 va_start(ap, logpage);
1418
1419 cmd->nc_sqid = 0;
1420 cmd->nc_callback = nvme_wakeup_cmd;
1421 cmd->nc_sqe.sqe_opc = NVME_OPC_GET_LOG_PAGE;
1422
1423 getlogpage.b.lp_lid = logpage;
1424
1425 switch (logpage) {
1426 case NVME_LOGPAGE_ERROR:
1427 cmd->nc_sqe.sqe_nsid = (uint32_t)-1;
1428 bufsize = nvme->n_error_log_len *
1429 sizeof (nvme_error_log_entry_t);
1430 break;
1431
1432 case NVME_LOGPAGE_HEALTH:
1433 cmd->nc_sqe.sqe_nsid = va_arg(ap, uint32_t);
1434 bufsize = sizeof (nvme_health_log_t);
1435 break;
1436
1437 case NVME_LOGPAGE_FWSLOT:
1438 cmd->nc_sqe.sqe_nsid = (uint32_t)-1;
1439 bufsize = sizeof (nvme_fwslot_log_t);
1440 break;
1441
1442 default:
1443 dev_err(nvme->n_dip, CE_WARN, "!unknown log page requested: %d",
1444 logpage);
1445 atomic_inc_32(&nvme->n_unknown_logpage);
1446 goto fail;
1447 }
1448
1449 va_end(ap);
1450
1451 getlogpage.b.lp_numd = bufsize / sizeof (uint32_t) - 1;
1452
1453 cmd->nc_sqe.sqe_cdw10 = getlogpage.r;
1454
1455 if (nvme_zalloc_dma(nvme, getlogpage.b.lp_numd * sizeof (uint32_t),
1456 DDI_DMA_READ, &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
1457 dev_err(nvme->n_dip, CE_WARN,
1458 "!nvme_zalloc_dma failed for GET LOG PAGE");
1459 goto fail;
1460 }
1461
1462 if (cmd->nc_dma->nd_ncookie > 2) {
1463 dev_err(nvme->n_dip, CE_WARN,
1464 "!too many DMA cookies for GET LOG PAGE");
1465 atomic_inc_32(&nvme->n_too_many_cookies);
1466 goto fail;
1467 }
1468
1469 cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress;
1470 if (cmd->nc_dma->nd_ncookie > 1) {
1471 ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
1472 &cmd->nc_dma->nd_cookie);
1473 cmd->nc_sqe.sqe_dptr.d_prp[1] =
1474 cmd->nc_dma->nd_cookie.dmac_laddress;
1475 }
1476
1477 if (nvme_admin_cmd(cmd, NVME_ADMIN_CMD_TIMEOUT) != DDI_SUCCESS) {
1478 dev_err(nvme->n_dip, CE_WARN,
1479 "!nvme_admin_cmd failed for GET LOG PAGE");
1480 return (NULL);
1481 }
1482
1483 if (nvme_check_cmd_status(cmd)) {
1484 dev_err(nvme->n_dip, CE_WARN,
1485 "!GET LOG PAGE failed with sct = %x, sc = %x",
1486 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1487 goto fail;
1488 }
1489
1490 buf = kmem_alloc(bufsize, KM_SLEEP);
1491 bcopy(cmd->nc_dma->nd_memp, buf, bufsize);
1492
1493 fail:
1494 nvme_free_cmd(cmd);
1495
1496 return (buf);
1497 }
1498
1499 static void *
1500 nvme_identify(nvme_t *nvme, uint32_t nsid)
1501 {
1502 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1503 void *buf = NULL;
1504
1505 cmd->nc_sqid = 0;
1506 cmd->nc_callback = nvme_wakeup_cmd;
1507 cmd->nc_sqe.sqe_opc = NVME_OPC_IDENTIFY;
1508 cmd->nc_sqe.sqe_nsid = nsid;
1509 cmd->nc_sqe.sqe_cdw10 = nsid ? NVME_IDENTIFY_NSID : NVME_IDENTIFY_CTRL;
1510
1511 if (nvme_zalloc_dma(nvme, NVME_IDENTIFY_BUFSIZE, DDI_DMA_READ,
1512 &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
1513 dev_err(nvme->n_dip, CE_WARN,
1514 "!nvme_zalloc_dma failed for IDENTIFY");
1515 goto fail;
1516 }
1517
1518 if (cmd->nc_dma->nd_ncookie > 2) {
1519 dev_err(nvme->n_dip, CE_WARN,
1520 "!too many DMA cookies for IDENTIFY");
1521 atomic_inc_32(&nvme->n_too_many_cookies);
1522 goto fail;
1523 }
1524
1525 cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress;
1526 if (cmd->nc_dma->nd_ncookie > 1) {
1527 ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
1528 &cmd->nc_dma->nd_cookie);
1529 cmd->nc_sqe.sqe_dptr.d_prp[1] =
1530 cmd->nc_dma->nd_cookie.dmac_laddress;
1531 }
1532
1533 if (nvme_admin_cmd(cmd, NVME_ADMIN_CMD_TIMEOUT) != DDI_SUCCESS) {
1534 dev_err(nvme->n_dip, CE_WARN,
1535 "!nvme_admin_cmd failed for IDENTIFY");
1536 return (NULL);
1537 }
1538
1539 if (nvme_check_cmd_status(cmd)) {
1540 dev_err(nvme->n_dip, CE_WARN,
1541 "!IDENTIFY failed with sct = %x, sc = %x",
1542 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1543 goto fail;
1544 }
1545
1546 buf = kmem_alloc(NVME_IDENTIFY_BUFSIZE, KM_SLEEP);
1547 bcopy(cmd->nc_dma->nd_memp, buf, NVME_IDENTIFY_BUFSIZE);
1548
1549 fail:
1550 nvme_free_cmd(cmd);
1551
1552 return (buf);
1553 }
1554
1555 static int
1556 nvme_set_nqueues(nvme_t *nvme, uint16_t nqueues)
1557 {
1558 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1559 nvme_nqueue_t nq = { {0} };
1560
1561 nq.b.nq_nsq = nq.b.nq_ncq = nqueues;
1562
1563 cmd->nc_sqid = 0;
1564 cmd->nc_callback = nvme_wakeup_cmd;
1565 cmd->nc_sqe.sqe_opc = NVME_OPC_SET_FEATURES;
1566 cmd->nc_sqe.sqe_cdw10 = NVME_FEAT_NQUEUES;
1567 cmd->nc_sqe.sqe_cdw11 = nq.r;
1568
1569 if (nvme_admin_cmd(cmd, NVME_ADMIN_CMD_TIMEOUT) != DDI_SUCCESS) {
1570 dev_err(nvme->n_dip, CE_WARN,
1571 "!nvme_admin_cmd failed for SET FEATURES (NQUEUES)");
1572 return (0);
1573 }
1574
1575 if (nvme_check_cmd_status(cmd)) {
1576 dev_err(nvme->n_dip, CE_WARN,
1577 "!SET FEATURES (NQUEUES) failed with sct = %x, sc = %x",
1578 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1579 nvme_free_cmd(cmd);
1580 return (0);
1581 }
1582
1583 nq.r = cmd->nc_cqe.cqe_dw0;
1584 nvme_free_cmd(cmd);
1585
1586 /*
1587 * Always use the same number of submission and completion queues, and
1588 * never use more than the requested number of queues.
1589 */
1590 return (MIN(nqueues, MIN(nq.b.nq_nsq, nq.b.nq_ncq)));
1591 }
1592
1593 static int
1594 nvme_create_io_qpair(nvme_t *nvme, nvme_qpair_t *qp, uint16_t idx)
1595 {
1596 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1597 nvme_create_queue_dw10_t dw10 = { {0} };
1598 nvme_create_cq_dw11_t c_dw11 = { {0} };
1599 nvme_create_sq_dw11_t s_dw11 = { {0} };
1600
1601 dw10.b.q_qid = idx;
1602 dw10.b.q_qsize = qp->nq_nentry - 1;
1603
1604 c_dw11.b.cq_pc = 1;
1605 c_dw11.b.cq_ien = 1;
1606 c_dw11.b.cq_iv = idx % nvme->n_intr_cnt;
1607
1608 cmd->nc_sqid = 0;
1609 cmd->nc_callback = nvme_wakeup_cmd;
1610 cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_CQUEUE;
1611 cmd->nc_sqe.sqe_cdw10 = dw10.r;
1612 cmd->nc_sqe.sqe_cdw11 = c_dw11.r;
1613 cmd->nc_sqe.sqe_dptr.d_prp[0] = qp->nq_cqdma->nd_cookie.dmac_laddress;
1614
1615 if (nvme_admin_cmd(cmd, NVME_ADMIN_CMD_TIMEOUT) != DDI_SUCCESS) {
1616 dev_err(nvme->n_dip, CE_WARN,
1617 "!nvme_admin_cmd failed for CREATE CQUEUE");
1618 return (DDI_FAILURE);
1619 }
1620
1621 if (nvme_check_cmd_status(cmd)) {
1622 dev_err(nvme->n_dip, CE_WARN,
1623 "!CREATE CQUEUE failed with sct = %x, sc = %x",
1624 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1625 nvme_free_cmd(cmd);
1626 return (DDI_FAILURE);
1627 }
1628
1629 nvme_free_cmd(cmd);
1630
1631 s_dw11.b.sq_pc = 1;
1632 s_dw11.b.sq_cqid = idx;
1633
1634 cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1635 cmd->nc_sqid = 0;
1636 cmd->nc_callback = nvme_wakeup_cmd;
1637 cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_SQUEUE;
1638 cmd->nc_sqe.sqe_cdw10 = dw10.r;
1639 cmd->nc_sqe.sqe_cdw11 = s_dw11.r;
1640 cmd->nc_sqe.sqe_dptr.d_prp[0] = qp->nq_sqdma->nd_cookie.dmac_laddress;
1641
1642 if (nvme_admin_cmd(cmd, NVME_ADMIN_CMD_TIMEOUT) != DDI_SUCCESS) {
1643 dev_err(nvme->n_dip, CE_WARN,
1644 "!nvme_admin_cmd failed for CREATE SQUEUE");
1645 return (DDI_FAILURE);
1646 }
1647
1648 if (nvme_check_cmd_status(cmd)) {
1649 dev_err(nvme->n_dip, CE_WARN,
1650 "!CREATE SQUEUE failed with sct = %x, sc = %x",
1651 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1652 nvme_free_cmd(cmd);
1653 return (DDI_FAILURE);
1654 }
1655
1656 nvme_free_cmd(cmd);
1657
1658 return (DDI_SUCCESS);
1659 }
1660
1661 static boolean_t
1662 nvme_reset(nvme_t *nvme, boolean_t quiesce)
1663 {
1664 nvme_reg_csts_t csts;
1665 int i;
1666
1667 nvme_put32(nvme, NVME_REG_CC, 0);
1668
1669 csts.r = nvme_get32(nvme, NVME_REG_CSTS);
1670 if (csts.b.csts_rdy == 1) {
1671 nvme_put32(nvme, NVME_REG_CC, 0);
1672 for (i = 0; i != nvme->n_timeout * 10; i++) {
1673 csts.r = nvme_get32(nvme, NVME_REG_CSTS);
1674 if (csts.b.csts_rdy == 0)
1675 break;
1676
1677 if (quiesce)
1678 drv_usecwait(50000);
1679 else
1680 delay(drv_usectohz(50000));
1681 }
1682 }
1683
1684 nvme_put32(nvme, NVME_REG_AQA, 0);
1685 nvme_put32(nvme, NVME_REG_ASQ, 0);
1686 nvme_put32(nvme, NVME_REG_ACQ, 0);
1687
1688 csts.r = nvme_get32(nvme, NVME_REG_CSTS);
1689 return (csts.b.csts_rdy == 0 ? B_TRUE : B_FALSE);
1690 }
1691
1692 static void
1693 nvme_shutdown(nvme_t *nvme, int mode, boolean_t quiesce)
1694 {
1695 nvme_reg_cc_t cc;
1696 nvme_reg_csts_t csts;
1697 int i;
1698
1699 ASSERT(mode == NVME_CC_SHN_NORMAL || mode == NVME_CC_SHN_ABRUPT);
1700
1701 cc.r = nvme_get32(nvme, NVME_REG_CC);
1702 cc.b.cc_shn = mode & 0x3;
1703 nvme_put32(nvme, NVME_REG_CC, cc.r);
1704
1705 for (i = 0; i != 10; i++) {
1706 csts.r = nvme_get32(nvme, NVME_REG_CSTS);
1707 if (csts.b.csts_shst == NVME_CSTS_SHN_COMPLETE)
1708 break;
1709
1710 if (quiesce)
1711 drv_usecwait(100000);
1712 else
1713 delay(drv_usectohz(100000));
1714 }
1715 }
1716
1717
1718 static void
1719 nvme_prepare_devid(nvme_t *nvme, uint32_t nsid)
1720 {
1721 char model[sizeof (nvme->n_idctl->id_model) + 1];
1722 char serial[sizeof (nvme->n_idctl->id_serial) + 1];
1723
1724 bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model));
1725 bcopy(nvme->n_idctl->id_serial, serial,
1726 sizeof (nvme->n_idctl->id_serial));
1727
1728 model[sizeof (nvme->n_idctl->id_model)] = '\0';
1729 serial[sizeof (nvme->n_idctl->id_serial)] = '\0';
1730
1731 (void) snprintf(nvme->n_ns[nsid - 1].ns_devid,
1732 sizeof (nvme->n_ns[0].ns_devid), "%4X-%s-%s-%X",
1733 nvme->n_idctl->id_vid, model, serial, nsid);
1734 }
1735
1736 static int
1737 nvme_init(nvme_t *nvme)
1738 {
1739 nvme_reg_cc_t cc = { {0} };
1740 nvme_reg_aqa_t aqa = { {0} };
1741 nvme_reg_asq_t asq = { 0 };
1742 nvme_reg_acq_t acq = { 0 };
1743 nvme_reg_cap_t cap;
1744 nvme_reg_vs_t vs;
1745 nvme_reg_csts_t csts;
1746 int i = 0;
1747 int nqueues;
1748 char model[sizeof (nvme->n_idctl->id_model) + 1];
1749 char *vendor, *product;
1750
1751 /* Setup fixed interrupt for admin queue. */
1752 if (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_FIXED, 1)
1753 != DDI_SUCCESS) {
1754 dev_err(nvme->n_dip, CE_WARN,
1755 "!failed to setup fixed interrupt");
1756 goto fail;
1757 }
1758
1759 /* Check controller version */
1760 vs.r = nvme_get32(nvme, NVME_REG_VS);
1761 dev_err(nvme->n_dip, CE_CONT, "?NVMe spec version %d.%d",
1762 vs.b.vs_mjr, vs.b.vs_mnr);
1763
1764 if (nvme_version_major < vs.b.vs_mjr ||
1765 (nvme_version_major == vs.b.vs_mjr &&
1766 nvme_version_minor < vs.b.vs_mnr)) {
1767 dev_err(nvme->n_dip, CE_WARN, "!no support for version > %d.%d",
1768 nvme_version_major, nvme_version_minor);
1769 if (nvme->n_strict_version)
1770 goto fail;
1771 }
1772
1773 /* retrieve controller configuration */
1774 cap.r = nvme_get64(nvme, NVME_REG_CAP);
1775
1776 if ((cap.b.cap_css & NVME_CAP_CSS_NVM) == 0) {
1777 dev_err(nvme->n_dip, CE_WARN,
1778 "!NVM command set not supported by hardware");
1779 goto fail;
1780 }
1781
1782 nvme->n_nssr_supported = cap.b.cap_nssrs;
1783 nvme->n_doorbell_stride = 4 << cap.b.cap_dstrd;
1784 nvme->n_timeout = cap.b.cap_to;
1785 nvme->n_arbitration_mechanisms = cap.b.cap_ams;
1786 nvme->n_cont_queues_reqd = cap.b.cap_cqr;
1787 nvme->n_max_queue_entries = cap.b.cap_mqes + 1;
1788
1789 /*
1790 * The MPSMIN and MPSMAX fields in the CAP register use 0 to specify
1791 * the base page size of 4k (1<<12), so add 12 here to get the real
1792 * page size value.
1793 */
1794 nvme->n_pageshift = MIN(MAX(cap.b.cap_mpsmin + 12, PAGESHIFT),
1795 cap.b.cap_mpsmax + 12);
1796 nvme->n_pagesize = 1UL << (nvme->n_pageshift);
1797
1798 /*
1799 * Set up Queue DMA to transfer at least 1 page-aligned page at a time.
1800 */
1801 nvme->n_queue_dma_attr.dma_attr_align = nvme->n_pagesize;
1802 nvme->n_queue_dma_attr.dma_attr_minxfer = nvme->n_pagesize;
1803
1804 /*
1805 * Set up PRP DMA to transfer 1 page-aligned page at a time.
1806 * Maxxfer may be increased after we identified the controller limits.
1807 */
1808 nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_pagesize;
1809 nvme->n_prp_dma_attr.dma_attr_minxfer = nvme->n_pagesize;
1810 nvme->n_prp_dma_attr.dma_attr_align = nvme->n_pagesize;
1811
1812 /*
1813 * Reset controller if it's still in ready state.
1814 */
1815 if (nvme_reset(nvme, B_FALSE) == B_FALSE) {
1816 dev_err(nvme->n_dip, CE_WARN, "!unable to reset controller");
1817 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1818 nvme->n_dead = B_TRUE;
1819 goto fail;
1820 }
1821
1822 /*
1823 * Create the admin queue pair.
1824 */
1825 if (nvme_alloc_qpair(nvme, nvme->n_admin_queue_len, &nvme->n_adminq, 0)
1826 != DDI_SUCCESS) {
1827 dev_err(nvme->n_dip, CE_WARN,
1828 "!unable to allocate admin qpair");
1829 goto fail;
1830 }
1831 nvme->n_ioq = kmem_alloc(sizeof (nvme_qpair_t *), KM_SLEEP);
1832 nvme->n_ioq[0] = nvme->n_adminq;
1833
1834 nvme->n_progress |= NVME_ADMIN_QUEUE;
1835
1836 (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
1837 "admin-queue-len", nvme->n_admin_queue_len);
1838
1839 aqa.b.aqa_asqs = aqa.b.aqa_acqs = nvme->n_admin_queue_len - 1;
1840 asq = nvme->n_adminq->nq_sqdma->nd_cookie.dmac_laddress;
1841 acq = nvme->n_adminq->nq_cqdma->nd_cookie.dmac_laddress;
1842
1843 ASSERT((asq & (nvme->n_pagesize - 1)) == 0);
1844 ASSERT((acq & (nvme->n_pagesize - 1)) == 0);
1845
1846 nvme_put32(nvme, NVME_REG_AQA, aqa.r);
1847 nvme_put64(nvme, NVME_REG_ASQ, asq);
1848 nvme_put64(nvme, NVME_REG_ACQ, acq);
1849
1850 cc.b.cc_ams = 0; /* use Round-Robin arbitration */
1851 cc.b.cc_css = 0; /* use NVM command set */
1852 cc.b.cc_mps = nvme->n_pageshift - 12;
1853 cc.b.cc_shn = 0; /* no shutdown in progress */
1854 cc.b.cc_en = 1; /* enable controller */
1855
1856 nvme_put32(nvme, NVME_REG_CC, cc.r);
1857
1858 /*
1859 * Wait for the controller to become ready.
1860 */
1861 csts.r = nvme_get32(nvme, NVME_REG_CSTS);
1862 if (csts.b.csts_rdy == 0) {
1863 for (i = 0; i != nvme->n_timeout * 10; i++) {
1864 delay(drv_usectohz(50000));
1865 csts.r = nvme_get32(nvme, NVME_REG_CSTS);
1866
1867 if (csts.b.csts_cfs == 1) {
1868 dev_err(nvme->n_dip, CE_WARN,
1869 "!controller fatal status at init");
1870 ddi_fm_service_impact(nvme->n_dip,
1871 DDI_SERVICE_LOST);
1872 nvme->n_dead = B_TRUE;
1873 goto fail;
1874 }
1875
1876 if (csts.b.csts_rdy == 1)
1877 break;
1878 }
1879 }
1880
1881 if (csts.b.csts_rdy == 0) {
1882 dev_err(nvme->n_dip, CE_WARN, "!controller not ready");
1883 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1884 nvme->n_dead = B_TRUE;
1885 goto fail;
1886 }
1887
1888 /*
1889 * Assume an abort command limit of 1. We'll destroy and re-init
1890 * that later when we know the true abort command limit.
1891 */
1892 sema_init(&nvme->n_abort_sema, 1, NULL, SEMA_DRIVER, NULL);
1893
1894 /*
1895 * Post an asynchronous event command to catch errors.
1896 */
1897 if (nvme_async_event(nvme) != DDI_SUCCESS) {
1898 dev_err(nvme->n_dip, CE_WARN,
1899 "!failed to post async event");
1900 goto fail;
1901 }
1902
1903 /*
1904 * Identify Controller
1905 */
1906 nvme->n_idctl = nvme_identify(nvme, 0);
1907 if (nvme->n_idctl == NULL) {
1908 dev_err(nvme->n_dip, CE_WARN,
1909 "!failed to identify controller");
1910 goto fail;
1911 }
1912
1913 /*
1914 * Get Vendor & Product ID
1915 */
1916 bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model));
1917 model[sizeof (nvme->n_idctl->id_model)] = '\0';
1918 sata_split_model(model, &vendor, &product);
1919
1920 if (vendor == NULL)
1921 nvme->n_vendor = strdup("NVMe");
1922 else
1923 nvme->n_vendor = strdup(vendor);
1924
1925 nvme->n_product = strdup(product);
1926
1927 /*
1928 * Get controller limits.
1929 */
1930 nvme->n_async_event_limit = MAX(NVME_MIN_ASYNC_EVENT_LIMIT,
1931 MIN(nvme->n_admin_queue_len / 10,
1932 MIN(nvme->n_idctl->id_aerl + 1, nvme->n_async_event_limit)));
1933
1934 (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
1935 "async-event-limit", nvme->n_async_event_limit);
1936
1937 nvme->n_abort_command_limit = nvme->n_idctl->id_acl + 1;
1938
1939 /* disable NVMe interrupts while reinitializing the semaphore */
1940 nvme_disable_interrupts(nvme);
1941 sema_destroy(&nvme->n_abort_sema);
1942 sema_init(&nvme->n_abort_sema, nvme->n_abort_command_limit - 1, NULL,
1943 SEMA_DRIVER, NULL);
1944 if (nvme_enable_interrupts(nvme) != DDI_SUCCESS) {
1945 dev_err(nvme->n_dip, CE_WARN,
1946 "!failed to re-enable interrupts");
1947 goto fail;
1948 }
1949
1950 nvme->n_progress |= NVME_CTRL_LIMITS;
1951
1952 if (nvme->n_idctl->id_mdts == 0)
1953 nvme->n_max_data_transfer_size = nvme->n_pagesize * 65536;
1954 else
1955 nvme->n_max_data_transfer_size =
1956 1ull << (nvme->n_pageshift + nvme->n_idctl->id_mdts);
1957
1958 nvme->n_error_log_len = nvme->n_idctl->id_elpe + 1;
1959
1960 /*
1961 * Limit n_max_data_transfer_size to what we can handle in one PRP.
1962 * Chained PRPs are currently unsupported.
1963 *
1964 * This is a no-op on hardware which doesn't support a transfer size
1965 * big enough to require chained PRPs.
1966 */
1967 nvme->n_max_data_transfer_size = MIN(nvme->n_max_data_transfer_size,
1968 (nvme->n_pagesize / sizeof (uint64_t) * nvme->n_pagesize));
1969
1970 nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_max_data_transfer_size;
1971
1972 /*
1973 * Make sure the minimum/maximum queue entry sizes are not
1974 * larger/smaller than the default.
1975 */
1976
1977 if (((1 << nvme->n_idctl->id_sqes.qes_min) > sizeof (nvme_sqe_t)) ||
1978 ((1 << nvme->n_idctl->id_sqes.qes_max) < sizeof (nvme_sqe_t)) ||
1979 ((1 << nvme->n_idctl->id_cqes.qes_min) > sizeof (nvme_cqe_t)) ||
1980 ((1 << nvme->n_idctl->id_cqes.qes_max) < sizeof (nvme_cqe_t)))
1981 goto fail;
1982
1983 /*
1984 * Check for the presence of a Volatile Write Cache. If present,
1985 * enable it by default.
1986 */
1987 if (nvme->n_idctl->id_vwc.vwc_present == 0) {
1988 nvme->n_volatile_write_cache_enabled = B_FALSE;
1989 nvme_bd_ops.o_sync_cache = NULL;
1990 } else {
1991 /*
1992 * TODO: send SET FEATURES to enable VWC
1993 * (have no hardware to test this)
1994 */
1995 nvme->n_volatile_write_cache_enabled = B_FALSE;
1996 nvme_bd_ops.o_sync_cache = NULL;
1997 }
1998
1999 /*
2000 * Grab a copy of all mandatory log pages.
2001 *
2002 * TODO: should go away once user space tool exists to print logs
2003 */
2004 nvme->n_error_log = (nvme_error_log_entry_t *)
2005 nvme_get_logpage(nvme, NVME_LOGPAGE_ERROR);
2006 nvme->n_health_log = (nvme_health_log_t *)
2007 nvme_get_logpage(nvme, NVME_LOGPAGE_HEALTH, -1);
2008 nvme->n_fwslot_log = (nvme_fwslot_log_t *)
2009 nvme_get_logpage(nvme, NVME_LOGPAGE_FWSLOT);
2010
2011 /*
2012 * Identify Namespaces
2013 */
2014 nvme->n_namespace_count = nvme->n_idctl->id_nn;
2015 nvme->n_ns = kmem_zalloc(sizeof (nvme_namespace_t) *
2016 nvme->n_namespace_count, KM_SLEEP);
2017
2018 for (i = 0; i != nvme->n_namespace_count; i++) {
2019 nvme_identify_nsid_t *idns;
2020 int last_rp;
2021
2022 nvme->n_ns[i].ns_nvme = nvme;
2023 nvme->n_ns[i].ns_idns = idns = nvme_identify(nvme, i + 1);
2024
2025 if (idns == NULL) {
2026 dev_err(nvme->n_dip, CE_WARN,
2027 "!failed to identify namespace %d", i + 1);
2028 goto fail;
2029 }
2030
2031 nvme->n_ns[i].ns_id = i + 1;
2032 nvme->n_ns[i].ns_block_count = idns->id_nsize;
2033 nvme->n_ns[i].ns_block_size =
2034 1 << idns->id_lbaf[idns->id_flbas.lba_format].lbaf_lbads;
2035 nvme->n_ns[i].ns_best_block_size = nvme->n_ns[i].ns_block_size;
2036
2037 nvme_prepare_devid(nvme, nvme->n_ns[i].ns_id);
2038
2039 /*
2040 * Find the LBA format with no metadata and the best relative
2041 * performance. A value of 3 means "degraded", 0 is best.
2042 */
2043 last_rp = 3;
2044 for (int j = 0; j != idns->id_nlbaf; j++) {
2045 if (idns->id_lbaf[j].lbaf_lbads == 0)
2046 break;
2047 if (idns->id_lbaf[j].lbaf_ms != 0)
2048 continue;
2049 if (idns->id_lbaf[j].lbaf_rp >= last_rp)
2050 continue;
2051 last_rp = idns->id_lbaf[j].lbaf_rp;
2052 nvme->n_ns[i].ns_best_block_size =
2053 1 << idns->id_lbaf[j].lbaf_lbads;
2054 }
2055
2056 /*
2057 * We currently don't support namespaces that use either:
2058 * - thin provisioning
2059 * - extended LBAs
2060 * - protection information
2061 */
2062 if (idns->id_nsfeat.f_thin ||
2063 idns->id_flbas.lba_extlba ||
2064 idns->id_dps.dp_pinfo) {
2065 dev_err(nvme->n_dip, CE_WARN,
2066 "!ignoring namespace %d, unsupported features: "
2067 "thin = %d, extlba = %d, pinfo = %d", i + 1,
2068 idns->id_nsfeat.f_thin, idns->id_flbas.lba_extlba,
2069 idns->id_dps.dp_pinfo);
2070 nvme->n_ns[i].ns_ignore = B_TRUE;
2071 }
2072 }
2073
2074 /*
2075 * Try to set up MSI/MSI-X interrupts.
2076 */
2077 if ((nvme->n_intr_types & (DDI_INTR_TYPE_MSI | DDI_INTR_TYPE_MSIX))
2078 != 0) {
2079 nvme_release_interrupts(nvme);
2080
2081 nqueues = MIN(UINT16_MAX, ncpus);
2082
2083 if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX,
2084 nqueues) != DDI_SUCCESS) &&
2085 (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI,
2086 nqueues) != DDI_SUCCESS)) {
2087 dev_err(nvme->n_dip, CE_WARN,
2088 "!failed to setup MSI/MSI-X interrupts");
2089 goto fail;
2090 }
2091 }
2092
2093 nqueues = nvme->n_intr_cnt;
2094
2095 /*
2096 * Create I/O queue pairs.
2097 */
2098 nvme->n_ioq_count = nvme_set_nqueues(nvme, nqueues);
2099 if (nvme->n_ioq_count == 0) {
2100 dev_err(nvme->n_dip, CE_WARN,
2101 "!failed to set number of I/O queues to %d", nqueues);
2102 goto fail;
2103 }
2104
2105 /*
2106 * Reallocate I/O queue array
2107 */
2108 kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *));
2109 nvme->n_ioq = kmem_zalloc(sizeof (nvme_qpair_t *) *
2110 (nvme->n_ioq_count + 1), KM_SLEEP);
2111 nvme->n_ioq[0] = nvme->n_adminq;
2112
2113 /*
2114 * If we got less queues than we asked for we might as well give
2115 * some of the interrupt vectors back to the system.
2116 */
2117 if (nvme->n_ioq_count < nqueues) {
2118 nvme_release_interrupts(nvme);
2119
2120 if (nvme_setup_interrupts(nvme, nvme->n_intr_type, nqueues)
2121 != DDI_SUCCESS) {
2122 dev_err(nvme->n_dip, CE_WARN,
2123 "!failed to reduce number of interrupts");
2124 goto fail;
2125 }
2126 }
2127
2128 /*
2129 * Alloc & register I/O queue pairs
2130 */
2131 nvme->n_io_queue_len =
2132 MIN(nvme->n_io_queue_len, nvme->n_max_queue_entries);
2133 (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, "io-queue-len",
2134 nvme->n_io_queue_len);
2135
2136 for (i = 1; i != nvme->n_ioq_count + 1; i++) {
2137 if (nvme_alloc_qpair(nvme, nvme->n_io_queue_len,
2138 &nvme->n_ioq[i], i) != DDI_SUCCESS) {
2139 dev_err(nvme->n_dip, CE_WARN,
2140 "!unable to allocate I/O qpair %d", i);
2141 goto fail;
2142 }
2143
2144 if (nvme_create_io_qpair(nvme, nvme->n_ioq[i], i)
2145 != DDI_SUCCESS) {
2146 dev_err(nvme->n_dip, CE_WARN,
2147 "!unable to create I/O qpair %d", i);
2148 goto fail;
2149 }
2150 }
2151
2152 /*
2153 * Post more asynchronous events commands to reduce event reporting
2154 * latency as suggested by the spec.
2155 */
2156 for (i = 1; i != nvme->n_async_event_limit; i++) {
2157 if (nvme_async_event(nvme) != DDI_SUCCESS) {
2158 dev_err(nvme->n_dip, CE_WARN,
2159 "!failed to post async event %d", i);
2160 goto fail;
2161 }
2162 }
2163
2164 return (DDI_SUCCESS);
2165
2166 fail:
2167 (void) nvme_reset(nvme, B_FALSE);
2168 return (DDI_FAILURE);
2169 }
2170
2171 static uint_t
2172 nvme_intr(caddr_t arg1, caddr_t arg2)
2173 {
2174 /*LINTED: E_PTR_BAD_CAST_ALIGN*/
2175 nvme_t *nvme = (nvme_t *)arg1;
2176 int inum = (int)(uintptr_t)arg2;
2177 int qnum;
2178 nvme_cmd_t *cmd;
2179
2180 if (inum >= nvme->n_intr_cnt)
2181 return (DDI_INTR_UNCLAIMED);
2182
2183 /*
2184 * The interrupt vector a queue uses is calculated as queue_idx %
2185 * intr_cnt in nvme_create_io_qpair(). Iterate through the queue array
2186 * in steps of n_intr_cnt to process all queues using this vector.
2187 */
2188 for (qnum = inum;
2189 qnum < nvme->n_ioq_count + 1 && nvme->n_ioq[qnum] != NULL;
2190 qnum += nvme->n_intr_cnt) {
2191 while ((cmd = nvme_retrieve_cmd(nvme, nvme->n_ioq[qnum]))) {
2192 taskq_dispatch_ent((taskq_t *)cmd->nc_nvme->n_cmd_taskq,
2193 cmd->nc_callback, cmd, TQ_NOSLEEP, &cmd->nc_tqent);
2194 }
2195 }
2196
2197 return (DDI_INTR_CLAIMED);
2198 }
2199
2200 static void
2201 nvme_disable_interrupts(nvme_t *nvme)
2202 {
2203 int i;
2204
2205 for (i = 0; i < nvme->n_intr_cnt; i++) {
2206 if (nvme->n_inth[i] == NULL)
2207 break;
2208
2209 if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK)
2210 (void) ddi_intr_block_disable(&nvme->n_inth[i], 1);
2211 else
2212 (void) ddi_intr_disable(nvme->n_inth[i]);
2213 }
2214 }
2215
2216 static int
2217 nvme_enable_interrupts(nvme_t *nvme)
2218 {
2219 int i, fail = 0;
2220
2221 for (i = 0; i < nvme->n_intr_cnt; i++) {
2222 if (nvme->n_inth[i] == NULL)
2223 break;
2224
2225 if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK) {
2226 if (ddi_intr_block_enable(&nvme->n_inth[i], 1) !=
2227 DDI_SUCCESS)
2228 fail++;
2229 } else {
2230 if (ddi_intr_enable(nvme->n_inth[i]) != DDI_SUCCESS)
2231 fail++;
2232 }
2233 }
2234
2235 return (fail ? DDI_FAILURE : DDI_SUCCESS);
2236 }
2237
2238 static void
2239 nvme_release_interrupts(nvme_t *nvme)
2240 {
2241 int i;
2242
2243 nvme_disable_interrupts(nvme);
2244
2245 for (i = 0; i < nvme->n_intr_cnt; i++) {
2246 if (nvme->n_inth[i] == NULL)
2247 break;
2248
2249 (void) ddi_intr_remove_handler(nvme->n_inth[i]);
2250 (void) ddi_intr_free(nvme->n_inth[i]);
2251 }
2252
2253 kmem_free(nvme->n_inth, nvme->n_inth_sz);
2254 nvme->n_inth = NULL;
2255 nvme->n_inth_sz = 0;
2256
2257 nvme->n_progress &= ~NVME_INTERRUPTS;
2258 }
2259
2260 static int
2261 nvme_setup_interrupts(nvme_t *nvme, int intr_type, int nqpairs)
2262 {
2263 int nintrs, navail, count;
2264 int ret;
2265 int i;
2266
2267 if (nvme->n_intr_types == 0) {
2268 ret = ddi_intr_get_supported_types(nvme->n_dip,
2269 &nvme->n_intr_types);
2270 if (ret != DDI_SUCCESS) {
2271 dev_err(nvme->n_dip, CE_WARN,
2272 "!%s: ddi_intr_get_supported types failed",
2273 __func__);
2274 return (ret);
2275 }
2276 }
2277
2278 if ((nvme->n_intr_types & intr_type) == 0)
2279 return (DDI_FAILURE);
2280
2281 ret = ddi_intr_get_nintrs(nvme->n_dip, intr_type, &nintrs);
2282 if (ret != DDI_SUCCESS) {
2283 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_nintrs failed",
2284 __func__);
2285 return (ret);
2286 }
2287
2288 ret = ddi_intr_get_navail(nvme->n_dip, intr_type, &navail);
2289 if (ret != DDI_SUCCESS) {
2290 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_navail failed",
2291 __func__);
2292 return (ret);
2293 }
2294
2295 /* We want at most one interrupt per queue pair. */
2296 if (navail > nqpairs)
2297 navail = nqpairs;
2298
2299 nvme->n_inth_sz = sizeof (ddi_intr_handle_t) * navail;
2300 nvme->n_inth = kmem_zalloc(nvme->n_inth_sz, KM_SLEEP);
2301
2302 ret = ddi_intr_alloc(nvme->n_dip, nvme->n_inth, intr_type, 0, navail,
2303 &count, 0);
2304 if (ret != DDI_SUCCESS) {
2305 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_alloc failed",
2306 __func__);
2307 goto fail;
2308 }
2309
2310 nvme->n_intr_cnt = count;
2311
2312 ret = ddi_intr_get_pri(nvme->n_inth[0], &nvme->n_intr_pri);
2313 if (ret != DDI_SUCCESS) {
2314 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_pri failed",
2315 __func__);
2316 goto fail;
2317 }
2318
2319 for (i = 0; i < count; i++) {
2320 ret = ddi_intr_add_handler(nvme->n_inth[i], nvme_intr,
2321 (void *)nvme, (void *)(uintptr_t)i);
2322 if (ret != DDI_SUCCESS) {
2323 dev_err(nvme->n_dip, CE_WARN,
2324 "!%s: ddi_intr_add_handler failed", __func__);
2325 goto fail;
2326 }
2327 }
2328
2329 (void) ddi_intr_get_cap(nvme->n_inth[0], &nvme->n_intr_cap);
2330
2331 ret = nvme_enable_interrupts(nvme);
2332
2333 if (ret != DDI_SUCCESS) {
2334 dev_err(nvme->n_dip, CE_WARN,
2335 "!%s: nvme_enable_interrupts failed", __func__);
2336 goto fail;
2337 }
2338
2339 nvme->n_intr_type = intr_type;
2340
2341 nvme->n_progress |= NVME_INTERRUPTS;
2342
2343 return (DDI_SUCCESS);
2344
2345 fail:
2346 nvme_release_interrupts(nvme);
2347
2348 return (ret);
2349 }
2350
2351 static int
2352 nvme_fm_errcb(dev_info_t *dip, ddi_fm_error_t *fm_error, const void *arg)
2353 {
2354 _NOTE(ARGUNUSED(arg));
2355
2356 pci_ereport_post(dip, fm_error, NULL);
2357 return (fm_error->fme_status);
2358 }
2359
2360 static int
2361 nvme_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
2362 {
2363 nvme_t *nvme;
2364 int instance;
2365 int nregs;
2366 off_t regsize;
2367 int i;
2368 char name[32];
2369
2370 if (cmd != DDI_ATTACH)
2371 return (DDI_FAILURE);
2372
2373 instance = ddi_get_instance(dip);
2374
2375 if (ddi_soft_state_zalloc(nvme_state, instance) != DDI_SUCCESS)
2376 return (DDI_FAILURE);
2377
2378 nvme = ddi_get_soft_state(nvme_state, instance);
2379 ddi_set_driver_private(dip, nvme);
2380 nvme->n_dip = dip;
2381
2382 nvme->n_strict_version = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2383 DDI_PROP_DONTPASS, "strict-version", 1) == 1 ? B_TRUE : B_FALSE;
2384 nvme->n_ignore_unknown_vendor_status = ddi_prop_get_int(DDI_DEV_T_ANY,
2385 dip, DDI_PROP_DONTPASS, "ignore-unknown-vendor-status", 0) == 1 ?
2386 B_TRUE : B_FALSE;
2387 nvme->n_admin_queue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2388 DDI_PROP_DONTPASS, "admin-queue-len", NVME_DEFAULT_ADMIN_QUEUE_LEN);
2389 nvme->n_io_queue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2390 DDI_PROP_DONTPASS, "io-queue-len", NVME_DEFAULT_IO_QUEUE_LEN);
2391 nvme->n_async_event_limit = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2392 DDI_PROP_DONTPASS, "async-event-limit",
2393 NVME_DEFAULT_ASYNC_EVENT_LIMIT);
2394
2395 if (nvme->n_admin_queue_len < NVME_MIN_ADMIN_QUEUE_LEN)
2396 nvme->n_admin_queue_len = NVME_MIN_ADMIN_QUEUE_LEN;
2397 else if (nvme->n_admin_queue_len > NVME_MAX_ADMIN_QUEUE_LEN)
2398 nvme->n_admin_queue_len = NVME_MAX_ADMIN_QUEUE_LEN;
2399
2400 if (nvme->n_io_queue_len < NVME_MIN_IO_QUEUE_LEN)
2401 nvme->n_io_queue_len = NVME_MIN_IO_QUEUE_LEN;
2402
2403 if (nvme->n_async_event_limit < 1)
2404 nvme->n_async_event_limit = NVME_DEFAULT_ASYNC_EVENT_LIMIT;
2405
2406 nvme->n_reg_acc_attr = nvme_reg_acc_attr;
2407 nvme->n_queue_dma_attr = nvme_queue_dma_attr;
2408 nvme->n_prp_dma_attr = nvme_prp_dma_attr;
2409 nvme->n_sgl_dma_attr = nvme_sgl_dma_attr;
2410
2411 /*
2412 * Setup FMA support.
2413 */
2414 nvme->n_fm_cap = ddi_getprop(DDI_DEV_T_ANY, dip,
2415 DDI_PROP_CANSLEEP | DDI_PROP_DONTPASS, "fm-capable",
2416 DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
2417 DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
2418
2419 ddi_fm_init(dip, &nvme->n_fm_cap, &nvme->n_fm_ibc);
2420
2421 if (nvme->n_fm_cap) {
2422 if (nvme->n_fm_cap & DDI_FM_ACCCHK_CAPABLE)
2423 nvme->n_reg_acc_attr.devacc_attr_access =
2424 DDI_FLAGERR_ACC;
2425
2426 if (nvme->n_fm_cap & DDI_FM_DMACHK_CAPABLE) {
2427 nvme->n_prp_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR;
2428 nvme->n_sgl_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR;
2429 }
2430
2431 if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) ||
2432 DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
2433 pci_ereport_setup(dip);
2434
2435 if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
2436 ddi_fm_handler_register(dip, nvme_fm_errcb,
2437 (void *)nvme);
2438 }
2439
2440 nvme->n_progress |= NVME_FMA_INIT;
2441
2442 /*
2443 * The spec defines several register sets. Only the controller
2444 * registers (set 1) are currently used.
2445 */
2446 if (ddi_dev_nregs(dip, &nregs) == DDI_FAILURE ||
2447 nregs < 2 ||
2448 ddi_dev_regsize(dip, 1, ®size) == DDI_FAILURE)
2449 goto fail;
2450
2451 if (ddi_regs_map_setup(dip, 1, &nvme->n_regs, 0, regsize,
2452 &nvme->n_reg_acc_attr, &nvme->n_regh) != DDI_SUCCESS) {
2453 dev_err(dip, CE_WARN, "!failed to map regset 1");
2454 goto fail;
2455 }
2456
2457 nvme->n_progress |= NVME_REGS_MAPPED;
2458
2459 /*
2460 * Create taskq for command completion.
2461 */
2462 (void) snprintf(name, sizeof (name), "%s%d_cmd_taskq",
2463 ddi_driver_name(dip), ddi_get_instance(dip));
2464 nvme->n_cmd_taskq = ddi_taskq_create(dip, name, MIN(UINT16_MAX, ncpus),
2465 TASKQ_DEFAULTPRI, 0);
2466 if (nvme->n_cmd_taskq == NULL) {
2467 dev_err(dip, CE_WARN, "!failed to create cmd taskq");
2468 goto fail;
2469 }
2470
2471
2472 if (nvme_init(nvme) != DDI_SUCCESS)
2473 goto fail;
2474
2475 /*
2476 * Attach the blkdev driver for each namespace.
2477 */
2478 for (i = 0; i != nvme->n_namespace_count; i++) {
2479 if (nvme->n_ns[i].ns_ignore)
2480 continue;
2481
2482 nvme->n_ns[i].ns_bd_hdl = bd_alloc_handle(&nvme->n_ns[i],
2483 &nvme_bd_ops, &nvme->n_prp_dma_attr, KM_SLEEP);
2484
2485 if (nvme->n_ns[i].ns_bd_hdl == NULL) {
2486 dev_err(dip, CE_WARN,
2487 "!failed to get blkdev handle for namespace %d", i);
2488 goto fail;
2489 }
2490
2491 if (bd_attach_handle(dip, nvme->n_ns[i].ns_bd_hdl)
2492 != DDI_SUCCESS) {
2493 dev_err(dip, CE_WARN,
2494 "!failed to attach blkdev handle for namespace %d",
2495 i);
2496 goto fail;
2497 }
2498 }
2499
2500 return (DDI_SUCCESS);
2501
2502 fail:
2503 /* attach successful anyway so that FMA can retire the device */
2504 if (nvme->n_dead)
2505 return (DDI_SUCCESS);
2506
2507 (void) nvme_detach(dip, DDI_DETACH);
2508
2509 return (DDI_FAILURE);
2510 }
2511
2512 static int
2513 nvme_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
2514 {
2515 int instance, i;
2516 nvme_t *nvme;
2517
2518 if (cmd != DDI_DETACH)
2519 return (DDI_FAILURE);
2520
2521 instance = ddi_get_instance(dip);
2522
2523 nvme = ddi_get_soft_state(nvme_state, instance);
2524
2525 if (nvme == NULL)
2526 return (DDI_FAILURE);
2527
2528 if (nvme->n_ns) {
2529 for (i = 0; i != nvme->n_namespace_count; i++) {
2530 if (nvme->n_ns[i].ns_bd_hdl) {
2531 (void) bd_detach_handle(
2532 nvme->n_ns[i].ns_bd_hdl);
2533 bd_free_handle(nvme->n_ns[i].ns_bd_hdl);
2534 }
2535
2536 if (nvme->n_ns[i].ns_idns)
2537 kmem_free(nvme->n_ns[i].ns_idns,
2538 sizeof (nvme_identify_nsid_t));
2539 }
2540
2541 kmem_free(nvme->n_ns, sizeof (nvme_namespace_t) *
2542 nvme->n_namespace_count);
2543 }
2544
2545 if (nvme->n_progress & NVME_INTERRUPTS)
2546 nvme_release_interrupts(nvme);
2547
2548 if (nvme->n_cmd_taskq)
2549 ddi_taskq_wait(nvme->n_cmd_taskq);
2550
2551 if (nvme->n_ioq_count > 0) {
2552 for (i = 1; i != nvme->n_ioq_count + 1; i++) {
2553 if (nvme->n_ioq[i] != NULL) {
2554 /* TODO: send destroy queue commands */
2555 nvme_free_qpair(nvme->n_ioq[i]);
2556 }
2557 }
2558
2559 kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *) *
2560 (nvme->n_ioq_count + 1));
2561 }
2562
2563 if (nvme->n_progress & NVME_REGS_MAPPED) {
2564 nvme_shutdown(nvme, NVME_CC_SHN_NORMAL, B_FALSE);
2565 (void) nvme_reset(nvme, B_FALSE);
2566 }
2567
2568 if (nvme->n_cmd_taskq)
2569 ddi_taskq_destroy(nvme->n_cmd_taskq);
2570
2571 if (nvme->n_progress & NVME_CTRL_LIMITS)
2572 sema_destroy(&nvme->n_abort_sema);
2573
2574 if (nvme->n_progress & NVME_ADMIN_QUEUE)
2575 nvme_free_qpair(nvme->n_adminq);
2576
2577 if (nvme->n_idctl)
2578 kmem_free(nvme->n_idctl, sizeof (nvme_identify_ctrl_t));
2579
2580 if (nvme->n_progress & NVME_REGS_MAPPED)
2581 ddi_regs_map_free(&nvme->n_regh);
2582
2583 if (nvme->n_progress & NVME_FMA_INIT) {
2584 if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
2585 ddi_fm_handler_unregister(nvme->n_dip);
2586
2587 if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) ||
2588 DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
2589 pci_ereport_teardown(nvme->n_dip);
2590
2591 ddi_fm_fini(nvme->n_dip);
2592 }
2593
2594 if (nvme->n_vendor != NULL)
2595 strfree(nvme->n_vendor);
2596
2597 if (nvme->n_product != NULL)
2598 strfree(nvme->n_product);
2599
2600 ddi_soft_state_free(nvme_state, instance);
2601
2602 return (DDI_SUCCESS);
2603 }
2604
2605 static int
2606 nvme_quiesce(dev_info_t *dip)
2607 {
2608 int instance;
2609 nvme_t *nvme;
2610
2611 instance = ddi_get_instance(dip);
2612
2613 nvme = ddi_get_soft_state(nvme_state, instance);
2614
2615 if (nvme == NULL)
2616 return (DDI_FAILURE);
2617
2618 nvme_shutdown(nvme, NVME_CC_SHN_ABRUPT, B_TRUE);
2619
2620 (void) nvme_reset(nvme, B_TRUE);
2621
2622 return (DDI_FAILURE);
2623 }
2624
2625 static int
2626 nvme_fill_prp(nvme_cmd_t *cmd, bd_xfer_t *xfer)
2627 {
2628 nvme_t *nvme = cmd->nc_nvme;
2629 int nprp_page, nprp;
2630 uint64_t *prp;
2631
2632 if (xfer->x_ndmac == 0)
2633 return (DDI_FAILURE);
2634
2635 cmd->nc_sqe.sqe_dptr.d_prp[0] = xfer->x_dmac.dmac_laddress;
2636 ddi_dma_nextcookie(xfer->x_dmah, &xfer->x_dmac);
2637
2638 if (xfer->x_ndmac == 1) {
2639 cmd->nc_sqe.sqe_dptr.d_prp[1] = 0;
2640 return (DDI_SUCCESS);
2641 } else if (xfer->x_ndmac == 2) {
2642 cmd->nc_sqe.sqe_dptr.d_prp[1] = xfer->x_dmac.dmac_laddress;
2643 return (DDI_SUCCESS);
2644 }
2645
2646 xfer->x_ndmac--;
2647
2648 nprp_page = nvme->n_pagesize / sizeof (uint64_t) - 1;
2649 ASSERT(nprp_page > 0);
2650 nprp = (xfer->x_ndmac + nprp_page - 1) / nprp_page;
2651
2652 /*
2653 * We currently don't support chained PRPs and set up our DMA
2654 * attributes to reflect that. If we still get an I/O request
2655 * that needs a chained PRP something is very wrong.
2656 */
2657 VERIFY(nprp == 1);
2658
2659 if (nvme_zalloc_dma(nvme, nvme->n_pagesize * nprp, DDI_DMA_READ,
2660 &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
2661 dev_err(nvme->n_dip, CE_WARN, "!%s: nvme_zalloc_dma failed",
2662 __func__);
2663 return (DDI_FAILURE);
2664 }
2665
2666 cmd->nc_sqe.sqe_dptr.d_prp[1] = cmd->nc_dma->nd_cookie.dmac_laddress;
2667 ddi_dma_nextcookie(cmd->nc_dma->nd_dmah, &cmd->nc_dma->nd_cookie);
2668
2669 /*LINTED: E_PTR_BAD_CAST_ALIGN*/
2670 for (prp = (uint64_t *)cmd->nc_dma->nd_memp;
2671 xfer->x_ndmac > 0;
2672 prp++, xfer->x_ndmac--) {
2673 *prp = xfer->x_dmac.dmac_laddress;
2674 ddi_dma_nextcookie(xfer->x_dmah, &xfer->x_dmac);
2675 }
2676
2677 (void) ddi_dma_sync(cmd->nc_dma->nd_dmah, 0, cmd->nc_dma->nd_len,
2678 DDI_DMA_SYNC_FORDEV);
2679 return (DDI_SUCCESS);
2680 }
2681
2682 static nvme_cmd_t *
2683 nvme_create_nvm_cmd(nvme_namespace_t *ns, uint8_t opc, bd_xfer_t *xfer)
2684 {
2685 nvme_t *nvme = ns->ns_nvme;
2686 nvme_cmd_t *cmd;
2687
2688 /*
2689 * Blkdev only sets BD_XFER_POLL when dumping, so don't sleep.
2690 */
2691 cmd = nvme_alloc_cmd(nvme, (xfer->x_flags & BD_XFER_POLL) ?
2692 KM_NOSLEEP : KM_SLEEP);
2693
2694 if (cmd == NULL)
2695 return (NULL);
2696
2697 cmd->nc_sqe.sqe_opc = opc;
2698 cmd->nc_callback = nvme_bd_xfer_done;
2699 cmd->nc_xfer = xfer;
2700
2701 switch (opc) {
2702 case NVME_OPC_NVM_WRITE:
2703 case NVME_OPC_NVM_READ:
2704 VERIFY(xfer->x_nblks <= 0x10000);
2705
2706 cmd->nc_sqe.sqe_nsid = ns->ns_id;
2707
2708 cmd->nc_sqe.sqe_cdw10 = xfer->x_blkno & 0xffffffffu;
2709 cmd->nc_sqe.sqe_cdw11 = (xfer->x_blkno >> 32);
2710 cmd->nc_sqe.sqe_cdw12 = (uint16_t)(xfer->x_nblks - 1);
2711
2712 if (nvme_fill_prp(cmd, xfer) != DDI_SUCCESS)
2713 goto fail;
2714 break;
2715
2716 case NVME_OPC_NVM_FLUSH:
2717 cmd->nc_sqe.sqe_nsid = ns->ns_id;
2718 break;
2719
2720 default:
2721 goto fail;
2722 }
2723
2724 return (cmd);
2725
2726 fail:
2727 nvme_free_cmd(cmd);
2728 return (NULL);
2729 }
2730
2731 static void
2732 nvme_bd_xfer_done(void *arg)
2733 {
2734 nvme_cmd_t *cmd = arg;
2735 bd_xfer_t *xfer = cmd->nc_xfer;
2736 int error = 0;
2737
2738 error = nvme_check_cmd_status(cmd);
2739 nvme_free_cmd(cmd);
2740
2741 bd_xfer_done(xfer, error);
2742 }
2743
2744 static void
2745 nvme_bd_driveinfo(void *arg, bd_drive_t *drive)
2746 {
2747 nvme_namespace_t *ns = arg;
2748 nvme_t *nvme = ns->ns_nvme;
2749
2750 /*
2751 * blkdev maintains one queue size per instance (namespace),
2752 * but all namespace share the I/O queues.
2753 * TODO: need to figure out a sane default, or use per-NS I/O queues,
2754 * or change blkdev to handle EAGAIN
2755 */
2756 drive->d_qsize = nvme->n_ioq_count * nvme->n_io_queue_len
2757 / nvme->n_namespace_count;
2758
2759 /*
2760 * d_maxxfer is not set, which means the value is taken from the DMA
2761 * attributes specified to bd_alloc_handle.
2762 */
2763
2764 drive->d_removable = B_FALSE;
2765 drive->d_hotpluggable = B_FALSE;
2766
2767 drive->d_target = ns->ns_id;
2768 drive->d_lun = 0;
2769
2770 drive->d_model = nvme->n_idctl->id_model;
2771 drive->d_model_len = sizeof (nvme->n_idctl->id_model);
2772 drive->d_vendor = nvme->n_vendor;
2773 drive->d_vendor_len = strlen(nvme->n_vendor);
2774 drive->d_product = nvme->n_product;
2775 drive->d_product_len = strlen(nvme->n_product);
2776 drive->d_serial = nvme->n_idctl->id_serial;
2777 drive->d_serial_len = sizeof (nvme->n_idctl->id_serial);
2778 drive->d_revision = nvme->n_idctl->id_fwrev;
2779 drive->d_revision_len = sizeof (nvme->n_idctl->id_fwrev);
2780 }
2781
2782 static int
2783 nvme_bd_mediainfo(void *arg, bd_media_t *media)
2784 {
2785 nvme_namespace_t *ns = arg;
2786
2787 media->m_nblks = ns->ns_block_count;
2788 media->m_blksize = ns->ns_block_size;
2789 media->m_readonly = B_FALSE;
2790 media->m_solidstate = B_TRUE;
2791
2792 media->m_pblksize = ns->ns_best_block_size;
2793
2794 return (0);
2795 }
2796
2797 static int
2798 nvme_bd_cmd(nvme_namespace_t *ns, bd_xfer_t *xfer, uint8_t opc)
2799 {
2800 nvme_t *nvme = ns->ns_nvme;
2801 nvme_cmd_t *cmd;
2802
2803 if (nvme->n_dead)
2804 return (EIO);
2805
2806 /* No polling for now */
2807 if (xfer->x_flags & BD_XFER_POLL)
2808 return (EIO);
2809
2810 cmd = nvme_create_nvm_cmd(ns, opc, xfer);
2811 if (cmd == NULL)
2812 return (ENOMEM);
2813
2814 cmd->nc_sqid = (CPU->cpu_id % nvme->n_ioq_count) + 1;
2815 ASSERT(cmd->nc_sqid <= nvme->n_ioq_count);
2816
2817 if (nvme_submit_cmd(nvme->n_ioq[cmd->nc_sqid], cmd)
2818 != DDI_SUCCESS)
2819 return (EAGAIN);
2820
2821 return (0);
2822 }
2823
2824 static int
2825 nvme_bd_read(void *arg, bd_xfer_t *xfer)
2826 {
2827 nvme_namespace_t *ns = arg;
2828
2829 return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_READ));
2830 }
2831
2832 static int
2833 nvme_bd_write(void *arg, bd_xfer_t *xfer)
2834 {
2835 nvme_namespace_t *ns = arg;
2836
2837 return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_WRITE));
2838 }
2839
2840 static int
2841 nvme_bd_sync(void *arg, bd_xfer_t *xfer)
2842 {
2843 nvme_namespace_t *ns = arg;
2844
2845 if (ns->ns_nvme->n_dead)
2846 return (EIO);
2847
2848 /*
2849 * If the volatile write cache isn't enabled the FLUSH command is a
2850 * no-op, so we can take a shortcut here.
2851 */
2852 if (ns->ns_nvme->n_volatile_write_cache_enabled == B_FALSE) {
2853 bd_xfer_done(xfer, ENOTSUP);
2854 return (0);
2855 }
2856
2857 return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_FLUSH));
2858 }
2859
2860 static int
2861 nvme_bd_devid(void *arg, dev_info_t *devinfo, ddi_devid_t *devid)
2862 {
2863 nvme_namespace_t *ns = arg;
2864
2865 return (ddi_devid_init(devinfo, DEVID_ENCAP, strlen(ns->ns_devid),
2866 ns->ns_devid, devid));
2867 }