1 /* 2 * This file and its contents are supplied under the terms of the 3 * Common Development and Distribution License ("CDDL"), version 1.0. 4 * You may only use this file in accordance with the terms of version 5 * 1.0 of the CDDL. 6 * 7 * A full copy of the text of the CDDL should have accompanied this 8 * source. A copy of the CDDL is also available via the Internet at 9 * http://www.illumos.org/license/CDDL. 10 */ 11 12 /* 13 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 14 */ 15 16 /* 17 * blkdev driver for NVMe compliant storage devices 18 * 19 * This driver was written to conform to version 1.0e of the NVMe specification. 20 * It may work with newer versions, but that is completely untested and disabled 21 * by default. 22 * 23 * The driver has only been tested on x86 systems and will not work on big- 24 * endian systems without changes to the code accessing registers and data 25 * structures used by the hardware. 26 * 27 * 28 * Interrupt Usage: 29 * 30 * The driver will use a FIXED interrupt while configuring the device as the 31 * specification requires. Later in the attach process it will switch to MSI-X 32 * or MSI if supported. The driver wants to have one interrupt vector per CPU, 33 * but it will work correctly if less are available. Interrupts can be shared 34 * by queues, the interrupt handler will iterate through the I/O queue array by 35 * steps of n_intr_cnt. Usually only the admin queue will share an interrupt 36 * with one I/O queue. The interrupt handler will retrieve completed commands 37 * from all queues sharing an interrupt vector and will post them to a taskq 38 * for completion processing. 39 * 40 * 41 * Command Processing: 42 * 43 * NVMe devices can have up to 65536 I/O queue pairs, with each queue holding up 44 * to 65536 I/O commands. The driver will configure one I/O queue pair per 45 * available interrupt vector, with the queue length usually much smaller than 46 * the maximum of 65536. If the hardware doesn't provide enough queues, fewer 47 * interrupt vectors will be used. 48 * 49 * Additionally the hardware provides a single special admin queue pair that can 50 * hold up to 4096 admin commands. 51 * 52 * From the hardware perspective both queues of a queue pair are independent, 53 * but they share some driver state: the command array (holding pointers to 54 * commands currently being processed by the hardware) and the active command 55 * counter. Access to the submission side of a queue pair and the shared state 56 * is protected by nq_mutex. The completion side of a queue pair does not need 57 * that protection apart from its access to the shared state; it is called only 58 * in the interrupt handler which does not run concurrently for the same 59 * interrupt vector. 60 * 61 * When a command is submitted to a queue pair the active command counter is 62 * incremented and a pointer to the command is stored in the command array. The 63 * array index is used as command identifier (CID) in the submission queue 64 * entry. Some commands may take a very long time to complete, and if the queue 65 * wraps around in that time a submission may find the next array slot to still 66 * be used by a long-running command. In this case the array is sequentially 67 * searched for the next free slot. The length of the command array is the same 68 * as the configured queue length. 69 * 70 * 71 * Namespace Support: 72 * 73 * NVMe devices can have multiple namespaces, each being a independent data 74 * store. The driver supports multiple namespaces and creates a blkdev interface 75 * for each namespace found. Namespaces can have various attributes to support 76 * thin provisioning, extended LBAs, and protection information. This driver 77 * does not support any of this and ignores namespaces that have these 78 * attributes. 79 * 80 * 81 * Blkdev Interface: 82 * 83 * This driver uses blkdev to do all the heavy lifting involved with presenting 84 * a disk device to the system. As a result, the processing of I/O requests is 85 * relatively simple as blkdev takes care of partitioning, boundary checks, DMA 86 * setup, and splitting of transfers into manageable chunks. 87 * 88 * I/O requests coming in from blkdev are turned into NVM commands and posted to 89 * an I/O queue. The queue is selected by taking the CPU id modulo the number of 90 * queues. There is currently no timeout handling of I/O commands. 91 * 92 * Blkdev also supports querying device/media information and generating a 93 * devid. The driver reports the best block size as determined by the namespace 94 * format back to blkdev as physical block size to support partition and block 95 * alignment. The devid is composed using the device vendor ID, model number, 96 * serial number, and the namespace ID. 97 * 98 * 99 * Error Handling: 100 * 101 * Error handling is currently limited to detecting fatal hardware errors, 102 * either by asynchronous events, or synchronously through command status or 103 * admin command timeouts. In case of severe errors the device is fenced off, 104 * all further requests will return EIO. FMA is then called to fault the device. 105 * 106 * The hardware has a limit for outstanding asynchronous event requests. Before 107 * this limit is known the driver assumes it is at least 1 and posts a single 108 * asynchronous request. Later when the limit is known more asynchronous event 109 * requests are posted to allow quicker reception of error information. When an 110 * asynchronous event is posted by the hardware the driver will parse the error 111 * status fields and log information or fault the device, depending on the 112 * severity of the asynchronous event. The asynchronous event request is then 113 * reused and posted to the admin queue again. 114 * 115 * On command completion the command status is checked for errors. In case of 116 * errors indicating a driver bug the driver panics. Almost all other error 117 * status values just cause EIO to be returned. 118 * 119 * Command timeouts are currently detected for all admin commands except 120 * asynchronous event requests. If a command times out and the hardware appears 121 * to be healthy the driver attempts to abort the command. If this fails the 122 * driver assumes the device to be dead, fences it off, and calls FMA to retire 123 * it. In general admin commands are issued at attach time only. No timeout 124 * handling of normal I/O commands is presently done. 125 * 126 * In some cases it may be possible that the ABORT command times out, too. In 127 * that case the device is also declared dead and fenced off. 128 * 129 * 130 * Quiesce / Fast Reboot: 131 * 132 * The driver currently does not support fast reboot. A quiesce(9E) entry point 133 * is still provided which is used to send a shutdown notification to the 134 * device. 135 * 136 * 137 * Driver Configuration: 138 * 139 * The following driver properties can be changed to control some aspects of the 140 * drivers operation: 141 * - strict-version: can be set to 0 to allow devices conforming to newer 142 * versions to be used 143 * - ignore-unknown-vendor-status: can be set to 1 to not handle any vendor 144 * specific command status as a fatal error leading device faulting 145 * - admin-queue-len: the maximum length of the admin queue (16-4096) 146 * - io-queue-len: the maximum length of the I/O queues (16-65536) 147 * - async-event-limit: the maximum number of asynchronous event requests to be 148 * posted by the driver 149 * 150 * 151 * TODO: 152 * - figure out sane default for I/O queue depth reported to blkdev 153 * - polled I/O support to support kernel core dumping 154 * - FMA handling of media errors 155 * - support for the Volatile Write Cache 156 * - support for devices supporting very large I/O requests using chained PRPs 157 * - support for querying log pages from user space 158 * - support for configuring hardware parameters like interrupt coalescing 159 * - support for media formatting and hard partitioning into namespaces 160 * - support for big-endian systems 161 * - support for fast reboot 162 */ 163 164 #include <sys/byteorder.h> 165 #ifdef _BIG_ENDIAN 166 #error nvme driver needs porting for big-endian platforms 167 #endif 168 169 #include <sys/modctl.h> 170 #include <sys/conf.h> 171 #include <sys/devops.h> 172 #include <sys/ddi.h> 173 #include <sys/sunddi.h> 174 #include <sys/bitmap.h> 175 #include <sys/sysmacros.h> 176 #include <sys/param.h> 177 #include <sys/varargs.h> 178 #include <sys/cpuvar.h> 179 #include <sys/disp.h> 180 #include <sys/blkdev.h> 181 #include <sys/atomic.h> 182 #include <sys/archsystm.h> 183 #include <sys/sata/sata_hba.h> 184 185 #include "nvme_reg.h" 186 #include "nvme_var.h" 187 188 189 /* NVMe spec version supported */ 190 static const int nvme_version_major = 1; 191 static const int nvme_version_minor = 0; 192 193 static int nvme_attach(dev_info_t *, ddi_attach_cmd_t); 194 static int nvme_detach(dev_info_t *, ddi_detach_cmd_t); 195 static int nvme_quiesce(dev_info_t *); 196 static int nvme_fm_errcb(dev_info_t *, ddi_fm_error_t *, const void *); 197 static void nvme_disable_interrupts(nvme_t *); 198 static int nvme_enable_interrupts(nvme_t *); 199 static int nvme_setup_interrupts(nvme_t *, int, int); 200 static void nvme_release_interrupts(nvme_t *); 201 static uint_t nvme_intr(caddr_t, caddr_t); 202 203 static void nvme_shutdown(nvme_t *, int, boolean_t); 204 static boolean_t nvme_reset(nvme_t *, boolean_t); 205 static int nvme_init(nvme_t *); 206 static nvme_cmd_t *nvme_alloc_cmd(nvme_t *, int); 207 static void nvme_free_cmd(nvme_cmd_t *); 208 static nvme_cmd_t *nvme_create_nvm_cmd(nvme_namespace_t *, uint8_t, 209 bd_xfer_t *); 210 static int nvme_admin_cmd(nvme_cmd_t *, int); 211 static int nvme_submit_cmd(nvme_qpair_t *, nvme_cmd_t *); 212 static nvme_cmd_t *nvme_retrieve_cmd(nvme_t *, nvme_qpair_t *); 213 static boolean_t nvme_wait_cmd(nvme_cmd_t *, uint_t); 214 static void nvme_wakeup_cmd(void *); 215 static void nvme_async_event_task(void *); 216 217 static int nvme_check_unknown_cmd_status(nvme_cmd_t *); 218 static int nvme_check_vendor_cmd_status(nvme_cmd_t *); 219 static int nvme_check_integrity_cmd_status(nvme_cmd_t *); 220 static int nvme_check_specific_cmd_status(nvme_cmd_t *); 221 static int nvme_check_generic_cmd_status(nvme_cmd_t *); 222 static inline int nvme_check_cmd_status(nvme_cmd_t *); 223 224 static void nvme_abort_cmd(nvme_cmd_t *); 225 static int nvme_async_event(nvme_t *); 226 static void *nvme_get_logpage(nvme_t *, uint8_t, ...); 227 static void *nvme_identify(nvme_t *, uint32_t); 228 static int nvme_set_nqueues(nvme_t *, uint16_t); 229 230 static void nvme_free_dma(nvme_dma_t *); 231 static int nvme_zalloc_dma(nvme_t *, size_t, uint_t, ddi_dma_attr_t *, 232 nvme_dma_t **); 233 static int nvme_zalloc_queue_dma(nvme_t *, uint32_t, uint16_t, uint_t, 234 nvme_dma_t **); 235 static void nvme_free_qpair(nvme_qpair_t *); 236 static int nvme_alloc_qpair(nvme_t *, uint32_t, nvme_qpair_t **, int); 237 static int nvme_create_io_qpair(nvme_t *, nvme_qpair_t *, uint16_t); 238 239 static inline void nvme_put64(nvme_t *, uintptr_t, uint64_t); 240 static inline void nvme_put32(nvme_t *, uintptr_t, uint32_t); 241 static inline uint64_t nvme_get64(nvme_t *, uintptr_t); 242 static inline uint32_t nvme_get32(nvme_t *, uintptr_t); 243 244 static boolean_t nvme_check_regs_hdl(nvme_t *); 245 static boolean_t nvme_check_dma_hdl(nvme_dma_t *); 246 247 static int nvme_fill_prp(nvme_cmd_t *, bd_xfer_t *); 248 249 static void nvme_bd_xfer_done(void *); 250 static void nvme_bd_driveinfo(void *, bd_drive_t *); 251 static int nvme_bd_mediainfo(void *, bd_media_t *); 252 static int nvme_bd_cmd(nvme_namespace_t *, bd_xfer_t *, uint8_t); 253 static int nvme_bd_read(void *, bd_xfer_t *); 254 static int nvme_bd_write(void *, bd_xfer_t *); 255 static int nvme_bd_sync(void *, bd_xfer_t *); 256 static int nvme_bd_devid(void *, dev_info_t *, ddi_devid_t *); 257 258 static void nvme_prepare_devid(nvme_t *, uint32_t); 259 260 static void *nvme_state; 261 static kmem_cache_t *nvme_cmd_cache; 262 263 /* 264 * DMA attributes for queue DMA memory 265 * 266 * Queue DMA memory must be page aligned. The maximum length of a queue is 267 * 65536 entries, and an entry can be 64 bytes long. 268 */ 269 static ddi_dma_attr_t nvme_queue_dma_attr = { 270 .dma_attr_version = DMA_ATTR_V0, 271 .dma_attr_addr_lo = 0, 272 .dma_attr_addr_hi = 0xffffffffffffffffULL, 273 .dma_attr_count_max = (UINT16_MAX + 1) * sizeof (nvme_sqe_t), 274 .dma_attr_align = 0x1000, 275 .dma_attr_burstsizes = 0x7ff, 276 .dma_attr_minxfer = 0x1000, 277 .dma_attr_maxxfer = (UINT16_MAX + 1) * sizeof (nvme_sqe_t), 278 .dma_attr_seg = 0xffffffffffffffffULL, 279 .dma_attr_sgllen = 1, 280 .dma_attr_granular = 1, 281 .dma_attr_flags = 0, 282 }; 283 284 /* 285 * DMA attributes for transfers using Physical Region Page (PRP) entries 286 * 287 * A PRP entry describes one page of DMA memory using the page size specified 288 * in the controller configuration's memory page size register (CC.MPS). It uses 289 * a 64bit base address aligned to this page size. There is no limitation on 290 * chaining PRPs together for arbitrarily large DMA transfers. 291 */ 292 static ddi_dma_attr_t nvme_prp_dma_attr = { 293 .dma_attr_version = DMA_ATTR_V0, 294 .dma_attr_addr_lo = 0, 295 .dma_attr_addr_hi = 0xffffffffffffffffULL, 296 .dma_attr_count_max = 0xfff, 297 .dma_attr_align = 0x1000, 298 .dma_attr_burstsizes = 0x7ff, 299 .dma_attr_minxfer = 0x1000, 300 .dma_attr_maxxfer = 0x1000, 301 .dma_attr_seg = 0xffffffffffffffffULL, 302 .dma_attr_sgllen = -1, 303 .dma_attr_granular = 1, 304 .dma_attr_flags = 0, 305 }; 306 307 /* 308 * DMA attributes for transfers using scatter/gather lists 309 * 310 * A SGL entry describes a chunk of DMA memory using a 64bit base address and a 311 * 32bit length field. SGL Segment and SGL Last Segment entries require the 312 * length to be a multiple of 16 bytes. 313 */ 314 static ddi_dma_attr_t nvme_sgl_dma_attr = { 315 .dma_attr_version = DMA_ATTR_V0, 316 .dma_attr_addr_lo = 0, 317 .dma_attr_addr_hi = 0xffffffffffffffffULL, 318 .dma_attr_count_max = 0xffffffffUL, 319 .dma_attr_align = 1, 320 .dma_attr_burstsizes = 0x7ff, 321 .dma_attr_minxfer = 0x10, 322 .dma_attr_maxxfer = 0xfffffffffULL, 323 .dma_attr_seg = 0xffffffffffffffffULL, 324 .dma_attr_sgllen = -1, 325 .dma_attr_granular = 0x10, 326 .dma_attr_flags = 0 327 }; 328 329 static ddi_device_acc_attr_t nvme_reg_acc_attr = { 330 .devacc_attr_version = DDI_DEVICE_ATTR_V0, 331 .devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC, 332 .devacc_attr_dataorder = DDI_STRICTORDER_ACC 333 }; 334 335 static struct dev_ops nvme_dev_ops = { 336 .devo_rev = DEVO_REV, 337 .devo_refcnt = 0, 338 .devo_getinfo = ddi_no_info, 339 .devo_identify = nulldev, 340 .devo_probe = nulldev, 341 .devo_attach = nvme_attach, 342 .devo_detach = nvme_detach, 343 .devo_reset = nodev, 344 .devo_cb_ops = NULL, 345 .devo_bus_ops = NULL, 346 .devo_power = NULL, 347 .devo_quiesce = nvme_quiesce, 348 }; 349 350 static struct modldrv nvme_modldrv = { 351 .drv_modops = &mod_driverops, 352 .drv_linkinfo = "NVMe v1.0e", 353 .drv_dev_ops = &nvme_dev_ops 354 }; 355 356 static struct modlinkage nvme_modlinkage = { 357 .ml_rev = MODREV_1, 358 .ml_linkage = { &nvme_modldrv, NULL } 359 }; 360 361 static bd_ops_t nvme_bd_ops = { 362 .o_version = BD_OPS_VERSION_0, 363 .o_drive_info = nvme_bd_driveinfo, 364 .o_media_info = nvme_bd_mediainfo, 365 .o_devid_init = nvme_bd_devid, 366 .o_sync_cache = nvme_bd_sync, 367 .o_read = nvme_bd_read, 368 .o_write = nvme_bd_write, 369 }; 370 371 int 372 _init(void) 373 { 374 int error; 375 376 error = ddi_soft_state_init(&nvme_state, sizeof (nvme_t), 1); 377 if (error != DDI_SUCCESS) 378 return (error); 379 380 nvme_cmd_cache = kmem_cache_create("nvme_cmd_cache", 381 sizeof (nvme_cmd_t), 64, NULL, NULL, NULL, NULL, NULL, 0); 382 383 bd_mod_init(&nvme_dev_ops); 384 385 error = mod_install(&nvme_modlinkage); 386 if (error != DDI_SUCCESS) { 387 ddi_soft_state_fini(&nvme_state); 388 bd_mod_fini(&nvme_dev_ops); 389 } 390 391 return (error); 392 } 393 394 int 395 _fini(void) 396 { 397 int error; 398 399 error = mod_remove(&nvme_modlinkage); 400 if (error == DDI_SUCCESS) { 401 ddi_soft_state_fini(&nvme_state); 402 kmem_cache_destroy(nvme_cmd_cache); 403 bd_mod_fini(&nvme_dev_ops); 404 } 405 406 return (error); 407 } 408 409 int 410 _info(struct modinfo *modinfop) 411 { 412 return (mod_info(&nvme_modlinkage, modinfop)); 413 } 414 415 static inline void 416 nvme_put64(nvme_t *nvme, uintptr_t reg, uint64_t val) 417 { 418 ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0); 419 420 /*LINTED: E_BAD_PTR_CAST_ALIGN*/ 421 ddi_put64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg), val); 422 } 423 424 static inline void 425 nvme_put32(nvme_t *nvme, uintptr_t reg, uint32_t val) 426 { 427 ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0); 428 429 /*LINTED: E_BAD_PTR_CAST_ALIGN*/ 430 ddi_put32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg), val); 431 } 432 433 static inline uint64_t 434 nvme_get64(nvme_t *nvme, uintptr_t reg) 435 { 436 uint64_t val; 437 438 ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0); 439 440 /*LINTED: E_BAD_PTR_CAST_ALIGN*/ 441 val = ddi_get64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg)); 442 443 return (val); 444 } 445 446 static inline uint32_t 447 nvme_get32(nvme_t *nvme, uintptr_t reg) 448 { 449 uint32_t val; 450 451 ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0); 452 453 /*LINTED: E_BAD_PTR_CAST_ALIGN*/ 454 val = ddi_get32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg)); 455 456 return (val); 457 } 458 459 static boolean_t 460 nvme_check_regs_hdl(nvme_t *nvme) 461 { 462 ddi_fm_error_t error; 463 464 ddi_fm_acc_err_get(nvme->n_regh, &error, DDI_FME_VERSION); 465 466 if (error.fme_status != DDI_FM_OK) 467 return (B_TRUE); 468 469 return (B_FALSE); 470 } 471 472 static boolean_t 473 nvme_check_dma_hdl(nvme_dma_t *dma) 474 { 475 ddi_fm_error_t error; 476 477 if (dma == NULL) 478 return (B_FALSE); 479 480 ddi_fm_dma_err_get(dma->nd_dmah, &error, DDI_FME_VERSION); 481 482 if (error.fme_status != DDI_FM_OK) 483 return (B_TRUE); 484 485 return (B_FALSE); 486 } 487 488 static void 489 nvme_free_dma(nvme_dma_t *dma) 490 { 491 if (dma->nd_dmah != NULL) 492 (void) ddi_dma_unbind_handle(dma->nd_dmah); 493 if (dma->nd_acch != NULL) 494 ddi_dma_mem_free(&dma->nd_acch); 495 if (dma->nd_dmah != NULL) 496 ddi_dma_free_handle(&dma->nd_dmah); 497 kmem_free(dma, sizeof (nvme_dma_t)); 498 } 499 500 static int 501 nvme_zalloc_dma(nvme_t *nvme, size_t len, uint_t flags, 502 ddi_dma_attr_t *dma_attr, nvme_dma_t **ret) 503 { 504 nvme_dma_t *dma = kmem_zalloc(sizeof (nvme_dma_t), KM_SLEEP); 505 506 if (ddi_dma_alloc_handle(nvme->n_dip, dma_attr, DDI_DMA_SLEEP, NULL, 507 &dma->nd_dmah) != DDI_SUCCESS) { 508 /* 509 * Due to DDI_DMA_SLEEP this can't be DDI_DMA_NORESOURCES, and 510 * the only other possible error is DDI_DMA_BADATTR which 511 * indicates a driver bug which should cause a panic. 512 */ 513 dev_err(nvme->n_dip, CE_PANIC, 514 "!failed to get DMA handle, check DMA attributes"); 515 return (DDI_FAILURE); 516 } 517 518 /* 519 * ddi_dma_mem_alloc() can only fail when DDI_DMA_NOSLEEP is specified 520 * or the flags are conflicting, which isn't the case here. 521 */ 522 (void) ddi_dma_mem_alloc(dma->nd_dmah, len, &nvme->n_reg_acc_attr, 523 DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, &dma->nd_memp, 524 &dma->nd_len, &dma->nd_acch); 525 526 if (ddi_dma_addr_bind_handle(dma->nd_dmah, NULL, dma->nd_memp, 527 dma->nd_len, flags | DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, 528 &dma->nd_cookie, &dma->nd_ncookie) != DDI_DMA_MAPPED) { 529 dev_err(nvme->n_dip, CE_WARN, 530 "!failed to bind DMA memory"); 531 atomic_inc_32(&nvme->n_dma_bind_err); 532 *ret = NULL; 533 nvme_free_dma(dma); 534 return (DDI_FAILURE); 535 } 536 537 bzero(dma->nd_memp, dma->nd_len); 538 539 *ret = dma; 540 return (DDI_SUCCESS); 541 } 542 543 static int 544 nvme_zalloc_queue_dma(nvme_t *nvme, uint32_t nentry, uint16_t qe_len, 545 uint_t flags, nvme_dma_t **dma) 546 { 547 uint32_t len = nentry * qe_len; 548 ddi_dma_attr_t q_dma_attr = nvme->n_queue_dma_attr; 549 550 len = roundup(len, nvme->n_pagesize); 551 552 q_dma_attr.dma_attr_minxfer = len; 553 554 if (nvme_zalloc_dma(nvme, len, flags, &q_dma_attr, dma) 555 != DDI_SUCCESS) { 556 dev_err(nvme->n_dip, CE_WARN, 557 "!failed to get DMA memory for queue"); 558 goto fail; 559 } 560 561 if ((*dma)->nd_ncookie != 1) { 562 dev_err(nvme->n_dip, CE_WARN, 563 "!got too many cookies for queue DMA"); 564 goto fail; 565 } 566 567 return (DDI_SUCCESS); 568 569 fail: 570 if (*dma) { 571 nvme_free_dma(*dma); 572 *dma = NULL; 573 } 574 575 return (DDI_FAILURE); 576 } 577 578 static void 579 nvme_free_qpair(nvme_qpair_t *qp) 580 { 581 int i; 582 583 mutex_destroy(&qp->nq_mutex); 584 585 if (qp->nq_sqdma != NULL) 586 nvme_free_dma(qp->nq_sqdma); 587 if (qp->nq_cqdma != NULL) 588 nvme_free_dma(qp->nq_cqdma); 589 590 if (qp->nq_active_cmds > 0) 591 for (i = 0; i != qp->nq_nentry; i++) 592 if (qp->nq_cmd[i] != NULL) 593 nvme_free_cmd(qp->nq_cmd[i]); 594 595 if (qp->nq_cmd != NULL) 596 kmem_free(qp->nq_cmd, sizeof (nvme_cmd_t *) * qp->nq_nentry); 597 598 kmem_free(qp, sizeof (nvme_qpair_t)); 599 } 600 601 static int 602 nvme_alloc_qpair(nvme_t *nvme, uint32_t nentry, nvme_qpair_t **nqp, 603 int idx) 604 { 605 nvme_qpair_t *qp = kmem_zalloc(sizeof (*qp), KM_SLEEP); 606 607 mutex_init(&qp->nq_mutex, NULL, MUTEX_DRIVER, 608 DDI_INTR_PRI(nvme->n_intr_pri)); 609 610 if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_sqe_t), 611 DDI_DMA_WRITE, &qp->nq_sqdma) != DDI_SUCCESS) 612 goto fail; 613 614 if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_cqe_t), 615 DDI_DMA_READ, &qp->nq_cqdma) != DDI_SUCCESS) 616 goto fail; 617 618 qp->nq_sq = (nvme_sqe_t *)qp->nq_sqdma->nd_memp; 619 qp->nq_cq = (nvme_cqe_t *)qp->nq_cqdma->nd_memp; 620 qp->nq_nentry = nentry; 621 622 qp->nq_sqtdbl = NVME_REG_SQTDBL(nvme, idx); 623 qp->nq_cqhdbl = NVME_REG_CQHDBL(nvme, idx); 624 625 qp->nq_cmd = kmem_zalloc(sizeof (nvme_cmd_t *) * nentry, KM_SLEEP); 626 qp->nq_next_cmd = 0; 627 628 *nqp = qp; 629 return (DDI_SUCCESS); 630 631 fail: 632 nvme_free_qpair(qp); 633 *nqp = NULL; 634 635 return (DDI_FAILURE); 636 } 637 638 static nvme_cmd_t * 639 nvme_alloc_cmd(nvme_t *nvme, int kmflag) 640 { 641 nvme_cmd_t *cmd = kmem_cache_alloc(nvme_cmd_cache, kmflag); 642 643 if (cmd == NULL) 644 return (cmd); 645 646 bzero(cmd, sizeof (nvme_cmd_t)); 647 648 cmd->nc_nvme = nvme; 649 650 mutex_init(&cmd->nc_mutex, NULL, MUTEX_DRIVER, 651 DDI_INTR_PRI(nvme->n_intr_pri)); 652 cv_init(&cmd->nc_cv, NULL, CV_DRIVER, NULL); 653 654 return (cmd); 655 } 656 657 static void 658 nvme_free_cmd(nvme_cmd_t *cmd) 659 { 660 if (cmd->nc_dma) { 661 nvme_free_dma(cmd->nc_dma); 662 cmd->nc_dma = NULL; 663 } 664 665 cv_destroy(&cmd->nc_cv); 666 mutex_destroy(&cmd->nc_mutex); 667 668 kmem_cache_free(nvme_cmd_cache, cmd); 669 } 670 671 static int 672 nvme_submit_cmd(nvme_qpair_t *qp, nvme_cmd_t *cmd) 673 { 674 nvme_reg_sqtdbl_t tail = { {0} }; 675 676 mutex_enter(&qp->nq_mutex); 677 678 if (qp->nq_active_cmds == qp->nq_nentry) { 679 mutex_exit(&qp->nq_mutex); 680 return (DDI_FAILURE); 681 } 682 683 cmd->nc_completed = B_FALSE; 684 685 /* 686 * Try to insert the cmd into the active cmd array at the nq_next_cmd 687 * slot. If the slot is already occupied advance to the next slot and 688 * try again. This can happen for long running commands like async event 689 * requests. 690 */ 691 while (qp->nq_cmd[qp->nq_next_cmd] != NULL) 692 qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry; 693 qp->nq_cmd[qp->nq_next_cmd] = cmd; 694 695 qp->nq_active_cmds++; 696 697 cmd->nc_sqe.sqe_cid = qp->nq_next_cmd; 698 bcopy(&cmd->nc_sqe, &qp->nq_sq[qp->nq_sqtail], sizeof (nvme_sqe_t)); 699 (void) ddi_dma_sync(qp->nq_sqdma->nd_dmah, 700 sizeof (nvme_sqe_t) * qp->nq_sqtail, 701 sizeof (nvme_sqe_t), DDI_DMA_SYNC_FORDEV); 702 qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry; 703 704 tail.b.sqtdbl_sqt = qp->nq_sqtail = (qp->nq_sqtail + 1) % qp->nq_nentry; 705 nvme_put32(cmd->nc_nvme, qp->nq_sqtdbl, tail.r); 706 707 mutex_exit(&qp->nq_mutex); 708 return (DDI_SUCCESS); 709 } 710 711 static nvme_cmd_t * 712 nvme_retrieve_cmd(nvme_t *nvme, nvme_qpair_t *qp) 713 { 714 nvme_reg_cqhdbl_t head = { {0} }; 715 716 nvme_cqe_t *cqe; 717 nvme_cmd_t *cmd; 718 719 (void) ddi_dma_sync(qp->nq_cqdma->nd_dmah, 0, 720 sizeof (nvme_cqe_t) * qp->nq_nentry, DDI_DMA_SYNC_FORKERNEL); 721 722 cqe = &qp->nq_cq[qp->nq_cqhead]; 723 724 /* Check phase tag of CQE. Hardware inverts it for new entries. */ 725 if (cqe->cqe_sf.sf_p == qp->nq_phase) 726 return (NULL); 727 728 ASSERT(nvme->n_ioq[cqe->cqe_sqid] == qp); 729 ASSERT(cqe->cqe_cid < qp->nq_nentry); 730 731 mutex_enter(&qp->nq_mutex); 732 cmd = qp->nq_cmd[cqe->cqe_cid]; 733 qp->nq_cmd[cqe->cqe_cid] = NULL; 734 qp->nq_active_cmds--; 735 mutex_exit(&qp->nq_mutex); 736 737 ASSERT(cmd != NULL); 738 ASSERT(cmd->nc_nvme == nvme); 739 ASSERT(cmd->nc_sqid == cqe->cqe_sqid); 740 ASSERT(cmd->nc_sqe.sqe_cid == cqe->cqe_cid); 741 bcopy(cqe, &cmd->nc_cqe, sizeof (nvme_cqe_t)); 742 743 qp->nq_sqhead = cqe->cqe_sqhd; 744 745 head.b.cqhdbl_cqh = qp->nq_cqhead = (qp->nq_cqhead + 1) % qp->nq_nentry; 746 747 /* Toggle phase on wrap-around. */ 748 if (qp->nq_cqhead == 0) 749 qp->nq_phase = qp->nq_phase ? 0 : 1; 750 751 nvme_put32(cmd->nc_nvme, qp->nq_cqhdbl, head.r); 752 753 return (cmd); 754 } 755 756 static int 757 nvme_check_unknown_cmd_status(nvme_cmd_t *cmd) 758 { 759 nvme_cqe_t *cqe = &cmd->nc_cqe; 760 761 dev_err(cmd->nc_nvme->n_dip, CE_WARN, 762 "!unknown command status received: opc = %x, sqid = %d, cid = %d, " 763 "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc, 764 cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct, 765 cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m); 766 767 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ); 768 769 if (cmd->nc_nvme->n_strict_version) { 770 cmd->nc_nvme->n_dead = B_TRUE; 771 ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST); 772 } 773 774 return (EIO); 775 } 776 777 static int 778 nvme_check_vendor_cmd_status(nvme_cmd_t *cmd) 779 { 780 nvme_cqe_t *cqe = &cmd->nc_cqe; 781 782 dev_err(cmd->nc_nvme->n_dip, CE_WARN, 783 "!unknown command status received: opc = %x, sqid = %d, cid = %d, " 784 "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc, 785 cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct, 786 cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m); 787 if (cmd->nc_nvme->n_ignore_unknown_vendor_status) { 788 cmd->nc_nvme->n_dead = B_TRUE; 789 ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST); 790 } 791 792 return (EIO); 793 } 794 795 static int 796 nvme_check_integrity_cmd_status(nvme_cmd_t *cmd) 797 { 798 nvme_cqe_t *cqe = &cmd->nc_cqe; 799 800 switch (cqe->cqe_sf.sf_sc) { 801 case NVME_CQE_SC_INT_NVM_WRITE: 802 /* write fail */ 803 /* TODO: post ereport */ 804 bd_error(cmd->nc_xfer, BD_ERR_MEDIA); 805 return (EIO); 806 807 case NVME_CQE_SC_INT_NVM_READ: 808 /* read fail */ 809 /* TODO: post ereport */ 810 bd_error(cmd->nc_xfer, BD_ERR_MEDIA); 811 return (EIO); 812 813 default: 814 return (nvme_check_unknown_cmd_status(cmd)); 815 } 816 } 817 818 static int 819 nvme_check_generic_cmd_status(nvme_cmd_t *cmd) 820 { 821 nvme_cqe_t *cqe = &cmd->nc_cqe; 822 823 switch (cqe->cqe_sf.sf_sc) { 824 case NVME_CQE_SC_GEN_SUCCESS: 825 return (0); 826 827 /* 828 * Errors indicating a bug in the driver should cause a panic. 829 */ 830 case NVME_CQE_SC_GEN_INV_OPC: 831 /* Invalid Command Opcode */ 832 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: " 833 "invalid opcode in cmd %p", (void *)cmd); 834 return (0); 835 836 case NVME_CQE_SC_GEN_INV_FLD: 837 /* Invalid Field in Command */ 838 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: " 839 "invalid field in cmd %p", (void *)cmd); 840 return (0); 841 842 case NVME_CQE_SC_GEN_ID_CNFL: 843 /* Command ID Conflict */ 844 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: " 845 "cmd ID conflict in cmd %p", (void *)cmd); 846 return (0); 847 848 case NVME_CQE_SC_GEN_INV_NS: 849 /* Invalid Namespace or Format */ 850 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: " 851 "invalid NS/format in cmd %p", (void *)cmd); 852 return (0); 853 854 case NVME_CQE_SC_GEN_NVM_LBA_RANGE: 855 /* LBA Out Of Range */ 856 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: " 857 "LBA out of range in cmd %p", (void *)cmd); 858 return (0); 859 860 /* 861 * Non-fatal errors, handle gracefully. 862 */ 863 case NVME_CQE_SC_GEN_DATA_XFR_ERR: 864 /* Data Transfer Error (DMA) */ 865 /* TODO: post ereport */ 866 atomic_inc_32(&cmd->nc_nvme->n_data_xfr_err); 867 bd_error(cmd->nc_xfer, BD_ERR_NTRDY); 868 return (EIO); 869 870 case NVME_CQE_SC_GEN_INTERNAL_ERR: 871 /* 872 * Internal Error. The spec (v1.0, section 4.5.1.2) says 873 * detailed error information is returned as async event, 874 * so we pretty much ignore the error here and handle it 875 * in the async event handler. 876 */ 877 atomic_inc_32(&cmd->nc_nvme->n_internal_err); 878 bd_error(cmd->nc_xfer, BD_ERR_NTRDY); 879 return (EIO); 880 881 case NVME_CQE_SC_GEN_ABORT_REQUEST: 882 /* 883 * Command Abort Requested. This normally happens only when a 884 * command times out. 885 */ 886 /* TODO: post ereport or change blkdev to handle this? */ 887 atomic_inc_32(&cmd->nc_nvme->n_abort_rq_err); 888 return (ECANCELED); 889 890 case NVME_CQE_SC_GEN_ABORT_PWRLOSS: 891 /* Command Aborted due to Power Loss Notification */ 892 ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST); 893 cmd->nc_nvme->n_dead = B_TRUE; 894 return (EIO); 895 896 case NVME_CQE_SC_GEN_ABORT_SQ_DEL: 897 /* Command Aborted due to SQ Deletion */ 898 atomic_inc_32(&cmd->nc_nvme->n_abort_sq_del); 899 return (EIO); 900 901 case NVME_CQE_SC_GEN_NVM_CAP_EXC: 902 /* Capacity Exceeded */ 903 atomic_inc_32(&cmd->nc_nvme->n_nvm_cap_exc); 904 bd_error(cmd->nc_xfer, BD_ERR_MEDIA); 905 return (EIO); 906 907 case NVME_CQE_SC_GEN_NVM_NS_NOTRDY: 908 /* Namespace Not Ready */ 909 atomic_inc_32(&cmd->nc_nvme->n_nvm_ns_notrdy); 910 bd_error(cmd->nc_xfer, BD_ERR_NTRDY); 911 return (EIO); 912 913 default: 914 return (nvme_check_unknown_cmd_status(cmd)); 915 } 916 } 917 918 static int 919 nvme_check_specific_cmd_status(nvme_cmd_t *cmd) 920 { 921 nvme_cqe_t *cqe = &cmd->nc_cqe; 922 923 switch (cqe->cqe_sf.sf_sc) { 924 case NVME_CQE_SC_SPC_INV_CQ: 925 /* Completion Queue Invalid */ 926 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE); 927 atomic_inc_32(&cmd->nc_nvme->n_inv_cq_err); 928 return (EINVAL); 929 930 case NVME_CQE_SC_SPC_INV_QID: 931 /* Invalid Queue Identifier */ 932 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE || 933 cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_SQUEUE || 934 cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE || 935 cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE); 936 atomic_inc_32(&cmd->nc_nvme->n_inv_qid_err); 937 return (EINVAL); 938 939 case NVME_CQE_SC_SPC_MAX_QSZ_EXC: 940 /* Max Queue Size Exceeded */ 941 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE || 942 cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE); 943 atomic_inc_32(&cmd->nc_nvme->n_max_qsz_exc); 944 return (EINVAL); 945 946 case NVME_CQE_SC_SPC_ABRT_CMD_EXC: 947 /* Abort Command Limit Exceeded */ 948 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT); 949 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: " 950 "abort command limit exceeded in cmd %p", (void *)cmd); 951 return (0); 952 953 case NVME_CQE_SC_SPC_ASYNC_EVREQ_EXC: 954 /* Async Event Request Limit Exceeded */ 955 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ASYNC_EVENT); 956 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: " 957 "async event request limit exceeded in cmd %p", 958 (void *)cmd); 959 return (0); 960 961 case NVME_CQE_SC_SPC_INV_INT_VECT: 962 /* Invalid Interrupt Vector */ 963 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE); 964 atomic_inc_32(&cmd->nc_nvme->n_inv_int_vect); 965 return (EINVAL); 966 967 case NVME_CQE_SC_SPC_INV_LOG_PAGE: 968 /* Invalid Log Page */ 969 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_GET_LOG_PAGE); 970 atomic_inc_32(&cmd->nc_nvme->n_inv_log_page); 971 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ); 972 return (EINVAL); 973 974 case NVME_CQE_SC_SPC_INV_FORMAT: 975 /* Invalid Format */ 976 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_FORMAT); 977 atomic_inc_32(&cmd->nc_nvme->n_inv_format); 978 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ); 979 return (EINVAL); 980 981 case NVME_CQE_SC_SPC_INV_Q_DEL: 982 /* Invalid Queue Deletion */ 983 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE); 984 atomic_inc_32(&cmd->nc_nvme->n_inv_q_del); 985 return (EINVAL); 986 987 case NVME_CQE_SC_SPC_NVM_CNFL_ATTR: 988 /* Conflicting Attributes */ 989 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_DSET_MGMT || 990 cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ || 991 cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE); 992 atomic_inc_32(&cmd->nc_nvme->n_cnfl_attr); 993 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ); 994 return (EINVAL); 995 996 case NVME_CQE_SC_SPC_NVM_INV_PROT: 997 /* Invalid Protection Information */ 998 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_COMPARE || 999 cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ || 1000 cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE); 1001 atomic_inc_32(&cmd->nc_nvme->n_inv_prot); 1002 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ); 1003 return (EINVAL); 1004 1005 case NVME_CQE_SC_SPC_NVM_READONLY: 1006 /* Write to Read Only Range */ 1007 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE); 1008 atomic_inc_32(&cmd->nc_nvme->n_readonly); 1009 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ); 1010 return (EROFS); 1011 1012 default: 1013 return (nvme_check_unknown_cmd_status(cmd)); 1014 } 1015 } 1016 1017 static inline int 1018 nvme_check_cmd_status(nvme_cmd_t *cmd) 1019 { 1020 nvme_cqe_t *cqe = &cmd->nc_cqe; 1021 1022 /* take a shortcut if everything is alright */ 1023 if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC && 1024 cqe->cqe_sf.sf_sc == NVME_CQE_SC_GEN_SUCCESS) 1025 return (0); 1026 1027 if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC) 1028 return (nvme_check_generic_cmd_status(cmd)); 1029 else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_SPECIFIC) 1030 return (nvme_check_specific_cmd_status(cmd)); 1031 else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_INTEGRITY) 1032 return (nvme_check_integrity_cmd_status(cmd)); 1033 else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_VENDOR) 1034 return (nvme_check_vendor_cmd_status(cmd)); 1035 1036 return (nvme_check_unknown_cmd_status(cmd)); 1037 } 1038 1039 /* 1040 * nvme_abort_cmd_cb -- replaces nc_callback of aborted commands 1041 * 1042 * This functions takes care of cleaning up aborted commands. The command 1043 * status is checked to catch any fatal errors. 1044 */ 1045 static void 1046 nvme_abort_cmd_cb(void *arg) 1047 { 1048 nvme_cmd_t *cmd = arg; 1049 1050 /* 1051 * Grab the command mutex. Once we have it we hold the last reference 1052 * to the command and can safely free it. 1053 */ 1054 mutex_enter(&cmd->nc_mutex); 1055 (void) nvme_check_cmd_status(cmd); 1056 mutex_exit(&cmd->nc_mutex); 1057 1058 nvme_free_cmd(cmd); 1059 } 1060 1061 static void 1062 nvme_abort_cmd(nvme_cmd_t *abort_cmd) 1063 { 1064 nvme_t *nvme = abort_cmd->nc_nvme; 1065 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP); 1066 nvme_abort_cmd_t ac = { {0} }; 1067 1068 sema_p(&nvme->n_abort_sema); 1069 1070 ac.b.ac_cid = abort_cmd->nc_sqe.sqe_cid; 1071 ac.b.ac_sqid = abort_cmd->nc_sqid; 1072 1073 /* 1074 * Drop the mutex of the aborted command. From this point on 1075 * we must assume that the abort callback has freed the command. 1076 */ 1077 mutex_exit(&abort_cmd->nc_mutex); 1078 1079 cmd->nc_sqid = 0; 1080 cmd->nc_sqe.sqe_opc = NVME_OPC_ABORT; 1081 cmd->nc_callback = nvme_wakeup_cmd; 1082 cmd->nc_sqe.sqe_cdw10 = ac.r; 1083 1084 /* 1085 * Send the ABORT to the hardware. The ABORT command will return _after_ 1086 * the aborted command has completed (aborted or otherwise). 1087 */ 1088 if (nvme_admin_cmd(cmd, NVME_ADMIN_CMD_TIMEOUT) != DDI_SUCCESS) { 1089 sema_v(&nvme->n_abort_sema); 1090 dev_err(nvme->n_dip, CE_WARN, 1091 "!nvme_admin_cmd failed for ABORT"); 1092 atomic_inc_32(&nvme->n_abort_failed); 1093 return; 1094 } 1095 sema_v(&nvme->n_abort_sema); 1096 1097 if (nvme_check_cmd_status(cmd)) { 1098 dev_err(nvme->n_dip, CE_WARN, 1099 "!ABORT failed with sct = %x, sc = %x", 1100 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc); 1101 atomic_inc_32(&nvme->n_abort_failed); 1102 } else { 1103 atomic_inc_32(&nvme->n_cmd_aborted); 1104 } 1105 1106 nvme_free_cmd(cmd); 1107 } 1108 1109 /* 1110 * nvme_wait_cmd -- wait for command completion or timeout 1111 * 1112 * Returns B_TRUE if the command completed normally. 1113 * 1114 * Returns B_FALSE if the command timed out and an abort was attempted. The 1115 * command mutex will be dropped and the command must be considered freed. The 1116 * freeing of the command is normally done by the abort command callback. 1117 * 1118 * In case of a serious error or a timeout of the abort command the hardware 1119 * will be declared dead and FMA will be notified. 1120 */ 1121 static boolean_t 1122 nvme_wait_cmd(nvme_cmd_t *cmd, uint_t usec) 1123 { 1124 clock_t timeout = ddi_get_lbolt() + drv_usectohz(usec); 1125 nvme_t *nvme = cmd->nc_nvme; 1126 nvme_reg_csts_t csts; 1127 1128 ASSERT(mutex_owned(&cmd->nc_mutex)); 1129 1130 while (!cmd->nc_completed) { 1131 if (cv_timedwait(&cmd->nc_cv, &cmd->nc_mutex, timeout) == -1) 1132 break; 1133 } 1134 1135 if (cmd->nc_completed) 1136 return (B_TRUE); 1137 1138 /* 1139 * The command timed out. Change the callback to the cleanup function. 1140 */ 1141 cmd->nc_callback = nvme_abort_cmd_cb; 1142 1143 /* 1144 * Check controller for fatal status, any errors associated with the 1145 * register or DMA handle, or for a double timeout (abort command timed 1146 * out). If necessary log a warning and call FMA. 1147 */ 1148 csts.r = nvme_get32(nvme, NVME_REG_CSTS); 1149 dev_err(nvme->n_dip, CE_WARN, "!command timeout, " 1150 "OPC = %x, CFS = %d", cmd->nc_sqe.sqe_opc, csts.b.csts_cfs); 1151 atomic_inc_32(&nvme->n_cmd_timeout); 1152 1153 if (csts.b.csts_cfs || 1154 nvme_check_regs_hdl(nvme) || 1155 nvme_check_dma_hdl(cmd->nc_dma) || 1156 cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT) { 1157 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST); 1158 nvme->n_dead = B_TRUE; 1159 mutex_exit(&cmd->nc_mutex); 1160 } else { 1161 /* 1162 * Try to abort the command. The command mutex is released by 1163 * nvme_abort_cmd(). 1164 * If the abort succeeds it will have freed the aborted command. 1165 * If the abort fails for other reasons we must assume that the 1166 * command may complete at any time, and the callback will free 1167 * it for us. 1168 */ 1169 nvme_abort_cmd(cmd); 1170 } 1171 1172 return (B_FALSE); 1173 } 1174 1175 static void 1176 nvme_wakeup_cmd(void *arg) 1177 { 1178 nvme_cmd_t *cmd = arg; 1179 1180 mutex_enter(&cmd->nc_mutex); 1181 /* 1182 * There is a slight chance that this command completed shortly after 1183 * the timeout was hit in nvme_wait_cmd() but before the callback was 1184 * changed. Catch that case here and clean up accordingly. 1185 */ 1186 if (cmd->nc_callback == nvme_abort_cmd_cb) { 1187 mutex_exit(&cmd->nc_mutex); 1188 nvme_abort_cmd_cb(cmd); 1189 return; 1190 } 1191 1192 cmd->nc_completed = B_TRUE; 1193 cv_signal(&cmd->nc_cv); 1194 mutex_exit(&cmd->nc_mutex); 1195 } 1196 1197 static void 1198 nvme_async_event_task(void *arg) 1199 { 1200 nvme_cmd_t *cmd = arg; 1201 nvme_t *nvme = cmd->nc_nvme; 1202 nvme_error_log_entry_t *error_log = NULL; 1203 nvme_health_log_t *health_log = NULL; 1204 nvme_async_event_t event; 1205 int ret; 1206 1207 /* 1208 * Check for errors associated with the async request itself. The only 1209 * command-specific error is "async event limit exceeded", which 1210 * indicates a programming error in the driver and causes a panic in 1211 * nvme_check_cmd_status(). 1212 * 1213 * Other possible errors are various scenarios where the async request 1214 * was aborted, or internal errors in the device. Internal errors are 1215 * reported to FMA, the command aborts need no special handling here. 1216 */ 1217 if (nvme_check_cmd_status(cmd)) { 1218 dev_err(cmd->nc_nvme->n_dip, CE_WARN, 1219 "!async event request returned failure, sct = %x, " 1220 "sc = %x, dnr = %d, m = %d", cmd->nc_cqe.cqe_sf.sf_sct, 1221 cmd->nc_cqe.cqe_sf.sf_sc, cmd->nc_cqe.cqe_sf.sf_dnr, 1222 cmd->nc_cqe.cqe_sf.sf_m); 1223 1224 if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC && 1225 cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INTERNAL_ERR) { 1226 cmd->nc_nvme->n_dead = B_TRUE; 1227 ddi_fm_service_impact(cmd->nc_nvme->n_dip, 1228 DDI_SERVICE_LOST); 1229 } 1230 nvme_free_cmd(cmd); 1231 return; 1232 } 1233 1234 1235 event.r = cmd->nc_cqe.cqe_dw0; 1236 1237 /* Clear CQE and re-submit the async request. */ 1238 bzero(&cmd->nc_cqe, sizeof (nvme_cqe_t)); 1239 ret = nvme_submit_cmd(nvme->n_adminq, cmd); 1240 1241 if (ret != DDI_SUCCESS) { 1242 dev_err(nvme->n_dip, CE_WARN, 1243 "!failed to resubmit async event request"); 1244 atomic_inc_32(&nvme->n_async_resubmit_failed); 1245 nvme_free_cmd(cmd); 1246 } 1247 1248 switch (event.b.ae_type) { 1249 case NVME_ASYNC_TYPE_ERROR: 1250 if (event.b.ae_logpage == NVME_LOGPAGE_ERROR) { 1251 error_log = (nvme_error_log_entry_t *) 1252 nvme_get_logpage(nvme, event.b.ae_logpage); 1253 } else { 1254 dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in " 1255 "async event reply: %d", event.b.ae_logpage); 1256 atomic_inc_32(&nvme->n_wrong_logpage); 1257 } 1258 1259 switch (event.b.ae_info) { 1260 case NVME_ASYNC_ERROR_INV_SQ: 1261 dev_err(nvme->n_dip, CE_PANIC, "programming error: " 1262 "invalid submission queue"); 1263 return; 1264 1265 case NVME_ASYNC_ERROR_INV_DBL: 1266 dev_err(nvme->n_dip, CE_PANIC, "programming error: " 1267 "invalid doorbell write value"); 1268 return; 1269 1270 case NVME_ASYNC_ERROR_DIAGFAIL: 1271 dev_err(nvme->n_dip, CE_WARN, "!diagnostic failure"); 1272 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST); 1273 nvme->n_dead = B_TRUE; 1274 atomic_inc_32(&nvme->n_diagfail_event); 1275 break; 1276 1277 case NVME_ASYNC_ERROR_PERSISTENT: 1278 dev_err(nvme->n_dip, CE_WARN, "!persistent internal " 1279 "device error"); 1280 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST); 1281 nvme->n_dead = B_TRUE; 1282 atomic_inc_32(&nvme->n_persistent_event); 1283 break; 1284 1285 case NVME_ASYNC_ERROR_TRANSIENT: 1286 dev_err(nvme->n_dip, CE_WARN, "!transient internal " 1287 "device error"); 1288 /* TODO: send ereport */ 1289 atomic_inc_32(&nvme->n_transient_event); 1290 break; 1291 1292 case NVME_ASYNC_ERROR_FW_LOAD: 1293 dev_err(nvme->n_dip, CE_WARN, 1294 "!firmware image load error"); 1295 atomic_inc_32(&nvme->n_fw_load_event); 1296 break; 1297 } 1298 break; 1299 1300 case NVME_ASYNC_TYPE_HEALTH: 1301 if (event.b.ae_logpage == NVME_LOGPAGE_HEALTH) { 1302 health_log = (nvme_health_log_t *) 1303 nvme_get_logpage(nvme, event.b.ae_logpage, -1); 1304 } else { 1305 dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in " 1306 "async event reply: %d", event.b.ae_logpage); 1307 atomic_inc_32(&nvme->n_wrong_logpage); 1308 } 1309 1310 switch (event.b.ae_info) { 1311 case NVME_ASYNC_HEALTH_RELIABILITY: 1312 dev_err(nvme->n_dip, CE_WARN, 1313 "!device reliability compromised"); 1314 /* TODO: send ereport */ 1315 atomic_inc_32(&nvme->n_reliability_event); 1316 break; 1317 1318 case NVME_ASYNC_HEALTH_TEMPERATURE: 1319 dev_err(nvme->n_dip, CE_WARN, 1320 "!temperature above threshold"); 1321 /* TODO: send ereport */ 1322 atomic_inc_32(&nvme->n_temperature_event); 1323 break; 1324 1325 case NVME_ASYNC_HEALTH_SPARE: 1326 dev_err(nvme->n_dip, CE_WARN, 1327 "!spare space below threshold"); 1328 /* TODO: send ereport */ 1329 atomic_inc_32(&nvme->n_spare_event); 1330 break; 1331 } 1332 break; 1333 1334 case NVME_ASYNC_TYPE_VENDOR: 1335 dev_err(nvme->n_dip, CE_WARN, "!vendor specific async event " 1336 "received, info = %x, logpage = %x", event.b.ae_info, 1337 event.b.ae_logpage); 1338 atomic_inc_32(&nvme->n_vendor_event); 1339 break; 1340 1341 default: 1342 dev_err(nvme->n_dip, CE_WARN, "!unknown async event received, " 1343 "type = %x, info = %x, logpage = %x", event.b.ae_type, 1344 event.b.ae_info, event.b.ae_logpage); 1345 atomic_inc_32(&nvme->n_unknown_event); 1346 break; 1347 } 1348 1349 if (error_log) 1350 kmem_free(error_log, sizeof (nvme_error_log_entry_t) * 1351 nvme->n_error_log_len); 1352 1353 if (health_log) 1354 kmem_free(health_log, sizeof (nvme_health_log_t)); 1355 } 1356 1357 static int 1358 nvme_admin_cmd(nvme_cmd_t *cmd, int usec) 1359 { 1360 int ret; 1361 1362 mutex_enter(&cmd->nc_mutex); 1363 ret = nvme_submit_cmd(cmd->nc_nvme->n_adminq, cmd); 1364 1365 if (ret != DDI_SUCCESS) { 1366 mutex_exit(&cmd->nc_mutex); 1367 dev_err(cmd->nc_nvme->n_dip, CE_WARN, 1368 "!nvme_submit_cmd failed"); 1369 atomic_inc_32(&cmd->nc_nvme->n_admin_queue_full); 1370 nvme_free_cmd(cmd); 1371 return (DDI_FAILURE); 1372 } 1373 1374 if (nvme_wait_cmd(cmd, usec) == B_FALSE) { 1375 /* 1376 * The command timed out. An abort command was posted that 1377 * will take care of the cleanup. 1378 */ 1379 return (DDI_FAILURE); 1380 } 1381 mutex_exit(&cmd->nc_mutex); 1382 1383 return (DDI_SUCCESS); 1384 } 1385 1386 static int 1387 nvme_async_event(nvme_t *nvme) 1388 { 1389 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP); 1390 int ret; 1391 1392 cmd->nc_sqid = 0; 1393 cmd->nc_sqe.sqe_opc = NVME_OPC_ASYNC_EVENT; 1394 cmd->nc_callback = nvme_async_event_task; 1395 1396 ret = nvme_submit_cmd(nvme->n_adminq, cmd); 1397 1398 if (ret != DDI_SUCCESS) { 1399 dev_err(nvme->n_dip, CE_WARN, 1400 "!nvme_submit_cmd failed for ASYNCHRONOUS EVENT"); 1401 nvme_free_cmd(cmd); 1402 return (DDI_FAILURE); 1403 } 1404 1405 return (DDI_SUCCESS); 1406 } 1407 1408 static void * 1409 nvme_get_logpage(nvme_t *nvme, uint8_t logpage, ...) 1410 { 1411 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP); 1412 void *buf = NULL; 1413 nvme_getlogpage_t getlogpage; 1414 size_t bufsize; 1415 va_list ap; 1416 1417 va_start(ap, logpage); 1418 1419 cmd->nc_sqid = 0; 1420 cmd->nc_callback = nvme_wakeup_cmd; 1421 cmd->nc_sqe.sqe_opc = NVME_OPC_GET_LOG_PAGE; 1422 1423 getlogpage.b.lp_lid = logpage; 1424 1425 switch (logpage) { 1426 case NVME_LOGPAGE_ERROR: 1427 cmd->nc_sqe.sqe_nsid = (uint32_t)-1; 1428 bufsize = nvme->n_error_log_len * 1429 sizeof (nvme_error_log_entry_t); 1430 break; 1431 1432 case NVME_LOGPAGE_HEALTH: 1433 cmd->nc_sqe.sqe_nsid = va_arg(ap, uint32_t); 1434 bufsize = sizeof (nvme_health_log_t); 1435 break; 1436 1437 case NVME_LOGPAGE_FWSLOT: 1438 cmd->nc_sqe.sqe_nsid = (uint32_t)-1; 1439 bufsize = sizeof (nvme_fwslot_log_t); 1440 break; 1441 1442 default: 1443 dev_err(nvme->n_dip, CE_WARN, "!unknown log page requested: %d", 1444 logpage); 1445 atomic_inc_32(&nvme->n_unknown_logpage); 1446 goto fail; 1447 } 1448 1449 va_end(ap); 1450 1451 getlogpage.b.lp_numd = bufsize / sizeof (uint32_t) - 1; 1452 1453 cmd->nc_sqe.sqe_cdw10 = getlogpage.r; 1454 1455 if (nvme_zalloc_dma(nvme, getlogpage.b.lp_numd * sizeof (uint32_t), 1456 DDI_DMA_READ, &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) { 1457 dev_err(nvme->n_dip, CE_WARN, 1458 "!nvme_zalloc_dma failed for GET LOG PAGE"); 1459 goto fail; 1460 } 1461 1462 if (cmd->nc_dma->nd_ncookie > 2) { 1463 dev_err(nvme->n_dip, CE_WARN, 1464 "!too many DMA cookies for GET LOG PAGE"); 1465 atomic_inc_32(&nvme->n_too_many_cookies); 1466 goto fail; 1467 } 1468 1469 cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress; 1470 if (cmd->nc_dma->nd_ncookie > 1) { 1471 ddi_dma_nextcookie(cmd->nc_dma->nd_dmah, 1472 &cmd->nc_dma->nd_cookie); 1473 cmd->nc_sqe.sqe_dptr.d_prp[1] = 1474 cmd->nc_dma->nd_cookie.dmac_laddress; 1475 } 1476 1477 if (nvme_admin_cmd(cmd, NVME_ADMIN_CMD_TIMEOUT) != DDI_SUCCESS) { 1478 dev_err(nvme->n_dip, CE_WARN, 1479 "!nvme_admin_cmd failed for GET LOG PAGE"); 1480 return (NULL); 1481 } 1482 1483 if (nvme_check_cmd_status(cmd)) { 1484 dev_err(nvme->n_dip, CE_WARN, 1485 "!GET LOG PAGE failed with sct = %x, sc = %x", 1486 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc); 1487 goto fail; 1488 } 1489 1490 buf = kmem_alloc(bufsize, KM_SLEEP); 1491 bcopy(cmd->nc_dma->nd_memp, buf, bufsize); 1492 1493 fail: 1494 nvme_free_cmd(cmd); 1495 1496 return (buf); 1497 } 1498 1499 static void * 1500 nvme_identify(nvme_t *nvme, uint32_t nsid) 1501 { 1502 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP); 1503 void *buf = NULL; 1504 1505 cmd->nc_sqid = 0; 1506 cmd->nc_callback = nvme_wakeup_cmd; 1507 cmd->nc_sqe.sqe_opc = NVME_OPC_IDENTIFY; 1508 cmd->nc_sqe.sqe_nsid = nsid; 1509 cmd->nc_sqe.sqe_cdw10 = nsid ? NVME_IDENTIFY_NSID : NVME_IDENTIFY_CTRL; 1510 1511 if (nvme_zalloc_dma(nvme, NVME_IDENTIFY_BUFSIZE, DDI_DMA_READ, 1512 &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) { 1513 dev_err(nvme->n_dip, CE_WARN, 1514 "!nvme_zalloc_dma failed for IDENTIFY"); 1515 goto fail; 1516 } 1517 1518 if (cmd->nc_dma->nd_ncookie > 2) { 1519 dev_err(nvme->n_dip, CE_WARN, 1520 "!too many DMA cookies for IDENTIFY"); 1521 atomic_inc_32(&nvme->n_too_many_cookies); 1522 goto fail; 1523 } 1524 1525 cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress; 1526 if (cmd->nc_dma->nd_ncookie > 1) { 1527 ddi_dma_nextcookie(cmd->nc_dma->nd_dmah, 1528 &cmd->nc_dma->nd_cookie); 1529 cmd->nc_sqe.sqe_dptr.d_prp[1] = 1530 cmd->nc_dma->nd_cookie.dmac_laddress; 1531 } 1532 1533 if (nvme_admin_cmd(cmd, NVME_ADMIN_CMD_TIMEOUT) != DDI_SUCCESS) { 1534 dev_err(nvme->n_dip, CE_WARN, 1535 "!nvme_admin_cmd failed for IDENTIFY"); 1536 return (NULL); 1537 } 1538 1539 if (nvme_check_cmd_status(cmd)) { 1540 dev_err(nvme->n_dip, CE_WARN, 1541 "!IDENTIFY failed with sct = %x, sc = %x", 1542 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc); 1543 goto fail; 1544 } 1545 1546 buf = kmem_alloc(NVME_IDENTIFY_BUFSIZE, KM_SLEEP); 1547 bcopy(cmd->nc_dma->nd_memp, buf, NVME_IDENTIFY_BUFSIZE); 1548 1549 fail: 1550 nvme_free_cmd(cmd); 1551 1552 return (buf); 1553 } 1554 1555 static int 1556 nvme_set_nqueues(nvme_t *nvme, uint16_t nqueues) 1557 { 1558 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP); 1559 nvme_nqueue_t nq = { {0} }; 1560 1561 nq.b.nq_nsq = nq.b.nq_ncq = nqueues; 1562 1563 cmd->nc_sqid = 0; 1564 cmd->nc_callback = nvme_wakeup_cmd; 1565 cmd->nc_sqe.sqe_opc = NVME_OPC_SET_FEATURES; 1566 cmd->nc_sqe.sqe_cdw10 = NVME_FEAT_NQUEUES; 1567 cmd->nc_sqe.sqe_cdw11 = nq.r; 1568 1569 if (nvme_admin_cmd(cmd, NVME_ADMIN_CMD_TIMEOUT) != DDI_SUCCESS) { 1570 dev_err(nvme->n_dip, CE_WARN, 1571 "!nvme_admin_cmd failed for SET FEATURES (NQUEUES)"); 1572 return (0); 1573 } 1574 1575 if (nvme_check_cmd_status(cmd)) { 1576 dev_err(nvme->n_dip, CE_WARN, 1577 "!SET FEATURES (NQUEUES) failed with sct = %x, sc = %x", 1578 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc); 1579 nvme_free_cmd(cmd); 1580 return (0); 1581 } 1582 1583 nq.r = cmd->nc_cqe.cqe_dw0; 1584 nvme_free_cmd(cmd); 1585 1586 /* 1587 * Always use the same number of submission and completion queues, and 1588 * never use more than the requested number of queues. 1589 */ 1590 return (MIN(nqueues, MIN(nq.b.nq_nsq, nq.b.nq_ncq))); 1591 } 1592 1593 static int 1594 nvme_create_io_qpair(nvme_t *nvme, nvme_qpair_t *qp, uint16_t idx) 1595 { 1596 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP); 1597 nvme_create_queue_dw10_t dw10 = { {0} }; 1598 nvme_create_cq_dw11_t c_dw11 = { {0} }; 1599 nvme_create_sq_dw11_t s_dw11 = { {0} }; 1600 1601 dw10.b.q_qid = idx; 1602 dw10.b.q_qsize = qp->nq_nentry - 1; 1603 1604 c_dw11.b.cq_pc = 1; 1605 c_dw11.b.cq_ien = 1; 1606 c_dw11.b.cq_iv = idx % nvme->n_intr_cnt; 1607 1608 cmd->nc_sqid = 0; 1609 cmd->nc_callback = nvme_wakeup_cmd; 1610 cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_CQUEUE; 1611 cmd->nc_sqe.sqe_cdw10 = dw10.r; 1612 cmd->nc_sqe.sqe_cdw11 = c_dw11.r; 1613 cmd->nc_sqe.sqe_dptr.d_prp[0] = qp->nq_cqdma->nd_cookie.dmac_laddress; 1614 1615 if (nvme_admin_cmd(cmd, NVME_ADMIN_CMD_TIMEOUT) != DDI_SUCCESS) { 1616 dev_err(nvme->n_dip, CE_WARN, 1617 "!nvme_admin_cmd failed for CREATE CQUEUE"); 1618 return (DDI_FAILURE); 1619 } 1620 1621 if (nvme_check_cmd_status(cmd)) { 1622 dev_err(nvme->n_dip, CE_WARN, 1623 "!CREATE CQUEUE failed with sct = %x, sc = %x", 1624 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc); 1625 nvme_free_cmd(cmd); 1626 return (DDI_FAILURE); 1627 } 1628 1629 nvme_free_cmd(cmd); 1630 1631 s_dw11.b.sq_pc = 1; 1632 s_dw11.b.sq_cqid = idx; 1633 1634 cmd = nvme_alloc_cmd(nvme, KM_SLEEP); 1635 cmd->nc_sqid = 0; 1636 cmd->nc_callback = nvme_wakeup_cmd; 1637 cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_SQUEUE; 1638 cmd->nc_sqe.sqe_cdw10 = dw10.r; 1639 cmd->nc_sqe.sqe_cdw11 = s_dw11.r; 1640 cmd->nc_sqe.sqe_dptr.d_prp[0] = qp->nq_sqdma->nd_cookie.dmac_laddress; 1641 1642 if (nvme_admin_cmd(cmd, NVME_ADMIN_CMD_TIMEOUT) != DDI_SUCCESS) { 1643 dev_err(nvme->n_dip, CE_WARN, 1644 "!nvme_admin_cmd failed for CREATE SQUEUE"); 1645 return (DDI_FAILURE); 1646 } 1647 1648 if (nvme_check_cmd_status(cmd)) { 1649 dev_err(nvme->n_dip, CE_WARN, 1650 "!CREATE SQUEUE failed with sct = %x, sc = %x", 1651 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc); 1652 nvme_free_cmd(cmd); 1653 return (DDI_FAILURE); 1654 } 1655 1656 nvme_free_cmd(cmd); 1657 1658 return (DDI_SUCCESS); 1659 } 1660 1661 static boolean_t 1662 nvme_reset(nvme_t *nvme, boolean_t quiesce) 1663 { 1664 nvme_reg_csts_t csts; 1665 int i; 1666 1667 nvme_put32(nvme, NVME_REG_CC, 0); 1668 1669 csts.r = nvme_get32(nvme, NVME_REG_CSTS); 1670 if (csts.b.csts_rdy == 1) { 1671 nvme_put32(nvme, NVME_REG_CC, 0); 1672 for (i = 0; i != nvme->n_timeout * 10; i++) { 1673 csts.r = nvme_get32(nvme, NVME_REG_CSTS); 1674 if (csts.b.csts_rdy == 0) 1675 break; 1676 1677 if (quiesce) 1678 drv_usecwait(50000); 1679 else 1680 delay(drv_usectohz(50000)); 1681 } 1682 } 1683 1684 nvme_put32(nvme, NVME_REG_AQA, 0); 1685 nvme_put32(nvme, NVME_REG_ASQ, 0); 1686 nvme_put32(nvme, NVME_REG_ACQ, 0); 1687 1688 csts.r = nvme_get32(nvme, NVME_REG_CSTS); 1689 return (csts.b.csts_rdy == 0 ? B_TRUE : B_FALSE); 1690 } 1691 1692 static void 1693 nvme_shutdown(nvme_t *nvme, int mode, boolean_t quiesce) 1694 { 1695 nvme_reg_cc_t cc; 1696 nvme_reg_csts_t csts; 1697 int i; 1698 1699 ASSERT(mode == NVME_CC_SHN_NORMAL || mode == NVME_CC_SHN_ABRUPT); 1700 1701 cc.r = nvme_get32(nvme, NVME_REG_CC); 1702 cc.b.cc_shn = mode & 0x3; 1703 nvme_put32(nvme, NVME_REG_CC, cc.r); 1704 1705 for (i = 0; i != 10; i++) { 1706 csts.r = nvme_get32(nvme, NVME_REG_CSTS); 1707 if (csts.b.csts_shst == NVME_CSTS_SHN_COMPLETE) 1708 break; 1709 1710 if (quiesce) 1711 drv_usecwait(100000); 1712 else 1713 delay(drv_usectohz(100000)); 1714 } 1715 } 1716 1717 1718 static void 1719 nvme_prepare_devid(nvme_t *nvme, uint32_t nsid) 1720 { 1721 char model[sizeof (nvme->n_idctl->id_model) + 1]; 1722 char serial[sizeof (nvme->n_idctl->id_serial) + 1]; 1723 1724 bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model)); 1725 bcopy(nvme->n_idctl->id_serial, serial, 1726 sizeof (nvme->n_idctl->id_serial)); 1727 1728 model[sizeof (nvme->n_idctl->id_model)] = '\0'; 1729 serial[sizeof (nvme->n_idctl->id_serial)] = '\0'; 1730 1731 (void) snprintf(nvme->n_ns[nsid - 1].ns_devid, 1732 sizeof (nvme->n_ns[0].ns_devid), "%4X-%s-%s-%X", 1733 nvme->n_idctl->id_vid, model, serial, nsid); 1734 } 1735 1736 static int 1737 nvme_init(nvme_t *nvme) 1738 { 1739 nvme_reg_cc_t cc = { {0} }; 1740 nvme_reg_aqa_t aqa = { {0} }; 1741 nvme_reg_asq_t asq = { 0 }; 1742 nvme_reg_acq_t acq = { 0 }; 1743 nvme_reg_cap_t cap; 1744 nvme_reg_vs_t vs; 1745 nvme_reg_csts_t csts; 1746 int i = 0; 1747 int nqueues; 1748 char model[sizeof (nvme->n_idctl->id_model) + 1]; 1749 char *vendor, *product; 1750 1751 /* Setup fixed interrupt for admin queue. */ 1752 if (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_FIXED, 1) 1753 != DDI_SUCCESS) { 1754 dev_err(nvme->n_dip, CE_WARN, 1755 "!failed to setup fixed interrupt"); 1756 goto fail; 1757 } 1758 1759 /* Check controller version */ 1760 vs.r = nvme_get32(nvme, NVME_REG_VS); 1761 dev_err(nvme->n_dip, CE_CONT, "?NVMe spec version %d.%d", 1762 vs.b.vs_mjr, vs.b.vs_mnr); 1763 1764 if (nvme_version_major < vs.b.vs_mjr || 1765 (nvme_version_major == vs.b.vs_mjr && 1766 nvme_version_minor < vs.b.vs_mnr)) { 1767 dev_err(nvme->n_dip, CE_WARN, "!no support for version > %d.%d", 1768 nvme_version_major, nvme_version_minor); 1769 if (nvme->n_strict_version) 1770 goto fail; 1771 } 1772 1773 /* retrieve controller configuration */ 1774 cap.r = nvme_get64(nvme, NVME_REG_CAP); 1775 1776 if ((cap.b.cap_css & NVME_CAP_CSS_NVM) == 0) { 1777 dev_err(nvme->n_dip, CE_WARN, 1778 "!NVM command set not supported by hardware"); 1779 goto fail; 1780 } 1781 1782 nvme->n_nssr_supported = cap.b.cap_nssrs; 1783 nvme->n_doorbell_stride = 4 << cap.b.cap_dstrd; 1784 nvme->n_timeout = cap.b.cap_to; 1785 nvme->n_arbitration_mechanisms = cap.b.cap_ams; 1786 nvme->n_cont_queues_reqd = cap.b.cap_cqr; 1787 nvme->n_max_queue_entries = cap.b.cap_mqes + 1; 1788 1789 /* 1790 * The MPSMIN and MPSMAX fields in the CAP register use 0 to specify 1791 * the base page size of 4k (1<<12), so add 12 here to get the real 1792 * page size value. 1793 */ 1794 nvme->n_pageshift = MIN(MAX(cap.b.cap_mpsmin + 12, PAGESHIFT), 1795 cap.b.cap_mpsmax + 12); 1796 nvme->n_pagesize = 1UL << (nvme->n_pageshift); 1797 1798 /* 1799 * Set up Queue DMA to transfer at least 1 page-aligned page at a time. 1800 */ 1801 nvme->n_queue_dma_attr.dma_attr_align = nvme->n_pagesize; 1802 nvme->n_queue_dma_attr.dma_attr_minxfer = nvme->n_pagesize; 1803 1804 /* 1805 * Set up PRP DMA to transfer 1 page-aligned page at a time. 1806 * Maxxfer may be increased after we identified the controller limits. 1807 */ 1808 nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_pagesize; 1809 nvme->n_prp_dma_attr.dma_attr_minxfer = nvme->n_pagesize; 1810 nvme->n_prp_dma_attr.dma_attr_align = nvme->n_pagesize; 1811 1812 /* 1813 * Reset controller if it's still in ready state. 1814 */ 1815 if (nvme_reset(nvme, B_FALSE) == B_FALSE) { 1816 dev_err(nvme->n_dip, CE_WARN, "!unable to reset controller"); 1817 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST); 1818 nvme->n_dead = B_TRUE; 1819 goto fail; 1820 } 1821 1822 /* 1823 * Create the admin queue pair. 1824 */ 1825 if (nvme_alloc_qpair(nvme, nvme->n_admin_queue_len, &nvme->n_adminq, 0) 1826 != DDI_SUCCESS) { 1827 dev_err(nvme->n_dip, CE_WARN, 1828 "!unable to allocate admin qpair"); 1829 goto fail; 1830 } 1831 nvme->n_ioq = kmem_alloc(sizeof (nvme_qpair_t *), KM_SLEEP); 1832 nvme->n_ioq[0] = nvme->n_adminq; 1833 1834 nvme->n_progress |= NVME_ADMIN_QUEUE; 1835 1836 (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, 1837 "admin-queue-len", nvme->n_admin_queue_len); 1838 1839 aqa.b.aqa_asqs = aqa.b.aqa_acqs = nvme->n_admin_queue_len - 1; 1840 asq = nvme->n_adminq->nq_sqdma->nd_cookie.dmac_laddress; 1841 acq = nvme->n_adminq->nq_cqdma->nd_cookie.dmac_laddress; 1842 1843 ASSERT((asq & (nvme->n_pagesize - 1)) == 0); 1844 ASSERT((acq & (nvme->n_pagesize - 1)) == 0); 1845 1846 nvme_put32(nvme, NVME_REG_AQA, aqa.r); 1847 nvme_put64(nvme, NVME_REG_ASQ, asq); 1848 nvme_put64(nvme, NVME_REG_ACQ, acq); 1849 1850 cc.b.cc_ams = 0; /* use Round-Robin arbitration */ 1851 cc.b.cc_css = 0; /* use NVM command set */ 1852 cc.b.cc_mps = nvme->n_pageshift - 12; 1853 cc.b.cc_shn = 0; /* no shutdown in progress */ 1854 cc.b.cc_en = 1; /* enable controller */ 1855 1856 nvme_put32(nvme, NVME_REG_CC, cc.r); 1857 1858 /* 1859 * Wait for the controller to become ready. 1860 */ 1861 csts.r = nvme_get32(nvme, NVME_REG_CSTS); 1862 if (csts.b.csts_rdy == 0) { 1863 for (i = 0; i != nvme->n_timeout * 10; i++) { 1864 delay(drv_usectohz(50000)); 1865 csts.r = nvme_get32(nvme, NVME_REG_CSTS); 1866 1867 if (csts.b.csts_cfs == 1) { 1868 dev_err(nvme->n_dip, CE_WARN, 1869 "!controller fatal status at init"); 1870 ddi_fm_service_impact(nvme->n_dip, 1871 DDI_SERVICE_LOST); 1872 nvme->n_dead = B_TRUE; 1873 goto fail; 1874 } 1875 1876 if (csts.b.csts_rdy == 1) 1877 break; 1878 } 1879 } 1880 1881 if (csts.b.csts_rdy == 0) { 1882 dev_err(nvme->n_dip, CE_WARN, "!controller not ready"); 1883 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST); 1884 nvme->n_dead = B_TRUE; 1885 goto fail; 1886 } 1887 1888 /* 1889 * Assume an abort command limit of 1. We'll destroy and re-init 1890 * that later when we know the true abort command limit. 1891 */ 1892 sema_init(&nvme->n_abort_sema, 1, NULL, SEMA_DRIVER, NULL); 1893 1894 /* 1895 * Post an asynchronous event command to catch errors. 1896 */ 1897 if (nvme_async_event(nvme) != DDI_SUCCESS) { 1898 dev_err(nvme->n_dip, CE_WARN, 1899 "!failed to post async event"); 1900 goto fail; 1901 } 1902 1903 /* 1904 * Identify Controller 1905 */ 1906 nvme->n_idctl = nvme_identify(nvme, 0); 1907 if (nvme->n_idctl == NULL) { 1908 dev_err(nvme->n_dip, CE_WARN, 1909 "!failed to identify controller"); 1910 goto fail; 1911 } 1912 1913 /* 1914 * Get Vendor & Product ID 1915 */ 1916 bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model)); 1917 model[sizeof (nvme->n_idctl->id_model)] = '\0'; 1918 sata_split_model(model, &vendor, &product); 1919 1920 if (vendor == NULL) 1921 nvme->n_vendor = strdup("NVMe"); 1922 else 1923 nvme->n_vendor = strdup(vendor); 1924 1925 nvme->n_product = strdup(product); 1926 1927 /* 1928 * Get controller limits. 1929 */ 1930 nvme->n_async_event_limit = MAX(NVME_MIN_ASYNC_EVENT_LIMIT, 1931 MIN(nvme->n_admin_queue_len / 10, 1932 MIN(nvme->n_idctl->id_aerl + 1, nvme->n_async_event_limit))); 1933 1934 (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, 1935 "async-event-limit", nvme->n_async_event_limit); 1936 1937 nvme->n_abort_command_limit = nvme->n_idctl->id_acl + 1; 1938 1939 /* disable NVMe interrupts while reinitializing the semaphore */ 1940 nvme_disable_interrupts(nvme); 1941 sema_destroy(&nvme->n_abort_sema); 1942 sema_init(&nvme->n_abort_sema, nvme->n_abort_command_limit - 1, NULL, 1943 SEMA_DRIVER, NULL); 1944 if (nvme_enable_interrupts(nvme) != DDI_SUCCESS) { 1945 dev_err(nvme->n_dip, CE_WARN, 1946 "!failed to re-enable interrupts"); 1947 goto fail; 1948 } 1949 1950 nvme->n_progress |= NVME_CTRL_LIMITS; 1951 1952 if (nvme->n_idctl->id_mdts == 0) 1953 nvme->n_max_data_transfer_size = nvme->n_pagesize * 65536; 1954 else 1955 nvme->n_max_data_transfer_size = 1956 1ull << (nvme->n_pageshift + nvme->n_idctl->id_mdts); 1957 1958 nvme->n_error_log_len = nvme->n_idctl->id_elpe + 1; 1959 1960 /* 1961 * Limit n_max_data_transfer_size to what we can handle in one PRP. 1962 * Chained PRPs are currently unsupported. 1963 * 1964 * This is a no-op on hardware which doesn't support a transfer size 1965 * big enough to require chained PRPs. 1966 */ 1967 nvme->n_max_data_transfer_size = MIN(nvme->n_max_data_transfer_size, 1968 (nvme->n_pagesize / sizeof (uint64_t) * nvme->n_pagesize)); 1969 1970 nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_max_data_transfer_size; 1971 1972 /* 1973 * Make sure the minimum/maximum queue entry sizes are not 1974 * larger/smaller than the default. 1975 */ 1976 1977 if (((1 << nvme->n_idctl->id_sqes.qes_min) > sizeof (nvme_sqe_t)) || 1978 ((1 << nvme->n_idctl->id_sqes.qes_max) < sizeof (nvme_sqe_t)) || 1979 ((1 << nvme->n_idctl->id_cqes.qes_min) > sizeof (nvme_cqe_t)) || 1980 ((1 << nvme->n_idctl->id_cqes.qes_max) < sizeof (nvme_cqe_t))) 1981 goto fail; 1982 1983 /* 1984 * Check for the presence of a Volatile Write Cache. If present, 1985 * enable it by default. 1986 */ 1987 if (nvme->n_idctl->id_vwc.vwc_present == 0) { 1988 nvme->n_volatile_write_cache_enabled = B_FALSE; 1989 nvme_bd_ops.o_sync_cache = NULL; 1990 } else { 1991 /* 1992 * TODO: send SET FEATURES to enable VWC 1993 * (have no hardware to test this) 1994 */ 1995 nvme->n_volatile_write_cache_enabled = B_FALSE; 1996 nvme_bd_ops.o_sync_cache = NULL; 1997 } 1998 1999 /* 2000 * Grab a copy of all mandatory log pages. 2001 * 2002 * TODO: should go away once user space tool exists to print logs 2003 */ 2004 nvme->n_error_log = (nvme_error_log_entry_t *) 2005 nvme_get_logpage(nvme, NVME_LOGPAGE_ERROR); 2006 nvme->n_health_log = (nvme_health_log_t *) 2007 nvme_get_logpage(nvme, NVME_LOGPAGE_HEALTH, -1); 2008 nvme->n_fwslot_log = (nvme_fwslot_log_t *) 2009 nvme_get_logpage(nvme, NVME_LOGPAGE_FWSLOT); 2010 2011 /* 2012 * Identify Namespaces 2013 */ 2014 nvme->n_namespace_count = nvme->n_idctl->id_nn; 2015 nvme->n_ns = kmem_zalloc(sizeof (nvme_namespace_t) * 2016 nvme->n_namespace_count, KM_SLEEP); 2017 2018 for (i = 0; i != nvme->n_namespace_count; i++) { 2019 nvme_identify_nsid_t *idns; 2020 int last_rp; 2021 2022 nvme->n_ns[i].ns_nvme = nvme; 2023 nvme->n_ns[i].ns_idns = idns = nvme_identify(nvme, i + 1); 2024 2025 if (idns == NULL) { 2026 dev_err(nvme->n_dip, CE_WARN, 2027 "!failed to identify namespace %d", i + 1); 2028 goto fail; 2029 } 2030 2031 nvme->n_ns[i].ns_id = i + 1; 2032 nvme->n_ns[i].ns_block_count = idns->id_nsize; 2033 nvme->n_ns[i].ns_block_size = 2034 1 << idns->id_lbaf[idns->id_flbas.lba_format].lbaf_lbads; 2035 nvme->n_ns[i].ns_best_block_size = nvme->n_ns[i].ns_block_size; 2036 2037 nvme_prepare_devid(nvme, nvme->n_ns[i].ns_id); 2038 2039 /* 2040 * Find the LBA format with no metadata and the best relative 2041 * performance. A value of 3 means "degraded", 0 is best. 2042 */ 2043 last_rp = 3; 2044 for (int j = 0; j != idns->id_nlbaf; j++) { 2045 if (idns->id_lbaf[j].lbaf_lbads == 0) 2046 break; 2047 if (idns->id_lbaf[j].lbaf_ms != 0) 2048 continue; 2049 if (idns->id_lbaf[j].lbaf_rp >= last_rp) 2050 continue; 2051 last_rp = idns->id_lbaf[j].lbaf_rp; 2052 nvme->n_ns[i].ns_best_block_size = 2053 1 << idns->id_lbaf[j].lbaf_lbads; 2054 } 2055 2056 /* 2057 * We currently don't support namespaces that use either: 2058 * - thin provisioning 2059 * - extended LBAs 2060 * - protection information 2061 */ 2062 if (idns->id_nsfeat.f_thin || 2063 idns->id_flbas.lba_extlba || 2064 idns->id_dps.dp_pinfo) { 2065 dev_err(nvme->n_dip, CE_WARN, 2066 "!ignoring namespace %d, unsupported features: " 2067 "thin = %d, extlba = %d, pinfo = %d", i + 1, 2068 idns->id_nsfeat.f_thin, idns->id_flbas.lba_extlba, 2069 idns->id_dps.dp_pinfo); 2070 nvme->n_ns[i].ns_ignore = B_TRUE; 2071 } 2072 } 2073 2074 /* 2075 * Try to set up MSI/MSI-X interrupts. 2076 */ 2077 if ((nvme->n_intr_types & (DDI_INTR_TYPE_MSI | DDI_INTR_TYPE_MSIX)) 2078 != 0) { 2079 nvme_release_interrupts(nvme); 2080 2081 nqueues = MIN(UINT16_MAX, ncpus); 2082 2083 if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX, 2084 nqueues) != DDI_SUCCESS) && 2085 (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI, 2086 nqueues) != DDI_SUCCESS)) { 2087 dev_err(nvme->n_dip, CE_WARN, 2088 "!failed to setup MSI/MSI-X interrupts"); 2089 goto fail; 2090 } 2091 } 2092 2093 nqueues = nvme->n_intr_cnt; 2094 2095 /* 2096 * Create I/O queue pairs. 2097 */ 2098 nvme->n_ioq_count = nvme_set_nqueues(nvme, nqueues); 2099 if (nvme->n_ioq_count == 0) { 2100 dev_err(nvme->n_dip, CE_WARN, 2101 "!failed to set number of I/O queues to %d", nqueues); 2102 goto fail; 2103 } 2104 2105 /* 2106 * Reallocate I/O queue array 2107 */ 2108 kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *)); 2109 nvme->n_ioq = kmem_zalloc(sizeof (nvme_qpair_t *) * 2110 (nvme->n_ioq_count + 1), KM_SLEEP); 2111 nvme->n_ioq[0] = nvme->n_adminq; 2112 2113 /* 2114 * If we got less queues than we asked for we might as well give 2115 * some of the interrupt vectors back to the system. 2116 */ 2117 if (nvme->n_ioq_count < nqueues) { 2118 nvme_release_interrupts(nvme); 2119 2120 if (nvme_setup_interrupts(nvme, nvme->n_intr_type, nqueues) 2121 != DDI_SUCCESS) { 2122 dev_err(nvme->n_dip, CE_WARN, 2123 "!failed to reduce number of interrupts"); 2124 goto fail; 2125 } 2126 } 2127 2128 /* 2129 * Alloc & register I/O queue pairs 2130 */ 2131 nvme->n_io_queue_len = 2132 MIN(nvme->n_io_queue_len, nvme->n_max_queue_entries); 2133 (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, "io-queue-len", 2134 nvme->n_io_queue_len); 2135 2136 for (i = 1; i != nvme->n_ioq_count + 1; i++) { 2137 if (nvme_alloc_qpair(nvme, nvme->n_io_queue_len, 2138 &nvme->n_ioq[i], i) != DDI_SUCCESS) { 2139 dev_err(nvme->n_dip, CE_WARN, 2140 "!unable to allocate I/O qpair %d", i); 2141 goto fail; 2142 } 2143 2144 if (nvme_create_io_qpair(nvme, nvme->n_ioq[i], i) 2145 != DDI_SUCCESS) { 2146 dev_err(nvme->n_dip, CE_WARN, 2147 "!unable to create I/O qpair %d", i); 2148 goto fail; 2149 } 2150 } 2151 2152 /* 2153 * Post more asynchronous events commands to reduce event reporting 2154 * latency as suggested by the spec. 2155 */ 2156 for (i = 1; i != nvme->n_async_event_limit; i++) { 2157 if (nvme_async_event(nvme) != DDI_SUCCESS) { 2158 dev_err(nvme->n_dip, CE_WARN, 2159 "!failed to post async event %d", i); 2160 goto fail; 2161 } 2162 } 2163 2164 return (DDI_SUCCESS); 2165 2166 fail: 2167 (void) nvme_reset(nvme, B_FALSE); 2168 return (DDI_FAILURE); 2169 } 2170 2171 static uint_t 2172 nvme_intr(caddr_t arg1, caddr_t arg2) 2173 { 2174 /*LINTED: E_PTR_BAD_CAST_ALIGN*/ 2175 nvme_t *nvme = (nvme_t *)arg1; 2176 int inum = (int)(uintptr_t)arg2; 2177 int qnum; 2178 nvme_cmd_t *cmd; 2179 2180 if (inum >= nvme->n_intr_cnt) 2181 return (DDI_INTR_UNCLAIMED); 2182 2183 /* 2184 * The interrupt vector a queue uses is calculated as queue_idx % 2185 * intr_cnt in nvme_create_io_qpair(). Iterate through the queue array 2186 * in steps of n_intr_cnt to process all queues using this vector. 2187 */ 2188 for (qnum = inum; 2189 qnum < nvme->n_ioq_count + 1 && nvme->n_ioq[qnum] != NULL; 2190 qnum += nvme->n_intr_cnt) { 2191 while ((cmd = nvme_retrieve_cmd(nvme, nvme->n_ioq[qnum]))) { 2192 taskq_dispatch_ent((taskq_t *)cmd->nc_nvme->n_cmd_taskq, 2193 cmd->nc_callback, cmd, TQ_NOSLEEP, &cmd->nc_tqent); 2194 } 2195 } 2196 2197 return (DDI_INTR_CLAIMED); 2198 } 2199 2200 static void 2201 nvme_disable_interrupts(nvme_t *nvme) 2202 { 2203 int i; 2204 2205 for (i = 0; i < nvme->n_intr_cnt; i++) { 2206 if (nvme->n_inth[i] == NULL) 2207 break; 2208 2209 if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK) 2210 (void) ddi_intr_block_disable(&nvme->n_inth[i], 1); 2211 else 2212 (void) ddi_intr_disable(nvme->n_inth[i]); 2213 } 2214 } 2215 2216 static int 2217 nvme_enable_interrupts(nvme_t *nvme) 2218 { 2219 int i, fail = 0; 2220 2221 for (i = 0; i < nvme->n_intr_cnt; i++) { 2222 if (nvme->n_inth[i] == NULL) 2223 break; 2224 2225 if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK) { 2226 if (ddi_intr_block_enable(&nvme->n_inth[i], 1) != 2227 DDI_SUCCESS) 2228 fail++; 2229 } else { 2230 if (ddi_intr_enable(nvme->n_inth[i]) != DDI_SUCCESS) 2231 fail++; 2232 } 2233 } 2234 2235 return (fail ? DDI_FAILURE : DDI_SUCCESS); 2236 } 2237 2238 static void 2239 nvme_release_interrupts(nvme_t *nvme) 2240 { 2241 int i; 2242 2243 nvme_disable_interrupts(nvme); 2244 2245 for (i = 0; i < nvme->n_intr_cnt; i++) { 2246 if (nvme->n_inth[i] == NULL) 2247 break; 2248 2249 (void) ddi_intr_remove_handler(nvme->n_inth[i]); 2250 (void) ddi_intr_free(nvme->n_inth[i]); 2251 } 2252 2253 kmem_free(nvme->n_inth, nvme->n_inth_sz); 2254 nvme->n_inth = NULL; 2255 nvme->n_inth_sz = 0; 2256 2257 nvme->n_progress &= ~NVME_INTERRUPTS; 2258 } 2259 2260 static int 2261 nvme_setup_interrupts(nvme_t *nvme, int intr_type, int nqpairs) 2262 { 2263 int nintrs, navail, count; 2264 int ret; 2265 int i; 2266 2267 if (nvme->n_intr_types == 0) { 2268 ret = ddi_intr_get_supported_types(nvme->n_dip, 2269 &nvme->n_intr_types); 2270 if (ret != DDI_SUCCESS) { 2271 dev_err(nvme->n_dip, CE_WARN, 2272 "!%s: ddi_intr_get_supported types failed", 2273 __func__); 2274 return (ret); 2275 } 2276 } 2277 2278 if ((nvme->n_intr_types & intr_type) == 0) 2279 return (DDI_FAILURE); 2280 2281 ret = ddi_intr_get_nintrs(nvme->n_dip, intr_type, &nintrs); 2282 if (ret != DDI_SUCCESS) { 2283 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_nintrs failed", 2284 __func__); 2285 return (ret); 2286 } 2287 2288 ret = ddi_intr_get_navail(nvme->n_dip, intr_type, &navail); 2289 if (ret != DDI_SUCCESS) { 2290 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_navail failed", 2291 __func__); 2292 return (ret); 2293 } 2294 2295 /* We want at most one interrupt per queue pair. */ 2296 if (navail > nqpairs) 2297 navail = nqpairs; 2298 2299 nvme->n_inth_sz = sizeof (ddi_intr_handle_t) * navail; 2300 nvme->n_inth = kmem_zalloc(nvme->n_inth_sz, KM_SLEEP); 2301 2302 ret = ddi_intr_alloc(nvme->n_dip, nvme->n_inth, intr_type, 0, navail, 2303 &count, 0); 2304 if (ret != DDI_SUCCESS) { 2305 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_alloc failed", 2306 __func__); 2307 goto fail; 2308 } 2309 2310 nvme->n_intr_cnt = count; 2311 2312 ret = ddi_intr_get_pri(nvme->n_inth[0], &nvme->n_intr_pri); 2313 if (ret != DDI_SUCCESS) { 2314 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_pri failed", 2315 __func__); 2316 goto fail; 2317 } 2318 2319 for (i = 0; i < count; i++) { 2320 ret = ddi_intr_add_handler(nvme->n_inth[i], nvme_intr, 2321 (void *)nvme, (void *)(uintptr_t)i); 2322 if (ret != DDI_SUCCESS) { 2323 dev_err(nvme->n_dip, CE_WARN, 2324 "!%s: ddi_intr_add_handler failed", __func__); 2325 goto fail; 2326 } 2327 } 2328 2329 (void) ddi_intr_get_cap(nvme->n_inth[0], &nvme->n_intr_cap); 2330 2331 ret = nvme_enable_interrupts(nvme); 2332 2333 if (ret != DDI_SUCCESS) { 2334 dev_err(nvme->n_dip, CE_WARN, 2335 "!%s: nvme_enable_interrupts failed", __func__); 2336 goto fail; 2337 } 2338 2339 nvme->n_intr_type = intr_type; 2340 2341 nvme->n_progress |= NVME_INTERRUPTS; 2342 2343 return (DDI_SUCCESS); 2344 2345 fail: 2346 nvme_release_interrupts(nvme); 2347 2348 return (ret); 2349 } 2350 2351 static int 2352 nvme_fm_errcb(dev_info_t *dip, ddi_fm_error_t *fm_error, const void *arg) 2353 { 2354 _NOTE(ARGUNUSED(arg)); 2355 2356 pci_ereport_post(dip, fm_error, NULL); 2357 return (fm_error->fme_status); 2358 } 2359 2360 static int 2361 nvme_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) 2362 { 2363 nvme_t *nvme; 2364 int instance; 2365 int nregs; 2366 off_t regsize; 2367 int i; 2368 char name[32]; 2369 2370 if (cmd != DDI_ATTACH) 2371 return (DDI_FAILURE); 2372 2373 instance = ddi_get_instance(dip); 2374 2375 if (ddi_soft_state_zalloc(nvme_state, instance) != DDI_SUCCESS) 2376 return (DDI_FAILURE); 2377 2378 nvme = ddi_get_soft_state(nvme_state, instance); 2379 ddi_set_driver_private(dip, nvme); 2380 nvme->n_dip = dip; 2381 2382 nvme->n_strict_version = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 2383 DDI_PROP_DONTPASS, "strict-version", 1) == 1 ? B_TRUE : B_FALSE; 2384 nvme->n_ignore_unknown_vendor_status = ddi_prop_get_int(DDI_DEV_T_ANY, 2385 dip, DDI_PROP_DONTPASS, "ignore-unknown-vendor-status", 0) == 1 ? 2386 B_TRUE : B_FALSE; 2387 nvme->n_admin_queue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 2388 DDI_PROP_DONTPASS, "admin-queue-len", NVME_DEFAULT_ADMIN_QUEUE_LEN); 2389 nvme->n_io_queue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 2390 DDI_PROP_DONTPASS, "io-queue-len", NVME_DEFAULT_IO_QUEUE_LEN); 2391 nvme->n_async_event_limit = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 2392 DDI_PROP_DONTPASS, "async-event-limit", 2393 NVME_DEFAULT_ASYNC_EVENT_LIMIT); 2394 2395 if (nvme->n_admin_queue_len < NVME_MIN_ADMIN_QUEUE_LEN) 2396 nvme->n_admin_queue_len = NVME_MIN_ADMIN_QUEUE_LEN; 2397 else if (nvme->n_admin_queue_len > NVME_MAX_ADMIN_QUEUE_LEN) 2398 nvme->n_admin_queue_len = NVME_MAX_ADMIN_QUEUE_LEN; 2399 2400 if (nvme->n_io_queue_len < NVME_MIN_IO_QUEUE_LEN) 2401 nvme->n_io_queue_len = NVME_MIN_IO_QUEUE_LEN; 2402 2403 if (nvme->n_async_event_limit < 1) 2404 nvme->n_async_event_limit = NVME_DEFAULT_ASYNC_EVENT_LIMIT; 2405 2406 nvme->n_reg_acc_attr = nvme_reg_acc_attr; 2407 nvme->n_queue_dma_attr = nvme_queue_dma_attr; 2408 nvme->n_prp_dma_attr = nvme_prp_dma_attr; 2409 nvme->n_sgl_dma_attr = nvme_sgl_dma_attr; 2410 2411 /* 2412 * Setup FMA support. 2413 */ 2414 nvme->n_fm_cap = ddi_getprop(DDI_DEV_T_ANY, dip, 2415 DDI_PROP_CANSLEEP | DDI_PROP_DONTPASS, "fm-capable", 2416 DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE | 2417 DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE); 2418 2419 ddi_fm_init(dip, &nvme->n_fm_cap, &nvme->n_fm_ibc); 2420 2421 if (nvme->n_fm_cap) { 2422 if (nvme->n_fm_cap & DDI_FM_ACCCHK_CAPABLE) 2423 nvme->n_reg_acc_attr.devacc_attr_access = 2424 DDI_FLAGERR_ACC; 2425 2426 if (nvme->n_fm_cap & DDI_FM_DMACHK_CAPABLE) { 2427 nvme->n_prp_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR; 2428 nvme->n_sgl_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR; 2429 } 2430 2431 if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) || 2432 DDI_FM_ERRCB_CAP(nvme->n_fm_cap)) 2433 pci_ereport_setup(dip); 2434 2435 if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap)) 2436 ddi_fm_handler_register(dip, nvme_fm_errcb, 2437 (void *)nvme); 2438 } 2439 2440 nvme->n_progress |= NVME_FMA_INIT; 2441 2442 /* 2443 * The spec defines several register sets. Only the controller 2444 * registers (set 1) are currently used. 2445 */ 2446 if (ddi_dev_nregs(dip, &nregs) == DDI_FAILURE || 2447 nregs < 2 || 2448 ddi_dev_regsize(dip, 1, ®size) == DDI_FAILURE) 2449 goto fail; 2450 2451 if (ddi_regs_map_setup(dip, 1, &nvme->n_regs, 0, regsize, 2452 &nvme->n_reg_acc_attr, &nvme->n_regh) != DDI_SUCCESS) { 2453 dev_err(dip, CE_WARN, "!failed to map regset 1"); 2454 goto fail; 2455 } 2456 2457 nvme->n_progress |= NVME_REGS_MAPPED; 2458 2459 /* 2460 * Create taskq for command completion. 2461 */ 2462 (void) snprintf(name, sizeof (name), "%s%d_cmd_taskq", 2463 ddi_driver_name(dip), ddi_get_instance(dip)); 2464 nvme->n_cmd_taskq = ddi_taskq_create(dip, name, MIN(UINT16_MAX, ncpus), 2465 TASKQ_DEFAULTPRI, 0); 2466 if (nvme->n_cmd_taskq == NULL) { 2467 dev_err(dip, CE_WARN, "!failed to create cmd taskq"); 2468 goto fail; 2469 } 2470 2471 2472 if (nvme_init(nvme) != DDI_SUCCESS) 2473 goto fail; 2474 2475 /* 2476 * Attach the blkdev driver for each namespace. 2477 */ 2478 for (i = 0; i != nvme->n_namespace_count; i++) { 2479 if (nvme->n_ns[i].ns_ignore) 2480 continue; 2481 2482 nvme->n_ns[i].ns_bd_hdl = bd_alloc_handle(&nvme->n_ns[i], 2483 &nvme_bd_ops, &nvme->n_prp_dma_attr, KM_SLEEP); 2484 2485 if (nvme->n_ns[i].ns_bd_hdl == NULL) { 2486 dev_err(dip, CE_WARN, 2487 "!failed to get blkdev handle for namespace %d", i); 2488 goto fail; 2489 } 2490 2491 if (bd_attach_handle(dip, nvme->n_ns[i].ns_bd_hdl) 2492 != DDI_SUCCESS) { 2493 dev_err(dip, CE_WARN, 2494 "!failed to attach blkdev handle for namespace %d", 2495 i); 2496 goto fail; 2497 } 2498 } 2499 2500 return (DDI_SUCCESS); 2501 2502 fail: 2503 /* attach successful anyway so that FMA can retire the device */ 2504 if (nvme->n_dead) 2505 return (DDI_SUCCESS); 2506 2507 (void) nvme_detach(dip, DDI_DETACH); 2508 2509 return (DDI_FAILURE); 2510 } 2511 2512 static int 2513 nvme_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 2514 { 2515 int instance, i; 2516 nvme_t *nvme; 2517 2518 if (cmd != DDI_DETACH) 2519 return (DDI_FAILURE); 2520 2521 instance = ddi_get_instance(dip); 2522 2523 nvme = ddi_get_soft_state(nvme_state, instance); 2524 2525 if (nvme == NULL) 2526 return (DDI_FAILURE); 2527 2528 if (nvme->n_ns) { 2529 for (i = 0; i != nvme->n_namespace_count; i++) { 2530 if (nvme->n_ns[i].ns_bd_hdl) { 2531 (void) bd_detach_handle( 2532 nvme->n_ns[i].ns_bd_hdl); 2533 bd_free_handle(nvme->n_ns[i].ns_bd_hdl); 2534 } 2535 2536 if (nvme->n_ns[i].ns_idns) 2537 kmem_free(nvme->n_ns[i].ns_idns, 2538 sizeof (nvme_identify_nsid_t)); 2539 } 2540 2541 kmem_free(nvme->n_ns, sizeof (nvme_namespace_t) * 2542 nvme->n_namespace_count); 2543 } 2544 2545 if (nvme->n_progress & NVME_INTERRUPTS) 2546 nvme_release_interrupts(nvme); 2547 2548 if (nvme->n_cmd_taskq) 2549 ddi_taskq_wait(nvme->n_cmd_taskq); 2550 2551 if (nvme->n_ioq_count > 0) { 2552 for (i = 1; i != nvme->n_ioq_count + 1; i++) { 2553 if (nvme->n_ioq[i] != NULL) { 2554 /* TODO: send destroy queue commands */ 2555 nvme_free_qpair(nvme->n_ioq[i]); 2556 } 2557 } 2558 2559 kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *) * 2560 (nvme->n_ioq_count + 1)); 2561 } 2562 2563 if (nvme->n_progress & NVME_REGS_MAPPED) { 2564 nvme_shutdown(nvme, NVME_CC_SHN_NORMAL, B_FALSE); 2565 (void) nvme_reset(nvme, B_FALSE); 2566 } 2567 2568 if (nvme->n_cmd_taskq) 2569 ddi_taskq_destroy(nvme->n_cmd_taskq); 2570 2571 if (nvme->n_progress & NVME_CTRL_LIMITS) 2572 sema_destroy(&nvme->n_abort_sema); 2573 2574 if (nvme->n_progress & NVME_ADMIN_QUEUE) 2575 nvme_free_qpair(nvme->n_adminq); 2576 2577 if (nvme->n_idctl) 2578 kmem_free(nvme->n_idctl, sizeof (nvme_identify_ctrl_t)); 2579 2580 if (nvme->n_progress & NVME_REGS_MAPPED) 2581 ddi_regs_map_free(&nvme->n_regh); 2582 2583 if (nvme->n_progress & NVME_FMA_INIT) { 2584 if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap)) 2585 ddi_fm_handler_unregister(nvme->n_dip); 2586 2587 if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) || 2588 DDI_FM_ERRCB_CAP(nvme->n_fm_cap)) 2589 pci_ereport_teardown(nvme->n_dip); 2590 2591 ddi_fm_fini(nvme->n_dip); 2592 } 2593 2594 if (nvme->n_vendor != NULL) 2595 strfree(nvme->n_vendor); 2596 2597 if (nvme->n_product != NULL) 2598 strfree(nvme->n_product); 2599 2600 ddi_soft_state_free(nvme_state, instance); 2601 2602 return (DDI_SUCCESS); 2603 } 2604 2605 static int 2606 nvme_quiesce(dev_info_t *dip) 2607 { 2608 int instance; 2609 nvme_t *nvme; 2610 2611 instance = ddi_get_instance(dip); 2612 2613 nvme = ddi_get_soft_state(nvme_state, instance); 2614 2615 if (nvme == NULL) 2616 return (DDI_FAILURE); 2617 2618 nvme_shutdown(nvme, NVME_CC_SHN_ABRUPT, B_TRUE); 2619 2620 (void) nvme_reset(nvme, B_TRUE); 2621 2622 return (DDI_FAILURE); 2623 } 2624 2625 static int 2626 nvme_fill_prp(nvme_cmd_t *cmd, bd_xfer_t *xfer) 2627 { 2628 nvme_t *nvme = cmd->nc_nvme; 2629 int nprp_page, nprp; 2630 uint64_t *prp; 2631 2632 if (xfer->x_ndmac == 0) 2633 return (DDI_FAILURE); 2634 2635 cmd->nc_sqe.sqe_dptr.d_prp[0] = xfer->x_dmac.dmac_laddress; 2636 ddi_dma_nextcookie(xfer->x_dmah, &xfer->x_dmac); 2637 2638 if (xfer->x_ndmac == 1) { 2639 cmd->nc_sqe.sqe_dptr.d_prp[1] = 0; 2640 return (DDI_SUCCESS); 2641 } else if (xfer->x_ndmac == 2) { 2642 cmd->nc_sqe.sqe_dptr.d_prp[1] = xfer->x_dmac.dmac_laddress; 2643 return (DDI_SUCCESS); 2644 } 2645 2646 xfer->x_ndmac--; 2647 2648 nprp_page = nvme->n_pagesize / sizeof (uint64_t) - 1; 2649 ASSERT(nprp_page > 0); 2650 nprp = (xfer->x_ndmac + nprp_page - 1) / nprp_page; 2651 2652 /* 2653 * We currently don't support chained PRPs and set up our DMA 2654 * attributes to reflect that. If we still get an I/O request 2655 * that needs a chained PRP something is very wrong. 2656 */ 2657 VERIFY(nprp == 1); 2658 2659 if (nvme_zalloc_dma(nvme, nvme->n_pagesize * nprp, DDI_DMA_READ, 2660 &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) { 2661 dev_err(nvme->n_dip, CE_WARN, "!%s: nvme_zalloc_dma failed", 2662 __func__); 2663 return (DDI_FAILURE); 2664 } 2665 2666 cmd->nc_sqe.sqe_dptr.d_prp[1] = cmd->nc_dma->nd_cookie.dmac_laddress; 2667 ddi_dma_nextcookie(cmd->nc_dma->nd_dmah, &cmd->nc_dma->nd_cookie); 2668 2669 /*LINTED: E_PTR_BAD_CAST_ALIGN*/ 2670 for (prp = (uint64_t *)cmd->nc_dma->nd_memp; 2671 xfer->x_ndmac > 0; 2672 prp++, xfer->x_ndmac--) { 2673 *prp = xfer->x_dmac.dmac_laddress; 2674 ddi_dma_nextcookie(xfer->x_dmah, &xfer->x_dmac); 2675 } 2676 2677 (void) ddi_dma_sync(cmd->nc_dma->nd_dmah, 0, cmd->nc_dma->nd_len, 2678 DDI_DMA_SYNC_FORDEV); 2679 return (DDI_SUCCESS); 2680 } 2681 2682 static nvme_cmd_t * 2683 nvme_create_nvm_cmd(nvme_namespace_t *ns, uint8_t opc, bd_xfer_t *xfer) 2684 { 2685 nvme_t *nvme = ns->ns_nvme; 2686 nvme_cmd_t *cmd; 2687 2688 /* 2689 * Blkdev only sets BD_XFER_POLL when dumping, so don't sleep. 2690 */ 2691 cmd = nvme_alloc_cmd(nvme, (xfer->x_flags & BD_XFER_POLL) ? 2692 KM_NOSLEEP : KM_SLEEP); 2693 2694 if (cmd == NULL) 2695 return (NULL); 2696 2697 cmd->nc_sqe.sqe_opc = opc; 2698 cmd->nc_callback = nvme_bd_xfer_done; 2699 cmd->nc_xfer = xfer; 2700 2701 switch (opc) { 2702 case NVME_OPC_NVM_WRITE: 2703 case NVME_OPC_NVM_READ: 2704 VERIFY(xfer->x_nblks <= 0x10000); 2705 2706 cmd->nc_sqe.sqe_nsid = ns->ns_id; 2707 2708 cmd->nc_sqe.sqe_cdw10 = xfer->x_blkno & 0xffffffffu; 2709 cmd->nc_sqe.sqe_cdw11 = (xfer->x_blkno >> 32); 2710 cmd->nc_sqe.sqe_cdw12 = (uint16_t)(xfer->x_nblks - 1); 2711 2712 if (nvme_fill_prp(cmd, xfer) != DDI_SUCCESS) 2713 goto fail; 2714 break; 2715 2716 case NVME_OPC_NVM_FLUSH: 2717 cmd->nc_sqe.sqe_nsid = ns->ns_id; 2718 break; 2719 2720 default: 2721 goto fail; 2722 } 2723 2724 return (cmd); 2725 2726 fail: 2727 nvme_free_cmd(cmd); 2728 return (NULL); 2729 } 2730 2731 static void 2732 nvme_bd_xfer_done(void *arg) 2733 { 2734 nvme_cmd_t *cmd = arg; 2735 bd_xfer_t *xfer = cmd->nc_xfer; 2736 int error = 0; 2737 2738 error = nvme_check_cmd_status(cmd); 2739 nvme_free_cmd(cmd); 2740 2741 bd_xfer_done(xfer, error); 2742 } 2743 2744 static void 2745 nvme_bd_driveinfo(void *arg, bd_drive_t *drive) 2746 { 2747 nvme_namespace_t *ns = arg; 2748 nvme_t *nvme = ns->ns_nvme; 2749 2750 /* 2751 * blkdev maintains one queue size per instance (namespace), 2752 * but all namespace share the I/O queues. 2753 * TODO: need to figure out a sane default, or use per-NS I/O queues, 2754 * or change blkdev to handle EAGAIN 2755 */ 2756 drive->d_qsize = nvme->n_ioq_count * nvme->n_io_queue_len 2757 / nvme->n_namespace_count; 2758 2759 /* 2760 * d_maxxfer is not set, which means the value is taken from the DMA 2761 * attributes specified to bd_alloc_handle. 2762 */ 2763 2764 drive->d_removable = B_FALSE; 2765 drive->d_hotpluggable = B_FALSE; 2766 2767 drive->d_target = ns->ns_id; 2768 drive->d_lun = 0; 2769 2770 drive->d_model = nvme->n_idctl->id_model; 2771 drive->d_model_len = sizeof (nvme->n_idctl->id_model); 2772 drive->d_vendor = nvme->n_vendor; 2773 drive->d_vendor_len = strlen(nvme->n_vendor); 2774 drive->d_product = nvme->n_product; 2775 drive->d_product_len = strlen(nvme->n_product); 2776 drive->d_serial = nvme->n_idctl->id_serial; 2777 drive->d_serial_len = sizeof (nvme->n_idctl->id_serial); 2778 drive->d_revision = nvme->n_idctl->id_fwrev; 2779 drive->d_revision_len = sizeof (nvme->n_idctl->id_fwrev); 2780 } 2781 2782 static int 2783 nvme_bd_mediainfo(void *arg, bd_media_t *media) 2784 { 2785 nvme_namespace_t *ns = arg; 2786 2787 media->m_nblks = ns->ns_block_count; 2788 media->m_blksize = ns->ns_block_size; 2789 media->m_readonly = B_FALSE; 2790 media->m_solidstate = B_TRUE; 2791 2792 media->m_pblksize = ns->ns_best_block_size; 2793 2794 return (0); 2795 } 2796 2797 static int 2798 nvme_bd_cmd(nvme_namespace_t *ns, bd_xfer_t *xfer, uint8_t opc) 2799 { 2800 nvme_t *nvme = ns->ns_nvme; 2801 nvme_cmd_t *cmd; 2802 2803 if (nvme->n_dead) 2804 return (EIO); 2805 2806 /* No polling for now */ 2807 if (xfer->x_flags & BD_XFER_POLL) 2808 return (EIO); 2809 2810 cmd = nvme_create_nvm_cmd(ns, opc, xfer); 2811 if (cmd == NULL) 2812 return (ENOMEM); 2813 2814 cmd->nc_sqid = (CPU->cpu_id % nvme->n_ioq_count) + 1; 2815 ASSERT(cmd->nc_sqid <= nvme->n_ioq_count); 2816 2817 if (nvme_submit_cmd(nvme->n_ioq[cmd->nc_sqid], cmd) 2818 != DDI_SUCCESS) 2819 return (EAGAIN); 2820 2821 return (0); 2822 } 2823 2824 static int 2825 nvme_bd_read(void *arg, bd_xfer_t *xfer) 2826 { 2827 nvme_namespace_t *ns = arg; 2828 2829 return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_READ)); 2830 } 2831 2832 static int 2833 nvme_bd_write(void *arg, bd_xfer_t *xfer) 2834 { 2835 nvme_namespace_t *ns = arg; 2836 2837 return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_WRITE)); 2838 } 2839 2840 static int 2841 nvme_bd_sync(void *arg, bd_xfer_t *xfer) 2842 { 2843 nvme_namespace_t *ns = arg; 2844 2845 if (ns->ns_nvme->n_dead) 2846 return (EIO); 2847 2848 /* 2849 * If the volatile write cache isn't enabled the FLUSH command is a 2850 * no-op, so we can take a shortcut here. 2851 */ 2852 if (ns->ns_nvme->n_volatile_write_cache_enabled == B_FALSE) { 2853 bd_xfer_done(xfer, ENOTSUP); 2854 return (0); 2855 } 2856 2857 return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_FLUSH)); 2858 } 2859 2860 static int 2861 nvme_bd_devid(void *arg, dev_info_t *devinfo, ddi_devid_t *devid) 2862 { 2863 nvme_namespace_t *ns = arg; 2864 2865 return (ddi_devid_init(devinfo, DEVID_ENCAP, strlen(ns->ns_devid), 2866 ns->ns_devid, devid)); 2867 }