1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011 Bayard G. Bell. All rights reserved. 25 */ 26 27 /* 28 * Md - is the meta-disk driver. It sits below the UFS file system 29 * but above the 'real' disk drivers, xy, id, sd etc. 30 * 31 * To the UFS software, md looks like a normal driver, since it has 32 * the normal kinds of entries in the bdevsw and cdevsw arrays. So 33 * UFS accesses md in the usual ways. In particular, the strategy 34 * routine, mdstrategy(), gets called by fbiwrite(), ufs_getapage(), 35 * and ufs_writelbn(). 36 * 37 * Md maintains an array of minor devices (meta-partitions). Each 38 * meta partition stands for a matrix of real partitions, in rows 39 * which are not necessarily of equal length. Md maintains a table, 40 * with one entry for each meta-partition, which lists the rows and 41 * columns of actual partitions, and the job of the strategy routine 42 * is to translate from the meta-partition device and block numbers 43 * known to UFS into the actual partitions' device and block numbers. 44 * 45 * See below, in mdstrategy(), mdreal(), and mddone() for details of 46 * this translation. 47 */ 48 49 /* 50 * Driver for Virtual Disk. 51 */ 52 53 #include <sys/user.h> 54 #include <sys/sysmacros.h> 55 #include <sys/conf.h> 56 #include <sys/stat.h> 57 #include <sys/errno.h> 58 #include <sys/param.h> 59 #include <sys/systm.h> 60 #include <sys/file.h> 61 #include <sys/open.h> 62 #include <sys/dkio.h> 63 #include <sys/vtoc.h> 64 #include <sys/cmn_err.h> 65 #include <sys/ddi.h> 66 #include <sys/sunddi.h> 67 #include <sys/debug.h> 68 #include <sys/utsname.h> 69 #include <sys/lvm/mdvar.h> 70 #include <sys/lvm/md_names.h> 71 #include <sys/lvm/md_mddb.h> 72 #include <sys/lvm/md_sp.h> 73 #include <sys/types.h> 74 #include <sys/kmem.h> 75 #include <sys/cladm.h> 76 #include <sys/priv_names.h> 77 #include <sys/modhash.h> 78 79 int md_init_debug = 0; /* module binding debug */ 80 81 /* 82 * Tunable to turn off the failfast behavior. 83 */ 84 int md_ff_disable = 0; 85 86 /* 87 * dynamically allocated list of non FF driver names - needs to 88 * be freed when md is detached. 89 */ 90 char **non_ff_drivers = NULL; 91 92 md_krwlock_t md_unit_array_rw; /* protects all unit arrays */ 93 md_krwlock_t nm_lock; /* protects all the name spaces */ 94 95 md_resync_t md_cpr_resync; 96 97 extern char svm_bootpath[]; 98 #define SVM_PSEUDO_STR "/pseudo/md@0:" 99 100 #define VERSION_LENGTH 6 101 #define VERSION "1.0" 102 103 /* 104 * Keep track of possible 'orphan' entries in the name space 105 */ 106 int *md_nm_snarfed = NULL; 107 108 /* 109 * Global tunable giving the percentage of free space left in replica during 110 * conversion of non-devid style replica to devid style replica. 111 */ 112 int md_conv_perc = MDDB_DEVID_CONV_PERC; 113 114 #ifdef DEBUG 115 /* debug code to verify framework exclusion guarantees */ 116 int md_in; 117 kmutex_t md_in_mx; /* used to md global stuff */ 118 #define IN_INIT 0x01 119 #define IN_FINI 0x02 120 #define IN_ATTACH 0x04 121 #define IN_DETACH 0x08 122 #define IN_OPEN 0x10 123 #define MD_SET_IN(x) { \ 124 mutex_enter(&md_in_mx); \ 125 if (md_in) \ 126 debug_enter("MD_SET_IN exclusion lost"); \ 127 if (md_in & x) \ 128 debug_enter("MD_SET_IN already set"); \ 129 md_in |= x; \ 130 mutex_exit(&md_in_mx); \ 131 } 132 133 #define MD_CLR_IN(x) { \ 134 mutex_enter(&md_in_mx); \ 135 if (md_in & ~(x)) \ 136 debug_enter("MD_CLR_IN exclusion lost"); \ 137 if (!(md_in & x)) \ 138 debug_enter("MD_CLR_IN already clr"); \ 139 md_in &= ~x; \ 140 mutex_exit(&md_in_mx); \ 141 } 142 #else /* DEBUG */ 143 #define MD_SET_IN(x) 144 #define MD_CLR_IN(x) 145 #endif /* DEBUG */ 146 hrtime_t savetime1, savetime2; 147 148 149 /* 150 * list things protected by md_mx even if they aren't 151 * used in this file. 152 */ 153 kmutex_t md_mx; /* used to md global stuff */ 154 kcondvar_t md_cv; /* md_status events */ 155 int md_status = 0; /* global status for the meta-driver */ 156 int md_num_daemons = 0; 157 int md_ioctl_cnt = 0; 158 int md_mtioctl_cnt = 0; /* multithreaded ioctl cnt */ 159 uint_t md_mdelay = 10; /* variable so can be patched */ 160 161 int (*mdv_strategy_tstpnt)(buf_t *, int, void*); 162 163 major_t md_major, md_major_targ; 164 165 unit_t md_nunits = MD_MAXUNITS; 166 set_t md_nsets = MD_MAXSETS; 167 int md_nmedh = 0; 168 char *md_med_trans_lst = NULL; 169 md_set_t md_set[MD_MAXSETS]; 170 md_set_io_t md_set_io[MD_MAXSETS]; 171 172 md_krwlock_t hsp_rwlp; /* protects hot_spare_interface */ 173 md_krwlock_t ni_rwlp; /* protects notify_interface */ 174 md_ops_t **md_ops = NULL; 175 ddi_modhandle_t *md_mods = NULL; 176 md_ops_t *md_opslist; 177 clock_t md_hz; 178 md_event_queue_t *md_event_queue = NULL; 179 180 int md_in_upgrade; 181 int md_keep_repl_state; 182 int md_devid_destroy; 183 184 /* for sending messages thru a door to userland */ 185 door_handle_t mdmn_door_handle = NULL; 186 int mdmn_door_did = -1; 187 188 dev_info_t *md_devinfo = NULL; 189 190 md_mn_nodeid_t md_mn_mynode_id = ~0u; /* My node id (for multi-node sets) */ 191 192 static uint_t md_ocnt[OTYPCNT]; 193 194 static int mdinfo(dev_info_t *, ddi_info_cmd_t, void *, void **); 195 static int mdattach(dev_info_t *, ddi_attach_cmd_t); 196 static int mddetach(dev_info_t *, ddi_detach_cmd_t); 197 static int mdopen(dev_t *, int, int, cred_t *); 198 static int mdclose(dev_t, int, int, cred_t *); 199 static int mddump(dev_t, caddr_t, daddr_t, int); 200 static int mdread(dev_t, struct uio *, cred_t *); 201 static int mdwrite(dev_t, struct uio *, cred_t *); 202 static int mdaread(dev_t, struct aio_req *, cred_t *); 203 static int mdawrite(dev_t, struct aio_req *, cred_t *); 204 static int mdioctl(dev_t, int, intptr_t, int, cred_t *, int *); 205 static int mdprop_op(dev_t, dev_info_t *, 206 ddi_prop_op_t, int, char *, caddr_t, int *); 207 208 static struct cb_ops md_cb_ops = { 209 mdopen, /* open */ 210 mdclose, /* close */ 211 mdstrategy, /* strategy */ 212 /* print routine -- none yet */ 213 (int(*)(dev_t, char *))nulldev, 214 mddump, /* dump */ 215 mdread, /* read */ 216 mdwrite, /* write */ 217 mdioctl, /* ioctl */ 218 /* devmap */ 219 (int(*)(dev_t, devmap_cookie_t, offset_t, size_t, size_t *, 220 uint_t))nodev, 221 /* mmap */ 222 (int(*)(dev_t, off_t, int))nodev, 223 /* segmap */ 224 (int(*)(dev_t, off_t, struct as *, caddr_t *, off_t, unsigned, 225 unsigned, unsigned, cred_t *))nodev, 226 nochpoll, /* poll */ 227 mdprop_op, /* prop_op */ 228 0, /* streamtab */ 229 (D_64BIT|D_MP|D_NEW), /* driver compatibility flag */ 230 CB_REV, /* cb_ops version */ 231 mdaread, /* aread */ 232 mdawrite, /* awrite */ 233 }; 234 235 static struct dev_ops md_devops = { 236 DEVO_REV, /* dev_ops version */ 237 0, /* device reference count */ 238 mdinfo, /* info routine */ 239 nulldev, /* identify routine */ 240 nulldev, /* probe - not defined */ 241 mdattach, /* attach routine */ 242 mddetach, /* detach routine */ 243 nodev, /* reset - not defined */ 244 &md_cb_ops, /* driver operations */ 245 NULL, /* bus operations */ 246 nodev, /* power management */ 247 ddi_quiesce_not_needed, /* quiesce */ 248 }; 249 250 /* 251 * loadable module wrapper 252 */ 253 #include <sys/modctl.h> 254 255 static struct modldrv modldrv = { 256 &mod_driverops, /* type of module -- a pseudodriver */ 257 "Solaris Volume Manager base module", /* name of the module */ 258 &md_devops, /* driver ops */ 259 }; 260 261 static struct modlinkage modlinkage = { 262 MODREV_1, 263 (void *)&modldrv, 264 NULL 265 }; 266 267 268 /* md_medd.c */ 269 extern void med_init(void); 270 extern void med_fini(void); 271 extern void md_devid_cleanup(set_t, uint_t); 272 273 /* md_names.c */ 274 extern struct nm_next_hdr *get_first_record(set_t, int, int); 275 276 int md_maxphys = 0; /* maximum io size in bytes */ 277 #define MD_MAXBCOUNT (1024 * 1024) 278 unsigned md_maxbcount = 0; /* maximum physio size in bytes */ 279 280 /* 281 * Some md ioctls trigger io framework device tree operations. An 282 * example is md ioctls that call md_resolve_bydevid(): which uses the 283 * io framework to resolve a devid. Such operations result in acquiring 284 * io framework locks (like ndi_devi_enter() of "/") while holding 285 * driver locks (like md_unit_writerlock()). 286 * 287 * The prop_op(9E) entry point is called from the devinfo driver with 288 * an active ndi_devi_enter of "/". To avoid deadlock, md's prop_op 289 * implementation must avoid taking a lock that is held per above md 290 * ioctl description: i.e. mdprop_op(9E) can't call md_unit_readerlock() 291 * without risking deadlock. 292 * 293 * To service "size" requests without risking deadlock, we maintain a 294 * "mnum->nblocks" sizemap (protected by a short-term global mutex). 295 */ 296 static kmutex_t md_nblocks_mutex; 297 static mod_hash_t *md_nblocksmap; /* mnum -> nblocks */ 298 int md_nblocksmap_size = 512; 299 300 /* 301 * Maintain "mnum->nblocks" sizemap for mdprop_op use: 302 * 303 * Create: any code that establishes a unit's un_total_blocks needs the 304 * following type of call to establish nblocks for mdprop_op(): 305 * md_nblocks_set(mnum, un->c.un_total_blocks);" 306 * NOTE: locate via cscope md_create_minor_node/md_create_unit_incore 307 * ...or "MD_UNIT..*=" 308 * 309 * Change: any code that changes a unit's un_total_blocks needs the 310 * following type of call to sync nblocks for mdprop_op(): 311 * md_nblocks_set(mnum, un->c.un_total_blocks);" 312 * NOTE: locate via cscope for "un_total_blocks[ \t]*=" 313 * 314 * Destroy: any code that deletes a unit needs the following type of call 315 * to sync nblocks for mdprop_op(): 316 * md_nblocks_set(mnum, -1ULL); 317 * NOTE: locate via cscope md_remove_minor_node/md_destroy_unit_incore 318 * ...or "MD_UNIT..*=" 319 */ 320 void 321 md_nblocks_set(minor_t mnum, uint64_t nblocks) 322 { 323 mutex_enter(&md_nblocks_mutex); 324 if (nblocks == -1ULL) 325 (void) mod_hash_destroy(md_nblocksmap, 326 (mod_hash_key_t)(intptr_t)mnum); 327 else 328 (void) mod_hash_replace(md_nblocksmap, 329 (mod_hash_key_t)(intptr_t)mnum, 330 (mod_hash_val_t)(intptr_t)nblocks); 331 mutex_exit(&md_nblocks_mutex); 332 } 333 334 /* get the size of a mnum from "mnum->nblocks" sizemap */ 335 uint64_t 336 md_nblocks_get(minor_t mnum) 337 { 338 mod_hash_val_t hv; 339 340 mutex_enter(&md_nblocks_mutex); 341 if (mod_hash_find(md_nblocksmap, 342 (mod_hash_key_t)(intptr_t)mnum, &hv) == 0) { 343 mutex_exit(&md_nblocks_mutex); 344 return ((uint64_t)(intptr_t)hv); 345 } 346 mutex_exit(&md_nblocks_mutex); 347 return (0); 348 } 349 350 /* allocate/free dynamic space associated with driver globals */ 351 void 352 md_global_alloc_free(int alloc) 353 { 354 set_t s; 355 356 if (alloc) { 357 /* initialize driver global locks */ 358 cv_init(&md_cv, NULL, CV_DEFAULT, NULL); 359 mutex_init(&md_mx, NULL, MUTEX_DEFAULT, NULL); 360 rw_init(&md_unit_array_rw.lock, NULL, RW_DEFAULT, NULL); 361 rw_init(&nm_lock.lock, NULL, RW_DEFAULT, NULL); 362 rw_init(&ni_rwlp.lock, NULL, RW_DRIVER, NULL); 363 rw_init(&hsp_rwlp.lock, NULL, RW_DRIVER, NULL); 364 mutex_init(&md_cpr_resync.md_resync_mutex, NULL, 365 MUTEX_DEFAULT, NULL); 366 mutex_init(&md_nblocks_mutex, NULL, MUTEX_DEFAULT, NULL); 367 368 /* initialize per set driver global locks */ 369 for (s = 0; s < MD_MAXSETS; s++) { 370 /* initialize per set driver globals locks */ 371 mutex_init(&md_set[s].s_dbmx, 372 NULL, MUTEX_DEFAULT, NULL); 373 mutex_init(&md_set_io[s].md_io_mx, 374 NULL, MUTEX_DEFAULT, NULL); 375 cv_init(&md_set_io[s].md_io_cv, 376 NULL, CV_DEFAULT, NULL); 377 } 378 } else { 379 /* destroy per set driver global locks */ 380 for (s = 0; s < MD_MAXSETS; s++) { 381 cv_destroy(&md_set_io[s].md_io_cv); 382 mutex_destroy(&md_set_io[s].md_io_mx); 383 mutex_destroy(&md_set[s].s_dbmx); 384 } 385 386 /* destroy driver global locks */ 387 mutex_destroy(&md_nblocks_mutex); 388 mutex_destroy(&md_cpr_resync.md_resync_mutex); 389 rw_destroy(&hsp_rwlp.lock); 390 rw_destroy(&ni_rwlp.lock); 391 rw_destroy(&nm_lock.lock); 392 rw_destroy(&md_unit_array_rw.lock); 393 mutex_destroy(&md_mx); 394 cv_destroy(&md_cv); 395 } 396 } 397 398 int 399 _init(void) 400 { 401 set_t s; 402 int err; 403 404 MD_SET_IN(IN_INIT); 405 406 /* allocate dynamic space associated with driver globals */ 407 md_global_alloc_free(1); 408 409 /* initialize driver globals */ 410 md_major = ddi_name_to_major("md"); 411 md_hz = drv_usectohz(NUM_USEC_IN_SEC); 412 413 /* initialize tunable globals */ 414 if (md_maxphys == 0) /* maximum io size in bytes */ 415 md_maxphys = maxphys; 416 if (md_maxbcount == 0) /* maximum physio size in bytes */ 417 md_maxbcount = MD_MAXBCOUNT; 418 419 /* initialize per set driver globals */ 420 for (s = 0; s < MD_MAXSETS; s++) 421 md_set_io[s].io_state = MD_SET_ACTIVE; 422 423 /* 424 * NOTE: the framework does not currently guarantee exclusion 425 * between _init and attach after calling mod_install. 426 */ 427 MD_CLR_IN(IN_INIT); 428 if ((err = mod_install(&modlinkage))) { 429 MD_SET_IN(IN_INIT); 430 md_global_alloc_free(0); /* free dynamic space */ 431 MD_CLR_IN(IN_INIT); 432 } 433 return (err); 434 } 435 436 int 437 _fini(void) 438 { 439 int err; 440 441 /* 442 * NOTE: the framework currently does not guarantee exclusion 443 * with attach until after mod_remove returns 0. 444 */ 445 if ((err = mod_remove(&modlinkage))) 446 return (err); 447 448 MD_SET_IN(IN_FINI); 449 md_global_alloc_free(0); /* free dynamic space */ 450 MD_CLR_IN(IN_FINI); 451 return (err); 452 } 453 454 int 455 _info(struct modinfo *modinfop) 456 { 457 return (mod_info(&modlinkage, modinfop)); 458 } 459 460 /* ARGSUSED */ 461 static int 462 mdattach(dev_info_t *dip, ddi_attach_cmd_t cmd) 463 { 464 int len; 465 unit_t i; 466 size_t sz; 467 char ver[VERSION_LENGTH]; 468 char **maj_str_array; 469 char *str, *str2; 470 471 MD_SET_IN(IN_ATTACH); 472 md_in_upgrade = 0; 473 md_keep_repl_state = 0; 474 md_devid_destroy = 0; 475 476 if (cmd != DDI_ATTACH) { 477 MD_CLR_IN(IN_ATTACH); 478 return (DDI_FAILURE); 479 } 480 481 if (md_devinfo != NULL) { 482 MD_CLR_IN(IN_ATTACH); 483 return (DDI_FAILURE); 484 } 485 486 mddb_init(); 487 488 if (md_start_daemons(TRUE)) { 489 MD_CLR_IN(IN_ATTACH); 490 mddb_unload(); /* undo mddb_init() allocations */ 491 return (DDI_FAILURE); 492 } 493 494 /* clear the halted state */ 495 md_clr_status(MD_GBL_HALTED); 496 497 /* see if the diagnostic switch is on */ 498 if (ddi_prop_get_int(DDI_DEV_T_ANY, dip, 499 DDI_PROP_DONTPASS, "md_init_debug", 0)) 500 md_init_debug++; 501 502 /* see if the failfast disable switch is on */ 503 if (ddi_prop_get_int(DDI_DEV_T_ANY, dip, 504 DDI_PROP_DONTPASS, "md_ff_disable", 0)) 505 md_ff_disable++; 506 507 /* try and get the md_nmedh property */ 508 md_nmedh = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 509 DDI_PROP_DONTPASS, "md_nmedh", MED_DEF_HOSTS); 510 if ((md_nmedh <= 0) || (md_nmedh > MED_MAX_HOSTS)) 511 md_nmedh = MED_DEF_HOSTS; 512 513 /* try and get the md_med_trans_lst property */ 514 len = 0; 515 if (ddi_prop_op(DDI_DEV_T_ANY, dip, PROP_LEN, 516 0, "md_med_trans_lst", NULL, &len) != DDI_PROP_SUCCESS || 517 len == 0) { 518 md_med_trans_lst = md_strdup("tcp"); 519 } else { 520 md_med_trans_lst = kmem_zalloc((size_t)len, KM_SLEEP); 521 if (ddi_prop_op(DDI_DEV_T_ANY, dip, PROP_LEN_AND_VAL_BUF, 522 0, "md_med_trans_lst", md_med_trans_lst, &len) != 523 DDI_PROP_SUCCESS) { 524 kmem_free(md_med_trans_lst, (size_t)len); 525 md_med_trans_lst = md_strdup("tcp"); 526 } 527 } 528 529 /* 530 * Must initialize the internal data structures before the 531 * any possible calls to 'goto attach_failure' as _fini 532 * routine references them. 533 */ 534 med_init(); 535 536 md_ops = (md_ops_t **)kmem_zalloc( 537 sizeof (md_ops_t *) * MD_NOPS, KM_SLEEP); 538 md_mods = (ddi_modhandle_t *)kmem_zalloc( 539 sizeof (ddi_modhandle_t) * MD_NOPS, KM_SLEEP); 540 541 /* try and get the md_xlate property */ 542 /* Should we only do this if upgrade? */ 543 len = sizeof (char) * 5; 544 if (ddi_prop_op(DDI_DEV_T_ANY, dip, PROP_LEN_AND_VAL_BUF, 545 0, "md_xlate_ver", ver, &len) == DDI_PROP_SUCCESS) { 546 if (strcmp(ver, VERSION) == 0) { 547 len = 0; 548 if (ddi_prop_op(DDI_DEV_T_ANY, dip, 549 PROP_LEN_AND_VAL_ALLOC, 0, "md_xlate", 550 (caddr_t)&md_tuple_table, &len) != 551 DDI_PROP_SUCCESS) { 552 if (md_init_debug) 553 cmn_err(CE_WARN, 554 "md_xlate ddi_prop_op failed"); 555 goto attach_failure; 556 } else { 557 md_tuple_length = 558 len/(2 * ((int)sizeof (dev32_t))); 559 md_in_upgrade = 1; 560 } 561 562 /* Get target's name to major table */ 563 if (ddi_prop_lookup_string_array(DDI_DEV_T_ANY, 564 dip, DDI_PROP_DONTPASS, 565 "md_targ_nm_table", &maj_str_array, 566 &md_majortab_len) != DDI_PROP_SUCCESS) { 567 md_majortab_len = 0; 568 if (md_init_debug) 569 cmn_err(CE_WARN, "md_targ_nm_table " 570 "ddi_prop_lookup_string_array " 571 "failed"); 572 goto attach_failure; 573 } 574 575 md_major_tuple_table = 576 (struct md_xlate_major_table *) 577 kmem_zalloc(md_majortab_len * 578 sizeof (struct md_xlate_major_table), KM_SLEEP); 579 580 for (i = 0; i < md_majortab_len; i++) { 581 /* Getting major name */ 582 str = strchr(maj_str_array[i], ' '); 583 if (str == NULL) 584 continue; 585 *str = '\0'; 586 md_major_tuple_table[i].drv_name = 587 md_strdup(maj_str_array[i]); 588 589 /* Simplified atoi to get major number */ 590 str2 = str + 1; 591 md_major_tuple_table[i].targ_maj = 0; 592 while ((*str2 >= '0') && (*str2 <= '9')) { 593 md_major_tuple_table[i].targ_maj *= 10; 594 md_major_tuple_table[i].targ_maj += 595 *str2++ - '0'; 596 } 597 *str = ' '; 598 } 599 ddi_prop_free((void *)maj_str_array); 600 } else { 601 if (md_init_debug) 602 cmn_err(CE_WARN, "md_xlate_ver is incorrect"); 603 goto attach_failure; 604 } 605 } 606 607 /* 608 * Check for properties: 609 * md_keep_repl_state and md_devid_destroy 610 * and set globals if these exist. 611 */ 612 md_keep_repl_state = ddi_getprop(DDI_DEV_T_ANY, dip, 613 0, "md_keep_repl_state", 0); 614 615 md_devid_destroy = ddi_getprop(DDI_DEV_T_ANY, dip, 616 0, "md_devid_destroy", 0); 617 618 if (MD_UPGRADE) 619 md_major_targ = md_targ_name_to_major("md"); 620 else 621 md_major_targ = 0; 622 623 /* allocate admin device node */ 624 if (ddi_create_priv_minor_node(dip, "admin", S_IFCHR, 625 MD_ADM_MINOR, DDI_PSEUDO, 0, NULL, PRIV_SYS_CONFIG, 0640)) 626 goto attach_failure; 627 628 if (ddi_prop_create(DDI_DEV_T_NONE, dip, DDI_PROP_CANSLEEP, 629 DDI_KERNEL_IOCTL, NULL, 0) != DDI_SUCCESS) 630 goto attach_failure; 631 632 if (ddi_prop_update_int(DDI_DEV_T_NONE, dip, 633 "ddi-abrwrite-supported", 1) != DDI_SUCCESS) 634 goto attach_failure; 635 636 /* these could have been cleared by a detach */ 637 md_nunits = MD_MAXUNITS; 638 md_nsets = MD_MAXSETS; 639 640 sz = sizeof (void *) * MD_MAXUNITS; 641 if (md_set[0].s_un == NULL) 642 md_set[0].s_un = kmem_zalloc(sz, KM_SLEEP); 643 if (md_set[0].s_ui == NULL) 644 md_set[0].s_ui = kmem_zalloc(sz, KM_SLEEP); 645 646 md_devinfo = dip; 647 648 /* 649 * Only allocate device node for root mirror metadevice. 650 * Don't pre-allocate unnecessary device nodes (thus slowing down a 651 * boot when we attach). 652 * We can't read the mddbs in attach. The mddbs will be read 653 * by metainit during the boot process when it is doing the 654 * auto-take processing and any other minor nodes will be 655 * allocated at that point. 656 * 657 * There are two scenarios to be aware of here: 658 * 1) when we are booting from a mirrored root we need the root 659 * metadevice to exist very early (during vfs_mountroot processing) 660 * 2) we need all of the nodes to be created so that any mnttab entries 661 * will succeed (handled by metainit reading the mddb during boot). 662 */ 663 if (strncmp(SVM_PSEUDO_STR, svm_bootpath, sizeof (SVM_PSEUDO_STR) - 1) 664 == 0) { 665 char *p; 666 int mnum = 0; 667 668 /* 669 * The svm_bootpath string looks something like 670 * /pseudo/md@0:0,150,blk where 150 is the minor number 671 * in this example so we need to set the pointer p onto 672 * the first digit of the minor number and convert it 673 * from ascii. 674 */ 675 for (p = svm_bootpath + sizeof (SVM_PSEUDO_STR) + 1; 676 *p >= '0' && *p <= '9'; p++) { 677 mnum *= 10; 678 mnum += *p - '0'; 679 } 680 681 if (md_create_minor_node(0, mnum)) { 682 kmem_free(md_set[0].s_un, sz); 683 kmem_free(md_set[0].s_ui, sz); 684 goto attach_failure; 685 } 686 } 687 688 /* create the hash to store the meta device sizes */ 689 md_nblocksmap = mod_hash_create_idhash("md_nblocksmap", 690 md_nblocksmap_size, mod_hash_null_valdtor); 691 692 MD_CLR_IN(IN_ATTACH); 693 return (DDI_SUCCESS); 694 695 attach_failure: 696 /* 697 * Use our own detach routine to toss any stuff we allocated above. 698 * NOTE: detach will call md_halt to free the mddb_init allocations. 699 */ 700 MD_CLR_IN(IN_ATTACH); 701 if (mddetach(dip, DDI_DETACH) != DDI_SUCCESS) 702 cmn_err(CE_WARN, "detach from attach failed"); 703 return (DDI_FAILURE); 704 } 705 706 /* ARGSUSED */ 707 static int 708 mddetach(dev_info_t *dip, ddi_detach_cmd_t cmd) 709 { 710 extern int check_active_locators(); 711 set_t s; 712 size_t sz; 713 int len; 714 715 MD_SET_IN(IN_DETACH); 716 717 /* check command */ 718 if (cmd != DDI_DETACH) { 719 MD_CLR_IN(IN_DETACH); 720 return (DDI_FAILURE); 721 } 722 723 /* 724 * if we have not already halted yet we have no active config 725 * then automatically initiate a halt so we can detach. 726 */ 727 if (!(md_get_status() & MD_GBL_HALTED)) { 728 if (check_active_locators() == 0) { 729 /* 730 * NOTE: a successful md_halt will have done the 731 * mddb_unload to free allocations done in mddb_init 732 */ 733 if (md_halt(MD_NO_GBL_LOCKS_HELD)) { 734 cmn_err(CE_NOTE, "md:detach: " 735 "Could not halt Solaris Volume Manager"); 736 MD_CLR_IN(IN_DETACH); 737 return (DDI_FAILURE); 738 } 739 } 740 741 /* fail detach if we have not halted */ 742 if (!(md_get_status() & MD_GBL_HALTED)) { 743 MD_CLR_IN(IN_DETACH); 744 return (DDI_FAILURE); 745 } 746 } 747 748 /* must be in halted state, this will be cleared on next attach */ 749 ASSERT(md_get_status() & MD_GBL_HALTED); 750 751 /* cleanup attach allocations and initializations */ 752 md_major_targ = 0; 753 754 sz = sizeof (void *) * md_nunits; 755 for (s = 0; s < md_nsets; s++) { 756 if (md_set[s].s_un != NULL) { 757 kmem_free(md_set[s].s_un, sz); 758 md_set[s].s_un = NULL; 759 } 760 761 if (md_set[s].s_ui != NULL) { 762 kmem_free(md_set[s].s_ui, sz); 763 md_set[s].s_ui = NULL; 764 } 765 } 766 md_nunits = 0; 767 md_nsets = 0; 768 md_nmedh = 0; 769 770 if (non_ff_drivers != NULL) { 771 int i; 772 773 for (i = 0; non_ff_drivers[i] != NULL; i++) 774 kmem_free(non_ff_drivers[i], 775 strlen(non_ff_drivers[i]) + 1); 776 777 /* free i+1 entries because there is a null entry at list end */ 778 kmem_free(non_ff_drivers, (i + 1) * sizeof (char *)); 779 non_ff_drivers = NULL; 780 } 781 782 if (md_med_trans_lst != NULL) { 783 kmem_free(md_med_trans_lst, strlen(md_med_trans_lst) + 1); 784 md_med_trans_lst = NULL; 785 } 786 787 if (md_mods != NULL) { 788 kmem_free(md_mods, sizeof (ddi_modhandle_t) * MD_NOPS); 789 md_mods = NULL; 790 } 791 792 if (md_ops != NULL) { 793 kmem_free(md_ops, sizeof (md_ops_t *) * MD_NOPS); 794 md_ops = NULL; 795 } 796 797 if (MD_UPGRADE) { 798 len = md_tuple_length * (2 * ((int)sizeof (dev32_t))); 799 md_in_upgrade = 0; 800 md_xlate_free(len); 801 md_majortab_free(); 802 } 803 804 /* 805 * Undo what we did in mdattach, freeing resources 806 * and removing things we installed. The system 807 * framework guarantees we are not active with this devinfo 808 * node in any other entry points at this time. 809 */ 810 ddi_prop_remove_all(dip); 811 ddi_remove_minor_node(dip, NULL); 812 813 med_fini(); 814 815 mod_hash_destroy_idhash(md_nblocksmap); 816 817 md_devinfo = NULL; 818 819 MD_CLR_IN(IN_DETACH); 820 return (DDI_SUCCESS); 821 } 822 823 824 /* 825 * Given the device number return the devinfo pointer 826 * given to md via md_attach 827 */ 828 /*ARGSUSED*/ 829 static int 830 mdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 831 { 832 int error = DDI_FAILURE; 833 834 switch (infocmd) { 835 case DDI_INFO_DEVT2DEVINFO: 836 if (md_devinfo) { 837 *result = (void *)md_devinfo; 838 error = DDI_SUCCESS; 839 } 840 break; 841 842 case DDI_INFO_DEVT2INSTANCE: 843 *result = (void *)0; 844 error = DDI_SUCCESS; 845 break; 846 } 847 return (error); 848 } 849 850 /* 851 * property operation routine. return the number of blocks for the partition 852 * in question or forward the request to the property facilities. 853 */ 854 static int 855 mdprop_op( 856 dev_t dev, /* device number associated with device */ 857 dev_info_t *dip, /* device info struct for this device */ 858 ddi_prop_op_t prop_op, /* property operator */ 859 int mod_flags, /* property flags */ 860 char *name, /* name of property */ 861 caddr_t valuep, /* where to put property value */ 862 int *lengthp) /* put length of property here */ 863 { 864 return (ddi_prop_op_nblocks(dev, dip, prop_op, mod_flags, 865 name, valuep, lengthp, md_nblocks_get(getminor(dev)))); 866 } 867 868 static void 869 snarf_user_data(set_t setno) 870 { 871 mddb_recid_t recid; 872 mddb_recstatus_t status; 873 874 recid = mddb_makerecid(setno, 0); 875 while ((recid = mddb_getnextrec(recid, MDDB_USER, 0)) > 0) { 876 if (mddb_getrecprivate(recid) & MD_PRV_GOTIT) 877 continue; 878 879 status = mddb_getrecstatus(recid); 880 if (status == MDDB_STALE) 881 continue; 882 883 if (status == MDDB_NODATA) { 884 mddb_setrecprivate(recid, MD_PRV_PENDDEL); 885 continue; 886 } 887 888 ASSERT(status == MDDB_OK); 889 890 mddb_setrecprivate(recid, MD_PRV_GOTIT); 891 } 892 } 893 894 static void 895 md_print_block_usage(mddb_set_t *s, uint_t blks) 896 { 897 uint_t ib; 898 int li; 899 mddb_mb_ic_t *mbip; 900 uint_t max_blk_needed; 901 mddb_lb_t *lbp; 902 mddb_sidelocator_t *slp; 903 int drv_index; 904 md_splitname sn; 905 char *name; 906 char *suffix; 907 size_t prefixlen; 908 size_t suffixlen; 909 int alloc_sz; 910 911 912 max_blk_needed = s->s_totalblkcnt - s->s_freeblkcnt + blks; 913 914 cmn_err(CE_WARN, "Blocks in Metadevice State Database: %d\n" 915 " Additional Blocks Needed: %d\n\n" 916 " Increase size of following replicas for\n" 917 " device relocatability by deleting listed\n" 918 " replica and re-adding replica with\n" 919 " increased size (see metadb(1M)):\n" 920 " Replica Increase By", 921 s->s_totalblkcnt, (blks - s->s_freeblkcnt)); 922 923 lbp = s->s_lbp; 924 925 for (li = 0; li < lbp->lb_loccnt; li++) { 926 if (lbp->lb_locators[li].l_flags & MDDB_F_DELETED) 927 continue; 928 ib = 0; 929 for (mbip = s->s_mbiarray[li]; mbip != NULL; 930 mbip = mbip->mbi_next) { 931 ib += (uint_t)mbip->mbi_mddb_mb.mb_blkcnt; 932 } 933 if (ib == 0) 934 continue; 935 if (ib < max_blk_needed) { 936 slp = &lbp->lb_sidelocators[s->s_sideno][li]; 937 drv_index = slp->l_drvnm_index; 938 mddb_locatorblock2splitname(s->s_lnp, li, s->s_sideno, 939 &sn); 940 prefixlen = SPN_PREFIX(&sn).pre_len; 941 suffixlen = SPN_SUFFIX(&sn).suf_len; 942 alloc_sz = (int)(prefixlen + suffixlen + 2); 943 name = (char *)kmem_alloc(alloc_sz, KM_SLEEP); 944 (void) strncpy(name, SPN_PREFIX(&sn).pre_data, 945 prefixlen); 946 name[prefixlen] = '/'; 947 suffix = name + (prefixlen + 1); 948 (void) strncpy(suffix, SPN_SUFFIX(&sn).suf_data, 949 suffixlen); 950 name[prefixlen + suffixlen + 1] = '\0'; 951 cmn_err(CE_WARN, 952 " %s (%s:%d:%d) %d blocks", 953 name, lbp->lb_drvnm[drv_index].dn_data, 954 slp->l_mnum, lbp->lb_locators[li].l_blkno, 955 (max_blk_needed - ib)); 956 kmem_free(name, alloc_sz); 957 } 958 } 959 } 960 961 /* 962 * md_create_minor_node: 963 * Create the minor device for the given set and un_self_id. 964 * 965 * Input: 966 * setno - set number 967 * mnum - selfID of unit 968 * 969 * Output: 970 * None. 971 * 972 * Returns 0 for success, 1 for failure. 973 * 974 * Side-effects: 975 * None. 976 */ 977 int 978 md_create_minor_node(set_t setno, minor_t mnum) 979 { 980 char name[20]; 981 982 /* Check for valid arguments */ 983 if (setno >= MD_MAXSETS || MD_MIN2UNIT(mnum) >= MD_MAXUNITS) 984 return (1); 985 986 (void) snprintf(name, 20, "%u,%u,blk", 987 (unsigned)setno, (unsigned)MD_MIN2UNIT(mnum)); 988 989 if (ddi_create_minor_node(md_devinfo, name, S_IFBLK, 990 MD_MKMIN(setno, mnum), DDI_PSEUDO, 0)) 991 return (1); 992 993 (void) snprintf(name, 20, "%u,%u,raw", 994 (unsigned)setno, (unsigned)MD_MIN2UNIT(mnum)); 995 996 if (ddi_create_minor_node(md_devinfo, name, S_IFCHR, 997 MD_MKMIN(setno, mnum), DDI_PSEUDO, 0)) 998 return (1); 999 1000 return (0); 1001 } 1002 1003 /* 1004 * For a given key check if it is an orphaned record. 1005 * The following conditions are used to determine an orphan. 1006 * 1. The device associated with that key is not a metadevice. 1007 * 2. If DEVID_STYLE then the physical device does not have a device Id 1008 * associated with it. 1009 * 1010 * If a key does not have an entry in the devid namespace it could be 1011 * a device that does not support device ids. Hence the record is not 1012 * deleted. 1013 */ 1014 1015 static int 1016 md_verify_orphaned_record(set_t setno, mdkey_t key) 1017 { 1018 md_dev64_t odev; /* orphaned dev */ 1019 mddb_set_t *s; 1020 side_t side = 0; 1021 struct nm_next_hdr *did_nh = NULL; 1022 1023 s = (mddb_set_t *)md_set[setno].s_db; 1024 if ((did_nh = get_first_record(setno, 1, (NM_DEVID | NM_NOTSHARED))) 1025 == NULL) 1026 return (0); 1027 /* 1028 * If devid style is set then get the dev_t using MD_NOTRUST_DEVT 1029 */ 1030 if (s->s_lbp->lb_flags & MDDB_DEVID_STYLE) { 1031 odev = md_getdevnum(setno, side, key, MD_NOTRUST_DEVT); 1032 if ((odev == NODEV64) || (md_getmajor(odev) == md_major)) 1033 return (0); 1034 if (lookup_entry(did_nh, setno, side, key, odev, NM_DEVID) == 1035 NULL) 1036 return (1); 1037 } 1038 return (0); 1039 } 1040 1041 int 1042 md_snarf_db_set(set_t setno, md_error_t *ep) 1043 { 1044 int err = 0; 1045 int i; 1046 mddb_recid_t recid; 1047 mddb_type_t drvrid; 1048 mddb_recstatus_t status; 1049 md_ops_t *ops; 1050 uint_t privat; 1051 mddb_set_t *s; 1052 uint_t cvt_blks; 1053 struct nm_next_hdr *nh; 1054 mdkey_t key = MD_KEYWILD; 1055 side_t side = 0; 1056 int size; 1057 int devid_flag; 1058 int retval; 1059 uint_t un; 1060 int un_next_set = 0; 1061 1062 md_haltsnarf_enter(setno); 1063 1064 mutex_enter(&md_mx); 1065 if (md_set[setno].s_status & MD_SET_SNARFED) { 1066 mutex_exit(&md_mx); 1067 md_haltsnarf_exit(setno); 1068 return (0); 1069 } 1070 mutex_exit(&md_mx); 1071 1072 if (! (md_get_status() & MD_GBL_DAEMONS_LIVE)) { 1073 if (md_start_daemons(TRUE)) { 1074 if (ep != NULL) 1075 (void) mdsyserror(ep, ENXIO); 1076 err = -1; 1077 goto out; 1078 } 1079 } 1080 1081 1082 /* 1083 * Load the devid name space if it exists 1084 */ 1085 (void) md_load_namespace(setno, NULL, NM_DEVID); 1086 if (!md_load_namespace(setno, ep, 0L)) { 1087 /* 1088 * Unload the devid namespace 1089 */ 1090 (void) md_unload_namespace(setno, NM_DEVID); 1091 err = -1; 1092 goto out; 1093 } 1094 1095 /* 1096 * If replica is in non-devid state, convert if: 1097 * - not in probe during upgrade (md_keep_repl_state = 0) 1098 * - enough space available in replica 1099 * - local set 1100 * - not a multi-node diskset 1101 * - clustering is not present (for non-local set) 1102 */ 1103 s = (mddb_set_t *)md_set[setno].s_db; 1104 devid_flag = 0; 1105 if (!(s->s_lbp->lb_flags & MDDB_DEVID_STYLE) && !md_keep_repl_state) 1106 devid_flag = 1; 1107 if (cluster_bootflags & CLUSTER_CONFIGURED) 1108 if (setno != MD_LOCAL_SET) 1109 devid_flag = 0; 1110 if (MD_MNSET_SETNO(setno)) 1111 devid_flag = 0; 1112 if ((md_devid_destroy == 1) && (md_keep_repl_state == 1)) 1113 devid_flag = 0; 1114 1115 /* 1116 * if we weren't devid style before and md_keep_repl_state=1 1117 * we need to stay non-devid 1118 */ 1119 if ((md_keep_repl_state == 1) && 1120 ((s->s_lbp->lb_flags & MDDB_DEVID_STYLE) == 0)) 1121 devid_flag = 0; 1122 if (devid_flag) { 1123 /* 1124 * Determine number of free blocks needed to convert 1125 * entire replica to device id format - locator blocks 1126 * and namespace. 1127 */ 1128 cvt_blks = 0; 1129 if (mddb_lb_did_convert(s, 0, &cvt_blks) != 0) { 1130 if (ep != NULL) 1131 (void) mdsyserror(ep, EIO); 1132 err = -1; 1133 goto out; 1134 1135 } 1136 cvt_blks += md_nm_did_chkspace(setno); 1137 1138 /* add MDDB_DEVID_CONV_PERC% */ 1139 if ((md_conv_perc > 0) && (md_conv_perc <= 100)) { 1140 cvt_blks = cvt_blks * (100 + md_conv_perc) / 100; 1141 } 1142 1143 if (cvt_blks <= s->s_freeblkcnt) { 1144 if (mddb_lb_did_convert(s, 1, &cvt_blks) != 0) { 1145 if (ep != NULL) 1146 (void) mdsyserror(ep, EIO); 1147 err = -1; 1148 goto out; 1149 } 1150 1151 } else { 1152 /* 1153 * Print message that replica can't be converted for 1154 * lack of space. No failure - just continue to 1155 * run without device ids. 1156 */ 1157 cmn_err(CE_WARN, 1158 "Unable to add Solaris Volume Manager device " 1159 "relocation data.\n" 1160 " To use device relocation feature:\n" 1161 " - Increase size of listed replicas\n" 1162 " - Reboot"); 1163 md_print_block_usage(s, cvt_blks); 1164 cmn_err(CE_WARN, 1165 "Loading set without device relocation data.\n" 1166 " Solaris Volume Manager disk movement " 1167 "not tracked in local set."); 1168 } 1169 } 1170 1171 /* 1172 * go through and load any modules referenced in 1173 * data base 1174 */ 1175 recid = mddb_makerecid(setno, 0); 1176 while ((recid = mddb_getnextrec(recid, MDDB_ALL, 0)) > 0) { 1177 status = mddb_getrecstatus(recid); 1178 if (status == MDDB_STALE) { 1179 if (! (md_get_setstatus(setno) & MD_SET_STALE)) { 1180 md_set_setstatus(setno, MD_SET_STALE); 1181 cmn_err(CE_WARN, 1182 "md: state database is stale"); 1183 } 1184 } else if (status == MDDB_NODATA) { 1185 mddb_setrecprivate(recid, MD_PRV_PENDDEL); 1186 continue; 1187 } 1188 drvrid = mddb_getrectype1(recid); 1189 if (drvrid < MDDB_FIRST_MODID) 1190 continue; 1191 if (md_loadsubmod(setno, md_getshared_name(setno, drvrid), 1192 drvrid) < 0) { 1193 cmn_err(CE_NOTE, "md: could not load misc/%s", 1194 md_getshared_name(setno, drvrid)); 1195 } 1196 } 1197 1198 if (recid < 0) 1199 goto out; 1200 1201 snarf_user_data(setno); 1202 1203 /* 1204 * Initialize the md_nm_snarfed array 1205 * this array is indexed by the key and 1206 * is set by md_getdevnum during the snarf time 1207 */ 1208 if ((nh = get_first_record(setno, 0, NM_NOTSHARED)) != NULL) { 1209 size = (int)((((struct nm_rec_hdr *)nh->nmn_record)-> 1210 r_next_key) * (sizeof (int))); 1211 md_nm_snarfed = (int *)kmem_zalloc(size, KM_SLEEP); 1212 } 1213 1214 /* 1215 * go through and snarf until nothing gets added 1216 */ 1217 do { 1218 i = 0; 1219 for (ops = md_opslist; ops != NULL; ops = ops->md_next) { 1220 if (ops->md_snarf != NULL) { 1221 retval = ops->md_snarf(MD_SNARF_DOIT, setno); 1222 if (retval == -1) { 1223 err = -1; 1224 /* Don't know the failed unit */ 1225 (void) mdmderror(ep, MDE_RR_ALLOC_ERROR, 1226 0); 1227 (void) md_halt_set(setno, MD_HALT_ALL); 1228 (void) mddb_unload_set(setno); 1229 md_haltsnarf_exit(setno); 1230 return (err); 1231 } else { 1232 i += retval; 1233 } 1234 } 1235 } 1236 } while (i); 1237 1238 /* 1239 * Set the first available slot and availability 1240 */ 1241 md_set[setno].s_un_avail = 0; 1242 for (un = 0; un < MD_MAXUNITS; un++) { 1243 if (md_set[setno].s_un[un] != NULL) { 1244 continue; 1245 } else { 1246 if (!un_next_set) { 1247 md_set[setno].s_un_next = un; 1248 un_next_set = 1; 1249 } 1250 md_set[setno].s_un_avail++; 1251 } 1252 } 1253 1254 md_set_setstatus(setno, MD_SET_SNARFED); 1255 1256 recid = mddb_makerecid(setno, 0); 1257 while ((recid = mddb_getnextrec(recid, MDDB_ALL, 0)) > 0) { 1258 privat = mddb_getrecprivate(recid); 1259 if (privat & MD_PRV_COMMIT) { 1260 if (mddb_commitrec(recid)) { 1261 if (!(md_get_setstatus(setno) & MD_SET_STALE)) { 1262 md_set_setstatus(setno, MD_SET_STALE); 1263 cmn_err(CE_WARN, 1264 "md: state database is stale"); 1265 } 1266 } 1267 mddb_setrecprivate(recid, MD_PRV_GOTIT); 1268 } 1269 } 1270 1271 /* Deletes must happen after all the commits */ 1272 recid = mddb_makerecid(setno, 0); 1273 while ((recid = mddb_getnextrec(recid, MDDB_ALL, 0)) > 0) { 1274 privat = mddb_getrecprivate(recid); 1275 if (privat & MD_PRV_DELETE) { 1276 if (mddb_deleterec(recid)) { 1277 if (!(md_get_setstatus(setno) & MD_SET_STALE)) { 1278 md_set_setstatus(setno, MD_SET_STALE); 1279 cmn_err(CE_WARN, 1280 "md: state database is stale"); 1281 } 1282 mddb_setrecprivate(recid, MD_PRV_GOTIT); 1283 } 1284 recid = mddb_makerecid(setno, 0); 1285 } 1286 } 1287 1288 /* 1289 * go through and clean up records until nothing gets cleaned up. 1290 */ 1291 do { 1292 i = 0; 1293 for (ops = md_opslist; ops != NULL; ops = ops->md_next) 1294 if (ops->md_snarf != NULL) 1295 i += ops->md_snarf(MD_SNARF_CLEANUP, setno); 1296 } while (i); 1297 1298 if (md_nm_snarfed != NULL && 1299 !(md_get_setstatus(setno) & MD_SET_STALE)) { 1300 /* 1301 * go thru and cleanup the namespace and the device id 1302 * name space 1303 */ 1304 for (key = 1; 1305 key < ((struct nm_rec_hdr *)nh->nmn_record)->r_next_key; 1306 key++) { 1307 /* 1308 * Is the entry an 'orphan'? 1309 */ 1310 if (lookup_entry(nh, setno, side, key, NODEV64, 0L) != 1311 NULL) { 1312 /* 1313 * If the value is not set then apparently 1314 * it is not part of the current configuration, 1315 * remove it this can happen when system panic 1316 * between the primary name space update and 1317 * the device id name space update 1318 */ 1319 if (md_nm_snarfed[key] == 0) { 1320 if (md_verify_orphaned_record(setno, 1321 key) == 1) 1322 (void) remove_entry(nh, 1323 side, key, 0L); 1324 } 1325 } 1326 } 1327 } 1328 1329 if (md_nm_snarfed != NULL) { 1330 /* 1331 * Done and free the memory 1332 */ 1333 kmem_free(md_nm_snarfed, size); 1334 md_nm_snarfed = NULL; 1335 } 1336 1337 if (s->s_lbp->lb_flags & MDDB_DEVID_STYLE && 1338 !(md_get_setstatus(setno) & MD_SET_STALE)) { 1339 /* 1340 * if the destroy flag has been set and 1341 * the MD_SET_DIDCLUP bit is not set in 1342 * the set's status field, cleanup the 1343 * entire device id namespace 1344 */ 1345 if (md_devid_destroy && 1346 !(md_get_setstatus(setno) & MD_SET_DIDCLUP)) { 1347 (void) md_devid_cleanup(setno, 1); 1348 md_set_setstatus(setno, MD_SET_DIDCLUP); 1349 } else 1350 (void) md_devid_cleanup(setno, 0); 1351 } 1352 1353 /* 1354 * clear single threading on snarf, return success or error 1355 */ 1356 out: 1357 md_haltsnarf_exit(setno); 1358 return (err); 1359 } 1360 1361 void 1362 get_minfo(struct dk_minfo *info, minor_t mnum) 1363 { 1364 md_unit_t *un; 1365 mdi_unit_t *ui; 1366 1367 info->dki_capacity = 0; 1368 info->dki_lbsize = 0; 1369 info->dki_media_type = 0; 1370 1371 if ((ui = MDI_UNIT(mnum)) == NULL) { 1372 return; 1373 } 1374 un = (md_unit_t *)md_unit_readerlock(ui); 1375 info->dki_capacity = un->c.un_total_blocks; 1376 md_unit_readerexit(ui); 1377 info->dki_lbsize = DEV_BSIZE; 1378 info->dki_media_type = DK_UNKNOWN; 1379 } 1380 1381 1382 void 1383 get_info(struct dk_cinfo *info, minor_t mnum) 1384 { 1385 /* 1386 * Controller Information 1387 */ 1388 info->dki_ctype = DKC_MD; 1389 info->dki_cnum = ddi_get_instance(ddi_get_parent(md_devinfo)); 1390 (void) strcpy(info->dki_cname, 1391 ddi_get_name(ddi_get_parent(md_devinfo))); 1392 /* 1393 * Unit Information 1394 */ 1395 info->dki_unit = mnum; 1396 info->dki_slave = 0; 1397 (void) strcpy(info->dki_dname, ddi_driver_name(md_devinfo)); 1398 info->dki_flags = 0; 1399 info->dki_partition = 0; 1400 info->dki_maxtransfer = (ushort_t)(md_maxphys / DEV_BSIZE); 1401 1402 /* 1403 * We can't get from here to there yet 1404 */ 1405 info->dki_addr = 0; 1406 info->dki_space = 0; 1407 info->dki_prio = 0; 1408 info->dki_vec = 0; 1409 } 1410 1411 /* 1412 * open admin device 1413 */ 1414 static int 1415 mdadminopen( 1416 int flag, 1417 int otyp) 1418 { 1419 int err = 0; 1420 1421 /* single thread */ 1422 mutex_enter(&md_mx); 1423 1424 /* check type and flags */ 1425 if ((otyp != OTYP_CHR) && (otyp != OTYP_LYR)) { 1426 err = EINVAL; 1427 goto out; 1428 } 1429 if (((flag & FEXCL) && (md_status & MD_GBL_OPEN)) || 1430 (md_status & MD_GBL_EXCL)) { 1431 err = EBUSY; 1432 goto out; 1433 } 1434 1435 /* count and flag open */ 1436 md_ocnt[otyp]++; 1437 md_status |= MD_GBL_OPEN; 1438 if (flag & FEXCL) 1439 md_status |= MD_GBL_EXCL; 1440 1441 /* unlock return success */ 1442 out: 1443 mutex_exit(&md_mx); 1444 return (err); 1445 } 1446 1447 /* 1448 * open entry point 1449 */ 1450 static int 1451 mdopen( 1452 dev_t *dev, 1453 int flag, 1454 int otyp, 1455 cred_t *cred_p) 1456 { 1457 minor_t mnum = getminor(*dev); 1458 unit_t unit = MD_MIN2UNIT(mnum); 1459 set_t setno = MD_MIN2SET(mnum); 1460 mdi_unit_t *ui = NULL; 1461 int err = 0; 1462 md_parent_t parent; 1463 1464 /* dispatch admin device opens */ 1465 if (mnum == MD_ADM_MINOR) 1466 return (mdadminopen(flag, otyp)); 1467 1468 /* lock, check status */ 1469 rw_enter(&md_unit_array_rw.lock, RW_READER); 1470 1471 tryagain: 1472 if (md_get_status() & MD_GBL_HALTED) { 1473 err = ENODEV; 1474 goto out; 1475 } 1476 1477 /* check minor */ 1478 if ((setno >= md_nsets) || (unit >= md_nunits)) { 1479 err = ENXIO; 1480 goto out; 1481 } 1482 1483 /* make sure we're snarfed */ 1484 if ((md_get_setstatus(MD_LOCAL_SET) & MD_SET_SNARFED) == 0) { 1485 if (md_snarf_db_set(MD_LOCAL_SET, NULL) != 0) { 1486 err = ENODEV; 1487 goto out; 1488 } 1489 } 1490 if ((md_get_setstatus(setno) & MD_SET_SNARFED) == 0) { 1491 err = ENODEV; 1492 goto out; 1493 } 1494 1495 /* check unit */ 1496 if ((ui = MDI_UNIT(mnum)) == NULL) { 1497 err = ENXIO; 1498 goto out; 1499 } 1500 1501 /* 1502 * The softpart open routine may do an I/O during the open, in 1503 * which case the open routine will set the OPENINPROGRESS flag 1504 * and drop all locks during the I/O. If this thread sees 1505 * the OPENINPROGRESS flag set, if should wait until the flag 1506 * is reset before calling the driver's open routine. It must 1507 * also revalidate the world after it grabs the unit_array lock 1508 * since the set may have been released or the metadevice cleared 1509 * during the sleep. 1510 */ 1511 if (MD_MNSET_SETNO(setno)) { 1512 mutex_enter(&ui->ui_mx); 1513 if (ui->ui_lock & MD_UL_OPENINPROGRESS) { 1514 rw_exit(&md_unit_array_rw.lock); 1515 cv_wait(&ui->ui_cv, &ui->ui_mx); 1516 rw_enter(&md_unit_array_rw.lock, RW_READER); 1517 mutex_exit(&ui->ui_mx); 1518 goto tryagain; 1519 } 1520 mutex_exit(&ui->ui_mx); 1521 } 1522 1523 /* Test if device is openable */ 1524 if ((ui->ui_tstate & MD_NOTOPENABLE) != 0) { 1525 err = ENXIO; 1526 goto out; 1527 } 1528 1529 /* don't allow opens w/WRITE flag if stale */ 1530 if ((flag & FWRITE) && (md_get_setstatus(setno) & MD_SET_STALE)) { 1531 err = EROFS; 1532 goto out; 1533 } 1534 1535 /* don't allow writes to subdevices */ 1536 parent = md_get_parent(md_expldev(*dev)); 1537 if ((flag & FWRITE) && MD_HAS_PARENT(parent)) { 1538 err = EROFS; 1539 goto out; 1540 } 1541 1542 /* open underlying driver */ 1543 if (md_ops[ui->ui_opsindex]->md_open != NULL) { 1544 if ((err = (*md_ops[ui->ui_opsindex]->md_open) 1545 (dev, flag, otyp, cred_p, 0)) != 0) 1546 goto out; 1547 } 1548 1549 /* or do it ourselves */ 1550 else { 1551 /* single thread */ 1552 (void) md_unit_openclose_enter(ui); 1553 err = md_unit_incopen(mnum, flag, otyp); 1554 md_unit_openclose_exit(ui); 1555 if (err != 0) 1556 goto out; 1557 } 1558 1559 /* unlock, return status */ 1560 out: 1561 rw_exit(&md_unit_array_rw.lock); 1562 return (err); 1563 } 1564 1565 /* 1566 * close admin device 1567 */ 1568 static int 1569 mdadminclose( 1570 int otyp) 1571 { 1572 int i; 1573 int err = 0; 1574 1575 /* single thread */ 1576 mutex_enter(&md_mx); 1577 1578 /* check type and flags */ 1579 if ((otyp < 0) || (otyp >= OTYPCNT)) { 1580 err = EINVAL; 1581 goto out; 1582 } else if (md_ocnt[otyp] == 0) { 1583 err = ENXIO; 1584 goto out; 1585 } 1586 1587 /* count and flag closed */ 1588 if (otyp == OTYP_LYR) 1589 md_ocnt[otyp]--; 1590 else 1591 md_ocnt[otyp] = 0; 1592 md_status &= ~MD_GBL_OPEN; 1593 for (i = 0; (i < OTYPCNT); ++i) 1594 if (md_ocnt[i] != 0) 1595 md_status |= MD_GBL_OPEN; 1596 if (! (md_status & MD_GBL_OPEN)) 1597 md_status &= ~MD_GBL_EXCL; 1598 1599 /* unlock return success */ 1600 out: 1601 mutex_exit(&md_mx); 1602 return (err); 1603 } 1604 1605 /* 1606 * close entry point 1607 */ 1608 static int 1609 mdclose( 1610 dev_t dev, 1611 int flag, 1612 int otyp, 1613 cred_t *cred_p) 1614 { 1615 minor_t mnum = getminor(dev); 1616 set_t setno = MD_MIN2SET(mnum); 1617 unit_t unit = MD_MIN2UNIT(mnum); 1618 mdi_unit_t *ui = NULL; 1619 int err = 0; 1620 1621 /* dispatch admin device closes */ 1622 if (mnum == MD_ADM_MINOR) 1623 return (mdadminclose(otyp)); 1624 1625 /* check minor */ 1626 if ((setno >= md_nsets) || (unit >= md_nunits) || 1627 ((ui = MDI_UNIT(mnum)) == NULL)) { 1628 err = ENXIO; 1629 goto out; 1630 } 1631 1632 /* close underlying driver */ 1633 if (md_ops[ui->ui_opsindex]->md_close != NULL) { 1634 if ((err = (*md_ops[ui->ui_opsindex]->md_close) 1635 (dev, flag, otyp, cred_p, 0)) != 0) 1636 goto out; 1637 } 1638 1639 /* or do it ourselves */ 1640 else { 1641 /* single thread */ 1642 (void) md_unit_openclose_enter(ui); 1643 err = md_unit_decopen(mnum, otyp); 1644 md_unit_openclose_exit(ui); 1645 if (err != 0) 1646 goto out; 1647 } 1648 1649 /* return success */ 1650 out: 1651 return (err); 1652 } 1653 1654 1655 /* 1656 * This routine performs raw read operations. It is called from the 1657 * device switch at normal priority. 1658 * 1659 * The main catch is that the *uio struct which is passed to us may 1660 * specify a read which spans two buffers, which would be contiguous 1661 * on a single partition, but not on a striped partition. This will 1662 * be handled by mdstrategy. 1663 */ 1664 /*ARGSUSED*/ 1665 static int 1666 mdread(dev_t dev, struct uio *uio, cred_t *credp) 1667 { 1668 minor_t mnum; 1669 mdi_unit_t *ui; 1670 int error; 1671 1672 if (((mnum = getminor(dev)) == MD_ADM_MINOR) || 1673 (MD_MIN2SET(mnum) >= md_nsets) || 1674 (MD_MIN2UNIT(mnum) >= md_nunits) || 1675 ((ui = MDI_UNIT(mnum)) == NULL)) 1676 return (ENXIO); 1677 1678 if (md_ops[ui->ui_opsindex]->md_read != NULL) 1679 return ((*md_ops[ui->ui_opsindex]->md_read) 1680 (dev, uio, credp)); 1681 1682 if ((error = md_chk_uio(uio)) != 0) 1683 return (error); 1684 1685 return (physio(mdstrategy, NULL, dev, B_READ, md_minphys, uio)); 1686 } 1687 1688 /* 1689 * This routine performs async raw read operations. It is called from the 1690 * device switch at normal priority. 1691 * 1692 * The main catch is that the *aio struct which is passed to us may 1693 * specify a read which spans two buffers, which would be contiguous 1694 * on a single partition, but not on a striped partition. This will 1695 * be handled by mdstrategy. 1696 */ 1697 /*ARGSUSED*/ 1698 static int 1699 mdaread(dev_t dev, struct aio_req *aio, cred_t *credp) 1700 { 1701 minor_t mnum; 1702 mdi_unit_t *ui; 1703 int error; 1704 1705 1706 if (((mnum = getminor(dev)) == MD_ADM_MINOR) || 1707 (MD_MIN2SET(mnum) >= md_nsets) || 1708 (MD_MIN2UNIT(mnum) >= md_nunits) || 1709 ((ui = MDI_UNIT(mnum)) == NULL)) 1710 return (ENXIO); 1711 1712 if (md_ops[ui->ui_opsindex]->md_aread != NULL) 1713 return ((*md_ops[ui->ui_opsindex]->md_aread) 1714 (dev, aio, credp)); 1715 1716 if ((error = md_chk_uio(aio->aio_uio)) != 0) 1717 return (error); 1718 1719 return (aphysio(mdstrategy, anocancel, dev, B_READ, md_minphys, aio)); 1720 } 1721 1722 /* 1723 * This routine performs raw write operations. It is called from the 1724 * device switch at normal priority. 1725 * 1726 * The main catch is that the *uio struct which is passed to us may 1727 * specify a write which spans two buffers, which would be contiguous 1728 * on a single partition, but not on a striped partition. This is 1729 * handled by mdstrategy. 1730 * 1731 */ 1732 /*ARGSUSED*/ 1733 static int 1734 mdwrite(dev_t dev, struct uio *uio, cred_t *credp) 1735 { 1736 minor_t mnum; 1737 mdi_unit_t *ui; 1738 int error; 1739 1740 if (((mnum = getminor(dev)) == MD_ADM_MINOR) || 1741 (MD_MIN2SET(mnum) >= md_nsets) || 1742 (MD_MIN2UNIT(mnum) >= md_nunits) || 1743 ((ui = MDI_UNIT(mnum)) == NULL)) 1744 return (ENXIO); 1745 1746 if (md_ops[ui->ui_opsindex]->md_write != NULL) 1747 return ((*md_ops[ui->ui_opsindex]->md_write) 1748 (dev, uio, credp)); 1749 1750 if ((error = md_chk_uio(uio)) != 0) 1751 return (error); 1752 1753 return (physio(mdstrategy, NULL, dev, B_WRITE, md_minphys, uio)); 1754 } 1755 1756 /* 1757 * This routine performs async raw write operations. It is called from the 1758 * device switch at normal priority. 1759 * 1760 * The main catch is that the *aio struct which is passed to us may 1761 * specify a write which spans two buffers, which would be contiguous 1762 * on a single partition, but not on a striped partition. This is 1763 * handled by mdstrategy. 1764 * 1765 */ 1766 /*ARGSUSED*/ 1767 static int 1768 mdawrite(dev_t dev, struct aio_req *aio, cred_t *credp) 1769 { 1770 minor_t mnum; 1771 mdi_unit_t *ui; 1772 int error; 1773 1774 1775 if (((mnum = getminor(dev)) == MD_ADM_MINOR) || 1776 (MD_MIN2SET(mnum) >= md_nsets) || 1777 (MD_MIN2UNIT(mnum) >= md_nunits) || 1778 ((ui = MDI_UNIT(mnum)) == NULL)) 1779 return (ENXIO); 1780 1781 if (md_ops[ui->ui_opsindex]->md_awrite != NULL) 1782 return ((*md_ops[ui->ui_opsindex]->md_awrite) 1783 (dev, aio, credp)); 1784 1785 if ((error = md_chk_uio(aio->aio_uio)) != 0) 1786 return (error); 1787 1788 return (aphysio(mdstrategy, anocancel, dev, B_WRITE, md_minphys, aio)); 1789 } 1790 1791 int 1792 mdstrategy(struct buf *bp) 1793 { 1794 minor_t mnum; 1795 mdi_unit_t *ui; 1796 1797 ASSERT((bp->b_flags & B_DONE) == 0); 1798 1799 if (panicstr) 1800 md_clr_status(MD_GBL_DAEMONS_LIVE); 1801 1802 if (((mnum = getminor(bp->b_edev)) == MD_ADM_MINOR) || 1803 (MD_MIN2SET(mnum) >= md_nsets) || 1804 (MD_MIN2UNIT(mnum) >= md_nunits) || 1805 ((ui = MDI_UNIT(mnum)) == NULL)) { 1806 bp->b_flags |= B_ERROR; 1807 bp->b_error = ENXIO; 1808 bp->b_resid = bp->b_bcount; 1809 biodone(bp); 1810 return (0); 1811 } 1812 1813 bp->b_flags &= ~(B_ERROR | B_DONE); 1814 if (md_ops[ui->ui_opsindex]->md_strategy != NULL) { 1815 (*md_ops[ui->ui_opsindex]->md_strategy) (bp, 0, NULL); 1816 } else { 1817 (void) errdone(ui, bp, ENXIO); 1818 } 1819 return (0); 1820 } 1821 1822 /* 1823 * Return true if the ioctl is allowed to be multithreaded. 1824 * All the ioctls with MN are sent only from the message handlers through 1825 * rpc.mdcommd, which (via it's own locking mechanism) takes care that not two 1826 * ioctl for the same metadevice are issued at the same time. 1827 * So we are safe here. 1828 * The other ioctls do not mess with any metadevice structures and therefor 1829 * are harmless too, if called multiple times at the same time. 1830 */ 1831 static boolean_t 1832 is_mt_ioctl(int cmd) { 1833 1834 switch (cmd) { 1835 case MD_IOCGUNIQMSGID: 1836 case MD_IOCGVERSION: 1837 case MD_IOCISOPEN: 1838 case MD_MN_SET_MM_OWNER: 1839 case MD_MN_SET_STATE: 1840 case MD_MN_SUSPEND_WRITES: 1841 case MD_MN_ALLOCATE_HOTSPARE: 1842 case MD_MN_SET_SETFLAGS: 1843 case MD_MN_GET_SETFLAGS: 1844 case MD_MN_MDDB_OPTRECFIX: 1845 case MD_MN_MDDB_PARSE: 1846 case MD_MN_MDDB_BLOCK: 1847 case MD_MN_DB_USERREQ: 1848 case MD_IOC_SPSTATUS: 1849 case MD_MN_COMMD_ERR: 1850 case MD_MN_SET_COMMD_RUNNING: 1851 case MD_MN_RESYNC: 1852 case MD_MN_SETSYNC: 1853 case MD_MN_POKE_HOTSPARES: 1854 case MD_MN_RR_DIRTY: 1855 case MD_MN_RR_CLEAN: 1856 case MD_MN_IOC_SPUPDATEWM: 1857 return (1); 1858 default: 1859 return (0); 1860 } 1861 } 1862 1863 /* 1864 * This routine implements the ioctl calls for the Virtual Disk System. 1865 * It is called from the device switch at normal priority. 1866 */ 1867 /* ARGSUSED */ 1868 static int 1869 mdioctl(dev_t dev, int cmd, intptr_t data, int mode, cred_t *cred_p, 1870 int *rval_p) 1871 { 1872 minor_t mnum = getminor(dev); 1873 mdi_unit_t *ui; 1874 IOLOCK lock; 1875 int err; 1876 1877 /* 1878 * For multinode disksets number of ioctls are allowed to be 1879 * multithreaded. 1880 * A fundamental assumption made in this implementation is that 1881 * ioctls either do not interact with other md structures or the 1882 * ioctl to the admin device can only occur if the metadevice 1883 * device is open. i.e. avoid a race between metaclear and the 1884 * progress of a multithreaded ioctl. 1885 */ 1886 1887 if (!is_mt_ioctl(cmd) && md_ioctl_lock_enter() == EINTR) { 1888 return (EINTR); 1889 } 1890 1891 /* 1892 * initialize lock tracker 1893 */ 1894 IOLOCK_INIT(&lock); 1895 1896 /* Flag to indicate that MD_GBL_IOCTL_LOCK is not acquired */ 1897 1898 if (is_mt_ioctl(cmd)) { 1899 /* increment the md_mtioctl_cnt */ 1900 mutex_enter(&md_mx); 1901 md_mtioctl_cnt++; 1902 mutex_exit(&md_mx); 1903 lock.l_flags |= MD_MT_IOCTL; 1904 } 1905 1906 /* 1907 * this has been added to prevent notification from re-snarfing 1908 * so metaunload will work. It may interfere with other modules 1909 * halt process. 1910 */ 1911 if (md_get_status() & (MD_GBL_HALTED | MD_GBL_DAEMONS_DIE)) 1912 return (IOLOCK_RETURN(ENXIO, &lock)); 1913 1914 /* 1915 * admin device ioctls 1916 */ 1917 if (mnum == MD_ADM_MINOR) { 1918 err = md_admin_ioctl(md_expldev(dev), cmd, (void *) data, 1919 mode, &lock); 1920 } 1921 1922 /* 1923 * metadevice ioctls 1924 */ 1925 else if ((MD_MIN2SET(mnum) >= md_nsets) || 1926 (MD_MIN2UNIT(mnum) >= md_nunits) || 1927 (md_set[MD_MIN2SET(mnum)].s_ui == NULL) || 1928 ((ui = MDI_UNIT(mnum)) == NULL)) { 1929 err = ENXIO; 1930 } else if (md_ops[ui->ui_opsindex]->md_ioctl == NULL) { 1931 err = ENOTTY; 1932 } else { 1933 err = (*md_ops[ui->ui_opsindex]->md_ioctl) 1934 (dev, cmd, (void *) data, mode, &lock); 1935 } 1936 1937 /* 1938 * drop any locks we grabbed 1939 */ 1940 return (IOLOCK_RETURN_IOCTLEND(err, &lock)); 1941 } 1942 1943 static int 1944 mddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk) 1945 { 1946 minor_t mnum; 1947 set_t setno; 1948 mdi_unit_t *ui; 1949 1950 if ((mnum = getminor(dev)) == MD_ADM_MINOR) 1951 return (ENXIO); 1952 1953 setno = MD_MIN2SET(mnum); 1954 1955 if ((setno >= md_nsets) || (MD_MIN2UNIT(mnum) >= md_nunits) || 1956 ((ui = MDI_UNIT(mnum)) == NULL)) 1957 return (ENXIO); 1958 1959 1960 if ((md_get_setstatus(setno) & MD_SET_SNARFED) == 0) 1961 return (ENXIO); 1962 1963 if (md_ops[ui->ui_opsindex]->md_dump != NULL) 1964 return ((*md_ops[ui->ui_opsindex]->md_dump) 1965 (dev, addr, blkno, nblk)); 1966 1967 return (ENXIO); 1968 } 1969 1970 /* 1971 * Metadevice unit number dispatcher 1972 * When this routine is called it will scan the 1973 * incore unit array and return the avail slot 1974 * hence the unit number to the caller 1975 * 1976 * Return -1 if there is nothing available 1977 */ 1978 unit_t 1979 md_get_nextunit(set_t setno) 1980 { 1981 unit_t un, start; 1982 1983 /* 1984 * If nothing available 1985 */ 1986 if (md_set[setno].s_un_avail == 0) { 1987 return (MD_UNITBAD); 1988 } 1989 1990 mutex_enter(&md_mx); 1991 start = un = md_set[setno].s_un_next; 1992 1993 /* LINTED: E_CONSTANT_CONDITION */ 1994 while (1) { 1995 if (md_set[setno].s_un[un] == NULL) { 1996 /* 1997 * Advance the starting index for the next 1998 * md_get_nextunit call 1999 */ 2000 if (un == MD_MAXUNITS - 1) { 2001 md_set[setno].s_un_next = 0; 2002 } else { 2003 md_set[setno].s_un_next = un + 1; 2004 } 2005 break; 2006 } 2007 2008 un = ((un == MD_MAXUNITS - 1) ? 0 : un + 1); 2009 2010 if (un == start) { 2011 un = MD_UNITBAD; 2012 break; 2013 } 2014 2015 } 2016 2017 mutex_exit(&md_mx); 2018 return (un); 2019 }