1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved. 23 * 24 * Copyright 2013 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2016 Andrey Sokolov 26 * Copyright 2016 Toomas Soome <tsoome@me.com> 27 */ 28 29 /* 30 * lofi (loopback file) driver - allows you to attach a file to a device, 31 * which can then be accessed through that device. The simple model is that 32 * you tell lofi to open a file, and then use the block device you get as 33 * you would any block device. lofi translates access to the block device 34 * into I/O on the underlying file. This is mostly useful for 35 * mounting images of filesystems. 36 * 37 * lofi is controlled through /dev/lofictl - this is the only device exported 38 * during attach, and is instance number 0. lofiadm communicates with lofi 39 * through ioctls on this device. When a file is attached to lofi, block and 40 * character devices are exported in /dev/lofi and /dev/rlofi. These devices 41 * are identified by lofi instance number, and the instance number is also used 42 * as the name in /dev/lofi. 43 * 44 * Virtual disks, or, labeled lofi, implements virtual disk support to 45 * support partition table and related tools. Such mappings will cause 46 * block and character devices to be exported in /dev/dsk and /dev/rdsk 47 * directories. 48 * 49 * To support virtual disks, the instance number space is divided to two 50 * parts, upper part for instance number and lower part for minor number 51 * space to identify partitions and slices. The virtual disk support is 52 * implemented by stacking cmlb module. For virtual disks, the partition 53 * related ioctl calls are routed to cmlb module. Compression and encryption 54 * is not supported for virtual disks. 55 * 56 * Mapped devices are tracked with state structures handled with 57 * ddi_soft_state(9F) for simplicity. 58 * 59 * A file attached to lofi is opened when attached and not closed until 60 * explicitly detached from lofi. This seems more sensible than deferring 61 * the open until the /dev/lofi device is opened, for a number of reasons. 62 * One is that any failure is likely to be noticed by the person (or script) 63 * running lofiadm. Another is that it would be a security problem if the 64 * file was replaced by another one after being added but before being opened. 65 * 66 * The only hard part about lofi is the ioctls. In order to support things 67 * like 'newfs' on a lofi device, it needs to support certain disk ioctls. 68 * So it has to fake disk geometry and partition information. More may need 69 * to be faked if your favorite utility doesn't work and you think it should 70 * (fdformat doesn't work because it really wants to know the type of floppy 71 * controller to talk to, and that didn't seem easy to fake. Or possibly even 72 * necessary, since we have mkfs_pcfs now). 73 * 74 * Normally, a lofi device cannot be detached if it is open (i.e. busy). To 75 * support simulation of hotplug events, an optional force flag is provided. 76 * If a lofi device is open when a force detach is requested, then the 77 * underlying file is closed and any subsequent operations return EIO. When the 78 * device is closed for the last time, it will be cleaned up at that time. In 79 * addition, the DKIOCSTATE ioctl will return DKIO_DEV_GONE when the device is 80 * detached but not removed. 81 * 82 * Known problems: 83 * 84 * UFS logging. Mounting a UFS filesystem image "logging" 85 * works for basic copy testing but wedges during a build of ON through 86 * that image. Some deadlock in lufs holding the log mutex and then 87 * getting stuck on a buf. So for now, don't do that. 88 * 89 * Direct I/O. Since the filesystem data is being cached in the buffer 90 * cache, _and_ again in the underlying filesystem, it's tempting to 91 * enable direct I/O on the underlying file. Don't, because that deadlocks. 92 * I think to fix the cache-twice problem we might need filesystem support. 93 * 94 * Interesting things to do: 95 * 96 * Allow multiple files for each device. A poor-man's metadisk, basically. 97 * 98 * Pass-through ioctls on block devices. You can (though it's not 99 * documented), give lofi a block device as a file name. Then we shouldn't 100 * need to fake a geometry, however, it may be relevant if you're replacing 101 * metadisk, or using lofi to get crypto. 102 * It makes sense to do lofiadm -c aes -a /dev/dsk/c0t0d0s4 /dev/lofi/1 103 * and then in /etc/vfstab have an entry for /dev/lofi/1 as /export/home. 104 * In fact this even makes sense if you have lofi "above" metadisk. 105 * 106 * Encryption: 107 * Each lofi device can have its own symmetric key and cipher. 108 * They are passed to us by lofiadm(1m) in the correct format for use 109 * with the misc/kcf crypto_* routines. 110 * 111 * Each block has its own IV, that is calculated in lofi_blk_mech(), based 112 * on the "master" key held in the lsp and the block number of the buffer. 113 */ 114 115 #include <sys/types.h> 116 #include <netinet/in.h> 117 #include <sys/sysmacros.h> 118 #include <sys/uio.h> 119 #include <sys/kmem.h> 120 #include <sys/cred.h> 121 #include <sys/mman.h> 122 #include <sys/errno.h> 123 #include <sys/aio_req.h> 124 #include <sys/stat.h> 125 #include <sys/file.h> 126 #include <sys/modctl.h> 127 #include <sys/conf.h> 128 #include <sys/debug.h> 129 #include <sys/vnode.h> 130 #include <sys/lofi.h> 131 #include <sys/fcntl.h> 132 #include <sys/pathname.h> 133 #include <sys/filio.h> 134 #include <sys/fdio.h> 135 #include <sys/open.h> 136 #include <sys/disp.h> 137 #include <vm/seg_map.h> 138 #include <sys/ddi.h> 139 #include <sys/sunddi.h> 140 #include <sys/zmod.h> 141 #include <sys/id_space.h> 142 #include <sys/mkdev.h> 143 #include <sys/crypto/common.h> 144 #include <sys/crypto/api.h> 145 #include <sys/rctl.h> 146 #include <sys/vtoc.h> 147 #include <sys/scsi/scsi.h> /* for DTYPE_DIRECT */ 148 #include <sys/scsi/impl/uscsi.h> 149 #include <sys/sysevent/dev.h> 150 #include <LzmaDec.h> 151 152 #define NBLOCKS_PROP_NAME "Nblocks" 153 #define SIZE_PROP_NAME "Size" 154 #define ZONE_PROP_NAME "zone" 155 156 #define SETUP_C_DATA(cd, buf, len) \ 157 (cd).cd_format = CRYPTO_DATA_RAW; \ 158 (cd).cd_offset = 0; \ 159 (cd).cd_miscdata = NULL; \ 160 (cd).cd_length = (len); \ 161 (cd).cd_raw.iov_base = (buf); \ 162 (cd).cd_raw.iov_len = (len); 163 164 #define UIO_CHECK(uio) \ 165 if (((uio)->uio_loffset % DEV_BSIZE) != 0 || \ 166 ((uio)->uio_resid % DEV_BSIZE) != 0) { \ 167 return (EINVAL); \ 168 } 169 170 #define DEVFS_CHANNEL "devfsadm_event_channel" 171 #define LOFI_TIMEOUT 30 172 static evchan_t *lofi_chan; 173 static kmutex_t lofi_chan_lock; 174 static kcondvar_t lofi_chan_cv; 175 static nvlist_t *lofi_devlink_cache; 176 177 static void *lofi_statep; 178 static kmutex_t lofi_lock; /* state lock */ 179 static id_space_t *lofi_id; /* lofi ID values */ 180 static list_t lofi_list; 181 static zone_key_t lofi_zone_key; 182 183 /* 184 * Because lofi_taskq_nthreads limits the actual swamping of the device, the 185 * maxalloc parameter (lofi_taskq_maxalloc) should be tuned conservatively 186 * high. If we want to be assured that the underlying device is always busy, 187 * we must be sure that the number of bytes enqueued when the number of 188 * enqueued tasks exceeds maxalloc is sufficient to keep the device busy for 189 * the duration of the sleep time in taskq_ent_alloc(). That is, lofi should 190 * set maxalloc to be the maximum throughput (in bytes per second) of the 191 * underlying device divided by the minimum I/O size. We assume a realistic 192 * maximum throughput of one hundred megabytes per second; we set maxalloc on 193 * the lofi task queue to be 104857600 divided by DEV_BSIZE. 194 */ 195 static int lofi_taskq_maxalloc = 104857600 / DEV_BSIZE; 196 static int lofi_taskq_nthreads = 4; /* # of taskq threads per device */ 197 198 const char lofi_crypto_magic[6] = LOFI_CRYPTO_MAGIC; 199 200 /* 201 * To avoid decompressing data in a compressed segment multiple times 202 * when accessing small parts of a segment's data, we cache and reuse 203 * the uncompressed segment's data. 204 * 205 * A single cached segment is sufficient to avoid lots of duplicate 206 * segment decompress operations. A small cache size also reduces the 207 * memory footprint. 208 * 209 * lofi_max_comp_cache is the maximum number of decompressed data segments 210 * cached for each compressed lofi image. It can be set to 0 to disable 211 * caching. 212 */ 213 214 uint32_t lofi_max_comp_cache = 1; 215 216 static int gzip_decompress(void *src, size_t srclen, void *dst, 217 size_t *destlen, int level); 218 219 static int lzma_decompress(void *src, size_t srclen, void *dst, 220 size_t *dstlen, int level); 221 222 lofi_compress_info_t lofi_compress_table[LOFI_COMPRESS_FUNCTIONS] = { 223 {gzip_decompress, NULL, 6, "gzip"}, /* default */ 224 {gzip_decompress, NULL, 6, "gzip-6"}, 225 {gzip_decompress, NULL, 9, "gzip-9"}, 226 {lzma_decompress, NULL, 0, "lzma"} 227 }; 228 229 static void lofi_strategy_task(void *); 230 static int lofi_tg_rdwr(dev_info_t *, uchar_t, void *, diskaddr_t, 231 size_t, void *); 232 static int lofi_tg_getinfo(dev_info_t *, int, void *, void *); 233 234 struct cmlb_tg_ops lofi_tg_ops = { 235 TG_DK_OPS_VERSION_1, 236 lofi_tg_rdwr, 237 lofi_tg_getinfo 238 }; 239 240 /*ARGSUSED*/ 241 static void 242 *SzAlloc(void *p, size_t size) 243 { 244 return (kmem_alloc(size, KM_SLEEP)); 245 } 246 247 /*ARGSUSED*/ 248 static void 249 SzFree(void *p, void *address, size_t size) 250 { 251 kmem_free(address, size); 252 } 253 254 static ISzAlloc g_Alloc = { SzAlloc, SzFree }; 255 256 /* 257 * Free data referenced by the linked list of cached uncompressed 258 * segments. 259 */ 260 static void 261 lofi_free_comp_cache(struct lofi_state *lsp) 262 { 263 struct lofi_comp_cache *lc; 264 265 while ((lc = list_remove_head(&lsp->ls_comp_cache)) != NULL) { 266 kmem_free(lc->lc_data, lsp->ls_uncomp_seg_sz); 267 kmem_free(lc, sizeof (struct lofi_comp_cache)); 268 lsp->ls_comp_cache_count--; 269 } 270 ASSERT(lsp->ls_comp_cache_count == 0); 271 } 272 273 static int 274 is_opened(struct lofi_state *lsp) 275 { 276 int i; 277 boolean_t last = B_TRUE; 278 279 ASSERT(MUTEX_HELD(&lofi_lock)); 280 for (i = 0; i < LOFI_PART_MAX; i++) { 281 if (lsp->ls_open_lyr[i]) { 282 last = B_FALSE; 283 break; 284 } 285 } 286 287 for (i = 0; last && (i < OTYP_LYR); i++) { 288 if (lsp->ls_open_reg[i]) { 289 last = B_FALSE; 290 } 291 } 292 293 return (!last); 294 } 295 296 static void 297 lofi_free_crypto(struct lofi_state *lsp) 298 { 299 ASSERT(MUTEX_HELD(&lofi_lock)); 300 301 if (lsp->ls_crypto_enabled) { 302 /* 303 * Clean up the crypto state so that it doesn't hang around 304 * in memory after we are done with it. 305 */ 306 if (lsp->ls_key.ck_data != NULL) { 307 bzero(lsp->ls_key.ck_data, 308 CRYPTO_BITS2BYTES(lsp->ls_key.ck_length)); 309 kmem_free(lsp->ls_key.ck_data, 310 CRYPTO_BITS2BYTES(lsp->ls_key.ck_length)); 311 lsp->ls_key.ck_data = NULL; 312 lsp->ls_key.ck_length = 0; 313 } 314 315 if (lsp->ls_mech.cm_param != NULL) { 316 kmem_free(lsp->ls_mech.cm_param, 317 lsp->ls_mech.cm_param_len); 318 lsp->ls_mech.cm_param = NULL; 319 lsp->ls_mech.cm_param_len = 0; 320 } 321 322 if (lsp->ls_iv_mech.cm_param != NULL) { 323 kmem_free(lsp->ls_iv_mech.cm_param, 324 lsp->ls_iv_mech.cm_param_len); 325 lsp->ls_iv_mech.cm_param = NULL; 326 lsp->ls_iv_mech.cm_param_len = 0; 327 } 328 329 mutex_destroy(&lsp->ls_crypto_lock); 330 } 331 } 332 333 /* ARGSUSED */ 334 static int 335 lofi_tg_rdwr(dev_info_t *dip, uchar_t cmd, void *bufaddr, diskaddr_t start, 336 size_t length, void *tg_cookie) 337 { 338 struct lofi_state *lsp; 339 buf_t *bp; 340 int instance; 341 int rv = 0; 342 343 instance = ddi_get_instance(dip); 344 if (instance == 0) /* control node does not have disk */ 345 return (ENXIO); 346 347 lsp = ddi_get_soft_state(lofi_statep, instance); 348 349 if (lsp == NULL) 350 return (ENXIO); 351 352 if (cmd != TG_READ && cmd != TG_WRITE) 353 return (EINVAL); 354 355 /* 356 * Make sure the mapping is set up by checking lsp->ls_vp_ready. 357 */ 358 mutex_enter(&lsp->ls_vp_lock); 359 while (lsp->ls_vp_ready == B_FALSE) 360 cv_wait(&lsp->ls_vp_cv, &lsp->ls_vp_lock); 361 mutex_exit(&lsp->ls_vp_lock); 362 363 if (P2PHASE(length, (1U << lsp->ls_lbshift)) != 0) { 364 /* We can only transfer whole blocks at a time! */ 365 return (EINVAL); 366 } 367 368 bp = getrbuf(KM_SLEEP); 369 370 if (cmd == TG_READ) { 371 bp->b_flags = B_READ; 372 } else { 373 if (lsp->ls_readonly == B_TRUE) { 374 freerbuf(bp); 375 return (EROFS); 376 } 377 bp->b_flags = B_WRITE; 378 } 379 380 bp->b_un.b_addr = bufaddr; 381 bp->b_bcount = length; 382 bp->b_lblkno = start; 383 bp->b_private = NULL; 384 bp->b_edev = lsp->ls_dev; 385 386 if (lsp->ls_kstat) { 387 mutex_enter(lsp->ls_kstat->ks_lock); 388 kstat_waitq_enter(KSTAT_IO_PTR(lsp->ls_kstat)); 389 mutex_exit(lsp->ls_kstat->ks_lock); 390 } 391 (void) taskq_dispatch(lsp->ls_taskq, lofi_strategy_task, bp, KM_SLEEP); 392 (void) biowait(bp); 393 394 rv = geterror(bp); 395 freerbuf(bp); 396 return (rv); 397 } 398 399 /* 400 * Get device geometry info for cmlb. 401 * 402 * We have mapped disk image as virtual block device and have to report 403 * physical/virtual geometry to cmlb. 404 * 405 * So we have two principal cases: 406 * 1. Uninitialised image without any existing labels, 407 * for this case we fabricate the data based on mapped image. 408 * 2. Image with existing label information. 409 * Since we have no information how the image was created (it may be 410 * dump from some physical device), we need to rely on label information 411 * from image, or we get "corrupted label" errors. 412 * NOTE: label can be MBR, MBR+SMI, GPT 413 */ 414 static int 415 lofi_tg_getinfo(dev_info_t *dip, int cmd, void *arg, void *tg_cookie) 416 { 417 struct lofi_state *lsp; 418 int instance; 419 int ashift; 420 421 _NOTE(ARGUNUSED(tg_cookie)); 422 instance = ddi_get_instance(dip); 423 if (instance == 0) /* control device has no storage */ 424 return (ENXIO); 425 426 lsp = ddi_get_soft_state(lofi_statep, instance); 427 428 if (lsp == NULL) 429 return (ENXIO); 430 431 /* 432 * Make sure the mapping is set up by checking lsp->ls_vp_ready. 433 * 434 * When mapping is created, new lofi instance is created and 435 * lofi_attach() will call cmlb_attach() as part of the procedure 436 * to set the mapping up. This chain of events will happen in 437 * the same thread. 438 * Since cmlb_attach() will call lofi_tg_getinfo to get 439 * capacity, we return error on that call if cookie is set, 440 * otherwise lofi_attach will be stuck as the mapping is not yet 441 * finalized and lofi is not yet ready. 442 * Note, such error is not fatal for cmlb, as the label setup 443 * will be finalized when cmlb_validate() is called. 444 */ 445 mutex_enter(&lsp->ls_vp_lock); 446 if (tg_cookie != NULL && lsp->ls_vp_ready == B_FALSE) { 447 mutex_exit(&lsp->ls_vp_lock); 448 return (ENXIO); 449 } 450 while (lsp->ls_vp_ready == B_FALSE) 451 cv_wait(&lsp->ls_vp_cv, &lsp->ls_vp_lock); 452 mutex_exit(&lsp->ls_vp_lock); 453 454 ashift = lsp->ls_lbshift; 455 456 switch (cmd) { 457 case TG_GETPHYGEOM: { 458 cmlb_geom_t *geomp = arg; 459 460 geomp->g_capacity = 461 (lsp->ls_vp_size - lsp->ls_crypto_offset) >> ashift; 462 geomp->g_nsect = lsp->ls_dkg.dkg_nsect; 463 geomp->g_nhead = lsp->ls_dkg.dkg_nhead; 464 geomp->g_acyl = lsp->ls_dkg.dkg_acyl; 465 geomp->g_ncyl = lsp->ls_dkg.dkg_ncyl; 466 geomp->g_secsize = (1U << ashift); 467 geomp->g_intrlv = lsp->ls_dkg.dkg_intrlv; 468 geomp->g_rpm = lsp->ls_dkg.dkg_rpm; 469 return (0); 470 } 471 472 case TG_GETCAPACITY: 473 *(diskaddr_t *)arg = 474 (lsp->ls_vp_size - lsp->ls_crypto_offset) >> ashift; 475 return (0); 476 477 case TG_GETBLOCKSIZE: 478 *(uint32_t *)arg = (1U << ashift); 479 return (0); 480 481 case TG_GETATTR: { 482 tg_attribute_t *tgattr = arg; 483 484 tgattr->media_is_writable = !lsp->ls_readonly; 485 tgattr->media_is_solid_state = B_FALSE; 486 return (0); 487 } 488 489 default: 490 return (EINVAL); 491 } 492 } 493 494 static void 495 lofi_destroy(struct lofi_state *lsp, cred_t *credp) 496 { 497 int id = LOFI_MINOR2ID(getminor(lsp->ls_dev)); 498 int i; 499 500 ASSERT(MUTEX_HELD(&lofi_lock)); 501 502 list_remove(&lofi_list, lsp); 503 504 lofi_free_crypto(lsp); 505 506 /* 507 * Free pre-allocated compressed buffers 508 */ 509 if (lsp->ls_comp_bufs != NULL) { 510 for (i = 0; i < lofi_taskq_nthreads; i++) { 511 if (lsp->ls_comp_bufs[i].bufsize > 0) 512 kmem_free(lsp->ls_comp_bufs[i].buf, 513 lsp->ls_comp_bufs[i].bufsize); 514 } 515 kmem_free(lsp->ls_comp_bufs, 516 sizeof (struct compbuf) * lofi_taskq_nthreads); 517 } 518 519 if (lsp->ls_vp != NULL) { 520 (void) VOP_PUTPAGE(lsp->ls_vp, 0, 0, B_INVAL, credp, NULL); 521 (void) VOP_CLOSE(lsp->ls_vp, lsp->ls_openflag, 522 1, 0, credp, NULL); 523 VN_RELE(lsp->ls_vp); 524 } 525 if (lsp->ls_stacked_vp != lsp->ls_vp) 526 VN_RELE(lsp->ls_stacked_vp); 527 528 if (lsp->ls_taskq != NULL) 529 taskq_destroy(lsp->ls_taskq); 530 531 if (lsp->ls_kstat != NULL) 532 kstat_delete(lsp->ls_kstat); 533 534 /* 535 * Free cached decompressed segment data 536 */ 537 lofi_free_comp_cache(lsp); 538 list_destroy(&lsp->ls_comp_cache); 539 540 if (lsp->ls_uncomp_seg_sz > 0) { 541 kmem_free(lsp->ls_comp_index_data, lsp->ls_comp_index_data_sz); 542 lsp->ls_uncomp_seg_sz = 0; 543 } 544 545 rctl_decr_lofi(lsp->ls_zone.zref_zone, 1); 546 zone_rele_ref(&lsp->ls_zone, ZONE_REF_LOFI); 547 548 mutex_destroy(&lsp->ls_comp_cache_lock); 549 mutex_destroy(&lsp->ls_comp_bufs_lock); 550 mutex_destroy(&lsp->ls_kstat_lock); 551 mutex_destroy(&lsp->ls_vp_lock); 552 cv_destroy(&lsp->ls_vp_cv); 553 lsp->ls_vp_ready = B_FALSE; 554 555 ASSERT(ddi_get_soft_state(lofi_statep, id) == lsp); 556 (void) ndi_devi_offline(lsp->ls_dip, NDI_DEVI_REMOVE); 557 id_free(lofi_id, id); 558 } 559 560 static void 561 lofi_free_dev(struct lofi_state *lsp) 562 { 563 ASSERT(MUTEX_HELD(&lofi_lock)); 564 565 if (lsp->ls_cmlbhandle != NULL) { 566 cmlb_invalidate(lsp->ls_cmlbhandle, 0); 567 cmlb_detach(lsp->ls_cmlbhandle, 0); 568 cmlb_free_handle(&lsp->ls_cmlbhandle); 569 lsp->ls_cmlbhandle = NULL; 570 } 571 (void) ddi_prop_remove_all(lsp->ls_dip); 572 ddi_remove_minor_node(lsp->ls_dip, NULL); 573 } 574 575 /*ARGSUSED*/ 576 static void 577 lofi_zone_shutdown(zoneid_t zoneid, void *arg) 578 { 579 struct lofi_state *lsp; 580 struct lofi_state *next; 581 582 mutex_enter(&lofi_lock); 583 584 for (lsp = list_head(&lofi_list); lsp != NULL; lsp = next) { 585 586 /* lofi_destroy() frees lsp */ 587 next = list_next(&lofi_list, lsp); 588 589 if (lsp->ls_zone.zref_zone->zone_id != zoneid) 590 continue; 591 592 /* 593 * No in-zone processes are running, but something has this 594 * open. It's either a global zone process, or a lofi 595 * mount. In either case we set ls_cleanup so the last 596 * user destroys the device. 597 */ 598 if (is_opened(lsp)) { 599 lsp->ls_cleanup = 1; 600 } else { 601 lofi_free_dev(lsp); 602 lofi_destroy(lsp, kcred); 603 } 604 } 605 606 mutex_exit(&lofi_lock); 607 } 608 609 /*ARGSUSED*/ 610 static int 611 lofi_open(dev_t *devp, int flag, int otyp, struct cred *credp) 612 { 613 int id; 614 minor_t part; 615 uint64_t mask; 616 diskaddr_t nblks; 617 diskaddr_t lba; 618 boolean_t ndelay; 619 620 struct lofi_state *lsp; 621 622 if (otyp >= OTYPCNT) 623 return (EINVAL); 624 625 ndelay = (flag & (FNDELAY | FNONBLOCK)) ? B_TRUE : B_FALSE; 626 627 /* 628 * lofiadm -a /dev/lofi/1 gets us here. 629 */ 630 if (mutex_owner(&lofi_lock) == curthread) 631 return (EINVAL); 632 633 mutex_enter(&lofi_lock); 634 635 id = LOFI_MINOR2ID(getminor(*devp)); 636 part = LOFI_PART(getminor(*devp)); 637 mask = (1U << part); 638 639 /* master control device */ 640 if (id == 0) { 641 mutex_exit(&lofi_lock); 642 return (0); 643 } 644 645 /* otherwise, the mapping should already exist */ 646 lsp = ddi_get_soft_state(lofi_statep, id); 647 if (lsp == NULL) { 648 mutex_exit(&lofi_lock); 649 return (EINVAL); 650 } 651 652 if (lsp->ls_vp == NULL) { 653 mutex_exit(&lofi_lock); 654 return (ENXIO); 655 } 656 657 if (lsp->ls_readonly && (flag & FWRITE)) { 658 mutex_exit(&lofi_lock); 659 return (EROFS); 660 } 661 662 if ((lsp->ls_open_excl) & (mask)) { 663 mutex_exit(&lofi_lock); 664 return (EBUSY); 665 } 666 667 if (flag & FEXCL) { 668 if (lsp->ls_open_lyr[part]) { 669 mutex_exit(&lofi_lock); 670 return (EBUSY); 671 } 672 for (int i = 0; i < OTYP_LYR; i++) { 673 if (lsp->ls_open_reg[i] & mask) { 674 mutex_exit(&lofi_lock); 675 return (EBUSY); 676 } 677 } 678 } 679 680 if (lsp->ls_cmlbhandle != NULL) { 681 if (cmlb_validate(lsp->ls_cmlbhandle, 0, 0) != 0) { 682 /* 683 * non-blocking opens are allowed to succeed to 684 * support format and fdisk to create partitioning. 685 */ 686 if (!ndelay) { 687 mutex_exit(&lofi_lock); 688 return (ENXIO); 689 } 690 } else if (cmlb_partinfo(lsp->ls_cmlbhandle, part, &nblks, &lba, 691 NULL, NULL, 0) == 0) { 692 if ((!nblks) && ((!ndelay) || (otyp != OTYP_CHR))) { 693 mutex_exit(&lofi_lock); 694 return (ENXIO); 695 } 696 } else if (!ndelay) { 697 mutex_exit(&lofi_lock); 698 return (ENXIO); 699 } 700 } 701 702 if (otyp == OTYP_LYR) { 703 lsp->ls_open_lyr[part]++; 704 } else { 705 lsp->ls_open_reg[otyp] |= mask; 706 } 707 if (flag & FEXCL) { 708 lsp->ls_open_excl |= mask; 709 } 710 711 mutex_exit(&lofi_lock); 712 return (0); 713 } 714 715 /*ARGSUSED*/ 716 static int 717 lofi_close(dev_t dev, int flag, int otyp, struct cred *credp) 718 { 719 minor_t part; 720 int id; 721 uint64_t mask; 722 struct lofi_state *lsp; 723 724 id = LOFI_MINOR2ID(getminor(dev)); 725 part = LOFI_PART(getminor(dev)); 726 mask = (1U << part); 727 728 mutex_enter(&lofi_lock); 729 lsp = ddi_get_soft_state(lofi_statep, id); 730 if (lsp == NULL) { 731 mutex_exit(&lofi_lock); 732 return (EINVAL); 733 } 734 735 if (id == 0) { 736 mutex_exit(&lofi_lock); 737 return (0); 738 } 739 740 if (lsp->ls_open_excl & mask) 741 lsp->ls_open_excl &= ~mask; 742 743 if (otyp == OTYP_LYR) { 744 lsp->ls_open_lyr[part]--; 745 } else { 746 lsp->ls_open_reg[otyp] &= ~mask; 747 } 748 749 /* 750 * If we forcibly closed the underlying device (li_force), or 751 * asked for cleanup (li_cleanup), finish up if we're the last 752 * out of the door. 753 */ 754 if (!is_opened(lsp) && (lsp->ls_cleanup || lsp->ls_vp == NULL)) { 755 lofi_free_dev(lsp); 756 lofi_destroy(lsp, credp); 757 } 758 759 mutex_exit(&lofi_lock); 760 return (0); 761 } 762 763 /* 764 * Sets the mechanism's initialization vector (IV) if one is needed. 765 * The IV is computed from the data block number. lsp->ls_mech is 766 * altered so that: 767 * lsp->ls_mech.cm_param_len is set to the IV len. 768 * lsp->ls_mech.cm_param is set to the IV. 769 */ 770 static int 771 lofi_blk_mech(struct lofi_state *lsp, longlong_t lblkno) 772 { 773 int ret; 774 crypto_data_t cdata; 775 char *iv; 776 size_t iv_len; 777 size_t min; 778 void *data; 779 size_t datasz; 780 781 ASSERT(MUTEX_HELD(&lsp->ls_crypto_lock)); 782 783 if (lsp == NULL) 784 return (CRYPTO_DEVICE_ERROR); 785 786 /* lsp->ls_mech.cm_param{_len} has already been set for static iv */ 787 if (lsp->ls_iv_type == IVM_NONE) { 788 return (CRYPTO_SUCCESS); 789 } 790 791 /* 792 * if kmem already alloced from previous call and it's the same size 793 * we need now, just recycle it; allocate new kmem only if we have to 794 */ 795 if (lsp->ls_mech.cm_param == NULL || 796 lsp->ls_mech.cm_param_len != lsp->ls_iv_len) { 797 iv_len = lsp->ls_iv_len; 798 iv = kmem_zalloc(iv_len, KM_SLEEP); 799 } else { 800 iv_len = lsp->ls_mech.cm_param_len; 801 iv = lsp->ls_mech.cm_param; 802 bzero(iv, iv_len); 803 } 804 805 switch (lsp->ls_iv_type) { 806 case IVM_ENC_BLKNO: 807 /* iv is not static, lblkno changes each time */ 808 data = &lblkno; 809 datasz = sizeof (lblkno); 810 break; 811 default: 812 data = 0; 813 datasz = 0; 814 break; 815 } 816 817 /* 818 * write blkno into the iv buffer padded on the left in case 819 * blkno ever grows bigger than its current longlong_t size 820 * or a variation other than blkno is used for the iv data 821 */ 822 min = MIN(datasz, iv_len); 823 bcopy(data, iv + (iv_len - min), min); 824 825 /* encrypt the data in-place to get the IV */ 826 SETUP_C_DATA(cdata, iv, iv_len); 827 828 ret = crypto_encrypt(&lsp->ls_iv_mech, &cdata, &lsp->ls_key, 829 NULL, NULL, NULL); 830 if (ret != CRYPTO_SUCCESS) { 831 cmn_err(CE_WARN, "failed to create iv for block %lld: (0x%x)", 832 lblkno, ret); 833 if (lsp->ls_mech.cm_param != iv) 834 kmem_free(iv, iv_len); 835 836 return (ret); 837 } 838 839 /* clean up the iv from the last computation */ 840 if (lsp->ls_mech.cm_param != NULL && lsp->ls_mech.cm_param != iv) 841 kmem_free(lsp->ls_mech.cm_param, lsp->ls_mech.cm_param_len); 842 843 lsp->ls_mech.cm_param_len = iv_len; 844 lsp->ls_mech.cm_param = iv; 845 846 return (CRYPTO_SUCCESS); 847 } 848 849 /* 850 * Performs encryption and decryption of a chunk of data of size "len", 851 * one DEV_BSIZE block at a time. "len" is assumed to be a multiple of 852 * DEV_BSIZE. 853 */ 854 static int 855 lofi_crypto(struct lofi_state *lsp, struct buf *bp, caddr_t plaintext, 856 caddr_t ciphertext, size_t len, boolean_t op_encrypt) 857 { 858 crypto_data_t cdata; 859 crypto_data_t wdata; 860 int ret; 861 longlong_t lblkno = bp->b_lblkno; 862 863 mutex_enter(&lsp->ls_crypto_lock); 864 865 /* 866 * though we could encrypt/decrypt entire "len" chunk of data, we need 867 * to break it into DEV_BSIZE pieces to capture blkno incrementing 868 */ 869 SETUP_C_DATA(cdata, plaintext, len); 870 cdata.cd_length = DEV_BSIZE; 871 if (ciphertext != NULL) { /* not in-place crypto */ 872 SETUP_C_DATA(wdata, ciphertext, len); 873 wdata.cd_length = DEV_BSIZE; 874 } 875 876 do { 877 ret = lofi_blk_mech(lsp, lblkno); 878 if (ret != CRYPTO_SUCCESS) 879 continue; 880 881 if (op_encrypt) { 882 ret = crypto_encrypt(&lsp->ls_mech, &cdata, 883 &lsp->ls_key, NULL, 884 ((ciphertext != NULL) ? &wdata : NULL), NULL); 885 } else { 886 ret = crypto_decrypt(&lsp->ls_mech, &cdata, 887 &lsp->ls_key, NULL, 888 ((ciphertext != NULL) ? &wdata : NULL), NULL); 889 } 890 891 cdata.cd_offset += DEV_BSIZE; 892 if (ciphertext != NULL) 893 wdata.cd_offset += DEV_BSIZE; 894 lblkno++; 895 } while (ret == CRYPTO_SUCCESS && cdata.cd_offset < len); 896 897 mutex_exit(&lsp->ls_crypto_lock); 898 899 if (ret != CRYPTO_SUCCESS) { 900 cmn_err(CE_WARN, "%s failed for block %lld: (0x%x)", 901 op_encrypt ? "crypto_encrypt()" : "crypto_decrypt()", 902 lblkno, ret); 903 } 904 905 return (ret); 906 } 907 908 #define RDWR_RAW 1 909 #define RDWR_BCOPY 2 910 911 static int 912 lofi_rdwr(caddr_t bufaddr, offset_t offset, struct buf *bp, 913 struct lofi_state *lsp, size_t len, int method, caddr_t bcopy_locn) 914 { 915 ssize_t resid; 916 int isread; 917 int error; 918 919 /* 920 * Handles reads/writes for both plain and encrypted lofi 921 * Note: offset is already shifted by lsp->ls_crypto_offset 922 * when it gets here. 923 */ 924 925 isread = bp->b_flags & B_READ; 926 if (isread) { 927 if (method == RDWR_BCOPY) { 928 /* DO NOT update bp->b_resid for bcopy */ 929 bcopy(bcopy_locn, bufaddr, len); 930 error = 0; 931 } else { /* RDWR_RAW */ 932 error = vn_rdwr(UIO_READ, lsp->ls_vp, bufaddr, len, 933 offset, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, 934 &resid); 935 bp->b_resid = resid; 936 } 937 if (lsp->ls_crypto_enabled && error == 0) { 938 if (lofi_crypto(lsp, bp, bufaddr, NULL, len, 939 B_FALSE) != CRYPTO_SUCCESS) { 940 /* 941 * XXX: original code didn't set residual 942 * back to len because no error was expected 943 * from bcopy() if encryption is not enabled 944 */ 945 if (method != RDWR_BCOPY) 946 bp->b_resid = len; 947 error = EIO; 948 } 949 } 950 return (error); 951 } else { 952 void *iobuf = bufaddr; 953 954 if (lsp->ls_crypto_enabled) { 955 /* don't do in-place crypto to keep bufaddr intact */ 956 iobuf = kmem_alloc(len, KM_SLEEP); 957 if (lofi_crypto(lsp, bp, bufaddr, iobuf, len, 958 B_TRUE) != CRYPTO_SUCCESS) { 959 kmem_free(iobuf, len); 960 if (method != RDWR_BCOPY) 961 bp->b_resid = len; 962 return (EIO); 963 } 964 } 965 if (method == RDWR_BCOPY) { 966 /* DO NOT update bp->b_resid for bcopy */ 967 bcopy(iobuf, bcopy_locn, len); 968 error = 0; 969 } else { /* RDWR_RAW */ 970 error = vn_rdwr(UIO_WRITE, lsp->ls_vp, iobuf, len, 971 offset, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, 972 &resid); 973 bp->b_resid = resid; 974 } 975 if (lsp->ls_crypto_enabled) { 976 kmem_free(iobuf, len); 977 } 978 return (error); 979 } 980 } 981 982 static int 983 lofi_mapped_rdwr(caddr_t bufaddr, offset_t offset, struct buf *bp, 984 struct lofi_state *lsp) 985 { 986 int error; 987 offset_t alignedoffset, mapoffset; 988 size_t xfersize; 989 int isread; 990 int smflags; 991 caddr_t mapaddr; 992 size_t len; 993 enum seg_rw srw; 994 int save_error; 995 996 /* 997 * Note: offset is already shifted by lsp->ls_crypto_offset 998 * when it gets here. 999 */ 1000 if (lsp->ls_crypto_enabled) 1001 ASSERT(lsp->ls_vp_comp_size == lsp->ls_vp_size); 1002 1003 /* 1004 * segmap always gives us an 8K (MAXBSIZE) chunk, aligned on 1005 * an 8K boundary, but the buf transfer address may not be 1006 * aligned on more than a 512-byte boundary (we don't enforce 1007 * that even though we could). This matters since the initial 1008 * part of the transfer may not start at offset 0 within the 1009 * segmap'd chunk. So we have to compensate for that with 1010 * 'mapoffset'. Subsequent chunks always start off at the 1011 * beginning, and the last is capped by b_resid 1012 * 1013 * Visually, where "|" represents page map boundaries: 1014 * alignedoffset (mapaddr begins at this segmap boundary) 1015 * | offset (from beginning of file) 1016 * | | len 1017 * v v v 1018 * ===|====X========|====...======|========X====|==== 1019 * /-------------...---------------/ 1020 * ^ bp->b_bcount/bp->b_resid at start 1021 * /----/--------/----...------/--------/ 1022 * ^ ^ ^ ^ ^ 1023 * | | | | nth xfersize (<= MAXBSIZE) 1024 * | | 2nd thru n-1st xfersize (= MAXBSIZE) 1025 * | 1st xfersize (<= MAXBSIZE) 1026 * mapoffset (offset into 1st segmap, non-0 1st time, 0 thereafter) 1027 * 1028 * Notes: "alignedoffset" is "offset" rounded down to nearest 1029 * MAXBSIZE boundary. "len" is next page boundary of size 1030 * PAGESIZE after "alignedoffset". 1031 */ 1032 mapoffset = offset & MAXBOFFSET; 1033 alignedoffset = offset - mapoffset; 1034 bp->b_resid = bp->b_bcount; 1035 isread = bp->b_flags & B_READ; 1036 srw = isread ? S_READ : S_WRITE; 1037 do { 1038 xfersize = MIN(lsp->ls_vp_comp_size - offset, 1039 MIN(MAXBSIZE - mapoffset, bp->b_resid)); 1040 len = roundup(mapoffset + xfersize, PAGESIZE); 1041 mapaddr = segmap_getmapflt(segkmap, lsp->ls_vp, 1042 alignedoffset, MAXBSIZE, 1, srw); 1043 /* 1044 * Now fault in the pages. This lets us check 1045 * for errors before we reference mapaddr and 1046 * try to resolve the fault in bcopy (which would 1047 * panic instead). And this can easily happen, 1048 * particularly if you've lofi'd a file over NFS 1049 * and someone deletes the file on the server. 1050 */ 1051 error = segmap_fault(kas.a_hat, segkmap, mapaddr, 1052 len, F_SOFTLOCK, srw); 1053 if (error) { 1054 (void) segmap_release(segkmap, mapaddr, 0); 1055 if (FC_CODE(error) == FC_OBJERR) 1056 error = FC_ERRNO(error); 1057 else 1058 error = EIO; 1059 break; 1060 } 1061 /* error may be non-zero for encrypted lofi */ 1062 error = lofi_rdwr(bufaddr, 0, bp, lsp, xfersize, 1063 RDWR_BCOPY, mapaddr + mapoffset); 1064 if (error == 0) { 1065 bp->b_resid -= xfersize; 1066 bufaddr += xfersize; 1067 offset += xfersize; 1068 } 1069 smflags = 0; 1070 if (isread) { 1071 smflags |= SM_FREE; 1072 /* 1073 * If we're reading an entire page starting 1074 * at a page boundary, there's a good chance 1075 * we won't need it again. Put it on the 1076 * head of the freelist. 1077 */ 1078 if (mapoffset == 0 && xfersize == MAXBSIZE) 1079 smflags |= SM_DONTNEED; 1080 } else { 1081 /* 1082 * Write back good pages, it is okay to 1083 * always release asynchronous here as we'll 1084 * follow with VOP_FSYNC for B_SYNC buffers. 1085 */ 1086 if (error == 0) 1087 smflags |= SM_WRITE | SM_ASYNC; 1088 } 1089 (void) segmap_fault(kas.a_hat, segkmap, mapaddr, 1090 len, F_SOFTUNLOCK, srw); 1091 save_error = segmap_release(segkmap, mapaddr, smflags); 1092 if (error == 0) 1093 error = save_error; 1094 /* only the first map may start partial */ 1095 mapoffset = 0; 1096 alignedoffset += MAXBSIZE; 1097 } while ((error == 0) && (bp->b_resid > 0) && 1098 (offset < lsp->ls_vp_comp_size)); 1099 1100 return (error); 1101 } 1102 1103 /* 1104 * Check if segment seg_index is present in the decompressed segment 1105 * data cache. 1106 * 1107 * Returns a pointer to the decompressed segment data cache entry if 1108 * found, and NULL when decompressed data for this segment is not yet 1109 * cached. 1110 */ 1111 static struct lofi_comp_cache * 1112 lofi_find_comp_data(struct lofi_state *lsp, uint64_t seg_index) 1113 { 1114 struct lofi_comp_cache *lc; 1115 1116 ASSERT(MUTEX_HELD(&lsp->ls_comp_cache_lock)); 1117 1118 for (lc = list_head(&lsp->ls_comp_cache); lc != NULL; 1119 lc = list_next(&lsp->ls_comp_cache, lc)) { 1120 if (lc->lc_index == seg_index) { 1121 /* 1122 * Decompressed segment data was found in the 1123 * cache. 1124 * 1125 * The cache uses an LRU replacement strategy; 1126 * move the entry to head of list. 1127 */ 1128 list_remove(&lsp->ls_comp_cache, lc); 1129 list_insert_head(&lsp->ls_comp_cache, lc); 1130 return (lc); 1131 } 1132 } 1133 return (NULL); 1134 } 1135 1136 /* 1137 * Add the data for a decompressed segment at segment index 1138 * seg_index to the cache of the decompressed segments. 1139 * 1140 * Returns a pointer to the cache element structure in case 1141 * the data was added to the cache; returns NULL when the data 1142 * wasn't cached. 1143 */ 1144 static struct lofi_comp_cache * 1145 lofi_add_comp_data(struct lofi_state *lsp, uint64_t seg_index, 1146 uchar_t *data) 1147 { 1148 struct lofi_comp_cache *lc; 1149 1150 ASSERT(MUTEX_HELD(&lsp->ls_comp_cache_lock)); 1151 1152 while (lsp->ls_comp_cache_count > lofi_max_comp_cache) { 1153 lc = list_remove_tail(&lsp->ls_comp_cache); 1154 ASSERT(lc != NULL); 1155 kmem_free(lc->lc_data, lsp->ls_uncomp_seg_sz); 1156 kmem_free(lc, sizeof (struct lofi_comp_cache)); 1157 lsp->ls_comp_cache_count--; 1158 } 1159 1160 /* 1161 * Do not cache when disabled by tunable variable 1162 */ 1163 if (lofi_max_comp_cache == 0) 1164 return (NULL); 1165 1166 /* 1167 * When the cache has not yet reached the maximum allowed 1168 * number of segments, allocate a new cache element. 1169 * Otherwise the cache is full; reuse the last list element 1170 * (LRU) for caching the decompressed segment data. 1171 * 1172 * The cache element for the new decompressed segment data is 1173 * added to the head of the list. 1174 */ 1175 if (lsp->ls_comp_cache_count < lofi_max_comp_cache) { 1176 lc = kmem_alloc(sizeof (struct lofi_comp_cache), KM_SLEEP); 1177 lc->lc_data = NULL; 1178 list_insert_head(&lsp->ls_comp_cache, lc); 1179 lsp->ls_comp_cache_count++; 1180 } else { 1181 lc = list_remove_tail(&lsp->ls_comp_cache); 1182 if (lc == NULL) 1183 return (NULL); 1184 list_insert_head(&lsp->ls_comp_cache, lc); 1185 } 1186 1187 /* 1188 * Free old uncompressed segment data when reusing a cache 1189 * entry. 1190 */ 1191 if (lc->lc_data != NULL) 1192 kmem_free(lc->lc_data, lsp->ls_uncomp_seg_sz); 1193 1194 lc->lc_data = data; 1195 lc->lc_index = seg_index; 1196 return (lc); 1197 } 1198 1199 1200 /*ARGSUSED*/ 1201 static int 1202 gzip_decompress(void *src, size_t srclen, void *dst, 1203 size_t *dstlen, int level) 1204 { 1205 ASSERT(*dstlen >= srclen); 1206 1207 if (z_uncompress(dst, dstlen, src, srclen) != Z_OK) 1208 return (-1); 1209 return (0); 1210 } 1211 1212 #define LZMA_HEADER_SIZE (LZMA_PROPS_SIZE + 8) 1213 /*ARGSUSED*/ 1214 static int 1215 lzma_decompress(void *src, size_t srclen, void *dst, 1216 size_t *dstlen, int level) 1217 { 1218 size_t insizepure; 1219 void *actual_src; 1220 ELzmaStatus status; 1221 1222 insizepure = srclen - LZMA_HEADER_SIZE; 1223 actual_src = (void *)((Byte *)src + LZMA_HEADER_SIZE); 1224 1225 if (LzmaDecode((Byte *)dst, (size_t *)dstlen, 1226 (const Byte *)actual_src, &insizepure, 1227 (const Byte *)src, LZMA_PROPS_SIZE, LZMA_FINISH_ANY, &status, 1228 &g_Alloc) != SZ_OK) { 1229 return (-1); 1230 } 1231 return (0); 1232 } 1233 1234 /* 1235 * This is basically what strategy used to be before we found we 1236 * needed task queues. 1237 */ 1238 static void 1239 lofi_strategy_task(void *arg) 1240 { 1241 struct buf *bp = (struct buf *)arg; 1242 int error; 1243 int syncflag = 0; 1244 struct lofi_state *lsp; 1245 offset_t offset; 1246 caddr_t bufaddr; 1247 size_t len; 1248 size_t xfersize; 1249 boolean_t bufinited = B_FALSE; 1250 1251 lsp = ddi_get_soft_state(lofi_statep, 1252 LOFI_MINOR2ID(getminor(bp->b_edev))); 1253 1254 if (lsp == NULL) { 1255 error = ENXIO; 1256 goto errout; 1257 } 1258 if (lsp->ls_kstat) { 1259 mutex_enter(lsp->ls_kstat->ks_lock); 1260 kstat_waitq_to_runq(KSTAT_IO_PTR(lsp->ls_kstat)); 1261 mutex_exit(lsp->ls_kstat->ks_lock); 1262 } 1263 1264 mutex_enter(&lsp->ls_vp_lock); 1265 lsp->ls_vp_iocount++; 1266 mutex_exit(&lsp->ls_vp_lock); 1267 1268 bp_mapin(bp); 1269 bufaddr = bp->b_un.b_addr; 1270 offset = (bp->b_lblkno + (diskaddr_t)(uintptr_t)bp->b_private) 1271 << lsp->ls_lbshift; /* offset within file */ 1272 if (lsp->ls_crypto_enabled) { 1273 /* encrypted data really begins after crypto header */ 1274 offset += lsp->ls_crypto_offset; 1275 } 1276 len = bp->b_bcount; 1277 bufinited = B_TRUE; 1278 1279 if (lsp->ls_vp == NULL || lsp->ls_vp_closereq) { 1280 error = EIO; 1281 goto errout; 1282 } 1283 1284 /* 1285 * If we're writing and the buffer was not B_ASYNC 1286 * we'll follow up with a VOP_FSYNC() to force any 1287 * asynchronous I/O to stable storage. 1288 */ 1289 if (!(bp->b_flags & B_READ) && !(bp->b_flags & B_ASYNC)) 1290 syncflag = FSYNC; 1291 1292 /* 1293 * We used to always use vn_rdwr here, but we cannot do that because 1294 * we might decide to read or write from the the underlying 1295 * file during this call, which would be a deadlock because 1296 * we have the rw_lock. So instead we page, unless it's not 1297 * mapable or it's a character device or it's an encrypted lofi. 1298 */ 1299 if ((lsp->ls_vp->v_flag & VNOMAP) || (lsp->ls_vp->v_type == VCHR) || 1300 lsp->ls_crypto_enabled) { 1301 error = lofi_rdwr(bufaddr, offset, bp, lsp, len, RDWR_RAW, 1302 NULL); 1303 } else if (lsp->ls_uncomp_seg_sz == 0) { 1304 error = lofi_mapped_rdwr(bufaddr, offset, bp, lsp); 1305 } else { 1306 uchar_t *compressed_seg = NULL, *cmpbuf; 1307 uchar_t *uncompressed_seg = NULL; 1308 lofi_compress_info_t *li; 1309 size_t oblkcount; 1310 ulong_t seglen; 1311 uint64_t sblkno, eblkno, cmpbytes; 1312 uint64_t uncompressed_seg_index; 1313 struct lofi_comp_cache *lc; 1314 offset_t sblkoff, eblkoff; 1315 u_offset_t salign, ealign; 1316 u_offset_t sdiff; 1317 uint32_t comp_data_sz; 1318 uint64_t i; 1319 int j; 1320 1321 /* 1322 * From here on we're dealing primarily with compressed files 1323 */ 1324 ASSERT(!lsp->ls_crypto_enabled); 1325 1326 /* 1327 * Compressed files can only be read from and 1328 * not written to 1329 */ 1330 if (!(bp->b_flags & B_READ)) { 1331 bp->b_resid = bp->b_bcount; 1332 error = EROFS; 1333 goto done; 1334 } 1335 1336 ASSERT(lsp->ls_comp_algorithm_index >= 0); 1337 li = &lofi_compress_table[lsp->ls_comp_algorithm_index]; 1338 /* 1339 * Compute starting and ending compressed segment numbers 1340 * We use only bitwise operations avoiding division and 1341 * modulus because we enforce the compression segment size 1342 * to a power of 2 1343 */ 1344 sblkno = offset >> lsp->ls_comp_seg_shift; 1345 sblkoff = offset & (lsp->ls_uncomp_seg_sz - 1); 1346 eblkno = (offset + bp->b_bcount) >> lsp->ls_comp_seg_shift; 1347 eblkoff = (offset + bp->b_bcount) & (lsp->ls_uncomp_seg_sz - 1); 1348 1349 /* 1350 * Check the decompressed segment cache. 1351 * 1352 * The cache is used only when the requested data 1353 * is within a segment. Requests that cross 1354 * segment boundaries bypass the cache. 1355 */ 1356 if (sblkno == eblkno || 1357 (sblkno + 1 == eblkno && eblkoff == 0)) { 1358 /* 1359 * Request doesn't cross a segment boundary, 1360 * now check the cache. 1361 */ 1362 mutex_enter(&lsp->ls_comp_cache_lock); 1363 lc = lofi_find_comp_data(lsp, sblkno); 1364 if (lc != NULL) { 1365 /* 1366 * We've found the decompressed segment 1367 * data in the cache; reuse it. 1368 */ 1369 bcopy(lc->lc_data + sblkoff, bufaddr, 1370 bp->b_bcount); 1371 mutex_exit(&lsp->ls_comp_cache_lock); 1372 bp->b_resid = 0; 1373 error = 0; 1374 goto done; 1375 } 1376 mutex_exit(&lsp->ls_comp_cache_lock); 1377 } 1378 1379 /* 1380 * Align start offset to block boundary for segmap 1381 */ 1382 salign = lsp->ls_comp_seg_index[sblkno]; 1383 sdiff = salign & (DEV_BSIZE - 1); 1384 salign -= sdiff; 1385 if (eblkno >= (lsp->ls_comp_index_sz - 1)) { 1386 /* 1387 * We're dealing with the last segment of 1388 * the compressed file -- the size of this 1389 * segment *may not* be the same as the 1390 * segment size for the file 1391 */ 1392 eblkoff = (offset + bp->b_bcount) & 1393 (lsp->ls_uncomp_last_seg_sz - 1); 1394 ealign = lsp->ls_vp_comp_size; 1395 } else { 1396 ealign = lsp->ls_comp_seg_index[eblkno + 1]; 1397 } 1398 1399 /* 1400 * Preserve original request paramaters 1401 */ 1402 oblkcount = bp->b_bcount; 1403 1404 /* 1405 * Assign the calculated parameters 1406 */ 1407 comp_data_sz = ealign - salign; 1408 bp->b_bcount = comp_data_sz; 1409 1410 /* 1411 * Buffers to hold compressed segments are pre-allocated 1412 * on a per-thread basis. Find a pre-allocated buffer 1413 * that is not currently in use and mark it for use. 1414 */ 1415 mutex_enter(&lsp->ls_comp_bufs_lock); 1416 for (j = 0; j < lofi_taskq_nthreads; j++) { 1417 if (lsp->ls_comp_bufs[j].inuse == 0) { 1418 lsp->ls_comp_bufs[j].inuse = 1; 1419 break; 1420 } 1421 } 1422 1423 mutex_exit(&lsp->ls_comp_bufs_lock); 1424 ASSERT(j < lofi_taskq_nthreads); 1425 1426 /* 1427 * If the pre-allocated buffer size does not match 1428 * the size of the I/O request, re-allocate it with 1429 * the appropriate size 1430 */ 1431 if (lsp->ls_comp_bufs[j].bufsize < bp->b_bcount) { 1432 if (lsp->ls_comp_bufs[j].bufsize > 0) 1433 kmem_free(lsp->ls_comp_bufs[j].buf, 1434 lsp->ls_comp_bufs[j].bufsize); 1435 lsp->ls_comp_bufs[j].buf = kmem_alloc(bp->b_bcount, 1436 KM_SLEEP); 1437 lsp->ls_comp_bufs[j].bufsize = bp->b_bcount; 1438 } 1439 compressed_seg = lsp->ls_comp_bufs[j].buf; 1440 1441 /* 1442 * Map in the calculated number of blocks 1443 */ 1444 error = lofi_mapped_rdwr((caddr_t)compressed_seg, salign, 1445 bp, lsp); 1446 1447 bp->b_bcount = oblkcount; 1448 bp->b_resid = oblkcount; 1449 if (error != 0) 1450 goto done; 1451 1452 /* 1453 * decompress compressed blocks start 1454 */ 1455 cmpbuf = compressed_seg + sdiff; 1456 for (i = sblkno; i <= eblkno; i++) { 1457 ASSERT(i < lsp->ls_comp_index_sz - 1); 1458 uchar_t *useg; 1459 1460 /* 1461 * The last segment is special in that it is 1462 * most likely not going to be the same 1463 * (uncompressed) size as the other segments. 1464 */ 1465 if (i == (lsp->ls_comp_index_sz - 2)) { 1466 seglen = lsp->ls_uncomp_last_seg_sz; 1467 } else { 1468 seglen = lsp->ls_uncomp_seg_sz; 1469 } 1470 1471 /* 1472 * Each of the segment index entries contains 1473 * the starting block number for that segment. 1474 * The number of compressed bytes in a segment 1475 * is thus the difference between the starting 1476 * block number of this segment and the starting 1477 * block number of the next segment. 1478 */ 1479 cmpbytes = lsp->ls_comp_seg_index[i + 1] - 1480 lsp->ls_comp_seg_index[i]; 1481 1482 /* 1483 * The first byte in a compressed segment is a flag 1484 * that indicates whether this segment is compressed 1485 * at all. 1486 * 1487 * The variable 'useg' is used (instead of 1488 * uncompressed_seg) in this loop to keep a 1489 * reference to the uncompressed segment. 1490 * 1491 * N.B. If 'useg' is replaced with uncompressed_seg, 1492 * it leads to memory leaks and heap corruption in 1493 * corner cases where compressed segments lie 1494 * adjacent to uncompressed segments. 1495 */ 1496 if (*cmpbuf == UNCOMPRESSED) { 1497 useg = cmpbuf + SEGHDR; 1498 } else { 1499 if (uncompressed_seg == NULL) 1500 uncompressed_seg = 1501 kmem_alloc(lsp->ls_uncomp_seg_sz, 1502 KM_SLEEP); 1503 useg = uncompressed_seg; 1504 uncompressed_seg_index = i; 1505 1506 if (li->l_decompress((cmpbuf + SEGHDR), 1507 (cmpbytes - SEGHDR), uncompressed_seg, 1508 &seglen, li->l_level) != 0) { 1509 error = EIO; 1510 goto done; 1511 } 1512 } 1513 1514 /* 1515 * Determine how much uncompressed data we 1516 * have to copy and copy it 1517 */ 1518 xfersize = lsp->ls_uncomp_seg_sz - sblkoff; 1519 if (i == eblkno) 1520 xfersize -= (lsp->ls_uncomp_seg_sz - eblkoff); 1521 1522 bcopy((useg + sblkoff), bufaddr, xfersize); 1523 1524 cmpbuf += cmpbytes; 1525 bufaddr += xfersize; 1526 bp->b_resid -= xfersize; 1527 sblkoff = 0; 1528 1529 if (bp->b_resid == 0) 1530 break; 1531 } /* decompress compressed blocks ends */ 1532 1533 /* 1534 * Skip to done if there is no uncompressed data to cache 1535 */ 1536 if (uncompressed_seg == NULL) 1537 goto done; 1538 1539 /* 1540 * Add the data for the last decompressed segment to 1541 * the cache. 1542 * 1543 * In case the uncompressed segment data was added to (and 1544 * is referenced by) the cache, make sure we don't free it 1545 * here. 1546 */ 1547 mutex_enter(&lsp->ls_comp_cache_lock); 1548 if ((lc = lofi_add_comp_data(lsp, uncompressed_seg_index, 1549 uncompressed_seg)) != NULL) { 1550 uncompressed_seg = NULL; 1551 } 1552 mutex_exit(&lsp->ls_comp_cache_lock); 1553 1554 done: 1555 if (compressed_seg != NULL) { 1556 mutex_enter(&lsp->ls_comp_bufs_lock); 1557 lsp->ls_comp_bufs[j].inuse = 0; 1558 mutex_exit(&lsp->ls_comp_bufs_lock); 1559 } 1560 if (uncompressed_seg != NULL) 1561 kmem_free(uncompressed_seg, lsp->ls_uncomp_seg_sz); 1562 } /* end of handling compressed files */ 1563 1564 if ((error == 0) && (syncflag != 0)) 1565 error = VOP_FSYNC(lsp->ls_vp, syncflag, kcred, NULL); 1566 1567 errout: 1568 if (bufinited && lsp->ls_kstat) { 1569 size_t n_done = bp->b_bcount - bp->b_resid; 1570 kstat_io_t *kioptr; 1571 1572 mutex_enter(lsp->ls_kstat->ks_lock); 1573 kioptr = KSTAT_IO_PTR(lsp->ls_kstat); 1574 if (bp->b_flags & B_READ) { 1575 kioptr->nread += n_done; 1576 kioptr->reads++; 1577 } else { 1578 kioptr->nwritten += n_done; 1579 kioptr->writes++; 1580 } 1581 kstat_runq_exit(kioptr); 1582 mutex_exit(lsp->ls_kstat->ks_lock); 1583 } 1584 1585 mutex_enter(&lsp->ls_vp_lock); 1586 if (--lsp->ls_vp_iocount == 0) 1587 cv_broadcast(&lsp->ls_vp_cv); 1588 mutex_exit(&lsp->ls_vp_lock); 1589 1590 bioerror(bp, error); 1591 biodone(bp); 1592 } 1593 1594 static int 1595 lofi_strategy(struct buf *bp) 1596 { 1597 struct lofi_state *lsp; 1598 offset_t offset; 1599 minor_t part; 1600 diskaddr_t p_lba; 1601 diskaddr_t p_nblks; 1602 int shift; 1603 1604 /* 1605 * We cannot just do I/O here, because the current thread 1606 * _might_ end up back in here because the underlying filesystem 1607 * wants a buffer, which eventually gets into bio_recycle and 1608 * might call into lofi to write out a delayed-write buffer. 1609 * This is bad if the filesystem above lofi is the same as below. 1610 * 1611 * We could come up with a complex strategy using threads to 1612 * do the I/O asynchronously, or we could use task queues. task 1613 * queues were incredibly easy so they win. 1614 */ 1615 1616 lsp = ddi_get_soft_state(lofi_statep, 1617 LOFI_MINOR2ID(getminor(bp->b_edev))); 1618 part = LOFI_PART(getminor(bp->b_edev)); 1619 1620 if (lsp == NULL) { 1621 bioerror(bp, ENXIO); 1622 biodone(bp); 1623 return (0); 1624 } 1625 shift = lsp->ls_lbshift; 1626 1627 p_lba = 0; 1628 p_nblks = lsp->ls_vp_size >> shift; 1629 1630 if (lsp->ls_cmlbhandle != NULL) { 1631 if (cmlb_partinfo(lsp->ls_cmlbhandle, part, &p_nblks, &p_lba, 1632 NULL, NULL, 0)) { 1633 bioerror(bp, ENXIO); 1634 biodone(bp); 1635 return (0); 1636 } 1637 } 1638 1639 /* start block past partition end? */ 1640 if (bp->b_lblkno > p_nblks) { 1641 bioerror(bp, ENXIO); 1642 biodone(bp); 1643 return (0); 1644 } 1645 1646 offset = (bp->b_lblkno+p_lba) << shift; /* offset within file */ 1647 1648 mutex_enter(&lsp->ls_vp_lock); 1649 if (lsp->ls_vp == NULL || lsp->ls_vp_closereq) { 1650 bioerror(bp, EIO); 1651 biodone(bp); 1652 mutex_exit(&lsp->ls_vp_lock); 1653 return (0); 1654 } 1655 1656 if (lsp->ls_crypto_enabled) { 1657 /* encrypted data really begins after crypto header */ 1658 offset += lsp->ls_crypto_offset; 1659 } 1660 1661 /* make sure we will not pass the file or partition size */ 1662 if (offset == lsp->ls_vp_size || 1663 offset == (((p_lba + p_nblks) << shift) + lsp->ls_crypto_offset)) { 1664 /* EOF */ 1665 if ((bp->b_flags & B_READ) != 0) { 1666 bp->b_resid = bp->b_bcount; 1667 bioerror(bp, 0); 1668 } else { 1669 /* writes should fail */ 1670 bioerror(bp, ENXIO); 1671 } 1672 biodone(bp); 1673 mutex_exit(&lsp->ls_vp_lock); 1674 return (0); 1675 } 1676 if ((offset > lsp->ls_vp_size) || 1677 (offset > (((p_lba + p_nblks) << shift) + lsp->ls_crypto_offset)) || 1678 ((offset + bp->b_bcount) > ((p_lba + p_nblks) << shift))) { 1679 bioerror(bp, ENXIO); 1680 biodone(bp); 1681 mutex_exit(&lsp->ls_vp_lock); 1682 return (0); 1683 } 1684 1685 mutex_exit(&lsp->ls_vp_lock); 1686 1687 if (lsp->ls_kstat) { 1688 mutex_enter(lsp->ls_kstat->ks_lock); 1689 kstat_waitq_enter(KSTAT_IO_PTR(lsp->ls_kstat)); 1690 mutex_exit(lsp->ls_kstat->ks_lock); 1691 } 1692 bp->b_private = (void *)(uintptr_t)p_lba; /* partition start */ 1693 (void) taskq_dispatch(lsp->ls_taskq, lofi_strategy_task, bp, KM_SLEEP); 1694 return (0); 1695 } 1696 1697 /*ARGSUSED2*/ 1698 static int 1699 lofi_read(dev_t dev, struct uio *uio, struct cred *credp) 1700 { 1701 if (getminor(dev) == 0) 1702 return (EINVAL); 1703 UIO_CHECK(uio); 1704 return (physio(lofi_strategy, NULL, dev, B_READ, minphys, uio)); 1705 } 1706 1707 /*ARGSUSED2*/ 1708 static int 1709 lofi_write(dev_t dev, struct uio *uio, struct cred *credp) 1710 { 1711 if (getminor(dev) == 0) 1712 return (EINVAL); 1713 UIO_CHECK(uio); 1714 return (physio(lofi_strategy, NULL, dev, B_WRITE, minphys, uio)); 1715 } 1716 1717 /*ARGSUSED2*/ 1718 static int 1719 lofi_aread(dev_t dev, struct aio_req *aio, struct cred *credp) 1720 { 1721 if (getminor(dev) == 0) 1722 return (EINVAL); 1723 UIO_CHECK(aio->aio_uio); 1724 return (aphysio(lofi_strategy, anocancel, dev, B_READ, minphys, aio)); 1725 } 1726 1727 /*ARGSUSED2*/ 1728 static int 1729 lofi_awrite(dev_t dev, struct aio_req *aio, struct cred *credp) 1730 { 1731 if (getminor(dev) == 0) 1732 return (EINVAL); 1733 UIO_CHECK(aio->aio_uio); 1734 return (aphysio(lofi_strategy, anocancel, dev, B_WRITE, minphys, aio)); 1735 } 1736 1737 /*ARGSUSED*/ 1738 static int 1739 lofi_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 1740 { 1741 struct lofi_state *lsp; 1742 dev_t dev = (dev_t)arg; 1743 int instance; 1744 1745 instance = LOFI_MINOR2ID(getminor(dev)); 1746 switch (infocmd) { 1747 case DDI_INFO_DEVT2DEVINFO: 1748 lsp = ddi_get_soft_state(lofi_statep, instance); 1749 if (lsp == NULL) 1750 return (DDI_FAILURE); 1751 *result = lsp->ls_dip; 1752 return (DDI_SUCCESS); 1753 case DDI_INFO_DEVT2INSTANCE: 1754 *result = (void *) (intptr_t)instance; 1755 return (DDI_SUCCESS); 1756 } 1757 return (DDI_FAILURE); 1758 } 1759 1760 static int 1761 lofi_create_minor_nodes(struct lofi_state *lsp, boolean_t labeled) 1762 { 1763 int error = 0; 1764 int instance = ddi_get_instance(lsp->ls_dip); 1765 1766 if (labeled == B_TRUE) { 1767 cmlb_alloc_handle(&lsp->ls_cmlbhandle); 1768 error = cmlb_attach(lsp->ls_dip, &lofi_tg_ops, DTYPE_DIRECT, 1769 B_FALSE, B_FALSE, DDI_NT_BLOCK_CHAN, 1770 CMLB_CREATE_P0_MINOR_NODE, lsp->ls_cmlbhandle, (void *)1); 1771 1772 if (error != DDI_SUCCESS) { 1773 cmlb_free_handle(&lsp->ls_cmlbhandle); 1774 lsp->ls_cmlbhandle = NULL; 1775 error = ENXIO; 1776 } 1777 } else { 1778 /* create minor nodes */ 1779 error = ddi_create_minor_node(lsp->ls_dip, LOFI_BLOCK_NODE, 1780 S_IFBLK, LOFI_ID2MINOR(instance), DDI_PSEUDO, 0); 1781 if (error == DDI_SUCCESS) { 1782 error = ddi_create_minor_node(lsp->ls_dip, 1783 LOFI_CHAR_NODE, S_IFCHR, LOFI_ID2MINOR(instance), 1784 DDI_PSEUDO, 0); 1785 if (error != DDI_SUCCESS) { 1786 ddi_remove_minor_node(lsp->ls_dip, 1787 LOFI_BLOCK_NODE); 1788 error = ENXIO; 1789 } 1790 } else 1791 error = ENXIO; 1792 } 1793 return (error); 1794 } 1795 1796 static int 1797 lofi_zone_bind(struct lofi_state *lsp) 1798 { 1799 int error = 0; 1800 1801 mutex_enter(&curproc->p_lock); 1802 if ((error = rctl_incr_lofi(curproc, curproc->p_zone, 1)) != 0) { 1803 mutex_exit(&curproc->p_lock); 1804 return (error); 1805 } 1806 mutex_exit(&curproc->p_lock); 1807 1808 if (ddi_prop_update_string(lsp->ls_dev, lsp->ls_dip, ZONE_PROP_NAME, 1809 (char *)curproc->p_zone->zone_name) != DDI_PROP_SUCCESS) { 1810 rctl_decr_lofi(curproc->p_zone, 1); 1811 error = EINVAL; 1812 } else { 1813 zone_init_ref(&lsp->ls_zone); 1814 zone_hold_ref(curzone, &lsp->ls_zone, ZONE_REF_LOFI); 1815 } 1816 return (error); 1817 } 1818 1819 static void 1820 lofi_zone_unbind(struct lofi_state *lsp) 1821 { 1822 (void) ddi_prop_remove(DDI_DEV_T_NONE, lsp->ls_dip, ZONE_PROP_NAME); 1823 rctl_decr_lofi(curproc->p_zone, 1); 1824 zone_rele_ref(&lsp->ls_zone, ZONE_REF_LOFI); 1825 } 1826 1827 static int 1828 lofi_online_dev(dev_info_t *dip) 1829 { 1830 boolean_t labeled; 1831 int error; 1832 int instance = ddi_get_instance(dip); 1833 struct lofi_state *lsp; 1834 1835 labeled = B_FALSE; 1836 if (ddi_prop_exists(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, "labeled")) 1837 labeled = B_TRUE; 1838 1839 /* lsp alloc+init, soft state is freed in lofi_detach */ 1840 error = ddi_soft_state_zalloc(lofi_statep, instance); 1841 if (error == DDI_FAILURE) { 1842 return (ENOMEM); 1843 } 1844 1845 lsp = ddi_get_soft_state(lofi_statep, instance); 1846 lsp->ls_dip = dip; 1847 1848 if ((error = lofi_zone_bind(lsp)) != 0) 1849 goto err; 1850 1851 cv_init(&lsp->ls_vp_cv, NULL, CV_DRIVER, NULL); 1852 mutex_init(&lsp->ls_comp_cache_lock, NULL, MUTEX_DRIVER, NULL); 1853 mutex_init(&lsp->ls_comp_bufs_lock, NULL, MUTEX_DRIVER, NULL); 1854 mutex_init(&lsp->ls_kstat_lock, NULL, MUTEX_DRIVER, NULL); 1855 mutex_init(&lsp->ls_vp_lock, NULL, MUTEX_DRIVER, NULL); 1856 1857 if ((error = lofi_create_minor_nodes(lsp, labeled)) != 0) { 1858 lofi_zone_unbind(lsp); 1859 goto lerr; 1860 } 1861 1862 /* driver handles kernel-issued IOCTLs */ 1863 if (ddi_prop_create(DDI_DEV_T_NONE, dip, DDI_PROP_CANSLEEP, 1864 DDI_KERNEL_IOCTL, NULL, 0) != DDI_PROP_SUCCESS) { 1865 error = DDI_FAILURE; 1866 goto merr; 1867 } 1868 1869 lsp->ls_kstat = kstat_create_zone(LOFI_DRIVER_NAME, instance, 1870 NULL, "disk", KSTAT_TYPE_IO, 1, 0, getzoneid()); 1871 if (lsp->ls_kstat == NULL) { 1872 (void) ddi_prop_remove(DDI_DEV_T_NONE, lsp->ls_dip, 1873 DDI_KERNEL_IOCTL); 1874 error = ENOMEM; 1875 goto merr; 1876 } 1877 1878 lsp->ls_kstat->ks_lock = &lsp->ls_kstat_lock; 1879 kstat_zone_add(lsp->ls_kstat, GLOBAL_ZONEID); 1880 kstat_install(lsp->ls_kstat); 1881 return (DDI_SUCCESS); 1882 merr: 1883 if (lsp->ls_cmlbhandle != NULL) { 1884 cmlb_detach(lsp->ls_cmlbhandle, 0); 1885 cmlb_free_handle(&lsp->ls_cmlbhandle); 1886 } 1887 ddi_remove_minor_node(dip, NULL); 1888 lofi_zone_unbind(lsp); 1889 lerr: 1890 mutex_destroy(&lsp->ls_comp_cache_lock); 1891 mutex_destroy(&lsp->ls_comp_bufs_lock); 1892 mutex_destroy(&lsp->ls_kstat_lock); 1893 mutex_destroy(&lsp->ls_vp_lock); 1894 cv_destroy(&lsp->ls_vp_cv); 1895 err: 1896 ddi_soft_state_free(lofi_statep, instance); 1897 return (error); 1898 } 1899 1900 /*ARGSUSED*/ 1901 static int 1902 lofi_dev_callback(sysevent_t *ev, void *cookie) 1903 { 1904 nvlist_t *nvlist; 1905 char *class, *driver; 1906 char name[10]; 1907 int32_t instance; 1908 1909 class = sysevent_get_class_name(ev); 1910 if (strcmp(class, EC_DEV_ADD) && strcmp(class, EC_DEV_REMOVE)) 1911 return (0); 1912 1913 (void) sysevent_get_attr_list(ev, &nvlist); 1914 driver = fnvlist_lookup_string(nvlist, DEV_DRIVER_NAME); 1915 instance = fnvlist_lookup_int32(nvlist, DEV_INSTANCE); 1916 1917 if (strcmp(driver, LOFI_DRIVER_NAME) != 0) { 1918 fnvlist_free(nvlist); 1919 return (0); 1920 } 1921 1922 /* 1923 * insert or remove device info, then announce the change 1924 * via cv_broadcast. 1925 * This allows the MAP/UNMAP to monitor device change. 1926 */ 1927 (void) snprintf(name, sizeof (name), "%d", instance); 1928 if (strcmp(class, EC_DEV_ADD) == 0) { 1929 mutex_enter(&lofi_chan_lock); 1930 fnvlist_add_nvlist(lofi_devlink_cache, name, nvlist); 1931 cv_broadcast(&lofi_chan_cv); 1932 mutex_exit(&lofi_chan_lock); 1933 } else if (strcmp(class, EC_DEV_REMOVE) == 0) { 1934 mutex_enter(&lofi_chan_lock); 1935 /* Can not use fnvlist_remove() as we can get ENOENT. */ 1936 (void) nvlist_remove_all(lofi_devlink_cache, name); 1937 cv_broadcast(&lofi_chan_cv); 1938 mutex_exit(&lofi_chan_lock); 1939 } 1940 1941 fnvlist_free(nvlist); 1942 return (0); 1943 } 1944 1945 static int 1946 lofi_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) 1947 { 1948 int rv; 1949 int instance = ddi_get_instance(dip); 1950 struct lofi_state *lsp; 1951 1952 if (cmd != DDI_ATTACH) 1953 return (DDI_FAILURE); 1954 1955 /* 1956 * Instance 0 is control instance, attaching control instance 1957 * will set the lofi up and ready. 1958 */ 1959 if (instance == 0) { 1960 rv = ddi_soft_state_zalloc(lofi_statep, 0); 1961 if (rv == DDI_FAILURE) { 1962 return (DDI_FAILURE); 1963 } 1964 lsp = ddi_get_soft_state(lofi_statep, instance); 1965 rv = ddi_create_minor_node(dip, LOFI_CTL_NODE, S_IFCHR, 0, 1966 DDI_PSEUDO, 0); 1967 if (rv == DDI_FAILURE) { 1968 ddi_soft_state_free(lofi_statep, 0); 1969 return (DDI_FAILURE); 1970 } 1971 /* driver handles kernel-issued IOCTLs */ 1972 if (ddi_prop_create(DDI_DEV_T_NONE, dip, DDI_PROP_CANSLEEP, 1973 DDI_KERNEL_IOCTL, NULL, 0) != DDI_PROP_SUCCESS) { 1974 ddi_remove_minor_node(dip, NULL); 1975 ddi_soft_state_free(lofi_statep, 0); 1976 return (DDI_FAILURE); 1977 } 1978 1979 rv = sysevent_evc_bind(DEVFS_CHANNEL, &lofi_chan, 1980 EVCH_CREAT | EVCH_HOLD_PEND); 1981 if (rv == 0) { 1982 rv = sysevent_evc_subscribe(lofi_chan, "lofi", 1983 EC_ALL, lofi_dev_callback, NULL, 0); 1984 rv |= sysevent_evc_subscribe(lofi_chan, "disk", 1985 EC_ALL, lofi_dev_callback, NULL, 0); 1986 } else 1987 lofi_chan = NULL; 1988 if (rv != 0) { 1989 if (lofi_chan != NULL) 1990 (void) sysevent_evc_unbind(lofi_chan); 1991 ddi_prop_remove_all(dip); 1992 ddi_remove_minor_node(dip, NULL); 1993 ddi_soft_state_free(lofi_statep, 0); 1994 return (DDI_FAILURE); 1995 } 1996 zone_key_create(&lofi_zone_key, NULL, lofi_zone_shutdown, NULL); 1997 1998 lsp->ls_dip = dip; 1999 } else { 2000 if (lofi_online_dev(dip) == DDI_FAILURE) 2001 return (DDI_FAILURE); 2002 } 2003 2004 ddi_report_dev(dip); 2005 return (DDI_SUCCESS); 2006 } 2007 2008 static int 2009 lofi_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 2010 { 2011 struct lofi_state *lsp; 2012 int instance = ddi_get_instance(dip); 2013 2014 if (cmd != DDI_DETACH) 2015 return (DDI_FAILURE); 2016 2017 /* 2018 * If the instance is not 0, release state. 2019 * The instance 0 is control device, we can not detach it 2020 * before other instances are detached. 2021 */ 2022 if (instance != 0) { 2023 lsp = ddi_get_soft_state(lofi_statep, instance); 2024 if (lsp != NULL && lsp->ls_vp_ready == B_FALSE) { 2025 ddi_soft_state_free(lofi_statep, instance); 2026 return (DDI_SUCCESS); 2027 } else 2028 return (DDI_FAILURE); 2029 } 2030 mutex_enter(&lofi_lock); 2031 2032 if (!list_is_empty(&lofi_list)) { 2033 mutex_exit(&lofi_lock); 2034 return (DDI_FAILURE); 2035 } 2036 2037 ddi_remove_minor_node(dip, NULL); 2038 ddi_prop_remove_all(dip); 2039 2040 mutex_exit(&lofi_lock); 2041 2042 (void) sysevent_evc_unbind(lofi_chan); 2043 if (zone_key_delete(lofi_zone_key) != 0) 2044 cmn_err(CE_WARN, "failed to delete zone key"); 2045 2046 ddi_soft_state_free(lofi_statep, 0); 2047 2048 return (DDI_SUCCESS); 2049 } 2050 2051 /* 2052 * With the addition of encryption, we must be careful that encryption key is 2053 * wiped before kernel's data structures are freed so it cannot accidentally 2054 * slip out to userland through uninitialized data elsewhere. 2055 */ 2056 static void 2057 free_lofi_ioctl(struct lofi_ioctl *klip) 2058 { 2059 /* Make sure this encryption key doesn't stick around */ 2060 bzero(klip->li_key, sizeof (klip->li_key)); 2061 kmem_free(klip, sizeof (struct lofi_ioctl)); 2062 } 2063 2064 /* 2065 * These two functions simplify the rest of the ioctls that need to copyin/out 2066 * the lofi_ioctl structure. 2067 */ 2068 int 2069 copy_in_lofi_ioctl(const struct lofi_ioctl *ulip, struct lofi_ioctl **klipp, 2070 int flag) 2071 { 2072 struct lofi_ioctl *klip; 2073 int error; 2074 2075 klip = *klipp = kmem_alloc(sizeof (struct lofi_ioctl), KM_SLEEP); 2076 error = ddi_copyin(ulip, klip, sizeof (struct lofi_ioctl), flag); 2077 if (error) 2078 goto err; 2079 2080 /* ensure NULL termination */ 2081 klip->li_filename[MAXPATHLEN-1] = '\0'; 2082 klip->li_devpath[MAXPATHLEN-1] = '\0'; 2083 klip->li_algorithm[MAXALGLEN-1] = '\0'; 2084 klip->li_cipher[CRYPTO_MAX_MECH_NAME-1] = '\0'; 2085 klip->li_iv_cipher[CRYPTO_MAX_MECH_NAME-1] = '\0'; 2086 2087 if (klip->li_id > L_MAXMIN32) { 2088 error = EINVAL; 2089 goto err; 2090 } 2091 2092 return (0); 2093 2094 err: 2095 free_lofi_ioctl(klip); 2096 return (error); 2097 } 2098 2099 int 2100 copy_out_lofi_ioctl(const struct lofi_ioctl *klip, struct lofi_ioctl *ulip, 2101 int flag) 2102 { 2103 int error; 2104 2105 /* 2106 * NOTE: Do NOT copy the crypto_key_t "back" to userland. 2107 * This ensures that an attacker can't trivially find the 2108 * key for a mapping just by issuing the ioctl. 2109 * 2110 * It can still be found by poking around in kmem with mdb(1), 2111 * but there is no point in making it easy when the info isn't 2112 * of any use in this direction anyway. 2113 * 2114 * Either way we don't actually have the raw key stored in 2115 * a form that we can get it anyway, since we just used it 2116 * to create a ctx template and didn't keep "the original". 2117 */ 2118 error = ddi_copyout(klip, ulip, sizeof (struct lofi_ioctl), flag); 2119 if (error) 2120 return (EFAULT); 2121 return (0); 2122 } 2123 2124 static int 2125 lofi_access(struct lofi_state *lsp) 2126 { 2127 ASSERT(MUTEX_HELD(&lofi_lock)); 2128 if (INGLOBALZONE(curproc) || lsp->ls_zone.zref_zone == curzone) 2129 return (0); 2130 return (EPERM); 2131 } 2132 2133 /* 2134 * Find the lofi state for the given filename. We compare by vnode to 2135 * allow the global zone visibility into NGZ lofi nodes. 2136 */ 2137 static int 2138 file_to_lofi_nocheck(char *filename, boolean_t readonly, 2139 struct lofi_state **lspp) 2140 { 2141 struct lofi_state *lsp; 2142 vnode_t *vp = NULL; 2143 int err = 0; 2144 int rdfiles = 0; 2145 2146 ASSERT(MUTEX_HELD(&lofi_lock)); 2147 2148 if ((err = lookupname(filename, UIO_SYSSPACE, FOLLOW, 2149 NULLVPP, &vp)) != 0) 2150 goto out; 2151 2152 if (vp->v_type == VREG) { 2153 vnode_t *realvp; 2154 if (VOP_REALVP(vp, &realvp, NULL) == 0) { 2155 VN_HOLD(realvp); 2156 VN_RELE(vp); 2157 vp = realvp; 2158 } 2159 } 2160 2161 for (lsp = list_head(&lofi_list); lsp != NULL; 2162 lsp = list_next(&lofi_list, lsp)) { 2163 if (lsp->ls_vp == vp) { 2164 if (lspp != NULL) 2165 *lspp = lsp; 2166 if (lsp->ls_readonly) { 2167 rdfiles++; 2168 /* Skip if '-r' is specified */ 2169 if (readonly) 2170 continue; 2171 } 2172 goto out; 2173 } 2174 } 2175 2176 err = ENOENT; 2177 2178 /* 2179 * If a filename is given as an argument for lofi_unmap, we shouldn't 2180 * allow unmap if there are multiple read-only lofi devices associated 2181 * with this file. 2182 */ 2183 if (lspp != NULL) { 2184 if (rdfiles == 1) 2185 err = 0; 2186 else if (rdfiles > 1) 2187 err = EBUSY; 2188 } 2189 2190 out: 2191 if (vp != NULL) 2192 VN_RELE(vp); 2193 return (err); 2194 } 2195 2196 /* 2197 * Find the minor for the given filename, checking the zone can access 2198 * it. 2199 */ 2200 static int 2201 file_to_lofi(char *filename, boolean_t readonly, struct lofi_state **lspp) 2202 { 2203 int err = 0; 2204 2205 ASSERT(MUTEX_HELD(&lofi_lock)); 2206 2207 if ((err = file_to_lofi_nocheck(filename, readonly, lspp)) != 0) 2208 return (err); 2209 2210 if ((err = lofi_access(*lspp)) != 0) 2211 return (err); 2212 2213 return (0); 2214 } 2215 2216 /* 2217 * Fakes up a disk geometry based on the size of the file. This is needed 2218 * to support newfs on traditional lofi device, but also will provide 2219 * geometry hint for cmlb. 2220 */ 2221 static void 2222 fake_disk_geometry(struct lofi_state *lsp) 2223 { 2224 u_offset_t dsize = lsp->ls_vp_size - lsp->ls_crypto_offset; 2225 2226 /* dk_geom - see dkio(7I) */ 2227 /* 2228 * dkg_ncyl _could_ be set to one here (one big cylinder with gobs 2229 * of sectors), but that breaks programs like fdisk which want to 2230 * partition a disk by cylinder. With one cylinder, you can't create 2231 * an fdisk partition and put pcfs on it for testing (hard to pick 2232 * a number between one and one). 2233 * 2234 * The cheezy floppy test is an attempt to not have too few cylinders 2235 * for a small file, or so many on a big file that you waste space 2236 * for backup superblocks or cylinder group structures. 2237 */ 2238 bzero(&lsp->ls_dkg, sizeof (lsp->ls_dkg)); 2239 if (dsize < (2 * 1024 * 1024)) /* floppy? */ 2240 lsp->ls_dkg.dkg_ncyl = dsize / (100 * 1024); 2241 else 2242 lsp->ls_dkg.dkg_ncyl = dsize / (300 * 1024); 2243 /* in case file file is < 100k */ 2244 if (lsp->ls_dkg.dkg_ncyl == 0) 2245 lsp->ls_dkg.dkg_ncyl = 1; 2246 2247 lsp->ls_dkg.dkg_pcyl = lsp->ls_dkg.dkg_ncyl; 2248 lsp->ls_dkg.dkg_nhead = 1; 2249 lsp->ls_dkg.dkg_rpm = 7200; 2250 2251 lsp->ls_dkg.dkg_nsect = dsize / 2252 (lsp->ls_dkg.dkg_ncyl << lsp->ls_pbshift); 2253 } 2254 2255 /* 2256 * build vtoc - see dkio(7I) 2257 * 2258 * Fakes one big partition based on the size of the file. This is needed 2259 * because we allow newfs'ing the traditional lofi device and newfs will 2260 * do several disk ioctls to figure out the geometry and partition information. 2261 * It uses that information to determine the parameters to pass to mkfs. 2262 */ 2263 static void 2264 fake_disk_vtoc(struct lofi_state *lsp, struct vtoc *vt) 2265 { 2266 bzero(vt, sizeof (struct vtoc)); 2267 vt->v_sanity = VTOC_SANE; 2268 vt->v_version = V_VERSION; 2269 (void) strncpy(vt->v_volume, LOFI_DRIVER_NAME, 2270 sizeof (vt->v_volume)); 2271 vt->v_sectorsz = 1 << lsp->ls_pbshift; 2272 vt->v_nparts = 1; 2273 vt->v_part[0].p_tag = V_UNASSIGNED; 2274 2275 /* 2276 * A compressed file is read-only, other files can 2277 * be read-write 2278 */ 2279 if (lsp->ls_uncomp_seg_sz > 0) { 2280 vt->v_part[0].p_flag = V_UNMNT | V_RONLY; 2281 } else { 2282 vt->v_part[0].p_flag = V_UNMNT; 2283 } 2284 vt->v_part[0].p_start = (daddr_t)0; 2285 /* 2286 * The partition size cannot just be the number of sectors, because 2287 * that might not end on a cylinder boundary. And if that's the case, 2288 * newfs/mkfs will print a scary warning. So just figure the size 2289 * based on the number of cylinders and sectors/cylinder. 2290 */ 2291 vt->v_part[0].p_size = lsp->ls_dkg.dkg_pcyl * 2292 lsp->ls_dkg.dkg_nsect * lsp->ls_dkg.dkg_nhead; 2293 } 2294 2295 /* 2296 * build dk_cinfo - see dkio(7I) 2297 */ 2298 static void 2299 fake_disk_info(dev_t dev, struct dk_cinfo *ci) 2300 { 2301 bzero(ci, sizeof (struct dk_cinfo)); 2302 (void) strlcpy(ci->dki_cname, LOFI_DRIVER_NAME, sizeof (ci->dki_cname)); 2303 ci->dki_ctype = DKC_SCSI_CCS; 2304 (void) strlcpy(ci->dki_dname, LOFI_DRIVER_NAME, sizeof (ci->dki_dname)); 2305 ci->dki_unit = LOFI_MINOR2ID(getminor(dev)); 2306 ci->dki_partition = LOFI_PART(getminor(dev)); 2307 /* 2308 * newfs uses this to set maxcontig. Must not be < 16, or it 2309 * will be 0 when newfs multiplies it by DEV_BSIZE and divides 2310 * it by the block size. Then tunefs doesn't work because 2311 * maxcontig is 0. 2312 */ 2313 ci->dki_maxtransfer = 16; 2314 } 2315 2316 /* 2317 * map in a compressed file 2318 * 2319 * Read in the header and the index that follows. 2320 * 2321 * The header is as follows - 2322 * 2323 * Signature (name of the compression algorithm) 2324 * Compression segment size (a multiple of 512) 2325 * Number of index entries 2326 * Size of the last block 2327 * The array containing the index entries 2328 * 2329 * The header information is always stored in 2330 * network byte order on disk. 2331 */ 2332 static int 2333 lofi_map_compressed_file(struct lofi_state *lsp, char *buf) 2334 { 2335 uint32_t index_sz, header_len, i; 2336 ssize_t resid; 2337 enum uio_rw rw; 2338 char *tbuf = buf; 2339 int error; 2340 2341 /* The signature has already been read */ 2342 tbuf += sizeof (lsp->ls_comp_algorithm); 2343 bcopy(tbuf, &(lsp->ls_uncomp_seg_sz), sizeof (lsp->ls_uncomp_seg_sz)); 2344 lsp->ls_uncomp_seg_sz = ntohl(lsp->ls_uncomp_seg_sz); 2345 2346 /* 2347 * The compressed segment size must be a power of 2 2348 */ 2349 if (lsp->ls_uncomp_seg_sz < DEV_BSIZE || 2350 !ISP2(lsp->ls_uncomp_seg_sz)) 2351 return (EINVAL); 2352 2353 for (i = 0; !((lsp->ls_uncomp_seg_sz >> i) & 1); i++) 2354 ; 2355 2356 lsp->ls_comp_seg_shift = i; 2357 2358 tbuf += sizeof (lsp->ls_uncomp_seg_sz); 2359 bcopy(tbuf, &(lsp->ls_comp_index_sz), sizeof (lsp->ls_comp_index_sz)); 2360 lsp->ls_comp_index_sz = ntohl(lsp->ls_comp_index_sz); 2361 2362 tbuf += sizeof (lsp->ls_comp_index_sz); 2363 bcopy(tbuf, &(lsp->ls_uncomp_last_seg_sz), 2364 sizeof (lsp->ls_uncomp_last_seg_sz)); 2365 lsp->ls_uncomp_last_seg_sz = ntohl(lsp->ls_uncomp_last_seg_sz); 2366 2367 /* 2368 * Compute the total size of the uncompressed data 2369 * for use in fake_disk_geometry and other calculations. 2370 * Disk geometry has to be faked with respect to the 2371 * actual uncompressed data size rather than the 2372 * compressed file size. 2373 */ 2374 lsp->ls_vp_size = 2375 (u_offset_t)(lsp->ls_comp_index_sz - 2) * lsp->ls_uncomp_seg_sz 2376 + lsp->ls_uncomp_last_seg_sz; 2377 2378 /* 2379 * Index size is rounded up to DEV_BSIZE for ease 2380 * of segmapping 2381 */ 2382 index_sz = sizeof (*lsp->ls_comp_seg_index) * lsp->ls_comp_index_sz; 2383 header_len = sizeof (lsp->ls_comp_algorithm) + 2384 sizeof (lsp->ls_uncomp_seg_sz) + 2385 sizeof (lsp->ls_comp_index_sz) + 2386 sizeof (lsp->ls_uncomp_last_seg_sz); 2387 lsp->ls_comp_offbase = header_len + index_sz; 2388 2389 index_sz += header_len; 2390 index_sz = roundup(index_sz, DEV_BSIZE); 2391 2392 lsp->ls_comp_index_data = kmem_alloc(index_sz, KM_SLEEP); 2393 lsp->ls_comp_index_data_sz = index_sz; 2394 2395 /* 2396 * Read in the index -- this has a side-effect 2397 * of reading in the header as well 2398 */ 2399 rw = UIO_READ; 2400 error = vn_rdwr(rw, lsp->ls_vp, lsp->ls_comp_index_data, index_sz, 2401 0, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, &resid); 2402 2403 if (error != 0) 2404 return (error); 2405 2406 /* Skip the header, this is where the index really begins */ 2407 lsp->ls_comp_seg_index = 2408 /*LINTED*/ 2409 (uint64_t *)(lsp->ls_comp_index_data + header_len); 2410 2411 /* 2412 * Now recompute offsets in the index to account for 2413 * the header length 2414 */ 2415 for (i = 0; i < lsp->ls_comp_index_sz; i++) { 2416 lsp->ls_comp_seg_index[i] = lsp->ls_comp_offbase + 2417 BE_64(lsp->ls_comp_seg_index[i]); 2418 } 2419 2420 return (error); 2421 } 2422 2423 static int 2424 lofi_init_crypto(struct lofi_state *lsp, struct lofi_ioctl *klip) 2425 { 2426 struct crypto_meta chead; 2427 char buf[DEV_BSIZE]; 2428 ssize_t resid; 2429 char *marker; 2430 int error; 2431 int ret; 2432 int i; 2433 2434 if (!klip->li_crypto_enabled) 2435 return (0); 2436 2437 /* 2438 * All current algorithms have a max of 448 bits. 2439 */ 2440 if (klip->li_iv_len > CRYPTO_BITS2BYTES(512)) 2441 return (EINVAL); 2442 2443 if (CRYPTO_BITS2BYTES(klip->li_key_len) > sizeof (klip->li_key)) 2444 return (EINVAL); 2445 2446 lsp->ls_crypto_enabled = klip->li_crypto_enabled; 2447 2448 mutex_init(&lsp->ls_crypto_lock, NULL, MUTEX_DRIVER, NULL); 2449 2450 lsp->ls_mech.cm_type = crypto_mech2id(klip->li_cipher); 2451 if (lsp->ls_mech.cm_type == CRYPTO_MECH_INVALID) { 2452 cmn_err(CE_WARN, "invalid cipher %s requested for %s", 2453 klip->li_cipher, klip->li_filename); 2454 return (EINVAL); 2455 } 2456 2457 /* this is just initialization here */ 2458 lsp->ls_mech.cm_param = NULL; 2459 lsp->ls_mech.cm_param_len = 0; 2460 2461 lsp->ls_iv_type = klip->li_iv_type; 2462 lsp->ls_iv_mech.cm_type = crypto_mech2id(klip->li_iv_cipher); 2463 if (lsp->ls_iv_mech.cm_type == CRYPTO_MECH_INVALID) { 2464 cmn_err(CE_WARN, "invalid iv cipher %s requested" 2465 " for %s", klip->li_iv_cipher, klip->li_filename); 2466 return (EINVAL); 2467 } 2468 2469 /* iv mech must itself take a null iv */ 2470 lsp->ls_iv_mech.cm_param = NULL; 2471 lsp->ls_iv_mech.cm_param_len = 0; 2472 lsp->ls_iv_len = klip->li_iv_len; 2473 2474 /* 2475 * Create ctx using li_cipher & the raw li_key after checking 2476 * that it isn't a weak key. 2477 */ 2478 lsp->ls_key.ck_format = CRYPTO_KEY_RAW; 2479 lsp->ls_key.ck_length = klip->li_key_len; 2480 lsp->ls_key.ck_data = kmem_alloc( 2481 CRYPTO_BITS2BYTES(lsp->ls_key.ck_length), KM_SLEEP); 2482 bcopy(klip->li_key, lsp->ls_key.ck_data, 2483 CRYPTO_BITS2BYTES(lsp->ls_key.ck_length)); 2484 2485 ret = crypto_key_check(&lsp->ls_mech, &lsp->ls_key); 2486 if (ret != CRYPTO_SUCCESS) { 2487 cmn_err(CE_WARN, "weak key check failed for cipher " 2488 "%s on file %s (0x%x)", klip->li_cipher, 2489 klip->li_filename, ret); 2490 return (EINVAL); 2491 } 2492 2493 error = vn_rdwr(UIO_READ, lsp->ls_vp, buf, DEV_BSIZE, 2494 CRYOFF, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, &resid); 2495 if (error != 0) 2496 return (error); 2497 2498 /* 2499 * This is the case where the header in the lofi image is already 2500 * initialized to indicate it is encrypted. 2501 */ 2502 if (strncmp(buf, lofi_crypto_magic, sizeof (lofi_crypto_magic)) == 0) { 2503 /* 2504 * The encryption header information is laid out this way: 2505 * 6 bytes: hex "CFLOFI" 2506 * 2 bytes: version = 0 ... for now 2507 * 96 bytes: reserved1 (not implemented yet) 2508 * 4 bytes: data_sector = 2 ... for now 2509 * more... not implemented yet 2510 */ 2511 2512 marker = buf; 2513 2514 /* copy the magic */ 2515 bcopy(marker, lsp->ls_crypto.magic, 2516 sizeof (lsp->ls_crypto.magic)); 2517 marker += sizeof (lsp->ls_crypto.magic); 2518 2519 /* read the encryption version number */ 2520 bcopy(marker, &(lsp->ls_crypto.version), 2521 sizeof (lsp->ls_crypto.version)); 2522 lsp->ls_crypto.version = ntohs(lsp->ls_crypto.version); 2523 marker += sizeof (lsp->ls_crypto.version); 2524 2525 /* read a chunk of reserved data */ 2526 bcopy(marker, lsp->ls_crypto.reserved1, 2527 sizeof (lsp->ls_crypto.reserved1)); 2528 marker += sizeof (lsp->ls_crypto.reserved1); 2529 2530 /* read block number where encrypted data begins */ 2531 bcopy(marker, &(lsp->ls_crypto.data_sector), 2532 sizeof (lsp->ls_crypto.data_sector)); 2533 lsp->ls_crypto.data_sector = ntohl(lsp->ls_crypto.data_sector); 2534 marker += sizeof (lsp->ls_crypto.data_sector); 2535 2536 /* and ignore the rest until it is implemented */ 2537 2538 lsp->ls_crypto_offset = lsp->ls_crypto.data_sector * DEV_BSIZE; 2539 return (0); 2540 } 2541 2542 /* 2543 * We've requested encryption, but no magic was found, so it must be 2544 * a new image. 2545 */ 2546 2547 for (i = 0; i < sizeof (struct crypto_meta); i++) { 2548 if (buf[i] != '\0') 2549 return (EINVAL); 2550 } 2551 2552 marker = buf; 2553 bcopy(lofi_crypto_magic, marker, sizeof (lofi_crypto_magic)); 2554 marker += sizeof (lofi_crypto_magic); 2555 chead.version = htons(LOFI_CRYPTO_VERSION); 2556 bcopy(&(chead.version), marker, sizeof (chead.version)); 2557 marker += sizeof (chead.version); 2558 marker += sizeof (chead.reserved1); 2559 chead.data_sector = htonl(LOFI_CRYPTO_DATA_SECTOR); 2560 bcopy(&(chead.data_sector), marker, sizeof (chead.data_sector)); 2561 2562 /* write the header */ 2563 error = vn_rdwr(UIO_WRITE, lsp->ls_vp, buf, DEV_BSIZE, 2564 CRYOFF, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, &resid); 2565 if (error != 0) 2566 return (error); 2567 2568 /* fix things up so it looks like we read this info */ 2569 bcopy(lofi_crypto_magic, lsp->ls_crypto.magic, 2570 sizeof (lofi_crypto_magic)); 2571 lsp->ls_crypto.version = LOFI_CRYPTO_VERSION; 2572 lsp->ls_crypto.data_sector = LOFI_CRYPTO_DATA_SECTOR; 2573 lsp->ls_crypto_offset = lsp->ls_crypto.data_sector * DEV_BSIZE; 2574 return (0); 2575 } 2576 2577 /* 2578 * Check to see if the passed in signature is a valid one. If it is 2579 * valid, return the index into lofi_compress_table. 2580 * 2581 * Return -1 if it is invalid 2582 */ 2583 static int 2584 lofi_compress_select(const char *signature) 2585 { 2586 int i; 2587 2588 for (i = 0; i < LOFI_COMPRESS_FUNCTIONS; i++) { 2589 if (strcmp(lofi_compress_table[i].l_name, signature) == 0) 2590 return (i); 2591 } 2592 2593 return (-1); 2594 } 2595 2596 static int 2597 lofi_init_compress(struct lofi_state *lsp) 2598 { 2599 char buf[DEV_BSIZE]; 2600 int compress_index; 2601 ssize_t resid; 2602 int error; 2603 2604 error = vn_rdwr(UIO_READ, lsp->ls_vp, buf, DEV_BSIZE, 0, UIO_SYSSPACE, 2605 0, RLIM64_INFINITY, kcred, &resid); 2606 2607 if (error != 0) 2608 return (error); 2609 2610 if ((compress_index = lofi_compress_select(buf)) == -1) 2611 return (0); 2612 2613 /* compression and encryption are mutually exclusive */ 2614 if (lsp->ls_crypto_enabled) 2615 return (ENOTSUP); 2616 2617 /* initialize compression info for compressed lofi */ 2618 lsp->ls_comp_algorithm_index = compress_index; 2619 (void) strlcpy(lsp->ls_comp_algorithm, 2620 lofi_compress_table[compress_index].l_name, 2621 sizeof (lsp->ls_comp_algorithm)); 2622 2623 /* Finally setup per-thread pre-allocated buffers */ 2624 lsp->ls_comp_bufs = kmem_zalloc(lofi_taskq_nthreads * 2625 sizeof (struct compbuf), KM_SLEEP); 2626 2627 return (lofi_map_compressed_file(lsp, buf)); 2628 } 2629 2630 /* 2631 * Allocate new or proposed id from lofi_id. 2632 * 2633 * Special cases for proposed id: 2634 * 0: not allowed, 0 is id for control device. 2635 * -1: allocate first usable id from lofi_id. 2636 * any other value is proposed value from userland 2637 * 2638 * returns DDI_SUCCESS or errno. 2639 */ 2640 static int 2641 lofi_alloc_id(int *idp) 2642 { 2643 int id, error = DDI_SUCCESS; 2644 2645 if (*idp == -1) { 2646 id = id_allocff_nosleep(lofi_id); 2647 if (id == -1) { 2648 error = EAGAIN; 2649 goto err; 2650 } 2651 } else if (*idp == 0) { 2652 error = EINVAL; 2653 goto err; 2654 } else if (*idp > ((1 << (L_BITSMINOR - LOFI_CMLB_SHIFT)) - 1)) { 2655 error = ERANGE; 2656 goto err; 2657 } else { 2658 if (ddi_get_soft_state(lofi_statep, *idp) != NULL) { 2659 error = EEXIST; 2660 goto err; 2661 } 2662 2663 id = id_alloc_specific_nosleep(lofi_id, *idp); 2664 if (id == -1) { 2665 error = EAGAIN; 2666 goto err; 2667 } 2668 } 2669 *idp = id; 2670 err: 2671 return (error); 2672 } 2673 2674 static int 2675 lofi_create_dev(struct lofi_ioctl *klip) 2676 { 2677 dev_info_t *parent, *child; 2678 struct lofi_state *lsp = NULL; 2679 char namebuf[MAXNAMELEN]; 2680 int error, circ; 2681 2682 /* get control device */ 2683 lsp = ddi_get_soft_state(lofi_statep, 0); 2684 parent = ddi_get_parent(lsp->ls_dip); 2685 2686 if ((error = lofi_alloc_id((int *)&klip->li_id))) 2687 return (error); 2688 2689 (void) snprintf(namebuf, sizeof (namebuf), LOFI_DRIVER_NAME "@%d", 2690 klip->li_id); 2691 2692 ndi_devi_enter(parent, &circ); 2693 child = ndi_devi_findchild(parent, namebuf); 2694 ndi_devi_exit(parent, circ); 2695 2696 if (child == NULL) { 2697 child = ddi_add_child(parent, LOFI_DRIVER_NAME, 2698 (pnode_t)DEVI_SID_NODEID, klip->li_id); 2699 if ((error = ddi_prop_update_int(DDI_DEV_T_NONE, child, 2700 "instance", klip->li_id)) != DDI_PROP_SUCCESS) 2701 goto err; 2702 2703 if (klip->li_labeled == B_TRUE) { 2704 if ((error = ddi_prop_create(DDI_DEV_T_NONE, child, 2705 DDI_PROP_CANSLEEP, "labeled", 0, 0)) 2706 != DDI_PROP_SUCCESS) 2707 goto err; 2708 } 2709 2710 if ((error = ndi_devi_online(child, NDI_ONLINE_ATTACH)) 2711 != NDI_SUCCESS) 2712 goto err; 2713 } else { 2714 id_free(lofi_id, klip->li_id); 2715 error = EEXIST; 2716 return (error); 2717 } 2718 2719 goto done; 2720 2721 err: 2722 ddi_prop_remove_all(child); 2723 (void) ndi_devi_offline(child, NDI_DEVI_REMOVE); 2724 id_free(lofi_id, klip->li_id); 2725 done: 2726 2727 return (error); 2728 } 2729 2730 static void 2731 lofi_create_inquiry(struct lofi_state *lsp, struct scsi_inquiry *inq) 2732 { 2733 char *p = NULL; 2734 2735 (void) strlcpy(inq->inq_vid, LOFI_DRIVER_NAME, sizeof (inq->inq_vid)); 2736 2737 mutex_enter(&lsp->ls_vp_lock); 2738 if (lsp->ls_vp != NULL) 2739 p = strrchr(lsp->ls_vp->v_path, '/'); 2740 if (p != NULL) 2741 (void) strncpy(inq->inq_pid, p + 1, sizeof (inq->inq_pid)); 2742 mutex_exit(&lsp->ls_vp_lock); 2743 (void) strlcpy(inq->inq_revision, "1.0", sizeof (inq->inq_revision)); 2744 } 2745 2746 /* 2747 * copy devlink name from event cache 2748 */ 2749 static void 2750 lofi_copy_devpath(struct lofi_ioctl *klip) 2751 { 2752 int error; 2753 char namebuf[MAXNAMELEN], *str; 2754 clock_t ticks; 2755 nvlist_t *nvl; 2756 2757 if (klip->li_labeled == B_TRUE) 2758 klip->li_devpath[0] = '\0'; 2759 else { 2760 /* no need to wait for messages */ 2761 (void) snprintf(klip->li_devpath, sizeof (klip->li_devpath), 2762 "/dev/" LOFI_CHAR_NAME "/%d", klip->li_id); 2763 return; 2764 } 2765 2766 (void) snprintf(namebuf, sizeof (namebuf), "%d", klip->li_id); 2767 ticks = ddi_get_lbolt() + LOFI_TIMEOUT * drv_usectohz(1000000); 2768 2769 nvl = NULL; 2770 2771 mutex_enter(&lofi_chan_lock); 2772 while (nvlist_lookup_nvlist(lofi_devlink_cache, namebuf, &nvl) != 0) { 2773 error = cv_timedwait(&lofi_chan_cv, &lofi_chan_lock, ticks); 2774 if (error == -1) 2775 break; 2776 } 2777 2778 if (nvl != NULL) { 2779 if (nvlist_lookup_string(nvl, DEV_NAME, &str) == 0) { 2780 (void) strlcpy(klip->li_devpath, str, 2781 sizeof (klip->li_devpath)); 2782 } 2783 } 2784 mutex_exit(&lofi_chan_lock); 2785 } 2786 2787 /* 2788 * map a file to a minor number. Return the minor number. 2789 */ 2790 static int 2791 lofi_map_file(dev_t dev, struct lofi_ioctl *ulip, int pickminor, 2792 int *rvalp, struct cred *credp, int ioctl_flag) 2793 { 2794 int id = -1; 2795 struct lofi_state *lsp = NULL; 2796 struct lofi_ioctl *klip; 2797 int error; 2798 struct vnode *vp = NULL; 2799 vattr_t vattr; 2800 int flag; 2801 char namebuf[MAXNAMELEN]; 2802 2803 error = copy_in_lofi_ioctl(ulip, &klip, ioctl_flag); 2804 if (error != 0) 2805 return (error); 2806 2807 mutex_enter(&lofi_lock); 2808 2809 if (file_to_lofi_nocheck(klip->li_filename, klip->li_readonly, 2810 NULL) == 0) { 2811 error = EBUSY; 2812 goto err; 2813 } 2814 2815 flag = FREAD | FWRITE | FOFFMAX | FEXCL; 2816 error = vn_open(klip->li_filename, UIO_SYSSPACE, flag, 0, &vp, 0, 0); 2817 if (error) { 2818 /* try read-only */ 2819 flag &= ~FWRITE; 2820 error = vn_open(klip->li_filename, UIO_SYSSPACE, flag, 0, 2821 &vp, 0, 0); 2822 if (error) 2823 goto err; 2824 } 2825 2826 if (!V_ISLOFIABLE(vp->v_type)) { 2827 error = EINVAL; 2828 goto err; 2829 } 2830 2831 vattr.va_mask = AT_SIZE; 2832 error = VOP_GETATTR(vp, &vattr, 0, credp, NULL); 2833 if (error) 2834 goto err; 2835 2836 /* the file needs to be a multiple of the block size */ 2837 if ((vattr.va_size % DEV_BSIZE) != 0) { 2838 error = EINVAL; 2839 goto err; 2840 } 2841 2842 if (pickminor) { 2843 klip->li_id = (uint32_t)-1; 2844 } 2845 if ((error = lofi_create_dev(klip)) != 0) 2846 goto err; 2847 2848 id = klip->li_id; 2849 lsp = ddi_get_soft_state(lofi_statep, id); 2850 if (lsp == NULL) 2851 goto err; 2852 2853 /* 2854 * from this point lofi_destroy() is used to clean up on error 2855 * make sure the basic data is set 2856 */ 2857 lsp->ls_dev = makedevice(getmajor(dev), LOFI_ID2MINOR(id)); 2858 2859 list_create(&lsp->ls_comp_cache, sizeof (struct lofi_comp_cache), 2860 offsetof(struct lofi_comp_cache, lc_list)); 2861 2862 /* 2863 * save open mode so file can be closed properly and vnode counts 2864 * updated correctly. 2865 */ 2866 lsp->ls_openflag = flag; 2867 2868 lsp->ls_vp = vp; 2869 lsp->ls_stacked_vp = vp; 2870 2871 lsp->ls_vp_size = vattr.va_size; 2872 lsp->ls_vp_comp_size = lsp->ls_vp_size; 2873 2874 /* 2875 * Try to handle stacked lofs vnodes. 2876 */ 2877 if (vp->v_type == VREG) { 2878 vnode_t *realvp; 2879 2880 if (VOP_REALVP(vp, &realvp, NULL) == 0) { 2881 /* 2882 * We need to use the realvp for uniqueness 2883 * checking, but keep the stacked vp for 2884 * LOFI_GET_FILENAME display. 2885 */ 2886 VN_HOLD(realvp); 2887 lsp->ls_vp = realvp; 2888 } 2889 } 2890 2891 lsp->ls_lbshift = highbit(DEV_BSIZE) - 1; 2892 lsp->ls_pbshift = lsp->ls_lbshift; 2893 2894 lsp->ls_readonly = klip->li_readonly; 2895 lsp->ls_uncomp_seg_sz = 0; 2896 lsp->ls_comp_algorithm[0] = '\0'; 2897 lsp->ls_crypto_offset = 0; 2898 2899 (void) snprintf(namebuf, sizeof (namebuf), "%s_taskq_%d", 2900 LOFI_DRIVER_NAME, id); 2901 lsp->ls_taskq = taskq_create_proc(namebuf, lofi_taskq_nthreads, 2902 minclsyspri, 1, lofi_taskq_maxalloc, curzone->zone_zsched, 0); 2903 2904 if ((error = lofi_init_crypto(lsp, klip)) != 0) 2905 goto err; 2906 2907 if ((error = lofi_init_compress(lsp)) != 0) 2908 goto err; 2909 2910 fake_disk_geometry(lsp); 2911 2912 if ((ddi_prop_update_int64(lsp->ls_dev, lsp->ls_dip, SIZE_PROP_NAME, 2913 lsp->ls_vp_size - lsp->ls_crypto_offset)) != DDI_PROP_SUCCESS) { 2914 error = EINVAL; 2915 goto err; 2916 } 2917 2918 if ((ddi_prop_update_int64(lsp->ls_dev, lsp->ls_dip, NBLOCKS_PROP_NAME, 2919 (lsp->ls_vp_size - lsp->ls_crypto_offset) / DEV_BSIZE)) 2920 != DDI_PROP_SUCCESS) { 2921 error = EINVAL; 2922 goto err; 2923 } 2924 2925 list_insert_tail(&lofi_list, lsp); 2926 /* 2927 * Notify we are ready to rock. 2928 */ 2929 mutex_enter(&lsp->ls_vp_lock); 2930 lsp->ls_vp_ready = B_TRUE; 2931 cv_broadcast(&lsp->ls_vp_cv); 2932 mutex_exit(&lsp->ls_vp_lock); 2933 mutex_exit(&lofi_lock); 2934 2935 lofi_copy_devpath(klip); 2936 2937 if (rvalp) 2938 *rvalp = id; 2939 (void) copy_out_lofi_ioctl(klip, ulip, ioctl_flag); 2940 free_lofi_ioctl(klip); 2941 return (0); 2942 2943 err: 2944 if (lsp != NULL) { 2945 lofi_destroy(lsp, credp); 2946 } else { 2947 if (vp != NULL) { 2948 (void) VOP_PUTPAGE(vp, 0, 0, B_INVAL, credp, NULL); 2949 (void) VOP_CLOSE(vp, flag, 1, 0, credp, NULL); 2950 VN_RELE(vp); 2951 } 2952 } 2953 2954 mutex_exit(&lofi_lock); 2955 free_lofi_ioctl(klip); 2956 return (error); 2957 } 2958 2959 /* 2960 * unmap a file. 2961 */ 2962 static int 2963 lofi_unmap_file(struct lofi_ioctl *ulip, int byfilename, 2964 struct cred *credp, int ioctl_flag) 2965 { 2966 struct lofi_state *lsp; 2967 struct lofi_ioctl *klip; 2968 nvlist_t *nvl = NULL; 2969 clock_t ticks; 2970 char name[MAXNAMELEN]; 2971 int err; 2972 2973 err = copy_in_lofi_ioctl(ulip, &klip, ioctl_flag); 2974 if (err != 0) 2975 return (err); 2976 2977 mutex_enter(&lofi_lock); 2978 if (byfilename) { 2979 if ((err = file_to_lofi(klip->li_filename, klip->li_readonly, 2980 &lsp)) != 0) { 2981 mutex_exit(&lofi_lock); 2982 return (err); 2983 } 2984 } else if (klip->li_id == 0) { 2985 mutex_exit(&lofi_lock); 2986 free_lofi_ioctl(klip); 2987 return (ENXIO); 2988 } else { 2989 lsp = ddi_get_soft_state(lofi_statep, klip->li_id); 2990 } 2991 2992 if (lsp == NULL || lsp->ls_vp == NULL || lofi_access(lsp) != 0) { 2993 mutex_exit(&lofi_lock); 2994 free_lofi_ioctl(klip); 2995 return (ENXIO); 2996 } 2997 2998 klip->li_id = LOFI_MINOR2ID(getminor(lsp->ls_dev)); 2999 3000 /* 3001 * If it's still held open, we'll do one of three things: 3002 * 3003 * If no flag is set, just return EBUSY. 3004 * 3005 * If the 'cleanup' flag is set, unmap and remove the device when 3006 * the last user finishes. 3007 * 3008 * If the 'force' flag is set, then we forcibly close the underlying 3009 * file. Subsequent operations will fail, and the DKIOCSTATE ioctl 3010 * will return DKIO_DEV_GONE. When the device is last closed, the 3011 * device will be cleaned up appropriately. 3012 * 3013 * This is complicated by the fact that we may have outstanding 3014 * dispatched I/Os. Rather than having a single mutex to serialize all 3015 * I/O, we keep a count of the number of outstanding I/O requests 3016 * (ls_vp_iocount), as well as a flag to indicate that no new I/Os 3017 * should be dispatched (ls_vp_closereq). 3018 * 3019 * We set the flag, wait for the number of outstanding I/Os to reach 0, 3020 * and then close the underlying vnode. 3021 */ 3022 if (is_opened(lsp)) { 3023 if (klip->li_force) { 3024 mutex_enter(&lsp->ls_vp_lock); 3025 lsp->ls_vp_closereq = B_TRUE; 3026 /* wake up any threads waiting on dkiocstate */ 3027 cv_broadcast(&lsp->ls_vp_cv); 3028 while (lsp->ls_vp_iocount > 0) 3029 cv_wait(&lsp->ls_vp_cv, &lsp->ls_vp_lock); 3030 mutex_exit(&lsp->ls_vp_lock); 3031 3032 goto out; 3033 } else if (klip->li_cleanup) { 3034 lsp->ls_cleanup = 1; 3035 mutex_exit(&lofi_lock); 3036 free_lofi_ioctl(klip); 3037 return (0); 3038 } 3039 3040 mutex_exit(&lofi_lock); 3041 free_lofi_ioctl(klip); 3042 return (EBUSY); 3043 } 3044 3045 out: 3046 lofi_free_dev(lsp); 3047 lofi_destroy(lsp, credp); 3048 3049 /* 3050 * check the lofi_devlink_cache if device is really gone. 3051 * note: we just wait for timeout here and dont give error if 3052 * timer will expire. This check is to try to ensure the unmap is 3053 * really done when lofiadm -d completes. 3054 * Since lofi_lock is held, also hopefully the lofiadm -a calls 3055 * wont interfere the the unmap. 3056 */ 3057 (void) snprintf(name, sizeof (name), "%d", klip->li_id); 3058 ticks = ddi_get_lbolt() + LOFI_TIMEOUT * drv_usectohz(1000000); 3059 mutex_enter(&lofi_chan_lock); 3060 while (nvlist_lookup_nvlist(lofi_devlink_cache, name, &nvl) == 0) { 3061 err = cv_timedwait(&lofi_chan_cv, &lofi_chan_lock, ticks); 3062 if (err == -1) 3063 break; 3064 } 3065 mutex_exit(&lofi_chan_lock); 3066 3067 mutex_exit(&lofi_lock); 3068 (void) copy_out_lofi_ioctl(klip, ulip, ioctl_flag); 3069 free_lofi_ioctl(klip); 3070 return (0); 3071 } 3072 3073 /* 3074 * get the filename given the minor number, or the minor number given 3075 * the name. 3076 */ 3077 /*ARGSUSED*/ 3078 static int 3079 lofi_get_info(dev_t dev, struct lofi_ioctl *ulip, int which, 3080 struct cred *credp, int ioctl_flag) 3081 { 3082 struct lofi_ioctl *klip; 3083 struct lofi_state *lsp; 3084 int error; 3085 3086 error = copy_in_lofi_ioctl(ulip, &klip, ioctl_flag); 3087 if (error != 0) 3088 return (error); 3089 3090 switch (which) { 3091 case LOFI_GET_FILENAME: 3092 if (klip->li_id == 0) { 3093 free_lofi_ioctl(klip); 3094 return (EINVAL); 3095 } 3096 3097 mutex_enter(&lofi_lock); 3098 lsp = ddi_get_soft_state(lofi_statep, klip->li_id); 3099 if (lsp == NULL || lofi_access(lsp) != 0) { 3100 mutex_exit(&lofi_lock); 3101 free_lofi_ioctl(klip); 3102 return (ENXIO); 3103 } 3104 3105 /* 3106 * This may fail if, for example, we're trying to look 3107 * up a zoned NFS path from the global zone. 3108 */ 3109 if (vnodetopath(NULL, lsp->ls_stacked_vp, klip->li_filename, 3110 sizeof (klip->li_filename), CRED()) != 0) { 3111 (void) strlcpy(klip->li_filename, "?", 3112 sizeof (klip->li_filename)); 3113 } 3114 3115 klip->li_readonly = lsp->ls_readonly; 3116 klip->li_labeled = lsp->ls_cmlbhandle != NULL; 3117 3118 (void) strlcpy(klip->li_algorithm, lsp->ls_comp_algorithm, 3119 sizeof (klip->li_algorithm)); 3120 klip->li_crypto_enabled = lsp->ls_crypto_enabled; 3121 mutex_exit(&lofi_lock); 3122 3123 lofi_copy_devpath(klip); 3124 error = copy_out_lofi_ioctl(klip, ulip, ioctl_flag); 3125 free_lofi_ioctl(klip); 3126 return (error); 3127 case LOFI_GET_MINOR: 3128 mutex_enter(&lofi_lock); 3129 error = file_to_lofi(klip->li_filename, 3130 klip->li_readonly, &lsp); 3131 if (error != 0) { 3132 mutex_exit(&lofi_lock); 3133 free_lofi_ioctl(klip); 3134 return (error); 3135 } 3136 klip->li_id = LOFI_MINOR2ID(getminor(lsp->ls_dev)); 3137 3138 klip->li_readonly = lsp->ls_readonly; 3139 klip->li_labeled = lsp->ls_cmlbhandle != NULL; 3140 mutex_exit(&lofi_lock); 3141 3142 lofi_copy_devpath(klip); 3143 error = copy_out_lofi_ioctl(klip, ulip, ioctl_flag); 3144 3145 free_lofi_ioctl(klip); 3146 return (error); 3147 case LOFI_CHECK_COMPRESSED: 3148 mutex_enter(&lofi_lock); 3149 error = file_to_lofi(klip->li_filename, 3150 klip->li_readonly, &lsp); 3151 if (error != 0) { 3152 mutex_exit(&lofi_lock); 3153 free_lofi_ioctl(klip); 3154 return (error); 3155 } 3156 3157 klip->li_id = LOFI_MINOR2ID(getminor(lsp->ls_dev)); 3158 (void) strlcpy(klip->li_algorithm, lsp->ls_comp_algorithm, 3159 sizeof (klip->li_algorithm)); 3160 3161 mutex_exit(&lofi_lock); 3162 error = copy_out_lofi_ioctl(klip, ulip, ioctl_flag); 3163 free_lofi_ioctl(klip); 3164 return (error); 3165 default: 3166 free_lofi_ioctl(klip); 3167 return (EINVAL); 3168 } 3169 } 3170 3171 static int 3172 uscsi_is_inquiry(intptr_t arg, int flag, union scsi_cdb *cdb, 3173 struct uscsi_cmd *uscmd) 3174 { 3175 int rval; 3176 3177 #ifdef _MULTI_DATAMODEL 3178 switch (ddi_model_convert_from(flag & FMODELS)) { 3179 case DDI_MODEL_ILP32: { 3180 struct uscsi_cmd32 ucmd32; 3181 3182 if (ddi_copyin((void *)arg, &ucmd32, sizeof (ucmd32), flag)) { 3183 rval = EFAULT; 3184 goto err; 3185 } 3186 uscsi_cmd32touscsi_cmd((&ucmd32), uscmd); 3187 break; 3188 } 3189 case DDI_MODEL_NONE: 3190 if (ddi_copyin((void *)arg, uscmd, sizeof (*uscmd), flag)) { 3191 rval = EFAULT; 3192 goto err; 3193 } 3194 break; 3195 default: 3196 rval = EFAULT; 3197 goto err; 3198 } 3199 #else 3200 if (ddi_copyin((void *)arg, uscmd, sizeof (*uscmd), flag)) { 3201 rval = EFAULT; 3202 goto err; 3203 } 3204 #endif /* _MULTI_DATAMODEL */ 3205 if (ddi_copyin(uscmd->uscsi_cdb, cdb, uscmd->uscsi_cdblen, flag)) { 3206 rval = EFAULT; 3207 goto err; 3208 } 3209 if (cdb->scc_cmd == SCMD_INQUIRY) { 3210 return (0); 3211 } 3212 err: 3213 return (rval); 3214 } 3215 3216 static int 3217 lofi_ioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *credp, 3218 int *rvalp) 3219 { 3220 int error; 3221 enum dkio_state dkstate; 3222 struct lofi_state *lsp; 3223 int id; 3224 3225 id = LOFI_MINOR2ID(getminor(dev)); 3226 3227 /* lofi ioctls only apply to the master device */ 3228 if (id == 0) { 3229 struct lofi_ioctl *lip = (struct lofi_ioctl *)arg; 3230 3231 /* 3232 * the query command only need read-access - i.e., normal 3233 * users are allowed to do those on the ctl device as 3234 * long as they can open it read-only. 3235 */ 3236 switch (cmd) { 3237 case LOFI_MAP_FILE: 3238 if ((flag & FWRITE) == 0) 3239 return (EPERM); 3240 return (lofi_map_file(dev, lip, 1, rvalp, credp, flag)); 3241 case LOFI_MAP_FILE_MINOR: 3242 if ((flag & FWRITE) == 0) 3243 return (EPERM); 3244 return (lofi_map_file(dev, lip, 0, rvalp, credp, flag)); 3245 case LOFI_UNMAP_FILE: 3246 if ((flag & FWRITE) == 0) 3247 return (EPERM); 3248 return (lofi_unmap_file(lip, 1, credp, flag)); 3249 case LOFI_UNMAP_FILE_MINOR: 3250 if ((flag & FWRITE) == 0) 3251 return (EPERM); 3252 return (lofi_unmap_file(lip, 0, credp, flag)); 3253 case LOFI_GET_FILENAME: 3254 return (lofi_get_info(dev, lip, LOFI_GET_FILENAME, 3255 credp, flag)); 3256 case LOFI_GET_MINOR: 3257 return (lofi_get_info(dev, lip, LOFI_GET_MINOR, 3258 credp, flag)); 3259 3260 /* 3261 * This API made limited sense when this value was fixed 3262 * at LOFI_MAX_FILES. However, its use to iterate 3263 * across all possible devices in lofiadm means we don't 3264 * want to return L_MAXMIN, but the highest 3265 * *allocated* id. 3266 */ 3267 case LOFI_GET_MAXMINOR: 3268 id = 0; 3269 3270 mutex_enter(&lofi_lock); 3271 3272 for (lsp = list_head(&lofi_list); lsp != NULL; 3273 lsp = list_next(&lofi_list, lsp)) { 3274 int i; 3275 if (lofi_access(lsp) != 0) 3276 continue; 3277 3278 i = ddi_get_instance(lsp->ls_dip); 3279 if (i > id) 3280 id = i; 3281 } 3282 3283 mutex_exit(&lofi_lock); 3284 3285 error = ddi_copyout(&id, &lip->li_id, 3286 sizeof (id), flag); 3287 if (error) 3288 return (EFAULT); 3289 return (0); 3290 3291 case LOFI_CHECK_COMPRESSED: 3292 return (lofi_get_info(dev, lip, LOFI_CHECK_COMPRESSED, 3293 credp, flag)); 3294 default: 3295 return (EINVAL); 3296 } 3297 } 3298 3299 mutex_enter(&lofi_lock); 3300 lsp = ddi_get_soft_state(lofi_statep, id); 3301 if (lsp == NULL || lsp->ls_vp_closereq) { 3302 mutex_exit(&lofi_lock); 3303 return (ENXIO); 3304 } 3305 mutex_exit(&lofi_lock); 3306 3307 if (ddi_prop_exists(DDI_DEV_T_ANY, lsp->ls_dip, DDI_PROP_DONTPASS, 3308 "labeled") == 1) { 3309 error = cmlb_ioctl(lsp->ls_cmlbhandle, dev, cmd, arg, flag, 3310 credp, rvalp, 0); 3311 if (error != ENOTTY) 3312 return (error); 3313 } 3314 3315 /* 3316 * We explicitly allow DKIOCSTATE, but all other ioctls should fail with 3317 * EIO as if the device was no longer present. 3318 */ 3319 if (lsp->ls_vp == NULL && cmd != DKIOCSTATE) 3320 return (EIO); 3321 3322 /* these are for faking out utilities like newfs */ 3323 switch (cmd) { 3324 case DKIOCGMEDIAINFO: 3325 case DKIOCGMEDIAINFOEXT: { 3326 struct dk_minfo_ext media_info; 3327 int shift = lsp->ls_lbshift; 3328 int size; 3329 3330 if (cmd == DKIOCGMEDIAINFOEXT) { 3331 media_info.dki_pbsize = 1U << lsp->ls_pbshift; 3332 size = sizeof (struct dk_minfo_ext); 3333 } else { 3334 size = sizeof (struct dk_minfo); 3335 } 3336 3337 media_info.dki_media_type = DK_FIXED_DISK; 3338 media_info.dki_lbsize = 1U << shift; 3339 media_info.dki_capacity = 3340 (lsp->ls_vp_size - lsp->ls_crypto_offset) >> shift; 3341 3342 if (ddi_copyout(&media_info, (void *)arg, size, flag)) 3343 return (EFAULT); 3344 return (0); 3345 } 3346 case DKIOCREMOVABLE: { 3347 int i = 0; 3348 if (ddi_copyout(&i, (caddr_t)arg, sizeof (int), flag)) 3349 return (EFAULT); 3350 return (0); 3351 } 3352 3353 case DKIOCGVTOC: { 3354 struct vtoc vt; 3355 fake_disk_vtoc(lsp, &vt); 3356 3357 switch (ddi_model_convert_from(flag & FMODELS)) { 3358 case DDI_MODEL_ILP32: { 3359 struct vtoc32 vtoc32; 3360 3361 vtoctovtoc32(vt, vtoc32); 3362 if (ddi_copyout(&vtoc32, (void *)arg, 3363 sizeof (struct vtoc32), flag)) 3364 return (EFAULT); 3365 break; 3366 } 3367 3368 case DDI_MODEL_NONE: 3369 if (ddi_copyout(&vt, (void *)arg, 3370 sizeof (struct vtoc), flag)) 3371 return (EFAULT); 3372 break; 3373 } 3374 return (0); 3375 } 3376 case DKIOCINFO: { 3377 struct dk_cinfo ci; 3378 fake_disk_info(dev, &ci); 3379 if (ddi_copyout(&ci, (void *)arg, sizeof (ci), flag)) 3380 return (EFAULT); 3381 return (0); 3382 } 3383 case DKIOCG_VIRTGEOM: 3384 case DKIOCG_PHYGEOM: 3385 case DKIOCGGEOM: 3386 error = ddi_copyout(&lsp->ls_dkg, (void *)arg, 3387 sizeof (struct dk_geom), flag); 3388 if (error) 3389 return (EFAULT); 3390 return (0); 3391 case DKIOCSTATE: 3392 /* 3393 * Normally, lofi devices are always in the INSERTED state. If 3394 * a device is forcefully unmapped, then the device transitions 3395 * to the DKIO_DEV_GONE state. 3396 */ 3397 if (ddi_copyin((void *)arg, &dkstate, sizeof (dkstate), 3398 flag) != 0) 3399 return (EFAULT); 3400 3401 mutex_enter(&lsp->ls_vp_lock); 3402 lsp->ls_vp_iocount++; 3403 while (((dkstate == DKIO_INSERTED && lsp->ls_vp != NULL) || 3404 (dkstate == DKIO_DEV_GONE && lsp->ls_vp == NULL)) && 3405 !lsp->ls_vp_closereq) { 3406 /* 3407 * By virtue of having the device open, we know that 3408 * 'lsp' will remain valid when we return. 3409 */ 3410 if (!cv_wait_sig(&lsp->ls_vp_cv, 3411 &lsp->ls_vp_lock)) { 3412 lsp->ls_vp_iocount--; 3413 cv_broadcast(&lsp->ls_vp_cv); 3414 mutex_exit(&lsp->ls_vp_lock); 3415 return (EINTR); 3416 } 3417 } 3418 3419 dkstate = (!lsp->ls_vp_closereq && lsp->ls_vp != NULL ? 3420 DKIO_INSERTED : DKIO_DEV_GONE); 3421 lsp->ls_vp_iocount--; 3422 cv_broadcast(&lsp->ls_vp_cv); 3423 mutex_exit(&lsp->ls_vp_lock); 3424 3425 if (ddi_copyout(&dkstate, (void *)arg, 3426 sizeof (dkstate), flag) != 0) 3427 return (EFAULT); 3428 return (0); 3429 case USCSICMD: { 3430 struct uscsi_cmd uscmd; 3431 union scsi_cdb cdb; 3432 3433 if (uscsi_is_inquiry(arg, flag, &cdb, &uscmd) == 0) { 3434 struct scsi_inquiry inq = {0}; 3435 3436 lofi_create_inquiry(lsp, &inq); 3437 if (ddi_copyout(&inq, uscmd.uscsi_bufaddr, 3438 uscmd.uscsi_buflen, flag) != 0) 3439 return (EFAULT); 3440 return (0); 3441 } else if (cdb.scc_cmd == SCMD_READ_CAPACITY) { 3442 struct scsi_capacity capacity; 3443 3444 capacity.capacity = 3445 BE_32((lsp->ls_vp_size - lsp->ls_crypto_offset) >> 3446 lsp->ls_lbshift); 3447 capacity.lbasize = BE_32(1 << lsp->ls_lbshift); 3448 if (ddi_copyout(&capacity, uscmd.uscsi_bufaddr, 3449 uscmd.uscsi_buflen, flag) != 0) 3450 return (EFAULT); 3451 return (0); 3452 } 3453 3454 uscmd.uscsi_rqstatus = 0xff; 3455 #ifdef _MULTI_DATAMODEL 3456 switch (ddi_model_convert_from(flag & FMODELS)) { 3457 case DDI_MODEL_ILP32: { 3458 struct uscsi_cmd32 ucmd32; 3459 uscsi_cmdtouscsi_cmd32((&uscmd), (&ucmd32)); 3460 if (ddi_copyout(&ucmd32, (void *)arg, sizeof (ucmd32), 3461 flag) != 0) 3462 return (EFAULT); 3463 break; 3464 } 3465 case DDI_MODEL_NONE: 3466 if (ddi_copyout(&uscmd, (void *)arg, sizeof (uscmd), 3467 flag) != 0) 3468 return (EFAULT); 3469 break; 3470 default: 3471 return (EFAULT); 3472 } 3473 #else 3474 if (ddi_copyout(&uscmd, (void *)arg, sizeof (uscmd), flag) != 0) 3475 return (EFAULT); 3476 #endif /* _MULTI_DATAMODEL */ 3477 return (0); 3478 } 3479 default: 3480 #ifdef DEBUG 3481 cmn_err(CE_WARN, "lofi_ioctl: %d is not implemented\n", cmd); 3482 #endif /* DEBUG */ 3483 return (ENOTTY); 3484 } 3485 } 3486 3487 static int 3488 lofi_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags, 3489 char *name, caddr_t valuep, int *lengthp) 3490 { 3491 struct lofi_state *lsp; 3492 3493 lsp = ddi_get_soft_state(lofi_statep, ddi_get_instance(dip)); 3494 if (lsp == NULL) { 3495 return (ddi_prop_op(dev, dip, prop_op, mod_flags, 3496 name, valuep, lengthp)); 3497 } 3498 3499 return (cmlb_prop_op(lsp->ls_cmlbhandle, dev, dip, prop_op, mod_flags, 3500 name, valuep, lengthp, LOFI_PART(getminor(dev)), NULL)); 3501 } 3502 3503 static struct cb_ops lofi_cb_ops = { 3504 lofi_open, /* open */ 3505 lofi_close, /* close */ 3506 lofi_strategy, /* strategy */ 3507 nodev, /* print */ 3508 nodev, /* dump */ 3509 lofi_read, /* read */ 3510 lofi_write, /* write */ 3511 lofi_ioctl, /* ioctl */ 3512 nodev, /* devmap */ 3513 nodev, /* mmap */ 3514 nodev, /* segmap */ 3515 nochpoll, /* poll */ 3516 lofi_prop_op, /* prop_op */ 3517 0, /* streamtab */ 3518 D_64BIT | D_NEW | D_MP, /* Driver compatibility flag */ 3519 CB_REV, 3520 lofi_aread, 3521 lofi_awrite 3522 }; 3523 3524 static struct dev_ops lofi_ops = { 3525 DEVO_REV, /* devo_rev, */ 3526 0, /* refcnt */ 3527 lofi_info, /* info */ 3528 nulldev, /* identify */ 3529 nulldev, /* probe */ 3530 lofi_attach, /* attach */ 3531 lofi_detach, /* detach */ 3532 nodev, /* reset */ 3533 &lofi_cb_ops, /* driver operations */ 3534 NULL, /* no bus operations */ 3535 NULL, /* power */ 3536 ddi_quiesce_not_needed, /* quiesce */ 3537 }; 3538 3539 static struct modldrv modldrv = { 3540 &mod_driverops, 3541 "loopback file driver", 3542 &lofi_ops, 3543 }; 3544 3545 static struct modlinkage modlinkage = { 3546 MODREV_1, 3547 { &modldrv, NULL } 3548 }; 3549 3550 int 3551 _init(void) 3552 { 3553 int error; 3554 3555 list_create(&lofi_list, sizeof (struct lofi_state), 3556 offsetof(struct lofi_state, ls_list)); 3557 3558 error = ddi_soft_state_init((void **)&lofi_statep, 3559 sizeof (struct lofi_state), 0); 3560 if (error) { 3561 list_destroy(&lofi_list); 3562 return (error); 3563 } 3564 3565 /* 3566 * The minor number is stored as id << LOFI_CMLB_SHIFT as 3567 * we need to reserve space for cmlb minor numbers. 3568 * This will leave out 4096 id values on 32bit kernel, which should 3569 * still suffice. 3570 */ 3571 lofi_id = id_space_create("lofi_id", 1, 3572 (1 << (L_BITSMINOR - LOFI_CMLB_SHIFT))); 3573 3574 if (lofi_id == NULL) { 3575 ddi_soft_state_fini((void **)&lofi_statep); 3576 list_destroy(&lofi_list); 3577 return (DDI_FAILURE); 3578 } 3579 3580 mutex_init(&lofi_lock, NULL, MUTEX_DRIVER, NULL); 3581 mutex_init(&lofi_chan_lock, NULL, MUTEX_DRIVER, NULL); 3582 cv_init(&lofi_chan_cv, NULL, CV_DRIVER, NULL); 3583 error = nvlist_alloc(&lofi_devlink_cache, NV_UNIQUE_NAME, KM_SLEEP); 3584 3585 if (error == 0) 3586 error = mod_install(&modlinkage); 3587 if (error) { 3588 id_space_destroy(lofi_id); 3589 if (lofi_devlink_cache != NULL) 3590 nvlist_free(lofi_devlink_cache); 3591 mutex_destroy(&lofi_chan_lock); 3592 cv_destroy(&lofi_chan_cv); 3593 mutex_destroy(&lofi_lock); 3594 ddi_soft_state_fini((void **)&lofi_statep); 3595 list_destroy(&lofi_list); 3596 } 3597 3598 return (error); 3599 } 3600 3601 int 3602 _fini(void) 3603 { 3604 int error; 3605 3606 mutex_enter(&lofi_lock); 3607 3608 if (!list_is_empty(&lofi_list)) { 3609 mutex_exit(&lofi_lock); 3610 return (EBUSY); 3611 } 3612 3613 mutex_exit(&lofi_lock); 3614 3615 error = mod_remove(&modlinkage); 3616 if (error) 3617 return (error); 3618 3619 mutex_enter(&lofi_chan_lock); 3620 nvlist_free(lofi_devlink_cache); 3621 lofi_devlink_cache = NULL; 3622 mutex_exit(&lofi_chan_lock); 3623 3624 mutex_destroy(&lofi_chan_lock); 3625 cv_destroy(&lofi_chan_cv); 3626 mutex_destroy(&lofi_lock); 3627 id_space_destroy(lofi_id); 3628 ddi_soft_state_fini((void **)&lofi_statep); 3629 list_destroy(&lofi_list); 3630 3631 return (error); 3632 } 3633 3634 int 3635 _info(struct modinfo *modinfop) 3636 { 3637 return (mod_info(&modlinkage, modinfop)); 3638 }