1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright (c) 2007-2012 Intel Corporation. All rights reserved.
  24  */
  25 
  26 /*
  27  * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
  28  * Copyright 2013, Nexenta Systems, Inc. All rights reserved.
  29  * Copyright 2016 Joyent, Inc.
  30  */
  31 
  32 #include "igb_sw.h"
  33 
  34 static char ident[] = "Intel 1Gb Ethernet";
  35 static char igb_version[] = "igb 2.3.8-ish";
  36 
  37 /*
  38  * Local function protoypes
  39  */
  40 static int igb_register_mac(igb_t *);
  41 static int igb_identify_hardware(igb_t *);
  42 static int igb_regs_map(igb_t *);
  43 static void igb_init_properties(igb_t *);
  44 static int igb_init_driver_settings(igb_t *);
  45 static void igb_init_locks(igb_t *);
  46 static void igb_destroy_locks(igb_t *);
  47 static int igb_init_mac_address(igb_t *);
  48 static int igb_init(igb_t *);
  49 static int igb_init_adapter(igb_t *);
  50 static void igb_stop_adapter(igb_t *);
  51 static int igb_reset(igb_t *);
  52 static void igb_tx_clean(igb_t *);
  53 static boolean_t igb_tx_drain(igb_t *);
  54 static boolean_t igb_rx_drain(igb_t *);
  55 static int igb_alloc_rings(igb_t *);
  56 static int igb_alloc_rx_data(igb_t *);
  57 static void igb_free_rx_data(igb_t *);
  58 static void igb_free_rings(igb_t *);
  59 static void igb_setup_rings(igb_t *);
  60 static void igb_setup_rx(igb_t *);
  61 static void igb_setup_tx(igb_t *);
  62 static void igb_setup_rx_ring(igb_rx_ring_t *);
  63 static void igb_setup_tx_ring(igb_tx_ring_t *);
  64 static void igb_setup_rss(igb_t *);
  65 static void igb_setup_mac_rss_classify(igb_t *);
  66 static void igb_setup_mac_classify(igb_t *);
  67 static void igb_init_unicst(igb_t *);
  68 static void igb_setup_multicst(igb_t *);
  69 static void igb_get_phy_state(igb_t *);
  70 static void igb_param_sync(igb_t *);
  71 static void igb_get_conf(igb_t *);
  72 static int igb_get_prop(igb_t *, char *, int, int, int);
  73 static boolean_t igb_is_link_up(igb_t *);
  74 static boolean_t igb_link_check(igb_t *);
  75 static void igb_local_timer(void *);
  76 static void igb_link_timer(void *);
  77 static void igb_arm_watchdog_timer(igb_t *);
  78 static void igb_start_watchdog_timer(igb_t *);
  79 static void igb_restart_watchdog_timer(igb_t *);
  80 static void igb_stop_watchdog_timer(igb_t *);
  81 static void igb_start_link_timer(igb_t *);
  82 static void igb_stop_link_timer(igb_t *);
  83 static void igb_disable_adapter_interrupts(igb_t *);
  84 static void igb_enable_adapter_interrupts_82575(igb_t *);
  85 static void igb_enable_adapter_interrupts_82576(igb_t *);
  86 static void igb_enable_adapter_interrupts_82580(igb_t *);
  87 static boolean_t is_valid_mac_addr(uint8_t *);
  88 static boolean_t igb_stall_check(igb_t *);
  89 static boolean_t igb_set_loopback_mode(igb_t *, uint32_t);
  90 static void igb_set_external_loopback(igb_t *);
  91 static void igb_set_internal_phy_loopback(igb_t *);
  92 static void igb_set_internal_serdes_loopback(igb_t *);
  93 static boolean_t igb_find_mac_address(igb_t *);
  94 static int igb_alloc_intrs(igb_t *);
  95 static int igb_alloc_intr_handles(igb_t *, int);
  96 static int igb_add_intr_handlers(igb_t *);
  97 static void igb_rem_intr_handlers(igb_t *);
  98 static void igb_rem_intrs(igb_t *);
  99 static int igb_enable_intrs(igb_t *);
 100 static int igb_disable_intrs(igb_t *);
 101 static void igb_setup_msix_82575(igb_t *);
 102 static void igb_setup_msix_82576(igb_t *);
 103 static void igb_setup_msix_82580(igb_t *);
 104 static uint_t igb_intr_legacy(void *, void *);
 105 static uint_t igb_intr_msi(void *, void *);
 106 static uint_t igb_intr_rx(void *, void *);
 107 static uint_t igb_intr_tx(void *, void *);
 108 static uint_t igb_intr_tx_other(void *, void *);
 109 static void igb_intr_rx_work(igb_rx_ring_t *);
 110 static void igb_intr_tx_work(igb_tx_ring_t *);
 111 static void igb_intr_link_work(igb_t *);
 112 static void igb_get_driver_control(struct e1000_hw *);
 113 static void igb_release_driver_control(struct e1000_hw *);
 114 
 115 static int igb_attach(dev_info_t *, ddi_attach_cmd_t);
 116 static int igb_detach(dev_info_t *, ddi_detach_cmd_t);
 117 static int igb_resume(dev_info_t *);
 118 static int igb_suspend(dev_info_t *);
 119 static int igb_quiesce(dev_info_t *);
 120 static void igb_unconfigure(dev_info_t *, igb_t *);
 121 static int igb_fm_error_cb(dev_info_t *, ddi_fm_error_t *,
 122     const void *);
 123 static void igb_fm_init(igb_t *);
 124 static void igb_fm_fini(igb_t *);
 125 static void igb_release_multicast(igb_t *);
 126 
 127 char *igb_priv_props[] = {
 128         "_eee_support",
 129         "_tx_copy_thresh",
 130         "_tx_recycle_thresh",
 131         "_tx_overload_thresh",
 132         "_tx_resched_thresh",
 133         "_rx_copy_thresh",
 134         "_rx_limit_per_intr",
 135         "_intr_throttling",
 136         "_adv_pause_cap",
 137         "_adv_asym_pause_cap",
 138         NULL
 139 };
 140 
 141 static struct cb_ops igb_cb_ops = {
 142         nulldev,                /* cb_open */
 143         nulldev,                /* cb_close */
 144         nodev,                  /* cb_strategy */
 145         nodev,                  /* cb_print */
 146         nodev,                  /* cb_dump */
 147         nodev,                  /* cb_read */
 148         nodev,                  /* cb_write */
 149         nodev,                  /* cb_ioctl */
 150         nodev,                  /* cb_devmap */
 151         nodev,                  /* cb_mmap */
 152         nodev,                  /* cb_segmap */
 153         nochpoll,               /* cb_chpoll */
 154         ddi_prop_op,            /* cb_prop_op */
 155         NULL,                   /* cb_stream */
 156         D_MP | D_HOTPLUG,       /* cb_flag */
 157         CB_REV,                 /* cb_rev */
 158         nodev,                  /* cb_aread */
 159         nodev                   /* cb_awrite */
 160 };
 161 
 162 static struct dev_ops igb_dev_ops = {
 163         DEVO_REV,               /* devo_rev */
 164         0,                      /* devo_refcnt */
 165         NULL,                   /* devo_getinfo */
 166         nulldev,                /* devo_identify */
 167         nulldev,                /* devo_probe */
 168         igb_attach,             /* devo_attach */
 169         igb_detach,             /* devo_detach */
 170         nodev,                  /* devo_reset */
 171         &igb_cb_ops,                /* devo_cb_ops */
 172         NULL,                   /* devo_bus_ops */
 173         ddi_power,              /* devo_power */
 174         igb_quiesce,    /* devo_quiesce */
 175 };
 176 
 177 static struct modldrv igb_modldrv = {
 178         &mod_driverops,             /* Type of module.  This one is a driver */
 179         ident,                  /* Discription string */
 180         &igb_dev_ops,               /* driver ops */
 181 };
 182 
 183 static struct modlinkage igb_modlinkage = {
 184         MODREV_1, { &igb_modldrv, NULL }
 185 };
 186 
 187 /* Access attributes for register mapping */
 188 ddi_device_acc_attr_t igb_regs_acc_attr = {
 189         DDI_DEVICE_ATTR_V1,
 190         DDI_STRUCTURE_LE_ACC,
 191         DDI_STRICTORDER_ACC,
 192         DDI_FLAGERR_ACC
 193 };
 194 
 195 #define IGB_M_CALLBACK_FLAGS \
 196         (MC_IOCTL | MC_GETCAPAB | MC_SETPROP | MC_GETPROP | MC_PROPINFO)
 197 
 198 static mac_callbacks_t igb_m_callbacks = {
 199         IGB_M_CALLBACK_FLAGS,
 200         igb_m_stat,
 201         igb_m_start,
 202         igb_m_stop,
 203         igb_m_promisc,
 204         igb_m_multicst,
 205         NULL,
 206         NULL,
 207         NULL,
 208         igb_m_ioctl,
 209         igb_m_getcapab,
 210         NULL,
 211         NULL,
 212         igb_m_setprop,
 213         igb_m_getprop,
 214         igb_m_propinfo
 215 };
 216 
 217 /*
 218  * Initialize capabilities of each supported adapter type
 219  */
 220 static adapter_info_t igb_82575_cap = {
 221         /* limits */
 222         4,              /* maximum number of rx queues */
 223         1,              /* minimum number of rx queues */
 224         4,              /* default number of rx queues */
 225         4,              /* maximum number of tx queues */
 226         1,              /* minimum number of tx queues */
 227         4,              /* default number of tx queues */
 228         65535,          /* maximum interrupt throttle rate */
 229         0,              /* minimum interrupt throttle rate */
 230         200,            /* default interrupt throttle rate */
 231 
 232         /* function pointers */
 233         igb_enable_adapter_interrupts_82575,
 234         igb_setup_msix_82575,
 235 
 236         /* capabilities */
 237         (IGB_FLAG_HAS_DCA |     /* capability flags */
 238         IGB_FLAG_VMDQ_POOL),
 239 
 240         0xffc00000              /* mask for RXDCTL register */
 241 };
 242 
 243 static adapter_info_t igb_82576_cap = {
 244         /* limits */
 245         16,             /* maximum number of rx queues */
 246         1,              /* minimum number of rx queues */
 247         4,              /* default number of rx queues */
 248         16,             /* maximum number of tx queues */
 249         1,              /* minimum number of tx queues */
 250         4,              /* default number of tx queues */
 251         65535,          /* maximum interrupt throttle rate */
 252         0,              /* minimum interrupt throttle rate */
 253         200,            /* default interrupt throttle rate */
 254 
 255         /* function pointers */
 256         igb_enable_adapter_interrupts_82576,
 257         igb_setup_msix_82576,
 258 
 259         /* capabilities */
 260         (IGB_FLAG_HAS_DCA |     /* capability flags */
 261         IGB_FLAG_VMDQ_POOL |
 262         IGB_FLAG_NEED_CTX_IDX),
 263 
 264         0xffe00000              /* mask for RXDCTL register */
 265 };
 266 
 267 static adapter_info_t igb_82580_cap = {
 268         /* limits */
 269         8,              /* maximum number of rx queues */
 270         1,              /* minimum number of rx queues */
 271         4,              /* default number of rx queues */
 272         8,              /* maximum number of tx queues */
 273         1,              /* minimum number of tx queues */
 274         4,              /* default number of tx queues */
 275         65535,          /* maximum interrupt throttle rate */
 276         0,              /* minimum interrupt throttle rate */
 277         200,            /* default interrupt throttle rate */
 278 
 279         /* function pointers */
 280         igb_enable_adapter_interrupts_82580,
 281         igb_setup_msix_82580,
 282 
 283         /* capabilities */
 284         (IGB_FLAG_HAS_DCA |     /* capability flags */
 285         IGB_FLAG_VMDQ_POOL |
 286         IGB_FLAG_NEED_CTX_IDX),
 287 
 288         0xffe00000              /* mask for RXDCTL register */
 289 };
 290 
 291 static adapter_info_t igb_i350_cap = {
 292         /* limits */
 293         8,              /* maximum number of rx queues */
 294         1,              /* minimum number of rx queues */
 295         4,              /* default number of rx queues */
 296         8,              /* maximum number of tx queues */
 297         1,              /* minimum number of tx queues */
 298         4,              /* default number of tx queues */
 299         65535,          /* maximum interrupt throttle rate */
 300         0,              /* minimum interrupt throttle rate */
 301         200,            /* default interrupt throttle rate */
 302 
 303         /* function pointers */
 304         igb_enable_adapter_interrupts_82580,
 305         igb_setup_msix_82580,
 306 
 307         /* capabilities */
 308         (IGB_FLAG_HAS_DCA |     /* capability flags */
 309         IGB_FLAG_VMDQ_POOL |
 310         IGB_FLAG_NEED_CTX_IDX),
 311 
 312         0xffe00000              /* mask for RXDCTL register */
 313 };
 314 
 315 static adapter_info_t igb_i210_cap = {
 316         /* limits */
 317         4,              /* maximum number of rx queues */
 318         1,              /* minimum number of rx queues */
 319         4,              /* default number of rx queues */
 320         4,              /* maximum number of tx queues */
 321         1,              /* minimum number of tx queues */
 322         4,              /* default number of tx queues */
 323         65535,          /* maximum interrupt throttle rate */
 324         0,              /* minimum interrupt throttle rate */
 325         200,            /* default interrupt throttle rate */
 326 
 327         /* function pointers */
 328         igb_enable_adapter_interrupts_82580,
 329         igb_setup_msix_82580,
 330 
 331         /* capabilities */
 332         (IGB_FLAG_HAS_DCA |     /* capability flags */
 333         IGB_FLAG_VMDQ_POOL |
 334         IGB_FLAG_NEED_CTX_IDX),
 335 
 336         0xfff00000              /* mask for RXDCTL register */
 337 };
 338 
 339 static adapter_info_t igb_i354_cap = {
 340         /* limits */
 341         8,              /* maximum number of rx queues */
 342         1,              /* minimum number of rx queues */
 343         4,              /* default number of rx queues */
 344         8,              /* maximum number of tx queues */
 345         1,              /* minimum number of tx queues */
 346         4,              /* default number of tx queues */
 347         65535,          /* maximum interrupt throttle rate */
 348         0,              /* minimum interrupt throttle rate */
 349         200,            /* default interrupt throttle rate */
 350 
 351         /* function pointers */
 352         igb_enable_adapter_interrupts_82580,
 353         igb_setup_msix_82580,
 354 
 355         /* capabilities */
 356         (IGB_FLAG_HAS_DCA |     /* capability flags */
 357         IGB_FLAG_VMDQ_POOL |
 358         IGB_FLAG_NEED_CTX_IDX),
 359 
 360         0xfff00000              /* mask for RXDCTL register */
 361 };
 362 
 363 /*
 364  * Module Initialization Functions
 365  */
 366 
 367 int
 368 _init(void)
 369 {
 370         int status;
 371 
 372         mac_init_ops(&igb_dev_ops, MODULE_NAME);
 373 
 374         status = mod_install(&igb_modlinkage);
 375 
 376         if (status != DDI_SUCCESS) {
 377                 mac_fini_ops(&igb_dev_ops);
 378         }
 379 
 380         return (status);
 381 }
 382 
 383 int
 384 _fini(void)
 385 {
 386         int status;
 387 
 388         status = mod_remove(&igb_modlinkage);
 389 
 390         if (status == DDI_SUCCESS) {
 391                 mac_fini_ops(&igb_dev_ops);
 392         }
 393 
 394         return (status);
 395 
 396 }
 397 
 398 int
 399 _info(struct modinfo *modinfop)
 400 {
 401         int status;
 402 
 403         status = mod_info(&igb_modlinkage, modinfop);
 404 
 405         return (status);
 406 }
 407 
 408 /*
 409  * igb_attach - driver attach
 410  *
 411  * This function is the device specific initialization entry
 412  * point. This entry point is required and must be written.
 413  * The DDI_ATTACH command must be provided in the attach entry
 414  * point. When attach() is called with cmd set to DDI_ATTACH,
 415  * all normal kernel services (such as kmem_alloc(9F)) are
 416  * available for use by the driver.
 417  *
 418  * The attach() function will be called once for each instance
 419  * of  the  device  on  the  system with cmd set to DDI_ATTACH.
 420  * Until attach() succeeds, the only driver entry points which
 421  * may be called are open(9E) and getinfo(9E).
 422  */
 423 static int
 424 igb_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
 425 {
 426         igb_t *igb;
 427         struct igb_osdep *osdep;
 428         struct e1000_hw *hw;
 429         int instance;
 430 
 431         /*
 432          * Check the command and perform corresponding operations
 433          */
 434         switch (cmd) {
 435         default:
 436                 return (DDI_FAILURE);
 437 
 438         case DDI_RESUME:
 439                 return (igb_resume(devinfo));
 440 
 441         case DDI_ATTACH:
 442                 break;
 443         }
 444 
 445         /* Get the device instance */
 446         instance = ddi_get_instance(devinfo);
 447 
 448         /* Allocate memory for the instance data structure */
 449         igb = kmem_zalloc(sizeof (igb_t), KM_SLEEP);
 450 
 451         igb->dip = devinfo;
 452         igb->instance = instance;
 453 
 454         hw = &igb->hw;
 455         osdep = &igb->osdep;
 456         hw->back = osdep;
 457         osdep->igb = igb;
 458 
 459         /* Attach the instance pointer to the dev_info data structure */
 460         ddi_set_driver_private(devinfo, igb);
 461 
 462 
 463         /* Initialize for fma support */
 464         igb->fm_capabilities = igb_get_prop(igb, "fm-capable",
 465             0, 0x0f,
 466             DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
 467             DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
 468         igb_fm_init(igb);
 469         igb->attach_progress |= ATTACH_PROGRESS_FMINIT;
 470 
 471         /*
 472          * Map PCI config space registers
 473          */
 474         if (pci_config_setup(devinfo, &osdep->cfg_handle) != DDI_SUCCESS) {
 475                 igb_log(igb, IGB_LOG_ERROR, "Failed to map PCI configurations");
 476                 goto attach_fail;
 477         }
 478         igb->attach_progress |= ATTACH_PROGRESS_PCI_CONFIG;
 479 
 480         /*
 481          * Identify the chipset family
 482          */
 483         if (igb_identify_hardware(igb) != IGB_SUCCESS) {
 484                 igb_log(igb, IGB_LOG_ERROR, "Failed to identify hardware");
 485                 goto attach_fail;
 486         }
 487 
 488         /*
 489          * Map device registers
 490          */
 491         if (igb_regs_map(igb) != IGB_SUCCESS) {
 492                 igb_log(igb, IGB_LOG_ERROR, "Failed to map device registers");
 493                 goto attach_fail;
 494         }
 495         igb->attach_progress |= ATTACH_PROGRESS_REGS_MAP;
 496 
 497         /*
 498          * Initialize driver parameters
 499          */
 500         igb_init_properties(igb);
 501         igb->attach_progress |= ATTACH_PROGRESS_PROPS;
 502 
 503         /*
 504          * Allocate interrupts
 505          */
 506         if (igb_alloc_intrs(igb) != IGB_SUCCESS) {
 507                 igb_log(igb, IGB_LOG_ERROR, "Failed to allocate interrupts");
 508                 goto attach_fail;
 509         }
 510         igb->attach_progress |= ATTACH_PROGRESS_ALLOC_INTR;
 511 
 512         /*
 513          * Allocate rx/tx rings based on the ring numbers.
 514          * The actual numbers of rx/tx rings are decided by the number of
 515          * allocated interrupt vectors, so we should allocate the rings after
 516          * interrupts are allocated.
 517          */
 518         if (igb_alloc_rings(igb) != IGB_SUCCESS) {
 519                 igb_log(igb, IGB_LOG_ERROR,
 520                     "Failed to allocate rx/tx rings or groups");
 521                 goto attach_fail;
 522         }
 523         igb->attach_progress |= ATTACH_PROGRESS_ALLOC_RINGS;
 524 
 525         /*
 526          * Add interrupt handlers
 527          */
 528         if (igb_add_intr_handlers(igb) != IGB_SUCCESS) {
 529                 igb_log(igb, IGB_LOG_ERROR, "Failed to add interrupt handlers");
 530                 goto attach_fail;
 531         }
 532         igb->attach_progress |= ATTACH_PROGRESS_ADD_INTR;
 533 
 534         /*
 535          * Initialize driver parameters
 536          */
 537         if (igb_init_driver_settings(igb) != IGB_SUCCESS) {
 538                 igb_log(igb, IGB_LOG_ERROR,
 539                     "Failed to initialize driver settings");
 540                 goto attach_fail;
 541         }
 542 
 543         if (igb_check_acc_handle(igb->osdep.cfg_handle) != DDI_FM_OK) {
 544                 ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
 545                 goto attach_fail;
 546         }
 547 
 548         /*
 549          * Initialize mutexes for this device.
 550          * Do this before enabling the interrupt handler and
 551          * register the softint to avoid the condition where
 552          * interrupt handler can try using uninitialized mutex
 553          */
 554         igb_init_locks(igb);
 555         igb->attach_progress |= ATTACH_PROGRESS_LOCKS;
 556 
 557         /*
 558          * Initialize the adapter
 559          */
 560         if (igb_init(igb) != IGB_SUCCESS) {
 561                 igb_log(igb, IGB_LOG_ERROR, "Failed to initialize adapter");
 562                 goto attach_fail;
 563         }
 564         igb->attach_progress |= ATTACH_PROGRESS_INIT_ADAPTER;
 565 
 566         /*
 567          * Initialize statistics
 568          */
 569         if (igb_init_stats(igb) != IGB_SUCCESS) {
 570                 igb_log(igb, IGB_LOG_ERROR, "Failed to initialize statistics");
 571                 goto attach_fail;
 572         }
 573         igb->attach_progress |= ATTACH_PROGRESS_STATS;
 574 
 575         /*
 576          * Register the driver to the MAC
 577          */
 578         if (igb_register_mac(igb) != IGB_SUCCESS) {
 579                 igb_log(igb, IGB_LOG_ERROR, "Failed to register MAC");
 580                 goto attach_fail;
 581         }
 582         igb->attach_progress |= ATTACH_PROGRESS_MAC;
 583 
 584         /*
 585          * Now that mutex locks are initialized, and the chip is also
 586          * initialized, enable interrupts.
 587          */
 588         if (igb_enable_intrs(igb) != IGB_SUCCESS) {
 589                 igb_log(igb, IGB_LOG_ERROR, "Failed to enable DDI interrupts");
 590                 goto attach_fail;
 591         }
 592         igb->attach_progress |= ATTACH_PROGRESS_ENABLE_INTR;
 593 
 594         igb_log(igb, IGB_LOG_INFO, "%s", igb_version);
 595         atomic_or_32(&igb->igb_state, IGB_INITIALIZED);
 596 
 597         /*
 598          * Newer models have Energy Efficient Ethernet, let's disable this by
 599          * default.
 600          */
 601         if (igb->hw.mac.type == e1000_i350)
 602                 (void) e1000_set_eee_i350(&igb->hw, B_FALSE, B_FALSE);
 603         else if (igb->hw.mac.type == e1000_i354)
 604                 (void) e1000_set_eee_i354(&igb->hw, B_FALSE, B_FALSE);
 605 
 606         return (DDI_SUCCESS);
 607 
 608 attach_fail:
 609         igb_unconfigure(devinfo, igb);
 610         return (DDI_FAILURE);
 611 }
 612 
 613 /*
 614  * igb_detach - driver detach
 615  *
 616  * The detach() function is the complement of the attach routine.
 617  * If cmd is set to DDI_DETACH, detach() is used to remove  the
 618  * state  associated  with  a  given  instance of a device node
 619  * prior to the removal of that instance from the system.
 620  *
 621  * The detach() function will be called once for each  instance
 622  * of the device for which there has been a successful attach()
 623  * once there are no longer  any  opens  on  the  device.
 624  *
 625  * Interrupts routine are disabled, All memory allocated by this
 626  * driver are freed.
 627  */
 628 static int
 629 igb_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
 630 {
 631         igb_t *igb;
 632 
 633         /*
 634          * Check detach command
 635          */
 636         switch (cmd) {
 637         default:
 638                 return (DDI_FAILURE);
 639 
 640         case DDI_SUSPEND:
 641                 return (igb_suspend(devinfo));
 642 
 643         case DDI_DETACH:
 644                 break;
 645         }
 646 
 647 
 648         /*
 649          * Get the pointer to the driver private data structure
 650          */
 651         igb = (igb_t *)ddi_get_driver_private(devinfo);
 652         if (igb == NULL)
 653                 return (DDI_FAILURE);
 654 
 655         /*
 656          * Unregister MAC. If failed, we have to fail the detach
 657          */
 658         if (mac_unregister(igb->mac_hdl) != 0) {
 659                 igb_log(igb, IGB_LOG_ERROR, "Failed to unregister MAC");
 660                 return (DDI_FAILURE);
 661         }
 662         igb->attach_progress &= ~ATTACH_PROGRESS_MAC;
 663 
 664         /*
 665          * If the device is still running, it needs to be stopped first.
 666          * This check is necessary because under some specific circumstances,
 667          * the detach routine can be called without stopping the interface
 668          * first.
 669          */
 670         mutex_enter(&igb->gen_lock);
 671         if (igb->igb_state & IGB_STARTED) {
 672                 atomic_and_32(&igb->igb_state, ~IGB_STARTED);
 673                 igb_stop(igb, B_TRUE);
 674                 mutex_exit(&igb->gen_lock);
 675                 /* Disable and stop the watchdog timer */
 676                 igb_disable_watchdog_timer(igb);
 677         } else
 678                 mutex_exit(&igb->gen_lock);
 679 
 680         /*
 681          * Check if there are still rx buffers held by the upper layer.
 682          * If so, fail the detach.
 683          */
 684         if (!igb_rx_drain(igb))
 685                 return (DDI_FAILURE);
 686 
 687         /*
 688          * Do the remaining unconfigure routines
 689          */
 690         igb_unconfigure(devinfo, igb);
 691 
 692         return (DDI_SUCCESS);
 693 }
 694 
 695 /*
 696  * quiesce(9E) entry point.
 697  *
 698  * This function is called when the system is single-threaded at high
 699  * PIL with preemption disabled. Therefore, this function must not be
 700  * blocked.
 701  *
 702  * This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure.
 703  * DDI_FAILURE indicates an error condition and should almost never happen.
 704  */
 705 static int
 706 igb_quiesce(dev_info_t *devinfo)
 707 {
 708         igb_t *igb;
 709         struct e1000_hw *hw;
 710 
 711         igb = (igb_t *)ddi_get_driver_private(devinfo);
 712 
 713         if (igb == NULL)
 714                 return (DDI_FAILURE);
 715 
 716         hw = &igb->hw;
 717 
 718         /*
 719          * Disable the adapter interrupts
 720          */
 721         igb_disable_adapter_interrupts(igb);
 722 
 723         /* Tell firmware driver is no longer in control */
 724         igb_release_driver_control(hw);
 725 
 726         /*
 727          * Reset the chipset
 728          */
 729         (void) e1000_reset_hw(hw);
 730 
 731         /*
 732          * Reset PHY if possible
 733          */
 734         if (e1000_check_reset_block(hw) == E1000_SUCCESS)
 735                 (void) e1000_phy_hw_reset(hw);
 736 
 737         return (DDI_SUCCESS);
 738 }
 739 
 740 /*
 741  * igb_unconfigure - release all resources held by this instance
 742  */
 743 static void
 744 igb_unconfigure(dev_info_t *devinfo, igb_t *igb)
 745 {
 746         /*
 747          * Disable interrupt
 748          */
 749         if (igb->attach_progress & ATTACH_PROGRESS_ENABLE_INTR) {
 750                 (void) igb_disable_intrs(igb);
 751         }
 752 
 753         /*
 754          * Unregister MAC
 755          */
 756         if (igb->attach_progress & ATTACH_PROGRESS_MAC) {
 757                 (void) mac_unregister(igb->mac_hdl);
 758         }
 759 
 760         /*
 761          * Free statistics
 762          */
 763         if (igb->attach_progress & ATTACH_PROGRESS_STATS) {
 764                 kstat_delete((kstat_t *)igb->igb_ks);
 765         }
 766 
 767         /*
 768          * Remove interrupt handlers
 769          */
 770         if (igb->attach_progress & ATTACH_PROGRESS_ADD_INTR) {
 771                 igb_rem_intr_handlers(igb);
 772         }
 773 
 774         /*
 775          * Remove interrupts
 776          */
 777         if (igb->attach_progress & ATTACH_PROGRESS_ALLOC_INTR) {
 778                 igb_rem_intrs(igb);
 779         }
 780 
 781         /*
 782          * Remove driver properties
 783          */
 784         if (igb->attach_progress & ATTACH_PROGRESS_PROPS) {
 785                 (void) ddi_prop_remove_all(devinfo);
 786         }
 787 
 788         /*
 789          * Stop the adapter
 790          */
 791         if (igb->attach_progress & ATTACH_PROGRESS_INIT_ADAPTER) {
 792                 mutex_enter(&igb->gen_lock);
 793                 igb_stop_adapter(igb);
 794                 mutex_exit(&igb->gen_lock);
 795                 if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK)
 796                         ddi_fm_service_impact(igb->dip, DDI_SERVICE_UNAFFECTED);
 797         }
 798 
 799         /*
 800          * Free multicast table
 801          */
 802         igb_release_multicast(igb);
 803 
 804         /*
 805          * Free register handle
 806          */
 807         if (igb->attach_progress & ATTACH_PROGRESS_REGS_MAP) {
 808                 if (igb->osdep.reg_handle != NULL)
 809                         ddi_regs_map_free(&igb->osdep.reg_handle);
 810         }
 811 
 812         /*
 813          * Free PCI config handle
 814          */
 815         if (igb->attach_progress & ATTACH_PROGRESS_PCI_CONFIG) {
 816                 if (igb->osdep.cfg_handle != NULL)
 817                         pci_config_teardown(&igb->osdep.cfg_handle);
 818         }
 819 
 820         /*
 821          * Free locks
 822          */
 823         if (igb->attach_progress & ATTACH_PROGRESS_LOCKS) {
 824                 igb_destroy_locks(igb);
 825         }
 826 
 827         /*
 828          * Free the rx/tx rings
 829          */
 830         if (igb->attach_progress & ATTACH_PROGRESS_ALLOC_RINGS) {
 831                 igb_free_rings(igb);
 832         }
 833 
 834         /*
 835          * Remove FMA
 836          */
 837         if (igb->attach_progress & ATTACH_PROGRESS_FMINIT) {
 838                 igb_fm_fini(igb);
 839         }
 840 
 841         /*
 842          * Free the driver data structure
 843          */
 844         kmem_free(igb, sizeof (igb_t));
 845 
 846         ddi_set_driver_private(devinfo, NULL);
 847 }
 848 
 849 /*
 850  * igb_register_mac - Register the driver and its function pointers with
 851  * the GLD interface
 852  */
 853 static int
 854 igb_register_mac(igb_t *igb)
 855 {
 856         struct e1000_hw *hw = &igb->hw;
 857         mac_register_t *mac;
 858         int status;
 859 
 860         if ((mac = mac_alloc(MAC_VERSION)) == NULL)
 861                 return (IGB_FAILURE);
 862 
 863         mac->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
 864         mac->m_driver = igb;
 865         mac->m_dip = igb->dip;
 866         mac->m_src_addr = hw->mac.addr;
 867         mac->m_callbacks = &igb_m_callbacks;
 868         mac->m_min_sdu = 0;
 869         mac->m_max_sdu = igb->max_frame_size -
 870             sizeof (struct ether_vlan_header) - ETHERFCSL;
 871         mac->m_margin = VLAN_TAGSZ;
 872         mac->m_priv_props = igb_priv_props;
 873         mac->m_v12n = MAC_VIRT_LEVEL1;
 874 
 875         status = mac_register(mac, &igb->mac_hdl);
 876 
 877         mac_free(mac);
 878 
 879         return ((status == 0) ? IGB_SUCCESS : IGB_FAILURE);
 880 }
 881 
 882 /*
 883  * igb_identify_hardware - Identify the type of the chipset
 884  */
 885 static int
 886 igb_identify_hardware(igb_t *igb)
 887 {
 888         struct e1000_hw *hw = &igb->hw;
 889         struct igb_osdep *osdep = &igb->osdep;
 890 
 891         /*
 892          * Get the device id
 893          */
 894         hw->vendor_id =
 895             pci_config_get16(osdep->cfg_handle, PCI_CONF_VENID);
 896         hw->device_id =
 897             pci_config_get16(osdep->cfg_handle, PCI_CONF_DEVID);
 898         hw->revision_id =
 899             pci_config_get8(osdep->cfg_handle, PCI_CONF_REVID);
 900         hw->subsystem_device_id =
 901             pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBSYSID);
 902         hw->subsystem_vendor_id =
 903             pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBVENID);
 904 
 905         /*
 906          * Set the mac type of the adapter based on the device id
 907          */
 908         if (e1000_set_mac_type(hw) != E1000_SUCCESS) {
 909                 return (IGB_FAILURE);
 910         }
 911 
 912         /*
 913          * Install adapter capabilities based on mac type
 914          */
 915         switch (hw->mac.type) {
 916         case e1000_82575:
 917                 igb->capab = &igb_82575_cap;
 918                 break;
 919         case e1000_82576:
 920                 igb->capab = &igb_82576_cap;
 921                 break;
 922         case e1000_82580:
 923                 igb->capab = &igb_82580_cap;
 924                 break;
 925         case e1000_i350:
 926                 igb->capab = &igb_i350_cap;
 927                 break;
 928         case e1000_i210:
 929         case e1000_i211:
 930                 igb->capab = &igb_i210_cap;
 931                 break;
 932         case e1000_i354:
 933                 igb->capab = &igb_i354_cap;
 934                 break;
 935         default:
 936                 return (IGB_FAILURE);
 937         }
 938 
 939         return (IGB_SUCCESS);
 940 }
 941 
 942 /*
 943  * igb_regs_map - Map the device registers
 944  */
 945 static int
 946 igb_regs_map(igb_t *igb)
 947 {
 948         dev_info_t *devinfo = igb->dip;
 949         struct e1000_hw *hw = &igb->hw;
 950         struct igb_osdep *osdep = &igb->osdep;
 951         off_t mem_size;
 952 
 953         /*
 954          * First get the size of device registers to be mapped.
 955          */
 956         if (ddi_dev_regsize(devinfo, IGB_ADAPTER_REGSET, &mem_size) !=
 957             DDI_SUCCESS) {
 958                 return (IGB_FAILURE);
 959         }
 960 
 961         /*
 962          * Call ddi_regs_map_setup() to map registers
 963          */
 964         if ((ddi_regs_map_setup(devinfo, IGB_ADAPTER_REGSET,
 965             (caddr_t *)&hw->hw_addr, 0,
 966             mem_size, &igb_regs_acc_attr,
 967             &osdep->reg_handle)) != DDI_SUCCESS) {
 968                 return (IGB_FAILURE);
 969         }
 970 
 971         return (IGB_SUCCESS);
 972 }
 973 
 974 /*
 975  * igb_init_properties - Initialize driver properties
 976  */
 977 static void
 978 igb_init_properties(igb_t *igb)
 979 {
 980         /*
 981          * Get conf file properties, including link settings
 982          * jumbo frames, ring number, descriptor number, etc.
 983          */
 984         igb_get_conf(igb);
 985 }
 986 
 987 /*
 988  * igb_init_driver_settings - Initialize driver settings
 989  *
 990  * The settings include hardware function pointers, bus information,
 991  * rx/tx rings settings, link state, and any other parameters that
 992  * need to be setup during driver initialization.
 993  */
 994 static int
 995 igb_init_driver_settings(igb_t *igb)
 996 {
 997         struct e1000_hw *hw = &igb->hw;
 998         igb_rx_ring_t *rx_ring;
 999         igb_tx_ring_t *tx_ring;
1000         uint32_t rx_size;
1001         uint32_t tx_size;
1002         int i;
1003 
1004         /*
1005          * Initialize chipset specific hardware function pointers
1006          */
1007         if (e1000_setup_init_funcs(hw, B_TRUE) != E1000_SUCCESS) {
1008                 return (IGB_FAILURE);
1009         }
1010 
1011         /*
1012          * Get bus information
1013          */
1014         if (e1000_get_bus_info(hw) != E1000_SUCCESS) {
1015                 return (IGB_FAILURE);
1016         }
1017 
1018         /*
1019          * Get the system page size
1020          */
1021         igb->page_size = ddi_ptob(igb->dip, (ulong_t)1);
1022 
1023         /*
1024          * Set rx buffer size
1025          * The IP header alignment room is counted in the calculation.
1026          * The rx buffer size is in unit of 1K that is required by the
1027          * chipset hardware.
1028          */
1029         rx_size = igb->max_frame_size + IPHDR_ALIGN_ROOM;
1030         igb->rx_buf_size = ((rx_size >> 10) +
1031             ((rx_size & (((uint32_t)1 << 10) - 1)) > 0 ? 1 : 0)) << 10;
1032 
1033         /*
1034          * Set tx buffer size
1035          */
1036         tx_size = igb->max_frame_size;
1037         igb->tx_buf_size = ((tx_size >> 10) +
1038             ((tx_size & (((uint32_t)1 << 10) - 1)) > 0 ? 1 : 0)) << 10;
1039 
1040         /*
1041          * Initialize rx/tx rings parameters
1042          */
1043         for (i = 0; i < igb->num_rx_rings; i++) {
1044                 rx_ring = &igb->rx_rings[i];
1045                 rx_ring->index = i;
1046                 rx_ring->igb = igb;
1047         }
1048 
1049         for (i = 0; i < igb->num_tx_rings; i++) {
1050                 tx_ring = &igb->tx_rings[i];
1051                 tx_ring->index = i;
1052                 tx_ring->igb = igb;
1053                 if (igb->tx_head_wb_enable)
1054                         tx_ring->tx_recycle = igb_tx_recycle_head_wb;
1055                 else
1056                         tx_ring->tx_recycle = igb_tx_recycle_legacy;
1057 
1058                 tx_ring->ring_size = igb->tx_ring_size;
1059                 tx_ring->free_list_size = igb->tx_ring_size +
1060                     (igb->tx_ring_size >> 1);
1061         }
1062 
1063         /*
1064          * Initialize values of interrupt throttling rates
1065          */
1066         for (i = 1; i < MAX_NUM_EITR; i++)
1067                 igb->intr_throttling[i] = igb->intr_throttling[0];
1068 
1069         /*
1070          * The initial link state should be "unknown"
1071          */
1072         igb->link_state = LINK_STATE_UNKNOWN;
1073 
1074         return (IGB_SUCCESS);
1075 }
1076 
1077 /*
1078  * igb_init_locks - Initialize locks
1079  */
1080 static void
1081 igb_init_locks(igb_t *igb)
1082 {
1083         igb_rx_ring_t *rx_ring;
1084         igb_tx_ring_t *tx_ring;
1085         int i;
1086 
1087         for (i = 0; i < igb->num_rx_rings; i++) {
1088                 rx_ring = &igb->rx_rings[i];
1089                 mutex_init(&rx_ring->rx_lock, NULL,
1090                     MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1091         }
1092 
1093         for (i = 0; i < igb->num_tx_rings; i++) {
1094                 tx_ring = &igb->tx_rings[i];
1095                 mutex_init(&tx_ring->tx_lock, NULL,
1096                     MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1097                 mutex_init(&tx_ring->recycle_lock, NULL,
1098                     MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1099                 mutex_init(&tx_ring->tcb_head_lock, NULL,
1100                     MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1101                 mutex_init(&tx_ring->tcb_tail_lock, NULL,
1102                     MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1103         }
1104 
1105         mutex_init(&igb->gen_lock, NULL,
1106             MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1107 
1108         mutex_init(&igb->watchdog_lock, NULL,
1109             MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1110 
1111         mutex_init(&igb->link_lock, NULL,
1112             MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1113 }
1114 
1115 /*
1116  * igb_destroy_locks - Destroy locks
1117  */
1118 static void
1119 igb_destroy_locks(igb_t *igb)
1120 {
1121         igb_rx_ring_t *rx_ring;
1122         igb_tx_ring_t *tx_ring;
1123         int i;
1124 
1125         for (i = 0; i < igb->num_rx_rings; i++) {
1126                 rx_ring = &igb->rx_rings[i];
1127                 mutex_destroy(&rx_ring->rx_lock);
1128         }
1129 
1130         for (i = 0; i < igb->num_tx_rings; i++) {
1131                 tx_ring = &igb->tx_rings[i];
1132                 mutex_destroy(&tx_ring->tx_lock);
1133                 mutex_destroy(&tx_ring->recycle_lock);
1134                 mutex_destroy(&tx_ring->tcb_head_lock);
1135                 mutex_destroy(&tx_ring->tcb_tail_lock);
1136         }
1137 
1138         mutex_destroy(&igb->gen_lock);
1139         mutex_destroy(&igb->watchdog_lock);
1140         mutex_destroy(&igb->link_lock);
1141 }
1142 
1143 static int
1144 igb_resume(dev_info_t *devinfo)
1145 {
1146         igb_t *igb;
1147 
1148         igb = (igb_t *)ddi_get_driver_private(devinfo);
1149         if (igb == NULL)
1150                 return (DDI_FAILURE);
1151 
1152         mutex_enter(&igb->gen_lock);
1153 
1154         /*
1155          * Enable interrupts
1156          */
1157         if (igb->attach_progress & ATTACH_PROGRESS_ENABLE_INTR) {
1158                 if (igb_enable_intrs(igb) != IGB_SUCCESS) {
1159                         igb_log(igb, IGB_LOG_ERROR,
1160                             "Failed to enable DDI interrupts");
1161                         mutex_exit(&igb->gen_lock);
1162                         return (DDI_FAILURE);
1163                 }
1164         }
1165 
1166         if (igb->igb_state & IGB_STARTED) {
1167                 if (igb_start(igb, B_FALSE) != IGB_SUCCESS) {
1168                         mutex_exit(&igb->gen_lock);
1169                         return (DDI_FAILURE);
1170                 }
1171 
1172                 /*
1173                  * Enable and start the watchdog timer
1174                  */
1175                 igb_enable_watchdog_timer(igb);
1176         }
1177 
1178         atomic_and_32(&igb->igb_state, ~IGB_SUSPENDED);
1179 
1180         mutex_exit(&igb->gen_lock);
1181 
1182         return (DDI_SUCCESS);
1183 }
1184 
1185 static int
1186 igb_suspend(dev_info_t *devinfo)
1187 {
1188         igb_t *igb;
1189 
1190         igb = (igb_t *)ddi_get_driver_private(devinfo);
1191         if (igb == NULL)
1192                 return (DDI_FAILURE);
1193 
1194         mutex_enter(&igb->gen_lock);
1195 
1196         atomic_or_32(&igb->igb_state, IGB_SUSPENDED);
1197 
1198         /*
1199          * Disable interrupts
1200          */
1201         if (igb->attach_progress & ATTACH_PROGRESS_ENABLE_INTR) {
1202                 (void) igb_disable_intrs(igb);
1203         }
1204 
1205         if (!(igb->igb_state & IGB_STARTED)) {
1206                 mutex_exit(&igb->gen_lock);
1207                 return (DDI_SUCCESS);
1208         }
1209 
1210         igb_stop(igb, B_FALSE);
1211 
1212         mutex_exit(&igb->gen_lock);
1213 
1214         /*
1215          * Disable and stop the watchdog timer
1216          */
1217         igb_disable_watchdog_timer(igb);
1218 
1219         return (DDI_SUCCESS);
1220 }
1221 
1222 static int
1223 igb_init(igb_t *igb)
1224 {
1225         mutex_enter(&igb->gen_lock);
1226 
1227         /*
1228          * Initilize the adapter
1229          */
1230         if (igb_init_adapter(igb) != IGB_SUCCESS) {
1231                 mutex_exit(&igb->gen_lock);
1232                 igb_fm_ereport(igb, DDI_FM_DEVICE_INVAL_STATE);
1233                 ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
1234                 return (IGB_FAILURE);
1235         }
1236 
1237         mutex_exit(&igb->gen_lock);
1238 
1239         return (IGB_SUCCESS);
1240 }
1241 
1242 /*
1243  * igb_init_mac_address - Initialize the default MAC address
1244  *
1245  * On success, the MAC address is entered in the igb->hw.mac.addr
1246  * and hw->mac.perm_addr fields and the adapter's RAR(0) receive
1247  * address register.
1248  *
1249  * Important side effects:
1250  * 1. adapter is reset - this is required to put it in a known state.
1251  * 2. all of non-volatile memory (NVM) is read & checksummed - NVM is where
1252  * MAC address and all default settings are stored, so a valid checksum
1253  * is required.
1254  */
1255 static int
1256 igb_init_mac_address(igb_t *igb)
1257 {
1258         struct e1000_hw *hw = &igb->hw;
1259 
1260         ASSERT(mutex_owned(&igb->gen_lock));
1261 
1262         /*
1263          * Reset chipset to put the hardware in a known state
1264          * before we try to get MAC address from NVM.
1265          */
1266         if (e1000_reset_hw(hw) != E1000_SUCCESS) {
1267                 igb_log(igb, IGB_LOG_ERROR, "Adapter reset failed.");
1268                 goto init_mac_fail;
1269         }
1270 
1271         /*
1272          * NVM validation
1273          */
1274         if (((igb->hw.mac.type != e1000_i210) &&
1275             (igb->hw.mac.type != e1000_i211)) &&
1276             (e1000_validate_nvm_checksum(hw) < 0)) {
1277                 /*
1278                  * Some PCI-E parts fail the first check due to
1279                  * the link being in sleep state.  Call it again,
1280                  * if it fails a second time its a real issue.
1281                  */
1282                 if (e1000_validate_nvm_checksum(hw) < 0) {
1283                         igb_log(igb, IGB_LOG_ERROR,
1284                             "Invalid NVM checksum. Please contact "
1285                             "the vendor to update the NVM.");
1286                         goto init_mac_fail;
1287                 }
1288         }
1289 
1290         /*
1291          * Get the mac address
1292          * This function should handle SPARC case correctly.
1293          */
1294         if (!igb_find_mac_address(igb)) {
1295                 igb_log(igb, IGB_LOG_ERROR, "Failed to get the mac address");
1296                 goto init_mac_fail;
1297         }
1298 
1299         /* Validate mac address */
1300         if (!is_valid_mac_addr(hw->mac.addr)) {
1301                 igb_log(igb, IGB_LOG_ERROR, "Invalid mac address");
1302                 goto init_mac_fail;
1303         }
1304 
1305         return (IGB_SUCCESS);
1306 
1307 init_mac_fail:
1308         return (IGB_FAILURE);
1309 }
1310 
1311 /*
1312  * igb_init_adapter - Initialize the adapter
1313  */
1314 static int
1315 igb_init_adapter(igb_t *igb)
1316 {
1317         struct e1000_hw *hw = &igb->hw;
1318         uint32_t pba;
1319         int oemid[2];
1320         uint16_t nvmword;
1321         uint32_t hwm;
1322         uint32_t default_mtu;
1323         u8 pbanum[E1000_PBANUM_LENGTH];
1324         char eepromver[5];      /* f.ff */
1325         int i;
1326 
1327         ASSERT(mutex_owned(&igb->gen_lock));
1328 
1329         /*
1330          * In order to obtain the default MAC address, this will reset the
1331          * adapter and validate the NVM that the address and many other
1332          * default settings come from.
1333          */
1334         if (igb_init_mac_address(igb) != IGB_SUCCESS) {
1335                 igb_log(igb, IGB_LOG_ERROR, "Failed to initialize MAC address");
1336                 goto init_adapter_fail;
1337         }
1338 
1339         /*
1340          * Packet Buffer Allocation (PBA)
1341          * Writing PBA sets the receive portion of the buffer
1342          * the remainder is used for the transmit buffer.
1343          */
1344         switch (hw->mac.type) {
1345         case e1000_82575:
1346                 pba = E1000_PBA_32K;
1347                 break;
1348         case e1000_82576:
1349                 pba = E1000_READ_REG(hw, E1000_RXPBS);
1350                 pba &= E1000_RXPBS_SIZE_MASK_82576;
1351                 break;
1352         case e1000_82580:
1353         case e1000_i350:
1354         case e1000_i354:
1355                 pba = E1000_READ_REG(hw, E1000_RXPBS);
1356                 pba = e1000_rxpbs_adjust_82580(pba);
1357                 break;
1358         case e1000_i210:
1359         case e1000_i211:
1360                 pba = E1000_PBA_34K;
1361         default:
1362                 break;
1363         }
1364 
1365         /* Special needs in case of Jumbo frames */
1366         default_mtu = igb_get_prop(igb, PROP_DEFAULT_MTU,
1367             MIN_MTU, MAX_MTU, DEFAULT_MTU);
1368         if ((hw->mac.type == e1000_82575) && (default_mtu > ETHERMTU)) {
1369                 u32 tx_space, min_tx, min_rx;
1370                 pba = E1000_READ_REG(hw, E1000_PBA);
1371                 tx_space = pba >> 16;
1372                 pba &= 0xffff;
1373                 min_tx = (igb->max_frame_size +
1374                     sizeof (struct e1000_tx_desc) - ETHERNET_FCS_SIZE) * 2;
1375                 min_tx = roundup(min_tx, 1024);
1376                 min_tx >>= 10;
1377                 min_rx = igb->max_frame_size;
1378                 min_rx = roundup(min_rx, 1024);
1379                 min_rx >>= 10;
1380                 if (tx_space < min_tx &&
1381                     ((min_tx - tx_space) < pba)) {
1382                         pba = pba - (min_tx - tx_space);
1383                         /*
1384                          * if short on rx space, rx wins
1385                          * and must trump tx adjustment
1386                          */
1387                         if (pba < min_rx)
1388                                 pba = min_rx;
1389                 }
1390                 E1000_WRITE_REG(hw, E1000_PBA, pba);
1391         }
1392 
1393         DEBUGOUT1("igb_init: pba=%dK", pba);
1394 
1395         /*
1396          * These parameters control the automatic generation (Tx) and
1397          * response (Rx) to Ethernet PAUSE frames.
1398          * - High water mark should allow for at least two frames to be
1399          *   received after sending an XOFF.
1400          * - Low water mark works best when it is very near the high water mark.
1401          *   This allows the receiver to restart by sending XON when it has
1402          *   drained a bit.
1403          */
1404         hwm = min(((pba << 10) * 9 / 10),
1405             ((pba << 10) - 2 * igb->max_frame_size));
1406 
1407         if (hw->mac.type < e1000_82576) {
1408                 hw->fc.high_water = hwm & 0xFFF8;  /* 8-byte granularity */
1409                 hw->fc.low_water = hw->fc.high_water - 8;
1410         } else {
1411                 hw->fc.high_water = hwm & 0xFFF0;  /* 16-byte granularity */
1412                 hw->fc.low_water = hw->fc.high_water - 16;
1413         }
1414 
1415         hw->fc.pause_time = E1000_FC_PAUSE_TIME;
1416         hw->fc.send_xon = B_TRUE;
1417 
1418         (void) e1000_validate_mdi_setting(hw);
1419 
1420         /*
1421          * Reset the chipset hardware the second time to put PBA settings
1422          * into effect.
1423          */
1424         if (e1000_reset_hw(hw) != E1000_SUCCESS) {
1425                 igb_log(igb, IGB_LOG_ERROR, "Second reset failed");
1426                 goto init_adapter_fail;
1427         }
1428 
1429         /*
1430          * Don't wait for auto-negotiation to complete
1431          */
1432         hw->phy.autoneg_wait_to_complete = B_FALSE;
1433 
1434         /*
1435          * Copper options
1436          */
1437         if (hw->phy.media_type == e1000_media_type_copper) {
1438                 hw->phy.mdix = 0;    /* AUTO_ALL_MODES */
1439                 hw->phy.disable_polarity_correction = B_FALSE;
1440                 hw->phy.ms_type = e1000_ms_hw_default; /* E1000_MASTER_SLAVE */
1441         }
1442 
1443         /*
1444          * Initialize link settings
1445          */
1446         (void) igb_setup_link(igb, B_FALSE);
1447 
1448         /*
1449          * Configure/Initialize hardware
1450          */
1451         if (e1000_init_hw(hw) != E1000_SUCCESS) {
1452                 igb_log(igb, IGB_LOG_ERROR, "Failed to initialize hardware");
1453                 goto init_adapter_fail;
1454         }
1455 
1456         /*
1457          *  Start the link setup timer
1458          */
1459         igb_start_link_timer(igb);
1460 
1461         /*
1462          * Disable wakeup control by default
1463          */
1464         E1000_WRITE_REG(hw, E1000_WUC, 0);
1465 
1466         /*
1467          * Record phy info in hw struct
1468          */
1469         (void) e1000_get_phy_info(hw);
1470 
1471         /*
1472          * Make sure driver has control
1473          */
1474         igb_get_driver_control(hw);
1475 
1476         /*
1477          * Restore LED settings to the default from EEPROM
1478          * to meet the standard for Sun platforms.
1479          */
1480         (void) e1000_cleanup_led(hw);
1481 
1482         /*
1483          * Setup MSI-X interrupts
1484          */
1485         if (igb->intr_type == DDI_INTR_TYPE_MSIX)
1486                 igb->capab->setup_msix(igb);
1487 
1488         /*
1489          * Initialize unicast addresses.
1490          */
1491         igb_init_unicst(igb);
1492 
1493         /*
1494          * Setup and initialize the mctable structures.
1495          */
1496         igb_setup_multicst(igb);
1497 
1498         /*
1499          * Set interrupt throttling rate
1500          */
1501         for (i = 0; i < igb->intr_cnt; i++)
1502                 E1000_WRITE_REG(hw, E1000_EITR(i), igb->intr_throttling[i]);
1503 
1504         /*
1505          * Read identifying information and place in devinfo.
1506          */
1507         nvmword = 0xffff;
1508         (void) e1000_read_nvm(&igb->hw, NVM_OEM_OFFSET_0, 1, &nvmword);
1509         oemid[0] = (int)nvmword;
1510         (void) e1000_read_nvm(&igb->hw, NVM_OEM_OFFSET_1, 1, &nvmword);
1511         oemid[1] = (int)nvmword;
1512         (void) ddi_prop_update_int_array(DDI_DEV_T_NONE, igb->dip,
1513             "oem-identifier", oemid, 2);
1514 
1515         pbanum[0] = '\0';
1516         (void) e1000_read_pba_string(&igb->hw, pbanum, sizeof (pbanum));
1517         if (*pbanum != '\0') {
1518                 (void) ddi_prop_update_string(DDI_DEV_T_NONE, igb->dip,
1519                     "printed-board-assembly", (char *)pbanum);
1520         }
1521 
1522         nvmword = 0xffff;
1523         (void) e1000_read_nvm(&igb->hw, NVM_VERSION, 1, &nvmword);
1524         if ((nvmword & 0xf00) == 0) {
1525                 (void) snprintf(eepromver, sizeof (eepromver), "%x.%x",
1526                     (nvmword & 0xf000) >> 12, (nvmword & 0xff));
1527                 (void) ddi_prop_update_string(DDI_DEV_T_NONE, igb->dip,
1528                     "nvm-version", eepromver);
1529         }
1530 
1531         /*
1532          * Save the state of the phy
1533          */
1534         igb_get_phy_state(igb);
1535 
1536         igb_param_sync(igb);
1537 
1538         return (IGB_SUCCESS);
1539 
1540 init_adapter_fail:
1541         /*
1542          * Reset PHY if possible
1543          */
1544         if (e1000_check_reset_block(hw) == E1000_SUCCESS)
1545                 (void) e1000_phy_hw_reset(hw);
1546 
1547         return (IGB_FAILURE);
1548 }
1549 
1550 /*
1551  * igb_stop_adapter - Stop the adapter
1552  */
1553 static void
1554 igb_stop_adapter(igb_t *igb)
1555 {
1556         struct e1000_hw *hw = &igb->hw;
1557 
1558         ASSERT(mutex_owned(&igb->gen_lock));
1559 
1560         /* Stop the link setup timer */
1561         igb_stop_link_timer(igb);
1562 
1563         /* Tell firmware driver is no longer in control */
1564         igb_release_driver_control(hw);
1565 
1566         /*
1567          * Reset the chipset
1568          */
1569         if (e1000_reset_hw(hw) != E1000_SUCCESS) {
1570                 igb_fm_ereport(igb, DDI_FM_DEVICE_INVAL_STATE);
1571                 ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
1572         }
1573 
1574         /*
1575          * e1000_phy_hw_reset is not needed here, MAC reset above is sufficient
1576          */
1577 }
1578 
1579 /*
1580  * igb_reset - Reset the chipset and restart the driver.
1581  *
1582  * It involves stopping and re-starting the chipset,
1583  * and re-configuring the rx/tx rings.
1584  */
1585 static int
1586 igb_reset(igb_t *igb)
1587 {
1588         int i;
1589 
1590         mutex_enter(&igb->gen_lock);
1591 
1592         ASSERT(igb->igb_state & IGB_STARTED);
1593         atomic_and_32(&igb->igb_state, ~IGB_STARTED);
1594 
1595         /*
1596          * Disable the adapter interrupts to stop any rx/tx activities
1597          * before draining pending data and resetting hardware.
1598          */
1599         igb_disable_adapter_interrupts(igb);
1600 
1601         /*
1602          * Drain the pending transmit packets
1603          */
1604         (void) igb_tx_drain(igb);
1605 
1606         for (i = 0; i < igb->num_rx_rings; i++)
1607                 mutex_enter(&igb->rx_rings[i].rx_lock);
1608         for (i = 0; i < igb->num_tx_rings; i++)
1609                 mutex_enter(&igb->tx_rings[i].tx_lock);
1610 
1611         /*
1612          * Stop the adapter
1613          */
1614         igb_stop_adapter(igb);
1615 
1616         /*
1617          * Clean the pending tx data/resources
1618          */
1619         igb_tx_clean(igb);
1620 
1621         /*
1622          * Start the adapter
1623          */
1624         if (igb_init_adapter(igb) != IGB_SUCCESS) {
1625                 igb_fm_ereport(igb, DDI_FM_DEVICE_INVAL_STATE);
1626                 goto reset_failure;
1627         }
1628 
1629         /*
1630          * Setup the rx/tx rings
1631          */
1632         igb->tx_ring_init = B_FALSE;
1633         igb_setup_rings(igb);
1634 
1635         atomic_and_32(&igb->igb_state, ~(IGB_ERROR | IGB_STALL));
1636 
1637         /*
1638          * Enable adapter interrupts
1639          * The interrupts must be enabled after the driver state is START
1640          */
1641         igb->capab->enable_intr(igb);
1642 
1643         if (igb_check_acc_handle(igb->osdep.cfg_handle) != DDI_FM_OK)
1644                 goto reset_failure;
1645 
1646         if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK)
1647                 goto reset_failure;
1648 
1649         for (i = igb->num_tx_rings - 1; i >= 0; i--)
1650                 mutex_exit(&igb->tx_rings[i].tx_lock);
1651         for (i = igb->num_rx_rings - 1; i >= 0; i--)
1652                 mutex_exit(&igb->rx_rings[i].rx_lock);
1653 
1654         atomic_or_32(&igb->igb_state, IGB_STARTED);
1655 
1656         mutex_exit(&igb->gen_lock);
1657 
1658         return (IGB_SUCCESS);
1659 
1660 reset_failure:
1661         for (i = igb->num_tx_rings - 1; i >= 0; i--)
1662                 mutex_exit(&igb->tx_rings[i].tx_lock);
1663         for (i = igb->num_rx_rings - 1; i >= 0; i--)
1664                 mutex_exit(&igb->rx_rings[i].rx_lock);
1665 
1666         mutex_exit(&igb->gen_lock);
1667 
1668         ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
1669 
1670         return (IGB_FAILURE);
1671 }
1672 
1673 /*
1674  * igb_tx_clean - Clean the pending transmit packets and DMA resources
1675  */
1676 static void
1677 igb_tx_clean(igb_t *igb)
1678 {
1679         igb_tx_ring_t *tx_ring;
1680         tx_control_block_t *tcb;
1681         link_list_t pending_list;
1682         uint32_t desc_num;
1683         int i, j;
1684 
1685         LINK_LIST_INIT(&pending_list);
1686 
1687         for (i = 0; i < igb->num_tx_rings; i++) {
1688                 tx_ring = &igb->tx_rings[i];
1689 
1690                 mutex_enter(&tx_ring->recycle_lock);
1691 
1692                 /*
1693                  * Clean the pending tx data - the pending packets in the
1694                  * work_list that have no chances to be transmitted again.
1695                  *
1696                  * We must ensure the chipset is stopped or the link is down
1697                  * before cleaning the transmit packets.
1698                  */
1699                 desc_num = 0;
1700                 for (j = 0; j < tx_ring->ring_size; j++) {
1701                         tcb = tx_ring->work_list[j];
1702                         if (tcb != NULL) {
1703                                 desc_num += tcb->desc_num;
1704 
1705                                 tx_ring->work_list[j] = NULL;
1706 
1707                                 igb_free_tcb(tcb);
1708 
1709                                 LIST_PUSH_TAIL(&pending_list, &tcb->link);
1710                         }
1711                 }
1712 
1713                 if (desc_num > 0) {
1714                         atomic_add_32(&tx_ring->tbd_free, desc_num);
1715                         ASSERT(tx_ring->tbd_free == tx_ring->ring_size);
1716 
1717                         /*
1718                          * Reset the head and tail pointers of the tbd ring;
1719                          * Reset the head write-back if it is enabled.
1720                          */
1721                         tx_ring->tbd_head = 0;
1722                         tx_ring->tbd_tail = 0;
1723                         if (igb->tx_head_wb_enable)
1724                                 *tx_ring->tbd_head_wb = 0;
1725 
1726                         E1000_WRITE_REG(&igb->hw, E1000_TDH(tx_ring->index), 0);
1727                         E1000_WRITE_REG(&igb->hw, E1000_TDT(tx_ring->index), 0);
1728                 }
1729 
1730                 mutex_exit(&tx_ring->recycle_lock);
1731 
1732                 /*
1733                  * Add the tx control blocks in the pending list to
1734                  * the free list.
1735                  */
1736                 igb_put_free_list(tx_ring, &pending_list);
1737         }
1738 }
1739 
1740 /*
1741  * igb_tx_drain - Drain the tx rings to allow pending packets to be transmitted
1742  */
1743 static boolean_t
1744 igb_tx_drain(igb_t *igb)
1745 {
1746         igb_tx_ring_t *tx_ring;
1747         boolean_t done;
1748         int i, j;
1749 
1750         /*
1751          * Wait for a specific time to allow pending tx packets
1752          * to be transmitted.
1753          *
1754          * Check the counter tbd_free to see if transmission is done.
1755          * No lock protection is needed here.
1756          *
1757          * Return B_TRUE if all pending packets have been transmitted;
1758          * Otherwise return B_FALSE;
1759          */
1760         for (i = 0; i < TX_DRAIN_TIME; i++) {
1761 
1762                 done = B_TRUE;
1763                 for (j = 0; j < igb->num_tx_rings; j++) {
1764                         tx_ring = &igb->tx_rings[j];
1765                         done = done &&
1766                             (tx_ring->tbd_free == tx_ring->ring_size);
1767                 }
1768 
1769                 if (done)
1770                         break;
1771 
1772                 msec_delay(1);
1773         }
1774 
1775         return (done);
1776 }
1777 
1778 /*
1779  * igb_rx_drain - Wait for all rx buffers to be released by upper layer
1780  */
1781 static boolean_t
1782 igb_rx_drain(igb_t *igb)
1783 {
1784         boolean_t done;
1785         int i;
1786 
1787         /*
1788          * Polling the rx free list to check if those rx buffers held by
1789          * the upper layer are released.
1790          *
1791          * Check the counter rcb_free to see if all pending buffers are
1792          * released. No lock protection is needed here.
1793          *
1794          * Return B_TRUE if all pending buffers have been released;
1795          * Otherwise return B_FALSE;
1796          */
1797         for (i = 0; i < RX_DRAIN_TIME; i++) {
1798                 done = (igb->rcb_pending == 0);
1799 
1800                 if (done)
1801                         break;
1802 
1803                 msec_delay(1);
1804         }
1805 
1806         return (done);
1807 }
1808 
1809 /*
1810  * igb_start - Start the driver/chipset
1811  */
1812 int
1813 igb_start(igb_t *igb, boolean_t alloc_buffer)
1814 {
1815         int i;
1816 
1817         ASSERT(mutex_owned(&igb->gen_lock));
1818 
1819         if (alloc_buffer) {
1820                 if (igb_alloc_rx_data(igb) != IGB_SUCCESS) {
1821                         igb_log(igb, IGB_LOG_ERROR,
1822                             "Failed to allocate software receive rings");
1823                         return (IGB_FAILURE);
1824                 }
1825 
1826                 /* Allocate buffers for all the rx/tx rings */
1827                 if (igb_alloc_dma(igb) != IGB_SUCCESS) {
1828                         igb_log(igb, IGB_LOG_ERROR,
1829                             "Failed to allocate DMA resource");
1830                         return (IGB_FAILURE);
1831                 }
1832 
1833                 igb->tx_ring_init = B_TRUE;
1834         } else {
1835                 igb->tx_ring_init = B_FALSE;
1836         }
1837 
1838         for (i = 0; i < igb->num_rx_rings; i++)
1839                 mutex_enter(&igb->rx_rings[i].rx_lock);
1840         for (i = 0; i < igb->num_tx_rings; i++)
1841                 mutex_enter(&igb->tx_rings[i].tx_lock);
1842 
1843         /*
1844          * Start the adapter
1845          */
1846         if ((igb->attach_progress & ATTACH_PROGRESS_INIT_ADAPTER) == 0) {
1847                 if (igb_init_adapter(igb) != IGB_SUCCESS) {
1848                         igb_fm_ereport(igb, DDI_FM_DEVICE_INVAL_STATE);
1849                         goto start_failure;
1850                 }
1851                 igb->attach_progress |= ATTACH_PROGRESS_INIT_ADAPTER;
1852         }
1853 
1854         /*
1855          * Setup the rx/tx rings
1856          */
1857         igb_setup_rings(igb);
1858 
1859         /*
1860          * Enable adapter interrupts
1861          * The interrupts must be enabled after the driver state is START
1862          */
1863         igb->capab->enable_intr(igb);
1864 
1865         if (igb_check_acc_handle(igb->osdep.cfg_handle) != DDI_FM_OK)
1866                 goto start_failure;
1867 
1868         if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK)
1869                 goto start_failure;
1870 
1871         if (igb->hw.mac.type == e1000_i350)
1872                 (void) e1000_set_eee_i350(&igb->hw, B_FALSE, B_FALSE);
1873         else if (igb->hw.mac.type == e1000_i354)
1874                 (void) e1000_set_eee_i354(&igb->hw, B_FALSE, B_FALSE);
1875 
1876         for (i = igb->num_tx_rings - 1; i >= 0; i--)
1877                 mutex_exit(&igb->tx_rings[i].tx_lock);
1878         for (i = igb->num_rx_rings - 1; i >= 0; i--)
1879                 mutex_exit(&igb->rx_rings[i].rx_lock);
1880 
1881         return (IGB_SUCCESS);
1882 
1883 start_failure:
1884         for (i = igb->num_tx_rings - 1; i >= 0; i--)
1885                 mutex_exit(&igb->tx_rings[i].tx_lock);
1886         for (i = igb->num_rx_rings - 1; i >= 0; i--)
1887                 mutex_exit(&igb->rx_rings[i].rx_lock);
1888 
1889         ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
1890 
1891         return (IGB_FAILURE);
1892 }
1893 
1894 /*
1895  * igb_stop - Stop the driver/chipset
1896  */
1897 void
1898 igb_stop(igb_t *igb, boolean_t free_buffer)
1899 {
1900         int i;
1901 
1902         ASSERT(mutex_owned(&igb->gen_lock));
1903 
1904         igb->attach_progress &= ~ATTACH_PROGRESS_INIT_ADAPTER;
1905 
1906         /*
1907          * Disable the adapter interrupts
1908          */
1909         igb_disable_adapter_interrupts(igb);
1910 
1911         /*
1912          * Drain the pending tx packets
1913          */
1914         (void) igb_tx_drain(igb);
1915 
1916         for (i = 0; i < igb->num_rx_rings; i++)
1917                 mutex_enter(&igb->rx_rings[i].rx_lock);
1918         for (i = 0; i < igb->num_tx_rings; i++)
1919                 mutex_enter(&igb->tx_rings[i].tx_lock);
1920 
1921         /*
1922          * Stop the adapter
1923          */
1924         igb_stop_adapter(igb);
1925 
1926         /*
1927          * Clean the pending tx data/resources
1928          */
1929         igb_tx_clean(igb);
1930 
1931         for (i = igb->num_tx_rings - 1; i >= 0; i--)
1932                 mutex_exit(&igb->tx_rings[i].tx_lock);
1933         for (i = igb->num_rx_rings - 1; i >= 0; i--)
1934                 mutex_exit(&igb->rx_rings[i].rx_lock);
1935 
1936         if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK)
1937                 ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
1938 
1939         if (igb->link_state == LINK_STATE_UP) {
1940                 igb->link_state = LINK_STATE_UNKNOWN;
1941                 mac_link_update(igb->mac_hdl, igb->link_state);
1942         }
1943 
1944         if (free_buffer) {
1945                 /*
1946                  * Release the DMA/memory resources of rx/tx rings
1947                  */
1948                 igb_free_dma(igb);
1949                 igb_free_rx_data(igb);
1950         }
1951 }
1952 
1953 /*
1954  * igb_alloc_rings - Allocate memory space for rx/tx rings
1955  */
1956 static int
1957 igb_alloc_rings(igb_t *igb)
1958 {
1959         /*
1960          * Allocate memory space for rx rings
1961          */
1962         igb->rx_rings = kmem_zalloc(
1963             sizeof (igb_rx_ring_t) * igb->num_rx_rings,
1964             KM_NOSLEEP);
1965 
1966         if (igb->rx_rings == NULL) {
1967                 return (IGB_FAILURE);
1968         }
1969 
1970         /*
1971          * Allocate memory space for tx rings
1972          */
1973         igb->tx_rings = kmem_zalloc(
1974             sizeof (igb_tx_ring_t) * igb->num_tx_rings,
1975             KM_NOSLEEP);
1976 
1977         if (igb->tx_rings == NULL) {
1978                 kmem_free(igb->rx_rings,
1979                     sizeof (igb_rx_ring_t) * igb->num_rx_rings);
1980                 igb->rx_rings = NULL;
1981                 return (IGB_FAILURE);
1982         }
1983 
1984         /*
1985          * Allocate memory space for rx ring groups
1986          */
1987         igb->rx_groups = kmem_zalloc(
1988             sizeof (igb_rx_group_t) * igb->num_rx_groups,
1989             KM_NOSLEEP);
1990 
1991         if (igb->rx_groups == NULL) {
1992                 kmem_free(igb->rx_rings,
1993                     sizeof (igb_rx_ring_t) * igb->num_rx_rings);
1994                 kmem_free(igb->tx_rings,
1995                     sizeof (igb_tx_ring_t) * igb->num_tx_rings);
1996                 igb->rx_rings = NULL;
1997                 igb->tx_rings = NULL;
1998                 return (IGB_FAILURE);
1999         }
2000 
2001         return (IGB_SUCCESS);
2002 }
2003 
2004 /*
2005  * igb_free_rings - Free the memory space of rx/tx rings.
2006  */
2007 static void
2008 igb_free_rings(igb_t *igb)
2009 {
2010         if (igb->rx_rings != NULL) {
2011                 kmem_free(igb->rx_rings,
2012                     sizeof (igb_rx_ring_t) * igb->num_rx_rings);
2013                 igb->rx_rings = NULL;
2014         }
2015 
2016         if (igb->tx_rings != NULL) {
2017                 kmem_free(igb->tx_rings,
2018                     sizeof (igb_tx_ring_t) * igb->num_tx_rings);
2019                 igb->tx_rings = NULL;
2020         }
2021 
2022         if (igb->rx_groups != NULL) {
2023                 kmem_free(igb->rx_groups,
2024                     sizeof (igb_rx_group_t) * igb->num_rx_groups);
2025                 igb->rx_groups = NULL;
2026         }
2027 }
2028 
2029 static int
2030 igb_alloc_rx_data(igb_t *igb)
2031 {
2032         igb_rx_ring_t *rx_ring;
2033         int i;
2034 
2035         for (i = 0; i < igb->num_rx_rings; i++) {
2036                 rx_ring = &igb->rx_rings[i];
2037                 if (igb_alloc_rx_ring_data(rx_ring) != IGB_SUCCESS)
2038                         goto alloc_rx_rings_failure;
2039         }
2040         return (IGB_SUCCESS);
2041 
2042 alloc_rx_rings_failure:
2043         igb_free_rx_data(igb);
2044         return (IGB_FAILURE);
2045 }
2046 
2047 static void
2048 igb_free_rx_data(igb_t *igb)
2049 {
2050         igb_rx_ring_t *rx_ring;
2051         igb_rx_data_t *rx_data;
2052         int i;
2053 
2054         for (i = 0; i < igb->num_rx_rings; i++) {
2055                 rx_ring = &igb->rx_rings[i];
2056 
2057                 mutex_enter(&igb->rx_pending_lock);
2058                 rx_data = rx_ring->rx_data;
2059 
2060                 if (rx_data != NULL) {
2061                         rx_data->flag |= IGB_RX_STOPPED;
2062 
2063                         if (rx_data->rcb_pending == 0) {
2064                                 igb_free_rx_ring_data(rx_data);
2065                                 rx_ring->rx_data = NULL;
2066                         }
2067                 }
2068 
2069                 mutex_exit(&igb->rx_pending_lock);
2070         }
2071 }
2072 
2073 /*
2074  * igb_setup_rings - Setup rx/tx rings
2075  */
2076 static void
2077 igb_setup_rings(igb_t *igb)
2078 {
2079         /*
2080          * Setup the rx/tx rings, including the following:
2081          *
2082          * 1. Setup the descriptor ring and the control block buffers;
2083          * 2. Initialize necessary registers for receive/transmit;
2084          * 3. Initialize software pointers/parameters for receive/transmit;
2085          */
2086         igb_setup_rx(igb);
2087 
2088         igb_setup_tx(igb);
2089 }
2090 
2091 static void
2092 igb_setup_rx_ring(igb_rx_ring_t *rx_ring)
2093 {
2094         igb_t *igb = rx_ring->igb;
2095         igb_rx_data_t *rx_data = rx_ring->rx_data;
2096         struct e1000_hw *hw = &igb->hw;
2097         rx_control_block_t *rcb;
2098         union e1000_adv_rx_desc *rbd;
2099         uint32_t size;
2100         uint32_t buf_low;
2101         uint32_t buf_high;
2102         uint32_t rxdctl;
2103         int i;
2104 
2105         ASSERT(mutex_owned(&rx_ring->rx_lock));
2106         ASSERT(mutex_owned(&igb->gen_lock));
2107 
2108         /*
2109          * Initialize descriptor ring with buffer addresses
2110          */
2111         for (i = 0; i < igb->rx_ring_size; i++) {
2112                 rcb = rx_data->work_list[i];
2113                 rbd = &rx_data->rbd_ring[i];
2114 
2115                 rbd->read.pkt_addr = rcb->rx_buf.dma_address;
2116                 rbd->read.hdr_addr = NULL;
2117         }
2118 
2119         /*
2120          * Initialize the base address registers
2121          */
2122         buf_low = (uint32_t)rx_data->rbd_area.dma_address;
2123         buf_high = (uint32_t)(rx_data->rbd_area.dma_address >> 32);
2124         E1000_WRITE_REG(hw, E1000_RDBAH(rx_ring->index), buf_high);
2125         E1000_WRITE_REG(hw, E1000_RDBAL(rx_ring->index), buf_low);
2126 
2127         /*
2128          * Initialize the length register
2129          */
2130         size = rx_data->ring_size * sizeof (union e1000_adv_rx_desc);
2131         E1000_WRITE_REG(hw, E1000_RDLEN(rx_ring->index), size);
2132 
2133         /*
2134          * Initialize buffer size & descriptor type
2135          */
2136         E1000_WRITE_REG(hw, E1000_SRRCTL(rx_ring->index),
2137             ((igb->rx_buf_size >> E1000_SRRCTL_BSIZEPKT_SHIFT) |
2138             E1000_SRRCTL_DESCTYPE_ADV_ONEBUF));
2139 
2140         /*
2141          * Setup the Receive Descriptor Control Register (RXDCTL)
2142          */
2143         rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(rx_ring->index));
2144         rxdctl &= igb->capab->rxdctl_mask;
2145         rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2146         rxdctl |= 16;           /* pthresh */
2147         rxdctl |= 8 << 8; /* hthresh */
2148         rxdctl |= 1 << 16;        /* wthresh */
2149         E1000_WRITE_REG(hw, E1000_RXDCTL(rx_ring->index), rxdctl);
2150 
2151         rx_data->rbd_next = 0;
2152 }
2153 
2154 static void
2155 igb_setup_rx(igb_t *igb)
2156 {
2157         igb_rx_ring_t *rx_ring;
2158         igb_rx_data_t *rx_data;
2159         igb_rx_group_t *rx_group;
2160         struct e1000_hw *hw = &igb->hw;
2161         uint32_t rctl, rxcsum;
2162         uint32_t ring_per_group;
2163         int i;
2164 
2165         /*
2166          * Setup the Receive Control Register (RCTL), and enable the
2167          * receiver. The initial configuration is to: enable the receiver,
2168          * accept broadcasts, discard bad packets, accept long packets,
2169          * disable VLAN filter checking, and set receive buffer size to
2170          * 2k.  For 82575, also set the receive descriptor minimum
2171          * threshold size to 1/2 the ring.
2172          */
2173         rctl = E1000_READ_REG(hw, E1000_RCTL);
2174 
2175         /*
2176          * Clear the field used for wakeup control.  This driver doesn't do
2177          * wakeup but leave this here for completeness.
2178          */
2179         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2180         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
2181 
2182         rctl |= (E1000_RCTL_EN |        /* Enable Receive Unit */
2183             E1000_RCTL_BAM |            /* Accept Broadcast Packets */
2184             E1000_RCTL_LPE |            /* Large Packet Enable */
2185                                         /* Multicast filter offset */
2186             (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT) |
2187             E1000_RCTL_RDMTS_HALF |     /* rx descriptor threshold */
2188             E1000_RCTL_SECRC);          /* Strip Ethernet CRC */
2189 
2190         for (i = 0; i < igb->num_rx_groups; i++) {
2191                 rx_group = &igb->rx_groups[i];
2192                 rx_group->index = i;
2193                 rx_group->igb = igb;
2194         }
2195 
2196         /*
2197          * Set up all rx descriptor rings - must be called before receive unit
2198          * enabled.
2199          */
2200         ring_per_group = igb->num_rx_rings / igb->num_rx_groups;
2201         for (i = 0; i < igb->num_rx_rings; i++) {
2202                 rx_ring = &igb->rx_rings[i];
2203                 igb_setup_rx_ring(rx_ring);
2204 
2205                 /*
2206                  * Map a ring to a group by assigning a group index
2207                  */
2208                 rx_ring->group_index = i / ring_per_group;
2209         }
2210 
2211         /*
2212          * Setup the Rx Long Packet Max Length register
2213          */
2214         E1000_WRITE_REG(hw, E1000_RLPML, igb->max_frame_size);
2215 
2216         /*
2217          * Hardware checksum settings
2218          */
2219         if (igb->rx_hcksum_enable) {
2220                 rxcsum =
2221                     E1000_RXCSUM_TUOFL |        /* TCP/UDP checksum */
2222                     E1000_RXCSUM_IPOFL;         /* IP checksum */
2223 
2224                 E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
2225         }
2226 
2227         /*
2228          * Setup classify and RSS for multiple receive queues
2229          */
2230         switch (igb->vmdq_mode) {
2231         case E1000_VMDQ_OFF:
2232                 /*
2233                  * One ring group, only RSS is needed when more than
2234                  * one ring enabled.
2235                  */
2236                 if (igb->num_rx_rings > 1)
2237                         igb_setup_rss(igb);
2238                 break;
2239         case E1000_VMDQ_MAC:
2240                 /*
2241                  * Multiple groups, each group has one ring,
2242                  * only the MAC classification is needed.
2243                  */
2244                 igb_setup_mac_classify(igb);
2245                 break;
2246         case E1000_VMDQ_MAC_RSS:
2247                 /*
2248                  * Multiple groups and multiple rings, both
2249                  * MAC classification and RSS are needed.
2250                  */
2251                 igb_setup_mac_rss_classify(igb);
2252                 break;
2253         }
2254 
2255         /*
2256          * Enable the receive unit - must be done after all
2257          * the rx setup above.
2258          */
2259         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2260 
2261         /*
2262          * Initialize all adapter ring head & tail pointers - must
2263          * be done after receive unit is enabled
2264          */
2265         for (i = 0; i < igb->num_rx_rings; i++) {
2266                 rx_ring = &igb->rx_rings[i];
2267                 rx_data = rx_ring->rx_data;
2268                 E1000_WRITE_REG(hw, E1000_RDH(i), 0);
2269                 E1000_WRITE_REG(hw, E1000_RDT(i), rx_data->ring_size - 1);
2270         }
2271 
2272         /*
2273          * 82575 with manageability enabled needs a special flush to make
2274          * sure the fifos start clean.
2275          */
2276         if ((hw->mac.type == e1000_82575) &&
2277             (E1000_READ_REG(hw, E1000_MANC) & E1000_MANC_RCV_TCO_EN)) {
2278                 e1000_rx_fifo_flush_82575(hw);
2279         }
2280 }
2281 
2282 static void
2283 igb_setup_tx_ring(igb_tx_ring_t *tx_ring)
2284 {
2285         igb_t *igb = tx_ring->igb;
2286         struct e1000_hw *hw = &igb->hw;
2287         uint32_t size;
2288         uint32_t buf_low;
2289         uint32_t buf_high;
2290         uint32_t reg_val;
2291 
2292         ASSERT(mutex_owned(&tx_ring->tx_lock));
2293         ASSERT(mutex_owned(&igb->gen_lock));
2294 
2295 
2296         /*
2297          * Initialize the length register
2298          */
2299         size = tx_ring->ring_size * sizeof (union e1000_adv_tx_desc);
2300         E1000_WRITE_REG(hw, E1000_TDLEN(tx_ring->index), size);
2301 
2302         /*
2303          * Initialize the base address registers
2304          */
2305         buf_low = (uint32_t)tx_ring->tbd_area.dma_address;
2306         buf_high = (uint32_t)(tx_ring->tbd_area.dma_address >> 32);
2307         E1000_WRITE_REG(hw, E1000_TDBAL(tx_ring->index), buf_low);
2308         E1000_WRITE_REG(hw, E1000_TDBAH(tx_ring->index), buf_high);
2309 
2310         /*
2311          * Setup head & tail pointers
2312          */
2313         E1000_WRITE_REG(hw, E1000_TDH(tx_ring->index), 0);
2314         E1000_WRITE_REG(hw, E1000_TDT(tx_ring->index), 0);
2315 
2316         /*
2317          * Setup head write-back
2318          */
2319         if (igb->tx_head_wb_enable) {
2320                 /*
2321                  * The memory of the head write-back is allocated using
2322                  * the extra tbd beyond the tail of the tbd ring.
2323                  */
2324                 tx_ring->tbd_head_wb = (uint32_t *)
2325                     ((uintptr_t)tx_ring->tbd_area.address + size);
2326                 *tx_ring->tbd_head_wb = 0;
2327 
2328                 buf_low = (uint32_t)
2329                     (tx_ring->tbd_area.dma_address + size);
2330                 buf_high = (uint32_t)
2331                     ((tx_ring->tbd_area.dma_address + size) >> 32);
2332 
2333                 /* Set the head write-back enable bit */
2334                 buf_low |= E1000_TX_HEAD_WB_ENABLE;
2335 
2336                 E1000_WRITE_REG(hw, E1000_TDWBAL(tx_ring->index), buf_low);
2337                 E1000_WRITE_REG(hw, E1000_TDWBAH(tx_ring->index), buf_high);
2338 
2339                 /*
2340                  * Turn off relaxed ordering for head write back or it will
2341                  * cause problems with the tx recycling
2342                  */
2343                 reg_val = E1000_READ_REG(hw,
2344                     E1000_DCA_TXCTRL(tx_ring->index));
2345                 reg_val &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
2346                 E1000_WRITE_REG(hw,
2347                     E1000_DCA_TXCTRL(tx_ring->index), reg_val);
2348         } else {
2349                 tx_ring->tbd_head_wb = NULL;
2350         }
2351 
2352         tx_ring->tbd_head = 0;
2353         tx_ring->tbd_tail = 0;
2354         tx_ring->tbd_free = tx_ring->ring_size;
2355 
2356         if (igb->tx_ring_init == B_TRUE) {
2357                 tx_ring->tcb_head = 0;
2358                 tx_ring->tcb_tail = 0;
2359                 tx_ring->tcb_free = tx_ring->free_list_size;
2360         }
2361 
2362         /*
2363          * Enable TXDCTL per queue
2364          */
2365         reg_val = E1000_READ_REG(hw, E1000_TXDCTL(tx_ring->index));
2366         reg_val |= E1000_TXDCTL_QUEUE_ENABLE;
2367         E1000_WRITE_REG(hw, E1000_TXDCTL(tx_ring->index), reg_val);
2368 
2369         /*
2370          * Initialize hardware checksum offload settings
2371          */
2372         bzero(&tx_ring->tx_context, sizeof (tx_context_t));
2373 }
2374 
2375 static void
2376 igb_setup_tx(igb_t *igb)
2377 {
2378         igb_tx_ring_t *tx_ring;
2379         struct e1000_hw *hw = &igb->hw;
2380         uint32_t reg_val;
2381         int i;
2382 
2383         for (i = 0; i < igb->num_tx_rings; i++) {
2384                 tx_ring = &igb->tx_rings[i];
2385                 igb_setup_tx_ring(tx_ring);
2386         }
2387 
2388         /*
2389          * Setup the Transmit Control Register (TCTL)
2390          */
2391         reg_val = E1000_READ_REG(hw, E1000_TCTL);
2392         reg_val &= ~E1000_TCTL_CT;
2393         reg_val |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2394             (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2395 
2396         /* Enable transmits */
2397         reg_val |= E1000_TCTL_EN;
2398 
2399         E1000_WRITE_REG(hw, E1000_TCTL, reg_val);
2400 }
2401 
2402 /*
2403  * igb_setup_rss - Setup receive-side scaling feature
2404  */
2405 static void
2406 igb_setup_rss(igb_t *igb)
2407 {
2408         struct e1000_hw *hw = &igb->hw;
2409         uint32_t i, mrqc, rxcsum;
2410         int shift = 0;
2411         uint32_t random;
2412         union e1000_reta {
2413                 uint32_t        dword;
2414                 uint8_t         bytes[4];
2415         } reta;
2416 
2417         /* Setup the Redirection Table */
2418         if (hw->mac.type == e1000_82576) {
2419                 shift = 3;
2420         } else if (hw->mac.type == e1000_82575) {
2421                 shift = 6;
2422         }
2423         for (i = 0; i < (32 * 4); i++) {
2424                 reta.bytes[i & 3] = (i % igb->num_rx_rings) << shift;
2425                 if ((i & 3) == 3) {
2426                         E1000_WRITE_REG(hw,
2427                             (E1000_RETA(0) + (i & ~3)), reta.dword);
2428                 }
2429         }
2430 
2431         /* Fill out hash function seeds */
2432         for (i = 0; i < 10; i++) {
2433                 (void) random_get_pseudo_bytes((uint8_t *)&random,
2434                     sizeof (uint32_t));
2435                 E1000_WRITE_REG(hw, E1000_RSSRK(i), random);
2436         }
2437 
2438         /* Setup the Multiple Receive Queue Control register */
2439         mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2440         mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2441             E1000_MRQC_RSS_FIELD_IPV4_TCP |
2442             E1000_MRQC_RSS_FIELD_IPV6 |
2443             E1000_MRQC_RSS_FIELD_IPV6_TCP |
2444             E1000_MRQC_RSS_FIELD_IPV4_UDP |
2445             E1000_MRQC_RSS_FIELD_IPV6_UDP |
2446             E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2447             E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2448 
2449         E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2450 
2451         /*
2452          * Disable Packet Checksum to enable RSS for multiple receive queues.
2453          *
2454          * The Packet Checksum is not ethernet CRC. It is another kind of
2455          * checksum offloading provided by the 82575 chipset besides the IP
2456          * header checksum offloading and the TCP/UDP checksum offloading.
2457          * The Packet Checksum is by default computed over the entire packet
2458          * from the first byte of the DA through the last byte of the CRC,
2459          * including the Ethernet and IP headers.
2460          *
2461          * It is a hardware limitation that Packet Checksum is mutually
2462          * exclusive with RSS.
2463          */
2464         rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
2465         rxcsum |= E1000_RXCSUM_PCSD;
2466         E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
2467 }
2468 
2469 /*
2470  * igb_setup_mac_rss_classify - Setup MAC classification and rss
2471  */
2472 static void
2473 igb_setup_mac_rss_classify(igb_t *igb)
2474 {
2475         struct e1000_hw *hw = &igb->hw;
2476         uint32_t i, mrqc, vmdctl, rxcsum;
2477         uint32_t ring_per_group;
2478         int shift_group0, shift_group1;
2479         uint32_t random;
2480         union e1000_reta {
2481                 uint32_t        dword;
2482                 uint8_t         bytes[4];
2483         } reta;
2484 
2485         ring_per_group = igb->num_rx_rings / igb->num_rx_groups;
2486 
2487         /* Setup the Redirection Table, it is shared between two groups */
2488         shift_group0 = 2;
2489         shift_group1 = 6;
2490         for (i = 0; i < (32 * 4); i++) {
2491                 reta.bytes[i & 3] = ((i % ring_per_group) << shift_group0) |
2492                     ((ring_per_group + (i % ring_per_group)) << shift_group1);
2493                 if ((i & 3) == 3) {
2494                         E1000_WRITE_REG(hw,
2495                             (E1000_RETA(0) + (i & ~3)), reta.dword);
2496                 }
2497         }
2498 
2499         /* Fill out hash function seeds */
2500         for (i = 0; i < 10; i++) {
2501                 (void) random_get_pseudo_bytes((uint8_t *)&random,
2502                     sizeof (uint32_t));
2503                 E1000_WRITE_REG(hw, E1000_RSSRK(i), random);
2504         }
2505 
2506         /*
2507          * Setup the Multiple Receive Queue Control register,
2508          * enable VMDq based on packet destination MAC address and RSS.
2509          */
2510         mrqc = E1000_MRQC_ENABLE_VMDQ_MAC_RSS_GROUP;
2511         mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2512             E1000_MRQC_RSS_FIELD_IPV4_TCP |
2513             E1000_MRQC_RSS_FIELD_IPV6 |
2514             E1000_MRQC_RSS_FIELD_IPV6_TCP |
2515             E1000_MRQC_RSS_FIELD_IPV4_UDP |
2516             E1000_MRQC_RSS_FIELD_IPV6_UDP |
2517             E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2518             E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2519 
2520         E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2521 
2522 
2523         /* Define the default group and default queues */
2524         vmdctl = E1000_VMDQ_MAC_GROUP_DEFAULT_QUEUE;
2525         E1000_WRITE_REG(hw, E1000_VT_CTL, vmdctl);
2526 
2527         /*
2528          * Disable Packet Checksum to enable RSS for multiple receive queues.
2529          *
2530          * The Packet Checksum is not ethernet CRC. It is another kind of
2531          * checksum offloading provided by the 82575 chipset besides the IP
2532          * header checksum offloading and the TCP/UDP checksum offloading.
2533          * The Packet Checksum is by default computed over the entire packet
2534          * from the first byte of the DA through the last byte of the CRC,
2535          * including the Ethernet and IP headers.
2536          *
2537          * It is a hardware limitation that Packet Checksum is mutually
2538          * exclusive with RSS.
2539          */
2540         rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
2541         rxcsum |= E1000_RXCSUM_PCSD;
2542         E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
2543 }
2544 
2545 /*
2546  * igb_setup_mac_classify - Setup MAC classification feature
2547  */
2548 static void
2549 igb_setup_mac_classify(igb_t *igb)
2550 {
2551         struct e1000_hw *hw = &igb->hw;
2552         uint32_t mrqc, rxcsum;
2553 
2554         /*
2555          * Setup the Multiple Receive Queue Control register,
2556          * enable VMDq based on packet destination MAC address.
2557          */
2558         mrqc = E1000_MRQC_ENABLE_VMDQ_MAC_GROUP;
2559         E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2560 
2561         /*
2562          * Disable Packet Checksum to enable RSS for multiple receive queues.
2563          *
2564          * The Packet Checksum is not ethernet CRC. It is another kind of
2565          * checksum offloading provided by the 82575 chipset besides the IP
2566          * header checksum offloading and the TCP/UDP checksum offloading.
2567          * The Packet Checksum is by default computed over the entire packet
2568          * from the first byte of the DA through the last byte of the CRC,
2569          * including the Ethernet and IP headers.
2570          *
2571          * It is a hardware limitation that Packet Checksum is mutually
2572          * exclusive with RSS.
2573          */
2574         rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
2575         rxcsum |= E1000_RXCSUM_PCSD;
2576         E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
2577 
2578 }
2579 
2580 /*
2581  * igb_init_unicst - Initialize the unicast addresses
2582  */
2583 static void
2584 igb_init_unicst(igb_t *igb)
2585 {
2586         struct e1000_hw *hw = &igb->hw;
2587         int slot;
2588 
2589         /*
2590          * Here we should consider two situations:
2591          *
2592          * 1. Chipset is initialized the first time
2593          *    Initialize the multiple unicast addresses, and
2594          *    save the default MAC address.
2595          *
2596          * 2. Chipset is reset
2597          *    Recover the multiple unicast addresses from the
2598          *    software data structure to the RAR registers.
2599          */
2600 
2601         /*
2602          * Clear the default MAC address in the RAR0 rgister,
2603          * which is loaded from EEPROM when system boot or chipreset,
2604          * this will cause the conficts with add_mac/rem_mac entry
2605          * points when VMDq is enabled. For this reason, the RAR0
2606          * must be cleared for both cases mentioned above.
2607          */
2608         e1000_rar_clear(hw, 0);
2609 
2610         if (!igb->unicst_init) {
2611 
2612                 /* Initialize the multiple unicast addresses */
2613                 igb->unicst_total = MAX_NUM_UNICAST_ADDRESSES;
2614                 igb->unicst_avail = igb->unicst_total;
2615 
2616                 for (slot = 0; slot < igb->unicst_total; slot++)
2617                         igb->unicst_addr[slot].mac.set = 0;
2618 
2619                 igb->unicst_init = B_TRUE;
2620         } else {
2621                 /* Re-configure the RAR registers */
2622                 for (slot = 0; slot < igb->unicst_total; slot++) {
2623                         (void) e1000_rar_set_vmdq(hw,
2624                             igb->unicst_addr[slot].mac.addr,
2625                             slot, igb->vmdq_mode,
2626                             igb->unicst_addr[slot].mac.group_index);
2627                 }
2628         }
2629 }
2630 
2631 /*
2632  * igb_unicst_find - Find the slot for the specified unicast address
2633  */
2634 int
2635 igb_unicst_find(igb_t *igb, const uint8_t *mac_addr)
2636 {
2637         int slot;
2638 
2639         ASSERT(mutex_owned(&igb->gen_lock));
2640 
2641         for (slot = 0; slot < igb->unicst_total; slot++) {
2642                 if (bcmp(igb->unicst_addr[slot].mac.addr,
2643                     mac_addr, ETHERADDRL) == 0)
2644                         return (slot);
2645         }
2646 
2647         return (-1);
2648 }
2649 
2650 /*
2651  * igb_unicst_set - Set the unicast address to the specified slot
2652  */
2653 int
2654 igb_unicst_set(igb_t *igb, const uint8_t *mac_addr,
2655     int slot)
2656 {
2657         struct e1000_hw *hw = &igb->hw;
2658 
2659         ASSERT(mutex_owned(&igb->gen_lock));
2660 
2661         /*
2662          * Save the unicast address in the software data structure
2663          */
2664         bcopy(mac_addr, igb->unicst_addr[slot].mac.addr, ETHERADDRL);
2665 
2666         /*
2667          * Set the unicast address to the RAR register
2668          */
2669         (void) e1000_rar_set(hw, (uint8_t *)mac_addr, slot);
2670 
2671         if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
2672                 ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
2673                 return (EIO);
2674         }
2675 
2676         return (0);
2677 }
2678 
2679 /*
2680  * igb_multicst_add - Add a multicst address
2681  */
2682 int
2683 igb_multicst_add(igb_t *igb, const uint8_t *multiaddr)
2684 {
2685         struct ether_addr *new_table;
2686         size_t new_len;
2687         size_t old_len;
2688 
2689         ASSERT(mutex_owned(&igb->gen_lock));
2690 
2691         if ((multiaddr[0] & 01) == 0) {
2692                 igb_log(igb, IGB_LOG_ERROR, "Illegal multicast address");
2693                 return (EINVAL);
2694         }
2695 
2696         if (igb->mcast_count >= igb->mcast_max_num) {
2697                 igb_log(igb, IGB_LOG_ERROR,
2698                     "Adapter requested more than %d mcast addresses",
2699                     igb->mcast_max_num);
2700                 return (ENOENT);
2701         }
2702 
2703         if (igb->mcast_count == igb->mcast_alloc_count) {
2704                 old_len = igb->mcast_alloc_count *
2705                     sizeof (struct ether_addr);
2706                 new_len = (igb->mcast_alloc_count + MCAST_ALLOC_COUNT) *
2707                     sizeof (struct ether_addr);
2708 
2709                 new_table = kmem_alloc(new_len, KM_NOSLEEP);
2710                 if (new_table == NULL) {
2711                         igb_log(igb, IGB_LOG_ERROR,
2712                             "Not enough memory to alloc mcast table");
2713                         return (ENOMEM);
2714                 }
2715 
2716                 if (igb->mcast_table != NULL) {
2717                         bcopy(igb->mcast_table, new_table, old_len);
2718                         kmem_free(igb->mcast_table, old_len);
2719                 }
2720                 igb->mcast_alloc_count += MCAST_ALLOC_COUNT;
2721                 igb->mcast_table = new_table;
2722         }
2723 
2724         bcopy(multiaddr,
2725             &igb->mcast_table[igb->mcast_count], ETHERADDRL);
2726         igb->mcast_count++;
2727 
2728         /*
2729          * Update the multicast table in the hardware
2730          */
2731         igb_setup_multicst(igb);
2732 
2733         if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
2734                 ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
2735                 return (EIO);
2736         }
2737 
2738         return (0);
2739 }
2740 
2741 /*
2742  * igb_multicst_remove - Remove a multicst address
2743  */
2744 int
2745 igb_multicst_remove(igb_t *igb, const uint8_t *multiaddr)
2746 {
2747         struct ether_addr *new_table;
2748         size_t new_len;
2749         size_t old_len;
2750         int i;
2751 
2752         ASSERT(mutex_owned(&igb->gen_lock));
2753 
2754         for (i = 0; i < igb->mcast_count; i++) {
2755                 if (bcmp(multiaddr, &igb->mcast_table[i],
2756                     ETHERADDRL) == 0) {
2757                         for (i++; i < igb->mcast_count; i++) {
2758                                 igb->mcast_table[i - 1] =
2759                                     igb->mcast_table[i];
2760                         }
2761                         igb->mcast_count--;
2762                         break;
2763                 }
2764         }
2765 
2766         if ((igb->mcast_alloc_count - igb->mcast_count) >
2767             MCAST_ALLOC_COUNT) {
2768                 old_len = igb->mcast_alloc_count *
2769                     sizeof (struct ether_addr);
2770                 new_len = (igb->mcast_alloc_count - MCAST_ALLOC_COUNT) *
2771                     sizeof (struct ether_addr);
2772 
2773                 new_table = kmem_alloc(new_len, KM_NOSLEEP);
2774                 if (new_table != NULL) {
2775                         bcopy(igb->mcast_table, new_table, new_len);
2776                         kmem_free(igb->mcast_table, old_len);
2777                         igb->mcast_alloc_count -= MCAST_ALLOC_COUNT;
2778                         igb->mcast_table = new_table;
2779                 }
2780         }
2781 
2782         /*
2783          * Update the multicast table in the hardware
2784          */
2785         igb_setup_multicst(igb);
2786 
2787         if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
2788                 ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
2789                 return (EIO);
2790         }
2791 
2792         return (0);
2793 }
2794 
2795 static void
2796 igb_release_multicast(igb_t *igb)
2797 {
2798         if (igb->mcast_table != NULL) {
2799                 kmem_free(igb->mcast_table,
2800                     igb->mcast_alloc_count * sizeof (struct ether_addr));
2801                 igb->mcast_table = NULL;
2802         }
2803 }
2804 
2805 /*
2806  * igb_setup_multicast - setup multicast data structures
2807  *
2808  * This routine initializes all of the multicast related structures
2809  * and save them in the hardware registers.
2810  */
2811 static void
2812 igb_setup_multicst(igb_t *igb)
2813 {
2814         uint8_t *mc_addr_list;
2815         uint32_t mc_addr_count;
2816         struct e1000_hw *hw = &igb->hw;
2817 
2818         ASSERT(mutex_owned(&igb->gen_lock));
2819         ASSERT(igb->mcast_count <= igb->mcast_max_num);
2820 
2821         mc_addr_list = (uint8_t *)igb->mcast_table;
2822         mc_addr_count = igb->mcast_count;
2823 
2824         /*
2825          * Update the multicase addresses to the MTA registers
2826          */
2827         e1000_update_mc_addr_list(hw, mc_addr_list, mc_addr_count);
2828 }
2829 
2830 /*
2831  * igb_get_conf - Get driver configurations set in driver.conf
2832  *
2833  * This routine gets user-configured values out of the configuration
2834  * file igb.conf.
2835  *
2836  * For each configurable value, there is a minimum, a maximum, and a
2837  * default.
2838  * If user does not configure a value, use the default.
2839  * If user configures below the minimum, use the minumum.
2840  * If user configures above the maximum, use the maxumum.
2841  */
2842 static void
2843 igb_get_conf(igb_t *igb)
2844 {
2845         struct e1000_hw *hw = &igb->hw;
2846         uint32_t default_mtu;
2847         uint32_t flow_control;
2848         uint32_t ring_per_group;
2849         int i;
2850 
2851         /*
2852          * igb driver supports the following user configurations:
2853          *
2854          * Link configurations:
2855          *    adv_autoneg_cap
2856          *    adv_1000fdx_cap
2857          *    adv_100fdx_cap
2858          *    adv_100hdx_cap
2859          *    adv_10fdx_cap
2860          *    adv_10hdx_cap
2861          * Note: 1000hdx is not supported.
2862          *
2863          * Jumbo frame configuration:
2864          *    default_mtu
2865          *
2866          * Ethernet flow control configuration:
2867          *    flow_control
2868          *
2869          * Multiple rings configurations:
2870          *    tx_queue_number
2871          *    tx_ring_size
2872          *    rx_queue_number
2873          *    rx_ring_size
2874          *
2875          * Call igb_get_prop() to get the value for a specific
2876          * configuration parameter.
2877          */
2878 
2879         /*
2880          * Link configurations
2881          */
2882         igb->param_adv_autoneg_cap = igb_get_prop(igb,
2883             PROP_ADV_AUTONEG_CAP, 0, 1, 1);
2884         igb->param_adv_1000fdx_cap = igb_get_prop(igb,
2885             PROP_ADV_1000FDX_CAP, 0, 1, 1);
2886         igb->param_adv_100fdx_cap = igb_get_prop(igb,
2887             PROP_ADV_100FDX_CAP, 0, 1, 1);
2888         igb->param_adv_100hdx_cap = igb_get_prop(igb,
2889             PROP_ADV_100HDX_CAP, 0, 1, 1);
2890         igb->param_adv_10fdx_cap = igb_get_prop(igb,
2891             PROP_ADV_10FDX_CAP, 0, 1, 1);
2892         igb->param_adv_10hdx_cap = igb_get_prop(igb,
2893             PROP_ADV_10HDX_CAP, 0, 1, 1);
2894 
2895         /*
2896          * Jumbo frame configurations
2897          */
2898         default_mtu = igb_get_prop(igb, PROP_DEFAULT_MTU,
2899             MIN_MTU, MAX_MTU, DEFAULT_MTU);
2900 
2901         igb->max_frame_size = default_mtu +
2902             sizeof (struct ether_vlan_header) + ETHERFCSL;
2903 
2904         /*
2905          * Ethernet flow control configuration
2906          */
2907         flow_control = igb_get_prop(igb, PROP_FLOW_CONTROL,
2908             e1000_fc_none, 4, e1000_fc_full);
2909         if (flow_control == 4)
2910                 flow_control = e1000_fc_default;
2911 
2912         hw->fc.requested_mode = flow_control;
2913 
2914         /*
2915          * Multiple rings configurations
2916          */
2917         igb->tx_ring_size = igb_get_prop(igb, PROP_TX_RING_SIZE,
2918             MIN_TX_RING_SIZE, MAX_TX_RING_SIZE, DEFAULT_TX_RING_SIZE);
2919         igb->rx_ring_size = igb_get_prop(igb, PROP_RX_RING_SIZE,
2920             MIN_RX_RING_SIZE, MAX_RX_RING_SIZE, DEFAULT_RX_RING_SIZE);
2921 
2922         igb->mr_enable = igb_get_prop(igb, PROP_MR_ENABLE, 0, 1, 0);
2923         igb->num_rx_groups = igb_get_prop(igb, PROP_RX_GROUP_NUM,
2924             MIN_RX_GROUP_NUM, MAX_RX_GROUP_NUM, DEFAULT_RX_GROUP_NUM);
2925         /*
2926          * Currently we do not support VMDq for 82576 and 82580.
2927          * If it is e1000_82576, set num_rx_groups to 1.
2928          */
2929         if (hw->mac.type >= e1000_82576)
2930                 igb->num_rx_groups = 1;
2931 
2932         if (igb->mr_enable) {
2933                 igb->num_tx_rings = igb->capab->def_tx_que_num;
2934                 igb->num_rx_rings = igb->capab->def_rx_que_num;
2935         } else {
2936                 igb->num_tx_rings = 1;
2937                 igb->num_rx_rings = 1;
2938 
2939                 if (igb->num_rx_groups > 1) {
2940                         igb_log(igb, IGB_LOG_ERROR,
2941                             "Invalid rx groups number. Please enable multiple "
2942                             "rings first");
2943                         igb->num_rx_groups = 1;
2944                 }
2945         }
2946 
2947         /*
2948          * Check the divisibility between rx rings and rx groups.
2949          */
2950         for (i = igb->num_rx_groups; i > 0; i--) {
2951                 if ((igb->num_rx_rings % i) == 0)
2952                         break;
2953         }
2954         if (i != igb->num_rx_groups) {
2955                 igb_log(igb, IGB_LOG_ERROR,
2956                     "Invalid rx groups number. Downgrade the rx group "
2957                     "number to %d.", i);
2958                 igb->num_rx_groups = i;
2959         }
2960 
2961         /*
2962          * Get the ring number per group.
2963          */
2964         ring_per_group = igb->num_rx_rings / igb->num_rx_groups;
2965 
2966         if (igb->num_rx_groups == 1) {
2967                 /*
2968                  * One rx ring group, the rx ring number is num_rx_rings.
2969                  */
2970                 igb->vmdq_mode = E1000_VMDQ_OFF;
2971         } else if (ring_per_group == 1) {
2972                 /*
2973                  * Multiple rx groups, each group has one rx ring.
2974                  */
2975                 igb->vmdq_mode = E1000_VMDQ_MAC;
2976         } else {
2977                 /*
2978                  * Multiple groups and multiple rings.
2979                  */
2980                 igb->vmdq_mode = E1000_VMDQ_MAC_RSS;
2981         }
2982 
2983         /*
2984          * Tunable used to force an interrupt type. The only use is
2985          * for testing of the lesser interrupt types.
2986          * 0 = don't force interrupt type
2987          * 1 = force interrupt type MSIX
2988          * 2 = force interrupt type MSI
2989          * 3 = force interrupt type Legacy
2990          */
2991         igb->intr_force = igb_get_prop(igb, PROP_INTR_FORCE,
2992             IGB_INTR_NONE, IGB_INTR_LEGACY, IGB_INTR_NONE);
2993 
2994         igb->tx_hcksum_enable = igb_get_prop(igb, PROP_TX_HCKSUM_ENABLE,
2995             0, 1, 1);
2996         igb->rx_hcksum_enable = igb_get_prop(igb, PROP_RX_HCKSUM_ENABLE,
2997             0, 1, 1);
2998         igb->lso_enable = igb_get_prop(igb, PROP_LSO_ENABLE,
2999             0, 1, 1);
3000         igb->tx_head_wb_enable = igb_get_prop(igb, PROP_TX_HEAD_WB_ENABLE,
3001             0, 1, 1);
3002 
3003         /*
3004          * igb LSO needs the tx h/w checksum support.
3005          * Here LSO will be disabled if tx h/w checksum has been disabled.
3006          */
3007         if (igb->tx_hcksum_enable == B_FALSE)
3008                 igb->lso_enable = B_FALSE;
3009 
3010         igb->tx_copy_thresh = igb_get_prop(igb, PROP_TX_COPY_THRESHOLD,
3011             MIN_TX_COPY_THRESHOLD, MAX_TX_COPY_THRESHOLD,
3012             DEFAULT_TX_COPY_THRESHOLD);
3013         igb->tx_recycle_thresh = igb_get_prop(igb, PROP_TX_RECYCLE_THRESHOLD,
3014             MIN_TX_RECYCLE_THRESHOLD, MAX_TX_RECYCLE_THRESHOLD,
3015             DEFAULT_TX_RECYCLE_THRESHOLD);
3016         igb->tx_overload_thresh = igb_get_prop(igb, PROP_TX_OVERLOAD_THRESHOLD,
3017             MIN_TX_OVERLOAD_THRESHOLD, MAX_TX_OVERLOAD_THRESHOLD,
3018             DEFAULT_TX_OVERLOAD_THRESHOLD);
3019         igb->tx_resched_thresh = igb_get_prop(igb, PROP_TX_RESCHED_THRESHOLD,
3020             MIN_TX_RESCHED_THRESHOLD,
3021             MIN(igb->tx_ring_size, MAX_TX_RESCHED_THRESHOLD),
3022             igb->tx_ring_size > DEFAULT_TX_RESCHED_THRESHOLD ?
3023             DEFAULT_TX_RESCHED_THRESHOLD : DEFAULT_TX_RESCHED_THRESHOLD_LOW);
3024 
3025         igb->rx_copy_thresh = igb_get_prop(igb, PROP_RX_COPY_THRESHOLD,
3026             MIN_RX_COPY_THRESHOLD, MAX_RX_COPY_THRESHOLD,
3027             DEFAULT_RX_COPY_THRESHOLD);
3028         igb->rx_limit_per_intr = igb_get_prop(igb, PROP_RX_LIMIT_PER_INTR,
3029             MIN_RX_LIMIT_PER_INTR, MAX_RX_LIMIT_PER_INTR,
3030             DEFAULT_RX_LIMIT_PER_INTR);
3031 
3032         igb->intr_throttling[0] = igb_get_prop(igb, PROP_INTR_THROTTLING,
3033             igb->capab->min_intr_throttle,
3034             igb->capab->max_intr_throttle,
3035             igb->capab->def_intr_throttle);
3036 
3037         /*
3038          * Max number of multicast addresses
3039          */
3040         igb->mcast_max_num =
3041             igb_get_prop(igb, PROP_MCAST_MAX_NUM,
3042             MIN_MCAST_NUM, MAX_MCAST_NUM, DEFAULT_MCAST_NUM);
3043 }
3044 
3045 /*
3046  * igb_get_prop - Get a property value out of the configuration file igb.conf
3047  *
3048  * Caller provides the name of the property, a default value, a minimum
3049  * value, and a maximum value.
3050  *
3051  * Return configured value of the property, with default, minimum and
3052  * maximum properly applied.
3053  */
3054 static int
3055 igb_get_prop(igb_t *igb,
3056     char *propname,     /* name of the property */
3057     int minval,         /* minimum acceptable value */
3058     int maxval,         /* maximim acceptable value */
3059     int defval)         /* default value */
3060 {
3061         int value;
3062 
3063         /*
3064          * Call ddi_prop_get_int() to read the conf settings
3065          */
3066         value = ddi_prop_get_int(DDI_DEV_T_ANY, igb->dip,
3067             DDI_PROP_DONTPASS, propname, defval);
3068 
3069         if (value > maxval)
3070                 value = maxval;
3071 
3072         if (value < minval)
3073                 value = minval;
3074 
3075         return (value);
3076 }
3077 
3078 /*
3079  * igb_setup_link - Using the link properties to setup the link
3080  */
3081 int
3082 igb_setup_link(igb_t *igb, boolean_t setup_hw)
3083 {
3084         struct e1000_mac_info *mac;
3085         struct e1000_phy_info *phy;
3086         boolean_t invalid;
3087 
3088         mac = &igb->hw.mac;
3089         phy = &igb->hw.phy;
3090         invalid = B_FALSE;
3091 
3092         if (igb->param_adv_autoneg_cap == 1) {
3093                 mac->autoneg = B_TRUE;
3094                 phy->autoneg_advertised = 0;
3095 
3096                 /*
3097                  * 1000hdx is not supported for autonegotiation
3098                  */
3099                 if (igb->param_adv_1000fdx_cap == 1)
3100                         phy->autoneg_advertised |= ADVERTISE_1000_FULL;
3101 
3102                 if (igb->param_adv_100fdx_cap == 1)
3103                         phy->autoneg_advertised |= ADVERTISE_100_FULL;
3104 
3105                 if (igb->param_adv_100hdx_cap == 1)
3106                         phy->autoneg_advertised |= ADVERTISE_100_HALF;
3107 
3108                 if (igb->param_adv_10fdx_cap == 1)
3109                         phy->autoneg_advertised |= ADVERTISE_10_FULL;
3110 
3111                 if (igb->param_adv_10hdx_cap == 1)
3112                         phy->autoneg_advertised |= ADVERTISE_10_HALF;
3113 
3114                 if (phy->autoneg_advertised == 0)
3115                         invalid = B_TRUE;
3116         } else {
3117                 mac->autoneg = B_FALSE;
3118 
3119                 /*
3120                  * 1000fdx and 1000hdx are not supported for forced link
3121                  */
3122                 if (igb->param_adv_100fdx_cap == 1)
3123                         mac->forced_speed_duplex = ADVERTISE_100_FULL;
3124                 else if (igb->param_adv_100hdx_cap == 1)
3125                         mac->forced_speed_duplex = ADVERTISE_100_HALF;
3126                 else if (igb->param_adv_10fdx_cap == 1)
3127                         mac->forced_speed_duplex = ADVERTISE_10_FULL;
3128                 else if (igb->param_adv_10hdx_cap == 1)
3129                         mac->forced_speed_duplex = ADVERTISE_10_HALF;
3130                 else
3131                         invalid = B_TRUE;
3132         }
3133 
3134         if (invalid) {
3135                 igb_log(igb, IGB_LOG_INFO, "Invalid link settings. Setup "
3136                     "link to autonegotiation with full link capabilities.");
3137                 mac->autoneg = B_TRUE;
3138                 phy->autoneg_advertised = ADVERTISE_1000_FULL |
3139                     ADVERTISE_100_FULL | ADVERTISE_100_HALF |
3140                     ADVERTISE_10_FULL | ADVERTISE_10_HALF;
3141         }
3142 
3143         if (setup_hw) {
3144                 if (e1000_setup_link(&igb->hw) != E1000_SUCCESS)
3145                         return (IGB_FAILURE);
3146         }
3147 
3148         return (IGB_SUCCESS);
3149 }
3150 
3151 
3152 /*
3153  * igb_is_link_up - Check if the link is up
3154  */
3155 static boolean_t
3156 igb_is_link_up(igb_t *igb)
3157 {
3158         struct e1000_hw *hw = &igb->hw;
3159         boolean_t link_up = B_FALSE;
3160 
3161         ASSERT(mutex_owned(&igb->gen_lock));
3162 
3163         /*
3164          * get_link_status is set in the interrupt handler on link-status-change
3165          * or rx sequence error interrupt.  get_link_status will stay
3166          * false until the e1000_check_for_link establishes link only
3167          * for copper adapters.
3168          */
3169         switch (hw->phy.media_type) {
3170         case e1000_media_type_copper:
3171                 if (hw->mac.get_link_status) {
3172                         (void) e1000_check_for_link(hw);
3173                         link_up = !hw->mac.get_link_status;
3174                 } else {
3175                         link_up = B_TRUE;
3176                 }
3177                 break;
3178         case e1000_media_type_fiber:
3179                 (void) e1000_check_for_link(hw);
3180                 link_up = (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU);
3181                 break;
3182         case e1000_media_type_internal_serdes:
3183                 (void) e1000_check_for_link(hw);
3184                 link_up = hw->mac.serdes_has_link;
3185                 break;
3186         }
3187 
3188         return (link_up);
3189 }
3190 
3191 /*
3192  * igb_link_check - Link status processing
3193  */
3194 static boolean_t
3195 igb_link_check(igb_t *igb)
3196 {
3197         struct e1000_hw *hw = &igb->hw;
3198         uint16_t speed = 0, duplex = 0;
3199         boolean_t link_changed = B_FALSE;
3200 
3201         ASSERT(mutex_owned(&igb->gen_lock));
3202 
3203         if (igb_is_link_up(igb)) {
3204                 /*
3205                  * The Link is up, check whether it was marked as down earlier
3206                  */
3207                 if (igb->link_state != LINK_STATE_UP) {
3208                         (void) e1000_get_speed_and_duplex(hw, &speed, &duplex);
3209                         igb->link_speed = speed;
3210                         igb->link_duplex = duplex;
3211                         igb->link_state = LINK_STATE_UP;
3212                         link_changed = B_TRUE;
3213                         if (!igb->link_complete)
3214                                 igb_stop_link_timer(igb);
3215                 }
3216         } else if (igb->link_complete) {
3217                 if (igb->link_state != LINK_STATE_DOWN) {
3218                         igb->link_speed = 0;
3219                         igb->link_duplex = 0;
3220                         igb->link_state = LINK_STATE_DOWN;
3221                         link_changed = B_TRUE;
3222                 }
3223         }
3224 
3225         if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
3226                 ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
3227                 return (B_FALSE);
3228         }
3229 
3230         return (link_changed);
3231 }
3232 
3233 /*
3234  * igb_local_timer - driver watchdog function
3235  *
3236  * This function will handle the hardware stall check, link status
3237  * check and other routines.
3238  */
3239 static void
3240 igb_local_timer(void *arg)
3241 {
3242         igb_t *igb = (igb_t *)arg;
3243         boolean_t link_changed = B_FALSE;
3244 
3245         if (igb->igb_state & IGB_ERROR) {
3246                 igb->reset_count++;
3247                 if (igb_reset(igb) == IGB_SUCCESS)
3248                         ddi_fm_service_impact(igb->dip, DDI_SERVICE_RESTORED);
3249 
3250                 igb_restart_watchdog_timer(igb);
3251                 return;
3252         }
3253 
3254         if (igb_stall_check(igb) || (igb->igb_state & IGB_STALL)) {
3255                 igb_fm_ereport(igb, DDI_FM_DEVICE_STALL);
3256                 ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
3257                 igb->reset_count++;
3258                 if (igb_reset(igb) == IGB_SUCCESS)
3259                         ddi_fm_service_impact(igb->dip, DDI_SERVICE_RESTORED);
3260 
3261                 igb_restart_watchdog_timer(igb);
3262                 return;
3263         }
3264 
3265         mutex_enter(&igb->gen_lock);
3266         if (!(igb->igb_state & IGB_SUSPENDED) && (igb->igb_state & IGB_STARTED))
3267                 link_changed = igb_link_check(igb);
3268         mutex_exit(&igb->gen_lock);
3269 
3270         if (link_changed)
3271                 mac_link_update(igb->mac_hdl, igb->link_state);
3272 
3273         igb_restart_watchdog_timer(igb);
3274 }
3275 
3276 /*
3277  * igb_link_timer - link setup timer function
3278  *
3279  * It is called when the timer for link setup is expired, which indicates
3280  * the completion of the link setup. The link state will not be updated
3281  * until the link setup is completed. And the link state will not be sent
3282  * to the upper layer through mac_link_update() in this function. It will
3283  * be updated in the local timer routine or the interrupts service routine
3284  * after the interface is started (plumbed).
3285  */
3286 static void
3287 igb_link_timer(void *arg)
3288 {
3289         igb_t *igb = (igb_t *)arg;
3290 
3291         mutex_enter(&igb->link_lock);
3292         igb->link_complete = B_TRUE;
3293         igb->link_tid = 0;
3294         mutex_exit(&igb->link_lock);
3295 }
3296 /*
3297  * igb_stall_check - check for transmit stall
3298  *
3299  * This function checks if the adapter is stalled (in transmit).
3300  *
3301  * It is called each time the watchdog timeout is invoked.
3302  * If the transmit descriptor reclaim continuously fails,
3303  * the watchdog value will increment by 1. If the watchdog
3304  * value exceeds the threshold, the igb is assumed to
3305  * have stalled and need to be reset.
3306  */
3307 static boolean_t
3308 igb_stall_check(igb_t *igb)
3309 {
3310         igb_tx_ring_t *tx_ring;
3311         struct e1000_hw *hw = &igb->hw;
3312         boolean_t result;
3313         int i;
3314 
3315         if (igb->link_state != LINK_STATE_UP)
3316                 return (B_FALSE);
3317 
3318         /*
3319          * If any tx ring is stalled, we'll reset the chipset
3320          */
3321         result = B_FALSE;
3322         for (i = 0; i < igb->num_tx_rings; i++) {
3323                 tx_ring = &igb->tx_rings[i];
3324 
3325                 if (tx_ring->recycle_fail > 0)
3326                         tx_ring->stall_watchdog++;
3327                 else
3328                         tx_ring->stall_watchdog = 0;
3329 
3330                 if (tx_ring->stall_watchdog >= STALL_WATCHDOG_TIMEOUT) {
3331                         result = B_TRUE;
3332                         if (hw->mac.type == e1000_82580) {
3333                                 hw->dev_spec._82575.global_device_reset
3334                                     = B_TRUE;
3335                         }
3336                         break;
3337                 }
3338         }
3339 
3340         if (result) {
3341                 tx_ring->stall_watchdog = 0;
3342                 tx_ring->recycle_fail = 0;
3343         }
3344 
3345         return (result);
3346 }
3347 
3348 
3349 /*
3350  * is_valid_mac_addr - Check if the mac address is valid
3351  */
3352 static boolean_t
3353 is_valid_mac_addr(uint8_t *mac_addr)
3354 {
3355         const uint8_t addr_test1[6] = { 0, 0, 0, 0, 0, 0 };
3356         const uint8_t addr_test2[6] =
3357             { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3358 
3359         if (!(bcmp(addr_test1, mac_addr, ETHERADDRL)) ||
3360             !(bcmp(addr_test2, mac_addr, ETHERADDRL)))
3361                 return (B_FALSE);
3362 
3363         return (B_TRUE);
3364 }
3365 
3366 static boolean_t
3367 igb_find_mac_address(igb_t *igb)
3368 {
3369         struct e1000_hw *hw = &igb->hw;
3370 #ifdef __sparc
3371         uchar_t *bytes;
3372         struct ether_addr sysaddr;
3373         uint_t nelts;
3374         int err;
3375         boolean_t found = B_FALSE;
3376 
3377         /*
3378          * The "vendor's factory-set address" may already have
3379          * been extracted from the chip, but if the property
3380          * "local-mac-address" is set we use that instead.
3381          *
3382          * We check whether it looks like an array of 6
3383          * bytes (which it should, if OBP set it).  If we can't
3384          * make sense of it this way, we'll ignore it.
3385          */
3386         err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, igb->dip,
3387             DDI_PROP_DONTPASS, "local-mac-address", &bytes, &nelts);
3388         if (err == DDI_PROP_SUCCESS) {
3389                 if (nelts == ETHERADDRL) {
3390                         while (nelts--)
3391                                 hw->mac.addr[nelts] = bytes[nelts];
3392                         found = B_TRUE;
3393                 }
3394                 ddi_prop_free(bytes);
3395         }
3396 
3397         /*
3398          * Look up the OBP property "local-mac-address?". If the user has set
3399          * 'local-mac-address? = false', use "the system address" instead.
3400          */
3401         if (ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, igb->dip, 0,
3402             "local-mac-address?", &bytes, &nelts) == DDI_PROP_SUCCESS) {
3403                 if (strncmp("false", (caddr_t)bytes, (size_t)nelts) == 0) {
3404                         if (localetheraddr(NULL, &sysaddr) != 0) {
3405                                 bcopy(&sysaddr, hw->mac.addr, ETHERADDRL);
3406                                 found = B_TRUE;
3407                         }
3408                 }
3409                 ddi_prop_free(bytes);
3410         }
3411 
3412         /*
3413          * Finally(!), if there's a valid "mac-address" property (created
3414          * if we netbooted from this interface), we must use this instead
3415          * of any of the above to ensure that the NFS/install server doesn't
3416          * get confused by the address changing as Solaris takes over!
3417          */
3418         err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, igb->dip,
3419             DDI_PROP_DONTPASS, "mac-address", &bytes, &nelts);
3420         if (err == DDI_PROP_SUCCESS) {
3421                 if (nelts == ETHERADDRL) {
3422                         while (nelts--)
3423                                 hw->mac.addr[nelts] = bytes[nelts];
3424                         found = B_TRUE;
3425                 }
3426                 ddi_prop_free(bytes);
3427         }
3428 
3429         if (found) {
3430                 bcopy(hw->mac.addr, hw->mac.perm_addr, ETHERADDRL);
3431                 return (B_TRUE);
3432         }
3433 #endif
3434 
3435         /*
3436          * Read the device MAC address from the EEPROM
3437          */
3438         if (e1000_read_mac_addr(hw) != E1000_SUCCESS)
3439                 return (B_FALSE);
3440 
3441         return (B_TRUE);
3442 }
3443 
3444 #pragma inline(igb_arm_watchdog_timer)
3445 
3446 static void
3447 igb_arm_watchdog_timer(igb_t *igb)
3448 {
3449         /*
3450          * Fire a watchdog timer
3451          */
3452         igb->watchdog_tid =
3453             timeout(igb_local_timer,
3454             (void *)igb, 1 * drv_usectohz(1000000));
3455 
3456 }
3457 
3458 /*
3459  * igb_enable_watchdog_timer - Enable and start the driver watchdog timer
3460  */
3461 void
3462 igb_enable_watchdog_timer(igb_t *igb)
3463 {
3464         mutex_enter(&igb->watchdog_lock);
3465 
3466         if (!igb->watchdog_enable) {
3467                 igb->watchdog_enable = B_TRUE;
3468                 igb->watchdog_start = B_TRUE;
3469                 igb_arm_watchdog_timer(igb);
3470         }
3471 
3472         mutex_exit(&igb->watchdog_lock);
3473 
3474 }
3475 
3476 /*
3477  * igb_disable_watchdog_timer - Disable and stop the driver watchdog timer
3478  */
3479 void
3480 igb_disable_watchdog_timer(igb_t *igb)
3481 {
3482         timeout_id_t tid;
3483 
3484         mutex_enter(&igb->watchdog_lock);
3485 
3486         igb->watchdog_enable = B_FALSE;
3487         igb->watchdog_start = B_FALSE;
3488         tid = igb->watchdog_tid;
3489         igb->watchdog_tid = 0;
3490 
3491         mutex_exit(&igb->watchdog_lock);
3492 
3493         if (tid != 0)
3494                 (void) untimeout(tid);
3495 
3496 }
3497 
3498 /*
3499  * igb_start_watchdog_timer - Start the driver watchdog timer
3500  */
3501 static void
3502 igb_start_watchdog_timer(igb_t *igb)
3503 {
3504         mutex_enter(&igb->watchdog_lock);
3505 
3506         if (igb->watchdog_enable) {
3507                 if (!igb->watchdog_start) {
3508                         igb->watchdog_start = B_TRUE;
3509                         igb_arm_watchdog_timer(igb);
3510                 }
3511         }
3512 
3513         mutex_exit(&igb->watchdog_lock);
3514 }
3515 
3516 /*
3517  * igb_restart_watchdog_timer - Restart the driver watchdog timer
3518  */
3519 static void
3520 igb_restart_watchdog_timer(igb_t *igb)
3521 {
3522         mutex_enter(&igb->watchdog_lock);
3523 
3524         if (igb->watchdog_start)
3525                 igb_arm_watchdog_timer(igb);
3526 
3527         mutex_exit(&igb->watchdog_lock);
3528 }
3529 
3530 /*
3531  * igb_stop_watchdog_timer - Stop the driver watchdog timer
3532  */
3533 static void
3534 igb_stop_watchdog_timer(igb_t *igb)
3535 {
3536         timeout_id_t tid;
3537 
3538         mutex_enter(&igb->watchdog_lock);
3539 
3540         igb->watchdog_start = B_FALSE;
3541         tid = igb->watchdog_tid;
3542         igb->watchdog_tid = 0;
3543 
3544         mutex_exit(&igb->watchdog_lock);
3545 
3546         if (tid != 0)
3547                 (void) untimeout(tid);
3548 }
3549 
3550 /*
3551  * igb_start_link_timer - Start the link setup timer
3552  */
3553 static void
3554 igb_start_link_timer(struct igb *igb)
3555 {
3556         struct e1000_hw *hw = &igb->hw;
3557         clock_t link_timeout;
3558 
3559         if (hw->mac.autoneg)
3560                 link_timeout = PHY_AUTO_NEG_LIMIT *
3561                     drv_usectohz(100000);
3562         else
3563                 link_timeout = PHY_FORCE_LIMIT * drv_usectohz(100000);
3564 
3565         mutex_enter(&igb->link_lock);
3566         if (hw->phy.autoneg_wait_to_complete) {
3567                 igb->link_complete = B_TRUE;
3568         } else {
3569                 igb->link_complete = B_FALSE;
3570                 igb->link_tid = timeout(igb_link_timer, (void *)igb,
3571                     link_timeout);
3572         }
3573         mutex_exit(&igb->link_lock);
3574 }
3575 
3576 /*
3577  * igb_stop_link_timer - Stop the link setup timer
3578  */
3579 static void
3580 igb_stop_link_timer(struct igb *igb)
3581 {
3582         timeout_id_t tid;
3583 
3584         mutex_enter(&igb->link_lock);
3585         igb->link_complete = B_TRUE;
3586         tid = igb->link_tid;
3587         igb->link_tid = 0;
3588         mutex_exit(&igb->link_lock);
3589 
3590         if (tid != 0)
3591                 (void) untimeout(tid);
3592 }
3593 
3594 /*
3595  * igb_disable_adapter_interrupts - Clear/disable all hardware interrupts
3596  */
3597 static void
3598 igb_disable_adapter_interrupts(igb_t *igb)
3599 {
3600         struct e1000_hw *hw = &igb->hw;
3601 
3602         /*
3603          * Set the IMC register to mask all the interrupts,
3604          * including the tx interrupts.
3605          */
3606         E1000_WRITE_REG(hw, E1000_IMC, ~0);
3607         E1000_WRITE_REG(hw, E1000_IAM, 0);
3608 
3609         /*
3610          * Additional disabling for MSI-X
3611          */
3612         if (igb->intr_type == DDI_INTR_TYPE_MSIX) {
3613                 E1000_WRITE_REG(hw, E1000_EIMC, ~0);
3614                 E1000_WRITE_REG(hw, E1000_EIAC, 0);
3615                 E1000_WRITE_REG(hw, E1000_EIAM, 0);
3616         }
3617 
3618         E1000_WRITE_FLUSH(hw);
3619 }
3620 
3621 /*
3622  * igb_enable_adapter_interrupts_82580 - Enable NIC interrupts for 82580
3623  */
3624 static void
3625 igb_enable_adapter_interrupts_82580(igb_t *igb)
3626 {
3627         struct e1000_hw *hw = &igb->hw;
3628 
3629         /* Clear any pending interrupts */
3630         (void) E1000_READ_REG(hw, E1000_ICR);
3631         igb->ims_mask |= E1000_IMS_DRSTA;
3632 
3633         if (igb->intr_type == DDI_INTR_TYPE_MSIX) {
3634 
3635                 /* Interrupt enabling for MSI-X */
3636                 E1000_WRITE_REG(hw, E1000_EIMS, igb->eims_mask);
3637                 E1000_WRITE_REG(hw, E1000_EIAC, igb->eims_mask);
3638                 igb->ims_mask = (E1000_IMS_LSC | E1000_IMS_DRSTA);
3639                 E1000_WRITE_REG(hw, E1000_IMS, igb->ims_mask);
3640         } else { /* Interrupt enabling for MSI and legacy */
3641                 E1000_WRITE_REG(hw, E1000_IVAR0, E1000_IVAR_VALID);
3642                 igb->ims_mask = IMS_ENABLE_MASK | E1000_IMS_TXQE;
3643                 igb->ims_mask |= E1000_IMS_DRSTA;
3644                 E1000_WRITE_REG(hw, E1000_IMS, igb->ims_mask);
3645         }
3646 
3647         /* Disable auto-mask for ICR interrupt bits */
3648         E1000_WRITE_REG(hw, E1000_IAM, 0);
3649 
3650         E1000_WRITE_FLUSH(hw);
3651 }
3652 
3653 /*
3654  * igb_enable_adapter_interrupts_82576 - Enable NIC interrupts for 82576
3655  */
3656 static void
3657 igb_enable_adapter_interrupts_82576(igb_t *igb)
3658 {
3659         struct e1000_hw *hw = &igb->hw;
3660 
3661         /* Clear any pending interrupts */
3662         (void) E1000_READ_REG(hw, E1000_ICR);
3663 
3664         if (igb->intr_type == DDI_INTR_TYPE_MSIX) {
3665 
3666                 /* Interrupt enabling for MSI-X */
3667                 E1000_WRITE_REG(hw, E1000_EIMS, igb->eims_mask);
3668                 E1000_WRITE_REG(hw, E1000_EIAC, igb->eims_mask);
3669                 igb->ims_mask = E1000_IMS_LSC;
3670                 E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_LSC);
3671         } else {
3672                 /* Interrupt enabling for MSI and legacy */
3673                 E1000_WRITE_REG(hw, E1000_IVAR0, E1000_IVAR_VALID);
3674                 igb->ims_mask = IMS_ENABLE_MASK | E1000_IMS_TXQE;
3675                 E1000_WRITE_REG(hw, E1000_IMS,
3676                     (IMS_ENABLE_MASK | E1000_IMS_TXQE));
3677         }
3678 
3679         /* Disable auto-mask for ICR interrupt bits */
3680         E1000_WRITE_REG(hw, E1000_IAM, 0);
3681 
3682         E1000_WRITE_FLUSH(hw);
3683 }
3684 
3685 /*
3686  * igb_enable_adapter_interrupts_82575 - Enable NIC interrupts for 82575
3687  */
3688 static void
3689 igb_enable_adapter_interrupts_82575(igb_t *igb)
3690 {
3691         struct e1000_hw *hw = &igb->hw;
3692         uint32_t reg;
3693 
3694         /* Clear any pending interrupts */
3695         (void) E1000_READ_REG(hw, E1000_ICR);
3696 
3697         if (igb->intr_type == DDI_INTR_TYPE_MSIX) {
3698                 /* Interrupt enabling for MSI-X */
3699                 E1000_WRITE_REG(hw, E1000_EIMS, igb->eims_mask);
3700                 E1000_WRITE_REG(hw, E1000_EIAC, igb->eims_mask);
3701                 igb->ims_mask = E1000_IMS_LSC;
3702                 E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_LSC);
3703 
3704                 /* Enable MSI-X PBA support */
3705                 reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
3706                 reg |= E1000_CTRL_EXT_PBA_CLR;
3707 
3708                 /* Non-selective interrupt clear-on-read */
3709                 reg |= E1000_CTRL_EXT_IRCA;     /* Called NSICR in the EAS */
3710 
3711                 E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
3712         } else {
3713                 /* Interrupt enabling for MSI and legacy */
3714                 igb->ims_mask = IMS_ENABLE_MASK;
3715                 E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK);
3716         }
3717 
3718         E1000_WRITE_FLUSH(hw);
3719 }
3720 
3721 /*
3722  * Loopback Support
3723  */
3724 static lb_property_t lb_normal =
3725         { normal,       "normal",       IGB_LB_NONE             };
3726 static lb_property_t lb_external =
3727         { external,     "External",     IGB_LB_EXTERNAL         };
3728 static lb_property_t lb_phy =
3729         { internal,     "PHY",          IGB_LB_INTERNAL_PHY     };
3730 static lb_property_t lb_serdes =
3731         { internal,     "SerDes",       IGB_LB_INTERNAL_SERDES  };
3732 
3733 enum ioc_reply
3734 igb_loopback_ioctl(igb_t *igb, struct iocblk *iocp, mblk_t *mp)
3735 {
3736         lb_info_sz_t *lbsp;
3737         lb_property_t *lbpp;
3738         struct e1000_hw *hw;
3739         uint32_t *lbmp;
3740         uint32_t size;
3741         uint32_t value;
3742 
3743         hw = &igb->hw;
3744 
3745         if (mp->b_cont == NULL)
3746                 return (IOC_INVAL);
3747 
3748         switch (iocp->ioc_cmd) {
3749         default:
3750                 return (IOC_INVAL);
3751 
3752         case LB_GET_INFO_SIZE:
3753                 size = sizeof (lb_info_sz_t);
3754                 if (iocp->ioc_count != size)
3755                         return (IOC_INVAL);
3756 
3757                 value = sizeof (lb_normal);
3758                 if (hw->phy.media_type == e1000_media_type_copper)
3759                         value += sizeof (lb_phy);
3760                 else
3761                         value += sizeof (lb_serdes);
3762                 value += sizeof (lb_external);
3763 
3764                 lbsp = (lb_info_sz_t *)(uintptr_t)mp->b_cont->b_rptr;
3765                 *lbsp = value;
3766                 break;
3767 
3768         case LB_GET_INFO:
3769                 value = sizeof (lb_normal);
3770                 if (hw->phy.media_type == e1000_media_type_copper)
3771                         value += sizeof (lb_phy);
3772                 else
3773                         value += sizeof (lb_serdes);
3774                 value += sizeof (lb_external);
3775 
3776                 size = value;
3777                 if (iocp->ioc_count != size)
3778                         return (IOC_INVAL);
3779 
3780                 value = 0;
3781                 lbpp = (lb_property_t *)(uintptr_t)mp->b_cont->b_rptr;
3782 
3783                 lbpp[value++] = lb_normal;
3784                 if (hw->phy.media_type == e1000_media_type_copper)
3785                         lbpp[value++] = lb_phy;
3786                 else
3787                         lbpp[value++] = lb_serdes;
3788                 lbpp[value++] = lb_external;
3789                 break;
3790 
3791         case LB_GET_MODE:
3792                 size = sizeof (uint32_t);
3793                 if (iocp->ioc_count != size)
3794                         return (IOC_INVAL);
3795 
3796                 lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr;
3797                 *lbmp = igb->loopback_mode;
3798                 break;
3799 
3800         case LB_SET_MODE:
3801                 size = 0;
3802                 if (iocp->ioc_count != sizeof (uint32_t))
3803                         return (IOC_INVAL);
3804 
3805                 lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr;
3806                 if (!igb_set_loopback_mode(igb, *lbmp))
3807                         return (IOC_INVAL);
3808                 break;
3809         }
3810 
3811         iocp->ioc_count = size;
3812         iocp->ioc_error = 0;
3813 
3814         if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
3815                 ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
3816                 return (IOC_INVAL);
3817         }
3818 
3819         return (IOC_REPLY);
3820 }
3821 
3822 /*
3823  * igb_set_loopback_mode - Setup loopback based on the loopback mode
3824  */
3825 static boolean_t
3826 igb_set_loopback_mode(igb_t *igb, uint32_t mode)
3827 {
3828         struct e1000_hw *hw;
3829         int i;
3830 
3831         if (mode == igb->loopback_mode)
3832                 return (B_TRUE);
3833 
3834         hw = &igb->hw;
3835 
3836         igb->loopback_mode = mode;
3837 
3838         if (mode == IGB_LB_NONE) {
3839                 /* Reset the chip */
3840                 hw->phy.autoneg_wait_to_complete = B_TRUE;
3841                 (void) igb_reset(igb);
3842                 hw->phy.autoneg_wait_to_complete = B_FALSE;
3843                 return (B_TRUE);
3844         }
3845 
3846         mutex_enter(&igb->gen_lock);
3847 
3848         switch (mode) {
3849         default:
3850                 mutex_exit(&igb->gen_lock);
3851                 return (B_FALSE);
3852 
3853         case IGB_LB_EXTERNAL:
3854                 igb_set_external_loopback(igb);
3855                 break;
3856 
3857         case IGB_LB_INTERNAL_PHY:
3858                 igb_set_internal_phy_loopback(igb);
3859                 break;
3860 
3861         case IGB_LB_INTERNAL_SERDES:
3862                 igb_set_internal_serdes_loopback(igb);
3863                 break;
3864         }
3865 
3866         mutex_exit(&igb->gen_lock);
3867 
3868         /*
3869          * When external loopback is set, wait up to 1000ms to get the link up.
3870          * According to test, 1000ms can work and it's an experimental value.
3871          */
3872         if (mode == IGB_LB_EXTERNAL) {
3873                 for (i = 0; i <= 10; i++) {
3874                         mutex_enter(&igb->gen_lock);
3875                         (void) igb_link_check(igb);
3876                         mutex_exit(&igb->gen_lock);
3877 
3878                         if (igb->link_state == LINK_STATE_UP)
3879                                 break;
3880 
3881                         msec_delay(100);
3882                 }
3883 
3884                 if (igb->link_state != LINK_STATE_UP) {
3885                         /*
3886                          * Does not support external loopback.
3887                          * Reset driver to loopback none.
3888                          */
3889                         igb->loopback_mode = IGB_LB_NONE;
3890 
3891                         /* Reset the chip */
3892                         hw->phy.autoneg_wait_to_complete = B_TRUE;
3893                         (void) igb_reset(igb);
3894                         hw->phy.autoneg_wait_to_complete = B_FALSE;
3895 
3896                         igb_log(igb, IGB_LOG_INFO, "Set external loopback "
3897                             "failed, reset to loopback none.");
3898 
3899                         return (B_FALSE);
3900                 }
3901         }
3902 
3903         return (B_TRUE);
3904 }
3905 
3906 /*
3907  * igb_set_external_loopback - Set the external loopback mode
3908  */
3909 static void
3910 igb_set_external_loopback(igb_t *igb)
3911 {
3912         struct e1000_hw *hw;
3913         uint32_t ctrl_ext;
3914 
3915         hw = &igb->hw;
3916 
3917         /* Set link mode to PHY (00b) in the Extended Control register */
3918         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
3919         ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
3920         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
3921 
3922         (void) e1000_write_phy_reg(hw, 0x0, 0x0140);
3923         (void) e1000_write_phy_reg(hw, 0x9, 0x1a00);
3924         (void) e1000_write_phy_reg(hw, 0x12, 0x1610);
3925         (void) e1000_write_phy_reg(hw, 0x1f37, 0x3f1c);
3926 }
3927 
3928 /*
3929  * igb_set_internal_phy_loopback - Set the internal PHY loopback mode
3930  */
3931 static void
3932 igb_set_internal_phy_loopback(igb_t *igb)
3933 {
3934         struct e1000_hw *hw;
3935         uint32_t ctrl_ext;
3936         uint16_t phy_ctrl;
3937         uint16_t phy_pconf;
3938 
3939         hw = &igb->hw;
3940 
3941         /* Set link mode to PHY (00b) in the Extended Control register */
3942         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
3943         ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
3944         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
3945 
3946         /*
3947          * Set PHY control register (0x4140):
3948          *    Set full duplex mode
3949          *    Set loopback bit
3950          *    Clear auto-neg enable bit
3951          *    Set PHY speed
3952          */
3953         phy_ctrl = MII_CR_FULL_DUPLEX | MII_CR_SPEED_1000 | MII_CR_LOOPBACK;
3954         (void) e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl);
3955 
3956         /* Set the link disable bit in the Port Configuration register */
3957         (void) e1000_read_phy_reg(hw, 0x10, &phy_pconf);
3958         phy_pconf |= (uint16_t)1 << 14;
3959         (void) e1000_write_phy_reg(hw, 0x10, phy_pconf);
3960 }
3961 
3962 /*
3963  * igb_set_internal_serdes_loopback - Set the internal SerDes loopback mode
3964  */
3965 static void
3966 igb_set_internal_serdes_loopback(igb_t *igb)
3967 {
3968         struct e1000_hw *hw;
3969         uint32_t ctrl_ext;
3970         uint32_t ctrl;
3971         uint32_t pcs_lctl;
3972         uint32_t connsw;
3973 
3974         hw = &igb->hw;
3975 
3976         /* Set link mode to SerDes (11b) in the Extended Control register */
3977         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
3978         ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
3979         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
3980 
3981         /* Configure the SerDes to loopback */
3982         E1000_WRITE_REG(hw, E1000_SCTL, 0x410);
3983 
3984         /* Set Device Control register */
3985         ctrl = E1000_READ_REG(hw, E1000_CTRL);
3986         ctrl |= (E1000_CTRL_FD |        /* Force full duplex */
3987             E1000_CTRL_SLU);            /* Force link up */
3988         ctrl &= ~(E1000_CTRL_RFCE | /* Disable receive flow control */
3989             E1000_CTRL_TFCE |           /* Disable transmit flow control */
3990             E1000_CTRL_LRST);           /* Clear link reset */
3991         E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
3992 
3993         /* Set PCS Link Control register */
3994         pcs_lctl = E1000_READ_REG(hw, E1000_PCS_LCTL);
3995         pcs_lctl |= (E1000_PCS_LCTL_FORCE_LINK |
3996             E1000_PCS_LCTL_FSD |
3997             E1000_PCS_LCTL_FDV_FULL |
3998             E1000_PCS_LCTL_FLV_LINK_UP);
3999         pcs_lctl &= ~E1000_PCS_LCTL_AN_ENABLE;
4000         E1000_WRITE_REG(hw, E1000_PCS_LCTL, pcs_lctl);
4001 
4002         /* Set the Copper/Fiber Switch Control - CONNSW register */
4003         connsw = E1000_READ_REG(hw, E1000_CONNSW);
4004         connsw &= ~E1000_CONNSW_ENRGSRC;
4005         E1000_WRITE_REG(hw, E1000_CONNSW, connsw);
4006 }
4007 
4008 #pragma inline(igb_intr_rx_work)
4009 /*
4010  * igb_intr_rx_work - rx processing of ISR
4011  */
4012 static void
4013 igb_intr_rx_work(igb_rx_ring_t *rx_ring)
4014 {
4015         mblk_t *mp;
4016 
4017         mutex_enter(&rx_ring->rx_lock);
4018         mp = igb_rx(rx_ring, IGB_NO_POLL);
4019         mutex_exit(&rx_ring->rx_lock);
4020 
4021         if (mp != NULL)
4022                 mac_rx_ring(rx_ring->igb->mac_hdl, rx_ring->ring_handle, mp,
4023                     rx_ring->ring_gen_num);
4024 }
4025 
4026 #pragma inline(igb_intr_tx_work)
4027 /*
4028  * igb_intr_tx_work - tx processing of ISR
4029  */
4030 static void
4031 igb_intr_tx_work(igb_tx_ring_t *tx_ring)
4032 {
4033         igb_t *igb = tx_ring->igb;
4034 
4035         /* Recycle the tx descriptors */
4036         tx_ring->tx_recycle(tx_ring);
4037 
4038         /* Schedule the re-transmit */
4039         if (tx_ring->reschedule &&
4040             (tx_ring->tbd_free >= igb->tx_resched_thresh)) {
4041                 tx_ring->reschedule = B_FALSE;
4042                 mac_tx_ring_update(tx_ring->igb->mac_hdl, tx_ring->ring_handle);
4043                 IGB_DEBUG_STAT(tx_ring->stat_reschedule);
4044         }
4045 }
4046 
4047 #pragma inline(igb_intr_link_work)
4048 /*
4049  * igb_intr_link_work - link-status-change processing of ISR
4050  */
4051 static void
4052 igb_intr_link_work(igb_t *igb)
4053 {
4054         boolean_t link_changed;
4055 
4056         igb_stop_watchdog_timer(igb);
4057 
4058         mutex_enter(&igb->gen_lock);
4059 
4060         /*
4061          * Because we got a link-status-change interrupt, force
4062          * e1000_check_for_link() to look at phy
4063          */
4064         igb->hw.mac.get_link_status = B_TRUE;
4065 
4066         /* igb_link_check takes care of link status change */
4067         link_changed = igb_link_check(igb);
4068 
4069         /* Get new phy state */
4070         igb_get_phy_state(igb);
4071 
4072         mutex_exit(&igb->gen_lock);
4073 
4074         if (link_changed)
4075                 mac_link_update(igb->mac_hdl, igb->link_state);
4076 
4077         igb_start_watchdog_timer(igb);
4078 }
4079 
4080 /*
4081  * igb_intr_legacy - Interrupt handler for legacy interrupts
4082  */
4083 static uint_t
4084 igb_intr_legacy(void *arg1, void *arg2)
4085 {
4086         igb_t *igb = (igb_t *)arg1;
4087         igb_tx_ring_t *tx_ring;
4088         uint32_t icr;
4089         mblk_t *mp;
4090         boolean_t tx_reschedule;
4091         boolean_t link_changed;
4092         uint_t result;
4093 
4094         _NOTE(ARGUNUSED(arg2));
4095 
4096         mutex_enter(&igb->gen_lock);
4097 
4098         if (igb->igb_state & IGB_SUSPENDED) {
4099                 mutex_exit(&igb->gen_lock);
4100                 return (DDI_INTR_UNCLAIMED);
4101         }
4102 
4103         mp = NULL;
4104         tx_reschedule = B_FALSE;
4105         link_changed = B_FALSE;
4106         icr = E1000_READ_REG(&igb->hw, E1000_ICR);
4107 
4108         if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
4109                 mutex_exit(&igb->gen_lock);
4110                 ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
4111                 atomic_or_32(&igb->igb_state, IGB_ERROR);
4112                 return (DDI_INTR_UNCLAIMED);
4113         }
4114 
4115         if (icr & E1000_ICR_INT_ASSERTED) {
4116                 /*
4117                  * E1000_ICR_INT_ASSERTED bit was set:
4118                  * Read(Clear) the ICR, claim this interrupt,
4119                  * look for work to do.
4120                  */
4121                 ASSERT(igb->num_rx_rings == 1);
4122                 ASSERT(igb->num_tx_rings == 1);
4123 
4124                 /* Make sure all interrupt causes cleared */
4125                 (void) E1000_READ_REG(&igb->hw, E1000_EICR);
4126 
4127                 if (icr & E1000_ICR_RXT0) {
4128                         mp = igb_rx(&igb->rx_rings[0], IGB_NO_POLL);
4129                 }
4130 
4131                 if (icr & E1000_ICR_TXDW) {
4132                         tx_ring = &igb->tx_rings[0];
4133 
4134                         /* Recycle the tx descriptors */
4135                         tx_ring->tx_recycle(tx_ring);
4136 
4137                         /* Schedule the re-transmit */
4138                         tx_reschedule = (tx_ring->reschedule &&
4139                             (tx_ring->tbd_free >= igb->tx_resched_thresh));
4140                 }
4141 
4142                 if (icr & E1000_ICR_LSC) {
4143                         /*
4144                          * Because we got a link-status-change interrupt, force
4145                          * e1000_check_for_link() to look at phy
4146                          */
4147                         igb->hw.mac.get_link_status = B_TRUE;
4148 
4149                         /* igb_link_check takes care of link status change */
4150                         link_changed = igb_link_check(igb);
4151 
4152                         /* Get new phy state */
4153                         igb_get_phy_state(igb);
4154                 }
4155 
4156                 if (icr & E1000_ICR_DRSTA) {
4157                         /* 82580 Full Device Reset needed */
4158                         atomic_or_32(&igb->igb_state, IGB_STALL);
4159                 }
4160 
4161                 result = DDI_INTR_CLAIMED;
4162         } else {
4163                 /*
4164                  * E1000_ICR_INT_ASSERTED bit was not set:
4165                  * Don't claim this interrupt.
4166                  */
4167                 result = DDI_INTR_UNCLAIMED;
4168         }
4169 
4170         mutex_exit(&igb->gen_lock);
4171 
4172         /*
4173          * Do the following work outside of the gen_lock
4174          */
4175         if (mp != NULL)
4176                 mac_rx(igb->mac_hdl, NULL, mp);
4177 
4178         if (tx_reschedule)  {
4179                 tx_ring->reschedule = B_FALSE;
4180                 mac_tx_ring_update(igb->mac_hdl, tx_ring->ring_handle);
4181                 IGB_DEBUG_STAT(tx_ring->stat_reschedule);
4182         }
4183 
4184         if (link_changed)
4185                 mac_link_update(igb->mac_hdl, igb->link_state);
4186 
4187         return (result);
4188 }
4189 
4190 /*
4191  * igb_intr_msi - Interrupt handler for MSI
4192  */
4193 static uint_t
4194 igb_intr_msi(void *arg1, void *arg2)
4195 {
4196         igb_t *igb = (igb_t *)arg1;
4197         uint32_t icr;
4198 
4199         _NOTE(ARGUNUSED(arg2));
4200 
4201         icr = E1000_READ_REG(&igb->hw, E1000_ICR);
4202 
4203         if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
4204                 ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
4205                 atomic_or_32(&igb->igb_state, IGB_ERROR);
4206                 return (DDI_INTR_CLAIMED);
4207         }
4208 
4209         /* Make sure all interrupt causes cleared */
4210         (void) E1000_READ_REG(&igb->hw, E1000_EICR);
4211 
4212         /*
4213          * For MSI interrupt, we have only one vector,
4214          * so we have only one rx ring and one tx ring enabled.
4215          */
4216         ASSERT(igb->num_rx_rings == 1);
4217         ASSERT(igb->num_tx_rings == 1);
4218 
4219         if (icr & E1000_ICR_RXT0) {
4220                 igb_intr_rx_work(&igb->rx_rings[0]);
4221         }
4222 
4223         if (icr & E1000_ICR_TXDW) {
4224                 igb_intr_tx_work(&igb->tx_rings[0]);
4225         }
4226 
4227         if (icr & E1000_ICR_LSC) {
4228                 igb_intr_link_work(igb);
4229         }
4230 
4231         if (icr & E1000_ICR_DRSTA) {
4232                 /* 82580 Full Device Reset needed */
4233                 atomic_or_32(&igb->igb_state, IGB_STALL);
4234         }
4235 
4236         return (DDI_INTR_CLAIMED);
4237 }
4238 
4239 /*
4240  * igb_intr_rx - Interrupt handler for rx
4241  */
4242 static uint_t
4243 igb_intr_rx(void *arg1, void *arg2)
4244 {
4245         igb_rx_ring_t *rx_ring = (igb_rx_ring_t *)arg1;
4246 
4247         _NOTE(ARGUNUSED(arg2));
4248 
4249         /*
4250          * Only used via MSI-X vector so don't check cause bits
4251          * and only clean the given ring.
4252          */
4253         igb_intr_rx_work(rx_ring);
4254 
4255         return (DDI_INTR_CLAIMED);
4256 }
4257 
4258 /*
4259  * igb_intr_tx - Interrupt handler for tx
4260  */
4261 static uint_t
4262 igb_intr_tx(void *arg1, void *arg2)
4263 {
4264         igb_tx_ring_t *tx_ring = (igb_tx_ring_t *)arg1;
4265 
4266         _NOTE(ARGUNUSED(arg2));
4267 
4268         /*
4269          * Only used via MSI-X vector so don't check cause bits
4270          * and only clean the given ring.
4271          */
4272         igb_intr_tx_work(tx_ring);
4273 
4274         return (DDI_INTR_CLAIMED);
4275 }
4276 
4277 /*
4278  * igb_intr_tx_other - Interrupt handler for both tx and other
4279  *
4280  */
4281 static uint_t
4282 igb_intr_tx_other(void *arg1, void *arg2)
4283 {
4284         igb_t *igb = (igb_t *)arg1;
4285         uint32_t icr;
4286 
4287         _NOTE(ARGUNUSED(arg2));
4288 
4289         icr = E1000_READ_REG(&igb->hw, E1000_ICR);
4290 
4291         if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
4292                 ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
4293                 atomic_or_32(&igb->igb_state, IGB_ERROR);
4294                 return (DDI_INTR_CLAIMED);
4295         }
4296 
4297         /*
4298          * Look for tx reclaiming work first. Remember, in the
4299          * case of only interrupt sharing, only one tx ring is
4300          * used
4301          */
4302         igb_intr_tx_work(&igb->tx_rings[0]);
4303 
4304         /*
4305          * Check for "other" causes.
4306          */
4307         if (icr & E1000_ICR_LSC) {
4308                 igb_intr_link_work(igb);
4309         }
4310 
4311         /*
4312          * The DOUTSYNC bit indicates a tx packet dropped because
4313          * DMA engine gets "out of sync". There isn't a real fix
4314          * for this. The Intel recommendation is to count the number
4315          * of occurrences so user can detect when it is happening.
4316          * The issue is non-fatal and there's no recovery action
4317          * available.
4318          */
4319         if (icr & E1000_ICR_DOUTSYNC) {
4320                 IGB_STAT(igb->dout_sync);
4321         }
4322 
4323         if (icr & E1000_ICR_DRSTA) {
4324                 /* 82580 Full Device Reset needed */
4325                 atomic_or_32(&igb->igb_state, IGB_STALL);
4326         }
4327 
4328         return (DDI_INTR_CLAIMED);
4329 }
4330 
4331 /*
4332  * igb_alloc_intrs - Allocate interrupts for the driver
4333  *
4334  * Normal sequence is to try MSI-X; if not sucessful, try MSI;
4335  * if not successful, try Legacy.
4336  * igb->intr_force can be used to force sequence to start with
4337  * any of the 3 types.
4338  * If MSI-X is not used, number of tx/rx rings is forced to 1.
4339  */
4340 static int
4341 igb_alloc_intrs(igb_t *igb)
4342 {
4343         dev_info_t *devinfo;
4344         int intr_types;
4345         int rc;
4346 
4347         devinfo = igb->dip;
4348 
4349         /* Get supported interrupt types */
4350         rc = ddi_intr_get_supported_types(devinfo, &intr_types);
4351 
4352         if (rc != DDI_SUCCESS) {
4353                 igb_log(igb, IGB_LOG_ERROR,
4354                     "Get supported interrupt types failed: %d", rc);
4355                 return (IGB_FAILURE);
4356         }
4357         igb_log(igb, IGB_LOG_INFO, "Supported interrupt types: %x",
4358             intr_types);
4359 
4360         igb->intr_type = 0;
4361 
4362         /* Install MSI-X interrupts */
4363         if ((intr_types & DDI_INTR_TYPE_MSIX) &&
4364             (igb->intr_force <= IGB_INTR_MSIX)) {
4365                 rc = igb_alloc_intr_handles(igb, DDI_INTR_TYPE_MSIX);
4366 
4367                 if (rc == IGB_SUCCESS)
4368                         return (IGB_SUCCESS);
4369 
4370                 igb_log(igb, IGB_LOG_INFO,
4371                     "Allocate MSI-X failed, trying MSI interrupts...");
4372         }
4373 
4374         /* MSI-X not used, force rings to 1 */
4375         igb->num_rx_rings = 1;
4376         igb->num_tx_rings = 1;
4377         igb_log(igb, IGB_LOG_INFO,
4378             "MSI-X not used, force rx and tx queue number to 1");
4379 
4380         /* Install MSI interrupts */
4381         if ((intr_types & DDI_INTR_TYPE_MSI) &&
4382             (igb->intr_force <= IGB_INTR_MSI)) {
4383                 rc = igb_alloc_intr_handles(igb, DDI_INTR_TYPE_MSI);
4384 
4385                 if (rc == IGB_SUCCESS)
4386                         return (IGB_SUCCESS);
4387 
4388                 igb_log(igb, IGB_LOG_INFO,
4389                     "Allocate MSI failed, trying Legacy interrupts...");
4390         }
4391 
4392         /* Install legacy interrupts */
4393         if (intr_types & DDI_INTR_TYPE_FIXED) {
4394                 rc = igb_alloc_intr_handles(igb, DDI_INTR_TYPE_FIXED);
4395 
4396                 if (rc == IGB_SUCCESS)
4397                         return (IGB_SUCCESS);
4398 
4399                 igb_log(igb, IGB_LOG_INFO,
4400                     "Allocate Legacy interrupts failed");
4401         }
4402 
4403         /* If none of the 3 types succeeded, return failure */
4404         return (IGB_FAILURE);
4405 }
4406 
4407 /*
4408  * igb_alloc_intr_handles - Allocate interrupt handles.
4409  *
4410  * For legacy and MSI, only 1 handle is needed.  For MSI-X,
4411  * if fewer than 2 handles are available, return failure.
4412  * Upon success, this sets the number of Rx rings to a number that
4413  * matches the handles available for Rx interrupts.
4414  */
4415 static int
4416 igb_alloc_intr_handles(igb_t *igb, int intr_type)
4417 {
4418         dev_info_t *devinfo;
4419         int orig, request, count, avail, actual;
4420         int diff, minimum;
4421         int rc;
4422 
4423         devinfo = igb->dip;
4424 
4425         switch (intr_type) {
4426         case DDI_INTR_TYPE_FIXED:
4427                 request = 1;    /* Request 1 legacy interrupt handle */
4428                 minimum = 1;
4429                 igb_log(igb, IGB_LOG_INFO, "interrupt type: legacy");
4430                 break;
4431 
4432         case DDI_INTR_TYPE_MSI:
4433                 request = 1;    /* Request 1 MSI interrupt handle */
4434                 minimum = 1;
4435                 igb_log(igb, IGB_LOG_INFO, "interrupt type: MSI");
4436                 break;
4437 
4438         case DDI_INTR_TYPE_MSIX:
4439                 /*
4440                  * Number of vectors for the adapter is
4441                  * # rx rings + # tx rings
4442                  * One of tx vectors is for tx & other
4443                  */
4444                 request = igb->num_rx_rings + igb->num_tx_rings;
4445                 orig = request;
4446                 minimum = 2;
4447                 igb_log(igb, IGB_LOG_INFO, "interrupt type: MSI-X");
4448                 break;
4449 
4450         default:
4451                 igb_log(igb, IGB_LOG_INFO,
4452                     "invalid call to igb_alloc_intr_handles(): %d\n",
4453                     intr_type);
4454                 return (IGB_FAILURE);
4455         }
4456         igb_log(igb, IGB_LOG_INFO,
4457             "interrupt handles requested: %d  minimum: %d",
4458             request, minimum);
4459 
4460         /*
4461          * Get number of supported interrupts
4462          */
4463         rc = ddi_intr_get_nintrs(devinfo, intr_type, &count);
4464         if ((rc != DDI_SUCCESS) || (count < minimum)) {
4465                 igb_log(igb, IGB_LOG_INFO,
4466                     "Get supported interrupt number failed. "
4467                     "Return: %d, count: %d", rc, count);
4468                 return (IGB_FAILURE);
4469         }
4470         igb_log(igb, IGB_LOG_INFO, "interrupts supported: %d", count);
4471 
4472         /*
4473          * Get number of available interrupts
4474          */
4475         rc = ddi_intr_get_navail(devinfo, intr_type, &avail);
4476         if ((rc != DDI_SUCCESS) || (avail < minimum)) {
4477                 igb_log(igb, IGB_LOG_INFO,
4478                     "Get available interrupt number failed. "
4479                     "Return: %d, available: %d", rc, avail);
4480                 return (IGB_FAILURE);
4481         }
4482         igb_log(igb, IGB_LOG_INFO, "interrupts available: %d", avail);
4483 
4484         if (avail < request) {
4485                 igb_log(igb, IGB_LOG_INFO,
4486                     "Request %d handles, %d available",
4487                     request, avail);
4488                 request = avail;
4489         }
4490 
4491         actual = 0;
4492         igb->intr_cnt = 0;
4493 
4494         /*
4495          * Allocate an array of interrupt handles
4496          */
4497         igb->intr_size = request * sizeof (ddi_intr_handle_t);
4498         igb->htable = kmem_alloc(igb->intr_size, KM_SLEEP);
4499 
4500         rc = ddi_intr_alloc(devinfo, igb->htable, intr_type, 0,
4501             request, &actual, DDI_INTR_ALLOC_NORMAL);
4502         if (rc != DDI_SUCCESS) {
4503                 igb_log(igb, IGB_LOG_INFO, "Allocate interrupts failed. "
4504                     "return: %d, request: %d, actual: %d",
4505                     rc, request, actual);
4506                 goto alloc_handle_fail;
4507         }
4508         igb_log(igb, IGB_LOG_INFO, "interrupts actually allocated: %d", actual);
4509 
4510         igb->intr_cnt = actual;
4511 
4512         if (actual < minimum) {
4513                 igb_log(igb, IGB_LOG_INFO,
4514                     "Insufficient interrupt handles allocated: %d",
4515                     actual);
4516                 goto alloc_handle_fail;
4517         }
4518 
4519         /*
4520          * For MSI-X, actual might force us to reduce number of tx & rx rings
4521          */
4522         if ((intr_type == DDI_INTR_TYPE_MSIX) && (orig > actual)) {
4523                 diff = orig - actual;
4524                 if (diff < igb->num_tx_rings) {
4525                         igb_log(igb, IGB_LOG_INFO,
4526                             "MSI-X vectors force Tx queue number to %d",
4527                             igb->num_tx_rings - diff);
4528                         igb->num_tx_rings -= diff;
4529                 } else {
4530                         igb_log(igb, IGB_LOG_INFO,
4531                             "MSI-X vectors force Tx queue number to 1");
4532                         igb->num_tx_rings = 1;
4533 
4534                         igb_log(igb, IGB_LOG_INFO,
4535                             "MSI-X vectors force Rx queue number to %d",
4536                             actual - 1);
4537                         igb->num_rx_rings = actual - 1;
4538                 }
4539         }
4540 
4541         /*
4542          * Get priority for first vector, assume remaining are all the same
4543          */
4544         rc = ddi_intr_get_pri(igb->htable[0], &igb->intr_pri);
4545         if (rc != DDI_SUCCESS) {
4546                 igb_log(igb, IGB_LOG_INFO,
4547                     "Get interrupt priority failed: %d", rc);
4548                 goto alloc_handle_fail;
4549         }
4550 
4551         rc = ddi_intr_get_cap(igb->htable[0], &igb->intr_cap);
4552         if (rc != DDI_SUCCESS) {
4553                 igb_log(igb, IGB_LOG_INFO,
4554                     "Get interrupt cap failed: %d", rc);
4555                 goto alloc_handle_fail;
4556         }
4557 
4558         igb->intr_type = intr_type;
4559 
4560         return (IGB_SUCCESS);
4561 
4562 alloc_handle_fail:
4563         igb_rem_intrs(igb);
4564 
4565         return (IGB_FAILURE);
4566 }
4567 
4568 /*
4569  * igb_add_intr_handlers - Add interrupt handlers based on the interrupt type
4570  *
4571  * Before adding the interrupt handlers, the interrupt vectors have
4572  * been allocated, and the rx/tx rings have also been allocated.
4573  */
4574 static int
4575 igb_add_intr_handlers(igb_t *igb)
4576 {
4577         igb_rx_ring_t *rx_ring;
4578         igb_tx_ring_t *tx_ring;
4579         int vector;
4580         int rc;
4581         int i;
4582 
4583         vector = 0;
4584 
4585         switch (igb->intr_type) {
4586         case DDI_INTR_TYPE_MSIX:
4587                 /* Add interrupt handler for tx + other */
4588                 tx_ring = &igb->tx_rings[0];
4589                 rc = ddi_intr_add_handler(igb->htable[vector],
4590                     (ddi_intr_handler_t *)igb_intr_tx_other,
4591                     (void *)igb, NULL);
4592 
4593                 if (rc != DDI_SUCCESS) {
4594                         igb_log(igb, IGB_LOG_INFO,
4595                             "Add tx/other interrupt handler failed: %d", rc);
4596                         return (IGB_FAILURE);
4597                 }
4598                 tx_ring->intr_vector = vector;
4599                 vector++;
4600 
4601                 /* Add interrupt handler for each rx ring */
4602                 for (i = 0; i < igb->num_rx_rings; i++) {
4603                         rx_ring = &igb->rx_rings[i];
4604 
4605                         rc = ddi_intr_add_handler(igb->htable[vector],
4606                             (ddi_intr_handler_t *)igb_intr_rx,
4607                             (void *)rx_ring, NULL);
4608 
4609                         if (rc != DDI_SUCCESS) {
4610                                 igb_log(igb, IGB_LOG_INFO,
4611                                     "Add rx interrupt handler failed. "
4612                                     "return: %d, rx ring: %d", rc, i);
4613                                 for (vector--; vector >= 0; vector--) {
4614                                         (void) ddi_intr_remove_handler(
4615                                             igb->htable[vector]);
4616                                 }
4617                                 return (IGB_FAILURE);
4618                         }
4619 
4620                         rx_ring->intr_vector = vector;
4621 
4622                         vector++;
4623                 }
4624 
4625                 /* Add interrupt handler for each tx ring from 2nd ring */
4626                 for (i = 1; i < igb->num_tx_rings; i++) {
4627                         tx_ring = &igb->tx_rings[i];
4628 
4629                         rc = ddi_intr_add_handler(igb->htable[vector],
4630                             (ddi_intr_handler_t *)igb_intr_tx,
4631                             (void *)tx_ring, NULL);
4632 
4633                         if (rc != DDI_SUCCESS) {
4634                                 igb_log(igb, IGB_LOG_INFO,
4635                                     "Add tx interrupt handler failed. "
4636                                     "return: %d, tx ring: %d", rc, i);
4637                                 for (vector--; vector >= 0; vector--) {
4638                                         (void) ddi_intr_remove_handler(
4639                                             igb->htable[vector]);
4640                                 }
4641                                 return (IGB_FAILURE);
4642                         }
4643 
4644                         tx_ring->intr_vector = vector;
4645 
4646                         vector++;
4647                 }
4648 
4649                 break;
4650 
4651         case DDI_INTR_TYPE_MSI:
4652                 /* Add interrupt handlers for the only vector */
4653                 rc = ddi_intr_add_handler(igb->htable[vector],
4654                     (ddi_intr_handler_t *)igb_intr_msi,
4655                     (void *)igb, NULL);
4656 
4657                 if (rc != DDI_SUCCESS) {
4658                         igb_log(igb, IGB_LOG_INFO,
4659                             "Add MSI interrupt handler failed: %d", rc);
4660                         return (IGB_FAILURE);
4661                 }
4662 
4663                 rx_ring = &igb->rx_rings[0];
4664                 rx_ring->intr_vector = vector;
4665 
4666                 vector++;
4667                 break;
4668 
4669         case DDI_INTR_TYPE_FIXED:
4670                 /* Add interrupt handlers for the only vector */
4671                 rc = ddi_intr_add_handler(igb->htable[vector],
4672                     (ddi_intr_handler_t *)igb_intr_legacy,
4673                     (void *)igb, NULL);
4674 
4675                 if (rc != DDI_SUCCESS) {
4676                         igb_log(igb, IGB_LOG_INFO,
4677                             "Add legacy interrupt handler failed: %d", rc);
4678                         return (IGB_FAILURE);
4679                 }
4680 
4681                 rx_ring = &igb->rx_rings[0];
4682                 rx_ring->intr_vector = vector;
4683 
4684                 vector++;
4685                 break;
4686 
4687         default:
4688                 return (IGB_FAILURE);
4689         }
4690 
4691         ASSERT(vector == igb->intr_cnt);
4692 
4693         return (IGB_SUCCESS);
4694 }
4695 
4696 /*
4697  * igb_setup_msix_82575 - setup 82575 adapter to use MSI-X interrupts
4698  *
4699  * For each vector enabled on the adapter, Set the MSIXBM register accordingly
4700  */
4701 static void
4702 igb_setup_msix_82575(igb_t *igb)
4703 {
4704         uint32_t eims = 0;
4705         int i, vector;
4706         struct e1000_hw *hw = &igb->hw;
4707 
4708         /*
4709          * Set vector for tx ring 0 and other causes.
4710          * NOTE assumption that it is vector 0.
4711          */
4712         vector = 0;
4713 
4714         igb->eims_mask = E1000_EICR_TX_QUEUE0 | E1000_EICR_OTHER;
4715         E1000_WRITE_REG(hw, E1000_MSIXBM(vector), igb->eims_mask);
4716         vector++;
4717 
4718         for (i = 0; i < igb->num_rx_rings; i++) {
4719                 /*
4720                  * Set vector for each rx ring
4721                  */
4722                 eims = (E1000_EICR_RX_QUEUE0 << i);
4723                 E1000_WRITE_REG(hw, E1000_MSIXBM(vector), eims);
4724 
4725                 /*
4726                  * Accumulate bits to enable in
4727                  * igb_enable_adapter_interrupts_82575()
4728                  */
4729                 igb->eims_mask |= eims;
4730 
4731                 vector++;
4732         }
4733 
4734         for (i = 1; i < igb->num_tx_rings; i++) {
4735                 /*
4736                  * Set vector for each tx ring from 2nd tx ring
4737                  */
4738                 eims = (E1000_EICR_TX_QUEUE0 << i);
4739                 E1000_WRITE_REG(hw, E1000_MSIXBM(vector), eims);
4740 
4741                 /*
4742                  * Accumulate bits to enable in
4743                  * igb_enable_adapter_interrupts_82575()
4744                  */
4745                 igb->eims_mask |= eims;
4746 
4747                 vector++;
4748         }
4749 
4750         ASSERT(vector == igb->intr_cnt);
4751 
4752         /*
4753          * Disable IAM for ICR interrupt bits
4754          */
4755         E1000_WRITE_REG(hw, E1000_IAM, 0);
4756         E1000_WRITE_FLUSH(hw);
4757 }
4758 
4759 /*
4760  * igb_setup_msix_82576 - setup 82576 adapter to use MSI-X interrupts
4761  *
4762  * 82576 uses a table based method for assigning vectors.  Each queue has a
4763  * single entry in the table to which we write a vector number along with a
4764  * "valid" bit.  The entry is a single byte in a 4-byte register.  Vectors
4765  * take a different position in the 4-byte register depending on whether
4766  * they are numbered above or below 8.
4767  */
4768 static void
4769 igb_setup_msix_82576(igb_t *igb)
4770 {
4771         struct e1000_hw *hw = &igb->hw;
4772         uint32_t ivar, index, vector;
4773         int i;
4774 
4775         /* must enable msi-x capability before IVAR settings */
4776         E1000_WRITE_REG(hw, E1000_GPIE,
4777             (E1000_GPIE_MSIX_MODE | E1000_GPIE_PBA | E1000_GPIE_NSICR));
4778 
4779         /*
4780          * Set vector for tx ring 0 and other causes.
4781          * NOTE assumption that it is vector 0.
4782          * This is also interdependent with installation of interrupt service
4783          * routines in igb_add_intr_handlers().
4784          */
4785 
4786         /* assign "other" causes to vector 0 */
4787         vector = 0;
4788         ivar = ((vector | E1000_IVAR_VALID) << 8);
4789         E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
4790 
4791         /* assign tx ring 0 to vector 0 */
4792         ivar = ((vector | E1000_IVAR_VALID) << 8);
4793         E1000_WRITE_REG(hw, E1000_IVAR0, ivar);
4794 
4795         /* prepare to enable tx & other interrupt causes */
4796         igb->eims_mask = (1 << vector);
4797 
4798         vector ++;
4799         for (i = 0; i < igb->num_rx_rings; i++) {
4800                 /*
4801                  * Set vector for each rx ring
4802                  */
4803                 index = (i & 0x7);
4804                 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
4805 
4806                 if (i < 8) {
4807                         /* vector goes into low byte of register */
4808                         ivar = ivar & 0xFFFFFF00;
4809                         ivar |= (vector | E1000_IVAR_VALID);
4810                 } else {
4811                         /* vector goes into third byte of register */
4812                         ivar = ivar & 0xFF00FFFF;
4813                         ivar |= ((vector | E1000_IVAR_VALID) << 16);
4814                 }
4815                 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
4816 
4817                 /* Accumulate interrupt-cause bits to enable */
4818                 igb->eims_mask |= (1 << vector);
4819 
4820                 vector ++;
4821         }
4822 
4823         for (i = 1; i < igb->num_tx_rings; i++) {
4824                 /*
4825                  * Set vector for each tx ring from 2nd tx ring.
4826                  * Note assumption that tx vectors numericall follow rx vectors.
4827                  */
4828                 index = (i & 0x7);
4829                 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
4830 
4831                 if (i < 8) {
4832                         /* vector goes into second byte of register */
4833                         ivar = ivar & 0xFFFF00FF;
4834                         ivar |= ((vector | E1000_IVAR_VALID) << 8);
4835                 } else {
4836                         /* vector goes into fourth byte of register */
4837                         ivar = ivar & 0x00FFFFFF;
4838                         ivar |= (vector | E1000_IVAR_VALID) << 24;
4839                 }
4840                 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
4841 
4842                 /* Accumulate interrupt-cause bits to enable */
4843                 igb->eims_mask |= (1 << vector);
4844 
4845                 vector ++;
4846         }
4847 
4848         ASSERT(vector == igb->intr_cnt);
4849 }
4850 
4851 /*
4852  * igb_setup_msix_82580 - setup 82580 adapter to use MSI-X interrupts
4853  *
4854  * 82580 uses same table approach at 82576 but has fewer entries.  Each
4855  * queue has a single entry in the table to which we write a vector number
4856  * along with a "valid" bit.  Vectors take a different position in the
4857  * register depending on * whether * they are numbered above or below 4.
4858  */
4859 static void
4860 igb_setup_msix_82580(igb_t *igb)
4861 {
4862         struct e1000_hw *hw = &igb->hw;
4863         uint32_t ivar, index, vector;
4864         int i;
4865 
4866         /* must enable msi-x capability before IVAR settings */
4867         E1000_WRITE_REG(hw, E1000_GPIE, (E1000_GPIE_MSIX_MODE |
4868             E1000_GPIE_PBA | E1000_GPIE_NSICR | E1000_GPIE_EIAME));
4869         /*
4870          * Set vector for tx ring 0 and other causes.
4871          * NOTE assumption that it is vector 0.
4872          * This is also interdependent with installation of interrupt service
4873          * routines in igb_add_intr_handlers().
4874          */
4875 
4876         /* assign "other" causes to vector 0 */
4877         vector = 0;
4878         ivar = ((vector | E1000_IVAR_VALID) << 8);
4879         E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
4880 
4881         /* assign tx ring 0 to vector 0 */
4882         ivar = ((vector | E1000_IVAR_VALID) << 8);
4883         E1000_WRITE_REG(hw, E1000_IVAR0, ivar);
4884 
4885         /* prepare to enable tx & other interrupt causes */
4886         igb->eims_mask = (1 << vector);
4887 
4888         vector ++;
4889 
4890         for (i = 0; i < igb->num_rx_rings; i++) {
4891                 /*
4892                  * Set vector for each rx ring
4893                  */
4894                 index = (i >> 1);
4895                 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
4896 
4897                 if (i & 1) {
4898                         /* vector goes into third byte of register */
4899                         ivar = ivar & 0xFF00FFFF;
4900                         ivar |= ((vector | E1000_IVAR_VALID) << 16);
4901                 } else {
4902                         /* vector goes into low byte of register */
4903                         ivar = ivar & 0xFFFFFF00;
4904                         ivar |= (vector | E1000_IVAR_VALID);
4905                 }
4906                 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
4907 
4908                 /* Accumulate interrupt-cause bits to enable */
4909                 igb->eims_mask |= (1 << vector);
4910 
4911                 vector ++;
4912         }
4913 
4914         for (i = 1; i < igb->num_tx_rings; i++) {
4915                 /*
4916                  * Set vector for each tx ring from 2nd tx ring.
4917                  * Note assumption that tx vectors numericall follow rx vectors.
4918                  */
4919                 index = (i >> 1);
4920                 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
4921 
4922                 if (i & 1) {
4923                         /* vector goes into high byte of register */
4924                         ivar = ivar & 0x00FFFFFF;
4925                         ivar |= ((vector | E1000_IVAR_VALID) << 24);
4926                 } else {
4927                         /* vector goes into second byte of register */
4928                         ivar = ivar & 0xFFFF00FF;
4929                         ivar |= (vector | E1000_IVAR_VALID) << 8;
4930                 }
4931                 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
4932 
4933                 /* Accumulate interrupt-cause bits to enable */
4934                 igb->eims_mask |= (1 << vector);
4935 
4936                 vector ++;
4937         }
4938         ASSERT(vector == igb->intr_cnt);
4939 }
4940 
4941 /*
4942  * igb_rem_intr_handlers - remove the interrupt handlers
4943  */
4944 static void
4945 igb_rem_intr_handlers(igb_t *igb)
4946 {
4947         int i;
4948         int rc;
4949 
4950         for (i = 0; i < igb->intr_cnt; i++) {
4951                 rc = ddi_intr_remove_handler(igb->htable[i]);
4952                 if (rc != DDI_SUCCESS) {
4953                         igb_log(igb, IGB_LOG_INFO,
4954                             "Remove intr handler failed: %d", rc);
4955                 }
4956         }
4957 }
4958 
4959 /*
4960  * igb_rem_intrs - remove the allocated interrupts
4961  */
4962 static void
4963 igb_rem_intrs(igb_t *igb)
4964 {
4965         int i;
4966         int rc;
4967 
4968         for (i = 0; i < igb->intr_cnt; i++) {
4969                 rc = ddi_intr_free(igb->htable[i]);
4970                 if (rc != DDI_SUCCESS) {
4971                         igb_log(igb, IGB_LOG_INFO,
4972                             "Free intr failed: %d", rc);
4973                 }
4974         }
4975 
4976         kmem_free(igb->htable, igb->intr_size);
4977         igb->htable = NULL;
4978 }
4979 
4980 /*
4981  * igb_enable_intrs - enable all the ddi interrupts
4982  */
4983 static int
4984 igb_enable_intrs(igb_t *igb)
4985 {
4986         int i;
4987         int rc;
4988 
4989         /* Enable interrupts */
4990         if (igb->intr_cap & DDI_INTR_FLAG_BLOCK) {
4991                 /* Call ddi_intr_block_enable() for MSI */
4992                 rc = ddi_intr_block_enable(igb->htable, igb->intr_cnt);
4993                 if (rc != DDI_SUCCESS) {
4994                         igb_log(igb, IGB_LOG_ERROR,
4995                             "Enable block intr failed: %d", rc);
4996                         return (IGB_FAILURE);
4997                 }
4998         } else {
4999                 /* Call ddi_intr_enable() for Legacy/MSI non block enable */
5000                 for (i = 0; i < igb->intr_cnt; i++) {
5001                         rc = ddi_intr_enable(igb->htable[i]);
5002                         if (rc != DDI_SUCCESS) {
5003                                 igb_log(igb, IGB_LOG_ERROR,
5004                                     "Enable intr failed: %d", rc);
5005                                 return (IGB_FAILURE);
5006                         }
5007                 }
5008         }
5009 
5010         return (IGB_SUCCESS);
5011 }
5012 
5013 /*
5014  * igb_disable_intrs - disable all the ddi interrupts
5015  */
5016 static int
5017 igb_disable_intrs(igb_t *igb)
5018 {
5019         int i;
5020         int rc;
5021 
5022         /* Disable all interrupts */
5023         if (igb->intr_cap & DDI_INTR_FLAG_BLOCK) {
5024                 rc = ddi_intr_block_disable(igb->htable, igb->intr_cnt);
5025                 if (rc != DDI_SUCCESS) {
5026                         igb_log(igb, IGB_LOG_ERROR,
5027                             "Disable block intr failed: %d", rc);
5028                         return (IGB_FAILURE);
5029                 }
5030         } else {
5031                 for (i = 0; i < igb->intr_cnt; i++) {
5032                         rc = ddi_intr_disable(igb->htable[i]);
5033                         if (rc != DDI_SUCCESS) {
5034                                 igb_log(igb, IGB_LOG_ERROR,
5035                                     "Disable intr failed: %d", rc);
5036                                 return (IGB_FAILURE);
5037                         }
5038                 }
5039         }
5040 
5041         return (IGB_SUCCESS);
5042 }
5043 
5044 /*
5045  * igb_get_phy_state - Get and save the parameters read from PHY registers
5046  */
5047 static void
5048 igb_get_phy_state(igb_t *igb)
5049 {
5050         struct e1000_hw *hw = &igb->hw;
5051         uint16_t phy_ctrl;
5052         uint16_t phy_status;
5053         uint16_t phy_an_adv;
5054         uint16_t phy_an_exp;
5055         uint16_t phy_ext_status;
5056         uint16_t phy_1000t_ctrl;
5057         uint16_t phy_1000t_status;
5058         uint16_t phy_lp_able;
5059 
5060         ASSERT(mutex_owned(&igb->gen_lock));
5061 
5062         if (hw->phy.media_type == e1000_media_type_copper) {
5063                 (void) e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl);
5064                 (void) e1000_read_phy_reg(hw, PHY_STATUS, &phy_status);
5065                 (void) e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &phy_an_adv);
5066                 (void) e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_an_exp);
5067                 (void) e1000_read_phy_reg(hw, PHY_EXT_STATUS, &phy_ext_status);
5068                 (void) e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_1000t_ctrl);
5069                 (void) e1000_read_phy_reg(hw,
5070                     PHY_1000T_STATUS, &phy_1000t_status);
5071                 (void) e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_lp_able);
5072 
5073                 igb->param_autoneg_cap =
5074                     (phy_status & MII_SR_AUTONEG_CAPS) ? 1 : 0;
5075                 igb->param_pause_cap =
5076                     (phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
5077                 igb->param_asym_pause_cap =
5078                     (phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
5079                 igb->param_1000fdx_cap =
5080                     ((phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
5081                     (phy_ext_status & IEEE_ESR_1000X_FD_CAPS)) ? 1 : 0;
5082                 igb->param_1000hdx_cap =
5083                     ((phy_ext_status & IEEE_ESR_1000T_HD_CAPS) ||
5084                     (phy_ext_status & IEEE_ESR_1000X_HD_CAPS)) ? 1 : 0;
5085                 igb->param_100t4_cap =
5086                     (phy_status & MII_SR_100T4_CAPS) ? 1 : 0;
5087                 igb->param_100fdx_cap = ((phy_status & MII_SR_100X_FD_CAPS) ||
5088                     (phy_status & MII_SR_100T2_FD_CAPS)) ? 1 : 0;
5089                 igb->param_100hdx_cap = ((phy_status & MII_SR_100X_HD_CAPS) ||
5090                     (phy_status & MII_SR_100T2_HD_CAPS)) ? 1 : 0;
5091                 igb->param_10fdx_cap =
5092                     (phy_status & MII_SR_10T_FD_CAPS) ? 1 : 0;
5093                 igb->param_10hdx_cap =
5094                     (phy_status & MII_SR_10T_HD_CAPS) ? 1 : 0;
5095                 igb->param_rem_fault =
5096                     (phy_status & MII_SR_REMOTE_FAULT) ? 1 : 0;
5097 
5098                 igb->param_adv_autoneg_cap = hw->mac.autoneg;
5099                 igb->param_adv_pause_cap =
5100                     (phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
5101                 igb->param_adv_asym_pause_cap =
5102                     (phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
5103                 igb->param_adv_1000hdx_cap =
5104                     (phy_1000t_ctrl & CR_1000T_HD_CAPS) ? 1 : 0;
5105                 igb->param_adv_100t4_cap =
5106                     (phy_an_adv & NWAY_AR_100T4_CAPS) ? 1 : 0;
5107                 igb->param_adv_rem_fault =
5108                     (phy_an_adv & NWAY_AR_REMOTE_FAULT) ? 1 : 0;
5109                 if (igb->param_adv_autoneg_cap == 1) {
5110                         igb->param_adv_1000fdx_cap =
5111                             (phy_1000t_ctrl & CR_1000T_FD_CAPS) ? 1 : 0;
5112                         igb->param_adv_100fdx_cap =
5113                             (phy_an_adv & NWAY_AR_100TX_FD_CAPS) ? 1 : 0;
5114                         igb->param_adv_100hdx_cap =
5115                             (phy_an_adv & NWAY_AR_100TX_HD_CAPS) ? 1 : 0;
5116                         igb->param_adv_10fdx_cap =
5117                             (phy_an_adv & NWAY_AR_10T_FD_CAPS) ? 1 : 0;
5118                         igb->param_adv_10hdx_cap =
5119                             (phy_an_adv & NWAY_AR_10T_HD_CAPS) ? 1 : 0;
5120                 }
5121 
5122                 igb->param_lp_autoneg_cap =
5123                     (phy_an_exp & NWAY_ER_LP_NWAY_CAPS) ? 1 : 0;
5124                 igb->param_lp_pause_cap =
5125                     (phy_lp_able & NWAY_LPAR_PAUSE) ? 1 : 0;
5126                 igb->param_lp_asym_pause_cap =
5127                     (phy_lp_able & NWAY_LPAR_ASM_DIR) ? 1 : 0;
5128                 igb->param_lp_1000fdx_cap =
5129                     (phy_1000t_status & SR_1000T_LP_FD_CAPS) ? 1 : 0;
5130                 igb->param_lp_1000hdx_cap =
5131                     (phy_1000t_status & SR_1000T_LP_HD_CAPS) ? 1 : 0;
5132                 igb->param_lp_100t4_cap =
5133                     (phy_lp_able & NWAY_LPAR_100T4_CAPS) ? 1 : 0;
5134                 igb->param_lp_100fdx_cap =
5135                     (phy_lp_able & NWAY_LPAR_100TX_FD_CAPS) ? 1 : 0;
5136                 igb->param_lp_100hdx_cap =
5137                     (phy_lp_able & NWAY_LPAR_100TX_HD_CAPS) ? 1 : 0;
5138                 igb->param_lp_10fdx_cap =
5139                     (phy_lp_able & NWAY_LPAR_10T_FD_CAPS) ? 1 : 0;
5140                 igb->param_lp_10hdx_cap =
5141                     (phy_lp_able & NWAY_LPAR_10T_HD_CAPS) ? 1 : 0;
5142                 igb->param_lp_rem_fault =
5143                     (phy_lp_able & NWAY_LPAR_REMOTE_FAULT) ? 1 : 0;
5144         } else {
5145                 /*
5146                  * 1Gig Fiber adapter only offers 1Gig Full Duplex.
5147                  */
5148                 igb->param_autoneg_cap = 0;
5149                 igb->param_pause_cap = 1;
5150                 igb->param_asym_pause_cap = 1;
5151                 igb->param_1000fdx_cap = 1;
5152                 igb->param_1000hdx_cap = 0;
5153                 igb->param_100t4_cap = 0;
5154                 igb->param_100fdx_cap = 0;
5155                 igb->param_100hdx_cap = 0;
5156                 igb->param_10fdx_cap = 0;
5157                 igb->param_10hdx_cap = 0;
5158 
5159                 igb->param_adv_autoneg_cap = 0;
5160                 igb->param_adv_pause_cap = 1;
5161                 igb->param_adv_asym_pause_cap = 1;
5162                 igb->param_adv_1000fdx_cap = 1;
5163                 igb->param_adv_1000hdx_cap = 0;
5164                 igb->param_adv_100t4_cap = 0;
5165                 igb->param_adv_100fdx_cap = 0;
5166                 igb->param_adv_100hdx_cap = 0;
5167                 igb->param_adv_10fdx_cap = 0;
5168                 igb->param_adv_10hdx_cap = 0;
5169 
5170                 igb->param_lp_autoneg_cap = 0;
5171                 igb->param_lp_pause_cap = 0;
5172                 igb->param_lp_asym_pause_cap = 0;
5173                 igb->param_lp_1000fdx_cap = 0;
5174                 igb->param_lp_1000hdx_cap = 0;
5175                 igb->param_lp_100t4_cap = 0;
5176                 igb->param_lp_100fdx_cap = 0;
5177                 igb->param_lp_100hdx_cap = 0;
5178                 igb->param_lp_10fdx_cap = 0;
5179                 igb->param_lp_10hdx_cap = 0;
5180                 igb->param_lp_rem_fault = 0;
5181         }
5182 }
5183 
5184 /*
5185  * synchronize the adv* and en* parameters.
5186  *
5187  * See comments in <sys/dld.h> for details of the *_en_*
5188  * parameters. The usage of ndd for setting adv parameters will
5189  * synchronize all the en parameters with the e1000g parameters,
5190  * implicitly disabling any settings made via dladm.
5191  */
5192 static void
5193 igb_param_sync(igb_t *igb)
5194 {
5195         igb->param_en_1000fdx_cap = igb->param_adv_1000fdx_cap;
5196         igb->param_en_1000hdx_cap = igb->param_adv_1000hdx_cap;
5197         igb->param_en_100t4_cap = igb->param_adv_100t4_cap;
5198         igb->param_en_100fdx_cap = igb->param_adv_100fdx_cap;
5199         igb->param_en_100hdx_cap = igb->param_adv_100hdx_cap;
5200         igb->param_en_10fdx_cap = igb->param_adv_10fdx_cap;
5201         igb->param_en_10hdx_cap = igb->param_adv_10hdx_cap;
5202 }
5203 
5204 /*
5205  * igb_get_driver_control
5206  */
5207 static void
5208 igb_get_driver_control(struct e1000_hw *hw)
5209 {
5210         uint32_t ctrl_ext;
5211 
5212         /* Notify firmware that driver is in control of device */
5213         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
5214         ctrl_ext |= E1000_CTRL_EXT_DRV_LOAD;
5215         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
5216 }
5217 
5218 /*
5219  * igb_release_driver_control
5220  */
5221 static void
5222 igb_release_driver_control(struct e1000_hw *hw)
5223 {
5224         uint32_t ctrl_ext;
5225 
5226         /* Notify firmware that driver is no longer in control of device */
5227         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
5228         ctrl_ext &= ~E1000_CTRL_EXT_DRV_LOAD;
5229         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
5230 }
5231 
5232 /*
5233  * igb_atomic_reserve - Atomic decrease operation
5234  */
5235 int
5236 igb_atomic_reserve(uint32_t *count_p, uint32_t n)
5237 {
5238         uint32_t oldval;
5239         uint32_t newval;
5240 
5241         /* ATOMICALLY */
5242         do {
5243                 oldval = *count_p;
5244                 if (oldval < n)
5245                         return (-1);
5246                 newval = oldval - n;
5247         } while (atomic_cas_32(count_p, oldval, newval) != oldval);
5248 
5249         return (newval);
5250 }
5251 
5252 /*
5253  * FMA support
5254  */
5255 
5256 int
5257 igb_check_acc_handle(ddi_acc_handle_t handle)
5258 {
5259         ddi_fm_error_t de;
5260 
5261         ddi_fm_acc_err_get(handle, &de, DDI_FME_VERSION);
5262         ddi_fm_acc_err_clear(handle, DDI_FME_VERSION);
5263         return (de.fme_status);
5264 }
5265 
5266 int
5267 igb_check_dma_handle(ddi_dma_handle_t handle)
5268 {
5269         ddi_fm_error_t de;
5270 
5271         ddi_fm_dma_err_get(handle, &de, DDI_FME_VERSION);
5272         return (de.fme_status);
5273 }
5274 
5275 /*
5276  * The IO fault service error handling callback function
5277  */
5278 /*ARGSUSED*/
5279 static int
5280 igb_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data)
5281 {
5282         /*
5283          * as the driver can always deal with an error in any dma or
5284          * access handle, we can just return the fme_status value.
5285          */
5286         pci_ereport_post(dip, err, NULL);
5287         return (err->fme_status);
5288 }
5289 
5290 static void
5291 igb_fm_init(igb_t *igb)
5292 {
5293         ddi_iblock_cookie_t iblk;
5294         int fma_dma_flag;
5295 
5296         /* Only register with IO Fault Services if we have some capability */
5297         if (igb->fm_capabilities & DDI_FM_ACCCHK_CAPABLE) {
5298                 igb_regs_acc_attr.devacc_attr_access = DDI_FLAGERR_ACC;
5299         } else {
5300                 igb_regs_acc_attr.devacc_attr_access = DDI_DEFAULT_ACC;
5301         }
5302 
5303         if (igb->fm_capabilities & DDI_FM_DMACHK_CAPABLE) {
5304                 fma_dma_flag = 1;
5305         } else {
5306                 fma_dma_flag = 0;
5307         }
5308 
5309         (void) igb_set_fma_flags(fma_dma_flag);
5310 
5311         if (igb->fm_capabilities) {
5312 
5313                 /* Register capabilities with IO Fault Services */
5314                 ddi_fm_init(igb->dip, &igb->fm_capabilities, &iblk);
5315 
5316                 /*
5317                  * Initialize pci ereport capabilities if ereport capable
5318                  */
5319                 if (DDI_FM_EREPORT_CAP(igb->fm_capabilities) ||
5320                     DDI_FM_ERRCB_CAP(igb->fm_capabilities))
5321                         pci_ereport_setup(igb->dip);
5322 
5323                 /*
5324                  * Register error callback if error callback capable
5325                  */
5326                 if (DDI_FM_ERRCB_CAP(igb->fm_capabilities))
5327                         ddi_fm_handler_register(igb->dip,
5328                             igb_fm_error_cb, (void*) igb);
5329         }
5330 }
5331 
5332 static void
5333 igb_fm_fini(igb_t *igb)
5334 {
5335         /* Only unregister FMA capabilities if we registered some */
5336         if (igb->fm_capabilities) {
5337 
5338                 /*
5339                  * Release any resources allocated by pci_ereport_setup()
5340                  */
5341                 if (DDI_FM_EREPORT_CAP(igb->fm_capabilities) ||
5342                     DDI_FM_ERRCB_CAP(igb->fm_capabilities))
5343                         pci_ereport_teardown(igb->dip);
5344 
5345                 /*
5346                  * Un-register error callback if error callback capable
5347                  */
5348                 if (DDI_FM_ERRCB_CAP(igb->fm_capabilities))
5349                         ddi_fm_handler_unregister(igb->dip);
5350 
5351                 /* Unregister from IO Fault Services */
5352                 ddi_fm_fini(igb->dip);
5353         }
5354 }
5355 
5356 void
5357 igb_fm_ereport(igb_t *igb, char *detail)
5358 {
5359         uint64_t ena;
5360         char buf[FM_MAX_CLASS];
5361 
5362         (void) snprintf(buf, FM_MAX_CLASS, "%s.%s", DDI_FM_DEVICE, detail);
5363         ena = fm_ena_generate(0, FM_ENA_FMT1);
5364         if (DDI_FM_EREPORT_CAP(igb->fm_capabilities)) {
5365                 ddi_fm_ereport_post(igb->dip, buf, ena, DDI_NOSLEEP,
5366                     FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, NULL);
5367         }
5368 }