1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 27 #include <sys/debug.h> 28 #include <sys/types.h> 29 #include <sys/file.h> 30 #include <sys/errno.h> 31 #include <sys/uio.h> 32 #include <sys/open.h> 33 #include <sys/cred.h> 34 #include <sys/kmem.h> 35 #include <sys/conf.h> 36 #include <sys/cmn_err.h> 37 #include <sys/modctl.h> 38 #include <sys/disp.h> 39 #include <sys/atomic.h> 40 #include <sys/filio.h> 41 #include <sys/stat.h> /* needed for S_IFBLK and S_IFCHR */ 42 #include <sys/kstat.h> 43 44 #include <sys/ddi.h> 45 #include <sys/devops.h> 46 #include <sys/sunddi.h> 47 #include <sys/esunddi.h> 48 #include <sys/priv_names.h> 49 50 #include <sys/fssnap.h> 51 #include <sys/fssnap_if.h> 52 53 /* 54 * This module implements the file system snapshot code, which provides a 55 * point-in-time image of a file system for the purposes of online backup. 56 * There are essentially two parts to this project: the driver half and the 57 * file system half. The driver half is a pseudo device driver called 58 * "fssnap" that represents the snapshot. Each snapshot is assigned a 59 * number that corresponds to the minor number of the device, and a control 60 * device with a high minor number is used to initiate snapshot creation and 61 * deletion. For all practical purposes the driver half acts like a 62 * read-only disk device whose contents are exactly the same as the master 63 * file system at the time the snapshot was created. 64 * 65 * The file system half provides interfaces necessary for performing the 66 * file system dependent operations required to create and delete snapshots 67 * and a special driver strategy routine that must always be used by the file 68 * system for snapshots to work correctly. 69 * 70 * When a snapshot is to be created, the user utility will send an ioctl to 71 * the control device of the driver half specifying the file system to be 72 * snapshotted, the file descriptor of a backing-store file which is used to 73 * hold old data before it is overwritten, and other snapshot parameters. 74 * This ioctl is passed on to the file system specified in the original 75 * ioctl request. The file system is expected to be able to flush 76 * everything out to make the file system consistent and lock it to ensure 77 * no changes occur while the snapshot is being created. It then calls 78 * fssnap_create() to create state for a new snapshot, from which an opaque 79 * handle is returned with the snapshot locked. Next, the file system must 80 * populate the "candidate bitmap", which tells the snapshot code which 81 * "chunks" should be considered for copy-on-write (a chunk is the unit of 82 * granularity used for copy-on-write, which is independent of the device 83 * and file system block sizes). This is typically done by scanning the 84 * file system allocation bitmaps to determine which chunks contain 85 * allocated blocks in the file system at the time the snapshot was created. 86 * If a chunk has no allocated blocks, it does not need to be copied before 87 * being written to. Once the candidate bitmap is populated with 88 * fssnap_set_candidate(), the file system calls fssnap_create_done() to 89 * complete the snapshot creation and unlock the snapshot. The file system 90 * may now be unlocked and modifications to it resumed. 91 * 92 * Once a snapshot is created, the file system must perform all writes 93 * through a special strategy routine, fssnap_strategy(). This strategy 94 * routine determines whether the chunks contained by the write must be 95 * copied before being overwritten by consulting the candidate bitmap 96 * described above, and the "hastrans bitmap" which tells it whether the chunk 97 * has been copied already or not. If the chunk is a candidate but has not 98 * been copied, it reads the old data in and adds it to a queue. The 99 * old data can then be overwritten with the new data. An asynchronous 100 * task queue is dispatched for each old chunk read in which writes the old 101 * data to the backing file specified at snapshot creation time. The 102 * backing file is a sparse file the same size as the file system that 103 * contains the old data at the offset that data originally had in the 104 * file system. If the queue containing in-memory chunks gets too large, 105 * writes to the file system may be throttled by a semaphore until the 106 * task queues have a chance to push some of the chunks to the backing file. 107 * 108 * With the candidate bitmap, the hastrans bitmap, the data on the master 109 * file system, and the old data in memory and in the backing file, the 110 * snapshot pseudo-driver can piece together the original file system 111 * information to satisfy read requests. If the requested chunk is not a 112 * candidate, it returns a zeroed buffer. If the chunk is a candidate but 113 * has not been copied it reads it from the master file system. If it is a 114 * candidate and has been copied, it either copies the data from the 115 * in-memory queue or it reads it in from the backing file. The result is 116 * a replication of the original file system that can be backed up, mounted, 117 * or manipulated by other file system utilities that work on a read-only 118 * device. 119 * 120 * This module is divided into three roughly logical sections: 121 * 122 * - The snapshot driver, which is a character/block driver 123 * representing the snapshot itself. These routines are 124 * prefixed with "snap_". 125 * 126 * - The library routines that are defined in fssnap_if.h that 127 * are used by file systems that use this snapshot implementation. 128 * These functions are prefixed with "fssnap_" and are called through 129 * a function vector from the file system. 130 * 131 * - The helper routines used by the snapshot driver and the fssnap 132 * library routines for managing the translation table and other 133 * useful functions. These routines are all static and are 134 * prefixed with either "fssnap_" or "transtbl_" if they 135 * are specifically used for translation table activities. 136 */ 137 138 static dev_info_t *fssnap_dip = NULL; 139 static struct snapshot_id *snapshot = NULL; 140 static struct snapshot_id snap_ctl; 141 static int num_snapshots = 0; 142 static kmutex_t snapshot_mutex; 143 static char snapname[] = SNAP_NAME; 144 145 /* "tunable" parameters */ 146 static int fssnap_taskq_nthreads = FSSNAP_TASKQ_THREADS; 147 static uint_t fssnap_max_mem_chunks = FSSNAP_MAX_MEM_CHUNKS; 148 static int fssnap_taskq_maxtasks = FSSNAP_TASKQ_MAXTASKS; 149 150 /* static function prototypes */ 151 152 /* snapshot driver */ 153 static int snap_getinfo(dev_info_t *, ddi_info_cmd_t, void *, void **); 154 static int snap_attach(dev_info_t *dip, ddi_attach_cmd_t cmd); 155 static int snap_detach(dev_info_t *dip, ddi_detach_cmd_t cmd); 156 static int snap_open(dev_t *devp, int flag, int otyp, cred_t *cred); 157 static int snap_close(dev_t dev, int flag, int otyp, cred_t *cred); 158 static int snap_strategy(struct buf *bp); 159 static int snap_read(dev_t dev, struct uio *uiop, cred_t *credp); 160 static int snap_print(dev_t dev, char *str); 161 static int snap_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, 162 cred_t *credp, int *rvalp); 163 static int snap_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, 164 int flags, char *name, caddr_t valuep, int *lengthp); 165 static int snap_getchunk(struct snapshot_id *sidp, chunknumber_t chunk, 166 int offset, int len, char *buffer); 167 168 169 /* fssnap interface implementations (see fssnap_if.h) */ 170 static void fssnap_strategy_impl(void *, struct buf *); 171 static void *fssnap_create_impl(chunknumber_t, uint_t, u_offset_t, 172 struct vnode *, int, struct vnode **, char *, u_offset_t); 173 static void fssnap_set_candidate_impl(void *, chunknumber_t); 174 static int fssnap_is_candidate_impl(void *, u_offset_t); 175 static int fssnap_create_done_impl(void *); 176 static int fssnap_delete_impl(void *); 177 178 /* fssnap interface support routines */ 179 static int fssnap_translate(struct snapshot_id **, struct buf *); 180 static void fssnap_write_taskq(void *); 181 static void fssnap_create_kstats(snapshot_id_t *, int, const char *, 182 const char *); 183 static int fssnap_update_kstat_num(kstat_t *, int); 184 static void fssnap_delete_kstats(struct cow_info *); 185 186 /* translation table prototypes */ 187 static cow_map_node_t *transtbl_add(cow_map_t *, chunknumber_t, caddr_t); 188 static cow_map_node_t *transtbl_get(cow_map_t *, chunknumber_t); 189 static void transtbl_delete(cow_map_t *, cow_map_node_t *); 190 static void transtbl_free(cow_map_t *); 191 192 static kstat_t *fssnap_highwater_kstat; 193 194 /* ************************************************************************ */ 195 196 /* Device and Module Structures */ 197 198 static struct cb_ops snap_cb_ops = { 199 snap_open, 200 snap_close, 201 snap_strategy, 202 snap_print, 203 nodev, /* no snap_dump */ 204 snap_read, 205 nodev, /* no snap_write */ 206 snap_ioctl, 207 nodev, /* no snap_devmap */ 208 nodev, /* no snap_mmap */ 209 nodev, /* no snap_segmap */ 210 nochpoll, 211 snap_prop_op, 212 NULL, /* streamtab */ 213 D_64BIT | D_NEW | D_MP, /* driver compatibility */ 214 CB_REV, 215 nodev, /* async I/O read entry point */ 216 nodev /* async I/O write entry point */ 217 }; 218 219 static struct dev_ops snap_ops = { 220 DEVO_REV, 221 0, /* ref count */ 222 snap_getinfo, 223 nulldev, /* snap_identify obsolete */ 224 nulldev, /* no snap_probe */ 225 snap_attach, 226 snap_detach, 227 nodev, /* no snap_reset */ 228 &snap_cb_ops, 229 (struct bus_ops *)NULL, 230 nulldev, /* no snap_power() */ 231 ddi_quiesce_not_needed, /* quiesce */ 232 }; 233 234 extern struct mod_ops mod_driverops; 235 236 static struct modldrv md = { 237 &mod_driverops, /* Type of module. This is a driver */ 238 "snapshot driver", /* Name of the module */ 239 &snap_ops, 240 }; 241 242 static struct modlinkage ml = { 243 MODREV_1, 244 { &md, NULL } 245 }; 246 247 static void *statep; 248 249 int 250 _init(void) 251 { 252 int error; 253 kstat_t *ksp; 254 kstat_named_t *ksdata; 255 256 error = ddi_soft_state_init(&statep, sizeof (struct snapshot_id *), 1); 257 if (error) { 258 cmn_err(CE_WARN, "_init: failed to init ddi_soft_state."); 259 return (error); 260 } 261 262 error = mod_install(&ml); 263 264 if (error) { 265 cmn_err(CE_WARN, "_init: failed to mod_install."); 266 ddi_soft_state_fini(&statep); 267 return (error); 268 } 269 270 /* 271 * Fill in the snapshot operations vector for file systems 272 * (defined in fssnap_if.c) 273 */ 274 275 snapops.fssnap_create = fssnap_create_impl; 276 snapops.fssnap_set_candidate = fssnap_set_candidate_impl; 277 snapops.fssnap_is_candidate = fssnap_is_candidate_impl; 278 snapops.fssnap_create_done = fssnap_create_done_impl; 279 snapops.fssnap_delete = fssnap_delete_impl; 280 snapops.fssnap_strategy = fssnap_strategy_impl; 281 282 mutex_init(&snapshot_mutex, NULL, MUTEX_DEFAULT, NULL); 283 284 /* 285 * Initialize the fssnap highwater kstat 286 */ 287 ksp = kstat_create(snapname, 0, FSSNAP_KSTAT_HIGHWATER, "misc", 288 KSTAT_TYPE_NAMED, 1, 0); 289 if (ksp != NULL) { 290 ksdata = (kstat_named_t *)ksp->ks_data; 291 kstat_named_init(ksdata, FSSNAP_KSTAT_HIGHWATER, 292 KSTAT_DATA_UINT32); 293 ksdata->value.ui32 = 0; 294 kstat_install(ksp); 295 } else { 296 cmn_err(CE_WARN, "_init: failed to create highwater kstat."); 297 } 298 fssnap_highwater_kstat = ksp; 299 300 return (0); 301 } 302 303 int 304 _info(struct modinfo *modinfop) 305 { 306 return (mod_info(&ml, modinfop)); 307 } 308 309 int 310 _fini(void) 311 { 312 int error; 313 314 error = mod_remove(&ml); 315 if (error) 316 return (error); 317 ddi_soft_state_fini(&statep); 318 319 /* 320 * delete the fssnap highwater kstat 321 */ 322 kstat_delete(fssnap_highwater_kstat); 323 324 mutex_destroy(&snapshot_mutex); 325 326 /* Clear out the file system operations vector */ 327 snapops.fssnap_create = NULL; 328 snapops.fssnap_set_candidate = NULL; 329 snapops.fssnap_create_done = NULL; 330 snapops.fssnap_delete = NULL; 331 snapops.fssnap_strategy = NULL; 332 333 return (0); 334 } 335 336 /* ************************************************************************ */ 337 338 /* 339 * Snapshot Driver Routines 340 * 341 * This section implements the snapshot character and block drivers. The 342 * device will appear to be a consistent read-only file system to 343 * applications that wish to back it up or mount it. The snapshot driver 344 * communicates with the file system through the translation table, which 345 * tells the snapshot driver where to find the data necessary to piece 346 * together the frozen file system. The data may either be on the master 347 * device (no translation exists), in memory (a translation exists but has 348 * not been flushed to the backing store), or in the backing store file. 349 * The read request may require the snapshot driver to retrieve data from 350 * several different places and piece it together to look like a single 351 * contiguous read. 352 * 353 * The device minor number corresponds to the snapshot number in the list of 354 * snapshot identifiers. The soft state for each minor number is simply a 355 * pointer to the snapshot id, which holds all of the snapshot state. One 356 * minor number is designated as the control device. All snapshot create 357 * and delete requests go through the control device to ensure this module 358 * is properly loaded and attached before the file system starts calling 359 * routines defined here. 360 */ 361 362 363 /* 364 * snap_getinfo() - snapshot driver getinfo(9E) routine 365 * 366 */ 367 /*ARGSUSED*/ 368 static int 369 snap_getinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 370 { 371 switch (infocmd) { 372 case DDI_INFO_DEVT2DEVINFO: 373 *result = fssnap_dip; 374 return (DDI_SUCCESS); 375 case DDI_INFO_DEVT2INSTANCE: 376 *result = 0; /* we only have one instance */ 377 return (DDI_SUCCESS); 378 } 379 return (DDI_FAILURE); 380 } 381 382 /* 383 * snap_attach() - snapshot driver attach(9E) routine 384 * 385 * sets up snapshot control device and control state. The control state 386 * is a pointer to an "anonymous" snapshot_id for tracking opens and closes 387 */ 388 static int 389 snap_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) 390 { 391 int error; 392 393 switch (cmd) { 394 case DDI_ATTACH: 395 /* create the control device */ 396 error = ddi_create_priv_minor_node(dip, SNAP_CTL_NODE, S_IFCHR, 397 SNAP_CTL_MINOR, DDI_PSEUDO, PRIVONLY_DEV, 398 PRIV_SYS_CONFIG, PRIV_SYS_CONFIG, 0666); 399 if (error == DDI_FAILURE) { 400 return (DDI_FAILURE); 401 } 402 403 rw_init(&snap_ctl.sid_rwlock, NULL, RW_DEFAULT, NULL); 404 rw_enter(&snap_ctl.sid_rwlock, RW_WRITER); 405 fssnap_dip = dip; 406 snap_ctl.sid_snapnumber = SNAP_CTL_MINOR; 407 /* the control sid is not linked into the snapshot list */ 408 snap_ctl.sid_next = NULL; 409 snap_ctl.sid_cowinfo = NULL; 410 snap_ctl.sid_flags = 0; 411 rw_exit(&snap_ctl.sid_rwlock); 412 ddi_report_dev(dip); 413 414 return (DDI_SUCCESS); 415 case DDI_PM_RESUME: 416 return (DDI_SUCCESS); 417 418 case DDI_RESUME: 419 return (DDI_SUCCESS); 420 421 default: 422 return (DDI_FAILURE); 423 } 424 } 425 426 /* 427 * snap_detach() - snapshot driver detach(9E) routine 428 * 429 * destroys snapshot control device and control state. If any snapshots 430 * are active (ie. num_snapshots != 0), the device will refuse to detach. 431 */ 432 static int 433 snap_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 434 { 435 struct snapshot_id *sidp, *sidnextp; 436 437 switch (cmd) { 438 case DDI_DETACH: 439 /* do not detach if the device is active */ 440 mutex_enter(&snapshot_mutex); 441 if ((num_snapshots != 0) || 442 ((snap_ctl.sid_flags & SID_CHAR_BUSY) != 0)) { 443 mutex_exit(&snapshot_mutex); 444 return (DDI_FAILURE); 445 } 446 447 /* free up the snapshot list */ 448 for (sidp = snapshot; sidp != NULL; sidp = sidnextp) { 449 ASSERT(SID_AVAILABLE(sidp) && 450 !RW_LOCK_HELD(&sidp->sid_rwlock)); 451 sidnextp = sidp->sid_next; 452 rw_destroy(&sidp->sid_rwlock); 453 kmem_free(sidp, sizeof (struct snapshot_id)); 454 } 455 snapshot = NULL; 456 457 /* delete the control device */ 458 ddi_remove_minor_node(dip, SNAP_CTL_NODE); 459 fssnap_dip = NULL; 460 461 ASSERT((snap_ctl.sid_flags & SID_CHAR_BUSY) == 0); 462 rw_destroy(&snap_ctl.sid_rwlock); 463 mutex_exit(&snapshot_mutex); 464 465 return (DDI_SUCCESS); 466 467 default: 468 return (DDI_FAILURE); 469 } 470 } 471 472 /* 473 * snap_open() - snapshot driver open(9E) routine 474 * 475 * marks the snapshot id as busy so it will not be recycled when deleted 476 * until the snapshot is closed. 477 */ 478 /* ARGSUSED */ 479 static int 480 snap_open(dev_t *devp, int flag, int otyp, cred_t *cred) 481 { 482 minor_t minor; 483 struct snapshot_id **sidpp, *sidp; 484 485 /* snapshots are read-only */ 486 if (flag & FWRITE) 487 return (EROFS); 488 489 minor = getminor(*devp); 490 491 if (minor == SNAP_CTL_MINOR) { 492 /* control device must be opened exclusively */ 493 if (((flag & FEXCL) != FEXCL) || (otyp != OTYP_CHR)) 494 return (EINVAL); 495 496 rw_enter(&snap_ctl.sid_rwlock, RW_WRITER); 497 if ((snap_ctl.sid_flags & SID_CHAR_BUSY) != 0) { 498 rw_exit(&snap_ctl.sid_rwlock); 499 return (EBUSY); 500 } 501 502 snap_ctl.sid_flags |= SID_CHAR_BUSY; 503 rw_exit(&snap_ctl.sid_rwlock); 504 505 return (0); 506 } 507 508 sidpp = ddi_get_soft_state(statep, minor); 509 if (sidpp == NULL || *sidpp == NULL) 510 return (ENXIO); 511 sidp = *sidpp; 512 rw_enter(&sidp->sid_rwlock, RW_WRITER); 513 514 if ((flag & FEXCL) && SID_BUSY(sidp)) { 515 rw_exit(&sidp->sid_rwlock); 516 return (EAGAIN); 517 } 518 519 ASSERT(sidpp != NULL && sidp != NULL); 520 /* check to see if this snapshot has been killed on us */ 521 if (SID_INACTIVE(sidp)) { 522 cmn_err(CE_WARN, "snap_open: snapshot %d does not exist.", 523 minor); 524 rw_exit(&sidp->sid_rwlock); 525 return (ENXIO); 526 } 527 528 switch (otyp) { 529 case OTYP_CHR: 530 sidp->sid_flags |= SID_CHAR_BUSY; 531 break; 532 case OTYP_BLK: 533 sidp->sid_flags |= SID_BLOCK_BUSY; 534 break; 535 default: 536 rw_exit(&sidp->sid_rwlock); 537 return (EINVAL); 538 } 539 540 rw_exit(&sidp->sid_rwlock); 541 542 /* 543 * at this point if a valid snapshot was found then it has 544 * been marked busy and we can use it. 545 */ 546 return (0); 547 } 548 549 /* 550 * snap_close() - snapshot driver close(9E) routine 551 * 552 * unsets the busy bits in the snapshot id. If the snapshot has been 553 * deleted while the snapshot device was open, the close call will clean 554 * up the remaining state information. 555 */ 556 /* ARGSUSED */ 557 static int 558 snap_close(dev_t dev, int flag, int otyp, cred_t *cred) 559 { 560 struct snapshot_id **sidpp, *sidp; 561 minor_t minor; 562 char name[20]; 563 564 minor = getminor(dev); 565 566 /* if this is the control device, close it and return */ 567 if (minor == SNAP_CTL_MINOR) { 568 rw_enter(&snap_ctl.sid_rwlock, RW_WRITER); 569 snap_ctl.sid_flags &= ~(SID_CHAR_BUSY); 570 rw_exit(&snap_ctl.sid_rwlock); 571 return (0); 572 } 573 574 sidpp = ddi_get_soft_state(statep, minor); 575 if (sidpp == NULL || *sidpp == NULL) { 576 cmn_err(CE_WARN, "snap_close: could not find state for " 577 "snapshot %d.", minor); 578 return (ENXIO); 579 } 580 sidp = *sidpp; 581 mutex_enter(&snapshot_mutex); 582 rw_enter(&sidp->sid_rwlock, RW_WRITER); 583 584 /* Mark the snapshot as not being busy anymore */ 585 switch (otyp) { 586 case OTYP_CHR: 587 sidp->sid_flags &= ~(SID_CHAR_BUSY); 588 break; 589 case OTYP_BLK: 590 sidp->sid_flags &= ~(SID_BLOCK_BUSY); 591 break; 592 default: 593 mutex_exit(&snapshot_mutex); 594 rw_exit(&sidp->sid_rwlock); 595 return (EINVAL); 596 } 597 598 if (SID_AVAILABLE(sidp)) { 599 /* 600 * if this is the last close on a snapshot that has been 601 * deleted, then free up the soft state. The snapdelete 602 * ioctl does not free this when the device is in use so 603 * we do it here after the last reference goes away. 604 */ 605 606 /* remove the device nodes */ 607 ASSERT(fssnap_dip != NULL); 608 (void) snprintf(name, sizeof (name), "%d", 609 sidp->sid_snapnumber); 610 ddi_remove_minor_node(fssnap_dip, name); 611 (void) snprintf(name, sizeof (name), "%d,raw", 612 sidp->sid_snapnumber); 613 ddi_remove_minor_node(fssnap_dip, name); 614 615 /* delete the state structure */ 616 ddi_soft_state_free(statep, sidp->sid_snapnumber); 617 num_snapshots--; 618 } 619 620 mutex_exit(&snapshot_mutex); 621 rw_exit(&sidp->sid_rwlock); 622 623 return (0); 624 } 625 626 /* 627 * snap_read() - snapshot driver read(9E) routine 628 * 629 * reads data from the snapshot by calling snap_strategy() through physio() 630 */ 631 /* ARGSUSED */ 632 static int 633 snap_read(dev_t dev, struct uio *uiop, cred_t *credp) 634 { 635 minor_t minor; 636 struct snapshot_id **sidpp; 637 638 minor = getminor(dev); 639 sidpp = ddi_get_soft_state(statep, minor); 640 if (sidpp == NULL || *sidpp == NULL) { 641 cmn_err(CE_WARN, 642 "snap_read: could not find state for snapshot %d.", minor); 643 return (ENXIO); 644 } 645 return (physio(snap_strategy, NULL, dev, B_READ, minphys, uiop)); 646 } 647 648 /* 649 * snap_strategy() - snapshot driver strategy(9E) routine 650 * 651 * cycles through each chunk in the requested buffer and calls 652 * snap_getchunk() on each chunk to retrieve it from the appropriate 653 * place. Once all of the parts are put together the requested buffer 654 * is returned. The snapshot driver is read-only, so a write is invalid. 655 */ 656 static int 657 snap_strategy(struct buf *bp) 658 { 659 struct snapshot_id **sidpp, *sidp; 660 minor_t minor; 661 chunknumber_t chunk; 662 int off, len; 663 u_longlong_t reqptr; 664 int error = 0; 665 size_t chunksz; 666 caddr_t buf; 667 668 /* snapshot device is read-only */ 669 if (bp->b_flags & B_WRITE) { 670 bioerror(bp, EROFS); 671 bp->b_resid = bp->b_bcount; 672 biodone(bp); 673 return (0); 674 } 675 676 minor = getminor(bp->b_edev); 677 sidpp = ddi_get_soft_state(statep, minor); 678 if (sidpp == NULL || *sidpp == NULL) { 679 cmn_err(CE_WARN, 680 "snap_strategy: could not find state for snapshot %d.", 681 minor); 682 bioerror(bp, ENXIO); 683 bp->b_resid = bp->b_bcount; 684 biodone(bp); 685 return (0); 686 } 687 sidp = *sidpp; 688 ASSERT(sidp); 689 rw_enter(&sidp->sid_rwlock, RW_READER); 690 691 if (SID_INACTIVE(sidp)) { 692 bioerror(bp, ENXIO); 693 bp->b_resid = bp->b_bcount; 694 biodone(bp); 695 rw_exit(&sidp->sid_rwlock); 696 return (0); 697 } 698 699 if (bp->b_flags & (B_PAGEIO|B_PHYS)) 700 bp_mapin(bp); 701 702 bp->b_resid = bp->b_bcount; 703 ASSERT(bp->b_un.b_addr); 704 buf = bp->b_un.b_addr; 705 706 chunksz = sidp->sid_cowinfo->cow_map.cmap_chunksz; 707 708 /* reqptr is the current DEV_BSIZE offset into the device */ 709 /* chunk is the chunk containing reqptr */ 710 /* len is the length of the request (in the current chunk) in bytes */ 711 /* off is the byte offset into the current chunk */ 712 reqptr = bp->b_lblkno; 713 while (bp->b_resid > 0) { 714 chunk = dbtocowchunk(&sidp->sid_cowinfo->cow_map, reqptr); 715 off = (reqptr % (chunksz >> DEV_BSHIFT)) << DEV_BSHIFT; 716 len = min(chunksz - off, bp->b_resid); 717 ASSERT((off + len) <= chunksz); 718 719 if ((error = snap_getchunk(sidp, chunk, off, len, buf)) != 0) { 720 /* 721 * EINVAL means the user tried to go out of range. 722 * Anything else means it's likely that we're 723 * confused. 724 */ 725 if (error != EINVAL) { 726 cmn_err(CE_WARN, "snap_strategy: error " 727 "calling snap_getchunk, chunk = %llu, " 728 "offset = %d, len = %d, resid = %lu, " 729 "error = %d.", 730 chunk, off, len, bp->b_resid, error); 731 } 732 bioerror(bp, error); 733 biodone(bp); 734 rw_exit(&sidp->sid_rwlock); 735 return (0); 736 } 737 bp->b_resid -= len; 738 reqptr += (len >> DEV_BSHIFT); 739 buf += len; 740 } 741 742 ASSERT(bp->b_resid == 0); 743 biodone(bp); 744 745 rw_exit(&sidp->sid_rwlock); 746 return (0); 747 } 748 749 /* 750 * snap_getchunk() - helper function for snap_strategy() 751 * 752 * gets the requested data from the appropriate place and fills in the 753 * buffer. chunk is the chunk number of the request, offset is the 754 * offset into that chunk and must be less than the chunk size. len is 755 * the length of the request starting at offset, and must not exceed a 756 * chunk boundary. buffer is the address to copy the data to. len 757 * bytes are copied into the buffer starting at the location specified. 758 * 759 * A chunk is located according to the following algorithm: 760 * - If the chunk does not have a translation or is not a candidate 761 * for translation, it is read straight from the master device. 762 * - If the chunk does have a translation, then it is either on 763 * disk or in memory: 764 * o If it is in memory the requested data is simply copied out 765 * of the in-memory buffer. 766 * o If it is in the backing store, it is read from there. 767 * 768 * This function does the real work of the snapshot driver. 769 */ 770 static int 771 snap_getchunk(struct snapshot_id *sidp, chunknumber_t chunk, int offset, 772 int len, char *buffer) 773 { 774 cow_map_t *cmap = &sidp->sid_cowinfo->cow_map; 775 cow_map_node_t *cmn; 776 struct buf *snapbuf; 777 int error = 0; 778 char *newbuffer; 779 int newlen = 0; 780 int partial = 0; 781 782 ASSERT(RW_READ_HELD(&sidp->sid_rwlock)); 783 ASSERT(offset + len <= cmap->cmap_chunksz); 784 785 /* 786 * Check if the chunk number is out of range and if so bail out 787 */ 788 if (chunk >= (cmap->cmap_bmsize * NBBY)) { 789 return (EINVAL); 790 } 791 792 /* 793 * If the chunk is not a candidate for translation, then the chunk 794 * was not allocated when the snapshot was taken. Since it does 795 * not contain data associated with this snapshot, just return a 796 * zero buffer instead. 797 */ 798 if (isclr(cmap->cmap_candidate, chunk)) { 799 bzero(buffer, len); 800 return (0); 801 } 802 803 /* 804 * if the chunk is a candidate for translation but a 805 * translation does not exist, then read through to the 806 * original file system. The rwlock is held until the read 807 * completes if it hasn't been translated to make sure the 808 * file system does not translate the block before we 809 * access it. If it has already been translated we don't 810 * need the lock, because the translation will never go away. 811 */ 812 rw_enter(&cmap->cmap_rwlock, RW_READER); 813 if (isclr(cmap->cmap_hastrans, chunk)) { 814 snapbuf = getrbuf(KM_SLEEP); 815 /* 816 * Reading into the buffer saves having to do a copy, 817 * but gets tricky if the request size is not a 818 * multiple of DEV_BSIZE. However, we are filling the 819 * buffer left to right, so future reads will write 820 * over any extra data we might have read. 821 */ 822 823 partial = len % DEV_BSIZE; 824 825 snapbuf->b_bcount = len; 826 snapbuf->b_lblkno = lbtodb(chunk * cmap->cmap_chunksz + offset); 827 snapbuf->b_un.b_addr = buffer; 828 829 snapbuf->b_iodone = NULL; 830 snapbuf->b_proc = NULL; /* i.e. the kernel */ 831 snapbuf->b_flags = B_READ | B_BUSY; 832 snapbuf->b_edev = sidp->sid_fvp->v_vfsp->vfs_dev; 833 834 if (partial) { 835 /* 836 * Partial block read in progress. 837 * This is bad as modules further down the line 838 * assume buf's are exact multiples of DEV_BSIZE 839 * and we end up with fewer, or zero, bytes read. 840 * To get round this we need to round up to the 841 * nearest full block read and then return only 842 * len bytes. 843 */ 844 newlen = (len - partial) + DEV_BSIZE; 845 newbuffer = kmem_alloc(newlen, KM_SLEEP); 846 847 snapbuf->b_bcount = newlen; 848 snapbuf->b_un.b_addr = newbuffer; 849 } 850 851 (void) bdev_strategy(snapbuf); 852 (void) biowait(snapbuf); 853 854 error = geterror(snapbuf); 855 856 if (partial) { 857 /* 858 * Partial block read. Now we need to bcopy the 859 * correct number of bytes back into the 860 * supplied buffer, and tidy up our temp 861 * buffer. 862 */ 863 bcopy(newbuffer, buffer, len); 864 kmem_free(newbuffer, newlen); 865 } 866 867 freerbuf(snapbuf); 868 rw_exit(&cmap->cmap_rwlock); 869 870 return (error); 871 } 872 873 /* 874 * finally, if the chunk is a candidate for translation and it 875 * has been translated, then we clone the chunk of the buffer 876 * that was copied aside by the file system. 877 * The cmap_rwlock does not need to be held after we know the 878 * data has already been copied. Once a chunk has been copied 879 * to the backing file, it is stable read only data. 880 */ 881 cmn = transtbl_get(cmap, chunk); 882 883 /* check whether the data is in memory or in the backing file */ 884 if (cmn != NULL) { 885 ASSERT(cmn->cmn_buf); 886 /* already in memory */ 887 bcopy(cmn->cmn_buf + offset, buffer, len); 888 rw_exit(&cmap->cmap_rwlock); 889 } else { 890 ssize_t resid = len; 891 int bf_index; 892 /* 893 * can cause deadlock with writer if we don't drop the 894 * cmap_rwlock before trying to get the backing store file 895 * vnode rwlock. 896 */ 897 rw_exit(&cmap->cmap_rwlock); 898 899 bf_index = chunk / cmap->cmap_chunksperbf; 900 901 /* read buffer from backing file */ 902 error = vn_rdwr(UIO_READ, 903 (sidp->sid_cowinfo->cow_backfile_array)[bf_index], 904 buffer, len, ((chunk % cmap->cmap_chunksperbf) * 905 cmap->cmap_chunksz) + offset, UIO_SYSSPACE, 0, 906 RLIM64_INFINITY, kcred, &resid); 907 } 908 909 return (error); 910 } 911 912 /* 913 * snap_print() - snapshot driver print(9E) routine 914 * 915 * prints the device identification string. 916 */ 917 static int 918 snap_print(dev_t dev, char *str) 919 { 920 struct snapshot_id **sidpp; 921 minor_t minor; 922 923 minor = getminor(dev); 924 sidpp = ddi_get_soft_state(statep, minor); 925 if (sidpp == NULL || *sidpp == NULL) { 926 cmn_err(CE_WARN, 927 "snap_print: could not find state for snapshot %d.", minor); 928 return (ENXIO); 929 } 930 931 cmn_err(CE_NOTE, "snap_print: snapshot %d: %s", minor, str); 932 933 return (0); 934 } 935 936 /* 937 * snap_prop_op() - snapshot driver prop_op(9E) routine 938 * 939 * get 32-bit and 64-bit values for size (character driver) and nblocks 940 * (block driver). 941 */ 942 static int 943 snap_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, 944 int flags, char *name, caddr_t valuep, int *lengthp) 945 { 946 int minor; 947 struct snapshot_id **sidpp; 948 dev_t mdev; 949 dev_info_t *mdip; 950 int error; 951 952 minor = getminor(dev); 953 954 /* 955 * If this is the control device just check for .conf properties, 956 * if the wildcard DDI_DEV_T_ANY was passed in via the dev_t 957 * just fall back to the defaults. 958 */ 959 if ((minor == SNAP_CTL_MINOR) || (dev == DDI_DEV_T_ANY)) 960 return (ddi_prop_op(dev, dip, prop_op, flags, name, 961 valuep, lengthp)); 962 963 /* check to see if there is a master device plumbed */ 964 sidpp = ddi_get_soft_state(statep, minor); 965 if (sidpp == NULL || *sidpp == NULL) { 966 cmn_err(CE_WARN, 967 "snap_prop_op: could not find state for " 968 "snapshot %d.", minor); 969 return (DDI_PROP_NOT_FOUND); 970 } 971 972 if (((*sidpp)->sid_fvp == NULL) || ((*sidpp)->sid_fvp->v_vfsp == NULL)) 973 return (ddi_prop_op(dev, dip, prop_op, flags, name, 974 valuep, lengthp)); 975 976 /* hold master device and pass operation down */ 977 mdev = (*sidpp)->sid_fvp->v_vfsp->vfs_dev; 978 if (mdip = e_ddi_hold_devi_by_dev(mdev, 0)) { 979 980 /* get size information from the master device. */ 981 error = cdev_prop_op(mdev, mdip, 982 prop_op, flags, name, valuep, lengthp); 983 ddi_release_devi(mdip); 984 if (error == DDI_PROP_SUCCESS) 985 return (error); 986 } 987 988 /* master device did not service the request, try framework */ 989 return (ddi_prop_op(dev, dip, prop_op, flags, name, valuep, lengthp)); 990 991 } 992 993 /* 994 * snap_ioctl() - snapshot driver ioctl(9E) routine 995 * 996 * only applies to the control device. The control device accepts two 997 * ioctl requests: create a snapshot or delete a snapshot. In either 998 * case, the vnode for the requested file system is extracted, and the 999 * request is passed on to the file system via the same ioctl. The file 1000 * system is responsible for doing the things necessary for creating or 1001 * destroying a snapshot, including any file system specific operations 1002 * that must be performed as well as setting up and deleting the snapshot 1003 * state through the fssnap interfaces. 1004 */ 1005 static int 1006 snap_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp, 1007 int *rvalp) 1008 { 1009 minor_t minor; 1010 int error = 0; 1011 1012 minor = getminor(dev); 1013 1014 if (minor != SNAP_CTL_MINOR) { 1015 return (EINVAL); 1016 } 1017 1018 switch (cmd) { 1019 case _FIOSNAPSHOTCREATE: 1020 { 1021 struct fiosnapcreate fc; 1022 struct file *fp; 1023 struct vnode *vp; 1024 1025 if (ddi_copyin((void *)arg, &fc, sizeof (fc), mode)) 1026 return (EFAULT); 1027 1028 /* get vnode for file system mount point */ 1029 if ((fp = getf(fc.rootfiledesc)) == NULL) 1030 return (EBADF); 1031 1032 ASSERT(fp->f_vnode); 1033 vp = fp->f_vnode; 1034 VN_HOLD(vp); 1035 releasef(fc.rootfiledesc); 1036 1037 /* pass ioctl request to file system */ 1038 error = VOP_IOCTL(vp, cmd, arg, 0, credp, rvalp, NULL); 1039 VN_RELE(vp); 1040 break; 1041 } 1042 case _FIOSNAPSHOTCREATE_MULTI: 1043 { 1044 struct fiosnapcreate_multi fc; 1045 struct file *fp; 1046 struct vnode *vp; 1047 1048 if (ddi_copyin((void *)arg, &fc, sizeof (fc), mode)) 1049 return (EFAULT); 1050 1051 /* get vnode for file system mount point */ 1052 if ((fp = getf(fc.rootfiledesc)) == NULL) 1053 return (EBADF); 1054 1055 ASSERT(fp->f_vnode); 1056 vp = fp->f_vnode; 1057 VN_HOLD(vp); 1058 releasef(fc.rootfiledesc); 1059 1060 /* pass ioctl request to file system */ 1061 error = VOP_IOCTL(vp, cmd, arg, 0, credp, rvalp, NULL); 1062 VN_RELE(vp); 1063 break; 1064 } 1065 case _FIOSNAPSHOTDELETE: 1066 { 1067 major_t major; 1068 struct fiosnapdelete fc; 1069 snapshot_id_t *sidp = NULL; 1070 snapshot_id_t *sidnextp = NULL; 1071 struct file *fp = NULL; 1072 struct vnode *vp = NULL; 1073 struct vfs *vfsp = NULL; 1074 vfsops_t *vfsops = EIO_vfsops; 1075 1076 if (ddi_copyin((void *)arg, &fc, sizeof (fc), mode)) 1077 return (EFAULT); 1078 1079 /* get vnode for file system mount point */ 1080 if ((fp = getf(fc.rootfiledesc)) == NULL) 1081 return (EBADF); 1082 1083 ASSERT(fp->f_vnode); 1084 vp = fp->f_vnode; 1085 VN_HOLD(vp); 1086 releasef(fc.rootfiledesc); 1087 /* 1088 * Test for two formats of delete and set correct minor/vp: 1089 * pseudo device: 1090 * fssnap -d [/dev/fssnap/x] 1091 * or 1092 * mount point: 1093 * fssnap -d [/mntpt] 1094 * Note that minor is verified to be equal to SNAP_CTL_MINOR 1095 * at this point which is an invalid minor number. 1096 */ 1097 ASSERT(fssnap_dip != NULL); 1098 major = ddi_driver_major(fssnap_dip); 1099 mutex_enter(&snapshot_mutex); 1100 for (sidp = snapshot; sidp != NULL; sidp = sidnextp) { 1101 rw_enter(&sidp->sid_rwlock, RW_READER); 1102 sidnextp = sidp->sid_next; 1103 /* pseudo device: */ 1104 if (major == getmajor(vp->v_rdev)) { 1105 minor = getminor(vp->v_rdev); 1106 if (sidp->sid_snapnumber == (uint_t)minor && 1107 sidp->sid_fvp) { 1108 VN_RELE(vp); 1109 vp = sidp->sid_fvp; 1110 VN_HOLD(vp); 1111 rw_exit(&sidp->sid_rwlock); 1112 break; 1113 } 1114 /* Mount point: */ 1115 } else { 1116 if (sidp->sid_fvp == vp) { 1117 minor = sidp->sid_snapnumber; 1118 rw_exit(&sidp->sid_rwlock); 1119 break; 1120 } 1121 } 1122 rw_exit(&sidp->sid_rwlock); 1123 } 1124 mutex_exit(&snapshot_mutex); 1125 /* Verify minor got set correctly above */ 1126 if (minor == SNAP_CTL_MINOR) { 1127 VN_RELE(vp); 1128 return (EINVAL); 1129 } 1130 dev = makedevice(major, minor); 1131 /* 1132 * Create dummy vfs entry 1133 * to use as a locking semaphore across the IOCTL 1134 * for mount in progress cases... 1135 */ 1136 vfsp = vfs_alloc(KM_SLEEP); 1137 VFS_INIT(vfsp, vfsops, NULL); 1138 VFS_HOLD(vfsp); 1139 vfs_addmip(dev, vfsp); 1140 if ((vfs_devmounting(dev, vfsp)) || 1141 (vfs_devismounted(dev))) { 1142 vfs_delmip(vfsp); 1143 VFS_RELE(vfsp); 1144 VN_RELE(vp); 1145 return (EBUSY); 1146 } 1147 /* 1148 * Nobody mounted but do not release mount in progress lock 1149 * until IOCTL complete to prohibit a mount sneaking 1150 * in 1151 */ 1152 error = VOP_IOCTL(vp, cmd, arg, 0, credp, rvalp, NULL); 1153 vfs_delmip(vfsp); 1154 VFS_RELE(vfsp); 1155 VN_RELE(vp); 1156 break; 1157 } 1158 default: 1159 cmn_err(CE_WARN, "snap_ioctl: Invalid ioctl cmd %d, minor %d.", 1160 cmd, minor); 1161 return (EINVAL); 1162 } 1163 1164 return (error); 1165 } 1166 1167 1168 /* ************************************************************************ */ 1169 1170 /* 1171 * Translation Table Routines 1172 * 1173 * These support routines implement a simple doubly linked list 1174 * to keep track of chunks that are currently in memory. The maximum 1175 * size of the list is determined by the fssnap_max_mem_chunks variable. 1176 * The cmap_rwlock is used to protect the linkage of the list. 1177 */ 1178 1179 /* 1180 * transtbl_add() - add a node to the translation table 1181 * 1182 * allocates a new node and points it at the buffer passed in. The node 1183 * is added to the beginning of the doubly linked list and the head of 1184 * the list is moved. The cmap_rwlock must be held as a writer through 1185 * this operation. 1186 */ 1187 static cow_map_node_t * 1188 transtbl_add(cow_map_t *cmap, chunknumber_t chunk, caddr_t buf) 1189 { 1190 cow_map_node_t *cmnode; 1191 1192 ASSERT(RW_WRITE_HELD(&cmap->cmap_rwlock)); 1193 1194 cmnode = kmem_alloc(sizeof (cow_map_node_t), KM_SLEEP); 1195 1196 /* 1197 * insert new translations at the beginning so cmn_table is always 1198 * the first node. 1199 */ 1200 cmnode->cmn_chunk = chunk; 1201 cmnode->cmn_buf = buf; 1202 cmnode->cmn_prev = NULL; 1203 cmnode->cmn_next = cmap->cmap_table; 1204 if (cmnode->cmn_next) 1205 cmnode->cmn_next->cmn_prev = cmnode; 1206 cmap->cmap_table = cmnode; 1207 1208 return (cmnode); 1209 } 1210 1211 /* 1212 * transtbl_get() - look up a node in the translation table 1213 * 1214 * called by the snapshot driver to find data that has been translated. 1215 * The lookup is done by the chunk number, and the node is returned. 1216 * If the node was not found, NULL is returned. 1217 */ 1218 static cow_map_node_t * 1219 transtbl_get(cow_map_t *cmap, chunknumber_t chunk) 1220 { 1221 cow_map_node_t *cmn; 1222 1223 ASSERT(RW_READ_HELD(&cmap->cmap_rwlock)); 1224 ASSERT(cmap); 1225 1226 /* search the translation table */ 1227 for (cmn = cmap->cmap_table; cmn != NULL; cmn = cmn->cmn_next) { 1228 if (cmn->cmn_chunk == chunk) 1229 return (cmn); 1230 } 1231 1232 /* not found */ 1233 return (NULL); 1234 } 1235 1236 /* 1237 * transtbl_delete() - delete a node from the translation table 1238 * 1239 * called when a node's data has been written out to disk. The 1240 * cmap_rwlock must be held as a writer for this operation. If the node 1241 * being deleted is the head of the list, then the head is moved to the 1242 * next node. Both the node's data and the node itself are freed. 1243 */ 1244 static void 1245 transtbl_delete(cow_map_t *cmap, cow_map_node_t *cmn) 1246 { 1247 ASSERT(RW_WRITE_HELD(&cmap->cmap_rwlock)); 1248 ASSERT(cmn); 1249 ASSERT(cmap->cmap_table); 1250 1251 /* if the head of the list is being deleted, then move the head up */ 1252 if (cmap->cmap_table == cmn) { 1253 ASSERT(cmn->cmn_prev == NULL); 1254 cmap->cmap_table = cmn->cmn_next; 1255 } 1256 1257 1258 /* make previous node's next pointer skip over current node */ 1259 if (cmn->cmn_prev != NULL) { 1260 ASSERT(cmn->cmn_prev->cmn_next == cmn); 1261 cmn->cmn_prev->cmn_next = cmn->cmn_next; 1262 } 1263 1264 /* make next node's previous pointer skip over current node */ 1265 if (cmn->cmn_next != NULL) { 1266 ASSERT(cmn->cmn_next->cmn_prev == cmn); 1267 cmn->cmn_next->cmn_prev = cmn->cmn_prev; 1268 } 1269 1270 /* free the data and the node */ 1271 ASSERT(cmn->cmn_buf); 1272 kmem_free(cmn->cmn_buf, cmap->cmap_chunksz); 1273 kmem_free(cmn, sizeof (cow_map_node_t)); 1274 } 1275 1276 /* 1277 * transtbl_free() - free the entire translation table 1278 * 1279 * called when the snapshot is deleted. This frees all of the nodes in 1280 * the translation table (but not the bitmaps). 1281 */ 1282 static void 1283 transtbl_free(cow_map_t *cmap) 1284 { 1285 cow_map_node_t *curnode; 1286 cow_map_node_t *tempnode; 1287 1288 for (curnode = cmap->cmap_table; curnode != NULL; curnode = tempnode) { 1289 tempnode = curnode->cmn_next; 1290 1291 kmem_free(curnode->cmn_buf, cmap->cmap_chunksz); 1292 kmem_free(curnode, sizeof (cow_map_node_t)); 1293 } 1294 } 1295 1296 1297 /* ************************************************************************ */ 1298 1299 /* 1300 * Interface Implementation Routines 1301 * 1302 * The following functions implement snapshot interface routines that are 1303 * called by the file system to create, delete, and use a snapshot. The 1304 * interfaces are defined in fssnap_if.c and are filled in by this driver 1305 * when it is loaded. This technique allows the file system to depend on 1306 * the interface module without having to load the full implementation and 1307 * snapshot device drivers. 1308 */ 1309 1310 /* 1311 * fssnap_strategy_impl() - strategy routine called by the file system 1312 * 1313 * called by the file system to handle copy-on-write when necessary. All 1314 * reads and writes that the file system performs should go through this 1315 * function. If the file system calls the underlying device's strategy 1316 * routine without going through fssnap_strategy() (eg. by calling 1317 * bdev_strategy()), the snapshot may not be consistent. 1318 * 1319 * This function starts by doing significant sanity checking to insure 1320 * the snapshot was not deleted out from under it or deleted and then 1321 * recreated. To do this, it checks the actual pointer passed into it 1322 * (ie. the handle held by the file system). NOTE that the parameter is 1323 * a POINTER TO A POINTER to the snapshot id. Once the snapshot id is 1324 * locked, it knows things are ok and that this snapshot is really for 1325 * this file system. 1326 * 1327 * If the request is a write, fssnap_translate() is called to determine 1328 * whether a copy-on-write is required. If it is a read, the read is 1329 * simply passed on to the underlying device. 1330 */ 1331 static void 1332 fssnap_strategy_impl(void *snapshot_id, buf_t *bp) 1333 { 1334 struct snapshot_id **sidpp; 1335 struct snapshot_id *sidp; 1336 int error; 1337 1338 /* read requests are always passed through */ 1339 if (bp->b_flags & B_READ) { 1340 (void) bdev_strategy(bp); 1341 return; 1342 } 1343 1344 /* 1345 * Because we were not able to take the snapshot read lock BEFORE 1346 * checking for a snapshot back in the file system, things may have 1347 * drastically changed out from under us. For instance, the snapshot 1348 * may have been deleted, deleted and recreated, or worse yet, deleted 1349 * for this file system but now the snapshot number is in use by another 1350 * file system. 1351 * 1352 * Having a pointer to the file system's snapshot id pointer allows us 1353 * to sanity check most of this, though it assumes the file system is 1354 * keeping track of a pointer to the snapshot_id somewhere. 1355 */ 1356 sidpp = (struct snapshot_id **)snapshot_id; 1357 sidp = *sidpp; 1358 1359 /* 1360 * if this file system's snapshot was disabled, just pass the 1361 * request through. 1362 */ 1363 if (sidp == NULL) { 1364 (void) bdev_strategy(bp); 1365 return; 1366 } 1367 1368 /* 1369 * Once we have the reader lock the snapshot will not magically go 1370 * away. But things may have changed on us before this so double check. 1371 */ 1372 rw_enter(&sidp->sid_rwlock, RW_READER); 1373 1374 /* 1375 * if an error was founds somewhere the DELETE flag will be 1376 * set to indicate the snapshot should be deleted and no new 1377 * translations should occur. 1378 */ 1379 if (sidp->sid_flags & SID_DELETE) { 1380 rw_exit(&sidp->sid_rwlock); 1381 (void) fssnap_delete_impl(sidpp); 1382 (void) bdev_strategy(bp); 1383 return; 1384 } 1385 1386 /* 1387 * If the file system is no longer pointing to the snapshot we were 1388 * called with, then it should not attempt to translate this buffer as 1389 * it may be going to a snapshot for a different file system. 1390 * Even if the file system snapshot pointer is still the same, the 1391 * snapshot may have been disabled before we got the reader lock. 1392 */ 1393 if (sidp != *sidpp || SID_INACTIVE(sidp)) { 1394 rw_exit(&sidp->sid_rwlock); 1395 (void) bdev_strategy(bp); 1396 return; 1397 } 1398 1399 /* 1400 * At this point we're sure the snapshot will not go away while the 1401 * reader lock is held, and we are reasonably certain that we are 1402 * writing to the correct snapshot. 1403 */ 1404 if ((error = fssnap_translate(sidpp, bp)) != 0) { 1405 /* 1406 * fssnap_translate can release the reader lock if it 1407 * has to wait for a semaphore. In this case it is possible 1408 * for the snapshot to be deleted in this time frame. If this 1409 * happens just sent the buf thru to the filesystems device. 1410 */ 1411 if (sidp != *sidpp || SID_INACTIVE(sidp)) { 1412 rw_exit(&sidp->sid_rwlock); 1413 (void) bdev_strategy(bp); 1414 return; 1415 } 1416 bioerror(bp, error); 1417 biodone(bp); 1418 } 1419 rw_exit(&sidp->sid_rwlock); 1420 } 1421 1422 /* 1423 * fssnap_translate() - helper function for fssnap_strategy() 1424 * 1425 * performs the actual copy-on-write for write requests, if required. 1426 * This function does the real work of the file system side of things. 1427 * 1428 * It first checks the candidate bitmap to quickly determine whether any 1429 * action is necessary. If the candidate bitmap indicates the chunk was 1430 * allocated when the snapshot was created, then it checks to see whether 1431 * a translation already exists. If a translation already exists then no 1432 * action is required. If the chunk is a candidate for copy-on-write, 1433 * and a translation does not already exist, then the chunk is read in 1434 * and a node is added to the translation table. 1435 * 1436 * Once all of the chunks in the request range have been copied (if they 1437 * needed to be), then the original request can be satisfied and the old 1438 * data can be overwritten. 1439 */ 1440 static int 1441 fssnap_translate(struct snapshot_id **sidpp, struct buf *wbp) 1442 { 1443 snapshot_id_t *sidp = *sidpp; 1444 struct buf *oldbp; /* buffer to store old data in */ 1445 struct cow_info *cowp = sidp->sid_cowinfo; 1446 cow_map_t *cmap = &cowp->cow_map; 1447 cow_map_node_t *cmn; 1448 chunknumber_t cowchunk, startchunk, endchunk; 1449 int error; 1450 int throttle_write = 0; 1451 1452 /* make sure the snapshot is active */ 1453 ASSERT(RW_READ_HELD(&sidp->sid_rwlock)); 1454 1455 startchunk = dbtocowchunk(cmap, wbp->b_lblkno); 1456 endchunk = dbtocowchunk(cmap, wbp->b_lblkno + 1457 ((wbp->b_bcount-1) >> DEV_BSHIFT)); 1458 1459 /* 1460 * Do not throttle the writes of the fssnap taskq thread and 1461 * the log roll (trans_roll) thread. Furthermore the writes to 1462 * the on-disk log are also not subject to throttling. 1463 * The fssnap_write_taskq thread's write can block on the throttling 1464 * semaphore which leads to self-deadlock as this same thread 1465 * releases the throttling semaphore after completing the IO. 1466 * If the trans_roll thread's write is throttled then we can deadlock 1467 * because the fssnap_taskq_thread which releases the throttling 1468 * semaphore can block waiting for log space which can only be 1469 * released by the trans_roll thread. 1470 */ 1471 1472 throttle_write = !(taskq_member(cowp->cow_taskq, curthread) || 1473 tsd_get(bypass_snapshot_throttle_key)); 1474 1475 /* 1476 * Iterate through all chunks covered by this write and perform the 1477 * copy-aside if necessary. Once all chunks have been safely 1478 * stowed away, the new data may be written in a single sweep. 1479 * 1480 * For each chunk in the range, the following sequence is performed: 1481 * - Is the chunk a candidate for translation? 1482 * o If not, then no translation is necessary, continue 1483 * - If it is a candidate, then does it already have a translation? 1484 * o If so, then no translation is necessary, continue 1485 * - If it is a candidate, but does not yet have a translation, 1486 * then read the old data and schedule an asynchronous taskq 1487 * to write the old data to the backing file. 1488 * 1489 * Once this has been performed over the entire range of chunks, then 1490 * it is safe to overwrite the data that is there. 1491 * 1492 * Note that no lock is required to check the candidate bitmap because 1493 * it never changes once the snapshot is created. The reader lock is 1494 * taken to check the hastrans bitmap since it may change. If it 1495 * turns out a copy is required, then the lock is upgraded to a 1496 * writer, and the bitmap is re-checked as it may have changed while 1497 * the lock was released. Finally, the write lock is held while 1498 * reading the old data to make sure it is not translated out from 1499 * under us. 1500 * 1501 * This locking mechanism should be sufficient to handle multiple 1502 * threads writing to overlapping chunks simultaneously. 1503 */ 1504 for (cowchunk = startchunk; cowchunk <= endchunk; cowchunk++) { 1505 /* 1506 * If the cowchunk is outside of the range of our 1507 * candidate maps, then simply break out of the 1508 * loop and pass the I/O through to bdev_strategy. 1509 * This would occur if the file system has grown 1510 * larger since the snapshot was taken. 1511 */ 1512 if (cowchunk >= (cmap->cmap_bmsize * NBBY)) 1513 break; 1514 1515 /* 1516 * If no disk blocks were allocated in this chunk when the 1517 * snapshot was created then no copy-on-write will be 1518 * required. Since this bitmap is read-only no locks are 1519 * necessary. 1520 */ 1521 if (isclr(cmap->cmap_candidate, cowchunk)) { 1522 continue; 1523 } 1524 1525 /* 1526 * If a translation already exists, the data can be written 1527 * through since the old data has already been saved off. 1528 */ 1529 if (isset(cmap->cmap_hastrans, cowchunk)) { 1530 continue; 1531 } 1532 1533 1534 /* 1535 * Throttle translations if there are too many outstanding 1536 * chunks in memory. The semaphore is sema_v'd by the taskq. 1537 * 1538 * You can't keep the sid_rwlock if you would go to sleep. 1539 * This will result in deadlock when someone tries to delete 1540 * the snapshot (wants the sid_rwlock as a writer, but can't 1541 * get it). 1542 */ 1543 if (throttle_write) { 1544 if (sema_tryp(&cmap->cmap_throttle_sem) == 0) { 1545 rw_exit(&sidp->sid_rwlock); 1546 atomic_inc_32(&cmap->cmap_waiters); 1547 sema_p(&cmap->cmap_throttle_sem); 1548 atomic_dec_32(&cmap->cmap_waiters); 1549 rw_enter(&sidp->sid_rwlock, RW_READER); 1550 1551 /* 1552 * Now since we released the sid_rwlock the state may 1553 * have transitioned underneath us. so check that again. 1554 */ 1555 if (sidp != *sidpp || SID_INACTIVE(sidp)) { 1556 sema_v(&cmap->cmap_throttle_sem); 1557 return (ENXIO); 1558 } 1559 } 1560 } 1561 1562 /* 1563 * Acquire the lock as a writer and check to see if a 1564 * translation has been added in the meantime. 1565 */ 1566 rw_enter(&cmap->cmap_rwlock, RW_WRITER); 1567 if (isset(cmap->cmap_hastrans, cowchunk)) { 1568 if (throttle_write) 1569 sema_v(&cmap->cmap_throttle_sem); 1570 rw_exit(&cmap->cmap_rwlock); 1571 continue; /* go to the next chunk */ 1572 } 1573 1574 /* 1575 * read a full chunk of data from the requested offset rounded 1576 * down to the nearest chunk size. 1577 */ 1578 oldbp = getrbuf(KM_SLEEP); 1579 oldbp->b_lblkno = cowchunktodb(cmap, cowchunk); 1580 oldbp->b_edev = wbp->b_edev; 1581 oldbp->b_bcount = cmap->cmap_chunksz; 1582 oldbp->b_bufsize = cmap->cmap_chunksz; 1583 oldbp->b_iodone = NULL; 1584 oldbp->b_proc = NULL; 1585 oldbp->b_flags = B_READ; 1586 oldbp->b_un.b_addr = kmem_alloc(cmap->cmap_chunksz, KM_SLEEP); 1587 1588 (void) bdev_strategy(oldbp); 1589 (void) biowait(oldbp); 1590 1591 /* 1592 * It's ok to bail in the middle of translating the range 1593 * because the extra copy-asides will not hurt anything 1594 * (except by using extra space in the backing store). 1595 */ 1596 if ((error = geterror(oldbp)) != 0) { 1597 cmn_err(CE_WARN, "fssnap_translate: error reading " 1598 "old data for snapshot %d, chunk %llu, disk block " 1599 "%lld, size %lu, error %d.", sidp->sid_snapnumber, 1600 cowchunk, oldbp->b_lblkno, oldbp->b_bcount, error); 1601 kmem_free(oldbp->b_un.b_addr, cmap->cmap_chunksz); 1602 freerbuf(oldbp); 1603 rw_exit(&cmap->cmap_rwlock); 1604 if (throttle_write) 1605 sema_v(&cmap->cmap_throttle_sem); 1606 return (error); 1607 } 1608 1609 /* 1610 * add the node to the translation table and save a reference 1611 * to pass to the taskq for writing out to the backing file 1612 */ 1613 cmn = transtbl_add(cmap, cowchunk, oldbp->b_un.b_addr); 1614 freerbuf(oldbp); 1615 1616 /* 1617 * Add a reference to the snapshot id so the lower level 1618 * processing (ie. the taskq) can get back to the state 1619 * information. 1620 */ 1621 cmn->cmn_sid = sidp; 1622 cmn->release_sem = throttle_write; 1623 setbit(cmap->cmap_hastrans, cowchunk); 1624 1625 rw_exit(&cmap->cmap_rwlock); 1626 1627 /* 1628 * schedule the asynchronous write to the backing file 1629 */ 1630 if (cowp->cow_backfile_array != NULL) 1631 (void) taskq_dispatch(cowp->cow_taskq, 1632 fssnap_write_taskq, cmn, TQ_SLEEP); 1633 } 1634 1635 /* 1636 * Write new data in place of the old data. At this point all of the 1637 * chunks touched by this write have been copied aside and so the new 1638 * data can be written out all at once. 1639 */ 1640 (void) bdev_strategy(wbp); 1641 1642 return (0); 1643 } 1644 1645 /* 1646 * fssnap_write_taskq() - write in-memory translations to the backing file 1647 * 1648 * writes in-memory translations to the backing file asynchronously. A 1649 * task is dispatched each time a new translation is created. The task 1650 * writes the data to the backing file and removes it from the memory 1651 * list. The throttling semaphore is released only if the particular 1652 * translation was throttled in fssnap_translate. 1653 */ 1654 static void 1655 fssnap_write_taskq(void *arg) 1656 { 1657 cow_map_node_t *cmn = (cow_map_node_t *)arg; 1658 snapshot_id_t *sidp = cmn->cmn_sid; 1659 cow_info_t *cowp = sidp->sid_cowinfo; 1660 cow_map_t *cmap = &cowp->cow_map; 1661 int error; 1662 int bf_index; 1663 int release_sem = cmn->release_sem; 1664 1665 /* 1666 * The sid_rwlock does not need to be held here because the taskqs 1667 * are destroyed explicitly by fssnap_delete (with the sid_rwlock 1668 * held as a writer). taskq_destroy() will flush all of the tasks 1669 * out before fssnap_delete frees up all of the structures. 1670 */ 1671 1672 /* if the snapshot was disabled from under us, drop the request. */ 1673 rw_enter(&sidp->sid_rwlock, RW_READER); 1674 if (SID_INACTIVE(sidp)) { 1675 rw_exit(&sidp->sid_rwlock); 1676 if (release_sem) 1677 sema_v(&cmap->cmap_throttle_sem); 1678 return; 1679 } 1680 rw_exit(&sidp->sid_rwlock); 1681 1682 atomic_inc_64((uint64_t *)&cmap->cmap_nchunks); 1683 1684 if ((cmap->cmap_maxsize != 0) && 1685 ((cmap->cmap_nchunks * cmap->cmap_chunksz) > cmap->cmap_maxsize)) { 1686 cmn_err(CE_WARN, "fssnap_write_taskq: snapshot %d (%s) has " 1687 "reached the maximum backing file size specified (%llu " 1688 "bytes) and will be deleted.", sidp->sid_snapnumber, 1689 (char *)cowp->cow_kstat_mntpt->ks_data, 1690 cmap->cmap_maxsize); 1691 if (release_sem) 1692 sema_v(&cmap->cmap_throttle_sem); 1693 atomic_or_uint(&sidp->sid_flags, SID_DELETE); 1694 return; 1695 } 1696 1697 /* perform the write */ 1698 bf_index = cmn->cmn_chunk / cmap->cmap_chunksperbf; 1699 1700 if (error = vn_rdwr(UIO_WRITE, (cowp->cow_backfile_array)[bf_index], 1701 cmn->cmn_buf, cmap->cmap_chunksz, 1702 (cmn->cmn_chunk % cmap->cmap_chunksperbf) * cmap->cmap_chunksz, 1703 UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, (ssize_t *)NULL)) { 1704 cmn_err(CE_WARN, "fssnap_write_taskq: error writing to " 1705 "backing file. DELETING SNAPSHOT %d, backing file path " 1706 "%s, offset %llu bytes, error %d.", sidp->sid_snapnumber, 1707 (char *)cowp->cow_kstat_bfname->ks_data, 1708 cmn->cmn_chunk * cmap->cmap_chunksz, error); 1709 if (release_sem) 1710 sema_v(&cmap->cmap_throttle_sem); 1711 atomic_or_uint(&sidp->sid_flags, SID_DELETE); 1712 return; 1713 } 1714 1715 /* 1716 * now remove the node and buffer from memory 1717 */ 1718 rw_enter(&cmap->cmap_rwlock, RW_WRITER); 1719 transtbl_delete(cmap, cmn); 1720 rw_exit(&cmap->cmap_rwlock); 1721 1722 /* Allow more translations */ 1723 if (release_sem) 1724 sema_v(&cmap->cmap_throttle_sem); 1725 1726 } 1727 1728 /* 1729 * fssnap_create_impl() - called from the file system to create a new snapshot 1730 * 1731 * allocates and initializes the structures needed for a new snapshot. 1732 * This is called by the file system when it receives an ioctl request to 1733 * create a new snapshot. An unused snapshot identifier is either found 1734 * or created, and eventually returned as the opaque handle the file 1735 * system will use to identify this snapshot. The snapshot number 1736 * associated with the snapshot identifier is the same as the minor 1737 * number for the snapshot device that is used to access that snapshot. 1738 * 1739 * The snapshot can not be used until the candidate bitmap is populated 1740 * by the file system (see fssnap_set_candidate_impl()), and the file 1741 * system finishes the setup process by calling fssnap_create_done(). 1742 * Nearly all of the snapshot locks are held for the duration of the 1743 * create, and are not released until fssnap_create_done is called(). 1744 */ 1745 static void * 1746 fssnap_create_impl(chunknumber_t nchunks, uint_t chunksz, u_offset_t maxsize, 1747 struct vnode *fsvp, int backfilecount, struct vnode **bfvpp, char *backpath, 1748 u_offset_t max_backfile_size) 1749 { 1750 refstr_t *mountpoint; 1751 char taskqname[50]; 1752 struct cow_info *cowp; 1753 struct cow_map *cmap; 1754 struct snapshot_id *sidp; 1755 int lastsnap; 1756 1757 /* 1758 * Sanity check the parameters we care about 1759 * (we don't care about the informational parameters) 1760 */ 1761 if ((nchunks == 0) || 1762 ((chunksz % DEV_BSIZE) != 0) || 1763 (bfvpp == NULL)) { 1764 return (NULL); 1765 } 1766 1767 /* 1768 * Look for unused snapshot identifiers. Snapshot ids are never 1769 * freed, but deleted snapshot ids will be recycled as needed. 1770 */ 1771 mutex_enter(&snapshot_mutex); 1772 1773 findagain: 1774 lastsnap = 0; 1775 for (sidp = snapshot; sidp != NULL; sidp = sidp->sid_next) { 1776 if (sidp->sid_snapnumber > lastsnap) 1777 lastsnap = sidp->sid_snapnumber; 1778 1779 /* 1780 * The sid_rwlock is taken as a reader initially so that 1781 * activity on each snapshot is not stalled while searching 1782 * for a free snapshot id. 1783 */ 1784 rw_enter(&sidp->sid_rwlock, RW_READER); 1785 1786 /* 1787 * If the snapshot has been deleted and nobody is using the 1788 * snapshot device than we can reuse this snapshot_id. If 1789 * the snapshot is marked to be deleted (SID_DELETE), then 1790 * it hasn't been deleted yet so don't reuse it. 1791 */ 1792 if (SID_AVAILABLE(sidp)) 1793 break; /* This spot is unused, so take it */ 1794 rw_exit(&sidp->sid_rwlock); 1795 } 1796 1797 /* 1798 * add a new snapshot identifier if there are no deleted 1799 * entries. Since it doesn't matter what order the entries 1800 * are in we can just add it to the beginning of the list. 1801 */ 1802 if (sidp) { 1803 if (rw_tryupgrade(&sidp->sid_rwlock) == 0) { 1804 /* someone else grabbed it as a writer, try again */ 1805 rw_exit(&sidp->sid_rwlock); 1806 goto findagain; 1807 } 1808 } else { 1809 /* Create a new node if we didn't find an unused one */ 1810 sidp = kmem_alloc(sizeof (struct snapshot_id), KM_SLEEP); 1811 rw_init(&sidp->sid_rwlock, NULL, RW_DEFAULT, NULL); 1812 rw_enter(&sidp->sid_rwlock, RW_WRITER); 1813 sidp->sid_snapnumber = (snapshot == NULL) ? 0 : lastsnap + 1; 1814 sidp->sid_cowinfo = NULL; 1815 sidp->sid_flags = 0; 1816 sidp->sid_next = snapshot; 1817 snapshot = sidp; 1818 } 1819 1820 ASSERT(RW_WRITE_HELD(&sidp->sid_rwlock)); 1821 ASSERT(sidp->sid_cowinfo == NULL); 1822 ASSERT(sidp->sid_snapnumber <= (lastsnap + 1)); 1823 1824 sidp->sid_flags |= SID_CREATING; 1825 /* The root vnode is held until snap_delete_impl() is called */ 1826 VN_HOLD(fsvp); 1827 sidp->sid_fvp = fsvp; 1828 num_snapshots++; 1829 1830 /* allocate and initialize structures */ 1831 1832 cowp = kmem_zalloc(sizeof (struct cow_info), KM_SLEEP); 1833 1834 cowp->cow_backfile_array = bfvpp; 1835 cowp->cow_backcount = backfilecount; 1836 cowp->cow_backfile_sz = max_backfile_size; 1837 1838 /* 1839 * Initialize task queues for this snapshot. Only a small number 1840 * of threads are required because they will be serialized on the 1841 * backing file's reader/writer lock anyway. 1842 */ 1843 (void) snprintf(taskqname, sizeof (taskqname), "%s_taskq_%d", snapname, 1844 sidp->sid_snapnumber); 1845 cowp->cow_taskq = taskq_create(taskqname, fssnap_taskq_nthreads, 1846 minclsyspri, 1, fssnap_taskq_maxtasks, 0); 1847 1848 /* don't allow tasks to start until after everything is ready */ 1849 taskq_suspend(cowp->cow_taskq); 1850 1851 /* initialize translation table */ 1852 cmap = &cowp->cow_map; 1853 rw_init(&cmap->cmap_rwlock, NULL, RW_DEFAULT, NULL); 1854 rw_enter(&cmap->cmap_rwlock, RW_WRITER); 1855 1856 sema_init(&cmap->cmap_throttle_sem, fssnap_max_mem_chunks, NULL, 1857 SEMA_DEFAULT, NULL); 1858 1859 cmap->cmap_chunksz = chunksz; 1860 cmap->cmap_maxsize = maxsize; 1861 cmap->cmap_chunksperbf = max_backfile_size / chunksz; 1862 1863 /* 1864 * allocate one bit per chunk for the bitmaps, round up 1865 */ 1866 cmap->cmap_bmsize = (nchunks + (NBBY - 1)) / NBBY; 1867 cmap->cmap_hastrans = kmem_zalloc(cmap->cmap_bmsize, KM_SLEEP); 1868 cmap->cmap_candidate = kmem_zalloc(cmap->cmap_bmsize, KM_SLEEP); 1869 1870 sidp->sid_cowinfo = cowp; 1871 1872 /* initialize kstats for this snapshot */ 1873 mountpoint = vfs_getmntpoint(fsvp->v_vfsp); 1874 fssnap_create_kstats(sidp, sidp->sid_snapnumber, 1875 refstr_value(mountpoint), backpath); 1876 refstr_rele(mountpoint); 1877 1878 mutex_exit(&snapshot_mutex); 1879 1880 /* 1881 * return with snapshot id rwlock held as a writer until 1882 * fssnap_create_done is called 1883 */ 1884 return (sidp); 1885 } 1886 1887 /* 1888 * fssnap_set_candidate_impl() - mark a chunk as a candidate for copy-on-write 1889 * 1890 * sets a bit in the candidate bitmap that indicates that a chunk is a 1891 * candidate for copy-on-write. Typically, chunks that are allocated on 1892 * the file system at the time the snapshot is taken are candidates, 1893 * while chunks that have no allocated data do not need to be copied. 1894 * Chunks containing metadata must be marked as candidates as well. 1895 */ 1896 static void 1897 fssnap_set_candidate_impl(void *snapshot_id, chunknumber_t chunknumber) 1898 { 1899 struct snapshot_id *sid = snapshot_id; 1900 struct cow_info *cowp = sid->sid_cowinfo; 1901 struct cow_map *cmap = &cowp->cow_map; 1902 1903 /* simple bitmap operation for now */ 1904 ASSERT(chunknumber < (cmap->cmap_bmsize * NBBY)); 1905 setbit(cmap->cmap_candidate, chunknumber); 1906 } 1907 1908 /* 1909 * fssnap_is_candidate_impl() - check whether a chunk is a candidate 1910 * 1911 * returns 0 if the chunk is not a candidate and 1 if the chunk is a 1912 * candidate. This can be used by the file system to change behavior for 1913 * chunks that might induce a copy-on-write. The offset is specified in 1914 * bytes since the chunk size may not be known by the file system. 1915 */ 1916 static int 1917 fssnap_is_candidate_impl(void *snapshot_id, u_offset_t off) 1918 { 1919 struct snapshot_id *sid = snapshot_id; 1920 struct cow_info *cowp = sid->sid_cowinfo; 1921 struct cow_map *cmap = &cowp->cow_map; 1922 ulong_t chunknumber = off / cmap->cmap_chunksz; 1923 1924 /* simple bitmap operation for now */ 1925 ASSERT(chunknumber < (cmap->cmap_bmsize * NBBY)); 1926 return (isset(cmap->cmap_candidate, chunknumber)); 1927 } 1928 1929 /* 1930 * fssnap_create_done_impl() - complete the snapshot setup process 1931 * 1932 * called when the file system is done populating the candidate bitmap 1933 * and it is ready to start using the snapshot. This routine releases 1934 * the snapshot locks, allows taskq tasks to start processing, and 1935 * creates the device minor nodes associated with the snapshot. 1936 */ 1937 static int 1938 fssnap_create_done_impl(void *snapshot_id) 1939 { 1940 struct snapshot_id **sidpp, *sidp = snapshot_id; 1941 struct cow_info *cowp; 1942 struct cow_map *cmap; 1943 int snapnumber = -1; 1944 char name[20]; 1945 1946 /* sid rwlock and cmap rwlock should be taken from fssnap_create */ 1947 ASSERT(sidp); 1948 ASSERT(RW_WRITE_HELD(&sidp->sid_rwlock)); 1949 ASSERT(sidp->sid_cowinfo); 1950 1951 cowp = sidp->sid_cowinfo; 1952 cmap = &cowp->cow_map; 1953 1954 ASSERT(RW_WRITE_HELD(&cmap->cmap_rwlock)); 1955 1956 sidp->sid_flags &= ~(SID_CREATING | SID_DISABLED); 1957 snapnumber = sidp->sid_snapnumber; 1958 1959 /* allocate state structure and find new snapshot id */ 1960 if (ddi_soft_state_zalloc(statep, snapnumber) != DDI_SUCCESS) { 1961 cmn_err(CE_WARN, 1962 "snap_ioctl: create: could not allocate " 1963 "state for snapshot %d.", snapnumber); 1964 snapnumber = -1; 1965 goto out; 1966 } 1967 1968 sidpp = ddi_get_soft_state(statep, snapnumber); 1969 *sidpp = sidp; 1970 1971 /* create minor node based on snapshot number */ 1972 ASSERT(fssnap_dip != NULL); 1973 (void) snprintf(name, sizeof (name), "%d", snapnumber); 1974 if (ddi_create_minor_node(fssnap_dip, name, S_IFBLK, 1975 snapnumber, DDI_PSEUDO, 0) != DDI_SUCCESS) { 1976 cmn_err(CE_WARN, "snap_ioctl: could not create " 1977 "block minor node for snapshot %d.", snapnumber); 1978 snapnumber = -1; 1979 goto out; 1980 } 1981 1982 (void) snprintf(name, sizeof (name), "%d,raw", snapnumber); 1983 if (ddi_create_minor_node(fssnap_dip, name, S_IFCHR, 1984 snapnumber, DDI_PSEUDO, 0) != DDI_SUCCESS) { 1985 cmn_err(CE_WARN, "snap_ioctl: could not create " 1986 "character minor node for snapshot %d.", snapnumber); 1987 snapnumber = -1; 1988 } 1989 1990 out: 1991 rw_exit(&sidp->sid_rwlock); 1992 rw_exit(&cmap->cmap_rwlock); 1993 1994 /* let the taskq threads start processing */ 1995 taskq_resume(cowp->cow_taskq); 1996 1997 return (snapnumber); 1998 } 1999 2000 /* 2001 * fssnap_delete_impl() - delete a snapshot 2002 * 2003 * used when a snapshot is no longer needed. This is called by the file 2004 * system when it receives an ioctl request to delete a snapshot. It is 2005 * also called internally when error conditions such as disk full, errors 2006 * writing to the backing file, or backing file maxsize exceeded occur. 2007 * If the snapshot device is busy when the delete request is received, 2008 * all state will be deleted except for the soft state and device files 2009 * associated with the snapshot; they will be deleted when the snapshot 2010 * device is closed. 2011 * 2012 * NOTE this function takes a POINTER TO A POINTER to the snapshot id, 2013 * and expects to be able to set the handle held by the file system to 2014 * NULL. This depends on the file system checking that variable for NULL 2015 * before calling fssnap_strategy(). 2016 */ 2017 static int 2018 fssnap_delete_impl(void *snapshot_id) 2019 { 2020 struct snapshot_id **sidpp = (struct snapshot_id **)snapshot_id; 2021 struct snapshot_id *sidp; 2022 struct snapshot_id **statesidpp; 2023 struct cow_info *cowp; 2024 struct cow_map *cmap; 2025 char name[20]; 2026 int snapnumber = -1; 2027 vnode_t **vpp; 2028 2029 /* 2030 * sidp is guaranteed to be valid if sidpp is valid because 2031 * the snapshot list is append-only. 2032 */ 2033 if (sidpp == NULL) { 2034 return (-1); 2035 } 2036 2037 sidp = *sidpp; 2038 rw_enter(&sidp->sid_rwlock, RW_WRITER); 2039 2040 ASSERT(RW_WRITE_HELD(&sidp->sid_rwlock)); 2041 2042 /* 2043 * double check that the snapshot is still valid for THIS file system 2044 */ 2045 if (*sidpp == NULL) { 2046 rw_exit(&sidp->sid_rwlock); 2047 return (-1); 2048 } 2049 2050 /* 2051 * Now we know the snapshot is still valid and will not go away 2052 * because we have the write lock. Once the state is transitioned 2053 * to "disabling", the sid_rwlock can be released. Any pending I/O 2054 * waiting for the lock as a reader will check for this state and 2055 * abort without touching data that may be getting freed. 2056 */ 2057 sidp->sid_flags |= SID_DISABLING; 2058 if (sidp->sid_flags & SID_DELETE) { 2059 cmn_err(CE_WARN, "Snapshot %d automatically deleted.", 2060 sidp->sid_snapnumber); 2061 sidp->sid_flags &= ~(SID_DELETE); 2062 } 2063 2064 2065 /* 2066 * This is pointing into file system specific data! The assumption is 2067 * that fssnap_strategy() gets called from the file system based on 2068 * whether this reference to the snapshot_id is NULL or not. So 2069 * setting this to NULL should disable snapshots for the file system. 2070 */ 2071 *sidpp = NULL; 2072 2073 /* remove cowinfo */ 2074 cowp = sidp->sid_cowinfo; 2075 if (cowp == NULL) { 2076 rw_exit(&sidp->sid_rwlock); 2077 return (-1); 2078 } 2079 rw_exit(&sidp->sid_rwlock); 2080 2081 /* destroy task queues first so they don't reference freed data. */ 2082 if (cowp->cow_taskq) { 2083 taskq_destroy(cowp->cow_taskq); 2084 cowp->cow_taskq = NULL; 2085 } 2086 2087 if (cowp->cow_backfile_array != NULL) { 2088 for (vpp = cowp->cow_backfile_array; *vpp; vpp++) 2089 VN_RELE(*vpp); 2090 kmem_free(cowp->cow_backfile_array, 2091 (cowp->cow_backcount + 1) * sizeof (vnode_t *)); 2092 cowp->cow_backfile_array = NULL; 2093 } 2094 2095 sidp->sid_cowinfo = NULL; 2096 2097 /* remove cmap */ 2098 cmap = &cowp->cow_map; 2099 ASSERT(cmap); 2100 2101 if (cmap->cmap_candidate) 2102 kmem_free(cmap->cmap_candidate, cmap->cmap_bmsize); 2103 2104 if (cmap->cmap_hastrans) 2105 kmem_free(cmap->cmap_hastrans, cmap->cmap_bmsize); 2106 2107 if (cmap->cmap_table) 2108 transtbl_free(&cowp->cow_map); 2109 2110 rw_destroy(&cmap->cmap_rwlock); 2111 2112 while (cmap->cmap_waiters) { 2113 sema_p(&cmap->cmap_throttle_sem); 2114 sema_v(&cmap->cmap_throttle_sem); 2115 } 2116 sema_destroy(&cmap->cmap_throttle_sem); 2117 2118 /* remove kstats */ 2119 fssnap_delete_kstats(cowp); 2120 2121 kmem_free(cowp, sizeof (struct cow_info)); 2122 2123 statesidpp = ddi_get_soft_state(statep, sidp->sid_snapnumber); 2124 if (statesidpp == NULL || *statesidpp == NULL) { 2125 cmn_err(CE_WARN, 2126 "fssnap_delete_impl: could not find state for snapshot %d.", 2127 sidp->sid_snapnumber); 2128 } 2129 ASSERT(*statesidpp == sidp); 2130 2131 /* 2132 * Leave the node in the list marked DISABLED so it can be reused 2133 * and avoid many race conditions. Return the snapshot number 2134 * that was deleted. 2135 */ 2136 mutex_enter(&snapshot_mutex); 2137 rw_enter(&sidp->sid_rwlock, RW_WRITER); 2138 sidp->sid_flags &= ~(SID_DISABLING); 2139 sidp->sid_flags |= SID_DISABLED; 2140 VN_RELE(sidp->sid_fvp); 2141 sidp->sid_fvp = NULL; 2142 snapnumber = sidp->sid_snapnumber; 2143 2144 /* 2145 * If the snapshot is not busy, free the device info now. Otherwise 2146 * the device nodes are freed in snap_close() when the device is 2147 * closed. The sid will not be reused until the device is not busy. 2148 */ 2149 if (SID_AVAILABLE(sidp)) { 2150 /* remove the device nodes */ 2151 ASSERT(fssnap_dip != NULL); 2152 (void) snprintf(name, sizeof (name), "%d", 2153 sidp->sid_snapnumber); 2154 ddi_remove_minor_node(fssnap_dip, name); 2155 (void) snprintf(name, sizeof (name), "%d,raw", 2156 sidp->sid_snapnumber); 2157 ddi_remove_minor_node(fssnap_dip, name); 2158 2159 /* delete the state structure */ 2160 ddi_soft_state_free(statep, sidp->sid_snapnumber); 2161 num_snapshots--; 2162 } 2163 2164 mutex_exit(&snapshot_mutex); 2165 rw_exit(&sidp->sid_rwlock); 2166 2167 return (snapnumber); 2168 } 2169 2170 /* 2171 * fssnap_create_kstats() - allocate and initialize snapshot kstats 2172 * 2173 */ 2174 static void 2175 fssnap_create_kstats(snapshot_id_t *sidp, int snapnum, 2176 const char *mountpoint, const char *backfilename) 2177 { 2178 kstat_t *num, *mntpoint, *bfname; 2179 kstat_named_t *hw; 2180 struct cow_info *cowp = sidp->sid_cowinfo; 2181 struct cow_kstat_num *stats; 2182 2183 /* update the high water mark */ 2184 if (fssnap_highwater_kstat == NULL) { 2185 cmn_err(CE_WARN, "fssnap_create_kstats: failed to lookup " 2186 "high water mark kstat."); 2187 return; 2188 } 2189 2190 hw = (kstat_named_t *)fssnap_highwater_kstat->ks_data; 2191 if (hw->value.ui32 < snapnum) 2192 hw->value.ui32 = snapnum; 2193 2194 /* initialize the mount point kstat */ 2195 kstat_delete_byname(snapname, snapnum, FSSNAP_KSTAT_MNTPT); 2196 2197 if (mountpoint != NULL) { 2198 mntpoint = kstat_create(snapname, snapnum, FSSNAP_KSTAT_MNTPT, 2199 "misc", KSTAT_TYPE_RAW, strlen(mountpoint) + 1, 0); 2200 if (mntpoint == NULL) { 2201 cowp->cow_kstat_mntpt = NULL; 2202 cmn_err(CE_WARN, "fssnap_create_kstats: failed to " 2203 "create mount point kstat"); 2204 } else { 2205 (void) strncpy(mntpoint->ks_data, mountpoint, 2206 strlen(mountpoint)); 2207 cowp->cow_kstat_mntpt = mntpoint; 2208 kstat_install(mntpoint); 2209 } 2210 } else { 2211 cowp->cow_kstat_mntpt = NULL; 2212 cmn_err(CE_WARN, "fssnap_create_kstats: mount point not " 2213 "specified."); 2214 } 2215 2216 /* initialize the backing file kstat */ 2217 kstat_delete_byname(snapname, snapnum, FSSNAP_KSTAT_BFNAME); 2218 2219 if (backfilename == NULL) { 2220 cowp->cow_kstat_bfname = NULL; 2221 } else { 2222 bfname = kstat_create(snapname, snapnum, FSSNAP_KSTAT_BFNAME, 2223 "misc", KSTAT_TYPE_RAW, strlen(backfilename) + 1, 0); 2224 if (bfname != NULL) { 2225 (void) strncpy(bfname->ks_data, backfilename, 2226 strlen(backfilename)); 2227 cowp->cow_kstat_bfname = bfname; 2228 kstat_install(bfname); 2229 } else { 2230 cowp->cow_kstat_bfname = NULL; 2231 cmn_err(CE_WARN, "fssnap_create_kstats: failed to " 2232 "create backing file name kstat"); 2233 } 2234 } 2235 2236 /* initialize numeric kstats */ 2237 kstat_delete_byname(snapname, snapnum, FSSNAP_KSTAT_NUM); 2238 2239 num = kstat_create(snapname, snapnum, FSSNAP_KSTAT_NUM, 2240 "misc", KSTAT_TYPE_NAMED, 2241 sizeof (struct cow_kstat_num) / sizeof (kstat_named_t), 2242 0); 2243 if (num == NULL) { 2244 cmn_err(CE_WARN, "fssnap_create_kstats: failed to create " 2245 "numeric kstats"); 2246 cowp->cow_kstat_num = NULL; 2247 return; 2248 } 2249 2250 cowp->cow_kstat_num = num; 2251 stats = num->ks_data; 2252 num->ks_update = fssnap_update_kstat_num; 2253 num->ks_private = sidp; 2254 2255 kstat_named_init(&stats->ckn_state, FSSNAP_KSTAT_NUM_STATE, 2256 KSTAT_DATA_INT32); 2257 kstat_named_init(&stats->ckn_bfsize, FSSNAP_KSTAT_NUM_BFSIZE, 2258 KSTAT_DATA_UINT64); 2259 kstat_named_init(&stats->ckn_maxsize, FSSNAP_KSTAT_NUM_MAXSIZE, 2260 KSTAT_DATA_UINT64); 2261 kstat_named_init(&stats->ckn_createtime, FSSNAP_KSTAT_NUM_CREATETIME, 2262 KSTAT_DATA_LONG); 2263 kstat_named_init(&stats->ckn_chunksize, FSSNAP_KSTAT_NUM_CHUNKSIZE, 2264 KSTAT_DATA_UINT32); 2265 2266 /* initialize the static kstats */ 2267 stats->ckn_chunksize.value.ui32 = cowp->cow_map.cmap_chunksz; 2268 stats->ckn_maxsize.value.ui64 = cowp->cow_map.cmap_maxsize; 2269 stats->ckn_createtime.value.l = gethrestime_sec(); 2270 2271 kstat_install(num); 2272 } 2273 2274 /* 2275 * fssnap_update_kstat_num() - update a numerical snapshot kstat value 2276 * 2277 */ 2278 int 2279 fssnap_update_kstat_num(kstat_t *ksp, int rw) 2280 { 2281 snapshot_id_t *sidp = (snapshot_id_t *)ksp->ks_private; 2282 struct cow_info *cowp = sidp->sid_cowinfo; 2283 struct cow_kstat_num *stats = ksp->ks_data; 2284 2285 if (rw == KSTAT_WRITE) 2286 return (EACCES); 2287 2288 /* state */ 2289 if (sidp->sid_flags & SID_CREATING) 2290 stats->ckn_state.value.i32 = COWSTATE_CREATING; 2291 else if (SID_INACTIVE(sidp)) 2292 stats->ckn_state.value.i32 = COWSTATE_DISABLED; 2293 else if (SID_BUSY(sidp)) 2294 stats->ckn_state.value.i32 = COWSTATE_ACTIVE; 2295 else 2296 stats->ckn_state.value.i32 = COWSTATE_IDLE; 2297 2298 /* bfsize */ 2299 stats->ckn_bfsize.value.ui64 = cowp->cow_map.cmap_nchunks * 2300 cowp->cow_map.cmap_chunksz; 2301 2302 return (0); 2303 } 2304 2305 /* 2306 * fssnap_delete_kstats() - deallocate snapshot kstats 2307 * 2308 */ 2309 void 2310 fssnap_delete_kstats(struct cow_info *cowp) 2311 { 2312 if (cowp->cow_kstat_num != NULL) { 2313 kstat_delete(cowp->cow_kstat_num); 2314 cowp->cow_kstat_num = NULL; 2315 } 2316 if (cowp->cow_kstat_mntpt != NULL) { 2317 kstat_delete(cowp->cow_kstat_mntpt); 2318 cowp->cow_kstat_mntpt = NULL; 2319 } 2320 if (cowp->cow_kstat_bfname != NULL) { 2321 kstat_delete(cowp->cow_kstat_bfname); 2322 cowp->cow_kstat_bfname = NULL; 2323 } 2324 }