7127 remove -Wno-missing-braces from Makefile.uts
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26
27 /*
28 *
29 * IEEE 1284 Parallel Port Device Driver
30 *
31 */
32
33 #include <sys/param.h>
34 #include <sys/errno.h>
35 #include <sys/file.h>
36 #include <sys/cmn_err.h>
37 #include <sys/stropts.h>
38 #include <sys/debug.h>
39 #include <sys/stream.h>
40 #include <sys/strsun.h>
41 #include <sys/kmem.h>
42 #include <sys/ddi.h>
43 #include <sys/sunddi.h>
44 #include <sys/conf.h> /* req. by dev_ops flags MTSAFE etc. */
45 #include <sys/modctl.h> /* for modldrv */
46 #include <sys/stat.h> /* ddi_create_minor_node S_IFCHR */
47 #include <sys/open.h>
48 #include <sys/ddi_impldefs.h>
49 #include <sys/kstat.h>
50
51 #include <sys/prnio.h>
52 #include <sys/ecppreg.h> /* hw description */
53 #include <sys/ecppio.h> /* ioctl description */
54 #include <sys/ecppvar.h> /* driver description */
55 #include <sys/dma_engine.h>
56 #include <sys/dma_i8237A.h>
57
58 /*
59 * Background
60 * ==========
61 * IEEE 1284-1994 standard defines "a signalling method for asynchronous,
62 * fully interlocked, bidirectional parallel communications between hosts
63 * and printers or other peripherals." (1.1) The standard defines 5 modes
64 * of operation - Compatibility, Nibble, Byte, ECP and EPP - which differ
65 * in direction, bandwidth, pins assignment, DMA capability, etc.
66 *
67 * Negotiation is a mechanism for moving between modes. Compatibility mode
68 * is a default mode, from which negotiations to other modes occur and
69 * to which both host and peripheral break in case of interface errors.
70 * Compatibility mode provides a unidirectional (forward) channel for
71 * communicating with old pre-1284 peripherals.
72 *
73 * Each mode has a number of phases. [Mode, phase] pair represents the
74 * interface state. Host initiates all transfers, though peripheral can
75 * request backchannel transfer by asserting nErr pin.
76 *
77 * Ecpp driver implements an IEEE 1284-compliant host using a combination
78 * of hardware and software. Hardware part is represented by a controller,
79 * which is a part of the SuperIO chip. Ecpp supports the following SuperIOs:
80 * PC82332/PC82336 (U5/U10/U60), PC97317 (U100), M1553 (Grover).
81 * Struct ecpp_hw describes each SuperIO and is determined in ecpp_attach().
82 *
83 * Negotiation is performed in software. Transfer may be performed either
84 * in software by driving output pins for each byte (PIO method), or with
85 * hardware assistance - SuperIO has a 16-byte FIFO, which is filled by
86 * the driver (normally using DMA), while the chip performs the actual xfer.
87 * PIO is used for Nibble and Compat, DMA is used for ECP and Compat modes.
88 *
89 * Driver currently supports the following modes:
90 *
91 * - Compatibility mode: byte-wide forward channel ~50KB/sec;
92 * pp->io_mode defines PIO or DMA method of transfer;
93 * - Nibble mode: nibble-wide (4-bit) reverse channel ~30KB/sec;
94 * - ECP mode: byte-wide bidirectional channel (~1MB/sec);
95 *
96 * Theory of operation
97 * ===================
98 * The manner in which ecpp drives 1284 interface is that of a state machine.
99 * State is a combination of 1284 mode {ECPP_*_MODE}, 1284 phase {ECPP_PHASE_*}
100 * and transfer method {PIO, DMA}. State is a function of application actions
101 * {write(2), ioctl(2)} and peripheral reaction.
102 *
103 * 1284 interface state is described by the following variables:
104 * pp->current_mode -- 1284 mode used for forward transfers;
105 * pp->backchannel -- 1284 mode used for backward transfers;
106 * pp->curent_phase -- 1284 phase;
107 *
108 * Bidirectional operation in Compatibility mode is provided by a combination:
109 * pp->current_mode == ECPP_COMPAT_MODE && pp->backchannel == ECPP_NIBBLE_MODE
110 * ECPP_CENTRONICS means no backchannel
111 *
112 * Driver internal state is defined by pp->e_busy as follows:
113 * ECPP_IDLE -- idle, no active transfers;
114 * ECPP_BUSY -- transfer is in progress;
115 * ECPP_ERR -- have data to transfer, but peripheral can`t receive data;
116 * ECPP_FLUSH -- flushing the queues;
117 *
118 * When opened, driver is in ECPP_IDLE state, current mode is ECPP_CENTRONICS
119 * Default negotiation tries to negotiate to the best mode supported by printer,
120 * sets pp->current_mode and pp->backchannel accordingly.
121 *
122 * When output data arrives in M_DATA mblks ecpp_wput() puts them on the queue
123 * to let ecpp_wsrv() concatenate small blocks into one big transfer
124 * by copying them into pp->ioblock. If first the mblk data is bigger than
125 * pp->ioblock, then it is used instead of i/o block (pointed by pp->msg)
126 *
127 * Before starting the transfer the driver will check if peripheral is ready
128 * by calling ecpp_check_status() and if it is not, driver goes ECPP_ERR state
129 * and schedules ecpp_wsrv_timer() which would qenable() the wq, effectively
130 * rechecking the peripheral readiness and restarting itself until it is ready.
131 * The transfer is then started by calling ecpp_start(), driver goes ECPP_BUSY
132 *
133 * While transfer is in progress all arriving messages will be queued up.
134 * Transfer can end up in either of two ways:
135 * - interrupt occurs, ecpp_isr() checks if all the data was transferred, if so
136 * cleanup and go ECPP_IDLE, otherwise putback untransferred and qenable();
137 * - ecpp_xfer_timeout() cancels the transfer and puts back untransferred data;
138 *
139 * PIO transfer method is very CPU intensive: for each sent byte the peripheral
140 * state is checked, then the byte is transfered and driver waits for an nAck
141 * interrupt; ecpp_isr() will then look if there is more data and if so
142 * triggers the soft interrupt, which transfers the next byte. PIO method
143 * is needed only for legacy printers which are sensitive to strobe problem
144 * (Bugid 4192788).
145 *
146 * ecpp_wsrv() is responsible for both starting transfers (ecpp_start()) and
147 * going idle (ecpp_idle_phase()). Many routines qenable() the write queue,
148 * meaning "check if there are pending requests, process them and go idle".
149 *
150 * In it`s idle state the driver will always try to listen to the backchannel
151 * (as advised by 1284).
152 *
153 * The mechanism for handling backchannel requests is as follows:
154 * - when the peripheral has data to send it asserts nErr pin
155 * (and also nAck in Nibble Mode) which results in an interrupt on the host;
156 * - ISR creates M_CTL message containing an ECPP_BACKCHANNEL byte and
157 * puts it back on the write queue;
158 * - ecpp_wsrv() gets M_CTL and calls ecpp_peripheral2host(), which kicks off
159 * the transfer;
160 *
161 * This way Nibble and ECP mode backchannel are implemented.
162 * If the read queue gets full, backchannel request is rejected.
163 * As the application reads data and queue size falls below the low watermark,
164 * ecpp_rsrv() gets called and enables the backchannel again.
165 *
166 * Future enhancements
167 * ===================
168 *
169 * Support new modes: Byte and EPP.
170 */
171
172 #ifndef ECPP_DEBUG
173 #define ECPP_DEBUG 0
174 #endif /* ECPP_DEBUG */
175 int ecpp_debug = ECPP_DEBUG;
176
177 int noecp = 0; /* flag not to use ECP mode */
178
179 /* driver entry point fn definitions */
180 static int ecpp_open(queue_t *, dev_t *, int, int, cred_t *);
181 static int ecpp_close(queue_t *, int, cred_t *);
182 static uint_t ecpp_isr(caddr_t);
183 static uint_t ecpp_softintr(caddr_t);
184
185 /* configuration entry point fn definitions */
186 static int ecpp_getinfo(dev_info_t *, ddi_info_cmd_t, void *, void **);
187 static int ecpp_attach(dev_info_t *, ddi_attach_cmd_t);
188 static int ecpp_detach(dev_info_t *, ddi_detach_cmd_t);
189 static struct ecpp_hw_bind *ecpp_determine_sio_type(struct ecppunit *);
190
191 /* isr support routines */
192 static uint_t ecpp_nErr_ihdlr(struct ecppunit *);
193 static uint_t ecpp_pio_ihdlr(struct ecppunit *);
194 static uint_t ecpp_dma_ihdlr(struct ecppunit *);
195 static uint_t ecpp_M1553_intr(struct ecppunit *);
196
197 /* configuration support routines */
198 static void ecpp_get_props(struct ecppunit *);
199
200 /* Streams Routines */
201 static int ecpp_wput(queue_t *, mblk_t *);
202 static int ecpp_wsrv(queue_t *);
203 static int ecpp_rsrv(queue_t *);
204 static void ecpp_flush(struct ecppunit *, int);
205 static void ecpp_start(struct ecppunit *, caddr_t, size_t);
206
207 /* ioctl handling */
208 static void ecpp_putioc(queue_t *, mblk_t *);
209 static void ecpp_srvioc(queue_t *, mblk_t *);
210 static void ecpp_wput_iocdata_devid(queue_t *, mblk_t *, uintptr_t);
211 static void ecpp_putioc_copyout(queue_t *, mblk_t *, void *, int);
212 static void ecpp_putioc_stateful_copyin(queue_t *, mblk_t *, size_t);
213 static void ecpp_srvioc_devid(queue_t *, mblk_t *,
214 struct ecpp_device_id *, int *);
215 static void ecpp_srvioc_prnif(queue_t *, mblk_t *);
216 static void ecpp_ack_ioctl(queue_t *, mblk_t *);
217 static void ecpp_nack_ioctl(queue_t *, mblk_t *, int);
218
219 /* kstat routines */
220 static void ecpp_kstat_init(struct ecppunit *);
221 static int ecpp_kstat_update(kstat_t *, int);
222 static int ecpp_kstatintr_update(kstat_t *, int);
223
224 /* dma routines */
225 static void ecpp_putback_untransfered(struct ecppunit *, void *, uint_t);
226 static uint8_t ecpp_setup_dma_resources(struct ecppunit *, caddr_t, size_t);
227 static uint8_t ecpp_init_dma_xfer(struct ecppunit *, caddr_t, size_t);
228
229 /* pio routines */
230 static void ecpp_pio_writeb(struct ecppunit *);
231 static void ecpp_xfer_cleanup(struct ecppunit *);
232 static uint8_t ecpp_prep_pio_xfer(struct ecppunit *, caddr_t, size_t);
233
234 /* misc */
235 static uchar_t ecpp_reset_port_regs(struct ecppunit *);
236 static void ecpp_xfer_timeout(void *);
237 static void ecpp_fifo_timer(void *);
238 static void ecpp_wsrv_timer(void *);
239 static uchar_t dcr_write(struct ecppunit *, uint8_t);
240 static uchar_t ecr_write(struct ecppunit *, uint8_t);
241 static uchar_t ecpp_check_status(struct ecppunit *);
242 static int ecpp_backchan_req(struct ecppunit *);
243 static void ecpp_untimeout_unblock(struct ecppunit *, timeout_id_t *);
244 static uint_t ecpp_get_prn_ifcap(struct ecppunit *);
245
246 /* stubs */
247 static void empty_config_mode(struct ecppunit *);
248 static void empty_mask_intr(struct ecppunit *);
249
250 /* PC87332 support */
251 static int pc87332_map_regs(struct ecppunit *);
252 static void pc87332_unmap_regs(struct ecppunit *);
253 static int pc87332_config_chip(struct ecppunit *);
254 static void pc87332_config_mode(struct ecppunit *);
255 static uint8_t pc87332_read_config_reg(struct ecppunit *, uint8_t);
256 static void pc87332_write_config_reg(struct ecppunit *, uint8_t, uint8_t);
257 static void cheerio_mask_intr(struct ecppunit *);
258 static void cheerio_unmask_intr(struct ecppunit *);
259 static int cheerio_dma_start(struct ecppunit *);
260 static int cheerio_dma_stop(struct ecppunit *, size_t *);
261 static size_t cheerio_getcnt(struct ecppunit *);
262 static void cheerio_reset_dcsr(struct ecppunit *);
263
264 /* PC97317 support */
265 static int pc97317_map_regs(struct ecppunit *);
266 static void pc97317_unmap_regs(struct ecppunit *);
267 static int pc97317_config_chip(struct ecppunit *);
268 static void pc97317_config_mode(struct ecppunit *);
269
270 /* M1553 Southbridge support */
271 static int m1553_map_regs(struct ecppunit *pp);
272 static void m1553_unmap_regs(struct ecppunit *pp);
273 static int m1553_config_chip(struct ecppunit *);
274 static uint8_t m1553_read_config_reg(struct ecppunit *, uint8_t);
275 static void m1553_write_config_reg(struct ecppunit *, uint8_t, uint8_t);
276
277 /* M1553 Southbridge DMAC 8237 support routines */
278 static int dma8237_dma_start(struct ecppunit *);
279 static int dma8237_dma_stop(struct ecppunit *, size_t *);
280 static size_t dma8237_getcnt(struct ecppunit *);
281 static void dma8237_write_addr(struct ecppunit *, uint32_t);
282 static void dma8237_write_count(struct ecppunit *, uint32_t);
283 static uint32_t dma8237_read_count(struct ecppunit *);
284 static void dma8237_write(struct ecppunit *, int, uint8_t);
285 static uint8_t dma8237_read(struct ecppunit *, int);
286 #ifdef INCLUDE_DMA8237_READ_ADDR
287 static uint32_t dma8237_read_addr(struct ecppunit *);
288 #endif
289
290 /* i86 PC support rountines */
291
292 #if defined(__x86)
293 static int x86_dma_start(struct ecppunit *);
294 static int x86_dma_stop(struct ecppunit *, size_t *);
295 static int x86_map_regs(struct ecppunit *);
296 static void x86_unmap_regs(struct ecppunit *);
297 static int x86_config_chip(struct ecppunit *);
298 static size_t x86_getcnt(struct ecppunit *);
299 #endif
300
301 /* IEEE 1284 phase transitions */
302 static void ecpp_1284_init_interface(struct ecppunit *);
303 static int ecpp_1284_termination(struct ecppunit *);
304 static uchar_t ecpp_idle_phase(struct ecppunit *);
305 static int ecp_forward2reverse(struct ecppunit *);
306 static int ecp_reverse2forward(struct ecppunit *);
307 static int read_nibble_backchan(struct ecppunit *);
308
309 /* reverse transfers */
310 static uint_t ecpp_peripheral2host(struct ecppunit *);
311 static uchar_t ecp_peripheral2host(struct ecppunit *);
312 static uchar_t nibble_peripheral2host(struct ecppunit *pp, uint8_t *);
313 static int ecpp_getdevid(struct ecppunit *, uint8_t *, int *, int);
314 static void ecpp_ecp_read_timeout(void *);
315 static void ecpp_ecp_read_completion(struct ecppunit *);
316
317 /* IEEE 1284 mode transitions */
318 static void ecpp_default_negotiation(struct ecppunit *);
319 static int ecpp_mode_negotiation(struct ecppunit *, uchar_t);
320 static int ecpp_1284_negotiation(struct ecppunit *, uint8_t, uint8_t *);
321 static int ecp_negotiation(struct ecppunit *);
322 static int nibble_negotiation(struct ecppunit *);
323 static int devidnib_negotiation(struct ecppunit *);
324
325 /* IEEE 1284 utility routines */
326 static int wait_dsr(struct ecppunit *, uint8_t, uint8_t, int);
327
328 /* debugging functions */
329 static void ecpp_error(dev_info_t *, char *, ...);
330 static uchar_t ecpp_get_error_status(uchar_t);
331
332 /*
333 * Chip-dependent structures
334 */
335 static ddi_dma_attr_t cheerio_dma_attr = {
336 DMA_ATTR_VERSION, /* version */
337 0x00000000ull, /* dlim_addr_lo */
338 0xfffffffeull, /* dlim_addr_hi */
339 0xffffff, /* DMA counter register */
340 1, /* DMA address alignment */
341 0x74, /* burst sizes */
342 0x0001, /* min effective DMA size */
343 0xffff, /* maximum transfer size */
344 0xffff, /* segment boundary */
345 1, /* s/g list length */
346 1, /* granularity of device */
347 0 /* DMA flags */
348 };
349
350 static struct ecpp_hw pc87332 = {
351 pc87332_map_regs,
352 pc87332_unmap_regs,
353 pc87332_config_chip,
354 pc87332_config_mode,
355 cheerio_mask_intr,
356 cheerio_unmask_intr,
357 cheerio_dma_start,
358 cheerio_dma_stop,
359 cheerio_getcnt,
360 &cheerio_dma_attr
361 };
362
363 static struct ecpp_hw pc97317 = {
364 pc97317_map_regs,
365 pc97317_unmap_regs,
366 pc97317_config_chip,
367 pc97317_config_mode,
368 cheerio_mask_intr,
369 cheerio_unmask_intr,
370 cheerio_dma_start,
371 cheerio_dma_stop,
372 cheerio_getcnt,
373 &cheerio_dma_attr
374 };
375
376 static ddi_dma_attr_t i8237_dma_attr = {
377 DMA_ATTR_VERSION, /* version */
378 0x00000000ull, /* dlim_addr_lo */
379 0xfffffffeull, /* dlim_addr_hi */
380 0xffff, /* DMA counter register */
381 1, /* DMA address alignment */
382 0x01, /* burst sizes */
383 0x0001, /* min effective DMA size */
384 0xffff, /* maximum transfer size */
385 0x7fff, /* segment boundary */
386 1, /* s/g list length */
387 1, /* granularity of device */
388 0 /* DMA flags */
389 };
390
391 static struct ecpp_hw m1553 = {
392 m1553_map_regs,
393 m1553_unmap_regs,
394 m1553_config_chip,
395 empty_config_mode, /* no config_mode */
396 empty_mask_intr, /* no mask_intr */
397 empty_mask_intr, /* no unmask_intr */
398 dma8237_dma_start,
399 dma8237_dma_stop,
400 dma8237_getcnt,
401 &i8237_dma_attr
402 };
403
404 #if defined(__x86)
405 static ddi_dma_attr_t sb_dma_attr = {
406 DMA_ATTR_VERSION, /* version */
407 0x00000000ull, /* dlim_addr_lo */
408 0xffffff, /* dlim_addr_hi */
409 0xffff, /* DMA counter register */
410 1, /* DMA address alignment */
411 0x01, /* burst sizes */
412 0x0001, /* min effective DMA size */
413 0xffffffff, /* maximum transfer size */
414 0xffff, /* segment boundary */
415 1, /* s/g list length */
416 1, /* granularity of device */
417 0 /* DMA flags */
418 };
419
420 static struct ecpp_hw x86 = {
421 x86_map_regs,
422 x86_unmap_regs,
423 x86_config_chip,
424 empty_config_mode, /* no config_mode */
425 empty_mask_intr, /* no mask_intr */
426 empty_mask_intr, /* no unmask_intr */
427 x86_dma_start,
428 x86_dma_stop,
429 x86_getcnt,
430 &sb_dma_attr
431 };
432 #endif
433
434 /*
435 * list of supported devices
436 */
437 struct ecpp_hw_bind ecpp_hw_bind[] = {
438 { "ns87317-ecpp", &pc97317, "PC97317" },
439 { "pnpALI,1533,3", &m1553, "M1553" },
440 { "ecpp", &pc87332, "PC87332" },
441 #if defined(__x86)
442 { "lp", &x86, "i86pc"},
443 #endif
444 };
445
446 static ddi_device_acc_attr_t acc_attr = {
447 DDI_DEVICE_ATTR_V0,
448 DDI_STRUCTURE_LE_ACC,
449 DDI_STRICTORDER_ACC
450 };
451
452 static struct ecpp_transfer_parms default_xfer_parms = {
453 FWD_TIMEOUT_DEFAULT, /* write timeout in seconds */
454 ECPP_CENTRONICS /* supported mode */
455 };
456
457 /* prnio interface info string */
458 static const char prn_ifinfo[] = PRN_PARALLEL;
459
460 /* prnio timeouts */
461 static const struct prn_timeouts prn_timeouts_default = {
462 FWD_TIMEOUT_DEFAULT, /* forward timeout */
463 REV_TIMEOUT_DEFAULT /* reverse timeout */
464 };
465
466 static int ecpp_isr_max_delay = ECPP_ISR_MAX_DELAY;
467 static int ecpp_def_timeout = 90; /* left in for 2.7 compatibility */
468
469 static void *ecppsoft_statep;
470
471 /*
472 * STREAMS framework manages locks for these structures
473 */
474 _NOTE(SCHEME_PROTECTS_DATA("unique per call", iocblk))
475 _NOTE(SCHEME_PROTECTS_DATA("unique per call", datab))
476 _NOTE(SCHEME_PROTECTS_DATA("unique per call", msgb))
477 _NOTE(SCHEME_PROTECTS_DATA("unique per call", queue))
478 _NOTE(SCHEME_PROTECTS_DATA("unique per call", copyreq))
479 _NOTE(SCHEME_PROTECTS_DATA("unique per call", stroptions))
480
481 struct module_info ecppinfo = {
482 /* id, name, min pkt siz, max pkt siz, hi water, low water */
483 42, "ecpp", 0, IO_BLOCK_SZ, ECPPHIWAT, ECPPLOWAT
484 };
485
486 static struct qinit ecpp_rinit = {
487 putq, ecpp_rsrv, ecpp_open, ecpp_close, NULL, &ecppinfo, NULL
488 };
489
490 static struct qinit ecpp_wint = {
491 ecpp_wput, ecpp_wsrv, ecpp_open, ecpp_close, NULL, &ecppinfo, NULL
492 };
493
494 struct streamtab ecpp_str_info = {
495 &ecpp_rinit, &ecpp_wint, NULL, NULL
496 };
497
498 static struct cb_ops ecpp_cb_ops = {
499 nodev, /* cb_open */
500 nodev, /* cb_close */
501 nodev, /* cb_strategy */
502 nodev, /* cb_print */
503 nodev, /* cb_dump */
504 nodev, /* cb_read */
505 nodev, /* cb_write */
506 nodev, /* cb_ioctl */
507 nodev, /* cb_devmap */
508 nodev, /* cb_mmap */
509 nodev, /* cb_segmap */
510 nochpoll, /* cb_chpoll */
511 ddi_prop_op, /* cb_prop_op */
512 &ecpp_str_info, /* cb_stream */
513 (D_NEW | D_MP | D_MTPERQ) /* cb_flag */
514 };
515
516 /*
517 * Declare ops vectors for auto configuration.
518 */
519 struct dev_ops ecpp_ops = {
520 DEVO_REV, /* devo_rev */
521 0, /* devo_refcnt */
522 ecpp_getinfo, /* devo_getinfo */
523 nulldev, /* devo_identify */
524 nulldev, /* devo_probe */
525 ecpp_attach, /* devo_attach */
526 ecpp_detach, /* devo_detach */
527 nodev, /* devo_reset */
528 &ecpp_cb_ops, /* devo_cb_ops */
529 (struct bus_ops *)NULL, /* devo_bus_ops */
530 nulldev, /* devo_power */
531 ddi_quiesce_not_needed, /* devo_quiesce */
532 };
533
534 extern struct mod_ops mod_driverops;
535
536 static struct modldrv ecppmodldrv = {
537 &mod_driverops, /* type of module - driver */
538 "parallel port driver",
539 &ecpp_ops,
540 };
541
542 static struct modlinkage ecppmodlinkage = {
543 MODREV_1,
544 { &ecppmodldrv, NULL }
545 };
546
547
548 /*
549 *
550 * DDI/DKI entry points and supplementary routines
551 *
552 */
553
554
555 int
556 _init(void)
557 {
558 int error;
559
560 if ((error = mod_install(&ecppmodlinkage)) == 0) {
561 (void) ddi_soft_state_init(&ecppsoft_statep,
562 sizeof (struct ecppunit), 1);
563 }
564
565 return (error);
566 }
567
568 int
569 _fini(void)
570 {
571 int error;
572
573 if ((error = mod_remove(&ecppmodlinkage)) == 0) {
574 ddi_soft_state_fini(&ecppsoft_statep);
575 }
576
577 return (error);
578 }
579
580 int
581 _info(struct modinfo *modinfop)
582 {
583 return (mod_info(&ecppmodlinkage, modinfop));
584 }
585
586 static int
587 ecpp_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
588 {
589 int instance;
590 char name[16];
591 struct ecppunit *pp;
592 struct ecpp_hw_bind *hw_bind;
593
594 instance = ddi_get_instance(dip);
595
596 switch (cmd) {
597 case DDI_ATTACH:
598 break;
599
600 case DDI_RESUME:
601 if (!(pp = ddi_get_soft_state(ecppsoft_statep, instance))) {
602 return (DDI_FAILURE);
603 }
604
605 mutex_enter(&pp->umutex);
606
607 pp->suspended = FALSE;
608
609 /*
610 * Initialize the chip and restore current mode if needed
611 */
612 (void) ECPP_CONFIG_CHIP(pp);
613 (void) ecpp_reset_port_regs(pp);
614
615 if (pp->oflag == TRUE) {
616 int current_mode = pp->current_mode;
617
618 (void) ecpp_1284_termination(pp);
619 (void) ecpp_mode_negotiation(pp, current_mode);
620 }
621
622 mutex_exit(&pp->umutex);
623
624 return (DDI_SUCCESS);
625
626 default:
627 return (DDI_FAILURE);
628 }
629
630 if (ddi_soft_state_zalloc(ecppsoft_statep, instance) != 0) {
631 ecpp_error(dip, "ddi_soft_state_zalloc failed\n");
632 goto fail;
633 }
634
635 pp = ddi_get_soft_state(ecppsoft_statep, instance);
636
637 pp->dip = dip;
638 pp->suspended = FALSE;
639
640 /*
641 * Determine SuperIO type and set chip-dependent variables
642 */
643 hw_bind = ecpp_determine_sio_type(pp);
644
645 if (hw_bind == NULL) {
646 cmn_err(CE_NOTE, "parallel port controller not supported");
647 goto fail_sio;
648 } else {
649 pp->hw = hw_bind->hw;
650 ecpp_error(pp->dip, "SuperIO type: %s\n", hw_bind->info);
651 }
652
653 /*
654 * Map registers
655 */
656 if (ECPP_MAP_REGS(pp) != SUCCESS) {
657 goto fail_map;
658 }
659
660 if (ddi_dma_alloc_handle(dip, pp->hw->attr, DDI_DMA_DONTWAIT,
661 NULL, &pp->dma_handle) != DDI_SUCCESS) {
662 ecpp_error(dip, "ecpp_attach: failed ddi_dma_alloc_handle\n");
663 goto fail_dma;
664 }
665
666 if (ddi_get_iblock_cookie(dip, 0,
667 &pp->ecpp_trap_cookie) != DDI_SUCCESS) {
668 ecpp_error(dip, "ecpp_attach: failed ddi_get_iblock_cookie\n");
669 goto fail_ibc;
670 }
671
672 mutex_init(&pp->umutex, NULL, MUTEX_DRIVER,
673 (void *)pp->ecpp_trap_cookie);
674
675 cv_init(&pp->pport_cv, NULL, CV_DRIVER, NULL);
676
677 if (ddi_add_intr(dip, 0, &pp->ecpp_trap_cookie, NULL, ecpp_isr,
678 (caddr_t)pp) != DDI_SUCCESS) {
679 ecpp_error(dip, "ecpp_attach: failed to add hard intr\n");
680 goto fail_intr;
681 }
682
683 if (ddi_add_softintr(dip, DDI_SOFTINT_LOW,
684 &pp->softintr_id, 0, 0, ecpp_softintr,
685 (caddr_t)pp) != DDI_SUCCESS) {
686 ecpp_error(dip, "ecpp_attach: failed to add soft intr\n");
687 goto fail_softintr;
688 }
689
690 (void) sprintf(name, "ecpp%d", instance);
691
692 if (ddi_create_minor_node(dip, name, S_IFCHR, instance,
693 DDI_NT_PRINTER, NULL) == DDI_FAILURE) {
694 ecpp_error(dip, "ecpp_attach: create_minor_node failed\n");
695 goto fail_minor;
696 }
697
698 pp->ioblock = (caddr_t)kmem_alloc(IO_BLOCK_SZ, KM_SLEEP);
699 if (pp->ioblock == NULL) {
700 ecpp_error(dip, "ecpp_attach: kmem_alloc failed\n");
701 goto fail_iob;
702 } else {
703 ecpp_error(pp->dip, "ecpp_attach: ioblock=0x%x\n", pp->ioblock);
704 }
705
706 ecpp_get_props(pp);
707 #if defined(__x86)
708 if (pp->hw == &x86 && pp->uh.x86.chn != 0xff) {
709 if (ddi_dmae_alloc(dip, pp->uh.x86.chn,
710 DDI_DMA_DONTWAIT, NULL) == DDI_SUCCESS)
711 ecpp_error(pp->dip, "dmae_alloc success!\n");
712 }
713 #endif
714 if (ECPP_CONFIG_CHIP(pp) == FAILURE) {
715 ecpp_error(pp->dip, "config_chip failed.\n");
716 goto fail_config;
717 }
718
719 ecpp_kstat_init(pp);
720
721 ddi_report_dev(dip);
722
723 return (DDI_SUCCESS);
724
725 fail_config:
726 ddi_prop_remove_all(dip);
727 kmem_free(pp->ioblock, IO_BLOCK_SZ);
728 fail_iob:
729 ddi_remove_minor_node(dip, NULL);
730 fail_minor:
731 ddi_remove_softintr(pp->softintr_id);
732 fail_softintr:
733 ddi_remove_intr(dip, (uint_t)0, pp->ecpp_trap_cookie);
734 fail_intr:
735 mutex_destroy(&pp->umutex);
736 cv_destroy(&pp->pport_cv);
737 fail_ibc:
738 ddi_dma_free_handle(&pp->dma_handle);
739 fail_dma:
740 ECPP_UNMAP_REGS(pp);
741 fail_map:
742 fail_sio:
743 ddi_soft_state_free(ecppsoft_statep, instance);
744 fail:
745 ecpp_error(dip, "ecpp_attach: failed.\n");
746
747 return (DDI_FAILURE);
748 }
749
750 static int
751 ecpp_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
752 {
753 int instance;
754 struct ecppunit *pp;
755
756 instance = ddi_get_instance(dip);
757
758 switch (cmd) {
759 case DDI_DETACH:
760 break;
761
762 case DDI_SUSPEND:
763 if (!(pp = ddi_get_soft_state(ecppsoft_statep, instance))) {
764 return (DDI_FAILURE);
765 }
766
767 mutex_enter(&pp->umutex);
768 ASSERT(pp->suspended == FALSE);
769
770 pp->suspended = TRUE; /* prevent new transfers */
771
772 /*
773 * Wait if there's any activity on the port
774 */
775 if ((pp->e_busy == ECPP_BUSY) || (pp->e_busy == ECPP_FLUSH)) {
776 (void) cv_reltimedwait(&pp->pport_cv, &pp->umutex,
777 SUSPEND_TOUT * drv_usectohz(1000000),
778 TR_CLOCK_TICK);
779 if ((pp->e_busy == ECPP_BUSY) ||
780 (pp->e_busy == ECPP_FLUSH)) {
781 pp->suspended = FALSE;
782 mutex_exit(&pp->umutex);
783 ecpp_error(pp->dip,
784 "ecpp_detach: suspend timeout\n");
785 return (DDI_FAILURE);
786 }
787 }
788
789 mutex_exit(&pp->umutex);
790 return (DDI_SUCCESS);
791
792 default:
793 return (DDI_FAILURE);
794 }
795
796 pp = ddi_get_soft_state(ecppsoft_statep, instance);
797 #if defined(__x86)
798 if (pp->hw == &x86 && pp->uh.x86.chn != 0xff)
799 (void) ddi_dmae_release(pp->dip, pp->uh.x86.chn);
800 #endif
801 if (pp->dma_handle != NULL)
802 ddi_dma_free_handle(&pp->dma_handle);
803
804 ddi_remove_minor_node(dip, NULL);
805
806 ddi_remove_softintr(pp->softintr_id);
807
808 ddi_remove_intr(dip, (uint_t)0, pp->ecpp_trap_cookie);
809
810 if (pp->ksp) {
811 kstat_delete(pp->ksp);
812 }
813 if (pp->intrstats) {
814 kstat_delete(pp->intrstats);
815 }
816
817 cv_destroy(&pp->pport_cv);
818
819 mutex_destroy(&pp->umutex);
820
821 ECPP_UNMAP_REGS(pp);
822
823 kmem_free(pp->ioblock, IO_BLOCK_SZ);
824
825 ddi_prop_remove_all(dip);
826
827 ddi_soft_state_free(ecppsoft_statep, instance);
828
829 return (DDI_SUCCESS);
830
831 }
832
833 /*
834 * ecpp_get_props() reads ecpp.conf for user defineable tuneables.
835 * If the file or a particular variable is not there, a default value
836 * is assigned.
837 */
838
839 static void
840 ecpp_get_props(struct ecppunit *pp)
841 {
842 char *prop;
843 #if defined(__x86)
844 int len;
845 int value;
846 #endif
847 /*
848 * If fast_centronics is TRUE, non-compliant IEEE 1284
849 * peripherals ( Centronics peripherals) will operate in DMA mode.
850 * Transfers betwee main memory and the device will be via DMA;
851 * peripheral handshaking will be conducted by superio logic.
852 * If ecpp can not read the variable correctly fast_centronics will
853 * be set to FALSE. In this case, transfers and handshaking
854 * will be conducted by PIO for Centronics devices.
855 */
856 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, pp->dip, 0,
857 "fast-centronics", &prop) == DDI_PROP_SUCCESS) {
858 pp->fast_centronics =
859 (strcmp(prop, "true") == 0) ? TRUE : FALSE;
860 ddi_prop_free(prop);
861 } else {
862 pp->fast_centronics = FALSE;
863 }
864
865 /*
866 * If fast-1284-compatible is set to TRUE, when ecpp communicates
867 * with IEEE 1284 compliant peripherals, data transfers between
868 * main memory and the parallel port will be conducted by DMA.
869 * Handshaking between the port and peripheral will be conducted
870 * by superio logic. This is the default characteristic. If
871 * fast-1284-compatible is set to FALSE, transfers and handshaking
872 * will be conducted by PIO.
873 */
874
875 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, pp->dip, 0,
876 "fast-1284-compatible", &prop) == DDI_PROP_SUCCESS) {
877 pp->fast_compat = (strcmp(prop, "true") == 0) ? TRUE : FALSE;
878 ddi_prop_free(prop);
879 } else {
880 pp->fast_compat = TRUE;
881 }
882
883 /*
884 * Some centronics peripherals require the nInit signal to be
885 * toggled to reset the device. If centronics_init_seq is set
886 * to TRUE, ecpp will toggle the nInit signal upon every ecpp_open().
887 * Applications have the opportunity to toggle the nInit signal
888 * with ioctl(2) calls as well. The default is to set it to FALSE.
889 */
890 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, pp->dip, 0,
891 "centronics-init-seq", &prop) == DDI_PROP_SUCCESS) {
892 pp->init_seq = (strcmp(prop, "true") == 0) ? TRUE : FALSE;
893 ddi_prop_free(prop);
894 } else {
895 pp->init_seq = FALSE;
896 }
897
898 /*
899 * If one of the centronics status signals are in an erroneous
900 * state, ecpp_wsrv() will be reinvoked centronics-retry ms to
901 * check if the status is ok to transfer. If the property is not
902 * found, wsrv_retry will be set to CENTRONICS_RETRY ms.
903 */
904 pp->wsrv_retry = ddi_prop_get_int(DDI_DEV_T_ANY, pp->dip, 0,
905 "centronics-retry", CENTRONICS_RETRY);
906
907 /*
908 * In PIO mode, ecpp_isr() will loop for wait for the busy signal
909 * to be deasserted before transferring the next byte. wait_for_busy
910 * is specificied in microseconds. If the property is not found
911 * ecpp_isr() will wait for a maximum of WAIT_FOR_BUSY us.
912 */
913 pp->wait_for_busy = ddi_prop_get_int(DDI_DEV_T_ANY, pp->dip, 0,
914 "centronics-wait-for-busy", WAIT_FOR_BUSY);
915
916 /*
917 * In PIO mode, centronics transfers must hold the data signals
918 * for a data_setup_time milliseconds before the strobe is asserted.
919 */
920 pp->data_setup_time = ddi_prop_get_int(DDI_DEV_T_ANY, pp->dip, 0,
921 "centronics-data-setup-time", DATA_SETUP_TIME);
922
923 /*
924 * In PIO mode, centronics transfers asserts the strobe signal
925 * for a period of strobe_pulse_width milliseconds.
926 */
927 pp->strobe_pulse_width = ddi_prop_get_int(DDI_DEV_T_ANY, pp->dip, 0,
928 "centronics-strobe-pulse-width", STROBE_PULSE_WIDTH);
929
930 /*
931 * Upon a transfer the peripheral, ecpp waits write_timeout seconds
932 * for the transmission to complete.
933 */
934 default_xfer_parms.write_timeout = ddi_prop_get_int(DDI_DEV_T_ANY,
935 pp->dip, 0, "ecpp-transfer-timeout", ecpp_def_timeout);
936
937 pp->xfer_parms = default_xfer_parms;
938
939 /*
940 * Get dma channel for M1553
941 */
942 if (pp->hw == &m1553) {
943 pp->uh.m1553.chn = ddi_prop_get_int(DDI_DEV_T_ANY,
944 pp->dip, 0, "dma-channel", 0x1);
945 ecpp_error(pp->dip, "ecpp_get_prop:chn=%x\n", pp->uh.m1553.chn);
946 }
947 #if defined(__x86)
948 len = sizeof (value);
949 /* Get dma channel for i86 pc */
950 if (pp->hw == &x86) {
951 if (ddi_prop_op(DDI_DEV_T_ANY, pp->dip, PROP_LEN_AND_VAL_BUF,
952 DDI_PROP_DONTPASS, "dma-channels", (caddr_t)&value, &len)
953 != DDI_PROP_SUCCESS) {
954 ecpp_error(pp->dip, "No dma channel found\n");
955 pp->uh.x86.chn = 0xff;
956 pp->fast_compat = FALSE;
957 pp->noecpregs = TRUE;
958 } else
959 pp->uh.x86.chn = (uint8_t)value;
960 }
961 #endif
962 /*
963 * these properties are not yet public
964 */
965 pp->ecp_rev_speed = ddi_prop_get_int(DDI_DEV_T_ANY, pp->dip, 0,
966 "ecp-rev-speed", ECP_REV_SPEED);
967
968 pp->rev_watchdog = ddi_prop_get_int(DDI_DEV_T_ANY, pp->dip, 0,
969 "rev-watchdog", REV_WATCHDOG);
970
971 ecpp_error(pp->dip,
972 "ecpp_get_prop: fast_centronics=%x, fast-1284=%x\n"
973 "ecpp_get_prop: wsrv_retry=%d, wait_for_busy=%d\n"
974 "ecpp_get_prop: data_setup=%d, strobe_pulse=%d\n"
975 "ecpp_get_prop: transfer-timeout=%d\n",
976 pp->fast_centronics, pp->fast_compat,
977 pp->wsrv_retry, pp->wait_for_busy,
978 pp->data_setup_time, pp->strobe_pulse_width,
979 pp->xfer_parms.write_timeout);
980 }
981
982 /*ARGSUSED*/
983 int
984 ecpp_getinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
985 {
986 dev_t dev = (dev_t)arg;
987 struct ecppunit *pp;
988 int instance, ret;
989
990 instance = getminor(dev);
991
992 switch (infocmd) {
993 case DDI_INFO_DEVT2DEVINFO:
994 pp = ddi_get_soft_state(ecppsoft_statep, instance);
995 if (pp != NULL) {
996 *result = pp->dip;
997 ret = DDI_SUCCESS;
998 } else {
999 ret = DDI_FAILURE;
1000 }
1001 break;
1002
1003 case DDI_INFO_DEVT2INSTANCE:
1004 *result = (void *)(uintptr_t)instance;
1005 ret = DDI_SUCCESS;
1006 break;
1007
1008 default:
1009 ret = DDI_FAILURE;
1010 break;
1011 }
1012
1013 return (ret);
1014 }
1015
1016 /*ARGSUSED2*/
1017 static int
1018 ecpp_open(queue_t *q, dev_t *dev, int flag, int sflag, cred_t *credp)
1019 {
1020 struct ecppunit *pp;
1021 int instance;
1022 struct stroptions *sop;
1023 mblk_t *mop;
1024
1025 instance = getminor(*dev);
1026
1027 if (instance < 0) {
1028 return (ENXIO);
1029 }
1030
1031 pp = (struct ecppunit *)ddi_get_soft_state(ecppsoft_statep, instance);
1032
1033 if (pp == NULL) {
1034 return (ENXIO);
1035 }
1036
1037 mutex_enter(&pp->umutex);
1038
1039 /*
1040 * Parallel port is an exclusive-use device
1041 * thus providing print job integrity
1042 */
1043 if (pp->oflag == TRUE) {
1044 ecpp_error(pp->dip, "ecpp open failed");
1045 mutex_exit(&pp->umutex);
1046 return (EBUSY);
1047 }
1048
1049 pp->oflag = TRUE;
1050
1051 /* initialize state variables */
1052 pp->prn_timeouts = prn_timeouts_default;
1053 pp->xfer_parms = default_xfer_parms;
1054 pp->current_mode = ECPP_CENTRONICS;
1055 pp->backchannel = ECPP_CENTRONICS;
1056 pp->current_phase = ECPP_PHASE_PO;
1057 pp->port = ECPP_PORT_DMA;
1058 pp->instance = instance;
1059 pp->timeout_error = 0;
1060 pp->saved_dsr = DSR_READ(pp);
1061 pp->ecpp_drain_counter = 0;
1062 pp->dma_cancelled = FALSE;
1063 pp->io_mode = ECPP_DMA;
1064 pp->joblen = 0;
1065 pp->tfifo_intr = 0;
1066 pp->softintr_pending = 0;
1067 pp->nread = 0;
1068
1069 /* clear the state flag */
1070 pp->e_busy = ECPP_IDLE;
1071
1072 pp->readq = RD(q);
1073 pp->writeq = WR(q);
1074 pp->msg = NULL;
1075
1076 RD(q)->q_ptr = WR(q)->q_ptr = (caddr_t)pp;
1077
1078 /*
1079 * Get ready: check host/peripheral, negotiate into default mode
1080 */
1081 if (ecpp_reset_port_regs(pp) == FAILURE) {
1082 mutex_exit(&pp->umutex);
1083 return (EIO);
1084 }
1085
1086 mutex_exit(&pp->umutex);
1087
1088 /*
1089 * Configure the Stream head and enable the Stream
1090 */
1091 if (!(mop = allocb(sizeof (struct stroptions), BPRI_MED))) {
1092 return (EAGAIN);
1093 }
1094
1095 mop->b_datap->db_type = M_SETOPTS;
1096 mop->b_wptr += sizeof (struct stroptions);
1097
1098 /*
1099 * if device is open with O_NONBLOCK flag set, let read(2) return 0
1100 * if no data waiting to be read. Writes will block on flow control.
1101 */
1102 sop = (struct stroptions *)mop->b_rptr;
1103 sop->so_flags = SO_HIWAT | SO_LOWAT | SO_NDELON | SO_MREADON;
1104 sop->so_hiwat = ECPPHIWAT;
1105 sop->so_lowat = ECPPLOWAT;
1106
1107 /* enable the stream */
1108 qprocson(q);
1109
1110 putnext(q, mop);
1111
1112 mutex_enter(&pp->umutex);
1113
1114 ecpp_default_negotiation(pp);
1115
1116 /* go revidle */
1117 (void) ecpp_idle_phase(pp);
1118
1119 ecpp_error(pp->dip,
1120 "ecpp_open: mode=%x, phase=%x ecr=%x, dsr=%x, dcr=%x\n",
1121 pp->current_mode, pp->current_phase,
1122 ECR_READ(pp), DSR_READ(pp), DCR_READ(pp));
1123
1124 mutex_exit(&pp->umutex);
1125
1126 return (0);
1127 }
1128
1129 /*ARGSUSED1*/
1130 static int
1131 ecpp_close(queue_t *q, int flag, cred_t *cred_p)
1132 {
1133 struct ecppunit *pp;
1134 timeout_id_t timeout_id, fifo_timer_id, wsrv_timer_id;
1135
1136 pp = (struct ecppunit *)q->q_ptr;
1137
1138 ecpp_error(pp->dip, "ecpp_close: entering ...\n");
1139
1140 mutex_enter(&pp->umutex);
1141
1142 /*
1143 * ecpp_close() will continue to loop until the
1144 * queue has been drained or if the thread
1145 * has received a SIG. Typically, when the queue
1146 * has data, the port will be ECPP_BUSY. However,
1147 * after a dma completes and before the wsrv
1148 * starts the next transfer, the port may be IDLE.
1149 * In this case, ecpp_close() will loop within this
1150 * while(qsize) segment. Since, ecpp_wsrv() runs
1151 * at software interupt level, this shouldn't loop
1152 * very long.
1153 */
1154 while (pp->e_busy != ECPP_IDLE || qsize(WR(q))) {
1155 if (!cv_wait_sig(&pp->pport_cv, &pp->umutex)) {
1156 ecpp_error(pp->dip, "ecpp_close:B: received SIG\n");
1157 /*
1158 * Returning from a signal such as
1159 * SIGTERM or SIGKILL
1160 */
1161 ecpp_flush(pp, FWRITE);
1162 break;
1163 } else {
1164 ecpp_error(pp->dip, "ecpp_close:rcvd cv-sig\n");
1165 }
1166 }
1167
1168 ecpp_error(pp->dip, "ecpp_close: joblen=%d, ctx_cf=%d, "
1169 "qsize(WR(q))=%d, qsize(RD(q))=%d\n",
1170 pp->joblen, pp->ctx_cf, qsize(pp->writeq), qsize(q));
1171
1172 /*
1173 * Cancel all timeouts, disable interrupts
1174 *
1175 * Note that we can`t call untimeout(9F) with mutex held:
1176 * callout may be blocked on the same mutex, and untimeout() will
1177 * cv_wait() while callout is executing, thus creating a deadlock
1178 * So we zero the timeout id's inside mutex and call untimeout later
1179 */
1180 timeout_id = pp->timeout_id;
1181 fifo_timer_id = pp->fifo_timer_id;
1182 wsrv_timer_id = pp->wsrv_timer_id;
1183
1184 pp->timeout_id = pp->fifo_timer_id = pp->wsrv_timer_id = 0;
1185
1186 pp->softintr_pending = 0;
1187 pp->dma_cancelled = TRUE;
1188 ECPP_MASK_INTR(pp);
1189
1190 mutex_exit(&pp->umutex);
1191
1192 qprocsoff(q);
1193
1194 if (timeout_id) {
1195 (void) untimeout(timeout_id);
1196 }
1197 if (fifo_timer_id) {
1198 (void) untimeout(fifo_timer_id);
1199 }
1200 if (wsrv_timer_id) {
1201 (void) untimeout(wsrv_timer_id);
1202 }
1203
1204 mutex_enter(&pp->umutex);
1205
1206 /* set link to Compatible mode */
1207 if ((pp->current_mode == ECPP_ECP_MODE) &&
1208 (pp->current_phase != ECPP_PHASE_ECP_FWD_IDLE)) {
1209 (void) ecp_reverse2forward(pp);
1210 }
1211
1212 (void) ecpp_1284_termination(pp);
1213
1214 pp->oflag = FALSE;
1215 q->q_ptr = WR(q)->q_ptr = NULL;
1216 pp->readq = pp->writeq = NULL;
1217 pp->msg = NULL;
1218
1219 ecpp_error(pp->dip, "ecpp_close: ecr=%x, dsr=%x, dcr=%x\n",
1220 ECR_READ(pp), DSR_READ(pp), DCR_READ(pp));
1221
1222 mutex_exit(&pp->umutex);
1223
1224 return (0);
1225 }
1226
1227 /*
1228 * standard put procedure for ecpp
1229 */
1230 static int
1231 ecpp_wput(queue_t *q, mblk_t *mp)
1232 {
1233 struct msgb *nmp;
1234 struct ecppunit *pp;
1235
1236 pp = (struct ecppunit *)q->q_ptr;
1237
1238 if (!mp) {
1239 return (0);
1240 }
1241
1242 if ((mp->b_wptr - mp->b_rptr) <= 0) {
1243 ecpp_error(pp->dip,
1244 "ecpp_wput:bogus packet recieved mp=%x\n", mp);
1245 freemsg(mp);
1246 return (0);
1247 }
1248
1249 switch (DB_TYPE(mp)) {
1250 case M_DATA:
1251 /*
1252 * This is a quick fix for multiple message block problem,
1253 * it will be changed later with better performance code.
1254 */
1255 if (mp->b_cont) {
1256 /*
1257 * mblk has scattered data ... do msgpullup
1258 * if it fails, continue with the current mblk
1259 */
1260 if ((nmp = msgpullup(mp, -1)) != NULL) {
1261 freemsg(mp);
1262 mp = nmp;
1263 ecpp_error(pp->dip,
1264 "ecpp_wput:msgpullup: mp=%p len=%d\n",
1265 mp, mp->b_wptr - mp->b_rptr);
1266 }
1267 }
1268
1269 /* let ecpp_wsrv() concatenate small blocks */
1270 (void) putq(q, mp);
1271
1272 break;
1273
1274 case M_CTL:
1275 (void) putq(q, mp);
1276
1277 break;
1278
1279 case M_IOCTL: {
1280 struct iocblk *iocbp;
1281
1282 iocbp = (struct iocblk *)mp->b_rptr;
1283
1284 ecpp_error(pp->dip, "ecpp_wput:M_IOCTL %x\n", iocbp->ioc_cmd);
1285
1286 mutex_enter(&pp->umutex);
1287
1288 /* TESTIO and GET_STATUS can be used during transfer */
1289 if ((pp->e_busy == ECPP_BUSY) &&
1290 (iocbp->ioc_cmd != BPPIOC_TESTIO) &&
1291 (iocbp->ioc_cmd != PRNIOC_GET_STATUS)) {
1292 mutex_exit(&pp->umutex);
1293 (void) putq(q, mp);
1294 } else {
1295 mutex_exit(&pp->umutex);
1296 ecpp_putioc(q, mp);
1297 }
1298
1299 break;
1300 }
1301
1302 case M_IOCDATA: {
1303 struct copyresp *csp;
1304
1305 ecpp_error(pp->dip, "ecpp_wput:M_IOCDATA\n");
1306
1307 csp = (struct copyresp *)mp->b_rptr;
1308
1309 /*
1310 * If copy request failed, quit now
1311 */
1312 if (csp->cp_rval != 0) {
1313 freemsg(mp);
1314 return (0);
1315 }
1316
1317 switch (csp->cp_cmd) {
1318 case ECPPIOC_SETPARMS:
1319 case ECPPIOC_SETREGS:
1320 case ECPPIOC_SETPORT:
1321 case ECPPIOC_SETDATA:
1322 case PRNIOC_SET_IFCAP:
1323 case PRNIOC_SET_TIMEOUTS:
1324 /*
1325 * need to retrieve and use the data, but if the
1326 * device is busy, wait.
1327 */
1328 (void) putq(q, mp);
1329 break;
1330
1331 case ECPPIOC_GETPARMS:
1332 case ECPPIOC_GETREGS:
1333 case ECPPIOC_GETPORT:
1334 case ECPPIOC_GETDATA:
1335 case BPPIOC_GETERR:
1336 case BPPIOC_TESTIO:
1337 case PRNIOC_GET_IFCAP:
1338 case PRNIOC_GET_STATUS:
1339 case PRNIOC_GET_1284_STATUS:
1340 case PRNIOC_GET_TIMEOUTS:
1341 /* data transfered to user space okay */
1342 ecpp_ack_ioctl(q, mp);
1343 break;
1344
1345 case ECPPIOC_GETDEVID:
1346 ecpp_wput_iocdata_devid(q, mp,
1347 offsetof(struct ecpp_device_id, rlen));
1348 break;
1349
1350 case PRNIOC_GET_1284_DEVID:
1351 ecpp_wput_iocdata_devid(q, mp,
1352 offsetof(struct prn_1284_device_id, id_rlen));
1353 break;
1354
1355 case PRNIOC_GET_IFINFO:
1356 ecpp_wput_iocdata_devid(q, mp,
1357 offsetof(struct prn_interface_info, if_rlen));
1358 break;
1359
1360 default:
1361 ecpp_nack_ioctl(q, mp, EINVAL);
1362 break;
1363 }
1364
1365 break;
1366 }
1367
1368 case M_FLUSH:
1369 ecpp_error(pp->dip, "ecpp_wput:M_FLUSH\n");
1370
1371 if (*mp->b_rptr & FLUSHW) {
1372 mutex_enter(&pp->umutex);
1373 ecpp_flush(pp, FWRITE);
1374 mutex_exit(&pp->umutex);
1375 }
1376
1377 if (*mp->b_rptr & FLUSHR) {
1378 mutex_enter(&pp->umutex);
1379 ecpp_flush(pp, FREAD);
1380 mutex_exit(&pp->umutex);
1381 qreply(q, mp);
1382 } else {
1383 freemsg(mp);
1384 }
1385
1386 break;
1387
1388 case M_READ:
1389 /*
1390 * When the user calls read(2), M_READ message is sent to us,
1391 * first byte of which is the number of requested bytes
1392 * We add up user requests and use resulting number
1393 * to calculate the reverse transfer block size
1394 */
1395 mutex_enter(&pp->umutex);
1396 if (pp->e_busy == ECPP_IDLE) {
1397 pp->nread += *(size_t *)mp->b_rptr;
1398 ecpp_error(pp->dip, "ecpp_wput: M_READ %d", pp->nread);
1399 freemsg(mp);
1400 } else {
1401 ecpp_error(pp->dip, "ecpp_wput: M_READ queueing");
1402 (void) putq(q, mp);
1403 }
1404 mutex_exit(&pp->umutex);
1405 break;
1406
1407 default:
1408 ecpp_error(pp->dip, "ecpp_wput: bad messagetype 0x%x\n",
1409 DB_TYPE(mp));
1410 freemsg(mp);
1411 break;
1412 }
1413
1414 return (0);
1415 }
1416
1417 /*
1418 * Process ECPPIOC_GETDEVID-like ioctls
1419 */
1420 static void
1421 ecpp_wput_iocdata_devid(queue_t *q, mblk_t *mp, uintptr_t rlen_offset)
1422 {
1423 struct copyresp *csp;
1424 struct ecpp_copystate *stp;
1425 mblk_t *datamp;
1426
1427 csp = (struct copyresp *)mp->b_rptr;
1428 stp = (struct ecpp_copystate *)csp->cp_private->b_rptr;
1429
1430 /* determine the state of copyin/copyout process */
1431 switch (stp->state) {
1432 case ECPP_STRUCTIN:
1433 /* user structure has arrived */
1434 (void) putq(q, mp);
1435 break;
1436
1437 case ECPP_ADDROUT:
1438 /*
1439 * data transfered to user space okay
1440 * now update user structure
1441 */
1442 datamp = allocb(sizeof (int), BPRI_MED);
1443 if (datamp == NULL) {
1444 ecpp_nack_ioctl(q, mp, ENOSR);
1445 break;
1446 }
1447
1448 *(int *)datamp->b_rptr =
1449 *(int *)((char *)&stp->un + rlen_offset);
1450 stp->state = ECPP_STRUCTOUT;
1451
1452 mcopyout(mp, csp->cp_private, sizeof (int),
1453 (char *)stp->uaddr + rlen_offset, datamp);
1454 qreply(q, mp);
1455 break;
1456
1457 case ECPP_STRUCTOUT:
1458 /* user structure was updated okay */
1459 freemsg(csp->cp_private);
1460 ecpp_ack_ioctl(q, mp);
1461 break;
1462
1463 default:
1464 ecpp_nack_ioctl(q, mp, EINVAL);
1465 break;
1466 }
1467 }
1468
1469 static uchar_t
1470 ecpp_get_error_status(uchar_t status)
1471 {
1472 uchar_t pin_status = 0;
1473
1474 if (!(status & ECPP_nERR)) {
1475 pin_status |= BPP_ERR_ERR;
1476 }
1477
1478 if (status & ECPP_PE) {
1479 pin_status |= BPP_PE_ERR;
1480 }
1481
1482 if (!(status & ECPP_SLCT)) {
1483 pin_status |= BPP_SLCT_ERR;
1484 }
1485
1486 if (!(status & ECPP_nBUSY)) {
1487 pin_status |= BPP_SLCT_ERR;
1488 }
1489
1490 return (pin_status);
1491 }
1492
1493 /*
1494 * ioctl handler for output PUT procedure.
1495 */
1496 static void
1497 ecpp_putioc(queue_t *q, mblk_t *mp)
1498 {
1499 struct iocblk *iocbp;
1500 struct ecppunit *pp;
1501
1502 pp = (struct ecppunit *)q->q_ptr;
1503
1504 iocbp = (struct iocblk *)mp->b_rptr;
1505
1506 /* I_STR ioctls are invalid */
1507 if (iocbp->ioc_count != TRANSPARENT) {
1508 ecpp_nack_ioctl(q, mp, EINVAL);
1509 return;
1510 }
1511
1512 switch (iocbp->ioc_cmd) {
1513 case ECPPIOC_SETPARMS: {
1514 mcopyin(mp, NULL, sizeof (struct ecpp_transfer_parms), NULL);
1515 qreply(q, mp);
1516 break;
1517 }
1518
1519 case ECPPIOC_GETPARMS: {
1520 struct ecpp_transfer_parms xfer_parms;
1521
1522 mutex_enter(&pp->umutex);
1523
1524 pp->xfer_parms.mode = pp->current_mode;
1525 xfer_parms = pp->xfer_parms;
1526
1527 mutex_exit(&pp->umutex);
1528
1529 ecpp_putioc_copyout(q, mp, &xfer_parms, sizeof (xfer_parms));
1530 break;
1531 }
1532
1533 case ECPPIOC_SETREGS: {
1534 mutex_enter(&pp->umutex);
1535 if (pp->current_mode != ECPP_DIAG_MODE) {
1536 mutex_exit(&pp->umutex);
1537 ecpp_nack_ioctl(q, mp, EINVAL);
1538 break;
1539 }
1540 mutex_exit(&pp->umutex);
1541
1542 mcopyin(mp, NULL, sizeof (struct ecpp_regs), NULL);
1543 qreply(q, mp);
1544 break;
1545 }
1546
1547 case ECPPIOC_GETREGS: {
1548 struct ecpp_regs rg;
1549
1550 mutex_enter(&pp->umutex);
1551
1552 if (pp->current_mode != ECPP_DIAG_MODE) {
1553 mutex_exit(&pp->umutex);
1554 ecpp_nack_ioctl(q, mp, EINVAL);
1555 break;
1556 }
1557
1558 rg.dsr = DSR_READ(pp);
1559 rg.dcr = DCR_READ(pp);
1560
1561 mutex_exit(&pp->umutex);
1562
1563 ecpp_error(pp->dip, "ECPPIOC_GETREGS: dsr=%x,dcr=%x\n",
1564 rg.dsr, rg.dcr);
1565
1566 /* these bits must be 1 */
1567 rg.dsr |= ECPP_SETREGS_DSR_MASK;
1568 rg.dcr |= ECPP_SETREGS_DCR_MASK;
1569
1570 ecpp_putioc_copyout(q, mp, &rg, sizeof (rg));
1571 break;
1572 }
1573
1574 case ECPPIOC_SETPORT:
1575 case ECPPIOC_SETDATA: {
1576 mutex_enter(&pp->umutex);
1577 if (pp->current_mode != ECPP_DIAG_MODE) {
1578 mutex_exit(&pp->umutex);
1579 ecpp_nack_ioctl(q, mp, EINVAL);
1580 break;
1581 }
1582 mutex_exit(&pp->umutex);
1583
1584 /*
1585 * each of the commands fetches a byte quantity.
1586 */
1587 mcopyin(mp, NULL, sizeof (uchar_t), NULL);
1588 qreply(q, mp);
1589 break;
1590 }
1591
1592 case ECPPIOC_GETDATA:
1593 case ECPPIOC_GETPORT: {
1594 uchar_t byte;
1595
1596 mutex_enter(&pp->umutex);
1597
1598 /* must be in diagnostic mode for these commands to work */
1599 if (pp->current_mode != ECPP_DIAG_MODE) {
1600 mutex_exit(&pp->umutex);
1601 ecpp_nack_ioctl(q, mp, EINVAL);
1602 break;
1603 }
1604
1605 if (iocbp->ioc_cmd == ECPPIOC_GETPORT) {
1606 byte = pp->port;
1607 } else if (iocbp->ioc_cmd == ECPPIOC_GETDATA) {
1608 switch (pp->port) {
1609 case ECPP_PORT_PIO:
1610 byte = DATAR_READ(pp);
1611 break;
1612 case ECPP_PORT_TDMA:
1613 byte = TFIFO_READ(pp);
1614 ecpp_error(pp->dip, "GETDATA=0x%x\n", byte);
1615 break;
1616 default:
1617 ecpp_nack_ioctl(q, mp, EINVAL);
1618 break;
1619 }
1620 } else {
1621 mutex_exit(&pp->umutex);
1622 ecpp_error(pp->dip, "weird command");
1623 ecpp_nack_ioctl(q, mp, EINVAL);
1624 break;
1625 }
1626
1627 mutex_exit(&pp->umutex);
1628
1629 ecpp_putioc_copyout(q, mp, &byte, sizeof (byte));
1630
1631 break;
1632 }
1633
1634 case BPPIOC_GETERR: {
1635 struct bpp_error_status bpp_status;
1636
1637 mutex_enter(&pp->umutex);
1638
1639 bpp_status.timeout_occurred = pp->timeout_error;
1640 bpp_status.bus_error = 0; /* not used */
1641 bpp_status.pin_status = ecpp_get_error_status(pp->saved_dsr);
1642
1643 mutex_exit(&pp->umutex);
1644
1645 ecpp_putioc_copyout(q, mp, &bpp_status, sizeof (bpp_status));
1646
1647 break;
1648 }
1649
1650 case BPPIOC_TESTIO: {
1651 mutex_enter(&pp->umutex);
1652
1653 if (!((pp->current_mode == ECPP_CENTRONICS) ||
1654 (pp->current_mode == ECPP_COMPAT_MODE))) {
1655 ecpp_nack_ioctl(q, mp, EINVAL);
1656 } else {
1657 pp->saved_dsr = DSR_READ(pp);
1658
1659 if ((pp->saved_dsr & ECPP_PE) ||
1660 !(pp->saved_dsr & ECPP_SLCT) ||
1661 !(pp->saved_dsr & ECPP_nERR)) {
1662 ecpp_nack_ioctl(q, mp, EIO);
1663 } else {
1664 ecpp_ack_ioctl(q, mp);
1665 }
1666 }
1667
1668 mutex_exit(&pp->umutex);
1669
1670 break;
1671 }
1672
1673 case PRNIOC_RESET:
1674 /*
1675 * Initialize interface only if no transfer is in progress
1676 */
1677 mutex_enter(&pp->umutex);
1678 if (pp->e_busy == ECPP_BUSY) {
1679 mutex_exit(&pp->umutex);
1680 ecpp_nack_ioctl(q, mp, EIO);
1681 } else {
1682 (void) ecpp_mode_negotiation(pp, ECPP_CENTRONICS);
1683
1684 DCR_WRITE(pp, ECPP_SLCTIN);
1685 drv_usecwait(2);
1686 DCR_WRITE(pp, ECPP_SLCTIN | ECPP_nINIT);
1687
1688 ecpp_default_negotiation(pp);
1689
1690 mutex_exit(&pp->umutex);
1691 ecpp_ack_ioctl(q, mp);
1692 }
1693 break;
1694
1695 case PRNIOC_GET_IFCAP: {
1696 uint_t ifcap;
1697
1698 mutex_enter(&pp->umutex);
1699
1700 ifcap = ecpp_get_prn_ifcap(pp);
1701
1702 mutex_exit(&pp->umutex);
1703
1704 ecpp_putioc_copyout(q, mp, &ifcap, sizeof (ifcap));
1705 break;
1706 }
1707
1708 case PRNIOC_SET_IFCAP: {
1709 mcopyin(mp, NULL, sizeof (uint_t), NULL);
1710 qreply(q, mp);
1711 break;
1712 }
1713
1714 case PRNIOC_GET_TIMEOUTS: {
1715 struct prn_timeouts timeouts;
1716
1717 mutex_enter(&pp->umutex);
1718 timeouts = pp->prn_timeouts;
1719 mutex_exit(&pp->umutex);
1720
1721 ecpp_putioc_copyout(q, mp, &timeouts, sizeof (timeouts));
1722
1723 break;
1724 }
1725
1726 case PRNIOC_SET_TIMEOUTS:
1727 mcopyin(mp, NULL, sizeof (struct prn_timeouts),
1728 *(caddr_t *)(void *)mp->b_cont->b_rptr);
1729 qreply(q, mp);
1730 break;
1731
1732 case PRNIOC_GET_STATUS: {
1733 uint8_t dsr;
1734 uint_t status;
1735
1736 mutex_enter(&pp->umutex);
1737
1738 /* DSR only makes sense in Centronics & Compat mode */
1739 if (pp->current_mode == ECPP_CENTRONICS ||
1740 pp->current_mode == ECPP_COMPAT_MODE) {
1741 dsr = DSR_READ(pp);
1742 if ((dsr & ECPP_PE) ||
1743 !(dsr & ECPP_SLCT) || !(dsr & ECPP_nERR)) {
1744 status = PRN_ONLINE;
1745 } else {
1746 status = PRN_ONLINE | PRN_READY;
1747 }
1748 } else {
1749 status = PRN_ONLINE | PRN_READY;
1750 }
1751
1752 mutex_exit(&pp->umutex);
1753
1754 ecpp_putioc_copyout(q, mp, &status, sizeof (status));
1755 break;
1756 }
1757
1758 case PRNIOC_GET_1284_STATUS: {
1759 uint8_t dsr;
1760 uchar_t status;
1761
1762 mutex_enter(&pp->umutex);
1763
1764 /* status only makes sense in Centronics & Compat mode */
1765 if (pp->current_mode != ECPP_COMPAT_MODE &&
1766 pp->current_mode != ECPP_CENTRONICS) {
1767 mutex_exit(&pp->umutex);
1768 ecpp_nack_ioctl(q, mp, EINVAL);
1769 break;
1770 }
1771
1772 dsr = DSR_READ(pp); /* read status */
1773
1774 mutex_exit(&pp->umutex);
1775
1776 ecpp_error(pp->dip, "PRNIOC_GET_STATUS: %x\n", dsr);
1777
1778 status = (dsr & (ECPP_SLCT | ECPP_PE | ECPP_nERR)) |
1779 (~dsr & ECPP_nBUSY);
1780
1781 ecpp_putioc_copyout(q, mp, &status, sizeof (status));
1782 break;
1783 }
1784
1785 case ECPPIOC_GETDEVID:
1786 ecpp_putioc_stateful_copyin(q, mp,
1787 sizeof (struct ecpp_device_id));
1788 break;
1789
1790 case PRNIOC_GET_1284_DEVID:
1791 ecpp_putioc_stateful_copyin(q, mp,
1792 sizeof (struct prn_1284_device_id));
1793 break;
1794
1795 case PRNIOC_GET_IFINFO:
1796 ecpp_putioc_stateful_copyin(q, mp,
1797 sizeof (struct prn_interface_info));
1798 break;
1799
1800 default:
1801 ecpp_error(pp->dip, "putioc: unknown IOCTL: %x\n",
1802 iocbp->ioc_cmd);
1803 ecpp_nack_ioctl(q, mp, EINVAL);
1804 break;
1805 }
1806 }
1807
1808 /*
1809 * allocate mblk and copyout the requested number of bytes
1810 */
1811 static void
1812 ecpp_putioc_copyout(queue_t *q, mblk_t *mp, void *buf, int len)
1813 {
1814 mblk_t *tmp;
1815
1816 if ((tmp = allocb(len, BPRI_MED)) == NULL) {
1817 ecpp_nack_ioctl(q, mp, ENOSR);
1818 return;
1819 }
1820
1821 bcopy(buf, tmp->b_wptr, len);
1822
1823 mcopyout(mp, NULL, len, NULL, tmp);
1824 qreply(q, mp);
1825 }
1826
1827 /*
1828 * copyin the structure using struct ecpp_copystate
1829 */
1830 static void
1831 ecpp_putioc_stateful_copyin(queue_t *q, mblk_t *mp, size_t size)
1832 {
1833 mblk_t *tmp;
1834 struct ecpp_copystate *stp;
1835
1836 if ((tmp = allocb(sizeof (struct ecpp_copystate), BPRI_MED)) == NULL) {
1837 ecpp_nack_ioctl(q, mp, EAGAIN);
1838 return;
1839 }
1840
1841 stp = (struct ecpp_copystate *)tmp->b_rptr;
1842 stp->state = ECPP_STRUCTIN;
1843 stp->uaddr = *(caddr_t *)mp->b_cont->b_rptr;
1844
1845 tmp->b_wptr += sizeof (struct ecpp_copystate);
1846
1847 mcopyin(mp, tmp, size, stp->uaddr);
1848 qreply(q, mp);
1849 }
1850
1851 /*
1852 * read queue is only used when the peripheral sends data faster,
1853 * then the application consumes it;
1854 * once the low water mark is reached, this routine will be scheduled
1855 */
1856 static int
1857 ecpp_rsrv(queue_t *q)
1858 {
1859 struct msgb *mp;
1860
1861 /*
1862 * send data upstream until next queue is full or the queue is empty
1863 */
1864 while (canputnext(q) && (mp = getq(q))) {
1865 putnext(q, mp);
1866 }
1867
1868 /*
1869 * if there is still space on the queue, enable backchannel
1870 */
1871 if (canputnext(q)) {
1872 struct ecppunit *pp = (struct ecppunit *)q->q_ptr;
1873
1874 mutex_enter(&pp->umutex);
1875
1876 if (pp->e_busy == ECPP_IDLE) {
1877 (void) ecpp_idle_phase(pp);
1878 cv_signal(&pp->pport_cv); /* signal ecpp_close() */
1879 }
1880
1881 mutex_exit(&pp->umutex);
1882 }
1883
1884 return (0);
1885 }
1886
1887 static int
1888 ecpp_wsrv(queue_t *q)
1889 {
1890 struct ecppunit *pp = (struct ecppunit *)q->q_ptr;
1891 struct msgb *mp;
1892 size_t len, total_len;
1893 size_t my_ioblock_sz;
1894 caddr_t my_ioblock;
1895 caddr_t start_addr;
1896
1897 mutex_enter(&pp->umutex);
1898
1899 ecpp_error(pp->dip, "ecpp_wsrv: e_busy=%x\n", pp->e_busy);
1900
1901 /* if channel is actively doing work, wait till completed */
1902 if (pp->e_busy == ECPP_BUSY || pp->e_busy == ECPP_FLUSH) {
1903 mutex_exit(&pp->umutex);
1904 return (0);
1905 } else if (pp->suspended == TRUE) {
1906 /*
1907 * if the system is about to suspend and ecpp_detach()
1908 * is blocked due to active transfers, wake it up and exit
1909 */
1910 cv_signal(&pp->pport_cv);
1911 mutex_exit(&pp->umutex);
1912 return (0);
1913 }
1914
1915 /* peripheral status should be okay before starting transfer */
1916 if (pp->e_busy == ECPP_ERR) {
1917 if (ecpp_check_status(pp) == FAILURE) {
1918 if (pp->wsrv_timer_id == 0) {
1919 ecpp_error(pp->dip, "wsrv: start wrsv_timer\n");
1920 pp->wsrv_timer_id = timeout(ecpp_wsrv_timer,
1921 (caddr_t)pp,
1922 drv_usectohz(pp->wsrv_retry * 1000));
1923 } else {
1924 ecpp_error(pp->dip,
1925 "ecpp_wsrv: wrsv_timer is active\n");
1926 }
1927
1928 mutex_exit(&pp->umutex);
1929 return (0);
1930 } else {
1931 pp->e_busy = ECPP_IDLE;
1932 }
1933 }
1934
1935 my_ioblock = pp->ioblock;
1936 my_ioblock_sz = IO_BLOCK_SZ;
1937
1938 /*
1939 * it`s important to null pp->msg here,
1940 * cleaning up from the previous transfer attempts
1941 */
1942 pp->msg = NULL;
1943
1944 start_addr = NULL;
1945 len = total_len = 0;
1946 /*
1947 * The following loop is implemented to gather the
1948 * many small writes that the lp subsystem makes and
1949 * compile them into one large dma transfer. The len and
1950 * total_len variables are a running count of the number of
1951 * bytes that have been gathered. They are bcopied to the
1952 * ioblock buffer. The pp->e_busy is set to E_BUSY as soon as
1953 * we start gathering packets to indicate the following transfer.
1954 */
1955 while (mp = getq(q)) {
1956 switch (DB_TYPE(mp)) {
1957 case M_DATA:
1958 pp->e_busy = ECPP_BUSY;
1959 len = mp->b_wptr - mp->b_rptr;
1960
1961 if ((total_len == 0) && (len >= my_ioblock_sz)) {
1962 /*
1963 * if the first M_DATA is bigger than ioblock,
1964 * just use this mblk and start the transfer
1965 */
1966 total_len = len;
1967 start_addr = (caddr_t)mp->b_rptr;
1968 pp->msg = mp;
1969 goto breakout;
1970 } else if (total_len + len > my_ioblock_sz) {
1971 /*
1972 * current M_DATA does not fit in ioblock,
1973 * put it back and start the transfer
1974 */
1975 (void) putbq(q, mp);
1976 goto breakout;
1977 } else {
1978 /*
1979 * otherwise add data to ioblock and free mblk
1980 */
1981 bcopy(mp->b_rptr, my_ioblock, len);
1982 my_ioblock += len;
1983 total_len += len;
1984 start_addr = (caddr_t)pp->ioblock;
1985 freemsg(mp);
1986 }
1987 break;
1988
1989 case M_IOCTL:
1990 /*
1991 * Assume a simple loopback test: an application
1992 * writes data into the TFIFO, reads it using
1993 * ECPPIOC_GETDATA and compares. If the transfer
1994 * times out (which is only possible on Grover),
1995 * the ioctl might be processed before the data
1996 * got to the TFIFO, which leads to miscompare.
1997 * So if we met ioctl, postpone it until after xfer.
1998 */
1999 if (total_len > 0) {
2000 (void) putbq(q, mp);
2001 goto breakout;
2002 }
2003
2004 ecpp_error(pp->dip, "M_IOCTL.\n");
2005
2006 mutex_exit(&pp->umutex);
2007
2008 ecpp_putioc(q, mp);
2009
2010 mutex_enter(&pp->umutex);
2011
2012 break;
2013
2014 case M_IOCDATA: {
2015 struct copyresp *csp = (struct copyresp *)mp->b_rptr;
2016
2017 ecpp_error(pp->dip, "M_IOCDATA\n");
2018
2019 /*
2020 * If copy request failed, quit now
2021 */
2022 if (csp->cp_rval != 0) {
2023 freemsg(mp);
2024 break;
2025 }
2026
2027 switch (csp->cp_cmd) {
2028 case ECPPIOC_SETPARMS:
2029 case ECPPIOC_SETREGS:
2030 case ECPPIOC_SETPORT:
2031 case ECPPIOC_SETDATA:
2032 case ECPPIOC_GETDEVID:
2033 case PRNIOC_SET_IFCAP:
2034 case PRNIOC_GET_1284_DEVID:
2035 case PRNIOC_SET_TIMEOUTS:
2036 case PRNIOC_GET_IFINFO:
2037 ecpp_srvioc(q, mp);
2038 break;
2039
2040 default:
2041 ecpp_nack_ioctl(q, mp, EINVAL);
2042 break;
2043 }
2044
2045 break;
2046 }
2047
2048 case M_CTL:
2049 if (pp->e_busy != ECPP_IDLE) {
2050 ecpp_error(pp->dip, "wsrv: M_CTL postponed\n");
2051 (void) putbq(q, mp);
2052 goto breakout;
2053 } else {
2054 ecpp_error(pp->dip, "wsrv: M_CTL\n");
2055 }
2056
2057 /* sanity check */
2058 if ((mp->b_wptr - mp->b_rptr != sizeof (int)) ||
2059 (*(int *)mp->b_rptr != ECPP_BACKCHANNEL)) {
2060 ecpp_error(pp->dip, "wsrv: bogus M_CTL");
2061 freemsg(mp);
2062 break;
2063 } else {
2064 freemsg(mp);
2065 }
2066
2067 /* This was a backchannel request */
2068 (void) ecpp_peripheral2host(pp);
2069
2070 /* exit if transfer have been initiated */
2071 if (pp->e_busy == ECPP_BUSY) {
2072 goto breakout;
2073 }
2074 break;
2075
2076 case M_READ:
2077 pp->nread += *(size_t *)mp->b_rptr;
2078 freemsg(mp);
2079 ecpp_error(pp->dip, "wsrv: M_READ %d", pp->nread);
2080 break;
2081
2082 default:
2083 ecpp_error(pp->dip, "wsrv: should never get here\n");
2084 freemsg(mp);
2085 break;
2086 }
2087 }
2088 breakout:
2089 /*
2090 * If total_len > 0 then start the transfer, otherwise goto idle state
2091 */
2092 if (total_len > 0) {
2093 ecpp_error(pp->dip, "wsrv:starting: total_len=%d\n", total_len);
2094 pp->e_busy = ECPP_BUSY;
2095 ecpp_start(pp, start_addr, total_len);
2096 } else {
2097 ecpp_error(pp->dip, "wsrv:finishing: ebusy=%x\n", pp->e_busy);
2098
2099 /* IDLE if xfer_timeout, or FIFO_EMPTY */
2100 if (pp->e_busy == ECPP_IDLE) {
2101 (void) ecpp_idle_phase(pp);
2102 cv_signal(&pp->pport_cv); /* signal ecpp_close() */
2103 }
2104 }
2105
2106 mutex_exit(&pp->umutex);
2107 return (1);
2108 }
2109
2110 /*
2111 * Ioctl processor for queued ioctl data transfer messages.
2112 */
2113 static void
2114 ecpp_srvioc(queue_t *q, mblk_t *mp)
2115 {
2116 struct iocblk *iocbp;
2117 struct ecppunit *pp;
2118
2119 iocbp = (struct iocblk *)mp->b_rptr;
2120 pp = (struct ecppunit *)q->q_ptr;
2121
2122 switch (iocbp->ioc_cmd) {
2123 case ECPPIOC_SETPARMS: {
2124 struct ecpp_transfer_parms *xferp;
2125
2126 xferp = (struct ecpp_transfer_parms *)mp->b_cont->b_rptr;
2127
2128 if (xferp->write_timeout <= 0 ||
2129 xferp->write_timeout >= ECPP_MAX_TIMEOUT) {
2130 ecpp_nack_ioctl(q, mp, EINVAL);
2131 break;
2132 }
2133
2134 if (!((xferp->mode == ECPP_CENTRONICS) ||
2135 (xferp->mode == ECPP_COMPAT_MODE) ||
2136 (xferp->mode == ECPP_NIBBLE_MODE) ||
2137 (xferp->mode == ECPP_ECP_MODE) ||
2138 (xferp->mode == ECPP_DIAG_MODE))) {
2139 ecpp_nack_ioctl(q, mp, EINVAL);
2140 break;
2141 }
2142
2143 pp->xfer_parms = *xferp;
2144 pp->prn_timeouts.tmo_forward = pp->xfer_parms.write_timeout;
2145
2146 ecpp_error(pp->dip, "srvioc: current_mode =%x new mode=%x\n",
2147 pp->current_mode, pp->xfer_parms.mode);
2148
2149 if (ecpp_mode_negotiation(pp, pp->xfer_parms.mode) == FAILURE) {
2150 ecpp_nack_ioctl(q, mp, EPROTONOSUPPORT);
2151 } else {
2152 /*
2153 * mode nego was a success. If nibble mode check
2154 * back channel and set into REVIDLE.
2155 */
2156 if ((pp->current_mode == ECPP_NIBBLE_MODE) &&
2157 (read_nibble_backchan(pp) == FAILURE)) {
2158 /*
2159 * problems reading the backchannel
2160 * returned to centronics;
2161 * ioctl fails.
2162 */
2163 ecpp_nack_ioctl(q, mp, EPROTONOSUPPORT);
2164 break;
2165 }
2166
2167 ecpp_ack_ioctl(q, mp);
2168 }
2169 if (pp->current_mode != ECPP_DIAG_MODE) {
2170 pp->port = ECPP_PORT_DMA;
2171 } else {
2172 pp->port = ECPP_PORT_PIO;
2173 }
2174
2175 pp->xfer_parms.mode = pp->current_mode;
2176
2177 break;
2178 }
2179
2180 case ECPPIOC_SETREGS: {
2181 struct ecpp_regs *rg;
2182 uint8_t dcr;
2183
2184 rg = (struct ecpp_regs *)mp->b_cont->b_rptr;
2185
2186 /* must be in diagnostic mode for these commands to work */
2187 if (pp->current_mode != ECPP_DIAG_MODE) {
2188 ecpp_nack_ioctl(q, mp, EINVAL);
2189 break;
2190 }
2191
2192 /* bits 4-7 must be 1 or return EINVAL */
2193 if ((rg->dcr & ECPP_SETREGS_DCR_MASK) !=
2194 ECPP_SETREGS_DCR_MASK) {
2195 ecpp_nack_ioctl(q, mp, EINVAL);
2196 break;
2197 }
2198
2199 /* get the old dcr */
2200 dcr = DCR_READ(pp) & ~ECPP_REV_DIR;
2201 /* get the new dcr */
2202 dcr = (dcr & ECPP_SETREGS_DCR_MASK) |
2203 (rg->dcr & ~ECPP_SETREGS_DCR_MASK);
2204 DCR_WRITE(pp, dcr);
2205 ecpp_error(pp->dip, "ECPPIOC_SETREGS:dcr=%x\n", dcr);
2206 ecpp_ack_ioctl(q, mp);
2207 break;
2208 }
2209
2210 case ECPPIOC_SETPORT: {
2211 uchar_t *port;
2212
2213 port = (uchar_t *)mp->b_cont->b_rptr;
2214
2215 /* must be in diagnostic mode for these commands to work */
2216 if (pp->current_mode != ECPP_DIAG_MODE) {
2217 ecpp_nack_ioctl(q, mp, EINVAL);
2218 break;
2219 }
2220
2221 switch (*port) {
2222 case ECPP_PORT_PIO:
2223 /* put superio into PIO mode */
2224 ECR_WRITE(pp,
2225 ECR_mode_001 | ECPP_INTR_MASK | ECPP_INTR_SRV);
2226 pp->port = *port;
2227 ecpp_ack_ioctl(q, mp);
2228 break;
2229
2230 case ECPP_PORT_TDMA:
2231 ecpp_error(pp->dip, "SETPORT: to TDMA\n");
2232 pp->tfifo_intr = 1;
2233 /* change to mode 110 */
2234 ECR_WRITE(pp,
2235 ECR_mode_110 | ECPP_INTR_MASK | ECPP_INTR_SRV);
2236 pp->port = *port;
2237 ecpp_ack_ioctl(q, mp);
2238 break;
2239
2240 default:
2241 ecpp_nack_ioctl(q, mp, EINVAL);
2242 }
2243
2244 break;
2245 }
2246
2247 case ECPPIOC_SETDATA: {
2248 uchar_t *data;
2249
2250 data = (uchar_t *)mp->b_cont->b_rptr;
2251
2252 /* must be in diagnostic mode for these commands to work */
2253 if (pp->current_mode != ECPP_DIAG_MODE) {
2254 ecpp_nack_ioctl(q, mp, EINVAL);
2255 break;
2256 }
2257
2258 switch (pp->port) {
2259 case ECPP_PORT_PIO:
2260 DATAR_WRITE(pp, *data);
2261 ecpp_ack_ioctl(q, mp);
2262 break;
2263
2264 case ECPP_PORT_TDMA:
2265 TFIFO_WRITE(pp, *data);
2266 ecpp_ack_ioctl(q, mp);
2267 break;
2268
2269 default:
2270 ecpp_nack_ioctl(q, mp, EINVAL);
2271 }
2272
2273 break;
2274 }
2275
2276 case ECPPIOC_GETDEVID: {
2277 struct copyresp *csp;
2278 struct ecpp_copystate *stp;
2279 struct ecpp_device_id *dp;
2280 struct ecpp_device_id id;
2281
2282 csp = (struct copyresp *)mp->b_rptr;
2283 stp = (struct ecpp_copystate *)csp->cp_private->b_rptr;
2284 dp = (struct ecpp_device_id *)mp->b_cont->b_rptr;
2285
2286 #ifdef _MULTI_DATAMODEL
2287 if (IOC_CONVERT_FROM(iocbp) == IOC_ILP32) {
2288 struct ecpp_device_id32 *dp32;
2289
2290 dp32 = (struct ecpp_device_id32 *)dp;
2291 id.mode = dp32->mode;
2292 id.len = dp32->len;
2293 id.addr = (char *)(uintptr_t)dp32->addr;
2294 } else {
2295 #endif /* _MULTI_DATAMODEL */
2296 id = *dp;
2297 #ifdef _MULTI_DATAMODEL
2298 }
2299 #endif /* _MULTI_DATAMODEL */
2300
2301 ecpp_srvioc_devid(q, mp, &id, &stp->un.devid.rlen);
2302 break;
2303 }
2304
2305 case PRNIOC_GET_1284_DEVID: {
2306 struct copyresp *csp;
2307 struct ecpp_copystate *stp;
2308 struct prn_1284_device_id *dp;
2309 struct ecpp_device_id id;
2310
2311 csp = (struct copyresp *)mp->b_rptr;
2312 stp = (struct ecpp_copystate *)csp->cp_private->b_rptr;
2313 dp = (struct prn_1284_device_id *)mp->b_cont->b_rptr;
2314
2315 /* imitate struct ecpp_device_id */
2316 id.mode = ECPP_NIBBLE_MODE;
2317
2318 #ifdef _MULTI_DATAMODEL
2319 if (IOC_CONVERT_FROM(iocbp) == IOC_ILP32) {
2320 struct prn_1284_device_id32 *dp32;
2321
2322 dp32 = (struct prn_1284_device_id32 *)dp;
2323 id.len = dp32->id_len;
2324 id.addr = (char *)(uintptr_t)dp32->id_data;
2325 } else {
2326 #endif /* _MULTI_DATAMODEL */
2327 id.len = dp->id_len;
2328 id.addr = (char *)dp->id_data;
2329 #ifdef _MULTI_DATAMODEL
2330 }
2331 #endif /* _MULTI_DATAMODEL */
2332
2333 ecpp_srvioc_devid(q, mp, &id,
2334 (int *)&stp->un.prn_devid.id_rlen);
2335 break;
2336 }
2337
2338 case PRNIOC_SET_IFCAP: {
2339 uint_t ifcap, new_ifcap;
2340
2341 ifcap = ecpp_get_prn_ifcap(pp);
2342 new_ifcap = *(uint_t *)mp->b_cont->b_rptr;
2343
2344 if (ifcap == new_ifcap) {
2345 ecpp_ack_ioctl(q, mp);
2346 break;
2347 }
2348
2349 /* only changing PRN_BIDI is supported */
2350 if ((ifcap ^ new_ifcap) & ~PRN_BIDI) {
2351 ecpp_nack_ioctl(q, mp, EINVAL);
2352 break;
2353 }
2354
2355 if (new_ifcap & PRN_BIDI) { /* go bidirectional */
2356 ecpp_default_negotiation(pp);
2357 } else { /* go unidirectional */
2358 (void) ecpp_mode_negotiation(pp, ECPP_CENTRONICS);
2359 }
2360
2361 ecpp_ack_ioctl(q, mp);
2362 break;
2363 }
2364
2365 case PRNIOC_SET_TIMEOUTS: {
2366 struct prn_timeouts *prn_timeouts;
2367
2368 prn_timeouts = (struct prn_timeouts *)mp->b_cont->b_rptr;
2369
2370 if (prn_timeouts->tmo_forward > ECPP_MAX_TIMEOUT) {
2371 ecpp_nack_ioctl(q, mp, EINVAL);
2372 break;
2373 }
2374
2375 pp->prn_timeouts = *prn_timeouts;
2376 pp->xfer_parms.write_timeout = (int)prn_timeouts->tmo_forward;
2377
2378 ecpp_ack_ioctl(q, mp);
2379 break;
2380 }
2381
2382 case PRNIOC_GET_IFINFO:
2383 ecpp_srvioc_prnif(q, mp);
2384 break;
2385
2386 default: /* unexpected ioctl type */
2387 ecpp_nack_ioctl(q, mp, EINVAL);
2388 break;
2389 }
2390 }
2391
2392 static void
2393 ecpp_srvioc_devid(queue_t *q, mblk_t *mp, struct ecpp_device_id *id, int *rlen)
2394 {
2395 struct ecppunit *pp;
2396 struct copyresp *csp;
2397 struct ecpp_copystate *stp;
2398 int error;
2399 int len;
2400 int mode;
2401 mblk_t *datamp;
2402
2403 pp = (struct ecppunit *)q->q_ptr;
2404 csp = (struct copyresp *)mp->b_rptr;
2405 stp = (struct ecpp_copystate *)csp->cp_private->b_rptr;
2406 mode = id->mode;
2407
2408 /* check arguments */
2409 if ((mode < ECPP_CENTRONICS) || (mode > ECPP_ECP_MODE)) {
2410 ecpp_error(pp->dip, "ecpp_srvioc_devid: mode=%x, len=%x\n",
2411 mode, id->len);
2412 ecpp_nack_ioctl(q, mp, EINVAL);
2413 return;
2414 }
2415
2416 /* Currently only Nibble mode is supported */
2417 if (mode != ECPP_NIBBLE_MODE) {
2418 ecpp_nack_ioctl(q, mp, EPROTONOSUPPORT);
2419 return;
2420 }
2421
2422 if ((id->addr == NULL) && (id->len != 0)) {
2423 ecpp_nack_ioctl(q, mp, EFAULT);
2424 return;
2425 }
2426
2427 /* read device ID length */
2428 if (error = ecpp_getdevid(pp, NULL, &len, mode)) {
2429 ecpp_nack_ioctl(q, mp, error);
2430 goto breakout;
2431 }
2432
2433 /* don't take into account two length bytes */
2434 len -= 2;
2435 *rlen = len;
2436
2437 /* limit transfer to user buffer length */
2438 if (id->len < len) {
2439 len = id->len;
2440 }
2441
2442 if (len == 0) {
2443 /* just return rlen */
2444 stp->state = ECPP_ADDROUT;
2445 ecpp_wput_iocdata_devid(q, mp,
2446 (uintptr_t)rlen - (uintptr_t)&stp->un);
2447 goto breakout;
2448 }
2449
2450 if ((datamp = allocb(len, BPRI_MED)) == NULL) {
2451 ecpp_nack_ioctl(q, mp, ENOSR);
2452 goto breakout;
2453 }
2454
2455 /* read ID string */
2456 error = ecpp_getdevid(pp, datamp->b_rptr, &len, mode);
2457 if (error) {
2458 freemsg(datamp);
2459 ecpp_nack_ioctl(q, mp, error);
2460 goto breakout;
2461 } else {
2462 datamp->b_wptr += len;
2463
2464 stp->state = ECPP_ADDROUT;
2465 mcopyout(mp, csp->cp_private, len, id->addr, datamp);
2466 qreply(q, mp);
2467 }
2468
2469 return;
2470
2471 breakout:
2472 (void) ecpp_1284_termination(pp);
2473 }
2474
2475 /*
2476 * PRNIOC_GET_IFINFO: return prnio interface info string
2477 */
2478 static void
2479 ecpp_srvioc_prnif(queue_t *q, mblk_t *mp)
2480 {
2481 struct copyresp *csp;
2482 struct ecpp_copystate *stp;
2483 uint_t len;
2484 struct prn_interface_info *ip;
2485 struct prn_interface_info info;
2486 mblk_t *datamp;
2487 #ifdef _MULTI_DATAMODEL
2488 struct iocblk *iocbp = (struct iocblk *)mp->b_rptr;
2489 #endif
2490
2491 csp = (struct copyresp *)mp->b_rptr;
2492 stp = (struct ecpp_copystate *)csp->cp_private->b_rptr;
2493 ip = (struct prn_interface_info *)mp->b_cont->b_rptr;
2494
2495 #ifdef _MULTI_DATAMODEL
2496 if (IOC_CONVERT_FROM(iocbp) == IOC_ILP32) {
2497 struct prn_interface_info32 *ip32;
2498
2499 ip32 = (struct prn_interface_info32 *)ip;
2500 info.if_len = ip32->if_len;
2501 info.if_data = (char *)(uintptr_t)ip32->if_data;
2502 } else {
2503 #endif /* _MULTI_DATAMODEL */
2504 info = *ip;
2505 #ifdef _MULTI_DATAMODEL
2506 }
2507 #endif /* _MULTI_DATAMODEL */
2508
2509 len = strlen(prn_ifinfo);
2510 stp->un.prn_if.if_rlen = len;
2511 stp->state = ECPP_ADDROUT;
2512
2513 /* check arguments */
2514 if ((info.if_data == NULL) && (info.if_len != 0)) {
2515 ecpp_nack_ioctl(q, mp, EFAULT);
2516 return;
2517 }
2518
2519 if (info.if_len == 0) {
2520 /* just copyout rlen */
2521 ecpp_wput_iocdata_devid(q, mp,
2522 offsetof(struct prn_interface_info, if_rlen));
2523 return;
2524 }
2525
2526 /* if needed, trim to the buffer size */
2527 if (len > info.if_len) {
2528 len = info.if_len;
2529 }
2530
2531 if ((datamp = allocb(len, BPRI_MED)) == NULL) {
2532 ecpp_nack_ioctl(q, mp, ENOSR);
2533 return;
2534 }
2535
2536 bcopy(&prn_ifinfo[0], datamp->b_wptr, len);
2537 datamp->b_wptr += len;
2538
2539 mcopyout(mp, csp->cp_private, len, info.if_data, datamp);
2540 qreply(q, mp);
2541 }
2542
2543 static void
2544 ecpp_flush(struct ecppunit *pp, int cmd)
2545 {
2546 queue_t *q;
2547 uint8_t ecr, dcr;
2548 timeout_id_t timeout_id, fifo_timer_id, wsrv_timer_id;
2549
2550 ASSERT(mutex_owned(&pp->umutex));
2551
2552 if (!(cmd & FWRITE)) {
2553 return;
2554 }
2555
2556 q = pp->writeq;
2557 timeout_id = fifo_timer_id = wsrv_timer_id = 0;
2558
2559 ecpp_error(pp->dip, "ecpp_flush e_busy=%x\n", pp->e_busy);
2560
2561 /* if there is an ongoing DMA, it needs to be turned off. */
2562 switch (pp->e_busy) {
2563 case ECPP_BUSY:
2564 /*
2565 * Change the port status to ECPP_FLUSH to
2566 * indicate to ecpp_wsrv that the wq is being flushed.
2567 */
2568 pp->e_busy = ECPP_FLUSH;
2569
2570 /*
2571 * dma_cancelled indicates to ecpp_isr() that we have
2572 * turned off the DMA. Since the mutex is held, ecpp_isr()
2573 * may be blocked. Once ecpp_flush() finishes and ecpp_isr()
2574 * gains the mutex, ecpp_isr() will have a _reset_ DMAC. Most
2575 * significantly, the DMAC will be reset after ecpp_isr() was
2576 * invoked. Therefore we need to have a flag "dma_cancelled"
2577 * to signify when the described condition has occured. If
2578 * ecpp_isr() notes a dma_cancelled, it will ignore the DMAC csr
2579 * and simply claim the interupt.
2580 */
2581
2582 pp->dma_cancelled = TRUE;
2583
2584 /* either DMA or PIO transfer */
2585 if (COMPAT_DMA(pp) ||
2586 (pp->current_mode == ECPP_ECP_MODE) ||
2587 (pp->current_mode == ECPP_DIAG_MODE)) {
2588 /*
2589 * if the bcr is zero, then DMA is complete and
2590 * we are waiting for the fifo to drain. Therefore,
2591 * turn off dma.
2592 */
2593 if (ECPP_DMA_STOP(pp, NULL) == FAILURE) {
2594 ecpp_error(pp->dip,
2595 "ecpp_flush: dma_stop failed.\n");
2596 }
2597
2598 /*
2599 * If the status of the port is ECPP_BUSY,
2600 * the DMA is stopped by either explicitly above, or by
2601 * ecpp_isr() but the FIFO hasn't drained yet. In either
2602 * case, we need to unbind the dma mappings.
2603 */
2604 if (ddi_dma_unbind_handle(
2605 pp->dma_handle) != DDI_SUCCESS)
2606 ecpp_error(pp->dip,
2607 "ecpp_flush: unbind failed.\n");
2608
2609 if (pp->msg != NULL) {
2610 freemsg(pp->msg);
2611 pp->msg = NULL;
2612 }
2613 } else {
2614 /*
2615 * PIO transfer: disable nAck interrups
2616 */
2617 dcr = DCR_READ(pp);
2618 dcr &= ~(ECPP_REV_DIR | ECPP_INTR_EN);
2619 DCR_WRITE(pp, dcr);
2620 ECPP_MASK_INTR(pp);
2621 }
2622
2623 /*
2624 * The transfer is cleaned up. There may or may not be data
2625 * in the fifo. We don't care at this point. Ie. SuperIO may
2626 * transfer the remaining bytes in the fifo or not. it doesn't
2627 * matter. All that is important at this stage is that no more
2628 * fifo timers are started.
2629 */
2630
2631 timeout_id = pp->timeout_id;
2632 fifo_timer_id = pp->fifo_timer_id;
2633 pp->timeout_id = pp->fifo_timer_id = 0;
2634 pp->softintr_pending = 0;
2635
2636 break;
2637
2638 case ECPP_ERR:
2639 /*
2640 * Change the port status to ECPP_FLUSH to
2641 * indicate to ecpp_wsrv that the wq is being flushed.
2642 */
2643 pp->e_busy = ECPP_FLUSH;
2644
2645 /*
2646 * Most likely there are mblks in the queue,
2647 * but the driver can not transmit because
2648 * of the bad port status. In this case,
2649 * ecpp_flush() should make sure ecpp_wsrv_timer()
2650 * is turned off.
2651 */
2652 wsrv_timer_id = pp->wsrv_timer_id;
2653 pp->wsrv_timer_id = 0;
2654
2655 break;
2656
2657 case ECPP_IDLE:
2658 /* No work to do. Ready to flush */
2659 break;
2660
2661 default:
2662 ecpp_error(pp->dip,
2663 "ecpp_flush: illegal state %x\n", pp->e_busy);
2664 }
2665
2666 /* in DIAG mode clear TFIFO if needed */
2667 if (pp->current_mode == ECPP_DIAG_MODE) {
2668 ecr = ECR_READ(pp);
2669 if (!(ecr & ECPP_FIFO_EMPTY)) {
2670 ECR_WRITE(pp,
2671 ECPP_INTR_SRV | ECPP_INTR_MASK | ECR_mode_001);
2672 ECR_WRITE(pp, ecr);
2673 }
2674 }
2675
2676 /* Discard all messages on the output queue. */
2677 flushq(q, FLUSHDATA);
2678
2679 /* The port is no longer flushing or dma'ing for that matter. */
2680 pp->e_busy = ECPP_IDLE;
2681
2682 /* Set the right phase */
2683 if (pp->current_mode == ECPP_ECP_MODE) {
2684 if (pp->current_phase == ECPP_PHASE_ECP_REV_XFER) {
2685 pp->current_phase = ECPP_PHASE_ECP_REV_IDLE;
2686 } else {
2687 pp->current_phase = ECPP_PHASE_ECP_FWD_IDLE;
2688 }
2689 }
2690
2691 /* cancel timeouts if any */
2692 mutex_exit(&pp->umutex);
2693
2694 if (timeout_id) {
2695 (void) untimeout(timeout_id);
2696 }
2697 if (fifo_timer_id) {
2698 (void) untimeout(fifo_timer_id);
2699 }
2700 if (wsrv_timer_id) {
2701 (void) untimeout(wsrv_timer_id);
2702 }
2703
2704 mutex_enter(&pp->umutex);
2705
2706 cv_signal(&pp->pport_cv); /* wake up ecpp_close() */
2707 }
2708
2709 static void
2710 ecpp_start(struct ecppunit *pp, caddr_t addr, size_t len)
2711 {
2712 ASSERT(mutex_owned(&pp->umutex));
2713 ASSERT(pp->e_busy == ECPP_BUSY);
2714
2715 ecpp_error(pp->dip,
2716 "ecpp_start:current_mode=%x,current_phase=%x,ecr=%x,len=%d\n",
2717 pp->current_mode, pp->current_phase, ECR_READ(pp), len);
2718
2719 pp->dma_dir = DDI_DMA_WRITE; /* this is a forward transfer */
2720
2721 switch (pp->current_mode) {
2722 case ECPP_NIBBLE_MODE:
2723 (void) ecpp_1284_termination(pp);
2724
2725 /* After termination we are either Compatible or Centronics */
2726
2727 /* FALLTHRU */
2728
2729 case ECPP_CENTRONICS:
2730 case ECPP_COMPAT_MODE:
2731 if (pp->io_mode == ECPP_DMA) {
2732 if (ecpp_init_dma_xfer(pp, addr, len) == FAILURE) {
2733 return;
2734 }
2735 } else {
2736 /* PIO mode */
2737 if (ecpp_prep_pio_xfer(pp, addr, len) == FAILURE) {
2738 return;
2739 }
2740 (void) ecpp_pio_writeb(pp);
2741 }
2742 break;
2743
2744 case ECPP_DIAG_MODE: {
2745 int oldlen;
2746
2747 /* put superio into TFIFO mode, if not already */
2748 ECR_WRITE(pp, ECPP_INTR_SRV | ECPP_INTR_MASK | ECR_mode_110);
2749 /*
2750 * DMA would block if the TFIFO is not empty
2751 * if by this moment nobody read these bytes, they`re gone
2752 */
2753 drv_usecwait(1);
2754 if (!(ECR_READ(pp) & ECPP_FIFO_EMPTY)) {
2755 ecpp_error(pp->dip,
2756 "ecpp_start: TFIFO not empty, clearing\n");
2757 ECR_WRITE(pp,
2758 ECPP_INTR_SRV | ECPP_INTR_MASK | ECR_mode_001);
2759 ECR_WRITE(pp,
2760 ECPP_INTR_SRV | ECPP_INTR_MASK | ECR_mode_110);
2761 }
2762
2763 /* we can DMA at most 16 bytes into TFIFO */
2764 oldlen = len;
2765 if (len > ECPP_FIFO_SZ) {
2766 len = ECPP_FIFO_SZ;
2767 }
2768
2769 if (ecpp_init_dma_xfer(pp, addr, len) == FAILURE) {
2770 return;
2771 }
2772
2773 /* put the rest of data back on the queue */
2774 if (oldlen > len) {
2775 ecpp_putback_untransfered(pp, addr + len, oldlen - len);
2776 }
2777
2778 break;
2779 }
2780
2781 case ECPP_ECP_MODE:
2782 ASSERT(pp->current_phase == ECPP_PHASE_ECP_FWD_IDLE ||
2783 pp->current_phase == ECPP_PHASE_ECP_REV_IDLE);
2784
2785 /* if in Reverse Phase negotiate to Forward */
2786 if (pp->current_phase == ECPP_PHASE_ECP_REV_IDLE) {
2787 if (ecp_reverse2forward(pp) == FAILURE) {
2788 if (pp->msg) {
2789 (void) putbq(pp->writeq, pp->msg);
2790 } else {
2791 ecpp_putback_untransfered(pp,
2792 addr, len);
2793 }
2794 }
2795 }
2796
2797 if (ecpp_init_dma_xfer(pp, addr, len) == FAILURE) {
2798 return;
2799 }
2800
2801 break;
2802 }
2803
2804 /* schedule transfer timeout */
2805 pp->timeout_id = timeout(ecpp_xfer_timeout, (caddr_t)pp,
2806 pp->xfer_parms.write_timeout * drv_usectohz(1000000));
2807 }
2808
2809 /*
2810 * Transfer a PIO "block" a byte at a time.
2811 * The block is starts at addr and ends at pp->last_byte
2812 */
2813 static uint8_t
2814 ecpp_prep_pio_xfer(struct ecppunit *pp, caddr_t addr, size_t len)
2815 {
2816 pp->next_byte = addr;
2817 pp->last_byte = (caddr_t)((ulong_t)addr + len);
2818
2819 if (ecpp_check_status(pp) == FAILURE) {
2820 /*
2821 * if status signals are bad, do not start PIO,
2822 * put everything back on the queue.
2823 */
2824 ecpp_error(pp->dip,
2825 "ecpp_prep_pio_xfer:suspend PIO len=%d\n", len);
2826
2827 if (pp->msg != NULL) {
2828 /*
2829 * this circumstance we want to copy the
2830 * untransfered section of msg to a new mblk,
2831 * then free the orignal one.
2832 */
2833 ecpp_putback_untransfered(pp,
2834 (void *)pp->msg->b_rptr, len);
2835 ecpp_error(pp->dip,
2836 "ecpp_prep_pio_xfer: len1=%d\n", len);
2837
2838 freemsg(pp->msg);
2839 pp->msg = NULL;
2840 } else {
2841 ecpp_putback_untransfered(pp, pp->ioblock, len);
2842 ecpp_error(pp->dip,
2843 "ecpp_prep_pio_xfer: len2=%d\n", len);
2844 }
2845 qenable(pp->writeq);
2846
2847 return (FAILURE);
2848 }
2849
2850 pp->dma_cancelled = FALSE;
2851
2852 /* pport must be in PIO mode */
2853 if (ecr_write(pp, ECR_mode_001 |
2854 ECPP_INTR_MASK | ECPP_INTR_SRV) != SUCCESS) {
2855 ecpp_error(pp->dip, "ecpp_prep_pio_xfer: failed w/ECR.\n");
2856 }
2857
2858 ecpp_error(pp->dip, "ecpp_prep_pio_xfer: dcr=%x ecr=%x\n",
2859 DCR_READ(pp), ECR_READ(pp));
2860
2861 return (SUCCESS);
2862 }
2863
2864 static uint8_t
2865 ecpp_init_dma_xfer(struct ecppunit *pp, caddr_t addr, size_t len)
2866 {
2867 uint8_t ecr_mode[] = {
2868 0,
2869 ECR_mode_010, /* Centronix */
2870 ECR_mode_010, /* Compat */
2871 0, /* Byte */
2872 0, /* Nibble */
2873 ECR_mode_011, /* ECP */
2874 0, /* Failure */
2875 ECR_mode_110, /* Diag */
2876 };
2877 uint8_t ecr;
2878
2879 ASSERT((pp->current_mode <= ECPP_DIAG_MODE) &&
2880 (ecr_mode[pp->current_mode] != 0));
2881
2882 if (ecpp_setup_dma_resources(pp, addr, len) == FAILURE) {
2883 qenable(pp->writeq);
2884 return (FAILURE);
2885 }
2886
2887 if (ecpp_check_status(pp) == FAILURE) {
2888 /*
2889 * if status signals are bad, do not start DMA, but
2890 * rather put everything back on the queue.
2891 */
2892 ecpp_error(pp->dip,
2893 "ecpp_init_dma_xfer: suspending DMA len=%d\n",
2894 pp->dma_cookie.dmac_size);
2895
2896 if (pp->msg != NULL) {
2897 /*
2898 * this circumstance we want to copy the
2899 * untransfered section of msg to a new mblk,
2900 * then free the orignal one.
2901 */
2902 ecpp_putback_untransfered(pp,
2903 (void *)pp->msg->b_rptr, len);
2904 ecpp_error(pp->dip,
2905 "ecpp_init_dma_xfer:a:len=%d\n", len);
2906
2907 freemsg(pp->msg);
2908 pp->msg = NULL;
2909 } else {
2910 ecpp_putback_untransfered(pp, pp->ioblock, len);
2911 ecpp_error(pp->dip,
2912 "ecpp_init_dma_xfer:b:len=%d\n", len);
2913 }
2914
2915 if (ddi_dma_unbind_handle(pp->dma_handle) != DDI_SUCCESS) {
2916 ecpp_error(pp->dip,
2917 "ecpp_init_dma_xfer: unbind FAILURE.\n");
2918 }
2919 qenable(pp->writeq);
2920 return (FAILURE);
2921 }
2922
2923 pp->xfercnt = pp->resid = len;
2924 pp->dma_cancelled = FALSE;
2925 pp->tfifo_intr = 0;
2926
2927 /* set the right ECR mode and disable DMA */
2928 ecr = ecr_mode[pp->current_mode];
2929 (void) ecr_write(pp, ecr | ECPP_INTR_SRV | ECPP_INTR_MASK);
2930
2931 /* prepare DMAC for a transfer */
2932 if (ECPP_DMA_START(pp) == FAILURE) {
2933 ecpp_error(pp->dip, "ecpp_init_dma_xfer: dma_start FAILED.\n");
2934 return (FAILURE);
2935 }
2936
2937 /* GO! */
2938 (void) ecr_write(pp, ecr | ECPP_DMA_ENABLE | ECPP_INTR_MASK);
2939
2940 return (SUCCESS);
2941 }
2942
2943 static uint8_t
2944 ecpp_setup_dma_resources(struct ecppunit *pp, caddr_t addr, size_t len)
2945 {
2946 int err;
2947 off_t woff;
2948 size_t wlen;
2949
2950 ASSERT(pp->dma_dir == DDI_DMA_READ || pp->dma_dir == DDI_DMA_WRITE);
2951
2952 err = ddi_dma_addr_bind_handle(pp->dma_handle, NULL,
2953 addr, len, pp->dma_dir | DDI_DMA_PARTIAL,
2954 DDI_DMA_DONTWAIT, NULL,
2955 &pp->dma_cookie, &pp->dma_cookie_count);
2956
2957 switch (err) {
2958 case DDI_DMA_MAPPED:
2959 ecpp_error(pp->dip, "ecpp_setup_dma: DMA_MAPPED\n");
2960
2961 pp->dma_nwin = 1;
2962 pp->dma_curwin = 1;
2963 break;
2964
2965 case DDI_DMA_PARTIAL_MAP: {
2966 ecpp_error(pp->dip, "ecpp_setup_dma: DMA_PARTIAL_MAP\n");
2967
2968 if (ddi_dma_numwin(pp->dma_handle,
2969 &pp->dma_nwin) != DDI_SUCCESS) {
2970 (void) ddi_dma_unbind_handle(pp->dma_handle);
2971 return (FAILURE);
2972 }
2973 pp->dma_curwin = 1;
2974
2975 /*
2976 * The very first window is returned by bind_handle,
2977 * but we must do this explicitly here, otherwise
2978 * next getwin would return wrong cookie dmac_size
2979 */
2980 if (ddi_dma_getwin(pp->dma_handle, 0, &woff, &wlen,
2981 &pp->dma_cookie, &pp->dma_cookie_count) != DDI_SUCCESS) {
2982 ecpp_error(pp->dip,
2983 "ecpp_setup_dma: ddi_dma_getwin failed!");
2984 (void) ddi_dma_unbind_handle(pp->dma_handle);
2985 return (FAILURE);
2986 }
2987
2988 ecpp_error(pp->dip,
2989 "ecpp_setup_dma: cookies=%d, windows=%d"
2990 " addr=%lx len=%d\n",
2991 pp->dma_cookie_count, pp->dma_nwin,
2992 pp->dma_cookie.dmac_address, pp->dma_cookie.dmac_size);
2993
2994 break;
2995 }
2996
2997 default:
2998 ecpp_error(pp->dip, "ecpp_setup_dma: err=%x\n", err);
2999 return (FAILURE);
3000 }
3001
3002 return (SUCCESS);
3003 }
3004
3005 static void
3006 ecpp_ack_ioctl(queue_t *q, mblk_t *mp)
3007 {
3008 struct iocblk *iocbp;
3009
3010 mp->b_datap->db_type = M_IOCACK;
3011 mp->b_wptr = mp->b_rptr + sizeof (struct iocblk);
3012
3013 if (mp->b_cont) {
3014 freemsg(mp->b_cont);
3015 mp->b_cont = NULL;
3016 }
3017
3018 iocbp = (struct iocblk *)mp->b_rptr;
3019 iocbp->ioc_error = 0;
3020 iocbp->ioc_count = 0;
3021 iocbp->ioc_rval = 0;
3022
3023 qreply(q, mp);
3024 }
3025
3026 static void
3027 ecpp_nack_ioctl(queue_t *q, mblk_t *mp, int err)
3028 {
3029 struct iocblk *iocbp;
3030
3031 mp->b_datap->db_type = M_IOCNAK;
3032 mp->b_wptr = mp->b_rptr + sizeof (struct iocblk);
3033 iocbp = (struct iocblk *)mp->b_rptr;
3034 iocbp->ioc_error = err;
3035
3036 if (mp->b_cont) {
3037 freemsg(mp->b_cont);
3038 mp->b_cont = NULL;
3039 }
3040
3041 qreply(q, mp);
3042 }
3043
3044 uint_t
3045 ecpp_isr(caddr_t arg)
3046 {
3047 struct ecppunit *pp = (struct ecppunit *)(void *)arg;
3048 uint32_t dcsr;
3049 uint8_t dsr;
3050 int cheerio_pend_counter;
3051 int retval = DDI_INTR_UNCLAIMED;
3052 hrtime_t now;
3053
3054 mutex_enter(&pp->umutex);
3055 /*
3056 * interrupt may occur while other thread is holding the lock
3057 * and cancels DMA transfer (e.g. ecpp_flush())
3058 * since it cannot cancel the interrupt thread,
3059 * it just sets dma_cancelled to TRUE,
3060 * telling interrupt handler to exit immediately
3061 */
3062 if (pp->dma_cancelled == TRUE) {
3063 ecpp_error(pp->dip, "dma-cancel isr\n");
3064
3065 pp->intr_hard++;
3066 pp->dma_cancelled = FALSE;
3067
3068 mutex_exit(&pp->umutex);
3069 return (DDI_INTR_CLAIMED);
3070 }
3071
3072 /* Southbridge interrupts are handled separately */
3073 #if defined(__x86)
3074 if (pp->hw == &x86)
3075 #else
3076 if (pp->hw == &m1553)
3077 #endif
3078 {
3079 retval = ecpp_M1553_intr(pp);
3080 if (retval == DDI_INTR_UNCLAIMED) {
3081 goto unexpected;
3082 }
3083 mutex_exit(&pp->umutex);
3084 return (DDI_INTR_CLAIMED);
3085 }
3086
3087 /*
3088 * the intr is through the motherboard. it is faster than PCI route.
3089 * sometimes ecpp_isr() is invoked before cheerio csr is updated.
3090 */
3091 cheerio_pend_counter = ecpp_isr_max_delay;
3092 dcsr = GET_DMAC_CSR(pp);
3093
3094 while (!(dcsr & DCSR_INT_PEND) && cheerio_pend_counter-- > 0) {
3095 drv_usecwait(1);
3096 dcsr = GET_DMAC_CSR(pp);
3097 }
3098
3099 /*
3100 * This is a workaround for what seems to be a timing problem
3101 * with the delivery of interrupts and CSR updating with the
3102 * ebus2 csr, superio and the n_ERR pin from the peripheral.
3103 *
3104 * delay is not needed for PIO mode
3105 */
3106 if (!COMPAT_PIO(pp)) {
3107 drv_usecwait(100);
3108 dcsr = GET_DMAC_CSR(pp);
3109 }
3110
3111 /* on 97317 in Extended mode IRQ_ST of DSR is deasserted when read */
3112 dsr = DSR_READ(pp);
3113
3114 /*
3115 * check if interrupt is for this device:
3116 * it should be reflected either in cheerio DCSR register
3117 * or in IRQ_ST bit of DSR on 97317
3118 */
3119 if ((dcsr & DCSR_INT_PEND) == 0) {
3120 if (pp->hw != &pc97317) {
3121 goto unclaimed;
3122 }
3123 /*
3124 * on Excalibur, reading DSR will deassert SuperIO IRQx line
3125 * RIO's DCSR_INT_PEND seems to follow IRQx transitions,
3126 * so if DSR is read after interrupt occured, but before
3127 * we get here, IRQx and hence INT_PEND will be deasserted
3128 * as a result, we can miss a service interrupt in PIO mode
3129 *
3130 * malicious DSR reader is BPPIOC_TESTIO, which is called
3131 * by LP in between data blocks to check printer status
3132 * this workaround lets us not to miss an interrupt
3133 *
3134 * also, nErr interrupt (ECP mode) not always reflected in DCSR
3135 */
3136 if (((dsr & ECPP_IRQ_ST) == 0) ||
3137 ((COMPAT_PIO(pp)) && (pp->e_busy == ECPP_BUSY)) ||
3138 (((dsr & ECPP_nERR) == 0) &&
3139 (pp->current_mode == ECPP_ECP_MODE))) {
3140 dcsr = 0;
3141 } else {
3142 goto unclaimed;
3143 }
3144 }
3145
3146 pp->intr_hard++;
3147
3148 /* the intr is for us - check all possible interrupt sources */
3149 if (dcsr & DCSR_ERR_PEND) {
3150 size_t bcr;
3151
3152 /* we are expecting a data transfer interrupt */
3153 ASSERT(pp->e_busy == ECPP_BUSY);
3154
3155 /*
3156 * some kind of DMA error
3157 */
3158 if (ECPP_DMA_STOP(pp, &bcr) == FAILURE) {
3159 ecpp_error(pp->dip, "ecpp_isr: dma_stop failed\n");
3160 }
3161
3162 ecpp_error(pp->dip, "ecpp_isr: DMAC ERROR bcr=%d\n", bcr);
3163
3164 ecpp_xfer_cleanup(pp);
3165
3166 if (ddi_dma_unbind_handle(pp->dma_handle) != DDI_SUCCESS) {
3167 ecpp_error(pp->dip, "ecpp_isr(e): unbind failed\n");
3168 }
3169
3170 mutex_exit(&pp->umutex);
3171 return (DDI_INTR_CLAIMED);
3172 }
3173
3174 if (dcsr & DCSR_TC) {
3175 retval = ecpp_dma_ihdlr(pp);
3176 mutex_exit(&pp->umutex);
3177 return (DDI_INTR_CLAIMED);
3178 }
3179
3180 if (COMPAT_PIO(pp)) {
3181 retval = ecpp_pio_ihdlr(pp);
3182 mutex_exit(&pp->umutex);
3183 return (DDI_INTR_CLAIMED);
3184 }
3185
3186 /* does peripheral need attention? */
3187 if ((dsr & ECPP_nERR) == 0) {
3188 retval = ecpp_nErr_ihdlr(pp);
3189 mutex_exit(&pp->umutex);
3190 return (DDI_INTR_CLAIMED);
3191 }
3192
3193 pp->intr_hard--;
3194
3195 unexpected:
3196
3197 pp->intr_spurious++;
3198
3199 /*
3200 * The following procedure tries to prevent soft hangs
3201 * in event of peripheral/superio misbehaviour:
3202 * if number of unexpected interrupts in the last SPUR_PERIOD ns
3203 * exceeded SPUR_CRITICAL, then shut up interrupts
3204 */
3205 now = gethrtime();
3206 if (pp->lastspur == 0 || now - pp->lastspur > SPUR_PERIOD) {
3207 /* last unexpected interrupt was long ago */
3208 pp->lastspur = now;
3209 pp->nspur = 1;
3210 } else {
3211 /* last unexpected interrupt was recently */
3212 pp->nspur++;
3213 }
3214
3215 if (pp->nspur >= SPUR_CRITICAL) {
3216 ECPP_MASK_INTR(pp);
3217 ECR_WRITE(pp, ECR_READ(pp) | ECPP_INTR_MASK | ECPP_INTR_SRV);
3218 pp->nspur = 0;
3219 cmn_err(CE_NOTE, "%s%d: too many interrupt requests",
3220 ddi_get_name(pp->dip), ddi_get_instance(pp->dip));
3221 } else {
3222 ECR_WRITE(pp, ECR_READ(pp) | ECPP_INTR_SRV | ECPP_INTR_MASK);
3223 }
3224
3225 ecpp_error(pp->dip,
3226 "isr:unknown: dcsr=%x ecr=%x dsr=%x dcr=%x\nmode=%x phase=%x\n",
3227 dcsr, ECR_READ(pp), dsr, DCR_READ(pp),
3228 pp->current_mode, pp->current_phase);
3229
3230 mutex_exit(&pp->umutex);
3231 return (DDI_INTR_CLAIMED);
3232
3233 unclaimed:
3234
3235 pp->intr_spurious++;
3236
3237 ecpp_error(pp->dip,
3238 "isr:UNCL: dcsr=%x ecr=%x dsr=%x dcr=%x\nmode=%x phase=%x\n",
3239 dcsr, ECR_READ(pp), DSR_READ(pp), DCR_READ(pp),
3240 pp->current_mode, pp->current_phase);
3241
3242 mutex_exit(&pp->umutex);
3243 return (DDI_INTR_UNCLAIMED);
3244 }
3245
3246 /*
3247 * M1553 intr handler
3248 */
3249 static uint_t
3250 ecpp_M1553_intr(struct ecppunit *pp)
3251 {
3252 int retval = DDI_INTR_UNCLAIMED;
3253
3254 pp->intr_hard++;
3255
3256 if (pp->e_busy == ECPP_BUSY) {
3257 /* Centronics or Compat PIO transfer */
3258 if (COMPAT_PIO(pp)) {
3259 return (ecpp_pio_ihdlr(pp));
3260 }
3261
3262 /* Centronics or Compat DMA transfer */
3263 if (COMPAT_DMA(pp) ||
3264 (pp->current_mode == ECPP_ECP_MODE) ||
3265 (pp->current_mode == ECPP_DIAG_MODE)) {
3266 return (ecpp_dma_ihdlr(pp));
3267 }
3268 }
3269
3270 /* Nibble or ECP backchannel request? */
3271 if ((DSR_READ(pp) & ECPP_nERR) == 0) {
3272 return (ecpp_nErr_ihdlr(pp));
3273 }
3274
3275 return (retval);
3276 }
3277
3278 /*
3279 * DMA completion interrupt handler
3280 */
3281 static uint_t
3282 ecpp_dma_ihdlr(struct ecppunit *pp)
3283 {
3284 clock_t tm;
3285
3286 ecpp_error(pp->dip, "ecpp_dma_ihdlr(%x): ecr=%x, dsr=%x, dcr=%x\n",
3287 pp->current_mode, ECR_READ(pp), DSR_READ(pp), DCR_READ(pp));
3288
3289 /* we are expecting a data transfer interrupt */
3290 ASSERT(pp->e_busy == ECPP_BUSY);
3291
3292 /* Intr generated while invoking TFIFO mode. Exit */
3293 if (pp->tfifo_intr == 1) {
3294 pp->tfifo_intr = 0;
3295 ecpp_error(pp->dip, "ecpp_dma_ihdlr: tfifo_intr is 1\n");
3296 return (DDI_INTR_CLAIMED);
3297 }
3298
3299 if (ECPP_DMA_STOP(pp, NULL) == FAILURE) {
3300 ecpp_error(pp->dip, "ecpp_dma_ihdlr: dma_stop failed\n");
3301 }
3302
3303 if (pp->current_mode == ECPP_ECP_MODE &&
3304 pp->current_phase == ECPP_PHASE_ECP_REV_XFER) {
3305 ecpp_ecp_read_completion(pp);
3306 } else {
3307 /*
3308 * fifo_timer() will do the cleanup when the FIFO drains
3309 */
3310 if ((ECR_READ(pp) & ECPP_FIFO_EMPTY) ||
3311 (pp->current_mode == ECPP_DIAG_MODE)) {
3312 tm = 0; /* no use in waiting if FIFO is already empty */
3313 } else {
3314 tm = drv_usectohz(FIFO_DRAIN_PERIOD);
3315 }
3316 pp->fifo_timer_id = timeout(ecpp_fifo_timer, (caddr_t)pp, tm);
3317 }
3318
3319 /*
3320 * Stop the DMA transfer timeout timer
3321 * this operation will temporarily give up the mutex,
3322 * so we do it in the end of the handler to avoid races
3323 */
3324 ecpp_untimeout_unblock(pp, &pp->timeout_id);
3325
3326 return (DDI_INTR_CLAIMED);
3327 }
3328
3329 /*
3330 * ecpp_pio_ihdlr() is a PIO interrupt processing routine
3331 * It masks interrupts, updates statistics and initiates next byte transfer
3332 */
3333 static uint_t
3334 ecpp_pio_ihdlr(struct ecppunit *pp)
3335 {
3336 ASSERT(mutex_owned(&pp->umutex));
3337 ASSERT(pp->e_busy == ECPP_BUSY);
3338
3339 /* update statistics */
3340 pp->joblen++;
3341 pp->ctxpio_obytes++;
3342
3343 /* disable nAck interrups */
3344 ECPP_MASK_INTR(pp);
3345 DCR_WRITE(pp, DCR_READ(pp) & ~(ECPP_REV_DIR | ECPP_INTR_EN));
3346
3347 /*
3348 * If it was the last byte of the data block cleanup,
3349 * otherwise trigger a soft interrupt to send the next byte
3350 */
3351 if (pp->next_byte >= pp->last_byte) {
3352 ecpp_xfer_cleanup(pp);
3353 ecpp_error(pp->dip,
3354 "ecpp_pio_ihdlr: pp->joblen=%d,pp->ctx_cf=%d,\n",
3355 pp->joblen, pp->ctx_cf);
3356 } else {
3357 if (pp->softintr_pending) {
3358 ecpp_error(pp->dip,
3359 "ecpp_pio_ihdlr:E: next byte in progress\n");
3360 } else {
3361 pp->softintr_flags = ECPP_SOFTINTR_PIONEXT;
3362 pp->softintr_pending = 1;
3363 ddi_trigger_softintr(pp->softintr_id);
3364 }
3365 }
3366
3367 return (DDI_INTR_CLAIMED);
3368 }
3369
3370 /*
3371 * ecpp_pio_writeb() sends a byte using Centronics handshake
3372 */
3373 static void
3374 ecpp_pio_writeb(struct ecppunit *pp)
3375 {
3376 uint8_t dcr;
3377
3378 dcr = DCR_READ(pp) & ~ECPP_REV_DIR;
3379 dcr |= ECPP_INTR_EN;
3380
3381 /* send the next byte */
3382 DATAR_WRITE(pp, *(pp->next_byte++));
3383
3384 drv_usecwait(pp->data_setup_time);
3385
3386 /* Now Assert (neg logic) nStrobe */
3387 if (dcr_write(pp, dcr | ECPP_STB) == FAILURE) {
3388 ecpp_error(pp->dip, "ecpp_pio_writeb:1: failed w/DCR\n");
3389 }
3390
3391 /* Enable nAck interrupts */
3392 (void) DSR_READ(pp); /* ensure IRQ_ST is armed */
3393 ECPP_UNMASK_INTR(pp);
3394
3395 drv_usecwait(pp->strobe_pulse_width);
3396
3397 if (dcr_write(pp, dcr & ~ECPP_STB) == FAILURE) {
3398 ecpp_error(pp->dip, "ecpp_pio_writeb:2: failed w/DCR\n");
3399 }
3400 }
3401
3402 /*
3403 * Backchannel request interrupt handler
3404 */
3405 static uint_t
3406 ecpp_nErr_ihdlr(struct ecppunit *pp)
3407 {
3408 ecpp_error(pp->dip, "ecpp_nErr_ihdlr: mode=%x, phase=%x\n",
3409 pp->current_mode, pp->current_phase);
3410
3411 if (pp->oflag != TRUE) {
3412 ecpp_error(pp->dip, "ecpp_nErr_ihdlr: not open!\n");
3413 return (DDI_INTR_UNCLAIMED);
3414 }
3415
3416 if (pp->e_busy == ECPP_BUSY) {
3417 ecpp_error(pp->dip, "ecpp_nErr_ihdlr: busy\n");
3418 ECR_WRITE(pp, ECR_READ(pp) | ECPP_INTR_MASK);
3419 return (DDI_INTR_CLAIMED);
3420 }
3421
3422 /* mask nErr & nAck interrupts */
3423 ECPP_MASK_INTR(pp);
3424 DCR_WRITE(pp, DCR_READ(pp) & ~(ECPP_INTR_EN | ECPP_REV_DIR));
3425 ECR_WRITE(pp, ECR_READ(pp) | ECPP_INTR_MASK);
3426
3427 /* going reverse */
3428 switch (pp->current_mode) {
3429 case ECPP_ECP_MODE:
3430 /*
3431 * Peripheral asserts nPeriphRequest (nFault)
3432 */
3433 break;
3434 case ECPP_NIBBLE_MODE:
3435 /*
3436 * Event 18: Periph asserts nErr to indicate data avail
3437 * Event 19: After waiting minimum pulse width,
3438 * periph sets nAck high to generate an interrupt
3439 *
3440 * Interface is in Interrupt Phase
3441 */
3442 pp->current_phase = ECPP_PHASE_NIBT_REVINTR;
3443
3444 break;
3445 default:
3446 ecpp_error(pp->dip, "ecpp_nErr_ihdlr: wrong mode!\n");
3447 return (DDI_INTR_UNCLAIMED);
3448 }
3449
3450 (void) ecpp_backchan_req(pp); /* put backchannel request on the wq */
3451
3452 return (DDI_INTR_CLAIMED);
3453 }
3454
3455 /*
3456 * Softintr handler does work according to softintr_flags:
3457 * in case of ECPP_SOFTINTR_PIONEXT it sends next byte of PIO transfer
3458 */
3459 static uint_t
3460 ecpp_softintr(caddr_t arg)
3461 {
3462 struct ecppunit *pp = (struct ecppunit *)arg;
3463 uint32_t unx_len, ecpp_reattempts = 0;
3464
3465 mutex_enter(&pp->umutex);
3466
3467 pp->intr_soft++;
3468
3469 if (!pp->softintr_pending) {
3470 mutex_exit(&pp->umutex);
3471 return (DDI_INTR_CLAIMED);
3472 } else {
3473 pp->softintr_pending = 0;
3474 }
3475
3476 if (pp->softintr_flags & ECPP_SOFTINTR_PIONEXT) {
3477 pp->softintr_flags &= ~ECPP_SOFTINTR_PIONEXT;
3478 /*
3479 * Sent next byte in PIO mode
3480 */
3481 ecpp_reattempts = 0;
3482 do {
3483 if (ecpp_check_status(pp) == SUCCESS) {
3484 pp->e_busy = ECPP_BUSY;
3485 break;
3486 }
3487 drv_usecwait(1);
3488 if (pp->isr_reattempt_high < ecpp_reattempts) {
3489 pp->isr_reattempt_high = ecpp_reattempts;
3490 }
3491 } while (++ecpp_reattempts < pp->wait_for_busy);
3492
3493 /* if the peripheral still not recovered suspend the transfer */
3494 if (pp->e_busy == ECPP_ERR) {
3495 ++pp->ctx_cf; /* check status fail */
3496 ecpp_error(pp->dip, "ecpp_softintr:check_status:F: "
3497 "dsr=%x jl=%d cf_isr=%d\n",
3498 DSR_READ(pp), pp->joblen, pp->ctx_cf);
3499
3500 /*
3501 * if status signals are bad,
3502 * put everything back on the wq.
3503 */
3504 unx_len = pp->last_byte - pp->next_byte;
3505 if (pp->msg != NULL) {
3506 ecpp_putback_untransfered(pp,
3507 (void *)pp->msg->b_rptr, unx_len);
3508 ecpp_error(pp->dip,
3509 "ecpp_softintr:e1:unx_len=%d\n", unx_len);
3510
3511 freemsg(pp->msg);
3512 pp->msg = NULL;
3513 } else {
3514 ecpp_putback_untransfered(pp,
3515 pp->next_byte, unx_len);
3516 ecpp_error(pp->dip,
3517 "ecpp_softintr:e2:unx_len=%d\n", unx_len);
3518 }
3519
3520 ecpp_xfer_cleanup(pp);
3521 pp->e_busy = ECPP_ERR;
3522 qenable(pp->writeq);
3523 } else {
3524 /* send the next one */
3525 pp->e_busy = ECPP_BUSY;
3526 (void) ecpp_pio_writeb(pp);
3527 }
3528 }
3529
3530 mutex_exit(&pp->umutex);
3531 return (DDI_INTR_CLAIMED);
3532 }
3533
3534
3535 /*
3536 * Transfer clean-up:
3537 * shut down the DMAC
3538 * stop the transfer timer
3539 * enable write queue
3540 */
3541 static void
3542 ecpp_xfer_cleanup(struct ecppunit *pp)
3543 {
3544 ASSERT(mutex_owned(&pp->umutex));
3545
3546 /*
3547 * if we did not use the ioblock, the mblk that
3548 * was used should be freed.
3549 */
3550 if (pp->msg != NULL) {
3551 freemsg(pp->msg);
3552 pp->msg = NULL;
3553 }
3554
3555 /* The port is no longer active */
3556 pp->e_busy = ECPP_IDLE;
3557
3558 /* Stop the transfer timeout timer */
3559 ecpp_untimeout_unblock(pp, &pp->timeout_id);
3560
3561 qenable(pp->writeq);
3562 }
3563
3564 /*VARARGS*/
3565 static void
3566 ecpp_error(dev_info_t *dip, char *fmt, ...)
3567 {
3568 static long last;
3569 static char *lastfmt;
3570 char msg_buffer[255];
3571 va_list ap;
3572 time_t now;
3573
3574 if (!ecpp_debug) {
3575 return;
3576 }
3577
3578 /*
3579 * This function is supposed to be a quick non-blockable
3580 * wrapper for cmn_err(9F), which provides a sensible degree
3581 * of debug message throttling. Not using any type of lock
3582 * is a requirement, but this also leaves two static variables
3583 * - last and lastfmt - unprotected. However, this will not do
3584 * any harm to driver functionality, it can only weaken throttling.
3585 * The following directive asks warlock to not worry about these
3586 * variables.
3587 */
3588 _NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(last, lastfmt))
3589
3590 /*
3591 * Don't print same error message too often.
3592 */
3593 now = gethrestime_sec();
3594 if ((last == (now & ~1)) && (lastfmt == fmt))
3595 return;
3596
3597 last = now & ~1;
3598 lastfmt = fmt;
3599
3600 va_start(ap, fmt);
3601 (void) vsprintf(msg_buffer, fmt, ap);
3602 cmn_err(CE_CONT, "%s%d: %s", ddi_get_name(dip),
3603 ddi_get_instance(dip), msg_buffer);
3604 va_end(ap);
3605 }
3606
3607 /*
3608 * Forward transfer timeout
3609 */
3610 static void
3611 ecpp_xfer_timeout(void *arg)
3612 {
3613 struct ecppunit *pp = arg;
3614 void *unx_addr;
3615 size_t unx_len, xferd;
3616 uint8_t dcr;
3617 timeout_id_t fifo_timer_id;
3618
3619 mutex_enter(&pp->umutex);
3620
3621 if (pp->timeout_id == 0) {
3622 mutex_exit(&pp->umutex);
3623 return;
3624 } else {
3625 pp->timeout_id = 0;
3626 }
3627
3628 pp->xfer_tout++;
3629
3630 pp->dma_cancelled = TRUE; /* prevent race with isr() */
3631
3632 if (COMPAT_PIO(pp)) {
3633 /*
3634 * PIO mode timeout
3635 */
3636
3637 /* turn off nAck interrupts */
3638 dcr = DCR_READ(pp);
3639 (void) dcr_write(pp, dcr & ~(ECPP_REV_DIR | ECPP_INTR_EN));
3640 ECPP_MASK_INTR(pp);
3641
3642 pp->softintr_pending = 0;
3643 unx_len = pp->last_byte - pp->next_byte;
3644 ecpp_error(pp->dip, "xfer_timeout: unx_len=%d\n", unx_len);
3645
3646 if (unx_len > 0) {
3647 unx_addr = pp->next_byte;
3648 } else {
3649 ecpp_xfer_cleanup(pp);
3650 qenable(pp->writeq);
3651 mutex_exit(&pp->umutex);
3652 return;
3653 }
3654 } else {
3655 /*
3656 * DMA mode timeout
3657 *
3658 * If DMAC fails to shut off, continue anyways and attempt
3659 * to put untransfered data back on queue.
3660 */
3661 if (ECPP_DMA_STOP(pp, &unx_len) == FAILURE) {
3662 ecpp_error(pp->dip,
3663 "ecpp_xfer_timeout: failed dma_stop\n");
3664 }
3665
3666 ecpp_error(pp->dip, "xfer_timeout: unx_len=%d\n", unx_len);
3667
3668 if (ddi_dma_unbind_handle(pp->dma_handle) == DDI_FAILURE) {
3669 ecpp_error(pp->dip,
3670 "ecpp_xfer_timeout: failed unbind\n");
3671 }
3672
3673 /*
3674 * if the bcr is zero, then DMA is complete and
3675 * we are waiting for the fifo to drain. So let
3676 * ecpp_fifo_timer() look after the clean up.
3677 */
3678 if (unx_len == 0) {
3679 qenable(pp->writeq);
3680 mutex_exit(&pp->umutex);
3681 return;
3682 } else {
3683 xferd = pp->dma_cookie.dmac_size - unx_len;
3684 pp->resid -= xferd;
3685 unx_len = pp->resid;
3686
3687 /* update statistics */
3688 pp->obytes[pp->current_mode] += xferd;
3689 pp->joblen += xferd;
3690
3691 if (pp->msg != NULL) {
3692 unx_addr = (caddr_t)pp->msg->b_wptr - unx_len;
3693 } else {
3694 unx_addr = pp->ioblock +
3695 (pp->xfercnt - unx_len);
3696 }
3697 }
3698 }
3699
3700 /* Following code is common for PIO and DMA modes */
3701
3702 ecpp_putback_untransfered(pp, (caddr_t)unx_addr, unx_len);
3703
3704 if (pp->msg != NULL) {
3705 freemsg(pp->msg);
3706 pp->msg = NULL;
3707 }
3708
3709 /* mark the error status structure */
3710 pp->timeout_error = 1;
3711 pp->e_busy = ECPP_ERR;
3712 fifo_timer_id = pp->fifo_timer_id;
3713 pp->fifo_timer_id = 0;
3714
3715 qenable(pp->writeq);
3716
3717 mutex_exit(&pp->umutex);
3718
3719 if (fifo_timer_id) {
3720 (void) untimeout(fifo_timer_id);
3721 }
3722 }
3723
3724 static void
3725 ecpp_putback_untransfered(struct ecppunit *pp, void *startp, uint_t len)
3726 {
3727 mblk_t *new_mp;
3728
3729 ecpp_error(pp->dip, "ecpp_putback_untrans=%d\n", len);
3730
3731 if (len == 0) {
3732 return;
3733 }
3734
3735 new_mp = allocb(len, BPRI_MED);
3736 if (new_mp == NULL) {
3737 ecpp_error(pp->dip,
3738 "ecpp_putback_untransfered: allocb FAILURE.\n");
3739 return;
3740 }
3741
3742 bcopy(startp, new_mp->b_rptr, len);
3743 new_mp->b_wptr = new_mp->b_rptr + len;
3744
3745 if (!putbq(pp->writeq, new_mp)) {
3746 freemsg(new_mp);
3747 }
3748 }
3749
3750 static uchar_t
3751 ecr_write(struct ecppunit *pp, uint8_t ecr_byte)
3752 {
3753 int i, current_ecr;
3754
3755 for (i = ECPP_REG_WRITE_MAX_LOOP; i > 0; i--) {
3756 ECR_WRITE(pp, ecr_byte);
3757
3758 current_ecr = ECR_READ(pp);
3759
3760 /* mask off the lower two read-only bits */
3761 if ((ecr_byte & 0xFC) == (current_ecr & 0xFC))
3762 return (SUCCESS);
3763 }
3764 return (FAILURE);
3765 }
3766
3767 static uchar_t
3768 dcr_write(struct ecppunit *pp, uint8_t dcr_byte)
3769 {
3770 uint8_t current_dcr;
3771 int i;
3772
3773 for (i = ECPP_REG_WRITE_MAX_LOOP; i > 0; i--) {
3774 DCR_WRITE(pp, dcr_byte);
3775
3776 current_dcr = DCR_READ(pp);
3777
3778 /* compare only bits 0-4 (direction bit return 1) */
3779 if ((dcr_byte & 0x1F) == (current_dcr & 0x1F))
3780 return (SUCCESS);
3781 }
3782 ecpp_error(pp->dip,
3783 "(%d)dcr_write: dcr written =%x, dcr readback =%x\n",
3784 i, dcr_byte, current_dcr);
3785
3786 return (FAILURE);
3787 }
3788
3789 static uchar_t
3790 ecpp_reset_port_regs(struct ecppunit *pp)
3791 {
3792 DCR_WRITE(pp, ECPP_SLCTIN | ECPP_nINIT);
3793 ECR_WRITE(pp, ECR_mode_001 | ECPP_INTR_MASK | ECPP_INTR_SRV);
3794 return (SUCCESS);
3795 }
3796
3797 /*
3798 * The data transferred by the DMA engine goes through the FIFO,
3799 * so that when the DMA counter reaches zero (and an interrupt occurs)
3800 * the FIFO can still contain data. If this is the case, the ISR will
3801 * schedule this callback to wait until the FIFO drains or a timeout occurs.
3802 */
3803 static void
3804 ecpp_fifo_timer(void *arg)
3805 {
3806 struct ecppunit *pp = arg;
3807 uint8_t ecr;
3808 timeout_id_t timeout_id;
3809
3810 mutex_enter(&pp->umutex);
3811
3812 /*
3813 * If the FIFO timer has been turned off, exit.
3814 */
3815 if (pp->fifo_timer_id == 0) {
3816 ecpp_error(pp->dip, "ecpp_fifo_timer: untimedout\n");
3817 mutex_exit(&pp->umutex);
3818 return;
3819 } else {
3820 pp->fifo_timer_id = 0;
3821 }
3822
3823 /*
3824 * If the FIFO is not empty restart timer. Wait FIFO_DRAIN_PERIOD
3825 * (250 ms) and check FIFO_EMPTY bit again. Repeat until FIFO is
3826 * empty or until 10 * FIFO_DRAIN_PERIOD expires.
3827 */
3828 ecr = ECR_READ(pp);
3829
3830 if ((pp->current_mode != ECPP_DIAG_MODE) &&
3831 (((ecr & ECPP_FIFO_EMPTY) == 0) &&
3832 (pp->ecpp_drain_counter < 10))) {
3833
3834 ecpp_error(pp->dip,
3835 "ecpp_fifo_timer(%d):FIFO not empty:ecr=%x\n",
3836 pp->ecpp_drain_counter, ecr);
3837
3838 pp->fifo_timer_id = timeout(ecpp_fifo_timer,
3839 (caddr_t)pp, drv_usectohz(FIFO_DRAIN_PERIOD));
3840 ++pp->ecpp_drain_counter;
3841
3842 mutex_exit(&pp->umutex);
3843 return;
3844 }
3845
3846 if (pp->current_mode != ECPP_DIAG_MODE) {
3847 /*
3848 * If the FIFO won't drain after 10 FIFO_DRAIN_PERIODs
3849 * then don't wait any longer. Simply clean up the transfer.
3850 */
3851 if (pp->ecpp_drain_counter >= 10) {
3852 ecpp_error(pp->dip, "ecpp_fifo_timer(%d):"
3853 " clearing FIFO,can't wait:ecr=%x\n",
3854 pp->ecpp_drain_counter, ecr);
3855 } else {
3856 ecpp_error(pp->dip,
3857 "ecpp_fifo_timer(%d):FIFO empty:ecr=%x\n",
3858 pp->ecpp_drain_counter, ecr);
3859 }
3860
3861 pp->ecpp_drain_counter = 0;
3862 }
3863
3864 /*
3865 * Main section of routine:
3866 * - stop the DMA transfer timer
3867 * - program DMA with next cookie/window or unbind the DMA mapping
3868 * - update stats
3869 * - if last mblk in queue, signal to close() & return to idle state
3870 */
3871
3872 /* Stop the DMA transfer timeout timer */
3873 timeout_id = pp->timeout_id;
3874 pp->timeout_id = 0;
3875
3876 /* data has drained from fifo, it is ok to free dma resource */
3877 if (pp->current_mode == ECPP_ECP_MODE ||
3878 pp->current_mode == ECPP_DIAG_MODE ||
3879 COMPAT_DMA(pp)) {
3880 off_t off;
3881 size_t len;
3882
3883 /* update residual */
3884 pp->resid -= pp->dma_cookie.dmac_size;
3885
3886 /* update statistics */
3887 pp->joblen += pp->dma_cookie.dmac_size;
3888 if (pp->dma_dir == DDI_DMA_WRITE) {
3889 pp->obytes[pp->current_mode] +=
3890 pp->dma_cookie.dmac_size;
3891 } else {
3892 pp->ibytes[pp->current_mode] +=
3893 pp->dma_cookie.dmac_size;
3894 }
3895
3896 /*
3897 * Look if any cookies/windows left
3898 */
3899 if (--pp->dma_cookie_count > 0) {
3900 /* process the next cookie */
3901 ddi_dma_nextcookie(pp->dma_handle,
3902 &pp->dma_cookie);
3903 } else if (pp->dma_curwin < pp->dma_nwin) {
3904 /* process the next window */
3905 if (ddi_dma_getwin(pp->dma_handle,
3906 pp->dma_curwin, &off, &len,
3907 &pp->dma_cookie,
3908 &pp->dma_cookie_count) != DDI_SUCCESS) {
3909 ecpp_error(pp->dip,
3910 "ecpp_fifo_timer: ddi_dma_getwin failed\n");
3911 goto dma_done;
3912 }
3913
3914 pp->dma_curwin++;
3915 } else {
3916 goto dma_done;
3917 }
3918
3919 ecpp_error(pp->dip, "ecpp_fifo_timer: next addr=%llx len=%d\n",
3920 pp->dma_cookie.dmac_address,
3921 pp->dma_cookie.dmac_size);
3922
3923 /* kick off new transfer */
3924 if (ECPP_DMA_START(pp) != SUCCESS) {
3925 ecpp_error(pp->dip,
3926 "ecpp_fifo_timer: dma_start failed\n");
3927 goto dma_done;
3928 }
3929
3930 (void) ecr_write(pp, (ecr & 0xe0) |
3931 ECPP_DMA_ENABLE | ECPP_INTR_MASK);
3932
3933 mutex_exit(&pp->umutex);
3934
3935 if (timeout_id) {
3936 (void) untimeout(timeout_id);
3937 }
3938 return;
3939
3940 dma_done:
3941 if (ddi_dma_unbind_handle(pp->dma_handle) != DDI_SUCCESS) {
3942 ecpp_error(pp->dip, "ecpp_fifo_timer: unbind failed\n");
3943 } else {
3944 ecpp_error(pp->dip, "ecpp_fifo_timer: unbind ok\n");
3945 }
3946 }
3947
3948 /*
3949 * if we did not use the dmablock, the mblk that
3950 * was used should be freed.
3951 */
3952 if (pp->msg != NULL) {
3953 freemsg(pp->msg);
3954 pp->msg = NULL;
3955 }
3956
3957 /* The port is no longer active */
3958 pp->e_busy = ECPP_IDLE;
3959
3960 qenable(pp->writeq);
3961
3962 mutex_exit(&pp->umutex);
3963
3964 if (timeout_id) {
3965 (void) untimeout(timeout_id);
3966 }
3967 }
3968
3969 /*
3970 * In Compatibility mode, check if the peripheral is ready to accept data
3971 */
3972 static uint8_t
3973 ecpp_check_status(struct ecppunit *pp)
3974 {
3975 uint8_t dsr;
3976 uint8_t statmask;
3977
3978 if (pp->current_mode == ECPP_ECP_MODE ||
3979 pp->current_mode == ECPP_DIAG_MODE)
3980 return (SUCCESS);
3981
3982 statmask = ECPP_nERR | ECPP_SLCT | ECPP_nBUSY | ECPP_nACK;
3983
3984 dsr = DSR_READ(pp);
3985 if ((dsr & ECPP_PE) || ((dsr & statmask) != statmask)) {
3986 pp->e_busy = ECPP_ERR;
3987 return (FAILURE);
3988 } else {
3989 return (SUCCESS);
3990 }
3991 }
3992
3993 /*
3994 * if the peripheral is not ready to accept data, write service routine
3995 * periodically reschedules itself to recheck peripheral status
3996 * and start data transfer as soon as possible
3997 */
3998 static void
3999 ecpp_wsrv_timer(void *arg)
4000 {
4001 struct ecppunit *pp = arg;
4002
4003 ecpp_error(pp->dip, "ecpp_wsrv_timer: starting\n");
4004
4005 mutex_enter(&pp->umutex);
4006
4007 if (pp->wsrv_timer_id == 0) {
4008 mutex_exit(&pp->umutex);
4009 return;
4010 } else {
4011 pp->wsrv_timer_id = 0;
4012 }
4013
4014 ecpp_error(pp->dip, "ecpp_wsrv_timer: qenabling...\n");
4015
4016 qenable(pp->writeq);
4017
4018 mutex_exit(&pp->umutex);
4019 }
4020
4021 /*
4022 * Allocate a message indicating a backchannel request
4023 * and put it on the write queue
4024 */
4025 static int
4026 ecpp_backchan_req(struct ecppunit *pp)
4027 {
4028 mblk_t *mp;
4029
4030 if ((mp = allocb(sizeof (int), BPRI_MED)) == NULL) {
4031 ecpp_error(pp->dip, "ecpp_backchan_req: allocb failed\n");
4032 return (FAILURE);
4033 } else {
4034 mp->b_datap->db_type = M_CTL;
4035 *(int *)mp->b_rptr = ECPP_BACKCHANNEL;
4036 mp->b_wptr = mp->b_rptr + sizeof (int);
4037 if (!putbq(pp->writeq, mp)) {
4038 ecpp_error(pp->dip, "ecpp_backchan_req:putbq failed\n");
4039 freemsg(mp);
4040 return (FAILURE);
4041 }
4042 return (SUCCESS);
4043 }
4044 }
4045
4046 /*
4047 * Cancel the function scheduled with timeout(9F)
4048 * This function is to be called with the mutex held
4049 */
4050 static void
4051 ecpp_untimeout_unblock(struct ecppunit *pp, timeout_id_t *id)
4052 {
4053 timeout_id_t saved_id;
4054
4055 ASSERT(mutex_owned(&pp->umutex));
4056
4057 if (*id) {
4058 saved_id = *id;
4059 *id = 0;
4060 mutex_exit(&pp->umutex);
4061 (void) untimeout(saved_id);
4062 mutex_enter(&pp->umutex);
4063 }
4064 }
4065
4066 /*
4067 * get prnio interface capabilities
4068 */
4069 static uint_t
4070 ecpp_get_prn_ifcap(struct ecppunit *pp)
4071 {
4072 uint_t ifcap;
4073
4074 ifcap = PRN_1284_DEVID | PRN_TIMEOUTS | PRN_STREAMS;
4075
4076 /* status (DSR) only makes sense in Centronics & Compat modes */
4077 if (pp->current_mode == ECPP_CENTRONICS ||
4078 pp->current_mode == ECPP_COMPAT_MODE) {
4079 ifcap |= PRN_1284_STATUS;
4080 } else if (pp->current_mode == ECPP_NIBBLE_MODE ||
4081 pp->current_mode == ECPP_ECP_MODE) {
4082 ifcap |= PRN_BIDI;
4083 }
4084
4085 return (ifcap);
4086 }
4087
4088 /*
4089 * Determine SuperI/O type
4090 */
4091 static struct ecpp_hw_bind *
4092 ecpp_determine_sio_type(struct ecppunit *pp)
4093 {
4094 struct ecpp_hw_bind *hw_bind;
4095 char *name;
4096 int i;
4097
4098 name = ddi_binding_name(pp->dip);
4099
4100 for (hw_bind = NULL, i = 0; i < NELEM(ecpp_hw_bind); i++) {
4101 if (strcmp(name, ecpp_hw_bind[i].name) == 0) {
4102 hw_bind = &ecpp_hw_bind[i];
4103 break;
4104 }
4105 }
4106
4107 return (hw_bind);
4108 }
4109
4110
4111 /*
4112 *
4113 * IEEE 1284 support routines:
4114 * negotiation and termination;
4115 * phase transitions;
4116 * device ID;
4117 *
4118 */
4119
4120 /*
4121 * Interface initialization, abnormal termination into Compatibility mode
4122 *
4123 * Peripheral may be non-1284, so we set current mode to ECPP_CENTRONICS
4124 */
4125 static void
4126 ecpp_1284_init_interface(struct ecppunit *pp)
4127 {
4128 ECR_WRITE(pp, ECPP_INTR_SRV | ECPP_INTR_MASK | ECR_mode_001);
4129
4130 /*
4131 * Toggle the nInit signal if configured in ecpp.conf
4132 * for most peripherals it is not needed
4133 */
4134 if (pp->init_seq == TRUE) {
4135 DCR_WRITE(pp, ECPP_SLCTIN);
4136 drv_usecwait(50); /* T(ER) = 50us */
4137 }
4138
4139 DCR_WRITE(pp, ECPP_nINIT | ECPP_SLCTIN);
4140
4141 pp->current_mode = pp->backchannel = ECPP_CENTRONICS;
4142 pp->current_phase = ECPP_PHASE_C_IDLE;
4143 ECPP_CONFIG_MODE(pp);
4144 pp->to_mode[pp->current_mode]++;
4145
4146 ecpp_error(pp->dip, "ecpp_1284_init_interface: ok\n");
4147 }
4148
4149 /*
4150 * ECP mode negotiation
4151 */
4152 static int
4153 ecp_negotiation(struct ecppunit *pp)
4154 {
4155 uint8_t dsr;
4156
4157 /* ECP mode negotiation */
4158
4159 if (ecpp_1284_negotiation(pp, ECPP_XREQ_ECP, &dsr) == FAILURE)
4160 return (FAILURE);
4161
4162 /* Event 5: peripheral deasserts PError and Busy, asserts Select */
4163 if ((dsr & (ECPP_PE | ECPP_nBUSY | ECPP_SLCT)) !=
4164 (ECPP_nBUSY | ECPP_SLCT)) {
4165 ecpp_error(pp->dip,
4166 "ecp_negotiation: failed event 5 %x\n", DSR_READ(pp));
4167 (void) ecpp_1284_termination(pp);
4168 return (FAILURE);
4169 }
4170
4171 /* entered Setup Phase */
4172 pp->current_phase = ECPP_PHASE_ECP_SETUP;
4173
4174 /* Event 30: host asserts nAutoFd */
4175 DCR_WRITE(pp, ECPP_nINIT | ECPP_AFX);
4176
4177 /* Event 31: peripheral asserts PError */
4178 if (wait_dsr(pp, ECPP_PE, ECPP_PE, 35000) < 0) {
4179 ecpp_error(pp->dip,
4180 "ecp_negotiation: failed event 31 %x\n", DSR_READ(pp));
4181 (void) ecpp_1284_termination(pp);
4182 return (FAILURE);
4183 }
4184
4185 /* entered Forward Idle Phase */
4186 pp->current_phase = ECPP_PHASE_ECP_FWD_IDLE;
4187
4188 /* successful negotiation into ECP mode */
4189 pp->current_mode = ECPP_ECP_MODE;
4190 pp->backchannel = ECPP_ECP_MODE;
4191
4192 ecpp_error(pp->dip, "ecp_negotiation: ok\n");
4193
4194 return (SUCCESS);
4195 }
4196
4197 /*
4198 * Nibble mode negotiation
4199 */
4200 static int
4201 nibble_negotiation(struct ecppunit *pp)
4202 {
4203 uint8_t dsr;
4204
4205 if (ecpp_1284_negotiation(pp, ECPP_XREQ_NIBBLE, &dsr) == FAILURE) {
4206 return (FAILURE);
4207 }
4208
4209 /*
4210 * If peripheral has data available, PE and nErr will
4211 * be set low at Event 5 & 6.
4212 */
4213 if ((dsr & (ECPP_PE | ECPP_nERR)) == 0) {
4214 pp->current_phase = ECPP_PHASE_NIBT_AVAIL;
4215 } else {
4216 pp->current_phase = ECPP_PHASE_NIBT_NAVAIL;
4217 }
4218
4219 /* successful negotiation into Nibble mode */
4220 pp->current_mode = ECPP_NIBBLE_MODE;
4221 pp->backchannel = ECPP_NIBBLE_MODE;
4222
4223 ecpp_error(pp->dip, "nibble_negotiation: ok (phase=%x)\n",
4224 pp->current_phase);
4225
4226 return (SUCCESS);
4227
4228 }
4229
4230 /*
4231 * Wait ptimeout usec for periph to set 'mask' bits to 'val' state
4232 *
4233 * return value < 0 indicates timeout
4234 */
4235 static int
4236 wait_dsr(struct ecppunit *pp, uint8_t mask, uint8_t val, int ptimeout)
4237 {
4238 while (((DSR_READ(pp) & mask) != val) && ptimeout--) {
4239 drv_usecwait(1);
4240 }
4241
4242 return (ptimeout);
4243 }
4244
4245 /*
4246 * 1284 negotiation Events 0..6
4247 * required mode is indicated by extensibility request value
4248 *
4249 * After successful negotiation SUCCESS is returned and
4250 * current mode is set according to xreq,
4251 * otherwise FAILURE is returned and current mode is set to
4252 * either COMPAT (1284 periph) or CENTRONICS (non-1284 periph)
4253 *
4254 * Current phase must be set by the caller (mode-specific negotiation)
4255 *
4256 * If rdsr is not NULL, DSR value after Event 6 is stored here
4257 */
4258 static int
4259 ecpp_1284_negotiation(struct ecppunit *pp, uint8_t xreq, uint8_t *rdsr)
4260 {
4261 int xflag;
4262
4263 ecpp_error(pp->dip, "nego(%x): entering...\n", xreq);
4264
4265 /* negotiation should start in Compatibility mode */
4266 (void) ecpp_1284_termination(pp);
4267
4268 /* Set host into Compat mode */
4269 ECR_WRITE(pp, ECPP_INTR_SRV | ECPP_INTR_MASK | ECR_mode_001);
4270
4271 pp->current_phase = ECPP_PHASE_NEGO;
4272
4273 /* Event 0: host sets extensibility request on data lines */
4274 DATAR_WRITE(pp, xreq);
4275
4276 /* Event 1: host deassert nSelectin and assert nAutoFd */
4277 DCR_WRITE(pp, ECPP_nINIT | ECPP_AFX);
4278
4279 drv_usecwait(1); /* Tp(ecp) == 0.5us */
4280
4281 /*
4282 * Event 2: peripheral asserts nAck, deasserts nFault,
4283 * asserts Select, asserts PError
4284 */
4285 if (wait_dsr(pp, ECPP_nERR | ECPP_SLCT | ECPP_PE | ECPP_nACK,
4286 ECPP_nERR | ECPP_SLCT | ECPP_PE, 35000) < 0) {
4287 /* peripheral is not 1284-compliant */
4288 ecpp_error(pp->dip,
4289 "nego(%x): failed event 2 %x\n", xreq, DSR_READ(pp));
4290 (void) ecpp_1284_termination(pp);
4291 return (FAILURE);
4292 }
4293
4294 /*
4295 * Event 3: host asserts nStrobe, latching extensibility value into
4296 * peripherals input latch.
4297 */
4298 DCR_WRITE(pp, ECPP_nINIT | ECPP_AFX | ECPP_STB);
4299
4300 drv_usecwait(2); /* Tp(ecp) = 0.5us */
4301
4302 /*
4303 * Event 4: hosts deasserts nStrobe and nAutoFD to acknowledge that
4304 * it has recognized an 1284 compatible peripheral
4305 */
4306 DCR_WRITE(pp, ECPP_nINIT);
4307
4308 /*
4309 * Event 5: Peripheral confirms it supports requested extension
4310 * For Nibble mode Xflag must be low, otherwise it must be high
4311 */
4312 xflag = (xreq == ECPP_XREQ_NIBBLE) ? 0 : ECPP_SLCT;
4313
4314 /*
4315 * Event 6: Peripheral sets nAck high
4316 * indicating that status lines are valid
4317 */
4318 if (wait_dsr(pp, ECPP_nACK, ECPP_nACK, 35000) < 0) {
4319 /* Something wrong with peripheral */
4320 ecpp_error(pp->dip,
4321 "nego(%x): failed event 6 %x\n", xreq, DSR_READ(pp));
4322 (void) ecpp_1284_termination(pp);
4323 return (FAILURE);
4324 }
4325
4326 if ((DSR_READ(pp) & ECPP_SLCT) != xflag) {
4327 /* Extensibility value is not supported */
4328 ecpp_error(pp->dip,
4329 "nego(%x): failed event 5 %x\n", xreq, DSR_READ(pp));
4330 (void) ecpp_1284_termination(pp);
4331 return (FAILURE);
4332 }
4333
4334 if (rdsr) {
4335 *rdsr = DSR_READ(pp);
4336 }
4337
4338 return (SUCCESS);
4339 }
4340
4341 /*
4342 * 1284 Termination: Events 22..28 - set link to Compatibility mode
4343 *
4344 * This routine is not designed for Immediate termination,
4345 * caller must take care of waiting for a valid state,
4346 * (in particular, in ECP mode current phase must be Forward Idle)
4347 * otherwise interface will be reinitialized
4348 *
4349 * In case of Valid state termination SUCCESS is returned and
4350 * current_mode is ECPP_COMPAT_MODE, current phase is ECPP_PHASE_C_IDLE
4351 * Otherwise interface is reinitialized, FAILURE is returned and
4352 * current mode is ECPP_CENTRONICS, current phase is ECPP_PHASE_C_IDLE
4353 */
4354 static int
4355 ecpp_1284_termination(struct ecppunit *pp)
4356 {
4357 int previous_mode = pp->current_mode;
4358
4359 if (((pp->current_mode == ECPP_COMPAT_MODE ||
4360 pp->current_mode == ECPP_CENTRONICS) &&
4361 pp->current_phase == ECPP_PHASE_C_IDLE) ||
4362 pp->current_mode == ECPP_DIAG_MODE) {
4363 ecpp_error(pp->dip, "termination: not needed\n");
4364 return (SUCCESS);
4365 }
4366
4367 /* Set host into Compat mode, interrupts disabled */
4368 ECPP_MASK_INTR(pp);
4369 ECR_WRITE(pp, ECPP_INTR_SRV | ECPP_INTR_MASK | ECR_mode_001);
4370
4371 pp->current_mode = ECPP_COMPAT_MODE; /* needed by next function */
4372
4373 ECPP_CONFIG_MODE(pp);
4374
4375 /*
4376 * EPP mode uses simple nInit pulse for termination
4377 */
4378 if (previous_mode == ECPP_EPP_MODE) {
4379 /* Event 68: host sets nInit low */
4380 DCR_WRITE(pp, 0);
4381
4382 drv_usecwait(55); /* T(ER) = 50us */
4383
4384 /* Event 69: host sets nInit high */
4385 DCR_WRITE(pp, ECPP_nINIT | ECPP_SLCTIN);
4386
4387 goto endterm;
4388 }
4389
4390 /* terminate peripheral to Compat mode */
4391 pp->current_phase = ECPP_PHASE_TERM;
4392
4393 /* Event 22: hosts sets nSelectIn low and nAutoFd high */
4394 DCR_WRITE(pp, ECPP_nINIT | ECPP_SLCTIN);
4395
4396 /* Event 23: peripheral deasserts nFault and nBusy */
4397 /* Event 24: peripheral asserts nAck */
4398 if (wait_dsr(pp, ECPP_nERR | ECPP_nBUSY | ECPP_nACK,
4399 ECPP_nERR, 35000) < 0) {
4400 ecpp_error(pp->dip,
4401 "termination: failed events 23,24 %x\n", DSR_READ(pp));
4402 ecpp_1284_init_interface(pp);
4403 return (FAILURE);
4404 }
4405
4406 drv_usecwait(1); /* Tp = 0.5us */
4407
4408 /* Event 25: hosts sets nAutoFd low */
4409 DCR_WRITE(pp, ECPP_nINIT | ECPP_SLCTIN | ECPP_AFX);
4410
4411 /* Event 26: the peripheral puts itself in Compatible mode */
4412
4413 /* Event 27: peripheral deasserts nAck */
4414 if (wait_dsr(pp, ECPP_nACK, ECPP_nACK, 35000) < 0) {
4415 ecpp_error(pp->dip,
4416 "termination: failed event 27 %x\n", DSR_READ(pp));
4417 ecpp_1284_init_interface(pp);
4418 return (FAILURE);
4419 }
4420
4421 drv_usecwait(1); /* Tp = 0.5us */
4422
4423 /* Event 28: hosts deasserts nAutoFd */
4424 DCR_WRITE(pp, ECPP_nINIT | ECPP_SLCTIN);
4425
4426 drv_usecwait(1); /* Tp = 0.5us */
4427
4428 endterm:
4429 /* Compatible mode Idle Phase */
4430 pp->current_phase = ECPP_PHASE_C_IDLE;
4431
4432 ecpp_error(pp->dip, "termination: completed %x %x\n",
4433 DSR_READ(pp), DCR_READ(pp));
4434
4435 return (SUCCESS);
4436 }
4437
4438 /*
4439 * Initiate ECP backchannel DMA transfer
4440 */
4441 static uchar_t
4442 ecp_peripheral2host(struct ecppunit *pp)
4443 {
4444 mblk_t *mp = NULL;
4445 size_t len;
4446 uint32_t xfer_time;
4447
4448 ASSERT(pp->current_mode == ECPP_ECP_MODE &&
4449 pp->current_phase == ECPP_PHASE_ECP_REV_IDLE);
4450
4451 /*
4452 * hardware generates cycles to receive data from the peripheral
4453 * we only need to read from FIFO
4454 */
4455
4456 /*
4457 * If user issued read(2) of rev_resid bytes, xfer exactly this amount
4458 * unless it exceeds ECP_REV_BLKSZ_MAX; otherwise try to read
4459 * ECP_REV_BLKSZ_MAX or at least ECP_REV_BLKSZ bytes
4460 */
4461 if (pp->nread > 0) {
4462 len = min(pp->nread, ECP_REV_BLKSZ_MAX);
4463 } else {
4464 len = ECP_REV_BLKSZ_MAX;
4465 }
4466
4467 pp->nread = 0; /* clear after use */
4468
4469 /*
4470 * Allocate mblk for data, make max 2 attepmts:
4471 * if len bytes block fails, try our block size
4472 */
4473 while ((mp = allocb(len, BPRI_MED)) == NULL) {
4474 ecpp_error(pp->dip,
4475 "ecp_periph2host: failed allocb(%d)\n", len);
4476 if (len > ECP_REV_BLKSZ) {
4477 len = ECP_REV_BLKSZ;
4478 } else {
4479 break;
4480 }
4481 }
4482
4483 if (mp == NULL) {
4484 goto fail;
4485 }
4486
4487 pp->msg = mp;
4488 pp->e_busy = ECPP_BUSY;
4489 pp->dma_dir = DDI_DMA_READ;
4490 pp->current_phase = ECPP_PHASE_ECP_REV_XFER;
4491
4492 if (ecpp_init_dma_xfer(pp, (caddr_t)mp->b_rptr, len) == FAILURE) {
4493 goto fail;
4494 }
4495
4496 /*
4497 * there are two problems with defining ECP backchannel xfer timeout
4498 *
4499 * a) IEEE 1284 allows infinite time between backchannel bytes,
4500 * but we must stop at some point to send the data upstream,
4501 * look if any forward transfer requests are pending, etc;
4502 * all that done, we can continue with backchannel data;
4503 *
4504 * b) we don`t know how much data peripheral has;
4505 * DMA counter is set to our buffer size, which can be bigger
4506 * than needed - in this case a timeout must detect this;
4507 *
4508 * The timeout we schedule here serves as both the transfer timeout
4509 * and a means of detecting backchannel stalls; in fact, there are
4510 * two timeouts in one:
4511 *
4512 * - transfer timeout is based on the ECP bandwidth of ~1MB/sec and
4513 * equals the time needed to transfer the whole buffer
4514 * (but not less than ECP_REV_MINTOUT ms); if it occurs,
4515 * DMA is stopped and the data is sent upstream;
4516 *
4517 * - backchannel watchdog, which would look at DMA counter
4518 * every rev_watchdog ms and stop the transfer only
4519 * if the counter hasn`t changed since the last time;
4520 * otherwise it would save DMA counter value and restart itself;
4521 *
4522 * transfer timeout is a multiple of rev_watchdog
4523 * and implemented as a downward counter
4524 *
4525 * on Grover, we can`t access DMAC registers while DMA is in flight,
4526 * so we can`t have watchdog on Grover, only timeout
4527 */
4528
4529 /* calculate number of watchdog invocations equal to the xfer timeout */
4530 xfer_time = max((1000 * len) / pp->ecp_rev_speed, ECP_REV_MINTOUT);
4531 #if defined(__x86)
4532 pp->rev_timeout_cnt = (pp->hw == &x86) ? 1 :
4533 max(xfer_time / pp->rev_watchdog, 1);
4534 #else
4535 pp->rev_timeout_cnt = (pp->hw == &m1553) ? 1 :
4536 max(xfer_time / pp->rev_watchdog, 1);
4537 #endif
4538
4539 pp->last_dmacnt = len; /* nothing xferred yet */
4540
4541 pp->timeout_id = timeout(ecpp_ecp_read_timeout, (caddr_t)pp,
4542 drv_usectohz(pp->rev_watchdog * 1000));
4543
4544 ecpp_error(pp->dip, "ecp_periph2host: DMA started len=%d\n"
4545 "xfer_time=%d wdog=%d cnt=%d\n",
4546 len, xfer_time, pp->rev_watchdog, pp->rev_timeout_cnt);
4547
4548 return (SUCCESS);
4549
4550 fail:
4551 if (mp) {
4552 freemsg(mp);
4553 }
4554 pp->e_busy = ECPP_IDLE;
4555 pp->current_phase = ECPP_PHASE_ECP_REV_IDLE;
4556
4557 return (FAILURE);
4558 }
4559
4560 /*
4561 * ECP backchannel read timeout
4562 * implements both backchannel watchdog and transfer timeout in ECP mode
4563 * if the transfer is still in progress, reschedule itself,
4564 * otherwise call completion routine
4565 */
4566 static void
4567 ecpp_ecp_read_timeout(void *arg)
4568 {
4569 struct ecppunit *pp = arg;
4570 size_t dmacnt;
4571
4572 mutex_enter(&pp->umutex);
4573
4574 if (pp->timeout_id == 0) {
4575 mutex_exit(&pp->umutex);
4576 return;
4577 } else {
4578 pp->timeout_id = 0;
4579 }
4580
4581 if (--pp->rev_timeout_cnt == 0) {
4582 /*
4583 * Transfer timed out
4584 */
4585 ecpp_error(pp->dip, "ecp_read_timeout: timeout\n");
4586 pp->xfer_tout++;
4587 ecpp_ecp_read_completion(pp);
4588 } else {
4589 /*
4590 * Backchannel watchdog:
4591 * look if DMA made any progress from the last time
4592 */
4593 dmacnt = ECPP_DMA_GETCNT(pp);
4594 if (dmacnt - pp->last_dmacnt == 0) {
4595 /*
4596 * No progress - stop the transfer and send
4597 * whatever has been read so far up the stream
4598 */
4599 ecpp_error(pp->dip, "ecp_read_timeout: no progress\n");
4600 pp->xfer_tout++;
4601 ecpp_ecp_read_completion(pp);
4602 } else {
4603 /*
4604 * Something was transferred - restart ourselves
4605 */
4606 ecpp_error(pp->dip, "ecp_read_timeout: restarting\n");
4607 pp->last_dmacnt = dmacnt;
4608 pp->timeout_id = timeout(ecpp_ecp_read_timeout,
4609 (caddr_t)pp,
4610 drv_usectohz(pp->rev_watchdog * 1000));
4611 }
4612 }
4613
4614 mutex_exit(&pp->umutex);
4615 }
4616
4617 /*
4618 * ECP backchannel read completion:
4619 * stop the DMA, free DMA resources and send read data upstream
4620 */
4621 static void
4622 ecpp_ecp_read_completion(struct ecppunit *pp)
4623 {
4624 size_t xfer_len, unx_len;
4625 mblk_t *mp;
4626
4627 ASSERT(mutex_owned(&pp->umutex));
4628 ASSERT(pp->current_mode == ECPP_ECP_MODE &&
4629 pp->current_phase == ECPP_PHASE_ECP_REV_XFER);
4630 ASSERT(pp->msg != NULL);
4631
4632 /*
4633 * Stop the transfer and unbind DMA handle
4634 */
4635 if (ECPP_DMA_STOP(pp, &unx_len) == FAILURE) {
4636 unx_len = pp->resid;
4637 ecpp_error(pp->dip, "ecp_read_completion: failed dma_stop\n");
4638 }
4639
4640 mp = pp->msg;
4641 xfer_len = pp->resid - unx_len; /* how much data was transferred */
4642
4643 if (ddi_dma_unbind_handle(pp->dma_handle) != DDI_SUCCESS) {
4644 ecpp_error(pp->dip, "ecp_read_completion: unbind failed.\n");
4645 }
4646
4647 ecpp_error(pp->dip, "ecp_read_completion: xfered %d bytes of %d\n",
4648 xfer_len, pp->resid);
4649
4650 /* clean up and update statistics */
4651 pp->msg = NULL;
4652 pp->resid -= xfer_len;
4653 pp->ibytes[pp->current_mode] += xfer_len;
4654 pp->e_busy = ECPP_IDLE;
4655 pp->current_phase = ECPP_PHASE_ECP_REV_IDLE;
4656
4657 /*
4658 * Send the read data up the stream
4659 */
4660 mp->b_wptr += xfer_len;
4661 if (canputnext(pp->readq)) {
4662 mutex_exit(&pp->umutex);
4663 putnext(pp->readq, mp);
4664 mutex_enter(&pp->umutex);
4665 } else {
4666 ecpp_error(pp->dip, "ecp_read_completion: fail canputnext\n");
4667 if (!putq(pp->readq, mp)) {
4668 freemsg(mp);
4669 }
4670 }
4671
4672 /* if bytes left in the FIFO another transfer is needed */
4673 if (!(ECR_READ(pp) & ECPP_FIFO_EMPTY)) {
4674 (void) ecpp_backchan_req(pp);
4675 }
4676
4677 qenable(pp->writeq);
4678 }
4679
4680 /*
4681 * Read one byte in the Nibble mode
4682 */
4683 static uchar_t
4684 nibble_peripheral2host(struct ecppunit *pp, uint8_t *byte)
4685 {
4686 uint8_t n[2]; /* two nibbles */
4687 int i;
4688
4689 /*
4690 * One byte is made of two nibbles
4691 */
4692 for (i = 0; i < 2; i++) {
4693 /* Event 7, 12: host asserts nAutoFd to move to read a nibble */
4694 DCR_WRITE(pp, ECPP_nINIT | ECPP_AFX);
4695
4696 /* Event 8: peripheral puts data on the status lines */
4697
4698 /* Event 9: peripheral asserts nAck, data available */
4699 if (wait_dsr(pp, ECPP_nACK, 0, 35000) < 0) {
4700 ecpp_error(pp->dip,
4701 "nibble_periph2host(%d): failed event 9 %x\n",
4702 i + 1, DSR_READ(pp));
4703 (void) ecpp_1284_termination(pp);
4704 return (FAILURE);
4705 }
4706
4707 n[i] = DSR_READ(pp); /* get a nibble */
4708
4709 /* Event 10: host deasserts nAutoFd to say it grabbed data */
4710 DCR_WRITE(pp, ECPP_nINIT);
4711
4712 /* (2) Event 13: peripheral asserts PE - end of data phase */
4713
4714 /* Event 11: peripheral deasserts nAck to finish handshake */
4715 if (wait_dsr(pp, ECPP_nACK, ECPP_nACK, 35000) < 0) {
4716 ecpp_error(pp->dip,
4717 "nibble_periph2host(%d): failed event 11 %x\n",
4718 i + 1, DSR_READ(pp));
4719 (void) ecpp_1284_termination(pp);
4720 return (FAILURE);
4721 }
4722 }
4723
4724 /* extract data byte from two nibbles - optimized formula */
4725 *byte = ((((n[1] & ~ECPP_nACK) << 1) | (~n[1] & ECPP_nBUSY)) & 0xf0) |
4726 ((((n[0] & ~ECPP_nACK) >> 3) | ((~n[0] & ECPP_nBUSY) >> 4)) & 0x0f);
4727
4728 pp->ibytes[ECPP_NIBBLE_MODE]++;
4729 return (SUCCESS);
4730 }
4731
4732 /*
4733 * process data transfers requested by the peripheral
4734 */
4735 static uint_t
4736 ecpp_peripheral2host(struct ecppunit *pp)
4737 {
4738 if (!canputnext(pp->readq)) {
4739 ecpp_error(pp->dip, "ecpp_peripheral2host: readq full\n");
4740 return (SUCCESS);
4741 }
4742
4743 switch (pp->backchannel) {
4744 case ECPP_CENTRONICS:
4745 /* no backchannel */
4746 return (SUCCESS);
4747
4748 case ECPP_NIBBLE_MODE:
4749 ASSERT(pp->current_mode == ECPP_NIBBLE_MODE);
4750
4751 /*
4752 * Event 20: Host sets nAutoFd high to ack request
4753 */
4754 DCR_WRITE(pp, ECPP_nINIT);
4755
4756 /* Event 21: Periph sets PError low to ack host */
4757 if (wait_dsr(pp, ECPP_PE, 0, 35000) < 0) {
4758 ecpp_error(pp->dip,
4759 "ecpp_periph2host: failed event 21 %x\n",
4760 DSR_READ(pp));
4761 (void) ecpp_1284_termination(pp);
4762 return (FAILURE);
4763 }
4764
4765 pp->current_phase = ECPP_PHASE_NIBT_AVAIL;
4766
4767 /* this routine will read the data in Nibble mode */
4768 return (ecpp_idle_phase(pp));
4769
4770 case ECPP_ECP_MODE:
4771 if ((pp->current_phase == ECPP_PHASE_ECP_FWD_IDLE) &&
4772 (ecp_forward2reverse(pp) == FAILURE)) {
4773 return (FAILURE);
4774 }
4775
4776 return (ecp_peripheral2host(pp)); /* start the transfer */
4777
4778 case ECPP_DIAG_MODE: {
4779 mblk_t *mp;
4780 int i;
4781
4782 if (ECR_READ(pp) & ECPP_FIFO_EMPTY) {
4783 ecpp_error(pp->dip, "ecpp_periph2host: fifo empty\n");
4784 return (SUCCESS);
4785 }
4786
4787 /* allocate the FIFO size */
4788 if ((mp = allocb(ECPP_FIFO_SZ, BPRI_MED)) == NULL) {
4789 ecpp_error(pp->dip,
4790 "ecpp_periph2host: allocb FAILURE.\n");
4791 return (FAILURE);
4792 }
4793
4794 /*
4795 * For the time being just read it byte by byte
4796 */
4797 i = ECPP_FIFO_SZ;
4798 while (i-- && (!(ECR_READ(pp) & ECPP_FIFO_EMPTY))) {
4799 *mp->b_wptr++ = TFIFO_READ(pp);
4800 drv_usecwait(1); /* ECR is sometimes slow to update */
4801 }
4802
4803 if (canputnext(pp->readq)) {
4804 mutex_exit(&pp->umutex);
4805 mp->b_datap->db_type = M_DATA;
4806 ecpp_error(pp->dip,
4807 "ecpp_periph2host: sending %d bytes\n",
4808 mp->b_wptr - mp->b_rptr);
4809 putnext(pp->readq, mp);
4810 mutex_enter(&pp->umutex);
4811 return (SUCCESS);
4812 } else {
4813 ecpp_error(pp->dip,
4814 "ecpp_periph2host: !canputnext data lost\n");
4815 freemsg(mp);
4816 return (FAILURE);
4817 }
4818 }
4819
4820 default:
4821 ecpp_error(pp->dip, "ecpp_peripheraltohost: illegal back");
4822 return (FAILURE);
4823 }
4824 }
4825
4826 /*
4827 * Negotiate from ECP Forward Idle to Reverse Idle Phase
4828 *
4829 * (manipulations with dcr/ecr are according to ECP Specification)
4830 */
4831 static int
4832 ecp_forward2reverse(struct ecppunit *pp)
4833 {
4834 ASSERT(pp->current_mode == ECPP_ECP_MODE &&
4835 pp->current_phase == ECPP_PHASE_ECP_FWD_IDLE);
4836
4837 /* place port into PS2 mode */
4838 ECR_WRITE(pp, ECR_mode_001 | ECPP_INTR_SRV | ECPP_INTR_MASK);
4839
4840 /* set direction bit (DCR3-0 must be 0100 - National) */
4841 DCR_WRITE(pp, ECPP_REV_DIR | ECPP_nINIT);
4842
4843 /* enable hardware assist */
4844 ECR_WRITE(pp, ECR_mode_011 | ECPP_INTR_SRV | ECPP_INTR_MASK);
4845
4846 drv_usecwait(1); /* Tp(ecp) = 0.5us */
4847
4848 /* Event 39: host sets nInit low */
4849 DCR_WRITE(pp, ECPP_REV_DIR);
4850
4851 /* Event 40: peripheral sets PError low */
4852
4853 pp->current_phase = ECPP_PHASE_ECP_REV_IDLE;
4854
4855 ecpp_error(pp->dip, "ecp_forward2reverse ok\n");
4856
4857 return (SUCCESS);
4858 }
4859
4860 /*
4861 * Negotiate from ECP Reverse Idle to Forward Idle Phase
4862 *
4863 * (manipulations with dcr/ecr are according to ECP Specification)
4864 */
4865 static int
4866 ecp_reverse2forward(struct ecppunit *pp)
4867 {
4868 ASSERT(pp->current_mode == ECPP_ECP_MODE &&
4869 pp->current_phase == ECPP_PHASE_ECP_REV_IDLE);
4870
4871 /* Event 47: host deasserts nInit */
4872 DCR_WRITE(pp, ECPP_REV_DIR | ECPP_nINIT);
4873
4874 /*
4875 * Event 48: peripheral deasserts nAck
4876 * Event 49: peripheral asserts PError
4877 */
4878 if (wait_dsr(pp, ECPP_PE, ECPP_PE, 35000) < 0) {
4879 ecpp_error(pp->dip,
4880 "ecp_reverse2forward: failed event 49 %x\n", DSR_READ(pp));
4881 (void) ecpp_1284_termination(pp);
4882 return (FAILURE);
4883 }
4884
4885 /* place port into PS2 mode */
4886 ECR_WRITE(pp, ECR_mode_001 | ECPP_INTR_SRV | ECPP_INTR_MASK);
4887
4888 /* clear direction bit */
4889 DCR_WRITE(pp, ECPP_nINIT);
4890
4891 /* reenable hardware assist */
4892 ECR_WRITE(pp, ECR_mode_011 | ECPP_INTR_SRV | ECPP_INTR_MASK);
4893
4894 pp->current_phase = ECPP_PHASE_ECP_FWD_IDLE;
4895
4896 ecpp_error(pp->dip, "ecp_reverse2forward ok\n");
4897
4898 return (SUCCESS);
4899 }
4900
4901 /*
4902 * Default negotiation chooses the best mode supported by peripheral
4903 * Note that backchannel mode may be different from forward mode
4904 */
4905 static void
4906 ecpp_default_negotiation(struct ecppunit *pp)
4907 {
4908 if (!noecp && (ecpp_mode_negotiation(pp, ECPP_ECP_MODE) == SUCCESS)) {
4909 /* 1284 compatible device */
4910 pp->io_mode = (pp->fast_compat == TRUE) ? ECPP_DMA : ECPP_PIO;
4911 return;
4912 } else if (ecpp_mode_negotiation(pp, ECPP_NIBBLE_MODE) == SUCCESS) {
4913 /* 1284 compatible device */
4914 pp->io_mode = (pp->fast_compat == TRUE) ? ECPP_DMA : ECPP_PIO;
4915 } else {
4916 /* Centronics device */
4917 pp->io_mode =
4918 (pp->fast_centronics == TRUE) ? ECPP_DMA : ECPP_PIO;
4919 }
4920 ECPP_CONFIG_MODE(pp);
4921 }
4922
4923 /*
4924 * Negotiate to the mode indicated by newmode
4925 */
4926 static int
4927 ecpp_mode_negotiation(struct ecppunit *pp, uchar_t newmode)
4928 {
4929 /* any other mode is impossible */
4930 ASSERT(pp->current_mode == ECPP_CENTRONICS ||
4931 pp->current_mode == ECPP_COMPAT_MODE ||
4932 pp->current_mode == ECPP_NIBBLE_MODE ||
4933 pp->current_mode == ECPP_ECP_MODE ||
4934 pp->current_mode == ECPP_DIAG_MODE);
4935
4936 if (pp->current_mode == newmode) {
4937 return (SUCCESS);
4938 }
4939
4940 /* termination from ECP is only allowed from the Forward Idle Phase */
4941 if ((pp->current_mode == ECPP_ECP_MODE) &&
4942 (pp->current_phase != ECPP_PHASE_ECP_FWD_IDLE)) {
4943 /* this may break into Centronics */
4944 (void) ecp_reverse2forward(pp);
4945 }
4946
4947 switch (newmode) {
4948 case ECPP_CENTRONICS:
4949 (void) ecpp_1284_termination(pp);
4950
4951 /* put superio into PIO mode */
4952 ECR_WRITE(pp, ECR_mode_001 | ECPP_INTR_MASK | ECPP_INTR_SRV);
4953
4954 pp->current_mode = ECPP_CENTRONICS;
4955 pp->backchannel = ECPP_CENTRONICS;
4956 ECPP_CONFIG_MODE(pp);
4957
4958 pp->to_mode[pp->current_mode]++;
4959 return (SUCCESS);
4960
4961 case ECPP_COMPAT_MODE:
4962 /* ECPP_COMPAT_MODE should support Nibble as a backchannel */
4963 if (pp->current_mode == ECPP_NIBBLE_MODE) {
4964 if (ecpp_1284_termination(pp) == SUCCESS) {
4965 pp->current_mode = ECPP_COMPAT_MODE;
4966 pp->backchannel = ECPP_NIBBLE_MODE;
4967 ECPP_CONFIG_MODE(pp);
4968 pp->to_mode[pp->current_mode]++;
4969 return (SUCCESS);
4970 } else {
4971 return (FAILURE);
4972 }
4973 }
4974
4975 if ((nibble_negotiation(pp) == SUCCESS) &&
4976 (ecpp_1284_termination(pp) == SUCCESS)) {
4977 pp->backchannel = ECPP_NIBBLE_MODE;
4978 pp->current_mode = ECPP_COMPAT_MODE;
4979 ECPP_CONFIG_MODE(pp);
4980 pp->to_mode[pp->current_mode]++;
4981 return (SUCCESS);
4982 } else {
4983 return (FAILURE);
4984 }
4985
4986 case ECPP_NIBBLE_MODE:
4987 if (nibble_negotiation(pp) == FAILURE) {
4988 return (FAILURE);
4989 }
4990
4991 pp->backchannel = ECPP_NIBBLE_MODE;
4992 ECPP_CONFIG_MODE(pp);
4993 pp->to_mode[pp->current_mode]++;
4994
4995 return (SUCCESS);
4996
4997 case ECPP_ECP_MODE:
4998 if (pp->noecpregs)
4999 return (FAILURE);
5000 if (ecp_negotiation(pp) == FAILURE) {
5001 return (FAILURE);
5002 }
5003
5004 /*
5005 * National says CTR[3:0] should be 0100b before moving to 011
5006 */
5007 DCR_WRITE(pp, ECPP_nINIT);
5008
5009 if (ecr_write(pp, ECR_mode_011 |
5010 ECPP_INTR_MASK | ECPP_INTR_SRV) == FAILURE) {
5011 ecpp_error(pp->dip, "mode_nego:ECP: failed w/ecr\n");
5012 return (FAILURE);
5013 }
5014
5015 ECPP_CONFIG_MODE(pp);
5016 pp->to_mode[pp->current_mode]++;
5017
5018 return (SUCCESS);
5019
5020 case ECPP_DIAG_MODE:
5021 /*
5022 * In DIAG mode application can do nasty things(e.g drive pins)
5023 * To keep peripheral sane, terminate to Compatibility mode
5024 */
5025 (void) ecpp_1284_termination(pp);
5026
5027 /* put superio into TFIFO mode */
5028 if (ecr_write(pp, ECR_mode_001 |
5029 ECPP_INTR_MASK | ECPP_INTR_SRV) == FAILURE) {
5030 ecpp_error(pp->dip, "put to TFIFO: failed w/ecr\n");
5031 return (FAILURE);
5032 }
5033
5034 pp->current_mode = ECPP_DIAG_MODE;
5035 pp->backchannel = ECPP_DIAG_MODE;
5036 ECPP_CONFIG_MODE(pp);
5037 pp->to_mode[pp->current_mode]++;
5038
5039 return (SUCCESS);
5040
5041 default:
5042 ecpp_error(pp->dip,
5043 "ecpp_mode_negotiation: mode %d not supported\n", newmode);
5044 return (FAILURE);
5045 }
5046 }
5047
5048 /*
5049 * Standard (9.1): Peripheral data is available only when the host places
5050 * the interface in a mode capable of peripheral-to-host data transfer.
5051 * This requires the host periodically to place the interface in such a mode.
5052 * Polling can be eliminated by leaving the interface in an 1284 idle phase.
5053 */
5054 static uchar_t
5055 ecpp_idle_phase(struct ecppunit *pp)
5056 {
5057 uchar_t rval = FAILURE;
5058
5059 /*
5060 * If there is no space on the read queue, do not reverse channel
5061 */
5062 if (!canputnext(pp->readq)) {
5063 ecpp_error(pp->dip, "ecpp_idle_phase: readq full\n");
5064 return (SUCCESS);
5065 }
5066
5067 switch (pp->backchannel) {
5068 case ECPP_CENTRONICS:
5069 case ECPP_COMPAT_MODE:
5070 case ECPP_DIAG_MODE:
5071 /* nothing */
5072 ecpp_error(pp->dip, "ecpp_idle_phase: compat idle\n");
5073 return (SUCCESS);
5074
5075 case ECPP_NIBBLE_MODE:
5076 /*
5077 * read as much data as possible, ending up in either
5078 * Reverse Idle or Host Busy Data Available phase
5079 */
5080 ecpp_error(pp->dip, "ecpp_idle_phase: nibble backchannel\n");
5081 if ((pp->current_mode != ECPP_NIBBLE_MODE) &&
5082 (ecpp_mode_negotiation(pp, ECPP_NIBBLE_MODE) == FAILURE)) {
5083 break;
5084 }
5085
5086 rval = read_nibble_backchan(pp);
5087
5088 /* put interface into Reverse Idle phase */
5089 if (pp->current_phase == ECPP_PHASE_NIBT_NAVAIL &&
5090 canputnext(pp->readq)) {
5091 ecpp_error(pp->dip, "ecpp_idle_phase: going revidle\n");
5092
5093 /*
5094 * Event 7: host asserts nAutoFd
5095 * enable nAck interrupt to get a backchannel request
5096 */
5097 DCR_WRITE(pp, ECPP_nINIT | ECPP_AFX | ECPP_INTR_EN);
5098
5099 ECPP_UNMASK_INTR(pp);
5100 }
5101
5102 break;
5103
5104 case ECPP_ECP_MODE:
5105 /*
5106 * if data is already available, request the backchannel xfer
5107 * otherwise stay in Forward Idle and enable nErr interrupts
5108 */
5109 ecpp_error(pp->dip, "ecpp_idle_phase: ECP forward\n");
5110
5111 ASSERT(pp->current_phase == ECPP_PHASE_ECP_FWD_IDLE ||
5112 pp->current_phase == ECPP_PHASE_ECP_REV_IDLE);
5113
5114 /* put interface into Forward Idle phase */
5115 if ((pp->current_phase == ECPP_PHASE_ECP_REV_IDLE) &&
5116 (ecp_reverse2forward(pp) == FAILURE)) {
5117 return (FAILURE);
5118 }
5119
5120 /*
5121 * if data already available, put backchannel request on the wq
5122 * otherwise enable nErr interrupts
5123 */
5124 if ((DSR_READ(pp) & ECPP_nERR) == 0) {
5125 (void) ecpp_backchan_req(pp);
5126 } else {
5127 ECR_WRITE(pp,
5128 ECR_READ(pp) & ~ECPP_INTR_MASK | ECPP_INTR_SRV);
5129
5130 ECPP_UNMASK_INTR(pp);
5131 }
5132
5133 return (SUCCESS);
5134
5135 default:
5136 ecpp_error(pp->dip, "ecpp_idle_phase: illegal backchannel");
5137 }
5138
5139 return (rval);
5140 }
5141
5142 /*
5143 * This routine will leave the port in ECPP_PHASE_NIBT_REVIDLE
5144 * Due to flow control, though, it may stop at ECPP_PHASE_NIBT_AVAIL,
5145 * and continue later as the user consumes data from the read queue
5146 *
5147 * The current phase should be NIBT_AVAIL or NIBT_NAVAIL
5148 * If some events fail during transfer, termination puts link
5149 * to Compatibility mode and FAILURE is returned
5150 */
5151 static int
5152 read_nibble_backchan(struct ecppunit *pp)
5153 {
5154 mblk_t *mp;
5155 int i;
5156 int rval = SUCCESS;
5157
5158 ASSERT(pp->current_mode == ECPP_NIBBLE_MODE);
5159
5160 pp->current_phase = (DSR_READ(pp) & (ECPP_nERR | ECPP_PE))
5161 ? ECPP_PHASE_NIBT_NAVAIL : ECPP_PHASE_NIBT_AVAIL;
5162
5163 ecpp_error(pp->dip, "read_nibble_backchan: %x\n", DSR_READ(pp));
5164
5165 /*
5166 * While data is available, read it in NIBBLE_REV_BLKSZ byte chunks
5167 * and send up the stream
5168 */
5169 while (pp->current_phase == ECPP_PHASE_NIBT_AVAIL && rval == SUCCESS) {
5170 /* see if there's space on the queue */
5171 if (!canputnext(pp->readq)) {
5172 ecpp_error(pp->dip,
5173 "read_nibble_backchan: canputnext failed\n");
5174 return (SUCCESS);
5175 }
5176
5177 if ((mp = allocb(NIBBLE_REV_BLKSZ, BPRI_MED)) == NULL) {
5178 ecpp_error(pp->dip,
5179 "read_nibble_backchan: allocb failed\n");
5180 return (SUCCESS);
5181 }
5182
5183 /* read a chunk of data from the peripheral byte by byte */
5184 i = NIBBLE_REV_BLKSZ;
5185 while (i-- && !(DSR_READ(pp) & ECPP_nERR)) {
5186 if (nibble_peripheral2host(pp, mp->b_wptr) != SUCCESS) {
5187 rval = FAILURE;
5188 break;
5189 }
5190 mp->b_wptr++;
5191 }
5192
5193 pp->current_phase = (DSR_READ(pp) & (ECPP_nERR | ECPP_PE))
5194 ? ECPP_PHASE_NIBT_NAVAIL
5195 : ECPP_PHASE_NIBT_AVAIL;
5196
5197 if (mp->b_wptr - mp->b_rptr > 0) {
5198 ecpp_error(pp->dip,
5199 "read_nibble_backchan: sending %d bytes\n",
5200 mp->b_wptr - mp->b_rptr);
5201 pp->nread = 0;
5202 mutex_exit(&pp->umutex);
5203 putnext(pp->readq, mp);
5204 mutex_enter(&pp->umutex);
5205 } else {
5206 freemsg(mp);
5207 }
5208 }
5209
5210 return (rval);
5211 }
5212
5213 /*
5214 * 'Request Device ID using nibble mode' negotiation
5215 */
5216 static int
5217 devidnib_negotiation(struct ecppunit *pp)
5218 {
5219 uint8_t dsr;
5220
5221 if (ecpp_1284_negotiation(pp,
5222 ECPP_XREQ_NIBBLE | ECPP_XREQ_ID, &dsr) == FAILURE) {
5223 return (FAILURE);
5224 }
5225
5226 /*
5227 * If peripheral has data available, PE and nErr will
5228 * be set low at Event 5 & 6.
5229 */
5230 if ((dsr & (ECPP_PE | ECPP_nERR)) == 0) {
5231 pp->current_phase = ECPP_PHASE_NIBT_AVAIL;
5232 } else {
5233 pp->current_phase = ECPP_PHASE_NIBT_NAVAIL;
5234 }
5235
5236 ecpp_error(pp->dip, "ecpp_devidnib_nego: current_phase=%x\n",
5237 pp->current_phase);
5238
5239 /* successful negotiation into Nibble mode */
5240 pp->current_mode = ECPP_NIBBLE_MODE;
5241 pp->backchannel = ECPP_NIBBLE_MODE;
5242
5243 ecpp_error(pp->dip, "ecpp_devidnib_nego: ok\n");
5244
5245 return (SUCCESS);
5246 }
5247
5248 /*
5249 * Read 1284 device ID sequence
5250 *
5251 * This function should be called two times:
5252 * 1) ecpp_getdevid(pp, NULL, &len) - to retrieve ID length;
5253 * 2) ecpp_getdevid(pp, buffer, &len) - to read len bytes into buffer
5254 *
5255 * After 2) port is in Compatible mode
5256 * If the caller fails to make second call, it must reset port to Centronics
5257 *
5258 */
5259 static int
5260 ecpp_getdevid(struct ecppunit *pp, uint8_t *id, int *lenp, int mode)
5261 {
5262 uint8_t lenhi, lenlo;
5263 uint8_t dsr;
5264 int i;
5265
5266 switch (mode) {
5267 case ECPP_NIBBLE_MODE:
5268 /* negotiate only if neccessary */
5269 if ((pp->current_mode != mode) || (id == NULL)) {
5270 if (devidnib_negotiation(pp) == FAILURE) {
5271 return (EIO);
5272 }
5273 }
5274
5275 if (pp->current_phase != ECPP_PHASE_NIBT_AVAIL) {
5276 return (EIO);
5277 }
5278
5279 /*
5280 * Event 14: Host tristates data bus, peripheral
5281 * asserts nERR if data available, usually the
5282 * status bits (7-0) and requires two reads since
5283 * only nibbles are transfered.
5284 */
5285 dsr = DSR_READ(pp);
5286
5287 if (id == NULL) {
5288 /*
5289 * first two bytes are the length of the sequence
5290 * (incl. these bytes)
5291 * first byte is MSB
5292 */
5293 if ((dsr & ECPP_nERR) ||
5294 (nibble_peripheral2host(pp, &lenhi) == FAILURE) ||
5295 (dsr & ECPP_nERR) ||
5296 (nibble_peripheral2host(pp, &lenlo) == FAILURE)) {
5297 ecpp_error(pp->dip,
5298 "ecpp_getdevid: id length read error\n");
5299 return (EIO);
5300 }
5301
5302 *lenp = (lenhi << 8) | (lenlo);
5303
5304 ecpp_error(pp->dip,
5305 "ecpp_getdevid: id length = %d\n", *lenp);
5306
5307 if (*lenp < 2) {
5308 return (EIO);
5309 }
5310 } else {
5311 /*
5312 * read the rest of the data
5313 */
5314 i = *lenp;
5315 while (i && ((dsr & ECPP_nERR) == 0)) {
5316 if (nibble_peripheral2host(pp, id++) == FAILURE)
5317 break;
5318
5319 i--;
5320 dsr = DSR_READ(pp);
5321 }
5322 ecpp_error(pp->dip,
5323 "ecpp_getdevid: read %d bytes\n", *lenp - i);
5324
5325 /*
5326 * 1284: After receiving the sequence, the host is
5327 * required to return the link to the Compatibility mode
5328 */
5329 (void) ecpp_1284_termination(pp);
5330 }
5331
5332 break;
5333
5334 /* Other modes are not yet supported */
5335 default:
5336 return (EINVAL);
5337 }
5338
5339 return (0);
5340 }
5341
5342 /*
5343 * Various hardware support
5344 *
5345 * First define some stubs for functions that do nothing
5346 */
5347
5348 /*ARGSUSED*/
5349 static void
5350 empty_config_mode(struct ecppunit *pp)
5351 {
5352 }
5353
5354 /*ARGSUSED*/
5355 static void
5356 empty_mask_intr(struct ecppunit *pp)
5357 {
5358 }
5359
5360 #if defined(__x86)
5361 static size_t
5362 x86_getcnt(struct ecppunit *pp)
5363 {
5364 int count;
5365
5366 (void) ddi_dmae_getcnt(pp->dip, pp->uh.x86.chn, &count);
5367 return (count);
5368 }
5369 #endif
5370
5371 /*
5372 *
5373 * National PC87332 and PC97317 SuperIOs support routines
5374 * These chips are used in PCI-based Darwin, Quark, Quasar, Excalibur
5375 * and use EBus DMA facilities (Cheerio or RIO)
5376 *
5377 */
5378
5379 static int
5380 pc87332_map_regs(struct ecppunit *pp)
5381 {
5382 if (ddi_regs_map_setup(pp->dip, 1, (caddr_t *)&pp->uh.ebus.c_reg, 0,
5383 sizeof (struct config_reg), &acc_attr,
5384 &pp->uh.ebus.c_handle) != DDI_SUCCESS) {
5385 ecpp_error(pp->dip, "pc87332_map_regs: failed c_reg\n");
5386 goto fail;
5387 }
5388
5389 if (ddi_regs_map_setup(pp->dip, 0, (caddr_t *)&pp->i_reg, 0,
5390 sizeof (struct info_reg), &acc_attr, &pp->i_handle)
5391 != DDI_SUCCESS) {
5392 ecpp_error(pp->dip, "pc87332_map_regs: failed i_reg\n");
5393 goto fail;
5394 }
5395
5396 if (ddi_regs_map_setup(pp->dip, 0, (caddr_t *)&pp->f_reg, 0x400,
5397 sizeof (struct fifo_reg), &acc_attr, &pp->f_handle)
5398 != DDI_SUCCESS) {
5399 ecpp_error(pp->dip, "pc87332_map_regs: failed f_reg\n");
5400 goto fail;
5401 }
5402
5403 if (ddi_regs_map_setup(pp->dip, 2, (caddr_t *)&pp->uh.ebus.dmac, 0,
5404 sizeof (struct cheerio_dma_reg), &acc_attr,
5405 &pp->uh.ebus.d_handle) != DDI_SUCCESS) {
5406 ecpp_error(pp->dip, "pc87332_map_regs: failed dmac\n");
5407 goto fail;
5408 }
5409
5410 return (SUCCESS);
5411
5412 fail:
5413 pc87332_unmap_regs(pp);
5414 return (FAILURE);
5415 }
5416
5417 static void
5418 pc87332_unmap_regs(struct ecppunit *pp)
5419 {
5420 if (pp->uh.ebus.c_handle) {
5421 ddi_regs_map_free(&pp->uh.ebus.c_handle);
5422 }
5423 if (pp->uh.ebus.d_handle) {
5424 ddi_regs_map_free(&pp->uh.ebus.d_handle);
5425 }
5426 if (pp->i_handle) {
5427 ddi_regs_map_free(&pp->i_handle);
5428 }
5429 if (pp->f_handle) {
5430 ddi_regs_map_free(&pp->f_handle);
5431 }
5432 }
5433
5434 static uint8_t
5435 pc87332_read_config_reg(struct ecppunit *pp, uint8_t reg_num)
5436 {
5437 uint8_t retval;
5438
5439 PP_PUTB(pp->uh.ebus.c_handle, &pp->uh.ebus.c_reg->index, reg_num);
5440 retval = PP_GETB(pp->uh.ebus.c_handle, &pp->uh.ebus.c_reg->data);
5441
5442 return (retval);
5443 }
5444
5445 static void
5446 pc87332_write_config_reg(struct ecppunit *pp, uint8_t reg_num, uint8_t val)
5447 {
5448 PP_PUTB(pp->uh.ebus.c_handle, &pp->uh.ebus.c_reg->index, reg_num);
5449 PP_PUTB(pp->uh.ebus.c_handle, &pp->uh.ebus.c_reg->data, val);
5450
5451 /*
5452 * second write to this register is needed. the register behaves as
5453 * a fifo. the first value written goes to the data register. the
5454 * second write pushes the initial value to the register indexed.
5455 */
5456
5457 PP_PUTB(pp->uh.ebus.c_handle, &pp->uh.ebus.c_reg->data, val);
5458 }
5459
5460 static int
5461 pc87332_config_chip(struct ecppunit *pp)
5462 {
5463 uint8_t pmc, fcr;
5464
5465 pp->current_phase = ECPP_PHASE_INIT;
5466
5467 /* ECP DMA configuration bit (PMC4) must be set */
5468 pmc = pc87332_read_config_reg(pp, PMC);
5469 if (!(pmc & PC87332_PMC_ECP_DMA_CONFIG)) {
5470 pc87332_write_config_reg(pp, PMC,
5471 pmc | PC87332_PMC_ECP_DMA_CONFIG);
5472 }
5473
5474 /*
5475 * The Parallel Port Multiplexor pins must be driven.
5476 * Check to see if FCR3 is zero, if not clear FCR3.
5477 */
5478 fcr = pc87332_read_config_reg(pp, FCR);
5479 if (fcr & PC87332_FCR_PPM_FLOAT_CTL) {
5480 pc87332_write_config_reg(pp, FCR,
5481 fcr & ~PC87332_FCR_PPM_FLOAT_CTL);
5482 }
5483
5484 /*
5485 * clear bits 3-0 in CTR (aka DCR) prior to enabling ECP mode
5486 * CTR5 can not be cleared in SPP mode, CTR5 will return 1.
5487 * "FAILURE" in this case is ok. Better to use dcr_write()
5488 * to ensure reliable writing to DCR.
5489 */
5490 if (dcr_write(pp, ECPP_DCR_SET | ECPP_nINIT) == FAILURE) {
5491 ecpp_error(pp->dip, "ecpp_config_87332: DCR config\n");
5492 }
5493
5494 /* enable ECP mode, level intr (note that DCR bits 3-0 == 0x0) */
5495 pc87332_write_config_reg(pp, PCR,
5496 PC87332_PCR_INTR_LEVL | PC87332_PCR_ECP_EN);
5497
5498 /* put SuperIO in initial state */
5499 if (ecr_write(pp, ECR_mode_001 |
5500 ECPP_INTR_MASK | ECPP_INTR_SRV) == FAILURE) {
5501 ecpp_error(pp->dip, "ecpp_config_87332: ECR\n");
5502 }
5503
5504 if (dcr_write(pp, ECPP_DCR_SET | ECPP_SLCTIN | ECPP_nINIT) == FAILURE) {
5505 ecpp_error(pp->dip, "ecpp_config_87332: w/DCR failed2.\n");
5506 return (FAILURE);
5507
5508 }
5509 /* we are in centronic mode */
5510 pp->current_mode = ECPP_CENTRONICS;
5511
5512 /* in compatible mode with no data transfer in progress */
5513 pp->current_phase = ECPP_PHASE_C_IDLE;
5514
5515 return (SUCCESS);
5516 }
5517
5518 /*
5519 * A new mode was set, do some mode specific reconfiguration
5520 * in this case - set interrupt characteristic
5521 */
5522 static void
5523 pc87332_config_mode(struct ecppunit *pp)
5524 {
5525 if (COMPAT_PIO(pp)) {
5526 pc87332_write_config_reg(pp, PCR, 0x04);
5527 } else {
5528 pc87332_write_config_reg(pp, PCR, 0x14);
5529 }
5530 }
5531
5532 static int
5533 pc97317_map_regs(struct ecppunit *pp)
5534 {
5535 if (pc87332_map_regs(pp) != SUCCESS) {
5536 return (FAILURE);
5537 }
5538
5539 if (ddi_regs_map_setup(pp->dip, 0, (caddr_t *)&pp->uh.ebus.c2_reg,
5540 0x403, sizeof (struct config2_reg), &acc_attr,
5541 &pp->uh.ebus.c2_handle) != DDI_SUCCESS) {
5542 ecpp_error(pp->dip, "pc97317_map_regs: failed c2_reg\n");
5543 pc87332_unmap_regs(pp);
5544 return (FAILURE);
5545 } else {
5546 return (SUCCESS);
5547 }
5548 }
5549
5550 static void
5551 pc97317_unmap_regs(struct ecppunit *pp)
5552 {
5553 if (pp->uh.ebus.c2_handle) {
5554 ddi_regs_map_free(&pp->uh.ebus.c2_handle);
5555 }
5556
5557 pc87332_unmap_regs(pp);
5558 }
5559
5560 /*
5561 * OBP should configure the PC97317 such that it does not need further
5562 * configuration. Upon sustaining, it may be necessary to examine
5563 * or change the configuration registers. This routine is left in
5564 * the file for that purpose.
5565 */
5566 static int
5567 pc97317_config_chip(struct ecppunit *pp)
5568 {
5569 uint8_t conreg;
5570
5571 /* set the logical device name */
5572 pc87332_write_config_reg(pp, PC97317_CONFIG_DEV_NO, 0x4);
5573
5574 /* SPP Compatibility */
5575 PP_PUTB(pp->uh.ebus.c2_handle,
5576 &pp->uh.ebus.c2_reg->eir, PC97317_CONFIG2_CONTROL2);
5577 PP_PUTB(pp->uh.ebus.c2_handle, &pp->uh.ebus.c2_reg->edr, 0x80);
5578
5579 /* low interrupt polarity */
5580 pc87332_write_config_reg(pp, PC97317_CONFIG_INTR_TYPE, 0x00);
5581
5582 /* ECP mode */
5583 pc87332_write_config_reg(pp, PC97317_CONFIG_PP_CONFIG, 0xf2);
5584
5585 if (dcr_write(pp, ECPP_SLCTIN | ECPP_nINIT) == FAILURE) {
5586 ecpp_error(pp->dip, "pc97317_config_chip: failed w/DCR\n");
5587 }
5588
5589 if (ecr_write(pp, ECR_mode_001 |
5590 ECPP_INTR_MASK | ECPP_INTR_SRV) == FAILURE) {
5591 ecpp_error(pp->dip, "pc97317_config_chip: failed w/ECR\n");
5592 }
5593
5594 #ifdef DEBUG
5595 conreg = pc87332_read_config_reg(pp, PC97317_CONFIG_DEV_NO);
5596 ecpp_error(pp->dip, "97317:conreg7(logical dev)=%x\n", conreg);
5597
5598 conreg = pc87332_read_config_reg(pp, PC97317_CONFIG_BASE_ADDR_MSB);
5599 ecpp_error(pp->dip, "97317:conreg60(addrHi)=%x\n", conreg);
5600
5601 conreg = pc87332_read_config_reg(pp, PC97317_CONFIG_BASE_ADDR_LSB);
5602 ecpp_error(pp->dip, "97317:conreg61(addrLo)=%x\n", conreg);
5603
5604 conreg = pc87332_read_config_reg(pp, PC97317_CONFIG_INTR_SEL);
5605 ecpp_error(pp->dip, "97317:conreg70(IRQL)=%x\n", conreg);
5606
5607 conreg = pc87332_read_config_reg(pp, PC97317_CONFIG_INTR_TYPE);
5608 ecpp_error(pp->dip, "97317:conreg71(intr type)=%x\n", conreg);
5609
5610 conreg = pc87332_read_config_reg(pp, PC97317_CONFIG_ACTIVATE);
5611 ecpp_error(pp->dip, "97317:conreg30(Active)=%x\n", conreg);
5612
5613 conreg = pc87332_read_config_reg(pp, PC97317_CONFIG_IO_RANGE);
5614 ecpp_error(pp->dip, "97317:conreg31(IO Range Check)=%x\n", conreg);
5615
5616 conreg = pc87332_read_config_reg(pp, PC97317_CONFIG_DMA0_CHAN);
5617 ecpp_error(pp->dip, "97317:conreg74(DMA0 Chan)=%x\n", conreg);
5618 conreg = pc87332_read_config_reg(pp, PC97317_CONFIG_DMA1_CHAN);
5619 ecpp_error(pp->dip, "97317:conreg75(DMA1 Chan)=%x\n", conreg);
5620
5621 conreg = pc87332_read_config_reg(pp, PC97317_CONFIG_PP_CONFIG);
5622 ecpp_error(pp->dip, "97317:conregFO(pport conf)=%x\n", conreg);
5623
5624 conreg = pc87332_read_config_reg(pp, PC97317_CONFIG_PP_CONFIG);
5625 ecpp_error(pp->dip, "97317:conregFO(pport conf)=%x\n", conreg);
5626 #endif /* DEBUG */
5627
5628 return (SUCCESS);
5629 }
5630
5631 /*
5632 * A new mode was set, do some mode specific reconfiguration
5633 * in this case - set interrupt polarity
5634 */
5635 static void
5636 pc97317_config_mode(struct ecppunit *pp)
5637 {
5638 /* set the logical device name */
5639 pc87332_write_config_reg(pp, PC97317_CONFIG_DEV_NO, 0x4);
5640
5641 if (COMPAT_PIO(pp) || pp->current_mode == ECPP_NIBBLE_MODE) {
5642 pc87332_write_config_reg(pp, PC97317_CONFIG_INTR_TYPE, 0x02);
5643 } else {
5644 pc87332_write_config_reg(pp, PC97317_CONFIG_INTR_TYPE, 0x00);
5645 }
5646 }
5647
5648 static void
5649 cheerio_mask_intr(struct ecppunit *pp)
5650 {
5651 /* mask Cheerio interrupts */
5652 AND_SET_LONG_R(pp->uh.ebus.d_handle,
5653 &pp->uh.ebus.dmac->csr, ~DCSR_INT_EN);
5654 }
5655
5656 static void
5657 cheerio_unmask_intr(struct ecppunit *pp)
5658 {
5659 /* unmask Cheerio interrupts */
5660 OR_SET_LONG_R(pp->uh.ebus.d_handle,
5661 &pp->uh.ebus.dmac->csr, DCSR_INT_EN | DCSR_TCI_DIS);
5662 }
5663
5664 static int
5665 cheerio_dma_start(struct ecppunit *pp)
5666 {
5667 cheerio_reset_dcsr(pp);
5668 SET_DMAC_BCR(pp, pp->dma_cookie.dmac_size);
5669 SET_DMAC_ACR(pp, pp->dma_cookie.dmac_address);
5670
5671 if (pp->dma_dir == DDI_DMA_READ) {
5672 SET_DMAC_CSR(pp, DCSR_INT_EN | DCSR_EN_CNT | DCSR_EN_DMA |
5673 DCSR_CSR_DRAIN | DCSR_BURST_1 | DCSR_BURST_0 | DCSR_WRITE);
5674 } else {
5675 SET_DMAC_CSR(pp, DCSR_INT_EN | DCSR_EN_CNT | DCSR_EN_DMA |
5676 DCSR_CSR_DRAIN | DCSR_BURST_1 | DCSR_BURST_0);
5677 }
5678
5679 return (SUCCESS);
5680 }
5681
5682 /*
5683 * Note: BCR is reset to 0, so counter should always be read before dma_stop
5684 */
5685 static int
5686 cheerio_dma_stop(struct ecppunit *pp, size_t *countp)
5687 {
5688 uint8_t ecr;
5689
5690 /* disable DMA and byte counter */
5691 AND_SET_LONG_R(pp->uh.ebus.d_handle, &pp->uh.ebus.dmac->csr,
5692 ~(DCSR_EN_DMA | DCSR_EN_CNT| DCSR_INT_EN));
5693
5694 /* ACK and disable the TC interrupt */
5695 OR_SET_LONG_R(pp->uh.ebus.d_handle, &pp->uh.ebus.dmac->csr,
5696 DCSR_TC | DCSR_TCI_DIS);
5697
5698 /* read DMA count if requested */
5699 if (countp) {
5700 *countp = cheerio_getcnt(pp);
5701 }
5702
5703 cheerio_reset_dcsr(pp);
5704 SET_DMAC_BCR(pp, 0);
5705
5706 /* turn off SuperIO's DMA */
5707 ecr = ECR_READ(pp);
5708 if (ecr_write(pp, ecr & ~ECPP_DMA_ENABLE) == FAILURE) {
5709 return (FAILURE);
5710 }
5711
5712 /* Disable SuperIO interrupts and DMA */
5713 ecr = ECR_READ(pp);
5714
5715 return (ecr_write(pp, ecr | ECPP_INTR_SRV));
5716 }
5717
5718 static size_t
5719 cheerio_getcnt(struct ecppunit *pp)
5720 {
5721 return (GET_DMAC_BCR(pp));
5722 }
5723
5724 /*
5725 * Reset the DCSR by first setting the RESET bit to 1. Poll the
5726 * DCSR_CYC_PEND bit to make sure there are no more pending DMA cycles.
5727 * If there are no more pending cycles, clear the RESET bit.
5728 */
5729 static void
5730 cheerio_reset_dcsr(struct ecppunit *pp)
5731 {
5732 int timeout = DMAC_RESET_TIMEOUT;
5733
5734 SET_DMAC_CSR(pp, DCSR_RESET);
5735
5736 while (GET_DMAC_CSR(pp) & DCSR_CYC_PEND) {
5737 if (timeout == 0) {
5738 ecpp_error(pp->dip, "cheerio_reset_dcsr: timeout\n");
5739 break;
5740 } else {
5741 drv_usecwait(1);
5742 timeout--;
5743 }
5744 }
5745
5746 SET_DMAC_CSR(pp, 0);
5747 }
5748
5749 /*
5750 *
5751 * Grover Southbridge (M1553) support routines
5752 * Southbridge contains an Intel 8237 DMAC onboard which is used
5753 * to transport data to/from PCI space to superio parallel port
5754 *
5755 */
5756
5757
5758 static int
5759 m1553_map_regs(struct ecppunit *pp)
5760 {
5761 if (ddi_regs_map_setup(pp->dip, 1, (caddr_t *)&pp->uh.m1553.isa_space,
5762 0, sizeof (struct isaspace), &acc_attr,
5763 &pp->uh.m1553.d_handle) != DDI_SUCCESS) {
5764 ecpp_error(pp->dip, "m1553_map_regs: failed isa space\n");
5765 goto fail;
5766 }
5767
5768 if (ddi_regs_map_setup(pp->dip, 0, (caddr_t *)&pp->i_reg, 0,
5769 sizeof (struct info_reg), &acc_attr, &pp->i_handle)
5770 != DDI_SUCCESS) {
5771 ecpp_error(pp->dip, "m1553_map_regs: failed i_reg\n");
5772 goto fail;
5773 }
5774
5775 if (ddi_regs_map_setup(pp->dip, 0, (caddr_t *)&pp->f_reg, 0x400,
5776 sizeof (struct fifo_reg), &acc_attr, &pp->f_handle)
5777 != DDI_SUCCESS) {
5778 ecpp_error(pp->dip, "m1553_map_regs: failed f_reg\n");
5779 goto fail;
5780 }
5781
5782 return (SUCCESS);
5783
5784 fail:
5785 m1553_unmap_regs(pp);
5786 return (FAILURE);
5787 }
5788
5789 static void
5790 m1553_unmap_regs(struct ecppunit *pp)
5791 {
5792 if (pp->uh.m1553.d_handle) {
5793 ddi_regs_map_free(&pp->uh.m1553.d_handle);
5794 }
5795 if (pp->i_handle) {
5796 ddi_regs_map_free(&pp->i_handle);
5797 }
5798 if (pp->f_handle) {
5799 ddi_regs_map_free(&pp->f_handle);
5800 }
5801 }
5802
5803 #if defined(__x86)
5804 static int
5805 x86_map_regs(struct ecppunit *pp)
5806 {
5807 int nregs = 0;
5808
5809 if (ddi_regs_map_setup(pp->dip, 0, (caddr_t *)&pp->i_reg, 0,
5810 sizeof (struct info_reg), &acc_attr, &pp->i_handle)
5811 != DDI_SUCCESS) {
5812 ecpp_error(pp->dip, "x86_map_regs: failed i_reg\n");
5813 goto fail;
5814 }
5815 if (ddi_dev_nregs(pp->dip, &nregs) == DDI_SUCCESS && nregs == 2) {
5816 if (ddi_regs_map_setup(pp->dip, 1, (caddr_t *)&pp->f_reg, 0,
5817 sizeof (struct fifo_reg), &acc_attr, &pp->f_handle)
5818 != DDI_SUCCESS) {
5819 ecpp_error(pp->dip, "x86_map_regs: failed f_reg\n");
5820 goto fail;
5821 } else
5822 pp->noecpregs = FALSE;
5823 } else {
5824 pp->noecpregs = TRUE;
5825 }
5826 return (SUCCESS);
5827 fail:
5828 x86_unmap_regs(pp);
5829 return (FAILURE);
5830 }
5831
5832 static void
5833 x86_unmap_regs(struct ecppunit *pp)
5834 {
5835 if (pp->i_handle) {
5836 ddi_regs_map_free(&pp->i_handle);
5837 }
5838 if (pp->f_handle) {
5839 ddi_regs_map_free(&pp->f_handle);
5840 }
5841 }
5842 #endif
5843
5844 static uint8_t
5845 m1553_read_config_reg(struct ecppunit *pp, uint8_t reg_num)
5846 {
5847 uint8_t retval;
5848
5849 dma8237_write(pp, 0x3F0, reg_num);
5850 retval = dma8237_read(pp, 0x3F1);
5851
5852 return (retval);
5853 }
5854
5855 static void
5856 m1553_write_config_reg(struct ecppunit *pp, uint8_t reg_num, uint8_t val)
5857 {
5858 dma8237_write(pp, 0x3F0, reg_num);
5859 dma8237_write(pp, 0x3F1, val);
5860 }
5861
5862 static int
5863 m1553_config_chip(struct ecppunit *pp)
5864 {
5865 uint8_t conreg;
5866
5867 /* Unlock configuration regs with "key sequence" */
5868 dma8237_write(pp, 0x3F0, 0x51);
5869 dma8237_write(pp, 0x3F0, 0x23);
5870
5871 m1553_write_config_reg(pp, PnP_CONFIG_DEV_NO, 0x3);
5872 conreg = m1553_read_config_reg(pp, PnP_CONFIG_DEV_NO);
5873 ecpp_error(pp->dip, "M1553:conreg7(logical dev)=%x\n", conreg);
5874
5875 conreg = m1553_read_config_reg(pp, PnP_CONFIG_ACTIVATE);
5876 ecpp_error(pp->dip, "M1553:conreg30(Active)=%x\n", conreg);
5877
5878 conreg = m1553_read_config_reg(pp, PnP_CONFIG_BASE_ADDR_MSB);
5879 ecpp_error(pp->dip, "M1553:conreg60(addrHi)=%x\n", conreg);
5880 conreg = m1553_read_config_reg(pp, PnP_CONFIG_BASE_ADDR_LSB);
5881 ecpp_error(pp->dip, "M1553:conreg61(addrLo)=%x\n", conreg);
5882
5883 conreg = m1553_read_config_reg(pp, PnP_CONFIG_INTR_SEL);
5884 ecpp_error(pp->dip, "M1553:conreg70(IRQL)=%x\n", conreg);
5885
5886 conreg = m1553_read_config_reg(pp, PnP_CONFIG_DMA0_CHAN);
5887 ecpp_error(pp->dip, "M1553:conreg74(DMA0 Chan)=%x\n", conreg);
5888
5889 /* set FIFO threshold 1 and ECP mode, preserve bit 7 (IRQ polarity) */
5890 conreg = m1553_read_config_reg(pp, PnP_CONFIG_PP_CONFIG0);
5891 conreg = (conreg & ~0x7F) | 0x0A;
5892 m1553_write_config_reg(pp, PnP_CONFIG_PP_CONFIG0, conreg);
5893 conreg = m1553_read_config_reg(pp, PnP_CONFIG_PP_CONFIG0);
5894 ecpp_error(pp->dip, "M1553:conregFO(pport conf)=%x\n", conreg);
5895
5896 m1553_write_config_reg(pp, PnP_CONFIG_PP_CONFIG1, 0x04);
5897 conreg = m1553_read_config_reg(pp, PnP_CONFIG_PP_CONFIG1);
5898 ecpp_error(pp->dip, "M1553:conregF1(outconf)=%x\n", conreg);
5899
5900 /* lock configuration regs with key */
5901 dma8237_write(pp, 0x3F0, 0xBB);
5902
5903 /* Set ECR, DCR in known state */
5904 ECR_WRITE(pp, ECR_mode_001 | ECPP_INTR_MASK | ECPP_INTR_SRV);
5905 DCR_WRITE(pp, ECPP_SLCTIN | ECPP_nINIT);
5906
5907 ecpp_error(pp->dip, "m1553_config_chip: ecr=%x, dsr=%x, dcr=%x\n",
5908 ECR_READ(pp), DSR_READ(pp), DCR_READ(pp));
5909
5910 return (SUCCESS);
5911 }
5912
5913 #if defined(__x86)
5914 static int
5915 x86_config_chip(struct ecppunit *pp)
5916 {
5917 if (ecr_write(pp, ECR_mode_001 |
5918 ECPP_INTR_MASK | ECPP_INTR_SRV) == FAILURE) {
5919 ecpp_error(pp->dip, "config chip: failed w/ecr\n");
5920 pp->noecpregs = TRUE;
5921 }
5922 if (pp->noecpregs)
5923 pp->fast_compat = FALSE;
5924 DCR_WRITE(pp, ECPP_SLCTIN | ECPP_nINIT);
5925 ecpp_error(pp->dip, "x86_config_chip: ecr=%x, dsr=%x, dcr=%x\n",
5926 ECR_READ(pp), DSR_READ(pp), DCR_READ(pp));
5927 return (SUCCESS);
5928 }
5929 #endif
5930
5931 /*
5932 * dma8237_dma_start() programs the selected 8 bit channel
5933 * of DMAC1 with the dma cookie. pp->dma_cookie must
5934 * be set before this routine is called.
5935 */
5936 static int
5937 dma8237_dma_start(struct ecppunit *pp)
5938 {
5939 uint8_t chn;
5940
5941 chn = pp->uh.m1553.chn;
5942
5943 ASSERT(chn <= DMAE_CH3 &&
5944 pp->dma_cookie.dmac_size != 0 &&
5945 pp->dma_cookie.dmac_address != NULL);
5946
5947 /* At this point Southbridge has not yet asserted DREQ */
5948
5949 /* set mode to read-from-memory. */
5950 dma8237_write(pp, DMAC2_MODE, DMAMODE_CASC);
5951 if (pp->dma_dir == DDI_DMA_READ) {
5952 dma8237_write(pp, DMAC1_MODE, DMAMODE_SINGLE |
5953 DMAMODE_READ | chn);
5954 } else {
5955 dma8237_write(pp, DMAC1_MODE, DMAMODE_SINGLE |
5956 DMAMODE_WRITE | chn);
5957 }
5958
5959 dma8237_write_addr(pp, pp->dma_cookie.dmac_address);
5960 dma8237_write_count(pp, pp->dma_cookie.dmac_size - 1);
5961
5962 /*
5963 * M1553 chip does not permit to access DMA register banks
5964 * while DMA is in flight. As a result, ecpp and floppy drivers
5965 * can potentially corrupt each other's DMA. The interlocking mechanism
5966 * is provided by a parent nexus driver (isadma), which is enabled
5967 * indirectly through a DMAC1_ALLMASK register access:
5968 *
5969 * writing a non-zero value to this register enters a lock,
5970 * writing zero releases the lock.
5971 *
5972 * DMA transfer must only occur after entering a lock.
5973 * If the lock is already owned by other driver, we will block.
5974 *
5975 * The following operation unmasks our channel and masks all others
5976 */
5977 dma8237_write(pp, DMAC1_ALLMASK, ~(1 << chn));
5978 pp->uh.m1553.isadma_entered = 1;
5979
5980 return (SUCCESS);
5981 }
5982
5983 static int
5984 dma8237_dma_stop(struct ecppunit *pp, size_t *countp)
5985 {
5986 uint8_t ecr;
5987
5988 /* stop DMA */
5989 ecr = (ECR_READ(pp) & 0xe0) | ECPP_INTR_MASK | ECPP_INTR_SRV;
5990 (void) ecr_write(pp, ecr);
5991
5992 if (pp->uh.m1553.isadma_entered) {
5993 /* reset the channel mask so we can issue PIO's to our device */
5994 dma8237_write(pp, DMAC1_ALLMASK, 0);
5995 pp->uh.m1553.isadma_entered = 0;
5996
5997 }
5998
5999 /* read DMA count if requested */
6000 if (countp) {
6001 *countp = dma8237_getcnt(pp);
6002 if (pp->dma_dir == DDI_DMA_READ && *countp > 0) {
6003 (*countp)++; /* need correction for reverse xfers */
6004 }
6005 }
6006 return (SUCCESS);
6007 }
6008 #if defined(__x86)
6009 static int
6010 x86_dma_start(struct ecppunit *pp)
6011 {
6012 uint8_t chn;
6013 struct ddi_dmae_req dmaereq;
6014
6015 chn = pp->uh.x86.chn;
6016 ASSERT(chn <= DMAE_CH3 &&
6017 pp->dma_cookie.dmac_size != 0 &&
6018 pp->dma_cookie.dmac_address != NULL);
6019 bzero(&dmaereq, sizeof (struct ddi_dmae_req));
6020 dmaereq.der_command =
6021 (pp->dma_dir & DDI_DMA_READ) ? DMAE_CMD_READ : DMAE_CMD_WRITE;
6022 if (ddi_dmae_prog(pp->dip, &dmaereq, &pp->dma_cookie, chn)
6023 != DDI_SUCCESS)
6024 ecpp_error(pp->dip, "prog failed !!!\n");
6025 ecpp_error(pp->dip, "dma_started..\n");
6026 return (SUCCESS);
6027 }
6028
6029 static int
6030 x86_dma_stop(struct ecppunit *pp, size_t *countp)
6031 {
6032 uint8_t ecr;
6033
6034 /* stop DMA */
6035 if (pp->uh.x86.chn == 0xff)
6036 return (FAILURE);
6037 ecr = (ECR_READ(pp) & 0xe0) | ECPP_INTR_MASK | ECPP_INTR_SRV;
6038 (void) ecr_write(pp, ecr);
6039 ecpp_error(pp->dip, "dma_stop\n");
6040
6041 /* read DMA count if requested */
6042 if (countp) {
6043 *countp = x86_getcnt(pp);
6044 }
6045 ecpp_error(pp->dip, "dma_stoped..\n");
6046 return (SUCCESS);
6047 }
6048 #endif
6049
6050 /* channel must be masked */
6051 static void
6052 dma8237_write_addr(struct ecppunit *pp, uint32_t addr)
6053 {
6054 uint8_t c_addr, c_lpage;
6055 uint16_t c_hpage, *p;
6056
6057 switch (pp->uh.m1553.chn) {
6058 case DMAE_CH0:
6059 c_addr = DMA_0ADR;
6060 c_lpage = DMA_0PAGE;
6061 c_hpage = DMA_0HPG;
6062 break;
6063
6064 case DMAE_CH1:
6065 c_addr = DMA_1ADR;
6066 c_lpage = DMA_1PAGE;
6067 c_hpage = DMA_1HPG;
6068 break;
6069
6070 case DMAE_CH2:
6071 c_addr = DMA_2ADR;
6072 c_lpage = DMA_2PAGE;
6073 c_hpage = DMA_2HPG;
6074 break;
6075
6076 case DMAE_CH3:
6077 c_addr = DMA_3ADR;
6078 c_lpage = DMA_3PAGE;
6079 c_hpage = DMA_3HPG;
6080 break;
6081
6082 default:
6083 return;
6084 }
6085
6086 p = (uint16_t *)&pp->uh.m1553.isa_space->isa_reg[c_addr];
6087 ddi_put16(pp->uh.m1553.d_handle, p, addr & 0xFFFF);
6088
6089 dma8237_write(pp, c_lpage, (addr & 0xFF0000) >> 16);
6090 dma8237_write(pp, c_hpage, (addr & 0xFF000000) >> 24);
6091
6092 }
6093
6094 /*
6095 * This function may be useful during debugging,
6096 * so we leave it in, but do not include in the binary
6097 */
6098 #ifdef INCLUDE_DMA8237_READ_ADDR
6099 static uint32_t
6100 dma8237_read_addr(struct ecppunit *pp)
6101 {
6102 uint8_t rval3, rval4;
6103 uint16_t rval16;
6104 uint32_t rval;
6105 uint8_t c_addr, c_lpage;
6106 uint16_t c_hpage, *p;
6107
6108 switch (pp->uh.m1553.chn) {
6109 case DMAE_CH0:
6110 c_addr = DMA_0ADR;
6111 c_lpage = DMA_0PAGE;
6112 c_hpage = DMA_0HPG;
6113 break;
6114
6115 case DMAE_CH1:
6116 c_addr = DMA_1ADR;
6117 c_lpage = DMA_1PAGE;
6118 c_hpage = DMA_1HPG;
6119 break;
6120
6121 case DMAE_CH2:
6122 c_addr = DMA_2ADR;
6123 c_lpage = DMA_2PAGE;
6124 c_hpage = DMA_2HPG;
6125 break;
6126
6127 case DMAE_CH3:
6128 c_addr = DMA_3ADR;
6129 c_lpage = DMA_3PAGE;
6130 c_hpage = DMA_3HPG;
6131 break;
6132
6133 default:
6134 return (NULL);
6135 }
6136
6137 p = (uint16_t *)&pp->uh.m1553.isa_space->isa_reg[c_addr];
6138 rval16 = ddi_get16(pp->uh.m1553.d_handle, p);
6139
6140 rval3 = dma8237_read(pp, c_lpage);
6141 rval4 = dma8237_read(pp, c_hpage);
6142
6143 rval = rval16 | (rval3 << 16) | (rval4 <<24);
6144
6145 return (rval);
6146 }
6147 #endif
6148
6149 static void
6150 dma8237_write_count(struct ecppunit *pp, uint32_t count)
6151 {
6152 uint8_t c_wcnt;
6153 uint16_t *p;
6154
6155 switch (pp->uh.m1553.chn) {
6156 case DMAE_CH0:
6157 c_wcnt = DMA_0WCNT;
6158 break;
6159
6160 case DMAE_CH1:
6161 c_wcnt = DMA_1WCNT;
6162 break;
6163
6164 case DMAE_CH2:
6165 c_wcnt = DMA_2WCNT;
6166 break;
6167
6168 case DMAE_CH3:
6169 c_wcnt = DMA_3WCNT;
6170 break;
6171
6172 default:
6173 return;
6174 }
6175
6176 p = (uint16_t *)&pp->uh.m1553.isa_space->isa_reg[c_wcnt];
6177 ddi_put16(pp->uh.m1553.d_handle, p, count & 0xFFFF);
6178
6179 }
6180
6181 static uint32_t
6182 dma8237_read_count(struct ecppunit *pp)
6183 {
6184 uint8_t c_wcnt;
6185 uint16_t *p;
6186
6187 switch (pp->uh.m1553.chn) {
6188 case DMAE_CH0:
6189 c_wcnt = DMA_0WCNT;
6190 break;
6191
6192 case DMAE_CH1:
6193 c_wcnt = DMA_1WCNT;
6194 break;
6195
6196 case DMAE_CH2:
6197 c_wcnt = DMA_2WCNT;
6198 break;
6199
6200 case DMAE_CH3:
6201 c_wcnt = DMA_3WCNT;
6202 break;
6203
6204 default:
6205 return (NULL);
6206 }
6207
6208 p = (uint16_t *)&pp->uh.m1553.isa_space->isa_reg[c_wcnt];
6209 return (ddi_get16(pp->uh.m1553.d_handle, p));
6210
6211 }
6212
6213 static void
6214 dma8237_write(struct ecppunit *pp, int reg_num, uint8_t val)
6215 {
6216 ddi_put8(pp->uh.m1553.d_handle,
6217 &pp->uh.m1553.isa_space->isa_reg[reg_num], val);
6218 }
6219
6220 static uint8_t
6221 dma8237_read(struct ecppunit *pp, int reg_num)
6222 {
6223 return (ddi_get8(pp->uh.m1553.d_handle,
6224 &pp->uh.m1553.isa_space->isa_reg[reg_num]));
6225 }
6226
6227 static size_t
6228 dma8237_getcnt(struct ecppunit *pp)
6229 {
6230 uint32_t cnt;
6231
6232 if ((cnt = dma8237_read_count(pp)) == 0xffff)
6233 cnt = 0;
6234 else
6235 cnt++;
6236 return (cnt);
6237 }
6238
6239
6240 /*
6241 *
6242 * Kstat support routines
6243 *
6244 */
6245 static void
6246 ecpp_kstat_init(struct ecppunit *pp)
6247 {
6248 struct ecppkstat *ekp;
6249 char buf[16];
6250
6251 /*
6252 * Allocate, initialize and install interrupt counter kstat
6253 */
6254 (void) sprintf(buf, "ecppc%d", pp->instance);
6255 pp->intrstats = kstat_create("ecpp", pp->instance, buf, "controller",
6256 KSTAT_TYPE_INTR, 1, KSTAT_FLAG_PERSISTENT);
6257 if (pp->intrstats == NULL) {
6258 ecpp_error(pp->dip, "ecpp_kstat_init:1: kstat_create failed");
6259 } else {
6260 pp->intrstats->ks_update = ecpp_kstatintr_update;
6261 pp->intrstats->ks_private = (void *) pp;
6262 kstat_install(pp->intrstats);
6263 }
6264
6265 /*
6266 * Allocate, initialize and install misc stats kstat
6267 */
6268 pp->ksp = kstat_create("ecpp", pp->instance, NULL, "misc",
6269 KSTAT_TYPE_NAMED,
6270 sizeof (struct ecppkstat) / sizeof (kstat_named_t),
6271 KSTAT_FLAG_PERSISTENT);
6272 if (pp->ksp == NULL) {
6273 ecpp_error(pp->dip, "ecpp_kstat_init:2: kstat_create failed");
6274 return;
6275 }
6276
6277 ekp = (struct ecppkstat *)pp->ksp->ks_data;
6278
6279 #define EK_NAMED_INIT(name) \
6280 kstat_named_init(&ekp->ek_##name, #name, KSTAT_DATA_UINT32)
6281
6282 EK_NAMED_INIT(ctx_obytes);
6283 EK_NAMED_INIT(ctxpio_obytes);
6284 EK_NAMED_INIT(nib_ibytes);
6285 EK_NAMED_INIT(ecp_obytes);
6286 EK_NAMED_INIT(ecp_ibytes);
6287 EK_NAMED_INIT(epp_obytes);
6288 EK_NAMED_INIT(epp_ibytes);
6289 EK_NAMED_INIT(diag_obytes);
6290 EK_NAMED_INIT(to_ctx);
6291 EK_NAMED_INIT(to_nib);
6292 EK_NAMED_INIT(to_ecp);
6293 EK_NAMED_INIT(to_epp);
6294 EK_NAMED_INIT(to_diag);
6295 EK_NAMED_INIT(xfer_tout);
6296 EK_NAMED_INIT(ctx_cf);
6297 EK_NAMED_INIT(joblen);
6298 EK_NAMED_INIT(isr_reattempt_high);
6299 EK_NAMED_INIT(mode);
6300 EK_NAMED_INIT(phase);
6301 EK_NAMED_INIT(backchan);
6302 EK_NAMED_INIT(iomode);
6303 EK_NAMED_INIT(state);
6304
6305 pp->ksp->ks_update = ecpp_kstat_update;
6306 pp->ksp->ks_private = (void *) pp;
6307 kstat_install(pp->ksp);
6308 }
6309
6310 static int
6311 ecpp_kstat_update(kstat_t *ksp, int rw)
6312 {
6313 struct ecppunit *pp;
6314 struct ecppkstat *ekp;
6315
6316 /*
6317 * For the time being there is no point
6318 * in supporting writable kstats
6319 */
6320 if (rw == KSTAT_WRITE) {
6321 return (EACCES);
6322 }
6323
6324 pp = (struct ecppunit *)ksp->ks_private;
6325 ekp = (struct ecppkstat *)ksp->ks_data;
6326
6327 mutex_enter(&pp->umutex);
6328
6329 ekp->ek_ctx_obytes.value.ui32 = pp->obytes[ECPP_CENTRONICS] +
6330 pp->obytes[ECPP_COMPAT_MODE];
6331 ekp->ek_ctxpio_obytes.value.ui32 = pp->ctxpio_obytes;
6332 ekp->ek_nib_ibytes.value.ui32 = pp->ibytes[ECPP_NIBBLE_MODE];
6333 ekp->ek_ecp_obytes.value.ui32 = pp->obytes[ECPP_ECP_MODE];
6334 ekp->ek_ecp_ibytes.value.ui32 = pp->ibytes[ECPP_ECP_MODE];
6335 ekp->ek_epp_obytes.value.ui32 = pp->obytes[ECPP_EPP_MODE];
6336 ekp->ek_epp_ibytes.value.ui32 = pp->ibytes[ECPP_EPP_MODE];
6337 ekp->ek_diag_obytes.value.ui32 = pp->obytes[ECPP_DIAG_MODE];
6338 ekp->ek_to_ctx.value.ui32 = pp->to_mode[ECPP_CENTRONICS] +
6339 pp->to_mode[ECPP_COMPAT_MODE];
6340 ekp->ek_to_nib.value.ui32 = pp->to_mode[ECPP_NIBBLE_MODE];
6341 ekp->ek_to_ecp.value.ui32 = pp->to_mode[ECPP_ECP_MODE];
6342 ekp->ek_to_epp.value.ui32 = pp->to_mode[ECPP_EPP_MODE];
6343 ekp->ek_to_diag.value.ui32 = pp->to_mode[ECPP_DIAG_MODE];
6344 ekp->ek_xfer_tout.value.ui32 = pp->xfer_tout;
6345 ekp->ek_ctx_cf.value.ui32 = pp->ctx_cf;
6346 ekp->ek_joblen.value.ui32 = pp->joblen;
6347 ekp->ek_isr_reattempt_high.value.ui32 = pp->isr_reattempt_high;
6348 ekp->ek_mode.value.ui32 = pp->current_mode;
6349 ekp->ek_phase.value.ui32 = pp->current_phase;
6350 ekp->ek_backchan.value.ui32 = pp->backchannel;
6351 ekp->ek_iomode.value.ui32 = pp->io_mode;
6352 ekp->ek_state.value.ui32 = pp->e_busy;
6353
6354 mutex_exit(&pp->umutex);
6355
6356 return (0);
6357 }
6358
6359 static int
6360 ecpp_kstatintr_update(kstat_t *ksp, int rw)
6361 {
6362 struct ecppunit *pp;
6363
6364 /*
6365 * For the time being there is no point
6366 * in supporting writable kstats
6367 */
6368 if (rw == KSTAT_WRITE) {
6369 return (EACCES);
6370 }
6371
6372 pp = (struct ecppunit *)ksp->ks_private;
6373
6374 mutex_enter(&pp->umutex);
6375
6376 KSTAT_INTR_PTR(ksp)->intrs[KSTAT_INTR_HARD] = pp->intr_hard;
6377 KSTAT_INTR_PTR(ksp)->intrs[KSTAT_INTR_SPURIOUS] = pp->intr_spurious;
6378 KSTAT_INTR_PTR(ksp)->intrs[KSTAT_INTR_SOFT] = pp->intr_soft;
6379
6380 mutex_exit(&pp->umutex);
6381
6382 return (0);
6383 }
--- EOF ---