1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 26 /* 27 * driver for accessing kernel devinfo tree. 28 */ 29 #include <sys/types.h> 30 #include <sys/pathname.h> 31 #include <sys/debug.h> 32 #include <sys/autoconf.h> 33 #include <sys/vmsystm.h> 34 #include <sys/conf.h> 35 #include <sys/file.h> 36 #include <sys/kmem.h> 37 #include <sys/modctl.h> 38 #include <sys/stat.h> 39 #include <sys/ddi.h> 40 #include <sys/sunddi.h> 41 #include <sys/sunldi_impl.h> 42 #include <sys/sunndi.h> 43 #include <sys/esunddi.h> 44 #include <sys/sunmdi.h> 45 #include <sys/ddi_impldefs.h> 46 #include <sys/ndi_impldefs.h> 47 #include <sys/mdi_impldefs.h> 48 #include <sys/devinfo_impl.h> 49 #include <sys/thread.h> 50 #include <sys/modhash.h> 51 #include <sys/bitmap.h> 52 #include <util/qsort.h> 53 #include <sys/disp.h> 54 #include <sys/kobj.h> 55 #include <sys/crc32.h> 56 #include <sys/ddi_hp.h> 57 #include <sys/ddi_hp_impl.h> 58 #include <sys/sysmacros.h> 59 #include <sys/list.h> 60 61 62 #ifdef DEBUG 63 static int di_debug; 64 #define dcmn_err(args) if (di_debug >= 1) cmn_err args 65 #define dcmn_err2(args) if (di_debug >= 2) cmn_err args 66 #define dcmn_err3(args) if (di_debug >= 3) cmn_err args 67 #else 68 #define dcmn_err(args) /* nothing */ 69 #define dcmn_err2(args) /* nothing */ 70 #define dcmn_err3(args) /* nothing */ 71 #endif 72 73 /* 74 * We partition the space of devinfo minor nodes equally between the full and 75 * unprivileged versions of the driver. The even-numbered minor nodes are the 76 * full version, while the odd-numbered ones are the read-only version. 77 */ 78 static int di_max_opens = 32; 79 80 static int di_prop_dyn = 1; /* enable dynamic property support */ 81 82 #define DI_FULL_PARENT 0 83 #define DI_READONLY_PARENT 1 84 #define DI_NODE_SPECIES 2 85 #define DI_UNPRIVILEGED_NODE(x) (((x) % 2) != 0) 86 87 #define IOC_IDLE 0 /* snapshot ioctl states */ 88 #define IOC_SNAP 1 /* snapshot in progress */ 89 #define IOC_DONE 2 /* snapshot done, but not copied out */ 90 #define IOC_COPY 3 /* copyout in progress */ 91 92 /* 93 * Keep max alignment so we can move snapshot to different platforms. 94 * 95 * NOTE: Most callers should rely on the di_checkmem return value 96 * being aligned, and reestablish *off_p with aligned value, instead 97 * of trying to align size of their allocations: this approach will 98 * minimize memory use. 99 */ 100 #define DI_ALIGN(addr) ((addr + 7l) & ~7l) 101 102 /* 103 * To avoid wasting memory, make a linked list of memory chunks. 104 * Size of each chunk is buf_size. 105 */ 106 struct di_mem { 107 struct di_mem *next; /* link to next chunk */ 108 char *buf; /* contiguous kernel memory */ 109 size_t buf_size; /* size of buf in bytes */ 110 devmap_cookie_t cook; /* cookie from ddi_umem_alloc */ 111 }; 112 113 /* 114 * This is a stack for walking the tree without using recursion. 115 * When the devinfo tree height is above some small size, one 116 * gets watchdog resets on sun4m. 117 */ 118 struct di_stack { 119 void *offset[MAX_TREE_DEPTH]; 120 struct dev_info *dip[MAX_TREE_DEPTH]; 121 int circ[MAX_TREE_DEPTH]; 122 int depth; /* depth of current node to be copied */ 123 }; 124 125 #define TOP_OFFSET(stack) \ 126 ((di_off_t *)(stack)->offset[(stack)->depth - 1]) 127 #define TOP_NODE(stack) \ 128 ((stack)->dip[(stack)->depth - 1]) 129 #define PARENT_OFFSET(stack) \ 130 ((di_off_t *)(stack)->offset[(stack)->depth - 2]) 131 #define EMPTY_STACK(stack) ((stack)->depth == 0) 132 #define POP_STACK(stack) { \ 133 ndi_devi_exit((dev_info_t *)TOP_NODE(stack), \ 134 (stack)->circ[(stack)->depth - 1]); \ 135 ((stack)->depth--); \ 136 } 137 #define PUSH_STACK(stack, node, off_p) { \ 138 ASSERT(node != NULL); \ 139 ndi_devi_enter((dev_info_t *)node, &(stack)->circ[(stack)->depth]); \ 140 (stack)->dip[(stack)->depth] = (node); \ 141 (stack)->offset[(stack)->depth] = (void *)(off_p); \ 142 ((stack)->depth)++; \ 143 } 144 145 #define DI_ALL_PTR(s) DI_ALL(di_mem_addr((s), 0)) 146 147 /* 148 * With devfs, the device tree has no global locks. The device tree is 149 * dynamic and dips may come and go if they are not locked locally. Under 150 * these conditions, pointers are no longer reliable as unique IDs. 151 * Specifically, these pointers cannot be used as keys for hash tables 152 * as the same devinfo structure may be freed in one part of the tree only 153 * to be allocated as the structure for a different device in another 154 * part of the tree. This can happen if DR and the snapshot are 155 * happening concurrently. 156 * The following data structures act as keys for devinfo nodes and 157 * pathinfo nodes. 158 */ 159 160 enum di_ktype { 161 DI_DKEY = 1, 162 DI_PKEY = 2 163 }; 164 165 struct di_dkey { 166 dev_info_t *dk_dip; 167 major_t dk_major; 168 int dk_inst; 169 pnode_t dk_nodeid; 170 }; 171 172 struct di_pkey { 173 mdi_pathinfo_t *pk_pip; 174 char *pk_path_addr; 175 dev_info_t *pk_client; 176 dev_info_t *pk_phci; 177 }; 178 179 struct di_key { 180 enum di_ktype k_type; 181 union { 182 struct di_dkey dkey; 183 struct di_pkey pkey; 184 } k_u; 185 }; 186 187 188 struct i_lnode; 189 190 typedef struct i_link { 191 /* 192 * If a di_link struct representing this i_link struct makes it 193 * into the snapshot, then self will point to the offset of 194 * the di_link struct in the snapshot 195 */ 196 di_off_t self; 197 198 int spec_type; /* block or char access type */ 199 struct i_lnode *src_lnode; /* src i_lnode */ 200 struct i_lnode *tgt_lnode; /* tgt i_lnode */ 201 struct i_link *src_link_next; /* next src i_link /w same i_lnode */ 202 struct i_link *tgt_link_next; /* next tgt i_link /w same i_lnode */ 203 } i_link_t; 204 205 typedef struct i_lnode { 206 /* 207 * If a di_lnode struct representing this i_lnode struct makes it 208 * into the snapshot, then self will point to the offset of 209 * the di_lnode struct in the snapshot 210 */ 211 di_off_t self; 212 213 /* 214 * used for hashing and comparing i_lnodes 215 */ 216 int modid; 217 218 /* 219 * public information describing a link endpoint 220 */ 221 struct di_node *di_node; /* di_node in snapshot */ 222 dev_t devt; /* devt */ 223 224 /* 225 * i_link ptr to links coming into this i_lnode node 226 * (this i_lnode is the target of these i_links) 227 */ 228 i_link_t *link_in; 229 230 /* 231 * i_link ptr to links going out of this i_lnode node 232 * (this i_lnode is the source of these i_links) 233 */ 234 i_link_t *link_out; 235 } i_lnode_t; 236 237 typedef struct i_hp { 238 di_off_t hp_off; /* Offset of di_hp_t in snapshot */ 239 dev_info_t *hp_child; /* Child devinfo node of the di_hp_t */ 240 list_node_t hp_link; /* List linkage */ 241 } i_hp_t; 242 243 /* 244 * Soft state associated with each instance of driver open. 245 */ 246 static struct di_state { 247 di_off_t mem_size; /* total # bytes in memlist */ 248 struct di_mem *memlist; /* head of memlist */ 249 uint_t command; /* command from ioctl */ 250 int di_iocstate; /* snapshot ioctl state */ 251 mod_hash_t *reg_dip_hash; 252 mod_hash_t *reg_pip_hash; 253 int lnode_count; 254 int link_count; 255 256 mod_hash_t *lnode_hash; 257 mod_hash_t *link_hash; 258 259 list_t hp_list; 260 } **di_states; 261 262 static kmutex_t di_lock; /* serialize instance assignment */ 263 264 typedef enum { 265 DI_QUIET = 0, /* DI_QUIET must always be 0 */ 266 DI_ERR, 267 DI_INFO, 268 DI_TRACE, 269 DI_TRACE1, 270 DI_TRACE2 271 } di_cache_debug_t; 272 273 static uint_t di_chunk = 32; /* I/O chunk size in pages */ 274 275 #define DI_CACHE_LOCK(c) (mutex_enter(&(c).cache_lock)) 276 #define DI_CACHE_UNLOCK(c) (mutex_exit(&(c).cache_lock)) 277 #define DI_CACHE_LOCKED(c) (mutex_owned(&(c).cache_lock)) 278 279 /* 280 * Check that whole device tree is being configured as a pre-condition for 281 * cleaning up /etc/devices files. 282 */ 283 #define DEVICES_FILES_CLEANABLE(st) \ 284 (((st)->command & DINFOSUBTREE) && ((st)->command & DINFOFORCE) && \ 285 strcmp(DI_ALL_PTR(st)->root_path, "/") == 0) 286 287 #define CACHE_DEBUG(args) \ 288 { if (di_cache_debug != DI_QUIET) di_cache_print args; } 289 290 typedef struct phci_walk_arg { 291 di_off_t off; 292 struct di_state *st; 293 } phci_walk_arg_t; 294 295 static int di_open(dev_t *, int, int, cred_t *); 296 static int di_ioctl(dev_t, int, intptr_t, int, cred_t *, int *); 297 static int di_close(dev_t, int, int, cred_t *); 298 static int di_info(dev_info_t *, ddi_info_cmd_t, void *, void **); 299 static int di_attach(dev_info_t *, ddi_attach_cmd_t); 300 static int di_detach(dev_info_t *, ddi_detach_cmd_t); 301 302 static di_off_t di_copyformat(di_off_t, struct di_state *, intptr_t, int); 303 static di_off_t di_snapshot_and_clean(struct di_state *); 304 static di_off_t di_copydevnm(di_off_t *, struct di_state *); 305 static di_off_t di_copytree(struct dev_info *, di_off_t *, struct di_state *); 306 static di_off_t di_copynode(struct dev_info *, struct di_stack *, 307 struct di_state *); 308 static di_off_t di_getmdata(struct ddi_minor_data *, di_off_t *, di_off_t, 309 struct di_state *); 310 static di_off_t di_getppdata(struct dev_info *, di_off_t *, struct di_state *); 311 static di_off_t di_getdpdata(struct dev_info *, di_off_t *, struct di_state *); 312 static di_off_t di_gethpdata(ddi_hp_cn_handle_t *, di_off_t *, 313 struct di_state *); 314 static di_off_t di_getprop(int, struct ddi_prop **, di_off_t *, 315 struct di_state *, struct dev_info *); 316 static void di_allocmem(struct di_state *, size_t); 317 static void di_freemem(struct di_state *); 318 static void di_copymem(struct di_state *st, caddr_t buf, size_t bufsiz); 319 static di_off_t di_checkmem(struct di_state *, di_off_t, size_t); 320 static void *di_mem_addr(struct di_state *, di_off_t); 321 static int di_setstate(struct di_state *, int); 322 static void di_register_dip(struct di_state *, dev_info_t *, di_off_t); 323 static void di_register_pip(struct di_state *, mdi_pathinfo_t *, di_off_t); 324 static di_off_t di_getpath_data(dev_info_t *, di_off_t *, di_off_t, 325 struct di_state *, int); 326 static di_off_t di_getlink_data(di_off_t, struct di_state *); 327 static int di_dip_find(struct di_state *st, dev_info_t *node, di_off_t *off_p); 328 329 static int cache_args_valid(struct di_state *st, int *error); 330 static int snapshot_is_cacheable(struct di_state *st); 331 static int di_cache_lookup(struct di_state *st); 332 static int di_cache_update(struct di_state *st); 333 static void di_cache_print(di_cache_debug_t msglevel, char *fmt, ...); 334 static int build_vhci_list(dev_info_t *vh_devinfo, void *arg); 335 static int build_phci_list(dev_info_t *ph_devinfo, void *arg); 336 static void di_hotplug_children(struct di_state *st); 337 338 extern int modrootloaded; 339 extern void mdi_walk_vhcis(int (*)(dev_info_t *, void *), void *); 340 extern void mdi_vhci_walk_phcis(dev_info_t *, 341 int (*)(dev_info_t *, void *), void *); 342 343 344 static struct cb_ops di_cb_ops = { 345 di_open, /* open */ 346 di_close, /* close */ 347 nodev, /* strategy */ 348 nodev, /* print */ 349 nodev, /* dump */ 350 nodev, /* read */ 351 nodev, /* write */ 352 di_ioctl, /* ioctl */ 353 nodev, /* devmap */ 354 nodev, /* mmap */ 355 nodev, /* segmap */ 356 nochpoll, /* poll */ 357 ddi_prop_op, /* prop_op */ 358 NULL, /* streamtab */ 359 D_NEW | D_MP /* Driver compatibility flag */ 360 }; 361 362 static struct dev_ops di_ops = { 363 DEVO_REV, /* devo_rev, */ 364 0, /* refcnt */ 365 di_info, /* info */ 366 nulldev, /* identify */ 367 nulldev, /* probe */ 368 di_attach, /* attach */ 369 di_detach, /* detach */ 370 nodev, /* reset */ 371 &di_cb_ops, /* driver operations */ 372 NULL /* bus operations */ 373 }; 374 375 /* 376 * Module linkage information for the kernel. 377 */ 378 static struct modldrv modldrv = { 379 &mod_driverops, 380 "DEVINFO Driver", 381 &di_ops 382 }; 383 384 static struct modlinkage modlinkage = { 385 MODREV_1, 386 { &modldrv, NULL } 387 }; 388 389 int 390 _init(void) 391 { 392 int error; 393 394 mutex_init(&di_lock, NULL, MUTEX_DRIVER, NULL); 395 396 error = mod_install(&modlinkage); 397 if (error != 0) { 398 mutex_destroy(&di_lock); 399 return (error); 400 } 401 402 return (0); 403 } 404 405 int 406 _info(struct modinfo *modinfop) 407 { 408 return (mod_info(&modlinkage, modinfop)); 409 } 410 411 int 412 _fini(void) 413 { 414 int error; 415 416 error = mod_remove(&modlinkage); 417 if (error != 0) { 418 return (error); 419 } 420 421 mutex_destroy(&di_lock); 422 return (0); 423 } 424 425 static dev_info_t *di_dip; 426 427 /*ARGSUSED*/ 428 static int 429 di_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 430 { 431 int error = DDI_FAILURE; 432 433 switch (infocmd) { 434 case DDI_INFO_DEVT2DEVINFO: 435 *result = (void *)di_dip; 436 error = DDI_SUCCESS; 437 break; 438 case DDI_INFO_DEVT2INSTANCE: 439 /* 440 * All dev_t's map to the same, single instance. 441 */ 442 *result = (void *)0; 443 error = DDI_SUCCESS; 444 break; 445 default: 446 break; 447 } 448 449 return (error); 450 } 451 452 static int 453 di_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) 454 { 455 int error = DDI_FAILURE; 456 457 switch (cmd) { 458 case DDI_ATTACH: 459 di_states = kmem_zalloc( 460 di_max_opens * sizeof (struct di_state *), KM_SLEEP); 461 462 if (ddi_create_minor_node(dip, "devinfo", S_IFCHR, 463 DI_FULL_PARENT, DDI_PSEUDO, NULL) == DDI_FAILURE || 464 ddi_create_minor_node(dip, "devinfo,ro", S_IFCHR, 465 DI_READONLY_PARENT, DDI_PSEUDO, NULL) == DDI_FAILURE) { 466 kmem_free(di_states, 467 di_max_opens * sizeof (struct di_state *)); 468 ddi_remove_minor_node(dip, NULL); 469 error = DDI_FAILURE; 470 } else { 471 di_dip = dip; 472 ddi_report_dev(dip); 473 474 error = DDI_SUCCESS; 475 } 476 break; 477 default: 478 error = DDI_FAILURE; 479 break; 480 } 481 482 return (error); 483 } 484 485 static int 486 di_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 487 { 488 int error = DDI_FAILURE; 489 490 switch (cmd) { 491 case DDI_DETACH: 492 ddi_remove_minor_node(dip, NULL); 493 di_dip = NULL; 494 kmem_free(di_states, di_max_opens * sizeof (struct di_state *)); 495 496 error = DDI_SUCCESS; 497 break; 498 default: 499 error = DDI_FAILURE; 500 break; 501 } 502 503 return (error); 504 } 505 506 /* 507 * Allow multiple opens by tweaking the dev_t such that it looks like each 508 * open is getting a different minor device. Each minor gets a separate 509 * entry in the di_states[] table. Based on the original minor number, we 510 * discriminate opens of the full and read-only nodes. If all of the instances 511 * of the selected minor node are currently open, we return EAGAIN. 512 */ 513 /*ARGSUSED*/ 514 static int 515 di_open(dev_t *devp, int flag, int otyp, cred_t *credp) 516 { 517 int m; 518 minor_t minor_parent = getminor(*devp); 519 520 if (minor_parent != DI_FULL_PARENT && 521 minor_parent != DI_READONLY_PARENT) 522 return (ENXIO); 523 524 mutex_enter(&di_lock); 525 526 for (m = minor_parent; m < di_max_opens; m += DI_NODE_SPECIES) { 527 if (di_states[m] != NULL) 528 continue; 529 530 di_states[m] = kmem_zalloc(sizeof (struct di_state), KM_SLEEP); 531 break; /* It's ours. */ 532 } 533 534 if (m >= di_max_opens) { 535 /* 536 * maximum open instance for device reached 537 */ 538 mutex_exit(&di_lock); 539 dcmn_err((CE_WARN, "devinfo: maximum devinfo open reached")); 540 return (EAGAIN); 541 } 542 mutex_exit(&di_lock); 543 544 ASSERT(m < di_max_opens); 545 *devp = makedevice(getmajor(*devp), (minor_t)(m + DI_NODE_SPECIES)); 546 547 dcmn_err((CE_CONT, "di_open: thread = %p, assigned minor = %d\n", 548 (void *)curthread, m + DI_NODE_SPECIES)); 549 550 return (0); 551 } 552 553 /*ARGSUSED*/ 554 static int 555 di_close(dev_t dev, int flag, int otype, cred_t *cred_p) 556 { 557 struct di_state *st; 558 int m = (int)getminor(dev) - DI_NODE_SPECIES; 559 560 if (m < 0) { 561 cmn_err(CE_WARN, "closing non-existent devinfo minor %d", 562 m + DI_NODE_SPECIES); 563 return (ENXIO); 564 } 565 566 st = di_states[m]; 567 ASSERT(m < di_max_opens && st != NULL); 568 569 di_freemem(st); 570 kmem_free(st, sizeof (struct di_state)); 571 572 /* 573 * empty slot in state table 574 */ 575 mutex_enter(&di_lock); 576 di_states[m] = NULL; 577 dcmn_err((CE_CONT, "di_close: thread = %p, assigned minor = %d\n", 578 (void *)curthread, m + DI_NODE_SPECIES)); 579 mutex_exit(&di_lock); 580 581 return (0); 582 } 583 584 585 /*ARGSUSED*/ 586 static int 587 di_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp, int *rvalp) 588 { 589 int rv, error; 590 di_off_t off; 591 struct di_all *all; 592 struct di_state *st; 593 int m = (int)getminor(dev) - DI_NODE_SPECIES; 594 major_t i; 595 char *drv_name; 596 size_t map_size, size; 597 struct di_mem *dcp; 598 int ndi_flags; 599 600 if (m < 0 || m >= di_max_opens) { 601 return (ENXIO); 602 } 603 604 st = di_states[m]; 605 ASSERT(st != NULL); 606 607 dcmn_err2((CE_CONT, "di_ioctl: mode = %x, cmd = %x\n", mode, cmd)); 608 609 switch (cmd) { 610 case DINFOIDENT: 611 /* 612 * This is called from di_init to verify that the driver 613 * opened is indeed devinfo. The purpose is to guard against 614 * sending ioctl to an unknown driver in case of an 615 * unresolved major number conflict during bfu. 616 */ 617 *rvalp = DI_MAGIC; 618 return (0); 619 620 case DINFOLODRV: 621 /* 622 * Hold an installed driver and return the result 623 */ 624 if (DI_UNPRIVILEGED_NODE(m)) { 625 /* 626 * Only the fully enabled instances may issue 627 * DINFOLDDRV. 628 */ 629 return (EACCES); 630 } 631 632 drv_name = kmem_alloc(MAXNAMELEN, KM_SLEEP); 633 if (ddi_copyin((void *)arg, drv_name, MAXNAMELEN, mode) != 0) { 634 kmem_free(drv_name, MAXNAMELEN); 635 return (EFAULT); 636 } 637 638 /* 639 * Some 3rd party driver's _init() walks the device tree, 640 * so we load the driver module before configuring driver. 641 */ 642 i = ddi_name_to_major(drv_name); 643 if (ddi_hold_driver(i) == NULL) { 644 kmem_free(drv_name, MAXNAMELEN); 645 return (ENXIO); 646 } 647 648 ndi_flags = NDI_DEVI_PERSIST | NDI_CONFIG | NDI_NO_EVENT; 649 650 /* 651 * i_ddi_load_drvconf() below will trigger a reprobe 652 * via reset_nexus_flags(). NDI_DRV_CONF_REPROBE isn't 653 * needed here. 654 */ 655 modunload_disable(); 656 (void) i_ddi_load_drvconf(i); 657 (void) ndi_devi_config_driver(ddi_root_node(), ndi_flags, i); 658 kmem_free(drv_name, MAXNAMELEN); 659 ddi_rele_driver(i); 660 rv = i_ddi_devs_attached(i); 661 modunload_enable(); 662 663 i_ddi_di_cache_invalidate(); 664 665 return ((rv == DDI_SUCCESS)? 0 : ENXIO); 666 667 case DINFOUSRLD: 668 /* 669 * The case for copying snapshot to userland 670 */ 671 if (di_setstate(st, IOC_COPY) == -1) 672 return (EBUSY); 673 674 map_size = DI_ALL_PTR(st)->map_size; 675 if (map_size == 0) { 676 (void) di_setstate(st, IOC_DONE); 677 return (EFAULT); 678 } 679 680 /* 681 * copyout the snapshot 682 */ 683 map_size = (map_size + PAGEOFFSET) & PAGEMASK; 684 685 /* 686 * Return the map size, so caller may do a sanity 687 * check against the return value of snapshot ioctl() 688 */ 689 *rvalp = (int)map_size; 690 691 /* 692 * Copy one chunk at a time 693 */ 694 off = 0; 695 dcp = st->memlist; 696 while (map_size) { 697 size = dcp->buf_size; 698 if (map_size <= size) { 699 size = map_size; 700 } 701 702 if (ddi_copyout(di_mem_addr(st, off), 703 (void *)(arg + off), size, mode) != 0) { 704 (void) di_setstate(st, IOC_DONE); 705 return (EFAULT); 706 } 707 708 map_size -= size; 709 off += size; 710 dcp = dcp->next; 711 } 712 713 di_freemem(st); 714 (void) di_setstate(st, IOC_IDLE); 715 return (0); 716 717 default: 718 if ((cmd & ~DIIOC_MASK) != DIIOC) { 719 /* 720 * Invalid ioctl command 721 */ 722 return (ENOTTY); 723 } 724 /* 725 * take a snapshot 726 */ 727 st->command = cmd & DIIOC_MASK; 728 /*FALLTHROUGH*/ 729 } 730 731 /* 732 * Obtain enough memory to hold header + rootpath. We prevent kernel 733 * memory exhaustion by freeing any previously allocated snapshot and 734 * refusing the operation; otherwise we would be allowing ioctl(), 735 * ioctl(), ioctl(), ..., panic. 736 */ 737 if (di_setstate(st, IOC_SNAP) == -1) 738 return (EBUSY); 739 740 /* 741 * Initial memlist always holds di_all and the root_path - and 742 * is at least a page and size. 743 */ 744 size = sizeof (struct di_all) + 745 sizeof (((struct dinfo_io *)(NULL))->root_path); 746 if (size < PAGESIZE) 747 size = PAGESIZE; 748 off = di_checkmem(st, 0, size); 749 all = DI_ALL_PTR(st); 750 off += sizeof (struct di_all); /* real length of di_all */ 751 752 all->devcnt = devcnt; 753 all->command = st->command; 754 all->version = DI_SNAPSHOT_VERSION; 755 all->top_vhci_devinfo = 0; /* filled by build_vhci_list. */ 756 757 /* 758 * Note the endianness in case we need to transport snapshot 759 * over the network. 760 */ 761 #if defined(_LITTLE_ENDIAN) 762 all->endianness = DI_LITTLE_ENDIAN; 763 #else 764 all->endianness = DI_BIG_ENDIAN; 765 #endif 766 767 /* Copyin ioctl args, store in the snapshot. */ 768 if (copyinstr((void *)arg, all->req_path, 769 sizeof (((struct dinfo_io *)(NULL))->root_path), &size) != 0) { 770 di_freemem(st); 771 (void) di_setstate(st, IOC_IDLE); 772 return (EFAULT); 773 } 774 (void) strcpy(all->root_path, all->req_path); 775 off += size; /* real length of root_path */ 776 777 if ((st->command & DINFOCLEANUP) && !DEVICES_FILES_CLEANABLE(st)) { 778 di_freemem(st); 779 (void) di_setstate(st, IOC_IDLE); 780 return (EINVAL); 781 } 782 783 error = 0; 784 if ((st->command & DINFOCACHE) && !cache_args_valid(st, &error)) { 785 di_freemem(st); 786 (void) di_setstate(st, IOC_IDLE); 787 return (error); 788 } 789 790 /* 791 * Only the fully enabled version may force load drivers or read 792 * the parent private data from a driver. 793 */ 794 if ((st->command & (DINFOPRIVDATA | DINFOFORCE)) != 0 && 795 DI_UNPRIVILEGED_NODE(m)) { 796 di_freemem(st); 797 (void) di_setstate(st, IOC_IDLE); 798 return (EACCES); 799 } 800 801 /* Do we need private data? */ 802 if (st->command & DINFOPRIVDATA) { 803 arg += sizeof (((struct dinfo_io *)(NULL))->root_path); 804 805 #ifdef _MULTI_DATAMODEL 806 switch (ddi_model_convert_from(mode & FMODELS)) { 807 case DDI_MODEL_ILP32: { 808 /* 809 * Cannot copy private data from 64-bit kernel 810 * to 32-bit app 811 */ 812 di_freemem(st); 813 (void) di_setstate(st, IOC_IDLE); 814 return (EINVAL); 815 } 816 case DDI_MODEL_NONE: 817 if ((off = di_copyformat(off, st, arg, mode)) == 0) { 818 di_freemem(st); 819 (void) di_setstate(st, IOC_IDLE); 820 return (EFAULT); 821 } 822 break; 823 } 824 #else /* !_MULTI_DATAMODEL */ 825 if ((off = di_copyformat(off, st, arg, mode)) == 0) { 826 di_freemem(st); 827 (void) di_setstate(st, IOC_IDLE); 828 return (EFAULT); 829 } 830 #endif /* _MULTI_DATAMODEL */ 831 } 832 833 all->top_devinfo = DI_ALIGN(off); 834 835 /* 836 * For cache lookups we reallocate memory from scratch, 837 * so the value of "all" is no longer valid. 838 */ 839 all = NULL; 840 841 if (st->command & DINFOCACHE) { 842 *rvalp = di_cache_lookup(st); 843 } else if (snapshot_is_cacheable(st)) { 844 DI_CACHE_LOCK(di_cache); 845 *rvalp = di_cache_update(st); 846 DI_CACHE_UNLOCK(di_cache); 847 } else 848 *rvalp = di_snapshot_and_clean(st); 849 850 if (*rvalp) { 851 DI_ALL_PTR(st)->map_size = *rvalp; 852 (void) di_setstate(st, IOC_DONE); 853 } else { 854 di_freemem(st); 855 (void) di_setstate(st, IOC_IDLE); 856 } 857 858 return (0); 859 } 860 861 /* 862 * Get a chunk of memory >= size, for the snapshot 863 */ 864 static void 865 di_allocmem(struct di_state *st, size_t size) 866 { 867 struct di_mem *mem = kmem_zalloc(sizeof (struct di_mem), KM_SLEEP); 868 869 /* 870 * Round up size to nearest power of 2. If it is less 871 * than st->mem_size, set it to st->mem_size (i.e., 872 * the mem_size is doubled every time) to reduce the 873 * number of memory allocations. 874 */ 875 size_t tmp = 1; 876 while (tmp < size) { 877 tmp <<= 1; 878 } 879 size = (tmp > st->mem_size) ? tmp : st->mem_size; 880 881 mem->buf = ddi_umem_alloc(size, DDI_UMEM_SLEEP, &mem->cook); 882 mem->buf_size = size; 883 884 dcmn_err2((CE_CONT, "di_allocmem: mem_size=%x\n", st->mem_size)); 885 886 if (st->mem_size == 0) { /* first chunk */ 887 st->memlist = mem; 888 } else { 889 /* 890 * locate end of linked list and add a chunk at the end 891 */ 892 struct di_mem *dcp = st->memlist; 893 while (dcp->next != NULL) { 894 dcp = dcp->next; 895 } 896 897 dcp->next = mem; 898 } 899 900 st->mem_size += size; 901 } 902 903 /* 904 * Copy upto bufsiz bytes of the memlist to buf 905 */ 906 static void 907 di_copymem(struct di_state *st, caddr_t buf, size_t bufsiz) 908 { 909 struct di_mem *dcp; 910 size_t copysz; 911 912 if (st->mem_size == 0) { 913 ASSERT(st->memlist == NULL); 914 return; 915 } 916 917 copysz = 0; 918 for (dcp = st->memlist; dcp; dcp = dcp->next) { 919 920 ASSERT(bufsiz > 0); 921 922 if (bufsiz <= dcp->buf_size) 923 copysz = bufsiz; 924 else 925 copysz = dcp->buf_size; 926 927 bcopy(dcp->buf, buf, copysz); 928 929 buf += copysz; 930 bufsiz -= copysz; 931 932 if (bufsiz == 0) 933 break; 934 } 935 } 936 937 /* 938 * Free all memory for the snapshot 939 */ 940 static void 941 di_freemem(struct di_state *st) 942 { 943 struct di_mem *dcp, *tmp; 944 945 dcmn_err2((CE_CONT, "di_freemem\n")); 946 947 if (st->mem_size) { 948 dcp = st->memlist; 949 while (dcp) { /* traverse the linked list */ 950 tmp = dcp; 951 dcp = dcp->next; 952 ddi_umem_free(tmp->cook); 953 kmem_free(tmp, sizeof (struct di_mem)); 954 } 955 st->mem_size = 0; 956 st->memlist = NULL; 957 } 958 959 ASSERT(st->mem_size == 0); 960 ASSERT(st->memlist == NULL); 961 } 962 963 /* 964 * Copies cached data to the di_state structure. 965 * Returns: 966 * - size of data copied, on SUCCESS 967 * - 0 on failure 968 */ 969 static int 970 di_cache2mem(struct di_cache *cache, struct di_state *st) 971 { 972 caddr_t pa; 973 974 ASSERT(st->mem_size == 0); 975 ASSERT(st->memlist == NULL); 976 ASSERT(!servicing_interrupt()); 977 ASSERT(DI_CACHE_LOCKED(*cache)); 978 979 if (cache->cache_size == 0) { 980 ASSERT(cache->cache_data == NULL); 981 CACHE_DEBUG((DI_ERR, "Empty cache. Skipping copy")); 982 return (0); 983 } 984 985 ASSERT(cache->cache_data); 986 987 di_allocmem(st, cache->cache_size); 988 989 pa = di_mem_addr(st, 0); 990 991 ASSERT(pa); 992 993 /* 994 * Verify that di_allocmem() allocates contiguous memory, 995 * so that it is safe to do straight bcopy() 996 */ 997 ASSERT(st->memlist != NULL); 998 ASSERT(st->memlist->next == NULL); 999 bcopy(cache->cache_data, pa, cache->cache_size); 1000 1001 return (cache->cache_size); 1002 } 1003 1004 /* 1005 * Copies a snapshot from di_state to the cache 1006 * Returns: 1007 * - 0 on failure 1008 * - size of copied data on success 1009 */ 1010 static size_t 1011 di_mem2cache(struct di_state *st, struct di_cache *cache) 1012 { 1013 size_t map_size; 1014 1015 ASSERT(cache->cache_size == 0); 1016 ASSERT(cache->cache_data == NULL); 1017 ASSERT(!servicing_interrupt()); 1018 ASSERT(DI_CACHE_LOCKED(*cache)); 1019 1020 if (st->mem_size == 0) { 1021 ASSERT(st->memlist == NULL); 1022 CACHE_DEBUG((DI_ERR, "Empty memlist. Skipping copy")); 1023 return (0); 1024 } 1025 1026 ASSERT(st->memlist); 1027 1028 /* 1029 * The size of the memory list may be much larger than the 1030 * size of valid data (map_size). Cache only the valid data 1031 */ 1032 map_size = DI_ALL_PTR(st)->map_size; 1033 if (map_size == 0 || map_size < sizeof (struct di_all) || 1034 map_size > st->mem_size) { 1035 CACHE_DEBUG((DI_ERR, "cannot cache: bad size: 0x%x", map_size)); 1036 return (0); 1037 } 1038 1039 cache->cache_data = kmem_alloc(map_size, KM_SLEEP); 1040 cache->cache_size = map_size; 1041 di_copymem(st, cache->cache_data, cache->cache_size); 1042 1043 return (map_size); 1044 } 1045 1046 /* 1047 * Make sure there is at least "size" bytes memory left before 1048 * going on. Otherwise, start on a new chunk. 1049 */ 1050 static di_off_t 1051 di_checkmem(struct di_state *st, di_off_t off, size_t size) 1052 { 1053 dcmn_err3((CE_CONT, "di_checkmem: off=%x size=%x\n", 1054 off, (int)size)); 1055 1056 /* 1057 * di_checkmem() shouldn't be called with a size of zero. 1058 * But in case it is, we want to make sure we return a valid 1059 * offset within the memlist and not an offset that points us 1060 * at the end of the memlist. 1061 */ 1062 if (size == 0) { 1063 dcmn_err((CE_WARN, "di_checkmem: invalid zero size used")); 1064 size = 1; 1065 } 1066 1067 off = DI_ALIGN(off); 1068 if ((st->mem_size - off) < size) { 1069 off = st->mem_size; 1070 di_allocmem(st, size); 1071 } 1072 1073 /* verify that return value is aligned */ 1074 ASSERT(off == DI_ALIGN(off)); 1075 return (off); 1076 } 1077 1078 /* 1079 * Copy the private data format from ioctl arg. 1080 * On success, the ending offset is returned. On error 0 is returned. 1081 */ 1082 static di_off_t 1083 di_copyformat(di_off_t off, struct di_state *st, intptr_t arg, int mode) 1084 { 1085 di_off_t size; 1086 struct di_priv_data *priv; 1087 struct di_all *all = DI_ALL_PTR(st); 1088 1089 dcmn_err2((CE_CONT, "di_copyformat: off=%x, arg=%p mode=%x\n", 1090 off, (void *)arg, mode)); 1091 1092 /* 1093 * Copyin data and check version. 1094 * We only handle private data version 0. 1095 */ 1096 priv = kmem_alloc(sizeof (struct di_priv_data), KM_SLEEP); 1097 if ((ddi_copyin((void *)arg, priv, sizeof (struct di_priv_data), 1098 mode) != 0) || (priv->version != DI_PRIVDATA_VERSION_0)) { 1099 kmem_free(priv, sizeof (struct di_priv_data)); 1100 return (0); 1101 } 1102 1103 /* 1104 * Save di_priv_data copied from userland in snapshot. 1105 */ 1106 all->pd_version = priv->version; 1107 all->n_ppdata = priv->n_parent; 1108 all->n_dpdata = priv->n_driver; 1109 1110 /* 1111 * copyin private data format, modify offset accordingly 1112 */ 1113 if (all->n_ppdata) { /* parent private data format */ 1114 /* 1115 * check memory 1116 */ 1117 size = all->n_ppdata * sizeof (struct di_priv_format); 1118 all->ppdata_format = off = di_checkmem(st, off, size); 1119 if (ddi_copyin(priv->parent, di_mem_addr(st, off), size, 1120 mode) != 0) { 1121 kmem_free(priv, sizeof (struct di_priv_data)); 1122 return (0); 1123 } 1124 1125 off += size; 1126 } 1127 1128 if (all->n_dpdata) { /* driver private data format */ 1129 /* 1130 * check memory 1131 */ 1132 size = all->n_dpdata * sizeof (struct di_priv_format); 1133 all->dpdata_format = off = di_checkmem(st, off, size); 1134 if (ddi_copyin(priv->driver, di_mem_addr(st, off), size, 1135 mode) != 0) { 1136 kmem_free(priv, sizeof (struct di_priv_data)); 1137 return (0); 1138 } 1139 1140 off += size; 1141 } 1142 1143 kmem_free(priv, sizeof (struct di_priv_data)); 1144 return (off); 1145 } 1146 1147 /* 1148 * Return the real address based on the offset (off) within snapshot 1149 */ 1150 static void * 1151 di_mem_addr(struct di_state *st, di_off_t off) 1152 { 1153 struct di_mem *dcp = st->memlist; 1154 1155 dcmn_err3((CE_CONT, "di_mem_addr: dcp=%p off=%x\n", 1156 (void *)dcp, off)); 1157 1158 ASSERT(off < st->mem_size); 1159 1160 while (off >= dcp->buf_size) { 1161 off -= dcp->buf_size; 1162 dcp = dcp->next; 1163 } 1164 1165 dcmn_err3((CE_CONT, "di_mem_addr: new off=%x, return = %p\n", 1166 off, (void *)(dcp->buf + off))); 1167 1168 return (dcp->buf + off); 1169 } 1170 1171 /* 1172 * Ideally we would use the whole key to derive the hash 1173 * value. However, the probability that two keys will 1174 * have the same dip (or pip) is very low, so 1175 * hashing by dip (or pip) pointer should suffice. 1176 */ 1177 static uint_t 1178 di_hash_byptr(void *arg, mod_hash_key_t key) 1179 { 1180 struct di_key *dik = key; 1181 size_t rshift; 1182 void *ptr; 1183 1184 ASSERT(arg == NULL); 1185 1186 switch (dik->k_type) { 1187 case DI_DKEY: 1188 ptr = dik->k_u.dkey.dk_dip; 1189 rshift = highbit(sizeof (struct dev_info)); 1190 break; 1191 case DI_PKEY: 1192 ptr = dik->k_u.pkey.pk_pip; 1193 rshift = highbit(sizeof (struct mdi_pathinfo)); 1194 break; 1195 default: 1196 panic("devinfo: unknown key type"); 1197 /*NOTREACHED*/ 1198 } 1199 return (mod_hash_byptr((void *)rshift, ptr)); 1200 } 1201 1202 static void 1203 di_key_dtor(mod_hash_key_t key) 1204 { 1205 char *path_addr; 1206 struct di_key *dik = key; 1207 1208 switch (dik->k_type) { 1209 case DI_DKEY: 1210 break; 1211 case DI_PKEY: 1212 path_addr = dik->k_u.pkey.pk_path_addr; 1213 if (path_addr) 1214 kmem_free(path_addr, strlen(path_addr) + 1); 1215 break; 1216 default: 1217 panic("devinfo: unknown key type"); 1218 /*NOTREACHED*/ 1219 } 1220 1221 kmem_free(dik, sizeof (struct di_key)); 1222 } 1223 1224 static int 1225 di_dkey_cmp(struct di_dkey *dk1, struct di_dkey *dk2) 1226 { 1227 if (dk1->dk_dip != dk2->dk_dip) 1228 return (dk1->dk_dip > dk2->dk_dip ? 1 : -1); 1229 1230 if (dk1->dk_major != DDI_MAJOR_T_NONE && 1231 dk2->dk_major != DDI_MAJOR_T_NONE) { 1232 if (dk1->dk_major != dk2->dk_major) 1233 return (dk1->dk_major > dk2->dk_major ? 1 : -1); 1234 1235 if (dk1->dk_inst != dk2->dk_inst) 1236 return (dk1->dk_inst > dk2->dk_inst ? 1 : -1); 1237 } 1238 1239 if (dk1->dk_nodeid != dk2->dk_nodeid) 1240 return (dk1->dk_nodeid > dk2->dk_nodeid ? 1 : -1); 1241 1242 return (0); 1243 } 1244 1245 static int 1246 di_pkey_cmp(struct di_pkey *pk1, struct di_pkey *pk2) 1247 { 1248 char *p1, *p2; 1249 int rv; 1250 1251 if (pk1->pk_pip != pk2->pk_pip) 1252 return (pk1->pk_pip > pk2->pk_pip ? 1 : -1); 1253 1254 p1 = pk1->pk_path_addr; 1255 p2 = pk2->pk_path_addr; 1256 1257 p1 = p1 ? p1 : ""; 1258 p2 = p2 ? p2 : ""; 1259 1260 rv = strcmp(p1, p2); 1261 if (rv) 1262 return (rv > 0 ? 1 : -1); 1263 1264 if (pk1->pk_client != pk2->pk_client) 1265 return (pk1->pk_client > pk2->pk_client ? 1 : -1); 1266 1267 if (pk1->pk_phci != pk2->pk_phci) 1268 return (pk1->pk_phci > pk2->pk_phci ? 1 : -1); 1269 1270 return (0); 1271 } 1272 1273 static int 1274 di_key_cmp(mod_hash_key_t key1, mod_hash_key_t key2) 1275 { 1276 struct di_key *dik1, *dik2; 1277 1278 dik1 = key1; 1279 dik2 = key2; 1280 1281 if (dik1->k_type != dik2->k_type) { 1282 panic("devinfo: mismatched keys"); 1283 /*NOTREACHED*/ 1284 } 1285 1286 switch (dik1->k_type) { 1287 case DI_DKEY: 1288 return (di_dkey_cmp(&(dik1->k_u.dkey), &(dik2->k_u.dkey))); 1289 case DI_PKEY: 1290 return (di_pkey_cmp(&(dik1->k_u.pkey), &(dik2->k_u.pkey))); 1291 default: 1292 panic("devinfo: unknown key type"); 1293 /*NOTREACHED*/ 1294 } 1295 } 1296 1297 static void 1298 di_copy_aliases(struct di_state *st, alias_pair_t *apair, di_off_t *offp) 1299 { 1300 di_off_t off; 1301 struct di_all *all = DI_ALL_PTR(st); 1302 struct di_alias *di_alias; 1303 di_off_t curroff; 1304 dev_info_t *currdip; 1305 size_t size; 1306 1307 currdip = NULL; 1308 if (resolve_pathname(apair->pair_alias, &currdip, NULL, NULL) != 0) { 1309 return; 1310 } 1311 1312 if (di_dip_find(st, currdip, &curroff) != 0) { 1313 ndi_rele_devi(currdip); 1314 return; 1315 } 1316 ndi_rele_devi(currdip); 1317 1318 off = *offp; 1319 size = sizeof (struct di_alias); 1320 size += strlen(apair->pair_alias) + 1; 1321 off = di_checkmem(st, off, size); 1322 di_alias = DI_ALIAS(di_mem_addr(st, off)); 1323 1324 di_alias->self = off; 1325 di_alias->next = all->aliases; 1326 all->aliases = off; 1327 (void) strcpy(di_alias->alias, apair->pair_alias); 1328 di_alias->curroff = curroff; 1329 1330 off += size; 1331 1332 *offp = off; 1333 } 1334 1335 /* 1336 * This is the main function that takes a snapshot 1337 */ 1338 static di_off_t 1339 di_snapshot(struct di_state *st) 1340 { 1341 di_off_t off; 1342 struct di_all *all; 1343 dev_info_t *rootnode; 1344 char buf[80]; 1345 int plen; 1346 char *path; 1347 vnode_t *vp; 1348 int i; 1349 1350 all = DI_ALL_PTR(st); 1351 dcmn_err((CE_CONT, "Taking a snapshot of devinfo tree...\n")); 1352 1353 /* 1354 * Translate requested root path if an alias and snap-root != "/" 1355 */ 1356 if (ddi_aliases_present == B_TRUE && strcmp(all->root_path, "/") != 0) { 1357 /* If there is no redirected alias, use root_path as is */ 1358 rootnode = ddi_alias_redirect(all->root_path); 1359 if (rootnode) { 1360 (void) ddi_pathname(rootnode, all->root_path); 1361 goto got_root; 1362 } 1363 } 1364 1365 /* 1366 * Verify path before entrusting it to e_ddi_hold_devi_by_path because 1367 * some platforms have OBP bugs where executing the NDI_PROMNAME code 1368 * path against an invalid path results in panic. The lookupnameat 1369 * is done relative to rootdir without a leading '/' on "devices/" 1370 * to force the lookup to occur in the global zone. 1371 */ 1372 plen = strlen("devices/") + strlen(all->root_path) + 1; 1373 path = kmem_alloc(plen, KM_SLEEP); 1374 (void) snprintf(path, plen, "devices/%s", all->root_path); 1375 if (lookupnameat(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &vp, rootdir)) { 1376 dcmn_err((CE_CONT, "Devinfo node %s not found\n", 1377 all->root_path)); 1378 kmem_free(path, plen); 1379 return (0); 1380 } 1381 kmem_free(path, plen); 1382 VN_RELE(vp); 1383 1384 /* 1385 * Hold the devinfo node referred by the path. 1386 */ 1387 rootnode = e_ddi_hold_devi_by_path(all->root_path, 0); 1388 if (rootnode == NULL) { 1389 dcmn_err((CE_CONT, "Devinfo node %s not found\n", 1390 all->root_path)); 1391 return (0); 1392 } 1393 1394 got_root: 1395 (void) snprintf(buf, sizeof (buf), 1396 "devinfo registered dips (statep=%p)", (void *)st); 1397 1398 st->reg_dip_hash = mod_hash_create_extended(buf, 64, 1399 di_key_dtor, mod_hash_null_valdtor, di_hash_byptr, 1400 NULL, di_key_cmp, KM_SLEEP); 1401 1402 1403 (void) snprintf(buf, sizeof (buf), 1404 "devinfo registered pips (statep=%p)", (void *)st); 1405 1406 st->reg_pip_hash = mod_hash_create_extended(buf, 64, 1407 di_key_dtor, mod_hash_null_valdtor, di_hash_byptr, 1408 NULL, di_key_cmp, KM_SLEEP); 1409 1410 if (DINFOHP & st->command) { 1411 list_create(&st->hp_list, sizeof (i_hp_t), 1412 offsetof(i_hp_t, hp_link)); 1413 } 1414 1415 /* 1416 * copy the device tree 1417 */ 1418 off = di_copytree(DEVI(rootnode), &all->top_devinfo, st); 1419 1420 if (DINFOPATH & st->command) { 1421 mdi_walk_vhcis(build_vhci_list, st); 1422 } 1423 1424 if (DINFOHP & st->command) { 1425 di_hotplug_children(st); 1426 } 1427 1428 ddi_release_devi(rootnode); 1429 1430 /* 1431 * copy the devnames array 1432 */ 1433 all->devnames = off; 1434 off = di_copydevnm(&all->devnames, st); 1435 1436 1437 /* initialize the hash tables */ 1438 st->lnode_count = 0; 1439 st->link_count = 0; 1440 1441 if (DINFOLYR & st->command) { 1442 off = di_getlink_data(off, st); 1443 } 1444 1445 all->aliases = 0; 1446 if (ddi_aliases_present == B_FALSE) 1447 goto done; 1448 1449 for (i = 0; i < ddi_aliases.dali_num_pairs; i++) { 1450 di_copy_aliases(st, &(ddi_aliases.dali_alias_pairs[i]), &off); 1451 } 1452 1453 done: 1454 /* 1455 * Free up hash tables 1456 */ 1457 mod_hash_destroy_hash(st->reg_dip_hash); 1458 mod_hash_destroy_hash(st->reg_pip_hash); 1459 1460 /* 1461 * Record the timestamp now that we are done with snapshot. 1462 * 1463 * We compute the checksum later and then only if we cache 1464 * the snapshot, since checksumming adds some overhead. 1465 * The checksum is checked later if we read the cache file. 1466 * from disk. 1467 * 1468 * Set checksum field to 0 as CRC is calculated with that 1469 * field set to 0. 1470 */ 1471 all->snapshot_time = ddi_get_time(); 1472 all->cache_checksum = 0; 1473 1474 ASSERT(all->snapshot_time != 0); 1475 1476 return (off); 1477 } 1478 1479 /* 1480 * Take a snapshot and clean /etc/devices files if DINFOCLEANUP is set 1481 */ 1482 static di_off_t 1483 di_snapshot_and_clean(struct di_state *st) 1484 { 1485 di_off_t off; 1486 1487 modunload_disable(); 1488 off = di_snapshot(st); 1489 if (off != 0 && (st->command & DINFOCLEANUP)) { 1490 ASSERT(DEVICES_FILES_CLEANABLE(st)); 1491 /* 1492 * Cleanup /etc/devices files: 1493 * In order to accurately account for the system configuration 1494 * in /etc/devices files, the appropriate drivers must be 1495 * fully configured before the cleanup starts. 1496 * So enable modunload only after the cleanup. 1497 */ 1498 i_ddi_clean_devices_files(); 1499 /* 1500 * Remove backing store nodes for unused devices, 1501 * which retain past permissions customizations 1502 * and may be undesired for newly configured devices. 1503 */ 1504 dev_devices_cleanup(); 1505 } 1506 modunload_enable(); 1507 1508 return (off); 1509 } 1510 1511 /* 1512 * construct vhci linkage in the snapshot. 1513 */ 1514 static int 1515 build_vhci_list(dev_info_t *vh_devinfo, void *arg) 1516 { 1517 struct di_all *all; 1518 struct di_node *me; 1519 struct di_state *st; 1520 di_off_t off; 1521 phci_walk_arg_t pwa; 1522 1523 dcmn_err3((CE_CONT, "build_vhci list\n")); 1524 1525 dcmn_err3((CE_CONT, "vhci node %s%d\n", 1526 ddi_driver_name(vh_devinfo), ddi_get_instance(vh_devinfo))); 1527 1528 st = (struct di_state *)arg; 1529 if (di_dip_find(st, vh_devinfo, &off) != 0) { 1530 dcmn_err((CE_WARN, "di_dip_find error for the given node\n")); 1531 return (DDI_WALK_TERMINATE); 1532 } 1533 1534 dcmn_err3((CE_CONT, "st->mem_size: %d vh_devinfo off: 0x%x\n", 1535 st->mem_size, off)); 1536 1537 all = DI_ALL_PTR(st); 1538 if (all->top_vhci_devinfo == 0) { 1539 all->top_vhci_devinfo = off; 1540 } else { 1541 me = DI_NODE(di_mem_addr(st, all->top_vhci_devinfo)); 1542 1543 while (me->next_vhci != 0) { 1544 me = DI_NODE(di_mem_addr(st, me->next_vhci)); 1545 } 1546 1547 me->next_vhci = off; 1548 } 1549 1550 pwa.off = off; 1551 pwa.st = st; 1552 mdi_vhci_walk_phcis(vh_devinfo, build_phci_list, &pwa); 1553 1554 return (DDI_WALK_CONTINUE); 1555 } 1556 1557 /* 1558 * construct phci linkage for the given vhci in the snapshot. 1559 */ 1560 static int 1561 build_phci_list(dev_info_t *ph_devinfo, void *arg) 1562 { 1563 struct di_node *vh_di_node; 1564 struct di_node *me; 1565 phci_walk_arg_t *pwa; 1566 di_off_t off; 1567 1568 pwa = (phci_walk_arg_t *)arg; 1569 1570 dcmn_err3((CE_CONT, "build_phci list for vhci at offset: 0x%x\n", 1571 pwa->off)); 1572 1573 vh_di_node = DI_NODE(di_mem_addr(pwa->st, pwa->off)); 1574 if (di_dip_find(pwa->st, ph_devinfo, &off) != 0) { 1575 dcmn_err((CE_WARN, "di_dip_find error for the given node\n")); 1576 return (DDI_WALK_TERMINATE); 1577 } 1578 1579 dcmn_err3((CE_CONT, "phci node %s%d, at offset 0x%x\n", 1580 ddi_driver_name(ph_devinfo), ddi_get_instance(ph_devinfo), off)); 1581 1582 if (vh_di_node->top_phci == 0) { 1583 vh_di_node->top_phci = off; 1584 return (DDI_WALK_CONTINUE); 1585 } 1586 1587 me = DI_NODE(di_mem_addr(pwa->st, vh_di_node->top_phci)); 1588 1589 while (me->next_phci != 0) { 1590 me = DI_NODE(di_mem_addr(pwa->st, me->next_phci)); 1591 } 1592 me->next_phci = off; 1593 1594 return (DDI_WALK_CONTINUE); 1595 } 1596 1597 /* 1598 * Assumes all devinfo nodes in device tree have been snapshotted 1599 */ 1600 static void 1601 snap_driver_list(struct di_state *st, struct devnames *dnp, di_off_t *off_p) 1602 { 1603 struct dev_info *node; 1604 struct di_node *me; 1605 di_off_t off; 1606 1607 ASSERT(mutex_owned(&dnp->dn_lock)); 1608 1609 node = DEVI(dnp->dn_head); 1610 for (; node; node = node->devi_next) { 1611 if (di_dip_find(st, (dev_info_t *)node, &off) != 0) 1612 continue; 1613 1614 ASSERT(off > 0); 1615 me = DI_NODE(di_mem_addr(st, off)); 1616 ASSERT(me->next == 0 || me->next == -1); 1617 /* 1618 * Only nodes which were BOUND when they were 1619 * snapshotted will be added to per-driver list. 1620 */ 1621 if (me->next != -1) 1622 continue; 1623 1624 *off_p = off; 1625 off_p = &me->next; 1626 } 1627 1628 *off_p = 0; 1629 } 1630 1631 /* 1632 * Copy the devnames array, so we have a list of drivers in the snapshot. 1633 * Also makes it possible to locate the per-driver devinfo nodes. 1634 */ 1635 static di_off_t 1636 di_copydevnm(di_off_t *off_p, struct di_state *st) 1637 { 1638 int i; 1639 di_off_t off; 1640 size_t size; 1641 struct di_devnm *dnp; 1642 1643 dcmn_err2((CE_CONT, "di_copydevnm: *off_p = %p\n", (void *)off_p)); 1644 1645 /* 1646 * make sure there is some allocated memory 1647 */ 1648 size = devcnt * sizeof (struct di_devnm); 1649 *off_p = off = di_checkmem(st, *off_p, size); 1650 dnp = DI_DEVNM(di_mem_addr(st, off)); 1651 off += size; 1652 1653 dcmn_err((CE_CONT, "Start copying devnamesp[%d] at offset 0x%x\n", 1654 devcnt, off)); 1655 1656 for (i = 0; i < devcnt; i++) { 1657 if (devnamesp[i].dn_name == NULL) { 1658 continue; 1659 } 1660 1661 /* 1662 * dn_name is not freed during driver unload or removal. 1663 * 1664 * There is a race condition when make_devname() changes 1665 * dn_name during our strcpy. This should be rare since 1666 * only add_drv does this. At any rate, we never had a 1667 * problem with ddi_name_to_major(), which should have 1668 * the same problem. 1669 */ 1670 dcmn_err2((CE_CONT, "di_copydevnm: %s%d, off=%x\n", 1671 devnamesp[i].dn_name, devnamesp[i].dn_instance, off)); 1672 1673 size = strlen(devnamesp[i].dn_name) + 1; 1674 dnp[i].name = off = di_checkmem(st, off, size); 1675 (void) strcpy((char *)di_mem_addr(st, off), 1676 devnamesp[i].dn_name); 1677 off += size; 1678 1679 mutex_enter(&devnamesp[i].dn_lock); 1680 1681 /* 1682 * Snapshot per-driver node list 1683 */ 1684 snap_driver_list(st, &devnamesp[i], &dnp[i].head); 1685 1686 /* 1687 * This is not used by libdevinfo, leave it for now 1688 */ 1689 dnp[i].flags = devnamesp[i].dn_flags; 1690 dnp[i].instance = devnamesp[i].dn_instance; 1691 1692 /* 1693 * get global properties 1694 */ 1695 if ((DINFOPROP & st->command) && 1696 devnamesp[i].dn_global_prop_ptr) { 1697 dnp[i].global_prop = off; 1698 off = di_getprop(DI_PROP_GLB_LIST, 1699 &devnamesp[i].dn_global_prop_ptr->prop_list, 1700 &dnp[i].global_prop, st, NULL); 1701 } 1702 1703 /* 1704 * Bit encode driver ops: & bus_ops, cb_ops, & cb_ops->cb_str 1705 */ 1706 if (CB_DRV_INSTALLED(devopsp[i])) { 1707 if (devopsp[i]->devo_cb_ops) { 1708 dnp[i].ops |= DI_CB_OPS; 1709 if (devopsp[i]->devo_cb_ops->cb_str) 1710 dnp[i].ops |= DI_STREAM_OPS; 1711 } 1712 if (NEXUS_DRV(devopsp[i])) { 1713 dnp[i].ops |= DI_BUS_OPS; 1714 } 1715 } 1716 1717 mutex_exit(&devnamesp[i].dn_lock); 1718 } 1719 1720 dcmn_err((CE_CONT, "End copying devnamesp at offset 0x%x\n", off)); 1721 1722 return (off); 1723 } 1724 1725 /* 1726 * Copy the kernel devinfo tree. The tree and the devnames array forms 1727 * the entire snapshot (see also di_copydevnm). 1728 */ 1729 static di_off_t 1730 di_copytree(struct dev_info *root, di_off_t *off_p, struct di_state *st) 1731 { 1732 di_off_t off; 1733 struct dev_info *node; 1734 struct di_stack *dsp = kmem_zalloc(sizeof (struct di_stack), KM_SLEEP); 1735 1736 dcmn_err((CE_CONT, "di_copytree: root = %p, *off_p = %x\n", 1737 (void *)root, *off_p)); 1738 1739 /* force attach drivers */ 1740 if (i_ddi_devi_attached((dev_info_t *)root) && 1741 (st->command & DINFOSUBTREE) && (st->command & DINFOFORCE)) { 1742 (void) ndi_devi_config((dev_info_t *)root, 1743 NDI_CONFIG | NDI_DEVI_PERSIST | NDI_NO_EVENT | 1744 NDI_DRV_CONF_REPROBE); 1745 } 1746 1747 /* 1748 * Push top_devinfo onto a stack 1749 * 1750 * The stack is necessary to avoid recursion, which can overrun 1751 * the kernel stack. 1752 */ 1753 PUSH_STACK(dsp, root, off_p); 1754 1755 /* 1756 * As long as there is a node on the stack, copy the node. 1757 * di_copynode() is responsible for pushing and popping 1758 * child and sibling nodes on the stack. 1759 */ 1760 while (!EMPTY_STACK(dsp)) { 1761 node = TOP_NODE(dsp); 1762 off = di_copynode(node, dsp, st); 1763 } 1764 1765 /* 1766 * Free the stack structure 1767 */ 1768 kmem_free(dsp, sizeof (struct di_stack)); 1769 1770 return (off); 1771 } 1772 1773 /* 1774 * This is the core function, which copies all data associated with a single 1775 * node into the snapshot. The amount of information is determined by the 1776 * ioctl command. 1777 */ 1778 static di_off_t 1779 di_copynode(struct dev_info *node, struct di_stack *dsp, struct di_state *st) 1780 { 1781 di_off_t off; 1782 struct di_node *me; 1783 size_t size; 1784 struct dev_info *n; 1785 1786 dcmn_err2((CE_CONT, "di_copynode: depth = %x\n", dsp->depth)); 1787 ASSERT((node != NULL) && (node == TOP_NODE(dsp))); 1788 1789 /* 1790 * check memory usage, and fix offsets accordingly. 1791 */ 1792 size = sizeof (struct di_node); 1793 *(TOP_OFFSET(dsp)) = off = di_checkmem(st, *(TOP_OFFSET(dsp)), size); 1794 me = DI_NODE(di_mem_addr(st, off)); 1795 me->self = off; 1796 off += size; 1797 1798 dcmn_err((CE_CONT, "copy node %s, instance #%d, at offset 0x%x\n", 1799 node->devi_node_name, node->devi_instance, off)); 1800 1801 /* 1802 * Node parameters: 1803 * self -- offset of current node within snapshot 1804 * nodeid -- pointer to PROM node (tri-valued) 1805 * state -- hot plugging device state 1806 * node_state -- devinfo node state 1807 */ 1808 me->instance = node->devi_instance; 1809 me->nodeid = node->devi_nodeid; 1810 me->node_class = node->devi_node_class; 1811 me->attributes = node->devi_node_attributes; 1812 me->state = node->devi_state; 1813 me->flags = node->devi_flags; 1814 me->node_state = node->devi_node_state; 1815 me->next_vhci = 0; /* Filled up by build_vhci_list. */ 1816 me->top_phci = 0; /* Filled up by build_phci_list. */ 1817 me->next_phci = 0; /* Filled up by build_phci_list. */ 1818 me->multipath_component = MULTIPATH_COMPONENT_NONE; /* set default. */ 1819 me->user_private_data = NULL; 1820 1821 /* 1822 * Get parent's offset in snapshot from the stack 1823 * and store it in the current node 1824 */ 1825 if (dsp->depth > 1) { 1826 me->parent = *(PARENT_OFFSET(dsp)); 1827 } 1828 1829 /* 1830 * Save the offset of this di_node in a hash table. 1831 * This is used later to resolve references to this 1832 * dip from other parts of the tree (per-driver list, 1833 * multipathing linkages, layered usage linkages). 1834 * The key used for the hash table is derived from 1835 * information in the dip. 1836 */ 1837 di_register_dip(st, (dev_info_t *)node, me->self); 1838 1839 #ifdef DEVID_COMPATIBILITY 1840 /* check for devid as property marker */ 1841 if (node->devi_devid_str) { 1842 ddi_devid_t devid; 1843 1844 /* 1845 * The devid is now represented as a property. For 1846 * compatibility with di_devid() interface in libdevinfo we 1847 * must return it as a binary structure in the snapshot. When 1848 * (if) di_devid() is removed from libdevinfo then the code 1849 * related to DEVID_COMPATIBILITY can be removed. 1850 */ 1851 if (ddi_devid_str_decode(node->devi_devid_str, &devid, NULL) == 1852 DDI_SUCCESS) { 1853 size = ddi_devid_sizeof(devid); 1854 off = di_checkmem(st, off, size); 1855 me->devid = off; 1856 bcopy(devid, di_mem_addr(st, off), size); 1857 off += size; 1858 ddi_devid_free(devid); 1859 } 1860 } 1861 #endif /* DEVID_COMPATIBILITY */ 1862 1863 if (node->devi_node_name) { 1864 size = strlen(node->devi_node_name) + 1; 1865 me->node_name = off = di_checkmem(st, off, size); 1866 (void) strcpy(di_mem_addr(st, off), node->devi_node_name); 1867 off += size; 1868 } 1869 1870 if (node->devi_compat_names && (node->devi_compat_length > 1)) { 1871 size = node->devi_compat_length; 1872 me->compat_names = off = di_checkmem(st, off, size); 1873 me->compat_length = (int)size; 1874 bcopy(node->devi_compat_names, di_mem_addr(st, off), size); 1875 off += size; 1876 } 1877 1878 if (node->devi_addr) { 1879 size = strlen(node->devi_addr) + 1; 1880 me->address = off = di_checkmem(st, off, size); 1881 (void) strcpy(di_mem_addr(st, off), node->devi_addr); 1882 off += size; 1883 } 1884 1885 if (node->devi_binding_name) { 1886 size = strlen(node->devi_binding_name) + 1; 1887 me->bind_name = off = di_checkmem(st, off, size); 1888 (void) strcpy(di_mem_addr(st, off), node->devi_binding_name); 1889 off += size; 1890 } 1891 1892 me->drv_major = node->devi_major; 1893 1894 /* 1895 * If the dip is BOUND, set the next pointer of the 1896 * per-instance list to -1, indicating that it is yet to be resolved. 1897 * This will be resolved later in snap_driver_list(). 1898 */ 1899 if (me->drv_major != -1) { 1900 me->next = -1; 1901 } else { 1902 me->next = 0; 1903 } 1904 1905 /* 1906 * An optimization to skip mutex_enter when not needed. 1907 */ 1908 if (!((DINFOMINOR | DINFOPROP | DINFOPATH | DINFOHP) & st->command)) { 1909 goto priv_data; 1910 } 1911 1912 /* 1913 * LOCKING: We already have an active ndi_devi_enter to gather the 1914 * minor data, and we will take devi_lock to gather properties as 1915 * needed off di_getprop. 1916 */ 1917 if (!(DINFOMINOR & st->command)) { 1918 goto path; 1919 } 1920 1921 ASSERT(DEVI_BUSY_OWNED(node)); 1922 if (node->devi_minor) { /* minor data */ 1923 me->minor_data = off; 1924 off = di_getmdata(node->devi_minor, &me->minor_data, 1925 me->self, st); 1926 } 1927 1928 path: 1929 if (!(DINFOPATH & st->command)) { 1930 goto property; 1931 } 1932 1933 if (MDI_VHCI(node)) { 1934 me->multipath_component = MULTIPATH_COMPONENT_VHCI; 1935 } 1936 1937 if (MDI_CLIENT(node)) { 1938 me->multipath_component = MULTIPATH_COMPONENT_CLIENT; 1939 me->multipath_client = off; 1940 off = di_getpath_data((dev_info_t *)node, &me->multipath_client, 1941 me->self, st, 1); 1942 dcmn_err((CE_WARN, "me->multipath_client = %x for node %p " 1943 "component type = %d. off=%d", 1944 me->multipath_client, 1945 (void *)node, node->devi_mdi_component, off)); 1946 } 1947 1948 if (MDI_PHCI(node)) { 1949 me->multipath_component = MULTIPATH_COMPONENT_PHCI; 1950 me->multipath_phci = off; 1951 off = di_getpath_data((dev_info_t *)node, &me->multipath_phci, 1952 me->self, st, 0); 1953 dcmn_err((CE_WARN, "me->multipath_phci = %x for node %p " 1954 "component type = %d. off=%d", 1955 me->multipath_phci, 1956 (void *)node, node->devi_mdi_component, off)); 1957 } 1958 1959 property: 1960 if (!(DINFOPROP & st->command)) { 1961 goto hotplug_data; 1962 } 1963 1964 if (node->devi_drv_prop_ptr) { /* driver property list */ 1965 me->drv_prop = off; 1966 off = di_getprop(DI_PROP_DRV_LIST, &node->devi_drv_prop_ptr, 1967 &me->drv_prop, st, node); 1968 } 1969 1970 if (node->devi_sys_prop_ptr) { /* system property list */ 1971 me->sys_prop = off; 1972 off = di_getprop(DI_PROP_SYS_LIST, &node->devi_sys_prop_ptr, 1973 &me->sys_prop, st, node); 1974 } 1975 1976 if (node->devi_hw_prop_ptr) { /* hardware property list */ 1977 me->hw_prop = off; 1978 off = di_getprop(DI_PROP_HW_LIST, &node->devi_hw_prop_ptr, 1979 &me->hw_prop, st, node); 1980 } 1981 1982 if (node->devi_global_prop_list == NULL) { 1983 me->glob_prop = (di_off_t)-1; /* not global property */ 1984 } else { 1985 /* 1986 * Make copy of global property list if this devinfo refers 1987 * global properties different from what's on the devnames 1988 * array. It can happen if there has been a forced 1989 * driver.conf update. See mod_drv(1M). 1990 */ 1991 ASSERT(me->drv_major != -1); 1992 if (node->devi_global_prop_list != 1993 devnamesp[me->drv_major].dn_global_prop_ptr) { 1994 me->glob_prop = off; 1995 off = di_getprop(DI_PROP_GLB_LIST, 1996 &node->devi_global_prop_list->prop_list, 1997 &me->glob_prop, st, node); 1998 } 1999 } 2000 2001 hotplug_data: 2002 if (!(DINFOHP & st->command)) { 2003 goto priv_data; 2004 } 2005 2006 if (node->devi_hp_hdlp) { /* hotplug data */ 2007 me->hp_data = off; 2008 off = di_gethpdata(node->devi_hp_hdlp, &me->hp_data, st); 2009 } 2010 2011 priv_data: 2012 if (!(DINFOPRIVDATA & st->command)) { 2013 goto pm_info; 2014 } 2015 2016 if (ddi_get_parent_data((dev_info_t *)node) != NULL) { 2017 me->parent_data = off; 2018 off = di_getppdata(node, &me->parent_data, st); 2019 } 2020 2021 if (ddi_get_driver_private((dev_info_t *)node) != NULL) { 2022 me->driver_data = off; 2023 off = di_getdpdata(node, &me->driver_data, st); 2024 } 2025 2026 pm_info: /* NOT implemented */ 2027 2028 subtree: 2029 /* keep the stack aligned */ 2030 off = DI_ALIGN(off); 2031 2032 if (!(DINFOSUBTREE & st->command)) { 2033 POP_STACK(dsp); 2034 return (off); 2035 } 2036 2037 child: 2038 /* 2039 * If there is a visible child--push child onto stack. 2040 * Hold the parent (me) busy while doing so. 2041 */ 2042 if ((n = node->devi_child) != NULL) { 2043 /* skip hidden nodes */ 2044 while (n && ndi_dev_is_hidden_node((dev_info_t *)n)) 2045 n = n->devi_sibling; 2046 if (n) { 2047 me->child = off; 2048 PUSH_STACK(dsp, n, &me->child); 2049 return (me->child); 2050 } 2051 } 2052 2053 sibling: 2054 /* 2055 * Done with any child nodes, unroll the stack till a visible 2056 * sibling of a parent node is found or root node is reached. 2057 */ 2058 POP_STACK(dsp); 2059 while (!EMPTY_STACK(dsp)) { 2060 if ((n = node->devi_sibling) != NULL) { 2061 /* skip hidden nodes */ 2062 while (n && ndi_dev_is_hidden_node((dev_info_t *)n)) 2063 n = n->devi_sibling; 2064 if (n) { 2065 me->sibling = DI_ALIGN(off); 2066 PUSH_STACK(dsp, n, &me->sibling); 2067 return (me->sibling); 2068 } 2069 } 2070 node = TOP_NODE(dsp); 2071 me = DI_NODE(di_mem_addr(st, *(TOP_OFFSET(dsp)))); 2072 POP_STACK(dsp); 2073 } 2074 2075 /* 2076 * DONE with all nodes 2077 */ 2078 return (off); 2079 } 2080 2081 static i_lnode_t * 2082 i_lnode_alloc(int modid) 2083 { 2084 i_lnode_t *i_lnode; 2085 2086 i_lnode = kmem_zalloc(sizeof (i_lnode_t), KM_SLEEP); 2087 2088 ASSERT(modid != -1); 2089 i_lnode->modid = modid; 2090 2091 return (i_lnode); 2092 } 2093 2094 static void 2095 i_lnode_free(i_lnode_t *i_lnode) 2096 { 2097 kmem_free(i_lnode, sizeof (i_lnode_t)); 2098 } 2099 2100 static void 2101 i_lnode_check_free(i_lnode_t *i_lnode) 2102 { 2103 /* This lnode and its dip must have been snapshotted */ 2104 ASSERT(i_lnode->self > 0); 2105 ASSERT(i_lnode->di_node->self > 0); 2106 2107 /* at least 1 link (in or out) must exist for this lnode */ 2108 ASSERT(i_lnode->link_in || i_lnode->link_out); 2109 2110 i_lnode_free(i_lnode); 2111 } 2112 2113 static i_link_t * 2114 i_link_alloc(int spec_type) 2115 { 2116 i_link_t *i_link; 2117 2118 i_link = kmem_zalloc(sizeof (i_link_t), KM_SLEEP); 2119 i_link->spec_type = spec_type; 2120 2121 return (i_link); 2122 } 2123 2124 static void 2125 i_link_check_free(i_link_t *i_link) 2126 { 2127 /* This link must have been snapshotted */ 2128 ASSERT(i_link->self > 0); 2129 2130 /* Both endpoint lnodes must exist for this link */ 2131 ASSERT(i_link->src_lnode); 2132 ASSERT(i_link->tgt_lnode); 2133 2134 kmem_free(i_link, sizeof (i_link_t)); 2135 } 2136 2137 /*ARGSUSED*/ 2138 static uint_t 2139 i_lnode_hashfunc(void *arg, mod_hash_key_t key) 2140 { 2141 i_lnode_t *i_lnode = (i_lnode_t *)key; 2142 struct di_node *ptr; 2143 dev_t dev; 2144 2145 dev = i_lnode->devt; 2146 if (dev != DDI_DEV_T_NONE) 2147 return (i_lnode->modid + getminor(dev) + getmajor(dev)); 2148 2149 ptr = i_lnode->di_node; 2150 ASSERT(ptr->self > 0); 2151 if (ptr) { 2152 uintptr_t k = (uintptr_t)ptr; 2153 k >>= (int)highbit(sizeof (struct di_node)); 2154 return ((uint_t)k); 2155 } 2156 2157 return (i_lnode->modid); 2158 } 2159 2160 static int 2161 i_lnode_cmp(void *arg1, void *arg2) 2162 { 2163 i_lnode_t *i_lnode1 = (i_lnode_t *)arg1; 2164 i_lnode_t *i_lnode2 = (i_lnode_t *)arg2; 2165 2166 if (i_lnode1->modid != i_lnode2->modid) { 2167 return ((i_lnode1->modid < i_lnode2->modid) ? -1 : 1); 2168 } 2169 2170 if (i_lnode1->di_node != i_lnode2->di_node) 2171 return ((i_lnode1->di_node < i_lnode2->di_node) ? -1 : 1); 2172 2173 if (i_lnode1->devt != i_lnode2->devt) 2174 return ((i_lnode1->devt < i_lnode2->devt) ? -1 : 1); 2175 2176 return (0); 2177 } 2178 2179 /* 2180 * An lnode represents a {dip, dev_t} tuple. A link represents a 2181 * {src_lnode, tgt_lnode, spec_type} tuple. 2182 * The following callback assumes that LDI framework ref-counts the 2183 * src_dip and tgt_dip while invoking this callback. 2184 */ 2185 static int 2186 di_ldi_callback(const ldi_usage_t *ldi_usage, void *arg) 2187 { 2188 struct di_state *st = (struct di_state *)arg; 2189 i_lnode_t *src_lnode, *tgt_lnode, *i_lnode; 2190 i_link_t **i_link_next, *i_link; 2191 di_off_t soff, toff; 2192 mod_hash_val_t nodep = NULL; 2193 int res; 2194 2195 /* 2196 * if the source or target of this device usage information doesn't 2197 * correspond to a device node then we don't report it via 2198 * libdevinfo so return. 2199 */ 2200 if ((ldi_usage->src_dip == NULL) || (ldi_usage->tgt_dip == NULL)) 2201 return (LDI_USAGE_CONTINUE); 2202 2203 ASSERT(e_ddi_devi_holdcnt(ldi_usage->src_dip)); 2204 ASSERT(e_ddi_devi_holdcnt(ldi_usage->tgt_dip)); 2205 2206 /* 2207 * Skip the ldi_usage if either src or tgt dip is not in the 2208 * snapshot. This saves us from pruning bad lnodes/links later. 2209 */ 2210 if (di_dip_find(st, ldi_usage->src_dip, &soff) != 0) 2211 return (LDI_USAGE_CONTINUE); 2212 if (di_dip_find(st, ldi_usage->tgt_dip, &toff) != 0) 2213 return (LDI_USAGE_CONTINUE); 2214 2215 ASSERT(soff > 0); 2216 ASSERT(toff > 0); 2217 2218 /* 2219 * allocate an i_lnode and add it to the lnode hash 2220 * if it is not already present. For this particular 2221 * link the lnode is a source, but it may 2222 * participate as tgt or src in any number of layered 2223 * operations - so it may already be in the hash. 2224 */ 2225 i_lnode = i_lnode_alloc(ldi_usage->src_modid); 2226 i_lnode->di_node = DI_NODE(di_mem_addr(st, soff)); 2227 i_lnode->devt = ldi_usage->src_devt; 2228 2229 res = mod_hash_find(st->lnode_hash, i_lnode, &nodep); 2230 if (res == MH_ERR_NOTFOUND) { 2231 /* 2232 * new i_lnode 2233 * add it to the hash and increment the lnode count 2234 */ 2235 res = mod_hash_insert(st->lnode_hash, i_lnode, i_lnode); 2236 ASSERT(res == 0); 2237 st->lnode_count++; 2238 src_lnode = i_lnode; 2239 } else { 2240 /* this i_lnode already exists in the lnode_hash */ 2241 i_lnode_free(i_lnode); 2242 src_lnode = (i_lnode_t *)nodep; 2243 } 2244 2245 /* 2246 * allocate a tgt i_lnode and add it to the lnode hash 2247 */ 2248 i_lnode = i_lnode_alloc(ldi_usage->tgt_modid); 2249 i_lnode->di_node = DI_NODE(di_mem_addr(st, toff)); 2250 i_lnode->devt = ldi_usage->tgt_devt; 2251 2252 res = mod_hash_find(st->lnode_hash, i_lnode, &nodep); 2253 if (res == MH_ERR_NOTFOUND) { 2254 /* 2255 * new i_lnode 2256 * add it to the hash and increment the lnode count 2257 */ 2258 res = mod_hash_insert(st->lnode_hash, i_lnode, i_lnode); 2259 ASSERT(res == 0); 2260 st->lnode_count++; 2261 tgt_lnode = i_lnode; 2262 } else { 2263 /* this i_lnode already exists in the lnode_hash */ 2264 i_lnode_free(i_lnode); 2265 tgt_lnode = (i_lnode_t *)nodep; 2266 } 2267 2268 /* 2269 * allocate a i_link 2270 */ 2271 i_link = i_link_alloc(ldi_usage->tgt_spec_type); 2272 i_link->src_lnode = src_lnode; 2273 i_link->tgt_lnode = tgt_lnode; 2274 2275 /* 2276 * add this link onto the src i_lnodes outbound i_link list 2277 */ 2278 i_link_next = &(src_lnode->link_out); 2279 while (*i_link_next != NULL) { 2280 if ((i_lnode_cmp(tgt_lnode, (*i_link_next)->tgt_lnode) == 0) && 2281 (i_link->spec_type == (*i_link_next)->spec_type)) { 2282 /* this link already exists */ 2283 kmem_free(i_link, sizeof (i_link_t)); 2284 return (LDI_USAGE_CONTINUE); 2285 } 2286 i_link_next = &((*i_link_next)->src_link_next); 2287 } 2288 *i_link_next = i_link; 2289 2290 /* 2291 * add this link onto the tgt i_lnodes inbound i_link list 2292 */ 2293 i_link_next = &(tgt_lnode->link_in); 2294 while (*i_link_next != NULL) { 2295 ASSERT(i_lnode_cmp(src_lnode, (*i_link_next)->src_lnode) != 0); 2296 i_link_next = &((*i_link_next)->tgt_link_next); 2297 } 2298 *i_link_next = i_link; 2299 2300 /* 2301 * add this i_link to the link hash 2302 */ 2303 res = mod_hash_insert(st->link_hash, i_link, i_link); 2304 ASSERT(res == 0); 2305 st->link_count++; 2306 2307 return (LDI_USAGE_CONTINUE); 2308 } 2309 2310 struct i_layer_data { 2311 struct di_state *st; 2312 int lnode_count; 2313 int link_count; 2314 di_off_t lnode_off; 2315 di_off_t link_off; 2316 }; 2317 2318 /*ARGSUSED*/ 2319 static uint_t 2320 i_link_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg) 2321 { 2322 i_link_t *i_link = (i_link_t *)key; 2323 struct i_layer_data *data = arg; 2324 struct di_link *me; 2325 struct di_lnode *melnode; 2326 struct di_node *medinode; 2327 2328 ASSERT(i_link->self == 0); 2329 2330 i_link->self = data->link_off + 2331 (data->link_count * sizeof (struct di_link)); 2332 data->link_count++; 2333 2334 ASSERT(data->link_off > 0 && data->link_count > 0); 2335 ASSERT(data->lnode_count == data->st->lnode_count); /* lnodes done */ 2336 ASSERT(data->link_count <= data->st->link_count); 2337 2338 /* fill in fields for the di_link snapshot */ 2339 me = DI_LINK(di_mem_addr(data->st, i_link->self)); 2340 me->self = i_link->self; 2341 me->spec_type = i_link->spec_type; 2342 2343 /* 2344 * The src_lnode and tgt_lnode i_lnode_t for this i_link_t 2345 * are created during the LDI table walk. Since we are 2346 * walking the link hash, the lnode hash has already been 2347 * walked and the lnodes have been snapshotted. Save lnode 2348 * offsets. 2349 */ 2350 me->src_lnode = i_link->src_lnode->self; 2351 me->tgt_lnode = i_link->tgt_lnode->self; 2352 2353 /* 2354 * Save this link's offset in the src_lnode snapshot's link_out 2355 * field 2356 */ 2357 melnode = DI_LNODE(di_mem_addr(data->st, me->src_lnode)); 2358 me->src_link_next = melnode->link_out; 2359 melnode->link_out = me->self; 2360 2361 /* 2362 * Put this link on the tgt_lnode's link_in field 2363 */ 2364 melnode = DI_LNODE(di_mem_addr(data->st, me->tgt_lnode)); 2365 me->tgt_link_next = melnode->link_in; 2366 melnode->link_in = me->self; 2367 2368 /* 2369 * An i_lnode_t is only created if the corresponding dip exists 2370 * in the snapshot. A pointer to the di_node is saved in the 2371 * i_lnode_t when it is allocated. For this link, get the di_node 2372 * for the source lnode. Then put the link on the di_node's list 2373 * of src links 2374 */ 2375 medinode = i_link->src_lnode->di_node; 2376 me->src_node_next = medinode->src_links; 2377 medinode->src_links = me->self; 2378 2379 /* 2380 * Put this link on the tgt_links list of the target 2381 * dip. 2382 */ 2383 medinode = i_link->tgt_lnode->di_node; 2384 me->tgt_node_next = medinode->tgt_links; 2385 medinode->tgt_links = me->self; 2386 2387 return (MH_WALK_CONTINUE); 2388 } 2389 2390 /*ARGSUSED*/ 2391 static uint_t 2392 i_lnode_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg) 2393 { 2394 i_lnode_t *i_lnode = (i_lnode_t *)key; 2395 struct i_layer_data *data = arg; 2396 struct di_lnode *me; 2397 struct di_node *medinode; 2398 2399 ASSERT(i_lnode->self == 0); 2400 2401 i_lnode->self = data->lnode_off + 2402 (data->lnode_count * sizeof (struct di_lnode)); 2403 data->lnode_count++; 2404 2405 ASSERT(data->lnode_off > 0 && data->lnode_count > 0); 2406 ASSERT(data->link_count == 0); /* links not done yet */ 2407 ASSERT(data->lnode_count <= data->st->lnode_count); 2408 2409 /* fill in fields for the di_lnode snapshot */ 2410 me = DI_LNODE(di_mem_addr(data->st, i_lnode->self)); 2411 me->self = i_lnode->self; 2412 2413 if (i_lnode->devt == DDI_DEV_T_NONE) { 2414 me->dev_major = DDI_MAJOR_T_NONE; 2415 me->dev_minor = DDI_MAJOR_T_NONE; 2416 } else { 2417 me->dev_major = getmajor(i_lnode->devt); 2418 me->dev_minor = getminor(i_lnode->devt); 2419 } 2420 2421 /* 2422 * The dip corresponding to this lnode must exist in 2423 * the snapshot or we wouldn't have created the i_lnode_t 2424 * during LDI walk. Save the offset of the dip. 2425 */ 2426 ASSERT(i_lnode->di_node && i_lnode->di_node->self > 0); 2427 me->node = i_lnode->di_node->self; 2428 2429 /* 2430 * There must be at least one link in or out of this lnode 2431 * or we wouldn't have created it. These fields will be set 2432 * during the link hash walk. 2433 */ 2434 ASSERT((i_lnode->link_in != NULL) || (i_lnode->link_out != NULL)); 2435 2436 /* 2437 * set the offset of the devinfo node associated with this 2438 * lnode. Also update the node_next next pointer. this pointer 2439 * is set if there are multiple lnodes associated with the same 2440 * devinfo node. (could occure when multiple minor nodes 2441 * are open for one device, etc.) 2442 */ 2443 medinode = i_lnode->di_node; 2444 me->node_next = medinode->lnodes; 2445 medinode->lnodes = me->self; 2446 2447 return (MH_WALK_CONTINUE); 2448 } 2449 2450 static di_off_t 2451 di_getlink_data(di_off_t off, struct di_state *st) 2452 { 2453 struct i_layer_data data = {0}; 2454 size_t size; 2455 2456 dcmn_err2((CE_CONT, "di_copylyr: off = %x\n", off)); 2457 2458 st->lnode_hash = mod_hash_create_extended("di_lnode_hash", 32, 2459 mod_hash_null_keydtor, (void (*)(mod_hash_val_t))i_lnode_check_free, 2460 i_lnode_hashfunc, NULL, i_lnode_cmp, KM_SLEEP); 2461 2462 st->link_hash = mod_hash_create_ptrhash("di_link_hash", 32, 2463 (void (*)(mod_hash_val_t))i_link_check_free, sizeof (i_link_t)); 2464 2465 /* get driver layering information */ 2466 (void) ldi_usage_walker(st, di_ldi_callback); 2467 2468 /* check if there is any link data to include in the snapshot */ 2469 if (st->lnode_count == 0) { 2470 ASSERT(st->link_count == 0); 2471 goto out; 2472 } 2473 2474 ASSERT(st->link_count != 0); 2475 2476 /* get a pointer to snapshot memory for all the di_lnodes */ 2477 size = sizeof (struct di_lnode) * st->lnode_count; 2478 data.lnode_off = off = di_checkmem(st, off, size); 2479 off += size; 2480 2481 /* get a pointer to snapshot memory for all the di_links */ 2482 size = sizeof (struct di_link) * st->link_count; 2483 data.link_off = off = di_checkmem(st, off, size); 2484 off += size; 2485 2486 data.lnode_count = data.link_count = 0; 2487 data.st = st; 2488 2489 /* 2490 * We have lnodes and links that will go into the 2491 * snapshot, so let's walk the respective hashes 2492 * and snapshot them. The various linkages are 2493 * also set up during the walk. 2494 */ 2495 mod_hash_walk(st->lnode_hash, i_lnode_walker, (void *)&data); 2496 ASSERT(data.lnode_count == st->lnode_count); 2497 2498 mod_hash_walk(st->link_hash, i_link_walker, (void *)&data); 2499 ASSERT(data.link_count == st->link_count); 2500 2501 out: 2502 /* free up the i_lnodes and i_links used to create the snapshot */ 2503 mod_hash_destroy_hash(st->lnode_hash); 2504 mod_hash_destroy_hash(st->link_hash); 2505 st->lnode_count = 0; 2506 st->link_count = 0; 2507 2508 return (off); 2509 } 2510 2511 2512 /* 2513 * Copy all minor data nodes attached to a devinfo node into the snapshot. 2514 * It is called from di_copynode with active ndi_devi_enter to protect 2515 * the list of minor nodes. 2516 */ 2517 static di_off_t 2518 di_getmdata(struct ddi_minor_data *mnode, di_off_t *off_p, di_off_t node, 2519 struct di_state *st) 2520 { 2521 di_off_t off; 2522 struct di_minor *me; 2523 size_t size; 2524 2525 dcmn_err2((CE_CONT, "di_getmdata:\n")); 2526 2527 /* 2528 * check memory first 2529 */ 2530 off = di_checkmem(st, *off_p, sizeof (struct di_minor)); 2531 *off_p = off; 2532 2533 do { 2534 me = DI_MINOR(di_mem_addr(st, off)); 2535 me->self = off; 2536 me->type = mnode->type; 2537 me->node = node; 2538 me->user_private_data = NULL; 2539 2540 off += sizeof (struct di_minor); 2541 2542 /* 2543 * Split dev_t to major/minor, so it works for 2544 * both ILP32 and LP64 model 2545 */ 2546 me->dev_major = getmajor(mnode->ddm_dev); 2547 me->dev_minor = getminor(mnode->ddm_dev); 2548 me->spec_type = mnode->ddm_spec_type; 2549 2550 if (mnode->ddm_name) { 2551 size = strlen(mnode->ddm_name) + 1; 2552 me->name = off = di_checkmem(st, off, size); 2553 (void) strcpy(di_mem_addr(st, off), mnode->ddm_name); 2554 off += size; 2555 } 2556 2557 if (mnode->ddm_node_type) { 2558 size = strlen(mnode->ddm_node_type) + 1; 2559 me->node_type = off = di_checkmem(st, off, size); 2560 (void) strcpy(di_mem_addr(st, off), 2561 mnode->ddm_node_type); 2562 off += size; 2563 } 2564 2565 off = di_checkmem(st, off, sizeof (struct di_minor)); 2566 me->next = off; 2567 mnode = mnode->next; 2568 } while (mnode); 2569 2570 me->next = 0; 2571 2572 return (off); 2573 } 2574 2575 /* 2576 * di_register_dip(), di_find_dip(): The dip must be protected 2577 * from deallocation when using these routines - this can either 2578 * be a reference count, a busy hold or a per-driver lock. 2579 */ 2580 2581 static void 2582 di_register_dip(struct di_state *st, dev_info_t *dip, di_off_t off) 2583 { 2584 struct dev_info *node = DEVI(dip); 2585 struct di_key *key = kmem_zalloc(sizeof (*key), KM_SLEEP); 2586 struct di_dkey *dk; 2587 2588 ASSERT(dip); 2589 ASSERT(off > 0); 2590 2591 key->k_type = DI_DKEY; 2592 dk = &(key->k_u.dkey); 2593 2594 dk->dk_dip = dip; 2595 dk->dk_major = node->devi_major; 2596 dk->dk_inst = node->devi_instance; 2597 dk->dk_nodeid = node->devi_nodeid; 2598 2599 if (mod_hash_insert(st->reg_dip_hash, (mod_hash_key_t)key, 2600 (mod_hash_val_t)(uintptr_t)off) != 0) { 2601 panic( 2602 "duplicate devinfo (%p) registered during device " 2603 "tree walk", (void *)dip); 2604 } 2605 } 2606 2607 2608 static int 2609 di_dip_find(struct di_state *st, dev_info_t *dip, di_off_t *off_p) 2610 { 2611 /* 2612 * uintptr_t must be used because it matches the size of void *; 2613 * mod_hash expects clients to place results into pointer-size 2614 * containers; since di_off_t is always a 32-bit offset, alignment 2615 * would otherwise be broken on 64-bit kernels. 2616 */ 2617 uintptr_t offset; 2618 struct di_key key = {0}; 2619 struct di_dkey *dk; 2620 2621 ASSERT(st->reg_dip_hash); 2622 ASSERT(dip); 2623 ASSERT(off_p); 2624 2625 2626 key.k_type = DI_DKEY; 2627 dk = &(key.k_u.dkey); 2628 2629 dk->dk_dip = dip; 2630 dk->dk_major = DEVI(dip)->devi_major; 2631 dk->dk_inst = DEVI(dip)->devi_instance; 2632 dk->dk_nodeid = DEVI(dip)->devi_nodeid; 2633 2634 if (mod_hash_find(st->reg_dip_hash, (mod_hash_key_t)&key, 2635 (mod_hash_val_t *)&offset) == 0) { 2636 *off_p = (di_off_t)offset; 2637 return (0); 2638 } else { 2639 return (-1); 2640 } 2641 } 2642 2643 /* 2644 * di_register_pip(), di_find_pip(): The pip must be protected from deallocation 2645 * when using these routines. The caller must do this by protecting the 2646 * client(or phci)<->pip linkage while traversing the list and then holding the 2647 * pip when it is found in the list. 2648 */ 2649 2650 static void 2651 di_register_pip(struct di_state *st, mdi_pathinfo_t *pip, di_off_t off) 2652 { 2653 struct di_key *key = kmem_zalloc(sizeof (*key), KM_SLEEP); 2654 char *path_addr; 2655 struct di_pkey *pk; 2656 2657 ASSERT(pip); 2658 ASSERT(off > 0); 2659 2660 key->k_type = DI_PKEY; 2661 pk = &(key->k_u.pkey); 2662 2663 pk->pk_pip = pip; 2664 path_addr = mdi_pi_get_addr(pip); 2665 if (path_addr) 2666 pk->pk_path_addr = i_ddi_strdup(path_addr, KM_SLEEP); 2667 pk->pk_client = mdi_pi_get_client(pip); 2668 pk->pk_phci = mdi_pi_get_phci(pip); 2669 2670 if (mod_hash_insert(st->reg_pip_hash, (mod_hash_key_t)key, 2671 (mod_hash_val_t)(uintptr_t)off) != 0) { 2672 panic( 2673 "duplicate pathinfo (%p) registered during device " 2674 "tree walk", (void *)pip); 2675 } 2676 } 2677 2678 /* 2679 * As with di_register_pip, the caller must hold or lock the pip 2680 */ 2681 static int 2682 di_pip_find(struct di_state *st, mdi_pathinfo_t *pip, di_off_t *off_p) 2683 { 2684 /* 2685 * uintptr_t must be used because it matches the size of void *; 2686 * mod_hash expects clients to place results into pointer-size 2687 * containers; since di_off_t is always a 32-bit offset, alignment 2688 * would otherwise be broken on 64-bit kernels. 2689 */ 2690 uintptr_t offset; 2691 struct di_key key = {0}; 2692 struct di_pkey *pk; 2693 2694 ASSERT(st->reg_pip_hash); 2695 ASSERT(off_p); 2696 2697 if (pip == NULL) { 2698 *off_p = 0; 2699 return (0); 2700 } 2701 2702 key.k_type = DI_PKEY; 2703 pk = &(key.k_u.pkey); 2704 2705 pk->pk_pip = pip; 2706 pk->pk_path_addr = mdi_pi_get_addr(pip); 2707 pk->pk_client = mdi_pi_get_client(pip); 2708 pk->pk_phci = mdi_pi_get_phci(pip); 2709 2710 if (mod_hash_find(st->reg_pip_hash, (mod_hash_key_t)&key, 2711 (mod_hash_val_t *)&offset) == 0) { 2712 *off_p = (di_off_t)offset; 2713 return (0); 2714 } else { 2715 return (-1); 2716 } 2717 } 2718 2719 static di_path_state_t 2720 path_state_convert(mdi_pathinfo_state_t st) 2721 { 2722 switch (st) { 2723 case MDI_PATHINFO_STATE_ONLINE: 2724 return (DI_PATH_STATE_ONLINE); 2725 case MDI_PATHINFO_STATE_STANDBY: 2726 return (DI_PATH_STATE_STANDBY); 2727 case MDI_PATHINFO_STATE_OFFLINE: 2728 return (DI_PATH_STATE_OFFLINE); 2729 case MDI_PATHINFO_STATE_FAULT: 2730 return (DI_PATH_STATE_FAULT); 2731 default: 2732 return (DI_PATH_STATE_UNKNOWN); 2733 } 2734 } 2735 2736 static uint_t 2737 path_flags_convert(uint_t pi_path_flags) 2738 { 2739 uint_t di_path_flags = 0; 2740 2741 /* MDI_PATHINFO_FLAGS_HIDDEN nodes not in snapshot */ 2742 2743 if (pi_path_flags & MDI_PATHINFO_FLAGS_DEVICE_REMOVED) 2744 di_path_flags |= DI_PATH_FLAGS_DEVICE_REMOVED; 2745 2746 return (di_path_flags); 2747 } 2748 2749 2750 static di_off_t 2751 di_path_getprop(mdi_pathinfo_t *pip, di_off_t *off_p, 2752 struct di_state *st) 2753 { 2754 nvpair_t *prop = NULL; 2755 struct di_path_prop *me; 2756 int off; 2757 size_t size; 2758 char *str; 2759 uchar_t *buf; 2760 uint_t nelems; 2761 2762 off = *off_p; 2763 if (mdi_pi_get_next_prop(pip, NULL) == NULL) { 2764 *off_p = 0; 2765 return (off); 2766 } 2767 2768 off = di_checkmem(st, off, sizeof (struct di_path_prop)); 2769 *off_p = off; 2770 2771 while (prop = mdi_pi_get_next_prop(pip, prop)) { 2772 me = DI_PATHPROP(di_mem_addr(st, off)); 2773 me->self = off; 2774 off += sizeof (struct di_path_prop); 2775 2776 /* 2777 * property name 2778 */ 2779 size = strlen(nvpair_name(prop)) + 1; 2780 me->prop_name = off = di_checkmem(st, off, size); 2781 (void) strcpy(di_mem_addr(st, off), nvpair_name(prop)); 2782 off += size; 2783 2784 switch (nvpair_type(prop)) { 2785 case DATA_TYPE_BYTE: 2786 case DATA_TYPE_INT16: 2787 case DATA_TYPE_UINT16: 2788 case DATA_TYPE_INT32: 2789 case DATA_TYPE_UINT32: 2790 me->prop_type = DDI_PROP_TYPE_INT; 2791 size = sizeof (int32_t); 2792 off = di_checkmem(st, off, size); 2793 (void) nvpair_value_int32(prop, 2794 (int32_t *)di_mem_addr(st, off)); 2795 break; 2796 2797 case DATA_TYPE_INT64: 2798 case DATA_TYPE_UINT64: 2799 me->prop_type = DDI_PROP_TYPE_INT64; 2800 size = sizeof (int64_t); 2801 off = di_checkmem(st, off, size); 2802 (void) nvpair_value_int64(prop, 2803 (int64_t *)di_mem_addr(st, off)); 2804 break; 2805 2806 case DATA_TYPE_STRING: 2807 me->prop_type = DDI_PROP_TYPE_STRING; 2808 (void) nvpair_value_string(prop, &str); 2809 size = strlen(str) + 1; 2810 off = di_checkmem(st, off, size); 2811 (void) strcpy(di_mem_addr(st, off), str); 2812 break; 2813 2814 case DATA_TYPE_BYTE_ARRAY: 2815 case DATA_TYPE_INT16_ARRAY: 2816 case DATA_TYPE_UINT16_ARRAY: 2817 case DATA_TYPE_INT32_ARRAY: 2818 case DATA_TYPE_UINT32_ARRAY: 2819 case DATA_TYPE_INT64_ARRAY: 2820 case DATA_TYPE_UINT64_ARRAY: 2821 me->prop_type = DDI_PROP_TYPE_BYTE; 2822 (void) nvpair_value_byte_array(prop, &buf, &nelems); 2823 size = nelems; 2824 if (nelems != 0) { 2825 off = di_checkmem(st, off, size); 2826 bcopy(buf, di_mem_addr(st, off), size); 2827 } 2828 break; 2829 2830 default: /* Unknown or unhandled type; skip it */ 2831 size = 0; 2832 break; 2833 } 2834 2835 if (size > 0) { 2836 me->prop_data = off; 2837 } 2838 2839 me->prop_len = (int)size; 2840 off += size; 2841 2842 off = di_checkmem(st, off, sizeof (struct di_path_prop)); 2843 me->prop_next = off; 2844 } 2845 2846 me->prop_next = 0; 2847 return (off); 2848 } 2849 2850 2851 static void 2852 di_path_one_endpoint(struct di_path *me, di_off_t noff, di_off_t **off_pp, 2853 int get_client) 2854 { 2855 if (get_client) { 2856 ASSERT(me->path_client == 0); 2857 me->path_client = noff; 2858 ASSERT(me->path_c_link == 0); 2859 *off_pp = &me->path_c_link; 2860 me->path_snap_state &= 2861 ~(DI_PATH_SNAP_NOCLIENT | DI_PATH_SNAP_NOCLINK); 2862 } else { 2863 ASSERT(me->path_phci == 0); 2864 me->path_phci = noff; 2865 ASSERT(me->path_p_link == 0); 2866 *off_pp = &me->path_p_link; 2867 me->path_snap_state &= 2868 ~(DI_PATH_SNAP_NOPHCI | DI_PATH_SNAP_NOPLINK); 2869 } 2870 } 2871 2872 /* 2873 * off_p: pointer to the linkage field. This links pips along the client|phci 2874 * linkage list. 2875 * noff : Offset for the endpoint dip snapshot. 2876 */ 2877 static di_off_t 2878 di_getpath_data(dev_info_t *dip, di_off_t *off_p, di_off_t noff, 2879 struct di_state *st, int get_client) 2880 { 2881 di_off_t off; 2882 mdi_pathinfo_t *pip; 2883 struct di_path *me; 2884 mdi_pathinfo_t *(*next_pip)(dev_info_t *, mdi_pathinfo_t *); 2885 size_t size; 2886 2887 dcmn_err2((CE_WARN, "di_getpath_data: client = %d", get_client)); 2888 2889 /* 2890 * The naming of the following mdi_xyz() is unfortunately 2891 * non-intuitive. mdi_get_next_phci_path() follows the 2892 * client_link i.e. the list of pip's belonging to the 2893 * given client dip. 2894 */ 2895 if (get_client) 2896 next_pip = &mdi_get_next_phci_path; 2897 else 2898 next_pip = &mdi_get_next_client_path; 2899 2900 off = *off_p; 2901 2902 pip = NULL; 2903 while (pip = (*next_pip)(dip, pip)) { 2904 di_off_t stored_offset; 2905 2906 dcmn_err((CE_WARN, "marshalling pip = %p", (void *)pip)); 2907 2908 mdi_pi_lock(pip); 2909 2910 /* We don't represent hidden paths in the snapshot */ 2911 if (mdi_pi_ishidden(pip)) { 2912 dcmn_err((CE_WARN, "hidden, skip")); 2913 mdi_pi_unlock(pip); 2914 continue; 2915 } 2916 2917 if (di_pip_find(st, pip, &stored_offset) != -1) { 2918 /* 2919 * We've already seen this pathinfo node so we need to 2920 * take care not to snap it again; However, one endpoint 2921 * and linkage will be set here. The other endpoint 2922 * and linkage has already been set when the pip was 2923 * first snapshotted i.e. when the other endpoint dip 2924 * was snapshotted. 2925 */ 2926 me = DI_PATH(di_mem_addr(st, stored_offset)); 2927 *off_p = stored_offset; 2928 2929 di_path_one_endpoint(me, noff, &off_p, get_client); 2930 2931 /* 2932 * The other endpoint and linkage were set when this 2933 * pip was snapshotted. So we are done with both 2934 * endpoints and linkages. 2935 */ 2936 ASSERT(!(me->path_snap_state & 2937 (DI_PATH_SNAP_NOCLIENT|DI_PATH_SNAP_NOPHCI))); 2938 ASSERT(!(me->path_snap_state & 2939 (DI_PATH_SNAP_NOCLINK|DI_PATH_SNAP_NOPLINK))); 2940 2941 mdi_pi_unlock(pip); 2942 continue; 2943 } 2944 2945 /* 2946 * Now that we need to snapshot this pip, check memory 2947 */ 2948 size = sizeof (struct di_path); 2949 *off_p = off = di_checkmem(st, off, size); 2950 me = DI_PATH(di_mem_addr(st, off)); 2951 me->self = off; 2952 off += size; 2953 2954 me->path_snap_state = 2955 DI_PATH_SNAP_NOCLINK | DI_PATH_SNAP_NOPLINK; 2956 me->path_snap_state |= 2957 DI_PATH_SNAP_NOCLIENT | DI_PATH_SNAP_NOPHCI; 2958 2959 /* 2960 * Zero out fields as di_checkmem() doesn't guarantee 2961 * zero-filled memory 2962 */ 2963 me->path_client = me->path_phci = 0; 2964 me->path_c_link = me->path_p_link = 0; 2965 2966 di_path_one_endpoint(me, noff, &off_p, get_client); 2967 2968 /* 2969 * Note the existence of this pathinfo 2970 */ 2971 di_register_pip(st, pip, me->self); 2972 2973 me->path_state = path_state_convert(mdi_pi_get_state(pip)); 2974 me->path_flags = path_flags_convert(mdi_pi_get_flags(pip)); 2975 2976 me->path_instance = mdi_pi_get_path_instance(pip); 2977 2978 /* 2979 * Get intermediate addressing info. 2980 */ 2981 size = strlen(mdi_pi_get_addr(pip)) + 1; 2982 me->path_addr = off = di_checkmem(st, off, size); 2983 (void) strcpy(di_mem_addr(st, off), mdi_pi_get_addr(pip)); 2984 off += size; 2985 2986 /* 2987 * Get path properties if props are to be included in the 2988 * snapshot 2989 */ 2990 if (DINFOPROP & st->command) { 2991 me->path_prop = off; 2992 off = di_path_getprop(pip, &me->path_prop, st); 2993 } else { 2994 me->path_prop = 0; 2995 } 2996 2997 mdi_pi_unlock(pip); 2998 } 2999 3000 *off_p = 0; 3001 return (off); 3002 } 3003 3004 /* 3005 * Return driver prop_op entry point for the specified devinfo node. 3006 * 3007 * To return a non-NULL value: 3008 * - driver must be attached and held: 3009 * If driver is not attached we ignore the driver property list. 3010 * No one should rely on such properties. 3011 * - driver "cb_prop_op != ddi_prop_op": 3012 * If "cb_prop_op == ddi_prop_op", framework does not need to call driver. 3013 * XXX or parent's bus_prop_op != ddi_bus_prop_op 3014 */ 3015 static int 3016 (*di_getprop_prop_op(struct dev_info *dip)) 3017 (dev_t, dev_info_t *, ddi_prop_op_t, int, char *, caddr_t, int *) 3018 { 3019 struct dev_ops *ops; 3020 3021 /* If driver is not attached we ignore the driver property list. */ 3022 if ((dip == NULL) || !i_ddi_devi_attached((dev_info_t *)dip)) 3023 return (NULL); 3024 3025 /* 3026 * Some nexus drivers incorrectly set cb_prop_op to nodev, nulldev, 3027 * or even NULL. 3028 */ 3029 ops = dip->devi_ops; 3030 if (ops && ops->devo_cb_ops && 3031 (ops->devo_cb_ops->cb_prop_op != ddi_prop_op) && 3032 (ops->devo_cb_ops->cb_prop_op != nodev) && 3033 (ops->devo_cb_ops->cb_prop_op != nulldev) && 3034 (ops->devo_cb_ops->cb_prop_op != NULL)) 3035 return (ops->devo_cb_ops->cb_prop_op); 3036 return (NULL); 3037 } 3038 3039 static di_off_t 3040 di_getprop_add(int list, int dyn, struct di_state *st, struct dev_info *dip, 3041 int (*prop_op)(), 3042 char *name, dev_t devt, int aflags, int alen, caddr_t aval, 3043 di_off_t off, di_off_t **off_pp) 3044 { 3045 int need_free = 0; 3046 dev_t pdevt; 3047 int pflags; 3048 int rv; 3049 caddr_t val; 3050 int len; 3051 size_t size; 3052 struct di_prop *pp; 3053 3054 /* If we have prop_op function, ask driver for latest value */ 3055 if (prop_op) { 3056 ASSERT(dip); 3057 3058 /* Must search DDI_DEV_T_NONE with DDI_DEV_T_ANY */ 3059 pdevt = (devt == DDI_DEV_T_NONE) ? DDI_DEV_T_ANY : devt; 3060 3061 /* 3062 * We have type information in flags, but are invoking an 3063 * old non-typed prop_op(9E) interface. Since not all types are 3064 * part of DDI_PROP_TYPE_ANY (example is DDI_PROP_TYPE_INT64), 3065 * we set DDI_PROP_CONSUMER_TYPED - causing the framework to 3066 * expand type bits beyond DDI_PROP_TYPE_ANY. This allows us 3067 * to use the legacy prop_op(9E) interface to obtain updates 3068 * non-DDI_PROP_TYPE_ANY dynamic properties. 3069 */ 3070 pflags = aflags & ~DDI_PROP_TYPE_MASK; 3071 pflags |= DDI_PROP_DONTPASS | DDI_PROP_NOTPROM | 3072 DDI_PROP_CONSUMER_TYPED; 3073 3074 /* 3075 * Hold and exit across prop_op(9E) to avoid lock order 3076 * issues between 3077 * [ndi_devi_enter() ..prop_op(9E).. driver-lock] 3078 * .vs. 3079 * [..ioctl(9E).. driver-lock ..ddi_remove_minor_node(9F).. 3080 * ndi_devi_enter()] 3081 * ordering. 3082 */ 3083 ndi_hold_devi((dev_info_t *)dip); 3084 ndi_devi_exit((dev_info_t *)dip, dip->devi_circular); 3085 rv = (*prop_op)(pdevt, (dev_info_t *)dip, 3086 PROP_LEN_AND_VAL_ALLOC, pflags, name, &val, &len); 3087 ndi_devi_enter((dev_info_t *)dip, &dip->devi_circular); 3088 ndi_rele_devi((dev_info_t *)dip); 3089 3090 if (rv == DDI_PROP_SUCCESS) { 3091 need_free = 1; /* dynamic prop obtained */ 3092 } else if (dyn) { 3093 /* 3094 * A dynamic property must succeed prop_op(9E) to show 3095 * up in the snapshot - that is the only source of its 3096 * value. 3097 */ 3098 return (off); /* dynamic prop not supported */ 3099 } else { 3100 /* 3101 * In case calling the driver caused an update off 3102 * prop_op(9E) of a non-dynamic property (code leading 3103 * to ddi_prop_change), we defer picking up val and 3104 * len informatiojn until after prop_op(9E) to ensure 3105 * that we snapshot the latest value. 3106 */ 3107 val = aval; 3108 len = alen; 3109 3110 } 3111 } else { 3112 val = aval; 3113 len = alen; 3114 } 3115 3116 dcmn_err((CE_CONT, "di_getprop_add: list %d %s len %d val %p\n", 3117 list, name ? name : "NULL", len, (void *)val)); 3118 3119 size = sizeof (struct di_prop); 3120 **off_pp = off = di_checkmem(st, off, size); 3121 pp = DI_PROP(di_mem_addr(st, off)); 3122 pp->self = off; 3123 off += size; 3124 3125 pp->dev_major = getmajor(devt); 3126 pp->dev_minor = getminor(devt); 3127 pp->prop_flags = aflags; 3128 pp->prop_list = list; 3129 3130 /* property name */ 3131 if (name) { 3132 size = strlen(name) + 1; 3133 pp->prop_name = off = di_checkmem(st, off, size); 3134 (void) strcpy(di_mem_addr(st, off), name); 3135 off += size; 3136 } else { 3137 pp->prop_name = -1; 3138 } 3139 3140 pp->prop_len = len; 3141 if (val == NULL) { 3142 pp->prop_data = -1; 3143 } else if (len != 0) { 3144 size = len; 3145 pp->prop_data = off = di_checkmem(st, off, size); 3146 bcopy(val, di_mem_addr(st, off), size); 3147 off += size; 3148 } 3149 3150 pp->next = 0; /* assume tail for now */ 3151 *off_pp = &pp->next; /* return pointer to our next */ 3152 3153 if (need_free) /* free PROP_LEN_AND_VAL_ALLOC alloc */ 3154 kmem_free(val, len); 3155 return (off); 3156 } 3157 3158 3159 /* 3160 * Copy a list of properties attached to a devinfo node. Called from 3161 * di_copynode with active ndi_devi_enter. The major number is passed in case 3162 * we need to call driver's prop_op entry. The value of list indicates 3163 * which list we are copying. Possible values are: 3164 * DI_PROP_DRV_LIST, DI_PROP_SYS_LIST, DI_PROP_GLB_LIST, DI_PROP_HW_LIST 3165 */ 3166 static di_off_t 3167 di_getprop(int list, struct ddi_prop **pprop, di_off_t *off_p, 3168 struct di_state *st, struct dev_info *dip) 3169 { 3170 struct ddi_prop *prop; 3171 int (*prop_op)(); 3172 int off; 3173 struct ddi_minor_data *mn; 3174 i_ddi_prop_dyn_t *dp; 3175 struct plist { 3176 struct plist *pl_next; 3177 char *pl_name; 3178 int pl_flags; 3179 dev_t pl_dev; 3180 int pl_len; 3181 caddr_t pl_val; 3182 } *pl, *pl0, **plp; 3183 3184 ASSERT(st != NULL); 3185 3186 off = *off_p; 3187 *off_p = 0; 3188 dcmn_err((CE_CONT, "di_getprop: copy property list %d at addr %p\n", 3189 list, (void *)*pprop)); 3190 3191 /* get pointer to driver's prop_op(9E) implementation if DRV_LIST */ 3192 prop_op = (list == DI_PROP_DRV_LIST) ? di_getprop_prop_op(dip) : NULL; 3193 3194 /* 3195 * Form private list of properties, holding devi_lock for properties 3196 * that hang off the dip. 3197 */ 3198 if (dip) 3199 mutex_enter(&(dip->devi_lock)); 3200 for (pl0 = NULL, plp = &pl0, prop = *pprop; 3201 prop; plp = &pl->pl_next, prop = prop->prop_next) { 3202 pl = kmem_alloc(sizeof (*pl), KM_SLEEP); 3203 *plp = pl; 3204 pl->pl_next = NULL; 3205 if (prop->prop_name) 3206 pl->pl_name = i_ddi_strdup(prop->prop_name, KM_SLEEP); 3207 else 3208 pl->pl_name = NULL; 3209 pl->pl_flags = prop->prop_flags; 3210 pl->pl_dev = prop->prop_dev; 3211 if (prop->prop_len) { 3212 pl->pl_len = prop->prop_len; 3213 pl->pl_val = kmem_alloc(pl->pl_len, KM_SLEEP); 3214 bcopy(prop->prop_val, pl->pl_val, pl->pl_len); 3215 } else { 3216 pl->pl_len = 0; 3217 pl->pl_val = NULL; 3218 } 3219 } 3220 if (dip) 3221 mutex_exit(&(dip->devi_lock)); 3222 3223 /* 3224 * Now that we have dropped devi_lock, perform a second-pass to 3225 * add properties to the snapshot. We do this as a second pass 3226 * because we may need to call prop_op(9E) and we can't hold 3227 * devi_lock across that call. 3228 */ 3229 for (pl = pl0; pl; pl = pl0) { 3230 pl0 = pl->pl_next; 3231 off = di_getprop_add(list, 0, st, dip, prop_op, pl->pl_name, 3232 pl->pl_dev, pl->pl_flags, pl->pl_len, pl->pl_val, 3233 off, &off_p); 3234 if (pl->pl_val) 3235 kmem_free(pl->pl_val, pl->pl_len); 3236 if (pl->pl_name) 3237 kmem_free(pl->pl_name, strlen(pl->pl_name) + 1); 3238 kmem_free(pl, sizeof (*pl)); 3239 } 3240 3241 /* 3242 * If there is no prop_op or dynamic property support has been 3243 * disabled, we are done. 3244 */ 3245 if ((prop_op == NULL) || (di_prop_dyn == 0)) { 3246 *off_p = 0; 3247 return (off); 3248 } 3249 3250 /* Add dynamic driver properties to snapshot */ 3251 for (dp = i_ddi_prop_dyn_driver_get((dev_info_t *)dip); 3252 dp && dp->dp_name; dp++) { 3253 if (dp->dp_spec_type) { 3254 /* if spec_type, property of matching minor */ 3255 ASSERT(DEVI_BUSY_OWNED(dip)); 3256 for (mn = dip->devi_minor; mn; mn = mn->next) { 3257 if (mn->ddm_spec_type != dp->dp_spec_type) 3258 continue; 3259 off = di_getprop_add(list, 1, st, dip, prop_op, 3260 dp->dp_name, mn->ddm_dev, dp->dp_type, 3261 0, NULL, off, &off_p); 3262 } 3263 } else { 3264 /* property of devinfo node */ 3265 off = di_getprop_add(list, 1, st, dip, prop_op, 3266 dp->dp_name, DDI_DEV_T_NONE, dp->dp_type, 3267 0, NULL, off, &off_p); 3268 } 3269 } 3270 3271 /* Add dynamic parent properties to snapshot */ 3272 for (dp = i_ddi_prop_dyn_parent_get((dev_info_t *)dip); 3273 dp && dp->dp_name; dp++) { 3274 if (dp->dp_spec_type) { 3275 /* if spec_type, property of matching minor */ 3276 ASSERT(DEVI_BUSY_OWNED(dip)); 3277 for (mn = dip->devi_minor; mn; mn = mn->next) { 3278 if (mn->ddm_spec_type != dp->dp_spec_type) 3279 continue; 3280 off = di_getprop_add(list, 1, st, dip, prop_op, 3281 dp->dp_name, mn->ddm_dev, dp->dp_type, 3282 0, NULL, off, &off_p); 3283 } 3284 } else { 3285 /* property of devinfo node */ 3286 off = di_getprop_add(list, 1, st, dip, prop_op, 3287 dp->dp_name, DDI_DEV_T_NONE, dp->dp_type, 3288 0, NULL, off, &off_p); 3289 } 3290 } 3291 3292 *off_p = 0; 3293 return (off); 3294 } 3295 3296 /* 3297 * find private data format attached to a dip 3298 * parent = 1 to match driver name of parent dip (for parent private data) 3299 * 0 to match driver name of current dip (for driver private data) 3300 */ 3301 #define DI_MATCH_DRIVER 0 3302 #define DI_MATCH_PARENT 1 3303 3304 struct di_priv_format * 3305 di_match_drv_name(struct dev_info *node, struct di_state *st, int match) 3306 { 3307 int i, count, len; 3308 char *drv_name; 3309 major_t major; 3310 struct di_all *all; 3311 struct di_priv_format *form; 3312 3313 dcmn_err2((CE_CONT, "di_match_drv_name: node = %s, match = %x\n", 3314 node->devi_node_name, match)); 3315 3316 if (match == DI_MATCH_PARENT) { 3317 node = DEVI(node->devi_parent); 3318 } 3319 3320 if (node == NULL) { 3321 return (NULL); 3322 } 3323 3324 major = node->devi_major; 3325 if (major == (major_t)(-1)) { 3326 return (NULL); 3327 } 3328 3329 /* 3330 * Match the driver name. 3331 */ 3332 drv_name = ddi_major_to_name(major); 3333 if ((drv_name == NULL) || *drv_name == '\0') { 3334 return (NULL); 3335 } 3336 3337 /* Now get the di_priv_format array */ 3338 all = DI_ALL_PTR(st); 3339 if (match == DI_MATCH_PARENT) { 3340 count = all->n_ppdata; 3341 form = DI_PRIV_FORMAT(di_mem_addr(st, all->ppdata_format)); 3342 } else { 3343 count = all->n_dpdata; 3344 form = DI_PRIV_FORMAT(di_mem_addr(st, all->dpdata_format)); 3345 } 3346 3347 len = strlen(drv_name); 3348 for (i = 0; i < count; i++) { 3349 char *tmp; 3350 3351 tmp = form[i].drv_name; 3352 while (tmp && (*tmp != '\0')) { 3353 if (strncmp(drv_name, tmp, len) == 0) { 3354 return (&form[i]); 3355 } 3356 /* 3357 * Move to next driver name, skipping a white space 3358 */ 3359 if (tmp = strchr(tmp, ' ')) { 3360 tmp++; 3361 } 3362 } 3363 } 3364 3365 return (NULL); 3366 } 3367 3368 /* 3369 * The following functions copy data as specified by the format passed in. 3370 * To prevent invalid format from panicing the system, we call on_fault(). 3371 * A return value of 0 indicates an error. Otherwise, the total offset 3372 * is returned. 3373 */ 3374 #define DI_MAX_PRIVDATA (PAGESIZE >> 1) /* max private data size */ 3375 3376 static di_off_t 3377 di_getprvdata(struct di_priv_format *pdp, struct dev_info *node, 3378 void *data, di_off_t *off_p, struct di_state *st) 3379 { 3380 caddr_t pa; 3381 void *ptr; 3382 int i, size, repeat; 3383 di_off_t off, off0, *tmp; 3384 char *path; 3385 label_t ljb; 3386 3387 dcmn_err2((CE_CONT, "di_getprvdata:\n")); 3388 3389 /* 3390 * check memory availability. Private data size is 3391 * limited to DI_MAX_PRIVDATA. 3392 */ 3393 off = di_checkmem(st, *off_p, DI_MAX_PRIVDATA); 3394 *off_p = off; 3395 3396 if ((pdp->bytes == 0) || pdp->bytes > DI_MAX_PRIVDATA) { 3397 goto failure; 3398 } 3399 3400 if (!on_fault(&ljb)) { 3401 /* copy the struct */ 3402 bcopy(data, di_mem_addr(st, off), pdp->bytes); 3403 off0 = DI_ALIGN(pdp->bytes); /* XXX remove DI_ALIGN */ 3404 3405 /* dereferencing pointers */ 3406 for (i = 0; i < MAX_PTR_IN_PRV; i++) { 3407 3408 if (pdp->ptr[i].size == 0) { 3409 goto success; /* no more ptrs */ 3410 } 3411 3412 /* 3413 * first, get the pointer content 3414 */ 3415 if ((pdp->ptr[i].offset < 0) || 3416 (pdp->ptr[i].offset > pdp->bytes - sizeof (char *))) 3417 goto failure; /* wrong offset */ 3418 3419 pa = di_mem_addr(st, off + pdp->ptr[i].offset); 3420 3421 /* save a tmp ptr to store off_t later */ 3422 tmp = (di_off_t *)(intptr_t)pa; 3423 3424 /* get pointer value, if NULL continue */ 3425 ptr = *((void **) (intptr_t)pa); 3426 if (ptr == NULL) { 3427 continue; 3428 } 3429 3430 /* 3431 * next, find the repeat count (array dimension) 3432 */ 3433 repeat = pdp->ptr[i].len_offset; 3434 3435 /* 3436 * Positive value indicates a fixed sized array. 3437 * 0 or negative value indicates variable sized array. 3438 * 3439 * For variable sized array, the variable must be 3440 * an int member of the structure, with an offset 3441 * equal to the absolution value of struct member. 3442 */ 3443 if (repeat > pdp->bytes - sizeof (int)) { 3444 goto failure; /* wrong offset */ 3445 } 3446 3447 if (repeat >= 0) { 3448 repeat = *((int *) 3449 (intptr_t)((caddr_t)data + repeat)); 3450 } else { 3451 repeat = -repeat; 3452 } 3453 3454 /* 3455 * next, get the size of the object to be copied 3456 */ 3457 size = pdp->ptr[i].size * repeat; 3458 3459 /* 3460 * Arbitrarily limit the total size of object to be 3461 * copied (1 byte to 1/4 page). 3462 */ 3463 if ((size <= 0) || (size > (DI_MAX_PRIVDATA - off0))) { 3464 goto failure; /* wrong size or too big */ 3465 } 3466 3467 /* 3468 * Now copy the data 3469 */ 3470 *tmp = off0; 3471 bcopy(ptr, di_mem_addr(st, off + off0), size); 3472 off0 += DI_ALIGN(size); /* XXX remove DI_ALIGN */ 3473 } 3474 } else { 3475 goto failure; 3476 } 3477 3478 success: 3479 /* 3480 * success if reached here 3481 */ 3482 no_fault(); 3483 return (off + off0); 3484 /*NOTREACHED*/ 3485 3486 failure: 3487 /* 3488 * fault occurred 3489 */ 3490 no_fault(); 3491 path = kmem_alloc(MAXPATHLEN, KM_SLEEP); 3492 cmn_err(CE_WARN, "devinfo: fault on private data for '%s' at %p", 3493 ddi_pathname((dev_info_t *)node, path), data); 3494 kmem_free(path, MAXPATHLEN); 3495 *off_p = -1; /* set private data to indicate error */ 3496 3497 return (off); 3498 } 3499 3500 /* 3501 * get parent private data; on error, returns original offset 3502 */ 3503 static di_off_t 3504 di_getppdata(struct dev_info *node, di_off_t *off_p, struct di_state *st) 3505 { 3506 int off; 3507 struct di_priv_format *ppdp; 3508 3509 dcmn_err2((CE_CONT, "di_getppdata:\n")); 3510 3511 /* find the parent data format */ 3512 if ((ppdp = di_match_drv_name(node, st, DI_MATCH_PARENT)) == NULL) { 3513 off = *off_p; 3514 *off_p = 0; /* set parent data to none */ 3515 return (off); 3516 } 3517 3518 return (di_getprvdata(ppdp, node, 3519 ddi_get_parent_data((dev_info_t *)node), off_p, st)); 3520 } 3521 3522 /* 3523 * get parent private data; returns original offset 3524 */ 3525 static di_off_t 3526 di_getdpdata(struct dev_info *node, di_off_t *off_p, struct di_state *st) 3527 { 3528 int off; 3529 struct di_priv_format *dpdp; 3530 3531 dcmn_err2((CE_CONT, "di_getdpdata:")); 3532 3533 /* find the parent data format */ 3534 if ((dpdp = di_match_drv_name(node, st, DI_MATCH_DRIVER)) == NULL) { 3535 off = *off_p; 3536 *off_p = 0; /* set driver data to none */ 3537 return (off); 3538 } 3539 3540 return (di_getprvdata(dpdp, node, 3541 ddi_get_driver_private((dev_info_t *)node), off_p, st)); 3542 } 3543 3544 /* 3545 * Copy hotplug data associated with a devinfo node into the snapshot. 3546 */ 3547 static di_off_t 3548 di_gethpdata(ddi_hp_cn_handle_t *hp_hdl, di_off_t *off_p, 3549 struct di_state *st) 3550 { 3551 struct i_hp *hp; 3552 struct di_hp *me; 3553 size_t size; 3554 di_off_t off; 3555 3556 dcmn_err2((CE_CONT, "di_gethpdata:\n")); 3557 3558 /* 3559 * check memory first 3560 */ 3561 off = di_checkmem(st, *off_p, sizeof (struct di_hp)); 3562 *off_p = off; 3563 3564 do { 3565 me = DI_HP(di_mem_addr(st, off)); 3566 me->self = off; 3567 me->hp_name = 0; 3568 me->hp_connection = (int)hp_hdl->cn_info.cn_num; 3569 me->hp_depends_on = (int)hp_hdl->cn_info.cn_num_dpd_on; 3570 (void) ddihp_cn_getstate(hp_hdl); 3571 me->hp_state = (int)hp_hdl->cn_info.cn_state; 3572 me->hp_type = (int)hp_hdl->cn_info.cn_type; 3573 me->hp_type_str = 0; 3574 me->hp_last_change = (uint32_t)hp_hdl->cn_info.cn_last_change; 3575 me->hp_child = 0; 3576 3577 /* 3578 * Child links are resolved later by di_hotplug_children(). 3579 * Store a reference to this di_hp_t in the list used later 3580 * by di_hotplug_children(). 3581 */ 3582 hp = kmem_zalloc(sizeof (i_hp_t), KM_SLEEP); 3583 hp->hp_off = off; 3584 hp->hp_child = hp_hdl->cn_info.cn_child; 3585 list_insert_tail(&st->hp_list, hp); 3586 3587 off += sizeof (struct di_hp); 3588 3589 /* Add name of this di_hp_t to the snapshot */ 3590 if (hp_hdl->cn_info.cn_name) { 3591 size = strlen(hp_hdl->cn_info.cn_name) + 1; 3592 me->hp_name = off = di_checkmem(st, off, size); 3593 (void) strcpy(di_mem_addr(st, off), 3594 hp_hdl->cn_info.cn_name); 3595 off += size; 3596 } 3597 3598 /* Add type description of this di_hp_t to the snapshot */ 3599 if (hp_hdl->cn_info.cn_type_str) { 3600 size = strlen(hp_hdl->cn_info.cn_type_str) + 1; 3601 me->hp_type_str = off = di_checkmem(st, off, size); 3602 (void) strcpy(di_mem_addr(st, off), 3603 hp_hdl->cn_info.cn_type_str); 3604 off += size; 3605 } 3606 3607 /* 3608 * Set link to next in the chain of di_hp_t nodes, 3609 * or terminate the chain when processing the last node. 3610 */ 3611 if (hp_hdl->next != NULL) { 3612 off = di_checkmem(st, off, sizeof (struct di_hp)); 3613 me->next = off; 3614 } else { 3615 me->next = 0; 3616 } 3617 3618 /* Update pointer to next in the chain */ 3619 hp_hdl = hp_hdl->next; 3620 3621 } while (hp_hdl); 3622 3623 return (off); 3624 } 3625 3626 /* 3627 * The driver is stateful across DINFOCPYALL and DINFOUSRLD. 3628 * This function encapsulates the state machine: 3629 * 3630 * -> IOC_IDLE -> IOC_SNAP -> IOC_DONE -> IOC_COPY -> 3631 * | SNAPSHOT USRLD | 3632 * -------------------------------------------------- 3633 * 3634 * Returns 0 on success and -1 on failure 3635 */ 3636 static int 3637 di_setstate(struct di_state *st, int new_state) 3638 { 3639 int ret = 0; 3640 3641 mutex_enter(&di_lock); 3642 switch (new_state) { 3643 case IOC_IDLE: 3644 case IOC_DONE: 3645 break; 3646 case IOC_SNAP: 3647 if (st->di_iocstate != IOC_IDLE) 3648 ret = -1; 3649 break; 3650 case IOC_COPY: 3651 if (st->di_iocstate != IOC_DONE) 3652 ret = -1; 3653 break; 3654 default: 3655 ret = -1; 3656 } 3657 3658 if (ret == 0) 3659 st->di_iocstate = new_state; 3660 else 3661 cmn_err(CE_NOTE, "incorrect state transition from %d to %d", 3662 st->di_iocstate, new_state); 3663 mutex_exit(&di_lock); 3664 return (ret); 3665 } 3666 3667 /* 3668 * We cannot assume the presence of the entire 3669 * snapshot in this routine. All we are guaranteed 3670 * is the di_all struct + 1 byte (for root_path) 3671 */ 3672 static int 3673 header_plus_one_ok(struct di_all *all) 3674 { 3675 /* 3676 * Refuse to read old versions 3677 */ 3678 if (all->version != DI_SNAPSHOT_VERSION) { 3679 CACHE_DEBUG((DI_ERR, "bad version: 0x%x", all->version)); 3680 return (0); 3681 } 3682 3683 if (all->cache_magic != DI_CACHE_MAGIC) { 3684 CACHE_DEBUG((DI_ERR, "bad magic #: 0x%x", all->cache_magic)); 3685 return (0); 3686 } 3687 3688 if (all->snapshot_time == 0) { 3689 CACHE_DEBUG((DI_ERR, "bad timestamp: %ld", all->snapshot_time)); 3690 return (0); 3691 } 3692 3693 if (all->top_devinfo == 0) { 3694 CACHE_DEBUG((DI_ERR, "NULL top devinfo")); 3695 return (0); 3696 } 3697 3698 if (all->map_size < sizeof (*all) + 1) { 3699 CACHE_DEBUG((DI_ERR, "bad map size: %u", all->map_size)); 3700 return (0); 3701 } 3702 3703 if (all->root_path[0] != '/' || all->root_path[1] != '\0') { 3704 CACHE_DEBUG((DI_ERR, "bad rootpath: %c%c", 3705 all->root_path[0], all->root_path[1])); 3706 return (0); 3707 } 3708 3709 /* 3710 * We can't check checksum here as we just have the header 3711 */ 3712 3713 return (1); 3714 } 3715 3716 static int 3717 chunk_write(struct vnode *vp, offset_t off, caddr_t buf, size_t len) 3718 { 3719 rlim64_t rlimit; 3720 ssize_t resid; 3721 int error = 0; 3722 3723 3724 rlimit = RLIM64_INFINITY; 3725 3726 while (len) { 3727 resid = 0; 3728 error = vn_rdwr(UIO_WRITE, vp, buf, len, off, 3729 UIO_SYSSPACE, FSYNC, rlimit, kcred, &resid); 3730 3731 if (error || resid < 0) { 3732 error = error ? error : EIO; 3733 CACHE_DEBUG((DI_ERR, "write error: %d", error)); 3734 break; 3735 } 3736 3737 /* 3738 * Check if we are making progress 3739 */ 3740 if (resid >= len) { 3741 error = ENOSPC; 3742 break; 3743 } 3744 buf += len - resid; 3745 off += len - resid; 3746 len = resid; 3747 } 3748 3749 return (error); 3750 } 3751 3752 static void 3753 di_cache_write(struct di_cache *cache) 3754 { 3755 struct di_all *all; 3756 struct vnode *vp; 3757 int oflags; 3758 size_t map_size; 3759 size_t chunk; 3760 offset_t off; 3761 int error; 3762 char *buf; 3763 3764 ASSERT(DI_CACHE_LOCKED(*cache)); 3765 ASSERT(!servicing_interrupt()); 3766 3767 if (cache->cache_size == 0) { 3768 ASSERT(cache->cache_data == NULL); 3769 CACHE_DEBUG((DI_ERR, "Empty cache. Skipping write")); 3770 return; 3771 } 3772 3773 ASSERT(cache->cache_size > 0); 3774 ASSERT(cache->cache_data); 3775 3776 if (!modrootloaded || rootvp == NULL || vn_is_readonly(rootvp)) { 3777 CACHE_DEBUG((DI_ERR, "Can't write to rootFS. Skipping write")); 3778 return; 3779 } 3780 3781 all = (struct di_all *)cache->cache_data; 3782 3783 if (!header_plus_one_ok(all)) { 3784 CACHE_DEBUG((DI_ERR, "Invalid header. Skipping write")); 3785 return; 3786 } 3787 3788 ASSERT(strcmp(all->root_path, "/") == 0); 3789 3790 /* 3791 * The cache_size is the total allocated memory for the cache. 3792 * The map_size is the actual size of valid data in the cache. 3793 * map_size may be smaller than cache_size but cannot exceed 3794 * cache_size. 3795 */ 3796 if (all->map_size > cache->cache_size) { 3797 CACHE_DEBUG((DI_ERR, "map_size (0x%x) > cache_size (0x%x)." 3798 " Skipping write", all->map_size, cache->cache_size)); 3799 return; 3800 } 3801 3802 /* 3803 * First unlink the temp file 3804 */ 3805 error = vn_remove(DI_CACHE_TEMP, UIO_SYSSPACE, RMFILE); 3806 if (error && error != ENOENT) { 3807 CACHE_DEBUG((DI_ERR, "%s: unlink failed: %d", 3808 DI_CACHE_TEMP, error)); 3809 } 3810 3811 if (error == EROFS) { 3812 CACHE_DEBUG((DI_ERR, "RDONLY FS. Skipping write")); 3813 return; 3814 } 3815 3816 vp = NULL; 3817 oflags = (FCREAT|FWRITE); 3818 if (error = vn_open(DI_CACHE_TEMP, UIO_SYSSPACE, oflags, 3819 DI_CACHE_PERMS, &vp, CRCREAT, 0)) { 3820 CACHE_DEBUG((DI_ERR, "%s: create failed: %d", 3821 DI_CACHE_TEMP, error)); 3822 return; 3823 } 3824 3825 ASSERT(vp); 3826 3827 /* 3828 * Paranoid: Check if the file is on a read-only FS 3829 */ 3830 if (vn_is_readonly(vp)) { 3831 CACHE_DEBUG((DI_ERR, "cannot write: readonly FS")); 3832 goto fail; 3833 } 3834 3835 /* 3836 * Note that we only write map_size bytes to disk - this saves 3837 * space as the actual cache size may be larger than size of 3838 * valid data in the cache. 3839 * Another advantage is that it makes verification of size 3840 * easier when the file is read later. 3841 */ 3842 map_size = all->map_size; 3843 off = 0; 3844 buf = cache->cache_data; 3845 3846 while (map_size) { 3847 ASSERT(map_size > 0); 3848 /* 3849 * Write in chunks so that VM system 3850 * is not overwhelmed 3851 */ 3852 if (map_size > di_chunk * PAGESIZE) 3853 chunk = di_chunk * PAGESIZE; 3854 else 3855 chunk = map_size; 3856 3857 error = chunk_write(vp, off, buf, chunk); 3858 if (error) { 3859 CACHE_DEBUG((DI_ERR, "write failed: off=0x%x: %d", 3860 off, error)); 3861 goto fail; 3862 } 3863 3864 off += chunk; 3865 buf += chunk; 3866 map_size -= chunk; 3867 3868 /* If low on memory, give pageout a chance to run */ 3869 if (freemem < desfree) 3870 delay(1); 3871 } 3872 3873 /* 3874 * Now sync the file and close it 3875 */ 3876 if (error = VOP_FSYNC(vp, FSYNC, kcred, NULL)) { 3877 CACHE_DEBUG((DI_ERR, "FSYNC failed: %d", error)); 3878 } 3879 3880 if (error = VOP_CLOSE(vp, oflags, 1, (offset_t)0, kcred, NULL)) { 3881 CACHE_DEBUG((DI_ERR, "close() failed: %d", error)); 3882 VN_RELE(vp); 3883 return; 3884 } 3885 3886 VN_RELE(vp); 3887 3888 /* 3889 * Now do the rename 3890 */ 3891 if (error = vn_rename(DI_CACHE_TEMP, DI_CACHE_FILE, UIO_SYSSPACE)) { 3892 CACHE_DEBUG((DI_ERR, "rename failed: %d", error)); 3893 return; 3894 } 3895 3896 CACHE_DEBUG((DI_INFO, "Cache write successful.")); 3897 3898 return; 3899 3900 fail: 3901 (void) VOP_CLOSE(vp, oflags, 1, (offset_t)0, kcred, NULL); 3902 VN_RELE(vp); 3903 } 3904 3905 3906 /* 3907 * Since we could be called early in boot, 3908 * use kobj_read_file() 3909 */ 3910 static void 3911 di_cache_read(struct di_cache *cache) 3912 { 3913 struct _buf *file; 3914 struct di_all *all; 3915 int n; 3916 size_t map_size, sz, chunk; 3917 offset_t off; 3918 caddr_t buf; 3919 uint32_t saved_crc, crc; 3920 3921 ASSERT(modrootloaded); 3922 ASSERT(DI_CACHE_LOCKED(*cache)); 3923 ASSERT(cache->cache_data == NULL); 3924 ASSERT(cache->cache_size == 0); 3925 ASSERT(!servicing_interrupt()); 3926 3927 file = kobj_open_file(DI_CACHE_FILE); 3928 if (file == (struct _buf *)-1) { 3929 CACHE_DEBUG((DI_ERR, "%s: open failed: %d", 3930 DI_CACHE_FILE, ENOENT)); 3931 return; 3932 } 3933 3934 /* 3935 * Read in the header+root_path first. The root_path must be "/" 3936 */ 3937 all = kmem_zalloc(sizeof (*all) + 1, KM_SLEEP); 3938 n = kobj_read_file(file, (caddr_t)all, sizeof (*all) + 1, 0); 3939 3940 if ((n != sizeof (*all) + 1) || !header_plus_one_ok(all)) { 3941 kmem_free(all, sizeof (*all) + 1); 3942 kobj_close_file(file); 3943 CACHE_DEBUG((DI_ERR, "cache header: read error or invalid")); 3944 return; 3945 } 3946 3947 map_size = all->map_size; 3948 3949 kmem_free(all, sizeof (*all) + 1); 3950 3951 ASSERT(map_size >= sizeof (*all) + 1); 3952 3953 buf = di_cache.cache_data = kmem_alloc(map_size, KM_SLEEP); 3954 sz = map_size; 3955 off = 0; 3956 while (sz) { 3957 /* Don't overload VM with large reads */ 3958 chunk = (sz > di_chunk * PAGESIZE) ? di_chunk * PAGESIZE : sz; 3959 n = kobj_read_file(file, buf, chunk, off); 3960 if (n != chunk) { 3961 CACHE_DEBUG((DI_ERR, "%s: read error at offset: %lld", 3962 DI_CACHE_FILE, off)); 3963 goto fail; 3964 } 3965 off += chunk; 3966 buf += chunk; 3967 sz -= chunk; 3968 } 3969 3970 ASSERT(off == map_size); 3971 3972 /* 3973 * Read past expected EOF to verify size. 3974 */ 3975 if (kobj_read_file(file, (caddr_t)&sz, 1, off) > 0) { 3976 CACHE_DEBUG((DI_ERR, "%s: file size changed", DI_CACHE_FILE)); 3977 goto fail; 3978 } 3979 3980 all = (struct di_all *)di_cache.cache_data; 3981 if (!header_plus_one_ok(all)) { 3982 CACHE_DEBUG((DI_ERR, "%s: file header changed", DI_CACHE_FILE)); 3983 goto fail; 3984 } 3985 3986 /* 3987 * Compute CRC with checksum field in the cache data set to 0 3988 */ 3989 saved_crc = all->cache_checksum; 3990 all->cache_checksum = 0; 3991 CRC32(crc, di_cache.cache_data, map_size, -1U, crc32_table); 3992 all->cache_checksum = saved_crc; 3993 3994 if (crc != all->cache_checksum) { 3995 CACHE_DEBUG((DI_ERR, 3996 "%s: checksum error: expected=0x%x actual=0x%x", 3997 DI_CACHE_FILE, all->cache_checksum, crc)); 3998 goto fail; 3999 } 4000 4001 if (all->map_size != map_size) { 4002 CACHE_DEBUG((DI_ERR, "%s: map size changed", DI_CACHE_FILE)); 4003 goto fail; 4004 } 4005 4006 kobj_close_file(file); 4007 4008 di_cache.cache_size = map_size; 4009 4010 return; 4011 4012 fail: 4013 kmem_free(di_cache.cache_data, map_size); 4014 kobj_close_file(file); 4015 di_cache.cache_data = NULL; 4016 di_cache.cache_size = 0; 4017 } 4018 4019 4020 /* 4021 * Checks if arguments are valid for using the cache. 4022 */ 4023 static int 4024 cache_args_valid(struct di_state *st, int *error) 4025 { 4026 ASSERT(error); 4027 ASSERT(st->mem_size > 0); 4028 ASSERT(st->memlist != NULL); 4029 4030 if (!modrootloaded || !i_ddi_io_initialized()) { 4031 CACHE_DEBUG((DI_ERR, 4032 "cache lookup failure: I/O subsystem not inited")); 4033 *error = ENOTACTIVE; 4034 return (0); 4035 } 4036 4037 /* 4038 * No other flags allowed with DINFOCACHE 4039 */ 4040 if (st->command != (DINFOCACHE & DIIOC_MASK)) { 4041 CACHE_DEBUG((DI_ERR, 4042 "cache lookup failure: bad flags: 0x%x", 4043 st->command)); 4044 *error = EINVAL; 4045 return (0); 4046 } 4047 4048 if (strcmp(DI_ALL_PTR(st)->root_path, "/") != 0) { 4049 CACHE_DEBUG((DI_ERR, 4050 "cache lookup failure: bad root: %s", 4051 DI_ALL_PTR(st)->root_path)); 4052 *error = EINVAL; 4053 return (0); 4054 } 4055 4056 CACHE_DEBUG((DI_INFO, "cache lookup args ok: 0x%x", st->command)); 4057 4058 *error = 0; 4059 4060 return (1); 4061 } 4062 4063 static int 4064 snapshot_is_cacheable(struct di_state *st) 4065 { 4066 ASSERT(st->mem_size > 0); 4067 ASSERT(st->memlist != NULL); 4068 4069 if ((st->command & DI_CACHE_SNAPSHOT_FLAGS) != 4070 (DI_CACHE_SNAPSHOT_FLAGS & DIIOC_MASK)) { 4071 CACHE_DEBUG((DI_INFO, 4072 "not cacheable: incompatible flags: 0x%x", 4073 st->command)); 4074 return (0); 4075 } 4076 4077 if (strcmp(DI_ALL_PTR(st)->root_path, "/") != 0) { 4078 CACHE_DEBUG((DI_INFO, 4079 "not cacheable: incompatible root path: %s", 4080 DI_ALL_PTR(st)->root_path)); 4081 return (0); 4082 } 4083 4084 CACHE_DEBUG((DI_INFO, "cacheable snapshot request: 0x%x", st->command)); 4085 4086 return (1); 4087 } 4088 4089 static int 4090 di_cache_lookup(struct di_state *st) 4091 { 4092 size_t rval; 4093 int cache_valid; 4094 4095 ASSERT(cache_args_valid(st, &cache_valid)); 4096 ASSERT(modrootloaded); 4097 4098 DI_CACHE_LOCK(di_cache); 4099 4100 /* 4101 * The following assignment determines the validity 4102 * of the cache as far as this snapshot is concerned. 4103 */ 4104 cache_valid = di_cache.cache_valid; 4105 4106 if (cache_valid && di_cache.cache_data == NULL) { 4107 di_cache_read(&di_cache); 4108 /* check for read or file error */ 4109 if (di_cache.cache_data == NULL) 4110 cache_valid = 0; 4111 } 4112 4113 if (cache_valid) { 4114 /* 4115 * Ok, the cache was valid as of this particular 4116 * snapshot. Copy the cached snapshot. This is safe 4117 * to do as the cache cannot be freed (we hold the 4118 * cache lock). Free the memory allocated in di_state 4119 * up until this point - we will simply copy everything 4120 * in the cache. 4121 */ 4122 4123 ASSERT(di_cache.cache_data != NULL); 4124 ASSERT(di_cache.cache_size > 0); 4125 4126 di_freemem(st); 4127 4128 rval = 0; 4129 if (di_cache2mem(&di_cache, st) > 0) { 4130 /* 4131 * map_size is size of valid data in the 4132 * cached snapshot and may be less than 4133 * size of the cache. 4134 */ 4135 ASSERT(DI_ALL_PTR(st)); 4136 rval = DI_ALL_PTR(st)->map_size; 4137 4138 ASSERT(rval >= sizeof (struct di_all)); 4139 ASSERT(rval <= di_cache.cache_size); 4140 } 4141 } else { 4142 /* 4143 * The cache isn't valid, we need to take a snapshot. 4144 * Set the command flags appropriately 4145 */ 4146 ASSERT(st->command == (DINFOCACHE & DIIOC_MASK)); 4147 st->command = (DI_CACHE_SNAPSHOT_FLAGS & DIIOC_MASK); 4148 rval = di_cache_update(st); 4149 st->command = (DINFOCACHE & DIIOC_MASK); 4150 } 4151 4152 DI_CACHE_UNLOCK(di_cache); 4153 4154 /* 4155 * For cached snapshots, the devinfo driver always returns 4156 * a snapshot rooted at "/". 4157 */ 4158 ASSERT(rval == 0 || strcmp(DI_ALL_PTR(st)->root_path, "/") == 0); 4159 4160 return ((int)rval); 4161 } 4162 4163 /* 4164 * This is a forced update of the cache - the previous state of the cache 4165 * may be: 4166 * - unpopulated 4167 * - populated and invalid 4168 * - populated and valid 4169 */ 4170 static int 4171 di_cache_update(struct di_state *st) 4172 { 4173 int rval; 4174 uint32_t crc; 4175 struct di_all *all; 4176 4177 ASSERT(DI_CACHE_LOCKED(di_cache)); 4178 ASSERT(snapshot_is_cacheable(st)); 4179 4180 /* 4181 * Free the in-core cache and the on-disk file (if they exist) 4182 */ 4183 i_ddi_di_cache_free(&di_cache); 4184 4185 /* 4186 * Set valid flag before taking the snapshot, 4187 * so that any invalidations that arrive 4188 * during or after the snapshot are not 4189 * removed by us. 4190 */ 4191 atomic_or_32(&di_cache.cache_valid, 1); 4192 4193 rval = di_snapshot_and_clean(st); 4194 4195 if (rval == 0) { 4196 CACHE_DEBUG((DI_ERR, "can't update cache: bad snapshot")); 4197 return (0); 4198 } 4199 4200 DI_ALL_PTR(st)->map_size = rval; 4201 if (di_mem2cache(st, &di_cache) == 0) { 4202 CACHE_DEBUG((DI_ERR, "can't update cache: copy failed")); 4203 return (0); 4204 } 4205 4206 ASSERT(di_cache.cache_data); 4207 ASSERT(di_cache.cache_size > 0); 4208 4209 /* 4210 * Now that we have cached the snapshot, compute its checksum. 4211 * The checksum is only computed over the valid data in the 4212 * cache, not the entire cache. 4213 * Also, set all the fields (except checksum) before computing 4214 * checksum. 4215 */ 4216 all = (struct di_all *)di_cache.cache_data; 4217 all->cache_magic = DI_CACHE_MAGIC; 4218 all->map_size = rval; 4219 4220 ASSERT(all->cache_checksum == 0); 4221 CRC32(crc, di_cache.cache_data, all->map_size, -1U, crc32_table); 4222 all->cache_checksum = crc; 4223 4224 di_cache_write(&di_cache); 4225 4226 return (rval); 4227 } 4228 4229 static void 4230 di_cache_print(di_cache_debug_t msglevel, char *fmt, ...) 4231 { 4232 va_list ap; 4233 4234 if (di_cache_debug <= DI_QUIET) 4235 return; 4236 4237 if (di_cache_debug < msglevel) 4238 return; 4239 4240 switch (msglevel) { 4241 case DI_ERR: 4242 msglevel = CE_WARN; 4243 break; 4244 case DI_INFO: 4245 case DI_TRACE: 4246 default: 4247 msglevel = CE_NOTE; 4248 break; 4249 } 4250 4251 va_start(ap, fmt); 4252 vcmn_err(msglevel, fmt, ap); 4253 va_end(ap); 4254 } 4255 4256 static void 4257 di_hotplug_children(struct di_state *st) 4258 { 4259 di_off_t off; 4260 struct di_hp *hp; 4261 struct i_hp *hp_list_node; 4262 4263 while (hp_list_node = (struct i_hp *)list_remove_head(&st->hp_list)) { 4264 4265 if ((hp_list_node->hp_child != NULL) && 4266 (di_dip_find(st, hp_list_node->hp_child, &off) == 0)) { 4267 hp = DI_HP(di_mem_addr(st, hp_list_node->hp_off)); 4268 hp->hp_child = off; 4269 } 4270 4271 kmem_free(hp_list_node, sizeof (i_hp_t)); 4272 } 4273 4274 list_destroy(&st->hp_list); 4275 }