1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 26 /* 27 * driver for accessing kernel devinfo tree. 28 */ 29 #include <sys/types.h> 30 #include <sys/pathname.h> 31 #include <sys/debug.h> 32 #include <sys/autoconf.h> 33 #include <sys/vmsystm.h> 34 #include <sys/conf.h> 35 #include <sys/file.h> 36 #include <sys/kmem.h> 37 #include <sys/modctl.h> 38 #include <sys/stat.h> 39 #include <sys/ddi.h> 40 #include <sys/sunddi.h> 41 #include <sys/sunldi_impl.h> 42 #include <sys/sunndi.h> 43 #include <sys/esunddi.h> 44 #include <sys/sunmdi.h> 45 #include <sys/ddi_impldefs.h> 46 #include <sys/ndi_impldefs.h> 47 #include <sys/mdi_impldefs.h> 48 #include <sys/devinfo_impl.h> 49 #include <sys/thread.h> 50 #include <sys/modhash.h> 51 #include <sys/bitmap.h> 52 #include <util/qsort.h> 53 #include <sys/disp.h> 54 #include <sys/kobj.h> 55 #include <sys/crc32.h> 56 #include <sys/ddi_hp.h> 57 #include <sys/ddi_hp_impl.h> 58 #include <sys/sysmacros.h> 59 #include <sys/list.h> 60 61 62 #ifdef DEBUG 63 static int di_debug; 64 #define dcmn_err(args) if (di_debug >= 1) cmn_err args 65 #define dcmn_err2(args) if (di_debug >= 2) cmn_err args 66 #define dcmn_err3(args) if (di_debug >= 3) cmn_err args 67 #else 68 #define dcmn_err(args) /* nothing */ 69 #define dcmn_err2(args) /* nothing */ 70 #define dcmn_err3(args) /* nothing */ 71 #endif 72 73 /* 74 * We partition the space of devinfo minor nodes equally between the full and 75 * unprivileged versions of the driver. The even-numbered minor nodes are the 76 * full version, while the odd-numbered ones are the read-only version. 77 */ 78 static int di_max_opens = 32; 79 80 static int di_prop_dyn = 1; /* enable dynamic property support */ 81 82 #define DI_FULL_PARENT 0 83 #define DI_READONLY_PARENT 1 84 #define DI_NODE_SPECIES 2 85 #define DI_UNPRIVILEGED_NODE(x) (((x) % 2) != 0) 86 87 #define IOC_IDLE 0 /* snapshot ioctl states */ 88 #define IOC_SNAP 1 /* snapshot in progress */ 89 #define IOC_DONE 2 /* snapshot done, but not copied out */ 90 #define IOC_COPY 3 /* copyout in progress */ 91 92 /* 93 * Keep max alignment so we can move snapshot to different platforms. 94 * 95 * NOTE: Most callers should rely on the di_checkmem return value 96 * being aligned, and reestablish *off_p with aligned value, instead 97 * of trying to align size of their allocations: this approach will 98 * minimize memory use. 99 */ 100 #define DI_ALIGN(addr) ((addr + 7l) & ~7l) 101 102 /* 103 * To avoid wasting memory, make a linked list of memory chunks. 104 * Size of each chunk is buf_size. 105 */ 106 struct di_mem { 107 struct di_mem *next; /* link to next chunk */ 108 char *buf; /* contiguous kernel memory */ 109 size_t buf_size; /* size of buf in bytes */ 110 devmap_cookie_t cook; /* cookie from ddi_umem_alloc */ 111 }; 112 113 /* 114 * This is a stack for walking the tree without using recursion. 115 * When the devinfo tree height is above some small size, one 116 * gets watchdog resets on sun4m. 117 */ 118 struct di_stack { 119 void *offset[MAX_TREE_DEPTH]; 120 struct dev_info *dip[MAX_TREE_DEPTH]; 121 int circ[MAX_TREE_DEPTH]; 122 int depth; /* depth of current node to be copied */ 123 }; 124 125 #define TOP_OFFSET(stack) \ 126 ((di_off_t *)(stack)->offset[(stack)->depth - 1]) 127 #define TOP_NODE(stack) \ 128 ((stack)->dip[(stack)->depth - 1]) 129 #define PARENT_OFFSET(stack) \ 130 ((di_off_t *)(stack)->offset[(stack)->depth - 2]) 131 #define EMPTY_STACK(stack) ((stack)->depth == 0) 132 #define POP_STACK(stack) { \ 133 ndi_devi_exit((dev_info_t *)TOP_NODE(stack), \ 134 (stack)->circ[(stack)->depth - 1]); \ 135 ((stack)->depth--); \ 136 } 137 #define PUSH_STACK(stack, node, off_p) { \ 138 ASSERT(node != NULL); \ 139 ndi_devi_enter((dev_info_t *)node, &(stack)->circ[(stack)->depth]); \ 140 (stack)->dip[(stack)->depth] = (node); \ 141 (stack)->offset[(stack)->depth] = (void *)(off_p); \ 142 ((stack)->depth)++; \ 143 } 144 145 #define DI_ALL_PTR(s) DI_ALL(di_mem_addr((s), 0)) 146 147 /* 148 * With devfs, the device tree has no global locks. The device tree is 149 * dynamic and dips may come and go if they are not locked locally. Under 150 * these conditions, pointers are no longer reliable as unique IDs. 151 * Specifically, these pointers cannot be used as keys for hash tables 152 * as the same devinfo structure may be freed in one part of the tree only 153 * to be allocated as the structure for a different device in another 154 * part of the tree. This can happen if DR and the snapshot are 155 * happening concurrently. 156 * The following data structures act as keys for devinfo nodes and 157 * pathinfo nodes. 158 */ 159 160 enum di_ktype { 161 DI_DKEY = 1, 162 DI_PKEY = 2 163 }; 164 165 struct di_dkey { 166 dev_info_t *dk_dip; 167 major_t dk_major; 168 int dk_inst; 169 pnode_t dk_nodeid; 170 }; 171 172 struct di_pkey { 173 mdi_pathinfo_t *pk_pip; 174 char *pk_path_addr; 175 dev_info_t *pk_client; 176 dev_info_t *pk_phci; 177 }; 178 179 struct di_key { 180 enum di_ktype k_type; 181 union { 182 struct di_dkey dkey; 183 struct di_pkey pkey; 184 } k_u; 185 }; 186 187 188 struct i_lnode; 189 190 typedef struct i_link { 191 /* 192 * If a di_link struct representing this i_link struct makes it 193 * into the snapshot, then self will point to the offset of 194 * the di_link struct in the snapshot 195 */ 196 di_off_t self; 197 198 int spec_type; /* block or char access type */ 199 struct i_lnode *src_lnode; /* src i_lnode */ 200 struct i_lnode *tgt_lnode; /* tgt i_lnode */ 201 struct i_link *src_link_next; /* next src i_link /w same i_lnode */ 202 struct i_link *tgt_link_next; /* next tgt i_link /w same i_lnode */ 203 } i_link_t; 204 205 typedef struct i_lnode { 206 /* 207 * If a di_lnode struct representing this i_lnode struct makes it 208 * into the snapshot, then self will point to the offset of 209 * the di_lnode struct in the snapshot 210 */ 211 di_off_t self; 212 213 /* 214 * used for hashing and comparing i_lnodes 215 */ 216 int modid; 217 218 /* 219 * public information describing a link endpoint 220 */ 221 struct di_node *di_node; /* di_node in snapshot */ 222 dev_t devt; /* devt */ 223 224 /* 225 * i_link ptr to links coming into this i_lnode node 226 * (this i_lnode is the target of these i_links) 227 */ 228 i_link_t *link_in; 229 230 /* 231 * i_link ptr to links going out of this i_lnode node 232 * (this i_lnode is the source of these i_links) 233 */ 234 i_link_t *link_out; 235 } i_lnode_t; 236 237 typedef struct i_hp { 238 di_off_t hp_off; /* Offset of di_hp_t in snapshot */ 239 dev_info_t *hp_child; /* Child devinfo node of the di_hp_t */ 240 list_node_t hp_link; /* List linkage */ 241 } i_hp_t; 242 243 /* 244 * Soft state associated with each instance of driver open. 245 */ 246 static struct di_state { 247 di_off_t mem_size; /* total # bytes in memlist */ 248 struct di_mem *memlist; /* head of memlist */ 249 uint_t command; /* command from ioctl */ 250 int di_iocstate; /* snapshot ioctl state */ 251 mod_hash_t *reg_dip_hash; 252 mod_hash_t *reg_pip_hash; 253 int lnode_count; 254 int link_count; 255 256 mod_hash_t *lnode_hash; 257 mod_hash_t *link_hash; 258 259 list_t hp_list; 260 } **di_states; 261 262 static kmutex_t di_lock; /* serialize instance assignment */ 263 264 typedef enum { 265 DI_QUIET = 0, /* DI_QUIET must always be 0 */ 266 DI_ERR, 267 DI_INFO, 268 DI_TRACE, 269 DI_TRACE1, 270 DI_TRACE2 271 } di_cache_debug_t; 272 273 static uint_t di_chunk = 32; /* I/O chunk size in pages */ 274 275 #define DI_CACHE_LOCK(c) (mutex_enter(&(c).cache_lock)) 276 #define DI_CACHE_UNLOCK(c) (mutex_exit(&(c).cache_lock)) 277 #define DI_CACHE_LOCKED(c) (mutex_owned(&(c).cache_lock)) 278 279 /* 280 * Check that whole device tree is being configured as a pre-condition for 281 * cleaning up /etc/devices files. 282 */ 283 #define DEVICES_FILES_CLEANABLE(st) \ 284 (((st)->command & DINFOSUBTREE) && ((st)->command & DINFOFORCE) && \ 285 strcmp(DI_ALL_PTR(st)->root_path, "/") == 0) 286 287 #define CACHE_DEBUG(args) \ 288 { if (di_cache_debug != DI_QUIET) di_cache_print args; } 289 290 typedef struct phci_walk_arg { 291 di_off_t off; 292 struct di_state *st; 293 } phci_walk_arg_t; 294 295 static int di_open(dev_t *, int, int, cred_t *); 296 static int di_ioctl(dev_t, int, intptr_t, int, cred_t *, int *); 297 static int di_close(dev_t, int, int, cred_t *); 298 static int di_info(dev_info_t *, ddi_info_cmd_t, void *, void **); 299 static int di_attach(dev_info_t *, ddi_attach_cmd_t); 300 static int di_detach(dev_info_t *, ddi_detach_cmd_t); 301 302 static di_off_t di_copyformat(di_off_t, struct di_state *, intptr_t, int); 303 static di_off_t di_snapshot_and_clean(struct di_state *); 304 static di_off_t di_copydevnm(di_off_t *, struct di_state *); 305 static di_off_t di_copytree(struct dev_info *, di_off_t *, struct di_state *); 306 static di_off_t di_copynode(struct dev_info *, struct di_stack *, 307 struct di_state *); 308 static di_off_t di_getmdata(struct ddi_minor_data *, di_off_t *, di_off_t, 309 struct di_state *); 310 static di_off_t di_getppdata(struct dev_info *, di_off_t *, struct di_state *); 311 static di_off_t di_getdpdata(struct dev_info *, di_off_t *, struct di_state *); 312 static di_off_t di_gethpdata(ddi_hp_cn_handle_t *, di_off_t *, 313 struct di_state *); 314 static di_off_t di_getprop(int, struct ddi_prop **, di_off_t *, 315 struct di_state *, struct dev_info *); 316 static void di_allocmem(struct di_state *, size_t); 317 static void di_freemem(struct di_state *); 318 static void di_copymem(struct di_state *st, caddr_t buf, size_t bufsiz); 319 static di_off_t di_checkmem(struct di_state *, di_off_t, size_t); 320 static void *di_mem_addr(struct di_state *, di_off_t); 321 static int di_setstate(struct di_state *, int); 322 static void di_register_dip(struct di_state *, dev_info_t *, di_off_t); 323 static void di_register_pip(struct di_state *, mdi_pathinfo_t *, di_off_t); 324 static di_off_t di_getpath_data(dev_info_t *, di_off_t *, di_off_t, 325 struct di_state *, int); 326 static di_off_t di_getlink_data(di_off_t, struct di_state *); 327 static int di_dip_find(struct di_state *st, dev_info_t *node, di_off_t *off_p); 328 329 static int cache_args_valid(struct di_state *st, int *error); 330 static int snapshot_is_cacheable(struct di_state *st); 331 static int di_cache_lookup(struct di_state *st); 332 static int di_cache_update(struct di_state *st); 333 static void di_cache_print(di_cache_debug_t msglevel, char *fmt, ...); 334 static int build_vhci_list(dev_info_t *vh_devinfo, void *arg); 335 static int build_phci_list(dev_info_t *ph_devinfo, void *arg); 336 static void di_hotplug_children(struct di_state *st); 337 338 extern int modrootloaded; 339 extern void mdi_walk_vhcis(int (*)(dev_info_t *, void *), void *); 340 extern void mdi_vhci_walk_phcis(dev_info_t *, 341 int (*)(dev_info_t *, void *), void *); 342 343 344 static struct cb_ops di_cb_ops = { 345 di_open, /* open */ 346 di_close, /* close */ 347 nodev, /* strategy */ 348 nodev, /* print */ 349 nodev, /* dump */ 350 nodev, /* read */ 351 nodev, /* write */ 352 di_ioctl, /* ioctl */ 353 nodev, /* devmap */ 354 nodev, /* mmap */ 355 nodev, /* segmap */ 356 nochpoll, /* poll */ 357 ddi_prop_op, /* prop_op */ 358 NULL, /* streamtab */ 359 D_NEW | D_MP /* Driver compatibility flag */ 360 }; 361 362 static struct dev_ops di_ops = { 363 DEVO_REV, /* devo_rev, */ 364 0, /* refcnt */ 365 di_info, /* info */ 366 nulldev, /* identify */ 367 nulldev, /* probe */ 368 di_attach, /* attach */ 369 di_detach, /* detach */ 370 nodev, /* reset */ 371 &di_cb_ops, /* driver operations */ 372 NULL /* bus operations */ 373 }; 374 375 /* 376 * Module linkage information for the kernel. 377 */ 378 static struct modldrv modldrv = { 379 &mod_driverops, 380 "DEVINFO Driver", 381 &di_ops 382 }; 383 384 static struct modlinkage modlinkage = { 385 MODREV_1, 386 &modldrv, 387 NULL 388 }; 389 390 int 391 _init(void) 392 { 393 int error; 394 395 mutex_init(&di_lock, NULL, MUTEX_DRIVER, NULL); 396 397 error = mod_install(&modlinkage); 398 if (error != 0) { 399 mutex_destroy(&di_lock); 400 return (error); 401 } 402 403 return (0); 404 } 405 406 int 407 _info(struct modinfo *modinfop) 408 { 409 return (mod_info(&modlinkage, modinfop)); 410 } 411 412 int 413 _fini(void) 414 { 415 int error; 416 417 error = mod_remove(&modlinkage); 418 if (error != 0) { 419 return (error); 420 } 421 422 mutex_destroy(&di_lock); 423 return (0); 424 } 425 426 static dev_info_t *di_dip; 427 428 /*ARGSUSED*/ 429 static int 430 di_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 431 { 432 int error = DDI_FAILURE; 433 434 switch (infocmd) { 435 case DDI_INFO_DEVT2DEVINFO: 436 *result = (void *)di_dip; 437 error = DDI_SUCCESS; 438 break; 439 case DDI_INFO_DEVT2INSTANCE: 440 /* 441 * All dev_t's map to the same, single instance. 442 */ 443 *result = (void *)0; 444 error = DDI_SUCCESS; 445 break; 446 default: 447 break; 448 } 449 450 return (error); 451 } 452 453 static int 454 di_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) 455 { 456 int error = DDI_FAILURE; 457 458 switch (cmd) { 459 case DDI_ATTACH: 460 di_states = kmem_zalloc( 461 di_max_opens * sizeof (struct di_state *), KM_SLEEP); 462 463 if (ddi_create_minor_node(dip, "devinfo", S_IFCHR, 464 DI_FULL_PARENT, DDI_PSEUDO, NULL) == DDI_FAILURE || 465 ddi_create_minor_node(dip, "devinfo,ro", S_IFCHR, 466 DI_READONLY_PARENT, DDI_PSEUDO, NULL) == DDI_FAILURE) { 467 kmem_free(di_states, 468 di_max_opens * sizeof (struct di_state *)); 469 ddi_remove_minor_node(dip, NULL); 470 error = DDI_FAILURE; 471 } else { 472 di_dip = dip; 473 ddi_report_dev(dip); 474 475 error = DDI_SUCCESS; 476 } 477 break; 478 default: 479 error = DDI_FAILURE; 480 break; 481 } 482 483 return (error); 484 } 485 486 static int 487 di_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 488 { 489 int error = DDI_FAILURE; 490 491 switch (cmd) { 492 case DDI_DETACH: 493 ddi_remove_minor_node(dip, NULL); 494 di_dip = NULL; 495 kmem_free(di_states, di_max_opens * sizeof (struct di_state *)); 496 497 error = DDI_SUCCESS; 498 break; 499 default: 500 error = DDI_FAILURE; 501 break; 502 } 503 504 return (error); 505 } 506 507 /* 508 * Allow multiple opens by tweaking the dev_t such that it looks like each 509 * open is getting a different minor device. Each minor gets a separate 510 * entry in the di_states[] table. Based on the original minor number, we 511 * discriminate opens of the full and read-only nodes. If all of the instances 512 * of the selected minor node are currently open, we return EAGAIN. 513 */ 514 /*ARGSUSED*/ 515 static int 516 di_open(dev_t *devp, int flag, int otyp, cred_t *credp) 517 { 518 int m; 519 minor_t minor_parent = getminor(*devp); 520 521 if (minor_parent != DI_FULL_PARENT && 522 minor_parent != DI_READONLY_PARENT) 523 return (ENXIO); 524 525 mutex_enter(&di_lock); 526 527 for (m = minor_parent; m < di_max_opens; m += DI_NODE_SPECIES) { 528 if (di_states[m] != NULL) 529 continue; 530 531 di_states[m] = kmem_zalloc(sizeof (struct di_state), KM_SLEEP); 532 break; /* It's ours. */ 533 } 534 535 if (m >= di_max_opens) { 536 /* 537 * maximum open instance for device reached 538 */ 539 mutex_exit(&di_lock); 540 dcmn_err((CE_WARN, "devinfo: maximum devinfo open reached")); 541 return (EAGAIN); 542 } 543 mutex_exit(&di_lock); 544 545 ASSERT(m < di_max_opens); 546 *devp = makedevice(getmajor(*devp), (minor_t)(m + DI_NODE_SPECIES)); 547 548 dcmn_err((CE_CONT, "di_open: thread = %p, assigned minor = %d\n", 549 (void *)curthread, m + DI_NODE_SPECIES)); 550 551 return (0); 552 } 553 554 /*ARGSUSED*/ 555 static int 556 di_close(dev_t dev, int flag, int otype, cred_t *cred_p) 557 { 558 struct di_state *st; 559 int m = (int)getminor(dev) - DI_NODE_SPECIES; 560 561 if (m < 0) { 562 cmn_err(CE_WARN, "closing non-existent devinfo minor %d", 563 m + DI_NODE_SPECIES); 564 return (ENXIO); 565 } 566 567 st = di_states[m]; 568 ASSERT(m < di_max_opens && st != NULL); 569 570 di_freemem(st); 571 kmem_free(st, sizeof (struct di_state)); 572 573 /* 574 * empty slot in state table 575 */ 576 mutex_enter(&di_lock); 577 di_states[m] = NULL; 578 dcmn_err((CE_CONT, "di_close: thread = %p, assigned minor = %d\n", 579 (void *)curthread, m + DI_NODE_SPECIES)); 580 mutex_exit(&di_lock); 581 582 return (0); 583 } 584 585 586 /*ARGSUSED*/ 587 static int 588 di_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp, int *rvalp) 589 { 590 int rv, error; 591 di_off_t off; 592 struct di_all *all; 593 struct di_state *st; 594 int m = (int)getminor(dev) - DI_NODE_SPECIES; 595 major_t i; 596 char *drv_name; 597 size_t map_size, size; 598 struct di_mem *dcp; 599 int ndi_flags; 600 601 if (m < 0 || m >= di_max_opens) { 602 return (ENXIO); 603 } 604 605 st = di_states[m]; 606 ASSERT(st != NULL); 607 608 dcmn_err2((CE_CONT, "di_ioctl: mode = %x, cmd = %x\n", mode, cmd)); 609 610 switch (cmd) { 611 case DINFOIDENT: 612 /* 613 * This is called from di_init to verify that the driver 614 * opened is indeed devinfo. The purpose is to guard against 615 * sending ioctl to an unknown driver in case of an 616 * unresolved major number conflict during bfu. 617 */ 618 *rvalp = DI_MAGIC; 619 return (0); 620 621 case DINFOLODRV: 622 /* 623 * Hold an installed driver and return the result 624 */ 625 if (DI_UNPRIVILEGED_NODE(m)) { 626 /* 627 * Only the fully enabled instances may issue 628 * DINFOLDDRV. 629 */ 630 return (EACCES); 631 } 632 633 drv_name = kmem_alloc(MAXNAMELEN, KM_SLEEP); 634 if (ddi_copyin((void *)arg, drv_name, MAXNAMELEN, mode) != 0) { 635 kmem_free(drv_name, MAXNAMELEN); 636 return (EFAULT); 637 } 638 639 /* 640 * Some 3rd party driver's _init() walks the device tree, 641 * so we load the driver module before configuring driver. 642 */ 643 i = ddi_name_to_major(drv_name); 644 if (ddi_hold_driver(i) == NULL) { 645 kmem_free(drv_name, MAXNAMELEN); 646 return (ENXIO); 647 } 648 649 ndi_flags = NDI_DEVI_PERSIST | NDI_CONFIG | NDI_NO_EVENT; 650 651 /* 652 * i_ddi_load_drvconf() below will trigger a reprobe 653 * via reset_nexus_flags(). NDI_DRV_CONF_REPROBE isn't 654 * needed here. 655 */ 656 modunload_disable(); 657 (void) i_ddi_load_drvconf(i); 658 (void) ndi_devi_config_driver(ddi_root_node(), ndi_flags, i); 659 kmem_free(drv_name, MAXNAMELEN); 660 ddi_rele_driver(i); 661 rv = i_ddi_devs_attached(i); 662 modunload_enable(); 663 664 i_ddi_di_cache_invalidate(); 665 666 return ((rv == DDI_SUCCESS)? 0 : ENXIO); 667 668 case DINFOUSRLD: 669 /* 670 * The case for copying snapshot to userland 671 */ 672 if (di_setstate(st, IOC_COPY) == -1) 673 return (EBUSY); 674 675 map_size = DI_ALL_PTR(st)->map_size; 676 if (map_size == 0) { 677 (void) di_setstate(st, IOC_DONE); 678 return (EFAULT); 679 } 680 681 /* 682 * copyout the snapshot 683 */ 684 map_size = (map_size + PAGEOFFSET) & PAGEMASK; 685 686 /* 687 * Return the map size, so caller may do a sanity 688 * check against the return value of snapshot ioctl() 689 */ 690 *rvalp = (int)map_size; 691 692 /* 693 * Copy one chunk at a time 694 */ 695 off = 0; 696 dcp = st->memlist; 697 while (map_size) { 698 size = dcp->buf_size; 699 if (map_size <= size) { 700 size = map_size; 701 } 702 703 if (ddi_copyout(di_mem_addr(st, off), 704 (void *)(arg + off), size, mode) != 0) { 705 (void) di_setstate(st, IOC_DONE); 706 return (EFAULT); 707 } 708 709 map_size -= size; 710 off += size; 711 dcp = dcp->next; 712 } 713 714 di_freemem(st); 715 (void) di_setstate(st, IOC_IDLE); 716 return (0); 717 718 default: 719 if ((cmd & ~DIIOC_MASK) != DIIOC) { 720 /* 721 * Invalid ioctl command 722 */ 723 return (ENOTTY); 724 } 725 /* 726 * take a snapshot 727 */ 728 st->command = cmd & DIIOC_MASK; 729 /*FALLTHROUGH*/ 730 } 731 732 /* 733 * Obtain enough memory to hold header + rootpath. We prevent kernel 734 * memory exhaustion by freeing any previously allocated snapshot and 735 * refusing the operation; otherwise we would be allowing ioctl(), 736 * ioctl(), ioctl(), ..., panic. 737 */ 738 if (di_setstate(st, IOC_SNAP) == -1) 739 return (EBUSY); 740 741 /* 742 * Initial memlist always holds di_all and the root_path - and 743 * is at least a page and size. 744 */ 745 size = sizeof (struct di_all) + 746 sizeof (((struct dinfo_io *)(NULL))->root_path); 747 if (size < PAGESIZE) 748 size = PAGESIZE; 749 off = di_checkmem(st, 0, size); 750 all = DI_ALL_PTR(st); 751 off += sizeof (struct di_all); /* real length of di_all */ 752 753 all->devcnt = devcnt; 754 all->command = st->command; 755 all->version = DI_SNAPSHOT_VERSION; 756 all->top_vhci_devinfo = 0; /* filled by build_vhci_list. */ 757 758 /* 759 * Note the endianness in case we need to transport snapshot 760 * over the network. 761 */ 762 #if defined(_LITTLE_ENDIAN) 763 all->endianness = DI_LITTLE_ENDIAN; 764 #else 765 all->endianness = DI_BIG_ENDIAN; 766 #endif 767 768 /* Copyin ioctl args, store in the snapshot. */ 769 if (copyinstr((void *)arg, all->req_path, 770 sizeof (((struct dinfo_io *)(NULL))->root_path), &size) != 0) { 771 di_freemem(st); 772 (void) di_setstate(st, IOC_IDLE); 773 return (EFAULT); 774 } 775 (void) strcpy(all->root_path, all->req_path); 776 off += size; /* real length of root_path */ 777 778 if ((st->command & DINFOCLEANUP) && !DEVICES_FILES_CLEANABLE(st)) { 779 di_freemem(st); 780 (void) di_setstate(st, IOC_IDLE); 781 return (EINVAL); 782 } 783 784 error = 0; 785 if ((st->command & DINFOCACHE) && !cache_args_valid(st, &error)) { 786 di_freemem(st); 787 (void) di_setstate(st, IOC_IDLE); 788 return (error); 789 } 790 791 /* 792 * Only the fully enabled version may force load drivers or read 793 * the parent private data from a driver. 794 */ 795 if ((st->command & (DINFOPRIVDATA | DINFOFORCE)) != 0 && 796 DI_UNPRIVILEGED_NODE(m)) { 797 di_freemem(st); 798 (void) di_setstate(st, IOC_IDLE); 799 return (EACCES); 800 } 801 802 /* Do we need private data? */ 803 if (st->command & DINFOPRIVDATA) { 804 arg += sizeof (((struct dinfo_io *)(NULL))->root_path); 805 806 #ifdef _MULTI_DATAMODEL 807 switch (ddi_model_convert_from(mode & FMODELS)) { 808 case DDI_MODEL_ILP32: { 809 /* 810 * Cannot copy private data from 64-bit kernel 811 * to 32-bit app 812 */ 813 di_freemem(st); 814 (void) di_setstate(st, IOC_IDLE); 815 return (EINVAL); 816 } 817 case DDI_MODEL_NONE: 818 if ((off = di_copyformat(off, st, arg, mode)) == 0) { 819 di_freemem(st); 820 (void) di_setstate(st, IOC_IDLE); 821 return (EFAULT); 822 } 823 break; 824 } 825 #else /* !_MULTI_DATAMODEL */ 826 if ((off = di_copyformat(off, st, arg, mode)) == 0) { 827 di_freemem(st); 828 (void) di_setstate(st, IOC_IDLE); 829 return (EFAULT); 830 } 831 #endif /* _MULTI_DATAMODEL */ 832 } 833 834 all->top_devinfo = DI_ALIGN(off); 835 836 /* 837 * For cache lookups we reallocate memory from scratch, 838 * so the value of "all" is no longer valid. 839 */ 840 all = NULL; 841 842 if (st->command & DINFOCACHE) { 843 *rvalp = di_cache_lookup(st); 844 } else if (snapshot_is_cacheable(st)) { 845 DI_CACHE_LOCK(di_cache); 846 *rvalp = di_cache_update(st); 847 DI_CACHE_UNLOCK(di_cache); 848 } else 849 *rvalp = di_snapshot_and_clean(st); 850 851 if (*rvalp) { 852 DI_ALL_PTR(st)->map_size = *rvalp; 853 (void) di_setstate(st, IOC_DONE); 854 } else { 855 di_freemem(st); 856 (void) di_setstate(st, IOC_IDLE); 857 } 858 859 return (0); 860 } 861 862 /* 863 * Get a chunk of memory >= size, for the snapshot 864 */ 865 static void 866 di_allocmem(struct di_state *st, size_t size) 867 { 868 struct di_mem *mem = kmem_zalloc(sizeof (struct di_mem), KM_SLEEP); 869 870 /* 871 * Round up size to nearest power of 2. If it is less 872 * than st->mem_size, set it to st->mem_size (i.e., 873 * the mem_size is doubled every time) to reduce the 874 * number of memory allocations. 875 */ 876 size_t tmp = 1; 877 while (tmp < size) { 878 tmp <<= 1; 879 } 880 size = (tmp > st->mem_size) ? tmp : st->mem_size; 881 882 mem->buf = ddi_umem_alloc(size, DDI_UMEM_SLEEP, &mem->cook); 883 mem->buf_size = size; 884 885 dcmn_err2((CE_CONT, "di_allocmem: mem_size=%x\n", st->mem_size)); 886 887 if (st->mem_size == 0) { /* first chunk */ 888 st->memlist = mem; 889 } else { 890 /* 891 * locate end of linked list and add a chunk at the end 892 */ 893 struct di_mem *dcp = st->memlist; 894 while (dcp->next != NULL) { 895 dcp = dcp->next; 896 } 897 898 dcp->next = mem; 899 } 900 901 st->mem_size += size; 902 } 903 904 /* 905 * Copy upto bufsiz bytes of the memlist to buf 906 */ 907 static void 908 di_copymem(struct di_state *st, caddr_t buf, size_t bufsiz) 909 { 910 struct di_mem *dcp; 911 size_t copysz; 912 913 if (st->mem_size == 0) { 914 ASSERT(st->memlist == NULL); 915 return; 916 } 917 918 copysz = 0; 919 for (dcp = st->memlist; dcp; dcp = dcp->next) { 920 921 ASSERT(bufsiz > 0); 922 923 if (bufsiz <= dcp->buf_size) 924 copysz = bufsiz; 925 else 926 copysz = dcp->buf_size; 927 928 bcopy(dcp->buf, buf, copysz); 929 930 buf += copysz; 931 bufsiz -= copysz; 932 933 if (bufsiz == 0) 934 break; 935 } 936 } 937 938 /* 939 * Free all memory for the snapshot 940 */ 941 static void 942 di_freemem(struct di_state *st) 943 { 944 struct di_mem *dcp, *tmp; 945 946 dcmn_err2((CE_CONT, "di_freemem\n")); 947 948 if (st->mem_size) { 949 dcp = st->memlist; 950 while (dcp) { /* traverse the linked list */ 951 tmp = dcp; 952 dcp = dcp->next; 953 ddi_umem_free(tmp->cook); 954 kmem_free(tmp, sizeof (struct di_mem)); 955 } 956 st->mem_size = 0; 957 st->memlist = NULL; 958 } 959 960 ASSERT(st->mem_size == 0); 961 ASSERT(st->memlist == NULL); 962 } 963 964 /* 965 * Copies cached data to the di_state structure. 966 * Returns: 967 * - size of data copied, on SUCCESS 968 * - 0 on failure 969 */ 970 static int 971 di_cache2mem(struct di_cache *cache, struct di_state *st) 972 { 973 caddr_t pa; 974 975 ASSERT(st->mem_size == 0); 976 ASSERT(st->memlist == NULL); 977 ASSERT(!servicing_interrupt()); 978 ASSERT(DI_CACHE_LOCKED(*cache)); 979 980 if (cache->cache_size == 0) { 981 ASSERT(cache->cache_data == NULL); 982 CACHE_DEBUG((DI_ERR, "Empty cache. Skipping copy")); 983 return (0); 984 } 985 986 ASSERT(cache->cache_data); 987 988 di_allocmem(st, cache->cache_size); 989 990 pa = di_mem_addr(st, 0); 991 992 ASSERT(pa); 993 994 /* 995 * Verify that di_allocmem() allocates contiguous memory, 996 * so that it is safe to do straight bcopy() 997 */ 998 ASSERT(st->memlist != NULL); 999 ASSERT(st->memlist->next == NULL); 1000 bcopy(cache->cache_data, pa, cache->cache_size); 1001 1002 return (cache->cache_size); 1003 } 1004 1005 /* 1006 * Copies a snapshot from di_state to the cache 1007 * Returns: 1008 * - 0 on failure 1009 * - size of copied data on success 1010 */ 1011 static size_t 1012 di_mem2cache(struct di_state *st, struct di_cache *cache) 1013 { 1014 size_t map_size; 1015 1016 ASSERT(cache->cache_size == 0); 1017 ASSERT(cache->cache_data == NULL); 1018 ASSERT(!servicing_interrupt()); 1019 ASSERT(DI_CACHE_LOCKED(*cache)); 1020 1021 if (st->mem_size == 0) { 1022 ASSERT(st->memlist == NULL); 1023 CACHE_DEBUG((DI_ERR, "Empty memlist. Skipping copy")); 1024 return (0); 1025 } 1026 1027 ASSERT(st->memlist); 1028 1029 /* 1030 * The size of the memory list may be much larger than the 1031 * size of valid data (map_size). Cache only the valid data 1032 */ 1033 map_size = DI_ALL_PTR(st)->map_size; 1034 if (map_size == 0 || map_size < sizeof (struct di_all) || 1035 map_size > st->mem_size) { 1036 CACHE_DEBUG((DI_ERR, "cannot cache: bad size: 0x%x", map_size)); 1037 return (0); 1038 } 1039 1040 cache->cache_data = kmem_alloc(map_size, KM_SLEEP); 1041 cache->cache_size = map_size; 1042 di_copymem(st, cache->cache_data, cache->cache_size); 1043 1044 return (map_size); 1045 } 1046 1047 /* 1048 * Make sure there is at least "size" bytes memory left before 1049 * going on. Otherwise, start on a new chunk. 1050 */ 1051 static di_off_t 1052 di_checkmem(struct di_state *st, di_off_t off, size_t size) 1053 { 1054 dcmn_err3((CE_CONT, "di_checkmem: off=%x size=%x\n", 1055 off, (int)size)); 1056 1057 /* 1058 * di_checkmem() shouldn't be called with a size of zero. 1059 * But in case it is, we want to make sure we return a valid 1060 * offset within the memlist and not an offset that points us 1061 * at the end of the memlist. 1062 */ 1063 if (size == 0) { 1064 dcmn_err((CE_WARN, "di_checkmem: invalid zero size used")); 1065 size = 1; 1066 } 1067 1068 off = DI_ALIGN(off); 1069 if ((st->mem_size - off) < size) { 1070 off = st->mem_size; 1071 di_allocmem(st, size); 1072 } 1073 1074 /* verify that return value is aligned */ 1075 ASSERT(off == DI_ALIGN(off)); 1076 return (off); 1077 } 1078 1079 /* 1080 * Copy the private data format from ioctl arg. 1081 * On success, the ending offset is returned. On error 0 is returned. 1082 */ 1083 static di_off_t 1084 di_copyformat(di_off_t off, struct di_state *st, intptr_t arg, int mode) 1085 { 1086 di_off_t size; 1087 struct di_priv_data *priv; 1088 struct di_all *all = DI_ALL_PTR(st); 1089 1090 dcmn_err2((CE_CONT, "di_copyformat: off=%x, arg=%p mode=%x\n", 1091 off, (void *)arg, mode)); 1092 1093 /* 1094 * Copyin data and check version. 1095 * We only handle private data version 0. 1096 */ 1097 priv = kmem_alloc(sizeof (struct di_priv_data), KM_SLEEP); 1098 if ((ddi_copyin((void *)arg, priv, sizeof (struct di_priv_data), 1099 mode) != 0) || (priv->version != DI_PRIVDATA_VERSION_0)) { 1100 kmem_free(priv, sizeof (struct di_priv_data)); 1101 return (0); 1102 } 1103 1104 /* 1105 * Save di_priv_data copied from userland in snapshot. 1106 */ 1107 all->pd_version = priv->version; 1108 all->n_ppdata = priv->n_parent; 1109 all->n_dpdata = priv->n_driver; 1110 1111 /* 1112 * copyin private data format, modify offset accordingly 1113 */ 1114 if (all->n_ppdata) { /* parent private data format */ 1115 /* 1116 * check memory 1117 */ 1118 size = all->n_ppdata * sizeof (struct di_priv_format); 1119 all->ppdata_format = off = di_checkmem(st, off, size); 1120 if (ddi_copyin(priv->parent, di_mem_addr(st, off), size, 1121 mode) != 0) { 1122 kmem_free(priv, sizeof (struct di_priv_data)); 1123 return (0); 1124 } 1125 1126 off += size; 1127 } 1128 1129 if (all->n_dpdata) { /* driver private data format */ 1130 /* 1131 * check memory 1132 */ 1133 size = all->n_dpdata * sizeof (struct di_priv_format); 1134 all->dpdata_format = off = di_checkmem(st, off, size); 1135 if (ddi_copyin(priv->driver, di_mem_addr(st, off), size, 1136 mode) != 0) { 1137 kmem_free(priv, sizeof (struct di_priv_data)); 1138 return (0); 1139 } 1140 1141 off += size; 1142 } 1143 1144 kmem_free(priv, sizeof (struct di_priv_data)); 1145 return (off); 1146 } 1147 1148 /* 1149 * Return the real address based on the offset (off) within snapshot 1150 */ 1151 static void * 1152 di_mem_addr(struct di_state *st, di_off_t off) 1153 { 1154 struct di_mem *dcp = st->memlist; 1155 1156 dcmn_err3((CE_CONT, "di_mem_addr: dcp=%p off=%x\n", 1157 (void *)dcp, off)); 1158 1159 ASSERT(off < st->mem_size); 1160 1161 while (off >= dcp->buf_size) { 1162 off -= dcp->buf_size; 1163 dcp = dcp->next; 1164 } 1165 1166 dcmn_err3((CE_CONT, "di_mem_addr: new off=%x, return = %p\n", 1167 off, (void *)(dcp->buf + off))); 1168 1169 return (dcp->buf + off); 1170 } 1171 1172 /* 1173 * Ideally we would use the whole key to derive the hash 1174 * value. However, the probability that two keys will 1175 * have the same dip (or pip) is very low, so 1176 * hashing by dip (or pip) pointer should suffice. 1177 */ 1178 static uint_t 1179 di_hash_byptr(void *arg, mod_hash_key_t key) 1180 { 1181 struct di_key *dik = key; 1182 size_t rshift; 1183 void *ptr; 1184 1185 ASSERT(arg == NULL); 1186 1187 switch (dik->k_type) { 1188 case DI_DKEY: 1189 ptr = dik->k_u.dkey.dk_dip; 1190 rshift = highbit(sizeof (struct dev_info)); 1191 break; 1192 case DI_PKEY: 1193 ptr = dik->k_u.pkey.pk_pip; 1194 rshift = highbit(sizeof (struct mdi_pathinfo)); 1195 break; 1196 default: 1197 panic("devinfo: unknown key type"); 1198 /*NOTREACHED*/ 1199 } 1200 return (mod_hash_byptr((void *)rshift, ptr)); 1201 } 1202 1203 static void 1204 di_key_dtor(mod_hash_key_t key) 1205 { 1206 char *path_addr; 1207 struct di_key *dik = key; 1208 1209 switch (dik->k_type) { 1210 case DI_DKEY: 1211 break; 1212 case DI_PKEY: 1213 path_addr = dik->k_u.pkey.pk_path_addr; 1214 if (path_addr) 1215 kmem_free(path_addr, strlen(path_addr) + 1); 1216 break; 1217 default: 1218 panic("devinfo: unknown key type"); 1219 /*NOTREACHED*/ 1220 } 1221 1222 kmem_free(dik, sizeof (struct di_key)); 1223 } 1224 1225 static int 1226 di_dkey_cmp(struct di_dkey *dk1, struct di_dkey *dk2) 1227 { 1228 if (dk1->dk_dip != dk2->dk_dip) 1229 return (dk1->dk_dip > dk2->dk_dip ? 1 : -1); 1230 1231 if (dk1->dk_major != DDI_MAJOR_T_NONE && 1232 dk2->dk_major != DDI_MAJOR_T_NONE) { 1233 if (dk1->dk_major != dk2->dk_major) 1234 return (dk1->dk_major > dk2->dk_major ? 1 : -1); 1235 1236 if (dk1->dk_inst != dk2->dk_inst) 1237 return (dk1->dk_inst > dk2->dk_inst ? 1 : -1); 1238 } 1239 1240 if (dk1->dk_nodeid != dk2->dk_nodeid) 1241 return (dk1->dk_nodeid > dk2->dk_nodeid ? 1 : -1); 1242 1243 return (0); 1244 } 1245 1246 static int 1247 di_pkey_cmp(struct di_pkey *pk1, struct di_pkey *pk2) 1248 { 1249 char *p1, *p2; 1250 int rv; 1251 1252 if (pk1->pk_pip != pk2->pk_pip) 1253 return (pk1->pk_pip > pk2->pk_pip ? 1 : -1); 1254 1255 p1 = pk1->pk_path_addr; 1256 p2 = pk2->pk_path_addr; 1257 1258 p1 = p1 ? p1 : ""; 1259 p2 = p2 ? p2 : ""; 1260 1261 rv = strcmp(p1, p2); 1262 if (rv) 1263 return (rv > 0 ? 1 : -1); 1264 1265 if (pk1->pk_client != pk2->pk_client) 1266 return (pk1->pk_client > pk2->pk_client ? 1 : -1); 1267 1268 if (pk1->pk_phci != pk2->pk_phci) 1269 return (pk1->pk_phci > pk2->pk_phci ? 1 : -1); 1270 1271 return (0); 1272 } 1273 1274 static int 1275 di_key_cmp(mod_hash_key_t key1, mod_hash_key_t key2) 1276 { 1277 struct di_key *dik1, *dik2; 1278 1279 dik1 = key1; 1280 dik2 = key2; 1281 1282 if (dik1->k_type != dik2->k_type) { 1283 panic("devinfo: mismatched keys"); 1284 /*NOTREACHED*/ 1285 } 1286 1287 switch (dik1->k_type) { 1288 case DI_DKEY: 1289 return (di_dkey_cmp(&(dik1->k_u.dkey), &(dik2->k_u.dkey))); 1290 case DI_PKEY: 1291 return (di_pkey_cmp(&(dik1->k_u.pkey), &(dik2->k_u.pkey))); 1292 default: 1293 panic("devinfo: unknown key type"); 1294 /*NOTREACHED*/ 1295 } 1296 } 1297 1298 static void 1299 di_copy_aliases(struct di_state *st, alias_pair_t *apair, di_off_t *offp) 1300 { 1301 di_off_t off; 1302 struct di_all *all = DI_ALL_PTR(st); 1303 struct di_alias *di_alias; 1304 di_off_t curroff; 1305 dev_info_t *currdip; 1306 size_t size; 1307 1308 currdip = NULL; 1309 if (resolve_pathname(apair->pair_alias, &currdip, NULL, NULL) != 0) { 1310 return; 1311 } 1312 1313 if (di_dip_find(st, currdip, &curroff) != 0) { 1314 ndi_rele_devi(currdip); 1315 return; 1316 } 1317 ndi_rele_devi(currdip); 1318 1319 off = *offp; 1320 size = sizeof (struct di_alias); 1321 size += strlen(apair->pair_alias) + 1; 1322 off = di_checkmem(st, off, size); 1323 di_alias = DI_ALIAS(di_mem_addr(st, off)); 1324 1325 di_alias->self = off; 1326 di_alias->next = all->aliases; 1327 all->aliases = off; 1328 (void) strcpy(di_alias->alias, apair->pair_alias); 1329 di_alias->curroff = curroff; 1330 1331 off += size; 1332 1333 *offp = off; 1334 } 1335 1336 /* 1337 * This is the main function that takes a snapshot 1338 */ 1339 static di_off_t 1340 di_snapshot(struct di_state *st) 1341 { 1342 di_off_t off; 1343 struct di_all *all; 1344 dev_info_t *rootnode; 1345 char buf[80]; 1346 int plen; 1347 char *path; 1348 vnode_t *vp; 1349 int i; 1350 1351 all = DI_ALL_PTR(st); 1352 dcmn_err((CE_CONT, "Taking a snapshot of devinfo tree...\n")); 1353 1354 /* 1355 * Translate requested root path if an alias and snap-root != "/" 1356 */ 1357 if (ddi_aliases_present == B_TRUE && strcmp(all->root_path, "/") != 0) { 1358 /* If there is no redirected alias, use root_path as is */ 1359 rootnode = ddi_alias_redirect(all->root_path); 1360 if (rootnode) { 1361 (void) ddi_pathname(rootnode, all->root_path); 1362 goto got_root; 1363 } 1364 } 1365 1366 /* 1367 * Verify path before entrusting it to e_ddi_hold_devi_by_path because 1368 * some platforms have OBP bugs where executing the NDI_PROMNAME code 1369 * path against an invalid path results in panic. The lookupnameat 1370 * is done relative to rootdir without a leading '/' on "devices/" 1371 * to force the lookup to occur in the global zone. 1372 */ 1373 plen = strlen("devices/") + strlen(all->root_path) + 1; 1374 path = kmem_alloc(plen, KM_SLEEP); 1375 (void) snprintf(path, plen, "devices/%s", all->root_path); 1376 if (lookupnameat(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &vp, rootdir)) { 1377 dcmn_err((CE_CONT, "Devinfo node %s not found\n", 1378 all->root_path)); 1379 kmem_free(path, plen); 1380 return (0); 1381 } 1382 kmem_free(path, plen); 1383 VN_RELE(vp); 1384 1385 /* 1386 * Hold the devinfo node referred by the path. 1387 */ 1388 rootnode = e_ddi_hold_devi_by_path(all->root_path, 0); 1389 if (rootnode == NULL) { 1390 dcmn_err((CE_CONT, "Devinfo node %s not found\n", 1391 all->root_path)); 1392 return (0); 1393 } 1394 1395 got_root: 1396 (void) snprintf(buf, sizeof (buf), 1397 "devinfo registered dips (statep=%p)", (void *)st); 1398 1399 st->reg_dip_hash = mod_hash_create_extended(buf, 64, 1400 di_key_dtor, mod_hash_null_valdtor, di_hash_byptr, 1401 NULL, di_key_cmp, KM_SLEEP); 1402 1403 1404 (void) snprintf(buf, sizeof (buf), 1405 "devinfo registered pips (statep=%p)", (void *)st); 1406 1407 st->reg_pip_hash = mod_hash_create_extended(buf, 64, 1408 di_key_dtor, mod_hash_null_valdtor, di_hash_byptr, 1409 NULL, di_key_cmp, KM_SLEEP); 1410 1411 if (DINFOHP & st->command) { 1412 list_create(&st->hp_list, sizeof (i_hp_t), 1413 offsetof(i_hp_t, hp_link)); 1414 } 1415 1416 /* 1417 * copy the device tree 1418 */ 1419 off = di_copytree(DEVI(rootnode), &all->top_devinfo, st); 1420 1421 if (DINFOPATH & st->command) { 1422 mdi_walk_vhcis(build_vhci_list, st); 1423 } 1424 1425 if (DINFOHP & st->command) { 1426 di_hotplug_children(st); 1427 } 1428 1429 ddi_release_devi(rootnode); 1430 1431 /* 1432 * copy the devnames array 1433 */ 1434 all->devnames = off; 1435 off = di_copydevnm(&all->devnames, st); 1436 1437 1438 /* initialize the hash tables */ 1439 st->lnode_count = 0; 1440 st->link_count = 0; 1441 1442 if (DINFOLYR & st->command) { 1443 off = di_getlink_data(off, st); 1444 } 1445 1446 all->aliases = 0; 1447 if (ddi_aliases_present == B_FALSE) 1448 goto done; 1449 1450 for (i = 0; i < ddi_aliases.dali_num_pairs; i++) { 1451 di_copy_aliases(st, &(ddi_aliases.dali_alias_pairs[i]), &off); 1452 } 1453 1454 done: 1455 /* 1456 * Free up hash tables 1457 */ 1458 mod_hash_destroy_hash(st->reg_dip_hash); 1459 mod_hash_destroy_hash(st->reg_pip_hash); 1460 1461 /* 1462 * Record the timestamp now that we are done with snapshot. 1463 * 1464 * We compute the checksum later and then only if we cache 1465 * the snapshot, since checksumming adds some overhead. 1466 * The checksum is checked later if we read the cache file. 1467 * from disk. 1468 * 1469 * Set checksum field to 0 as CRC is calculated with that 1470 * field set to 0. 1471 */ 1472 all->snapshot_time = ddi_get_time(); 1473 all->cache_checksum = 0; 1474 1475 ASSERT(all->snapshot_time != 0); 1476 1477 return (off); 1478 } 1479 1480 /* 1481 * Take a snapshot and clean /etc/devices files if DINFOCLEANUP is set 1482 */ 1483 static di_off_t 1484 di_snapshot_and_clean(struct di_state *st) 1485 { 1486 di_off_t off; 1487 1488 modunload_disable(); 1489 off = di_snapshot(st); 1490 if (off != 0 && (st->command & DINFOCLEANUP)) { 1491 ASSERT(DEVICES_FILES_CLEANABLE(st)); 1492 /* 1493 * Cleanup /etc/devices files: 1494 * In order to accurately account for the system configuration 1495 * in /etc/devices files, the appropriate drivers must be 1496 * fully configured before the cleanup starts. 1497 * So enable modunload only after the cleanup. 1498 */ 1499 i_ddi_clean_devices_files(); 1500 /* 1501 * Remove backing store nodes for unused devices, 1502 * which retain past permissions customizations 1503 * and may be undesired for newly configured devices. 1504 */ 1505 dev_devices_cleanup(); 1506 } 1507 modunload_enable(); 1508 1509 return (off); 1510 } 1511 1512 /* 1513 * construct vhci linkage in the snapshot. 1514 */ 1515 static int 1516 build_vhci_list(dev_info_t *vh_devinfo, void *arg) 1517 { 1518 struct di_all *all; 1519 struct di_node *me; 1520 struct di_state *st; 1521 di_off_t off; 1522 phci_walk_arg_t pwa; 1523 1524 dcmn_err3((CE_CONT, "build_vhci list\n")); 1525 1526 dcmn_err3((CE_CONT, "vhci node %s%d\n", 1527 ddi_driver_name(vh_devinfo), ddi_get_instance(vh_devinfo))); 1528 1529 st = (struct di_state *)arg; 1530 if (di_dip_find(st, vh_devinfo, &off) != 0) { 1531 dcmn_err((CE_WARN, "di_dip_find error for the given node\n")); 1532 return (DDI_WALK_TERMINATE); 1533 } 1534 1535 dcmn_err3((CE_CONT, "st->mem_size: %d vh_devinfo off: 0x%x\n", 1536 st->mem_size, off)); 1537 1538 all = DI_ALL_PTR(st); 1539 if (all->top_vhci_devinfo == 0) { 1540 all->top_vhci_devinfo = off; 1541 } else { 1542 me = DI_NODE(di_mem_addr(st, all->top_vhci_devinfo)); 1543 1544 while (me->next_vhci != 0) { 1545 me = DI_NODE(di_mem_addr(st, me->next_vhci)); 1546 } 1547 1548 me->next_vhci = off; 1549 } 1550 1551 pwa.off = off; 1552 pwa.st = st; 1553 mdi_vhci_walk_phcis(vh_devinfo, build_phci_list, &pwa); 1554 1555 return (DDI_WALK_CONTINUE); 1556 } 1557 1558 /* 1559 * construct phci linkage for the given vhci in the snapshot. 1560 */ 1561 static int 1562 build_phci_list(dev_info_t *ph_devinfo, void *arg) 1563 { 1564 struct di_node *vh_di_node; 1565 struct di_node *me; 1566 phci_walk_arg_t *pwa; 1567 di_off_t off; 1568 1569 pwa = (phci_walk_arg_t *)arg; 1570 1571 dcmn_err3((CE_CONT, "build_phci list for vhci at offset: 0x%x\n", 1572 pwa->off)); 1573 1574 vh_di_node = DI_NODE(di_mem_addr(pwa->st, pwa->off)); 1575 if (di_dip_find(pwa->st, ph_devinfo, &off) != 0) { 1576 dcmn_err((CE_WARN, "di_dip_find error for the given node\n")); 1577 return (DDI_WALK_TERMINATE); 1578 } 1579 1580 dcmn_err3((CE_CONT, "phci node %s%d, at offset 0x%x\n", 1581 ddi_driver_name(ph_devinfo), ddi_get_instance(ph_devinfo), off)); 1582 1583 if (vh_di_node->top_phci == 0) { 1584 vh_di_node->top_phci = off; 1585 return (DDI_WALK_CONTINUE); 1586 } 1587 1588 me = DI_NODE(di_mem_addr(pwa->st, vh_di_node->top_phci)); 1589 1590 while (me->next_phci != 0) { 1591 me = DI_NODE(di_mem_addr(pwa->st, me->next_phci)); 1592 } 1593 me->next_phci = off; 1594 1595 return (DDI_WALK_CONTINUE); 1596 } 1597 1598 /* 1599 * Assumes all devinfo nodes in device tree have been snapshotted 1600 */ 1601 static void 1602 snap_driver_list(struct di_state *st, struct devnames *dnp, di_off_t *off_p) 1603 { 1604 struct dev_info *node; 1605 struct di_node *me; 1606 di_off_t off; 1607 1608 ASSERT(mutex_owned(&dnp->dn_lock)); 1609 1610 node = DEVI(dnp->dn_head); 1611 for (; node; node = node->devi_next) { 1612 if (di_dip_find(st, (dev_info_t *)node, &off) != 0) 1613 continue; 1614 1615 ASSERT(off > 0); 1616 me = DI_NODE(di_mem_addr(st, off)); 1617 ASSERT(me->next == 0 || me->next == -1); 1618 /* 1619 * Only nodes which were BOUND when they were 1620 * snapshotted will be added to per-driver list. 1621 */ 1622 if (me->next != -1) 1623 continue; 1624 1625 *off_p = off; 1626 off_p = &me->next; 1627 } 1628 1629 *off_p = 0; 1630 } 1631 1632 /* 1633 * Copy the devnames array, so we have a list of drivers in the snapshot. 1634 * Also makes it possible to locate the per-driver devinfo nodes. 1635 */ 1636 static di_off_t 1637 di_copydevnm(di_off_t *off_p, struct di_state *st) 1638 { 1639 int i; 1640 di_off_t off; 1641 size_t size; 1642 struct di_devnm *dnp; 1643 1644 dcmn_err2((CE_CONT, "di_copydevnm: *off_p = %p\n", (void *)off_p)); 1645 1646 /* 1647 * make sure there is some allocated memory 1648 */ 1649 size = devcnt * sizeof (struct di_devnm); 1650 *off_p = off = di_checkmem(st, *off_p, size); 1651 dnp = DI_DEVNM(di_mem_addr(st, off)); 1652 off += size; 1653 1654 dcmn_err((CE_CONT, "Start copying devnamesp[%d] at offset 0x%x\n", 1655 devcnt, off)); 1656 1657 for (i = 0; i < devcnt; i++) { 1658 if (devnamesp[i].dn_name == NULL) { 1659 continue; 1660 } 1661 1662 /* 1663 * dn_name is not freed during driver unload or removal. 1664 * 1665 * There is a race condition when make_devname() changes 1666 * dn_name during our strcpy. This should be rare since 1667 * only add_drv does this. At any rate, we never had a 1668 * problem with ddi_name_to_major(), which should have 1669 * the same problem. 1670 */ 1671 dcmn_err2((CE_CONT, "di_copydevnm: %s%d, off=%x\n", 1672 devnamesp[i].dn_name, devnamesp[i].dn_instance, off)); 1673 1674 size = strlen(devnamesp[i].dn_name) + 1; 1675 dnp[i].name = off = di_checkmem(st, off, size); 1676 (void) strcpy((char *)di_mem_addr(st, off), 1677 devnamesp[i].dn_name); 1678 off += size; 1679 1680 mutex_enter(&devnamesp[i].dn_lock); 1681 1682 /* 1683 * Snapshot per-driver node list 1684 */ 1685 snap_driver_list(st, &devnamesp[i], &dnp[i].head); 1686 1687 /* 1688 * This is not used by libdevinfo, leave it for now 1689 */ 1690 dnp[i].flags = devnamesp[i].dn_flags; 1691 dnp[i].instance = devnamesp[i].dn_instance; 1692 1693 /* 1694 * get global properties 1695 */ 1696 if ((DINFOPROP & st->command) && 1697 devnamesp[i].dn_global_prop_ptr) { 1698 dnp[i].global_prop = off; 1699 off = di_getprop(DI_PROP_GLB_LIST, 1700 &devnamesp[i].dn_global_prop_ptr->prop_list, 1701 &dnp[i].global_prop, st, NULL); 1702 } 1703 1704 /* 1705 * Bit encode driver ops: & bus_ops, cb_ops, & cb_ops->cb_str 1706 */ 1707 if (CB_DRV_INSTALLED(devopsp[i])) { 1708 if (devopsp[i]->devo_cb_ops) { 1709 dnp[i].ops |= DI_CB_OPS; 1710 if (devopsp[i]->devo_cb_ops->cb_str) 1711 dnp[i].ops |= DI_STREAM_OPS; 1712 } 1713 if (NEXUS_DRV(devopsp[i])) { 1714 dnp[i].ops |= DI_BUS_OPS; 1715 } 1716 } 1717 1718 mutex_exit(&devnamesp[i].dn_lock); 1719 } 1720 1721 dcmn_err((CE_CONT, "End copying devnamesp at offset 0x%x\n", off)); 1722 1723 return (off); 1724 } 1725 1726 /* 1727 * Copy the kernel devinfo tree. The tree and the devnames array forms 1728 * the entire snapshot (see also di_copydevnm). 1729 */ 1730 static di_off_t 1731 di_copytree(struct dev_info *root, di_off_t *off_p, struct di_state *st) 1732 { 1733 di_off_t off; 1734 struct dev_info *node; 1735 struct di_stack *dsp = kmem_zalloc(sizeof (struct di_stack), KM_SLEEP); 1736 1737 dcmn_err((CE_CONT, "di_copytree: root = %p, *off_p = %x\n", 1738 (void *)root, *off_p)); 1739 1740 /* force attach drivers */ 1741 if (i_ddi_devi_attached((dev_info_t *)root) && 1742 (st->command & DINFOSUBTREE) && (st->command & DINFOFORCE)) { 1743 (void) ndi_devi_config((dev_info_t *)root, 1744 NDI_CONFIG | NDI_DEVI_PERSIST | NDI_NO_EVENT | 1745 NDI_DRV_CONF_REPROBE); 1746 } 1747 1748 /* 1749 * Push top_devinfo onto a stack 1750 * 1751 * The stack is necessary to avoid recursion, which can overrun 1752 * the kernel stack. 1753 */ 1754 PUSH_STACK(dsp, root, off_p); 1755 1756 /* 1757 * As long as there is a node on the stack, copy the node. 1758 * di_copynode() is responsible for pushing and popping 1759 * child and sibling nodes on the stack. 1760 */ 1761 while (!EMPTY_STACK(dsp)) { 1762 node = TOP_NODE(dsp); 1763 off = di_copynode(node, dsp, st); 1764 } 1765 1766 /* 1767 * Free the stack structure 1768 */ 1769 kmem_free(dsp, sizeof (struct di_stack)); 1770 1771 return (off); 1772 } 1773 1774 /* 1775 * This is the core function, which copies all data associated with a single 1776 * node into the snapshot. The amount of information is determined by the 1777 * ioctl command. 1778 */ 1779 static di_off_t 1780 di_copynode(struct dev_info *node, struct di_stack *dsp, struct di_state *st) 1781 { 1782 di_off_t off; 1783 struct di_node *me; 1784 size_t size; 1785 struct dev_info *n; 1786 1787 dcmn_err2((CE_CONT, "di_copynode: depth = %x\n", dsp->depth)); 1788 ASSERT((node != NULL) && (node == TOP_NODE(dsp))); 1789 1790 /* 1791 * check memory usage, and fix offsets accordingly. 1792 */ 1793 size = sizeof (struct di_node); 1794 *(TOP_OFFSET(dsp)) = off = di_checkmem(st, *(TOP_OFFSET(dsp)), size); 1795 me = DI_NODE(di_mem_addr(st, off)); 1796 me->self = off; 1797 off += size; 1798 1799 dcmn_err((CE_CONT, "copy node %s, instance #%d, at offset 0x%x\n", 1800 node->devi_node_name, node->devi_instance, off)); 1801 1802 /* 1803 * Node parameters: 1804 * self -- offset of current node within snapshot 1805 * nodeid -- pointer to PROM node (tri-valued) 1806 * state -- hot plugging device state 1807 * node_state -- devinfo node state 1808 */ 1809 me->instance = node->devi_instance; 1810 me->nodeid = node->devi_nodeid; 1811 me->node_class = node->devi_node_class; 1812 me->attributes = node->devi_node_attributes; 1813 me->state = node->devi_state; 1814 me->flags = node->devi_flags; 1815 me->node_state = node->devi_node_state; 1816 me->next_vhci = 0; /* Filled up by build_vhci_list. */ 1817 me->top_phci = 0; /* Filled up by build_phci_list. */ 1818 me->next_phci = 0; /* Filled up by build_phci_list. */ 1819 me->multipath_component = MULTIPATH_COMPONENT_NONE; /* set default. */ 1820 me->user_private_data = NULL; 1821 1822 /* 1823 * Get parent's offset in snapshot from the stack 1824 * and store it in the current node 1825 */ 1826 if (dsp->depth > 1) { 1827 me->parent = *(PARENT_OFFSET(dsp)); 1828 } 1829 1830 /* 1831 * Save the offset of this di_node in a hash table. 1832 * This is used later to resolve references to this 1833 * dip from other parts of the tree (per-driver list, 1834 * multipathing linkages, layered usage linkages). 1835 * The key used for the hash table is derived from 1836 * information in the dip. 1837 */ 1838 di_register_dip(st, (dev_info_t *)node, me->self); 1839 1840 #ifdef DEVID_COMPATIBILITY 1841 /* check for devid as property marker */ 1842 if (node->devi_devid_str) { 1843 ddi_devid_t devid; 1844 1845 /* 1846 * The devid is now represented as a property. For 1847 * compatibility with di_devid() interface in libdevinfo we 1848 * must return it as a binary structure in the snapshot. When 1849 * (if) di_devid() is removed from libdevinfo then the code 1850 * related to DEVID_COMPATIBILITY can be removed. 1851 */ 1852 if (ddi_devid_str_decode(node->devi_devid_str, &devid, NULL) == 1853 DDI_SUCCESS) { 1854 size = ddi_devid_sizeof(devid); 1855 off = di_checkmem(st, off, size); 1856 me->devid = off; 1857 bcopy(devid, di_mem_addr(st, off), size); 1858 off += size; 1859 ddi_devid_free(devid); 1860 } 1861 } 1862 #endif /* DEVID_COMPATIBILITY */ 1863 1864 if (node->devi_node_name) { 1865 size = strlen(node->devi_node_name) + 1; 1866 me->node_name = off = di_checkmem(st, off, size); 1867 (void) strcpy(di_mem_addr(st, off), node->devi_node_name); 1868 off += size; 1869 } 1870 1871 if (node->devi_compat_names && (node->devi_compat_length > 1)) { 1872 size = node->devi_compat_length; 1873 me->compat_names = off = di_checkmem(st, off, size); 1874 me->compat_length = (int)size; 1875 bcopy(node->devi_compat_names, di_mem_addr(st, off), size); 1876 off += size; 1877 } 1878 1879 if (node->devi_addr) { 1880 size = strlen(node->devi_addr) + 1; 1881 me->address = off = di_checkmem(st, off, size); 1882 (void) strcpy(di_mem_addr(st, off), node->devi_addr); 1883 off += size; 1884 } 1885 1886 if (node->devi_binding_name) { 1887 size = strlen(node->devi_binding_name) + 1; 1888 me->bind_name = off = di_checkmem(st, off, size); 1889 (void) strcpy(di_mem_addr(st, off), node->devi_binding_name); 1890 off += size; 1891 } 1892 1893 me->drv_major = node->devi_major; 1894 1895 /* 1896 * If the dip is BOUND, set the next pointer of the 1897 * per-instance list to -1, indicating that it is yet to be resolved. 1898 * This will be resolved later in snap_driver_list(). 1899 */ 1900 if (me->drv_major != -1) { 1901 me->next = -1; 1902 } else { 1903 me->next = 0; 1904 } 1905 1906 /* 1907 * An optimization to skip mutex_enter when not needed. 1908 */ 1909 if (!((DINFOMINOR | DINFOPROP | DINFOPATH | DINFOHP) & st->command)) { 1910 goto priv_data; 1911 } 1912 1913 /* 1914 * LOCKING: We already have an active ndi_devi_enter to gather the 1915 * minor data, and we will take devi_lock to gather properties as 1916 * needed off di_getprop. 1917 */ 1918 if (!(DINFOMINOR & st->command)) { 1919 goto path; 1920 } 1921 1922 ASSERT(DEVI_BUSY_OWNED(node)); 1923 if (node->devi_minor) { /* minor data */ 1924 me->minor_data = off; 1925 off = di_getmdata(node->devi_minor, &me->minor_data, 1926 me->self, st); 1927 } 1928 1929 path: 1930 if (!(DINFOPATH & st->command)) { 1931 goto property; 1932 } 1933 1934 if (MDI_VHCI(node)) { 1935 me->multipath_component = MULTIPATH_COMPONENT_VHCI; 1936 } 1937 1938 if (MDI_CLIENT(node)) { 1939 me->multipath_component = MULTIPATH_COMPONENT_CLIENT; 1940 me->multipath_client = off; 1941 off = di_getpath_data((dev_info_t *)node, &me->multipath_client, 1942 me->self, st, 1); 1943 dcmn_err((CE_WARN, "me->multipath_client = %x for node %p " 1944 "component type = %d. off=%d", 1945 me->multipath_client, 1946 (void *)node, node->devi_mdi_component, off)); 1947 } 1948 1949 if (MDI_PHCI(node)) { 1950 me->multipath_component = MULTIPATH_COMPONENT_PHCI; 1951 me->multipath_phci = off; 1952 off = di_getpath_data((dev_info_t *)node, &me->multipath_phci, 1953 me->self, st, 0); 1954 dcmn_err((CE_WARN, "me->multipath_phci = %x for node %p " 1955 "component type = %d. off=%d", 1956 me->multipath_phci, 1957 (void *)node, node->devi_mdi_component, off)); 1958 } 1959 1960 property: 1961 if (!(DINFOPROP & st->command)) { 1962 goto hotplug_data; 1963 } 1964 1965 if (node->devi_drv_prop_ptr) { /* driver property list */ 1966 me->drv_prop = off; 1967 off = di_getprop(DI_PROP_DRV_LIST, &node->devi_drv_prop_ptr, 1968 &me->drv_prop, st, node); 1969 } 1970 1971 if (node->devi_sys_prop_ptr) { /* system property list */ 1972 me->sys_prop = off; 1973 off = di_getprop(DI_PROP_SYS_LIST, &node->devi_sys_prop_ptr, 1974 &me->sys_prop, st, node); 1975 } 1976 1977 if (node->devi_hw_prop_ptr) { /* hardware property list */ 1978 me->hw_prop = off; 1979 off = di_getprop(DI_PROP_HW_LIST, &node->devi_hw_prop_ptr, 1980 &me->hw_prop, st, node); 1981 } 1982 1983 if (node->devi_global_prop_list == NULL) { 1984 me->glob_prop = (di_off_t)-1; /* not global property */ 1985 } else { 1986 /* 1987 * Make copy of global property list if this devinfo refers 1988 * global properties different from what's on the devnames 1989 * array. It can happen if there has been a forced 1990 * driver.conf update. See mod_drv(1M). 1991 */ 1992 ASSERT(me->drv_major != -1); 1993 if (node->devi_global_prop_list != 1994 devnamesp[me->drv_major].dn_global_prop_ptr) { 1995 me->glob_prop = off; 1996 off = di_getprop(DI_PROP_GLB_LIST, 1997 &node->devi_global_prop_list->prop_list, 1998 &me->glob_prop, st, node); 1999 } 2000 } 2001 2002 hotplug_data: 2003 if (!(DINFOHP & st->command)) { 2004 goto priv_data; 2005 } 2006 2007 if (node->devi_hp_hdlp) { /* hotplug data */ 2008 me->hp_data = off; 2009 off = di_gethpdata(node->devi_hp_hdlp, &me->hp_data, st); 2010 } 2011 2012 priv_data: 2013 if (!(DINFOPRIVDATA & st->command)) { 2014 goto pm_info; 2015 } 2016 2017 if (ddi_get_parent_data((dev_info_t *)node) != NULL) { 2018 me->parent_data = off; 2019 off = di_getppdata(node, &me->parent_data, st); 2020 } 2021 2022 if (ddi_get_driver_private((dev_info_t *)node) != NULL) { 2023 me->driver_data = off; 2024 off = di_getdpdata(node, &me->driver_data, st); 2025 } 2026 2027 pm_info: /* NOT implemented */ 2028 2029 subtree: 2030 /* keep the stack aligned */ 2031 off = DI_ALIGN(off); 2032 2033 if (!(DINFOSUBTREE & st->command)) { 2034 POP_STACK(dsp); 2035 return (off); 2036 } 2037 2038 child: 2039 /* 2040 * If there is a visible child--push child onto stack. 2041 * Hold the parent (me) busy while doing so. 2042 */ 2043 if ((n = node->devi_child) != NULL) { 2044 /* skip hidden nodes */ 2045 while (n && ndi_dev_is_hidden_node((dev_info_t *)n)) 2046 n = n->devi_sibling; 2047 if (n) { 2048 me->child = off; 2049 PUSH_STACK(dsp, n, &me->child); 2050 return (me->child); 2051 } 2052 } 2053 2054 sibling: 2055 /* 2056 * Done with any child nodes, unroll the stack till a visible 2057 * sibling of a parent node is found or root node is reached. 2058 */ 2059 POP_STACK(dsp); 2060 while (!EMPTY_STACK(dsp)) { 2061 if ((n = node->devi_sibling) != NULL) { 2062 /* skip hidden nodes */ 2063 while (n && ndi_dev_is_hidden_node((dev_info_t *)n)) 2064 n = n->devi_sibling; 2065 if (n) { 2066 me->sibling = DI_ALIGN(off); 2067 PUSH_STACK(dsp, n, &me->sibling); 2068 return (me->sibling); 2069 } 2070 } 2071 node = TOP_NODE(dsp); 2072 me = DI_NODE(di_mem_addr(st, *(TOP_OFFSET(dsp)))); 2073 POP_STACK(dsp); 2074 } 2075 2076 /* 2077 * DONE with all nodes 2078 */ 2079 return (off); 2080 } 2081 2082 static i_lnode_t * 2083 i_lnode_alloc(int modid) 2084 { 2085 i_lnode_t *i_lnode; 2086 2087 i_lnode = kmem_zalloc(sizeof (i_lnode_t), KM_SLEEP); 2088 2089 ASSERT(modid != -1); 2090 i_lnode->modid = modid; 2091 2092 return (i_lnode); 2093 } 2094 2095 static void 2096 i_lnode_free(i_lnode_t *i_lnode) 2097 { 2098 kmem_free(i_lnode, sizeof (i_lnode_t)); 2099 } 2100 2101 static void 2102 i_lnode_check_free(i_lnode_t *i_lnode) 2103 { 2104 /* This lnode and its dip must have been snapshotted */ 2105 ASSERT(i_lnode->self > 0); 2106 ASSERT(i_lnode->di_node->self > 0); 2107 2108 /* at least 1 link (in or out) must exist for this lnode */ 2109 ASSERT(i_lnode->link_in || i_lnode->link_out); 2110 2111 i_lnode_free(i_lnode); 2112 } 2113 2114 static i_link_t * 2115 i_link_alloc(int spec_type) 2116 { 2117 i_link_t *i_link; 2118 2119 i_link = kmem_zalloc(sizeof (i_link_t), KM_SLEEP); 2120 i_link->spec_type = spec_type; 2121 2122 return (i_link); 2123 } 2124 2125 static void 2126 i_link_check_free(i_link_t *i_link) 2127 { 2128 /* This link must have been snapshotted */ 2129 ASSERT(i_link->self > 0); 2130 2131 /* Both endpoint lnodes must exist for this link */ 2132 ASSERT(i_link->src_lnode); 2133 ASSERT(i_link->tgt_lnode); 2134 2135 kmem_free(i_link, sizeof (i_link_t)); 2136 } 2137 2138 /*ARGSUSED*/ 2139 static uint_t 2140 i_lnode_hashfunc(void *arg, mod_hash_key_t key) 2141 { 2142 i_lnode_t *i_lnode = (i_lnode_t *)key; 2143 struct di_node *ptr; 2144 dev_t dev; 2145 2146 dev = i_lnode->devt; 2147 if (dev != DDI_DEV_T_NONE) 2148 return (i_lnode->modid + getminor(dev) + getmajor(dev)); 2149 2150 ptr = i_lnode->di_node; 2151 ASSERT(ptr->self > 0); 2152 if (ptr) { 2153 uintptr_t k = (uintptr_t)ptr; 2154 k >>= (int)highbit(sizeof (struct di_node)); 2155 return ((uint_t)k); 2156 } 2157 2158 return (i_lnode->modid); 2159 } 2160 2161 static int 2162 i_lnode_cmp(void *arg1, void *arg2) 2163 { 2164 i_lnode_t *i_lnode1 = (i_lnode_t *)arg1; 2165 i_lnode_t *i_lnode2 = (i_lnode_t *)arg2; 2166 2167 if (i_lnode1->modid != i_lnode2->modid) { 2168 return ((i_lnode1->modid < i_lnode2->modid) ? -1 : 1); 2169 } 2170 2171 if (i_lnode1->di_node != i_lnode2->di_node) 2172 return ((i_lnode1->di_node < i_lnode2->di_node) ? -1 : 1); 2173 2174 if (i_lnode1->devt != i_lnode2->devt) 2175 return ((i_lnode1->devt < i_lnode2->devt) ? -1 : 1); 2176 2177 return (0); 2178 } 2179 2180 /* 2181 * An lnode represents a {dip, dev_t} tuple. A link represents a 2182 * {src_lnode, tgt_lnode, spec_type} tuple. 2183 * The following callback assumes that LDI framework ref-counts the 2184 * src_dip and tgt_dip while invoking this callback. 2185 */ 2186 static int 2187 di_ldi_callback(const ldi_usage_t *ldi_usage, void *arg) 2188 { 2189 struct di_state *st = (struct di_state *)arg; 2190 i_lnode_t *src_lnode, *tgt_lnode, *i_lnode; 2191 i_link_t **i_link_next, *i_link; 2192 di_off_t soff, toff; 2193 mod_hash_val_t nodep = NULL; 2194 int res; 2195 2196 /* 2197 * if the source or target of this device usage information doesn't 2198 * correspond to a device node then we don't report it via 2199 * libdevinfo so return. 2200 */ 2201 if ((ldi_usage->src_dip == NULL) || (ldi_usage->tgt_dip == NULL)) 2202 return (LDI_USAGE_CONTINUE); 2203 2204 ASSERT(e_ddi_devi_holdcnt(ldi_usage->src_dip)); 2205 ASSERT(e_ddi_devi_holdcnt(ldi_usage->tgt_dip)); 2206 2207 /* 2208 * Skip the ldi_usage if either src or tgt dip is not in the 2209 * snapshot. This saves us from pruning bad lnodes/links later. 2210 */ 2211 if (di_dip_find(st, ldi_usage->src_dip, &soff) != 0) 2212 return (LDI_USAGE_CONTINUE); 2213 if (di_dip_find(st, ldi_usage->tgt_dip, &toff) != 0) 2214 return (LDI_USAGE_CONTINUE); 2215 2216 ASSERT(soff > 0); 2217 ASSERT(toff > 0); 2218 2219 /* 2220 * allocate an i_lnode and add it to the lnode hash 2221 * if it is not already present. For this particular 2222 * link the lnode is a source, but it may 2223 * participate as tgt or src in any number of layered 2224 * operations - so it may already be in the hash. 2225 */ 2226 i_lnode = i_lnode_alloc(ldi_usage->src_modid); 2227 i_lnode->di_node = DI_NODE(di_mem_addr(st, soff)); 2228 i_lnode->devt = ldi_usage->src_devt; 2229 2230 res = mod_hash_find(st->lnode_hash, i_lnode, &nodep); 2231 if (res == MH_ERR_NOTFOUND) { 2232 /* 2233 * new i_lnode 2234 * add it to the hash and increment the lnode count 2235 */ 2236 res = mod_hash_insert(st->lnode_hash, i_lnode, i_lnode); 2237 ASSERT(res == 0); 2238 st->lnode_count++; 2239 src_lnode = i_lnode; 2240 } else { 2241 /* this i_lnode already exists in the lnode_hash */ 2242 i_lnode_free(i_lnode); 2243 src_lnode = (i_lnode_t *)nodep; 2244 } 2245 2246 /* 2247 * allocate a tgt i_lnode and add it to the lnode hash 2248 */ 2249 i_lnode = i_lnode_alloc(ldi_usage->tgt_modid); 2250 i_lnode->di_node = DI_NODE(di_mem_addr(st, toff)); 2251 i_lnode->devt = ldi_usage->tgt_devt; 2252 2253 res = mod_hash_find(st->lnode_hash, i_lnode, &nodep); 2254 if (res == MH_ERR_NOTFOUND) { 2255 /* 2256 * new i_lnode 2257 * add it to the hash and increment the lnode count 2258 */ 2259 res = mod_hash_insert(st->lnode_hash, i_lnode, i_lnode); 2260 ASSERT(res == 0); 2261 st->lnode_count++; 2262 tgt_lnode = i_lnode; 2263 } else { 2264 /* this i_lnode already exists in the lnode_hash */ 2265 i_lnode_free(i_lnode); 2266 tgt_lnode = (i_lnode_t *)nodep; 2267 } 2268 2269 /* 2270 * allocate a i_link 2271 */ 2272 i_link = i_link_alloc(ldi_usage->tgt_spec_type); 2273 i_link->src_lnode = src_lnode; 2274 i_link->tgt_lnode = tgt_lnode; 2275 2276 /* 2277 * add this link onto the src i_lnodes outbound i_link list 2278 */ 2279 i_link_next = &(src_lnode->link_out); 2280 while (*i_link_next != NULL) { 2281 if ((i_lnode_cmp(tgt_lnode, (*i_link_next)->tgt_lnode) == 0) && 2282 (i_link->spec_type == (*i_link_next)->spec_type)) { 2283 /* this link already exists */ 2284 kmem_free(i_link, sizeof (i_link_t)); 2285 return (LDI_USAGE_CONTINUE); 2286 } 2287 i_link_next = &((*i_link_next)->src_link_next); 2288 } 2289 *i_link_next = i_link; 2290 2291 /* 2292 * add this link onto the tgt i_lnodes inbound i_link list 2293 */ 2294 i_link_next = &(tgt_lnode->link_in); 2295 while (*i_link_next != NULL) { 2296 ASSERT(i_lnode_cmp(src_lnode, (*i_link_next)->src_lnode) != 0); 2297 i_link_next = &((*i_link_next)->tgt_link_next); 2298 } 2299 *i_link_next = i_link; 2300 2301 /* 2302 * add this i_link to the link hash 2303 */ 2304 res = mod_hash_insert(st->link_hash, i_link, i_link); 2305 ASSERT(res == 0); 2306 st->link_count++; 2307 2308 return (LDI_USAGE_CONTINUE); 2309 } 2310 2311 struct i_layer_data { 2312 struct di_state *st; 2313 int lnode_count; 2314 int link_count; 2315 di_off_t lnode_off; 2316 di_off_t link_off; 2317 }; 2318 2319 /*ARGSUSED*/ 2320 static uint_t 2321 i_link_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg) 2322 { 2323 i_link_t *i_link = (i_link_t *)key; 2324 struct i_layer_data *data = arg; 2325 struct di_link *me; 2326 struct di_lnode *melnode; 2327 struct di_node *medinode; 2328 2329 ASSERT(i_link->self == 0); 2330 2331 i_link->self = data->link_off + 2332 (data->link_count * sizeof (struct di_link)); 2333 data->link_count++; 2334 2335 ASSERT(data->link_off > 0 && data->link_count > 0); 2336 ASSERT(data->lnode_count == data->st->lnode_count); /* lnodes done */ 2337 ASSERT(data->link_count <= data->st->link_count); 2338 2339 /* fill in fields for the di_link snapshot */ 2340 me = DI_LINK(di_mem_addr(data->st, i_link->self)); 2341 me->self = i_link->self; 2342 me->spec_type = i_link->spec_type; 2343 2344 /* 2345 * The src_lnode and tgt_lnode i_lnode_t for this i_link_t 2346 * are created during the LDI table walk. Since we are 2347 * walking the link hash, the lnode hash has already been 2348 * walked and the lnodes have been snapshotted. Save lnode 2349 * offsets. 2350 */ 2351 me->src_lnode = i_link->src_lnode->self; 2352 me->tgt_lnode = i_link->tgt_lnode->self; 2353 2354 /* 2355 * Save this link's offset in the src_lnode snapshot's link_out 2356 * field 2357 */ 2358 melnode = DI_LNODE(di_mem_addr(data->st, me->src_lnode)); 2359 me->src_link_next = melnode->link_out; 2360 melnode->link_out = me->self; 2361 2362 /* 2363 * Put this link on the tgt_lnode's link_in field 2364 */ 2365 melnode = DI_LNODE(di_mem_addr(data->st, me->tgt_lnode)); 2366 me->tgt_link_next = melnode->link_in; 2367 melnode->link_in = me->self; 2368 2369 /* 2370 * An i_lnode_t is only created if the corresponding dip exists 2371 * in the snapshot. A pointer to the di_node is saved in the 2372 * i_lnode_t when it is allocated. For this link, get the di_node 2373 * for the source lnode. Then put the link on the di_node's list 2374 * of src links 2375 */ 2376 medinode = i_link->src_lnode->di_node; 2377 me->src_node_next = medinode->src_links; 2378 medinode->src_links = me->self; 2379 2380 /* 2381 * Put this link on the tgt_links list of the target 2382 * dip. 2383 */ 2384 medinode = i_link->tgt_lnode->di_node; 2385 me->tgt_node_next = medinode->tgt_links; 2386 medinode->tgt_links = me->self; 2387 2388 return (MH_WALK_CONTINUE); 2389 } 2390 2391 /*ARGSUSED*/ 2392 static uint_t 2393 i_lnode_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg) 2394 { 2395 i_lnode_t *i_lnode = (i_lnode_t *)key; 2396 struct i_layer_data *data = arg; 2397 struct di_lnode *me; 2398 struct di_node *medinode; 2399 2400 ASSERT(i_lnode->self == 0); 2401 2402 i_lnode->self = data->lnode_off + 2403 (data->lnode_count * sizeof (struct di_lnode)); 2404 data->lnode_count++; 2405 2406 ASSERT(data->lnode_off > 0 && data->lnode_count > 0); 2407 ASSERT(data->link_count == 0); /* links not done yet */ 2408 ASSERT(data->lnode_count <= data->st->lnode_count); 2409 2410 /* fill in fields for the di_lnode snapshot */ 2411 me = DI_LNODE(di_mem_addr(data->st, i_lnode->self)); 2412 me->self = i_lnode->self; 2413 2414 if (i_lnode->devt == DDI_DEV_T_NONE) { 2415 me->dev_major = DDI_MAJOR_T_NONE; 2416 me->dev_minor = DDI_MAJOR_T_NONE; 2417 } else { 2418 me->dev_major = getmajor(i_lnode->devt); 2419 me->dev_minor = getminor(i_lnode->devt); 2420 } 2421 2422 /* 2423 * The dip corresponding to this lnode must exist in 2424 * the snapshot or we wouldn't have created the i_lnode_t 2425 * during LDI walk. Save the offset of the dip. 2426 */ 2427 ASSERT(i_lnode->di_node && i_lnode->di_node->self > 0); 2428 me->node = i_lnode->di_node->self; 2429 2430 /* 2431 * There must be at least one link in or out of this lnode 2432 * or we wouldn't have created it. These fields will be set 2433 * during the link hash walk. 2434 */ 2435 ASSERT((i_lnode->link_in != NULL) || (i_lnode->link_out != NULL)); 2436 2437 /* 2438 * set the offset of the devinfo node associated with this 2439 * lnode. Also update the node_next next pointer. this pointer 2440 * is set if there are multiple lnodes associated with the same 2441 * devinfo node. (could occure when multiple minor nodes 2442 * are open for one device, etc.) 2443 */ 2444 medinode = i_lnode->di_node; 2445 me->node_next = medinode->lnodes; 2446 medinode->lnodes = me->self; 2447 2448 return (MH_WALK_CONTINUE); 2449 } 2450 2451 static di_off_t 2452 di_getlink_data(di_off_t off, struct di_state *st) 2453 { 2454 struct i_layer_data data = {0}; 2455 size_t size; 2456 2457 dcmn_err2((CE_CONT, "di_copylyr: off = %x\n", off)); 2458 2459 st->lnode_hash = mod_hash_create_extended("di_lnode_hash", 32, 2460 mod_hash_null_keydtor, (void (*)(mod_hash_val_t))i_lnode_check_free, 2461 i_lnode_hashfunc, NULL, i_lnode_cmp, KM_SLEEP); 2462 2463 st->link_hash = mod_hash_create_ptrhash("di_link_hash", 32, 2464 (void (*)(mod_hash_val_t))i_link_check_free, sizeof (i_link_t)); 2465 2466 /* get driver layering information */ 2467 (void) ldi_usage_walker(st, di_ldi_callback); 2468 2469 /* check if there is any link data to include in the snapshot */ 2470 if (st->lnode_count == 0) { 2471 ASSERT(st->link_count == 0); 2472 goto out; 2473 } 2474 2475 ASSERT(st->link_count != 0); 2476 2477 /* get a pointer to snapshot memory for all the di_lnodes */ 2478 size = sizeof (struct di_lnode) * st->lnode_count; 2479 data.lnode_off = off = di_checkmem(st, off, size); 2480 off += size; 2481 2482 /* get a pointer to snapshot memory for all the di_links */ 2483 size = sizeof (struct di_link) * st->link_count; 2484 data.link_off = off = di_checkmem(st, off, size); 2485 off += size; 2486 2487 data.lnode_count = data.link_count = 0; 2488 data.st = st; 2489 2490 /* 2491 * We have lnodes and links that will go into the 2492 * snapshot, so let's walk the respective hashes 2493 * and snapshot them. The various linkages are 2494 * also set up during the walk. 2495 */ 2496 mod_hash_walk(st->lnode_hash, i_lnode_walker, (void *)&data); 2497 ASSERT(data.lnode_count == st->lnode_count); 2498 2499 mod_hash_walk(st->link_hash, i_link_walker, (void *)&data); 2500 ASSERT(data.link_count == st->link_count); 2501 2502 out: 2503 /* free up the i_lnodes and i_links used to create the snapshot */ 2504 mod_hash_destroy_hash(st->lnode_hash); 2505 mod_hash_destroy_hash(st->link_hash); 2506 st->lnode_count = 0; 2507 st->link_count = 0; 2508 2509 return (off); 2510 } 2511 2512 2513 /* 2514 * Copy all minor data nodes attached to a devinfo node into the snapshot. 2515 * It is called from di_copynode with active ndi_devi_enter to protect 2516 * the list of minor nodes. 2517 */ 2518 static di_off_t 2519 di_getmdata(struct ddi_minor_data *mnode, di_off_t *off_p, di_off_t node, 2520 struct di_state *st) 2521 { 2522 di_off_t off; 2523 struct di_minor *me; 2524 size_t size; 2525 2526 dcmn_err2((CE_CONT, "di_getmdata:\n")); 2527 2528 /* 2529 * check memory first 2530 */ 2531 off = di_checkmem(st, *off_p, sizeof (struct di_minor)); 2532 *off_p = off; 2533 2534 do { 2535 me = DI_MINOR(di_mem_addr(st, off)); 2536 me->self = off; 2537 me->type = mnode->type; 2538 me->node = node; 2539 me->user_private_data = NULL; 2540 2541 off += sizeof (struct di_minor); 2542 2543 /* 2544 * Split dev_t to major/minor, so it works for 2545 * both ILP32 and LP64 model 2546 */ 2547 me->dev_major = getmajor(mnode->ddm_dev); 2548 me->dev_minor = getminor(mnode->ddm_dev); 2549 me->spec_type = mnode->ddm_spec_type; 2550 2551 if (mnode->ddm_name) { 2552 size = strlen(mnode->ddm_name) + 1; 2553 me->name = off = di_checkmem(st, off, size); 2554 (void) strcpy(di_mem_addr(st, off), mnode->ddm_name); 2555 off += size; 2556 } 2557 2558 if (mnode->ddm_node_type) { 2559 size = strlen(mnode->ddm_node_type) + 1; 2560 me->node_type = off = di_checkmem(st, off, size); 2561 (void) strcpy(di_mem_addr(st, off), 2562 mnode->ddm_node_type); 2563 off += size; 2564 } 2565 2566 off = di_checkmem(st, off, sizeof (struct di_minor)); 2567 me->next = off; 2568 mnode = mnode->next; 2569 } while (mnode); 2570 2571 me->next = 0; 2572 2573 return (off); 2574 } 2575 2576 /* 2577 * di_register_dip(), di_find_dip(): The dip must be protected 2578 * from deallocation when using these routines - this can either 2579 * be a reference count, a busy hold or a per-driver lock. 2580 */ 2581 2582 static void 2583 di_register_dip(struct di_state *st, dev_info_t *dip, di_off_t off) 2584 { 2585 struct dev_info *node = DEVI(dip); 2586 struct di_key *key = kmem_zalloc(sizeof (*key), KM_SLEEP); 2587 struct di_dkey *dk; 2588 2589 ASSERT(dip); 2590 ASSERT(off > 0); 2591 2592 key->k_type = DI_DKEY; 2593 dk = &(key->k_u.dkey); 2594 2595 dk->dk_dip = dip; 2596 dk->dk_major = node->devi_major; 2597 dk->dk_inst = node->devi_instance; 2598 dk->dk_nodeid = node->devi_nodeid; 2599 2600 if (mod_hash_insert(st->reg_dip_hash, (mod_hash_key_t)key, 2601 (mod_hash_val_t)(uintptr_t)off) != 0) { 2602 panic( 2603 "duplicate devinfo (%p) registered during device " 2604 "tree walk", (void *)dip); 2605 } 2606 } 2607 2608 2609 static int 2610 di_dip_find(struct di_state *st, dev_info_t *dip, di_off_t *off_p) 2611 { 2612 /* 2613 * uintptr_t must be used because it matches the size of void *; 2614 * mod_hash expects clients to place results into pointer-size 2615 * containers; since di_off_t is always a 32-bit offset, alignment 2616 * would otherwise be broken on 64-bit kernels. 2617 */ 2618 uintptr_t offset; 2619 struct di_key key = {0}; 2620 struct di_dkey *dk; 2621 2622 ASSERT(st->reg_dip_hash); 2623 ASSERT(dip); 2624 ASSERT(off_p); 2625 2626 2627 key.k_type = DI_DKEY; 2628 dk = &(key.k_u.dkey); 2629 2630 dk->dk_dip = dip; 2631 dk->dk_major = DEVI(dip)->devi_major; 2632 dk->dk_inst = DEVI(dip)->devi_instance; 2633 dk->dk_nodeid = DEVI(dip)->devi_nodeid; 2634 2635 if (mod_hash_find(st->reg_dip_hash, (mod_hash_key_t)&key, 2636 (mod_hash_val_t *)&offset) == 0) { 2637 *off_p = (di_off_t)offset; 2638 return (0); 2639 } else { 2640 return (-1); 2641 } 2642 } 2643 2644 /* 2645 * di_register_pip(), di_find_pip(): The pip must be protected from deallocation 2646 * when using these routines. The caller must do this by protecting the 2647 * client(or phci)<->pip linkage while traversing the list and then holding the 2648 * pip when it is found in the list. 2649 */ 2650 2651 static void 2652 di_register_pip(struct di_state *st, mdi_pathinfo_t *pip, di_off_t off) 2653 { 2654 struct di_key *key = kmem_zalloc(sizeof (*key), KM_SLEEP); 2655 char *path_addr; 2656 struct di_pkey *pk; 2657 2658 ASSERT(pip); 2659 ASSERT(off > 0); 2660 2661 key->k_type = DI_PKEY; 2662 pk = &(key->k_u.pkey); 2663 2664 pk->pk_pip = pip; 2665 path_addr = mdi_pi_get_addr(pip); 2666 if (path_addr) 2667 pk->pk_path_addr = i_ddi_strdup(path_addr, KM_SLEEP); 2668 pk->pk_client = mdi_pi_get_client(pip); 2669 pk->pk_phci = mdi_pi_get_phci(pip); 2670 2671 if (mod_hash_insert(st->reg_pip_hash, (mod_hash_key_t)key, 2672 (mod_hash_val_t)(uintptr_t)off) != 0) { 2673 panic( 2674 "duplicate pathinfo (%p) registered during device " 2675 "tree walk", (void *)pip); 2676 } 2677 } 2678 2679 /* 2680 * As with di_register_pip, the caller must hold or lock the pip 2681 */ 2682 static int 2683 di_pip_find(struct di_state *st, mdi_pathinfo_t *pip, di_off_t *off_p) 2684 { 2685 /* 2686 * uintptr_t must be used because it matches the size of void *; 2687 * mod_hash expects clients to place results into pointer-size 2688 * containers; since di_off_t is always a 32-bit offset, alignment 2689 * would otherwise be broken on 64-bit kernels. 2690 */ 2691 uintptr_t offset; 2692 struct di_key key = {0}; 2693 struct di_pkey *pk; 2694 2695 ASSERT(st->reg_pip_hash); 2696 ASSERT(off_p); 2697 2698 if (pip == NULL) { 2699 *off_p = 0; 2700 return (0); 2701 } 2702 2703 key.k_type = DI_PKEY; 2704 pk = &(key.k_u.pkey); 2705 2706 pk->pk_pip = pip; 2707 pk->pk_path_addr = mdi_pi_get_addr(pip); 2708 pk->pk_client = mdi_pi_get_client(pip); 2709 pk->pk_phci = mdi_pi_get_phci(pip); 2710 2711 if (mod_hash_find(st->reg_pip_hash, (mod_hash_key_t)&key, 2712 (mod_hash_val_t *)&offset) == 0) { 2713 *off_p = (di_off_t)offset; 2714 return (0); 2715 } else { 2716 return (-1); 2717 } 2718 } 2719 2720 static di_path_state_t 2721 path_state_convert(mdi_pathinfo_state_t st) 2722 { 2723 switch (st) { 2724 case MDI_PATHINFO_STATE_ONLINE: 2725 return (DI_PATH_STATE_ONLINE); 2726 case MDI_PATHINFO_STATE_STANDBY: 2727 return (DI_PATH_STATE_STANDBY); 2728 case MDI_PATHINFO_STATE_OFFLINE: 2729 return (DI_PATH_STATE_OFFLINE); 2730 case MDI_PATHINFO_STATE_FAULT: 2731 return (DI_PATH_STATE_FAULT); 2732 default: 2733 return (DI_PATH_STATE_UNKNOWN); 2734 } 2735 } 2736 2737 static uint_t 2738 path_flags_convert(uint_t pi_path_flags) 2739 { 2740 uint_t di_path_flags = 0; 2741 2742 /* MDI_PATHINFO_FLAGS_HIDDEN nodes not in snapshot */ 2743 2744 if (pi_path_flags & MDI_PATHINFO_FLAGS_DEVICE_REMOVED) 2745 di_path_flags |= DI_PATH_FLAGS_DEVICE_REMOVED; 2746 2747 return (di_path_flags); 2748 } 2749 2750 2751 static di_off_t 2752 di_path_getprop(mdi_pathinfo_t *pip, di_off_t *off_p, 2753 struct di_state *st) 2754 { 2755 nvpair_t *prop = NULL; 2756 struct di_path_prop *me; 2757 int off; 2758 size_t size; 2759 char *str; 2760 uchar_t *buf; 2761 uint_t nelems; 2762 2763 off = *off_p; 2764 if (mdi_pi_get_next_prop(pip, NULL) == NULL) { 2765 *off_p = 0; 2766 return (off); 2767 } 2768 2769 off = di_checkmem(st, off, sizeof (struct di_path_prop)); 2770 *off_p = off; 2771 2772 while (prop = mdi_pi_get_next_prop(pip, prop)) { 2773 me = DI_PATHPROP(di_mem_addr(st, off)); 2774 me->self = off; 2775 off += sizeof (struct di_path_prop); 2776 2777 /* 2778 * property name 2779 */ 2780 size = strlen(nvpair_name(prop)) + 1; 2781 me->prop_name = off = di_checkmem(st, off, size); 2782 (void) strcpy(di_mem_addr(st, off), nvpair_name(prop)); 2783 off += size; 2784 2785 switch (nvpair_type(prop)) { 2786 case DATA_TYPE_BYTE: 2787 case DATA_TYPE_INT16: 2788 case DATA_TYPE_UINT16: 2789 case DATA_TYPE_INT32: 2790 case DATA_TYPE_UINT32: 2791 me->prop_type = DDI_PROP_TYPE_INT; 2792 size = sizeof (int32_t); 2793 off = di_checkmem(st, off, size); 2794 (void) nvpair_value_int32(prop, 2795 (int32_t *)di_mem_addr(st, off)); 2796 break; 2797 2798 case DATA_TYPE_INT64: 2799 case DATA_TYPE_UINT64: 2800 me->prop_type = DDI_PROP_TYPE_INT64; 2801 size = sizeof (int64_t); 2802 off = di_checkmem(st, off, size); 2803 (void) nvpair_value_int64(prop, 2804 (int64_t *)di_mem_addr(st, off)); 2805 break; 2806 2807 case DATA_TYPE_STRING: 2808 me->prop_type = DDI_PROP_TYPE_STRING; 2809 (void) nvpair_value_string(prop, &str); 2810 size = strlen(str) + 1; 2811 off = di_checkmem(st, off, size); 2812 (void) strcpy(di_mem_addr(st, off), str); 2813 break; 2814 2815 case DATA_TYPE_BYTE_ARRAY: 2816 case DATA_TYPE_INT16_ARRAY: 2817 case DATA_TYPE_UINT16_ARRAY: 2818 case DATA_TYPE_INT32_ARRAY: 2819 case DATA_TYPE_UINT32_ARRAY: 2820 case DATA_TYPE_INT64_ARRAY: 2821 case DATA_TYPE_UINT64_ARRAY: 2822 me->prop_type = DDI_PROP_TYPE_BYTE; 2823 (void) nvpair_value_byte_array(prop, &buf, &nelems); 2824 size = nelems; 2825 if (nelems != 0) { 2826 off = di_checkmem(st, off, size); 2827 bcopy(buf, di_mem_addr(st, off), size); 2828 } 2829 break; 2830 2831 default: /* Unknown or unhandled type; skip it */ 2832 size = 0; 2833 break; 2834 } 2835 2836 if (size > 0) { 2837 me->prop_data = off; 2838 } 2839 2840 me->prop_len = (int)size; 2841 off += size; 2842 2843 off = di_checkmem(st, off, sizeof (struct di_path_prop)); 2844 me->prop_next = off; 2845 } 2846 2847 me->prop_next = 0; 2848 return (off); 2849 } 2850 2851 2852 static void 2853 di_path_one_endpoint(struct di_path *me, di_off_t noff, di_off_t **off_pp, 2854 int get_client) 2855 { 2856 if (get_client) { 2857 ASSERT(me->path_client == 0); 2858 me->path_client = noff; 2859 ASSERT(me->path_c_link == 0); 2860 *off_pp = &me->path_c_link; 2861 me->path_snap_state &= 2862 ~(DI_PATH_SNAP_NOCLIENT | DI_PATH_SNAP_NOCLINK); 2863 } else { 2864 ASSERT(me->path_phci == 0); 2865 me->path_phci = noff; 2866 ASSERT(me->path_p_link == 0); 2867 *off_pp = &me->path_p_link; 2868 me->path_snap_state &= 2869 ~(DI_PATH_SNAP_NOPHCI | DI_PATH_SNAP_NOPLINK); 2870 } 2871 } 2872 2873 /* 2874 * off_p: pointer to the linkage field. This links pips along the client|phci 2875 * linkage list. 2876 * noff : Offset for the endpoint dip snapshot. 2877 */ 2878 static di_off_t 2879 di_getpath_data(dev_info_t *dip, di_off_t *off_p, di_off_t noff, 2880 struct di_state *st, int get_client) 2881 { 2882 di_off_t off; 2883 mdi_pathinfo_t *pip; 2884 struct di_path *me; 2885 mdi_pathinfo_t *(*next_pip)(dev_info_t *, mdi_pathinfo_t *); 2886 size_t size; 2887 2888 dcmn_err2((CE_WARN, "di_getpath_data: client = %d", get_client)); 2889 2890 /* 2891 * The naming of the following mdi_xyz() is unfortunately 2892 * non-intuitive. mdi_get_next_phci_path() follows the 2893 * client_link i.e. the list of pip's belonging to the 2894 * given client dip. 2895 */ 2896 if (get_client) 2897 next_pip = &mdi_get_next_phci_path; 2898 else 2899 next_pip = &mdi_get_next_client_path; 2900 2901 off = *off_p; 2902 2903 pip = NULL; 2904 while (pip = (*next_pip)(dip, pip)) { 2905 di_off_t stored_offset; 2906 2907 dcmn_err((CE_WARN, "marshalling pip = %p", (void *)pip)); 2908 2909 mdi_pi_lock(pip); 2910 2911 /* We don't represent hidden paths in the snapshot */ 2912 if (mdi_pi_ishidden(pip)) { 2913 dcmn_err((CE_WARN, "hidden, skip")); 2914 mdi_pi_unlock(pip); 2915 continue; 2916 } 2917 2918 if (di_pip_find(st, pip, &stored_offset) != -1) { 2919 /* 2920 * We've already seen this pathinfo node so we need to 2921 * take care not to snap it again; However, one endpoint 2922 * and linkage will be set here. The other endpoint 2923 * and linkage has already been set when the pip was 2924 * first snapshotted i.e. when the other endpoint dip 2925 * was snapshotted. 2926 */ 2927 me = DI_PATH(di_mem_addr(st, stored_offset)); 2928 *off_p = stored_offset; 2929 2930 di_path_one_endpoint(me, noff, &off_p, get_client); 2931 2932 /* 2933 * The other endpoint and linkage were set when this 2934 * pip was snapshotted. So we are done with both 2935 * endpoints and linkages. 2936 */ 2937 ASSERT(!(me->path_snap_state & 2938 (DI_PATH_SNAP_NOCLIENT|DI_PATH_SNAP_NOPHCI))); 2939 ASSERT(!(me->path_snap_state & 2940 (DI_PATH_SNAP_NOCLINK|DI_PATH_SNAP_NOPLINK))); 2941 2942 mdi_pi_unlock(pip); 2943 continue; 2944 } 2945 2946 /* 2947 * Now that we need to snapshot this pip, check memory 2948 */ 2949 size = sizeof (struct di_path); 2950 *off_p = off = di_checkmem(st, off, size); 2951 me = DI_PATH(di_mem_addr(st, off)); 2952 me->self = off; 2953 off += size; 2954 2955 me->path_snap_state = 2956 DI_PATH_SNAP_NOCLINK | DI_PATH_SNAP_NOPLINK; 2957 me->path_snap_state |= 2958 DI_PATH_SNAP_NOCLIENT | DI_PATH_SNAP_NOPHCI; 2959 2960 /* 2961 * Zero out fields as di_checkmem() doesn't guarantee 2962 * zero-filled memory 2963 */ 2964 me->path_client = me->path_phci = 0; 2965 me->path_c_link = me->path_p_link = 0; 2966 2967 di_path_one_endpoint(me, noff, &off_p, get_client); 2968 2969 /* 2970 * Note the existence of this pathinfo 2971 */ 2972 di_register_pip(st, pip, me->self); 2973 2974 me->path_state = path_state_convert(mdi_pi_get_state(pip)); 2975 me->path_flags = path_flags_convert(mdi_pi_get_flags(pip)); 2976 2977 me->path_instance = mdi_pi_get_path_instance(pip); 2978 2979 /* 2980 * Get intermediate addressing info. 2981 */ 2982 size = strlen(mdi_pi_get_addr(pip)) + 1; 2983 me->path_addr = off = di_checkmem(st, off, size); 2984 (void) strcpy(di_mem_addr(st, off), mdi_pi_get_addr(pip)); 2985 off += size; 2986 2987 /* 2988 * Get path properties if props are to be included in the 2989 * snapshot 2990 */ 2991 if (DINFOPROP & st->command) { 2992 me->path_prop = off; 2993 off = di_path_getprop(pip, &me->path_prop, st); 2994 } else { 2995 me->path_prop = 0; 2996 } 2997 2998 mdi_pi_unlock(pip); 2999 } 3000 3001 *off_p = 0; 3002 return (off); 3003 } 3004 3005 /* 3006 * Return driver prop_op entry point for the specified devinfo node. 3007 * 3008 * To return a non-NULL value: 3009 * - driver must be attached and held: 3010 * If driver is not attached we ignore the driver property list. 3011 * No one should rely on such properties. 3012 * - driver "cb_prop_op != ddi_prop_op": 3013 * If "cb_prop_op == ddi_prop_op", framework does not need to call driver. 3014 * XXX or parent's bus_prop_op != ddi_bus_prop_op 3015 */ 3016 static int 3017 (*di_getprop_prop_op(struct dev_info *dip)) 3018 (dev_t, dev_info_t *, ddi_prop_op_t, int, char *, caddr_t, int *) 3019 { 3020 struct dev_ops *ops; 3021 3022 /* If driver is not attached we ignore the driver property list. */ 3023 if ((dip == NULL) || !i_ddi_devi_attached((dev_info_t *)dip)) 3024 return (NULL); 3025 3026 /* 3027 * Some nexus drivers incorrectly set cb_prop_op to nodev, nulldev, 3028 * or even NULL. 3029 */ 3030 ops = dip->devi_ops; 3031 if (ops && ops->devo_cb_ops && 3032 (ops->devo_cb_ops->cb_prop_op != ddi_prop_op) && 3033 (ops->devo_cb_ops->cb_prop_op != nodev) && 3034 (ops->devo_cb_ops->cb_prop_op != nulldev) && 3035 (ops->devo_cb_ops->cb_prop_op != NULL)) 3036 return (ops->devo_cb_ops->cb_prop_op); 3037 return (NULL); 3038 } 3039 3040 static di_off_t 3041 di_getprop_add(int list, int dyn, struct di_state *st, struct dev_info *dip, 3042 int (*prop_op)(), 3043 char *name, dev_t devt, int aflags, int alen, caddr_t aval, 3044 di_off_t off, di_off_t **off_pp) 3045 { 3046 int need_free = 0; 3047 dev_t pdevt; 3048 int pflags; 3049 int rv; 3050 caddr_t val; 3051 int len; 3052 size_t size; 3053 struct di_prop *pp; 3054 3055 /* If we have prop_op function, ask driver for latest value */ 3056 if (prop_op) { 3057 ASSERT(dip); 3058 3059 /* Must search DDI_DEV_T_NONE with DDI_DEV_T_ANY */ 3060 pdevt = (devt == DDI_DEV_T_NONE) ? DDI_DEV_T_ANY : devt; 3061 3062 /* 3063 * We have type information in flags, but are invoking an 3064 * old non-typed prop_op(9E) interface. Since not all types are 3065 * part of DDI_PROP_TYPE_ANY (example is DDI_PROP_TYPE_INT64), 3066 * we set DDI_PROP_CONSUMER_TYPED - causing the framework to 3067 * expand type bits beyond DDI_PROP_TYPE_ANY. This allows us 3068 * to use the legacy prop_op(9E) interface to obtain updates 3069 * non-DDI_PROP_TYPE_ANY dynamic properties. 3070 */ 3071 pflags = aflags & ~DDI_PROP_TYPE_MASK; 3072 pflags |= DDI_PROP_DONTPASS | DDI_PROP_NOTPROM | 3073 DDI_PROP_CONSUMER_TYPED; 3074 3075 /* 3076 * Hold and exit across prop_op(9E) to avoid lock order 3077 * issues between 3078 * [ndi_devi_enter() ..prop_op(9E).. driver-lock] 3079 * .vs. 3080 * [..ioctl(9E).. driver-lock ..ddi_remove_minor_node(9F).. 3081 * ndi_devi_enter()] 3082 * ordering. 3083 */ 3084 ndi_hold_devi((dev_info_t *)dip); 3085 ndi_devi_exit((dev_info_t *)dip, dip->devi_circular); 3086 rv = (*prop_op)(pdevt, (dev_info_t *)dip, 3087 PROP_LEN_AND_VAL_ALLOC, pflags, name, &val, &len); 3088 ndi_devi_enter((dev_info_t *)dip, &dip->devi_circular); 3089 ndi_rele_devi((dev_info_t *)dip); 3090 3091 if (rv == DDI_PROP_SUCCESS) { 3092 need_free = 1; /* dynamic prop obtained */ 3093 } else if (dyn) { 3094 /* 3095 * A dynamic property must succeed prop_op(9E) to show 3096 * up in the snapshot - that is the only source of its 3097 * value. 3098 */ 3099 return (off); /* dynamic prop not supported */ 3100 } else { 3101 /* 3102 * In case calling the driver caused an update off 3103 * prop_op(9E) of a non-dynamic property (code leading 3104 * to ddi_prop_change), we defer picking up val and 3105 * len informatiojn until after prop_op(9E) to ensure 3106 * that we snapshot the latest value. 3107 */ 3108 val = aval; 3109 len = alen; 3110 3111 } 3112 } else { 3113 val = aval; 3114 len = alen; 3115 } 3116 3117 dcmn_err((CE_CONT, "di_getprop_add: list %d %s len %d val %p\n", 3118 list, name ? name : "NULL", len, (void *)val)); 3119 3120 size = sizeof (struct di_prop); 3121 **off_pp = off = di_checkmem(st, off, size); 3122 pp = DI_PROP(di_mem_addr(st, off)); 3123 pp->self = off; 3124 off += size; 3125 3126 pp->dev_major = getmajor(devt); 3127 pp->dev_minor = getminor(devt); 3128 pp->prop_flags = aflags; 3129 pp->prop_list = list; 3130 3131 /* property name */ 3132 if (name) { 3133 size = strlen(name) + 1; 3134 pp->prop_name = off = di_checkmem(st, off, size); 3135 (void) strcpy(di_mem_addr(st, off), name); 3136 off += size; 3137 } else { 3138 pp->prop_name = -1; 3139 } 3140 3141 pp->prop_len = len; 3142 if (val == NULL) { 3143 pp->prop_data = -1; 3144 } else if (len != 0) { 3145 size = len; 3146 pp->prop_data = off = di_checkmem(st, off, size); 3147 bcopy(val, di_mem_addr(st, off), size); 3148 off += size; 3149 } 3150 3151 pp->next = 0; /* assume tail for now */ 3152 *off_pp = &pp->next; /* return pointer to our next */ 3153 3154 if (need_free) /* free PROP_LEN_AND_VAL_ALLOC alloc */ 3155 kmem_free(val, len); 3156 return (off); 3157 } 3158 3159 3160 /* 3161 * Copy a list of properties attached to a devinfo node. Called from 3162 * di_copynode with active ndi_devi_enter. The major number is passed in case 3163 * we need to call driver's prop_op entry. The value of list indicates 3164 * which list we are copying. Possible values are: 3165 * DI_PROP_DRV_LIST, DI_PROP_SYS_LIST, DI_PROP_GLB_LIST, DI_PROP_HW_LIST 3166 */ 3167 static di_off_t 3168 di_getprop(int list, struct ddi_prop **pprop, di_off_t *off_p, 3169 struct di_state *st, struct dev_info *dip) 3170 { 3171 struct ddi_prop *prop; 3172 int (*prop_op)(); 3173 int off; 3174 struct ddi_minor_data *mn; 3175 i_ddi_prop_dyn_t *dp; 3176 struct plist { 3177 struct plist *pl_next; 3178 char *pl_name; 3179 int pl_flags; 3180 dev_t pl_dev; 3181 int pl_len; 3182 caddr_t pl_val; 3183 } *pl, *pl0, **plp; 3184 3185 ASSERT(st != NULL); 3186 3187 off = *off_p; 3188 *off_p = 0; 3189 dcmn_err((CE_CONT, "di_getprop: copy property list %d at addr %p\n", 3190 list, (void *)*pprop)); 3191 3192 /* get pointer to driver's prop_op(9E) implementation if DRV_LIST */ 3193 prop_op = (list == DI_PROP_DRV_LIST) ? di_getprop_prop_op(dip) : NULL; 3194 3195 /* 3196 * Form private list of properties, holding devi_lock for properties 3197 * that hang off the dip. 3198 */ 3199 if (dip) 3200 mutex_enter(&(dip->devi_lock)); 3201 for (pl0 = NULL, plp = &pl0, prop = *pprop; 3202 prop; plp = &pl->pl_next, prop = prop->prop_next) { 3203 pl = kmem_alloc(sizeof (*pl), KM_SLEEP); 3204 *plp = pl; 3205 pl->pl_next = NULL; 3206 if (prop->prop_name) 3207 pl->pl_name = i_ddi_strdup(prop->prop_name, KM_SLEEP); 3208 else 3209 pl->pl_name = NULL; 3210 pl->pl_flags = prop->prop_flags; 3211 pl->pl_dev = prop->prop_dev; 3212 if (prop->prop_len) { 3213 pl->pl_len = prop->prop_len; 3214 pl->pl_val = kmem_alloc(pl->pl_len, KM_SLEEP); 3215 bcopy(prop->prop_val, pl->pl_val, pl->pl_len); 3216 } else { 3217 pl->pl_len = 0; 3218 pl->pl_val = NULL; 3219 } 3220 } 3221 if (dip) 3222 mutex_exit(&(dip->devi_lock)); 3223 3224 /* 3225 * Now that we have dropped devi_lock, perform a second-pass to 3226 * add properties to the snapshot. We do this as a second pass 3227 * because we may need to call prop_op(9E) and we can't hold 3228 * devi_lock across that call. 3229 */ 3230 for (pl = pl0; pl; pl = pl0) { 3231 pl0 = pl->pl_next; 3232 off = di_getprop_add(list, 0, st, dip, prop_op, pl->pl_name, 3233 pl->pl_dev, pl->pl_flags, pl->pl_len, pl->pl_val, 3234 off, &off_p); 3235 if (pl->pl_val) 3236 kmem_free(pl->pl_val, pl->pl_len); 3237 if (pl->pl_name) 3238 kmem_free(pl->pl_name, strlen(pl->pl_name) + 1); 3239 kmem_free(pl, sizeof (*pl)); 3240 } 3241 3242 /* 3243 * If there is no prop_op or dynamic property support has been 3244 * disabled, we are done. 3245 */ 3246 if ((prop_op == NULL) || (di_prop_dyn == 0)) { 3247 *off_p = 0; 3248 return (off); 3249 } 3250 3251 /* Add dynamic driver properties to snapshot */ 3252 for (dp = i_ddi_prop_dyn_driver_get((dev_info_t *)dip); 3253 dp && dp->dp_name; dp++) { 3254 if (dp->dp_spec_type) { 3255 /* if spec_type, property of matching minor */ 3256 ASSERT(DEVI_BUSY_OWNED(dip)); 3257 for (mn = dip->devi_minor; mn; mn = mn->next) { 3258 if (mn->ddm_spec_type != dp->dp_spec_type) 3259 continue; 3260 off = di_getprop_add(list, 1, st, dip, prop_op, 3261 dp->dp_name, mn->ddm_dev, dp->dp_type, 3262 0, NULL, off, &off_p); 3263 } 3264 } else { 3265 /* property of devinfo node */ 3266 off = di_getprop_add(list, 1, st, dip, prop_op, 3267 dp->dp_name, DDI_DEV_T_NONE, dp->dp_type, 3268 0, NULL, off, &off_p); 3269 } 3270 } 3271 3272 /* Add dynamic parent properties to snapshot */ 3273 for (dp = i_ddi_prop_dyn_parent_get((dev_info_t *)dip); 3274 dp && dp->dp_name; dp++) { 3275 if (dp->dp_spec_type) { 3276 /* if spec_type, property of matching minor */ 3277 ASSERT(DEVI_BUSY_OWNED(dip)); 3278 for (mn = dip->devi_minor; mn; mn = mn->next) { 3279 if (mn->ddm_spec_type != dp->dp_spec_type) 3280 continue; 3281 off = di_getprop_add(list, 1, st, dip, prop_op, 3282 dp->dp_name, mn->ddm_dev, dp->dp_type, 3283 0, NULL, off, &off_p); 3284 } 3285 } else { 3286 /* property of devinfo node */ 3287 off = di_getprop_add(list, 1, st, dip, prop_op, 3288 dp->dp_name, DDI_DEV_T_NONE, dp->dp_type, 3289 0, NULL, off, &off_p); 3290 } 3291 } 3292 3293 *off_p = 0; 3294 return (off); 3295 } 3296 3297 /* 3298 * find private data format attached to a dip 3299 * parent = 1 to match driver name of parent dip (for parent private data) 3300 * 0 to match driver name of current dip (for driver private data) 3301 */ 3302 #define DI_MATCH_DRIVER 0 3303 #define DI_MATCH_PARENT 1 3304 3305 struct di_priv_format * 3306 di_match_drv_name(struct dev_info *node, struct di_state *st, int match) 3307 { 3308 int i, count, len; 3309 char *drv_name; 3310 major_t major; 3311 struct di_all *all; 3312 struct di_priv_format *form; 3313 3314 dcmn_err2((CE_CONT, "di_match_drv_name: node = %s, match = %x\n", 3315 node->devi_node_name, match)); 3316 3317 if (match == DI_MATCH_PARENT) { 3318 node = DEVI(node->devi_parent); 3319 } 3320 3321 if (node == NULL) { 3322 return (NULL); 3323 } 3324 3325 major = node->devi_major; 3326 if (major == (major_t)(-1)) { 3327 return (NULL); 3328 } 3329 3330 /* 3331 * Match the driver name. 3332 */ 3333 drv_name = ddi_major_to_name(major); 3334 if ((drv_name == NULL) || *drv_name == '\0') { 3335 return (NULL); 3336 } 3337 3338 /* Now get the di_priv_format array */ 3339 all = DI_ALL_PTR(st); 3340 if (match == DI_MATCH_PARENT) { 3341 count = all->n_ppdata; 3342 form = DI_PRIV_FORMAT(di_mem_addr(st, all->ppdata_format)); 3343 } else { 3344 count = all->n_dpdata; 3345 form = DI_PRIV_FORMAT(di_mem_addr(st, all->dpdata_format)); 3346 } 3347 3348 len = strlen(drv_name); 3349 for (i = 0; i < count; i++) { 3350 char *tmp; 3351 3352 tmp = form[i].drv_name; 3353 while (tmp && (*tmp != '\0')) { 3354 if (strncmp(drv_name, tmp, len) == 0) { 3355 return (&form[i]); 3356 } 3357 /* 3358 * Move to next driver name, skipping a white space 3359 */ 3360 if (tmp = strchr(tmp, ' ')) { 3361 tmp++; 3362 } 3363 } 3364 } 3365 3366 return (NULL); 3367 } 3368 3369 /* 3370 * The following functions copy data as specified by the format passed in. 3371 * To prevent invalid format from panicing the system, we call on_fault(). 3372 * A return value of 0 indicates an error. Otherwise, the total offset 3373 * is returned. 3374 */ 3375 #define DI_MAX_PRIVDATA (PAGESIZE >> 1) /* max private data size */ 3376 3377 static di_off_t 3378 di_getprvdata(struct di_priv_format *pdp, struct dev_info *node, 3379 void *data, di_off_t *off_p, struct di_state *st) 3380 { 3381 caddr_t pa; 3382 void *ptr; 3383 int i, size, repeat; 3384 di_off_t off, off0, *tmp; 3385 char *path; 3386 label_t ljb; 3387 3388 dcmn_err2((CE_CONT, "di_getprvdata:\n")); 3389 3390 /* 3391 * check memory availability. Private data size is 3392 * limited to DI_MAX_PRIVDATA. 3393 */ 3394 off = di_checkmem(st, *off_p, DI_MAX_PRIVDATA); 3395 *off_p = off; 3396 3397 if ((pdp->bytes == 0) || pdp->bytes > DI_MAX_PRIVDATA) { 3398 goto failure; 3399 } 3400 3401 if (!on_fault(&ljb)) { 3402 /* copy the struct */ 3403 bcopy(data, di_mem_addr(st, off), pdp->bytes); 3404 off0 = DI_ALIGN(pdp->bytes); /* XXX remove DI_ALIGN */ 3405 3406 /* dereferencing pointers */ 3407 for (i = 0; i < MAX_PTR_IN_PRV; i++) { 3408 3409 if (pdp->ptr[i].size == 0) { 3410 goto success; /* no more ptrs */ 3411 } 3412 3413 /* 3414 * first, get the pointer content 3415 */ 3416 if ((pdp->ptr[i].offset < 0) || 3417 (pdp->ptr[i].offset > pdp->bytes - sizeof (char *))) 3418 goto failure; /* wrong offset */ 3419 3420 pa = di_mem_addr(st, off + pdp->ptr[i].offset); 3421 3422 /* save a tmp ptr to store off_t later */ 3423 tmp = (di_off_t *)(intptr_t)pa; 3424 3425 /* get pointer value, if NULL continue */ 3426 ptr = *((void **) (intptr_t)pa); 3427 if (ptr == NULL) { 3428 continue; 3429 } 3430 3431 /* 3432 * next, find the repeat count (array dimension) 3433 */ 3434 repeat = pdp->ptr[i].len_offset; 3435 3436 /* 3437 * Positive value indicates a fixed sized array. 3438 * 0 or negative value indicates variable sized array. 3439 * 3440 * For variable sized array, the variable must be 3441 * an int member of the structure, with an offset 3442 * equal to the absolution value of struct member. 3443 */ 3444 if (repeat > pdp->bytes - sizeof (int)) { 3445 goto failure; /* wrong offset */ 3446 } 3447 3448 if (repeat >= 0) { 3449 repeat = *((int *) 3450 (intptr_t)((caddr_t)data + repeat)); 3451 } else { 3452 repeat = -repeat; 3453 } 3454 3455 /* 3456 * next, get the size of the object to be copied 3457 */ 3458 size = pdp->ptr[i].size * repeat; 3459 3460 /* 3461 * Arbitrarily limit the total size of object to be 3462 * copied (1 byte to 1/4 page). 3463 */ 3464 if ((size <= 0) || (size > (DI_MAX_PRIVDATA - off0))) { 3465 goto failure; /* wrong size or too big */ 3466 } 3467 3468 /* 3469 * Now copy the data 3470 */ 3471 *tmp = off0; 3472 bcopy(ptr, di_mem_addr(st, off + off0), size); 3473 off0 += DI_ALIGN(size); /* XXX remove DI_ALIGN */ 3474 } 3475 } else { 3476 goto failure; 3477 } 3478 3479 success: 3480 /* 3481 * success if reached here 3482 */ 3483 no_fault(); 3484 return (off + off0); 3485 /*NOTREACHED*/ 3486 3487 failure: 3488 /* 3489 * fault occurred 3490 */ 3491 no_fault(); 3492 path = kmem_alloc(MAXPATHLEN, KM_SLEEP); 3493 cmn_err(CE_WARN, "devinfo: fault on private data for '%s' at %p", 3494 ddi_pathname((dev_info_t *)node, path), data); 3495 kmem_free(path, MAXPATHLEN); 3496 *off_p = -1; /* set private data to indicate error */ 3497 3498 return (off); 3499 } 3500 3501 /* 3502 * get parent private data; on error, returns original offset 3503 */ 3504 static di_off_t 3505 di_getppdata(struct dev_info *node, di_off_t *off_p, struct di_state *st) 3506 { 3507 int off; 3508 struct di_priv_format *ppdp; 3509 3510 dcmn_err2((CE_CONT, "di_getppdata:\n")); 3511 3512 /* find the parent data format */ 3513 if ((ppdp = di_match_drv_name(node, st, DI_MATCH_PARENT)) == NULL) { 3514 off = *off_p; 3515 *off_p = 0; /* set parent data to none */ 3516 return (off); 3517 } 3518 3519 return (di_getprvdata(ppdp, node, 3520 ddi_get_parent_data((dev_info_t *)node), off_p, st)); 3521 } 3522 3523 /* 3524 * get parent private data; returns original offset 3525 */ 3526 static di_off_t 3527 di_getdpdata(struct dev_info *node, di_off_t *off_p, struct di_state *st) 3528 { 3529 int off; 3530 struct di_priv_format *dpdp; 3531 3532 dcmn_err2((CE_CONT, "di_getdpdata:")); 3533 3534 /* find the parent data format */ 3535 if ((dpdp = di_match_drv_name(node, st, DI_MATCH_DRIVER)) == NULL) { 3536 off = *off_p; 3537 *off_p = 0; /* set driver data to none */ 3538 return (off); 3539 } 3540 3541 return (di_getprvdata(dpdp, node, 3542 ddi_get_driver_private((dev_info_t *)node), off_p, st)); 3543 } 3544 3545 /* 3546 * Copy hotplug data associated with a devinfo node into the snapshot. 3547 */ 3548 static di_off_t 3549 di_gethpdata(ddi_hp_cn_handle_t *hp_hdl, di_off_t *off_p, 3550 struct di_state *st) 3551 { 3552 struct i_hp *hp; 3553 struct di_hp *me; 3554 size_t size; 3555 di_off_t off; 3556 3557 dcmn_err2((CE_CONT, "di_gethpdata:\n")); 3558 3559 /* 3560 * check memory first 3561 */ 3562 off = di_checkmem(st, *off_p, sizeof (struct di_hp)); 3563 *off_p = off; 3564 3565 do { 3566 me = DI_HP(di_mem_addr(st, off)); 3567 me->self = off; 3568 me->hp_name = 0; 3569 me->hp_connection = (int)hp_hdl->cn_info.cn_num; 3570 me->hp_depends_on = (int)hp_hdl->cn_info.cn_num_dpd_on; 3571 (void) ddihp_cn_getstate(hp_hdl); 3572 me->hp_state = (int)hp_hdl->cn_info.cn_state; 3573 me->hp_type = (int)hp_hdl->cn_info.cn_type; 3574 me->hp_type_str = 0; 3575 me->hp_last_change = (uint32_t)hp_hdl->cn_info.cn_last_change; 3576 me->hp_child = 0; 3577 3578 /* 3579 * Child links are resolved later by di_hotplug_children(). 3580 * Store a reference to this di_hp_t in the list used later 3581 * by di_hotplug_children(). 3582 */ 3583 hp = kmem_zalloc(sizeof (i_hp_t), KM_SLEEP); 3584 hp->hp_off = off; 3585 hp->hp_child = hp_hdl->cn_info.cn_child; 3586 list_insert_tail(&st->hp_list, hp); 3587 3588 off += sizeof (struct di_hp); 3589 3590 /* Add name of this di_hp_t to the snapshot */ 3591 if (hp_hdl->cn_info.cn_name) { 3592 size = strlen(hp_hdl->cn_info.cn_name) + 1; 3593 me->hp_name = off = di_checkmem(st, off, size); 3594 (void) strcpy(di_mem_addr(st, off), 3595 hp_hdl->cn_info.cn_name); 3596 off += size; 3597 } 3598 3599 /* Add type description of this di_hp_t to the snapshot */ 3600 if (hp_hdl->cn_info.cn_type_str) { 3601 size = strlen(hp_hdl->cn_info.cn_type_str) + 1; 3602 me->hp_type_str = off = di_checkmem(st, off, size); 3603 (void) strcpy(di_mem_addr(st, off), 3604 hp_hdl->cn_info.cn_type_str); 3605 off += size; 3606 } 3607 3608 /* 3609 * Set link to next in the chain of di_hp_t nodes, 3610 * or terminate the chain when processing the last node. 3611 */ 3612 if (hp_hdl->next != NULL) { 3613 off = di_checkmem(st, off, sizeof (struct di_hp)); 3614 me->next = off; 3615 } else { 3616 me->next = 0; 3617 } 3618 3619 /* Update pointer to next in the chain */ 3620 hp_hdl = hp_hdl->next; 3621 3622 } while (hp_hdl); 3623 3624 return (off); 3625 } 3626 3627 /* 3628 * The driver is stateful across DINFOCPYALL and DINFOUSRLD. 3629 * This function encapsulates the state machine: 3630 * 3631 * -> IOC_IDLE -> IOC_SNAP -> IOC_DONE -> IOC_COPY -> 3632 * | SNAPSHOT USRLD | 3633 * -------------------------------------------------- 3634 * 3635 * Returns 0 on success and -1 on failure 3636 */ 3637 static int 3638 di_setstate(struct di_state *st, int new_state) 3639 { 3640 int ret = 0; 3641 3642 mutex_enter(&di_lock); 3643 switch (new_state) { 3644 case IOC_IDLE: 3645 case IOC_DONE: 3646 break; 3647 case IOC_SNAP: 3648 if (st->di_iocstate != IOC_IDLE) 3649 ret = -1; 3650 break; 3651 case IOC_COPY: 3652 if (st->di_iocstate != IOC_DONE) 3653 ret = -1; 3654 break; 3655 default: 3656 ret = -1; 3657 } 3658 3659 if (ret == 0) 3660 st->di_iocstate = new_state; 3661 else 3662 cmn_err(CE_NOTE, "incorrect state transition from %d to %d", 3663 st->di_iocstate, new_state); 3664 mutex_exit(&di_lock); 3665 return (ret); 3666 } 3667 3668 /* 3669 * We cannot assume the presence of the entire 3670 * snapshot in this routine. All we are guaranteed 3671 * is the di_all struct + 1 byte (for root_path) 3672 */ 3673 static int 3674 header_plus_one_ok(struct di_all *all) 3675 { 3676 /* 3677 * Refuse to read old versions 3678 */ 3679 if (all->version != DI_SNAPSHOT_VERSION) { 3680 CACHE_DEBUG((DI_ERR, "bad version: 0x%x", all->version)); 3681 return (0); 3682 } 3683 3684 if (all->cache_magic != DI_CACHE_MAGIC) { 3685 CACHE_DEBUG((DI_ERR, "bad magic #: 0x%x", all->cache_magic)); 3686 return (0); 3687 } 3688 3689 if (all->snapshot_time == 0) { 3690 CACHE_DEBUG((DI_ERR, "bad timestamp: %ld", all->snapshot_time)); 3691 return (0); 3692 } 3693 3694 if (all->top_devinfo == 0) { 3695 CACHE_DEBUG((DI_ERR, "NULL top devinfo")); 3696 return (0); 3697 } 3698 3699 if (all->map_size < sizeof (*all) + 1) { 3700 CACHE_DEBUG((DI_ERR, "bad map size: %u", all->map_size)); 3701 return (0); 3702 } 3703 3704 if (all->root_path[0] != '/' || all->root_path[1] != '\0') { 3705 CACHE_DEBUG((DI_ERR, "bad rootpath: %c%c", 3706 all->root_path[0], all->root_path[1])); 3707 return (0); 3708 } 3709 3710 /* 3711 * We can't check checksum here as we just have the header 3712 */ 3713 3714 return (1); 3715 } 3716 3717 static int 3718 chunk_write(struct vnode *vp, offset_t off, caddr_t buf, size_t len) 3719 { 3720 rlim64_t rlimit; 3721 ssize_t resid; 3722 int error = 0; 3723 3724 3725 rlimit = RLIM64_INFINITY; 3726 3727 while (len) { 3728 resid = 0; 3729 error = vn_rdwr(UIO_WRITE, vp, buf, len, off, 3730 UIO_SYSSPACE, FSYNC, rlimit, kcred, &resid); 3731 3732 if (error || resid < 0) { 3733 error = error ? error : EIO; 3734 CACHE_DEBUG((DI_ERR, "write error: %d", error)); 3735 break; 3736 } 3737 3738 /* 3739 * Check if we are making progress 3740 */ 3741 if (resid >= len) { 3742 error = ENOSPC; 3743 break; 3744 } 3745 buf += len - resid; 3746 off += len - resid; 3747 len = resid; 3748 } 3749 3750 return (error); 3751 } 3752 3753 static void 3754 di_cache_write(struct di_cache *cache) 3755 { 3756 struct di_all *all; 3757 struct vnode *vp; 3758 int oflags; 3759 size_t map_size; 3760 size_t chunk; 3761 offset_t off; 3762 int error; 3763 char *buf; 3764 3765 ASSERT(DI_CACHE_LOCKED(*cache)); 3766 ASSERT(!servicing_interrupt()); 3767 3768 if (cache->cache_size == 0) { 3769 ASSERT(cache->cache_data == NULL); 3770 CACHE_DEBUG((DI_ERR, "Empty cache. Skipping write")); 3771 return; 3772 } 3773 3774 ASSERT(cache->cache_size > 0); 3775 ASSERT(cache->cache_data); 3776 3777 if (!modrootloaded || rootvp == NULL || vn_is_readonly(rootvp)) { 3778 CACHE_DEBUG((DI_ERR, "Can't write to rootFS. Skipping write")); 3779 return; 3780 } 3781 3782 all = (struct di_all *)cache->cache_data; 3783 3784 if (!header_plus_one_ok(all)) { 3785 CACHE_DEBUG((DI_ERR, "Invalid header. Skipping write")); 3786 return; 3787 } 3788 3789 ASSERT(strcmp(all->root_path, "/") == 0); 3790 3791 /* 3792 * The cache_size is the total allocated memory for the cache. 3793 * The map_size is the actual size of valid data in the cache. 3794 * map_size may be smaller than cache_size but cannot exceed 3795 * cache_size. 3796 */ 3797 if (all->map_size > cache->cache_size) { 3798 CACHE_DEBUG((DI_ERR, "map_size (0x%x) > cache_size (0x%x)." 3799 " Skipping write", all->map_size, cache->cache_size)); 3800 return; 3801 } 3802 3803 /* 3804 * First unlink the temp file 3805 */ 3806 error = vn_remove(DI_CACHE_TEMP, UIO_SYSSPACE, RMFILE); 3807 if (error && error != ENOENT) { 3808 CACHE_DEBUG((DI_ERR, "%s: unlink failed: %d", 3809 DI_CACHE_TEMP, error)); 3810 } 3811 3812 if (error == EROFS) { 3813 CACHE_DEBUG((DI_ERR, "RDONLY FS. Skipping write")); 3814 return; 3815 } 3816 3817 vp = NULL; 3818 oflags = (FCREAT|FWRITE); 3819 if (error = vn_open(DI_CACHE_TEMP, UIO_SYSSPACE, oflags, 3820 DI_CACHE_PERMS, &vp, CRCREAT, 0)) { 3821 CACHE_DEBUG((DI_ERR, "%s: create failed: %d", 3822 DI_CACHE_TEMP, error)); 3823 return; 3824 } 3825 3826 ASSERT(vp); 3827 3828 /* 3829 * Paranoid: Check if the file is on a read-only FS 3830 */ 3831 if (vn_is_readonly(vp)) { 3832 CACHE_DEBUG((DI_ERR, "cannot write: readonly FS")); 3833 goto fail; 3834 } 3835 3836 /* 3837 * Note that we only write map_size bytes to disk - this saves 3838 * space as the actual cache size may be larger than size of 3839 * valid data in the cache. 3840 * Another advantage is that it makes verification of size 3841 * easier when the file is read later. 3842 */ 3843 map_size = all->map_size; 3844 off = 0; 3845 buf = cache->cache_data; 3846 3847 while (map_size) { 3848 ASSERT(map_size > 0); 3849 /* 3850 * Write in chunks so that VM system 3851 * is not overwhelmed 3852 */ 3853 if (map_size > di_chunk * PAGESIZE) 3854 chunk = di_chunk * PAGESIZE; 3855 else 3856 chunk = map_size; 3857 3858 error = chunk_write(vp, off, buf, chunk); 3859 if (error) { 3860 CACHE_DEBUG((DI_ERR, "write failed: off=0x%x: %d", 3861 off, error)); 3862 goto fail; 3863 } 3864 3865 off += chunk; 3866 buf += chunk; 3867 map_size -= chunk; 3868 3869 /* If low on memory, give pageout a chance to run */ 3870 if (freemem < desfree) 3871 delay(1); 3872 } 3873 3874 /* 3875 * Now sync the file and close it 3876 */ 3877 if (error = VOP_FSYNC(vp, FSYNC, kcred, NULL)) { 3878 CACHE_DEBUG((DI_ERR, "FSYNC failed: %d", error)); 3879 } 3880 3881 if (error = VOP_CLOSE(vp, oflags, 1, (offset_t)0, kcred, NULL)) { 3882 CACHE_DEBUG((DI_ERR, "close() failed: %d", error)); 3883 VN_RELE(vp); 3884 return; 3885 } 3886 3887 VN_RELE(vp); 3888 3889 /* 3890 * Now do the rename 3891 */ 3892 if (error = vn_rename(DI_CACHE_TEMP, DI_CACHE_FILE, UIO_SYSSPACE)) { 3893 CACHE_DEBUG((DI_ERR, "rename failed: %d", error)); 3894 return; 3895 } 3896 3897 CACHE_DEBUG((DI_INFO, "Cache write successful.")); 3898 3899 return; 3900 3901 fail: 3902 (void) VOP_CLOSE(vp, oflags, 1, (offset_t)0, kcred, NULL); 3903 VN_RELE(vp); 3904 } 3905 3906 3907 /* 3908 * Since we could be called early in boot, 3909 * use kobj_read_file() 3910 */ 3911 static void 3912 di_cache_read(struct di_cache *cache) 3913 { 3914 struct _buf *file; 3915 struct di_all *all; 3916 int n; 3917 size_t map_size, sz, chunk; 3918 offset_t off; 3919 caddr_t buf; 3920 uint32_t saved_crc, crc; 3921 3922 ASSERT(modrootloaded); 3923 ASSERT(DI_CACHE_LOCKED(*cache)); 3924 ASSERT(cache->cache_data == NULL); 3925 ASSERT(cache->cache_size == 0); 3926 ASSERT(!servicing_interrupt()); 3927 3928 file = kobj_open_file(DI_CACHE_FILE); 3929 if (file == (struct _buf *)-1) { 3930 CACHE_DEBUG((DI_ERR, "%s: open failed: %d", 3931 DI_CACHE_FILE, ENOENT)); 3932 return; 3933 } 3934 3935 /* 3936 * Read in the header+root_path first. The root_path must be "/" 3937 */ 3938 all = kmem_zalloc(sizeof (*all) + 1, KM_SLEEP); 3939 n = kobj_read_file(file, (caddr_t)all, sizeof (*all) + 1, 0); 3940 3941 if ((n != sizeof (*all) + 1) || !header_plus_one_ok(all)) { 3942 kmem_free(all, sizeof (*all) + 1); 3943 kobj_close_file(file); 3944 CACHE_DEBUG((DI_ERR, "cache header: read error or invalid")); 3945 return; 3946 } 3947 3948 map_size = all->map_size; 3949 3950 kmem_free(all, sizeof (*all) + 1); 3951 3952 ASSERT(map_size >= sizeof (*all) + 1); 3953 3954 buf = di_cache.cache_data = kmem_alloc(map_size, KM_SLEEP); 3955 sz = map_size; 3956 off = 0; 3957 while (sz) { 3958 /* Don't overload VM with large reads */ 3959 chunk = (sz > di_chunk * PAGESIZE) ? di_chunk * PAGESIZE : sz; 3960 n = kobj_read_file(file, buf, chunk, off); 3961 if (n != chunk) { 3962 CACHE_DEBUG((DI_ERR, "%s: read error at offset: %lld", 3963 DI_CACHE_FILE, off)); 3964 goto fail; 3965 } 3966 off += chunk; 3967 buf += chunk; 3968 sz -= chunk; 3969 } 3970 3971 ASSERT(off == map_size); 3972 3973 /* 3974 * Read past expected EOF to verify size. 3975 */ 3976 if (kobj_read_file(file, (caddr_t)&sz, 1, off) > 0) { 3977 CACHE_DEBUG((DI_ERR, "%s: file size changed", DI_CACHE_FILE)); 3978 goto fail; 3979 } 3980 3981 all = (struct di_all *)di_cache.cache_data; 3982 if (!header_plus_one_ok(all)) { 3983 CACHE_DEBUG((DI_ERR, "%s: file header changed", DI_CACHE_FILE)); 3984 goto fail; 3985 } 3986 3987 /* 3988 * Compute CRC with checksum field in the cache data set to 0 3989 */ 3990 saved_crc = all->cache_checksum; 3991 all->cache_checksum = 0; 3992 CRC32(crc, di_cache.cache_data, map_size, -1U, crc32_table); 3993 all->cache_checksum = saved_crc; 3994 3995 if (crc != all->cache_checksum) { 3996 CACHE_DEBUG((DI_ERR, 3997 "%s: checksum error: expected=0x%x actual=0x%x", 3998 DI_CACHE_FILE, all->cache_checksum, crc)); 3999 goto fail; 4000 } 4001 4002 if (all->map_size != map_size) { 4003 CACHE_DEBUG((DI_ERR, "%s: map size changed", DI_CACHE_FILE)); 4004 goto fail; 4005 } 4006 4007 kobj_close_file(file); 4008 4009 di_cache.cache_size = map_size; 4010 4011 return; 4012 4013 fail: 4014 kmem_free(di_cache.cache_data, map_size); 4015 kobj_close_file(file); 4016 di_cache.cache_data = NULL; 4017 di_cache.cache_size = 0; 4018 } 4019 4020 4021 /* 4022 * Checks if arguments are valid for using the cache. 4023 */ 4024 static int 4025 cache_args_valid(struct di_state *st, int *error) 4026 { 4027 ASSERT(error); 4028 ASSERT(st->mem_size > 0); 4029 ASSERT(st->memlist != NULL); 4030 4031 if (!modrootloaded || !i_ddi_io_initialized()) { 4032 CACHE_DEBUG((DI_ERR, 4033 "cache lookup failure: I/O subsystem not inited")); 4034 *error = ENOTACTIVE; 4035 return (0); 4036 } 4037 4038 /* 4039 * No other flags allowed with DINFOCACHE 4040 */ 4041 if (st->command != (DINFOCACHE & DIIOC_MASK)) { 4042 CACHE_DEBUG((DI_ERR, 4043 "cache lookup failure: bad flags: 0x%x", 4044 st->command)); 4045 *error = EINVAL; 4046 return (0); 4047 } 4048 4049 if (strcmp(DI_ALL_PTR(st)->root_path, "/") != 0) { 4050 CACHE_DEBUG((DI_ERR, 4051 "cache lookup failure: bad root: %s", 4052 DI_ALL_PTR(st)->root_path)); 4053 *error = EINVAL; 4054 return (0); 4055 } 4056 4057 CACHE_DEBUG((DI_INFO, "cache lookup args ok: 0x%x", st->command)); 4058 4059 *error = 0; 4060 4061 return (1); 4062 } 4063 4064 static int 4065 snapshot_is_cacheable(struct di_state *st) 4066 { 4067 ASSERT(st->mem_size > 0); 4068 ASSERT(st->memlist != NULL); 4069 4070 if ((st->command & DI_CACHE_SNAPSHOT_FLAGS) != 4071 (DI_CACHE_SNAPSHOT_FLAGS & DIIOC_MASK)) { 4072 CACHE_DEBUG((DI_INFO, 4073 "not cacheable: incompatible flags: 0x%x", 4074 st->command)); 4075 return (0); 4076 } 4077 4078 if (strcmp(DI_ALL_PTR(st)->root_path, "/") != 0) { 4079 CACHE_DEBUG((DI_INFO, 4080 "not cacheable: incompatible root path: %s", 4081 DI_ALL_PTR(st)->root_path)); 4082 return (0); 4083 } 4084 4085 CACHE_DEBUG((DI_INFO, "cacheable snapshot request: 0x%x", st->command)); 4086 4087 return (1); 4088 } 4089 4090 static int 4091 di_cache_lookup(struct di_state *st) 4092 { 4093 size_t rval; 4094 int cache_valid; 4095 4096 ASSERT(cache_args_valid(st, &cache_valid)); 4097 ASSERT(modrootloaded); 4098 4099 DI_CACHE_LOCK(di_cache); 4100 4101 /* 4102 * The following assignment determines the validity 4103 * of the cache as far as this snapshot is concerned. 4104 */ 4105 cache_valid = di_cache.cache_valid; 4106 4107 if (cache_valid && di_cache.cache_data == NULL) { 4108 di_cache_read(&di_cache); 4109 /* check for read or file error */ 4110 if (di_cache.cache_data == NULL) 4111 cache_valid = 0; 4112 } 4113 4114 if (cache_valid) { 4115 /* 4116 * Ok, the cache was valid as of this particular 4117 * snapshot. Copy the cached snapshot. This is safe 4118 * to do as the cache cannot be freed (we hold the 4119 * cache lock). Free the memory allocated in di_state 4120 * up until this point - we will simply copy everything 4121 * in the cache. 4122 */ 4123 4124 ASSERT(di_cache.cache_data != NULL); 4125 ASSERT(di_cache.cache_size > 0); 4126 4127 di_freemem(st); 4128 4129 rval = 0; 4130 if (di_cache2mem(&di_cache, st) > 0) { 4131 /* 4132 * map_size is size of valid data in the 4133 * cached snapshot and may be less than 4134 * size of the cache. 4135 */ 4136 ASSERT(DI_ALL_PTR(st)); 4137 rval = DI_ALL_PTR(st)->map_size; 4138 4139 ASSERT(rval >= sizeof (struct di_all)); 4140 ASSERT(rval <= di_cache.cache_size); 4141 } 4142 } else { 4143 /* 4144 * The cache isn't valid, we need to take a snapshot. 4145 * Set the command flags appropriately 4146 */ 4147 ASSERT(st->command == (DINFOCACHE & DIIOC_MASK)); 4148 st->command = (DI_CACHE_SNAPSHOT_FLAGS & DIIOC_MASK); 4149 rval = di_cache_update(st); 4150 st->command = (DINFOCACHE & DIIOC_MASK); 4151 } 4152 4153 DI_CACHE_UNLOCK(di_cache); 4154 4155 /* 4156 * For cached snapshots, the devinfo driver always returns 4157 * a snapshot rooted at "/". 4158 */ 4159 ASSERT(rval == 0 || strcmp(DI_ALL_PTR(st)->root_path, "/") == 0); 4160 4161 return ((int)rval); 4162 } 4163 4164 /* 4165 * This is a forced update of the cache - the previous state of the cache 4166 * may be: 4167 * - unpopulated 4168 * - populated and invalid 4169 * - populated and valid 4170 */ 4171 static int 4172 di_cache_update(struct di_state *st) 4173 { 4174 int rval; 4175 uint32_t crc; 4176 struct di_all *all; 4177 4178 ASSERT(DI_CACHE_LOCKED(di_cache)); 4179 ASSERT(snapshot_is_cacheable(st)); 4180 4181 /* 4182 * Free the in-core cache and the on-disk file (if they exist) 4183 */ 4184 i_ddi_di_cache_free(&di_cache); 4185 4186 /* 4187 * Set valid flag before taking the snapshot, 4188 * so that any invalidations that arrive 4189 * during or after the snapshot are not 4190 * removed by us. 4191 */ 4192 atomic_or_32(&di_cache.cache_valid, 1); 4193 4194 rval = di_snapshot_and_clean(st); 4195 4196 if (rval == 0) { 4197 CACHE_DEBUG((DI_ERR, "can't update cache: bad snapshot")); 4198 return (0); 4199 } 4200 4201 DI_ALL_PTR(st)->map_size = rval; 4202 if (di_mem2cache(st, &di_cache) == 0) { 4203 CACHE_DEBUG((DI_ERR, "can't update cache: copy failed")); 4204 return (0); 4205 } 4206 4207 ASSERT(di_cache.cache_data); 4208 ASSERT(di_cache.cache_size > 0); 4209 4210 /* 4211 * Now that we have cached the snapshot, compute its checksum. 4212 * The checksum is only computed over the valid data in the 4213 * cache, not the entire cache. 4214 * Also, set all the fields (except checksum) before computing 4215 * checksum. 4216 */ 4217 all = (struct di_all *)di_cache.cache_data; 4218 all->cache_magic = DI_CACHE_MAGIC; 4219 all->map_size = rval; 4220 4221 ASSERT(all->cache_checksum == 0); 4222 CRC32(crc, di_cache.cache_data, all->map_size, -1U, crc32_table); 4223 all->cache_checksum = crc; 4224 4225 di_cache_write(&di_cache); 4226 4227 return (rval); 4228 } 4229 4230 static void 4231 di_cache_print(di_cache_debug_t msglevel, char *fmt, ...) 4232 { 4233 va_list ap; 4234 4235 if (di_cache_debug <= DI_QUIET) 4236 return; 4237 4238 if (di_cache_debug < msglevel) 4239 return; 4240 4241 switch (msglevel) { 4242 case DI_ERR: 4243 msglevel = CE_WARN; 4244 break; 4245 case DI_INFO: 4246 case DI_TRACE: 4247 default: 4248 msglevel = CE_NOTE; 4249 break; 4250 } 4251 4252 va_start(ap, fmt); 4253 vcmn_err(msglevel, fmt, ap); 4254 va_end(ap); 4255 } 4256 4257 static void 4258 di_hotplug_children(struct di_state *st) 4259 { 4260 di_off_t off; 4261 struct di_hp *hp; 4262 struct i_hp *hp_list_node; 4263 4264 while (hp_list_node = (struct i_hp *)list_remove_head(&st->hp_list)) { 4265 4266 if ((hp_list_node->hp_child != NULL) && 4267 (di_dip_find(st, hp_list_node->hp_child, &off) == 0)) { 4268 hp = DI_HP(di_mem_addr(st, hp_list_node->hp_off)); 4269 hp->hp_child = off; 4270 } 4271 4272 kmem_free(hp_list_node, sizeof (i_hp_t)); 4273 } 4274 4275 list_destroy(&st->hp_list); 4276 }