1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 1990 Mentat Inc. 25 * Copyright (c) 2012 Joyent, Inc. All rights reserved. 26 * Copyright (c) 2014, OmniTI Computer Consulting, Inc. All rights reserved. 27 */ 28 29 #include <sys/types.h> 30 #include <sys/stream.h> 31 #include <sys/dlpi.h> 32 #include <sys/stropts.h> 33 #include <sys/sysmacros.h> 34 #include <sys/strsubr.h> 35 #include <sys/strlog.h> 36 #include <sys/strsun.h> 37 #include <sys/zone.h> 38 #define _SUN_TPI_VERSION 2 39 #include <sys/tihdr.h> 40 #include <sys/xti_inet.h> 41 #include <sys/ddi.h> 42 #include <sys/suntpi.h> 43 #include <sys/cmn_err.h> 44 #include <sys/debug.h> 45 #include <sys/kobj.h> 46 #include <sys/modctl.h> 47 #include <sys/atomic.h> 48 #include <sys/policy.h> 49 #include <sys/priv.h> 50 #include <sys/taskq.h> 51 52 #include <sys/systm.h> 53 #include <sys/param.h> 54 #include <sys/kmem.h> 55 #include <sys/sdt.h> 56 #include <sys/socket.h> 57 #include <sys/vtrace.h> 58 #include <sys/isa_defs.h> 59 #include <sys/mac.h> 60 #include <net/if.h> 61 #include <net/if_arp.h> 62 #include <net/route.h> 63 #include <sys/sockio.h> 64 #include <netinet/in.h> 65 #include <net/if_dl.h> 66 67 #include <inet/common.h> 68 #include <inet/mi.h> 69 #include <inet/mib2.h> 70 #include <inet/nd.h> 71 #include <inet/arp.h> 72 #include <inet/snmpcom.h> 73 #include <inet/optcom.h> 74 #include <inet/kstatcom.h> 75 76 #include <netinet/igmp_var.h> 77 #include <netinet/ip6.h> 78 #include <netinet/icmp6.h> 79 #include <netinet/sctp.h> 80 81 #include <inet/ip.h> 82 #include <inet/ip_impl.h> 83 #include <inet/ip6.h> 84 #include <inet/ip6_asp.h> 85 #include <inet/tcp.h> 86 #include <inet/tcp_impl.h> 87 #include <inet/ip_multi.h> 88 #include <inet/ip_if.h> 89 #include <inet/ip_ire.h> 90 #include <inet/ip_ftable.h> 91 #include <inet/ip_rts.h> 92 #include <inet/ip_ndp.h> 93 #include <inet/ip_listutils.h> 94 #include <netinet/igmp.h> 95 #include <netinet/ip_mroute.h> 96 #include <inet/ipp_common.h> 97 98 #include <net/pfkeyv2.h> 99 #include <inet/sadb.h> 100 #include <inet/ipsec_impl.h> 101 #include <inet/iptun/iptun_impl.h> 102 #include <inet/ipdrop.h> 103 #include <inet/ip_netinfo.h> 104 #include <inet/ilb_ip.h> 105 106 #include <sys/ethernet.h> 107 #include <net/if_types.h> 108 #include <sys/cpuvar.h> 109 110 #include <ipp/ipp.h> 111 #include <ipp/ipp_impl.h> 112 #include <ipp/ipgpc/ipgpc.h> 113 114 #include <sys/pattr.h> 115 #include <inet/ipclassifier.h> 116 #include <inet/sctp_ip.h> 117 #include <inet/sctp/sctp_impl.h> 118 #include <inet/udp_impl.h> 119 #include <inet/rawip_impl.h> 120 #include <inet/rts_impl.h> 121 122 #include <sys/tsol/label.h> 123 #include <sys/tsol/tnet.h> 124 125 #include <sys/squeue_impl.h> 126 #include <inet/ip_arp.h> 127 128 #include <sys/clock_impl.h> /* For LBOLT_FASTPATH{,64} */ 129 130 /* 131 * Values for squeue switch: 132 * IP_SQUEUE_ENTER_NODRAIN: SQ_NODRAIN 133 * IP_SQUEUE_ENTER: SQ_PROCESS 134 * IP_SQUEUE_FILL: SQ_FILL 135 */ 136 int ip_squeue_enter = IP_SQUEUE_ENTER; /* Setable in /etc/system */ 137 138 int ip_squeue_flag; 139 140 /* 141 * Setable in /etc/system 142 */ 143 int ip_poll_normal_ms = 100; 144 int ip_poll_normal_ticks = 0; 145 int ip_modclose_ackwait_ms = 3000; 146 147 /* 148 * It would be nice to have these present only in DEBUG systems, but the 149 * current design of the global symbol checking logic requires them to be 150 * unconditionally present. 151 */ 152 uint_t ip_thread_data; /* TSD key for debug support */ 153 krwlock_t ip_thread_rwlock; 154 list_t ip_thread_list; 155 156 /* 157 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 158 */ 159 160 struct listptr_s { 161 mblk_t *lp_head; /* pointer to the head of the list */ 162 mblk_t *lp_tail; /* pointer to the tail of the list */ 163 }; 164 165 typedef struct listptr_s listptr_t; 166 167 /* 168 * This is used by ip_snmp_get_mib2_ip_route_media and 169 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 170 */ 171 typedef struct iproutedata_s { 172 uint_t ird_idx; 173 uint_t ird_flags; /* see below */ 174 listptr_t ird_route; /* ipRouteEntryTable */ 175 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 176 listptr_t ird_attrs; /* ipRouteAttributeTable */ 177 } iproutedata_t; 178 179 /* Include ire_testhidden and IRE_IF_CLONE routes */ 180 #define IRD_REPORT_ALL 0x01 181 182 /* 183 * Cluster specific hooks. These should be NULL when booted as a non-cluster 184 */ 185 186 /* 187 * Hook functions to enable cluster networking 188 * On non-clustered systems these vectors must always be NULL. 189 * 190 * Hook function to Check ip specified ip address is a shared ip address 191 * in the cluster 192 * 193 */ 194 int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol, 195 sa_family_t addr_family, uint8_t *laddrp, void *args) = NULL; 196 197 /* 198 * Hook function to generate cluster wide ip fragment identifier 199 */ 200 uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol, 201 sa_family_t addr_family, uint8_t *laddrp, uint8_t *faddrp, 202 void *args) = NULL; 203 204 /* 205 * Hook function to generate cluster wide SPI. 206 */ 207 void (*cl_inet_getspi)(netstackid_t, uint8_t, uint8_t *, size_t, 208 void *) = NULL; 209 210 /* 211 * Hook function to verify if the SPI is already utlized. 212 */ 213 214 int (*cl_inet_checkspi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 215 216 /* 217 * Hook function to delete the SPI from the cluster wide repository. 218 */ 219 220 void (*cl_inet_deletespi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 221 222 /* 223 * Hook function to inform the cluster when packet received on an IDLE SA 224 */ 225 226 void (*cl_inet_idlesa)(netstackid_t, uint8_t, uint32_t, sa_family_t, 227 in6_addr_t, in6_addr_t, void *) = NULL; 228 229 /* 230 * Synchronization notes: 231 * 232 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 233 * MT level protection given by STREAMS. IP uses a combination of its own 234 * internal serialization mechanism and standard Solaris locking techniques. 235 * The internal serialization is per phyint. This is used to serialize 236 * plumbing operations, IPMP operations, most set ioctls, etc. 237 * 238 * Plumbing is a long sequence of operations involving message 239 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 240 * involved in plumbing operations. A natural model is to serialize these 241 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 242 * parallel without any interference. But various set ioctls on hme0 are best 243 * serialized, along with IPMP operations and processing of DLPI control 244 * messages received from drivers on a per phyint basis. This serialization is 245 * provided by the ipsq_t and primitives operating on this. Details can 246 * be found in ip_if.c above the core primitives operating on ipsq_t. 247 * 248 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 249 * Simiarly lookup of an ire by a thread also returns a refheld ire. 250 * In addition ipif's and ill's referenced by the ire are also indirectly 251 * refheld. Thus no ipif or ill can vanish as long as an ipif is refheld 252 * directly or indirectly. For example an SIOCSLIFADDR ioctl that changes the 253 * address of an ipif has to go through the ipsq_t. This ensures that only 254 * one such exclusive operation proceeds at any time on the ipif. It then 255 * waits for all refcnts 256 * associated with this ipif to come down to zero. The address is changed 257 * only after the ipif has been quiesced. Then the ipif is brought up again. 258 * More details are described above the comment in ip_sioctl_flags. 259 * 260 * Packet processing is based mostly on IREs and are fully multi-threaded 261 * using standard Solaris MT techniques. 262 * 263 * There are explicit locks in IP to handle: 264 * - The ip_g_head list maintained by mi_open_link() and friends. 265 * 266 * - The reassembly data structures (one lock per hash bucket) 267 * 268 * - conn_lock is meant to protect conn_t fields. The fields actually 269 * protected by conn_lock are documented in the conn_t definition. 270 * 271 * - ire_lock to protect some of the fields of the ire, IRE tables 272 * (one lock per hash bucket). Refer to ip_ire.c for details. 273 * 274 * - ndp_g_lock and ncec_lock for protecting NCEs. 275 * 276 * - ill_lock protects fields of the ill and ipif. Details in ip.h 277 * 278 * - ill_g_lock: This is a global reader/writer lock. Protects the following 279 * * The AVL tree based global multi list of all ills. 280 * * The linked list of all ipifs of an ill 281 * * The <ipsq-xop> mapping 282 * * <ill-phyint> association 283 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 284 * into an ill, changing the <ipsq-xop> mapping of an ill, changing the 285 * <ill-phyint> assoc of an ill will all have to hold the ill_g_lock as 286 * writer for the actual duration of the insertion/deletion/change. 287 * 288 * - ill_lock: This is a per ill mutex. 289 * It protects some members of the ill_t struct; see ip.h for details. 290 * It also protects the <ill-phyint> assoc. 291 * It also protects the list of ipifs hanging off the ill. 292 * 293 * - ipsq_lock: This is a per ipsq_t mutex lock. 294 * This protects some members of the ipsq_t struct; see ip.h for details. 295 * It also protects the <ipsq-ipxop> mapping 296 * 297 * - ipx_lock: This is a per ipxop_t mutex lock. 298 * This protects some members of the ipxop_t struct; see ip.h for details. 299 * 300 * - phyint_lock: This is a per phyint mutex lock. Protects just the 301 * phyint_flags 302 * 303 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 304 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 305 * uniqueness check also done atomically. 306 * 307 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 308 * group list linked by ill_usesrc_grp_next. It also protects the 309 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 310 * group is being added or deleted. This lock is taken as a reader when 311 * walking the list/group(eg: to get the number of members in a usesrc group). 312 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 313 * field is changing state i.e from NULL to non-NULL or vice-versa. For 314 * example, it is not necessary to take this lock in the initial portion 315 * of ip_sioctl_slifusesrc or at all in ip_sioctl_flags since these 316 * operations are executed exclusively and that ensures that the "usesrc 317 * group state" cannot change. The "usesrc group state" change can happen 318 * only in the latter part of ip_sioctl_slifusesrc and in ill_delete. 319 * 320 * Changing <ill-phyint>, <ipsq-xop> assocications: 321 * 322 * To change the <ill-phyint> association, the ill_g_lock must be held 323 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 324 * must be held. 325 * 326 * To change the <ipsq-xop> association, the ill_g_lock must be held as 327 * writer, the ipsq_lock must be held, and one must be writer on the ipsq. 328 * This is only done when ills are added or removed from IPMP groups. 329 * 330 * To add or delete an ipif from the list of ipifs hanging off the ill, 331 * ill_g_lock (writer) and ill_lock must be held and the thread must be 332 * a writer on the associated ipsq. 333 * 334 * To add or delete an ill to the system, the ill_g_lock must be held as 335 * writer and the thread must be a writer on the associated ipsq. 336 * 337 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 338 * must be a writer on the associated ipsq. 339 * 340 * Lock hierarchy 341 * 342 * Some lock hierarchy scenarios are listed below. 343 * 344 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock 345 * ill_g_lock -> ill_lock(s) -> phyint_lock 346 * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock 347 * ill_g_lock -> ip_addr_avail_lock 348 * conn_lock -> irb_lock -> ill_lock -> ire_lock 349 * ill_g_lock -> ip_g_nd_lock 350 * ill_g_lock -> ips_ipmp_lock -> ill_lock -> nce_lock 351 * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock -> nce_lock 352 * arl_lock -> ill_lock 353 * ips_ire_dep_lock -> irb_lock 354 * 355 * When more than 1 ill lock is needed to be held, all ill lock addresses 356 * are sorted on address and locked starting from highest addressed lock 357 * downward. 358 * 359 * Multicast scenarios 360 * ips_ill_g_lock -> ill_mcast_lock 361 * conn_ilg_lock -> ips_ill_g_lock -> ill_lock 362 * ill_mcast_serializer -> ill_mcast_lock -> ips_ipmp_lock -> ill_lock 363 * ill_mcast_serializer -> ill_mcast_lock -> connf_lock -> conn_lock 364 * ill_mcast_serializer -> ill_mcast_lock -> conn_ilg_lock 365 * ill_mcast_serializer -> ill_mcast_lock -> ips_igmp_timer_lock 366 * 367 * IPsec scenarios 368 * 369 * ipsa_lock -> ill_g_lock -> ill_lock 370 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 371 * 372 * Trusted Solaris scenarios 373 * 374 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 375 * igsa_lock -> gcdb_lock 376 * gcgrp_rwlock -> ire_lock 377 * gcgrp_rwlock -> gcdb_lock 378 * 379 * squeue(sq_lock), flow related (ft_lock, fe_lock) locking 380 * 381 * cpu_lock --> ill_lock --> sqset_lock --> sq_lock 382 * sq_lock -> conn_lock -> QLOCK(q) 383 * ill_lock -> ft_lock -> fe_lock 384 * 385 * Routing/forwarding table locking notes: 386 * 387 * Lock acquisition order: Radix tree lock, irb_lock. 388 * Requirements: 389 * i. Walker must not hold any locks during the walker callback. 390 * ii Walker must not see a truncated tree during the walk because of any node 391 * deletion. 392 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 393 * in many places in the code to walk the irb list. Thus even if all the 394 * ires in a bucket have been deleted, we still can't free the radix node 395 * until the ires have actually been inactive'd (freed). 396 * 397 * Tree traversal - Need to hold the global tree lock in read mode. 398 * Before dropping the global tree lock, need to either increment the ire_refcnt 399 * to ensure that the radix node can't be deleted. 400 * 401 * Tree add - Need to hold the global tree lock in write mode to add a 402 * radix node. To prevent the node from being deleted, increment the 403 * irb_refcnt, after the node is added to the tree. The ire itself is 404 * added later while holding the irb_lock, but not the tree lock. 405 * 406 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 407 * All associated ires must be inactive (i.e. freed), and irb_refcnt 408 * must be zero. 409 * 410 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 411 * global tree lock (read mode) for traversal. 412 * 413 * IRE dependencies - In some cases we hold ips_ire_dep_lock across ire_refrele 414 * hence we will acquire irb_lock while holding ips_ire_dep_lock. 415 * 416 * IPsec notes : 417 * 418 * IP interacts with the IPsec code (AH/ESP) by storing IPsec attributes 419 * in the ip_xmit_attr_t ip_recv_attr_t. For outbound datagrams, the 420 * ip_xmit_attr_t has the 421 * information used by the IPsec code for applying the right level of 422 * protection. The information initialized by IP in the ip_xmit_attr_t 423 * is determined by the per-socket policy or global policy in the system. 424 * For inbound datagrams, the ip_recv_attr_t 425 * starts out with nothing in it. It gets filled 426 * with the right information if it goes through the AH/ESP code, which 427 * happens if the incoming packet is secure. The information initialized 428 * by AH/ESP, is later used by IP (during fanouts to ULP) to see whether 429 * the policy requirements needed by per-socket policy or global policy 430 * is met or not. 431 * 432 * For fully connected sockets i.e dst, src [addr, port] is known, 433 * conn_policy_cached is set indicating that policy has been cached. 434 * conn_in_enforce_policy may or may not be set depending on whether 435 * there is a global policy match or per-socket policy match. 436 * Policy inheriting happpens in ip_policy_set once the destination is known. 437 * Once the right policy is set on the conn_t, policy cannot change for 438 * this socket. This makes life simpler for TCP (UDP ?) where 439 * re-transmissions go out with the same policy. For symmetry, policy 440 * is cached for fully connected UDP sockets also. Thus if policy is cached, 441 * it also implies that policy is latched i.e policy cannot change 442 * on these sockets. As we have the right policy on the conn, we don't 443 * have to lookup global policy for every outbound and inbound datagram 444 * and thus serving as an optimization. Note that a global policy change 445 * does not affect fully connected sockets if they have policy. If fully 446 * connected sockets did not have any policy associated with it, global 447 * policy change may affect them. 448 * 449 * IP Flow control notes: 450 * --------------------- 451 * Non-TCP streams are flow controlled by IP. The way this is accomplished 452 * differs when ILL_CAPAB_DLD_DIRECT is enabled for that IP instance. When 453 * ILL_DIRECT_CAPABLE(ill) is TRUE, IP can do direct function calls into 454 * GLDv3. Otherwise packets are sent down to lower layers using STREAMS 455 * functions. 456 * 457 * Per Tx ring udp flow control: 458 * This is applicable only when ILL_CAPAB_DLD_DIRECT capability is set in 459 * the ill (i.e. ILL_DIRECT_CAPABLE(ill) is true). 460 * 461 * The underlying link can expose multiple Tx rings to the GLDv3 mac layer. 462 * To achieve best performance, outgoing traffic need to be fanned out among 463 * these Tx ring. mac_tx() is called (via str_mdata_fastpath_put()) to send 464 * traffic out of the NIC and it takes a fanout hint. UDP connections pass 465 * the address of connp as fanout hint to mac_tx(). Under flow controlled 466 * condition, mac_tx() returns a non-NULL cookie (ip_mac_tx_cookie_t). This 467 * cookie points to a specific Tx ring that is blocked. The cookie is used to 468 * hash into an idl_tx_list[] entry in idl_tx_list[] array. Each idl_tx_list_t 469 * point to drain_lists (idl_t's). These drain list will store the blocked UDP 470 * connp's. The drain list is not a single list but a configurable number of 471 * lists. 472 * 473 * The diagram below shows idl_tx_list_t's and their drain_lists. ip_stack_t 474 * has an array of idl_tx_list_t. The size of the array is TX_FANOUT_SIZE 475 * which is equal to 128. This array in turn contains a pointer to idl_t[], 476 * the ip drain list. The idl_t[] array size is MIN(max_ncpus, 8). The drain 477 * list will point to the list of connp's that are flow controlled. 478 * 479 * --------------- ------- ------- ------- 480 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 481 * | --------------- ------- ------- ------- 482 * | --------------- ------- ------- ------- 483 * |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 484 * ---------------- | --------------- ------- ------- ------- 485 * |idl_tx_list[0]|->| --------------- ------- ------- ------- 486 * ---------------- |->|drain_list[2]|-->|connp|-->|connp|-->|connp|--> 487 * | --------------- ------- ------- ------- 488 * . . . . . 489 * | --------------- ------- ------- ------- 490 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 491 * --------------- ------- ------- ------- 492 * --------------- ------- ------- ------- 493 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 494 * | --------------- ------- ------- ------- 495 * | --------------- ------- ------- ------- 496 * ---------------- |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 497 * |idl_tx_list[1]|->| --------------- ------- ------- ------- 498 * ---------------- | . . . . 499 * | --------------- ------- ------- ------- 500 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 501 * --------------- ------- ------- ------- 502 * ..... 503 * ---------------- 504 * |idl_tx_list[n]|-> ... 505 * ---------------- 506 * 507 * When mac_tx() returns a cookie, the cookie is hashed into an index into 508 * ips_idl_tx_list[], and conn_drain_insert() is called with the idl_tx_list 509 * to insert the conn onto. conn_drain_insert() asserts flow control for the 510 * sockets via su_txq_full() (non-STREAMS) or QFULL on conn_wq (STREAMS). 511 * Further, conn_blocked is set to indicate that the conn is blocked. 512 * 513 * GLDv3 calls ill_flow_enable() when flow control is relieved. The cookie 514 * passed in the call to ill_flow_enable() identifies the blocked Tx ring and 515 * is again hashed to locate the appropriate idl_tx_list, which is then 516 * drained via conn_walk_drain(). conn_walk_drain() goes through each conn in 517 * the drain list and calls conn_drain_remove() to clear flow control (via 518 * calling su_txq_full() or clearing QFULL), and remove the conn from the 519 * drain list. 520 * 521 * Note that the drain list is not a single list but a (configurable) array of 522 * lists (8 elements by default). Synchronization between drain insertion and 523 * flow control wakeup is handled by using idl_txl->txl_lock, and only 524 * conn_drain_insert() and conn_drain_remove() manipulate the drain list. 525 * 526 * Flow control via STREAMS is used when ILL_DIRECT_CAPABLE() returns FALSE. 527 * On the send side, if the packet cannot be sent down to the driver by IP 528 * (canput() fails), ip_xmit() drops the packet and returns EWOULDBLOCK to the 529 * caller, who may then invoke ixa_check_drain_insert() to insert the conn on 530 * the 0'th drain list. When ip_wsrv() runs on the ill_wq because flow 531 * control has been relieved, the blocked conns in the 0'th drain list are 532 * drained as in the non-STREAMS case. 533 * 534 * In both the STREAMS and non-STREAMS cases, the sockfs upcall to set QFULL 535 * is done when the conn is inserted into the drain list (conn_drain_insert()) 536 * and cleared when the conn is removed from the it (conn_drain_remove()). 537 * 538 * IPQOS notes: 539 * 540 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 541 * and IPQoS modules. IPPF includes hooks in IP at different control points 542 * (callout positions) which direct packets to IPQoS modules for policy 543 * processing. Policies, if present, are global. 544 * 545 * The callout positions are located in the following paths: 546 * o local_in (packets destined for this host) 547 * o local_out (packets orginating from this host ) 548 * o fwd_in (packets forwarded by this m/c - inbound) 549 * o fwd_out (packets forwarded by this m/c - outbound) 550 * Hooks at these callout points can be enabled/disabled using the ndd variable 551 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 552 * By default all the callout positions are enabled. 553 * 554 * Outbound (local_out) 555 * Hooks are placed in ire_send_wire_v4 and ire_send_wire_v6. 556 * 557 * Inbound (local_in) 558 * Hooks are placed in ip_fanout_v4 and ip_fanout_v6. 559 * 560 * Forwarding (in and out) 561 * Hooks are placed in ire_recv_forward_v4/v6. 562 * 563 * IP Policy Framework processing (IPPF processing) 564 * Policy processing for a packet is initiated by ip_process, which ascertains 565 * that the classifier (ipgpc) is loaded and configured, failing which the 566 * packet resumes normal processing in IP. If the clasifier is present, the 567 * packet is acted upon by one or more IPQoS modules (action instances), per 568 * filters configured in ipgpc and resumes normal IP processing thereafter. 569 * An action instance can drop a packet in course of its processing. 570 * 571 * Zones notes: 572 * 573 * The partitioning rules for networking are as follows: 574 * 1) Packets coming from a zone must have a source address belonging to that 575 * zone. 576 * 2) Packets coming from a zone can only be sent on a physical interface on 577 * which the zone has an IP address. 578 * 3) Between two zones on the same machine, packet delivery is only allowed if 579 * there's a matching route for the destination and zone in the forwarding 580 * table. 581 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 582 * different zones can bind to the same port with the wildcard address 583 * (INADDR_ANY). 584 * 585 * The granularity of interface partitioning is at the logical interface level. 586 * Therefore, every zone has its own IP addresses, and incoming packets can be 587 * attributed to a zone unambiguously. A logical interface is placed into a zone 588 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 589 * structure. Rule (1) is implemented by modifying the source address selection 590 * algorithm so that the list of eligible addresses is filtered based on the 591 * sending process zone. 592 * 593 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 594 * across all zones, depending on their type. Here is the break-up: 595 * 596 * IRE type Shared/exclusive 597 * -------- ---------------- 598 * IRE_BROADCAST Exclusive 599 * IRE_DEFAULT (default routes) Shared (*) 600 * IRE_LOCAL Exclusive (x) 601 * IRE_LOOPBACK Exclusive 602 * IRE_PREFIX (net routes) Shared (*) 603 * IRE_IF_NORESOLVER (interface routes) Exclusive 604 * IRE_IF_RESOLVER (interface routes) Exclusive 605 * IRE_IF_CLONE (interface routes) Exclusive 606 * IRE_HOST (host routes) Shared (*) 607 * 608 * (*) A zone can only use a default or off-subnet route if the gateway is 609 * directly reachable from the zone, that is, if the gateway's address matches 610 * one of the zone's logical interfaces. 611 * 612 * (x) IRE_LOCAL are handled a bit differently. 613 * When ip_restrict_interzone_loopback is set (the default), 614 * ire_route_recursive restricts loopback using an IRE_LOCAL 615 * between zone to the case when L2 would have conceptually looped the packet 616 * back, i.e. the loopback which is required since neither Ethernet drivers 617 * nor Ethernet hardware loops them back. This is the case when the normal 618 * routes (ignoring IREs with different zoneids) would send out the packet on 619 * the same ill as the ill with which is IRE_LOCAL is associated. 620 * 621 * Multiple zones can share a common broadcast address; typically all zones 622 * share the 255.255.255.255 address. Incoming as well as locally originated 623 * broadcast packets must be dispatched to all the zones on the broadcast 624 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 625 * since some zones may not be on the 10.16.72/24 network. To handle this, each 626 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 627 * sent to every zone that has an IRE_BROADCAST entry for the destination 628 * address on the input ill, see ip_input_broadcast(). 629 * 630 * Applications in different zones can join the same multicast group address. 631 * The same logic applies for multicast as for broadcast. ip_input_multicast 632 * dispatches packets to all zones that have members on the physical interface. 633 */ 634 635 /* 636 * Squeue Fanout flags: 637 * 0: No fanout. 638 * 1: Fanout across all squeues 639 */ 640 boolean_t ip_squeue_fanout = 0; 641 642 /* 643 * Maximum dups allowed per packet. 644 */ 645 uint_t ip_max_frag_dups = 10; 646 647 static int ip_open(queue_t *q, dev_t *devp, int flag, int sflag, 648 cred_t *credp, boolean_t isv6); 649 static mblk_t *ip_xmit_attach_llhdr(mblk_t *, nce_t *); 650 651 static boolean_t icmp_inbound_verify_v4(mblk_t *, icmph_t *, ip_recv_attr_t *); 652 static void icmp_inbound_too_big_v4(icmph_t *, ip_recv_attr_t *); 653 static void icmp_inbound_error_fanout_v4(mblk_t *, icmph_t *, 654 ip_recv_attr_t *); 655 static void icmp_options_update(ipha_t *); 656 static void icmp_param_problem(mblk_t *, uint8_t, ip_recv_attr_t *); 657 static void icmp_pkt(mblk_t *, void *, size_t, ip_recv_attr_t *); 658 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_recv_attr_t *); 659 static void icmp_redirect_v4(mblk_t *mp, ipha_t *, icmph_t *, 660 ip_recv_attr_t *); 661 static void icmp_send_redirect(mblk_t *, ipaddr_t, ip_recv_attr_t *); 662 static void icmp_send_reply_v4(mblk_t *, ipha_t *, icmph_t *, 663 ip_recv_attr_t *); 664 665 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 666 char *ip_dot_addr(ipaddr_t, char *); 667 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 668 int ip_close(queue_t *, int); 669 static char *ip_dot_saddr(uchar_t *, char *); 670 static void ip_lrput(queue_t *, mblk_t *); 671 ipaddr_t ip_net_mask(ipaddr_t); 672 char *ip_nv_lookup(nv_t *, int); 673 void ip_rput(queue_t *, mblk_t *); 674 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 675 void *dummy_arg); 676 int ip_snmp_get(queue_t *, mblk_t *, int, boolean_t); 677 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 678 mib2_ipIfStatsEntry_t *, ip_stack_t *, boolean_t); 679 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 680 ip_stack_t *, boolean_t); 681 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *, 682 boolean_t); 683 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 684 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 685 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 686 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 687 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 688 ip_stack_t *ipst, boolean_t); 689 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 690 ip_stack_t *ipst, boolean_t); 691 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 692 ip_stack_t *ipst); 693 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 694 ip_stack_t *ipst); 695 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 696 ip_stack_t *ipst); 697 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 698 ip_stack_t *ipst); 699 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 700 ip_stack_t *ipst); 701 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 702 ip_stack_t *ipst); 703 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, int, 704 ip_stack_t *ipst); 705 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, int, 706 ip_stack_t *ipst); 707 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 708 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 709 static int ip_snmp_get2_v4_media(ncec_t *, iproutedata_t *); 710 static int ip_snmp_get2_v6_media(ncec_t *, iproutedata_t *); 711 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 712 713 static mblk_t *ip_fragment_copyhdr(uchar_t *, int, int, ip_stack_t *, 714 mblk_t *); 715 716 static void conn_drain_init(ip_stack_t *); 717 static void conn_drain_fini(ip_stack_t *); 718 static void conn_drain(conn_t *connp, boolean_t closing); 719 720 static void conn_walk_drain(ip_stack_t *, idl_tx_list_t *); 721 static void conn_walk_sctp(pfv_t, void *, zoneid_t, netstack_t *); 722 723 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 724 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 725 static void ip_stack_fini(netstackid_t stackid, void *arg); 726 727 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 728 const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *), 729 ire_t *, conn_t *, boolean_t, const in6_addr_t *, mcast_record_t, 730 const in6_addr_t *); 731 732 static int ip_squeue_switch(int); 733 734 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 735 static void ip_kstat_fini(netstackid_t, kstat_t *); 736 static int ip_kstat_update(kstat_t *kp, int rw); 737 static void *icmp_kstat_init(netstackid_t); 738 static void icmp_kstat_fini(netstackid_t, kstat_t *); 739 static int icmp_kstat_update(kstat_t *kp, int rw); 740 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 741 static void ip_kstat2_fini(netstackid_t, kstat_t *); 742 743 static void ipobs_init(ip_stack_t *); 744 static void ipobs_fini(ip_stack_t *); 745 746 static int ip_tp_cpu_update(cpu_setup_t, int, void *); 747 748 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 749 750 static long ip_rput_pullups; 751 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 752 753 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */ 754 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */ 755 756 int ip_debug; 757 758 /* 759 * Multirouting/CGTP stuff 760 */ 761 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 762 763 /* 764 * IP tunables related declarations. Definitions are in ip_tunables.c 765 */ 766 extern mod_prop_info_t ip_propinfo_tbl[]; 767 extern int ip_propinfo_count; 768 769 /* 770 * Table of IP ioctls encoding the various properties of the ioctl and 771 * indexed based on the last byte of the ioctl command. Occasionally there 772 * is a clash, and there is more than 1 ioctl with the same last byte. 773 * In such a case 1 ioctl is encoded in the ndx table and the remaining 774 * ioctls are encoded in the misc table. An entry in the ndx table is 775 * retrieved by indexing on the last byte of the ioctl command and comparing 776 * the ioctl command with the value in the ndx table. In the event of a 777 * mismatch the misc table is then searched sequentially for the desired 778 * ioctl command. 779 * 780 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 781 */ 782 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 783 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 784 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 785 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 786 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 787 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 788 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 789 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 790 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 791 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 792 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 793 794 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 795 MISC_CMD, ip_siocaddrt, NULL }, 796 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 797 MISC_CMD, ip_siocdelrt, NULL }, 798 799 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 800 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 801 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD, 802 IF_CMD, ip_sioctl_get_addr, NULL }, 803 804 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 805 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 806 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 807 IPI_GET_CMD, IF_CMD, ip_sioctl_get_dstaddr, NULL }, 808 809 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 810 IPI_PRIV | IPI_WR, 811 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 812 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 813 IPI_MODOK | IPI_GET_CMD, 814 IF_CMD, ip_sioctl_get_flags, NULL }, 815 816 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 817 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 818 819 /* copyin size cannot be coded for SIOCGIFCONF */ 820 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD, 821 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 822 823 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 824 IF_CMD, ip_sioctl_mtu, NULL }, 825 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD, 826 IF_CMD, ip_sioctl_get_mtu, NULL }, 827 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 828 IPI_GET_CMD, IF_CMD, ip_sioctl_get_brdaddr, NULL }, 829 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 830 IF_CMD, ip_sioctl_brdaddr, NULL }, 831 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 832 IPI_GET_CMD, IF_CMD, ip_sioctl_get_netmask, NULL }, 833 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 834 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 835 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 836 IPI_GET_CMD, IF_CMD, ip_sioctl_get_metric, NULL }, 837 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 838 IF_CMD, ip_sioctl_metric, NULL }, 839 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 840 841 /* See 166-168 below for extended SIOC*XARP ioctls */ 842 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 843 ARP_CMD, ip_sioctl_arp, NULL }, 844 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD, 845 ARP_CMD, ip_sioctl_arp, NULL }, 846 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 847 ARP_CMD, ip_sioctl_arp, NULL }, 848 849 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 850 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 851 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 852 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 853 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 854 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 855 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 856 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 857 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 858 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 859 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 860 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 861 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 862 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 863 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 864 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 865 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 866 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 867 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 868 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 869 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 870 871 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 872 MISC_CMD, if_unitsel, if_unitsel_restart }, 873 874 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 875 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 876 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 877 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 878 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 879 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 880 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 881 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 882 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 883 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 884 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 885 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 886 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 887 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 888 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 889 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 890 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 891 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 892 893 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 894 IPI_PRIV | IPI_WR | IPI_MODOK, 895 IF_CMD, ip_sioctl_sifname, NULL }, 896 897 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 898 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 899 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 900 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 901 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 902 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 903 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 904 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 905 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 906 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 907 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 908 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 909 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 910 911 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD, 912 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 913 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD, 914 IF_CMD, ip_sioctl_get_muxid, NULL }, 915 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 916 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_muxid, NULL }, 917 918 /* Both if and lif variants share same func */ 919 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD, 920 IF_CMD, ip_sioctl_get_lifindex, NULL }, 921 /* Both if and lif variants share same func */ 922 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 923 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_slifindex, NULL }, 924 925 /* copyin size cannot be coded for SIOCGIFCONF */ 926 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD, 927 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 928 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 929 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 930 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 931 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 932 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 933 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 934 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 935 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 936 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 937 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 938 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 939 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 940 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 941 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 942 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 943 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 944 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 945 946 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 947 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_removeif, 948 ip_sioctl_removeif_restart }, 949 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 950 IPI_GET_CMD | IPI_PRIV | IPI_WR, 951 LIF_CMD, ip_sioctl_addif, NULL }, 952 #define SIOCLIFADDR_NDX 112 953 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 954 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 955 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 956 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_addr, NULL }, 957 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 958 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 959 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 960 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 961 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 962 IPI_PRIV | IPI_WR, 963 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 964 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 965 IPI_GET_CMD | IPI_MODOK, 966 LIF_CMD, ip_sioctl_get_flags, NULL }, 967 968 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 969 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 970 971 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 972 ip_sioctl_get_lifconf, NULL }, 973 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 974 LIF_CMD, ip_sioctl_mtu, NULL }, 975 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD, 976 LIF_CMD, ip_sioctl_get_mtu, NULL }, 977 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 978 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 979 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 980 LIF_CMD, ip_sioctl_brdaddr, NULL }, 981 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 982 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_netmask, NULL }, 983 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 984 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 985 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 986 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_metric, NULL }, 987 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 988 LIF_CMD, ip_sioctl_metric, NULL }, 989 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 990 IPI_PRIV | IPI_WR | IPI_MODOK, 991 LIF_CMD, ip_sioctl_slifname, 992 ip_sioctl_slifname_restart }, 993 994 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD, 995 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 996 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 997 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_muxid, NULL }, 998 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 999 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_muxid, NULL }, 1000 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1001 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1002 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1003 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifindex, 0 }, 1004 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1005 LIF_CMD, ip_sioctl_token, NULL }, 1006 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1007 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_token, NULL }, 1008 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1009 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1010 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1011 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_subnet, NULL }, 1012 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1013 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1014 1015 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1016 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1017 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1018 LIF_CMD, ip_siocdelndp_v6, NULL }, 1019 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1020 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1021 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1022 LIF_CMD, ip_siocsetndp_v6, NULL }, 1023 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1024 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1025 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1026 MISC_CMD, ip_sioctl_tonlink, NULL }, 1027 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1028 MISC_CMD, ip_sioctl_tmysite, NULL }, 1029 /* 147 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1030 /* 148 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1031 1032 /* Old *IPSECONFIG ioctls are now deprecated, now see spdsock.c */ 1033 /* 149 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1034 /* 150 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1035 /* 151 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1036 /* 152 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1037 1038 /* 153 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1039 1040 /* 154 */ { SIOCGLIFBINDING, sizeof (struct lifreq), IPI_GET_CMD, 1041 LIF_CMD, ip_sioctl_get_binding, NULL }, 1042 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1043 IPI_PRIV | IPI_WR, 1044 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1045 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1046 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_groupname, NULL }, 1047 /* 157 */ { SIOCGLIFGROUPINFO, sizeof (lifgroupinfo_t), 1048 IPI_GET_CMD, MISC_CMD, ip_sioctl_groupinfo, NULL }, 1049 1050 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1051 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1052 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1053 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1054 1055 /* 161 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1056 1057 /* These are handled in ip_sioctl_copyin_setup itself */ 1058 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1059 MISC_CMD, NULL, NULL }, 1060 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1061 MISC_CMD, NULL, NULL }, 1062 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1063 1064 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1065 ip_sioctl_get_lifconf, NULL }, 1066 1067 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1068 XARP_CMD, ip_sioctl_arp, NULL }, 1069 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD, 1070 XARP_CMD, ip_sioctl_arp, NULL }, 1071 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1072 XARP_CMD, ip_sioctl_arp, NULL }, 1073 1074 /* SIOCPOPSOCKFS is not handled by IP */ 1075 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1076 1077 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1078 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1079 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1080 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifzone, 1081 ip_sioctl_slifzone_restart }, 1082 /* 172-174 are SCTP ioctls and not handled by IP */ 1083 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1084 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1085 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1086 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1087 IPI_GET_CMD, LIF_CMD, 1088 ip_sioctl_get_lifusesrc, 0 }, 1089 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1090 IPI_PRIV | IPI_WR, 1091 LIF_CMD, ip_sioctl_slifusesrc, 1092 NULL }, 1093 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1094 ip_sioctl_get_lifsrcof, NULL }, 1095 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1096 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1097 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), 0, 1098 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1099 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1100 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1101 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), 0, 1102 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1103 /* 182 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1104 /* SIOCSENABLESDP is handled by SDP */ 1105 /* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL }, 1106 /* 184 */ { IPI_DONTCARE /* SIOCSQPTR */, 0, 0, 0, NULL, NULL }, 1107 /* 185 */ { SIOCGIFHWADDR, sizeof (struct ifreq), IPI_GET_CMD, 1108 IF_CMD, ip_sioctl_get_ifhwaddr, NULL }, 1109 /* 186 */ { IPI_DONTCARE /* SIOCGSTAMP */, 0, 0, 0, NULL, NULL }, 1110 /* 187 */ { SIOCILB, 0, IPI_PRIV | IPI_GET_CMD, MISC_CMD, 1111 ip_sioctl_ilb_cmd, NULL }, 1112 /* 188 */ { SIOCGETPROP, 0, IPI_GET_CMD, 0, NULL, NULL }, 1113 /* 189 */ { SIOCSETPROP, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL}, 1114 /* 190 */ { SIOCGLIFDADSTATE, sizeof (struct lifreq), 1115 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dadstate, NULL }, 1116 /* 191 */ { SIOCSLIFPREFIX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1117 LIF_CMD, ip_sioctl_prefix, ip_sioctl_prefix_restart }, 1118 /* 192 */ { SIOCGLIFHWADDR, sizeof (struct lifreq), IPI_GET_CMD, 1119 LIF_CMD, ip_sioctl_get_lifhwaddr, NULL } 1120 }; 1121 1122 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1123 1124 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1125 { I_LINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1126 { I_UNLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1127 { I_PLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1128 { I_PUNLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1129 { ND_GET, 0, 0, 0, NULL, NULL }, 1130 { ND_SET, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1131 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1132 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_GET_CMD, 1133 MISC_CMD, mrt_ioctl}, 1134 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_GET_CMD, 1135 MISC_CMD, mrt_ioctl}, 1136 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_GET_CMD, 1137 MISC_CMD, mrt_ioctl} 1138 }; 1139 1140 int ip_misc_ioctl_count = 1141 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1142 1143 int conn_drain_nthreads; /* Number of drainers reqd. */ 1144 /* Settable in /etc/system */ 1145 /* Defined in ip_ire.c */ 1146 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1147 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1148 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1149 1150 static nv_t ire_nv_arr[] = { 1151 { IRE_BROADCAST, "BROADCAST" }, 1152 { IRE_LOCAL, "LOCAL" }, 1153 { IRE_LOOPBACK, "LOOPBACK" }, 1154 { IRE_DEFAULT, "DEFAULT" }, 1155 { IRE_PREFIX, "PREFIX" }, 1156 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1157 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1158 { IRE_IF_CLONE, "IF_CLONE" }, 1159 { IRE_HOST, "HOST" }, 1160 { IRE_MULTICAST, "MULTICAST" }, 1161 { IRE_NOROUTE, "NOROUTE" }, 1162 { 0 } 1163 }; 1164 1165 nv_t *ire_nv_tbl = ire_nv_arr; 1166 1167 /* Simple ICMP IP Header Template */ 1168 static ipha_t icmp_ipha = { 1169 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1170 }; 1171 1172 struct module_info ip_mod_info = { 1173 IP_MOD_ID, IP_MOD_NAME, IP_MOD_MINPSZ, IP_MOD_MAXPSZ, IP_MOD_HIWAT, 1174 IP_MOD_LOWAT 1175 }; 1176 1177 /* 1178 * Duplicate static symbols within a module confuses mdb; so we avoid the 1179 * problem by making the symbols here distinct from those in udp.c. 1180 */ 1181 1182 /* 1183 * Entry points for IP as a device and as a module. 1184 * We have separate open functions for the /dev/ip and /dev/ip6 devices. 1185 */ 1186 static struct qinit iprinitv4 = { 1187 (pfi_t)ip_rput, NULL, ip_openv4, ip_close, NULL, 1188 &ip_mod_info 1189 }; 1190 1191 struct qinit iprinitv6 = { 1192 (pfi_t)ip_rput_v6, NULL, ip_openv6, ip_close, NULL, 1193 &ip_mod_info 1194 }; 1195 1196 static struct qinit ipwinit = { 1197 (pfi_t)ip_wput_nondata, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1198 &ip_mod_info 1199 }; 1200 1201 static struct qinit iplrinit = { 1202 (pfi_t)ip_lrput, NULL, ip_openv4, ip_close, NULL, 1203 &ip_mod_info 1204 }; 1205 1206 static struct qinit iplwinit = { 1207 (pfi_t)ip_lwput, NULL, NULL, NULL, NULL, 1208 &ip_mod_info 1209 }; 1210 1211 /* For AF_INET aka /dev/ip */ 1212 struct streamtab ipinfov4 = { 1213 &iprinitv4, &ipwinit, &iplrinit, &iplwinit 1214 }; 1215 1216 /* For AF_INET6 aka /dev/ip6 */ 1217 struct streamtab ipinfov6 = { 1218 &iprinitv6, &ipwinit, &iplrinit, &iplwinit 1219 }; 1220 1221 #ifdef DEBUG 1222 boolean_t skip_sctp_cksum = B_FALSE; 1223 #endif 1224 1225 /* 1226 * Generate an ICMP fragmentation needed message. 1227 * When called from ip_output side a minimal ip_recv_attr_t needs to be 1228 * constructed by the caller. 1229 */ 1230 void 1231 icmp_frag_needed(mblk_t *mp, int mtu, ip_recv_attr_t *ira) 1232 { 1233 icmph_t icmph; 1234 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 1235 1236 mp = icmp_pkt_err_ok(mp, ira); 1237 if (mp == NULL) 1238 return; 1239 1240 bzero(&icmph, sizeof (icmph_t)); 1241 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1242 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1243 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1244 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1245 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1246 1247 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 1248 } 1249 1250 /* 1251 * icmp_inbound_v4 deals with ICMP messages that are handled by IP. 1252 * If the ICMP message is consumed by IP, i.e., it should not be delivered 1253 * to any IPPROTO_ICMP raw sockets, then it returns NULL. 1254 * Likewise, if the ICMP error is misformed (too short, etc), then it 1255 * returns NULL. The caller uses this to determine whether or not to send 1256 * to raw sockets. 1257 * 1258 * All error messages are passed to the matching transport stream. 1259 * 1260 * The following cases are handled by icmp_inbound: 1261 * 1) It needs to send a reply back and possibly delivering it 1262 * to the "interested" upper clients. 1263 * 2) Return the mblk so that the caller can pass it to the RAW socket clients. 1264 * 3) It needs to change some values in IP only. 1265 * 4) It needs to change some values in IP and upper layers e.g TCP 1266 * by delivering an error to the upper layers. 1267 * 1268 * We handle the above three cases in the context of IPsec in the 1269 * following way : 1270 * 1271 * 1) Send the reply back in the same way as the request came in. 1272 * If it came in encrypted, it goes out encrypted. If it came in 1273 * clear, it goes out in clear. Thus, this will prevent chosen 1274 * plain text attack. 1275 * 2) The client may or may not expect things to come in secure. 1276 * If it comes in secure, the policy constraints are checked 1277 * before delivering it to the upper layers. If it comes in 1278 * clear, ipsec_inbound_accept_clear will decide whether to 1279 * accept this in clear or not. In both the cases, if the returned 1280 * message (IP header + 8 bytes) that caused the icmp message has 1281 * AH/ESP headers, it is sent up to AH/ESP for validation before 1282 * sending up. If there are only 8 bytes of returned message, then 1283 * upper client will not be notified. 1284 * 3) Check with global policy to see whether it matches the constaints. 1285 * But this will be done only if icmp_accept_messages_in_clear is 1286 * zero. 1287 * 4) If we need to change both in IP and ULP, then the decision taken 1288 * while affecting the values in IP and while delivering up to TCP 1289 * should be the same. 1290 * 1291 * There are two cases. 1292 * 1293 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1294 * failed), we will not deliver it to the ULP, even though they 1295 * are *willing* to accept in *clear*. This is fine as our global 1296 * disposition to icmp messages asks us reject the datagram. 1297 * 1298 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1299 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1300 * to deliver it to ULP (policy failed), it can lead to 1301 * consistency problems. The cases known at this time are 1302 * ICMP_DESTINATION_UNREACHABLE messages with following code 1303 * values : 1304 * 1305 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1306 * and Upper layer rejects. Then the communication will 1307 * come to a stop. This is solved by making similar decisions 1308 * at both levels. Currently, when we are unable to deliver 1309 * to the Upper Layer (due to policy failures) while IP has 1310 * adjusted dce_pmtu, the next outbound datagram would 1311 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1312 * will be with the right level of protection. Thus the right 1313 * value will be communicated even if we are not able to 1314 * communicate when we get from the wire initially. But this 1315 * assumes there would be at least one outbound datagram after 1316 * IP has adjusted its dce_pmtu value. To make things 1317 * simpler, we accept in clear after the validation of 1318 * AH/ESP headers. 1319 * 1320 * - Other ICMP ERRORS : We may not be able to deliver it to the 1321 * upper layer depending on the level of protection the upper 1322 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1323 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1324 * should be accepted in clear when the Upper layer expects secure. 1325 * Thus the communication may get aborted by some bad ICMP 1326 * packets. 1327 */ 1328 mblk_t * 1329 icmp_inbound_v4(mblk_t *mp, ip_recv_attr_t *ira) 1330 { 1331 icmph_t *icmph; 1332 ipha_t *ipha; /* Outer header */ 1333 int ip_hdr_length; /* Outer header length */ 1334 boolean_t interested; 1335 ipif_t *ipif; 1336 uint32_t ts; 1337 uint32_t *tsp; 1338 timestruc_t now; 1339 ill_t *ill = ira->ira_ill; 1340 ip_stack_t *ipst = ill->ill_ipst; 1341 zoneid_t zoneid = ira->ira_zoneid; 1342 int len_needed; 1343 mblk_t *mp_ret = NULL; 1344 1345 ipha = (ipha_t *)mp->b_rptr; 1346 1347 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1348 1349 ip_hdr_length = ira->ira_ip_hdr_length; 1350 if ((mp->b_wptr - mp->b_rptr) < (ip_hdr_length + ICMPH_SIZE)) { 1351 if (ira->ira_pktlen < (ip_hdr_length + ICMPH_SIZE)) { 1352 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 1353 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 1354 freemsg(mp); 1355 return (NULL); 1356 } 1357 /* Last chance to get real. */ 1358 ipha = ip_pullup(mp, ip_hdr_length + ICMPH_SIZE, ira); 1359 if (ipha == NULL) { 1360 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1361 freemsg(mp); 1362 return (NULL); 1363 } 1364 } 1365 1366 /* The IP header will always be a multiple of four bytes */ 1367 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1368 ip2dbg(("icmp_inbound_v4: type %d code %d\n", icmph->icmph_type, 1369 icmph->icmph_code)); 1370 1371 /* 1372 * We will set "interested" to "true" if we should pass a copy to 1373 * the transport or if we handle the packet locally. 1374 */ 1375 interested = B_FALSE; 1376 switch (icmph->icmph_type) { 1377 case ICMP_ECHO_REPLY: 1378 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1379 break; 1380 case ICMP_DEST_UNREACHABLE: 1381 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1382 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1383 interested = B_TRUE; /* Pass up to transport */ 1384 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1385 break; 1386 case ICMP_SOURCE_QUENCH: 1387 interested = B_TRUE; /* Pass up to transport */ 1388 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1389 break; 1390 case ICMP_REDIRECT: 1391 if (!ipst->ips_ip_ignore_redirect) 1392 interested = B_TRUE; 1393 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1394 break; 1395 case ICMP_ECHO_REQUEST: 1396 /* 1397 * Whether to respond to echo requests that come in as IP 1398 * broadcasts or as IP multicast is subject to debate 1399 * (what isn't?). We aim to please, you pick it. 1400 * Default is do it. 1401 */ 1402 if (ira->ira_flags & IRAF_MULTICAST) { 1403 /* multicast: respond based on tunable */ 1404 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1405 } else if (ira->ira_flags & IRAF_BROADCAST) { 1406 /* broadcast: respond based on tunable */ 1407 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1408 } else { 1409 /* unicast: always respond */ 1410 interested = B_TRUE; 1411 } 1412 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1413 if (!interested) { 1414 /* We never pass these to RAW sockets */ 1415 freemsg(mp); 1416 return (NULL); 1417 } 1418 1419 /* Check db_ref to make sure we can modify the packet. */ 1420 if (mp->b_datap->db_ref > 1) { 1421 mblk_t *mp1; 1422 1423 mp1 = copymsg(mp); 1424 freemsg(mp); 1425 if (!mp1) { 1426 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1427 return (NULL); 1428 } 1429 mp = mp1; 1430 ipha = (ipha_t *)mp->b_rptr; 1431 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1432 } 1433 icmph->icmph_type = ICMP_ECHO_REPLY; 1434 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1435 icmp_send_reply_v4(mp, ipha, icmph, ira); 1436 return (NULL); 1437 1438 case ICMP_ROUTER_ADVERTISEMENT: 1439 case ICMP_ROUTER_SOLICITATION: 1440 break; 1441 case ICMP_TIME_EXCEEDED: 1442 interested = B_TRUE; /* Pass up to transport */ 1443 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1444 break; 1445 case ICMP_PARAM_PROBLEM: 1446 interested = B_TRUE; /* Pass up to transport */ 1447 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1448 break; 1449 case ICMP_TIME_STAMP_REQUEST: 1450 /* Response to Time Stamp Requests is local policy. */ 1451 if (ipst->ips_ip_g_resp_to_timestamp) { 1452 if (ira->ira_flags & IRAF_MULTIBROADCAST) 1453 interested = 1454 ipst->ips_ip_g_resp_to_timestamp_bcast; 1455 else 1456 interested = B_TRUE; 1457 } 1458 if (!interested) { 1459 /* We never pass these to RAW sockets */ 1460 freemsg(mp); 1461 return (NULL); 1462 } 1463 1464 /* Make sure we have enough of the packet */ 1465 len_needed = ip_hdr_length + ICMPH_SIZE + 1466 3 * sizeof (uint32_t); 1467 1468 if (mp->b_wptr - mp->b_rptr < len_needed) { 1469 ipha = ip_pullup(mp, len_needed, ira); 1470 if (ipha == NULL) { 1471 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1472 ip_drop_input("ipIfStatsInDiscards - ip_pullup", 1473 mp, ill); 1474 freemsg(mp); 1475 return (NULL); 1476 } 1477 /* Refresh following the pullup. */ 1478 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1479 } 1480 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1481 /* Check db_ref to make sure we can modify the packet. */ 1482 if (mp->b_datap->db_ref > 1) { 1483 mblk_t *mp1; 1484 1485 mp1 = copymsg(mp); 1486 freemsg(mp); 1487 if (!mp1) { 1488 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1489 return (NULL); 1490 } 1491 mp = mp1; 1492 ipha = (ipha_t *)mp->b_rptr; 1493 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1494 } 1495 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1496 tsp = (uint32_t *)&icmph[1]; 1497 tsp++; /* Skip past 'originate time' */ 1498 /* Compute # of milliseconds since midnight */ 1499 gethrestime(&now); 1500 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1501 NSEC2MSEC(now.tv_nsec); 1502 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1503 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1504 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1505 icmp_send_reply_v4(mp, ipha, icmph, ira); 1506 return (NULL); 1507 1508 case ICMP_TIME_STAMP_REPLY: 1509 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1510 break; 1511 case ICMP_INFO_REQUEST: 1512 /* Per RFC 1122 3.2.2.7, ignore this. */ 1513 case ICMP_INFO_REPLY: 1514 break; 1515 case ICMP_ADDRESS_MASK_REQUEST: 1516 if (ira->ira_flags & IRAF_MULTIBROADCAST) { 1517 interested = 1518 ipst->ips_ip_respond_to_address_mask_broadcast; 1519 } else { 1520 interested = B_TRUE; 1521 } 1522 if (!interested) { 1523 /* We never pass these to RAW sockets */ 1524 freemsg(mp); 1525 return (NULL); 1526 } 1527 len_needed = ip_hdr_length + ICMPH_SIZE + IP_ADDR_LEN; 1528 if (mp->b_wptr - mp->b_rptr < len_needed) { 1529 ipha = ip_pullup(mp, len_needed, ira); 1530 if (ipha == NULL) { 1531 BUMP_MIB(ill->ill_ip_mib, 1532 ipIfStatsInTruncatedPkts); 1533 ip_drop_input("ipIfStatsInTruncatedPkts", mp, 1534 ill); 1535 freemsg(mp); 1536 return (NULL); 1537 } 1538 /* Refresh following the pullup. */ 1539 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1540 } 1541 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1542 /* Check db_ref to make sure we can modify the packet. */ 1543 if (mp->b_datap->db_ref > 1) { 1544 mblk_t *mp1; 1545 1546 mp1 = copymsg(mp); 1547 freemsg(mp); 1548 if (!mp1) { 1549 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1550 return (NULL); 1551 } 1552 mp = mp1; 1553 ipha = (ipha_t *)mp->b_rptr; 1554 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1555 } 1556 /* 1557 * Need the ipif with the mask be the same as the source 1558 * address of the mask reply. For unicast we have a specific 1559 * ipif. For multicast/broadcast we only handle onlink 1560 * senders, and use the source address to pick an ipif. 1561 */ 1562 ipif = ipif_lookup_addr(ipha->ipha_dst, ill, zoneid, ipst); 1563 if (ipif == NULL) { 1564 /* Broadcast or multicast */ 1565 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1566 if (ipif == NULL) { 1567 freemsg(mp); 1568 return (NULL); 1569 } 1570 } 1571 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1572 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 1573 ipif_refrele(ipif); 1574 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1575 icmp_send_reply_v4(mp, ipha, icmph, ira); 1576 return (NULL); 1577 1578 case ICMP_ADDRESS_MASK_REPLY: 1579 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1580 break; 1581 default: 1582 interested = B_TRUE; /* Pass up to transport */ 1583 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1584 break; 1585 } 1586 /* 1587 * See if there is an ICMP client to avoid an extra copymsg/freemsg 1588 * if there isn't one. 1589 */ 1590 if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_ICMP].connf_head != NULL) { 1591 /* If there is an ICMP client and we want one too, copy it. */ 1592 1593 if (!interested) { 1594 /* Caller will deliver to RAW sockets */ 1595 return (mp); 1596 } 1597 mp_ret = copymsg(mp); 1598 if (mp_ret == NULL) { 1599 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1600 ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill); 1601 } 1602 } else if (!interested) { 1603 /* Neither we nor raw sockets are interested. Drop packet now */ 1604 freemsg(mp); 1605 return (NULL); 1606 } 1607 1608 /* 1609 * ICMP error or redirect packet. Make sure we have enough of 1610 * the header and that db_ref == 1 since we might end up modifying 1611 * the packet. 1612 */ 1613 if (mp->b_cont != NULL) { 1614 if (ip_pullup(mp, -1, ira) == NULL) { 1615 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1616 ip_drop_input("ipIfStatsInDiscards - ip_pullup", 1617 mp, ill); 1618 freemsg(mp); 1619 return (mp_ret); 1620 } 1621 } 1622 1623 if (mp->b_datap->db_ref > 1) { 1624 mblk_t *mp1; 1625 1626 mp1 = copymsg(mp); 1627 if (mp1 == NULL) { 1628 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1629 ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill); 1630 freemsg(mp); 1631 return (mp_ret); 1632 } 1633 freemsg(mp); 1634 mp = mp1; 1635 } 1636 1637 /* 1638 * In case mp has changed, verify the message before any further 1639 * processes. 1640 */ 1641 ipha = (ipha_t *)mp->b_rptr; 1642 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1643 if (!icmp_inbound_verify_v4(mp, icmph, ira)) { 1644 freemsg(mp); 1645 return (mp_ret); 1646 } 1647 1648 switch (icmph->icmph_type) { 1649 case ICMP_REDIRECT: 1650 icmp_redirect_v4(mp, ipha, icmph, ira); 1651 break; 1652 case ICMP_DEST_UNREACHABLE: 1653 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1654 /* Update DCE and adjust MTU is icmp header if needed */ 1655 icmp_inbound_too_big_v4(icmph, ira); 1656 } 1657 /* FALLTHRU */ 1658 default: 1659 icmp_inbound_error_fanout_v4(mp, icmph, ira); 1660 break; 1661 } 1662 return (mp_ret); 1663 } 1664 1665 /* 1666 * Send an ICMP echo, timestamp or address mask reply. 1667 * The caller has already updated the payload part of the packet. 1668 * We handle the ICMP checksum, IP source address selection and feed 1669 * the packet into ip_output_simple. 1670 */ 1671 static void 1672 icmp_send_reply_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph, 1673 ip_recv_attr_t *ira) 1674 { 1675 uint_t ip_hdr_length = ira->ira_ip_hdr_length; 1676 ill_t *ill = ira->ira_ill; 1677 ip_stack_t *ipst = ill->ill_ipst; 1678 ip_xmit_attr_t ixas; 1679 1680 /* Send out an ICMP packet */ 1681 icmph->icmph_checksum = 0; 1682 icmph->icmph_checksum = IP_CSUM(mp, ip_hdr_length, 0); 1683 /* Reset time to live. */ 1684 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 1685 { 1686 /* Swap source and destination addresses */ 1687 ipaddr_t tmp; 1688 1689 tmp = ipha->ipha_src; 1690 ipha->ipha_src = ipha->ipha_dst; 1691 ipha->ipha_dst = tmp; 1692 } 1693 ipha->ipha_ident = 0; 1694 if (!IS_SIMPLE_IPH(ipha)) 1695 icmp_options_update(ipha); 1696 1697 bzero(&ixas, sizeof (ixas)); 1698 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 1699 ixas.ixa_zoneid = ira->ira_zoneid; 1700 ixas.ixa_cred = kcred; 1701 ixas.ixa_cpid = NOPID; 1702 ixas.ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */ 1703 ixas.ixa_ifindex = 0; 1704 ixas.ixa_ipst = ipst; 1705 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 1706 1707 if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) { 1708 /* 1709 * This packet should go out the same way as it 1710 * came in i.e in clear, independent of the IPsec policy 1711 * for transmitting packets. 1712 */ 1713 ixas.ixa_flags |= IXAF_NO_IPSEC; 1714 } else { 1715 if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) { 1716 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1717 /* Note: mp already consumed and ip_drop_packet done */ 1718 return; 1719 } 1720 } 1721 if (ira->ira_flags & IRAF_MULTIBROADCAST) { 1722 /* 1723 * Not one or our addresses (IRE_LOCALs), thus we let 1724 * ip_output_simple pick the source. 1725 */ 1726 ipha->ipha_src = INADDR_ANY; 1727 ixas.ixa_flags |= IXAF_SET_SOURCE; 1728 } 1729 /* Should we send with DF and use dce_pmtu? */ 1730 if (ipst->ips_ipv4_icmp_return_pmtu) { 1731 ixas.ixa_flags |= IXAF_PMTU_DISCOVERY; 1732 ipha->ipha_fragment_offset_and_flags |= IPH_DF_HTONS; 1733 } 1734 1735 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 1736 1737 (void) ip_output_simple(mp, &ixas); 1738 ixa_cleanup(&ixas); 1739 } 1740 1741 /* 1742 * Verify the ICMP messages for either for ICMP error or redirect packet. 1743 * The caller should have fully pulled up the message. If it's a redirect 1744 * packet, only basic checks on IP header will be done; otherwise, verify 1745 * the packet by looking at the included ULP header. 1746 * 1747 * Called before icmp_inbound_error_fanout_v4 is called. 1748 */ 1749 static boolean_t 1750 icmp_inbound_verify_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira) 1751 { 1752 ill_t *ill = ira->ira_ill; 1753 int hdr_length; 1754 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 1755 conn_t *connp; 1756 ipha_t *ipha; /* Inner IP header */ 1757 1758 ipha = (ipha_t *)&icmph[1]; 1759 if ((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH > mp->b_wptr) 1760 goto truncated; 1761 1762 hdr_length = IPH_HDR_LENGTH(ipha); 1763 1764 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) 1765 goto discard_pkt; 1766 1767 if (hdr_length < sizeof (ipha_t)) 1768 goto truncated; 1769 1770 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) 1771 goto truncated; 1772 1773 /* 1774 * Stop here for ICMP_REDIRECT. 1775 */ 1776 if (icmph->icmph_type == ICMP_REDIRECT) 1777 return (B_TRUE); 1778 1779 /* 1780 * ICMP errors only. 1781 */ 1782 switch (ipha->ipha_protocol) { 1783 case IPPROTO_UDP: 1784 /* 1785 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 1786 * transport header. 1787 */ 1788 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 1789 mp->b_wptr) 1790 goto truncated; 1791 break; 1792 case IPPROTO_TCP: { 1793 tcpha_t *tcpha; 1794 1795 /* 1796 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 1797 * transport header. 1798 */ 1799 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 1800 mp->b_wptr) 1801 goto truncated; 1802 1803 tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length); 1804 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN, 1805 ipst); 1806 if (connp == NULL) 1807 goto discard_pkt; 1808 1809 if ((connp->conn_verifyicmp != NULL) && 1810 !connp->conn_verifyicmp(connp, tcpha, icmph, NULL, ira)) { 1811 CONN_DEC_REF(connp); 1812 goto discard_pkt; 1813 } 1814 CONN_DEC_REF(connp); 1815 break; 1816 } 1817 case IPPROTO_SCTP: 1818 /* 1819 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 1820 * transport header. 1821 */ 1822 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 1823 mp->b_wptr) 1824 goto truncated; 1825 break; 1826 case IPPROTO_ESP: 1827 case IPPROTO_AH: 1828 break; 1829 case IPPROTO_ENCAP: 1830 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 1831 mp->b_wptr) 1832 goto truncated; 1833 break; 1834 default: 1835 break; 1836 } 1837 1838 return (B_TRUE); 1839 1840 discard_pkt: 1841 /* Bogus ICMP error. */ 1842 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1843 return (B_FALSE); 1844 1845 truncated: 1846 /* We pulled up everthing already. Must be truncated */ 1847 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 1848 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 1849 return (B_FALSE); 1850 } 1851 1852 /* Table from RFC 1191 */ 1853 static int icmp_frag_size_table[] = 1854 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 1855 1856 /* 1857 * Process received ICMP Packet too big. 1858 * Just handles the DCE create/update, including using the above table of 1859 * PMTU guesses. The caller is responsible for validating the packet before 1860 * passing it in and also to fanout the ICMP error to any matching transport 1861 * conns. Assumes the message has been fully pulled up and verified. 1862 * 1863 * Before getting here, the caller has called icmp_inbound_verify_v4() 1864 * that should have verified with ULP to prevent undoing the changes we're 1865 * going to make to DCE. For example, TCP might have verified that the packet 1866 * which generated error is in the send window. 1867 * 1868 * In some cases modified this MTU in the ICMP header packet; the caller 1869 * should pass to the matching ULP after this returns. 1870 */ 1871 static void 1872 icmp_inbound_too_big_v4(icmph_t *icmph, ip_recv_attr_t *ira) 1873 { 1874 dce_t *dce; 1875 int old_mtu; 1876 int mtu, orig_mtu; 1877 ipaddr_t dst; 1878 boolean_t disable_pmtud; 1879 ill_t *ill = ira->ira_ill; 1880 ip_stack_t *ipst = ill->ill_ipst; 1881 uint_t hdr_length; 1882 ipha_t *ipha; 1883 1884 /* Caller already pulled up everything. */ 1885 ipha = (ipha_t *)&icmph[1]; 1886 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 1887 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 1888 ASSERT(ill != NULL); 1889 1890 hdr_length = IPH_HDR_LENGTH(ipha); 1891 1892 /* 1893 * We handle path MTU for source routed packets since the DCE 1894 * is looked up using the final destination. 1895 */ 1896 dst = ip_get_dst(ipha); 1897 1898 dce = dce_lookup_and_add_v4(dst, ipst); 1899 if (dce == NULL) { 1900 /* Couldn't add a unique one - ENOMEM */ 1901 ip1dbg(("icmp_inbound_too_big_v4: no dce for 0x%x\n", 1902 ntohl(dst))); 1903 return; 1904 } 1905 1906 /* Check for MTU discovery advice as described in RFC 1191 */ 1907 mtu = ntohs(icmph->icmph_du_mtu); 1908 orig_mtu = mtu; 1909 disable_pmtud = B_FALSE; 1910 1911 mutex_enter(&dce->dce_lock); 1912 if (dce->dce_flags & DCEF_PMTU) 1913 old_mtu = dce->dce_pmtu; 1914 else 1915 old_mtu = ill->ill_mtu; 1916 1917 if (icmph->icmph_du_zero != 0 || mtu < ipst->ips_ip_pmtu_min) { 1918 uint32_t length; 1919 int i; 1920 1921 /* 1922 * Use the table from RFC 1191 to figure out 1923 * the next "plateau" based on the length in 1924 * the original IP packet. 1925 */ 1926 length = ntohs(ipha->ipha_length); 1927 DTRACE_PROBE2(ip4__pmtu__guess, dce_t *, dce, 1928 uint32_t, length); 1929 if (old_mtu <= length && 1930 old_mtu >= length - hdr_length) { 1931 /* 1932 * Handle broken BSD 4.2 systems that 1933 * return the wrong ipha_length in ICMP 1934 * errors. 1935 */ 1936 ip1dbg(("Wrong mtu: sent %d, dce %d\n", 1937 length, old_mtu)); 1938 length -= hdr_length; 1939 } 1940 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 1941 if (length > icmp_frag_size_table[i]) 1942 break; 1943 } 1944 if (i == A_CNT(icmp_frag_size_table)) { 1945 /* Smaller than IP_MIN_MTU! */ 1946 ip1dbg(("Too big for packet size %d\n", 1947 length)); 1948 disable_pmtud = B_TRUE; 1949 mtu = ipst->ips_ip_pmtu_min; 1950 } else { 1951 mtu = icmp_frag_size_table[i]; 1952 ip1dbg(("Calculated mtu %d, packet size %d, " 1953 "before %d\n", mtu, length, old_mtu)); 1954 if (mtu < ipst->ips_ip_pmtu_min) { 1955 mtu = ipst->ips_ip_pmtu_min; 1956 disable_pmtud = B_TRUE; 1957 } 1958 } 1959 } 1960 if (disable_pmtud) 1961 dce->dce_flags |= DCEF_TOO_SMALL_PMTU; 1962 else 1963 dce->dce_flags &= ~DCEF_TOO_SMALL_PMTU; 1964 1965 dce->dce_pmtu = MIN(old_mtu, mtu); 1966 /* Prepare to send the new max frag size for the ULP. */ 1967 icmph->icmph_du_zero = 0; 1968 icmph->icmph_du_mtu = htons((uint16_t)dce->dce_pmtu); 1969 DTRACE_PROBE4(ip4__pmtu__change, icmph_t *, icmph, dce_t *, 1970 dce, int, orig_mtu, int, mtu); 1971 1972 /* We now have a PMTU for sure */ 1973 dce->dce_flags |= DCEF_PMTU; 1974 dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64()); 1975 mutex_exit(&dce->dce_lock); 1976 /* 1977 * After dropping the lock the new value is visible to everyone. 1978 * Then we bump the generation number so any cached values reinspect 1979 * the dce_t. 1980 */ 1981 dce_increment_generation(dce); 1982 dce_refrele(dce); 1983 } 1984 1985 /* 1986 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout_v4 1987 * calls this function. 1988 */ 1989 static mblk_t * 1990 icmp_inbound_self_encap_error_v4(mblk_t *mp, ipha_t *ipha, ipha_t *in_ipha) 1991 { 1992 int length; 1993 1994 ASSERT(mp->b_datap->db_type == M_DATA); 1995 1996 /* icmp_inbound_v4 has already pulled up the whole error packet */ 1997 ASSERT(mp->b_cont == NULL); 1998 1999 /* 2000 * The length that we want to overlay is the inner header 2001 * and what follows it. 2002 */ 2003 length = msgdsize(mp) - ((uchar_t *)in_ipha - mp->b_rptr); 2004 2005 /* 2006 * Overlay the inner header and whatever follows it over the 2007 * outer header. 2008 */ 2009 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2010 2011 /* Adjust for what we removed */ 2012 mp->b_wptr -= (uchar_t *)in_ipha - (uchar_t *)ipha; 2013 return (mp); 2014 } 2015 2016 /* 2017 * Try to pass the ICMP message upstream in case the ULP cares. 2018 * 2019 * If the packet that caused the ICMP error is secure, we send 2020 * it to AH/ESP to make sure that the attached packet has a 2021 * valid association. ipha in the code below points to the 2022 * IP header of the packet that caused the error. 2023 * 2024 * For IPsec cases, we let the next-layer-up (which has access to 2025 * cached policy on the conn_t, or can query the SPD directly) 2026 * subtract out any IPsec overhead if they must. We therefore make no 2027 * adjustments here for IPsec overhead. 2028 * 2029 * IFN could have been generated locally or by some router. 2030 * 2031 * LOCAL : ire_send_wire (before calling ipsec_out_process) can call 2032 * icmp_frag_needed/icmp_pkt2big_v6 to generated a local IFN. 2033 * This happens because IP adjusted its value of MTU on an 2034 * earlier IFN message and could not tell the upper layer, 2035 * the new adjusted value of MTU e.g. Packet was encrypted 2036 * or there was not enough information to fanout to upper 2037 * layers. Thus on the next outbound datagram, ire_send_wire 2038 * generates the IFN, where IPsec processing has *not* been 2039 * done. 2040 * 2041 * Note that we retain ixa_fragsize across IPsec thus once 2042 * we have picking ixa_fragsize and entered ipsec_out_process we do 2043 * no change the fragsize even if the path MTU changes before 2044 * we reach ip_output_post_ipsec. 2045 * 2046 * In the local case, IRAF_LOOPBACK will be set indicating 2047 * that IFN was generated locally. 2048 * 2049 * ROUTER : IFN could be secure or non-secure. 2050 * 2051 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2052 * packet in error has AH/ESP headers to validate the AH/ESP 2053 * headers. AH/ESP will verify whether there is a valid SA or 2054 * not and send it back. We will fanout again if we have more 2055 * data in the packet. 2056 * 2057 * If the packet in error does not have AH/ESP, we handle it 2058 * like any other case. 2059 * 2060 * * NON_SECURE : If the packet in error has AH/ESP headers, we send it 2061 * up to AH/ESP for validation. AH/ESP will verify whether there is a 2062 * valid SA or not and send it back. We will fanout again if 2063 * we have more data in the packet. 2064 * 2065 * If the packet in error does not have AH/ESP, we handle it 2066 * like any other case. 2067 * 2068 * The caller must have called icmp_inbound_verify_v4. 2069 */ 2070 static void 2071 icmp_inbound_error_fanout_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira) 2072 { 2073 uint16_t *up; /* Pointer to ports in ULP header */ 2074 uint32_t ports; /* reversed ports for fanout */ 2075 ipha_t ripha; /* With reversed addresses */ 2076 ipha_t *ipha; /* Inner IP header */ 2077 uint_t hdr_length; /* Inner IP header length */ 2078 tcpha_t *tcpha; 2079 conn_t *connp; 2080 ill_t *ill = ira->ira_ill; 2081 ip_stack_t *ipst = ill->ill_ipst; 2082 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2083 ill_t *rill = ira->ira_rill; 2084 2085 /* Caller already pulled up everything. */ 2086 ipha = (ipha_t *)&icmph[1]; 2087 ASSERT((uchar_t *)&ipha[1] <= mp->b_wptr); 2088 ASSERT(mp->b_cont == NULL); 2089 2090 hdr_length = IPH_HDR_LENGTH(ipha); 2091 ira->ira_protocol = ipha->ipha_protocol; 2092 2093 /* 2094 * We need a separate IP header with the source and destination 2095 * addresses reversed to do fanout/classification because the ipha in 2096 * the ICMP error is in the form we sent it out. 2097 */ 2098 ripha.ipha_src = ipha->ipha_dst; 2099 ripha.ipha_dst = ipha->ipha_src; 2100 ripha.ipha_protocol = ipha->ipha_protocol; 2101 ripha.ipha_version_and_hdr_length = ipha->ipha_version_and_hdr_length; 2102 2103 ip2dbg(("icmp_inbound_error_v4: proto %d %x to %x: %d/%d\n", 2104 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2105 ntohl(ipha->ipha_dst), 2106 icmph->icmph_type, icmph->icmph_code)); 2107 2108 switch (ipha->ipha_protocol) { 2109 case IPPROTO_UDP: 2110 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2111 2112 /* Attempt to find a client stream based on port. */ 2113 ip2dbg(("icmp_inbound_error_v4: UDP ports %d to %d\n", 2114 ntohs(up[0]), ntohs(up[1]))); 2115 2116 /* Note that we send error to all matches. */ 2117 ira->ira_flags |= IRAF_ICMP_ERROR; 2118 ip_fanout_udp_multi_v4(mp, &ripha, up[0], up[1], ira); 2119 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2120 return; 2121 2122 case IPPROTO_TCP: 2123 /* 2124 * Find a TCP client stream for this packet. 2125 * Note that we do a reverse lookup since the header is 2126 * in the form we sent it out. 2127 */ 2128 tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length); 2129 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN, 2130 ipst); 2131 if (connp == NULL) 2132 goto discard_pkt; 2133 2134 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 2135 (ira->ira_flags & IRAF_IPSEC_SECURE)) { 2136 mp = ipsec_check_inbound_policy(mp, connp, 2137 ipha, NULL, ira); 2138 if (mp == NULL) { 2139 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2140 /* Note that mp is NULL */ 2141 ip_drop_input("ipIfStatsInDiscards", mp, ill); 2142 CONN_DEC_REF(connp); 2143 return; 2144 } 2145 } 2146 2147 ira->ira_flags |= IRAF_ICMP_ERROR; 2148 ira->ira_ill = ira->ira_rill = NULL; 2149 if (IPCL_IS_TCP(connp)) { 2150 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 2151 connp->conn_recvicmp, connp, ira, SQ_FILL, 2152 SQTAG_TCP_INPUT_ICMP_ERR); 2153 } else { 2154 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 2155 (connp->conn_recv)(connp, mp, NULL, ira); 2156 CONN_DEC_REF(connp); 2157 } 2158 ira->ira_ill = ill; 2159 ira->ira_rill = rill; 2160 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2161 return; 2162 2163 case IPPROTO_SCTP: 2164 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2165 /* Find a SCTP client stream for this packet. */ 2166 ((uint16_t *)&ports)[0] = up[1]; 2167 ((uint16_t *)&ports)[1] = up[0]; 2168 2169 ira->ira_flags |= IRAF_ICMP_ERROR; 2170 ip_fanout_sctp(mp, &ripha, NULL, ports, ira); 2171 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2172 return; 2173 2174 case IPPROTO_ESP: 2175 case IPPROTO_AH: 2176 if (!ipsec_loaded(ipss)) { 2177 ip_proto_not_sup(mp, ira); 2178 return; 2179 } 2180 2181 if (ipha->ipha_protocol == IPPROTO_ESP) 2182 mp = ipsecesp_icmp_error(mp, ira); 2183 else 2184 mp = ipsecah_icmp_error(mp, ira); 2185 if (mp == NULL) 2186 return; 2187 2188 /* Just in case ipsec didn't preserve the NULL b_cont */ 2189 if (mp->b_cont != NULL) { 2190 if (!pullupmsg(mp, -1)) 2191 goto discard_pkt; 2192 } 2193 2194 /* 2195 * Note that ira_pktlen and ira_ip_hdr_length are no longer 2196 * correct, but we don't use them any more here. 2197 * 2198 * If succesful, the mp has been modified to not include 2199 * the ESP/AH header so we can fanout to the ULP's icmp 2200 * error handler. 2201 */ 2202 if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH) 2203 goto truncated; 2204 2205 /* Verify the modified message before any further processes. */ 2206 ipha = (ipha_t *)mp->b_rptr; 2207 hdr_length = IPH_HDR_LENGTH(ipha); 2208 icmph = (icmph_t *)&mp->b_rptr[hdr_length]; 2209 if (!icmp_inbound_verify_v4(mp, icmph, ira)) { 2210 freemsg(mp); 2211 return; 2212 } 2213 2214 icmp_inbound_error_fanout_v4(mp, icmph, ira); 2215 return; 2216 2217 case IPPROTO_ENCAP: { 2218 /* Look for self-encapsulated packets that caused an error */ 2219 ipha_t *in_ipha; 2220 2221 /* 2222 * Caller has verified that length has to be 2223 * at least the size of IP header. 2224 */ 2225 ASSERT(hdr_length >= sizeof (ipha_t)); 2226 /* 2227 * Check the sanity of the inner IP header like 2228 * we did for the outer header. 2229 */ 2230 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2231 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2232 goto discard_pkt; 2233 } 2234 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2235 goto discard_pkt; 2236 } 2237 /* Check for Self-encapsulated tunnels */ 2238 if (in_ipha->ipha_src == ipha->ipha_src && 2239 in_ipha->ipha_dst == ipha->ipha_dst) { 2240 2241 mp = icmp_inbound_self_encap_error_v4(mp, ipha, 2242 in_ipha); 2243 if (mp == NULL) 2244 goto discard_pkt; 2245 2246 /* 2247 * Just in case self_encap didn't preserve the NULL 2248 * b_cont 2249 */ 2250 if (mp->b_cont != NULL) { 2251 if (!pullupmsg(mp, -1)) 2252 goto discard_pkt; 2253 } 2254 /* 2255 * Note that ira_pktlen and ira_ip_hdr_length are no 2256 * longer correct, but we don't use them any more here. 2257 */ 2258 if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH) 2259 goto truncated; 2260 2261 /* 2262 * Verify the modified message before any further 2263 * processes. 2264 */ 2265 ipha = (ipha_t *)mp->b_rptr; 2266 hdr_length = IPH_HDR_LENGTH(ipha); 2267 icmph = (icmph_t *)&mp->b_rptr[hdr_length]; 2268 if (!icmp_inbound_verify_v4(mp, icmph, ira)) { 2269 freemsg(mp); 2270 return; 2271 } 2272 2273 /* 2274 * The packet in error is self-encapsualted. 2275 * And we are finding it further encapsulated 2276 * which we could not have possibly generated. 2277 */ 2278 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2279 goto discard_pkt; 2280 } 2281 icmp_inbound_error_fanout_v4(mp, icmph, ira); 2282 return; 2283 } 2284 /* No self-encapsulated */ 2285 /* FALLTHRU */ 2286 } 2287 case IPPROTO_IPV6: 2288 if ((connp = ipcl_iptun_classify_v4(&ripha.ipha_src, 2289 &ripha.ipha_dst, ipst)) != NULL) { 2290 ira->ira_flags |= IRAF_ICMP_ERROR; 2291 connp->conn_recvicmp(connp, mp, NULL, ira); 2292 CONN_DEC_REF(connp); 2293 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2294 return; 2295 } 2296 /* 2297 * No IP tunnel is interested, fallthrough and see 2298 * if a raw socket will want it. 2299 */ 2300 /* FALLTHRU */ 2301 default: 2302 ira->ira_flags |= IRAF_ICMP_ERROR; 2303 ip_fanout_proto_v4(mp, &ripha, ira); 2304 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2305 return; 2306 } 2307 /* NOTREACHED */ 2308 discard_pkt: 2309 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2310 ip1dbg(("icmp_inbound_error_fanout_v4: drop pkt\n")); 2311 ip_drop_input("ipIfStatsInDiscards", mp, ill); 2312 freemsg(mp); 2313 return; 2314 2315 truncated: 2316 /* We pulled up everthing already. Must be truncated */ 2317 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 2318 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 2319 freemsg(mp); 2320 } 2321 2322 /* 2323 * Common IP options parser. 2324 * 2325 * Setup routine: fill in *optp with options-parsing state, then 2326 * tail-call ipoptp_next to return the first option. 2327 */ 2328 uint8_t 2329 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2330 { 2331 uint32_t totallen; /* total length of all options */ 2332 2333 totallen = ipha->ipha_version_and_hdr_length - 2334 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2335 totallen <<= 2; 2336 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2337 optp->ipoptp_end = optp->ipoptp_next + totallen; 2338 optp->ipoptp_flags = 0; 2339 return (ipoptp_next(optp)); 2340 } 2341 2342 /* Like above but without an ipha_t */ 2343 uint8_t 2344 ipoptp_first2(ipoptp_t *optp, uint32_t totallen, uint8_t *opt) 2345 { 2346 optp->ipoptp_next = opt; 2347 optp->ipoptp_end = optp->ipoptp_next + totallen; 2348 optp->ipoptp_flags = 0; 2349 return (ipoptp_next(optp)); 2350 } 2351 2352 /* 2353 * Common IP options parser: extract next option. 2354 */ 2355 uint8_t 2356 ipoptp_next(ipoptp_t *optp) 2357 { 2358 uint8_t *end = optp->ipoptp_end; 2359 uint8_t *cur = optp->ipoptp_next; 2360 uint8_t opt, len, pointer; 2361 2362 /* 2363 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2364 * has been corrupted. 2365 */ 2366 ASSERT(cur <= end); 2367 2368 if (cur == end) 2369 return (IPOPT_EOL); 2370 2371 opt = cur[IPOPT_OPTVAL]; 2372 2373 /* 2374 * Skip any NOP options. 2375 */ 2376 while (opt == IPOPT_NOP) { 2377 cur++; 2378 if (cur == end) 2379 return (IPOPT_EOL); 2380 opt = cur[IPOPT_OPTVAL]; 2381 } 2382 2383 if (opt == IPOPT_EOL) 2384 return (IPOPT_EOL); 2385 2386 /* 2387 * Option requiring a length. 2388 */ 2389 if ((cur + 1) >= end) { 2390 optp->ipoptp_flags |= IPOPTP_ERROR; 2391 return (IPOPT_EOL); 2392 } 2393 len = cur[IPOPT_OLEN]; 2394 if (len < 2) { 2395 optp->ipoptp_flags |= IPOPTP_ERROR; 2396 return (IPOPT_EOL); 2397 } 2398 optp->ipoptp_cur = cur; 2399 optp->ipoptp_len = len; 2400 optp->ipoptp_next = cur + len; 2401 if (cur + len > end) { 2402 optp->ipoptp_flags |= IPOPTP_ERROR; 2403 return (IPOPT_EOL); 2404 } 2405 2406 /* 2407 * For the options which require a pointer field, make sure 2408 * its there, and make sure it points to either something 2409 * inside this option, or the end of the option. 2410 */ 2411 switch (opt) { 2412 case IPOPT_RR: 2413 case IPOPT_TS: 2414 case IPOPT_LSRR: 2415 case IPOPT_SSRR: 2416 if (len <= IPOPT_OFFSET) { 2417 optp->ipoptp_flags |= IPOPTP_ERROR; 2418 return (opt); 2419 } 2420 pointer = cur[IPOPT_OFFSET]; 2421 if (pointer - 1 > len) { 2422 optp->ipoptp_flags |= IPOPTP_ERROR; 2423 return (opt); 2424 } 2425 break; 2426 } 2427 2428 /* 2429 * Sanity check the pointer field based on the type of the 2430 * option. 2431 */ 2432 switch (opt) { 2433 case IPOPT_RR: 2434 case IPOPT_SSRR: 2435 case IPOPT_LSRR: 2436 if (pointer < IPOPT_MINOFF_SR) 2437 optp->ipoptp_flags |= IPOPTP_ERROR; 2438 break; 2439 case IPOPT_TS: 2440 if (pointer < IPOPT_MINOFF_IT) 2441 optp->ipoptp_flags |= IPOPTP_ERROR; 2442 /* 2443 * Note that the Internet Timestamp option also 2444 * contains two four bit fields (the Overflow field, 2445 * and the Flag field), which follow the pointer 2446 * field. We don't need to check that these fields 2447 * fall within the length of the option because this 2448 * was implicitely done above. We've checked that the 2449 * pointer value is at least IPOPT_MINOFF_IT, and that 2450 * it falls within the option. Since IPOPT_MINOFF_IT > 2451 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2452 */ 2453 ASSERT(len > IPOPT_POS_OV_FLG); 2454 break; 2455 } 2456 2457 return (opt); 2458 } 2459 2460 /* 2461 * Use the outgoing IP header to create an IP_OPTIONS option the way 2462 * it was passed down from the application. 2463 * 2464 * This is compatible with BSD in that it returns 2465 * the reverse source route with the final destination 2466 * as the last entry. The first 4 bytes of the option 2467 * will contain the final destination. 2468 */ 2469 int 2470 ip_opt_get_user(conn_t *connp, uchar_t *buf) 2471 { 2472 ipoptp_t opts; 2473 uchar_t *opt; 2474 uint8_t optval; 2475 uint8_t optlen; 2476 uint32_t len = 0; 2477 uchar_t *buf1 = buf; 2478 uint32_t totallen; 2479 ipaddr_t dst; 2480 ip_pkt_t *ipp = &connp->conn_xmit_ipp; 2481 2482 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS)) 2483 return (0); 2484 2485 totallen = ipp->ipp_ipv4_options_len; 2486 if (totallen & 0x3) 2487 return (0); 2488 2489 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2490 len += IP_ADDR_LEN; 2491 bzero(buf1, IP_ADDR_LEN); 2492 2493 dst = connp->conn_faddr_v4; 2494 2495 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options); 2496 optval != IPOPT_EOL; 2497 optval = ipoptp_next(&opts)) { 2498 int off; 2499 2500 opt = opts.ipoptp_cur; 2501 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 2502 break; 2503 } 2504 optlen = opts.ipoptp_len; 2505 2506 switch (optval) { 2507 case IPOPT_SSRR: 2508 case IPOPT_LSRR: 2509 2510 /* 2511 * Insert destination as the first entry in the source 2512 * route and move down the entries on step. 2513 * The last entry gets placed at buf1. 2514 */ 2515 buf[IPOPT_OPTVAL] = optval; 2516 buf[IPOPT_OLEN] = optlen; 2517 buf[IPOPT_OFFSET] = optlen; 2518 2519 off = optlen - IP_ADDR_LEN; 2520 if (off < 0) { 2521 /* No entries in source route */ 2522 break; 2523 } 2524 /* Last entry in source route if not already set */ 2525 if (dst == INADDR_ANY) 2526 bcopy(opt + off, buf1, IP_ADDR_LEN); 2527 off -= IP_ADDR_LEN; 2528 2529 while (off > 0) { 2530 bcopy(opt + off, 2531 buf + off + IP_ADDR_LEN, 2532 IP_ADDR_LEN); 2533 off -= IP_ADDR_LEN; 2534 } 2535 /* ipha_dst into first slot */ 2536 bcopy(&dst, buf + off + IP_ADDR_LEN, 2537 IP_ADDR_LEN); 2538 buf += optlen; 2539 len += optlen; 2540 break; 2541 2542 default: 2543 bcopy(opt, buf, optlen); 2544 buf += optlen; 2545 len += optlen; 2546 break; 2547 } 2548 } 2549 done: 2550 /* Pad the resulting options */ 2551 while (len & 0x3) { 2552 *buf++ = IPOPT_EOL; 2553 len++; 2554 } 2555 return (len); 2556 } 2557 2558 /* 2559 * Update any record route or timestamp options to include this host. 2560 * Reverse any source route option. 2561 * This routine assumes that the options are well formed i.e. that they 2562 * have already been checked. 2563 */ 2564 static void 2565 icmp_options_update(ipha_t *ipha) 2566 { 2567 ipoptp_t opts; 2568 uchar_t *opt; 2569 uint8_t optval; 2570 ipaddr_t src; /* Our local address */ 2571 ipaddr_t dst; 2572 2573 ip2dbg(("icmp_options_update\n")); 2574 src = ipha->ipha_src; 2575 dst = ipha->ipha_dst; 2576 2577 for (optval = ipoptp_first(&opts, ipha); 2578 optval != IPOPT_EOL; 2579 optval = ipoptp_next(&opts)) { 2580 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 2581 opt = opts.ipoptp_cur; 2582 ip2dbg(("icmp_options_update: opt %d, len %d\n", 2583 optval, opts.ipoptp_len)); 2584 switch (optval) { 2585 int off1, off2; 2586 case IPOPT_SSRR: 2587 case IPOPT_LSRR: 2588 /* 2589 * Reverse the source route. The first entry 2590 * should be the next to last one in the current 2591 * source route (the last entry is our address). 2592 * The last entry should be the final destination. 2593 */ 2594 off1 = IPOPT_MINOFF_SR - 1; 2595 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 2596 if (off2 < 0) { 2597 /* No entries in source route */ 2598 ip1dbg(( 2599 "icmp_options_update: bad src route\n")); 2600 break; 2601 } 2602 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 2603 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 2604 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 2605 off2 -= IP_ADDR_LEN; 2606 2607 while (off1 < off2) { 2608 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 2609 bcopy((char *)opt + off2, (char *)opt + off1, 2610 IP_ADDR_LEN); 2611 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 2612 off1 += IP_ADDR_LEN; 2613 off2 -= IP_ADDR_LEN; 2614 } 2615 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 2616 break; 2617 } 2618 } 2619 } 2620 2621 /* 2622 * Process received ICMP Redirect messages. 2623 * Assumes the caller has verified that the headers are in the pulled up mblk. 2624 * Consumes mp. 2625 */ 2626 static void 2627 icmp_redirect_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph, ip_recv_attr_t *ira) 2628 { 2629 ire_t *ire, *nire; 2630 ire_t *prev_ire; 2631 ipaddr_t src, dst, gateway; 2632 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2633 ipha_t *inner_ipha; /* Inner IP header */ 2634 2635 /* Caller already pulled up everything. */ 2636 inner_ipha = (ipha_t *)&icmph[1]; 2637 src = ipha->ipha_src; 2638 dst = inner_ipha->ipha_dst; 2639 gateway = icmph->icmph_rd_gateway; 2640 /* Make sure the new gateway is reachable somehow. */ 2641 ire = ire_ftable_lookup_v4(gateway, 0, 0, IRE_ONLINK, NULL, 2642 ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, NULL); 2643 /* 2644 * Make sure we had a route for the dest in question and that 2645 * that route was pointing to the old gateway (the source of the 2646 * redirect packet.) 2647 * We do longest match and then compare ire_gateway_addr below. 2648 */ 2649 prev_ire = ire_ftable_lookup_v4(dst, 0, 0, 0, NULL, ALL_ZONES, 2650 NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL); 2651 /* 2652 * Check that 2653 * the redirect was not from ourselves 2654 * the new gateway and the old gateway are directly reachable 2655 */ 2656 if (prev_ire == NULL || ire == NULL || 2657 (prev_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) || 2658 (prev_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 2659 !(ire->ire_type & IRE_IF_ALL) || 2660 prev_ire->ire_gateway_addr != src) { 2661 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 2662 ip_drop_input("icmpInBadRedirects - ire", mp, ira->ira_ill); 2663 freemsg(mp); 2664 if (ire != NULL) 2665 ire_refrele(ire); 2666 if (prev_ire != NULL) 2667 ire_refrele(prev_ire); 2668 return; 2669 } 2670 2671 ire_refrele(prev_ire); 2672 ire_refrele(ire); 2673 2674 /* 2675 * TODO: more precise handling for cases 0, 2, 3, the latter two 2676 * require TOS routing 2677 */ 2678 switch (icmph->icmph_code) { 2679 case 0: 2680 case 1: 2681 /* TODO: TOS specificity for cases 2 and 3 */ 2682 case 2: 2683 case 3: 2684 break; 2685 default: 2686 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 2687 ip_drop_input("icmpInBadRedirects - code", mp, ira->ira_ill); 2688 freemsg(mp); 2689 return; 2690 } 2691 /* 2692 * Create a Route Association. This will allow us to remember that 2693 * someone we believe told us to use the particular gateway. 2694 */ 2695 ire = ire_create( 2696 (uchar_t *)&dst, /* dest addr */ 2697 (uchar_t *)&ip_g_all_ones, /* mask */ 2698 (uchar_t *)&gateway, /* gateway addr */ 2699 IRE_HOST, 2700 NULL, /* ill */ 2701 ALL_ZONES, 2702 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 2703 NULL, /* tsol_gc_t */ 2704 ipst); 2705 2706 if (ire == NULL) { 2707 freemsg(mp); 2708 return; 2709 } 2710 nire = ire_add(ire); 2711 /* Check if it was a duplicate entry */ 2712 if (nire != NULL && nire != ire) { 2713 ASSERT(nire->ire_identical_ref > 1); 2714 ire_delete(nire); 2715 ire_refrele(nire); 2716 nire = NULL; 2717 } 2718 ire = nire; 2719 if (ire != NULL) { 2720 ire_refrele(ire); /* Held in ire_add */ 2721 2722 /* tell routing sockets that we received a redirect */ 2723 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 2724 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 2725 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 2726 } 2727 2728 /* 2729 * Delete any existing IRE_HOST type redirect ires for this destination. 2730 * This together with the added IRE has the effect of 2731 * modifying an existing redirect. 2732 */ 2733 prev_ire = ire_ftable_lookup_v4(dst, 0, src, IRE_HOST, NULL, 2734 ALL_ZONES, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), 0, ipst, NULL); 2735 if (prev_ire != NULL) { 2736 if (prev_ire ->ire_flags & RTF_DYNAMIC) 2737 ire_delete(prev_ire); 2738 ire_refrele(prev_ire); 2739 } 2740 2741 freemsg(mp); 2742 } 2743 2744 /* 2745 * Generate an ICMP parameter problem message. 2746 * When called from ip_output side a minimal ip_recv_attr_t needs to be 2747 * constructed by the caller. 2748 */ 2749 static void 2750 icmp_param_problem(mblk_t *mp, uint8_t ptr, ip_recv_attr_t *ira) 2751 { 2752 icmph_t icmph; 2753 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2754 2755 mp = icmp_pkt_err_ok(mp, ira); 2756 if (mp == NULL) 2757 return; 2758 2759 bzero(&icmph, sizeof (icmph_t)); 2760 icmph.icmph_type = ICMP_PARAM_PROBLEM; 2761 icmph.icmph_pp_ptr = ptr; 2762 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 2763 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 2764 } 2765 2766 /* 2767 * Build and ship an IPv4 ICMP message using the packet data in mp, and 2768 * the ICMP header pointed to by "stuff". (May be called as writer.) 2769 * Note: assumes that icmp_pkt_err_ok has been called to verify that 2770 * an icmp error packet can be sent. 2771 * Assigns an appropriate source address to the packet. If ipha_dst is 2772 * one of our addresses use it for source. Otherwise let ip_output_simple 2773 * pick the source address. 2774 */ 2775 static void 2776 icmp_pkt(mblk_t *mp, void *stuff, size_t len, ip_recv_attr_t *ira) 2777 { 2778 ipaddr_t dst; 2779 icmph_t *icmph; 2780 ipha_t *ipha; 2781 uint_t len_needed; 2782 size_t msg_len; 2783 mblk_t *mp1; 2784 ipaddr_t src; 2785 ire_t *ire; 2786 ip_xmit_attr_t ixas; 2787 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2788 2789 ipha = (ipha_t *)mp->b_rptr; 2790 2791 bzero(&ixas, sizeof (ixas)); 2792 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 2793 ixas.ixa_zoneid = ira->ira_zoneid; 2794 ixas.ixa_ifindex = 0; 2795 ixas.ixa_ipst = ipst; 2796 ixas.ixa_cred = kcred; 2797 ixas.ixa_cpid = NOPID; 2798 ixas.ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */ 2799 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 2800 2801 if (ira->ira_flags & IRAF_IPSEC_SECURE) { 2802 /* 2803 * Apply IPsec based on how IPsec was applied to 2804 * the packet that had the error. 2805 * 2806 * If it was an outbound packet that caused the ICMP 2807 * error, then the caller will have setup the IRA 2808 * appropriately. 2809 */ 2810 if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) { 2811 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 2812 /* Note: mp already consumed and ip_drop_packet done */ 2813 return; 2814 } 2815 } else { 2816 /* 2817 * This is in clear. The icmp message we are building 2818 * here should go out in clear, independent of our policy. 2819 */ 2820 ixas.ixa_flags |= IXAF_NO_IPSEC; 2821 } 2822 2823 /* Remember our eventual destination */ 2824 dst = ipha->ipha_src; 2825 2826 /* 2827 * If the packet was for one of our unicast addresses, make 2828 * sure we respond with that as the source. Otherwise 2829 * have ip_output_simple pick the source address. 2830 */ 2831 ire = ire_ftable_lookup_v4(ipha->ipha_dst, 0, 0, 2832 (IRE_LOCAL|IRE_LOOPBACK), NULL, ira->ira_zoneid, NULL, 2833 MATCH_IRE_TYPE|MATCH_IRE_ZONEONLY, 0, ipst, NULL); 2834 if (ire != NULL) { 2835 ire_refrele(ire); 2836 src = ipha->ipha_dst; 2837 } else { 2838 src = INADDR_ANY; 2839 ixas.ixa_flags |= IXAF_SET_SOURCE; 2840 } 2841 2842 /* 2843 * Check if we can send back more then 8 bytes in addition to 2844 * the IP header. We try to send 64 bytes of data and the internal 2845 * header in the special cases of ipv4 encapsulated ipv4 or ipv6. 2846 */ 2847 len_needed = IPH_HDR_LENGTH(ipha); 2848 if (ipha->ipha_protocol == IPPROTO_ENCAP || 2849 ipha->ipha_protocol == IPPROTO_IPV6) { 2850 if (!pullupmsg(mp, -1)) { 2851 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 2852 ip_drop_output("ipIfStatsOutDiscards", mp, NULL); 2853 freemsg(mp); 2854 return; 2855 } 2856 ipha = (ipha_t *)mp->b_rptr; 2857 2858 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2859 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + 2860 len_needed)); 2861 } else { 2862 ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed); 2863 2864 ASSERT(ipha->ipha_protocol == IPPROTO_IPV6); 2865 len_needed += ip_hdr_length_v6(mp, ip6h); 2866 } 2867 } 2868 len_needed += ipst->ips_ip_icmp_return; 2869 msg_len = msgdsize(mp); 2870 if (msg_len > len_needed) { 2871 (void) adjmsg(mp, len_needed - msg_len); 2872 msg_len = len_needed; 2873 } 2874 mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_MED); 2875 if (mp1 == NULL) { 2876 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 2877 freemsg(mp); 2878 return; 2879 } 2880 mp1->b_cont = mp; 2881 mp = mp1; 2882 2883 /* 2884 * Set IXAF_TRUSTED_ICMP so we can let the ICMP messages this 2885 * node generates be accepted in peace by all on-host destinations. 2886 * If we do NOT assume that all on-host destinations trust 2887 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 2888 * (Look for IXAF_TRUSTED_ICMP). 2889 */ 2890 ixas.ixa_flags |= IXAF_TRUSTED_ICMP; 2891 2892 ipha = (ipha_t *)mp->b_rptr; 2893 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 2894 *ipha = icmp_ipha; 2895 ipha->ipha_src = src; 2896 ipha->ipha_dst = dst; 2897 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 2898 msg_len += sizeof (icmp_ipha) + len; 2899 if (msg_len > IP_MAXPACKET) { 2900 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 2901 msg_len = IP_MAXPACKET; 2902 } 2903 ipha->ipha_length = htons((uint16_t)msg_len); 2904 icmph = (icmph_t *)&ipha[1]; 2905 bcopy(stuff, icmph, len); 2906 icmph->icmph_checksum = 0; 2907 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 2908 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 2909 2910 (void) ip_output_simple(mp, &ixas); 2911 ixa_cleanup(&ixas); 2912 } 2913 2914 /* 2915 * Determine if an ICMP error packet can be sent given the rate limit. 2916 * The limit consists of an average frequency (icmp_pkt_err_interval measured 2917 * in milliseconds) and a burst size. Burst size number of packets can 2918 * be sent arbitrarely closely spaced. 2919 * The state is tracked using two variables to implement an approximate 2920 * token bucket filter: 2921 * icmp_pkt_err_last - lbolt value when the last burst started 2922 * icmp_pkt_err_sent - number of packets sent in current burst 2923 */ 2924 boolean_t 2925 icmp_err_rate_limit(ip_stack_t *ipst) 2926 { 2927 clock_t now = TICK_TO_MSEC(ddi_get_lbolt()); 2928 uint_t refilled; /* Number of packets refilled in tbf since last */ 2929 /* Guard against changes by loading into local variable */ 2930 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 2931 2932 if (err_interval == 0) 2933 return (B_FALSE); 2934 2935 if (ipst->ips_icmp_pkt_err_last > now) { 2936 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 2937 ipst->ips_icmp_pkt_err_last = 0; 2938 ipst->ips_icmp_pkt_err_sent = 0; 2939 } 2940 /* 2941 * If we are in a burst update the token bucket filter. 2942 * Update the "last" time to be close to "now" but make sure 2943 * we don't loose precision. 2944 */ 2945 if (ipst->ips_icmp_pkt_err_sent != 0) { 2946 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 2947 if (refilled > ipst->ips_icmp_pkt_err_sent) { 2948 ipst->ips_icmp_pkt_err_sent = 0; 2949 } else { 2950 ipst->ips_icmp_pkt_err_sent -= refilled; 2951 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 2952 } 2953 } 2954 if (ipst->ips_icmp_pkt_err_sent == 0) { 2955 /* Start of new burst */ 2956 ipst->ips_icmp_pkt_err_last = now; 2957 } 2958 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 2959 ipst->ips_icmp_pkt_err_sent++; 2960 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 2961 ipst->ips_icmp_pkt_err_sent)); 2962 return (B_FALSE); 2963 } 2964 ip1dbg(("icmp_err_rate_limit: dropped\n")); 2965 return (B_TRUE); 2966 } 2967 2968 /* 2969 * Check if it is ok to send an IPv4 ICMP error packet in 2970 * response to the IPv4 packet in mp. 2971 * Free the message and return null if no 2972 * ICMP error packet should be sent. 2973 */ 2974 static mblk_t * 2975 icmp_pkt_err_ok(mblk_t *mp, ip_recv_attr_t *ira) 2976 { 2977 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2978 icmph_t *icmph; 2979 ipha_t *ipha; 2980 uint_t len_needed; 2981 2982 if (!mp) 2983 return (NULL); 2984 ipha = (ipha_t *)mp->b_rptr; 2985 if (ip_csum_hdr(ipha)) { 2986 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 2987 ip_drop_input("ipIfStatsInCksumErrs", mp, NULL); 2988 freemsg(mp); 2989 return (NULL); 2990 } 2991 if (ip_type_v4(ipha->ipha_dst, ipst) == IRE_BROADCAST || 2992 ip_type_v4(ipha->ipha_src, ipst) == IRE_BROADCAST || 2993 CLASSD(ipha->ipha_dst) || 2994 CLASSD(ipha->ipha_src) || 2995 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 2996 /* Note: only errors to the fragment with offset 0 */ 2997 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 2998 freemsg(mp); 2999 return (NULL); 3000 } 3001 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3002 /* 3003 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3004 * errors in response to any ICMP errors. 3005 */ 3006 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3007 if (mp->b_wptr - mp->b_rptr < len_needed) { 3008 if (!pullupmsg(mp, len_needed)) { 3009 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3010 freemsg(mp); 3011 return (NULL); 3012 } 3013 ipha = (ipha_t *)mp->b_rptr; 3014 } 3015 icmph = (icmph_t *) 3016 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3017 switch (icmph->icmph_type) { 3018 case ICMP_DEST_UNREACHABLE: 3019 case ICMP_SOURCE_QUENCH: 3020 case ICMP_TIME_EXCEEDED: 3021 case ICMP_PARAM_PROBLEM: 3022 case ICMP_REDIRECT: 3023 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3024 freemsg(mp); 3025 return (NULL); 3026 default: 3027 break; 3028 } 3029 } 3030 /* 3031 * If this is a labeled system, then check to see if we're allowed to 3032 * send a response to this particular sender. If not, then just drop. 3033 */ 3034 if (is_system_labeled() && !tsol_can_reply_error(mp, ira)) { 3035 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3036 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3037 freemsg(mp); 3038 return (NULL); 3039 } 3040 if (icmp_err_rate_limit(ipst)) { 3041 /* 3042 * Only send ICMP error packets every so often. 3043 * This should be done on a per port/source basis, 3044 * but for now this will suffice. 3045 */ 3046 freemsg(mp); 3047 return (NULL); 3048 } 3049 return (mp); 3050 } 3051 3052 /* 3053 * Called when a packet was sent out the same link that it arrived on. 3054 * Check if it is ok to send a redirect and then send it. 3055 */ 3056 void 3057 ip_send_potential_redirect_v4(mblk_t *mp, ipha_t *ipha, ire_t *ire, 3058 ip_recv_attr_t *ira) 3059 { 3060 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3061 ipaddr_t src, nhop; 3062 mblk_t *mp1; 3063 ire_t *nhop_ire; 3064 3065 /* 3066 * Check the source address to see if it originated 3067 * on the same logical subnet it is going back out on. 3068 * If so, we should be able to send it a redirect. 3069 * Avoid sending a redirect if the destination 3070 * is directly connected (i.e., we matched an IRE_ONLINK), 3071 * or if the packet was source routed out this interface. 3072 * 3073 * We avoid sending a redirect if the 3074 * destination is directly connected 3075 * because it is possible that multiple 3076 * IP subnets may have been configured on 3077 * the link, and the source may not 3078 * be on the same subnet as ip destination, 3079 * even though they are on the same 3080 * physical link. 3081 */ 3082 if ((ire->ire_type & IRE_ONLINK) || 3083 ip_source_routed(ipha, ipst)) 3084 return; 3085 3086 nhop_ire = ire_nexthop(ire); 3087 if (nhop_ire == NULL) 3088 return; 3089 3090 nhop = nhop_ire->ire_addr; 3091 3092 if (nhop_ire->ire_type & IRE_IF_CLONE) { 3093 ire_t *ire2; 3094 3095 /* Follow ire_dep_parent to find non-clone IRE_INTERFACE */ 3096 mutex_enter(&nhop_ire->ire_lock); 3097 ire2 = nhop_ire->ire_dep_parent; 3098 if (ire2 != NULL) 3099 ire_refhold(ire2); 3100 mutex_exit(&nhop_ire->ire_lock); 3101 ire_refrele(nhop_ire); 3102 nhop_ire = ire2; 3103 } 3104 if (nhop_ire == NULL) 3105 return; 3106 3107 ASSERT(!(nhop_ire->ire_type & IRE_IF_CLONE)); 3108 3109 src = ipha->ipha_src; 3110 3111 /* 3112 * We look at the interface ire for the nexthop, 3113 * to see if ipha_src is in the same subnet 3114 * as the nexthop. 3115 */ 3116 if ((src & nhop_ire->ire_mask) == (nhop & nhop_ire->ire_mask)) { 3117 /* 3118 * The source is directly connected. 3119 */ 3120 mp1 = copymsg(mp); 3121 if (mp1 != NULL) { 3122 icmp_send_redirect(mp1, nhop, ira); 3123 } 3124 } 3125 ire_refrele(nhop_ire); 3126 } 3127 3128 /* 3129 * Generate an ICMP redirect message. 3130 */ 3131 static void 3132 icmp_send_redirect(mblk_t *mp, ipaddr_t gateway, ip_recv_attr_t *ira) 3133 { 3134 icmph_t icmph; 3135 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3136 3137 mp = icmp_pkt_err_ok(mp, ira); 3138 if (mp == NULL) 3139 return; 3140 3141 bzero(&icmph, sizeof (icmph_t)); 3142 icmph.icmph_type = ICMP_REDIRECT; 3143 icmph.icmph_code = 1; 3144 icmph.icmph_rd_gateway = gateway; 3145 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3146 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 3147 } 3148 3149 /* 3150 * Generate an ICMP time exceeded message. 3151 */ 3152 void 3153 icmp_time_exceeded(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira) 3154 { 3155 icmph_t icmph; 3156 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3157 3158 mp = icmp_pkt_err_ok(mp, ira); 3159 if (mp == NULL) 3160 return; 3161 3162 bzero(&icmph, sizeof (icmph_t)); 3163 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3164 icmph.icmph_code = code; 3165 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3166 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 3167 } 3168 3169 /* 3170 * Generate an ICMP unreachable message. 3171 * When called from ip_output side a minimal ip_recv_attr_t needs to be 3172 * constructed by the caller. 3173 */ 3174 void 3175 icmp_unreachable(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira) 3176 { 3177 icmph_t icmph; 3178 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3179 3180 mp = icmp_pkt_err_ok(mp, ira); 3181 if (mp == NULL) 3182 return; 3183 3184 bzero(&icmph, sizeof (icmph_t)); 3185 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3186 icmph.icmph_code = code; 3187 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3188 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 3189 } 3190 3191 /* 3192 * Latch in the IPsec state for a stream based the policy in the listener 3193 * and the actions in the ip_recv_attr_t. 3194 * Called directly from TCP and SCTP. 3195 */ 3196 boolean_t 3197 ip_ipsec_policy_inherit(conn_t *connp, conn_t *lconnp, ip_recv_attr_t *ira) 3198 { 3199 ASSERT(lconnp->conn_policy != NULL); 3200 ASSERT(connp->conn_policy == NULL); 3201 3202 IPPH_REFHOLD(lconnp->conn_policy); 3203 connp->conn_policy = lconnp->conn_policy; 3204 3205 if (ira->ira_ipsec_action != NULL) { 3206 if (connp->conn_latch == NULL) { 3207 connp->conn_latch = iplatch_create(); 3208 if (connp->conn_latch == NULL) 3209 return (B_FALSE); 3210 } 3211 ipsec_latch_inbound(connp, ira); 3212 } 3213 return (B_TRUE); 3214 } 3215 3216 /* 3217 * Verify whether or not the IP address is a valid local address. 3218 * Could be a unicast, including one for a down interface. 3219 * If allow_mcbc then a multicast or broadcast address is also 3220 * acceptable. 3221 * 3222 * In the case of a broadcast/multicast address, however, the 3223 * upper protocol is expected to reset the src address 3224 * to zero when we return IPVL_MCAST/IPVL_BCAST so that 3225 * no packets are emitted with broadcast/multicast address as 3226 * source address (that violates hosts requirements RFC 1122) 3227 * The addresses valid for bind are: 3228 * (1) - INADDR_ANY (0) 3229 * (2) - IP address of an UP interface 3230 * (3) - IP address of a DOWN interface 3231 * (4) - valid local IP broadcast addresses. In this case 3232 * the conn will only receive packets destined to 3233 * the specified broadcast address. 3234 * (5) - a multicast address. In this case 3235 * the conn will only receive packets destined to 3236 * the specified multicast address. Note: the 3237 * application still has to issue an 3238 * IP_ADD_MEMBERSHIP socket option. 3239 * 3240 * In all the above cases, the bound address must be valid in the current zone. 3241 * When the address is loopback, multicast or broadcast, there might be many 3242 * matching IREs so bind has to look up based on the zone. 3243 */ 3244 ip_laddr_t 3245 ip_laddr_verify_v4(ipaddr_t src_addr, zoneid_t zoneid, 3246 ip_stack_t *ipst, boolean_t allow_mcbc) 3247 { 3248 ire_t *src_ire; 3249 3250 ASSERT(src_addr != INADDR_ANY); 3251 3252 src_ire = ire_ftable_lookup_v4(src_addr, 0, 0, 0, 3253 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, 0, ipst, NULL); 3254 3255 /* 3256 * If an address other than in6addr_any is requested, 3257 * we verify that it is a valid address for bind 3258 * Note: Following code is in if-else-if form for 3259 * readability compared to a condition check. 3260 */ 3261 if (src_ire != NULL && (src_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK))) { 3262 /* 3263 * (2) Bind to address of local UP interface 3264 */ 3265 ire_refrele(src_ire); 3266 return (IPVL_UNICAST_UP); 3267 } else if (src_ire != NULL && src_ire->ire_type & IRE_BROADCAST) { 3268 /* 3269 * (4) Bind to broadcast address 3270 */ 3271 ire_refrele(src_ire); 3272 if (allow_mcbc) 3273 return (IPVL_BCAST); 3274 else 3275 return (IPVL_BAD); 3276 } else if (CLASSD(src_addr)) { 3277 /* (5) bind to multicast address. */ 3278 if (src_ire != NULL) 3279 ire_refrele(src_ire); 3280 3281 if (allow_mcbc) 3282 return (IPVL_MCAST); 3283 else 3284 return (IPVL_BAD); 3285 } else { 3286 ipif_t *ipif; 3287 3288 /* 3289 * (3) Bind to address of local DOWN interface? 3290 * (ipif_lookup_addr() looks up all interfaces 3291 * but we do not get here for UP interfaces 3292 * - case (2) above) 3293 */ 3294 if (src_ire != NULL) 3295 ire_refrele(src_ire); 3296 3297 ipif = ipif_lookup_addr(src_addr, NULL, zoneid, ipst); 3298 if (ipif == NULL) 3299 return (IPVL_BAD); 3300 3301 /* Not a useful source? */ 3302 if (ipif->ipif_flags & (IPIF_NOLOCAL | IPIF_ANYCAST)) { 3303 ipif_refrele(ipif); 3304 return (IPVL_BAD); 3305 } 3306 ipif_refrele(ipif); 3307 return (IPVL_UNICAST_DOWN); 3308 } 3309 } 3310 3311 /* 3312 * Insert in the bind fanout for IPv4 and IPv6. 3313 * The caller should already have used ip_laddr_verify_v*() before calling 3314 * this. 3315 */ 3316 int 3317 ip_laddr_fanout_insert(conn_t *connp) 3318 { 3319 int error; 3320 3321 /* 3322 * Allow setting new policies. For example, disconnects result 3323 * in us being called. As we would have set conn_policy_cached 3324 * to B_TRUE before, we should set it to B_FALSE, so that policy 3325 * can change after the disconnect. 3326 */ 3327 connp->conn_policy_cached = B_FALSE; 3328 3329 error = ipcl_bind_insert(connp); 3330 if (error != 0) { 3331 if (connp->conn_anon_port) { 3332 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 3333 connp->conn_mlp_type, connp->conn_proto, 3334 ntohs(connp->conn_lport), B_FALSE); 3335 } 3336 connp->conn_mlp_type = mlptSingle; 3337 } 3338 return (error); 3339 } 3340 3341 /* 3342 * Verify that both the source and destination addresses are valid. If 3343 * IPDF_VERIFY_DST is not set, then the destination address may be unreachable, 3344 * i.e. have no route to it. Protocols like TCP want to verify destination 3345 * reachability, while tunnels do not. 3346 * 3347 * Determine the route, the interface, and (optionally) the source address 3348 * to use to reach a given destination. 3349 * Note that we allow connect to broadcast and multicast addresses when 3350 * IPDF_ALLOW_MCBC is set. 3351 * first_hop and dst_addr are normally the same, but if source routing 3352 * they will differ; in that case the first_hop is what we'll use for the 3353 * routing lookup but the dce and label checks will be done on dst_addr, 3354 * 3355 * If uinfo is set, then we fill in the best available information 3356 * we have for the destination. This is based on (in priority order) any 3357 * metrics and path MTU stored in a dce_t, route metrics, and finally the 3358 * ill_mtu/ill_mc_mtu. 3359 * 3360 * Tsol note: If we have a source route then dst_addr != firsthop. But we 3361 * always do the label check on dst_addr. 3362 */ 3363 int 3364 ip_set_destination_v4(ipaddr_t *src_addrp, ipaddr_t dst_addr, ipaddr_t firsthop, 3365 ip_xmit_attr_t *ixa, iulp_t *uinfo, uint32_t flags, uint_t mac_mode) 3366 { 3367 ire_t *ire = NULL; 3368 int error = 0; 3369 ipaddr_t setsrc; /* RTF_SETSRC */ 3370 zoneid_t zoneid = ixa->ixa_zoneid; /* Honors SO_ALLZONES */ 3371 ip_stack_t *ipst = ixa->ixa_ipst; 3372 dce_t *dce; 3373 uint_t pmtu; 3374 uint_t generation; 3375 nce_t *nce; 3376 ill_t *ill = NULL; 3377 boolean_t multirt = B_FALSE; 3378 3379 ASSERT(ixa->ixa_flags & IXAF_IS_IPV4); 3380 3381 /* 3382 * We never send to zero; the ULPs map it to the loopback address. 3383 * We can't allow it since we use zero to mean unitialized in some 3384 * places. 3385 */ 3386 ASSERT(dst_addr != INADDR_ANY); 3387 3388 if (is_system_labeled()) { 3389 ts_label_t *tsl = NULL; 3390 3391 error = tsol_check_dest(ixa->ixa_tsl, &dst_addr, IPV4_VERSION, 3392 mac_mode, (flags & IPDF_ZONE_IS_GLOBAL) != 0, &tsl); 3393 if (error != 0) 3394 return (error); 3395 if (tsl != NULL) { 3396 /* Update the label */ 3397 ip_xmit_attr_replace_tsl(ixa, tsl); 3398 } 3399 } 3400 3401 setsrc = INADDR_ANY; 3402 /* 3403 * Select a route; For IPMP interfaces, we would only select 3404 * a "hidden" route (i.e., going through a specific under_ill) 3405 * if ixa_ifindex has been specified. 3406 */ 3407 ire = ip_select_route_v4(firsthop, *src_addrp, ixa, 3408 &generation, &setsrc, &error, &multirt); 3409 ASSERT(ire != NULL); /* IRE_NOROUTE if none found */ 3410 if (error != 0) 3411 goto bad_addr; 3412 3413 /* 3414 * ire can't be a broadcast or multicast unless IPDF_ALLOW_MCBC is set. 3415 * If IPDF_VERIFY_DST is set, the destination must be reachable; 3416 * Otherwise the destination needn't be reachable. 3417 * 3418 * If we match on a reject or black hole, then we've got a 3419 * local failure. May as well fail out the connect() attempt, 3420 * since it's never going to succeed. 3421 */ 3422 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 3423 /* 3424 * If we're verifying destination reachability, we always want 3425 * to complain here. 3426 * 3427 * If we're not verifying destination reachability but the 3428 * destination has a route, we still want to fail on the 3429 * temporary address and broadcast address tests. 3430 * 3431 * In both cases do we let the code continue so some reasonable 3432 * information is returned to the caller. That enables the 3433 * caller to use (and even cache) the IRE. conn_ip_ouput will 3434 * use the generation mismatch path to check for the unreachable 3435 * case thereby avoiding any specific check in the main path. 3436 */ 3437 ASSERT(generation == IRE_GENERATION_VERIFY); 3438 if (flags & IPDF_VERIFY_DST) { 3439 /* 3440 * Set errno but continue to set up ixa_ire to be 3441 * the RTF_REJECT|RTF_BLACKHOLE IRE. 3442 * That allows callers to use ip_output to get an 3443 * ICMP error back. 3444 */ 3445 if (!(ire->ire_type & IRE_HOST)) 3446 error = ENETUNREACH; 3447 else 3448 error = EHOSTUNREACH; 3449 } 3450 } 3451 3452 if ((ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST)) && 3453 !(flags & IPDF_ALLOW_MCBC)) { 3454 ire_refrele(ire); 3455 ire = ire_reject(ipst, B_FALSE); 3456 generation = IRE_GENERATION_VERIFY; 3457 error = ENETUNREACH; 3458 } 3459 3460 /* Cache things */ 3461 if (ixa->ixa_ire != NULL) 3462 ire_refrele_notr(ixa->ixa_ire); 3463 #ifdef DEBUG 3464 ire_refhold_notr(ire); 3465 ire_refrele(ire); 3466 #endif 3467 ixa->ixa_ire = ire; 3468 ixa->ixa_ire_generation = generation; 3469 3470 /* 3471 * Ensure that ixa_dce is always set any time that ixa_ire is set, 3472 * since some callers will send a packet to conn_ip_output() even if 3473 * there's an error. 3474 */ 3475 if (flags & IPDF_UNIQUE_DCE) { 3476 /* Fallback to the default dce if allocation fails */ 3477 dce = dce_lookup_and_add_v4(dst_addr, ipst); 3478 if (dce != NULL) 3479 generation = dce->dce_generation; 3480 else 3481 dce = dce_lookup_v4(dst_addr, ipst, &generation); 3482 } else { 3483 dce = dce_lookup_v4(dst_addr, ipst, &generation); 3484 } 3485 ASSERT(dce != NULL); 3486 if (ixa->ixa_dce != NULL) 3487 dce_refrele_notr(ixa->ixa_dce); 3488 #ifdef DEBUG 3489 dce_refhold_notr(dce); 3490 dce_refrele(dce); 3491 #endif 3492 ixa->ixa_dce = dce; 3493 ixa->ixa_dce_generation = generation; 3494 3495 /* 3496 * For multicast with multirt we have a flag passed back from 3497 * ire_lookup_multi_ill_v4 since we don't have an IRE for each 3498 * possible multicast address. 3499 * We also need a flag for multicast since we can't check 3500 * whether RTF_MULTIRT is set in ixa_ire for multicast. 3501 */ 3502 if (multirt) { 3503 ixa->ixa_postfragfn = ip_postfrag_multirt_v4; 3504 ixa->ixa_flags |= IXAF_MULTIRT_MULTICAST; 3505 } else { 3506 ixa->ixa_postfragfn = ire->ire_postfragfn; 3507 ixa->ixa_flags &= ~IXAF_MULTIRT_MULTICAST; 3508 } 3509 if (!(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) { 3510 /* Get an nce to cache. */ 3511 nce = ire_to_nce(ire, firsthop, NULL); 3512 if (nce == NULL) { 3513 /* Allocation failure? */ 3514 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 3515 } else { 3516 if (ixa->ixa_nce != NULL) 3517 nce_refrele(ixa->ixa_nce); 3518 ixa->ixa_nce = nce; 3519 } 3520 } 3521 3522 /* 3523 * If the source address is a loopback address, the 3524 * destination had best be local or multicast. 3525 * If we are sending to an IRE_LOCAL using a loopback source then 3526 * it had better be the same zoneid. 3527 */ 3528 if (*src_addrp == htonl(INADDR_LOOPBACK)) { 3529 if ((ire->ire_type & IRE_LOCAL) && ire->ire_zoneid != zoneid) { 3530 ire = NULL; /* Stored in ixa_ire */ 3531 error = EADDRNOTAVAIL; 3532 goto bad_addr; 3533 } 3534 if (!(ire->ire_type & (IRE_LOOPBACK|IRE_LOCAL|IRE_MULTICAST))) { 3535 ire = NULL; /* Stored in ixa_ire */ 3536 error = EADDRNOTAVAIL; 3537 goto bad_addr; 3538 } 3539 } 3540 if (ire->ire_type & IRE_BROADCAST) { 3541 /* 3542 * If the ULP didn't have a specified source, then we 3543 * make sure we reselect the source when sending 3544 * broadcasts out different interfaces. 3545 */ 3546 if (flags & IPDF_SELECT_SRC) 3547 ixa->ixa_flags |= IXAF_SET_SOURCE; 3548 else 3549 ixa->ixa_flags &= ~IXAF_SET_SOURCE; 3550 } 3551 3552 /* 3553 * Does the caller want us to pick a source address? 3554 */ 3555 if (flags & IPDF_SELECT_SRC) { 3556 ipaddr_t src_addr; 3557 3558 /* 3559 * We use use ire_nexthop_ill to avoid the under ipmp 3560 * interface for source address selection. Note that for ipmp 3561 * probe packets, ixa_ifindex would have been specified, and 3562 * the ip_select_route() invocation would have picked an ire 3563 * will ire_ill pointing at an under interface. 3564 */ 3565 ill = ire_nexthop_ill(ire); 3566 3567 /* If unreachable we have no ill but need some source */ 3568 if (ill == NULL) { 3569 src_addr = htonl(INADDR_LOOPBACK); 3570 /* Make sure we look for a better source address */ 3571 generation = SRC_GENERATION_VERIFY; 3572 } else { 3573 error = ip_select_source_v4(ill, setsrc, dst_addr, 3574 ixa->ixa_multicast_ifaddr, zoneid, 3575 ipst, &src_addr, &generation, NULL); 3576 if (error != 0) { 3577 ire = NULL; /* Stored in ixa_ire */ 3578 goto bad_addr; 3579 } 3580 } 3581 3582 /* 3583 * We allow the source address to to down. 3584 * However, we check that we don't use the loopback address 3585 * as a source when sending out on the wire. 3586 */ 3587 if ((src_addr == htonl(INADDR_LOOPBACK)) && 3588 !(ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK|IRE_MULTICAST)) && 3589 !(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) { 3590 ire = NULL; /* Stored in ixa_ire */ 3591 error = EADDRNOTAVAIL; 3592 goto bad_addr; 3593 } 3594 3595 *src_addrp = src_addr; 3596 ixa->ixa_src_generation = generation; 3597 } 3598 3599 /* 3600 * Make sure we don't leave an unreachable ixa_nce in place 3601 * since ip_select_route is used when we unplumb i.e., remove 3602 * references on ixa_ire, ixa_nce, and ixa_dce. 3603 */ 3604 nce = ixa->ixa_nce; 3605 if (nce != NULL && nce->nce_is_condemned) { 3606 nce_refrele(nce); 3607 ixa->ixa_nce = NULL; 3608 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 3609 } 3610 3611 /* 3612 * The caller has set IXAF_PMTU_DISCOVERY if path MTU is desired. 3613 * However, we can't do it for IPv4 multicast or broadcast. 3614 */ 3615 if (ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST)) 3616 ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY; 3617 3618 /* 3619 * Set initial value for fragmentation limit. Either conn_ip_output 3620 * or ULP might updates it when there are routing changes. 3621 * Handles a NULL ixa_ire->ire_ill or a NULL ixa_nce for RTF_REJECT. 3622 */ 3623 pmtu = ip_get_pmtu(ixa); 3624 ixa->ixa_fragsize = pmtu; 3625 /* Make sure ixa_fragsize and ixa_pmtu remain identical */ 3626 if (ixa->ixa_flags & IXAF_VERIFY_PMTU) 3627 ixa->ixa_pmtu = pmtu; 3628 3629 /* 3630 * Extract information useful for some transports. 3631 * First we look for DCE metrics. Then we take what we have in 3632 * the metrics in the route, where the offlink is used if we have 3633 * one. 3634 */ 3635 if (uinfo != NULL) { 3636 bzero(uinfo, sizeof (*uinfo)); 3637 3638 if (dce->dce_flags & DCEF_UINFO) 3639 *uinfo = dce->dce_uinfo; 3640 3641 rts_merge_metrics(uinfo, &ire->ire_metrics); 3642 3643 /* Allow ire_metrics to decrease the path MTU from above */ 3644 if (uinfo->iulp_mtu == 0 || uinfo->iulp_mtu > pmtu) 3645 uinfo->iulp_mtu = pmtu; 3646 3647 uinfo->iulp_localnet = (ire->ire_type & IRE_ONLINK) != 0; 3648 uinfo->iulp_loopback = (ire->ire_type & IRE_LOOPBACK) != 0; 3649 uinfo->iulp_local = (ire->ire_type & IRE_LOCAL) != 0; 3650 } 3651 3652 if (ill != NULL) 3653 ill_refrele(ill); 3654 3655 return (error); 3656 3657 bad_addr: 3658 if (ire != NULL) 3659 ire_refrele(ire); 3660 3661 if (ill != NULL) 3662 ill_refrele(ill); 3663 3664 /* 3665 * Make sure we don't leave an unreachable ixa_nce in place 3666 * since ip_select_route is used when we unplumb i.e., remove 3667 * references on ixa_ire, ixa_nce, and ixa_dce. 3668 */ 3669 nce = ixa->ixa_nce; 3670 if (nce != NULL && nce->nce_is_condemned) { 3671 nce_refrele(nce); 3672 ixa->ixa_nce = NULL; 3673 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 3674 } 3675 3676 return (error); 3677 } 3678 3679 3680 /* 3681 * Get the base MTU for the case when path MTU discovery is not used. 3682 * Takes the MTU of the IRE into account. 3683 */ 3684 uint_t 3685 ip_get_base_mtu(ill_t *ill, ire_t *ire) 3686 { 3687 uint_t mtu; 3688 uint_t iremtu = ire->ire_metrics.iulp_mtu; 3689 3690 if (ire->ire_type & (IRE_MULTICAST|IRE_BROADCAST)) 3691 mtu = ill->ill_mc_mtu; 3692 else 3693 mtu = ill->ill_mtu; 3694 3695 if (iremtu != 0 && iremtu < mtu) 3696 mtu = iremtu; 3697 3698 return (mtu); 3699 } 3700 3701 /* 3702 * Get the PMTU for the attributes. Handles both IPv4 and IPv6. 3703 * Assumes that ixa_ire, dce, and nce have already been set up. 3704 * 3705 * The caller has set IXAF_PMTU_DISCOVERY if path MTU discovery is desired. 3706 * We avoid path MTU discovery if it is disabled with ndd. 3707 * Furtermore, if the path MTU is too small, then we don't set DF for IPv4. 3708 * 3709 * NOTE: We also used to turn it off for source routed packets. That 3710 * is no longer required since the dce is per final destination. 3711 */ 3712 uint_t 3713 ip_get_pmtu(ip_xmit_attr_t *ixa) 3714 { 3715 ip_stack_t *ipst = ixa->ixa_ipst; 3716 dce_t *dce; 3717 nce_t *nce; 3718 ire_t *ire; 3719 uint_t pmtu; 3720 3721 ire = ixa->ixa_ire; 3722 dce = ixa->ixa_dce; 3723 nce = ixa->ixa_nce; 3724 3725 /* 3726 * If path MTU discovery has been turned off by ndd, then we ignore 3727 * any dce_pmtu and for IPv4 we will not set DF. 3728 */ 3729 if (!ipst->ips_ip_path_mtu_discovery) 3730 ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY; 3731 3732 pmtu = IP_MAXPACKET; 3733 /* 3734 * Decide whether whether IPv4 sets DF 3735 * For IPv6 "no DF" means to use the 1280 mtu 3736 */ 3737 if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) { 3738 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF; 3739 } else { 3740 ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF; 3741 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) 3742 pmtu = IPV6_MIN_MTU; 3743 } 3744 3745 /* Check if the PMTU is to old before we use it */ 3746 if ((dce->dce_flags & DCEF_PMTU) && 3747 TICK_TO_SEC(ddi_get_lbolt64()) - dce->dce_last_change_time > 3748 ipst->ips_ip_pathmtu_interval) { 3749 /* 3750 * Older than 20 minutes. Drop the path MTU information. 3751 */ 3752 mutex_enter(&dce->dce_lock); 3753 dce->dce_flags &= ~(DCEF_PMTU|DCEF_TOO_SMALL_PMTU); 3754 dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64()); 3755 mutex_exit(&dce->dce_lock); 3756 dce_increment_generation(dce); 3757 } 3758 3759 /* The metrics on the route can lower the path MTU */ 3760 if (ire->ire_metrics.iulp_mtu != 0 && 3761 ire->ire_metrics.iulp_mtu < pmtu) 3762 pmtu = ire->ire_metrics.iulp_mtu; 3763 3764 /* 3765 * If the path MTU is smaller than some minimum, we still use dce_pmtu 3766 * above (would be 576 for IPv4 and 1280 for IPv6), but we clear 3767 * IXAF_PMTU_IPV4_DF so that we avoid setting DF for IPv4. 3768 */ 3769 if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) { 3770 if (dce->dce_flags & DCEF_PMTU) { 3771 if (dce->dce_pmtu < pmtu) 3772 pmtu = dce->dce_pmtu; 3773 3774 if (dce->dce_flags & DCEF_TOO_SMALL_PMTU) { 3775 ixa->ixa_flags |= IXAF_PMTU_TOO_SMALL; 3776 ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF; 3777 } else { 3778 ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL; 3779 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF; 3780 } 3781 } else { 3782 ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL; 3783 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF; 3784 } 3785 } 3786 3787 /* 3788 * If we have an IRE_LOCAL we use the loopback mtu instead of 3789 * the ill for going out the wire i.e., IRE_LOCAL gets the same 3790 * mtu as IRE_LOOPBACK. 3791 */ 3792 if (ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) { 3793 uint_t loopback_mtu; 3794 3795 loopback_mtu = (ire->ire_ipversion == IPV6_VERSION) ? 3796 ip_loopback_mtu_v6plus : ip_loopback_mtuplus; 3797 3798 if (loopback_mtu < pmtu) 3799 pmtu = loopback_mtu; 3800 } else if (nce != NULL) { 3801 /* 3802 * Make sure we don't exceed the interface MTU. 3803 * In the case of RTF_REJECT or RTF_BLACKHOLE we might not have 3804 * an ill. We'd use the above IP_MAXPACKET in that case just 3805 * to tell the transport something larger than zero. 3806 */ 3807 if (ire->ire_type & (IRE_MULTICAST|IRE_BROADCAST)) { 3808 if (nce->nce_common->ncec_ill->ill_mc_mtu < pmtu) 3809 pmtu = nce->nce_common->ncec_ill->ill_mc_mtu; 3810 if (nce->nce_common->ncec_ill != nce->nce_ill && 3811 nce->nce_ill->ill_mc_mtu < pmtu) { 3812 /* 3813 * for interfaces in an IPMP group, the mtu of 3814 * the nce_ill (under_ill) could be different 3815 * from the mtu of the ncec_ill, so we take the 3816 * min of the two. 3817 */ 3818 pmtu = nce->nce_ill->ill_mc_mtu; 3819 } 3820 } else { 3821 if (nce->nce_common->ncec_ill->ill_mtu < pmtu) 3822 pmtu = nce->nce_common->ncec_ill->ill_mtu; 3823 if (nce->nce_common->ncec_ill != nce->nce_ill && 3824 nce->nce_ill->ill_mtu < pmtu) { 3825 /* 3826 * for interfaces in an IPMP group, the mtu of 3827 * the nce_ill (under_ill) could be different 3828 * from the mtu of the ncec_ill, so we take the 3829 * min of the two. 3830 */ 3831 pmtu = nce->nce_ill->ill_mtu; 3832 } 3833 } 3834 } 3835 3836 /* 3837 * Handle the IPV6_USE_MIN_MTU socket option or ancillary data. 3838 * Only applies to IPv6. 3839 */ 3840 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) { 3841 if (ixa->ixa_flags & IXAF_USE_MIN_MTU) { 3842 switch (ixa->ixa_use_min_mtu) { 3843 case IPV6_USE_MIN_MTU_MULTICAST: 3844 if (ire->ire_type & IRE_MULTICAST) 3845 pmtu = IPV6_MIN_MTU; 3846 break; 3847 case IPV6_USE_MIN_MTU_ALWAYS: 3848 pmtu = IPV6_MIN_MTU; 3849 break; 3850 case IPV6_USE_MIN_MTU_NEVER: 3851 break; 3852 } 3853 } else { 3854 /* Default is IPV6_USE_MIN_MTU_MULTICAST */ 3855 if (ire->ire_type & IRE_MULTICAST) 3856 pmtu = IPV6_MIN_MTU; 3857 } 3858 } 3859 3860 /* 3861 * After receiving an ICMPv6 "packet too big" message with a 3862 * MTU < 1280, and for multirouted IPv6 packets, the IP layer 3863 * will insert a 8-byte fragment header in every packet. We compensate 3864 * for those cases by returning a smaller path MTU to the ULP. 3865 * 3866 * In the case of CGTP then ip_output will add a fragment header. 3867 * Make sure there is room for it by telling a smaller number 3868 * to the transport. 3869 * 3870 * When IXAF_IPV6_ADDR_FRAGHDR we subtract the frag hdr here 3871 * so the ULPs consistently see a iulp_pmtu and ip_get_pmtu() 3872 * which is the size of the packets it can send. 3873 */ 3874 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) { 3875 if ((dce->dce_flags & DCEF_TOO_SMALL_PMTU) || 3876 (ire->ire_flags & RTF_MULTIRT) || 3877 (ixa->ixa_flags & IXAF_MULTIRT_MULTICAST)) { 3878 pmtu -= sizeof (ip6_frag_t); 3879 ixa->ixa_flags |= IXAF_IPV6_ADD_FRAGHDR; 3880 } 3881 } 3882 3883 return (pmtu); 3884 } 3885 3886 /* 3887 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 3888 * the final piece where we don't. Return a pointer to the first mblk in the 3889 * result, and update the pointer to the next mblk to chew on. If anything 3890 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 3891 * NULL pointer. 3892 */ 3893 mblk_t * 3894 ip_carve_mp(mblk_t **mpp, ssize_t len) 3895 { 3896 mblk_t *mp0; 3897 mblk_t *mp1; 3898 mblk_t *mp2; 3899 3900 if (!len || !mpp || !(mp0 = *mpp)) 3901 return (NULL); 3902 /* If we aren't going to consume the first mblk, we need a dup. */ 3903 if (mp0->b_wptr - mp0->b_rptr > len) { 3904 mp1 = dupb(mp0); 3905 if (mp1) { 3906 /* Partition the data between the two mblks. */ 3907 mp1->b_wptr = mp1->b_rptr + len; 3908 mp0->b_rptr = mp1->b_wptr; 3909 /* 3910 * after adjustments if mblk not consumed is now 3911 * unaligned, try to align it. If this fails free 3912 * all messages and let upper layer recover. 3913 */ 3914 if (!OK_32PTR(mp0->b_rptr)) { 3915 if (!pullupmsg(mp0, -1)) { 3916 freemsg(mp0); 3917 freemsg(mp1); 3918 *mpp = NULL; 3919 return (NULL); 3920 } 3921 } 3922 } 3923 return (mp1); 3924 } 3925 /* Eat through as many mblks as we need to get len bytes. */ 3926 len -= mp0->b_wptr - mp0->b_rptr; 3927 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 3928 if (mp2->b_wptr - mp2->b_rptr > len) { 3929 /* 3930 * We won't consume the entire last mblk. Like 3931 * above, dup and partition it. 3932 */ 3933 mp1->b_cont = dupb(mp2); 3934 mp1 = mp1->b_cont; 3935 if (!mp1) { 3936 /* 3937 * Trouble. Rather than go to a lot of 3938 * trouble to clean up, we free the messages. 3939 * This won't be any worse than losing it on 3940 * the wire. 3941 */ 3942 freemsg(mp0); 3943 freemsg(mp2); 3944 *mpp = NULL; 3945 return (NULL); 3946 } 3947 mp1->b_wptr = mp1->b_rptr + len; 3948 mp2->b_rptr = mp1->b_wptr; 3949 /* 3950 * after adjustments if mblk not consumed is now 3951 * unaligned, try to align it. If this fails free 3952 * all messages and let upper layer recover. 3953 */ 3954 if (!OK_32PTR(mp2->b_rptr)) { 3955 if (!pullupmsg(mp2, -1)) { 3956 freemsg(mp0); 3957 freemsg(mp2); 3958 *mpp = NULL; 3959 return (NULL); 3960 } 3961 } 3962 *mpp = mp2; 3963 return (mp0); 3964 } 3965 /* Decrement len by the amount we just got. */ 3966 len -= mp2->b_wptr - mp2->b_rptr; 3967 } 3968 /* 3969 * len should be reduced to zero now. If not our caller has 3970 * screwed up. 3971 */ 3972 if (len) { 3973 /* Shouldn't happen! */ 3974 freemsg(mp0); 3975 *mpp = NULL; 3976 return (NULL); 3977 } 3978 /* 3979 * We consumed up to exactly the end of an mblk. Detach the part 3980 * we are returning from the rest of the chain. 3981 */ 3982 mp1->b_cont = NULL; 3983 *mpp = mp2; 3984 return (mp0); 3985 } 3986 3987 /* The ill stream is being unplumbed. Called from ip_close */ 3988 int 3989 ip_modclose(ill_t *ill) 3990 { 3991 boolean_t success; 3992 ipsq_t *ipsq; 3993 ipif_t *ipif; 3994 queue_t *q = ill->ill_rq; 3995 ip_stack_t *ipst = ill->ill_ipst; 3996 int i; 3997 arl_ill_common_t *ai = ill->ill_common; 3998 3999 /* 4000 * The punlink prior to this may have initiated a capability 4001 * negotiation. But ipsq_enter will block until that finishes or 4002 * times out. 4003 */ 4004 success = ipsq_enter(ill, B_FALSE, NEW_OP); 4005 4006 /* 4007 * Open/close/push/pop is guaranteed to be single threaded 4008 * per stream by STREAMS. FS guarantees that all references 4009 * from top are gone before close is called. So there can't 4010 * be another close thread that has set CONDEMNED on this ill. 4011 * and cause ipsq_enter to return failure. 4012 */ 4013 ASSERT(success); 4014 ipsq = ill->ill_phyint->phyint_ipsq; 4015 4016 /* 4017 * Mark it condemned. No new reference will be made to this ill. 4018 * Lookup functions will return an error. Threads that try to 4019 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 4020 * that the refcnt will drop down to zero. 4021 */ 4022 mutex_enter(&ill->ill_lock); 4023 ill->ill_state_flags |= ILL_CONDEMNED; 4024 for (ipif = ill->ill_ipif; ipif != NULL; 4025 ipif = ipif->ipif_next) { 4026 ipif->ipif_state_flags |= IPIF_CONDEMNED; 4027 } 4028 /* 4029 * Wake up anybody waiting to enter the ipsq. ipsq_enter 4030 * returns error if ILL_CONDEMNED is set 4031 */ 4032 cv_broadcast(&ill->ill_cv); 4033 mutex_exit(&ill->ill_lock); 4034 4035 /* 4036 * Send all the deferred DLPI messages downstream which came in 4037 * during the small window right before ipsq_enter(). We do this 4038 * without waiting for the ACKs because all the ACKs for M_PROTO 4039 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 4040 */ 4041 ill_dlpi_send_deferred(ill); 4042 4043 /* 4044 * Shut down fragmentation reassembly. 4045 * ill_frag_timer won't start a timer again. 4046 * Now cancel any existing timer 4047 */ 4048 (void) untimeout(ill->ill_frag_timer_id); 4049 (void) ill_frag_timeout(ill, 0); 4050 4051 /* 4052 * Call ill_delete to bring down the ipifs, ilms and ill on 4053 * this ill. Then wait for the refcnts to drop to zero. 4054 * ill_is_freeable checks whether the ill is really quiescent. 4055 * Then make sure that threads that are waiting to enter the 4056 * ipsq have seen the error returned by ipsq_enter and have 4057 * gone away. Then we call ill_delete_tail which does the 4058 * DL_UNBIND_REQ with the driver and then qprocsoff. 4059 */ 4060 ill_delete(ill); 4061 mutex_enter(&ill->ill_lock); 4062 while (!ill_is_freeable(ill)) 4063 cv_wait(&ill->ill_cv, &ill->ill_lock); 4064 4065 while (ill->ill_waiters) 4066 cv_wait(&ill->ill_cv, &ill->ill_lock); 4067 4068 mutex_exit(&ill->ill_lock); 4069 4070 /* 4071 * ill_delete_tail drops reference on ill_ipst, but we need to keep 4072 * it held until the end of the function since the cleanup 4073 * below needs to be able to use the ip_stack_t. 4074 */ 4075 netstack_hold(ipst->ips_netstack); 4076 4077 /* qprocsoff is done via ill_delete_tail */ 4078 ill_delete_tail(ill); 4079 /* 4080 * synchronously wait for arp stream to unbind. After this, we 4081 * cannot get any data packets up from the driver. 4082 */ 4083 arp_unbind_complete(ill); 4084 ASSERT(ill->ill_ipst == NULL); 4085 4086 /* 4087 * Walk through all conns and qenable those that have queued data. 4088 * Close synchronization needs this to 4089 * be done to ensure that all upper layers blocked 4090 * due to flow control to the closing device 4091 * get unblocked. 4092 */ 4093 ip1dbg(("ip_wsrv: walking\n")); 4094 for (i = 0; i < TX_FANOUT_SIZE; i++) { 4095 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[i]); 4096 } 4097 4098 /* 4099 * ai can be null if this is an IPv6 ill, or if the IPv4 4100 * stream is being torn down before ARP was plumbed (e.g., 4101 * /sbin/ifconfig plumbing a stream twice, and encountering 4102 * an error 4103 */ 4104 if (ai != NULL) { 4105 ASSERT(!ill->ill_isv6); 4106 mutex_enter(&ai->ai_lock); 4107 ai->ai_ill = NULL; 4108 if (ai->ai_arl == NULL) { 4109 mutex_destroy(&ai->ai_lock); 4110 kmem_free(ai, sizeof (*ai)); 4111 } else { 4112 cv_signal(&ai->ai_ill_unplumb_done); 4113 mutex_exit(&ai->ai_lock); 4114 } 4115 } 4116 4117 mutex_enter(&ipst->ips_ip_mi_lock); 4118 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 4119 mutex_exit(&ipst->ips_ip_mi_lock); 4120 4121 /* 4122 * credp could be null if the open didn't succeed and ip_modopen 4123 * itself calls ip_close. 4124 */ 4125 if (ill->ill_credp != NULL) 4126 crfree(ill->ill_credp); 4127 4128 mutex_destroy(&ill->ill_saved_ire_lock); 4129 mutex_destroy(&ill->ill_lock); 4130 rw_destroy(&ill->ill_mcast_lock); 4131 mutex_destroy(&ill->ill_mcast_serializer); 4132 list_destroy(&ill->ill_nce); 4133 4134 /* 4135 * Now we are done with the module close pieces that 4136 * need the netstack_t. 4137 */ 4138 netstack_rele(ipst->ips_netstack); 4139 4140 mi_close_free((IDP)ill); 4141 q->q_ptr = WR(q)->q_ptr = NULL; 4142 4143 ipsq_exit(ipsq); 4144 4145 return (0); 4146 } 4147 4148 /* 4149 * This is called as part of close() for IP, UDP, ICMP, and RTS 4150 * in order to quiesce the conn. 4151 */ 4152 void 4153 ip_quiesce_conn(conn_t *connp) 4154 { 4155 boolean_t drain_cleanup_reqd = B_FALSE; 4156 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 4157 boolean_t ilg_cleanup_reqd = B_FALSE; 4158 ip_stack_t *ipst; 4159 4160 ASSERT(!IPCL_IS_TCP(connp)); 4161 ipst = connp->conn_netstack->netstack_ip; 4162 4163 /* 4164 * Mark the conn as closing, and this conn must not be 4165 * inserted in future into any list. Eg. conn_drain_insert(), 4166 * won't insert this conn into the conn_drain_list. 4167 * 4168 * conn_idl, and conn_ilg cannot get set henceforth. 4169 */ 4170 mutex_enter(&connp->conn_lock); 4171 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 4172 connp->conn_state_flags |= CONN_CLOSING; 4173 if (connp->conn_idl != NULL) 4174 drain_cleanup_reqd = B_TRUE; 4175 if (connp->conn_oper_pending_ill != NULL) 4176 conn_ioctl_cleanup_reqd = B_TRUE; 4177 if (connp->conn_dhcpinit_ill != NULL) { 4178 ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0); 4179 atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit); 4180 ill_set_inputfn(connp->conn_dhcpinit_ill); 4181 connp->conn_dhcpinit_ill = NULL; 4182 } 4183 if (connp->conn_ilg != NULL) 4184 ilg_cleanup_reqd = B_TRUE; 4185 mutex_exit(&connp->conn_lock); 4186 4187 if (conn_ioctl_cleanup_reqd) 4188 conn_ioctl_cleanup(connp); 4189 4190 if (is_system_labeled() && connp->conn_anon_port) { 4191 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4192 connp->conn_mlp_type, connp->conn_proto, 4193 ntohs(connp->conn_lport), B_FALSE); 4194 connp->conn_anon_port = 0; 4195 } 4196 connp->conn_mlp_type = mlptSingle; 4197 4198 /* 4199 * Remove this conn from any fanout list it is on. 4200 * and then wait for any threads currently operating 4201 * on this endpoint to finish 4202 */ 4203 ipcl_hash_remove(connp); 4204 4205 /* 4206 * Remove this conn from the drain list, and do any other cleanup that 4207 * may be required. (TCP conns are never flow controlled, and 4208 * conn_idl will be NULL.) 4209 */ 4210 if (drain_cleanup_reqd && connp->conn_idl != NULL) { 4211 idl_t *idl = connp->conn_idl; 4212 4213 mutex_enter(&idl->idl_lock); 4214 conn_drain(connp, B_TRUE); 4215 mutex_exit(&idl->idl_lock); 4216 } 4217 4218 if (connp == ipst->ips_ip_g_mrouter) 4219 (void) ip_mrouter_done(ipst); 4220 4221 if (ilg_cleanup_reqd) 4222 ilg_delete_all(connp); 4223 4224 /* 4225 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 4226 * callers from write side can't be there now because close 4227 * is in progress. The only other caller is ipcl_walk 4228 * which checks for the condemned flag. 4229 */ 4230 mutex_enter(&connp->conn_lock); 4231 connp->conn_state_flags |= CONN_CONDEMNED; 4232 while (connp->conn_ref != 1) 4233 cv_wait(&connp->conn_cv, &connp->conn_lock); 4234 connp->conn_state_flags |= CONN_QUIESCED; 4235 mutex_exit(&connp->conn_lock); 4236 } 4237 4238 /* ARGSUSED */ 4239 int 4240 ip_close(queue_t *q, int flags) 4241 { 4242 conn_t *connp; 4243 4244 /* 4245 * Call the appropriate delete routine depending on whether this is 4246 * a module or device. 4247 */ 4248 if (WR(q)->q_next != NULL) { 4249 /* This is a module close */ 4250 return (ip_modclose((ill_t *)q->q_ptr)); 4251 } 4252 4253 connp = q->q_ptr; 4254 ip_quiesce_conn(connp); 4255 4256 qprocsoff(q); 4257 4258 /* 4259 * Now we are truly single threaded on this stream, and can 4260 * delete the things hanging off the connp, and finally the connp. 4261 * We removed this connp from the fanout list, it cannot be 4262 * accessed thru the fanouts, and we already waited for the 4263 * conn_ref to drop to 0. We are already in close, so 4264 * there cannot be any other thread from the top. qprocsoff 4265 * has completed, and service has completed or won't run in 4266 * future. 4267 */ 4268 ASSERT(connp->conn_ref == 1); 4269 4270 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 4271 4272 connp->conn_ref--; 4273 ipcl_conn_destroy(connp); 4274 4275 q->q_ptr = WR(q)->q_ptr = NULL; 4276 return (0); 4277 } 4278 4279 /* 4280 * Wapper around putnext() so that ip_rts_request can merely use 4281 * conn_recv. 4282 */ 4283 /*ARGSUSED2*/ 4284 static void 4285 ip_conn_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 4286 { 4287 conn_t *connp = (conn_t *)arg1; 4288 4289 putnext(connp->conn_rq, mp); 4290 } 4291 4292 /* Dummy in case ICMP error delivery is attempted to a /dev/ip instance */ 4293 /* ARGSUSED */ 4294 static void 4295 ip_conn_input_icmp(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 4296 { 4297 freemsg(mp); 4298 } 4299 4300 /* 4301 * Called when the module is about to be unloaded 4302 */ 4303 void 4304 ip_ddi_destroy(void) 4305 { 4306 /* This needs to be called before destroying any transports. */ 4307 mutex_enter(&cpu_lock); 4308 unregister_cpu_setup_func(ip_tp_cpu_update, NULL); 4309 mutex_exit(&cpu_lock); 4310 4311 tnet_fini(); 4312 4313 icmp_ddi_g_destroy(); 4314 rts_ddi_g_destroy(); 4315 udp_ddi_g_destroy(); 4316 sctp_ddi_g_destroy(); 4317 tcp_ddi_g_destroy(); 4318 ilb_ddi_g_destroy(); 4319 dce_g_destroy(); 4320 ipsec_policy_g_destroy(); 4321 ipcl_g_destroy(); 4322 ip_net_g_destroy(); 4323 ip_ire_g_fini(); 4324 inet_minor_destroy(ip_minor_arena_sa); 4325 #if defined(_LP64) 4326 inet_minor_destroy(ip_minor_arena_la); 4327 #endif 4328 4329 #ifdef DEBUG 4330 list_destroy(&ip_thread_list); 4331 rw_destroy(&ip_thread_rwlock); 4332 tsd_destroy(&ip_thread_data); 4333 #endif 4334 4335 netstack_unregister(NS_IP); 4336 } 4337 4338 /* 4339 * First step in cleanup. 4340 */ 4341 /* ARGSUSED */ 4342 static void 4343 ip_stack_shutdown(netstackid_t stackid, void *arg) 4344 { 4345 ip_stack_t *ipst = (ip_stack_t *)arg; 4346 kt_did_t ktid; 4347 4348 #ifdef NS_DEBUG 4349 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 4350 #endif 4351 4352 /* 4353 * Perform cleanup for special interfaces (loopback and IPMP). 4354 */ 4355 ip_interface_cleanup(ipst); 4356 4357 /* 4358 * The *_hook_shutdown()s start the process of notifying any 4359 * consumers that things are going away.... nothing is destroyed. 4360 */ 4361 ipv4_hook_shutdown(ipst); 4362 ipv6_hook_shutdown(ipst); 4363 arp_hook_shutdown(ipst); 4364 4365 mutex_enter(&ipst->ips_capab_taskq_lock); 4366 ktid = ipst->ips_capab_taskq_thread->t_did; 4367 ipst->ips_capab_taskq_quit = B_TRUE; 4368 cv_signal(&ipst->ips_capab_taskq_cv); 4369 mutex_exit(&ipst->ips_capab_taskq_lock); 4370 4371 /* 4372 * In rare occurrences, particularly on virtual hardware where CPUs can 4373 * be de-scheduled, the thread that we just signaled will not run until 4374 * after we have gotten through parts of ip_stack_fini. If that happens 4375 * then we'll try to grab the ips_capab_taskq_lock as part of returning 4376 * from cv_wait which no longer exists. 4377 */ 4378 thread_join(ktid); 4379 } 4380 4381 /* 4382 * Free the IP stack instance. 4383 */ 4384 static void 4385 ip_stack_fini(netstackid_t stackid, void *arg) 4386 { 4387 ip_stack_t *ipst = (ip_stack_t *)arg; 4388 int ret; 4389 4390 #ifdef NS_DEBUG 4391 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 4392 #endif 4393 /* 4394 * At this point, all of the notifications that the events and 4395 * protocols are going away have been run, meaning that we can 4396 * now set about starting to clean things up. 4397 */ 4398 ipobs_fini(ipst); 4399 ipv4_hook_destroy(ipst); 4400 ipv6_hook_destroy(ipst); 4401 arp_hook_destroy(ipst); 4402 ip_net_destroy(ipst); 4403 4404 ipmp_destroy(ipst); 4405 4406 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 4407 ipst->ips_ip_mibkp = NULL; 4408 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 4409 ipst->ips_icmp_mibkp = NULL; 4410 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 4411 ipst->ips_ip_kstat = NULL; 4412 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 4413 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 4414 ipst->ips_ip6_kstat = NULL; 4415 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 4416 4417 kmem_free(ipst->ips_propinfo_tbl, 4418 ip_propinfo_count * sizeof (mod_prop_info_t)); 4419 ipst->ips_propinfo_tbl = NULL; 4420 4421 dce_stack_destroy(ipst); 4422 ip_mrouter_stack_destroy(ipst); 4423 4424 /* 4425 * Quiesce all of our timers. Note we set the quiesce flags before we 4426 * call untimeout. The slowtimers may actually kick off another instance 4427 * of the non-slow timers. 4428 */ 4429 mutex_enter(&ipst->ips_igmp_timer_lock); 4430 ipst->ips_igmp_timer_quiesce = B_TRUE; 4431 mutex_exit(&ipst->ips_igmp_timer_lock); 4432 4433 mutex_enter(&ipst->ips_mld_timer_lock); 4434 ipst->ips_mld_timer_quiesce = B_TRUE; 4435 mutex_exit(&ipst->ips_mld_timer_lock); 4436 4437 mutex_enter(&ipst->ips_igmp_slowtimeout_lock); 4438 ipst->ips_igmp_slowtimeout_quiesce = B_TRUE; 4439 mutex_exit(&ipst->ips_igmp_slowtimeout_lock); 4440 4441 mutex_enter(&ipst->ips_mld_slowtimeout_lock); 4442 ipst->ips_mld_slowtimeout_quiesce = B_TRUE; 4443 mutex_exit(&ipst->ips_mld_slowtimeout_lock); 4444 4445 ret = untimeout(ipst->ips_igmp_timeout_id); 4446 if (ret == -1) { 4447 ASSERT(ipst->ips_igmp_timeout_id == 0); 4448 } else { 4449 ASSERT(ipst->ips_igmp_timeout_id != 0); 4450 ipst->ips_igmp_timeout_id = 0; 4451 } 4452 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 4453 if (ret == -1) { 4454 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 4455 } else { 4456 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 4457 ipst->ips_igmp_slowtimeout_id = 0; 4458 } 4459 ret = untimeout(ipst->ips_mld_timeout_id); 4460 if (ret == -1) { 4461 ASSERT(ipst->ips_mld_timeout_id == 0); 4462 } else { 4463 ASSERT(ipst->ips_mld_timeout_id != 0); 4464 ipst->ips_mld_timeout_id = 0; 4465 } 4466 ret = untimeout(ipst->ips_mld_slowtimeout_id); 4467 if (ret == -1) { 4468 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 4469 } else { 4470 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 4471 ipst->ips_mld_slowtimeout_id = 0; 4472 } 4473 4474 ip_ire_fini(ipst); 4475 ip6_asp_free(ipst); 4476 conn_drain_fini(ipst); 4477 ipcl_destroy(ipst); 4478 4479 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 4480 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 4481 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 4482 ipst->ips_ndp4 = NULL; 4483 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 4484 ipst->ips_ndp6 = NULL; 4485 4486 if (ipst->ips_loopback_ksp != NULL) { 4487 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 4488 ipst->ips_loopback_ksp = NULL; 4489 } 4490 4491 mutex_destroy(&ipst->ips_capab_taskq_lock); 4492 cv_destroy(&ipst->ips_capab_taskq_cv); 4493 4494 rw_destroy(&ipst->ips_srcid_lock); 4495 4496 mutex_destroy(&ipst->ips_ip_mi_lock); 4497 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 4498 4499 mutex_destroy(&ipst->ips_igmp_timer_lock); 4500 mutex_destroy(&ipst->ips_mld_timer_lock); 4501 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 4502 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 4503 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 4504 rw_destroy(&ipst->ips_ill_g_lock); 4505 4506 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 4507 ipst->ips_phyint_g_list = NULL; 4508 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 4509 ipst->ips_ill_g_heads = NULL; 4510 4511 ldi_ident_release(ipst->ips_ldi_ident); 4512 kmem_free(ipst, sizeof (*ipst)); 4513 } 4514 4515 /* 4516 * This function is called from the TSD destructor, and is used to debug 4517 * reference count issues in IP. See block comment in <inet/ip_if.h> for 4518 * details. 4519 */ 4520 static void 4521 ip_thread_exit(void *phash) 4522 { 4523 th_hash_t *thh = phash; 4524 4525 rw_enter(&ip_thread_rwlock, RW_WRITER); 4526 list_remove(&ip_thread_list, thh); 4527 rw_exit(&ip_thread_rwlock); 4528 mod_hash_destroy_hash(thh->thh_hash); 4529 kmem_free(thh, sizeof (*thh)); 4530 } 4531 4532 /* 4533 * Called when the IP kernel module is loaded into the kernel 4534 */ 4535 void 4536 ip_ddi_init(void) 4537 { 4538 ip_squeue_flag = ip_squeue_switch(ip_squeue_enter); 4539 4540 /* 4541 * For IP and TCP the minor numbers should start from 2 since we have 4 4542 * initial devices: ip, ip6, tcp, tcp6. 4543 */ 4544 /* 4545 * If this is a 64-bit kernel, then create two separate arenas - 4546 * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the 4547 * other for socket apps in the range 2^^18 through 2^^32-1. 4548 */ 4549 ip_minor_arena_la = NULL; 4550 ip_minor_arena_sa = NULL; 4551 #if defined(_LP64) 4552 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 4553 INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) { 4554 cmn_err(CE_PANIC, 4555 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 4556 } 4557 if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la", 4558 MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) { 4559 cmn_err(CE_PANIC, 4560 "ip_ddi_init: ip_minor_arena_la creation failed\n"); 4561 } 4562 #else 4563 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 4564 INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) { 4565 cmn_err(CE_PANIC, 4566 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 4567 } 4568 #endif 4569 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 4570 4571 ipcl_g_init(); 4572 ip_ire_g_init(); 4573 ip_net_g_init(); 4574 4575 #ifdef DEBUG 4576 tsd_create(&ip_thread_data, ip_thread_exit); 4577 rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL); 4578 list_create(&ip_thread_list, sizeof (th_hash_t), 4579 offsetof(th_hash_t, thh_link)); 4580 #endif 4581 ipsec_policy_g_init(); 4582 tcp_ddi_g_init(); 4583 sctp_ddi_g_init(); 4584 dce_g_init(); 4585 4586 /* 4587 * We want to be informed each time a stack is created or 4588 * destroyed in the kernel, so we can maintain the 4589 * set of udp_stack_t's. 4590 */ 4591 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 4592 ip_stack_fini); 4593 4594 tnet_init(); 4595 4596 udp_ddi_g_init(); 4597 rts_ddi_g_init(); 4598 icmp_ddi_g_init(); 4599 ilb_ddi_g_init(); 4600 4601 /* This needs to be called after all transports are initialized. */ 4602 mutex_enter(&cpu_lock); 4603 register_cpu_setup_func(ip_tp_cpu_update, NULL); 4604 mutex_exit(&cpu_lock); 4605 } 4606 4607 /* 4608 * Initialize the IP stack instance. 4609 */ 4610 static void * 4611 ip_stack_init(netstackid_t stackid, netstack_t *ns) 4612 { 4613 ip_stack_t *ipst; 4614 size_t arrsz; 4615 major_t major; 4616 4617 #ifdef NS_DEBUG 4618 printf("ip_stack_init(stack %d)\n", stackid); 4619 #endif 4620 4621 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 4622 ipst->ips_netstack = ns; 4623 4624 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 4625 KM_SLEEP); 4626 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 4627 KM_SLEEP); 4628 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 4629 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 4630 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 4631 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 4632 4633 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 4634 ipst->ips_igmp_deferred_next = INFINITY; 4635 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 4636 ipst->ips_mld_deferred_next = INFINITY; 4637 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 4638 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 4639 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 4640 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 4641 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 4642 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 4643 4644 ipcl_init(ipst); 4645 ip_ire_init(ipst); 4646 ip6_asp_init(ipst); 4647 ipif_init(ipst); 4648 conn_drain_init(ipst); 4649 ip_mrouter_stack_init(ipst); 4650 dce_stack_init(ipst); 4651 4652 ipst->ips_ip_multirt_log_interval = 1000; 4653 4654 ipst->ips_ill_index = 1; 4655 4656 ipst->ips_saved_ip_forwarding = -1; 4657 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 4658 4659 arrsz = ip_propinfo_count * sizeof (mod_prop_info_t); 4660 ipst->ips_propinfo_tbl = (mod_prop_info_t *)kmem_alloc(arrsz, KM_SLEEP); 4661 bcopy(ip_propinfo_tbl, ipst->ips_propinfo_tbl, arrsz); 4662 4663 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 4664 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 4665 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 4666 ipst->ips_ip6_kstat = 4667 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 4668 4669 ipst->ips_ip_src_id = 1; 4670 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 4671 4672 ipst->ips_src_generation = SRC_GENERATION_INITIAL; 4673 4674 ip_net_init(ipst, ns); 4675 ipv4_hook_init(ipst); 4676 ipv6_hook_init(ipst); 4677 arp_hook_init(ipst); 4678 ipmp_init(ipst); 4679 ipobs_init(ipst); 4680 4681 /* 4682 * Create the taskq dispatcher thread and initialize related stuff. 4683 */ 4684 mutex_init(&ipst->ips_capab_taskq_lock, NULL, MUTEX_DEFAULT, NULL); 4685 cv_init(&ipst->ips_capab_taskq_cv, NULL, CV_DEFAULT, NULL); 4686 ipst->ips_capab_taskq_thread = thread_create(NULL, 0, 4687 ill_taskq_dispatch, ipst, 0, &p0, TS_RUN, minclsyspri); 4688 4689 major = mod_name_to_major(INET_NAME); 4690 (void) ldi_ident_from_major(major, &ipst->ips_ldi_ident); 4691 return (ipst); 4692 } 4693 4694 /* 4695 * Allocate and initialize a DLPI template of the specified length. (May be 4696 * called as writer.) 4697 */ 4698 mblk_t * 4699 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 4700 { 4701 mblk_t *mp; 4702 4703 mp = allocb(len, BPRI_MED); 4704 if (!mp) 4705 return (NULL); 4706 4707 /* 4708 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 4709 * of which we don't seem to use) are sent with M_PCPROTO, and 4710 * that other DLPI are M_PROTO. 4711 */ 4712 if (prim == DL_INFO_REQ) { 4713 mp->b_datap->db_type = M_PCPROTO; 4714 } else { 4715 mp->b_datap->db_type = M_PROTO; 4716 } 4717 4718 mp->b_wptr = mp->b_rptr + len; 4719 bzero(mp->b_rptr, len); 4720 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 4721 return (mp); 4722 } 4723 4724 /* 4725 * Allocate and initialize a DLPI notification. (May be called as writer.) 4726 */ 4727 mblk_t * 4728 ip_dlnotify_alloc(uint_t notification, uint_t data) 4729 { 4730 dl_notify_ind_t *notifyp; 4731 mblk_t *mp; 4732 4733 if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL) 4734 return (NULL); 4735 4736 notifyp = (dl_notify_ind_t *)mp->b_rptr; 4737 notifyp->dl_notification = notification; 4738 notifyp->dl_data = data; 4739 return (mp); 4740 } 4741 4742 mblk_t * 4743 ip_dlnotify_alloc2(uint_t notification, uint_t data1, uint_t data2) 4744 { 4745 dl_notify_ind_t *notifyp; 4746 mblk_t *mp; 4747 4748 if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL) 4749 return (NULL); 4750 4751 notifyp = (dl_notify_ind_t *)mp->b_rptr; 4752 notifyp->dl_notification = notification; 4753 notifyp->dl_data1 = data1; 4754 notifyp->dl_data2 = data2; 4755 return (mp); 4756 } 4757 4758 /* 4759 * Debug formatting routine. Returns a character string representation of the 4760 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 4761 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 4762 * 4763 * Once the ndd table-printing interfaces are removed, this can be changed to 4764 * standard dotted-decimal form. 4765 */ 4766 char * 4767 ip_dot_addr(ipaddr_t addr, char *buf) 4768 { 4769 uint8_t *ap = (uint8_t *)&addr; 4770 4771 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 4772 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 4773 return (buf); 4774 } 4775 4776 /* 4777 * Write the given MAC address as a printable string in the usual colon- 4778 * separated format. 4779 */ 4780 const char * 4781 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 4782 { 4783 char *bp; 4784 4785 if (alen == 0 || buflen < 4) 4786 return ("?"); 4787 bp = buf; 4788 for (;;) { 4789 /* 4790 * If there are more MAC address bytes available, but we won't 4791 * have any room to print them, then add "..." to the string 4792 * instead. See below for the 'magic number' explanation. 4793 */ 4794 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 4795 (void) strcpy(bp, "..."); 4796 break; 4797 } 4798 (void) sprintf(bp, "%02x", *addr++); 4799 bp += 2; 4800 if (--alen == 0) 4801 break; 4802 *bp++ = ':'; 4803 buflen -= 3; 4804 /* 4805 * At this point, based on the first 'if' statement above, 4806 * either alen == 1 and buflen >= 3, or alen > 1 and 4807 * buflen >= 4. The first case leaves room for the final "xx" 4808 * number and trailing NUL byte. The second leaves room for at 4809 * least "...". Thus the apparently 'magic' numbers chosen for 4810 * that statement. 4811 */ 4812 } 4813 return (buf); 4814 } 4815 4816 /* 4817 * Called when it is conceptually a ULP that would sent the packet 4818 * e.g., port unreachable and protocol unreachable. Check that the packet 4819 * would have passed the IPsec global policy before sending the error. 4820 * 4821 * Send an ICMP error after patching up the packet appropriately. 4822 * Uses ip_drop_input and bumps the appropriate MIB. 4823 */ 4824 void 4825 ip_fanout_send_icmp_v4(mblk_t *mp, uint_t icmp_type, uint_t icmp_code, 4826 ip_recv_attr_t *ira) 4827 { 4828 ipha_t *ipha; 4829 boolean_t secure; 4830 ill_t *ill = ira->ira_ill; 4831 ip_stack_t *ipst = ill->ill_ipst; 4832 netstack_t *ns = ipst->ips_netstack; 4833 ipsec_stack_t *ipss = ns->netstack_ipsec; 4834 4835 secure = ira->ira_flags & IRAF_IPSEC_SECURE; 4836 4837 /* 4838 * We are generating an icmp error for some inbound packet. 4839 * Called from all ip_fanout_(udp, tcp, proto) functions. 4840 * Before we generate an error, check with global policy 4841 * to see whether this is allowed to enter the system. As 4842 * there is no "conn", we are checking with global policy. 4843 */ 4844 ipha = (ipha_t *)mp->b_rptr; 4845 if (secure || ipss->ipsec_inbound_v4_policy_present) { 4846 mp = ipsec_check_global_policy(mp, NULL, ipha, NULL, ira, ns); 4847 if (mp == NULL) 4848 return; 4849 } 4850 4851 /* We never send errors for protocols that we do implement */ 4852 if (ira->ira_protocol == IPPROTO_ICMP || 4853 ira->ira_protocol == IPPROTO_IGMP) { 4854 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 4855 ip_drop_input("ip_fanout_send_icmp_v4", mp, ill); 4856 freemsg(mp); 4857 return; 4858 } 4859 /* 4860 * Have to correct checksum since 4861 * the packet might have been 4862 * fragmented and the reassembly code in ip_rput 4863 * does not restore the IP checksum. 4864 */ 4865 ipha->ipha_hdr_checksum = 0; 4866 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 4867 4868 switch (icmp_type) { 4869 case ICMP_DEST_UNREACHABLE: 4870 switch (icmp_code) { 4871 case ICMP_PROTOCOL_UNREACHABLE: 4872 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInUnknownProtos); 4873 ip_drop_input("ipIfStatsInUnknownProtos", mp, ill); 4874 break; 4875 case ICMP_PORT_UNREACHABLE: 4876 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 4877 ip_drop_input("ipIfStatsNoPorts", mp, ill); 4878 break; 4879 } 4880 4881 icmp_unreachable(mp, icmp_code, ira); 4882 break; 4883 default: 4884 #ifdef DEBUG 4885 panic("ip_fanout_send_icmp_v4: wrong type"); 4886 /*NOTREACHED*/ 4887 #else 4888 freemsg(mp); 4889 break; 4890 #endif 4891 } 4892 } 4893 4894 /* 4895 * Used to send an ICMP error message when a packet is received for 4896 * a protocol that is not supported. The mblk passed as argument 4897 * is consumed by this function. 4898 */ 4899 void 4900 ip_proto_not_sup(mblk_t *mp, ip_recv_attr_t *ira) 4901 { 4902 ipha_t *ipha; 4903 4904 ipha = (ipha_t *)mp->b_rptr; 4905 if (ira->ira_flags & IRAF_IS_IPV4) { 4906 ASSERT(IPH_HDR_VERSION(ipha) == IP_VERSION); 4907 ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE, 4908 ICMP_PROTOCOL_UNREACHABLE, ira); 4909 } else { 4910 ASSERT(IPH_HDR_VERSION(ipha) == IPV6_VERSION); 4911 ip_fanout_send_icmp_v6(mp, ICMP6_PARAM_PROB, 4912 ICMP6_PARAMPROB_NEXTHEADER, ira); 4913 } 4914 } 4915 4916 /* 4917 * Deliver a rawip packet to the given conn, possibly applying ipsec policy. 4918 * Handles IPv4 and IPv6. 4919 * We are responsible for disposing of mp, such as by freemsg() or putnext() 4920 * Caller is responsible for dropping references to the conn. 4921 */ 4922 void 4923 ip_fanout_proto_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, 4924 ip_recv_attr_t *ira) 4925 { 4926 ill_t *ill = ira->ira_ill; 4927 ip_stack_t *ipst = ill->ill_ipst; 4928 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 4929 boolean_t secure; 4930 uint_t protocol = ira->ira_protocol; 4931 iaflags_t iraflags = ira->ira_flags; 4932 queue_t *rq; 4933 4934 secure = iraflags & IRAF_IPSEC_SECURE; 4935 4936 rq = connp->conn_rq; 4937 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) { 4938 switch (protocol) { 4939 case IPPROTO_ICMPV6: 4940 BUMP_MIB(ill->ill_icmp6_mib, ipv6IfIcmpInOverflows); 4941 break; 4942 case IPPROTO_ICMP: 4943 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 4944 break; 4945 default: 4946 BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows); 4947 break; 4948 } 4949 freemsg(mp); 4950 return; 4951 } 4952 4953 ASSERT(!(IPCL_IS_IPTUN(connp))); 4954 4955 if (((iraflags & IRAF_IS_IPV4) ? 4956 CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 4957 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || 4958 secure) { 4959 mp = ipsec_check_inbound_policy(mp, connp, ipha, 4960 ip6h, ira); 4961 if (mp == NULL) { 4962 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 4963 /* Note that mp is NULL */ 4964 ip_drop_input("ipIfStatsInDiscards", mp, ill); 4965 return; 4966 } 4967 } 4968 4969 if (iraflags & IRAF_ICMP_ERROR) { 4970 (connp->conn_recvicmp)(connp, mp, NULL, ira); 4971 } else { 4972 ill_t *rill = ira->ira_rill; 4973 4974 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 4975 ira->ira_ill = ira->ira_rill = NULL; 4976 /* Send it upstream */ 4977 (connp->conn_recv)(connp, mp, NULL, ira); 4978 ira->ira_ill = ill; 4979 ira->ira_rill = rill; 4980 } 4981 } 4982 4983 /* 4984 * Handle protocols with which IP is less intimate. There 4985 * can be more than one stream bound to a particular 4986 * protocol. When this is the case, normally each one gets a copy 4987 * of any incoming packets. 4988 * 4989 * IPsec NOTE : 4990 * 4991 * Don't allow a secure packet going up a non-secure connection. 4992 * We don't allow this because 4993 * 4994 * 1) Reply might go out in clear which will be dropped at 4995 * the sending side. 4996 * 2) If the reply goes out in clear it will give the 4997 * adversary enough information for getting the key in 4998 * most of the cases. 4999 * 5000 * Moreover getting a secure packet when we expect clear 5001 * implies that SA's were added without checking for 5002 * policy on both ends. This should not happen once ISAKMP 5003 * is used to negotiate SAs as SAs will be added only after 5004 * verifying the policy. 5005 * 5006 * Zones notes: 5007 * Earlier in ip_input on a system with multiple shared-IP zones we 5008 * duplicate the multicast and broadcast packets and send them up 5009 * with each explicit zoneid that exists on that ill. 5010 * This means that here we can match the zoneid with SO_ALLZONES being special. 5011 */ 5012 void 5013 ip_fanout_proto_v4(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira) 5014 { 5015 mblk_t *mp1; 5016 ipaddr_t laddr; 5017 conn_t *connp, *first_connp, *next_connp; 5018 connf_t *connfp; 5019 ill_t *ill = ira->ira_ill; 5020 ip_stack_t *ipst = ill->ill_ipst; 5021 5022 laddr = ipha->ipha_dst; 5023 5024 connfp = &ipst->ips_ipcl_proto_fanout_v4[ira->ira_protocol]; 5025 mutex_enter(&connfp->connf_lock); 5026 connp = connfp->connf_head; 5027 for (connp = connfp->connf_head; connp != NULL; 5028 connp = connp->conn_next) { 5029 /* Note: IPCL_PROTO_MATCH includes conn_wantpacket */ 5030 if (IPCL_PROTO_MATCH(connp, ira, ipha) && 5031 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5032 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) { 5033 break; 5034 } 5035 } 5036 5037 if (connp == NULL) { 5038 /* 5039 * No one bound to these addresses. Is 5040 * there a client that wants all 5041 * unclaimed datagrams? 5042 */ 5043 mutex_exit(&connfp->connf_lock); 5044 ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE, 5045 ICMP_PROTOCOL_UNREACHABLE, ira); 5046 return; 5047 } 5048 5049 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL); 5050 5051 CONN_INC_REF(connp); 5052 first_connp = connp; 5053 connp = connp->conn_next; 5054 5055 for (;;) { 5056 while (connp != NULL) { 5057 /* Note: IPCL_PROTO_MATCH includes conn_wantpacket */ 5058 if (IPCL_PROTO_MATCH(connp, ira, ipha) && 5059 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5060 tsol_receive_local(mp, &laddr, IPV4_VERSION, 5061 ira, connp))) 5062 break; 5063 connp = connp->conn_next; 5064 } 5065 5066 if (connp == NULL) { 5067 /* No more interested clients */ 5068 connp = first_connp; 5069 break; 5070 } 5071 if (((mp1 = dupmsg(mp)) == NULL) && 5072 ((mp1 = copymsg(mp)) == NULL)) { 5073 /* Memory allocation failed */ 5074 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5075 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5076 connp = first_connp; 5077 break; 5078 } 5079 5080 CONN_INC_REF(connp); 5081 mutex_exit(&connfp->connf_lock); 5082 5083 ip_fanout_proto_conn(connp, mp1, (ipha_t *)mp1->b_rptr, NULL, 5084 ira); 5085 5086 mutex_enter(&connfp->connf_lock); 5087 /* Follow the next pointer before releasing the conn. */ 5088 next_connp = connp->conn_next; 5089 CONN_DEC_REF(connp); 5090 connp = next_connp; 5091 } 5092 5093 /* Last one. Send it upstream. */ 5094 mutex_exit(&connfp->connf_lock); 5095 5096 ip_fanout_proto_conn(connp, mp, ipha, NULL, ira); 5097 5098 CONN_DEC_REF(connp); 5099 } 5100 5101 /* 5102 * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or 5103 * pass it along to ESP if the SPI is non-zero. Returns the mblk if the mblk 5104 * is not consumed. 5105 * 5106 * One of three things can happen, all of which affect the passed-in mblk: 5107 * 5108 * 1.) The packet is stock UDP and gets its zero-SPI stripped. Return mblk.. 5109 * 5110 * 2.) The packet is ESP-in-UDP, gets transformed into an equivalent 5111 * ESP packet, and is passed along to ESP for consumption. Return NULL. 5112 * 5113 * 3.) The packet is an ESP-in-UDP Keepalive. Drop it and return NULL. 5114 */ 5115 mblk_t * 5116 zero_spi_check(mblk_t *mp, ip_recv_attr_t *ira) 5117 { 5118 int shift, plen, iph_len; 5119 ipha_t *ipha; 5120 udpha_t *udpha; 5121 uint32_t *spi; 5122 uint32_t esp_ports; 5123 uint8_t *orptr; 5124 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 5125 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 5126 5127 ipha = (ipha_t *)mp->b_rptr; 5128 iph_len = ira->ira_ip_hdr_length; 5129 plen = ira->ira_pktlen; 5130 5131 if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) { 5132 /* 5133 * Most likely a keepalive for the benefit of an intervening 5134 * NAT. These aren't for us, per se, so drop it. 5135 * 5136 * RFC 3947/8 doesn't say for sure what to do for 2-3 5137 * byte packets (keepalives are 1-byte), but we'll drop them 5138 * also. 5139 */ 5140 ip_drop_packet(mp, B_TRUE, ira->ira_ill, 5141 DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper); 5142 return (NULL); 5143 } 5144 5145 if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) { 5146 /* might as well pull it all up - it might be ESP. */ 5147 if (!pullupmsg(mp, -1)) { 5148 ip_drop_packet(mp, B_TRUE, ira->ira_ill, 5149 DROPPER(ipss, ipds_esp_nomem), 5150 &ipss->ipsec_dropper); 5151 return (NULL); 5152 } 5153 5154 ipha = (ipha_t *)mp->b_rptr; 5155 } 5156 spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t)); 5157 if (*spi == 0) { 5158 /* UDP packet - remove 0-spi. */ 5159 shift = sizeof (uint32_t); 5160 } else { 5161 /* ESP-in-UDP packet - reduce to ESP. */ 5162 ipha->ipha_protocol = IPPROTO_ESP; 5163 shift = sizeof (udpha_t); 5164 } 5165 5166 /* Fix IP header */ 5167 ira->ira_pktlen = (plen - shift); 5168 ipha->ipha_length = htons(ira->ira_pktlen); 5169 ipha->ipha_hdr_checksum = 0; 5170 5171 orptr = mp->b_rptr; 5172 mp->b_rptr += shift; 5173 5174 udpha = (udpha_t *)(orptr + iph_len); 5175 if (*spi == 0) { 5176 ASSERT((uint8_t *)ipha == orptr); 5177 udpha->uha_length = htons(plen - shift - iph_len); 5178 iph_len += sizeof (udpha_t); /* For the call to ovbcopy(). */ 5179 esp_ports = 0; 5180 } else { 5181 esp_ports = *((uint32_t *)udpha); 5182 ASSERT(esp_ports != 0); 5183 } 5184 ovbcopy(orptr, orptr + shift, iph_len); 5185 if (esp_ports != 0) /* Punt up for ESP processing. */ { 5186 ipha = (ipha_t *)(orptr + shift); 5187 5188 ira->ira_flags |= IRAF_ESP_UDP_PORTS; 5189 ira->ira_esp_udp_ports = esp_ports; 5190 ip_fanout_v4(mp, ipha, ira); 5191 return (NULL); 5192 } 5193 return (mp); 5194 } 5195 5196 /* 5197 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 5198 * Handles IPv4 and IPv6. 5199 * We are responsible for disposing of mp, such as by freemsg() or putnext() 5200 * Caller is responsible for dropping references to the conn. 5201 */ 5202 void 5203 ip_fanout_udp_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, 5204 ip_recv_attr_t *ira) 5205 { 5206 ill_t *ill = ira->ira_ill; 5207 ip_stack_t *ipst = ill->ill_ipst; 5208 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 5209 boolean_t secure; 5210 iaflags_t iraflags = ira->ira_flags; 5211 5212 secure = iraflags & IRAF_IPSEC_SECURE; 5213 5214 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : 5215 !canputnext(connp->conn_rq)) { 5216 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 5217 freemsg(mp); 5218 return; 5219 } 5220 5221 if (((iraflags & IRAF_IS_IPV4) ? 5222 CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 5223 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || 5224 secure) { 5225 mp = ipsec_check_inbound_policy(mp, connp, ipha, 5226 ip6h, ira); 5227 if (mp == NULL) { 5228 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5229 /* Note that mp is NULL */ 5230 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5231 return; 5232 } 5233 } 5234 5235 /* 5236 * Since this code is not used for UDP unicast we don't need a NAT_T 5237 * check. Only ip_fanout_v4 has that check. 5238 */ 5239 if (ira->ira_flags & IRAF_ICMP_ERROR) { 5240 (connp->conn_recvicmp)(connp, mp, NULL, ira); 5241 } else { 5242 ill_t *rill = ira->ira_rill; 5243 5244 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 5245 ira->ira_ill = ira->ira_rill = NULL; 5246 /* Send it upstream */ 5247 (connp->conn_recv)(connp, mp, NULL, ira); 5248 ira->ira_ill = ill; 5249 ira->ira_rill = rill; 5250 } 5251 } 5252 5253 /* 5254 * Fanout for UDP packets that are multicast or broadcast, and ICMP errors. 5255 * (Unicast fanout is handled in ip_input_v4.) 5256 * 5257 * If SO_REUSEADDR is set all multicast and broadcast packets 5258 * will be delivered to all conns bound to the same port. 5259 * 5260 * If there is at least one matching AF_INET receiver, then we will 5261 * ignore any AF_INET6 receivers. 5262 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 5263 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 5264 * packets. 5265 * 5266 * Zones notes: 5267 * Earlier in ip_input on a system with multiple shared-IP zones we 5268 * duplicate the multicast and broadcast packets and send them up 5269 * with each explicit zoneid that exists on that ill. 5270 * This means that here we can match the zoneid with SO_ALLZONES being special. 5271 */ 5272 void 5273 ip_fanout_udp_multi_v4(mblk_t *mp, ipha_t *ipha, uint16_t lport, uint16_t fport, 5274 ip_recv_attr_t *ira) 5275 { 5276 ipaddr_t laddr; 5277 in6_addr_t v6faddr; 5278 conn_t *connp; 5279 connf_t *connfp; 5280 ipaddr_t faddr; 5281 ill_t *ill = ira->ira_ill; 5282 ip_stack_t *ipst = ill->ill_ipst; 5283 5284 ASSERT(ira->ira_flags & (IRAF_MULTIBROADCAST|IRAF_ICMP_ERROR)); 5285 5286 laddr = ipha->ipha_dst; 5287 faddr = ipha->ipha_src; 5288 5289 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)]; 5290 mutex_enter(&connfp->connf_lock); 5291 connp = connfp->connf_head; 5292 5293 /* 5294 * If SO_REUSEADDR has been set on the first we send the 5295 * packet to all clients that have joined the group and 5296 * match the port. 5297 */ 5298 while (connp != NULL) { 5299 if ((IPCL_UDP_MATCH(connp, lport, laddr, fport, faddr)) && 5300 conn_wantpacket(connp, ira, ipha) && 5301 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5302 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) 5303 break; 5304 connp = connp->conn_next; 5305 } 5306 5307 if (connp == NULL) 5308 goto notfound; 5309 5310 CONN_INC_REF(connp); 5311 5312 if (connp->conn_reuseaddr) { 5313 conn_t *first_connp = connp; 5314 conn_t *next_connp; 5315 mblk_t *mp1; 5316 5317 connp = connp->conn_next; 5318 for (;;) { 5319 while (connp != NULL) { 5320 if (IPCL_UDP_MATCH(connp, lport, laddr, 5321 fport, faddr) && 5322 conn_wantpacket(connp, ira, ipha) && 5323 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5324 tsol_receive_local(mp, &laddr, IPV4_VERSION, 5325 ira, connp))) 5326 break; 5327 connp = connp->conn_next; 5328 } 5329 if (connp == NULL) { 5330 /* No more interested clients */ 5331 connp = first_connp; 5332 break; 5333 } 5334 if (((mp1 = dupmsg(mp)) == NULL) && 5335 ((mp1 = copymsg(mp)) == NULL)) { 5336 /* Memory allocation failed */ 5337 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5338 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5339 connp = first_connp; 5340 break; 5341 } 5342 CONN_INC_REF(connp); 5343 mutex_exit(&connfp->connf_lock); 5344 5345 IP_STAT(ipst, ip_udp_fanmb); 5346 ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr, 5347 NULL, ira); 5348 mutex_enter(&connfp->connf_lock); 5349 /* Follow the next pointer before releasing the conn */ 5350 next_connp = connp->conn_next; 5351 CONN_DEC_REF(connp); 5352 connp = next_connp; 5353 } 5354 } 5355 5356 /* Last one. Send it upstream. */ 5357 mutex_exit(&connfp->connf_lock); 5358 IP_STAT(ipst, ip_udp_fanmb); 5359 ip_fanout_udp_conn(connp, mp, ipha, NULL, ira); 5360 CONN_DEC_REF(connp); 5361 return; 5362 5363 notfound: 5364 mutex_exit(&connfp->connf_lock); 5365 /* 5366 * IPv6 endpoints bound to multicast IPv4-mapped addresses 5367 * have already been matched above, since they live in the IPv4 5368 * fanout tables. This implies we only need to 5369 * check for IPv6 in6addr_any endpoints here. 5370 * Thus we compare using ipv6_all_zeros instead of the destination 5371 * address, except for the multicast group membership lookup which 5372 * uses the IPv4 destination. 5373 */ 5374 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6faddr); 5375 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)]; 5376 mutex_enter(&connfp->connf_lock); 5377 connp = connfp->connf_head; 5378 /* 5379 * IPv4 multicast packet being delivered to an AF_INET6 5380 * in6addr_any endpoint. 5381 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 5382 * and not conn_wantpacket_v6() since any multicast membership is 5383 * for an IPv4-mapped multicast address. 5384 */ 5385 while (connp != NULL) { 5386 if (IPCL_UDP_MATCH_V6(connp, lport, ipv6_all_zeros, 5387 fport, v6faddr) && 5388 conn_wantpacket(connp, ira, ipha) && 5389 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5390 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) 5391 break; 5392 connp = connp->conn_next; 5393 } 5394 5395 if (connp == NULL) { 5396 /* 5397 * No one bound to this port. Is 5398 * there a client that wants all 5399 * unclaimed datagrams? 5400 */ 5401 mutex_exit(&connfp->connf_lock); 5402 5403 if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_UDP].connf_head != 5404 NULL) { 5405 ASSERT(ira->ira_protocol == IPPROTO_UDP); 5406 ip_fanout_proto_v4(mp, ipha, ira); 5407 } else { 5408 /* 5409 * We used to attempt to send an icmp error here, but 5410 * since this is known to be a multicast packet 5411 * and we don't send icmp errors in response to 5412 * multicast, just drop the packet and give up sooner. 5413 */ 5414 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 5415 freemsg(mp); 5416 } 5417 return; 5418 } 5419 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL); 5420 5421 /* 5422 * If SO_REUSEADDR has been set on the first we send the 5423 * packet to all clients that have joined the group and 5424 * match the port. 5425 */ 5426 if (connp->conn_reuseaddr) { 5427 conn_t *first_connp = connp; 5428 conn_t *next_connp; 5429 mblk_t *mp1; 5430 5431 CONN_INC_REF(connp); 5432 connp = connp->conn_next; 5433 for (;;) { 5434 while (connp != NULL) { 5435 if (IPCL_UDP_MATCH_V6(connp, lport, 5436 ipv6_all_zeros, fport, v6faddr) && 5437 conn_wantpacket(connp, ira, ipha) && 5438 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5439 tsol_receive_local(mp, &laddr, IPV4_VERSION, 5440 ira, connp))) 5441 break; 5442 connp = connp->conn_next; 5443 } 5444 if (connp == NULL) { 5445 /* No more interested clients */ 5446 connp = first_connp; 5447 break; 5448 } 5449 if (((mp1 = dupmsg(mp)) == NULL) && 5450 ((mp1 = copymsg(mp)) == NULL)) { 5451 /* Memory allocation failed */ 5452 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5453 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5454 connp = first_connp; 5455 break; 5456 } 5457 CONN_INC_REF(connp); 5458 mutex_exit(&connfp->connf_lock); 5459 5460 IP_STAT(ipst, ip_udp_fanmb); 5461 ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr, 5462 NULL, ira); 5463 mutex_enter(&connfp->connf_lock); 5464 /* Follow the next pointer before releasing the conn */ 5465 next_connp = connp->conn_next; 5466 CONN_DEC_REF(connp); 5467 connp = next_connp; 5468 } 5469 } 5470 5471 /* Last one. Send it upstream. */ 5472 mutex_exit(&connfp->connf_lock); 5473 IP_STAT(ipst, ip_udp_fanmb); 5474 ip_fanout_udp_conn(connp, mp, ipha, NULL, ira); 5475 CONN_DEC_REF(connp); 5476 } 5477 5478 /* 5479 * Split an incoming packet's IPv4 options into the label and the other options. 5480 * If 'allocate' is set it does memory allocation for the ip_pkt_t, including 5481 * clearing out any leftover label or options. 5482 * Otherwise it just makes ipp point into the packet. 5483 * 5484 * Returns zero if ok; ENOMEM if the buffer couldn't be allocated. 5485 */ 5486 int 5487 ip_find_hdr_v4(ipha_t *ipha, ip_pkt_t *ipp, boolean_t allocate) 5488 { 5489 uchar_t *opt; 5490 uint32_t totallen; 5491 uint32_t optval; 5492 uint32_t optlen; 5493 5494 ipp->ipp_fields |= IPPF_HOPLIMIT | IPPF_TCLASS | IPPF_ADDR; 5495 ipp->ipp_hoplimit = ipha->ipha_ttl; 5496 ipp->ipp_type_of_service = ipha->ipha_type_of_service; 5497 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &ipp->ipp_addr); 5498 5499 /* 5500 * Get length (in 4 byte octets) of IP header options. 5501 */ 5502 totallen = ipha->ipha_version_and_hdr_length - 5503 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 5504 5505 if (totallen == 0) { 5506 if (!allocate) 5507 return (0); 5508 5509 /* Clear out anything from a previous packet */ 5510 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 5511 kmem_free(ipp->ipp_ipv4_options, 5512 ipp->ipp_ipv4_options_len); 5513 ipp->ipp_ipv4_options = NULL; 5514 ipp->ipp_ipv4_options_len = 0; 5515 ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS; 5516 } 5517 if (ipp->ipp_fields & IPPF_LABEL_V4) { 5518 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4); 5519 ipp->ipp_label_v4 = NULL; 5520 ipp->ipp_label_len_v4 = 0; 5521 ipp->ipp_fields &= ~IPPF_LABEL_V4; 5522 } 5523 return (0); 5524 } 5525 5526 totallen <<= 2; 5527 opt = (uchar_t *)&ipha[1]; 5528 if (!is_system_labeled()) { 5529 5530 copyall: 5531 if (!allocate) { 5532 if (totallen != 0) { 5533 ipp->ipp_ipv4_options = opt; 5534 ipp->ipp_ipv4_options_len = totallen; 5535 ipp->ipp_fields |= IPPF_IPV4_OPTIONS; 5536 } 5537 return (0); 5538 } 5539 /* Just copy all of options */ 5540 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 5541 if (totallen == ipp->ipp_ipv4_options_len) { 5542 bcopy(opt, ipp->ipp_ipv4_options, totallen); 5543 return (0); 5544 } 5545 kmem_free(ipp->ipp_ipv4_options, 5546 ipp->ipp_ipv4_options_len); 5547 ipp->ipp_ipv4_options = NULL; 5548 ipp->ipp_ipv4_options_len = 0; 5549 ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS; 5550 } 5551 if (totallen == 0) 5552 return (0); 5553 5554 ipp->ipp_ipv4_options = kmem_alloc(totallen, KM_NOSLEEP); 5555 if (ipp->ipp_ipv4_options == NULL) 5556 return (ENOMEM); 5557 ipp->ipp_ipv4_options_len = totallen; 5558 ipp->ipp_fields |= IPPF_IPV4_OPTIONS; 5559 bcopy(opt, ipp->ipp_ipv4_options, totallen); 5560 return (0); 5561 } 5562 5563 if (allocate && (ipp->ipp_fields & IPPF_LABEL_V4)) { 5564 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4); 5565 ipp->ipp_label_v4 = NULL; 5566 ipp->ipp_label_len_v4 = 0; 5567 ipp->ipp_fields &= ~IPPF_LABEL_V4; 5568 } 5569 5570 /* 5571 * Search for CIPSO option. 5572 * We assume CIPSO is first in options if it is present. 5573 * If it isn't, then ipp_opt_ipv4_options will not include the options 5574 * prior to the CIPSO option. 5575 */ 5576 while (totallen != 0) { 5577 switch (optval = opt[IPOPT_OPTVAL]) { 5578 case IPOPT_EOL: 5579 return (0); 5580 case IPOPT_NOP: 5581 optlen = 1; 5582 break; 5583 default: 5584 if (totallen <= IPOPT_OLEN) 5585 return (EINVAL); 5586 optlen = opt[IPOPT_OLEN]; 5587 if (optlen < 2) 5588 return (EINVAL); 5589 } 5590 if (optlen > totallen) 5591 return (EINVAL); 5592 5593 switch (optval) { 5594 case IPOPT_COMSEC: 5595 if (!allocate) { 5596 ipp->ipp_label_v4 = opt; 5597 ipp->ipp_label_len_v4 = optlen; 5598 ipp->ipp_fields |= IPPF_LABEL_V4; 5599 } else { 5600 ipp->ipp_label_v4 = kmem_alloc(optlen, 5601 KM_NOSLEEP); 5602 if (ipp->ipp_label_v4 == NULL) 5603 return (ENOMEM); 5604 ipp->ipp_label_len_v4 = optlen; 5605 ipp->ipp_fields |= IPPF_LABEL_V4; 5606 bcopy(opt, ipp->ipp_label_v4, optlen); 5607 } 5608 totallen -= optlen; 5609 opt += optlen; 5610 5611 /* Skip padding bytes until we get to a multiple of 4 */ 5612 while ((totallen & 3) != 0 && opt[0] == IPOPT_NOP) { 5613 totallen--; 5614 opt++; 5615 } 5616 /* Remaining as ipp_ipv4_options */ 5617 goto copyall; 5618 } 5619 totallen -= optlen; 5620 opt += optlen; 5621 } 5622 /* No CIPSO found; return everything as ipp_ipv4_options */ 5623 totallen = ipha->ipha_version_and_hdr_length - 5624 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 5625 totallen <<= 2; 5626 opt = (uchar_t *)&ipha[1]; 5627 goto copyall; 5628 } 5629 5630 /* 5631 * Efficient versions of lookup for an IRE when we only 5632 * match the address. 5633 * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE. 5634 * Does not handle multicast addresses. 5635 */ 5636 uint_t 5637 ip_type_v4(ipaddr_t addr, ip_stack_t *ipst) 5638 { 5639 ire_t *ire; 5640 uint_t result; 5641 5642 ire = ire_ftable_lookup_simple_v4(addr, 0, ipst, NULL); 5643 ASSERT(ire != NULL); 5644 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) 5645 result = IRE_NOROUTE; 5646 else 5647 result = ire->ire_type; 5648 ire_refrele(ire); 5649 return (result); 5650 } 5651 5652 /* 5653 * Efficient versions of lookup for an IRE when we only 5654 * match the address. 5655 * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE. 5656 * Does not handle multicast addresses. 5657 */ 5658 uint_t 5659 ip_type_v6(const in6_addr_t *addr, ip_stack_t *ipst) 5660 { 5661 ire_t *ire; 5662 uint_t result; 5663 5664 ire = ire_ftable_lookup_simple_v6(addr, 0, ipst, NULL); 5665 ASSERT(ire != NULL); 5666 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) 5667 result = IRE_NOROUTE; 5668 else 5669 result = ire->ire_type; 5670 ire_refrele(ire); 5671 return (result); 5672 } 5673 5674 /* 5675 * Nobody should be sending 5676 * packets up this stream 5677 */ 5678 static void 5679 ip_lrput(queue_t *q, mblk_t *mp) 5680 { 5681 switch (mp->b_datap->db_type) { 5682 case M_FLUSH: 5683 /* Turn around */ 5684 if (*mp->b_rptr & FLUSHW) { 5685 *mp->b_rptr &= ~FLUSHR; 5686 qreply(q, mp); 5687 return; 5688 } 5689 break; 5690 } 5691 freemsg(mp); 5692 } 5693 5694 /* Nobody should be sending packets down this stream */ 5695 /* ARGSUSED */ 5696 void 5697 ip_lwput(queue_t *q, mblk_t *mp) 5698 { 5699 freemsg(mp); 5700 } 5701 5702 /* 5703 * Move the first hop in any source route to ipha_dst and remove that part of 5704 * the source route. Called by other protocols. Errors in option formatting 5705 * are ignored - will be handled by ip_output_options. Return the final 5706 * destination (either ipha_dst or the last entry in a source route.) 5707 */ 5708 ipaddr_t 5709 ip_massage_options(ipha_t *ipha, netstack_t *ns) 5710 { 5711 ipoptp_t opts; 5712 uchar_t *opt; 5713 uint8_t optval; 5714 uint8_t optlen; 5715 ipaddr_t dst; 5716 int i; 5717 ip_stack_t *ipst = ns->netstack_ip; 5718 5719 ip2dbg(("ip_massage_options\n")); 5720 dst = ipha->ipha_dst; 5721 for (optval = ipoptp_first(&opts, ipha); 5722 optval != IPOPT_EOL; 5723 optval = ipoptp_next(&opts)) { 5724 opt = opts.ipoptp_cur; 5725 switch (optval) { 5726 uint8_t off; 5727 case IPOPT_SSRR: 5728 case IPOPT_LSRR: 5729 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 5730 ip1dbg(("ip_massage_options: bad src route\n")); 5731 break; 5732 } 5733 optlen = opts.ipoptp_len; 5734 off = opt[IPOPT_OFFSET]; 5735 off--; 5736 redo_srr: 5737 if (optlen < IP_ADDR_LEN || 5738 off > optlen - IP_ADDR_LEN) { 5739 /* End of source route */ 5740 ip1dbg(("ip_massage_options: end of SR\n")); 5741 break; 5742 } 5743 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 5744 ip1dbg(("ip_massage_options: next hop 0x%x\n", 5745 ntohl(dst))); 5746 /* 5747 * Check if our address is present more than 5748 * once as consecutive hops in source route. 5749 * XXX verify per-interface ip_forwarding 5750 * for source route? 5751 */ 5752 if (ip_type_v4(dst, ipst) == IRE_LOCAL) { 5753 off += IP_ADDR_LEN; 5754 goto redo_srr; 5755 } 5756 if (dst == htonl(INADDR_LOOPBACK)) { 5757 ip1dbg(("ip_massage_options: loopback addr in " 5758 "source route!\n")); 5759 break; 5760 } 5761 /* 5762 * Update ipha_dst to be the first hop and remove the 5763 * first hop from the source route (by overwriting 5764 * part of the option with NOP options). 5765 */ 5766 ipha->ipha_dst = dst; 5767 /* Put the last entry in dst */ 5768 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 5769 3; 5770 bcopy(&opt[off], &dst, IP_ADDR_LEN); 5771 5772 ip1dbg(("ip_massage_options: last hop 0x%x\n", 5773 ntohl(dst))); 5774 /* Move down and overwrite */ 5775 opt[IP_ADDR_LEN] = opt[0]; 5776 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 5777 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 5778 for (i = 0; i < IP_ADDR_LEN; i++) 5779 opt[i] = IPOPT_NOP; 5780 break; 5781 } 5782 } 5783 return (dst); 5784 } 5785 5786 /* 5787 * Return the network mask 5788 * associated with the specified address. 5789 */ 5790 ipaddr_t 5791 ip_net_mask(ipaddr_t addr) 5792 { 5793 uchar_t *up = (uchar_t *)&addr; 5794 ipaddr_t mask = 0; 5795 uchar_t *maskp = (uchar_t *)&mask; 5796 5797 #if defined(__i386) || defined(__amd64) 5798 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 5799 #endif 5800 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 5801 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 5802 #endif 5803 if (CLASSD(addr)) { 5804 maskp[0] = 0xF0; 5805 return (mask); 5806 } 5807 5808 /* We assume Class E default netmask to be 32 */ 5809 if (CLASSE(addr)) 5810 return (0xffffffffU); 5811 5812 if (addr == 0) 5813 return (0); 5814 maskp[0] = 0xFF; 5815 if ((up[0] & 0x80) == 0) 5816 return (mask); 5817 5818 maskp[1] = 0xFF; 5819 if ((up[0] & 0xC0) == 0x80) 5820 return (mask); 5821 5822 maskp[2] = 0xFF; 5823 if ((up[0] & 0xE0) == 0xC0) 5824 return (mask); 5825 5826 /* Otherwise return no mask */ 5827 return ((ipaddr_t)0); 5828 } 5829 5830 /* Name/Value Table Lookup Routine */ 5831 char * 5832 ip_nv_lookup(nv_t *nv, int value) 5833 { 5834 if (!nv) 5835 return (NULL); 5836 for (; nv->nv_name; nv++) { 5837 if (nv->nv_value == value) 5838 return (nv->nv_name); 5839 } 5840 return ("unknown"); 5841 } 5842 5843 static int 5844 ip_wait_for_info_ack(ill_t *ill) 5845 { 5846 int err; 5847 5848 mutex_enter(&ill->ill_lock); 5849 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 5850 /* 5851 * Return value of 0 indicates a pending signal. 5852 */ 5853 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 5854 if (err == 0) { 5855 mutex_exit(&ill->ill_lock); 5856 return (EINTR); 5857 } 5858 } 5859 mutex_exit(&ill->ill_lock); 5860 /* 5861 * ip_rput_other could have set an error in ill_error on 5862 * receipt of M_ERROR. 5863 */ 5864 return (ill->ill_error); 5865 } 5866 5867 /* 5868 * This is a module open, i.e. this is a control stream for access 5869 * to a DLPI device. We allocate an ill_t as the instance data in 5870 * this case. 5871 */ 5872 static int 5873 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 5874 { 5875 ill_t *ill; 5876 int err; 5877 zoneid_t zoneid; 5878 netstack_t *ns; 5879 ip_stack_t *ipst; 5880 5881 /* 5882 * Prevent unprivileged processes from pushing IP so that 5883 * they can't send raw IP. 5884 */ 5885 if (secpolicy_net_rawaccess(credp) != 0) 5886 return (EPERM); 5887 5888 ns = netstack_find_by_cred(credp); 5889 ASSERT(ns != NULL); 5890 ipst = ns->netstack_ip; 5891 ASSERT(ipst != NULL); 5892 5893 /* 5894 * For exclusive stacks we set the zoneid to zero 5895 * to make IP operate as if in the global zone. 5896 */ 5897 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 5898 zoneid = GLOBAL_ZONEID; 5899 else 5900 zoneid = crgetzoneid(credp); 5901 5902 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 5903 q->q_ptr = WR(q)->q_ptr = ill; 5904 ill->ill_ipst = ipst; 5905 ill->ill_zoneid = zoneid; 5906 5907 /* 5908 * ill_init initializes the ill fields and then sends down 5909 * down a DL_INFO_REQ after calling qprocson. 5910 */ 5911 err = ill_init(q, ill); 5912 5913 if (err != 0) { 5914 mi_free(ill); 5915 netstack_rele(ipst->ips_netstack); 5916 q->q_ptr = NULL; 5917 WR(q)->q_ptr = NULL; 5918 return (err); 5919 } 5920 5921 /* 5922 * Wait for the DL_INFO_ACK if a DL_INFO_REQ was sent. 5923 * 5924 * ill_init initializes the ipsq marking this thread as 5925 * writer 5926 */ 5927 ipsq_exit(ill->ill_phyint->phyint_ipsq); 5928 err = ip_wait_for_info_ack(ill); 5929 if (err == 0) 5930 ill->ill_credp = credp; 5931 else 5932 goto fail; 5933 5934 crhold(credp); 5935 5936 mutex_enter(&ipst->ips_ip_mi_lock); 5937 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)q->q_ptr, devp, flag, 5938 sflag, credp); 5939 mutex_exit(&ipst->ips_ip_mi_lock); 5940 fail: 5941 if (err) { 5942 (void) ip_close(q, 0); 5943 return (err); 5944 } 5945 return (0); 5946 } 5947 5948 /* For /dev/ip aka AF_INET open */ 5949 int 5950 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 5951 { 5952 return (ip_open(q, devp, flag, sflag, credp, B_FALSE)); 5953 } 5954 5955 /* For /dev/ip6 aka AF_INET6 open */ 5956 int 5957 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 5958 { 5959 return (ip_open(q, devp, flag, sflag, credp, B_TRUE)); 5960 } 5961 5962 /* IP open routine. */ 5963 int 5964 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 5965 boolean_t isv6) 5966 { 5967 conn_t *connp; 5968 major_t maj; 5969 zoneid_t zoneid; 5970 netstack_t *ns; 5971 ip_stack_t *ipst; 5972 5973 /* Allow reopen. */ 5974 if (q->q_ptr != NULL) 5975 return (0); 5976 5977 if (sflag & MODOPEN) { 5978 /* This is a module open */ 5979 return (ip_modopen(q, devp, flag, sflag, credp)); 5980 } 5981 5982 if ((flag & ~(FKLYR)) == IP_HELPER_STR) { 5983 /* 5984 * Non streams based socket looking for a stream 5985 * to access IP 5986 */ 5987 return (ip_helper_stream_setup(q, devp, flag, sflag, 5988 credp, isv6)); 5989 } 5990 5991 ns = netstack_find_by_cred(credp); 5992 ASSERT(ns != NULL); 5993 ipst = ns->netstack_ip; 5994 ASSERT(ipst != NULL); 5995 5996 /* 5997 * For exclusive stacks we set the zoneid to zero 5998 * to make IP operate as if in the global zone. 5999 */ 6000 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 6001 zoneid = GLOBAL_ZONEID; 6002 else 6003 zoneid = crgetzoneid(credp); 6004 6005 /* 6006 * We are opening as a device. This is an IP client stream, and we 6007 * allocate an conn_t as the instance data. 6008 */ 6009 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 6010 6011 /* 6012 * ipcl_conn_create did a netstack_hold. Undo the hold that was 6013 * done by netstack_find_by_cred() 6014 */ 6015 netstack_rele(ipst->ips_netstack); 6016 6017 connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_ULP_CKSUM; 6018 /* conn_allzones can not be set this early, hence no IPCL_ZONEID */ 6019 connp->conn_ixa->ixa_zoneid = zoneid; 6020 connp->conn_zoneid = zoneid; 6021 6022 connp->conn_rq = q; 6023 q->q_ptr = WR(q)->q_ptr = connp; 6024 6025 /* Minor tells us which /dev entry was opened */ 6026 if (isv6) { 6027 connp->conn_family = AF_INET6; 6028 connp->conn_ipversion = IPV6_VERSION; 6029 connp->conn_ixa->ixa_flags &= ~IXAF_IS_IPV4; 6030 connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT; 6031 } else { 6032 connp->conn_family = AF_INET; 6033 connp->conn_ipversion = IPV4_VERSION; 6034 connp->conn_ixa->ixa_flags |= IXAF_IS_IPV4; 6035 } 6036 6037 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 6038 ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 6039 connp->conn_minor_arena = ip_minor_arena_la; 6040 } else { 6041 /* 6042 * Either minor numbers in the large arena were exhausted 6043 * or a non socket application is doing the open. 6044 * Try to allocate from the small arena. 6045 */ 6046 if ((connp->conn_dev = 6047 inet_minor_alloc(ip_minor_arena_sa)) == 0) { 6048 /* CONN_DEC_REF takes care of netstack_rele() */ 6049 q->q_ptr = WR(q)->q_ptr = NULL; 6050 CONN_DEC_REF(connp); 6051 return (EBUSY); 6052 } 6053 connp->conn_minor_arena = ip_minor_arena_sa; 6054 } 6055 6056 maj = getemajor(*devp); 6057 *devp = makedevice(maj, (minor_t)connp->conn_dev); 6058 6059 /* 6060 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 6061 */ 6062 connp->conn_cred = credp; 6063 connp->conn_cpid = curproc->p_pid; 6064 /* Cache things in ixa without an extra refhold */ 6065 ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED)); 6066 connp->conn_ixa->ixa_cred = connp->conn_cred; 6067 connp->conn_ixa->ixa_cpid = connp->conn_cpid; 6068 if (is_system_labeled()) 6069 connp->conn_ixa->ixa_tsl = crgetlabel(connp->conn_cred); 6070 6071 /* 6072 * Handle IP_IOC_RTS_REQUEST and other ioctls which use conn_recv 6073 */ 6074 connp->conn_recv = ip_conn_input; 6075 connp->conn_recvicmp = ip_conn_input_icmp; 6076 6077 crhold(connp->conn_cred); 6078 6079 /* 6080 * If the caller has the process-wide flag set, then default to MAC 6081 * exempt mode. This allows read-down to unlabeled hosts. 6082 */ 6083 if (getpflags(NET_MAC_AWARE, credp) != 0) 6084 connp->conn_mac_mode = CONN_MAC_AWARE; 6085 6086 connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID); 6087 6088 connp->conn_rq = q; 6089 connp->conn_wq = WR(q); 6090 6091 /* Non-zero default values */ 6092 connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP; 6093 6094 /* 6095 * Make the conn globally visible to walkers 6096 */ 6097 ASSERT(connp->conn_ref == 1); 6098 mutex_enter(&connp->conn_lock); 6099 connp->conn_state_flags &= ~CONN_INCIPIENT; 6100 mutex_exit(&connp->conn_lock); 6101 6102 qprocson(q); 6103 6104 return (0); 6105 } 6106 6107 /* 6108 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 6109 * all of them are copied to the conn_t. If the req is "zero", the policy is 6110 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 6111 * fields. 6112 * We keep only the latest setting of the policy and thus policy setting 6113 * is not incremental/cumulative. 6114 * 6115 * Requests to set policies with multiple alternative actions will 6116 * go through a different API. 6117 */ 6118 int 6119 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 6120 { 6121 uint_t ah_req = 0; 6122 uint_t esp_req = 0; 6123 uint_t se_req = 0; 6124 ipsec_act_t *actp = NULL; 6125 uint_t nact; 6126 ipsec_policy_head_t *ph; 6127 boolean_t is_pol_reset, is_pol_inserted = B_FALSE; 6128 int error = 0; 6129 netstack_t *ns = connp->conn_netstack; 6130 ip_stack_t *ipst = ns->netstack_ip; 6131 ipsec_stack_t *ipss = ns->netstack_ipsec; 6132 6133 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 6134 6135 /* 6136 * The IP_SEC_OPT option does not allow variable length parameters, 6137 * hence a request cannot be NULL. 6138 */ 6139 if (req == NULL) 6140 return (EINVAL); 6141 6142 ah_req = req->ipsr_ah_req; 6143 esp_req = req->ipsr_esp_req; 6144 se_req = req->ipsr_self_encap_req; 6145 6146 /* Don't allow setting self-encap without one or more of AH/ESP. */ 6147 if (se_req != 0 && esp_req == 0 && ah_req == 0) 6148 return (EINVAL); 6149 6150 /* 6151 * Are we dealing with a request to reset the policy (i.e. 6152 * zero requests). 6153 */ 6154 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 6155 (esp_req & REQ_MASK) == 0 && 6156 (se_req & REQ_MASK) == 0); 6157 6158 if (!is_pol_reset) { 6159 /* 6160 * If we couldn't load IPsec, fail with "protocol 6161 * not supported". 6162 * IPsec may not have been loaded for a request with zero 6163 * policies, so we don't fail in this case. 6164 */ 6165 mutex_enter(&ipss->ipsec_loader_lock); 6166 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 6167 mutex_exit(&ipss->ipsec_loader_lock); 6168 return (EPROTONOSUPPORT); 6169 } 6170 mutex_exit(&ipss->ipsec_loader_lock); 6171 6172 /* 6173 * Test for valid requests. Invalid algorithms 6174 * need to be tested by IPsec code because new 6175 * algorithms can be added dynamically. 6176 */ 6177 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 6178 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 6179 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 6180 return (EINVAL); 6181 } 6182 6183 /* 6184 * Only privileged users can issue these 6185 * requests. 6186 */ 6187 if (((ah_req & IPSEC_PREF_NEVER) || 6188 (esp_req & IPSEC_PREF_NEVER) || 6189 (se_req & IPSEC_PREF_NEVER)) && 6190 secpolicy_ip_config(cr, B_FALSE) != 0) { 6191 return (EPERM); 6192 } 6193 6194 /* 6195 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 6196 * are mutually exclusive. 6197 */ 6198 if (((ah_req & REQ_MASK) == REQ_MASK) || 6199 ((esp_req & REQ_MASK) == REQ_MASK) || 6200 ((se_req & REQ_MASK) == REQ_MASK)) { 6201 /* Both of them are set */ 6202 return (EINVAL); 6203 } 6204 } 6205 6206 ASSERT(MUTEX_HELD(&connp->conn_lock)); 6207 6208 /* 6209 * If we have already cached policies in conn_connect(), don't 6210 * let them change now. We cache policies for connections 6211 * whose src,dst [addr, port] is known. 6212 */ 6213 if (connp->conn_policy_cached) { 6214 return (EINVAL); 6215 } 6216 6217 /* 6218 * We have a zero policies, reset the connection policy if already 6219 * set. This will cause the connection to inherit the 6220 * global policy, if any. 6221 */ 6222 if (is_pol_reset) { 6223 if (connp->conn_policy != NULL) { 6224 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 6225 connp->conn_policy = NULL; 6226 } 6227 connp->conn_in_enforce_policy = B_FALSE; 6228 connp->conn_out_enforce_policy = B_FALSE; 6229 return (0); 6230 } 6231 6232 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 6233 ipst->ips_netstack); 6234 if (ph == NULL) 6235 goto enomem; 6236 6237 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 6238 if (actp == NULL) 6239 goto enomem; 6240 6241 /* 6242 * Always insert IPv4 policy entries, since they can also apply to 6243 * ipv6 sockets being used in ipv4-compat mode. 6244 */ 6245 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4, 6246 IPSEC_TYPE_INBOUND, ns)) 6247 goto enomem; 6248 is_pol_inserted = B_TRUE; 6249 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4, 6250 IPSEC_TYPE_OUTBOUND, ns)) 6251 goto enomem; 6252 6253 /* 6254 * We're looking at a v6 socket, also insert the v6-specific 6255 * entries. 6256 */ 6257 if (connp->conn_family == AF_INET6) { 6258 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6, 6259 IPSEC_TYPE_INBOUND, ns)) 6260 goto enomem; 6261 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6, 6262 IPSEC_TYPE_OUTBOUND, ns)) 6263 goto enomem; 6264 } 6265 6266 ipsec_actvec_free(actp, nact); 6267 6268 /* 6269 * If the requests need security, set enforce_policy. 6270 * If the requests are IPSEC_PREF_NEVER, one should 6271 * still set conn_out_enforce_policy so that ip_set_destination 6272 * marks the ip_xmit_attr_t appropriatly. This is needed so that 6273 * for connections that we don't cache policy in at connect time, 6274 * if global policy matches in ip_output_attach_policy, we 6275 * don't wrongly inherit global policy. Similarly, we need 6276 * to set conn_in_enforce_policy also so that we don't verify 6277 * policy wrongly. 6278 */ 6279 if ((ah_req & REQ_MASK) != 0 || 6280 (esp_req & REQ_MASK) != 0 || 6281 (se_req & REQ_MASK) != 0) { 6282 connp->conn_in_enforce_policy = B_TRUE; 6283 connp->conn_out_enforce_policy = B_TRUE; 6284 } 6285 6286 return (error); 6287 #undef REQ_MASK 6288 6289 /* 6290 * Common memory-allocation-failure exit path. 6291 */ 6292 enomem: 6293 if (actp != NULL) 6294 ipsec_actvec_free(actp, nact); 6295 if (is_pol_inserted) 6296 ipsec_polhead_flush(ph, ns); 6297 return (ENOMEM); 6298 } 6299 6300 /* 6301 * Set socket options for joining and leaving multicast groups. 6302 * Common to IPv4 and IPv6; inet6 indicates the type of socket. 6303 * The caller has already check that the option name is consistent with 6304 * the address family of the socket. 6305 */ 6306 int 6307 ip_opt_set_multicast_group(conn_t *connp, t_scalar_t name, 6308 uchar_t *invalp, boolean_t inet6, boolean_t checkonly) 6309 { 6310 int *i1 = (int *)invalp; 6311 int error = 0; 6312 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 6313 struct ip_mreq *v4_mreqp; 6314 struct ipv6_mreq *v6_mreqp; 6315 struct group_req *greqp; 6316 ire_t *ire; 6317 boolean_t done = B_FALSE; 6318 ipaddr_t ifaddr; 6319 in6_addr_t v6group; 6320 uint_t ifindex; 6321 boolean_t mcast_opt = B_TRUE; 6322 mcast_record_t fmode; 6323 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 6324 ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *); 6325 6326 switch (name) { 6327 case IP_ADD_MEMBERSHIP: 6328 case IPV6_JOIN_GROUP: 6329 mcast_opt = B_FALSE; 6330 /* FALLTHRU */ 6331 case MCAST_JOIN_GROUP: 6332 fmode = MODE_IS_EXCLUDE; 6333 optfn = ip_opt_add_group; 6334 break; 6335 6336 case IP_DROP_MEMBERSHIP: 6337 case IPV6_LEAVE_GROUP: 6338 mcast_opt = B_FALSE; 6339 /* FALLTHRU */ 6340 case MCAST_LEAVE_GROUP: 6341 fmode = MODE_IS_INCLUDE; 6342 optfn = ip_opt_delete_group; 6343 break; 6344 default: 6345 ASSERT(0); 6346 } 6347 6348 if (mcast_opt) { 6349 struct sockaddr_in *sin; 6350 struct sockaddr_in6 *sin6; 6351 6352 greqp = (struct group_req *)i1; 6353 if (greqp->gr_group.ss_family == AF_INET) { 6354 sin = (struct sockaddr_in *)&(greqp->gr_group); 6355 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, &v6group); 6356 } else { 6357 if (!inet6) 6358 return (EINVAL); /* Not on INET socket */ 6359 6360 sin6 = (struct sockaddr_in6 *)&(greqp->gr_group); 6361 v6group = sin6->sin6_addr; 6362 } 6363 ifaddr = INADDR_ANY; 6364 ifindex = greqp->gr_interface; 6365 } else if (inet6) { 6366 v6_mreqp = (struct ipv6_mreq *)i1; 6367 v6group = v6_mreqp->ipv6mr_multiaddr; 6368 ifaddr = INADDR_ANY; 6369 ifindex = v6_mreqp->ipv6mr_interface; 6370 } else { 6371 v4_mreqp = (struct ip_mreq *)i1; 6372 IN6_INADDR_TO_V4MAPPED(&v4_mreqp->imr_multiaddr, &v6group); 6373 ifaddr = (ipaddr_t)v4_mreqp->imr_interface.s_addr; 6374 ifindex = 0; 6375 } 6376 6377 /* 6378 * In the multirouting case, we need to replicate 6379 * the request on all interfaces that will take part 6380 * in replication. We do so because multirouting is 6381 * reflective, thus we will probably receive multi- 6382 * casts on those interfaces. 6383 * The ip_multirt_apply_membership() succeeds if 6384 * the operation succeeds on at least one interface. 6385 */ 6386 if (IN6_IS_ADDR_V4MAPPED(&v6group)) { 6387 ipaddr_t group; 6388 6389 IN6_V4MAPPED_TO_IPADDR(&v6group, group); 6390 6391 ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0, 6392 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6393 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6394 } else { 6395 ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0, 6396 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6397 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6398 } 6399 if (ire != NULL) { 6400 if (ire->ire_flags & RTF_MULTIRT) { 6401 error = ip_multirt_apply_membership(optfn, ire, connp, 6402 checkonly, &v6group, fmode, &ipv6_all_zeros); 6403 done = B_TRUE; 6404 } 6405 ire_refrele(ire); 6406 } 6407 6408 if (!done) { 6409 error = optfn(connp, checkonly, &v6group, ifaddr, ifindex, 6410 fmode, &ipv6_all_zeros); 6411 } 6412 return (error); 6413 } 6414 6415 /* 6416 * Set socket options for joining and leaving multicast groups 6417 * for specific sources. 6418 * Common to IPv4 and IPv6; inet6 indicates the type of socket. 6419 * The caller has already check that the option name is consistent with 6420 * the address family of the socket. 6421 */ 6422 int 6423 ip_opt_set_multicast_sources(conn_t *connp, t_scalar_t name, 6424 uchar_t *invalp, boolean_t inet6, boolean_t checkonly) 6425 { 6426 int *i1 = (int *)invalp; 6427 int error = 0; 6428 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 6429 struct ip_mreq_source *imreqp; 6430 struct group_source_req *gsreqp; 6431 in6_addr_t v6group, v6src; 6432 uint32_t ifindex; 6433 ipaddr_t ifaddr; 6434 boolean_t mcast_opt = B_TRUE; 6435 mcast_record_t fmode; 6436 ire_t *ire; 6437 boolean_t done = B_FALSE; 6438 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 6439 ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *); 6440 6441 switch (name) { 6442 case IP_BLOCK_SOURCE: 6443 mcast_opt = B_FALSE; 6444 /* FALLTHRU */ 6445 case MCAST_BLOCK_SOURCE: 6446 fmode = MODE_IS_EXCLUDE; 6447 optfn = ip_opt_add_group; 6448 break; 6449 6450 case IP_UNBLOCK_SOURCE: 6451 mcast_opt = B_FALSE; 6452 /* FALLTHRU */ 6453 case MCAST_UNBLOCK_SOURCE: 6454 fmode = MODE_IS_EXCLUDE; 6455 optfn = ip_opt_delete_group; 6456 break; 6457 6458 case IP_ADD_SOURCE_MEMBERSHIP: 6459 mcast_opt = B_FALSE; 6460 /* FALLTHRU */ 6461 case MCAST_JOIN_SOURCE_GROUP: 6462 fmode = MODE_IS_INCLUDE; 6463 optfn = ip_opt_add_group; 6464 break; 6465 6466 case IP_DROP_SOURCE_MEMBERSHIP: 6467 mcast_opt = B_FALSE; 6468 /* FALLTHRU */ 6469 case MCAST_LEAVE_SOURCE_GROUP: 6470 fmode = MODE_IS_INCLUDE; 6471 optfn = ip_opt_delete_group; 6472 break; 6473 default: 6474 ASSERT(0); 6475 } 6476 6477 if (mcast_opt) { 6478 gsreqp = (struct group_source_req *)i1; 6479 ifindex = gsreqp->gsr_interface; 6480 if (gsreqp->gsr_group.ss_family == AF_INET) { 6481 struct sockaddr_in *s; 6482 s = (struct sockaddr_in *)&gsreqp->gsr_group; 6483 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6group); 6484 s = (struct sockaddr_in *)&gsreqp->gsr_source; 6485 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 6486 } else { 6487 struct sockaddr_in6 *s6; 6488 6489 if (!inet6) 6490 return (EINVAL); /* Not on INET socket */ 6491 6492 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 6493 v6group = s6->sin6_addr; 6494 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 6495 v6src = s6->sin6_addr; 6496 } 6497 ifaddr = INADDR_ANY; 6498 } else { 6499 imreqp = (struct ip_mreq_source *)i1; 6500 IN6_INADDR_TO_V4MAPPED(&imreqp->imr_multiaddr, &v6group); 6501 IN6_INADDR_TO_V4MAPPED(&imreqp->imr_sourceaddr, &v6src); 6502 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 6503 ifindex = 0; 6504 } 6505 6506 /* 6507 * Handle src being mapped INADDR_ANY by changing it to unspecified. 6508 */ 6509 if (IN6_IS_ADDR_V4MAPPED_ANY(&v6src)) 6510 v6src = ipv6_all_zeros; 6511 6512 /* 6513 * In the multirouting case, we need to replicate 6514 * the request as noted in the mcast cases above. 6515 */ 6516 if (IN6_IS_ADDR_V4MAPPED(&v6group)) { 6517 ipaddr_t group; 6518 6519 IN6_V4MAPPED_TO_IPADDR(&v6group, group); 6520 6521 ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0, 6522 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6523 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6524 } else { 6525 ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0, 6526 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6527 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6528 } 6529 if (ire != NULL) { 6530 if (ire->ire_flags & RTF_MULTIRT) { 6531 error = ip_multirt_apply_membership(optfn, ire, connp, 6532 checkonly, &v6group, fmode, &v6src); 6533 done = B_TRUE; 6534 } 6535 ire_refrele(ire); 6536 } 6537 if (!done) { 6538 error = optfn(connp, checkonly, &v6group, ifaddr, ifindex, 6539 fmode, &v6src); 6540 } 6541 return (error); 6542 } 6543 6544 /* 6545 * Given a destination address and a pointer to where to put the information 6546 * this routine fills in the mtuinfo. 6547 * The socket must be connected. 6548 * For sctp conn_faddr is the primary address. 6549 */ 6550 int 6551 ip_fill_mtuinfo(conn_t *connp, ip_xmit_attr_t *ixa, struct ip6_mtuinfo *mtuinfo) 6552 { 6553 uint32_t pmtu = IP_MAXPACKET; 6554 uint_t scopeid; 6555 6556 if (IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6)) 6557 return (-1); 6558 6559 /* In case we never sent or called ip_set_destination_v4/v6 */ 6560 if (ixa->ixa_ire != NULL) 6561 pmtu = ip_get_pmtu(ixa); 6562 6563 if (ixa->ixa_flags & IXAF_SCOPEID_SET) 6564 scopeid = ixa->ixa_scopeid; 6565 else 6566 scopeid = 0; 6567 6568 bzero(mtuinfo, sizeof (*mtuinfo)); 6569 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 6570 mtuinfo->ip6m_addr.sin6_port = connp->conn_fport; 6571 mtuinfo->ip6m_addr.sin6_addr = connp->conn_faddr_v6; 6572 mtuinfo->ip6m_addr.sin6_scope_id = scopeid; 6573 mtuinfo->ip6m_mtu = pmtu; 6574 6575 return (sizeof (struct ip6_mtuinfo)); 6576 } 6577 6578 /* 6579 * When the src multihoming is changed from weak to [strong, preferred] 6580 * ip_ire_rebind_walker is called to walk the list of all ire_t entries 6581 * and identify routes that were created by user-applications in the 6582 * unbound state (i.e., without RTA_IFP), and for which an ire_ill is not 6583 * currently defined. These routes are then 'rebound', i.e., their ire_ill 6584 * is selected by finding an interface route for the gateway. 6585 */ 6586 /* ARGSUSED */ 6587 void 6588 ip_ire_rebind_walker(ire_t *ire, void *notused) 6589 { 6590 if (!ire->ire_unbound || ire->ire_ill != NULL) 6591 return; 6592 ire_rebind(ire); 6593 ire_delete(ire); 6594 } 6595 6596 /* 6597 * When the src multihoming is changed from [strong, preferred] to weak, 6598 * ip_ire_unbind_walker is called to walk the list of all ire_t entries, and 6599 * set any entries that were created by user-applications in the unbound state 6600 * (i.e., without RTA_IFP) back to having a NULL ire_ill. 6601 */ 6602 /* ARGSUSED */ 6603 void 6604 ip_ire_unbind_walker(ire_t *ire, void *notused) 6605 { 6606 ire_t *new_ire; 6607 6608 if (!ire->ire_unbound || ire->ire_ill == NULL) 6609 return; 6610 if (ire->ire_ipversion == IPV6_VERSION) { 6611 new_ire = ire_create_v6(&ire->ire_addr_v6, &ire->ire_mask_v6, 6612 &ire->ire_gateway_addr_v6, ire->ire_type, NULL, 6613 ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst); 6614 } else { 6615 new_ire = ire_create((uchar_t *)&ire->ire_addr, 6616 (uchar_t *)&ire->ire_mask, 6617 (uchar_t *)&ire->ire_gateway_addr, ire->ire_type, NULL, 6618 ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst); 6619 } 6620 if (new_ire == NULL) 6621 return; 6622 new_ire->ire_unbound = B_TRUE; 6623 /* 6624 * The bound ire must first be deleted so that we don't return 6625 * the existing one on the attempt to add the unbound new_ire. 6626 */ 6627 ire_delete(ire); 6628 new_ire = ire_add(new_ire); 6629 if (new_ire != NULL) 6630 ire_refrele(new_ire); 6631 } 6632 6633 /* 6634 * When the settings of ip*_strict_src_multihoming tunables are changed, 6635 * all cached routes need to be recomputed. This recomputation needs to be 6636 * done when going from weaker to stronger modes so that the cached ire 6637 * for the connection does not violate the current ip*_strict_src_multihoming 6638 * setting. It also needs to be done when going from stronger to weaker modes, 6639 * so that we fall back to matching on the longest-matching-route (as opposed 6640 * to a shorter match that may have been selected in the strong mode 6641 * to satisfy src_multihoming settings). 6642 * 6643 * The cached ixa_ire entires for all conn_t entries are marked as 6644 * "verify" so that they will be recomputed for the next packet. 6645 */ 6646 void 6647 conn_ire_revalidate(conn_t *connp, void *arg) 6648 { 6649 boolean_t isv6 = (boolean_t)arg; 6650 6651 if ((isv6 && connp->conn_ipversion != IPV6_VERSION) || 6652 (!isv6 && connp->conn_ipversion != IPV4_VERSION)) 6653 return; 6654 connp->conn_ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 6655 } 6656 6657 /* 6658 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 6659 * When an ipf is passed here for the first time, if 6660 * we already have in-order fragments on the queue, we convert from the fast- 6661 * path reassembly scheme to the hard-case scheme. From then on, additional 6662 * fragments are reassembled here. We keep track of the start and end offsets 6663 * of each piece, and the number of holes in the chain. When the hole count 6664 * goes to zero, we are done! 6665 * 6666 * The ipf_count will be updated to account for any mblk(s) added (pointed to 6667 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 6668 * ipfb_count and ill_frag_count by the difference of ipf_count before and 6669 * after the call to ip_reassemble(). 6670 */ 6671 int 6672 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 6673 size_t msg_len) 6674 { 6675 uint_t end; 6676 mblk_t *next_mp; 6677 mblk_t *mp1; 6678 uint_t offset; 6679 boolean_t incr_dups = B_TRUE; 6680 boolean_t offset_zero_seen = B_FALSE; 6681 boolean_t pkt_boundary_checked = B_FALSE; 6682 6683 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 6684 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 6685 6686 /* Add in byte count */ 6687 ipf->ipf_count += msg_len; 6688 if (ipf->ipf_end) { 6689 /* 6690 * We were part way through in-order reassembly, but now there 6691 * is a hole. We walk through messages already queued, and 6692 * mark them for hard case reassembly. We know that up till 6693 * now they were in order starting from offset zero. 6694 */ 6695 offset = 0; 6696 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 6697 IP_REASS_SET_START(mp1, offset); 6698 if (offset == 0) { 6699 ASSERT(ipf->ipf_nf_hdr_len != 0); 6700 offset = -ipf->ipf_nf_hdr_len; 6701 } 6702 offset += mp1->b_wptr - mp1->b_rptr; 6703 IP_REASS_SET_END(mp1, offset); 6704 } 6705 /* One hole at the end. */ 6706 ipf->ipf_hole_cnt = 1; 6707 /* Brand it as a hard case, forever. */ 6708 ipf->ipf_end = 0; 6709 } 6710 /* Walk through all the new pieces. */ 6711 do { 6712 end = start + (mp->b_wptr - mp->b_rptr); 6713 /* 6714 * If start is 0, decrease 'end' only for the first mblk of 6715 * the fragment. Otherwise 'end' can get wrong value in the 6716 * second pass of the loop if first mblk is exactly the 6717 * size of ipf_nf_hdr_len. 6718 */ 6719 if (start == 0 && !offset_zero_seen) { 6720 /* First segment */ 6721 ASSERT(ipf->ipf_nf_hdr_len != 0); 6722 end -= ipf->ipf_nf_hdr_len; 6723 offset_zero_seen = B_TRUE; 6724 } 6725 next_mp = mp->b_cont; 6726 /* 6727 * We are checking to see if there is any interesing data 6728 * to process. If there isn't and the mblk isn't the 6729 * one which carries the unfragmentable header then we 6730 * drop it. It's possible to have just the unfragmentable 6731 * header come through without any data. That needs to be 6732 * saved. 6733 * 6734 * If the assert at the top of this function holds then the 6735 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 6736 * is infrequently traveled enough that the test is left in 6737 * to protect against future code changes which break that 6738 * invariant. 6739 */ 6740 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 6741 /* Empty. Blast it. */ 6742 IP_REASS_SET_START(mp, 0); 6743 IP_REASS_SET_END(mp, 0); 6744 /* 6745 * If the ipf points to the mblk we are about to free, 6746 * update ipf to point to the next mblk (or NULL 6747 * if none). 6748 */ 6749 if (ipf->ipf_mp->b_cont == mp) 6750 ipf->ipf_mp->b_cont = next_mp; 6751 freeb(mp); 6752 continue; 6753 } 6754 mp->b_cont = NULL; 6755 IP_REASS_SET_START(mp, start); 6756 IP_REASS_SET_END(mp, end); 6757 if (!ipf->ipf_tail_mp) { 6758 ipf->ipf_tail_mp = mp; 6759 ipf->ipf_mp->b_cont = mp; 6760 if (start == 0 || !more) { 6761 ipf->ipf_hole_cnt = 1; 6762 /* 6763 * if the first fragment comes in more than one 6764 * mblk, this loop will be executed for each 6765 * mblk. Need to adjust hole count so exiting 6766 * this routine will leave hole count at 1. 6767 */ 6768 if (next_mp) 6769 ipf->ipf_hole_cnt++; 6770 } else 6771 ipf->ipf_hole_cnt = 2; 6772 continue; 6773 } else if (ipf->ipf_last_frag_seen && !more && 6774 !pkt_boundary_checked) { 6775 /* 6776 * We check datagram boundary only if this fragment 6777 * claims to be the last fragment and we have seen a 6778 * last fragment in the past too. We do this only 6779 * once for a given fragment. 6780 * 6781 * start cannot be 0 here as fragments with start=0 6782 * and MF=0 gets handled as a complete packet. These 6783 * fragments should not reach here. 6784 */ 6785 6786 if (start + msgdsize(mp) != 6787 IP_REASS_END(ipf->ipf_tail_mp)) { 6788 /* 6789 * We have two fragments both of which claim 6790 * to be the last fragment but gives conflicting 6791 * information about the whole datagram size. 6792 * Something fishy is going on. Drop the 6793 * fragment and free up the reassembly list. 6794 */ 6795 return (IP_REASS_FAILED); 6796 } 6797 6798 /* 6799 * We shouldn't come to this code block again for this 6800 * particular fragment. 6801 */ 6802 pkt_boundary_checked = B_TRUE; 6803 } 6804 6805 /* New stuff at or beyond tail? */ 6806 offset = IP_REASS_END(ipf->ipf_tail_mp); 6807 if (start >= offset) { 6808 if (ipf->ipf_last_frag_seen) { 6809 /* current fragment is beyond last fragment */ 6810 return (IP_REASS_FAILED); 6811 } 6812 /* Link it on end. */ 6813 ipf->ipf_tail_mp->b_cont = mp; 6814 ipf->ipf_tail_mp = mp; 6815 if (more) { 6816 if (start != offset) 6817 ipf->ipf_hole_cnt++; 6818 } else if (start == offset && next_mp == NULL) 6819 ipf->ipf_hole_cnt--; 6820 continue; 6821 } 6822 mp1 = ipf->ipf_mp->b_cont; 6823 offset = IP_REASS_START(mp1); 6824 /* New stuff at the front? */ 6825 if (start < offset) { 6826 if (start == 0) { 6827 if (end >= offset) { 6828 /* Nailed the hole at the begining. */ 6829 ipf->ipf_hole_cnt--; 6830 } 6831 } else if (end < offset) { 6832 /* 6833 * A hole, stuff, and a hole where there used 6834 * to be just a hole. 6835 */ 6836 ipf->ipf_hole_cnt++; 6837 } 6838 mp->b_cont = mp1; 6839 /* Check for overlap. */ 6840 while (end > offset) { 6841 if (end < IP_REASS_END(mp1)) { 6842 mp->b_wptr -= end - offset; 6843 IP_REASS_SET_END(mp, offset); 6844 BUMP_MIB(ill->ill_ip_mib, 6845 ipIfStatsReasmPartDups); 6846 break; 6847 } 6848 /* Did we cover another hole? */ 6849 if ((mp1->b_cont && 6850 IP_REASS_END(mp1) != 6851 IP_REASS_START(mp1->b_cont) && 6852 end >= IP_REASS_START(mp1->b_cont)) || 6853 (!ipf->ipf_last_frag_seen && !more)) { 6854 ipf->ipf_hole_cnt--; 6855 } 6856 /* Clip out mp1. */ 6857 if ((mp->b_cont = mp1->b_cont) == NULL) { 6858 /* 6859 * After clipping out mp1, this guy 6860 * is now hanging off the end. 6861 */ 6862 ipf->ipf_tail_mp = mp; 6863 } 6864 IP_REASS_SET_START(mp1, 0); 6865 IP_REASS_SET_END(mp1, 0); 6866 /* Subtract byte count */ 6867 ipf->ipf_count -= mp1->b_datap->db_lim - 6868 mp1->b_datap->db_base; 6869 freeb(mp1); 6870 BUMP_MIB(ill->ill_ip_mib, 6871 ipIfStatsReasmPartDups); 6872 mp1 = mp->b_cont; 6873 if (!mp1) 6874 break; 6875 offset = IP_REASS_START(mp1); 6876 } 6877 ipf->ipf_mp->b_cont = mp; 6878 continue; 6879 } 6880 /* 6881 * The new piece starts somewhere between the start of the head 6882 * and before the end of the tail. 6883 */ 6884 for (; mp1; mp1 = mp1->b_cont) { 6885 offset = IP_REASS_END(mp1); 6886 if (start < offset) { 6887 if (end <= offset) { 6888 /* Nothing new. */ 6889 IP_REASS_SET_START(mp, 0); 6890 IP_REASS_SET_END(mp, 0); 6891 /* Subtract byte count */ 6892 ipf->ipf_count -= mp->b_datap->db_lim - 6893 mp->b_datap->db_base; 6894 if (incr_dups) { 6895 ipf->ipf_num_dups++; 6896 incr_dups = B_FALSE; 6897 } 6898 freeb(mp); 6899 BUMP_MIB(ill->ill_ip_mib, 6900 ipIfStatsReasmDuplicates); 6901 break; 6902 } 6903 /* 6904 * Trim redundant stuff off beginning of new 6905 * piece. 6906 */ 6907 IP_REASS_SET_START(mp, offset); 6908 mp->b_rptr += offset - start; 6909 BUMP_MIB(ill->ill_ip_mib, 6910 ipIfStatsReasmPartDups); 6911 start = offset; 6912 if (!mp1->b_cont) { 6913 /* 6914 * After trimming, this guy is now 6915 * hanging off the end. 6916 */ 6917 mp1->b_cont = mp; 6918 ipf->ipf_tail_mp = mp; 6919 if (!more) { 6920 ipf->ipf_hole_cnt--; 6921 } 6922 break; 6923 } 6924 } 6925 if (start >= IP_REASS_START(mp1->b_cont)) 6926 continue; 6927 /* Fill a hole */ 6928 if (start > offset) 6929 ipf->ipf_hole_cnt++; 6930 mp->b_cont = mp1->b_cont; 6931 mp1->b_cont = mp; 6932 mp1 = mp->b_cont; 6933 offset = IP_REASS_START(mp1); 6934 if (end >= offset) { 6935 ipf->ipf_hole_cnt--; 6936 /* Check for overlap. */ 6937 while (end > offset) { 6938 if (end < IP_REASS_END(mp1)) { 6939 mp->b_wptr -= end - offset; 6940 IP_REASS_SET_END(mp, offset); 6941 /* 6942 * TODO we might bump 6943 * this up twice if there is 6944 * overlap at both ends. 6945 */ 6946 BUMP_MIB(ill->ill_ip_mib, 6947 ipIfStatsReasmPartDups); 6948 break; 6949 } 6950 /* Did we cover another hole? */ 6951 if ((mp1->b_cont && 6952 IP_REASS_END(mp1) 6953 != IP_REASS_START(mp1->b_cont) && 6954 end >= 6955 IP_REASS_START(mp1->b_cont)) || 6956 (!ipf->ipf_last_frag_seen && 6957 !more)) { 6958 ipf->ipf_hole_cnt--; 6959 } 6960 /* Clip out mp1. */ 6961 if ((mp->b_cont = mp1->b_cont) == 6962 NULL) { 6963 /* 6964 * After clipping out mp1, 6965 * this guy is now hanging 6966 * off the end. 6967 */ 6968 ipf->ipf_tail_mp = mp; 6969 } 6970 IP_REASS_SET_START(mp1, 0); 6971 IP_REASS_SET_END(mp1, 0); 6972 /* Subtract byte count */ 6973 ipf->ipf_count -= 6974 mp1->b_datap->db_lim - 6975 mp1->b_datap->db_base; 6976 freeb(mp1); 6977 BUMP_MIB(ill->ill_ip_mib, 6978 ipIfStatsReasmPartDups); 6979 mp1 = mp->b_cont; 6980 if (!mp1) 6981 break; 6982 offset = IP_REASS_START(mp1); 6983 } 6984 } 6985 break; 6986 } 6987 } while (start = end, mp = next_mp); 6988 6989 /* Fragment just processed could be the last one. Remember this fact */ 6990 if (!more) 6991 ipf->ipf_last_frag_seen = B_TRUE; 6992 6993 /* Still got holes? */ 6994 if (ipf->ipf_hole_cnt) 6995 return (IP_REASS_PARTIAL); 6996 /* Clean up overloaded fields to avoid upstream disasters. */ 6997 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 6998 IP_REASS_SET_START(mp1, 0); 6999 IP_REASS_SET_END(mp1, 0); 7000 } 7001 return (IP_REASS_COMPLETE); 7002 } 7003 7004 /* 7005 * Fragmentation reassembly. Each ILL has a hash table for 7006 * queuing packets undergoing reassembly for all IPIFs 7007 * associated with the ILL. The hash is based on the packet 7008 * IP ident field. The ILL frag hash table was allocated 7009 * as a timer block at the time the ILL was created. Whenever 7010 * there is anything on the reassembly queue, the timer will 7011 * be running. Returns the reassembled packet if reassembly completes. 7012 */ 7013 mblk_t * 7014 ip_input_fragment(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira) 7015 { 7016 uint32_t frag_offset_flags; 7017 mblk_t *t_mp; 7018 ipaddr_t dst; 7019 uint8_t proto = ipha->ipha_protocol; 7020 uint32_t sum_val; 7021 uint16_t sum_flags; 7022 ipf_t *ipf; 7023 ipf_t **ipfp; 7024 ipfb_t *ipfb; 7025 uint16_t ident; 7026 uint32_t offset; 7027 ipaddr_t src; 7028 uint_t hdr_length; 7029 uint32_t end; 7030 mblk_t *mp1; 7031 mblk_t *tail_mp; 7032 size_t count; 7033 size_t msg_len; 7034 uint8_t ecn_info = 0; 7035 uint32_t packet_size; 7036 boolean_t pruned = B_FALSE; 7037 ill_t *ill = ira->ira_ill; 7038 ip_stack_t *ipst = ill->ill_ipst; 7039 7040 /* 7041 * Drop the fragmented as early as possible, if 7042 * we don't have resource(s) to re-assemble. 7043 */ 7044 if (ipst->ips_ip_reass_queue_bytes == 0) { 7045 freemsg(mp); 7046 return (NULL); 7047 } 7048 7049 /* Check for fragmentation offset; return if there's none */ 7050 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 7051 (IPH_MF | IPH_OFFSET)) == 0) 7052 return (mp); 7053 7054 /* 7055 * We utilize hardware computed checksum info only for UDP since 7056 * IP fragmentation is a normal occurrence for the protocol. In 7057 * addition, checksum offload support for IP fragments carrying 7058 * UDP payload is commonly implemented across network adapters. 7059 */ 7060 ASSERT(ira->ira_rill != NULL); 7061 if (proto == IPPROTO_UDP && dohwcksum && 7062 ILL_HCKSUM_CAPABLE(ira->ira_rill) && 7063 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 7064 mblk_t *mp1 = mp->b_cont; 7065 int32_t len; 7066 7067 /* Record checksum information from the packet */ 7068 sum_val = (uint32_t)DB_CKSUM16(mp); 7069 sum_flags = DB_CKSUMFLAGS(mp); 7070 7071 /* IP payload offset from beginning of mblk */ 7072 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 7073 7074 if ((sum_flags & HCK_PARTIALCKSUM) && 7075 (mp1 == NULL || mp1->b_cont == NULL) && 7076 offset >= DB_CKSUMSTART(mp) && 7077 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 7078 uint32_t adj; 7079 /* 7080 * Partial checksum has been calculated by hardware 7081 * and attached to the packet; in addition, any 7082 * prepended extraneous data is even byte aligned. 7083 * If any such data exists, we adjust the checksum; 7084 * this would also handle any postpended data. 7085 */ 7086 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 7087 mp, mp1, len, adj); 7088 7089 /* One's complement subtract extraneous checksum */ 7090 if (adj >= sum_val) 7091 sum_val = ~(adj - sum_val) & 0xFFFF; 7092 else 7093 sum_val -= adj; 7094 } 7095 } else { 7096 sum_val = 0; 7097 sum_flags = 0; 7098 } 7099 7100 /* Clear hardware checksumming flag */ 7101 DB_CKSUMFLAGS(mp) = 0; 7102 7103 ident = ipha->ipha_ident; 7104 offset = (frag_offset_flags << 3) & 0xFFFF; 7105 src = ipha->ipha_src; 7106 dst = ipha->ipha_dst; 7107 hdr_length = IPH_HDR_LENGTH(ipha); 7108 end = ntohs(ipha->ipha_length) - hdr_length; 7109 7110 /* If end == 0 then we have a packet with no data, so just free it */ 7111 if (end == 0) { 7112 freemsg(mp); 7113 return (NULL); 7114 } 7115 7116 /* Record the ECN field info. */ 7117 ecn_info = (ipha->ipha_type_of_service & 0x3); 7118 if (offset != 0) { 7119 /* 7120 * If this isn't the first piece, strip the header, and 7121 * add the offset to the end value. 7122 */ 7123 mp->b_rptr += hdr_length; 7124 end += offset; 7125 } 7126 7127 /* Handle vnic loopback of fragments */ 7128 if (mp->b_datap->db_ref > 2) 7129 msg_len = 0; 7130 else 7131 msg_len = MBLKSIZE(mp); 7132 7133 tail_mp = mp; 7134 while (tail_mp->b_cont != NULL) { 7135 tail_mp = tail_mp->b_cont; 7136 if (tail_mp->b_datap->db_ref <= 2) 7137 msg_len += MBLKSIZE(tail_mp); 7138 } 7139 7140 /* If the reassembly list for this ILL will get too big, prune it */ 7141 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 7142 ipst->ips_ip_reass_queue_bytes) { 7143 DTRACE_PROBE3(ip_reass_queue_bytes, uint_t, msg_len, 7144 uint_t, ill->ill_frag_count, 7145 uint_t, ipst->ips_ip_reass_queue_bytes); 7146 ill_frag_prune(ill, 7147 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 7148 (ipst->ips_ip_reass_queue_bytes - msg_len)); 7149 pruned = B_TRUE; 7150 } 7151 7152 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 7153 mutex_enter(&ipfb->ipfb_lock); 7154 7155 ipfp = &ipfb->ipfb_ipf; 7156 /* Try to find an existing fragment queue for this packet. */ 7157 for (;;) { 7158 ipf = ipfp[0]; 7159 if (ipf != NULL) { 7160 /* 7161 * It has to match on ident and src/dst address. 7162 */ 7163 if (ipf->ipf_ident == ident && 7164 ipf->ipf_src == src && 7165 ipf->ipf_dst == dst && 7166 ipf->ipf_protocol == proto) { 7167 /* 7168 * If we have received too many 7169 * duplicate fragments for this packet 7170 * free it. 7171 */ 7172 if (ipf->ipf_num_dups > ip_max_frag_dups) { 7173 ill_frag_free_pkts(ill, ipfb, ipf, 1); 7174 freemsg(mp); 7175 mutex_exit(&ipfb->ipfb_lock); 7176 return (NULL); 7177 } 7178 /* Found it. */ 7179 break; 7180 } 7181 ipfp = &ipf->ipf_hash_next; 7182 continue; 7183 } 7184 7185 /* 7186 * If we pruned the list, do we want to store this new 7187 * fragment?. We apply an optimization here based on the 7188 * fact that most fragments will be received in order. 7189 * So if the offset of this incoming fragment is zero, 7190 * it is the first fragment of a new packet. We will 7191 * keep it. Otherwise drop the fragment, as we have 7192 * probably pruned the packet already (since the 7193 * packet cannot be found). 7194 */ 7195 if (pruned && offset != 0) { 7196 mutex_exit(&ipfb->ipfb_lock); 7197 freemsg(mp); 7198 return (NULL); 7199 } 7200 7201 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 7202 /* 7203 * Too many fragmented packets in this hash 7204 * bucket. Free the oldest. 7205 */ 7206 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 7207 } 7208 7209 /* New guy. Allocate a frag message. */ 7210 mp1 = allocb(sizeof (*ipf), BPRI_MED); 7211 if (mp1 == NULL) { 7212 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7213 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7214 freemsg(mp); 7215 reass_done: 7216 mutex_exit(&ipfb->ipfb_lock); 7217 return (NULL); 7218 } 7219 7220 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 7221 mp1->b_cont = mp; 7222 7223 /* Initialize the fragment header. */ 7224 ipf = (ipf_t *)mp1->b_rptr; 7225 ipf->ipf_mp = mp1; 7226 ipf->ipf_ptphn = ipfp; 7227 ipfp[0] = ipf; 7228 ipf->ipf_hash_next = NULL; 7229 ipf->ipf_ident = ident; 7230 ipf->ipf_protocol = proto; 7231 ipf->ipf_src = src; 7232 ipf->ipf_dst = dst; 7233 ipf->ipf_nf_hdr_len = 0; 7234 /* Record reassembly start time. */ 7235 ipf->ipf_timestamp = gethrestime_sec(); 7236 /* Record ipf generation and account for frag header */ 7237 ipf->ipf_gen = ill->ill_ipf_gen++; 7238 ipf->ipf_count = MBLKSIZE(mp1); 7239 ipf->ipf_last_frag_seen = B_FALSE; 7240 ipf->ipf_ecn = ecn_info; 7241 ipf->ipf_num_dups = 0; 7242 ipfb->ipfb_frag_pkts++; 7243 ipf->ipf_checksum = 0; 7244 ipf->ipf_checksum_flags = 0; 7245 7246 /* Store checksum value in fragment header */ 7247 if (sum_flags != 0) { 7248 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7249 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7250 ipf->ipf_checksum = sum_val; 7251 ipf->ipf_checksum_flags = sum_flags; 7252 } 7253 7254 /* 7255 * We handle reassembly two ways. In the easy case, 7256 * where all the fragments show up in order, we do 7257 * minimal bookkeeping, and just clip new pieces on 7258 * the end. If we ever see a hole, then we go off 7259 * to ip_reassemble which has to mark the pieces and 7260 * keep track of the number of holes, etc. Obviously, 7261 * the point of having both mechanisms is so we can 7262 * handle the easy case as efficiently as possible. 7263 */ 7264 if (offset == 0) { 7265 /* Easy case, in-order reassembly so far. */ 7266 ipf->ipf_count += msg_len; 7267 ipf->ipf_tail_mp = tail_mp; 7268 /* 7269 * Keep track of next expected offset in 7270 * ipf_end. 7271 */ 7272 ipf->ipf_end = end; 7273 ipf->ipf_nf_hdr_len = hdr_length; 7274 } else { 7275 /* Hard case, hole at the beginning. */ 7276 ipf->ipf_tail_mp = NULL; 7277 /* 7278 * ipf_end == 0 means that we have given up 7279 * on easy reassembly. 7280 */ 7281 ipf->ipf_end = 0; 7282 7283 /* Forget checksum offload from now on */ 7284 ipf->ipf_checksum_flags = 0; 7285 7286 /* 7287 * ipf_hole_cnt is set by ip_reassemble. 7288 * ipf_count is updated by ip_reassemble. 7289 * No need to check for return value here 7290 * as we don't expect reassembly to complete 7291 * or fail for the first fragment itself. 7292 */ 7293 (void) ip_reassemble(mp, ipf, 7294 (frag_offset_flags & IPH_OFFSET) << 3, 7295 (frag_offset_flags & IPH_MF), ill, msg_len); 7296 } 7297 /* Update per ipfb and ill byte counts */ 7298 ipfb->ipfb_count += ipf->ipf_count; 7299 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 7300 atomic_add_32(&ill->ill_frag_count, ipf->ipf_count); 7301 /* If the frag timer wasn't already going, start it. */ 7302 mutex_enter(&ill->ill_lock); 7303 ill_frag_timer_start(ill); 7304 mutex_exit(&ill->ill_lock); 7305 goto reass_done; 7306 } 7307 7308 /* 7309 * If the packet's flag has changed (it could be coming up 7310 * from an interface different than the previous, therefore 7311 * possibly different checksum capability), then forget about 7312 * any stored checksum states. Otherwise add the value to 7313 * the existing one stored in the fragment header. 7314 */ 7315 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 7316 sum_val += ipf->ipf_checksum; 7317 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7318 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7319 ipf->ipf_checksum = sum_val; 7320 } else if (ipf->ipf_checksum_flags != 0) { 7321 /* Forget checksum offload from now on */ 7322 ipf->ipf_checksum_flags = 0; 7323 } 7324 7325 /* 7326 * We have a new piece of a datagram which is already being 7327 * reassembled. Update the ECN info if all IP fragments 7328 * are ECN capable. If there is one which is not, clear 7329 * all the info. If there is at least one which has CE 7330 * code point, IP needs to report that up to transport. 7331 */ 7332 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 7333 if (ecn_info == IPH_ECN_CE) 7334 ipf->ipf_ecn = IPH_ECN_CE; 7335 } else { 7336 ipf->ipf_ecn = IPH_ECN_NECT; 7337 } 7338 if (offset && ipf->ipf_end == offset) { 7339 /* The new fragment fits at the end */ 7340 ipf->ipf_tail_mp->b_cont = mp; 7341 /* Update the byte count */ 7342 ipf->ipf_count += msg_len; 7343 /* Update per ipfb and ill byte counts */ 7344 ipfb->ipfb_count += msg_len; 7345 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 7346 atomic_add_32(&ill->ill_frag_count, msg_len); 7347 if (frag_offset_flags & IPH_MF) { 7348 /* More to come. */ 7349 ipf->ipf_end = end; 7350 ipf->ipf_tail_mp = tail_mp; 7351 goto reass_done; 7352 } 7353 } else { 7354 /* Go do the hard cases. */ 7355 int ret; 7356 7357 if (offset == 0) 7358 ipf->ipf_nf_hdr_len = hdr_length; 7359 7360 /* Save current byte count */ 7361 count = ipf->ipf_count; 7362 ret = ip_reassemble(mp, ipf, 7363 (frag_offset_flags & IPH_OFFSET) << 3, 7364 (frag_offset_flags & IPH_MF), ill, msg_len); 7365 /* Count of bytes added and subtracted (freeb()ed) */ 7366 count = ipf->ipf_count - count; 7367 if (count) { 7368 /* Update per ipfb and ill byte counts */ 7369 ipfb->ipfb_count += count; 7370 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 7371 atomic_add_32(&ill->ill_frag_count, count); 7372 } 7373 if (ret == IP_REASS_PARTIAL) { 7374 goto reass_done; 7375 } else if (ret == IP_REASS_FAILED) { 7376 /* Reassembly failed. Free up all resources */ 7377 ill_frag_free_pkts(ill, ipfb, ipf, 1); 7378 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 7379 IP_REASS_SET_START(t_mp, 0); 7380 IP_REASS_SET_END(t_mp, 0); 7381 } 7382 freemsg(mp); 7383 goto reass_done; 7384 } 7385 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 7386 } 7387 /* 7388 * We have completed reassembly. Unhook the frag header from 7389 * the reassembly list. 7390 * 7391 * Before we free the frag header, record the ECN info 7392 * to report back to the transport. 7393 */ 7394 ecn_info = ipf->ipf_ecn; 7395 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 7396 ipfp = ipf->ipf_ptphn; 7397 7398 /* We need to supply these to caller */ 7399 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 7400 sum_val = ipf->ipf_checksum; 7401 else 7402 sum_val = 0; 7403 7404 mp1 = ipf->ipf_mp; 7405 count = ipf->ipf_count; 7406 ipf = ipf->ipf_hash_next; 7407 if (ipf != NULL) 7408 ipf->ipf_ptphn = ipfp; 7409 ipfp[0] = ipf; 7410 atomic_add_32(&ill->ill_frag_count, -count); 7411 ASSERT(ipfb->ipfb_count >= count); 7412 ipfb->ipfb_count -= count; 7413 ipfb->ipfb_frag_pkts--; 7414 mutex_exit(&ipfb->ipfb_lock); 7415 /* Ditch the frag header. */ 7416 mp = mp1->b_cont; 7417 7418 freeb(mp1); 7419 7420 /* Restore original IP length in header. */ 7421 packet_size = (uint32_t)msgdsize(mp); 7422 if (packet_size > IP_MAXPACKET) { 7423 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7424 ip_drop_input("Reassembled packet too large", mp, ill); 7425 freemsg(mp); 7426 return (NULL); 7427 } 7428 7429 if (DB_REF(mp) > 1) { 7430 mblk_t *mp2 = copymsg(mp); 7431 7432 if (mp2 == NULL) { 7433 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7434 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7435 freemsg(mp); 7436 return (NULL); 7437 } 7438 freemsg(mp); 7439 mp = mp2; 7440 } 7441 ipha = (ipha_t *)mp->b_rptr; 7442 7443 ipha->ipha_length = htons((uint16_t)packet_size); 7444 /* We're now complete, zip the frag state */ 7445 ipha->ipha_fragment_offset_and_flags = 0; 7446 /* Record the ECN info. */ 7447 ipha->ipha_type_of_service &= 0xFC; 7448 ipha->ipha_type_of_service |= ecn_info; 7449 7450 /* Update the receive attributes */ 7451 ira->ira_pktlen = packet_size; 7452 ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha); 7453 7454 /* Reassembly is successful; set checksum information in packet */ 7455 DB_CKSUM16(mp) = (uint16_t)sum_val; 7456 DB_CKSUMFLAGS(mp) = sum_flags; 7457 DB_CKSUMSTART(mp) = ira->ira_ip_hdr_length; 7458 7459 return (mp); 7460 } 7461 7462 /* 7463 * Pullup function that should be used for IP input in order to 7464 * ensure we do not loose the L2 source address; we need the l2 source 7465 * address for IP_RECVSLLA and for ndp_input. 7466 * 7467 * We return either NULL or b_rptr. 7468 */ 7469 void * 7470 ip_pullup(mblk_t *mp, ssize_t len, ip_recv_attr_t *ira) 7471 { 7472 ill_t *ill = ira->ira_ill; 7473 7474 if (ip_rput_pullups++ == 0) { 7475 (void) mi_strlog(ill->ill_rq, 1, SL_ERROR|SL_TRACE, 7476 "ip_pullup: %s forced us to " 7477 " pullup pkt, hdr len %ld, hdr addr %p", 7478 ill->ill_name, len, (void *)mp->b_rptr); 7479 } 7480 if (!(ira->ira_flags & IRAF_L2SRC_SET)) 7481 ip_setl2src(mp, ira, ira->ira_rill); 7482 ASSERT(ira->ira_flags & IRAF_L2SRC_SET); 7483 if (!pullupmsg(mp, len)) 7484 return (NULL); 7485 else 7486 return (mp->b_rptr); 7487 } 7488 7489 /* 7490 * Make sure ira_l2src has an address. If we don't have one fill with zeros. 7491 * When called from the ULP ira_rill will be NULL hence the caller has to 7492 * pass in the ill. 7493 */ 7494 /* ARGSUSED */ 7495 void 7496 ip_setl2src(mblk_t *mp, ip_recv_attr_t *ira, ill_t *ill) 7497 { 7498 const uchar_t *addr; 7499 int alen; 7500 7501 if (ira->ira_flags & IRAF_L2SRC_SET) 7502 return; 7503 7504 ASSERT(ill != NULL); 7505 alen = ill->ill_phys_addr_length; 7506 ASSERT(alen <= sizeof (ira->ira_l2src)); 7507 if (ira->ira_mhip != NULL && 7508 (addr = ira->ira_mhip->mhi_saddr) != NULL) { 7509 bcopy(addr, ira->ira_l2src, alen); 7510 } else if ((ira->ira_flags & IRAF_L2SRC_LOOPBACK) && 7511 (addr = ill->ill_phys_addr) != NULL) { 7512 bcopy(addr, ira->ira_l2src, alen); 7513 } else { 7514 bzero(ira->ira_l2src, alen); 7515 } 7516 ira->ira_flags |= IRAF_L2SRC_SET; 7517 } 7518 7519 /* 7520 * check ip header length and align it. 7521 */ 7522 mblk_t * 7523 ip_check_and_align_header(mblk_t *mp, uint_t min_size, ip_recv_attr_t *ira) 7524 { 7525 ill_t *ill = ira->ira_ill; 7526 ssize_t len; 7527 7528 len = MBLKL(mp); 7529 7530 if (!OK_32PTR(mp->b_rptr)) 7531 IP_STAT(ill->ill_ipst, ip_notaligned); 7532 else 7533 IP_STAT(ill->ill_ipst, ip_recv_pullup); 7534 7535 /* Guard against bogus device drivers */ 7536 if (len < 0) { 7537 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7538 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7539 freemsg(mp); 7540 return (NULL); 7541 } 7542 7543 if (len == 0) { 7544 /* GLD sometimes sends up mblk with b_rptr == b_wptr! */ 7545 mblk_t *mp1 = mp->b_cont; 7546 7547 if (!(ira->ira_flags & IRAF_L2SRC_SET)) 7548 ip_setl2src(mp, ira, ira->ira_rill); 7549 ASSERT(ira->ira_flags & IRAF_L2SRC_SET); 7550 7551 freeb(mp); 7552 mp = mp1; 7553 if (mp == NULL) 7554 return (NULL); 7555 7556 if (OK_32PTR(mp->b_rptr) && MBLKL(mp) >= min_size) 7557 return (mp); 7558 } 7559 if (ip_pullup(mp, min_size, ira) == NULL) { 7560 if (msgdsize(mp) < min_size) { 7561 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7562 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7563 } else { 7564 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7565 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7566 } 7567 freemsg(mp); 7568 return (NULL); 7569 } 7570 return (mp); 7571 } 7572 7573 /* 7574 * Common code for IPv4 and IPv6 to check and pullup multi-mblks 7575 */ 7576 mblk_t * 7577 ip_check_length(mblk_t *mp, uchar_t *rptr, ssize_t len, uint_t pkt_len, 7578 uint_t min_size, ip_recv_attr_t *ira) 7579 { 7580 ill_t *ill = ira->ira_ill; 7581 7582 /* 7583 * Make sure we have data length consistent 7584 * with the IP header. 7585 */ 7586 if (mp->b_cont == NULL) { 7587 /* pkt_len is based on ipha_len, not the mblk length */ 7588 if (pkt_len < min_size) { 7589 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7590 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7591 freemsg(mp); 7592 return (NULL); 7593 } 7594 if (len < 0) { 7595 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 7596 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 7597 freemsg(mp); 7598 return (NULL); 7599 } 7600 /* Drop any pad */ 7601 mp->b_wptr = rptr + pkt_len; 7602 } else if ((len += msgdsize(mp->b_cont)) != 0) { 7603 ASSERT(pkt_len >= min_size); 7604 if (pkt_len < min_size) { 7605 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7606 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7607 freemsg(mp); 7608 return (NULL); 7609 } 7610 if (len < 0) { 7611 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 7612 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 7613 freemsg(mp); 7614 return (NULL); 7615 } 7616 /* Drop any pad */ 7617 (void) adjmsg(mp, -len); 7618 /* 7619 * adjmsg may have freed an mblk from the chain, hence 7620 * invalidate any hw checksum here. This will force IP to 7621 * calculate the checksum in sw, but only for this packet. 7622 */ 7623 DB_CKSUMFLAGS(mp) = 0; 7624 IP_STAT(ill->ill_ipst, ip_multimblk); 7625 } 7626 return (mp); 7627 } 7628 7629 /* 7630 * Check that the IPv4 opt_len is consistent with the packet and pullup 7631 * the options. 7632 */ 7633 mblk_t * 7634 ip_check_optlen(mblk_t *mp, ipha_t *ipha, uint_t opt_len, uint_t pkt_len, 7635 ip_recv_attr_t *ira) 7636 { 7637 ill_t *ill = ira->ira_ill; 7638 ssize_t len; 7639 7640 /* Assume no IPv6 packets arrive over the IPv4 queue */ 7641 if (IPH_HDR_VERSION(ipha) != IPV4_VERSION) { 7642 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7643 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 7644 ip_drop_input("IPvN packet on IPv4 ill", mp, ill); 7645 freemsg(mp); 7646 return (NULL); 7647 } 7648 7649 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 7650 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7651 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7652 freemsg(mp); 7653 return (NULL); 7654 } 7655 /* 7656 * Recompute complete header length and make sure we 7657 * have access to all of it. 7658 */ 7659 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 7660 if (len > (mp->b_wptr - mp->b_rptr)) { 7661 if (len > pkt_len) { 7662 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7663 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7664 freemsg(mp); 7665 return (NULL); 7666 } 7667 if (ip_pullup(mp, len, ira) == NULL) { 7668 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7669 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7670 freemsg(mp); 7671 return (NULL); 7672 } 7673 } 7674 return (mp); 7675 } 7676 7677 /* 7678 * Returns a new ire, or the same ire, or NULL. 7679 * If a different IRE is returned, then it is held; the caller 7680 * needs to release it. 7681 * In no case is there any hold/release on the ire argument. 7682 */ 7683 ire_t * 7684 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 7685 { 7686 ire_t *new_ire; 7687 ill_t *ire_ill; 7688 uint_t ifindex; 7689 ip_stack_t *ipst = ill->ill_ipst; 7690 boolean_t strict_check = B_FALSE; 7691 7692 /* 7693 * IPMP common case: if IRE and ILL are in the same group, there's no 7694 * issue (e.g. packet received on an underlying interface matched an 7695 * IRE_LOCAL on its associated group interface). 7696 */ 7697 ASSERT(ire->ire_ill != NULL); 7698 if (IS_IN_SAME_ILLGRP(ill, ire->ire_ill)) 7699 return (ire); 7700 7701 /* 7702 * Do another ire lookup here, using the ingress ill, to see if the 7703 * interface is in a usesrc group. 7704 * As long as the ills belong to the same group, we don't consider 7705 * them to be arriving on the wrong interface. Thus, if the switch 7706 * is doing inbound load spreading, we won't drop packets when the 7707 * ip*_strict_dst_multihoming switch is on. 7708 * We also need to check for IPIF_UNNUMBERED point2point interfaces 7709 * where the local address may not be unique. In this case we were 7710 * at the mercy of the initial ire lookup and the IRE_LOCAL it 7711 * actually returned. The new lookup, which is more specific, should 7712 * only find the IRE_LOCAL associated with the ingress ill if one 7713 * exists. 7714 */ 7715 if (ire->ire_ipversion == IPV4_VERSION) { 7716 if (ipst->ips_ip_strict_dst_multihoming) 7717 strict_check = B_TRUE; 7718 new_ire = ire_ftable_lookup_v4(*((ipaddr_t *)addr), 0, 0, 7719 IRE_LOCAL, ill, ALL_ZONES, NULL, 7720 (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL); 7721 } else { 7722 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 7723 if (ipst->ips_ipv6_strict_dst_multihoming) 7724 strict_check = B_TRUE; 7725 new_ire = ire_ftable_lookup_v6((in6_addr_t *)addr, NULL, NULL, 7726 IRE_LOCAL, ill, ALL_ZONES, NULL, 7727 (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL); 7728 } 7729 /* 7730 * If the same ire that was returned in ip_input() is found then this 7731 * is an indication that usesrc groups are in use. The packet 7732 * arrived on a different ill in the group than the one associated with 7733 * the destination address. If a different ire was found then the same 7734 * IP address must be hosted on multiple ills. This is possible with 7735 * unnumbered point2point interfaces. We switch to use this new ire in 7736 * order to have accurate interface statistics. 7737 */ 7738 if (new_ire != NULL) { 7739 /* Note: held in one case but not the other? Caller handles */ 7740 if (new_ire != ire) 7741 return (new_ire); 7742 /* Unchanged */ 7743 ire_refrele(new_ire); 7744 return (ire); 7745 } 7746 7747 /* 7748 * Chase pointers once and store locally. 7749 */ 7750 ASSERT(ire->ire_ill != NULL); 7751 ire_ill = ire->ire_ill; 7752 ifindex = ill->ill_usesrc_ifindex; 7753 7754 /* 7755 * Check if it's a legal address on the 'usesrc' interface. 7756 * For IPMP data addresses the IRE_LOCAL is the upper, hence we 7757 * can just check phyint_ifindex. 7758 */ 7759 if (ifindex != 0 && ifindex == ire_ill->ill_phyint->phyint_ifindex) { 7760 return (ire); 7761 } 7762 7763 /* 7764 * If the ip*_strict_dst_multihoming switch is on then we can 7765 * only accept this packet if the interface is marked as routing. 7766 */ 7767 if (!(strict_check)) 7768 return (ire); 7769 7770 if ((ill->ill_flags & ire->ire_ill->ill_flags & ILLF_ROUTER) != 0) { 7771 return (ire); 7772 } 7773 return (NULL); 7774 } 7775 7776 /* 7777 * This function is used to construct a mac_header_info_s from a 7778 * DL_UNITDATA_IND message. 7779 * The address fields in the mhi structure points into the message, 7780 * thus the caller can't use those fields after freeing the message. 7781 * 7782 * We determine whether the packet received is a non-unicast packet 7783 * and in doing so, determine whether or not it is broadcast vs multicast. 7784 * For it to be a broadcast packet, we must have the appropriate mblk_t 7785 * hanging off the ill_t. If this is either not present or doesn't match 7786 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 7787 * to be multicast. Thus NICs that have no broadcast address (or no 7788 * capability for one, such as point to point links) cannot return as 7789 * the packet being broadcast. 7790 */ 7791 void 7792 ip_dlur_to_mhi(ill_t *ill, mblk_t *mb, struct mac_header_info_s *mhip) 7793 { 7794 dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr; 7795 mblk_t *bmp; 7796 uint_t extra_offset; 7797 7798 bzero(mhip, sizeof (struct mac_header_info_s)); 7799 7800 mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST; 7801 7802 if (ill->ill_sap_length < 0) 7803 extra_offset = 0; 7804 else 7805 extra_offset = ill->ill_sap_length; 7806 7807 mhip->mhi_daddr = (uchar_t *)ind + ind->dl_dest_addr_offset + 7808 extra_offset; 7809 mhip->mhi_saddr = (uchar_t *)ind + ind->dl_src_addr_offset + 7810 extra_offset; 7811 7812 if (!ind->dl_group_address) 7813 return; 7814 7815 /* Multicast or broadcast */ 7816 mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST; 7817 7818 if (ind->dl_dest_addr_offset > sizeof (*ind) && 7819 ind->dl_dest_addr_offset + ind->dl_dest_addr_length < MBLKL(mb) && 7820 (bmp = ill->ill_bcast_mp) != NULL) { 7821 dl_unitdata_req_t *dlur; 7822 uint8_t *bphys_addr; 7823 7824 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 7825 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset + 7826 extra_offset; 7827 7828 if (bcmp(mhip->mhi_daddr, bphys_addr, 7829 ind->dl_dest_addr_length) == 0) 7830 mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST; 7831 } 7832 } 7833 7834 /* 7835 * This function is used to construct a mac_header_info_s from a 7836 * M_DATA fastpath message from a DLPI driver. 7837 * The address fields in the mhi structure points into the message, 7838 * thus the caller can't use those fields after freeing the message. 7839 * 7840 * We determine whether the packet received is a non-unicast packet 7841 * and in doing so, determine whether or not it is broadcast vs multicast. 7842 * For it to be a broadcast packet, we must have the appropriate mblk_t 7843 * hanging off the ill_t. If this is either not present or doesn't match 7844 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 7845 * to be multicast. Thus NICs that have no broadcast address (or no 7846 * capability for one, such as point to point links) cannot return as 7847 * the packet being broadcast. 7848 */ 7849 void 7850 ip_mdata_to_mhi(ill_t *ill, mblk_t *mp, struct mac_header_info_s *mhip) 7851 { 7852 mblk_t *bmp; 7853 struct ether_header *pether; 7854 7855 bzero(mhip, sizeof (struct mac_header_info_s)); 7856 7857 mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST; 7858 7859 pether = (struct ether_header *)((char *)mp->b_rptr 7860 - sizeof (struct ether_header)); 7861 7862 /* 7863 * Make sure the interface is an ethernet type, since we don't 7864 * know the header format for anything but Ethernet. Also make 7865 * sure we are pointing correctly above db_base. 7866 */ 7867 if (ill->ill_type != IFT_ETHER) 7868 return; 7869 7870 retry: 7871 if ((uchar_t *)pether < mp->b_datap->db_base) 7872 return; 7873 7874 /* Is there a VLAN tag? */ 7875 if (ill->ill_isv6) { 7876 if (pether->ether_type != htons(ETHERTYPE_IPV6)) { 7877 pether = (struct ether_header *)((char *)pether - 4); 7878 goto retry; 7879 } 7880 } else { 7881 if (pether->ether_type != htons(ETHERTYPE_IP)) { 7882 pether = (struct ether_header *)((char *)pether - 4); 7883 goto retry; 7884 } 7885 } 7886 mhip->mhi_daddr = (uchar_t *)&pether->ether_dhost; 7887 mhip->mhi_saddr = (uchar_t *)&pether->ether_shost; 7888 7889 if (!(mhip->mhi_daddr[0] & 0x01)) 7890 return; 7891 7892 /* Multicast or broadcast */ 7893 mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST; 7894 7895 if ((bmp = ill->ill_bcast_mp) != NULL) { 7896 dl_unitdata_req_t *dlur; 7897 uint8_t *bphys_addr; 7898 uint_t addrlen; 7899 7900 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 7901 addrlen = dlur->dl_dest_addr_length; 7902 if (ill->ill_sap_length < 0) { 7903 bphys_addr = (uchar_t *)dlur + 7904 dlur->dl_dest_addr_offset; 7905 addrlen += ill->ill_sap_length; 7906 } else { 7907 bphys_addr = (uchar_t *)dlur + 7908 dlur->dl_dest_addr_offset + 7909 ill->ill_sap_length; 7910 addrlen -= ill->ill_sap_length; 7911 } 7912 if (bcmp(mhip->mhi_daddr, bphys_addr, addrlen) == 0) 7913 mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST; 7914 } 7915 } 7916 7917 /* 7918 * Handle anything but M_DATA messages 7919 * We see the DL_UNITDATA_IND which are part 7920 * of the data path, and also the other messages from the driver. 7921 */ 7922 void 7923 ip_rput_notdata(ill_t *ill, mblk_t *mp) 7924 { 7925 mblk_t *first_mp; 7926 struct iocblk *iocp; 7927 struct mac_header_info_s mhi; 7928 7929 switch (DB_TYPE(mp)) { 7930 case M_PROTO: 7931 case M_PCPROTO: { 7932 if (((dl_unitdata_ind_t *)mp->b_rptr)->dl_primitive != 7933 DL_UNITDATA_IND) { 7934 /* Go handle anything other than data elsewhere. */ 7935 ip_rput_dlpi(ill, mp); 7936 return; 7937 } 7938 7939 first_mp = mp; 7940 mp = first_mp->b_cont; 7941 first_mp->b_cont = NULL; 7942 7943 if (mp == NULL) { 7944 freeb(first_mp); 7945 return; 7946 } 7947 ip_dlur_to_mhi(ill, first_mp, &mhi); 7948 if (ill->ill_isv6) 7949 ip_input_v6(ill, NULL, mp, &mhi); 7950 else 7951 ip_input(ill, NULL, mp, &mhi); 7952 7953 /* Ditch the DLPI header. */ 7954 freeb(first_mp); 7955 return; 7956 } 7957 case M_IOCACK: 7958 iocp = (struct iocblk *)mp->b_rptr; 7959 switch (iocp->ioc_cmd) { 7960 case DL_IOC_HDR_INFO: 7961 ill_fastpath_ack(ill, mp); 7962 return; 7963 default: 7964 putnext(ill->ill_rq, mp); 7965 return; 7966 } 7967 /* FALLTHRU */ 7968 case M_ERROR: 7969 case M_HANGUP: 7970 mutex_enter(&ill->ill_lock); 7971 if (ill->ill_state_flags & ILL_CONDEMNED) { 7972 mutex_exit(&ill->ill_lock); 7973 freemsg(mp); 7974 return; 7975 } 7976 ill_refhold_locked(ill); 7977 mutex_exit(&ill->ill_lock); 7978 qwriter_ip(ill, ill->ill_rq, mp, ip_rput_other, CUR_OP, 7979 B_FALSE); 7980 return; 7981 case M_CTL: 7982 putnext(ill->ill_rq, mp); 7983 return; 7984 case M_IOCNAK: 7985 ip1dbg(("got iocnak ")); 7986 iocp = (struct iocblk *)mp->b_rptr; 7987 switch (iocp->ioc_cmd) { 7988 case DL_IOC_HDR_INFO: 7989 ip_rput_other(NULL, ill->ill_rq, mp, NULL); 7990 return; 7991 default: 7992 break; 7993 } 7994 /* FALLTHRU */ 7995 default: 7996 putnext(ill->ill_rq, mp); 7997 return; 7998 } 7999 } 8000 8001 /* Read side put procedure. Packets coming from the wire arrive here. */ 8002 void 8003 ip_rput(queue_t *q, mblk_t *mp) 8004 { 8005 ill_t *ill; 8006 union DL_primitives *dl; 8007 8008 ill = (ill_t *)q->q_ptr; 8009 8010 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 8011 /* 8012 * If things are opening or closing, only accept high-priority 8013 * DLPI messages. (On open ill->ill_ipif has not yet been 8014 * created; on close, things hanging off the ill may have been 8015 * freed already.) 8016 */ 8017 dl = (union DL_primitives *)mp->b_rptr; 8018 if (DB_TYPE(mp) != M_PCPROTO || 8019 dl->dl_primitive == DL_UNITDATA_IND) { 8020 inet_freemsg(mp); 8021 return; 8022 } 8023 } 8024 if (DB_TYPE(mp) == M_DATA) { 8025 struct mac_header_info_s mhi; 8026 8027 ip_mdata_to_mhi(ill, mp, &mhi); 8028 ip_input(ill, NULL, mp, &mhi); 8029 } else { 8030 ip_rput_notdata(ill, mp); 8031 } 8032 } 8033 8034 /* 8035 * Move the information to a copy. 8036 */ 8037 mblk_t * 8038 ip_fix_dbref(mblk_t *mp, ip_recv_attr_t *ira) 8039 { 8040 mblk_t *mp1; 8041 ill_t *ill = ira->ira_ill; 8042 ip_stack_t *ipst = ill->ill_ipst; 8043 8044 IP_STAT(ipst, ip_db_ref); 8045 8046 /* Make sure we have ira_l2src before we loose the original mblk */ 8047 if (!(ira->ira_flags & IRAF_L2SRC_SET)) 8048 ip_setl2src(mp, ira, ira->ira_rill); 8049 8050 mp1 = copymsg(mp); 8051 if (mp1 == NULL) { 8052 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 8053 ip_drop_input("ipIfStatsInDiscards", mp, ill); 8054 freemsg(mp); 8055 return (NULL); 8056 } 8057 /* preserve the hardware checksum flags and data, if present */ 8058 if (DB_CKSUMFLAGS(mp) != 0) { 8059 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 8060 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 8061 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 8062 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 8063 DB_CKSUM16(mp1) = DB_CKSUM16(mp); 8064 } 8065 freemsg(mp); 8066 return (mp1); 8067 } 8068 8069 static void 8070 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 8071 t_uscalar_t err) 8072 { 8073 if (dl_err == DL_SYSERR) { 8074 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 8075 "%s: %s failed: DL_SYSERR (errno %u)\n", 8076 ill->ill_name, dl_primstr(prim), err); 8077 return; 8078 } 8079 8080 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 8081 "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim), 8082 dl_errstr(dl_err)); 8083 } 8084 8085 /* 8086 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 8087 * than DL_UNITDATA_IND messages. If we need to process this message 8088 * exclusively, we call qwriter_ip, in which case we also need to call 8089 * ill_refhold before that, since qwriter_ip does an ill_refrele. 8090 */ 8091 void 8092 ip_rput_dlpi(ill_t *ill, mblk_t *mp) 8093 { 8094 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 8095 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 8096 queue_t *q = ill->ill_rq; 8097 t_uscalar_t prim = dloa->dl_primitive; 8098 t_uscalar_t reqprim = DL_PRIM_INVAL; 8099 8100 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi", 8101 char *, dl_primstr(prim), ill_t *, ill); 8102 ip1dbg(("ip_rput_dlpi")); 8103 8104 /* 8105 * If we received an ACK but didn't send a request for it, then it 8106 * can't be part of any pending operation; discard up-front. 8107 */ 8108 switch (prim) { 8109 case DL_ERROR_ACK: 8110 reqprim = dlea->dl_error_primitive; 8111 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK for %s (0x%x): %s " 8112 "(0x%x), unix %u\n", ill->ill_name, dl_primstr(reqprim), 8113 reqprim, dl_errstr(dlea->dl_errno), dlea->dl_errno, 8114 dlea->dl_unix_errno)); 8115 break; 8116 case DL_OK_ACK: 8117 reqprim = dloa->dl_correct_primitive; 8118 break; 8119 case DL_INFO_ACK: 8120 reqprim = DL_INFO_REQ; 8121 break; 8122 case DL_BIND_ACK: 8123 reqprim = DL_BIND_REQ; 8124 break; 8125 case DL_PHYS_ADDR_ACK: 8126 reqprim = DL_PHYS_ADDR_REQ; 8127 break; 8128 case DL_NOTIFY_ACK: 8129 reqprim = DL_NOTIFY_REQ; 8130 break; 8131 case DL_CAPABILITY_ACK: 8132 reqprim = DL_CAPABILITY_REQ; 8133 break; 8134 } 8135 8136 if (prim != DL_NOTIFY_IND) { 8137 if (reqprim == DL_PRIM_INVAL || 8138 !ill_dlpi_pending(ill, reqprim)) { 8139 /* Not a DLPI message we support or expected */ 8140 freemsg(mp); 8141 return; 8142 } 8143 ip1dbg(("ip_rput: received %s for %s\n", dl_primstr(prim), 8144 dl_primstr(reqprim))); 8145 } 8146 8147 switch (reqprim) { 8148 case DL_UNBIND_REQ: 8149 /* 8150 * NOTE: we mark the unbind as complete even if we got a 8151 * DL_ERROR_ACK, since there's not much else we can do. 8152 */ 8153 mutex_enter(&ill->ill_lock); 8154 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 8155 cv_signal(&ill->ill_cv); 8156 mutex_exit(&ill->ill_lock); 8157 break; 8158 8159 case DL_ENABMULTI_REQ: 8160 if (prim == DL_OK_ACK) { 8161 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 8162 ill->ill_dlpi_multicast_state = IDS_OK; 8163 } 8164 break; 8165 } 8166 8167 /* 8168 * The message is one we're waiting for (or DL_NOTIFY_IND), but we 8169 * need to become writer to continue to process it. Because an 8170 * exclusive operation doesn't complete until replies to all queued 8171 * DLPI messages have been received, we know we're in the middle of an 8172 * exclusive operation and pass CUR_OP (except for DL_NOTIFY_IND). 8173 * 8174 * As required by qwriter_ip(), we refhold the ill; it will refrele. 8175 * Since this is on the ill stream we unconditionally bump up the 8176 * refcount without doing ILL_CAN_LOOKUP(). 8177 */ 8178 ill_refhold(ill); 8179 if (prim == DL_NOTIFY_IND) 8180 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE); 8181 else 8182 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE); 8183 } 8184 8185 /* 8186 * Handling of DLPI messages that require exclusive access to the ipsq. 8187 * 8188 * Need to do ipsq_pending_mp_get on ioctl completion, which could 8189 * happen here. (along with mi_copy_done) 8190 */ 8191 /* ARGSUSED */ 8192 static void 8193 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 8194 { 8195 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 8196 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 8197 int err = 0; 8198 ill_t *ill = (ill_t *)q->q_ptr; 8199 ipif_t *ipif = NULL; 8200 mblk_t *mp1 = NULL; 8201 conn_t *connp = NULL; 8202 t_uscalar_t paddrreq; 8203 mblk_t *mp_hw; 8204 boolean_t success; 8205 boolean_t ioctl_aborted = B_FALSE; 8206 boolean_t log = B_TRUE; 8207 8208 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer", 8209 char *, dl_primstr(dloa->dl_primitive), ill_t *, ill); 8210 8211 ip1dbg(("ip_rput_dlpi_writer ..")); 8212 ASSERT(ipsq->ipsq_xop == ill->ill_phyint->phyint_ipsq->ipsq_xop); 8213 ASSERT(IAM_WRITER_ILL(ill)); 8214 8215 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 8216 /* 8217 * The current ioctl could have been aborted by the user and a new 8218 * ioctl to bring up another ill could have started. We could still 8219 * get a response from the driver later. 8220 */ 8221 if (ipif != NULL && ipif->ipif_ill != ill) 8222 ioctl_aborted = B_TRUE; 8223 8224 switch (dloa->dl_primitive) { 8225 case DL_ERROR_ACK: 8226 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n", 8227 dl_primstr(dlea->dl_error_primitive))); 8228 8229 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer error", 8230 char *, dl_primstr(dlea->dl_error_primitive), 8231 ill_t *, ill); 8232 8233 switch (dlea->dl_error_primitive) { 8234 case DL_DISABMULTI_REQ: 8235 ill_dlpi_done(ill, dlea->dl_error_primitive); 8236 break; 8237 case DL_PROMISCON_REQ: 8238 case DL_PROMISCOFF_REQ: 8239 case DL_UNBIND_REQ: 8240 case DL_ATTACH_REQ: 8241 case DL_INFO_REQ: 8242 ill_dlpi_done(ill, dlea->dl_error_primitive); 8243 break; 8244 case DL_NOTIFY_REQ: 8245 ill_dlpi_done(ill, DL_NOTIFY_REQ); 8246 log = B_FALSE; 8247 break; 8248 case DL_PHYS_ADDR_REQ: 8249 /* 8250 * For IPv6 only, there are two additional 8251 * phys_addr_req's sent to the driver to get the 8252 * IPv6 token and lla. This allows IP to acquire 8253 * the hardware address format for a given interface 8254 * without having built in knowledge of the hardware 8255 * address. ill_phys_addr_pend keeps track of the last 8256 * DL_PAR sent so we know which response we are 8257 * dealing with. ill_dlpi_done will update 8258 * ill_phys_addr_pend when it sends the next req. 8259 * We don't complete the IOCTL until all three DL_PARs 8260 * have been attempted, so set *_len to 0 and break. 8261 */ 8262 paddrreq = ill->ill_phys_addr_pend; 8263 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 8264 if (paddrreq == DL_IPV6_TOKEN) { 8265 ill->ill_token_length = 0; 8266 log = B_FALSE; 8267 break; 8268 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 8269 ill->ill_nd_lla_len = 0; 8270 log = B_FALSE; 8271 break; 8272 } 8273 /* 8274 * Something went wrong with the DL_PHYS_ADDR_REQ. 8275 * We presumably have an IOCTL hanging out waiting 8276 * for completion. Find it and complete the IOCTL 8277 * with the error noted. 8278 * However, ill_dl_phys was called on an ill queue 8279 * (from SIOCSLIFNAME), thus conn_pending_ill is not 8280 * set. But the ioctl is known to be pending on ill_wq. 8281 */ 8282 if (!ill->ill_ifname_pending) 8283 break; 8284 ill->ill_ifname_pending = 0; 8285 if (!ioctl_aborted) 8286 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8287 if (mp1 != NULL) { 8288 /* 8289 * This operation (SIOCSLIFNAME) must have 8290 * happened on the ill. Assert there is no conn 8291 */ 8292 ASSERT(connp == NULL); 8293 q = ill->ill_wq; 8294 } 8295 break; 8296 case DL_BIND_REQ: 8297 ill_dlpi_done(ill, DL_BIND_REQ); 8298 if (ill->ill_ifname_pending) 8299 break; 8300 mutex_enter(&ill->ill_lock); 8301 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS; 8302 mutex_exit(&ill->ill_lock); 8303 /* 8304 * Something went wrong with the bind. We presumably 8305 * have an IOCTL hanging out waiting for completion. 8306 * Find it, take down the interface that was coming 8307 * up, and complete the IOCTL with the error noted. 8308 */ 8309 if (!ioctl_aborted) 8310 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8311 if (mp1 != NULL) { 8312 /* 8313 * This might be a result of a DL_NOTE_REPLUMB 8314 * notification. In that case, connp is NULL. 8315 */ 8316 if (connp != NULL) 8317 q = CONNP_TO_WQ(connp); 8318 8319 (void) ipif_down(ipif, NULL, NULL); 8320 /* error is set below the switch */ 8321 } 8322 break; 8323 case DL_ENABMULTI_REQ: 8324 ill_dlpi_done(ill, DL_ENABMULTI_REQ); 8325 8326 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 8327 ill->ill_dlpi_multicast_state = IDS_FAILED; 8328 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 8329 8330 printf("ip: joining multicasts failed (%d)" 8331 " on %s - will use link layer " 8332 "broadcasts for multicast\n", 8333 dlea->dl_errno, ill->ill_name); 8334 8335 /* 8336 * Set up for multi_bcast; We are the 8337 * writer, so ok to access ill->ill_ipif 8338 * without any lock. 8339 */ 8340 mutex_enter(&ill->ill_phyint->phyint_lock); 8341 ill->ill_phyint->phyint_flags |= 8342 PHYI_MULTI_BCAST; 8343 mutex_exit(&ill->ill_phyint->phyint_lock); 8344 8345 } 8346 freemsg(mp); /* Don't want to pass this up */ 8347 return; 8348 case DL_CAPABILITY_REQ: 8349 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 8350 "DL_CAPABILITY REQ\n")); 8351 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 8352 ill->ill_dlpi_capab_state = IDCS_FAILED; 8353 ill_capability_done(ill); 8354 freemsg(mp); 8355 return; 8356 } 8357 /* 8358 * Note the error for IOCTL completion (mp1 is set when 8359 * ready to complete ioctl). If ill_ifname_pending_err is 8360 * set, an error occured during plumbing (ill_ifname_pending), 8361 * so we want to report that error. 8362 * 8363 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 8364 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 8365 * expected to get errack'd if the driver doesn't support 8366 * these flags (e.g. ethernet). log will be set to B_FALSE 8367 * if these error conditions are encountered. 8368 */ 8369 if (mp1 != NULL) { 8370 if (ill->ill_ifname_pending_err != 0) { 8371 err = ill->ill_ifname_pending_err; 8372 ill->ill_ifname_pending_err = 0; 8373 } else { 8374 err = dlea->dl_unix_errno ? 8375 dlea->dl_unix_errno : ENXIO; 8376 } 8377 /* 8378 * If we're plumbing an interface and an error hasn't already 8379 * been saved, set ill_ifname_pending_err to the error passed 8380 * up. Ignore the error if log is B_FALSE (see comment above). 8381 */ 8382 } else if (log && ill->ill_ifname_pending && 8383 ill->ill_ifname_pending_err == 0) { 8384 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 8385 dlea->dl_unix_errno : ENXIO; 8386 } 8387 8388 if (log) 8389 ip_dlpi_error(ill, dlea->dl_error_primitive, 8390 dlea->dl_errno, dlea->dl_unix_errno); 8391 break; 8392 case DL_CAPABILITY_ACK: 8393 ill_capability_ack(ill, mp); 8394 /* 8395 * The message has been handed off to ill_capability_ack 8396 * and must not be freed below 8397 */ 8398 mp = NULL; 8399 break; 8400 8401 case DL_INFO_ACK: 8402 /* Call a routine to handle this one. */ 8403 ill_dlpi_done(ill, DL_INFO_REQ); 8404 ip_ll_subnet_defaults(ill, mp); 8405 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 8406 return; 8407 case DL_BIND_ACK: 8408 /* 8409 * We should have an IOCTL waiting on this unless 8410 * sent by ill_dl_phys, in which case just return 8411 */ 8412 ill_dlpi_done(ill, DL_BIND_REQ); 8413 8414 if (ill->ill_ifname_pending) { 8415 DTRACE_PROBE2(ip__rput__dlpi__ifname__pending, 8416 ill_t *, ill, mblk_t *, mp); 8417 break; 8418 } 8419 mutex_enter(&ill->ill_lock); 8420 ill->ill_dl_up = 1; 8421 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS; 8422 mutex_exit(&ill->ill_lock); 8423 8424 if (!ioctl_aborted) 8425 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8426 if (mp1 == NULL) { 8427 DTRACE_PROBE1(ip__rput__dlpi__no__mblk, ill_t *, ill); 8428 break; 8429 } 8430 /* 8431 * mp1 was added by ill_dl_up(). if that is a result of 8432 * a DL_NOTE_REPLUMB notification, connp could be NULL. 8433 */ 8434 if (connp != NULL) 8435 q = CONNP_TO_WQ(connp); 8436 /* 8437 * We are exclusive. So nothing can change even after 8438 * we get the pending mp. 8439 */ 8440 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 8441 DTRACE_PROBE1(ip__rput__dlpi__bind__ack, ill_t *, ill); 8442 ill_nic_event_dispatch(ill, 0, NE_UP, NULL, 0); 8443 8444 /* 8445 * Now bring up the resolver; when that is complete, we'll 8446 * create IREs. Note that we intentionally mirror what 8447 * ipif_up() would have done, because we got here by way of 8448 * ill_dl_up(), which stopped ipif_up()'s processing. 8449 */ 8450 if (ill->ill_isv6) { 8451 /* 8452 * v6 interfaces. 8453 * Unlike ARP which has to do another bind 8454 * and attach, once we get here we are 8455 * done with NDP 8456 */ 8457 (void) ipif_resolver_up(ipif, Res_act_initial); 8458 if ((err = ipif_ndp_up(ipif, B_TRUE)) == 0) 8459 err = ipif_up_done_v6(ipif); 8460 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 8461 /* 8462 * ARP and other v4 external resolvers. 8463 * Leave the pending mblk intact so that 8464 * the ioctl completes in ip_rput(). 8465 */ 8466 if (connp != NULL) 8467 mutex_enter(&connp->conn_lock); 8468 mutex_enter(&ill->ill_lock); 8469 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 8470 mutex_exit(&ill->ill_lock); 8471 if (connp != NULL) 8472 mutex_exit(&connp->conn_lock); 8473 if (success) { 8474 err = ipif_resolver_up(ipif, Res_act_initial); 8475 if (err == EINPROGRESS) { 8476 freemsg(mp); 8477 return; 8478 } 8479 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8480 } else { 8481 /* The conn has started closing */ 8482 err = EINTR; 8483 } 8484 } else { 8485 /* 8486 * This one is complete. Reply to pending ioctl. 8487 */ 8488 (void) ipif_resolver_up(ipif, Res_act_initial); 8489 err = ipif_up_done(ipif); 8490 } 8491 8492 if ((err == 0) && (ill->ill_up_ipifs)) { 8493 err = ill_up_ipifs(ill, q, mp1); 8494 if (err == EINPROGRESS) { 8495 freemsg(mp); 8496 return; 8497 } 8498 } 8499 8500 /* 8501 * If we have a moved ipif to bring up, and everything has 8502 * succeeded to this point, bring it up on the IPMP ill. 8503 * Otherwise, leave it down -- the admin can try to bring it 8504 * up by hand if need be. 8505 */ 8506 if (ill->ill_move_ipif != NULL) { 8507 if (err != 0) { 8508 ill->ill_move_ipif = NULL; 8509 } else { 8510 ipif = ill->ill_move_ipif; 8511 ill->ill_move_ipif = NULL; 8512 err = ipif_up(ipif, q, mp1); 8513 if (err == EINPROGRESS) { 8514 freemsg(mp); 8515 return; 8516 } 8517 } 8518 } 8519 break; 8520 8521 case DL_NOTIFY_IND: { 8522 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 8523 uint_t orig_mtu, orig_mc_mtu; 8524 8525 switch (notify->dl_notification) { 8526 case DL_NOTE_PHYS_ADDR: 8527 err = ill_set_phys_addr(ill, mp); 8528 break; 8529 8530 case DL_NOTE_REPLUMB: 8531 /* 8532 * Directly return after calling ill_replumb(). 8533 * Note that we should not free mp as it is reused 8534 * in the ill_replumb() function. 8535 */ 8536 err = ill_replumb(ill, mp); 8537 return; 8538 8539 case DL_NOTE_FASTPATH_FLUSH: 8540 nce_flush(ill, B_FALSE); 8541 break; 8542 8543 case DL_NOTE_SDU_SIZE: 8544 case DL_NOTE_SDU_SIZE2: 8545 /* 8546 * The dce and fragmentation code can cope with 8547 * this changing while packets are being sent. 8548 * When packets are sent ip_output will discover 8549 * a change. 8550 * 8551 * Change the MTU size of the interface. 8552 */ 8553 mutex_enter(&ill->ill_lock); 8554 orig_mtu = ill->ill_mtu; 8555 orig_mc_mtu = ill->ill_mc_mtu; 8556 switch (notify->dl_notification) { 8557 case DL_NOTE_SDU_SIZE: 8558 ill->ill_current_frag = 8559 (uint_t)notify->dl_data; 8560 ill->ill_mc_mtu = (uint_t)notify->dl_data; 8561 break; 8562 case DL_NOTE_SDU_SIZE2: 8563 ill->ill_current_frag = 8564 (uint_t)notify->dl_data1; 8565 ill->ill_mc_mtu = (uint_t)notify->dl_data2; 8566 break; 8567 } 8568 if (ill->ill_current_frag > ill->ill_max_frag) 8569 ill->ill_max_frag = ill->ill_current_frag; 8570 8571 if (!(ill->ill_flags & ILLF_FIXEDMTU)) { 8572 ill->ill_mtu = ill->ill_current_frag; 8573 8574 /* 8575 * If ill_user_mtu was set (via 8576 * SIOCSLIFLNKINFO), clamp ill_mtu at it. 8577 */ 8578 if (ill->ill_user_mtu != 0 && 8579 ill->ill_user_mtu < ill->ill_mtu) 8580 ill->ill_mtu = ill->ill_user_mtu; 8581 8582 if (ill->ill_user_mtu != 0 && 8583 ill->ill_user_mtu < ill->ill_mc_mtu) 8584 ill->ill_mc_mtu = ill->ill_user_mtu; 8585 8586 if (ill->ill_isv6) { 8587 if (ill->ill_mtu < IPV6_MIN_MTU) 8588 ill->ill_mtu = IPV6_MIN_MTU; 8589 if (ill->ill_mc_mtu < IPV6_MIN_MTU) 8590 ill->ill_mc_mtu = IPV6_MIN_MTU; 8591 } else { 8592 if (ill->ill_mtu < IP_MIN_MTU) 8593 ill->ill_mtu = IP_MIN_MTU; 8594 if (ill->ill_mc_mtu < IP_MIN_MTU) 8595 ill->ill_mc_mtu = IP_MIN_MTU; 8596 } 8597 } else if (ill->ill_mc_mtu > ill->ill_mtu) { 8598 ill->ill_mc_mtu = ill->ill_mtu; 8599 } 8600 8601 mutex_exit(&ill->ill_lock); 8602 /* 8603 * Make sure all dce_generation checks find out 8604 * that ill_mtu/ill_mc_mtu has changed. 8605 */ 8606 if (orig_mtu != ill->ill_mtu || 8607 orig_mc_mtu != ill->ill_mc_mtu) { 8608 dce_increment_all_generations(ill->ill_isv6, 8609 ill->ill_ipst); 8610 } 8611 8612 /* 8613 * Refresh IPMP meta-interface MTU if necessary. 8614 */ 8615 if (IS_UNDER_IPMP(ill)) 8616 ipmp_illgrp_refresh_mtu(ill->ill_grp); 8617 break; 8618 8619 case DL_NOTE_LINK_UP: 8620 case DL_NOTE_LINK_DOWN: { 8621 /* 8622 * We are writer. ill / phyint / ipsq assocs stable. 8623 * The RUNNING flag reflects the state of the link. 8624 */ 8625 phyint_t *phyint = ill->ill_phyint; 8626 uint64_t new_phyint_flags; 8627 boolean_t changed = B_FALSE; 8628 boolean_t went_up; 8629 8630 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 8631 mutex_enter(&phyint->phyint_lock); 8632 8633 new_phyint_flags = went_up ? 8634 phyint->phyint_flags | PHYI_RUNNING : 8635 phyint->phyint_flags & ~PHYI_RUNNING; 8636 8637 if (IS_IPMP(ill)) { 8638 new_phyint_flags = went_up ? 8639 new_phyint_flags & ~PHYI_FAILED : 8640 new_phyint_flags | PHYI_FAILED; 8641 } 8642 8643 if (new_phyint_flags != phyint->phyint_flags) { 8644 phyint->phyint_flags = new_phyint_flags; 8645 changed = B_TRUE; 8646 } 8647 mutex_exit(&phyint->phyint_lock); 8648 /* 8649 * ill_restart_dad handles the DAD restart and routing 8650 * socket notification logic. 8651 */ 8652 if (changed) { 8653 ill_restart_dad(phyint->phyint_illv4, went_up); 8654 ill_restart_dad(phyint->phyint_illv6, went_up); 8655 } 8656 break; 8657 } 8658 case DL_NOTE_PROMISC_ON_PHYS: { 8659 phyint_t *phyint = ill->ill_phyint; 8660 8661 mutex_enter(&phyint->phyint_lock); 8662 phyint->phyint_flags |= PHYI_PROMISC; 8663 mutex_exit(&phyint->phyint_lock); 8664 break; 8665 } 8666 case DL_NOTE_PROMISC_OFF_PHYS: { 8667 phyint_t *phyint = ill->ill_phyint; 8668 8669 mutex_enter(&phyint->phyint_lock); 8670 phyint->phyint_flags &= ~PHYI_PROMISC; 8671 mutex_exit(&phyint->phyint_lock); 8672 break; 8673 } 8674 case DL_NOTE_CAPAB_RENEG: 8675 /* 8676 * Something changed on the driver side. 8677 * It wants us to renegotiate the capabilities 8678 * on this ill. One possible cause is the aggregation 8679 * interface under us where a port got added or 8680 * went away. 8681 * 8682 * If the capability negotiation is already done 8683 * or is in progress, reset the capabilities and 8684 * mark the ill's ill_capab_reneg to be B_TRUE, 8685 * so that when the ack comes back, we can start 8686 * the renegotiation process. 8687 * 8688 * Note that if ill_capab_reneg is already B_TRUE 8689 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case), 8690 * the capability resetting request has been sent 8691 * and the renegotiation has not been started yet; 8692 * nothing needs to be done in this case. 8693 */ 8694 ipsq_current_start(ipsq, ill->ill_ipif, 0); 8695 ill_capability_reset(ill, B_TRUE); 8696 ipsq_current_finish(ipsq); 8697 break; 8698 8699 case DL_NOTE_ALLOWED_IPS: 8700 ill_set_allowed_ips(ill, mp); 8701 break; 8702 default: 8703 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 8704 "type 0x%x for DL_NOTIFY_IND\n", 8705 notify->dl_notification)); 8706 break; 8707 } 8708 8709 /* 8710 * As this is an asynchronous operation, we 8711 * should not call ill_dlpi_done 8712 */ 8713 break; 8714 } 8715 case DL_NOTIFY_ACK: { 8716 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 8717 8718 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 8719 ill->ill_note_link = 1; 8720 ill_dlpi_done(ill, DL_NOTIFY_REQ); 8721 break; 8722 } 8723 case DL_PHYS_ADDR_ACK: { 8724 /* 8725 * As part of plumbing the interface via SIOCSLIFNAME, 8726 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 8727 * whose answers we receive here. As each answer is received, 8728 * we call ill_dlpi_done() to dispatch the next request as 8729 * we're processing the current one. Once all answers have 8730 * been received, we use ipsq_pending_mp_get() to dequeue the 8731 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 8732 * is invoked from an ill queue, conn_oper_pending_ill is not 8733 * available, but we know the ioctl is pending on ill_wq.) 8734 */ 8735 uint_t paddrlen, paddroff; 8736 uint8_t *addr; 8737 8738 paddrreq = ill->ill_phys_addr_pend; 8739 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 8740 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 8741 addr = mp->b_rptr + paddroff; 8742 8743 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 8744 if (paddrreq == DL_IPV6_TOKEN) { 8745 /* 8746 * bcopy to low-order bits of ill_token 8747 * 8748 * XXX Temporary hack - currently, all known tokens 8749 * are 64 bits, so I'll cheat for the moment. 8750 */ 8751 bcopy(addr, &ill->ill_token.s6_addr32[2], paddrlen); 8752 ill->ill_token_length = paddrlen; 8753 break; 8754 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 8755 ASSERT(ill->ill_nd_lla_mp == NULL); 8756 ill_set_ndmp(ill, mp, paddroff, paddrlen); 8757 mp = NULL; 8758 break; 8759 } else if (paddrreq == DL_CURR_DEST_ADDR) { 8760 ASSERT(ill->ill_dest_addr_mp == NULL); 8761 ill->ill_dest_addr_mp = mp; 8762 ill->ill_dest_addr = addr; 8763 mp = NULL; 8764 if (ill->ill_isv6) { 8765 ill_setdesttoken(ill); 8766 ipif_setdestlinklocal(ill->ill_ipif); 8767 } 8768 break; 8769 } 8770 8771 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 8772 ASSERT(ill->ill_phys_addr_mp == NULL); 8773 if (!ill->ill_ifname_pending) 8774 break; 8775 ill->ill_ifname_pending = 0; 8776 if (!ioctl_aborted) 8777 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8778 if (mp1 != NULL) { 8779 ASSERT(connp == NULL); 8780 q = ill->ill_wq; 8781 } 8782 /* 8783 * If any error acks received during the plumbing sequence, 8784 * ill_ifname_pending_err will be set. Break out and send up 8785 * the error to the pending ioctl. 8786 */ 8787 if (ill->ill_ifname_pending_err != 0) { 8788 err = ill->ill_ifname_pending_err; 8789 ill->ill_ifname_pending_err = 0; 8790 break; 8791 } 8792 8793 ill->ill_phys_addr_mp = mp; 8794 ill->ill_phys_addr = (paddrlen == 0 ? NULL : addr); 8795 mp = NULL; 8796 8797 /* 8798 * If paddrlen or ill_phys_addr_length is zero, the DLPI 8799 * provider doesn't support physical addresses. We check both 8800 * paddrlen and ill_phys_addr_length because sppp (PPP) does 8801 * not have physical addresses, but historically adversises a 8802 * physical address length of 0 in its DL_INFO_ACK, but 6 in 8803 * its DL_PHYS_ADDR_ACK. 8804 */ 8805 if (paddrlen == 0 || ill->ill_phys_addr_length == 0) { 8806 ill->ill_phys_addr = NULL; 8807 } else if (paddrlen != ill->ill_phys_addr_length) { 8808 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 8809 paddrlen, ill->ill_phys_addr_length)); 8810 err = EINVAL; 8811 break; 8812 } 8813 8814 if (ill->ill_nd_lla_mp == NULL) { 8815 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 8816 err = ENOMEM; 8817 break; 8818 } 8819 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 8820 } 8821 8822 if (ill->ill_isv6) { 8823 ill_setdefaulttoken(ill); 8824 ipif_setlinklocal(ill->ill_ipif); 8825 } 8826 break; 8827 } 8828 case DL_OK_ACK: 8829 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 8830 dl_primstr((int)dloa->dl_correct_primitive), 8831 dloa->dl_correct_primitive)); 8832 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer ok", 8833 char *, dl_primstr(dloa->dl_correct_primitive), 8834 ill_t *, ill); 8835 8836 switch (dloa->dl_correct_primitive) { 8837 case DL_ENABMULTI_REQ: 8838 case DL_DISABMULTI_REQ: 8839 ill_dlpi_done(ill, dloa->dl_correct_primitive); 8840 break; 8841 case DL_PROMISCON_REQ: 8842 case DL_PROMISCOFF_REQ: 8843 case DL_UNBIND_REQ: 8844 case DL_ATTACH_REQ: 8845 ill_dlpi_done(ill, dloa->dl_correct_primitive); 8846 break; 8847 } 8848 break; 8849 default: 8850 break; 8851 } 8852 8853 freemsg(mp); 8854 if (mp1 == NULL) 8855 return; 8856 8857 /* 8858 * The operation must complete without EINPROGRESS since 8859 * ipsq_pending_mp_get() has removed the mblk (mp1). Otherwise, 8860 * the operation will be stuck forever inside the IPSQ. 8861 */ 8862 ASSERT(err != EINPROGRESS); 8863 8864 DTRACE_PROBE4(ipif__ioctl, char *, "ip_rput_dlpi_writer finish", 8865 int, ipsq->ipsq_xop->ipx_current_ioctl, ill_t *, ill, 8866 ipif_t *, NULL); 8867 8868 switch (ipsq->ipsq_xop->ipx_current_ioctl) { 8869 case 0: 8870 ipsq_current_finish(ipsq); 8871 break; 8872 8873 case SIOCSLIFNAME: 8874 case IF_UNITSEL: { 8875 ill_t *ill_other = ILL_OTHER(ill); 8876 8877 /* 8878 * If SIOCSLIFNAME or IF_UNITSEL is about to succeed, and the 8879 * ill has a peer which is in an IPMP group, then place ill 8880 * into the same group. One catch: although ifconfig plumbs 8881 * the appropriate IPMP meta-interface prior to plumbing this 8882 * ill, it is possible for multiple ifconfig applications to 8883 * race (or for another application to adjust plumbing), in 8884 * which case the IPMP meta-interface we need will be missing. 8885 * If so, kick the phyint out of the group. 8886 */ 8887 if (err == 0 && ill_other != NULL && IS_UNDER_IPMP(ill_other)) { 8888 ipmp_grp_t *grp = ill->ill_phyint->phyint_grp; 8889 ipmp_illgrp_t *illg; 8890 8891 illg = ill->ill_isv6 ? grp->gr_v6 : grp->gr_v4; 8892 if (illg == NULL) 8893 ipmp_phyint_leave_grp(ill->ill_phyint); 8894 else 8895 ipmp_ill_join_illgrp(ill, illg); 8896 } 8897 8898 if (ipsq->ipsq_xop->ipx_current_ioctl == IF_UNITSEL) 8899 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 8900 else 8901 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 8902 break; 8903 } 8904 case SIOCLIFADDIF: 8905 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 8906 break; 8907 8908 default: 8909 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 8910 break; 8911 } 8912 } 8913 8914 /* 8915 * ip_rput_other is called by ip_rput to handle messages modifying the global 8916 * state in IP. If 'ipsq' is non-NULL, caller is writer on it. 8917 */ 8918 /* ARGSUSED */ 8919 void 8920 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 8921 { 8922 ill_t *ill = q->q_ptr; 8923 struct iocblk *iocp; 8924 8925 ip1dbg(("ip_rput_other ")); 8926 if (ipsq != NULL) { 8927 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8928 ASSERT(ipsq->ipsq_xop == 8929 ill->ill_phyint->phyint_ipsq->ipsq_xop); 8930 } 8931 8932 switch (mp->b_datap->db_type) { 8933 case M_ERROR: 8934 case M_HANGUP: 8935 /* 8936 * The device has a problem. We force the ILL down. It can 8937 * be brought up again manually using SIOCSIFFLAGS (via 8938 * ifconfig or equivalent). 8939 */ 8940 ASSERT(ipsq != NULL); 8941 if (mp->b_rptr < mp->b_wptr) 8942 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 8943 if (ill->ill_error == 0) 8944 ill->ill_error = ENXIO; 8945 if (!ill_down_start(q, mp)) 8946 return; 8947 ipif_all_down_tail(ipsq, q, mp, NULL); 8948 break; 8949 case M_IOCNAK: { 8950 iocp = (struct iocblk *)mp->b_rptr; 8951 8952 ASSERT(iocp->ioc_cmd == DL_IOC_HDR_INFO); 8953 /* 8954 * If this was the first attempt, turn off the fastpath 8955 * probing. 8956 */ 8957 mutex_enter(&ill->ill_lock); 8958 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 8959 ill->ill_dlpi_fastpath_state = IDS_FAILED; 8960 mutex_exit(&ill->ill_lock); 8961 /* 8962 * don't flush the nce_t entries: we use them 8963 * as an index to the ncec itself. 8964 */ 8965 ip1dbg(("ip_rput: DLPI fastpath off on interface %s\n", 8966 ill->ill_name)); 8967 } else { 8968 mutex_exit(&ill->ill_lock); 8969 } 8970 freemsg(mp); 8971 break; 8972 } 8973 default: 8974 ASSERT(0); 8975 break; 8976 } 8977 } 8978 8979 /* 8980 * Update any source route, record route or timestamp options 8981 * When it fails it has consumed the message and BUMPed the MIB. 8982 */ 8983 boolean_t 8984 ip_forward_options(mblk_t *mp, ipha_t *ipha, ill_t *dst_ill, 8985 ip_recv_attr_t *ira) 8986 { 8987 ipoptp_t opts; 8988 uchar_t *opt; 8989 uint8_t optval; 8990 uint8_t optlen; 8991 ipaddr_t dst; 8992 ipaddr_t ifaddr; 8993 uint32_t ts; 8994 timestruc_t now; 8995 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 8996 8997 ip2dbg(("ip_forward_options\n")); 8998 dst = ipha->ipha_dst; 8999 for (optval = ipoptp_first(&opts, ipha); 9000 optval != IPOPT_EOL; 9001 optval = ipoptp_next(&opts)) { 9002 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 9003 opt = opts.ipoptp_cur; 9004 optlen = opts.ipoptp_len; 9005 ip2dbg(("ip_forward_options: opt %d, len %d\n", 9006 optval, opts.ipoptp_len)); 9007 switch (optval) { 9008 uint32_t off; 9009 case IPOPT_SSRR: 9010 case IPOPT_LSRR: 9011 /* Check if adminstratively disabled */ 9012 if (!ipst->ips_ip_forward_src_routed) { 9013 BUMP_MIB(dst_ill->ill_ip_mib, 9014 ipIfStatsForwProhibits); 9015 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", 9016 mp, dst_ill); 9017 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, 9018 ira); 9019 return (B_FALSE); 9020 } 9021 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9022 /* 9023 * Must be partial since ip_input_options 9024 * checked for strict. 9025 */ 9026 break; 9027 } 9028 off = opt[IPOPT_OFFSET]; 9029 off--; 9030 redo_srr: 9031 if (optlen < IP_ADDR_LEN || 9032 off > optlen - IP_ADDR_LEN) { 9033 /* End of source route */ 9034 ip1dbg(( 9035 "ip_forward_options: end of SR\n")); 9036 break; 9037 } 9038 /* Pick a reasonable address on the outbound if */ 9039 ASSERT(dst_ill != NULL); 9040 if (ip_select_source_v4(dst_ill, INADDR_ANY, dst, 9041 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL, 9042 NULL) != 0) { 9043 /* No source! Shouldn't happen */ 9044 ifaddr = INADDR_ANY; 9045 } 9046 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9047 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9048 ip1dbg(("ip_forward_options: next hop 0x%x\n", 9049 ntohl(dst))); 9050 9051 /* 9052 * Check if our address is present more than 9053 * once as consecutive hops in source route. 9054 */ 9055 if (ip_type_v4(dst, ipst) == IRE_LOCAL) { 9056 off += IP_ADDR_LEN; 9057 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9058 goto redo_srr; 9059 } 9060 ipha->ipha_dst = dst; 9061 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9062 break; 9063 case IPOPT_RR: 9064 off = opt[IPOPT_OFFSET]; 9065 off--; 9066 if (optlen < IP_ADDR_LEN || 9067 off > optlen - IP_ADDR_LEN) { 9068 /* No more room - ignore */ 9069 ip1dbg(( 9070 "ip_forward_options: end of RR\n")); 9071 break; 9072 } 9073 /* Pick a reasonable address on the outbound if */ 9074 ASSERT(dst_ill != NULL); 9075 if (ip_select_source_v4(dst_ill, INADDR_ANY, dst, 9076 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL, 9077 NULL) != 0) { 9078 /* No source! Shouldn't happen */ 9079 ifaddr = INADDR_ANY; 9080 } 9081 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9082 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9083 break; 9084 case IPOPT_TS: 9085 /* Insert timestamp if there is room */ 9086 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9087 case IPOPT_TS_TSONLY: 9088 off = IPOPT_TS_TIMELEN; 9089 break; 9090 case IPOPT_TS_PRESPEC: 9091 case IPOPT_TS_PRESPEC_RFC791: 9092 /* Verify that the address matched */ 9093 off = opt[IPOPT_OFFSET] - 1; 9094 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9095 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9096 /* Not for us */ 9097 break; 9098 } 9099 /* FALLTHRU */ 9100 case IPOPT_TS_TSANDADDR: 9101 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 9102 break; 9103 default: 9104 /* 9105 * ip_*put_options should have already 9106 * dropped this packet. 9107 */ 9108 cmn_err(CE_PANIC, "ip_forward_options: " 9109 "unknown IT - bug in ip_input_options?\n"); 9110 return (B_TRUE); /* Keep "lint" happy */ 9111 } 9112 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 9113 /* Increase overflow counter */ 9114 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 9115 opt[IPOPT_POS_OV_FLG] = 9116 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 9117 (off << 4)); 9118 break; 9119 } 9120 off = opt[IPOPT_OFFSET] - 1; 9121 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9122 case IPOPT_TS_PRESPEC: 9123 case IPOPT_TS_PRESPEC_RFC791: 9124 case IPOPT_TS_TSANDADDR: 9125 /* Pick a reasonable addr on the outbound if */ 9126 ASSERT(dst_ill != NULL); 9127 if (ip_select_source_v4(dst_ill, INADDR_ANY, 9128 dst, INADDR_ANY, ALL_ZONES, ipst, &ifaddr, 9129 NULL, NULL) != 0) { 9130 /* No source! Shouldn't happen */ 9131 ifaddr = INADDR_ANY; 9132 } 9133 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9134 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9135 /* FALLTHRU */ 9136 case IPOPT_TS_TSONLY: 9137 off = opt[IPOPT_OFFSET] - 1; 9138 /* Compute # of milliseconds since midnight */ 9139 gethrestime(&now); 9140 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 9141 NSEC2MSEC(now.tv_nsec); 9142 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 9143 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 9144 break; 9145 } 9146 break; 9147 } 9148 } 9149 return (B_TRUE); 9150 } 9151 9152 /* 9153 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 9154 * returns 'true' if there are still fragments left on the queue, in 9155 * which case we restart the timer. 9156 */ 9157 void 9158 ill_frag_timer(void *arg) 9159 { 9160 ill_t *ill = (ill_t *)arg; 9161 boolean_t frag_pending; 9162 ip_stack_t *ipst = ill->ill_ipst; 9163 time_t timeout; 9164 9165 mutex_enter(&ill->ill_lock); 9166 ASSERT(!ill->ill_fragtimer_executing); 9167 if (ill->ill_state_flags & ILL_CONDEMNED) { 9168 ill->ill_frag_timer_id = 0; 9169 mutex_exit(&ill->ill_lock); 9170 return; 9171 } 9172 ill->ill_fragtimer_executing = 1; 9173 mutex_exit(&ill->ill_lock); 9174 9175 timeout = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout : 9176 ipst->ips_ip_reassembly_timeout); 9177 9178 frag_pending = ill_frag_timeout(ill, timeout); 9179 9180 /* 9181 * Restart the timer, if we have fragments pending or if someone 9182 * wanted us to be scheduled again. 9183 */ 9184 mutex_enter(&ill->ill_lock); 9185 ill->ill_fragtimer_executing = 0; 9186 ill->ill_frag_timer_id = 0; 9187 if (frag_pending || ill->ill_fragtimer_needrestart) 9188 ill_frag_timer_start(ill); 9189 mutex_exit(&ill->ill_lock); 9190 } 9191 9192 void 9193 ill_frag_timer_start(ill_t *ill) 9194 { 9195 ip_stack_t *ipst = ill->ill_ipst; 9196 clock_t timeo_ms; 9197 9198 ASSERT(MUTEX_HELD(&ill->ill_lock)); 9199 9200 /* If the ill is closing or opening don't proceed */ 9201 if (ill->ill_state_flags & ILL_CONDEMNED) 9202 return; 9203 9204 if (ill->ill_fragtimer_executing) { 9205 /* 9206 * ill_frag_timer is currently executing. Just record the 9207 * the fact that we want the timer to be restarted. 9208 * ill_frag_timer will post a timeout before it returns, 9209 * ensuring it will be called again. 9210 */ 9211 ill->ill_fragtimer_needrestart = 1; 9212 return; 9213 } 9214 9215 if (ill->ill_frag_timer_id == 0) { 9216 timeo_ms = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout : 9217 ipst->ips_ip_reassembly_timeout) * SECONDS; 9218 9219 /* 9220 * The timer is neither running nor is the timeout handler 9221 * executing. Post a timeout so that ill_frag_timer will be 9222 * called 9223 */ 9224 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 9225 MSEC_TO_TICK(timeo_ms >> 1)); 9226 ill->ill_fragtimer_needrestart = 0; 9227 } 9228 } 9229 9230 /* 9231 * Update any source route, record route or timestamp options. 9232 * Check that we are at end of strict source route. 9233 * The options have already been checked for sanity in ip_input_options(). 9234 */ 9235 boolean_t 9236 ip_input_local_options(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira) 9237 { 9238 ipoptp_t opts; 9239 uchar_t *opt; 9240 uint8_t optval; 9241 uint8_t optlen; 9242 ipaddr_t dst; 9243 ipaddr_t ifaddr; 9244 uint32_t ts; 9245 timestruc_t now; 9246 ill_t *ill = ira->ira_ill; 9247 ip_stack_t *ipst = ill->ill_ipst; 9248 9249 ip2dbg(("ip_input_local_options\n")); 9250 9251 for (optval = ipoptp_first(&opts, ipha); 9252 optval != IPOPT_EOL; 9253 optval = ipoptp_next(&opts)) { 9254 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 9255 opt = opts.ipoptp_cur; 9256 optlen = opts.ipoptp_len; 9257 ip2dbg(("ip_input_local_options: opt %d, len %d\n", 9258 optval, optlen)); 9259 switch (optval) { 9260 uint32_t off; 9261 case IPOPT_SSRR: 9262 case IPOPT_LSRR: 9263 off = opt[IPOPT_OFFSET]; 9264 off--; 9265 if (optlen < IP_ADDR_LEN || 9266 off > optlen - IP_ADDR_LEN) { 9267 /* End of source route */ 9268 ip1dbg(("ip_input_local_options: end of SR\n")); 9269 break; 9270 } 9271 /* 9272 * This will only happen if two consecutive entries 9273 * in the source route contains our address or if 9274 * it is a packet with a loose source route which 9275 * reaches us before consuming the whole source route 9276 */ 9277 ip1dbg(("ip_input_local_options: not end of SR\n")); 9278 if (optval == IPOPT_SSRR) { 9279 goto bad_src_route; 9280 } 9281 /* 9282 * Hack: instead of dropping the packet truncate the 9283 * source route to what has been used by filling the 9284 * rest with IPOPT_NOP. 9285 */ 9286 opt[IPOPT_OLEN] = (uint8_t)off; 9287 while (off < optlen) { 9288 opt[off++] = IPOPT_NOP; 9289 } 9290 break; 9291 case IPOPT_RR: 9292 off = opt[IPOPT_OFFSET]; 9293 off--; 9294 if (optlen < IP_ADDR_LEN || 9295 off > optlen - IP_ADDR_LEN) { 9296 /* No more room - ignore */ 9297 ip1dbg(( 9298 "ip_input_local_options: end of RR\n")); 9299 break; 9300 } 9301 /* Pick a reasonable address on the outbound if */ 9302 if (ip_select_source_v4(ill, INADDR_ANY, ipha->ipha_dst, 9303 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL, 9304 NULL) != 0) { 9305 /* No source! Shouldn't happen */ 9306 ifaddr = INADDR_ANY; 9307 } 9308 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9309 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9310 break; 9311 case IPOPT_TS: 9312 /* Insert timestamp if there is romm */ 9313 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9314 case IPOPT_TS_TSONLY: 9315 off = IPOPT_TS_TIMELEN; 9316 break; 9317 case IPOPT_TS_PRESPEC: 9318 case IPOPT_TS_PRESPEC_RFC791: 9319 /* Verify that the address matched */ 9320 off = opt[IPOPT_OFFSET] - 1; 9321 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9322 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9323 /* Not for us */ 9324 break; 9325 } 9326 /* FALLTHRU */ 9327 case IPOPT_TS_TSANDADDR: 9328 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 9329 break; 9330 default: 9331 /* 9332 * ip_*put_options should have already 9333 * dropped this packet. 9334 */ 9335 cmn_err(CE_PANIC, "ip_input_local_options: " 9336 "unknown IT - bug in ip_input_options?\n"); 9337 return (B_TRUE); /* Keep "lint" happy */ 9338 } 9339 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 9340 /* Increase overflow counter */ 9341 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 9342 opt[IPOPT_POS_OV_FLG] = 9343 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 9344 (off << 4)); 9345 break; 9346 } 9347 off = opt[IPOPT_OFFSET] - 1; 9348 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9349 case IPOPT_TS_PRESPEC: 9350 case IPOPT_TS_PRESPEC_RFC791: 9351 case IPOPT_TS_TSANDADDR: 9352 /* Pick a reasonable addr on the outbound if */ 9353 if (ip_select_source_v4(ill, INADDR_ANY, 9354 ipha->ipha_dst, INADDR_ANY, ALL_ZONES, ipst, 9355 &ifaddr, NULL, NULL) != 0) { 9356 /* No source! Shouldn't happen */ 9357 ifaddr = INADDR_ANY; 9358 } 9359 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9360 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9361 /* FALLTHRU */ 9362 case IPOPT_TS_TSONLY: 9363 off = opt[IPOPT_OFFSET] - 1; 9364 /* Compute # of milliseconds since midnight */ 9365 gethrestime(&now); 9366 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 9367 NSEC2MSEC(now.tv_nsec); 9368 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 9369 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 9370 break; 9371 } 9372 break; 9373 } 9374 } 9375 return (B_TRUE); 9376 9377 bad_src_route: 9378 /* make sure we clear any indication of a hardware checksum */ 9379 DB_CKSUMFLAGS(mp) = 0; 9380 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill); 9381 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira); 9382 return (B_FALSE); 9383 9384 } 9385 9386 /* 9387 * Process IP options in an inbound packet. Always returns the nexthop. 9388 * Normally this is the passed in nexthop, but if there is an option 9389 * that effects the nexthop (such as a source route) that will be returned. 9390 * Sets *errorp if there is an error, in which case an ICMP error has been sent 9391 * and mp freed. 9392 */ 9393 ipaddr_t 9394 ip_input_options(ipha_t *ipha, ipaddr_t dst, mblk_t *mp, 9395 ip_recv_attr_t *ira, int *errorp) 9396 { 9397 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 9398 ipoptp_t opts; 9399 uchar_t *opt; 9400 uint8_t optval; 9401 uint8_t optlen; 9402 intptr_t code = 0; 9403 ire_t *ire; 9404 9405 ip2dbg(("ip_input_options\n")); 9406 *errorp = 0; 9407 for (optval = ipoptp_first(&opts, ipha); 9408 optval != IPOPT_EOL; 9409 optval = ipoptp_next(&opts)) { 9410 opt = opts.ipoptp_cur; 9411 optlen = opts.ipoptp_len; 9412 ip2dbg(("ip_input_options: opt %d, len %d\n", 9413 optval, optlen)); 9414 /* 9415 * Note: we need to verify the checksum before we 9416 * modify anything thus this routine only extracts the next 9417 * hop dst from any source route. 9418 */ 9419 switch (optval) { 9420 uint32_t off; 9421 case IPOPT_SSRR: 9422 case IPOPT_LSRR: 9423 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9424 if (optval == IPOPT_SSRR) { 9425 ip1dbg(("ip_input_options: not next" 9426 " strict source route 0x%x\n", 9427 ntohl(dst))); 9428 code = (char *)&ipha->ipha_dst - 9429 (char *)ipha; 9430 goto param_prob; /* RouterReq's */ 9431 } 9432 ip2dbg(("ip_input_options: " 9433 "not next source route 0x%x\n", 9434 ntohl(dst))); 9435 break; 9436 } 9437 9438 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 9439 ip1dbg(( 9440 "ip_input_options: bad option offset\n")); 9441 code = (char *)&opt[IPOPT_OLEN] - 9442 (char *)ipha; 9443 goto param_prob; 9444 } 9445 off = opt[IPOPT_OFFSET]; 9446 off--; 9447 redo_srr: 9448 if (optlen < IP_ADDR_LEN || 9449 off > optlen - IP_ADDR_LEN) { 9450 /* End of source route */ 9451 ip1dbg(("ip_input_options: end of SR\n")); 9452 break; 9453 } 9454 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9455 ip1dbg(("ip_input_options: next hop 0x%x\n", 9456 ntohl(dst))); 9457 9458 /* 9459 * Check if our address is present more than 9460 * once as consecutive hops in source route. 9461 * XXX verify per-interface ip_forwarding 9462 * for source route? 9463 */ 9464 if (ip_type_v4(dst, ipst) == IRE_LOCAL) { 9465 off += IP_ADDR_LEN; 9466 goto redo_srr; 9467 } 9468 9469 if (dst == htonl(INADDR_LOOPBACK)) { 9470 ip1dbg(("ip_input_options: loopback addr in " 9471 "source route!\n")); 9472 goto bad_src_route; 9473 } 9474 /* 9475 * For strict: verify that dst is directly 9476 * reachable. 9477 */ 9478 if (optval == IPOPT_SSRR) { 9479 ire = ire_ftable_lookup_v4(dst, 0, 0, 9480 IRE_INTERFACE, NULL, ALL_ZONES, 9481 ira->ira_tsl, 9482 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst, 9483 NULL); 9484 if (ire == NULL) { 9485 ip1dbg(("ip_input_options: SSRR not " 9486 "directly reachable: 0x%x\n", 9487 ntohl(dst))); 9488 goto bad_src_route; 9489 } 9490 ire_refrele(ire); 9491 } 9492 /* 9493 * Defer update of the offset and the record route 9494 * until the packet is forwarded. 9495 */ 9496 break; 9497 case IPOPT_RR: 9498 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 9499 ip1dbg(( 9500 "ip_input_options: bad option offset\n")); 9501 code = (char *)&opt[IPOPT_OLEN] - 9502 (char *)ipha; 9503 goto param_prob; 9504 } 9505 break; 9506 case IPOPT_TS: 9507 /* 9508 * Verify that length >= 5 and that there is either 9509 * room for another timestamp or that the overflow 9510 * counter is not maxed out. 9511 */ 9512 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 9513 if (optlen < IPOPT_MINLEN_IT) { 9514 goto param_prob; 9515 } 9516 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 9517 ip1dbg(( 9518 "ip_input_options: bad option offset\n")); 9519 code = (char *)&opt[IPOPT_OFFSET] - 9520 (char *)ipha; 9521 goto param_prob; 9522 } 9523 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9524 case IPOPT_TS_TSONLY: 9525 off = IPOPT_TS_TIMELEN; 9526 break; 9527 case IPOPT_TS_TSANDADDR: 9528 case IPOPT_TS_PRESPEC: 9529 case IPOPT_TS_PRESPEC_RFC791: 9530 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 9531 break; 9532 default: 9533 code = (char *)&opt[IPOPT_POS_OV_FLG] - 9534 (char *)ipha; 9535 goto param_prob; 9536 } 9537 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 9538 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 9539 /* 9540 * No room and the overflow counter is 15 9541 * already. 9542 */ 9543 goto param_prob; 9544 } 9545 break; 9546 } 9547 } 9548 9549 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 9550 return (dst); 9551 } 9552 9553 ip1dbg(("ip_input_options: error processing IP options.")); 9554 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 9555 9556 param_prob: 9557 /* make sure we clear any indication of a hardware checksum */ 9558 DB_CKSUMFLAGS(mp) = 0; 9559 ip_drop_input("ICMP_PARAM_PROBLEM", mp, ira->ira_ill); 9560 icmp_param_problem(mp, (uint8_t)code, ira); 9561 *errorp = -1; 9562 return (dst); 9563 9564 bad_src_route: 9565 /* make sure we clear any indication of a hardware checksum */ 9566 DB_CKSUMFLAGS(mp) = 0; 9567 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ira->ira_ill); 9568 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira); 9569 *errorp = -1; 9570 return (dst); 9571 } 9572 9573 /* 9574 * IP & ICMP info in >=14 msg's ... 9575 * - ip fixed part (mib2_ip_t) 9576 * - icmp fixed part (mib2_icmp_t) 9577 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 9578 * - ipRouteEntryTable (ip 21) all IPv4 IREs 9579 * - ipNetToMediaEntryTable (ip 22) all IPv4 Neighbor Cache entries 9580 * - ipRouteAttributeTable (ip 102) labeled routes 9581 * - ip multicast membership (ip_member_t) 9582 * - ip multicast source filtering (ip_grpsrc_t) 9583 * - igmp fixed part (struct igmpstat) 9584 * - multicast routing stats (struct mrtstat) 9585 * - multicast routing vifs (array of struct vifctl) 9586 * - multicast routing routes (array of struct mfcctl) 9587 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 9588 * One per ill plus one generic 9589 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 9590 * One per ill plus one generic 9591 * - ipv6RouteEntry all IPv6 IREs 9592 * - ipv6RouteAttributeTable (ip6 102) labeled routes 9593 * - ipv6NetToMediaEntry all IPv6 Neighbor Cache entries 9594 * - ipv6AddrEntry all IPv6 ipifs 9595 * - ipv6 multicast membership (ipv6_member_t) 9596 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 9597 * 9598 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 9599 * already filled in by the caller. 9600 * If legacy_req is true then MIB structures needs to be truncated to their 9601 * legacy sizes before being returned. 9602 * Return value of 0 indicates that no messages were sent and caller 9603 * should free mpctl. 9604 */ 9605 int 9606 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level, boolean_t legacy_req) 9607 { 9608 ip_stack_t *ipst; 9609 sctp_stack_t *sctps; 9610 9611 if (q->q_next != NULL) { 9612 ipst = ILLQ_TO_IPST(q); 9613 } else { 9614 ipst = CONNQ_TO_IPST(q); 9615 } 9616 ASSERT(ipst != NULL); 9617 sctps = ipst->ips_netstack->netstack_sctp; 9618 9619 if (mpctl == NULL || mpctl->b_cont == NULL) { 9620 return (0); 9621 } 9622 9623 /* 9624 * For the purposes of the (broken) packet shell use 9625 * of the level we make sure MIB2_TCP/MIB2_UDP can be used 9626 * to make TCP and UDP appear first in the list of mib items. 9627 * TBD: We could expand this and use it in netstat so that 9628 * the kernel doesn't have to produce large tables (connections, 9629 * routes, etc) when netstat only wants the statistics or a particular 9630 * table. 9631 */ 9632 if (!(level == MIB2_TCP || level == MIB2_UDP)) { 9633 if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) { 9634 return (1); 9635 } 9636 } 9637 9638 if (level != MIB2_TCP) { 9639 if ((mpctl = udp_snmp_get(q, mpctl, legacy_req)) == NULL) { 9640 return (1); 9641 } 9642 } 9643 9644 if (level != MIB2_UDP) { 9645 if ((mpctl = tcp_snmp_get(q, mpctl, legacy_req)) == NULL) { 9646 return (1); 9647 } 9648 } 9649 9650 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 9651 ipst, legacy_req)) == NULL) { 9652 return (1); 9653 } 9654 9655 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst, 9656 legacy_req)) == NULL) { 9657 return (1); 9658 } 9659 9660 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 9661 return (1); 9662 } 9663 9664 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 9665 return (1); 9666 } 9667 9668 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 9669 return (1); 9670 } 9671 9672 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 9673 return (1); 9674 } 9675 9676 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst, 9677 legacy_req)) == NULL) { 9678 return (1); 9679 } 9680 9681 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst, 9682 legacy_req)) == NULL) { 9683 return (1); 9684 } 9685 9686 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 9687 return (1); 9688 } 9689 9690 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 9691 return (1); 9692 } 9693 9694 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 9695 return (1); 9696 } 9697 9698 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 9699 return (1); 9700 } 9701 9702 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 9703 return (1); 9704 } 9705 9706 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 9707 return (1); 9708 } 9709 9710 mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, level, ipst); 9711 if (mpctl == NULL) 9712 return (1); 9713 9714 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, level, ipst); 9715 if (mpctl == NULL) 9716 return (1); 9717 9718 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 9719 return (1); 9720 } 9721 if ((mpctl = ip_snmp_get_mib2_ip_dce(q, mpctl, ipst)) == NULL) { 9722 return (1); 9723 } 9724 freemsg(mpctl); 9725 return (1); 9726 } 9727 9728 /* Get global (legacy) IPv4 statistics */ 9729 static mblk_t * 9730 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 9731 ip_stack_t *ipst, boolean_t legacy_req) 9732 { 9733 mib2_ip_t old_ip_mib; 9734 struct opthdr *optp; 9735 mblk_t *mp2ctl; 9736 mib2_ipAddrEntry_t mae; 9737 9738 /* 9739 * make a copy of the original message 9740 */ 9741 mp2ctl = copymsg(mpctl); 9742 9743 /* fixed length IP structure... */ 9744 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9745 optp->level = MIB2_IP; 9746 optp->name = 0; 9747 SET_MIB(old_ip_mib.ipForwarding, 9748 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 9749 SET_MIB(old_ip_mib.ipDefaultTTL, 9750 (uint32_t)ipst->ips_ip_def_ttl); 9751 SET_MIB(old_ip_mib.ipReasmTimeout, 9752 ipst->ips_ip_reassembly_timeout); 9753 SET_MIB(old_ip_mib.ipAddrEntrySize, 9754 (legacy_req) ? LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t) : 9755 sizeof (mib2_ipAddrEntry_t)); 9756 SET_MIB(old_ip_mib.ipRouteEntrySize, 9757 sizeof (mib2_ipRouteEntry_t)); 9758 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 9759 sizeof (mib2_ipNetToMediaEntry_t)); 9760 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 9761 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 9762 SET_MIB(old_ip_mib.ipRouteAttributeSize, 9763 sizeof (mib2_ipAttributeEntry_t)); 9764 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 9765 SET_MIB(old_ip_mib.ipDestEntrySize, sizeof (dest_cache_entry_t)); 9766 9767 /* 9768 * Grab the statistics from the new IP MIB 9769 */ 9770 SET_MIB(old_ip_mib.ipInReceives, 9771 (uint32_t)ipmib->ipIfStatsHCInReceives); 9772 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 9773 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 9774 SET_MIB(old_ip_mib.ipForwDatagrams, 9775 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 9776 SET_MIB(old_ip_mib.ipInUnknownProtos, 9777 ipmib->ipIfStatsInUnknownProtos); 9778 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 9779 SET_MIB(old_ip_mib.ipInDelivers, 9780 (uint32_t)ipmib->ipIfStatsHCInDelivers); 9781 SET_MIB(old_ip_mib.ipOutRequests, 9782 (uint32_t)ipmib->ipIfStatsHCOutRequests); 9783 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 9784 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 9785 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 9786 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 9787 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 9788 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 9789 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 9790 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 9791 9792 /* ipRoutingDiscards is not being used */ 9793 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 9794 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 9795 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 9796 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 9797 SET_MIB(old_ip_mib.ipReasmDuplicates, 9798 ipmib->ipIfStatsReasmDuplicates); 9799 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 9800 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 9801 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 9802 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 9803 SET_MIB(old_ip_mib.rawipInOverflows, 9804 ipmib->rawipIfStatsInOverflows); 9805 9806 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 9807 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 9808 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 9809 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 9810 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 9811 ipmib->ipIfStatsOutSwitchIPVersion); 9812 9813 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 9814 (int)sizeof (old_ip_mib))) { 9815 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 9816 (uint_t)sizeof (old_ip_mib))); 9817 } 9818 9819 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9820 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 9821 (int)optp->level, (int)optp->name, (int)optp->len)); 9822 qreply(q, mpctl); 9823 return (mp2ctl); 9824 } 9825 9826 /* Per interface IPv4 statistics */ 9827 static mblk_t * 9828 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst, 9829 boolean_t legacy_req) 9830 { 9831 struct opthdr *optp; 9832 mblk_t *mp2ctl; 9833 ill_t *ill; 9834 ill_walk_context_t ctx; 9835 mblk_t *mp_tail = NULL; 9836 mib2_ipIfStatsEntry_t global_ip_mib; 9837 mib2_ipAddrEntry_t mae; 9838 9839 /* 9840 * Make a copy of the original message 9841 */ 9842 mp2ctl = copymsg(mpctl); 9843 9844 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9845 optp->level = MIB2_IP; 9846 optp->name = MIB2_IP_TRAFFIC_STATS; 9847 /* Include "unknown interface" ip_mib */ 9848 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 9849 ipst->ips_ip_mib.ipIfStatsIfIndex = 9850 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 9851 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 9852 (ipst->ips_ip_forwarding ? 1 : 2)); 9853 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 9854 (uint32_t)ipst->ips_ip_def_ttl); 9855 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 9856 sizeof (mib2_ipIfStatsEntry_t)); 9857 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 9858 sizeof (mib2_ipAddrEntry_t)); 9859 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 9860 sizeof (mib2_ipRouteEntry_t)); 9861 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 9862 sizeof (mib2_ipNetToMediaEntry_t)); 9863 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 9864 sizeof (ip_member_t)); 9865 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 9866 sizeof (ip_grpsrc_t)); 9867 9868 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 9869 9870 if (legacy_req) { 9871 SET_MIB(global_ip_mib.ipIfStatsAddrEntrySize, 9872 LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t)); 9873 } 9874 9875 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 9876 (char *)&global_ip_mib, (int)sizeof (global_ip_mib))) { 9877 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 9878 "failed to allocate %u bytes\n", 9879 (uint_t)sizeof (global_ip_mib))); 9880 } 9881 9882 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 9883 ill = ILL_START_WALK_V4(&ctx, ipst); 9884 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 9885 ill->ill_ip_mib->ipIfStatsIfIndex = 9886 ill->ill_phyint->phyint_ifindex; 9887 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 9888 (ipst->ips_ip_forwarding ? 1 : 2)); 9889 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 9890 (uint32_t)ipst->ips_ip_def_ttl); 9891 9892 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 9893 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 9894 (char *)ill->ill_ip_mib, 9895 (int)sizeof (*ill->ill_ip_mib))) { 9896 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 9897 "failed to allocate %u bytes\n", 9898 (uint_t)sizeof (*ill->ill_ip_mib))); 9899 } 9900 } 9901 rw_exit(&ipst->ips_ill_g_lock); 9902 9903 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9904 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 9905 "level %d, name %d, len %d\n", 9906 (int)optp->level, (int)optp->name, (int)optp->len)); 9907 qreply(q, mpctl); 9908 9909 if (mp2ctl == NULL) 9910 return (NULL); 9911 9912 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst, 9913 legacy_req)); 9914 } 9915 9916 /* Global IPv4 ICMP statistics */ 9917 static mblk_t * 9918 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9919 { 9920 struct opthdr *optp; 9921 mblk_t *mp2ctl; 9922 9923 /* 9924 * Make a copy of the original message 9925 */ 9926 mp2ctl = copymsg(mpctl); 9927 9928 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9929 optp->level = MIB2_ICMP; 9930 optp->name = 0; 9931 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 9932 (int)sizeof (ipst->ips_icmp_mib))) { 9933 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 9934 (uint_t)sizeof (ipst->ips_icmp_mib))); 9935 } 9936 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9937 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 9938 (int)optp->level, (int)optp->name, (int)optp->len)); 9939 qreply(q, mpctl); 9940 return (mp2ctl); 9941 } 9942 9943 /* Global IPv4 IGMP statistics */ 9944 static mblk_t * 9945 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9946 { 9947 struct opthdr *optp; 9948 mblk_t *mp2ctl; 9949 9950 /* 9951 * make a copy of the original message 9952 */ 9953 mp2ctl = copymsg(mpctl); 9954 9955 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9956 optp->level = EXPER_IGMP; 9957 optp->name = 0; 9958 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 9959 (int)sizeof (ipst->ips_igmpstat))) { 9960 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 9961 (uint_t)sizeof (ipst->ips_igmpstat))); 9962 } 9963 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9964 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 9965 (int)optp->level, (int)optp->name, (int)optp->len)); 9966 qreply(q, mpctl); 9967 return (mp2ctl); 9968 } 9969 9970 /* Global IPv4 Multicast Routing statistics */ 9971 static mblk_t * 9972 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9973 { 9974 struct opthdr *optp; 9975 mblk_t *mp2ctl; 9976 9977 /* 9978 * make a copy of the original message 9979 */ 9980 mp2ctl = copymsg(mpctl); 9981 9982 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9983 optp->level = EXPER_DVMRP; 9984 optp->name = 0; 9985 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 9986 ip0dbg(("ip_mroute_stats: failed\n")); 9987 } 9988 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9989 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 9990 (int)optp->level, (int)optp->name, (int)optp->len)); 9991 qreply(q, mpctl); 9992 return (mp2ctl); 9993 } 9994 9995 /* IPv4 address information */ 9996 static mblk_t * 9997 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst, 9998 boolean_t legacy_req) 9999 { 10000 struct opthdr *optp; 10001 mblk_t *mp2ctl; 10002 mblk_t *mp_tail = NULL; 10003 ill_t *ill; 10004 ipif_t *ipif; 10005 uint_t bitval; 10006 mib2_ipAddrEntry_t mae; 10007 size_t mae_size; 10008 zoneid_t zoneid; 10009 ill_walk_context_t ctx; 10010 10011 /* 10012 * make a copy of the original message 10013 */ 10014 mp2ctl = copymsg(mpctl); 10015 10016 mae_size = (legacy_req) ? LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t) : 10017 sizeof (mib2_ipAddrEntry_t); 10018 10019 /* ipAddrEntryTable */ 10020 10021 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10022 optp->level = MIB2_IP; 10023 optp->name = MIB2_IP_ADDR; 10024 zoneid = Q_TO_CONN(q)->conn_zoneid; 10025 10026 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10027 ill = ILL_START_WALK_V4(&ctx, ipst); 10028 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10029 for (ipif = ill->ill_ipif; ipif != NULL; 10030 ipif = ipif->ipif_next) { 10031 if (ipif->ipif_zoneid != zoneid && 10032 ipif->ipif_zoneid != ALL_ZONES) 10033 continue; 10034 /* Sum of count from dead IRE_LO* and our current */ 10035 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 10036 if (ipif->ipif_ire_local != NULL) { 10037 mae.ipAdEntInfo.ae_ibcnt += 10038 ipif->ipif_ire_local->ire_ib_pkt_count; 10039 } 10040 mae.ipAdEntInfo.ae_obcnt = 0; 10041 mae.ipAdEntInfo.ae_focnt = 0; 10042 10043 ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes, 10044 OCTET_LENGTH); 10045 mae.ipAdEntIfIndex.o_length = 10046 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 10047 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 10048 mae.ipAdEntNetMask = ipif->ipif_net_mask; 10049 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 10050 mae.ipAdEntInfo.ae_subnet_len = 10051 ip_mask_to_plen(ipif->ipif_net_mask); 10052 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_lcl_addr; 10053 for (bitval = 1; 10054 bitval && 10055 !(bitval & ipif->ipif_brd_addr); 10056 bitval <<= 1) 10057 noop; 10058 mae.ipAdEntBcastAddr = bitval; 10059 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 10060 mae.ipAdEntInfo.ae_mtu = ipif->ipif_ill->ill_mtu; 10061 mae.ipAdEntInfo.ae_metric = ipif->ipif_ill->ill_metric; 10062 mae.ipAdEntInfo.ae_broadcast_addr = 10063 ipif->ipif_brd_addr; 10064 mae.ipAdEntInfo.ae_pp_dst_addr = 10065 ipif->ipif_pp_dst_addr; 10066 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 10067 ill->ill_flags | ill->ill_phyint->phyint_flags; 10068 mae.ipAdEntRetransmitTime = 10069 ill->ill_reachable_retrans_time; 10070 10071 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10072 (char *)&mae, (int)mae_size)) { 10073 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 10074 "allocate %u bytes\n", (uint_t)mae_size)); 10075 } 10076 } 10077 } 10078 rw_exit(&ipst->ips_ill_g_lock); 10079 10080 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10081 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 10082 (int)optp->level, (int)optp->name, (int)optp->len)); 10083 qreply(q, mpctl); 10084 return (mp2ctl); 10085 } 10086 10087 /* IPv6 address information */ 10088 static mblk_t * 10089 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst, 10090 boolean_t legacy_req) 10091 { 10092 struct opthdr *optp; 10093 mblk_t *mp2ctl; 10094 mblk_t *mp_tail = NULL; 10095 ill_t *ill; 10096 ipif_t *ipif; 10097 mib2_ipv6AddrEntry_t mae6; 10098 size_t mae6_size; 10099 zoneid_t zoneid; 10100 ill_walk_context_t ctx; 10101 10102 /* 10103 * make a copy of the original message 10104 */ 10105 mp2ctl = copymsg(mpctl); 10106 10107 mae6_size = (legacy_req) ? 10108 LEGACY_MIB_SIZE(&mae6, mib2_ipv6AddrEntry_t) : 10109 sizeof (mib2_ipv6AddrEntry_t); 10110 10111 /* ipv6AddrEntryTable */ 10112 10113 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10114 optp->level = MIB2_IP6; 10115 optp->name = MIB2_IP6_ADDR; 10116 zoneid = Q_TO_CONN(q)->conn_zoneid; 10117 10118 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10119 ill = ILL_START_WALK_V6(&ctx, ipst); 10120 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10121 for (ipif = ill->ill_ipif; ipif != NULL; 10122 ipif = ipif->ipif_next) { 10123 if (ipif->ipif_zoneid != zoneid && 10124 ipif->ipif_zoneid != ALL_ZONES) 10125 continue; 10126 /* Sum of count from dead IRE_LO* and our current */ 10127 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 10128 if (ipif->ipif_ire_local != NULL) { 10129 mae6.ipv6AddrInfo.ae_ibcnt += 10130 ipif->ipif_ire_local->ire_ib_pkt_count; 10131 } 10132 mae6.ipv6AddrInfo.ae_obcnt = 0; 10133 mae6.ipv6AddrInfo.ae_focnt = 0; 10134 10135 ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes, 10136 OCTET_LENGTH); 10137 mae6.ipv6AddrIfIndex.o_length = 10138 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 10139 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 10140 mae6.ipv6AddrPfxLength = 10141 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 10142 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 10143 mae6.ipv6AddrInfo.ae_subnet_len = 10144 mae6.ipv6AddrPfxLength; 10145 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6lcl_addr; 10146 10147 /* Type: stateless(1), stateful(2), unknown(3) */ 10148 if (ipif->ipif_flags & IPIF_ADDRCONF) 10149 mae6.ipv6AddrType = 1; 10150 else 10151 mae6.ipv6AddrType = 2; 10152 /* Anycast: true(1), false(2) */ 10153 if (ipif->ipif_flags & IPIF_ANYCAST) 10154 mae6.ipv6AddrAnycastFlag = 1; 10155 else 10156 mae6.ipv6AddrAnycastFlag = 2; 10157 10158 /* 10159 * Address status: preferred(1), deprecated(2), 10160 * invalid(3), inaccessible(4), unknown(5) 10161 */ 10162 if (ipif->ipif_flags & IPIF_NOLOCAL) 10163 mae6.ipv6AddrStatus = 3; 10164 else if (ipif->ipif_flags & IPIF_DEPRECATED) 10165 mae6.ipv6AddrStatus = 2; 10166 else 10167 mae6.ipv6AddrStatus = 1; 10168 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_ill->ill_mtu; 10169 mae6.ipv6AddrInfo.ae_metric = 10170 ipif->ipif_ill->ill_metric; 10171 mae6.ipv6AddrInfo.ae_pp_dst_addr = 10172 ipif->ipif_v6pp_dst_addr; 10173 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 10174 ill->ill_flags | ill->ill_phyint->phyint_flags; 10175 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 10176 mae6.ipv6AddrIdentifier = ill->ill_token; 10177 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 10178 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 10179 mae6.ipv6AddrRetransmitTime = 10180 ill->ill_reachable_retrans_time; 10181 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10182 (char *)&mae6, (int)mae6_size)) { 10183 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 10184 "allocate %u bytes\n", 10185 (uint_t)mae6_size)); 10186 } 10187 } 10188 } 10189 rw_exit(&ipst->ips_ill_g_lock); 10190 10191 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10192 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 10193 (int)optp->level, (int)optp->name, (int)optp->len)); 10194 qreply(q, mpctl); 10195 return (mp2ctl); 10196 } 10197 10198 /* IPv4 multicast group membership. */ 10199 static mblk_t * 10200 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10201 { 10202 struct opthdr *optp; 10203 mblk_t *mp2ctl; 10204 ill_t *ill; 10205 ipif_t *ipif; 10206 ilm_t *ilm; 10207 ip_member_t ipm; 10208 mblk_t *mp_tail = NULL; 10209 ill_walk_context_t ctx; 10210 zoneid_t zoneid; 10211 10212 /* 10213 * make a copy of the original message 10214 */ 10215 mp2ctl = copymsg(mpctl); 10216 zoneid = Q_TO_CONN(q)->conn_zoneid; 10217 10218 /* ipGroupMember table */ 10219 optp = (struct opthdr *)&mpctl->b_rptr[ 10220 sizeof (struct T_optmgmt_ack)]; 10221 optp->level = MIB2_IP; 10222 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 10223 10224 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10225 ill = ILL_START_WALK_V4(&ctx, ipst); 10226 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10227 /* Make sure the ill isn't going away. */ 10228 if (!ill_check_and_refhold(ill)) 10229 continue; 10230 rw_exit(&ipst->ips_ill_g_lock); 10231 rw_enter(&ill->ill_mcast_lock, RW_READER); 10232 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10233 if (ilm->ilm_zoneid != zoneid && 10234 ilm->ilm_zoneid != ALL_ZONES) 10235 continue; 10236 10237 /* Is there an ipif for ilm_ifaddr? */ 10238 for (ipif = ill->ill_ipif; ipif != NULL; 10239 ipif = ipif->ipif_next) { 10240 if (!IPIF_IS_CONDEMNED(ipif) && 10241 ipif->ipif_lcl_addr == ilm->ilm_ifaddr && 10242 ilm->ilm_ifaddr != INADDR_ANY) 10243 break; 10244 } 10245 if (ipif != NULL) { 10246 ipif_get_name(ipif, 10247 ipm.ipGroupMemberIfIndex.o_bytes, 10248 OCTET_LENGTH); 10249 } else { 10250 ill_get_name(ill, 10251 ipm.ipGroupMemberIfIndex.o_bytes, 10252 OCTET_LENGTH); 10253 } 10254 ipm.ipGroupMemberIfIndex.o_length = 10255 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 10256 10257 ipm.ipGroupMemberAddress = ilm->ilm_addr; 10258 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 10259 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 10260 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10261 (char *)&ipm, (int)sizeof (ipm))) { 10262 ip1dbg(("ip_snmp_get_mib2_ip_group: " 10263 "failed to allocate %u bytes\n", 10264 (uint_t)sizeof (ipm))); 10265 } 10266 } 10267 rw_exit(&ill->ill_mcast_lock); 10268 ill_refrele(ill); 10269 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10270 } 10271 rw_exit(&ipst->ips_ill_g_lock); 10272 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10273 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10274 (int)optp->level, (int)optp->name, (int)optp->len)); 10275 qreply(q, mpctl); 10276 return (mp2ctl); 10277 } 10278 10279 /* IPv6 multicast group membership. */ 10280 static mblk_t * 10281 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10282 { 10283 struct opthdr *optp; 10284 mblk_t *mp2ctl; 10285 ill_t *ill; 10286 ilm_t *ilm; 10287 ipv6_member_t ipm6; 10288 mblk_t *mp_tail = NULL; 10289 ill_walk_context_t ctx; 10290 zoneid_t zoneid; 10291 10292 /* 10293 * make a copy of the original message 10294 */ 10295 mp2ctl = copymsg(mpctl); 10296 zoneid = Q_TO_CONN(q)->conn_zoneid; 10297 10298 /* ip6GroupMember table */ 10299 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10300 optp->level = MIB2_IP6; 10301 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 10302 10303 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10304 ill = ILL_START_WALK_V6(&ctx, ipst); 10305 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10306 /* Make sure the ill isn't going away. */ 10307 if (!ill_check_and_refhold(ill)) 10308 continue; 10309 rw_exit(&ipst->ips_ill_g_lock); 10310 /* 10311 * Normally we don't have any members on under IPMP interfaces. 10312 * We report them as a debugging aid. 10313 */ 10314 rw_enter(&ill->ill_mcast_lock, RW_READER); 10315 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 10316 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10317 if (ilm->ilm_zoneid != zoneid && 10318 ilm->ilm_zoneid != ALL_ZONES) 10319 continue; /* not this zone */ 10320 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 10321 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 10322 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 10323 if (!snmp_append_data2(mpctl->b_cont, 10324 &mp_tail, 10325 (char *)&ipm6, (int)sizeof (ipm6))) { 10326 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 10327 "failed to allocate %u bytes\n", 10328 (uint_t)sizeof (ipm6))); 10329 } 10330 } 10331 rw_exit(&ill->ill_mcast_lock); 10332 ill_refrele(ill); 10333 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10334 } 10335 rw_exit(&ipst->ips_ill_g_lock); 10336 10337 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10338 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10339 (int)optp->level, (int)optp->name, (int)optp->len)); 10340 qreply(q, mpctl); 10341 return (mp2ctl); 10342 } 10343 10344 /* IP multicast filtered sources */ 10345 static mblk_t * 10346 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10347 { 10348 struct opthdr *optp; 10349 mblk_t *mp2ctl; 10350 ill_t *ill; 10351 ipif_t *ipif; 10352 ilm_t *ilm; 10353 ip_grpsrc_t ips; 10354 mblk_t *mp_tail = NULL; 10355 ill_walk_context_t ctx; 10356 zoneid_t zoneid; 10357 int i; 10358 slist_t *sl; 10359 10360 /* 10361 * make a copy of the original message 10362 */ 10363 mp2ctl = copymsg(mpctl); 10364 zoneid = Q_TO_CONN(q)->conn_zoneid; 10365 10366 /* ipGroupSource table */ 10367 optp = (struct opthdr *)&mpctl->b_rptr[ 10368 sizeof (struct T_optmgmt_ack)]; 10369 optp->level = MIB2_IP; 10370 optp->name = EXPER_IP_GROUP_SOURCES; 10371 10372 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10373 ill = ILL_START_WALK_V4(&ctx, ipst); 10374 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10375 /* Make sure the ill isn't going away. */ 10376 if (!ill_check_and_refhold(ill)) 10377 continue; 10378 rw_exit(&ipst->ips_ill_g_lock); 10379 rw_enter(&ill->ill_mcast_lock, RW_READER); 10380 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10381 sl = ilm->ilm_filter; 10382 if (ilm->ilm_zoneid != zoneid && 10383 ilm->ilm_zoneid != ALL_ZONES) 10384 continue; 10385 if (SLIST_IS_EMPTY(sl)) 10386 continue; 10387 10388 /* Is there an ipif for ilm_ifaddr? */ 10389 for (ipif = ill->ill_ipif; ipif != NULL; 10390 ipif = ipif->ipif_next) { 10391 if (!IPIF_IS_CONDEMNED(ipif) && 10392 ipif->ipif_lcl_addr == ilm->ilm_ifaddr && 10393 ilm->ilm_ifaddr != INADDR_ANY) 10394 break; 10395 } 10396 if (ipif != NULL) { 10397 ipif_get_name(ipif, 10398 ips.ipGroupSourceIfIndex.o_bytes, 10399 OCTET_LENGTH); 10400 } else { 10401 ill_get_name(ill, 10402 ips.ipGroupSourceIfIndex.o_bytes, 10403 OCTET_LENGTH); 10404 } 10405 ips.ipGroupSourceIfIndex.o_length = 10406 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 10407 10408 ips.ipGroupSourceGroup = ilm->ilm_addr; 10409 for (i = 0; i < sl->sl_numsrc; i++) { 10410 if (!IN6_IS_ADDR_V4MAPPED(&sl->sl_addr[i])) 10411 continue; 10412 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 10413 ips.ipGroupSourceAddress); 10414 if (snmp_append_data2(mpctl->b_cont, &mp_tail, 10415 (char *)&ips, (int)sizeof (ips)) == 0) { 10416 ip1dbg(("ip_snmp_get_mib2_ip_group_src:" 10417 " failed to allocate %u bytes\n", 10418 (uint_t)sizeof (ips))); 10419 } 10420 } 10421 } 10422 rw_exit(&ill->ill_mcast_lock); 10423 ill_refrele(ill); 10424 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10425 } 10426 rw_exit(&ipst->ips_ill_g_lock); 10427 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10428 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10429 (int)optp->level, (int)optp->name, (int)optp->len)); 10430 qreply(q, mpctl); 10431 return (mp2ctl); 10432 } 10433 10434 /* IPv6 multicast filtered sources. */ 10435 static mblk_t * 10436 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10437 { 10438 struct opthdr *optp; 10439 mblk_t *mp2ctl; 10440 ill_t *ill; 10441 ilm_t *ilm; 10442 ipv6_grpsrc_t ips6; 10443 mblk_t *mp_tail = NULL; 10444 ill_walk_context_t ctx; 10445 zoneid_t zoneid; 10446 int i; 10447 slist_t *sl; 10448 10449 /* 10450 * make a copy of the original message 10451 */ 10452 mp2ctl = copymsg(mpctl); 10453 zoneid = Q_TO_CONN(q)->conn_zoneid; 10454 10455 /* ip6GroupMember table */ 10456 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10457 optp->level = MIB2_IP6; 10458 optp->name = EXPER_IP6_GROUP_SOURCES; 10459 10460 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10461 ill = ILL_START_WALK_V6(&ctx, ipst); 10462 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10463 /* Make sure the ill isn't going away. */ 10464 if (!ill_check_and_refhold(ill)) 10465 continue; 10466 rw_exit(&ipst->ips_ill_g_lock); 10467 /* 10468 * Normally we don't have any members on under IPMP interfaces. 10469 * We report them as a debugging aid. 10470 */ 10471 rw_enter(&ill->ill_mcast_lock, RW_READER); 10472 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 10473 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10474 sl = ilm->ilm_filter; 10475 if (ilm->ilm_zoneid != zoneid && 10476 ilm->ilm_zoneid != ALL_ZONES) 10477 continue; 10478 if (SLIST_IS_EMPTY(sl)) 10479 continue; 10480 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 10481 for (i = 0; i < sl->sl_numsrc; i++) { 10482 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 10483 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10484 (char *)&ips6, (int)sizeof (ips6))) { 10485 ip1dbg(("ip_snmp_get_mib2_ip6_" 10486 "group_src: failed to allocate " 10487 "%u bytes\n", 10488 (uint_t)sizeof (ips6))); 10489 } 10490 } 10491 } 10492 rw_exit(&ill->ill_mcast_lock); 10493 ill_refrele(ill); 10494 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10495 } 10496 rw_exit(&ipst->ips_ill_g_lock); 10497 10498 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10499 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10500 (int)optp->level, (int)optp->name, (int)optp->len)); 10501 qreply(q, mpctl); 10502 return (mp2ctl); 10503 } 10504 10505 /* Multicast routing virtual interface table. */ 10506 static mblk_t * 10507 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10508 { 10509 struct opthdr *optp; 10510 mblk_t *mp2ctl; 10511 10512 /* 10513 * make a copy of the original message 10514 */ 10515 mp2ctl = copymsg(mpctl); 10516 10517 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10518 optp->level = EXPER_DVMRP; 10519 optp->name = EXPER_DVMRP_VIF; 10520 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 10521 ip0dbg(("ip_mroute_vif: failed\n")); 10522 } 10523 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10524 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 10525 (int)optp->level, (int)optp->name, (int)optp->len)); 10526 qreply(q, mpctl); 10527 return (mp2ctl); 10528 } 10529 10530 /* Multicast routing table. */ 10531 static mblk_t * 10532 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10533 { 10534 struct opthdr *optp; 10535 mblk_t *mp2ctl; 10536 10537 /* 10538 * make a copy of the original message 10539 */ 10540 mp2ctl = copymsg(mpctl); 10541 10542 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10543 optp->level = EXPER_DVMRP; 10544 optp->name = EXPER_DVMRP_MRT; 10545 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 10546 ip0dbg(("ip_mroute_mrt: failed\n")); 10547 } 10548 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10549 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 10550 (int)optp->level, (int)optp->name, (int)optp->len)); 10551 qreply(q, mpctl); 10552 return (mp2ctl); 10553 } 10554 10555 /* 10556 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 10557 * in one IRE walk. 10558 */ 10559 static mblk_t * 10560 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, int level, 10561 ip_stack_t *ipst) 10562 { 10563 struct opthdr *optp; 10564 mblk_t *mp2ctl; /* Returned */ 10565 mblk_t *mp3ctl; /* nettomedia */ 10566 mblk_t *mp4ctl; /* routeattrs */ 10567 iproutedata_t ird; 10568 zoneid_t zoneid; 10569 10570 /* 10571 * make copies of the original message 10572 * - mp2ctl is returned unchanged to the caller for his use 10573 * - mpctl is sent upstream as ipRouteEntryTable 10574 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 10575 * - mp4ctl is sent upstream as ipRouteAttributeTable 10576 */ 10577 mp2ctl = copymsg(mpctl); 10578 mp3ctl = copymsg(mpctl); 10579 mp4ctl = copymsg(mpctl); 10580 if (mp3ctl == NULL || mp4ctl == NULL) { 10581 freemsg(mp4ctl); 10582 freemsg(mp3ctl); 10583 freemsg(mp2ctl); 10584 freemsg(mpctl); 10585 return (NULL); 10586 } 10587 10588 bzero(&ird, sizeof (ird)); 10589 10590 ird.ird_route.lp_head = mpctl->b_cont; 10591 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 10592 ird.ird_attrs.lp_head = mp4ctl->b_cont; 10593 /* 10594 * If the level has been set the special EXPER_IP_AND_ALL_IRES value, 10595 * then also include ire_testhidden IREs and IRE_IF_CLONE. This is 10596 * intended a temporary solution until a proper MIB API is provided 10597 * that provides complete filtering/caller-opt-in. 10598 */ 10599 if (level == EXPER_IP_AND_ALL_IRES) 10600 ird.ird_flags |= IRD_REPORT_ALL; 10601 10602 zoneid = Q_TO_CONN(q)->conn_zoneid; 10603 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 10604 10605 /* ipRouteEntryTable in mpctl */ 10606 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10607 optp->level = MIB2_IP; 10608 optp->name = MIB2_IP_ROUTE; 10609 optp->len = msgdsize(ird.ird_route.lp_head); 10610 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 10611 (int)optp->level, (int)optp->name, (int)optp->len)); 10612 qreply(q, mpctl); 10613 10614 /* ipNetToMediaEntryTable in mp3ctl */ 10615 ncec_walk(NULL, ip_snmp_get2_v4_media, &ird, ipst); 10616 10617 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10618 optp->level = MIB2_IP; 10619 optp->name = MIB2_IP_MEDIA; 10620 optp->len = msgdsize(ird.ird_netmedia.lp_head); 10621 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 10622 (int)optp->level, (int)optp->name, (int)optp->len)); 10623 qreply(q, mp3ctl); 10624 10625 /* ipRouteAttributeTable in mp4ctl */ 10626 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10627 optp->level = MIB2_IP; 10628 optp->name = EXPER_IP_RTATTR; 10629 optp->len = msgdsize(ird.ird_attrs.lp_head); 10630 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 10631 (int)optp->level, (int)optp->name, (int)optp->len)); 10632 if (optp->len == 0) 10633 freemsg(mp4ctl); 10634 else 10635 qreply(q, mp4ctl); 10636 10637 return (mp2ctl); 10638 } 10639 10640 /* 10641 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 10642 * ipv6NetToMediaEntryTable in an NDP walk. 10643 */ 10644 static mblk_t * 10645 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, int level, 10646 ip_stack_t *ipst) 10647 { 10648 struct opthdr *optp; 10649 mblk_t *mp2ctl; /* Returned */ 10650 mblk_t *mp3ctl; /* nettomedia */ 10651 mblk_t *mp4ctl; /* routeattrs */ 10652 iproutedata_t ird; 10653 zoneid_t zoneid; 10654 10655 /* 10656 * make copies of the original message 10657 * - mp2ctl is returned unchanged to the caller for his use 10658 * - mpctl is sent upstream as ipv6RouteEntryTable 10659 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 10660 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 10661 */ 10662 mp2ctl = copymsg(mpctl); 10663 mp3ctl = copymsg(mpctl); 10664 mp4ctl = copymsg(mpctl); 10665 if (mp3ctl == NULL || mp4ctl == NULL) { 10666 freemsg(mp4ctl); 10667 freemsg(mp3ctl); 10668 freemsg(mp2ctl); 10669 freemsg(mpctl); 10670 return (NULL); 10671 } 10672 10673 bzero(&ird, sizeof (ird)); 10674 10675 ird.ird_route.lp_head = mpctl->b_cont; 10676 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 10677 ird.ird_attrs.lp_head = mp4ctl->b_cont; 10678 /* 10679 * If the level has been set the special EXPER_IP_AND_ALL_IRES value, 10680 * then also include ire_testhidden IREs and IRE_IF_CLONE. This is 10681 * intended a temporary solution until a proper MIB API is provided 10682 * that provides complete filtering/caller-opt-in. 10683 */ 10684 if (level == EXPER_IP_AND_ALL_IRES) 10685 ird.ird_flags |= IRD_REPORT_ALL; 10686 10687 zoneid = Q_TO_CONN(q)->conn_zoneid; 10688 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 10689 10690 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10691 optp->level = MIB2_IP6; 10692 optp->name = MIB2_IP6_ROUTE; 10693 optp->len = msgdsize(ird.ird_route.lp_head); 10694 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 10695 (int)optp->level, (int)optp->name, (int)optp->len)); 10696 qreply(q, mpctl); 10697 10698 /* ipv6NetToMediaEntryTable in mp3ctl */ 10699 ncec_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 10700 10701 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10702 optp->level = MIB2_IP6; 10703 optp->name = MIB2_IP6_MEDIA; 10704 optp->len = msgdsize(ird.ird_netmedia.lp_head); 10705 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 10706 (int)optp->level, (int)optp->name, (int)optp->len)); 10707 qreply(q, mp3ctl); 10708 10709 /* ipv6RouteAttributeTable in mp4ctl */ 10710 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10711 optp->level = MIB2_IP6; 10712 optp->name = EXPER_IP_RTATTR; 10713 optp->len = msgdsize(ird.ird_attrs.lp_head); 10714 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 10715 (int)optp->level, (int)optp->name, (int)optp->len)); 10716 if (optp->len == 0) 10717 freemsg(mp4ctl); 10718 else 10719 qreply(q, mp4ctl); 10720 10721 return (mp2ctl); 10722 } 10723 10724 /* 10725 * IPv6 mib: One per ill 10726 */ 10727 static mblk_t * 10728 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst, 10729 boolean_t legacy_req) 10730 { 10731 struct opthdr *optp; 10732 mblk_t *mp2ctl; 10733 ill_t *ill; 10734 ill_walk_context_t ctx; 10735 mblk_t *mp_tail = NULL; 10736 mib2_ipv6AddrEntry_t mae6; 10737 mib2_ipIfStatsEntry_t *ise; 10738 size_t ise_size, iae_size; 10739 10740 /* 10741 * Make a copy of the original message 10742 */ 10743 mp2ctl = copymsg(mpctl); 10744 10745 /* fixed length IPv6 structure ... */ 10746 10747 if (legacy_req) { 10748 ise_size = LEGACY_MIB_SIZE(&ipst->ips_ip6_mib, 10749 mib2_ipIfStatsEntry_t); 10750 iae_size = LEGACY_MIB_SIZE(&mae6, mib2_ipv6AddrEntry_t); 10751 } else { 10752 ise_size = sizeof (mib2_ipIfStatsEntry_t); 10753 iae_size = sizeof (mib2_ipv6AddrEntry_t); 10754 } 10755 10756 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10757 optp->level = MIB2_IP6; 10758 optp->name = 0; 10759 /* Include "unknown interface" ip6_mib */ 10760 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 10761 ipst->ips_ip6_mib.ipIfStatsIfIndex = 10762 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 10763 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 10764 ipst->ips_ipv6_forwarding ? 1 : 2); 10765 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 10766 ipst->ips_ipv6_def_hops); 10767 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 10768 sizeof (mib2_ipIfStatsEntry_t)); 10769 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 10770 sizeof (mib2_ipv6AddrEntry_t)); 10771 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 10772 sizeof (mib2_ipv6RouteEntry_t)); 10773 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 10774 sizeof (mib2_ipv6NetToMediaEntry_t)); 10775 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 10776 sizeof (ipv6_member_t)); 10777 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 10778 sizeof (ipv6_grpsrc_t)); 10779 10780 /* 10781 * Synchronize 64- and 32-bit counters 10782 */ 10783 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 10784 ipIfStatsHCInReceives); 10785 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 10786 ipIfStatsHCInDelivers); 10787 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 10788 ipIfStatsHCOutRequests); 10789 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 10790 ipIfStatsHCOutForwDatagrams); 10791 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 10792 ipIfStatsHCOutMcastPkts); 10793 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 10794 ipIfStatsHCInMcastPkts); 10795 10796 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10797 (char *)&ipst->ips_ip6_mib, (int)ise_size)) { 10798 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 10799 (uint_t)ise_size)); 10800 } else if (legacy_req) { 10801 /* Adjust the EntrySize fields for legacy requests. */ 10802 ise = 10803 (mib2_ipIfStatsEntry_t *)(mp_tail->b_wptr - (int)ise_size); 10804 SET_MIB(ise->ipIfStatsEntrySize, ise_size); 10805 SET_MIB(ise->ipIfStatsAddrEntrySize, iae_size); 10806 } 10807 10808 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10809 ill = ILL_START_WALK_V6(&ctx, ipst); 10810 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10811 ill->ill_ip_mib->ipIfStatsIfIndex = 10812 ill->ill_phyint->phyint_ifindex; 10813 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 10814 ipst->ips_ipv6_forwarding ? 1 : 2); 10815 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 10816 ill->ill_max_hops); 10817 10818 /* 10819 * Synchronize 64- and 32-bit counters 10820 */ 10821 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 10822 ipIfStatsHCInReceives); 10823 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 10824 ipIfStatsHCInDelivers); 10825 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 10826 ipIfStatsHCOutRequests); 10827 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 10828 ipIfStatsHCOutForwDatagrams); 10829 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 10830 ipIfStatsHCOutMcastPkts); 10831 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 10832 ipIfStatsHCInMcastPkts); 10833 10834 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10835 (char *)ill->ill_ip_mib, (int)ise_size)) { 10836 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 10837 "%u bytes\n", (uint_t)ise_size)); 10838 } else if (legacy_req) { 10839 /* Adjust the EntrySize fields for legacy requests. */ 10840 ise = (mib2_ipIfStatsEntry_t *)(mp_tail->b_wptr - 10841 (int)ise_size); 10842 SET_MIB(ise->ipIfStatsEntrySize, ise_size); 10843 SET_MIB(ise->ipIfStatsAddrEntrySize, iae_size); 10844 } 10845 } 10846 rw_exit(&ipst->ips_ill_g_lock); 10847 10848 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10849 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 10850 (int)optp->level, (int)optp->name, (int)optp->len)); 10851 qreply(q, mpctl); 10852 return (mp2ctl); 10853 } 10854 10855 /* 10856 * ICMPv6 mib: One per ill 10857 */ 10858 static mblk_t * 10859 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10860 { 10861 struct opthdr *optp; 10862 mblk_t *mp2ctl; 10863 ill_t *ill; 10864 ill_walk_context_t ctx; 10865 mblk_t *mp_tail = NULL; 10866 /* 10867 * Make a copy of the original message 10868 */ 10869 mp2ctl = copymsg(mpctl); 10870 10871 /* fixed length ICMPv6 structure ... */ 10872 10873 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10874 optp->level = MIB2_ICMP6; 10875 optp->name = 0; 10876 /* Include "unknown interface" icmp6_mib */ 10877 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 10878 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 10879 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 10880 sizeof (mib2_ipv6IfIcmpEntry_t); 10881 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10882 (char *)&ipst->ips_icmp6_mib, 10883 (int)sizeof (ipst->ips_icmp6_mib))) { 10884 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 10885 (uint_t)sizeof (ipst->ips_icmp6_mib))); 10886 } 10887 10888 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10889 ill = ILL_START_WALK_V6(&ctx, ipst); 10890 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10891 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 10892 ill->ill_phyint->phyint_ifindex; 10893 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10894 (char *)ill->ill_icmp6_mib, 10895 (int)sizeof (*ill->ill_icmp6_mib))) { 10896 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 10897 "%u bytes\n", 10898 (uint_t)sizeof (*ill->ill_icmp6_mib))); 10899 } 10900 } 10901 rw_exit(&ipst->ips_ill_g_lock); 10902 10903 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10904 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 10905 (int)optp->level, (int)optp->name, (int)optp->len)); 10906 qreply(q, mpctl); 10907 return (mp2ctl); 10908 } 10909 10910 /* 10911 * ire_walk routine to create both ipRouteEntryTable and 10912 * ipRouteAttributeTable in one IRE walk 10913 */ 10914 static void 10915 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 10916 { 10917 ill_t *ill; 10918 mib2_ipRouteEntry_t *re; 10919 mib2_ipAttributeEntry_t iaes; 10920 tsol_ire_gw_secattr_t *attrp; 10921 tsol_gc_t *gc = NULL; 10922 tsol_gcgrp_t *gcgrp = NULL; 10923 ip_stack_t *ipst = ire->ire_ipst; 10924 10925 ASSERT(ire->ire_ipversion == IPV4_VERSION); 10926 10927 if (!(ird->ird_flags & IRD_REPORT_ALL)) { 10928 if (ire->ire_testhidden) 10929 return; 10930 if (ire->ire_type & IRE_IF_CLONE) 10931 return; 10932 } 10933 10934 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 10935 return; 10936 10937 if ((attrp = ire->ire_gw_secattr) != NULL) { 10938 mutex_enter(&attrp->igsa_lock); 10939 if ((gc = attrp->igsa_gc) != NULL) { 10940 gcgrp = gc->gc_grp; 10941 ASSERT(gcgrp != NULL); 10942 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 10943 } 10944 mutex_exit(&attrp->igsa_lock); 10945 } 10946 /* 10947 * Return all IRE types for route table... let caller pick and choose 10948 */ 10949 re->ipRouteDest = ire->ire_addr; 10950 ill = ire->ire_ill; 10951 re->ipRouteIfIndex.o_length = 0; 10952 if (ill != NULL) { 10953 ill_get_name(ill, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH); 10954 re->ipRouteIfIndex.o_length = 10955 mi_strlen(re->ipRouteIfIndex.o_bytes); 10956 } 10957 re->ipRouteMetric1 = -1; 10958 re->ipRouteMetric2 = -1; 10959 re->ipRouteMetric3 = -1; 10960 re->ipRouteMetric4 = -1; 10961 10962 re->ipRouteNextHop = ire->ire_gateway_addr; 10963 /* indirect(4), direct(3), or invalid(2) */ 10964 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 10965 re->ipRouteType = 2; 10966 else if (ire->ire_type & IRE_ONLINK) 10967 re->ipRouteType = 3; 10968 else 10969 re->ipRouteType = 4; 10970 10971 re->ipRouteProto = -1; 10972 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 10973 re->ipRouteMask = ire->ire_mask; 10974 re->ipRouteMetric5 = -1; 10975 re->ipRouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu; 10976 if (ire->ire_ill != NULL && re->ipRouteInfo.re_max_frag == 0) 10977 re->ipRouteInfo.re_max_frag = ire->ire_ill->ill_mtu; 10978 10979 re->ipRouteInfo.re_frag_flag = 0; 10980 re->ipRouteInfo.re_rtt = 0; 10981 re->ipRouteInfo.re_src_addr = 0; 10982 re->ipRouteInfo.re_ref = ire->ire_refcnt; 10983 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 10984 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 10985 re->ipRouteInfo.re_flags = ire->ire_flags; 10986 10987 /* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */ 10988 if (ire->ire_type & IRE_INTERFACE) { 10989 ire_t *child; 10990 10991 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 10992 child = ire->ire_dep_children; 10993 while (child != NULL) { 10994 re->ipRouteInfo.re_obpkt += child->ire_ob_pkt_count; 10995 re->ipRouteInfo.re_ibpkt += child->ire_ib_pkt_count; 10996 child = child->ire_dep_sib_next; 10997 } 10998 rw_exit(&ipst->ips_ire_dep_lock); 10999 } 11000 11001 if (ire->ire_flags & RTF_DYNAMIC) { 11002 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 11003 } else { 11004 re->ipRouteInfo.re_ire_type = ire->ire_type; 11005 } 11006 11007 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 11008 (char *)re, (int)sizeof (*re))) { 11009 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 11010 (uint_t)sizeof (*re))); 11011 } 11012 11013 if (gc != NULL) { 11014 iaes.iae_routeidx = ird->ird_idx; 11015 iaes.iae_doi = gc->gc_db->gcdb_doi; 11016 iaes.iae_slrange = gc->gc_db->gcdb_slrange; 11017 11018 if (!snmp_append_data2(ird->ird_attrs.lp_head, 11019 &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) { 11020 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u " 11021 "bytes\n", (uint_t)sizeof (iaes))); 11022 } 11023 } 11024 11025 /* bump route index for next pass */ 11026 ird->ird_idx++; 11027 11028 kmem_free(re, sizeof (*re)); 11029 if (gcgrp != NULL) 11030 rw_exit(&gcgrp->gcgrp_rwlock); 11031 } 11032 11033 /* 11034 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 11035 */ 11036 static void 11037 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 11038 { 11039 ill_t *ill; 11040 mib2_ipv6RouteEntry_t *re; 11041 mib2_ipAttributeEntry_t iaes; 11042 tsol_ire_gw_secattr_t *attrp; 11043 tsol_gc_t *gc = NULL; 11044 tsol_gcgrp_t *gcgrp = NULL; 11045 ip_stack_t *ipst = ire->ire_ipst; 11046 11047 ASSERT(ire->ire_ipversion == IPV6_VERSION); 11048 11049 if (!(ird->ird_flags & IRD_REPORT_ALL)) { 11050 if (ire->ire_testhidden) 11051 return; 11052 if (ire->ire_type & IRE_IF_CLONE) 11053 return; 11054 } 11055 11056 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 11057 return; 11058 11059 if ((attrp = ire->ire_gw_secattr) != NULL) { 11060 mutex_enter(&attrp->igsa_lock); 11061 if ((gc = attrp->igsa_gc) != NULL) { 11062 gcgrp = gc->gc_grp; 11063 ASSERT(gcgrp != NULL); 11064 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 11065 } 11066 mutex_exit(&attrp->igsa_lock); 11067 } 11068 /* 11069 * Return all IRE types for route table... let caller pick and choose 11070 */ 11071 re->ipv6RouteDest = ire->ire_addr_v6; 11072 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 11073 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 11074 re->ipv6RouteIfIndex.o_length = 0; 11075 ill = ire->ire_ill; 11076 if (ill != NULL) { 11077 ill_get_name(ill, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH); 11078 re->ipv6RouteIfIndex.o_length = 11079 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 11080 } 11081 11082 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 11083 11084 mutex_enter(&ire->ire_lock); 11085 re->ipv6RouteNextHop = ire->ire_gateway_addr_v6; 11086 mutex_exit(&ire->ire_lock); 11087 11088 /* remote(4), local(3), or discard(2) */ 11089 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 11090 re->ipv6RouteType = 2; 11091 else if (ire->ire_type & IRE_ONLINK) 11092 re->ipv6RouteType = 3; 11093 else 11094 re->ipv6RouteType = 4; 11095 11096 re->ipv6RouteProtocol = -1; 11097 re->ipv6RoutePolicy = 0; 11098 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 11099 re->ipv6RouteNextHopRDI = 0; 11100 re->ipv6RouteWeight = 0; 11101 re->ipv6RouteMetric = 0; 11102 re->ipv6RouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu; 11103 if (ire->ire_ill != NULL && re->ipv6RouteInfo.re_max_frag == 0) 11104 re->ipv6RouteInfo.re_max_frag = ire->ire_ill->ill_mtu; 11105 11106 re->ipv6RouteInfo.re_frag_flag = 0; 11107 re->ipv6RouteInfo.re_rtt = 0; 11108 re->ipv6RouteInfo.re_src_addr = ipv6_all_zeros; 11109 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 11110 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 11111 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 11112 re->ipv6RouteInfo.re_flags = ire->ire_flags; 11113 11114 /* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */ 11115 if (ire->ire_type & IRE_INTERFACE) { 11116 ire_t *child; 11117 11118 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 11119 child = ire->ire_dep_children; 11120 while (child != NULL) { 11121 re->ipv6RouteInfo.re_obpkt += child->ire_ob_pkt_count; 11122 re->ipv6RouteInfo.re_ibpkt += child->ire_ib_pkt_count; 11123 child = child->ire_dep_sib_next; 11124 } 11125 rw_exit(&ipst->ips_ire_dep_lock); 11126 } 11127 if (ire->ire_flags & RTF_DYNAMIC) { 11128 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 11129 } else { 11130 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 11131 } 11132 11133 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 11134 (char *)re, (int)sizeof (*re))) { 11135 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 11136 (uint_t)sizeof (*re))); 11137 } 11138 11139 if (gc != NULL) { 11140 iaes.iae_routeidx = ird->ird_idx; 11141 iaes.iae_doi = gc->gc_db->gcdb_doi; 11142 iaes.iae_slrange = gc->gc_db->gcdb_slrange; 11143 11144 if (!snmp_append_data2(ird->ird_attrs.lp_head, 11145 &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) { 11146 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u " 11147 "bytes\n", (uint_t)sizeof (iaes))); 11148 } 11149 } 11150 11151 /* bump route index for next pass */ 11152 ird->ird_idx++; 11153 11154 kmem_free(re, sizeof (*re)); 11155 if (gcgrp != NULL) 11156 rw_exit(&gcgrp->gcgrp_rwlock); 11157 } 11158 11159 /* 11160 * ncec_walk routine to create ipv6NetToMediaEntryTable 11161 */ 11162 static int 11163 ip_snmp_get2_v6_media(ncec_t *ncec, iproutedata_t *ird) 11164 { 11165 ill_t *ill; 11166 mib2_ipv6NetToMediaEntry_t ntme; 11167 11168 ill = ncec->ncec_ill; 11169 /* skip arpce entries, and loopback ncec entries */ 11170 if (ill->ill_isv6 == B_FALSE || ill->ill_net_type == IRE_LOOPBACK) 11171 return (0); 11172 /* 11173 * Neighbor cache entry attached to IRE with on-link 11174 * destination. 11175 * We report all IPMP groups on ncec_ill which is normally the upper. 11176 */ 11177 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 11178 ntme.ipv6NetToMediaNetAddress = ncec->ncec_addr; 11179 ntme.ipv6NetToMediaPhysAddress.o_length = ill->ill_phys_addr_length; 11180 if (ncec->ncec_lladdr != NULL) { 11181 bcopy(ncec->ncec_lladdr, ntme.ipv6NetToMediaPhysAddress.o_bytes, 11182 ntme.ipv6NetToMediaPhysAddress.o_length); 11183 } 11184 /* 11185 * Note: Returns ND_* states. Should be: 11186 * reachable(1), stale(2), delay(3), probe(4), 11187 * invalid(5), unknown(6) 11188 */ 11189 ntme.ipv6NetToMediaState = ncec->ncec_state; 11190 ntme.ipv6NetToMediaLastUpdated = 0; 11191 11192 /* other(1), dynamic(2), static(3), local(4) */ 11193 if (NCE_MYADDR(ncec)) { 11194 ntme.ipv6NetToMediaType = 4; 11195 } else if (ncec->ncec_flags & NCE_F_PUBLISH) { 11196 ntme.ipv6NetToMediaType = 1; /* proxy */ 11197 } else if (ncec->ncec_flags & NCE_F_STATIC) { 11198 ntme.ipv6NetToMediaType = 3; 11199 } else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST)) { 11200 ntme.ipv6NetToMediaType = 1; 11201 } else { 11202 ntme.ipv6NetToMediaType = 2; 11203 } 11204 11205 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 11206 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 11207 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 11208 (uint_t)sizeof (ntme))); 11209 } 11210 return (0); 11211 } 11212 11213 int 11214 nce2ace(ncec_t *ncec) 11215 { 11216 int flags = 0; 11217 11218 if (NCE_ISREACHABLE(ncec)) 11219 flags |= ACE_F_RESOLVED; 11220 if (ncec->ncec_flags & NCE_F_AUTHORITY) 11221 flags |= ACE_F_AUTHORITY; 11222 if (ncec->ncec_flags & NCE_F_PUBLISH) 11223 flags |= ACE_F_PUBLISH; 11224 if ((ncec->ncec_flags & NCE_F_NONUD) != 0) 11225 flags |= ACE_F_PERMANENT; 11226 if (NCE_MYADDR(ncec)) 11227 flags |= (ACE_F_MYADDR | ACE_F_AUTHORITY); 11228 if (ncec->ncec_flags & NCE_F_UNVERIFIED) 11229 flags |= ACE_F_UNVERIFIED; 11230 if (ncec->ncec_flags & NCE_F_AUTHORITY) 11231 flags |= ACE_F_AUTHORITY; 11232 if (ncec->ncec_flags & NCE_F_DELAYED) 11233 flags |= ACE_F_DELAYED; 11234 return (flags); 11235 } 11236 11237 /* 11238 * ncec_walk routine to create ipNetToMediaEntryTable 11239 */ 11240 static int 11241 ip_snmp_get2_v4_media(ncec_t *ncec, iproutedata_t *ird) 11242 { 11243 ill_t *ill; 11244 mib2_ipNetToMediaEntry_t ntme; 11245 const char *name = "unknown"; 11246 ipaddr_t ncec_addr; 11247 11248 ill = ncec->ncec_ill; 11249 if (ill->ill_isv6 || (ncec->ncec_flags & NCE_F_BCAST) || 11250 ill->ill_net_type == IRE_LOOPBACK) 11251 return (0); 11252 11253 /* We report all IPMP groups on ncec_ill which is normally the upper. */ 11254 name = ill->ill_name; 11255 /* Based on RFC 4293: other(1), inval(2), dyn(3), stat(4) */ 11256 if (NCE_MYADDR(ncec)) { 11257 ntme.ipNetToMediaType = 4; 11258 } else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST|NCE_F_PUBLISH)) { 11259 ntme.ipNetToMediaType = 1; 11260 } else { 11261 ntme.ipNetToMediaType = 3; 11262 } 11263 ntme.ipNetToMediaIfIndex.o_length = MIN(OCTET_LENGTH, strlen(name)); 11264 bcopy(name, ntme.ipNetToMediaIfIndex.o_bytes, 11265 ntme.ipNetToMediaIfIndex.o_length); 11266 11267 IN6_V4MAPPED_TO_IPADDR(&ncec->ncec_addr, ncec_addr); 11268 bcopy(&ncec_addr, &ntme.ipNetToMediaNetAddress, sizeof (ncec_addr)); 11269 11270 ntme.ipNetToMediaInfo.ntm_mask.o_length = sizeof (ipaddr_t); 11271 ncec_addr = INADDR_BROADCAST; 11272 bcopy(&ncec_addr, ntme.ipNetToMediaInfo.ntm_mask.o_bytes, 11273 sizeof (ncec_addr)); 11274 /* 11275 * map all the flags to the ACE counterpart. 11276 */ 11277 ntme.ipNetToMediaInfo.ntm_flags = nce2ace(ncec); 11278 11279 ntme.ipNetToMediaPhysAddress.o_length = 11280 MIN(OCTET_LENGTH, ill->ill_phys_addr_length); 11281 11282 if (!NCE_ISREACHABLE(ncec)) 11283 ntme.ipNetToMediaPhysAddress.o_length = 0; 11284 else { 11285 if (ncec->ncec_lladdr != NULL) { 11286 bcopy(ncec->ncec_lladdr, 11287 ntme.ipNetToMediaPhysAddress.o_bytes, 11288 ntme.ipNetToMediaPhysAddress.o_length); 11289 } 11290 } 11291 11292 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 11293 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 11294 ip1dbg(("ip_snmp_get2_v4_media: failed to allocate %u bytes\n", 11295 (uint_t)sizeof (ntme))); 11296 } 11297 return (0); 11298 } 11299 11300 /* 11301 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 11302 */ 11303 /* ARGSUSED */ 11304 int 11305 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 11306 { 11307 switch (level) { 11308 case MIB2_IP: 11309 case MIB2_ICMP: 11310 switch (name) { 11311 default: 11312 break; 11313 } 11314 return (1); 11315 default: 11316 return (1); 11317 } 11318 } 11319 11320 /* 11321 * When there exists both a 64- and 32-bit counter of a particular type 11322 * (i.e., InReceives), only the 64-bit counters are added. 11323 */ 11324 void 11325 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 11326 { 11327 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 11328 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 11329 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 11330 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 11331 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 11332 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 11333 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 11334 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 11335 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 11336 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 11337 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 11338 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 11339 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 11340 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 11341 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 11342 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 11343 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 11344 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 11345 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 11346 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 11347 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 11348 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 11349 o2->ipIfStatsInWrongIPVersion); 11350 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 11351 o2->ipIfStatsInWrongIPVersion); 11352 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 11353 o2->ipIfStatsOutSwitchIPVersion); 11354 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 11355 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 11356 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 11357 o2->ipIfStatsHCInForwDatagrams); 11358 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 11359 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 11360 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 11361 o2->ipIfStatsHCOutForwDatagrams); 11362 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 11363 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 11364 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 11365 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 11366 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 11367 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 11368 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 11369 o2->ipIfStatsHCOutMcastOctets); 11370 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 11371 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 11372 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 11373 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 11374 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 11375 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 11376 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 11377 } 11378 11379 void 11380 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 11381 { 11382 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 11383 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 11384 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 11385 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 11386 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 11387 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 11388 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 11389 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 11390 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 11391 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 11392 o2->ipv6IfIcmpInRouterSolicits); 11393 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 11394 o2->ipv6IfIcmpInRouterAdvertisements); 11395 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 11396 o2->ipv6IfIcmpInNeighborSolicits); 11397 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 11398 o2->ipv6IfIcmpInNeighborAdvertisements); 11399 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 11400 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 11401 o2->ipv6IfIcmpInGroupMembQueries); 11402 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 11403 o2->ipv6IfIcmpInGroupMembResponses); 11404 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 11405 o2->ipv6IfIcmpInGroupMembReductions); 11406 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 11407 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 11408 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 11409 o2->ipv6IfIcmpOutDestUnreachs); 11410 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 11411 o2->ipv6IfIcmpOutAdminProhibs); 11412 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 11413 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 11414 o2->ipv6IfIcmpOutParmProblems); 11415 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 11416 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 11417 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 11418 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 11419 o2->ipv6IfIcmpOutRouterSolicits); 11420 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 11421 o2->ipv6IfIcmpOutRouterAdvertisements); 11422 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 11423 o2->ipv6IfIcmpOutNeighborSolicits); 11424 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 11425 o2->ipv6IfIcmpOutNeighborAdvertisements); 11426 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 11427 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 11428 o2->ipv6IfIcmpOutGroupMembQueries); 11429 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 11430 o2->ipv6IfIcmpOutGroupMembResponses); 11431 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 11432 o2->ipv6IfIcmpOutGroupMembReductions); 11433 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 11434 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 11435 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 11436 o2->ipv6IfIcmpInBadNeighborAdvertisements); 11437 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 11438 o2->ipv6IfIcmpInBadNeighborSolicitations); 11439 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 11440 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 11441 o2->ipv6IfIcmpInGroupMembTotal); 11442 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 11443 o2->ipv6IfIcmpInGroupMembBadQueries); 11444 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 11445 o2->ipv6IfIcmpInGroupMembBadReports); 11446 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 11447 o2->ipv6IfIcmpInGroupMembOurReports); 11448 } 11449 11450 /* 11451 * Called before the options are updated to check if this packet will 11452 * be source routed from here. 11453 * This routine assumes that the options are well formed i.e. that they 11454 * have already been checked. 11455 */ 11456 boolean_t 11457 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 11458 { 11459 ipoptp_t opts; 11460 uchar_t *opt; 11461 uint8_t optval; 11462 uint8_t optlen; 11463 ipaddr_t dst; 11464 11465 if (IS_SIMPLE_IPH(ipha)) { 11466 ip2dbg(("not source routed\n")); 11467 return (B_FALSE); 11468 } 11469 dst = ipha->ipha_dst; 11470 for (optval = ipoptp_first(&opts, ipha); 11471 optval != IPOPT_EOL; 11472 optval = ipoptp_next(&opts)) { 11473 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 11474 opt = opts.ipoptp_cur; 11475 optlen = opts.ipoptp_len; 11476 ip2dbg(("ip_source_routed: opt %d, len %d\n", 11477 optval, optlen)); 11478 switch (optval) { 11479 uint32_t off; 11480 case IPOPT_SSRR: 11481 case IPOPT_LSRR: 11482 /* 11483 * If dst is one of our addresses and there are some 11484 * entries left in the source route return (true). 11485 */ 11486 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 11487 ip2dbg(("ip_source_routed: not next" 11488 " source route 0x%x\n", 11489 ntohl(dst))); 11490 return (B_FALSE); 11491 } 11492 off = opt[IPOPT_OFFSET]; 11493 off--; 11494 if (optlen < IP_ADDR_LEN || 11495 off > optlen - IP_ADDR_LEN) { 11496 /* End of source route */ 11497 ip1dbg(("ip_source_routed: end of SR\n")); 11498 return (B_FALSE); 11499 } 11500 return (B_TRUE); 11501 } 11502 } 11503 ip2dbg(("not source routed\n")); 11504 return (B_FALSE); 11505 } 11506 11507 /* 11508 * ip_unbind is called by the transports to remove a conn from 11509 * the fanout table. 11510 */ 11511 void 11512 ip_unbind(conn_t *connp) 11513 { 11514 11515 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 11516 11517 if (is_system_labeled() && connp->conn_anon_port) { 11518 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 11519 connp->conn_mlp_type, connp->conn_proto, 11520 ntohs(connp->conn_lport), B_FALSE); 11521 connp->conn_anon_port = 0; 11522 } 11523 connp->conn_mlp_type = mlptSingle; 11524 11525 ipcl_hash_remove(connp); 11526 } 11527 11528 /* 11529 * Used for deciding the MSS size for the upper layer. Thus 11530 * we need to check the outbound policy values in the conn. 11531 */ 11532 int 11533 conn_ipsec_length(conn_t *connp) 11534 { 11535 ipsec_latch_t *ipl; 11536 11537 ipl = connp->conn_latch; 11538 if (ipl == NULL) 11539 return (0); 11540 11541 if (connp->conn_ixa->ixa_ipsec_policy == NULL) 11542 return (0); 11543 11544 return (connp->conn_ixa->ixa_ipsec_policy->ipsp_act->ipa_ovhd); 11545 } 11546 11547 /* 11548 * Returns an estimate of the IPsec headers size. This is used if 11549 * we don't want to call into IPsec to get the exact size. 11550 */ 11551 int 11552 ipsec_out_extra_length(ip_xmit_attr_t *ixa) 11553 { 11554 ipsec_action_t *a; 11555 11556 if (!(ixa->ixa_flags & IXAF_IPSEC_SECURE)) 11557 return (0); 11558 11559 a = ixa->ixa_ipsec_action; 11560 if (a == NULL) { 11561 ASSERT(ixa->ixa_ipsec_policy != NULL); 11562 a = ixa->ixa_ipsec_policy->ipsp_act; 11563 } 11564 ASSERT(a != NULL); 11565 11566 return (a->ipa_ovhd); 11567 } 11568 11569 /* 11570 * If there are any source route options, return the true final 11571 * destination. Otherwise, return the destination. 11572 */ 11573 ipaddr_t 11574 ip_get_dst(ipha_t *ipha) 11575 { 11576 ipoptp_t opts; 11577 uchar_t *opt; 11578 uint8_t optval; 11579 uint8_t optlen; 11580 ipaddr_t dst; 11581 uint32_t off; 11582 11583 dst = ipha->ipha_dst; 11584 11585 if (IS_SIMPLE_IPH(ipha)) 11586 return (dst); 11587 11588 for (optval = ipoptp_first(&opts, ipha); 11589 optval != IPOPT_EOL; 11590 optval = ipoptp_next(&opts)) { 11591 opt = opts.ipoptp_cur; 11592 optlen = opts.ipoptp_len; 11593 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 11594 switch (optval) { 11595 case IPOPT_SSRR: 11596 case IPOPT_LSRR: 11597 off = opt[IPOPT_OFFSET]; 11598 /* 11599 * If one of the conditions is true, it means 11600 * end of options and dst already has the right 11601 * value. 11602 */ 11603 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 11604 off = optlen - IP_ADDR_LEN; 11605 bcopy(&opt[off], &dst, IP_ADDR_LEN); 11606 } 11607 return (dst); 11608 default: 11609 break; 11610 } 11611 } 11612 11613 return (dst); 11614 } 11615 11616 /* 11617 * Outbound IP fragmentation routine. 11618 * Assumes the caller has checked whether or not fragmentation should 11619 * be allowed. Here we copy the DF bit from the header to all the generated 11620 * fragments. 11621 */ 11622 int 11623 ip_fragment_v4(mblk_t *mp_orig, nce_t *nce, iaflags_t ixaflags, 11624 uint_t pkt_len, uint32_t max_frag, uint32_t xmit_hint, zoneid_t szone, 11625 zoneid_t nolzid, pfirepostfrag_t postfragfn, uintptr_t *ixa_cookie) 11626 { 11627 int i1; 11628 int hdr_len; 11629 mblk_t *hdr_mp; 11630 ipha_t *ipha; 11631 int ip_data_end; 11632 int len; 11633 mblk_t *mp = mp_orig; 11634 int offset; 11635 ill_t *ill = nce->nce_ill; 11636 ip_stack_t *ipst = ill->ill_ipst; 11637 mblk_t *carve_mp; 11638 uint32_t frag_flag; 11639 uint_t priority = mp->b_band; 11640 int error = 0; 11641 11642 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragReqds); 11643 11644 if (pkt_len != msgdsize(mp)) { 11645 ip0dbg(("Packet length mismatch: %d, %ld\n", 11646 pkt_len, msgdsize(mp))); 11647 freemsg(mp); 11648 return (EINVAL); 11649 } 11650 11651 if (max_frag == 0) { 11652 ip1dbg(("ip_fragment_v4: max_frag is zero. Dropping packet\n")); 11653 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11654 ip_drop_output("FragFails: zero max_frag", mp, ill); 11655 freemsg(mp); 11656 return (EINVAL); 11657 } 11658 11659 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 11660 ipha = (ipha_t *)mp->b_rptr; 11661 ASSERT(ntohs(ipha->ipha_length) == pkt_len); 11662 frag_flag = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_DF; 11663 11664 /* 11665 * Establish the starting offset. May not be zero if we are fragging 11666 * a fragment that is being forwarded. 11667 */ 11668 offset = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET; 11669 11670 /* TODO why is this test needed? */ 11671 if (((max_frag - ntohs(ipha->ipha_length)) & ~7) < 8) { 11672 /* TODO: notify ulp somehow */ 11673 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11674 ip_drop_output("FragFails: bad starting offset", mp, ill); 11675 freemsg(mp); 11676 return (EINVAL); 11677 } 11678 11679 hdr_len = IPH_HDR_LENGTH(ipha); 11680 ipha->ipha_hdr_checksum = 0; 11681 11682 /* 11683 * Establish the number of bytes maximum per frag, after putting 11684 * in the header. 11685 */ 11686 len = (max_frag - hdr_len) & ~7; 11687 11688 /* Get a copy of the header for the trailing frags */ 11689 hdr_mp = ip_fragment_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst, 11690 mp); 11691 if (hdr_mp == NULL) { 11692 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11693 ip_drop_output("FragFails: no hdr_mp", mp, ill); 11694 freemsg(mp); 11695 return (ENOBUFS); 11696 } 11697 11698 /* Store the starting offset, with the MoreFrags flag. */ 11699 i1 = offset | IPH_MF | frag_flag; 11700 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 11701 11702 /* Establish the ending byte offset, based on the starting offset. */ 11703 offset <<= 3; 11704 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 11705 11706 /* Store the length of the first fragment in the IP header. */ 11707 i1 = len + hdr_len; 11708 ASSERT(i1 <= IP_MAXPACKET); 11709 ipha->ipha_length = htons((uint16_t)i1); 11710 11711 /* 11712 * Compute the IP header checksum for the first frag. We have to 11713 * watch out that we stop at the end of the header. 11714 */ 11715 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 11716 11717 /* 11718 * Now carve off the first frag. Note that this will include the 11719 * original IP header. 11720 */ 11721 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 11722 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11723 ip_drop_output("FragFails: could not carve mp", mp_orig, ill); 11724 freeb(hdr_mp); 11725 freemsg(mp_orig); 11726 return (ENOBUFS); 11727 } 11728 11729 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates); 11730 11731 error = postfragfn(mp, nce, ixaflags, i1, xmit_hint, szone, nolzid, 11732 ixa_cookie); 11733 if (error != 0 && error != EWOULDBLOCK) { 11734 /* No point in sending the other fragments */ 11735 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11736 ip_drop_output("FragFails: postfragfn failed", mp_orig, ill); 11737 freeb(hdr_mp); 11738 freemsg(mp_orig); 11739 return (error); 11740 } 11741 11742 /* No need to redo state machine in loop */ 11743 ixaflags &= ~IXAF_REACH_CONF; 11744 11745 /* Advance the offset to the second frag starting point. */ 11746 offset += len; 11747 /* 11748 * Update hdr_len from the copied header - there might be less options 11749 * in the later fragments. 11750 */ 11751 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 11752 /* Loop until done. */ 11753 for (;;) { 11754 uint16_t offset_and_flags; 11755 uint16_t ip_len; 11756 11757 if (ip_data_end - offset > len) { 11758 /* 11759 * Carve off the appropriate amount from the original 11760 * datagram. 11761 */ 11762 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 11763 mp = NULL; 11764 break; 11765 } 11766 /* 11767 * More frags after this one. Get another copy 11768 * of the header. 11769 */ 11770 if (carve_mp->b_datap->db_ref == 1 && 11771 hdr_mp->b_wptr - hdr_mp->b_rptr < 11772 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 11773 /* Inline IP header */ 11774 carve_mp->b_rptr -= hdr_mp->b_wptr - 11775 hdr_mp->b_rptr; 11776 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 11777 hdr_mp->b_wptr - hdr_mp->b_rptr); 11778 mp = carve_mp; 11779 } else { 11780 if (!(mp = copyb(hdr_mp))) { 11781 freemsg(carve_mp); 11782 break; 11783 } 11784 /* Get priority marking, if any. */ 11785 mp->b_band = priority; 11786 mp->b_cont = carve_mp; 11787 } 11788 ipha = (ipha_t *)mp->b_rptr; 11789 offset_and_flags = IPH_MF; 11790 } else { 11791 /* 11792 * Last frag. Consume the header. Set len to 11793 * the length of this last piece. 11794 */ 11795 len = ip_data_end - offset; 11796 11797 /* 11798 * Carve off the appropriate amount from the original 11799 * datagram. 11800 */ 11801 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 11802 mp = NULL; 11803 break; 11804 } 11805 if (carve_mp->b_datap->db_ref == 1 && 11806 hdr_mp->b_wptr - hdr_mp->b_rptr < 11807 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 11808 /* Inline IP header */ 11809 carve_mp->b_rptr -= hdr_mp->b_wptr - 11810 hdr_mp->b_rptr; 11811 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 11812 hdr_mp->b_wptr - hdr_mp->b_rptr); 11813 mp = carve_mp; 11814 freeb(hdr_mp); 11815 hdr_mp = mp; 11816 } else { 11817 mp = hdr_mp; 11818 /* Get priority marking, if any. */ 11819 mp->b_band = priority; 11820 mp->b_cont = carve_mp; 11821 } 11822 ipha = (ipha_t *)mp->b_rptr; 11823 /* A frag of a frag might have IPH_MF non-zero */ 11824 offset_and_flags = 11825 ntohs(ipha->ipha_fragment_offset_and_flags) & 11826 IPH_MF; 11827 } 11828 offset_and_flags |= (uint16_t)(offset >> 3); 11829 offset_and_flags |= (uint16_t)frag_flag; 11830 /* Store the offset and flags in the IP header. */ 11831 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 11832 11833 /* Store the length in the IP header. */ 11834 ip_len = (uint16_t)(len + hdr_len); 11835 ipha->ipha_length = htons(ip_len); 11836 11837 /* 11838 * Set the IP header checksum. Note that mp is just 11839 * the header, so this is easy to pass to ip_csum. 11840 */ 11841 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 11842 11843 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates); 11844 11845 error = postfragfn(mp, nce, ixaflags, ip_len, xmit_hint, szone, 11846 nolzid, ixa_cookie); 11847 /* All done if we just consumed the hdr_mp. */ 11848 if (mp == hdr_mp) { 11849 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 11850 return (error); 11851 } 11852 if (error != 0 && error != EWOULDBLOCK) { 11853 DTRACE_PROBE2(ip__xmit__frag__fail, ill_t *, ill, 11854 mblk_t *, hdr_mp); 11855 /* No point in sending the other fragments */ 11856 break; 11857 } 11858 11859 /* Otherwise, advance and loop. */ 11860 offset += len; 11861 } 11862 /* Clean up following allocation failure. */ 11863 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11864 ip_drop_output("FragFails: loop ended", NULL, ill); 11865 if (mp != hdr_mp) 11866 freeb(hdr_mp); 11867 if (mp != mp_orig) 11868 freemsg(mp_orig); 11869 return (error); 11870 } 11871 11872 /* 11873 * Copy the header plus those options which have the copy bit set 11874 */ 11875 static mblk_t * 11876 ip_fragment_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst, 11877 mblk_t *src) 11878 { 11879 mblk_t *mp; 11880 uchar_t *up; 11881 11882 /* 11883 * Quick check if we need to look for options without the copy bit 11884 * set 11885 */ 11886 mp = allocb_tmpl(ipst->ips_ip_wroff_extra + hdr_len, src); 11887 if (!mp) 11888 return (mp); 11889 mp->b_rptr += ipst->ips_ip_wroff_extra; 11890 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 11891 bcopy(rptr, mp->b_rptr, hdr_len); 11892 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 11893 return (mp); 11894 } 11895 up = mp->b_rptr; 11896 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 11897 up += IP_SIMPLE_HDR_LENGTH; 11898 rptr += IP_SIMPLE_HDR_LENGTH; 11899 hdr_len -= IP_SIMPLE_HDR_LENGTH; 11900 while (hdr_len > 0) { 11901 uint32_t optval; 11902 uint32_t optlen; 11903 11904 optval = *rptr; 11905 if (optval == IPOPT_EOL) 11906 break; 11907 if (optval == IPOPT_NOP) 11908 optlen = 1; 11909 else 11910 optlen = rptr[1]; 11911 if (optval & IPOPT_COPY) { 11912 bcopy(rptr, up, optlen); 11913 up += optlen; 11914 } 11915 rptr += optlen; 11916 hdr_len -= optlen; 11917 } 11918 /* 11919 * Make sure that we drop an even number of words by filling 11920 * with EOL to the next word boundary. 11921 */ 11922 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 11923 hdr_len & 0x3; hdr_len++) 11924 *up++ = IPOPT_EOL; 11925 mp->b_wptr = up; 11926 /* Update header length */ 11927 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 11928 return (mp); 11929 } 11930 11931 /* 11932 * Update any source route, record route, or timestamp options when 11933 * sending a packet back to ourselves. 11934 * Check that we are at end of strict source route. 11935 * The options have been sanity checked by ip_output_options(). 11936 */ 11937 void 11938 ip_output_local_options(ipha_t *ipha, ip_stack_t *ipst) 11939 { 11940 ipoptp_t opts; 11941 uchar_t *opt; 11942 uint8_t optval; 11943 uint8_t optlen; 11944 ipaddr_t dst; 11945 uint32_t ts; 11946 timestruc_t now; 11947 11948 for (optval = ipoptp_first(&opts, ipha); 11949 optval != IPOPT_EOL; 11950 optval = ipoptp_next(&opts)) { 11951 opt = opts.ipoptp_cur; 11952 optlen = opts.ipoptp_len; 11953 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 11954 switch (optval) { 11955 uint32_t off; 11956 case IPOPT_SSRR: 11957 case IPOPT_LSRR: 11958 off = opt[IPOPT_OFFSET]; 11959 off--; 11960 if (optlen < IP_ADDR_LEN || 11961 off > optlen - IP_ADDR_LEN) { 11962 /* End of source route */ 11963 break; 11964 } 11965 /* 11966 * This will only happen if two consecutive entries 11967 * in the source route contains our address or if 11968 * it is a packet with a loose source route which 11969 * reaches us before consuming the whole source route 11970 */ 11971 11972 if (optval == IPOPT_SSRR) { 11973 return; 11974 } 11975 /* 11976 * Hack: instead of dropping the packet truncate the 11977 * source route to what has been used by filling the 11978 * rest with IPOPT_NOP. 11979 */ 11980 opt[IPOPT_OLEN] = (uint8_t)off; 11981 while (off < optlen) { 11982 opt[off++] = IPOPT_NOP; 11983 } 11984 break; 11985 case IPOPT_RR: 11986 off = opt[IPOPT_OFFSET]; 11987 off--; 11988 if (optlen < IP_ADDR_LEN || 11989 off > optlen - IP_ADDR_LEN) { 11990 /* No more room - ignore */ 11991 ip1dbg(( 11992 "ip_output_local_options: end of RR\n")); 11993 break; 11994 } 11995 dst = htonl(INADDR_LOOPBACK); 11996 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 11997 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 11998 break; 11999 case IPOPT_TS: 12000 /* Insert timestamp if there is romm */ 12001 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 12002 case IPOPT_TS_TSONLY: 12003 off = IPOPT_TS_TIMELEN; 12004 break; 12005 case IPOPT_TS_PRESPEC: 12006 case IPOPT_TS_PRESPEC_RFC791: 12007 /* Verify that the address matched */ 12008 off = opt[IPOPT_OFFSET] - 1; 12009 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 12010 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 12011 /* Not for us */ 12012 break; 12013 } 12014 /* FALLTHRU */ 12015 case IPOPT_TS_TSANDADDR: 12016 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 12017 break; 12018 default: 12019 /* 12020 * ip_*put_options should have already 12021 * dropped this packet. 12022 */ 12023 cmn_err(CE_PANIC, "ip_output_local_options: " 12024 "unknown IT - bug in ip_output_options?\n"); 12025 return; /* Keep "lint" happy */ 12026 } 12027 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 12028 /* Increase overflow counter */ 12029 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 12030 opt[IPOPT_POS_OV_FLG] = (uint8_t) 12031 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 12032 (off << 4); 12033 break; 12034 } 12035 off = opt[IPOPT_OFFSET] - 1; 12036 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 12037 case IPOPT_TS_PRESPEC: 12038 case IPOPT_TS_PRESPEC_RFC791: 12039 case IPOPT_TS_TSANDADDR: 12040 dst = htonl(INADDR_LOOPBACK); 12041 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 12042 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 12043 /* FALLTHRU */ 12044 case IPOPT_TS_TSONLY: 12045 off = opt[IPOPT_OFFSET] - 1; 12046 /* Compute # of milliseconds since midnight */ 12047 gethrestime(&now); 12048 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 12049 NSEC2MSEC(now.tv_nsec); 12050 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 12051 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 12052 break; 12053 } 12054 break; 12055 } 12056 } 12057 } 12058 12059 /* 12060 * Prepend an M_DATA fastpath header, and if none present prepend a 12061 * DL_UNITDATA_REQ. Frees the mblk on failure. 12062 * 12063 * nce_dlur_mp and nce_fp_mp can not disappear once they have been set. 12064 * If there is a change to them, the nce will be deleted (condemned) and 12065 * a new nce_t will be created when packets are sent. Thus we need no locks 12066 * to access those fields. 12067 * 12068 * We preserve b_band to support IPQoS. If a DL_UNITDATA_REQ is prepended 12069 * we place b_band in dl_priority.dl_max. 12070 */ 12071 static mblk_t * 12072 ip_xmit_attach_llhdr(mblk_t *mp, nce_t *nce) 12073 { 12074 uint_t hlen; 12075 mblk_t *mp1; 12076 uint_t priority; 12077 uchar_t *rptr; 12078 12079 rptr = mp->b_rptr; 12080 12081 ASSERT(DB_TYPE(mp) == M_DATA); 12082 priority = mp->b_band; 12083 12084 ASSERT(nce != NULL); 12085 if ((mp1 = nce->nce_fp_mp) != NULL) { 12086 hlen = MBLKL(mp1); 12087 /* 12088 * Check if we have enough room to prepend fastpath 12089 * header 12090 */ 12091 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 12092 rptr -= hlen; 12093 bcopy(mp1->b_rptr, rptr, hlen); 12094 /* 12095 * Set the b_rptr to the start of the link layer 12096 * header 12097 */ 12098 mp->b_rptr = rptr; 12099 return (mp); 12100 } 12101 mp1 = copyb(mp1); 12102 if (mp1 == NULL) { 12103 ill_t *ill = nce->nce_ill; 12104 12105 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12106 ip_drop_output("ipIfStatsOutDiscards", mp, ill); 12107 freemsg(mp); 12108 return (NULL); 12109 } 12110 mp1->b_band = priority; 12111 mp1->b_cont = mp; 12112 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 12113 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 12114 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 12115 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 12116 DB_LSOMSS(mp1) = DB_LSOMSS(mp); 12117 DTRACE_PROBE1(ip__xmit__copyb, (mblk_t *), mp1); 12118 /* 12119 * XXX disable ICK_VALID and compute checksum 12120 * here; can happen if nce_fp_mp changes and 12121 * it can't be copied now due to insufficient 12122 * space. (unlikely, fp mp can change, but it 12123 * does not increase in length) 12124 */ 12125 return (mp1); 12126 } 12127 mp1 = copyb(nce->nce_dlur_mp); 12128 12129 if (mp1 == NULL) { 12130 ill_t *ill = nce->nce_ill; 12131 12132 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12133 ip_drop_output("ipIfStatsOutDiscards", mp, ill); 12134 freemsg(mp); 12135 return (NULL); 12136 } 12137 mp1->b_cont = mp; 12138 if (priority != 0) { 12139 mp1->b_band = priority; 12140 ((dl_unitdata_req_t *)(mp1->b_rptr))->dl_priority.dl_max = 12141 priority; 12142 } 12143 return (mp1); 12144 } 12145 12146 /* 12147 * Finish the outbound IPsec processing. This function is called from 12148 * ipsec_out_process() if the IPsec packet was processed 12149 * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed 12150 * asynchronously. 12151 * 12152 * This is common to IPv4 and IPv6. 12153 */ 12154 int 12155 ip_output_post_ipsec(mblk_t *mp, ip_xmit_attr_t *ixa) 12156 { 12157 iaflags_t ixaflags = ixa->ixa_flags; 12158 uint_t pktlen; 12159 12160 12161 /* AH/ESP don't update ixa_pktlen when they modify the packet */ 12162 if (ixaflags & IXAF_IS_IPV4) { 12163 ipha_t *ipha = (ipha_t *)mp->b_rptr; 12164 12165 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 12166 pktlen = ntohs(ipha->ipha_length); 12167 } else { 12168 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 12169 12170 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION); 12171 pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN; 12172 } 12173 12174 /* 12175 * We release any hard reference on the SAs here to make 12176 * sure the SAs can be garbage collected. ipsr_sa has a soft reference 12177 * on the SAs. 12178 * If in the future we want the hard latching of the SAs in the 12179 * ip_xmit_attr_t then we should remove this. 12180 */ 12181 if (ixa->ixa_ipsec_esp_sa != NULL) { 12182 IPSA_REFRELE(ixa->ixa_ipsec_esp_sa); 12183 ixa->ixa_ipsec_esp_sa = NULL; 12184 } 12185 if (ixa->ixa_ipsec_ah_sa != NULL) { 12186 IPSA_REFRELE(ixa->ixa_ipsec_ah_sa); 12187 ixa->ixa_ipsec_ah_sa = NULL; 12188 } 12189 12190 /* Do we need to fragment? */ 12191 if ((ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR) || 12192 pktlen > ixa->ixa_fragsize) { 12193 if (ixaflags & IXAF_IS_IPV4) { 12194 ASSERT(!(ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR)); 12195 /* 12196 * We check for the DF case in ipsec_out_process 12197 * hence this only handles the non-DF case. 12198 */ 12199 return (ip_fragment_v4(mp, ixa->ixa_nce, ixa->ixa_flags, 12200 pktlen, ixa->ixa_fragsize, 12201 ixa->ixa_xmit_hint, ixa->ixa_zoneid, 12202 ixa->ixa_no_loop_zoneid, ixa->ixa_postfragfn, 12203 &ixa->ixa_cookie)); 12204 } else { 12205 mp = ip_fraghdr_add_v6(mp, ixa->ixa_ident, ixa); 12206 if (mp == NULL) { 12207 /* MIB and ip_drop_output already done */ 12208 return (ENOMEM); 12209 } 12210 pktlen += sizeof (ip6_frag_t); 12211 if (pktlen > ixa->ixa_fragsize) { 12212 return (ip_fragment_v6(mp, ixa->ixa_nce, 12213 ixa->ixa_flags, pktlen, 12214 ixa->ixa_fragsize, ixa->ixa_xmit_hint, 12215 ixa->ixa_zoneid, ixa->ixa_no_loop_zoneid, 12216 ixa->ixa_postfragfn, &ixa->ixa_cookie)); 12217 } 12218 } 12219 } 12220 return ((ixa->ixa_postfragfn)(mp, ixa->ixa_nce, ixa->ixa_flags, 12221 pktlen, ixa->ixa_xmit_hint, ixa->ixa_zoneid, 12222 ixa->ixa_no_loop_zoneid, NULL)); 12223 } 12224 12225 /* 12226 * Finish the inbound IPsec processing. This function is called from 12227 * ipsec_out_process() if the IPsec packet was processed 12228 * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed 12229 * asynchronously. 12230 * 12231 * This is common to IPv4 and IPv6. 12232 */ 12233 void 12234 ip_input_post_ipsec(mblk_t *mp, ip_recv_attr_t *ira) 12235 { 12236 iaflags_t iraflags = ira->ira_flags; 12237 12238 /* Length might have changed */ 12239 if (iraflags & IRAF_IS_IPV4) { 12240 ipha_t *ipha = (ipha_t *)mp->b_rptr; 12241 12242 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 12243 ira->ira_pktlen = ntohs(ipha->ipha_length); 12244 ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha); 12245 ira->ira_protocol = ipha->ipha_protocol; 12246 12247 ip_fanout_v4(mp, ipha, ira); 12248 } else { 12249 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 12250 uint8_t *nexthdrp; 12251 12252 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION); 12253 ira->ira_pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN; 12254 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ira->ira_ip_hdr_length, 12255 &nexthdrp)) { 12256 /* Malformed packet */ 12257 BUMP_MIB(ira->ira_ill->ill_ip_mib, ipIfStatsInDiscards); 12258 ip_drop_input("ipIfStatsInDiscards", mp, ira->ira_ill); 12259 freemsg(mp); 12260 return; 12261 } 12262 ira->ira_protocol = *nexthdrp; 12263 ip_fanout_v6(mp, ip6h, ira); 12264 } 12265 } 12266 12267 /* 12268 * Select which AH & ESP SA's to use (if any) for the outbound packet. 12269 * 12270 * If this function returns B_TRUE, the requested SA's have been filled 12271 * into the ixa_ipsec_*_sa pointers. 12272 * 12273 * If the function returns B_FALSE, the packet has been "consumed", most 12274 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 12275 * 12276 * The SA references created by the protocol-specific "select" 12277 * function will be released in ip_output_post_ipsec. 12278 */ 12279 static boolean_t 12280 ipsec_out_select_sa(mblk_t *mp, ip_xmit_attr_t *ixa) 12281 { 12282 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 12283 ipsec_policy_t *pp; 12284 ipsec_action_t *ap; 12285 12286 ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE); 12287 ASSERT((ixa->ixa_ipsec_policy != NULL) || 12288 (ixa->ixa_ipsec_action != NULL)); 12289 12290 ap = ixa->ixa_ipsec_action; 12291 if (ap == NULL) { 12292 pp = ixa->ixa_ipsec_policy; 12293 ASSERT(pp != NULL); 12294 ap = pp->ipsp_act; 12295 ASSERT(ap != NULL); 12296 } 12297 12298 /* 12299 * We have an action. now, let's select SA's. 12300 * A side effect of setting ixa_ipsec_*_sa is that it will 12301 * be cached in the conn_t. 12302 */ 12303 if (ap->ipa_want_esp) { 12304 if (ixa->ixa_ipsec_esp_sa == NULL) { 12305 need_esp_acquire = !ipsec_outbound_sa(mp, ixa, 12306 IPPROTO_ESP); 12307 } 12308 ASSERT(need_esp_acquire || ixa->ixa_ipsec_esp_sa != NULL); 12309 } 12310 12311 if (ap->ipa_want_ah) { 12312 if (ixa->ixa_ipsec_ah_sa == NULL) { 12313 need_ah_acquire = !ipsec_outbound_sa(mp, ixa, 12314 IPPROTO_AH); 12315 } 12316 ASSERT(need_ah_acquire || ixa->ixa_ipsec_ah_sa != NULL); 12317 /* 12318 * The ESP and AH processing order needs to be preserved 12319 * when both protocols are required (ESP should be applied 12320 * before AH for an outbound packet). Force an ESP ACQUIRE 12321 * when both ESP and AH are required, and an AH ACQUIRE 12322 * is needed. 12323 */ 12324 if (ap->ipa_want_esp && need_ah_acquire) 12325 need_esp_acquire = B_TRUE; 12326 } 12327 12328 /* 12329 * Send an ACQUIRE (extended, regular, or both) if we need one. 12330 * Release SAs that got referenced, but will not be used until we 12331 * acquire _all_ of the SAs we need. 12332 */ 12333 if (need_ah_acquire || need_esp_acquire) { 12334 if (ixa->ixa_ipsec_ah_sa != NULL) { 12335 IPSA_REFRELE(ixa->ixa_ipsec_ah_sa); 12336 ixa->ixa_ipsec_ah_sa = NULL; 12337 } 12338 if (ixa->ixa_ipsec_esp_sa != NULL) { 12339 IPSA_REFRELE(ixa->ixa_ipsec_esp_sa); 12340 ixa->ixa_ipsec_esp_sa = NULL; 12341 } 12342 12343 sadb_acquire(mp, ixa, need_ah_acquire, need_esp_acquire); 12344 return (B_FALSE); 12345 } 12346 12347 return (B_TRUE); 12348 } 12349 12350 /* 12351 * Handle IPsec output processing. 12352 * This function is only entered once for a given packet. 12353 * We try to do things synchronously, but if we need to have user-level 12354 * set up SAs, or ESP or AH uses asynchronous kEF, then the operation 12355 * will be completed 12356 * - when the SAs are added in esp_add_sa_finish/ah_add_sa_finish 12357 * - when asynchronous ESP is done it will do AH 12358 * 12359 * In all cases we come back in ip_output_post_ipsec() to fragment and 12360 * send out the packet. 12361 */ 12362 int 12363 ipsec_out_process(mblk_t *mp, ip_xmit_attr_t *ixa) 12364 { 12365 ill_t *ill = ixa->ixa_nce->nce_ill; 12366 ip_stack_t *ipst = ixa->ixa_ipst; 12367 ipsec_stack_t *ipss; 12368 ipsec_policy_t *pp; 12369 ipsec_action_t *ap; 12370 12371 ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE); 12372 12373 ASSERT((ixa->ixa_ipsec_policy != NULL) || 12374 (ixa->ixa_ipsec_action != NULL)); 12375 12376 ipss = ipst->ips_netstack->netstack_ipsec; 12377 if (!ipsec_loaded(ipss)) { 12378 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12379 ip_drop_packet(mp, B_TRUE, ill, 12380 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 12381 &ipss->ipsec_dropper); 12382 return (ENOTSUP); 12383 } 12384 12385 ap = ixa->ixa_ipsec_action; 12386 if (ap == NULL) { 12387 pp = ixa->ixa_ipsec_policy; 12388 ASSERT(pp != NULL); 12389 ap = pp->ipsp_act; 12390 ASSERT(ap != NULL); 12391 } 12392 12393 /* Handle explicit drop action and bypass. */ 12394 switch (ap->ipa_act.ipa_type) { 12395 case IPSEC_ACT_DISCARD: 12396 case IPSEC_ACT_REJECT: 12397 ip_drop_packet(mp, B_FALSE, ill, 12398 DROPPER(ipss, ipds_spd_explicit), &ipss->ipsec_spd_dropper); 12399 return (EHOSTUNREACH); /* IPsec policy failure */ 12400 case IPSEC_ACT_BYPASS: 12401 return (ip_output_post_ipsec(mp, ixa)); 12402 } 12403 12404 /* 12405 * The order of processing is first insert a IP header if needed. 12406 * Then insert the ESP header and then the AH header. 12407 */ 12408 if ((ixa->ixa_flags & IXAF_IS_IPV4) && ap->ipa_want_se) { 12409 /* 12410 * First get the outer IP header before sending 12411 * it to ESP. 12412 */ 12413 ipha_t *oipha, *iipha; 12414 mblk_t *outer_mp, *inner_mp; 12415 12416 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 12417 (void) mi_strlog(ill->ill_rq, 0, 12418 SL_ERROR|SL_TRACE|SL_CONSOLE, 12419 "ipsec_out_process: " 12420 "Self-Encapsulation failed: Out of memory\n"); 12421 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12422 ip_drop_output("ipIfStatsOutDiscards", mp, ill); 12423 freemsg(mp); 12424 return (ENOBUFS); 12425 } 12426 inner_mp = mp; 12427 ASSERT(inner_mp->b_datap->db_type == M_DATA); 12428 oipha = (ipha_t *)outer_mp->b_rptr; 12429 iipha = (ipha_t *)inner_mp->b_rptr; 12430 *oipha = *iipha; 12431 outer_mp->b_wptr += sizeof (ipha_t); 12432 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 12433 sizeof (ipha_t)); 12434 oipha->ipha_protocol = IPPROTO_ENCAP; 12435 oipha->ipha_version_and_hdr_length = 12436 IP_SIMPLE_HDR_VERSION; 12437 oipha->ipha_hdr_checksum = 0; 12438 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 12439 outer_mp->b_cont = inner_mp; 12440 mp = outer_mp; 12441 12442 ixa->ixa_flags |= IXAF_IPSEC_TUNNEL; 12443 } 12444 12445 /* If we need to wait for a SA then we can't return any errno */ 12446 if (((ap->ipa_want_ah && (ixa->ixa_ipsec_ah_sa == NULL)) || 12447 (ap->ipa_want_esp && (ixa->ixa_ipsec_esp_sa == NULL))) && 12448 !ipsec_out_select_sa(mp, ixa)) 12449 return (0); 12450 12451 /* 12452 * By now, we know what SA's to use. Toss over to ESP & AH 12453 * to do the heavy lifting. 12454 */ 12455 if (ap->ipa_want_esp) { 12456 ASSERT(ixa->ixa_ipsec_esp_sa != NULL); 12457 12458 mp = ixa->ixa_ipsec_esp_sa->ipsa_output_func(mp, ixa); 12459 if (mp == NULL) { 12460 /* 12461 * Either it failed or is pending. In the former case 12462 * ipIfStatsInDiscards was increased. 12463 */ 12464 return (0); 12465 } 12466 } 12467 12468 if (ap->ipa_want_ah) { 12469 ASSERT(ixa->ixa_ipsec_ah_sa != NULL); 12470 12471 mp = ixa->ixa_ipsec_ah_sa->ipsa_output_func(mp, ixa); 12472 if (mp == NULL) { 12473 /* 12474 * Either it failed or is pending. In the former case 12475 * ipIfStatsInDiscards was increased. 12476 */ 12477 return (0); 12478 } 12479 } 12480 /* 12481 * We are done with IPsec processing. Send it over 12482 * the wire. 12483 */ 12484 return (ip_output_post_ipsec(mp, ixa)); 12485 } 12486 12487 /* 12488 * ioctls that go through a down/up sequence may need to wait for the down 12489 * to complete. This involves waiting for the ire and ipif refcnts to go down 12490 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 12491 */ 12492 /* ARGSUSED */ 12493 void 12494 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 12495 { 12496 struct iocblk *iocp; 12497 mblk_t *mp1; 12498 ip_ioctl_cmd_t *ipip; 12499 int err; 12500 sin_t *sin; 12501 struct lifreq *lifr; 12502 struct ifreq *ifr; 12503 12504 iocp = (struct iocblk *)mp->b_rptr; 12505 ASSERT(ipsq != NULL); 12506 /* Existence of mp1 verified in ip_wput_nondata */ 12507 mp1 = mp->b_cont->b_cont; 12508 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 12509 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 12510 /* 12511 * Special case where ipx_current_ipif is not set: 12512 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 12513 * We are here as were not able to complete the operation in 12514 * ipif_set_values because we could not become exclusive on 12515 * the new ipsq. 12516 */ 12517 ill_t *ill = q->q_ptr; 12518 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 12519 } 12520 ASSERT(ipsq->ipsq_xop->ipx_current_ipif != NULL); 12521 12522 if (ipip->ipi_cmd_type == IF_CMD) { 12523 /* This a old style SIOC[GS]IF* command */ 12524 ifr = (struct ifreq *)mp1->b_rptr; 12525 sin = (sin_t *)&ifr->ifr_addr; 12526 } else if (ipip->ipi_cmd_type == LIF_CMD) { 12527 /* This a new style SIOC[GS]LIF* command */ 12528 lifr = (struct lifreq *)mp1->b_rptr; 12529 sin = (sin_t *)&lifr->lifr_addr; 12530 } else { 12531 sin = NULL; 12532 } 12533 12534 err = (*ipip->ipi_func_restart)(ipsq->ipsq_xop->ipx_current_ipif, sin, 12535 q, mp, ipip, mp1->b_rptr); 12536 12537 DTRACE_PROBE4(ipif__ioctl, char *, "ip_reprocess_ioctl finish", 12538 int, ipip->ipi_cmd, 12539 ill_t *, ipsq->ipsq_xop->ipx_current_ipif->ipif_ill, 12540 ipif_t *, ipsq->ipsq_xop->ipx_current_ipif); 12541 12542 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 12543 } 12544 12545 /* 12546 * ioctl processing 12547 * 12548 * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up 12549 * the ioctl command in the ioctl tables, determines the copyin data size 12550 * from the ipi_copyin_size field, and does an mi_copyin() of that size. 12551 * 12552 * ioctl processing then continues when the M_IOCDATA makes its way down to 12553 * ip_wput_nondata(). The ioctl is looked up again in the ioctl table, its 12554 * associated 'conn' is refheld till the end of the ioctl and the general 12555 * ioctl processing function ip_process_ioctl() is called to extract the 12556 * arguments and process the ioctl. To simplify extraction, ioctl commands 12557 * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a 12558 * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq()) 12559 * is used to extract the ioctl's arguments. 12560 * 12561 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 12562 * so goes thru the serialization primitive ipsq_try_enter. Then the 12563 * appropriate function to handle the ioctl is called based on the entry in 12564 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 12565 * which also refreleases the 'conn' that was refheld at the start of the 12566 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 12567 * 12568 * Many exclusive ioctls go thru an internal down up sequence as part of 12569 * the operation. For example an attempt to change the IP address of an 12570 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 12571 * does all the cleanup such as deleting all ires that use this address. 12572 * Then we need to wait till all references to the interface go away. 12573 */ 12574 void 12575 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 12576 { 12577 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 12578 ip_ioctl_cmd_t *ipip = arg; 12579 ip_extract_func_t *extract_funcp; 12580 cmd_info_t ci; 12581 int err; 12582 boolean_t entered_ipsq = B_FALSE; 12583 12584 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 12585 12586 if (ipip == NULL) 12587 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 12588 12589 /* 12590 * SIOCLIFADDIF needs to go thru a special path since the 12591 * ill may not exist yet. This happens in the case of lo0 12592 * which is created using this ioctl. 12593 */ 12594 if (ipip->ipi_cmd == SIOCLIFADDIF) { 12595 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 12596 DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish", 12597 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL); 12598 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 12599 return; 12600 } 12601 12602 ci.ci_ipif = NULL; 12603 switch (ipip->ipi_cmd_type) { 12604 case MISC_CMD: 12605 case MSFILT_CMD: 12606 /* 12607 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF. 12608 */ 12609 if (ipip->ipi_cmd == IF_UNITSEL) { 12610 /* ioctl comes down the ill */ 12611 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 12612 ipif_refhold(ci.ci_ipif); 12613 } 12614 err = 0; 12615 ci.ci_sin = NULL; 12616 ci.ci_sin6 = NULL; 12617 ci.ci_lifr = NULL; 12618 extract_funcp = NULL; 12619 break; 12620 12621 case IF_CMD: 12622 case LIF_CMD: 12623 extract_funcp = ip_extract_lifreq; 12624 break; 12625 12626 case ARP_CMD: 12627 case XARP_CMD: 12628 extract_funcp = ip_extract_arpreq; 12629 break; 12630 12631 default: 12632 ASSERT(0); 12633 } 12634 12635 if (extract_funcp != NULL) { 12636 err = (*extract_funcp)(q, mp, ipip, &ci); 12637 if (err != 0) { 12638 DTRACE_PROBE4(ipif__ioctl, 12639 char *, "ip_process_ioctl finish err", 12640 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL); 12641 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 12642 return; 12643 } 12644 12645 /* 12646 * All of the extraction functions return a refheld ipif. 12647 */ 12648 ASSERT(ci.ci_ipif != NULL); 12649 } 12650 12651 if (!(ipip->ipi_flags & IPI_WR)) { 12652 /* 12653 * A return value of EINPROGRESS means the ioctl is 12654 * either queued and waiting for some reason or has 12655 * already completed. 12656 */ 12657 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 12658 ci.ci_lifr); 12659 if (ci.ci_ipif != NULL) { 12660 DTRACE_PROBE4(ipif__ioctl, 12661 char *, "ip_process_ioctl finish RD", 12662 int, ipip->ipi_cmd, ill_t *, ci.ci_ipif->ipif_ill, 12663 ipif_t *, ci.ci_ipif); 12664 ipif_refrele(ci.ci_ipif); 12665 } else { 12666 DTRACE_PROBE4(ipif__ioctl, 12667 char *, "ip_process_ioctl finish RD", 12668 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL); 12669 } 12670 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 12671 return; 12672 } 12673 12674 ASSERT(ci.ci_ipif != NULL); 12675 12676 /* 12677 * If ipsq is non-NULL, we are already being called exclusively 12678 */ 12679 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 12680 if (ipsq == NULL) { 12681 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, ip_process_ioctl, 12682 NEW_OP, B_TRUE); 12683 if (ipsq == NULL) { 12684 ipif_refrele(ci.ci_ipif); 12685 return; 12686 } 12687 entered_ipsq = B_TRUE; 12688 } 12689 /* 12690 * Release the ipif so that ipif_down and friends that wait for 12691 * references to go away are not misled about the current ipif_refcnt 12692 * values. We are writer so we can access the ipif even after releasing 12693 * the ipif. 12694 */ 12695 ipif_refrele(ci.ci_ipif); 12696 12697 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 12698 12699 /* 12700 * A return value of EINPROGRESS means the ioctl is 12701 * either queued and waiting for some reason or has 12702 * already completed. 12703 */ 12704 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 12705 12706 DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish WR", 12707 int, ipip->ipi_cmd, 12708 ill_t *, ci.ci_ipif == NULL ? NULL : ci.ci_ipif->ipif_ill, 12709 ipif_t *, ci.ci_ipif); 12710 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 12711 12712 if (entered_ipsq) 12713 ipsq_exit(ipsq); 12714 } 12715 12716 /* 12717 * Complete the ioctl. Typically ioctls use the mi package and need to 12718 * do mi_copyout/mi_copy_done. 12719 */ 12720 void 12721 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 12722 { 12723 conn_t *connp = NULL; 12724 12725 if (err == EINPROGRESS) 12726 return; 12727 12728 if (CONN_Q(q)) { 12729 connp = Q_TO_CONN(q); 12730 ASSERT(connp->conn_ref >= 2); 12731 } 12732 12733 switch (mode) { 12734 case COPYOUT: 12735 if (err == 0) 12736 mi_copyout(q, mp); 12737 else 12738 mi_copy_done(q, mp, err); 12739 break; 12740 12741 case NO_COPYOUT: 12742 mi_copy_done(q, mp, err); 12743 break; 12744 12745 default: 12746 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 12747 break; 12748 } 12749 12750 /* 12751 * The conn refhold and ioctlref placed on the conn at the start of the 12752 * ioctl are released here. 12753 */ 12754 if (connp != NULL) { 12755 CONN_DEC_IOCTLREF(connp); 12756 CONN_OPER_PENDING_DONE(connp); 12757 } 12758 12759 if (ipsq != NULL) 12760 ipsq_current_finish(ipsq); 12761 } 12762 12763 /* Handles all non data messages */ 12764 void 12765 ip_wput_nondata(queue_t *q, mblk_t *mp) 12766 { 12767 mblk_t *mp1; 12768 struct iocblk *iocp; 12769 ip_ioctl_cmd_t *ipip; 12770 conn_t *connp; 12771 cred_t *cr; 12772 char *proto_str; 12773 12774 if (CONN_Q(q)) 12775 connp = Q_TO_CONN(q); 12776 else 12777 connp = NULL; 12778 12779 switch (DB_TYPE(mp)) { 12780 case M_IOCTL: 12781 /* 12782 * IOCTL processing begins in ip_sioctl_copyin_setup which 12783 * will arrange to copy in associated control structures. 12784 */ 12785 ip_sioctl_copyin_setup(q, mp); 12786 return; 12787 case M_IOCDATA: 12788 /* 12789 * Ensure that this is associated with one of our trans- 12790 * parent ioctls. If it's not ours, discard it if we're 12791 * running as a driver, or pass it on if we're a module. 12792 */ 12793 iocp = (struct iocblk *)mp->b_rptr; 12794 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 12795 if (ipip == NULL) { 12796 if (q->q_next == NULL) { 12797 goto nak; 12798 } else { 12799 putnext(q, mp); 12800 } 12801 return; 12802 } 12803 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 12804 /* 12805 * The ioctl is one we recognise, but is not consumed 12806 * by IP as a module and we are a module, so we drop 12807 */ 12808 goto nak; 12809 } 12810 12811 /* IOCTL continuation following copyin or copyout. */ 12812 if (mi_copy_state(q, mp, NULL) == -1) { 12813 /* 12814 * The copy operation failed. mi_copy_state already 12815 * cleaned up, so we're out of here. 12816 */ 12817 return; 12818 } 12819 /* 12820 * If we just completed a copy in, we become writer and 12821 * continue processing in ip_sioctl_copyin_done. If it 12822 * was a copy out, we call mi_copyout again. If there is 12823 * nothing more to copy out, it will complete the IOCTL. 12824 */ 12825 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 12826 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 12827 mi_copy_done(q, mp, EPROTO); 12828 return; 12829 } 12830 /* 12831 * Check for cases that need more copying. A return 12832 * value of 0 means a second copyin has been started, 12833 * so we return; a return value of 1 means no more 12834 * copying is needed, so we continue. 12835 */ 12836 if (ipip->ipi_cmd_type == MSFILT_CMD && 12837 MI_COPY_COUNT(mp) == 1) { 12838 if (ip_copyin_msfilter(q, mp) == 0) 12839 return; 12840 } 12841 /* 12842 * Refhold the conn, till the ioctl completes. This is 12843 * needed in case the ioctl ends up in the pending mp 12844 * list. Every mp in the ipx_pending_mp list must have 12845 * a refhold on the conn to resume processing. The 12846 * refhold is released when the ioctl completes 12847 * (whether normally or abnormally). An ioctlref is also 12848 * placed on the conn to prevent TCP from removing the 12849 * queue needed to send the ioctl reply back. 12850 * In all cases ip_ioctl_finish is called to finish 12851 * the ioctl and release the refholds. 12852 */ 12853 if (connp != NULL) { 12854 /* This is not a reentry */ 12855 CONN_INC_REF(connp); 12856 CONN_INC_IOCTLREF(connp); 12857 } else { 12858 if (!(ipip->ipi_flags & IPI_MODOK)) { 12859 mi_copy_done(q, mp, EINVAL); 12860 return; 12861 } 12862 } 12863 12864 ip_process_ioctl(NULL, q, mp, ipip); 12865 12866 } else { 12867 mi_copyout(q, mp); 12868 } 12869 return; 12870 12871 case M_IOCNAK: 12872 /* 12873 * The only way we could get here is if a resolver didn't like 12874 * an IOCTL we sent it. This shouldn't happen. 12875 */ 12876 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 12877 "ip_wput_nondata: unexpected M_IOCNAK, ioc_cmd 0x%x", 12878 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 12879 freemsg(mp); 12880 return; 12881 case M_IOCACK: 12882 /* /dev/ip shouldn't see this */ 12883 goto nak; 12884 case M_FLUSH: 12885 if (*mp->b_rptr & FLUSHW) 12886 flushq(q, FLUSHALL); 12887 if (q->q_next) { 12888 putnext(q, mp); 12889 return; 12890 } 12891 if (*mp->b_rptr & FLUSHR) { 12892 *mp->b_rptr &= ~FLUSHW; 12893 qreply(q, mp); 12894 return; 12895 } 12896 freemsg(mp); 12897 return; 12898 case M_CTL: 12899 break; 12900 case M_PROTO: 12901 case M_PCPROTO: 12902 /* 12903 * The only PROTO messages we expect are SNMP-related. 12904 */ 12905 switch (((union T_primitives *)mp->b_rptr)->type) { 12906 case T_SVR4_OPTMGMT_REQ: 12907 ip2dbg(("ip_wput_nondata: T_SVR4_OPTMGMT_REQ " 12908 "flags %x\n", 12909 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 12910 12911 if (connp == NULL) { 12912 proto_str = "T_SVR4_OPTMGMT_REQ"; 12913 goto protonak; 12914 } 12915 12916 /* 12917 * All Solaris components should pass a db_credp 12918 * for this TPI message, hence we ASSERT. 12919 * But in case there is some other M_PROTO that looks 12920 * like a TPI message sent by some other kernel 12921 * component, we check and return an error. 12922 */ 12923 cr = msg_getcred(mp, NULL); 12924 ASSERT(cr != NULL); 12925 if (cr == NULL) { 12926 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 12927 if (mp != NULL) 12928 qreply(q, mp); 12929 return; 12930 } 12931 12932 if (!snmpcom_req(q, mp, ip_snmp_set, ip_snmp_get, cr)) { 12933 proto_str = "Bad SNMPCOM request?"; 12934 goto protonak; 12935 } 12936 return; 12937 default: 12938 ip1dbg(("ip_wput_nondata: dropping M_PROTO prim %u\n", 12939 (int)*(uint_t *)mp->b_rptr)); 12940 freemsg(mp); 12941 return; 12942 } 12943 default: 12944 break; 12945 } 12946 if (q->q_next) { 12947 putnext(q, mp); 12948 } else 12949 freemsg(mp); 12950 return; 12951 12952 nak: 12953 iocp->ioc_error = EINVAL; 12954 mp->b_datap->db_type = M_IOCNAK; 12955 iocp->ioc_count = 0; 12956 qreply(q, mp); 12957 return; 12958 12959 protonak: 12960 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 12961 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 12962 qreply(q, mp); 12963 } 12964 12965 /* 12966 * Process IP options in an outbound packet. Verify that the nexthop in a 12967 * strict source route is onlink. 12968 * Returns non-zero if something fails in which case an ICMP error has been 12969 * sent and mp freed. 12970 * 12971 * Assumes the ULP has called ip_massage_options to move nexthop into ipha_dst. 12972 */ 12973 int 12974 ip_output_options(mblk_t *mp, ipha_t *ipha, ip_xmit_attr_t *ixa, ill_t *ill) 12975 { 12976 ipoptp_t opts; 12977 uchar_t *opt; 12978 uint8_t optval; 12979 uint8_t optlen; 12980 ipaddr_t dst; 12981 intptr_t code = 0; 12982 ire_t *ire; 12983 ip_stack_t *ipst = ixa->ixa_ipst; 12984 ip_recv_attr_t iras; 12985 12986 ip2dbg(("ip_output_options\n")); 12987 12988 dst = ipha->ipha_dst; 12989 for (optval = ipoptp_first(&opts, ipha); 12990 optval != IPOPT_EOL; 12991 optval = ipoptp_next(&opts)) { 12992 opt = opts.ipoptp_cur; 12993 optlen = opts.ipoptp_len; 12994 ip2dbg(("ip_output_options: opt %d, len %d\n", 12995 optval, optlen)); 12996 switch (optval) { 12997 uint32_t off; 12998 case IPOPT_SSRR: 12999 case IPOPT_LSRR: 13000 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 13001 ip1dbg(( 13002 "ip_output_options: bad option offset\n")); 13003 code = (char *)&opt[IPOPT_OLEN] - 13004 (char *)ipha; 13005 goto param_prob; 13006 } 13007 off = opt[IPOPT_OFFSET]; 13008 ip1dbg(("ip_output_options: next hop 0x%x\n", 13009 ntohl(dst))); 13010 /* 13011 * For strict: verify that dst is directly 13012 * reachable. 13013 */ 13014 if (optval == IPOPT_SSRR) { 13015 ire = ire_ftable_lookup_v4(dst, 0, 0, 13016 IRE_INTERFACE, NULL, ALL_ZONES, 13017 ixa->ixa_tsl, 13018 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst, 13019 NULL); 13020 if (ire == NULL) { 13021 ip1dbg(("ip_output_options: SSRR not" 13022 " directly reachable: 0x%x\n", 13023 ntohl(dst))); 13024 goto bad_src_route; 13025 } 13026 ire_refrele(ire); 13027 } 13028 break; 13029 case IPOPT_RR: 13030 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 13031 ip1dbg(( 13032 "ip_output_options: bad option offset\n")); 13033 code = (char *)&opt[IPOPT_OLEN] - 13034 (char *)ipha; 13035 goto param_prob; 13036 } 13037 break; 13038 case IPOPT_TS: 13039 /* 13040 * Verify that length >=5 and that there is either 13041 * room for another timestamp or that the overflow 13042 * counter is not maxed out. 13043 */ 13044 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 13045 if (optlen < IPOPT_MINLEN_IT) { 13046 goto param_prob; 13047 } 13048 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 13049 ip1dbg(( 13050 "ip_output_options: bad option offset\n")); 13051 code = (char *)&opt[IPOPT_OFFSET] - 13052 (char *)ipha; 13053 goto param_prob; 13054 } 13055 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 13056 case IPOPT_TS_TSONLY: 13057 off = IPOPT_TS_TIMELEN; 13058 break; 13059 case IPOPT_TS_TSANDADDR: 13060 case IPOPT_TS_PRESPEC: 13061 case IPOPT_TS_PRESPEC_RFC791: 13062 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 13063 break; 13064 default: 13065 code = (char *)&opt[IPOPT_POS_OV_FLG] - 13066 (char *)ipha; 13067 goto param_prob; 13068 } 13069 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 13070 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 13071 /* 13072 * No room and the overflow counter is 15 13073 * already. 13074 */ 13075 goto param_prob; 13076 } 13077 break; 13078 } 13079 } 13080 13081 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 13082 return (0); 13083 13084 ip1dbg(("ip_output_options: error processing IP options.")); 13085 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 13086 13087 param_prob: 13088 bzero(&iras, sizeof (iras)); 13089 iras.ira_ill = iras.ira_rill = ill; 13090 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex; 13091 iras.ira_rifindex = iras.ira_ruifindex; 13092 iras.ira_flags = IRAF_IS_IPV4; 13093 13094 ip_drop_output("ip_output_options", mp, ill); 13095 icmp_param_problem(mp, (uint8_t)code, &iras); 13096 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 13097 return (-1); 13098 13099 bad_src_route: 13100 bzero(&iras, sizeof (iras)); 13101 iras.ira_ill = iras.ira_rill = ill; 13102 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex; 13103 iras.ira_rifindex = iras.ira_ruifindex; 13104 iras.ira_flags = IRAF_IS_IPV4; 13105 13106 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill); 13107 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, &iras); 13108 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 13109 return (-1); 13110 } 13111 13112 /* 13113 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 13114 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 13115 * thru /etc/system. 13116 */ 13117 #define CONN_MAXDRAINCNT 64 13118 13119 static void 13120 conn_drain_init(ip_stack_t *ipst) 13121 { 13122 int i, j; 13123 idl_tx_list_t *itl_tx; 13124 13125 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 13126 13127 if ((ipst->ips_conn_drain_list_cnt == 0) || 13128 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 13129 /* 13130 * Default value of the number of drainers is the 13131 * number of cpus, subject to maximum of 8 drainers. 13132 */ 13133 if (boot_max_ncpus != -1) 13134 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 13135 else 13136 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 13137 } 13138 13139 ipst->ips_idl_tx_list = 13140 kmem_zalloc(TX_FANOUT_SIZE * sizeof (idl_tx_list_t), KM_SLEEP); 13141 for (i = 0; i < TX_FANOUT_SIZE; i++) { 13142 itl_tx = &ipst->ips_idl_tx_list[i]; 13143 itl_tx->txl_drain_list = 13144 kmem_zalloc(ipst->ips_conn_drain_list_cnt * 13145 sizeof (idl_t), KM_SLEEP); 13146 mutex_init(&itl_tx->txl_lock, NULL, MUTEX_DEFAULT, NULL); 13147 for (j = 0; j < ipst->ips_conn_drain_list_cnt; j++) { 13148 mutex_init(&itl_tx->txl_drain_list[j].idl_lock, NULL, 13149 MUTEX_DEFAULT, NULL); 13150 itl_tx->txl_drain_list[j].idl_itl = itl_tx; 13151 } 13152 } 13153 } 13154 13155 static void 13156 conn_drain_fini(ip_stack_t *ipst) 13157 { 13158 int i; 13159 idl_tx_list_t *itl_tx; 13160 13161 for (i = 0; i < TX_FANOUT_SIZE; i++) { 13162 itl_tx = &ipst->ips_idl_tx_list[i]; 13163 kmem_free(itl_tx->txl_drain_list, 13164 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 13165 } 13166 kmem_free(ipst->ips_idl_tx_list, 13167 TX_FANOUT_SIZE * sizeof (idl_tx_list_t)); 13168 ipst->ips_idl_tx_list = NULL; 13169 } 13170 13171 /* 13172 * Flow control has blocked us from proceeding. Insert the given conn in one 13173 * of the conn drain lists. When flow control is unblocked, either ip_wsrv() 13174 * (STREAMS) or ill_flow_enable() (direct) will be called back, which in turn 13175 * will call conn_walk_drain(). See the flow control notes at the top of this 13176 * file for more details. 13177 */ 13178 void 13179 conn_drain_insert(conn_t *connp, idl_tx_list_t *tx_list) 13180 { 13181 idl_t *idl = tx_list->txl_drain_list; 13182 uint_t index; 13183 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 13184 13185 mutex_enter(&connp->conn_lock); 13186 if (connp->conn_state_flags & CONN_CLOSING) { 13187 /* 13188 * The conn is closing as a result of which CONN_CLOSING 13189 * is set. Return. 13190 */ 13191 mutex_exit(&connp->conn_lock); 13192 return; 13193 } else if (connp->conn_idl == NULL) { 13194 /* 13195 * Assign the next drain list round robin. We dont' use 13196 * a lock, and thus it may not be strictly round robin. 13197 * Atomicity of load/stores is enough to make sure that 13198 * conn_drain_list_index is always within bounds. 13199 */ 13200 index = tx_list->txl_drain_index; 13201 ASSERT(index < ipst->ips_conn_drain_list_cnt); 13202 connp->conn_idl = &tx_list->txl_drain_list[index]; 13203 index++; 13204 if (index == ipst->ips_conn_drain_list_cnt) 13205 index = 0; 13206 tx_list->txl_drain_index = index; 13207 } else { 13208 ASSERT(connp->conn_idl->idl_itl == tx_list); 13209 } 13210 mutex_exit(&connp->conn_lock); 13211 13212 idl = connp->conn_idl; 13213 mutex_enter(&idl->idl_lock); 13214 if ((connp->conn_drain_prev != NULL) || 13215 (connp->conn_state_flags & CONN_CLOSING)) { 13216 /* 13217 * The conn is either already in the drain list or closing. 13218 * (We needed to check for CONN_CLOSING again since close can 13219 * sneak in between dropping conn_lock and acquiring idl_lock.) 13220 */ 13221 mutex_exit(&idl->idl_lock); 13222 return; 13223 } 13224 13225 /* 13226 * The conn is not in the drain list. Insert it at the 13227 * tail of the drain list. The drain list is circular 13228 * and doubly linked. idl_conn points to the 1st element 13229 * in the list. 13230 */ 13231 if (idl->idl_conn == NULL) { 13232 idl->idl_conn = connp; 13233 connp->conn_drain_next = connp; 13234 connp->conn_drain_prev = connp; 13235 } else { 13236 conn_t *head = idl->idl_conn; 13237 13238 connp->conn_drain_next = head; 13239 connp->conn_drain_prev = head->conn_drain_prev; 13240 head->conn_drain_prev->conn_drain_next = connp; 13241 head->conn_drain_prev = connp; 13242 } 13243 /* 13244 * For non streams based sockets assert flow control. 13245 */ 13246 conn_setqfull(connp, NULL); 13247 mutex_exit(&idl->idl_lock); 13248 } 13249 13250 static void 13251 conn_drain_remove(conn_t *connp) 13252 { 13253 idl_t *idl = connp->conn_idl; 13254 13255 if (idl != NULL) { 13256 /* 13257 * Remove ourself from the drain list. 13258 */ 13259 if (connp->conn_drain_next == connp) { 13260 /* Singleton in the list */ 13261 ASSERT(connp->conn_drain_prev == connp); 13262 idl->idl_conn = NULL; 13263 } else { 13264 connp->conn_drain_prev->conn_drain_next = 13265 connp->conn_drain_next; 13266 connp->conn_drain_next->conn_drain_prev = 13267 connp->conn_drain_prev; 13268 if (idl->idl_conn == connp) 13269 idl->idl_conn = connp->conn_drain_next; 13270 } 13271 13272 /* 13273 * NOTE: because conn_idl is associated with a specific drain 13274 * list which in turn is tied to the index the TX ring 13275 * (txl_cookie) hashes to, and because the TX ring can change 13276 * over the lifetime of the conn_t, we must clear conn_idl so 13277 * a subsequent conn_drain_insert() will set conn_idl again 13278 * based on the latest txl_cookie. 13279 */ 13280 connp->conn_idl = NULL; 13281 } 13282 connp->conn_drain_next = NULL; 13283 connp->conn_drain_prev = NULL; 13284 13285 conn_clrqfull(connp, NULL); 13286 /* 13287 * For streams based sockets open up flow control. 13288 */ 13289 if (!IPCL_IS_NONSTR(connp)) 13290 enableok(connp->conn_wq); 13291 } 13292 13293 /* 13294 * This conn is closing, and we are called from ip_close. OR 13295 * this conn is draining because flow-control on the ill has been relieved. 13296 * 13297 * We must also need to remove conn's on this idl from the list, and also 13298 * inform the sockfs upcalls about the change in flow-control. 13299 */ 13300 static void 13301 conn_drain(conn_t *connp, boolean_t closing) 13302 { 13303 idl_t *idl; 13304 conn_t *next_connp; 13305 13306 /* 13307 * connp->conn_idl is stable at this point, and no lock is needed 13308 * to check it. If we are called from ip_close, close has already 13309 * set CONN_CLOSING, thus freezing the value of conn_idl, and 13310 * called us only because conn_idl is non-null. If we are called thru 13311 * service, conn_idl could be null, but it cannot change because 13312 * service is single-threaded per queue, and there cannot be another 13313 * instance of service trying to call conn_drain_insert on this conn 13314 * now. 13315 */ 13316 ASSERT(!closing || connp == NULL || connp->conn_idl != NULL); 13317 13318 /* 13319 * If the conn doesn't exist or is not on a drain list, bail. 13320 */ 13321 if (connp == NULL || connp->conn_idl == NULL || 13322 connp->conn_drain_prev == NULL) { 13323 return; 13324 } 13325 13326 idl = connp->conn_idl; 13327 ASSERT(MUTEX_HELD(&idl->idl_lock)); 13328 13329 if (!closing) { 13330 next_connp = connp->conn_drain_next; 13331 while (next_connp != connp) { 13332 conn_t *delconnp = next_connp; 13333 13334 next_connp = next_connp->conn_drain_next; 13335 conn_drain_remove(delconnp); 13336 } 13337 ASSERT(connp->conn_drain_next == idl->idl_conn); 13338 } 13339 conn_drain_remove(connp); 13340 } 13341 13342 /* 13343 * Write service routine. Shared perimeter entry point. 13344 * The device queue's messages has fallen below the low water mark and STREAMS 13345 * has backenabled the ill_wq. Send sockfs notification about flow-control on 13346 * each waiting conn. 13347 */ 13348 void 13349 ip_wsrv(queue_t *q) 13350 { 13351 ill_t *ill; 13352 13353 ill = (ill_t *)q->q_ptr; 13354 if (ill->ill_state_flags == 0) { 13355 ip_stack_t *ipst = ill->ill_ipst; 13356 13357 /* 13358 * The device flow control has opened up. 13359 * Walk through conn drain lists and qenable the 13360 * first conn in each list. This makes sense only 13361 * if the stream is fully plumbed and setup. 13362 * Hence the ill_state_flags check above. 13363 */ 13364 ip1dbg(("ip_wsrv: walking\n")); 13365 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[0]); 13366 enableok(ill->ill_wq); 13367 } 13368 } 13369 13370 /* 13371 * Callback to disable flow control in IP. 13372 * 13373 * This is a mac client callback added when the DLD_CAPAB_DIRECT capability 13374 * is enabled. 13375 * 13376 * When MAC_TX() is not able to send any more packets, dld sets its queue 13377 * to QFULL and enable the STREAMS flow control. Later, when the underlying 13378 * driver is able to continue to send packets, it calls mac_tx_(ring_)update() 13379 * function and wakes up corresponding mac worker threads, which in turn 13380 * calls this callback function, and disables flow control. 13381 */ 13382 void 13383 ill_flow_enable(void *arg, ip_mac_tx_cookie_t cookie) 13384 { 13385 ill_t *ill = (ill_t *)arg; 13386 ip_stack_t *ipst = ill->ill_ipst; 13387 idl_tx_list_t *idl_txl; 13388 13389 idl_txl = &ipst->ips_idl_tx_list[IDLHASHINDEX(cookie)]; 13390 mutex_enter(&idl_txl->txl_lock); 13391 /* add code to to set a flag to indicate idl_txl is enabled */ 13392 conn_walk_drain(ipst, idl_txl); 13393 mutex_exit(&idl_txl->txl_lock); 13394 } 13395 13396 /* 13397 * Flow control has been relieved and STREAMS has backenabled us; drain 13398 * all the conn lists on `tx_list'. 13399 */ 13400 static void 13401 conn_walk_drain(ip_stack_t *ipst, idl_tx_list_t *tx_list) 13402 { 13403 int i; 13404 idl_t *idl; 13405 13406 IP_STAT(ipst, ip_conn_walk_drain); 13407 13408 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 13409 idl = &tx_list->txl_drain_list[i]; 13410 mutex_enter(&idl->idl_lock); 13411 conn_drain(idl->idl_conn, B_FALSE); 13412 mutex_exit(&idl->idl_lock); 13413 } 13414 } 13415 13416 /* 13417 * Determine if the ill and multicast aspects of that packets 13418 * "matches" the conn. 13419 */ 13420 boolean_t 13421 conn_wantpacket(conn_t *connp, ip_recv_attr_t *ira, ipha_t *ipha) 13422 { 13423 ill_t *ill = ira->ira_rill; 13424 zoneid_t zoneid = ira->ira_zoneid; 13425 uint_t in_ifindex; 13426 ipaddr_t dst, src; 13427 13428 dst = ipha->ipha_dst; 13429 src = ipha->ipha_src; 13430 13431 /* 13432 * conn_incoming_ifindex is set by IP_BOUND_IF which limits 13433 * unicast, broadcast and multicast reception to 13434 * conn_incoming_ifindex. 13435 * conn_wantpacket is called for unicast, broadcast and 13436 * multicast packets. 13437 */ 13438 in_ifindex = connp->conn_incoming_ifindex; 13439 13440 /* mpathd can bind to the under IPMP interface, which we allow */ 13441 if (in_ifindex != 0 && in_ifindex != ill->ill_phyint->phyint_ifindex) { 13442 if (!IS_UNDER_IPMP(ill)) 13443 return (B_FALSE); 13444 13445 if (in_ifindex != ipmp_ill_get_ipmp_ifindex(ill)) 13446 return (B_FALSE); 13447 } 13448 13449 if (!IPCL_ZONE_MATCH(connp, zoneid)) 13450 return (B_FALSE); 13451 13452 if (!(ira->ira_flags & IRAF_MULTICAST)) 13453 return (B_TRUE); 13454 13455 if (connp->conn_multi_router) { 13456 /* multicast packet and multicast router socket: send up */ 13457 return (B_TRUE); 13458 } 13459 13460 if (ipha->ipha_protocol == IPPROTO_PIM || 13461 ipha->ipha_protocol == IPPROTO_RSVP) 13462 return (B_TRUE); 13463 13464 return (conn_hasmembers_ill_withsrc_v4(connp, dst, src, ira->ira_ill)); 13465 } 13466 13467 void 13468 conn_setqfull(conn_t *connp, boolean_t *flow_stopped) 13469 { 13470 if (IPCL_IS_NONSTR(connp)) { 13471 (*connp->conn_upcalls->su_txq_full) 13472 (connp->conn_upper_handle, B_TRUE); 13473 if (flow_stopped != NULL) 13474 *flow_stopped = B_TRUE; 13475 } else { 13476 queue_t *q = connp->conn_wq; 13477 13478 ASSERT(q != NULL); 13479 if (!(q->q_flag & QFULL)) { 13480 mutex_enter(QLOCK(q)); 13481 if (!(q->q_flag & QFULL)) { 13482 /* still need to set QFULL */ 13483 q->q_flag |= QFULL; 13484 /* set flow_stopped to true under QLOCK */ 13485 if (flow_stopped != NULL) 13486 *flow_stopped = B_TRUE; 13487 mutex_exit(QLOCK(q)); 13488 } else { 13489 /* flow_stopped is left unchanged */ 13490 mutex_exit(QLOCK(q)); 13491 } 13492 } 13493 } 13494 } 13495 13496 void 13497 conn_clrqfull(conn_t *connp, boolean_t *flow_stopped) 13498 { 13499 if (IPCL_IS_NONSTR(connp)) { 13500 (*connp->conn_upcalls->su_txq_full) 13501 (connp->conn_upper_handle, B_FALSE); 13502 if (flow_stopped != NULL) 13503 *flow_stopped = B_FALSE; 13504 } else { 13505 queue_t *q = connp->conn_wq; 13506 13507 ASSERT(q != NULL); 13508 if (q->q_flag & QFULL) { 13509 mutex_enter(QLOCK(q)); 13510 if (q->q_flag & QFULL) { 13511 q->q_flag &= ~QFULL; 13512 /* set flow_stopped to false under QLOCK */ 13513 if (flow_stopped != NULL) 13514 *flow_stopped = B_FALSE; 13515 mutex_exit(QLOCK(q)); 13516 if (q->q_flag & QWANTW) 13517 qbackenable(q, 0); 13518 } else { 13519 /* flow_stopped is left unchanged */ 13520 mutex_exit(QLOCK(q)); 13521 } 13522 } 13523 } 13524 13525 mutex_enter(&connp->conn_lock); 13526 connp->conn_blocked = B_FALSE; 13527 mutex_exit(&connp->conn_lock); 13528 } 13529 13530 /* 13531 * Return the length in bytes of the IPv4 headers (base header, label, and 13532 * other IP options) that will be needed based on the 13533 * ip_pkt_t structure passed by the caller. 13534 * 13535 * The returned length does not include the length of the upper level 13536 * protocol (ULP) header. 13537 * The caller needs to check that the length doesn't exceed the max for IPv4. 13538 */ 13539 int 13540 ip_total_hdrs_len_v4(const ip_pkt_t *ipp) 13541 { 13542 int len; 13543 13544 len = IP_SIMPLE_HDR_LENGTH; 13545 if (ipp->ipp_fields & IPPF_LABEL_V4) { 13546 ASSERT(ipp->ipp_label_len_v4 != 0); 13547 /* We need to round up here */ 13548 len += (ipp->ipp_label_len_v4 + 3) & ~3; 13549 } 13550 13551 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 13552 ASSERT(ipp->ipp_ipv4_options_len != 0); 13553 ASSERT((ipp->ipp_ipv4_options_len & 3) == 0); 13554 len += ipp->ipp_ipv4_options_len; 13555 } 13556 return (len); 13557 } 13558 13559 /* 13560 * All-purpose routine to build an IPv4 header with options based 13561 * on the abstract ip_pkt_t. 13562 * 13563 * The caller has to set the source and destination address as well as 13564 * ipha_length. The caller has to massage any source route and compensate 13565 * for the ULP pseudo-header checksum due to the source route. 13566 */ 13567 void 13568 ip_build_hdrs_v4(uchar_t *buf, uint_t buf_len, const ip_pkt_t *ipp, 13569 uint8_t protocol) 13570 { 13571 ipha_t *ipha = (ipha_t *)buf; 13572 uint8_t *cp; 13573 13574 /* Initialize IPv4 header */ 13575 ipha->ipha_type_of_service = ipp->ipp_type_of_service; 13576 ipha->ipha_length = 0; /* Caller will set later */ 13577 ipha->ipha_ident = 0; 13578 ipha->ipha_fragment_offset_and_flags = 0; 13579 ipha->ipha_ttl = ipp->ipp_unicast_hops; 13580 ipha->ipha_protocol = protocol; 13581 ipha->ipha_hdr_checksum = 0; 13582 13583 if ((ipp->ipp_fields & IPPF_ADDR) && 13584 IN6_IS_ADDR_V4MAPPED(&ipp->ipp_addr)) 13585 ipha->ipha_src = ipp->ipp_addr_v4; 13586 13587 cp = (uint8_t *)&ipha[1]; 13588 if (ipp->ipp_fields & IPPF_LABEL_V4) { 13589 ASSERT(ipp->ipp_label_len_v4 != 0); 13590 bcopy(ipp->ipp_label_v4, cp, ipp->ipp_label_len_v4); 13591 cp += ipp->ipp_label_len_v4; 13592 /* We need to round up here */ 13593 while ((uintptr_t)cp & 0x3) { 13594 *cp++ = IPOPT_NOP; 13595 } 13596 } 13597 13598 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 13599 ASSERT(ipp->ipp_ipv4_options_len != 0); 13600 ASSERT((ipp->ipp_ipv4_options_len & 3) == 0); 13601 bcopy(ipp->ipp_ipv4_options, cp, ipp->ipp_ipv4_options_len); 13602 cp += ipp->ipp_ipv4_options_len; 13603 } 13604 ipha->ipha_version_and_hdr_length = 13605 (uint8_t)((IP_VERSION << 4) + buf_len / 4); 13606 13607 ASSERT((int)(cp - buf) == buf_len); 13608 } 13609 13610 /* Allocate the private structure */ 13611 static int 13612 ip_priv_alloc(void **bufp) 13613 { 13614 void *buf; 13615 13616 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 13617 return (ENOMEM); 13618 13619 *bufp = buf; 13620 return (0); 13621 } 13622 13623 /* Function to delete the private structure */ 13624 void 13625 ip_priv_free(void *buf) 13626 { 13627 ASSERT(buf != NULL); 13628 kmem_free(buf, sizeof (ip_priv_t)); 13629 } 13630 13631 /* 13632 * The entry point for IPPF processing. 13633 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 13634 * routine just returns. 13635 * 13636 * When called, ip_process generates an ipp_packet_t structure 13637 * which holds the state information for this packet and invokes the 13638 * the classifier (via ipp_packet_process). The classification, depending on 13639 * configured filters, results in a list of actions for this packet. Invoking 13640 * an action may cause the packet to be dropped, in which case we return NULL. 13641 * proc indicates the callout position for 13642 * this packet and ill is the interface this packet arrived on or will leave 13643 * on (inbound and outbound resp.). 13644 * 13645 * We do the processing on the rill (mapped to the upper if ipmp), but MIB 13646 * on the ill corrsponding to the destination IP address. 13647 */ 13648 mblk_t * 13649 ip_process(ip_proc_t proc, mblk_t *mp, ill_t *rill, ill_t *ill) 13650 { 13651 ip_priv_t *priv; 13652 ipp_action_id_t aid; 13653 int rc = 0; 13654 ipp_packet_t *pp; 13655 13656 /* If the classifier is not loaded, return */ 13657 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 13658 return (mp); 13659 } 13660 13661 ASSERT(mp != NULL); 13662 13663 /* Allocate the packet structure */ 13664 rc = ipp_packet_alloc(&pp, "ip", aid); 13665 if (rc != 0) 13666 goto drop; 13667 13668 /* Allocate the private structure */ 13669 rc = ip_priv_alloc((void **)&priv); 13670 if (rc != 0) { 13671 ipp_packet_free(pp); 13672 goto drop; 13673 } 13674 priv->proc = proc; 13675 priv->ill_index = ill_get_upper_ifindex(rill); 13676 13677 ipp_packet_set_private(pp, priv, ip_priv_free); 13678 ipp_packet_set_data(pp, mp); 13679 13680 /* Invoke the classifier */ 13681 rc = ipp_packet_process(&pp); 13682 if (pp != NULL) { 13683 mp = ipp_packet_get_data(pp); 13684 ipp_packet_free(pp); 13685 if (rc != 0) 13686 goto drop; 13687 return (mp); 13688 } else { 13689 /* No mp to trace in ip_drop_input/ip_drop_output */ 13690 mp = NULL; 13691 } 13692 drop: 13693 if (proc == IPP_LOCAL_IN || proc == IPP_FWD_IN) { 13694 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13695 ip_drop_input("ip_process", mp, ill); 13696 } else { 13697 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 13698 ip_drop_output("ip_process", mp, ill); 13699 } 13700 freemsg(mp); 13701 return (NULL); 13702 } 13703 13704 /* 13705 * Propagate a multicast group membership operation (add/drop) on 13706 * all the interfaces crossed by the related multirt routes. 13707 * The call is considered successful if the operation succeeds 13708 * on at least one interface. 13709 * 13710 * This assumes that a set of IRE_HOST/RTF_MULTIRT has been created for the 13711 * multicast addresses with the ire argument being the first one. 13712 * We walk the bucket to find all the of those. 13713 * 13714 * Common to IPv4 and IPv6. 13715 */ 13716 static int 13717 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 13718 const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *), 13719 ire_t *ire, conn_t *connp, boolean_t checkonly, const in6_addr_t *v6group, 13720 mcast_record_t fmode, const in6_addr_t *v6src) 13721 { 13722 ire_t *ire_gw; 13723 irb_t *irb; 13724 int ifindex; 13725 int error = 0; 13726 int result; 13727 ip_stack_t *ipst = ire->ire_ipst; 13728 ipaddr_t group; 13729 boolean_t isv6; 13730 int match_flags; 13731 13732 if (IN6_IS_ADDR_V4MAPPED(v6group)) { 13733 IN6_V4MAPPED_TO_IPADDR(v6group, group); 13734 isv6 = B_FALSE; 13735 } else { 13736 isv6 = B_TRUE; 13737 } 13738 13739 irb = ire->ire_bucket; 13740 ASSERT(irb != NULL); 13741 13742 result = 0; 13743 irb_refhold(irb); 13744 for (; ire != NULL; ire = ire->ire_next) { 13745 if ((ire->ire_flags & RTF_MULTIRT) == 0) 13746 continue; 13747 13748 /* We handle -ifp routes by matching on the ill if set */ 13749 match_flags = MATCH_IRE_TYPE; 13750 if (ire->ire_ill != NULL) 13751 match_flags |= MATCH_IRE_ILL; 13752 13753 if (isv6) { 13754 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, v6group)) 13755 continue; 13756 13757 ire_gw = ire_ftable_lookup_v6(&ire->ire_gateway_addr_v6, 13758 0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL, 13759 match_flags, 0, ipst, NULL); 13760 } else { 13761 if (ire->ire_addr != group) 13762 continue; 13763 13764 ire_gw = ire_ftable_lookup_v4(ire->ire_gateway_addr, 13765 0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL, 13766 match_flags, 0, ipst, NULL); 13767 } 13768 /* No interface route exists for the gateway; skip this ire. */ 13769 if (ire_gw == NULL) 13770 continue; 13771 if (ire_gw->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 13772 ire_refrele(ire_gw); 13773 continue; 13774 } 13775 ASSERT(ire_gw->ire_ill != NULL); /* IRE_INTERFACE */ 13776 ifindex = ire_gw->ire_ill->ill_phyint->phyint_ifindex; 13777 13778 /* 13779 * The operation is considered a success if 13780 * it succeeds at least once on any one interface. 13781 */ 13782 error = fn(connp, checkonly, v6group, INADDR_ANY, ifindex, 13783 fmode, v6src); 13784 if (error == 0) 13785 result = CGTP_MCAST_SUCCESS; 13786 13787 ire_refrele(ire_gw); 13788 } 13789 irb_refrele(irb); 13790 /* 13791 * Consider the call as successful if we succeeded on at least 13792 * one interface. Otherwise, return the last encountered error. 13793 */ 13794 return (result == CGTP_MCAST_SUCCESS ? 0 : error); 13795 } 13796 13797 /* 13798 * Return the expected CGTP hooks version number. 13799 */ 13800 int 13801 ip_cgtp_filter_supported(void) 13802 { 13803 return (ip_cgtp_filter_rev); 13804 } 13805 13806 /* 13807 * CGTP hooks can be registered by invoking this function. 13808 * Checks that the version number matches. 13809 */ 13810 int 13811 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops) 13812 { 13813 netstack_t *ns; 13814 ip_stack_t *ipst; 13815 13816 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 13817 return (ENOTSUP); 13818 13819 ns = netstack_find_by_stackid(stackid); 13820 if (ns == NULL) 13821 return (EINVAL); 13822 ipst = ns->netstack_ip; 13823 ASSERT(ipst != NULL); 13824 13825 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 13826 netstack_rele(ns); 13827 return (EALREADY); 13828 } 13829 13830 ipst->ips_ip_cgtp_filter_ops = ops; 13831 13832 ill_set_inputfn_all(ipst); 13833 13834 netstack_rele(ns); 13835 return (0); 13836 } 13837 13838 /* 13839 * CGTP hooks can be unregistered by invoking this function. 13840 * Returns ENXIO if there was no registration. 13841 * Returns EBUSY if the ndd variable has not been turned off. 13842 */ 13843 int 13844 ip_cgtp_filter_unregister(netstackid_t stackid) 13845 { 13846 netstack_t *ns; 13847 ip_stack_t *ipst; 13848 13849 ns = netstack_find_by_stackid(stackid); 13850 if (ns == NULL) 13851 return (EINVAL); 13852 ipst = ns->netstack_ip; 13853 ASSERT(ipst != NULL); 13854 13855 if (ipst->ips_ip_cgtp_filter) { 13856 netstack_rele(ns); 13857 return (EBUSY); 13858 } 13859 13860 if (ipst->ips_ip_cgtp_filter_ops == NULL) { 13861 netstack_rele(ns); 13862 return (ENXIO); 13863 } 13864 ipst->ips_ip_cgtp_filter_ops = NULL; 13865 13866 ill_set_inputfn_all(ipst); 13867 13868 netstack_rele(ns); 13869 return (0); 13870 } 13871 13872 /* 13873 * Check whether there is a CGTP filter registration. 13874 * Returns non-zero if there is a registration, otherwise returns zero. 13875 * Note: returns zero if bad stackid. 13876 */ 13877 int 13878 ip_cgtp_filter_is_registered(netstackid_t stackid) 13879 { 13880 netstack_t *ns; 13881 ip_stack_t *ipst; 13882 int ret; 13883 13884 ns = netstack_find_by_stackid(stackid); 13885 if (ns == NULL) 13886 return (0); 13887 ipst = ns->netstack_ip; 13888 ASSERT(ipst != NULL); 13889 13890 if (ipst->ips_ip_cgtp_filter_ops != NULL) 13891 ret = 1; 13892 else 13893 ret = 0; 13894 13895 netstack_rele(ns); 13896 return (ret); 13897 } 13898 13899 static int 13900 ip_squeue_switch(int val) 13901 { 13902 int rval; 13903 13904 switch (val) { 13905 case IP_SQUEUE_ENTER_NODRAIN: 13906 rval = SQ_NODRAIN; 13907 break; 13908 case IP_SQUEUE_ENTER: 13909 rval = SQ_PROCESS; 13910 break; 13911 case IP_SQUEUE_FILL: 13912 default: 13913 rval = SQ_FILL; 13914 break; 13915 } 13916 return (rval); 13917 } 13918 13919 static void * 13920 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 13921 { 13922 kstat_t *ksp; 13923 13924 ip_stat_t template = { 13925 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 13926 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 13927 { "ip_recv_pullup", KSTAT_DATA_UINT64 }, 13928 { "ip_db_ref", KSTAT_DATA_UINT64 }, 13929 { "ip_notaligned", KSTAT_DATA_UINT64 }, 13930 { "ip_multimblk", KSTAT_DATA_UINT64 }, 13931 { "ip_opt", KSTAT_DATA_UINT64 }, 13932 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 13933 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 13934 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 13935 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 13936 { "ip_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 13937 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 13938 { "ip_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 13939 { "ip_ire_reclaim_deleted", KSTAT_DATA_UINT64 }, 13940 { "ip_nce_reclaim_calls", KSTAT_DATA_UINT64 }, 13941 { "ip_nce_reclaim_deleted", KSTAT_DATA_UINT64 }, 13942 { "ip_dce_reclaim_calls", KSTAT_DATA_UINT64 }, 13943 { "ip_dce_reclaim_deleted", KSTAT_DATA_UINT64 }, 13944 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 13945 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 13946 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 13947 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 13948 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 13949 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 13950 { "conn_in_recvdstaddr", KSTAT_DATA_UINT64 }, 13951 { "conn_in_recvopts", KSTAT_DATA_UINT64 }, 13952 { "conn_in_recvif", KSTAT_DATA_UINT64 }, 13953 { "conn_in_recvslla", KSTAT_DATA_UINT64 }, 13954 { "conn_in_recvucred", KSTAT_DATA_UINT64 }, 13955 { "conn_in_recvttl", KSTAT_DATA_UINT64 }, 13956 { "conn_in_recvhopopts", KSTAT_DATA_UINT64 }, 13957 { "conn_in_recvhoplimit", KSTAT_DATA_UINT64 }, 13958 { "conn_in_recvdstopts", KSTAT_DATA_UINT64 }, 13959 { "conn_in_recvrthdrdstopts", KSTAT_DATA_UINT64 }, 13960 { "conn_in_recvrthdr", KSTAT_DATA_UINT64 }, 13961 { "conn_in_recvpktinfo", KSTAT_DATA_UINT64 }, 13962 { "conn_in_recvtclass", KSTAT_DATA_UINT64 }, 13963 { "conn_in_timestamp", KSTAT_DATA_UINT64 }, 13964 }; 13965 13966 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 13967 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 13968 KSTAT_FLAG_VIRTUAL, stackid); 13969 13970 if (ksp == NULL) 13971 return (NULL); 13972 13973 bcopy(&template, ip_statisticsp, sizeof (template)); 13974 ksp->ks_data = (void *)ip_statisticsp; 13975 ksp->ks_private = (void *)(uintptr_t)stackid; 13976 13977 kstat_install(ksp); 13978 return (ksp); 13979 } 13980 13981 static void 13982 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 13983 { 13984 if (ksp != NULL) { 13985 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 13986 kstat_delete_netstack(ksp, stackid); 13987 } 13988 } 13989 13990 static void * 13991 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 13992 { 13993 kstat_t *ksp; 13994 13995 ip_named_kstat_t template = { 13996 { "forwarding", KSTAT_DATA_UINT32, {{ 0 }}}, 13997 { "defaultTTL", KSTAT_DATA_UINT32, {{ 0 }}}, 13998 { "inReceives", KSTAT_DATA_UINT64, {{ 0 }}}, 13999 { "inHdrErrors", KSTAT_DATA_UINT32, {{ 0 }}}, 14000 { "inAddrErrors", KSTAT_DATA_UINT32, {{ 0 }}}, 14001 { "forwDatagrams", KSTAT_DATA_UINT64, {{ 0 }}}, 14002 { "inUnknownProtos", KSTAT_DATA_UINT32, {{ 0 }}}, 14003 { "inDiscards", KSTAT_DATA_UINT32, {{ 0 }}}, 14004 { "inDelivers", KSTAT_DATA_UINT64, {{ 0 }}}, 14005 { "outRequests", KSTAT_DATA_UINT64, {{ 0 }}}, 14006 { "outDiscards", KSTAT_DATA_UINT32, {{ 0 }}}, 14007 { "outNoRoutes", KSTAT_DATA_UINT32, {{ 0 }}}, 14008 { "reasmTimeout", KSTAT_DATA_UINT32, {{ 0 }}}, 14009 { "reasmReqds", KSTAT_DATA_UINT32, {{ 0 }}}, 14010 { "reasmOKs", KSTAT_DATA_UINT32, {{ 0 }}}, 14011 { "reasmFails", KSTAT_DATA_UINT32, {{ 0 }}}, 14012 { "fragOKs", KSTAT_DATA_UINT32, {{ 0 }}}, 14013 { "fragFails", KSTAT_DATA_UINT32, {{ 0 }}}, 14014 { "fragCreates", KSTAT_DATA_UINT32, {{ 0 }}}, 14015 { "addrEntrySize", KSTAT_DATA_INT32, {{ 0 }}}, 14016 { "routeEntrySize", KSTAT_DATA_INT32, {{ 0 }}}, 14017 { "netToMediaEntrySize", KSTAT_DATA_INT32, {{ 0 }}}, 14018 { "routingDiscards", KSTAT_DATA_UINT32, {{ 0 }}}, 14019 { "inErrs", KSTAT_DATA_UINT32, {{ 0 }}}, 14020 { "noPorts", KSTAT_DATA_UINT32, {{ 0 }}}, 14021 { "inCksumErrs", KSTAT_DATA_UINT32, {{ 0 }}}, 14022 { "reasmDuplicates", KSTAT_DATA_UINT32, {{ 0 }}}, 14023 { "reasmPartDups", KSTAT_DATA_UINT32, {{ 0 }}}, 14024 { "forwProhibits", KSTAT_DATA_UINT32, {{ 0 }}}, 14025 { "udpInCksumErrs", KSTAT_DATA_UINT32, {{ 0 }}}, 14026 { "udpInOverflows", KSTAT_DATA_UINT32, {{ 0 }}}, 14027 { "rawipInOverflows", KSTAT_DATA_UINT32, {{ 0 }}}, 14028 { "ipsecInSucceeded", KSTAT_DATA_UINT32, {{ 0 }}}, 14029 { "ipsecInFailed", KSTAT_DATA_INT32, {{ 0 }}}, 14030 { "memberEntrySize", KSTAT_DATA_INT32, {{ 0 }}}, 14031 { "inIPv6", KSTAT_DATA_UINT32, {{ 0 }}}, 14032 { "outIPv6", KSTAT_DATA_UINT32, {{ 0 }}}, 14033 { "outSwitchIPv6", KSTAT_DATA_UINT32, {{ 0 }}}, 14034 }; 14035 14036 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 14037 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid); 14038 if (ksp == NULL || ksp->ks_data == NULL) 14039 return (NULL); 14040 14041 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 14042 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 14043 template.reasmTimeout.value.ui32 = ipst->ips_ip_reassembly_timeout; 14044 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 14045 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 14046 14047 template.netToMediaEntrySize.value.i32 = 14048 sizeof (mib2_ipNetToMediaEntry_t); 14049 14050 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 14051 14052 bcopy(&template, ksp->ks_data, sizeof (template)); 14053 ksp->ks_update = ip_kstat_update; 14054 ksp->ks_private = (void *)(uintptr_t)stackid; 14055 14056 kstat_install(ksp); 14057 return (ksp); 14058 } 14059 14060 static void 14061 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 14062 { 14063 if (ksp != NULL) { 14064 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 14065 kstat_delete_netstack(ksp, stackid); 14066 } 14067 } 14068 14069 static int 14070 ip_kstat_update(kstat_t *kp, int rw) 14071 { 14072 ip_named_kstat_t *ipkp; 14073 mib2_ipIfStatsEntry_t ipmib; 14074 ill_walk_context_t ctx; 14075 ill_t *ill; 14076 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 14077 netstack_t *ns; 14078 ip_stack_t *ipst; 14079 14080 if (kp == NULL || kp->ks_data == NULL) 14081 return (EIO); 14082 14083 if (rw == KSTAT_WRITE) 14084 return (EACCES); 14085 14086 ns = netstack_find_by_stackid(stackid); 14087 if (ns == NULL) 14088 return (-1); 14089 ipst = ns->netstack_ip; 14090 if (ipst == NULL) { 14091 netstack_rele(ns); 14092 return (-1); 14093 } 14094 ipkp = (ip_named_kstat_t *)kp->ks_data; 14095 14096 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 14097 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 14098 ill = ILL_START_WALK_V4(&ctx, ipst); 14099 for (; ill != NULL; ill = ill_next(&ctx, ill)) 14100 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 14101 rw_exit(&ipst->ips_ill_g_lock); 14102 14103 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 14104 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 14105 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 14106 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 14107 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 14108 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 14109 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 14110 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 14111 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 14112 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 14113 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 14114 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 14115 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_reassembly_timeout; 14116 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 14117 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 14118 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 14119 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 14120 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 14121 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 14122 14123 ipkp->routingDiscards.value.ui32 = 0; 14124 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 14125 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 14126 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 14127 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 14128 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 14129 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 14130 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 14131 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 14132 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 14133 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 14134 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 14135 14136 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 14137 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 14138 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 14139 14140 netstack_rele(ns); 14141 14142 return (0); 14143 } 14144 14145 static void * 14146 icmp_kstat_init(netstackid_t stackid) 14147 { 14148 kstat_t *ksp; 14149 14150 icmp_named_kstat_t template = { 14151 { "inMsgs", KSTAT_DATA_UINT32 }, 14152 { "inErrors", KSTAT_DATA_UINT32 }, 14153 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 14154 { "inTimeExcds", KSTAT_DATA_UINT32 }, 14155 { "inParmProbs", KSTAT_DATA_UINT32 }, 14156 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 14157 { "inRedirects", KSTAT_DATA_UINT32 }, 14158 { "inEchos", KSTAT_DATA_UINT32 }, 14159 { "inEchoReps", KSTAT_DATA_UINT32 }, 14160 { "inTimestamps", KSTAT_DATA_UINT32 }, 14161 { "inTimestampReps", KSTAT_DATA_UINT32 }, 14162 { "inAddrMasks", KSTAT_DATA_UINT32 }, 14163 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 14164 { "outMsgs", KSTAT_DATA_UINT32 }, 14165 { "outErrors", KSTAT_DATA_UINT32 }, 14166 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 14167 { "outTimeExcds", KSTAT_DATA_UINT32 }, 14168 { "outParmProbs", KSTAT_DATA_UINT32 }, 14169 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 14170 { "outRedirects", KSTAT_DATA_UINT32 }, 14171 { "outEchos", KSTAT_DATA_UINT32 }, 14172 { "outEchoReps", KSTAT_DATA_UINT32 }, 14173 { "outTimestamps", KSTAT_DATA_UINT32 }, 14174 { "outTimestampReps", KSTAT_DATA_UINT32 }, 14175 { "outAddrMasks", KSTAT_DATA_UINT32 }, 14176 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 14177 { "inChksumErrs", KSTAT_DATA_UINT32 }, 14178 { "inUnknowns", KSTAT_DATA_UINT32 }, 14179 { "inFragNeeded", KSTAT_DATA_UINT32 }, 14180 { "outFragNeeded", KSTAT_DATA_UINT32 }, 14181 { "outDrops", KSTAT_DATA_UINT32 }, 14182 { "inOverFlows", KSTAT_DATA_UINT32 }, 14183 { "inBadRedirects", KSTAT_DATA_UINT32 }, 14184 }; 14185 14186 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 14187 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid); 14188 if (ksp == NULL || ksp->ks_data == NULL) 14189 return (NULL); 14190 14191 bcopy(&template, ksp->ks_data, sizeof (template)); 14192 14193 ksp->ks_update = icmp_kstat_update; 14194 ksp->ks_private = (void *)(uintptr_t)stackid; 14195 14196 kstat_install(ksp); 14197 return (ksp); 14198 } 14199 14200 static void 14201 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 14202 { 14203 if (ksp != NULL) { 14204 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 14205 kstat_delete_netstack(ksp, stackid); 14206 } 14207 } 14208 14209 static int 14210 icmp_kstat_update(kstat_t *kp, int rw) 14211 { 14212 icmp_named_kstat_t *icmpkp; 14213 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 14214 netstack_t *ns; 14215 ip_stack_t *ipst; 14216 14217 if ((kp == NULL) || (kp->ks_data == NULL)) 14218 return (EIO); 14219 14220 if (rw == KSTAT_WRITE) 14221 return (EACCES); 14222 14223 ns = netstack_find_by_stackid(stackid); 14224 if (ns == NULL) 14225 return (-1); 14226 ipst = ns->netstack_ip; 14227 if (ipst == NULL) { 14228 netstack_rele(ns); 14229 return (-1); 14230 } 14231 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 14232 14233 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 14234 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 14235 icmpkp->inDestUnreachs.value.ui32 = 14236 ipst->ips_icmp_mib.icmpInDestUnreachs; 14237 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 14238 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 14239 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 14240 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 14241 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 14242 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 14243 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 14244 icmpkp->inTimestampReps.value.ui32 = 14245 ipst->ips_icmp_mib.icmpInTimestampReps; 14246 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 14247 icmpkp->inAddrMaskReps.value.ui32 = 14248 ipst->ips_icmp_mib.icmpInAddrMaskReps; 14249 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 14250 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 14251 icmpkp->outDestUnreachs.value.ui32 = 14252 ipst->ips_icmp_mib.icmpOutDestUnreachs; 14253 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 14254 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 14255 icmpkp->outSrcQuenchs.value.ui32 = 14256 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 14257 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 14258 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 14259 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 14260 icmpkp->outTimestamps.value.ui32 = 14261 ipst->ips_icmp_mib.icmpOutTimestamps; 14262 icmpkp->outTimestampReps.value.ui32 = 14263 ipst->ips_icmp_mib.icmpOutTimestampReps; 14264 icmpkp->outAddrMasks.value.ui32 = 14265 ipst->ips_icmp_mib.icmpOutAddrMasks; 14266 icmpkp->outAddrMaskReps.value.ui32 = 14267 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 14268 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 14269 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 14270 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 14271 icmpkp->outFragNeeded.value.ui32 = 14272 ipst->ips_icmp_mib.icmpOutFragNeeded; 14273 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 14274 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 14275 icmpkp->inBadRedirects.value.ui32 = 14276 ipst->ips_icmp_mib.icmpInBadRedirects; 14277 14278 netstack_rele(ns); 14279 return (0); 14280 } 14281 14282 /* 14283 * This is the fanout function for raw socket opened for SCTP. Note 14284 * that it is called after SCTP checks that there is no socket which 14285 * wants a packet. Then before SCTP handles this out of the blue packet, 14286 * this function is called to see if there is any raw socket for SCTP. 14287 * If there is and it is bound to the correct address, the packet will 14288 * be sent to that socket. Note that only one raw socket can be bound to 14289 * a port. This is assured in ipcl_sctp_hash_insert(); 14290 */ 14291 void 14292 ip_fanout_sctp_raw(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, uint32_t ports, 14293 ip_recv_attr_t *ira) 14294 { 14295 conn_t *connp; 14296 queue_t *rq; 14297 boolean_t secure; 14298 ill_t *ill = ira->ira_ill; 14299 ip_stack_t *ipst = ill->ill_ipst; 14300 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 14301 sctp_stack_t *sctps = ipst->ips_netstack->netstack_sctp; 14302 iaflags_t iraflags = ira->ira_flags; 14303 ill_t *rill = ira->ira_rill; 14304 14305 secure = iraflags & IRAF_IPSEC_SECURE; 14306 14307 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, ports, ipha, ip6h, 14308 ira, ipst); 14309 if (connp == NULL) { 14310 /* 14311 * Although raw sctp is not summed, OOB chunks must be. 14312 * Drop the packet here if the sctp checksum failed. 14313 */ 14314 if (iraflags & IRAF_SCTP_CSUM_ERR) { 14315 SCTPS_BUMP_MIB(sctps, sctpChecksumError); 14316 freemsg(mp); 14317 return; 14318 } 14319 ira->ira_ill = ira->ira_rill = NULL; 14320 sctp_ootb_input(mp, ira, ipst); 14321 ira->ira_ill = ill; 14322 ira->ira_rill = rill; 14323 return; 14324 } 14325 rq = connp->conn_rq; 14326 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) { 14327 CONN_DEC_REF(connp); 14328 BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows); 14329 freemsg(mp); 14330 return; 14331 } 14332 if (((iraflags & IRAF_IS_IPV4) ? 14333 CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 14334 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || 14335 secure) { 14336 mp = ipsec_check_inbound_policy(mp, connp, ipha, 14337 ip6h, ira); 14338 if (mp == NULL) { 14339 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14340 /* Note that mp is NULL */ 14341 ip_drop_input("ipIfStatsInDiscards", mp, ill); 14342 CONN_DEC_REF(connp); 14343 return; 14344 } 14345 } 14346 14347 if (iraflags & IRAF_ICMP_ERROR) { 14348 (connp->conn_recvicmp)(connp, mp, NULL, ira); 14349 } else { 14350 ill_t *rill = ira->ira_rill; 14351 14352 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 14353 /* This is the SOCK_RAW, IPPROTO_SCTP case. */ 14354 ira->ira_ill = ira->ira_rill = NULL; 14355 (connp->conn_recv)(connp, mp, NULL, ira); 14356 ira->ira_ill = ill; 14357 ira->ira_rill = rill; 14358 } 14359 CONN_DEC_REF(connp); 14360 } 14361 14362 /* 14363 * Free a packet that has the link-layer dl_unitdata_req_t or fast-path 14364 * header before the ip payload. 14365 */ 14366 static void 14367 ip_xmit_flowctl_drop(ill_t *ill, mblk_t *mp, boolean_t is_fp_mp, int fp_mp_len) 14368 { 14369 int len = (mp->b_wptr - mp->b_rptr); 14370 mblk_t *ip_mp; 14371 14372 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 14373 if (is_fp_mp || len != fp_mp_len) { 14374 if (len > fp_mp_len) { 14375 /* 14376 * fastpath header and ip header in the first mblk 14377 */ 14378 mp->b_rptr += fp_mp_len; 14379 } else { 14380 /* 14381 * ip_xmit_attach_llhdr had to prepend an mblk to 14382 * attach the fastpath header before ip header. 14383 */ 14384 ip_mp = mp->b_cont; 14385 freeb(mp); 14386 mp = ip_mp; 14387 mp->b_rptr += (fp_mp_len - len); 14388 } 14389 } else { 14390 ip_mp = mp->b_cont; 14391 freeb(mp); 14392 mp = ip_mp; 14393 } 14394 ip_drop_output("ipIfStatsOutDiscards - flow ctl", mp, ill); 14395 freemsg(mp); 14396 } 14397 14398 /* 14399 * Normal post fragmentation function. 14400 * 14401 * Send a packet using the passed in nce. This handles both IPv4 and IPv6 14402 * using the same state machine. 14403 * 14404 * We return an error on failure. In particular we return EWOULDBLOCK 14405 * when the driver flow controls. In that case this ensures that ip_wsrv runs 14406 * (currently by canputnext failure resulting in backenabling from GLD.) 14407 * This allows the callers of conn_ip_output() to use EWOULDBLOCK as an 14408 * indication that they can flow control until ip_wsrv() tells then to restart. 14409 * 14410 * If the nce passed by caller is incomplete, this function 14411 * queues the packet and if necessary, sends ARP request and bails. 14412 * If the Neighbor Cache passed is fully resolved, we simply prepend 14413 * the link-layer header to the packet, do ipsec hw acceleration 14414 * work if necessary, and send the packet out on the wire. 14415 */ 14416 /* ARGSUSED6 */ 14417 int 14418 ip_xmit(mblk_t *mp, nce_t *nce, iaflags_t ixaflags, uint_t pkt_len, 14419 uint32_t xmit_hint, zoneid_t szone, zoneid_t nolzid, uintptr_t *ixacookie) 14420 { 14421 queue_t *wq; 14422 ill_t *ill = nce->nce_ill; 14423 ip_stack_t *ipst = ill->ill_ipst; 14424 uint64_t delta; 14425 boolean_t isv6 = ill->ill_isv6; 14426 boolean_t fp_mp; 14427 ncec_t *ncec = nce->nce_common; 14428 int64_t now = LBOLT_FASTPATH64; 14429 boolean_t is_probe; 14430 14431 DTRACE_PROBE1(ip__xmit, nce_t *, nce); 14432 14433 ASSERT(mp != NULL); 14434 ASSERT(mp->b_datap->db_type == M_DATA); 14435 ASSERT(pkt_len == msgdsize(mp)); 14436 14437 /* 14438 * If we have already been here and are coming back after ARP/ND. 14439 * the IXAF_NO_TRACE flag is set. We skip FW_HOOKS, DTRACE and ipobs 14440 * in that case since they have seen the packet when it came here 14441 * the first time. 14442 */ 14443 if (ixaflags & IXAF_NO_TRACE) 14444 goto sendit; 14445 14446 if (ixaflags & IXAF_IS_IPV4) { 14447 ipha_t *ipha = (ipha_t *)mp->b_rptr; 14448 14449 ASSERT(!isv6); 14450 ASSERT(pkt_len == ntohs(((ipha_t *)mp->b_rptr)->ipha_length)); 14451 if (HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) && 14452 !(ixaflags & IXAF_NO_PFHOOK)) { 14453 int error; 14454 14455 FW_HOOKS(ipst->ips_ip4_physical_out_event, 14456 ipst->ips_ipv4firewall_physical_out, 14457 NULL, ill, ipha, mp, mp, 0, ipst, error); 14458 DTRACE_PROBE1(ip4__physical__out__end, 14459 mblk_t *, mp); 14460 if (mp == NULL) 14461 return (error); 14462 14463 /* The length could have changed */ 14464 pkt_len = msgdsize(mp); 14465 } 14466 if (ipst->ips_ip4_observe.he_interested) { 14467 /* 14468 * Note that for TX the zoneid is the sending 14469 * zone, whether or not MLP is in play. 14470 * Since the szone argument is the IP zoneid (i.e., 14471 * zero for exclusive-IP zones) and ipobs wants 14472 * the system zoneid, we map it here. 14473 */ 14474 szone = IP_REAL_ZONEID(szone, ipst); 14475 14476 /* 14477 * On the outbound path the destination zone will be 14478 * unknown as we're sending this packet out on the 14479 * wire. 14480 */ 14481 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES, 14482 ill, ipst); 14483 } 14484 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, 14485 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, ill, 14486 ipha_t *, ipha, ip6_t *, NULL, int, 0); 14487 } else { 14488 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 14489 14490 ASSERT(isv6); 14491 ASSERT(pkt_len == 14492 ntohs(((ip6_t *)mp->b_rptr)->ip6_plen) + IPV6_HDR_LEN); 14493 if (HOOKS6_INTERESTED_PHYSICAL_OUT(ipst) && 14494 !(ixaflags & IXAF_NO_PFHOOK)) { 14495 int error; 14496 14497 FW_HOOKS6(ipst->ips_ip6_physical_out_event, 14498 ipst->ips_ipv6firewall_physical_out, 14499 NULL, ill, ip6h, mp, mp, 0, ipst, error); 14500 DTRACE_PROBE1(ip6__physical__out__end, 14501 mblk_t *, mp); 14502 if (mp == NULL) 14503 return (error); 14504 14505 /* The length could have changed */ 14506 pkt_len = msgdsize(mp); 14507 } 14508 if (ipst->ips_ip6_observe.he_interested) { 14509 /* See above */ 14510 szone = IP_REAL_ZONEID(szone, ipst); 14511 14512 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES, 14513 ill, ipst); 14514 } 14515 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, 14516 void_ip_t *, ip6h, __dtrace_ipsr_ill_t *, ill, 14517 ipha_t *, NULL, ip6_t *, ip6h, int, 0); 14518 } 14519 14520 sendit: 14521 /* 14522 * We check the state without a lock because the state can never 14523 * move "backwards" to initial or incomplete. 14524 */ 14525 switch (ncec->ncec_state) { 14526 case ND_REACHABLE: 14527 case ND_STALE: 14528 case ND_DELAY: 14529 case ND_PROBE: 14530 mp = ip_xmit_attach_llhdr(mp, nce); 14531 if (mp == NULL) { 14532 /* 14533 * ip_xmit_attach_llhdr has increased 14534 * ipIfStatsOutDiscards and called ip_drop_output() 14535 */ 14536 return (ENOBUFS); 14537 } 14538 /* 14539 * check if nce_fastpath completed and we tagged on a 14540 * copy of nce_fp_mp in ip_xmit_attach_llhdr(). 14541 */ 14542 fp_mp = (mp->b_datap->db_type == M_DATA); 14543 14544 if (fp_mp && 14545 (ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT)) { 14546 ill_dld_direct_t *idd; 14547 14548 idd = &ill->ill_dld_capab->idc_direct; 14549 /* 14550 * Send the packet directly to DLD, where it 14551 * may be queued depending on the availability 14552 * of transmit resources at the media layer. 14553 * Return value should be taken into 14554 * account and flow control the TCP. 14555 */ 14556 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14557 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 14558 pkt_len); 14559 14560 if (ixaflags & IXAF_NO_DEV_FLOW_CTL) { 14561 (void) idd->idd_tx_df(idd->idd_tx_dh, mp, 14562 (uintptr_t)xmit_hint, IP_DROP_ON_NO_DESC); 14563 } else { 14564 uintptr_t cookie; 14565 14566 if ((cookie = idd->idd_tx_df(idd->idd_tx_dh, 14567 mp, (uintptr_t)xmit_hint, 0)) != 0) { 14568 if (ixacookie != NULL) 14569 *ixacookie = cookie; 14570 return (EWOULDBLOCK); 14571 } 14572 } 14573 } else { 14574 wq = ill->ill_wq; 14575 14576 if (!(ixaflags & IXAF_NO_DEV_FLOW_CTL) && 14577 !canputnext(wq)) { 14578 if (ixacookie != NULL) 14579 *ixacookie = 0; 14580 ip_xmit_flowctl_drop(ill, mp, fp_mp, 14581 nce->nce_fp_mp != NULL ? 14582 MBLKL(nce->nce_fp_mp) : 0); 14583 return (EWOULDBLOCK); 14584 } 14585 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14586 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 14587 pkt_len); 14588 putnext(wq, mp); 14589 } 14590 14591 /* 14592 * The rest of this function implements Neighbor Unreachability 14593 * detection. Determine if the ncec is eligible for NUD. 14594 */ 14595 if (ncec->ncec_flags & NCE_F_NONUD) 14596 return (0); 14597 14598 ASSERT(ncec->ncec_state != ND_INCOMPLETE); 14599 14600 /* 14601 * Check for upper layer advice 14602 */ 14603 if (ixaflags & IXAF_REACH_CONF) { 14604 timeout_id_t tid; 14605 14606 /* 14607 * It should be o.k. to check the state without 14608 * a lock here, at most we lose an advice. 14609 */ 14610 ncec->ncec_last = TICK_TO_MSEC(now); 14611 if (ncec->ncec_state != ND_REACHABLE) { 14612 mutex_enter(&ncec->ncec_lock); 14613 ncec->ncec_state = ND_REACHABLE; 14614 tid = ncec->ncec_timeout_id; 14615 ncec->ncec_timeout_id = 0; 14616 mutex_exit(&ncec->ncec_lock); 14617 (void) untimeout(tid); 14618 if (ip_debug > 2) { 14619 /* ip1dbg */ 14620 pr_addr_dbg("ip_xmit: state" 14621 " for %s changed to" 14622 " REACHABLE\n", AF_INET6, 14623 &ncec->ncec_addr); 14624 } 14625 } 14626 return (0); 14627 } 14628 14629 delta = TICK_TO_MSEC(now) - ncec->ncec_last; 14630 ip1dbg(("ip_xmit: delta = %" PRId64 14631 " ill_reachable_time = %d \n", delta, 14632 ill->ill_reachable_time)); 14633 if (delta > (uint64_t)ill->ill_reachable_time) { 14634 mutex_enter(&ncec->ncec_lock); 14635 switch (ncec->ncec_state) { 14636 case ND_REACHABLE: 14637 ASSERT((ncec->ncec_flags & NCE_F_NONUD) == 0); 14638 /* FALLTHROUGH */ 14639 case ND_STALE: 14640 /* 14641 * ND_REACHABLE is identical to 14642 * ND_STALE in this specific case. If 14643 * reachable time has expired for this 14644 * neighbor (delta is greater than 14645 * reachable time), conceptually, the 14646 * neighbor cache is no longer in 14647 * REACHABLE state, but already in 14648 * STALE state. So the correct 14649 * transition here is to ND_DELAY. 14650 */ 14651 ncec->ncec_state = ND_DELAY; 14652 mutex_exit(&ncec->ncec_lock); 14653 nce_restart_timer(ncec, 14654 ipst->ips_delay_first_probe_time); 14655 if (ip_debug > 3) { 14656 /* ip2dbg */ 14657 pr_addr_dbg("ip_xmit: state" 14658 " for %s changed to" 14659 " DELAY\n", AF_INET6, 14660 &ncec->ncec_addr); 14661 } 14662 break; 14663 case ND_DELAY: 14664 case ND_PROBE: 14665 mutex_exit(&ncec->ncec_lock); 14666 /* Timers have already started */ 14667 break; 14668 case ND_UNREACHABLE: 14669 /* 14670 * nce_timer has detected that this ncec 14671 * is unreachable and initiated deleting 14672 * this ncec. 14673 * This is a harmless race where we found the 14674 * ncec before it was deleted and have 14675 * just sent out a packet using this 14676 * unreachable ncec. 14677 */ 14678 mutex_exit(&ncec->ncec_lock); 14679 break; 14680 default: 14681 ASSERT(0); 14682 mutex_exit(&ncec->ncec_lock); 14683 } 14684 } 14685 return (0); 14686 14687 case ND_INCOMPLETE: 14688 /* 14689 * the state could have changed since we didn't hold the lock. 14690 * Re-verify state under lock. 14691 */ 14692 is_probe = ipmp_packet_is_probe(mp, nce->nce_ill); 14693 mutex_enter(&ncec->ncec_lock); 14694 if (NCE_ISREACHABLE(ncec)) { 14695 mutex_exit(&ncec->ncec_lock); 14696 goto sendit; 14697 } 14698 /* queue the packet */ 14699 nce_queue_mp(ncec, mp, is_probe); 14700 mutex_exit(&ncec->ncec_lock); 14701 DTRACE_PROBE2(ip__xmit__incomplete, 14702 (ncec_t *), ncec, (mblk_t *), mp); 14703 return (0); 14704 14705 case ND_INITIAL: 14706 /* 14707 * State could have changed since we didn't hold the lock, so 14708 * re-verify state. 14709 */ 14710 is_probe = ipmp_packet_is_probe(mp, nce->nce_ill); 14711 mutex_enter(&ncec->ncec_lock); 14712 if (NCE_ISREACHABLE(ncec)) { 14713 mutex_exit(&ncec->ncec_lock); 14714 goto sendit; 14715 } 14716 nce_queue_mp(ncec, mp, is_probe); 14717 if (ncec->ncec_state == ND_INITIAL) { 14718 ncec->ncec_state = ND_INCOMPLETE; 14719 mutex_exit(&ncec->ncec_lock); 14720 /* 14721 * figure out the source we want to use 14722 * and resolve it. 14723 */ 14724 ip_ndp_resolve(ncec); 14725 } else { 14726 mutex_exit(&ncec->ncec_lock); 14727 } 14728 return (0); 14729 14730 case ND_UNREACHABLE: 14731 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 14732 ip_drop_output("ipIfStatsOutDiscards - ND_UNREACHABLE", 14733 mp, ill); 14734 freemsg(mp); 14735 return (0); 14736 14737 default: 14738 ASSERT(0); 14739 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 14740 ip_drop_output("ipIfStatsOutDiscards - ND_other", 14741 mp, ill); 14742 freemsg(mp); 14743 return (ENETUNREACH); 14744 } 14745 } 14746 14747 /* 14748 * Return B_TRUE if the buffers differ in length or content. 14749 * This is used for comparing extension header buffers. 14750 * Note that an extension header would be declared different 14751 * even if all that changed was the next header value in that header i.e. 14752 * what really changed is the next extension header. 14753 */ 14754 boolean_t 14755 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 14756 uint_t blen) 14757 { 14758 if (!b_valid) 14759 blen = 0; 14760 14761 if (alen != blen) 14762 return (B_TRUE); 14763 if (alen == 0) 14764 return (B_FALSE); /* Both zero length */ 14765 return (bcmp(abuf, bbuf, alen)); 14766 } 14767 14768 /* 14769 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 14770 * Return B_FALSE if memory allocation fails - don't change any state! 14771 */ 14772 boolean_t 14773 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 14774 const void *src, uint_t srclen) 14775 { 14776 void *dst; 14777 14778 if (!src_valid) 14779 srclen = 0; 14780 14781 ASSERT(*dstlenp == 0); 14782 if (src != NULL && srclen != 0) { 14783 dst = mi_alloc(srclen, BPRI_MED); 14784 if (dst == NULL) 14785 return (B_FALSE); 14786 } else { 14787 dst = NULL; 14788 } 14789 if (*dstp != NULL) 14790 mi_free(*dstp); 14791 *dstp = dst; 14792 *dstlenp = dst == NULL ? 0 : srclen; 14793 return (B_TRUE); 14794 } 14795 14796 /* 14797 * Replace what is in *dst, *dstlen with the source. 14798 * Assumes ip_allocbuf has already been called. 14799 */ 14800 void 14801 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 14802 const void *src, uint_t srclen) 14803 { 14804 if (!src_valid) 14805 srclen = 0; 14806 14807 ASSERT(*dstlenp == srclen); 14808 if (src != NULL && srclen != 0) 14809 bcopy(src, *dstp, srclen); 14810 } 14811 14812 /* 14813 * Free the storage pointed to by the members of an ip_pkt_t. 14814 */ 14815 void 14816 ip_pkt_free(ip_pkt_t *ipp) 14817 { 14818 uint_t fields = ipp->ipp_fields; 14819 14820 if (fields & IPPF_HOPOPTS) { 14821 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 14822 ipp->ipp_hopopts = NULL; 14823 ipp->ipp_hopoptslen = 0; 14824 } 14825 if (fields & IPPF_RTHDRDSTOPTS) { 14826 kmem_free(ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen); 14827 ipp->ipp_rthdrdstopts = NULL; 14828 ipp->ipp_rthdrdstoptslen = 0; 14829 } 14830 if (fields & IPPF_DSTOPTS) { 14831 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 14832 ipp->ipp_dstopts = NULL; 14833 ipp->ipp_dstoptslen = 0; 14834 } 14835 if (fields & IPPF_RTHDR) { 14836 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 14837 ipp->ipp_rthdr = NULL; 14838 ipp->ipp_rthdrlen = 0; 14839 } 14840 if (fields & IPPF_IPV4_OPTIONS) { 14841 kmem_free(ipp->ipp_ipv4_options, ipp->ipp_ipv4_options_len); 14842 ipp->ipp_ipv4_options = NULL; 14843 ipp->ipp_ipv4_options_len = 0; 14844 } 14845 if (fields & IPPF_LABEL_V4) { 14846 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4); 14847 ipp->ipp_label_v4 = NULL; 14848 ipp->ipp_label_len_v4 = 0; 14849 } 14850 if (fields & IPPF_LABEL_V6) { 14851 kmem_free(ipp->ipp_label_v6, ipp->ipp_label_len_v6); 14852 ipp->ipp_label_v6 = NULL; 14853 ipp->ipp_label_len_v6 = 0; 14854 } 14855 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS | 14856 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6); 14857 } 14858 14859 /* 14860 * Copy from src to dst and allocate as needed. 14861 * Returns zero or ENOMEM. 14862 * 14863 * The caller must initialize dst to zero. 14864 */ 14865 int 14866 ip_pkt_copy(ip_pkt_t *src, ip_pkt_t *dst, int kmflag) 14867 { 14868 uint_t fields = src->ipp_fields; 14869 14870 /* Start with fields that don't require memory allocation */ 14871 dst->ipp_fields = fields & 14872 ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS | 14873 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6); 14874 14875 dst->ipp_addr = src->ipp_addr; 14876 dst->ipp_unicast_hops = src->ipp_unicast_hops; 14877 dst->ipp_hoplimit = src->ipp_hoplimit; 14878 dst->ipp_tclass = src->ipp_tclass; 14879 dst->ipp_type_of_service = src->ipp_type_of_service; 14880 14881 if (!(fields & (IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS | 14882 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6))) 14883 return (0); 14884 14885 if (fields & IPPF_HOPOPTS) { 14886 dst->ipp_hopopts = kmem_alloc(src->ipp_hopoptslen, kmflag); 14887 if (dst->ipp_hopopts == NULL) { 14888 ip_pkt_free(dst); 14889 return (ENOMEM); 14890 } 14891 dst->ipp_fields |= IPPF_HOPOPTS; 14892 bcopy(src->ipp_hopopts, dst->ipp_hopopts, 14893 src->ipp_hopoptslen); 14894 dst->ipp_hopoptslen = src->ipp_hopoptslen; 14895 } 14896 if (fields & IPPF_RTHDRDSTOPTS) { 14897 dst->ipp_rthdrdstopts = kmem_alloc(src->ipp_rthdrdstoptslen, 14898 kmflag); 14899 if (dst->ipp_rthdrdstopts == NULL) { 14900 ip_pkt_free(dst); 14901 return (ENOMEM); 14902 } 14903 dst->ipp_fields |= IPPF_RTHDRDSTOPTS; 14904 bcopy(src->ipp_rthdrdstopts, dst->ipp_rthdrdstopts, 14905 src->ipp_rthdrdstoptslen); 14906 dst->ipp_rthdrdstoptslen = src->ipp_rthdrdstoptslen; 14907 } 14908 if (fields & IPPF_DSTOPTS) { 14909 dst->ipp_dstopts = kmem_alloc(src->ipp_dstoptslen, kmflag); 14910 if (dst->ipp_dstopts == NULL) { 14911 ip_pkt_free(dst); 14912 return (ENOMEM); 14913 } 14914 dst->ipp_fields |= IPPF_DSTOPTS; 14915 bcopy(src->ipp_dstopts, dst->ipp_dstopts, 14916 src->ipp_dstoptslen); 14917 dst->ipp_dstoptslen = src->ipp_dstoptslen; 14918 } 14919 if (fields & IPPF_RTHDR) { 14920 dst->ipp_rthdr = kmem_alloc(src->ipp_rthdrlen, kmflag); 14921 if (dst->ipp_rthdr == NULL) { 14922 ip_pkt_free(dst); 14923 return (ENOMEM); 14924 } 14925 dst->ipp_fields |= IPPF_RTHDR; 14926 bcopy(src->ipp_rthdr, dst->ipp_rthdr, 14927 src->ipp_rthdrlen); 14928 dst->ipp_rthdrlen = src->ipp_rthdrlen; 14929 } 14930 if (fields & IPPF_IPV4_OPTIONS) { 14931 dst->ipp_ipv4_options = kmem_alloc(src->ipp_ipv4_options_len, 14932 kmflag); 14933 if (dst->ipp_ipv4_options == NULL) { 14934 ip_pkt_free(dst); 14935 return (ENOMEM); 14936 } 14937 dst->ipp_fields |= IPPF_IPV4_OPTIONS; 14938 bcopy(src->ipp_ipv4_options, dst->ipp_ipv4_options, 14939 src->ipp_ipv4_options_len); 14940 dst->ipp_ipv4_options_len = src->ipp_ipv4_options_len; 14941 } 14942 if (fields & IPPF_LABEL_V4) { 14943 dst->ipp_label_v4 = kmem_alloc(src->ipp_label_len_v4, kmflag); 14944 if (dst->ipp_label_v4 == NULL) { 14945 ip_pkt_free(dst); 14946 return (ENOMEM); 14947 } 14948 dst->ipp_fields |= IPPF_LABEL_V4; 14949 bcopy(src->ipp_label_v4, dst->ipp_label_v4, 14950 src->ipp_label_len_v4); 14951 dst->ipp_label_len_v4 = src->ipp_label_len_v4; 14952 } 14953 if (fields & IPPF_LABEL_V6) { 14954 dst->ipp_label_v6 = kmem_alloc(src->ipp_label_len_v6, kmflag); 14955 if (dst->ipp_label_v6 == NULL) { 14956 ip_pkt_free(dst); 14957 return (ENOMEM); 14958 } 14959 dst->ipp_fields |= IPPF_LABEL_V6; 14960 bcopy(src->ipp_label_v6, dst->ipp_label_v6, 14961 src->ipp_label_len_v6); 14962 dst->ipp_label_len_v6 = src->ipp_label_len_v6; 14963 } 14964 if (fields & IPPF_FRAGHDR) { 14965 dst->ipp_fraghdr = kmem_alloc(src->ipp_fraghdrlen, kmflag); 14966 if (dst->ipp_fraghdr == NULL) { 14967 ip_pkt_free(dst); 14968 return (ENOMEM); 14969 } 14970 dst->ipp_fields |= IPPF_FRAGHDR; 14971 bcopy(src->ipp_fraghdr, dst->ipp_fraghdr, 14972 src->ipp_fraghdrlen); 14973 dst->ipp_fraghdrlen = src->ipp_fraghdrlen; 14974 } 14975 return (0); 14976 } 14977 14978 /* 14979 * Returns INADDR_ANY if no source route 14980 */ 14981 ipaddr_t 14982 ip_pkt_source_route_v4(const ip_pkt_t *ipp) 14983 { 14984 ipaddr_t nexthop = INADDR_ANY; 14985 ipoptp_t opts; 14986 uchar_t *opt; 14987 uint8_t optval; 14988 uint8_t optlen; 14989 uint32_t totallen; 14990 14991 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS)) 14992 return (INADDR_ANY); 14993 14994 totallen = ipp->ipp_ipv4_options_len; 14995 if (totallen & 0x3) 14996 return (INADDR_ANY); 14997 14998 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options); 14999 optval != IPOPT_EOL; 15000 optval = ipoptp_next(&opts)) { 15001 opt = opts.ipoptp_cur; 15002 switch (optval) { 15003 uint8_t off; 15004 case IPOPT_SSRR: 15005 case IPOPT_LSRR: 15006 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 15007 break; 15008 } 15009 optlen = opts.ipoptp_len; 15010 off = opt[IPOPT_OFFSET]; 15011 off--; 15012 if (optlen < IP_ADDR_LEN || 15013 off > optlen - IP_ADDR_LEN) { 15014 /* End of source route */ 15015 break; 15016 } 15017 bcopy((char *)opt + off, &nexthop, IP_ADDR_LEN); 15018 if (nexthop == htonl(INADDR_LOOPBACK)) { 15019 /* Ignore */ 15020 nexthop = INADDR_ANY; 15021 break; 15022 } 15023 break; 15024 } 15025 } 15026 return (nexthop); 15027 } 15028 15029 /* 15030 * Reverse a source route. 15031 */ 15032 void 15033 ip_pkt_source_route_reverse_v4(ip_pkt_t *ipp) 15034 { 15035 ipaddr_t tmp; 15036 ipoptp_t opts; 15037 uchar_t *opt; 15038 uint8_t optval; 15039 uint32_t totallen; 15040 15041 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS)) 15042 return; 15043 15044 totallen = ipp->ipp_ipv4_options_len; 15045 if (totallen & 0x3) 15046 return; 15047 15048 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options); 15049 optval != IPOPT_EOL; 15050 optval = ipoptp_next(&opts)) { 15051 uint8_t off1, off2; 15052 15053 opt = opts.ipoptp_cur; 15054 switch (optval) { 15055 case IPOPT_SSRR: 15056 case IPOPT_LSRR: 15057 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 15058 break; 15059 } 15060 off1 = IPOPT_MINOFF_SR - 1; 15061 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 15062 while (off2 > off1) { 15063 bcopy(opt + off2, &tmp, IP_ADDR_LEN); 15064 bcopy(opt + off1, opt + off2, IP_ADDR_LEN); 15065 bcopy(&tmp, opt + off2, IP_ADDR_LEN); 15066 off2 -= IP_ADDR_LEN; 15067 off1 += IP_ADDR_LEN; 15068 } 15069 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 15070 break; 15071 } 15072 } 15073 } 15074 15075 /* 15076 * Returns NULL if no routing header 15077 */ 15078 in6_addr_t * 15079 ip_pkt_source_route_v6(const ip_pkt_t *ipp) 15080 { 15081 in6_addr_t *nexthop = NULL; 15082 ip6_rthdr0_t *rthdr; 15083 15084 if (!(ipp->ipp_fields & IPPF_RTHDR)) 15085 return (NULL); 15086 15087 rthdr = (ip6_rthdr0_t *)ipp->ipp_rthdr; 15088 if (rthdr->ip6r0_segleft == 0) 15089 return (NULL); 15090 15091 nexthop = (in6_addr_t *)((char *)rthdr + sizeof (*rthdr)); 15092 return (nexthop); 15093 } 15094 15095 zoneid_t 15096 ip_get_zoneid_v4(ipaddr_t addr, mblk_t *mp, ip_recv_attr_t *ira, 15097 zoneid_t lookup_zoneid) 15098 { 15099 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 15100 ire_t *ire; 15101 int ire_flags = MATCH_IRE_TYPE; 15102 zoneid_t zoneid = ALL_ZONES; 15103 15104 if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE)) 15105 return (ALL_ZONES); 15106 15107 if (lookup_zoneid != ALL_ZONES) 15108 ire_flags |= MATCH_IRE_ZONEONLY; 15109 ire = ire_ftable_lookup_v4(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK, 15110 NULL, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL); 15111 if (ire != NULL) { 15112 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 15113 ire_refrele(ire); 15114 } 15115 return (zoneid); 15116 } 15117 15118 zoneid_t 15119 ip_get_zoneid_v6(in6_addr_t *addr, mblk_t *mp, const ill_t *ill, 15120 ip_recv_attr_t *ira, zoneid_t lookup_zoneid) 15121 { 15122 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 15123 ire_t *ire; 15124 int ire_flags = MATCH_IRE_TYPE; 15125 zoneid_t zoneid = ALL_ZONES; 15126 15127 if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE)) 15128 return (ALL_ZONES); 15129 15130 if (IN6_IS_ADDR_LINKLOCAL(addr)) 15131 ire_flags |= MATCH_IRE_ILL; 15132 15133 if (lookup_zoneid != ALL_ZONES) 15134 ire_flags |= MATCH_IRE_ZONEONLY; 15135 ire = ire_ftable_lookup_v6(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK, 15136 ill, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL); 15137 if (ire != NULL) { 15138 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 15139 ire_refrele(ire); 15140 } 15141 return (zoneid); 15142 } 15143 15144 /* 15145 * IP obserability hook support functions. 15146 */ 15147 static void 15148 ipobs_init(ip_stack_t *ipst) 15149 { 15150 netid_t id; 15151 15152 id = net_getnetidbynetstackid(ipst->ips_netstack->netstack_stackid); 15153 15154 ipst->ips_ip4_observe_pr = net_protocol_lookup(id, NHF_INET); 15155 VERIFY(ipst->ips_ip4_observe_pr != NULL); 15156 15157 ipst->ips_ip6_observe_pr = net_protocol_lookup(id, NHF_INET6); 15158 VERIFY(ipst->ips_ip6_observe_pr != NULL); 15159 } 15160 15161 static void 15162 ipobs_fini(ip_stack_t *ipst) 15163 { 15164 15165 VERIFY(net_protocol_release(ipst->ips_ip4_observe_pr) == 0); 15166 VERIFY(net_protocol_release(ipst->ips_ip6_observe_pr) == 0); 15167 } 15168 15169 /* 15170 * hook_pkt_observe_t is composed in network byte order so that the 15171 * entire mblk_t chain handed into hook_run can be used as-is. 15172 * The caveat is that use of the fields, such as the zone fields, 15173 * requires conversion into host byte order first. 15174 */ 15175 void 15176 ipobs_hook(mblk_t *mp, int htype, zoneid_t zsrc, zoneid_t zdst, 15177 const ill_t *ill, ip_stack_t *ipst) 15178 { 15179 hook_pkt_observe_t *hdr; 15180 uint64_t grifindex; 15181 mblk_t *imp; 15182 15183 imp = allocb(sizeof (*hdr), BPRI_HI); 15184 if (imp == NULL) 15185 return; 15186 15187 hdr = (hook_pkt_observe_t *)imp->b_rptr; 15188 /* 15189 * b_wptr is set to make the apparent size of the data in the mblk_t 15190 * to exclude the pointers at the end of hook_pkt_observer_t. 15191 */ 15192 imp->b_wptr = imp->b_rptr + sizeof (dl_ipnetinfo_t); 15193 imp->b_cont = mp; 15194 15195 ASSERT(DB_TYPE(mp) == M_DATA); 15196 15197 if (IS_UNDER_IPMP(ill)) 15198 grifindex = ipmp_ill_get_ipmp_ifindex(ill); 15199 else 15200 grifindex = 0; 15201 15202 hdr->hpo_version = 1; 15203 hdr->hpo_htype = htons(htype); 15204 hdr->hpo_pktlen = htonl((ulong_t)msgdsize(mp)); 15205 hdr->hpo_ifindex = htonl(ill->ill_phyint->phyint_ifindex); 15206 hdr->hpo_grifindex = htonl(grifindex); 15207 hdr->hpo_zsrc = htonl(zsrc); 15208 hdr->hpo_zdst = htonl(zdst); 15209 hdr->hpo_pkt = imp; 15210 hdr->hpo_ctx = ipst->ips_netstack; 15211 15212 if (ill->ill_isv6) { 15213 hdr->hpo_family = AF_INET6; 15214 (void) hook_run(ipst->ips_ipv6_net_data->netd_hooks, 15215 ipst->ips_ipv6observing, (hook_data_t)hdr); 15216 } else { 15217 hdr->hpo_family = AF_INET; 15218 (void) hook_run(ipst->ips_ipv4_net_data->netd_hooks, 15219 ipst->ips_ipv4observing, (hook_data_t)hdr); 15220 } 15221 15222 imp->b_cont = NULL; 15223 freemsg(imp); 15224 } 15225 15226 /* 15227 * Utility routine that checks if `v4srcp' is a valid address on underlying 15228 * interface `ill'. If `ipifp' is non-NULL, it's set to a held ipif 15229 * associated with `v4srcp' on success. NOTE: if this is not called from 15230 * inside the IPSQ (ill_g_lock is not held), `ill' may be removed from the 15231 * group during or after this lookup. 15232 */ 15233 boolean_t 15234 ipif_lookup_testaddr_v4(ill_t *ill, const in_addr_t *v4srcp, ipif_t **ipifp) 15235 { 15236 ipif_t *ipif; 15237 15238 ipif = ipif_lookup_addr_exact(*v4srcp, ill, ill->ill_ipst); 15239 if (ipif != NULL) { 15240 if (ipifp != NULL) 15241 *ipifp = ipif; 15242 else 15243 ipif_refrele(ipif); 15244 return (B_TRUE); 15245 } 15246 15247 ip1dbg(("ipif_lookup_testaddr_v4: cannot find ipif for src %x\n", 15248 *v4srcp)); 15249 return (B_FALSE); 15250 } 15251 15252 /* 15253 * Transport protocol call back function for CPU state change. 15254 */ 15255 /* ARGSUSED */ 15256 static int 15257 ip_tp_cpu_update(cpu_setup_t what, int id, void *arg) 15258 { 15259 processorid_t cpu_seqid; 15260 netstack_handle_t nh; 15261 netstack_t *ns; 15262 15263 ASSERT(MUTEX_HELD(&cpu_lock)); 15264 15265 switch (what) { 15266 case CPU_CONFIG: 15267 case CPU_ON: 15268 case CPU_INIT: 15269 case CPU_CPUPART_IN: 15270 cpu_seqid = cpu[id]->cpu_seqid; 15271 netstack_next_init(&nh); 15272 while ((ns = netstack_next(&nh)) != NULL) { 15273 tcp_stack_cpu_add(ns->netstack_tcp, cpu_seqid); 15274 sctp_stack_cpu_add(ns->netstack_sctp, cpu_seqid); 15275 udp_stack_cpu_add(ns->netstack_udp, cpu_seqid); 15276 netstack_rele(ns); 15277 } 15278 netstack_next_fini(&nh); 15279 break; 15280 case CPU_UNCONFIG: 15281 case CPU_OFF: 15282 case CPU_CPUPART_OUT: 15283 /* 15284 * Nothing to do. We don't remove the per CPU stats from 15285 * the IP stack even when the CPU goes offline. 15286 */ 15287 break; 15288 default: 15289 break; 15290 } 15291 return (0); 15292 }