1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  23  * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
  24  * Copyright 2014 Nexenta Systems, Inc.  All rights reserved.
  25  * Copyright (c) 2014 Integros [integros.com]
  26  * Copyright 2015 Joyent, Inc.
  27  */
  28 
  29 /* Portions Copyright 2007 Jeremy Teo */
  30 /* Portions Copyright 2010 Robert Milkowski */
  31 
  32 #include <sys/types.h>
  33 #include <sys/param.h>
  34 #include <sys/time.h>
  35 #include <sys/systm.h>
  36 #include <sys/sysmacros.h>
  37 #include <sys/resource.h>
  38 #include <sys/vfs.h>
  39 #include <sys/vfs_opreg.h>
  40 #include <sys/vnode.h>
  41 #include <sys/file.h>
  42 #include <sys/stat.h>
  43 #include <sys/kmem.h>
  44 #include <sys/taskq.h>
  45 #include <sys/uio.h>
  46 #include <sys/vmsystm.h>
  47 #include <sys/atomic.h>
  48 #include <sys/vm.h>
  49 #include <vm/seg_vn.h>
  50 #include <vm/pvn.h>
  51 #include <vm/as.h>
  52 #include <vm/kpm.h>
  53 #include <vm/seg_kpm.h>
  54 #include <sys/mman.h>
  55 #include <sys/pathname.h>
  56 #include <sys/cmn_err.h>
  57 #include <sys/errno.h>
  58 #include <sys/unistd.h>
  59 #include <sys/zfs_dir.h>
  60 #include <sys/zfs_acl.h>
  61 #include <sys/zfs_ioctl.h>
  62 #include <sys/fs/zfs.h>
  63 #include <sys/dmu.h>
  64 #include <sys/dmu_objset.h>
  65 #include <sys/spa.h>
  66 #include <sys/txg.h>
  67 #include <sys/dbuf.h>
  68 #include <sys/zap.h>
  69 #include <sys/sa.h>
  70 #include <sys/dirent.h>
  71 #include <sys/policy.h>
  72 #include <sys/sunddi.h>
  73 #include <sys/filio.h>
  74 #include <sys/sid.h>
  75 #include "fs/fs_subr.h"
  76 #include <sys/zfs_ctldir.h>
  77 #include <sys/zfs_fuid.h>
  78 #include <sys/zfs_sa.h>
  79 #include <sys/dnlc.h>
  80 #include <sys/zfs_rlock.h>
  81 #include <sys/extdirent.h>
  82 #include <sys/kidmap.h>
  83 #include <sys/cred.h>
  84 #include <sys/attr.h>
  85 
  86 /*
  87  * Programming rules.
  88  *
  89  * Each vnode op performs some logical unit of work.  To do this, the ZPL must
  90  * properly lock its in-core state, create a DMU transaction, do the work,
  91  * record this work in the intent log (ZIL), commit the DMU transaction,
  92  * and wait for the intent log to commit if it is a synchronous operation.
  93  * Moreover, the vnode ops must work in both normal and log replay context.
  94  * The ordering of events is important to avoid deadlocks and references
  95  * to freed memory.  The example below illustrates the following Big Rules:
  96  *
  97  *  (1) A check must be made in each zfs thread for a mounted file system.
  98  *      This is done avoiding races using ZFS_ENTER(zfsvfs).
  99  *      A ZFS_EXIT(zfsvfs) is needed before all returns.  Any znodes
 100  *      must be checked with ZFS_VERIFY_ZP(zp).  Both of these macros
 101  *      can return EIO from the calling function.
 102  *
 103  *  (2) VN_RELE() should always be the last thing except for zil_commit()
 104  *      (if necessary) and ZFS_EXIT(). This is for 3 reasons:
 105  *      First, if it's the last reference, the vnode/znode
 106  *      can be freed, so the zp may point to freed memory.  Second, the last
 107  *      reference will call zfs_zinactive(), which may induce a lot of work --
 108  *      pushing cached pages (which acquires range locks) and syncing out
 109  *      cached atime changes.  Third, zfs_zinactive() may require a new tx,
 110  *      which could deadlock the system if you were already holding one.
 111  *      If you must call VN_RELE() within a tx then use VN_RELE_ASYNC().
 112  *
 113  *  (3) All range locks must be grabbed before calling dmu_tx_assign(),
 114  *      as they can span dmu_tx_assign() calls.
 115  *
 116  *  (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to
 117  *      dmu_tx_assign().  This is critical because we don't want to block
 118  *      while holding locks.
 119  *
 120  *      If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT.  This
 121  *      reduces lock contention and CPU usage when we must wait (note that if
 122  *      throughput is constrained by the storage, nearly every transaction
 123  *      must wait).
 124  *
 125  *      Note, in particular, that if a lock is sometimes acquired before
 126  *      the tx assigns, and sometimes after (e.g. z_lock), then failing
 127  *      to use a non-blocking assign can deadlock the system.  The scenario:
 128  *
 129  *      Thread A has grabbed a lock before calling dmu_tx_assign().
 130  *      Thread B is in an already-assigned tx, and blocks for this lock.
 131  *      Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
 132  *      forever, because the previous txg can't quiesce until B's tx commits.
 133  *
 134  *      If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
 135  *      then drop all locks, call dmu_tx_wait(), and try again.  On subsequent
 136  *      calls to dmu_tx_assign(), pass TXG_WAITED rather than TXG_NOWAIT,
 137  *      to indicate that this operation has already called dmu_tx_wait().
 138  *      This will ensure that we don't retry forever, waiting a short bit
 139  *      each time.
 140  *
 141  *  (5) If the operation succeeded, generate the intent log entry for it
 142  *      before dropping locks.  This ensures that the ordering of events
 143  *      in the intent log matches the order in which they actually occurred.
 144  *      During ZIL replay the zfs_log_* functions will update the sequence
 145  *      number to indicate the zil transaction has replayed.
 146  *
 147  *  (6) At the end of each vnode op, the DMU tx must always commit,
 148  *      regardless of whether there were any errors.
 149  *
 150  *  (7) After dropping all locks, invoke zil_commit(zilog, foid)
 151  *      to ensure that synchronous semantics are provided when necessary.
 152  *
 153  * In general, this is how things should be ordered in each vnode op:
 154  *
 155  *      ZFS_ENTER(zfsvfs);              // exit if unmounted
 156  * top:
 157  *      zfs_dirent_lock(&dl, ...)   // lock directory entry (may VN_HOLD())
 158  *      rw_enter(...);                  // grab any other locks you need
 159  *      tx = dmu_tx_create(...);        // get DMU tx
 160  *      dmu_tx_hold_*();                // hold each object you might modify
 161  *      error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
 162  *      if (error) {
 163  *              rw_exit(...);           // drop locks
 164  *              zfs_dirent_unlock(dl);  // unlock directory entry
 165  *              VN_RELE(...);           // release held vnodes
 166  *              if (error == ERESTART) {
 167  *                      waited = B_TRUE;
 168  *                      dmu_tx_wait(tx);
 169  *                      dmu_tx_abort(tx);
 170  *                      goto top;
 171  *              }
 172  *              dmu_tx_abort(tx);       // abort DMU tx
 173  *              ZFS_EXIT(zfsvfs);       // finished in zfs
 174  *              return (error);         // really out of space
 175  *      }
 176  *      error = do_real_work();         // do whatever this VOP does
 177  *      if (error == 0)
 178  *              zfs_log_*(...);         // on success, make ZIL entry
 179  *      dmu_tx_commit(tx);              // commit DMU tx -- error or not
 180  *      rw_exit(...);                   // drop locks
 181  *      zfs_dirent_unlock(dl);          // unlock directory entry
 182  *      VN_RELE(...);                   // release held vnodes
 183  *      zil_commit(zilog, foid);        // synchronous when necessary
 184  *      ZFS_EXIT(zfsvfs);               // finished in zfs
 185  *      return (error);                 // done, report error
 186  */
 187 
 188 /* ARGSUSED */
 189 static int
 190 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
 191 {
 192         znode_t *zp = VTOZ(*vpp);
 193         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
 194 
 195         ZFS_ENTER(zfsvfs);
 196         ZFS_VERIFY_ZP(zp);
 197 
 198         if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
 199             ((flag & FAPPEND) == 0)) {
 200                 ZFS_EXIT(zfsvfs);
 201                 return (SET_ERROR(EPERM));
 202         }
 203 
 204         if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
 205             ZTOV(zp)->v_type == VREG &&
 206             !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) {
 207                 if (fs_vscan(*vpp, cr, 0) != 0) {
 208                         ZFS_EXIT(zfsvfs);
 209                         return (SET_ERROR(EACCES));
 210                 }
 211         }
 212 
 213         /* Keep a count of the synchronous opens in the znode */
 214         if (flag & (FSYNC | FDSYNC))
 215                 atomic_inc_32(&zp->z_sync_cnt);
 216 
 217         ZFS_EXIT(zfsvfs);
 218         return (0);
 219 }
 220 
 221 /* ARGSUSED */
 222 static int
 223 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
 224     caller_context_t *ct)
 225 {
 226         znode_t *zp = VTOZ(vp);
 227         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
 228 
 229         /*
 230          * Clean up any locks held by this process on the vp.
 231          */
 232         cleanlocks(vp, ddi_get_pid(), 0);
 233         cleanshares(vp, ddi_get_pid());
 234 
 235         ZFS_ENTER(zfsvfs);
 236         ZFS_VERIFY_ZP(zp);
 237 
 238         /* Decrement the synchronous opens in the znode */
 239         if ((flag & (FSYNC | FDSYNC)) && (count == 1))
 240                 atomic_dec_32(&zp->z_sync_cnt);
 241 
 242         if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
 243             ZTOV(zp)->v_type == VREG &&
 244             !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0)
 245                 VERIFY(fs_vscan(vp, cr, 1) == 0);
 246 
 247         ZFS_EXIT(zfsvfs);
 248         return (0);
 249 }
 250 
 251 /*
 252  * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and
 253  * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter.
 254  */
 255 static int
 256 zfs_holey(vnode_t *vp, int cmd, offset_t *off)
 257 {
 258         znode_t *zp = VTOZ(vp);
 259         uint64_t noff = (uint64_t)*off; /* new offset */
 260         uint64_t file_sz;
 261         int error;
 262         boolean_t hole;
 263 
 264         file_sz = zp->z_size;
 265         if (noff >= file_sz)  {
 266                 return (SET_ERROR(ENXIO));
 267         }
 268 
 269         if (cmd == _FIO_SEEK_HOLE)
 270                 hole = B_TRUE;
 271         else
 272                 hole = B_FALSE;
 273 
 274         error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff);
 275 
 276         if (error == ESRCH)
 277                 return (SET_ERROR(ENXIO));
 278 
 279         /*
 280          * We could find a hole that begins after the logical end-of-file,
 281          * because dmu_offset_next() only works on whole blocks.  If the
 282          * EOF falls mid-block, then indicate that the "virtual hole"
 283          * at the end of the file begins at the logical EOF, rather than
 284          * at the end of the last block.
 285          */
 286         if (noff > file_sz) {
 287                 ASSERT(hole);
 288                 noff = file_sz;
 289         }
 290 
 291         if (noff < *off)
 292                 return (error);
 293         *off = noff;
 294         return (error);
 295 }
 296 
 297 /* ARGSUSED */
 298 static int
 299 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred,
 300     int *rvalp, caller_context_t *ct)
 301 {
 302         offset_t off;
 303         offset_t ndata;
 304         dmu_object_info_t doi;
 305         int error;
 306         zfsvfs_t *zfsvfs;
 307         znode_t *zp;
 308 
 309         switch (com) {
 310         case _FIOFFS:
 311         {
 312                 return (zfs_sync(vp->v_vfsp, 0, cred));
 313 
 314                 /*
 315                  * The following two ioctls are used by bfu.  Faking out,
 316                  * necessary to avoid bfu errors.
 317                  */
 318         }
 319         case _FIOGDIO:
 320         case _FIOSDIO:
 321         {
 322                 return (0);
 323         }
 324 
 325         case _FIO_SEEK_DATA:
 326         case _FIO_SEEK_HOLE:
 327         {
 328                 if (ddi_copyin((void *)data, &off, sizeof (off), flag))
 329                         return (SET_ERROR(EFAULT));
 330 
 331                 zp = VTOZ(vp);
 332                 zfsvfs = zp->z_zfsvfs;
 333                 ZFS_ENTER(zfsvfs);
 334                 ZFS_VERIFY_ZP(zp);
 335 
 336                 /* offset parameter is in/out */
 337                 error = zfs_holey(vp, com, &off);
 338                 ZFS_EXIT(zfsvfs);
 339                 if (error)
 340                         return (error);
 341                 if (ddi_copyout(&off, (void *)data, sizeof (off), flag))
 342                         return (SET_ERROR(EFAULT));
 343                 return (0);
 344         }
 345         case _FIO_COUNT_FILLED:
 346         {
 347                 /*
 348                  * _FIO_COUNT_FILLED adds a new ioctl command which
 349                  * exposes the number of filled blocks in a
 350                  * ZFS object.
 351                  */
 352                 zp = VTOZ(vp);
 353                 zfsvfs = zp->z_zfsvfs;
 354                 ZFS_ENTER(zfsvfs);
 355                 ZFS_VERIFY_ZP(zp);
 356 
 357                 /*
 358                  * Wait for all dirty blocks for this object
 359                  * to get synced out to disk, and the DMU info
 360                  * updated.
 361                  */
 362                 error = dmu_object_wait_synced(zfsvfs->z_os, zp->z_id);
 363                 if (error) {
 364                         ZFS_EXIT(zfsvfs);
 365                         return (error);
 366                 }
 367 
 368                 /*
 369                  * Retrieve fill count from DMU object.
 370                  */
 371                 error = dmu_object_info(zfsvfs->z_os, zp->z_id, &doi);
 372                 if (error) {
 373                         ZFS_EXIT(zfsvfs);
 374                         return (error);
 375                 }
 376 
 377                 ndata = doi.doi_fill_count;
 378 
 379                 ZFS_EXIT(zfsvfs);
 380                 if (ddi_copyout(&ndata, (void *)data, sizeof (ndata), flag))
 381                         return (SET_ERROR(EFAULT));
 382                 return (0);
 383         }
 384         }
 385         return (SET_ERROR(ENOTTY));
 386 }
 387 
 388 /*
 389  * Utility functions to map and unmap a single physical page.  These
 390  * are used to manage the mappable copies of ZFS file data, and therefore
 391  * do not update ref/mod bits.
 392  */
 393 caddr_t
 394 zfs_map_page(page_t *pp, enum seg_rw rw)
 395 {
 396         if (kpm_enable)
 397                 return (hat_kpm_mapin(pp, 0));
 398         ASSERT(rw == S_READ || rw == S_WRITE);
 399         return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0),
 400             (caddr_t)-1));
 401 }
 402 
 403 void
 404 zfs_unmap_page(page_t *pp, caddr_t addr)
 405 {
 406         if (kpm_enable) {
 407                 hat_kpm_mapout(pp, 0, addr);
 408         } else {
 409                 ppmapout(addr);
 410         }
 411 }
 412 
 413 /*
 414  * When a file is memory mapped, we must keep the IO data synchronized
 415  * between the DMU cache and the memory mapped pages.  What this means:
 416  *
 417  * On Write:    If we find a memory mapped page, we write to *both*
 418  *              the page and the dmu buffer.
 419  */
 420 static void
 421 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid)
 422 {
 423         int64_t off;
 424 
 425         off = start & PAGEOFFSET;
 426         for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
 427                 page_t *pp;
 428                 uint64_t nbytes = MIN(PAGESIZE - off, len);
 429 
 430                 if (pp = page_lookup(vp, start, SE_SHARED)) {
 431                         caddr_t va;
 432 
 433                         va = zfs_map_page(pp, S_WRITE);
 434                         (void) dmu_read(os, oid, start+off, nbytes, va+off,
 435                             DMU_READ_PREFETCH);
 436                         zfs_unmap_page(pp, va);
 437                         page_unlock(pp);
 438                 }
 439                 len -= nbytes;
 440                 off = 0;
 441         }
 442 }
 443 
 444 /*
 445  * When a file is memory mapped, we must keep the IO data synchronized
 446  * between the DMU cache and the memory mapped pages.  What this means:
 447  *
 448  * On Read:     We "read" preferentially from memory mapped pages,
 449  *              else we default from the dmu buffer.
 450  *
 451  * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
 452  *       the file is memory mapped.
 453  */
 454 static int
 455 mappedread(vnode_t *vp, int nbytes, uio_t *uio)
 456 {
 457         znode_t *zp = VTOZ(vp);
 458         int64_t start, off;
 459         int len = nbytes;
 460         int error = 0;
 461 
 462         start = uio->uio_loffset;
 463         off = start & PAGEOFFSET;
 464         for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
 465                 page_t *pp;
 466                 uint64_t bytes = MIN(PAGESIZE - off, len);
 467 
 468                 if (pp = page_lookup(vp, start, SE_SHARED)) {
 469                         caddr_t va;
 470 
 471                         va = zfs_map_page(pp, S_READ);
 472                         error = uiomove(va + off, bytes, UIO_READ, uio);
 473                         zfs_unmap_page(pp, va);
 474                         page_unlock(pp);
 475                 } else {
 476                         error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
 477                             uio, bytes);
 478                 }
 479                 len -= bytes;
 480                 off = 0;
 481                 if (error)
 482                         break;
 483         }
 484         return (error);
 485 }
 486 
 487 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */
 488 
 489 /*
 490  * Read bytes from specified file into supplied buffer.
 491  *
 492  *      IN:     vp      - vnode of file to be read from.
 493  *              uio     - structure supplying read location, range info,
 494  *                        and return buffer.
 495  *              ioflag  - SYNC flags; used to provide FRSYNC semantics.
 496  *              cr      - credentials of caller.
 497  *              ct      - caller context
 498  *
 499  *      OUT:    uio     - updated offset and range, buffer filled.
 500  *
 501  *      RETURN: 0 on success, error code on failure.
 502  *
 503  * Side Effects:
 504  *      vp - atime updated if byte count > 0
 505  */
 506 /* ARGSUSED */
 507 static int
 508 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
 509 {
 510         znode_t         *zp = VTOZ(vp);
 511         zfsvfs_t        *zfsvfs = zp->z_zfsvfs;
 512         ssize_t         n, nbytes;
 513         int             error = 0;
 514         rl_t            *rl;
 515         xuio_t          *xuio = NULL;
 516 
 517         ZFS_ENTER(zfsvfs);
 518         ZFS_VERIFY_ZP(zp);
 519 
 520         if (zp->z_pflags & ZFS_AV_QUARANTINED) {
 521                 ZFS_EXIT(zfsvfs);
 522                 return (SET_ERROR(EACCES));
 523         }
 524 
 525         /*
 526          * Validate file offset
 527          */
 528         if (uio->uio_loffset < (offset_t)0) {
 529                 ZFS_EXIT(zfsvfs);
 530                 return (SET_ERROR(EINVAL));
 531         }
 532 
 533         /*
 534          * Fasttrack empty reads
 535          */
 536         if (uio->uio_resid == 0) {
 537                 ZFS_EXIT(zfsvfs);
 538                 return (0);
 539         }
 540 
 541         /*
 542          * Check for mandatory locks
 543          */
 544         if (MANDMODE(zp->z_mode)) {
 545                 if (error = chklock(vp, FREAD,
 546                     uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) {
 547                         ZFS_EXIT(zfsvfs);
 548                         return (error);
 549                 }
 550         }
 551 
 552         /*
 553          * If we're in FRSYNC mode, sync out this znode before reading it.
 554          */
 555         if (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
 556                 zil_commit(zfsvfs->z_log, zp->z_id);
 557 
 558         /*
 559          * Lock the range against changes.
 560          */
 561         rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER);
 562 
 563         /*
 564          * If we are reading past end-of-file we can skip
 565          * to the end; but we might still need to set atime.
 566          */
 567         if (uio->uio_loffset >= zp->z_size) {
 568                 error = 0;
 569                 goto out;
 570         }
 571 
 572         ASSERT(uio->uio_loffset < zp->z_size);
 573         n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset);
 574 
 575         if ((uio->uio_extflg == UIO_XUIO) &&
 576             (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) {
 577                 int nblk;
 578                 int blksz = zp->z_blksz;
 579                 uint64_t offset = uio->uio_loffset;
 580 
 581                 xuio = (xuio_t *)uio;
 582                 if ((ISP2(blksz))) {
 583                         nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset,
 584                             blksz)) / blksz;
 585                 } else {
 586                         ASSERT(offset + n <= blksz);
 587                         nblk = 1;
 588                 }
 589                 (void) dmu_xuio_init(xuio, nblk);
 590 
 591                 if (vn_has_cached_data(vp)) {
 592                         /*
 593                          * For simplicity, we always allocate a full buffer
 594                          * even if we only expect to read a portion of a block.
 595                          */
 596                         while (--nblk >= 0) {
 597                                 (void) dmu_xuio_add(xuio,
 598                                     dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
 599                                     blksz), 0, blksz);
 600                         }
 601                 }
 602         }
 603 
 604         while (n > 0) {
 605                 nbytes = MIN(n, zfs_read_chunk_size -
 606                     P2PHASE(uio->uio_loffset, zfs_read_chunk_size));
 607 
 608                 if (vn_has_cached_data(vp)) {
 609                         error = mappedread(vp, nbytes, uio);
 610                 } else {
 611                         error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
 612                             uio, nbytes);
 613                 }
 614                 if (error) {
 615                         /* convert checksum errors into IO errors */
 616                         if (error == ECKSUM)
 617                                 error = SET_ERROR(EIO);
 618                         break;
 619                 }
 620 
 621                 n -= nbytes;
 622         }
 623 out:
 624         zfs_range_unlock(rl);
 625 
 626         ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
 627         ZFS_EXIT(zfsvfs);
 628         return (error);
 629 }
 630 
 631 /*
 632  * Write the bytes to a file.
 633  *
 634  *      IN:     vp      - vnode of file to be written to.
 635  *              uio     - structure supplying write location, range info,
 636  *                        and data buffer.
 637  *              ioflag  - FAPPEND, FSYNC, and/or FDSYNC.  FAPPEND is
 638  *                        set if in append mode.
 639  *              cr      - credentials of caller.
 640  *              ct      - caller context (NFS/CIFS fem monitor only)
 641  *
 642  *      OUT:    uio     - updated offset and range.
 643  *
 644  *      RETURN: 0 on success, error code on failure.
 645  *
 646  * Timestamps:
 647  *      vp - ctime|mtime updated if byte count > 0
 648  */
 649 
 650 /* ARGSUSED */
 651 static int
 652 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
 653 {
 654         znode_t         *zp = VTOZ(vp);
 655         rlim64_t        limit = uio->uio_llimit;
 656         ssize_t         start_resid = uio->uio_resid;
 657         ssize_t         tx_bytes;
 658         uint64_t        end_size;
 659         dmu_tx_t        *tx;
 660         zfsvfs_t        *zfsvfs = zp->z_zfsvfs;
 661         zilog_t         *zilog;
 662         offset_t        woff;
 663         ssize_t         n, nbytes;
 664         rl_t            *rl;
 665         int             max_blksz = zfsvfs->z_max_blksz;
 666         int             error = 0;
 667         arc_buf_t       *abuf;
 668         iovec_t         *aiov = NULL;
 669         xuio_t          *xuio = NULL;
 670         int             i_iov = 0;
 671         int             iovcnt = uio->uio_iovcnt;
 672         iovec_t         *iovp = uio->uio_iov;
 673         int             write_eof;
 674         int             count = 0;
 675         sa_bulk_attr_t  bulk[4];
 676         uint64_t        mtime[2], ctime[2];
 677 
 678         /*
 679          * Fasttrack empty write
 680          */
 681         n = start_resid;
 682         if (n == 0)
 683                 return (0);
 684 
 685         if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
 686                 limit = MAXOFFSET_T;
 687 
 688         ZFS_ENTER(zfsvfs);
 689         ZFS_VERIFY_ZP(zp);
 690 
 691         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
 692         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
 693         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
 694             &zp->z_size, 8);
 695         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
 696             &zp->z_pflags, 8);
 697 
 698         /*
 699          * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our
 700          * callers might not be able to detect properly that we are read-only,
 701          * so check it explicitly here.
 702          */
 703         if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
 704                 ZFS_EXIT(zfsvfs);
 705                 return (SET_ERROR(EROFS));
 706         }
 707 
 708         /*
 709          * If immutable or not appending then return EPERM
 710          */
 711         if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) ||
 712             ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) &&
 713             (uio->uio_loffset < zp->z_size))) {
 714                 ZFS_EXIT(zfsvfs);
 715                 return (SET_ERROR(EPERM));
 716         }
 717 
 718         zilog = zfsvfs->z_log;
 719 
 720         /*
 721          * Validate file offset
 722          */
 723         woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset;
 724         if (woff < 0) {
 725                 ZFS_EXIT(zfsvfs);
 726                 return (SET_ERROR(EINVAL));
 727         }
 728 
 729         /*
 730          * Check for mandatory locks before calling zfs_range_lock()
 731          * in order to prevent a deadlock with locks set via fcntl().
 732          */
 733         if (MANDMODE((mode_t)zp->z_mode) &&
 734             (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) {
 735                 ZFS_EXIT(zfsvfs);
 736                 return (error);
 737         }
 738 
 739         /*
 740          * Pre-fault the pages to ensure slow (eg NFS) pages
 741          * don't hold up txg.
 742          * Skip this if uio contains loaned arc_buf.
 743          */
 744         if ((uio->uio_extflg == UIO_XUIO) &&
 745             (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY))
 746                 xuio = (xuio_t *)uio;
 747         else
 748                 uio_prefaultpages(MIN(n, max_blksz), uio);
 749 
 750         /*
 751          * If in append mode, set the io offset pointer to eof.
 752          */
 753         if (ioflag & FAPPEND) {
 754                 /*
 755                  * Obtain an appending range lock to guarantee file append
 756                  * semantics.  We reset the write offset once we have the lock.
 757                  */
 758                 rl = zfs_range_lock(zp, 0, n, RL_APPEND);
 759                 woff = rl->r_off;
 760                 if (rl->r_len == UINT64_MAX) {
 761                         /*
 762                          * We overlocked the file because this write will cause
 763                          * the file block size to increase.
 764                          * Note that zp_size cannot change with this lock held.
 765                          */
 766                         woff = zp->z_size;
 767                 }
 768                 uio->uio_loffset = woff;
 769         } else {
 770                 /*
 771                  * Note that if the file block size will change as a result of
 772                  * this write, then this range lock will lock the entire file
 773                  * so that we can re-write the block safely.
 774                  */
 775                 rl = zfs_range_lock(zp, woff, n, RL_WRITER);
 776         }
 777 
 778         if (woff >= limit) {
 779                 zfs_range_unlock(rl);
 780                 ZFS_EXIT(zfsvfs);
 781                 return (SET_ERROR(EFBIG));
 782         }
 783 
 784         if ((woff + n) > limit || woff > (limit - n))
 785                 n = limit - woff;
 786 
 787         /* Will this write extend the file length? */
 788         write_eof = (woff + n > zp->z_size);
 789 
 790         end_size = MAX(zp->z_size, woff + n);
 791 
 792         /*
 793          * Write the file in reasonable size chunks.  Each chunk is written
 794          * in a separate transaction; this keeps the intent log records small
 795          * and allows us to do more fine-grained space accounting.
 796          */
 797         while (n > 0) {
 798                 abuf = NULL;
 799                 woff = uio->uio_loffset;
 800                 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
 801                     zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
 802                         if (abuf != NULL)
 803                                 dmu_return_arcbuf(abuf);
 804                         error = SET_ERROR(EDQUOT);
 805                         break;
 806                 }
 807 
 808                 if (xuio && abuf == NULL) {
 809                         ASSERT(i_iov < iovcnt);
 810                         aiov = &iovp[i_iov];
 811                         abuf = dmu_xuio_arcbuf(xuio, i_iov);
 812                         dmu_xuio_clear(xuio, i_iov);
 813                         DTRACE_PROBE3(zfs_cp_write, int, i_iov,
 814                             iovec_t *, aiov, arc_buf_t *, abuf);
 815                         ASSERT((aiov->iov_base == abuf->b_data) ||
 816                             ((char *)aiov->iov_base - (char *)abuf->b_data +
 817                             aiov->iov_len == arc_buf_size(abuf)));
 818                         i_iov++;
 819                 } else if (abuf == NULL && n >= max_blksz &&
 820                     woff >= zp->z_size &&
 821                     P2PHASE(woff, max_blksz) == 0 &&
 822                     zp->z_blksz == max_blksz) {
 823                         /*
 824                          * This write covers a full block.  "Borrow" a buffer
 825                          * from the dmu so that we can fill it before we enter
 826                          * a transaction.  This avoids the possibility of
 827                          * holding up the transaction if the data copy hangs
 828                          * up on a pagefault (e.g., from an NFS server mapping).
 829                          */
 830                         size_t cbytes;
 831 
 832                         abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
 833                             max_blksz);
 834                         ASSERT(abuf != NULL);
 835                         ASSERT(arc_buf_size(abuf) == max_blksz);
 836                         if (error = uiocopy(abuf->b_data, max_blksz,
 837                             UIO_WRITE, uio, &cbytes)) {
 838                                 dmu_return_arcbuf(abuf);
 839                                 break;
 840                         }
 841                         ASSERT(cbytes == max_blksz);
 842                 }
 843 
 844                 /*
 845                  * Start a transaction.
 846                  */
 847                 tx = dmu_tx_create(zfsvfs->z_os);
 848                 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
 849                 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
 850                 zfs_sa_upgrade_txholds(tx, zp);
 851                 error = dmu_tx_assign(tx, TXG_WAIT);
 852                 if (error) {
 853                         dmu_tx_abort(tx);
 854                         if (abuf != NULL)
 855                                 dmu_return_arcbuf(abuf);
 856                         break;
 857                 }
 858 
 859                 /*
 860                  * If zfs_range_lock() over-locked we grow the blocksize
 861                  * and then reduce the lock range.  This will only happen
 862                  * on the first iteration since zfs_range_reduce() will
 863                  * shrink down r_len to the appropriate size.
 864                  */
 865                 if (rl->r_len == UINT64_MAX) {
 866                         uint64_t new_blksz;
 867 
 868                         if (zp->z_blksz > max_blksz) {
 869                                 /*
 870                                  * File's blocksize is already larger than the
 871                                  * "recordsize" property.  Only let it grow to
 872                                  * the next power of 2.
 873                                  */
 874                                 ASSERT(!ISP2(zp->z_blksz));
 875                                 new_blksz = MIN(end_size,
 876                                     1 << highbit64(zp->z_blksz));
 877                         } else {
 878                                 new_blksz = MIN(end_size, max_blksz);
 879                         }
 880                         zfs_grow_blocksize(zp, new_blksz, tx);
 881                         zfs_range_reduce(rl, woff, n);
 882                 }
 883 
 884                 /*
 885                  * XXX - should we really limit each write to z_max_blksz?
 886                  * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
 887                  */
 888                 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
 889 
 890                 if (abuf == NULL) {
 891                         tx_bytes = uio->uio_resid;
 892                         error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
 893                             uio, nbytes, tx);
 894                         tx_bytes -= uio->uio_resid;
 895                 } else {
 896                         tx_bytes = nbytes;
 897                         ASSERT(xuio == NULL || tx_bytes == aiov->iov_len);
 898                         /*
 899                          * If this is not a full block write, but we are
 900                          * extending the file past EOF and this data starts
 901                          * block-aligned, use assign_arcbuf().  Otherwise,
 902                          * write via dmu_write().
 903                          */
 904                         if (tx_bytes < max_blksz && (!write_eof ||
 905                             aiov->iov_base != abuf->b_data)) {
 906                                 ASSERT(xuio);
 907                                 dmu_write(zfsvfs->z_os, zp->z_id, woff,
 908                                     aiov->iov_len, aiov->iov_base, tx);
 909                                 dmu_return_arcbuf(abuf);
 910                                 xuio_stat_wbuf_copied();
 911                         } else {
 912                                 ASSERT(xuio || tx_bytes == max_blksz);
 913                                 dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl),
 914                                     woff, abuf, tx);
 915                         }
 916                         ASSERT(tx_bytes <= uio->uio_resid);
 917                         uioskip(uio, tx_bytes);
 918                 }
 919                 if (tx_bytes && vn_has_cached_data(vp)) {
 920                         update_pages(vp, woff,
 921                             tx_bytes, zfsvfs->z_os, zp->z_id);
 922                 }
 923 
 924                 /*
 925                  * If we made no progress, we're done.  If we made even
 926                  * partial progress, update the znode and ZIL accordingly.
 927                  */
 928                 if (tx_bytes == 0) {
 929                         (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
 930                             (void *)&zp->z_size, sizeof (uint64_t), tx);
 931                         dmu_tx_commit(tx);
 932                         ASSERT(error != 0);
 933                         break;
 934                 }
 935 
 936                 /*
 937                  * Clear Set-UID/Set-GID bits on successful write if not
 938                  * privileged and at least one of the excute bits is set.
 939                  *
 940                  * It would be nice to to this after all writes have
 941                  * been done, but that would still expose the ISUID/ISGID
 942                  * to another app after the partial write is committed.
 943                  *
 944                  * Note: we don't call zfs_fuid_map_id() here because
 945                  * user 0 is not an ephemeral uid.
 946                  */
 947                 mutex_enter(&zp->z_acl_lock);
 948                 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) |
 949                     (S_IXUSR >> 6))) != 0 &&
 950                     (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
 951                     secpolicy_vnode_setid_retain(cr,
 952                     (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) {
 953                         uint64_t newmode;
 954                         zp->z_mode &= ~(S_ISUID | S_ISGID);
 955                         newmode = zp->z_mode;
 956                         (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
 957                             (void *)&newmode, sizeof (uint64_t), tx);
 958                 }
 959                 mutex_exit(&zp->z_acl_lock);
 960 
 961                 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
 962                     B_TRUE);
 963 
 964                 /*
 965                  * Update the file size (zp_size) if it has changed;
 966                  * account for possible concurrent updates.
 967                  */
 968                 while ((end_size = zp->z_size) < uio->uio_loffset) {
 969                         (void) atomic_cas_64(&zp->z_size, end_size,
 970                             uio->uio_loffset);
 971                         ASSERT(error == 0);
 972                 }
 973                 /*
 974                  * If we are replaying and eof is non zero then force
 975                  * the file size to the specified eof. Note, there's no
 976                  * concurrency during replay.
 977                  */
 978                 if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
 979                         zp->z_size = zfsvfs->z_replay_eof;
 980 
 981                 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
 982 
 983                 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag);
 984                 dmu_tx_commit(tx);
 985 
 986                 if (error != 0)
 987                         break;
 988                 ASSERT(tx_bytes == nbytes);
 989                 n -= nbytes;
 990 
 991                 if (!xuio && n > 0)
 992                         uio_prefaultpages(MIN(n, max_blksz), uio);
 993         }
 994 
 995         zfs_range_unlock(rl);
 996 
 997         /*
 998          * If we're in replay mode, or we made no progress, return error.
 999          * Otherwise, it's at least a partial write, so it's successful.
1000          */
1001         if (zfsvfs->z_replay || uio->uio_resid == start_resid) {
1002                 ZFS_EXIT(zfsvfs);
1003                 return (error);
1004         }
1005 
1006         if (ioflag & (FSYNC | FDSYNC) ||
1007             zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1008                 zil_commit(zilog, zp->z_id);
1009 
1010         ZFS_EXIT(zfsvfs);
1011         return (0);
1012 }
1013 
1014 void
1015 zfs_get_done(zgd_t *zgd, int error)
1016 {
1017         znode_t *zp = zgd->zgd_private;
1018         objset_t *os = zp->z_zfsvfs->z_os;
1019 
1020         if (zgd->zgd_db)
1021                 dmu_buf_rele(zgd->zgd_db, zgd);
1022 
1023         zfs_range_unlock(zgd->zgd_rl);
1024 
1025         /*
1026          * Release the vnode asynchronously as we currently have the
1027          * txg stopped from syncing.
1028          */
1029         VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1030 
1031         if (error == 0 && zgd->zgd_bp)
1032                 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
1033 
1034         kmem_free(zgd, sizeof (zgd_t));
1035 }
1036 
1037 #ifdef DEBUG
1038 static int zil_fault_io = 0;
1039 #endif
1040 
1041 /*
1042  * Get data to generate a TX_WRITE intent log record.
1043  */
1044 int
1045 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
1046 {
1047         zfsvfs_t *zfsvfs = arg;
1048         objset_t *os = zfsvfs->z_os;
1049         znode_t *zp;
1050         uint64_t object = lr->lr_foid;
1051         uint64_t offset = lr->lr_offset;
1052         uint64_t size = lr->lr_length;
1053         blkptr_t *bp = &lr->lr_blkptr;
1054         dmu_buf_t *db;
1055         zgd_t *zgd;
1056         int error = 0;
1057 
1058         ASSERT(zio != NULL);
1059         ASSERT(size != 0);
1060 
1061         /*
1062          * Nothing to do if the file has been removed
1063          */
1064         if (zfs_zget(zfsvfs, object, &zp) != 0)
1065                 return (SET_ERROR(ENOENT));
1066         if (zp->z_unlinked) {
1067                 /*
1068                  * Release the vnode asynchronously as we currently have the
1069                  * txg stopped from syncing.
1070                  */
1071                 VN_RELE_ASYNC(ZTOV(zp),
1072                     dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1073                 return (SET_ERROR(ENOENT));
1074         }
1075 
1076         zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
1077         zgd->zgd_zilog = zfsvfs->z_log;
1078         zgd->zgd_private = zp;
1079 
1080         /*
1081          * Write records come in two flavors: immediate and indirect.
1082          * For small writes it's cheaper to store the data with the
1083          * log record (immediate); for large writes it's cheaper to
1084          * sync the data and get a pointer to it (indirect) so that
1085          * we don't have to write the data twice.
1086          */
1087         if (buf != NULL) { /* immediate write */
1088                 zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER);
1089                 /* test for truncation needs to be done while range locked */
1090                 if (offset >= zp->z_size) {
1091                         error = SET_ERROR(ENOENT);
1092                 } else {
1093                         error = dmu_read(os, object, offset, size, buf,
1094                             DMU_READ_NO_PREFETCH);
1095                 }
1096                 ASSERT(error == 0 || error == ENOENT);
1097         } else { /* indirect write */
1098                 /*
1099                  * Have to lock the whole block to ensure when it's
1100                  * written out and it's checksum is being calculated
1101                  * that no one can change the data. We need to re-check
1102                  * blocksize after we get the lock in case it's changed!
1103                  */
1104                 for (;;) {
1105                         uint64_t blkoff;
1106                         size = zp->z_blksz;
1107                         blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
1108                         offset -= blkoff;
1109                         zgd->zgd_rl = zfs_range_lock(zp, offset, size,
1110                             RL_READER);
1111                         if (zp->z_blksz == size)
1112                                 break;
1113                         offset += blkoff;
1114                         zfs_range_unlock(zgd->zgd_rl);
1115                 }
1116                 /* test for truncation needs to be done while range locked */
1117                 if (lr->lr_offset >= zp->z_size)
1118                         error = SET_ERROR(ENOENT);
1119 #ifdef DEBUG
1120                 if (zil_fault_io) {
1121                         error = SET_ERROR(EIO);
1122                         zil_fault_io = 0;
1123                 }
1124 #endif
1125                 if (error == 0)
1126                         error = dmu_buf_hold(os, object, offset, zgd, &db,
1127                             DMU_READ_NO_PREFETCH);
1128 
1129                 if (error == 0) {
1130                         blkptr_t *obp = dmu_buf_get_blkptr(db);
1131                         if (obp) {
1132                                 ASSERT(BP_IS_HOLE(bp));
1133                                 *bp = *obp;
1134                         }
1135 
1136                         zgd->zgd_db = db;
1137                         zgd->zgd_bp = bp;
1138 
1139                         ASSERT(db->db_offset == offset);
1140                         ASSERT(db->db_size == size);
1141 
1142                         error = dmu_sync(zio, lr->lr_common.lrc_txg,
1143                             zfs_get_done, zgd);
1144                         ASSERT(error || lr->lr_length <= zp->z_blksz);
1145 
1146                         /*
1147                          * On success, we need to wait for the write I/O
1148                          * initiated by dmu_sync() to complete before we can
1149                          * release this dbuf.  We will finish everything up
1150                          * in the zfs_get_done() callback.
1151                          */
1152                         if (error == 0)
1153                                 return (0);
1154 
1155                         if (error == EALREADY) {
1156                                 lr->lr_common.lrc_txtype = TX_WRITE2;
1157                                 error = 0;
1158                         }
1159                 }
1160         }
1161 
1162         zfs_get_done(zgd, error);
1163 
1164         return (error);
1165 }
1166 
1167 /*ARGSUSED*/
1168 static int
1169 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr,
1170     caller_context_t *ct)
1171 {
1172         znode_t *zp = VTOZ(vp);
1173         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1174         int error;
1175 
1176         ZFS_ENTER(zfsvfs);
1177         ZFS_VERIFY_ZP(zp);
1178 
1179         if (flag & V_ACE_MASK)
1180                 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
1181         else
1182                 error = zfs_zaccess_rwx(zp, mode, flag, cr);
1183 
1184         ZFS_EXIT(zfsvfs);
1185         return (error);
1186 }
1187 
1188 /*
1189  * If vnode is for a device return a specfs vnode instead.
1190  */
1191 static int
1192 specvp_check(vnode_t **vpp, cred_t *cr)
1193 {
1194         int error = 0;
1195 
1196         if (IS_DEVVP(*vpp)) {
1197                 struct vnode *svp;
1198 
1199                 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
1200                 VN_RELE(*vpp);
1201                 if (svp == NULL)
1202                         error = SET_ERROR(ENOSYS);
1203                 *vpp = svp;
1204         }
1205         return (error);
1206 }
1207 
1208 
1209 /*
1210  * Lookup an entry in a directory, or an extended attribute directory.
1211  * If it exists, return a held vnode reference for it.
1212  *
1213  *      IN:     dvp     - vnode of directory to search.
1214  *              nm      - name of entry to lookup.
1215  *              pnp     - full pathname to lookup [UNUSED].
1216  *              flags   - LOOKUP_XATTR set if looking for an attribute.
1217  *              rdir    - root directory vnode [UNUSED].
1218  *              cr      - credentials of caller.
1219  *              ct      - caller context
1220  *              direntflags - directory lookup flags
1221  *              realpnp - returned pathname.
1222  *
1223  *      OUT:    vpp     - vnode of located entry, NULL if not found.
1224  *
1225  *      RETURN: 0 on success, error code on failure.
1226  *
1227  * Timestamps:
1228  *      NA
1229  */
1230 /* ARGSUSED */
1231 static int
1232 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
1233     int flags, vnode_t *rdir, cred_t *cr,  caller_context_t *ct,
1234     int *direntflags, pathname_t *realpnp)
1235 {
1236         znode_t *zdp = VTOZ(dvp);
1237         zfsvfs_t *zfsvfs = zdp->z_zfsvfs;
1238         int     error = 0;
1239 
1240         /* fast path */
1241         if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
1242 
1243                 if (dvp->v_type != VDIR) {
1244                         return (SET_ERROR(ENOTDIR));
1245                 } else if (zdp->z_sa_hdl == NULL) {
1246                         return (SET_ERROR(EIO));
1247                 }
1248 
1249                 if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
1250                         error = zfs_fastaccesschk_execute(zdp, cr);
1251                         if (!error) {
1252                                 *vpp = dvp;
1253                                 VN_HOLD(*vpp);
1254                                 return (0);
1255                         }
1256                         return (error);
1257                 } else {
1258                         vnode_t *tvp = dnlc_lookup(dvp, nm);
1259 
1260                         if (tvp) {
1261                                 error = zfs_fastaccesschk_execute(zdp, cr);
1262                                 if (error) {
1263                                         VN_RELE(tvp);
1264                                         return (error);
1265                                 }
1266                                 if (tvp == DNLC_NO_VNODE) {
1267                                         VN_RELE(tvp);
1268                                         return (SET_ERROR(ENOENT));
1269                                 } else {
1270                                         *vpp = tvp;
1271                                         return (specvp_check(vpp, cr));
1272                                 }
1273                         }
1274                 }
1275         }
1276 
1277         DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm);
1278 
1279         ZFS_ENTER(zfsvfs);
1280         ZFS_VERIFY_ZP(zdp);
1281 
1282         *vpp = NULL;
1283 
1284         if (flags & LOOKUP_XATTR) {
1285                 /*
1286                  * If the xattr property is off, refuse the lookup request.
1287                  */
1288                 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) {
1289                         ZFS_EXIT(zfsvfs);
1290                         return (SET_ERROR(EINVAL));
1291                 }
1292 
1293                 /*
1294                  * We don't allow recursive attributes..
1295                  * Maybe someday we will.
1296                  */
1297                 if (zdp->z_pflags & ZFS_XATTR) {
1298                         ZFS_EXIT(zfsvfs);
1299                         return (SET_ERROR(EINVAL));
1300                 }
1301 
1302                 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) {
1303                         ZFS_EXIT(zfsvfs);
1304                         return (error);
1305                 }
1306 
1307                 /*
1308                  * Do we have permission to get into attribute directory?
1309                  */
1310 
1311                 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0,
1312                     B_FALSE, cr)) {
1313                         VN_RELE(*vpp);
1314                         *vpp = NULL;
1315                 }
1316 
1317                 ZFS_EXIT(zfsvfs);
1318                 return (error);
1319         }
1320 
1321         if (dvp->v_type != VDIR) {
1322                 ZFS_EXIT(zfsvfs);
1323                 return (SET_ERROR(ENOTDIR));
1324         }
1325 
1326         /*
1327          * Check accessibility of directory.
1328          */
1329 
1330         if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) {
1331                 ZFS_EXIT(zfsvfs);
1332                 return (error);
1333         }
1334 
1335         if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
1336             NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1337                 ZFS_EXIT(zfsvfs);
1338                 return (SET_ERROR(EILSEQ));
1339         }
1340 
1341         error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp);
1342         if (error == 0)
1343                 error = specvp_check(vpp, cr);
1344 
1345         ZFS_EXIT(zfsvfs);
1346         return (error);
1347 }
1348 
1349 /*
1350  * Attempt to create a new entry in a directory.  If the entry
1351  * already exists, truncate the file if permissible, else return
1352  * an error.  Return the vp of the created or trunc'd file.
1353  *
1354  *      IN:     dvp     - vnode of directory to put new file entry in.
1355  *              name    - name of new file entry.
1356  *              vap     - attributes of new file.
1357  *              excl    - flag indicating exclusive or non-exclusive mode.
1358  *              mode    - mode to open file with.
1359  *              cr      - credentials of caller.
1360  *              flag    - large file flag [UNUSED].
1361  *              ct      - caller context
1362  *              vsecp   - ACL to be set
1363  *
1364  *      OUT:    vpp     - vnode of created or trunc'd entry.
1365  *
1366  *      RETURN: 0 on success, error code on failure.
1367  *
1368  * Timestamps:
1369  *      dvp - ctime|mtime updated if new entry created
1370  *       vp - ctime|mtime always, atime if new
1371  */
1372 
1373 /* ARGSUSED */
1374 static int
1375 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl,
1376     int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct,
1377     vsecattr_t *vsecp)
1378 {
1379         znode_t         *zp, *dzp = VTOZ(dvp);
1380         zfsvfs_t        *zfsvfs = dzp->z_zfsvfs;
1381         zilog_t         *zilog;
1382         objset_t        *os;
1383         zfs_dirlock_t   *dl;
1384         dmu_tx_t        *tx;
1385         int             error;
1386         ksid_t          *ksid;
1387         uid_t           uid;
1388         gid_t           gid = crgetgid(cr);
1389         zfs_acl_ids_t   acl_ids;
1390         boolean_t       fuid_dirtied;
1391         boolean_t       have_acl = B_FALSE;
1392         boolean_t       waited = B_FALSE;
1393 
1394         /*
1395          * If we have an ephemeral id, ACL, or XVATTR then
1396          * make sure file system is at proper version
1397          */
1398 
1399         ksid = crgetsid(cr, KSID_OWNER);
1400         if (ksid)
1401                 uid = ksid_getid(ksid);
1402         else
1403                 uid = crgetuid(cr);
1404 
1405         if (zfsvfs->z_use_fuids == B_FALSE &&
1406             (vsecp || (vap->va_mask & AT_XVATTR) ||
1407             IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1408                 return (SET_ERROR(EINVAL));
1409 
1410         ZFS_ENTER(zfsvfs);
1411         ZFS_VERIFY_ZP(dzp);
1412         os = zfsvfs->z_os;
1413         zilog = zfsvfs->z_log;
1414 
1415         if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
1416             NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1417                 ZFS_EXIT(zfsvfs);
1418                 return (SET_ERROR(EILSEQ));
1419         }
1420 
1421         if (vap->va_mask & AT_XVATTR) {
1422                 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1423                     crgetuid(cr), cr, vap->va_type)) != 0) {
1424                         ZFS_EXIT(zfsvfs);
1425                         return (error);
1426                 }
1427         }
1428 top:
1429         *vpp = NULL;
1430 
1431         if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr))
1432                 vap->va_mode &= ~VSVTX;
1433 
1434         if (*name == '\0') {
1435                 /*
1436                  * Null component name refers to the directory itself.
1437                  */
1438                 VN_HOLD(dvp);
1439                 zp = dzp;
1440                 dl = NULL;
1441                 error = 0;
1442         } else {
1443                 /* possible VN_HOLD(zp) */
1444                 int zflg = 0;
1445 
1446                 if (flag & FIGNORECASE)
1447                         zflg |= ZCILOOK;
1448 
1449                 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1450                     NULL, NULL);
1451                 if (error) {
1452                         if (have_acl)
1453                                 zfs_acl_ids_free(&acl_ids);
1454                         if (strcmp(name, "..") == 0)
1455                                 error = SET_ERROR(EISDIR);
1456                         ZFS_EXIT(zfsvfs);
1457                         return (error);
1458                 }
1459         }
1460 
1461         if (zp == NULL) {
1462                 uint64_t txtype;
1463 
1464                 /*
1465                  * Create a new file object and update the directory
1466                  * to reference it.
1467                  */
1468                 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
1469                         if (have_acl)
1470                                 zfs_acl_ids_free(&acl_ids);
1471                         goto out;
1472                 }
1473 
1474                 /*
1475                  * We only support the creation of regular files in
1476                  * extended attribute directories.
1477                  */
1478 
1479                 if ((dzp->z_pflags & ZFS_XATTR) &&
1480                     (vap->va_type != VREG)) {
1481                         if (have_acl)
1482                                 zfs_acl_ids_free(&acl_ids);
1483                         error = SET_ERROR(EINVAL);
1484                         goto out;
1485                 }
1486 
1487                 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
1488                     cr, vsecp, &acl_ids)) != 0)
1489                         goto out;
1490                 have_acl = B_TRUE;
1491 
1492                 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1493                         zfs_acl_ids_free(&acl_ids);
1494                         error = SET_ERROR(EDQUOT);
1495                         goto out;
1496                 }
1497 
1498                 tx = dmu_tx_create(os);
1499 
1500                 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1501                     ZFS_SA_BASE_ATTR_SIZE);
1502 
1503                 fuid_dirtied = zfsvfs->z_fuid_dirty;
1504                 if (fuid_dirtied)
1505                         zfs_fuid_txhold(zfsvfs, tx);
1506                 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
1507                 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
1508                 if (!zfsvfs->z_use_sa &&
1509                     acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1510                         dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1511                             0, acl_ids.z_aclp->z_acl_bytes);
1512                 }
1513                 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1514                 if (error) {
1515                         zfs_dirent_unlock(dl);
1516                         if (error == ERESTART) {
1517                                 waited = B_TRUE;
1518                                 dmu_tx_wait(tx);
1519                                 dmu_tx_abort(tx);
1520                                 goto top;
1521                         }
1522                         zfs_acl_ids_free(&acl_ids);
1523                         dmu_tx_abort(tx);
1524                         ZFS_EXIT(zfsvfs);
1525                         return (error);
1526                 }
1527                 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1528 
1529                 if (fuid_dirtied)
1530                         zfs_fuid_sync(zfsvfs, tx);
1531 
1532                 (void) zfs_link_create(dl, zp, tx, ZNEW);
1533                 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
1534                 if (flag & FIGNORECASE)
1535                         txtype |= TX_CI;
1536                 zfs_log_create(zilog, tx, txtype, dzp, zp, name,
1537                     vsecp, acl_ids.z_fuidp, vap);
1538                 zfs_acl_ids_free(&acl_ids);
1539                 dmu_tx_commit(tx);
1540         } else {
1541                 int aflags = (flag & FAPPEND) ? V_APPEND : 0;
1542 
1543                 if (have_acl)
1544                         zfs_acl_ids_free(&acl_ids);
1545                 have_acl = B_FALSE;
1546 
1547                 /*
1548                  * A directory entry already exists for this name.
1549                  */
1550                 /*
1551                  * Can't truncate an existing file if in exclusive mode.
1552                  */
1553                 if (excl == EXCL) {
1554                         error = SET_ERROR(EEXIST);
1555                         goto out;
1556                 }
1557                 /*
1558                  * Can't open a directory for writing.
1559                  */
1560                 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) {
1561                         error = SET_ERROR(EISDIR);
1562                         goto out;
1563                 }
1564                 /*
1565                  * Verify requested access to file.
1566                  */
1567                 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
1568                         goto out;
1569                 }
1570 
1571                 mutex_enter(&dzp->z_lock);
1572                 dzp->z_seq++;
1573                 mutex_exit(&dzp->z_lock);
1574 
1575                 /*
1576                  * Truncate regular files if requested.
1577                  */
1578                 if ((ZTOV(zp)->v_type == VREG) &&
1579                     (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) {
1580                         /* we can't hold any locks when calling zfs_freesp() */
1581                         zfs_dirent_unlock(dl);
1582                         dl = NULL;
1583                         error = zfs_freesp(zp, 0, 0, mode, TRUE);
1584                         if (error == 0) {
1585                                 vnevent_create(ZTOV(zp), ct);
1586                         }
1587                 }
1588         }
1589 out:
1590 
1591         if (dl)
1592                 zfs_dirent_unlock(dl);
1593 
1594         if (error) {
1595                 if (zp)
1596                         VN_RELE(ZTOV(zp));
1597         } else {
1598                 *vpp = ZTOV(zp);
1599                 error = specvp_check(vpp, cr);
1600         }
1601 
1602         if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1603                 zil_commit(zilog, 0);
1604 
1605         ZFS_EXIT(zfsvfs);
1606         return (error);
1607 }
1608 
1609 /*
1610  * Remove an entry from a directory.
1611  *
1612  *      IN:     dvp     - vnode of directory to remove entry from.
1613  *              name    - name of entry to remove.
1614  *              cr      - credentials of caller.
1615  *              ct      - caller context
1616  *              flags   - case flags
1617  *
1618  *      RETURN: 0 on success, error code on failure.
1619  *
1620  * Timestamps:
1621  *      dvp - ctime|mtime
1622  *       vp - ctime (if nlink > 0)
1623  */
1624 
1625 uint64_t null_xattr = 0;
1626 
1627 /*ARGSUSED*/
1628 static int
1629 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct,
1630     int flags)
1631 {
1632         znode_t         *zp, *dzp = VTOZ(dvp);
1633         znode_t         *xzp;
1634         vnode_t         *vp;
1635         zfsvfs_t        *zfsvfs = dzp->z_zfsvfs;
1636         zilog_t         *zilog;
1637         uint64_t        acl_obj, xattr_obj;
1638         uint64_t        xattr_obj_unlinked = 0;
1639         uint64_t        obj = 0;
1640         zfs_dirlock_t   *dl;
1641         dmu_tx_t        *tx;
1642         boolean_t       may_delete_now, delete_now = FALSE;
1643         boolean_t       unlinked, toobig = FALSE;
1644         uint64_t        txtype;
1645         pathname_t      *realnmp = NULL;
1646         pathname_t      realnm;
1647         int             error;
1648         int             zflg = ZEXISTS;
1649         boolean_t       waited = B_FALSE;
1650 
1651         ZFS_ENTER(zfsvfs);
1652         ZFS_VERIFY_ZP(dzp);
1653         zilog = zfsvfs->z_log;
1654 
1655         if (flags & FIGNORECASE) {
1656                 zflg |= ZCILOOK;
1657                 pn_alloc(&realnm);
1658                 realnmp = &realnm;
1659         }
1660 
1661 top:
1662         xattr_obj = 0;
1663         xzp = NULL;
1664         /*
1665          * Attempt to lock directory; fail if entry doesn't exist.
1666          */
1667         if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1668             NULL, realnmp)) {
1669                 if (realnmp)
1670                         pn_free(realnmp);
1671                 ZFS_EXIT(zfsvfs);
1672                 return (error);
1673         }
1674 
1675         vp = ZTOV(zp);
1676 
1677         if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1678                 goto out;
1679         }
1680 
1681         /*
1682          * Need to use rmdir for removing directories.
1683          */
1684         if (vp->v_type == VDIR) {
1685                 error = SET_ERROR(EPERM);
1686                 goto out;
1687         }
1688 
1689         vnevent_remove(vp, dvp, name, ct);
1690 
1691         if (realnmp)
1692                 dnlc_remove(dvp, realnmp->pn_buf);
1693         else
1694                 dnlc_remove(dvp, name);
1695 
1696         mutex_enter(&vp->v_lock);
1697         may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp);
1698         mutex_exit(&vp->v_lock);
1699 
1700         /*
1701          * We may delete the znode now, or we may put it in the unlinked set;
1702          * it depends on whether we're the last link, and on whether there are
1703          * other holds on the vnode.  So we dmu_tx_hold() the right things to
1704          * allow for either case.
1705          */
1706         obj = zp->z_id;
1707         tx = dmu_tx_create(zfsvfs->z_os);
1708         dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1709         dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1710         zfs_sa_upgrade_txholds(tx, zp);
1711         zfs_sa_upgrade_txholds(tx, dzp);
1712         if (may_delete_now) {
1713                 toobig =
1714                     zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT;
1715                 /* if the file is too big, only hold_free a token amount */
1716                 dmu_tx_hold_free(tx, zp->z_id, 0,
1717                     (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1718         }
1719 
1720         /* are there any extended attributes? */
1721         error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1722             &xattr_obj, sizeof (xattr_obj));
1723         if (error == 0 && xattr_obj) {
1724                 error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1725                 ASSERT0(error);
1726                 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1727                 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1728         }
1729 
1730         mutex_enter(&zp->z_lock);
1731         if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
1732                 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1733         mutex_exit(&zp->z_lock);
1734 
1735         /* charge as an update -- would be nice not to charge at all */
1736         dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1737 
1738         /*
1739          * Mark this transaction as typically resulting in a net free of space
1740          */
1741         dmu_tx_mark_netfree(tx);
1742 
1743         error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1744         if (error) {
1745                 zfs_dirent_unlock(dl);
1746                 VN_RELE(vp);
1747                 if (xzp)
1748                         VN_RELE(ZTOV(xzp));
1749                 if (error == ERESTART) {
1750                         waited = B_TRUE;
1751                         dmu_tx_wait(tx);
1752                         dmu_tx_abort(tx);
1753                         goto top;
1754                 }
1755                 if (realnmp)
1756                         pn_free(realnmp);
1757                 dmu_tx_abort(tx);
1758                 ZFS_EXIT(zfsvfs);
1759                 return (error);
1760         }
1761 
1762         /*
1763          * Remove the directory entry.
1764          */
1765         error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1766 
1767         if (error) {
1768                 dmu_tx_commit(tx);
1769                 goto out;
1770         }
1771 
1772         if (unlinked) {
1773                 /*
1774                  * Hold z_lock so that we can make sure that the ACL obj
1775                  * hasn't changed.  Could have been deleted due to
1776                  * zfs_sa_upgrade().
1777                  */
1778                 mutex_enter(&zp->z_lock);
1779                 mutex_enter(&vp->v_lock);
1780                 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1781                     &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
1782                 delete_now = may_delete_now && !toobig &&
1783                     vp->v_count == 1 && !vn_has_cached_data(vp) &&
1784                     xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) ==
1785                     acl_obj;
1786                 mutex_exit(&vp->v_lock);
1787         }
1788 
1789         if (delete_now) {
1790                 if (xattr_obj_unlinked) {
1791                         ASSERT3U(xzp->z_links, ==, 2);
1792                         mutex_enter(&xzp->z_lock);
1793                         xzp->z_unlinked = 1;
1794                         xzp->z_links = 0;
1795                         error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
1796                             &xzp->z_links, sizeof (xzp->z_links), tx);
1797                         ASSERT3U(error,  ==,  0);
1798                         mutex_exit(&xzp->z_lock);
1799                         zfs_unlinked_add(xzp, tx);
1800 
1801                         if (zp->z_is_sa)
1802                                 error = sa_remove(zp->z_sa_hdl,
1803                                     SA_ZPL_XATTR(zfsvfs), tx);
1804                         else
1805                                 error = sa_update(zp->z_sa_hdl,
1806                                     SA_ZPL_XATTR(zfsvfs), &null_xattr,
1807                                     sizeof (uint64_t), tx);
1808                         ASSERT0(error);
1809                 }
1810                 mutex_enter(&vp->v_lock);
1811                 vp->v_count--;
1812                 ASSERT0(vp->v_count);
1813                 mutex_exit(&vp->v_lock);
1814                 mutex_exit(&zp->z_lock);
1815                 zfs_znode_delete(zp, tx);
1816         } else if (unlinked) {
1817                 mutex_exit(&zp->z_lock);
1818                 zfs_unlinked_add(zp, tx);
1819         }
1820 
1821         txtype = TX_REMOVE;
1822         if (flags & FIGNORECASE)
1823                 txtype |= TX_CI;
1824         zfs_log_remove(zilog, tx, txtype, dzp, name, obj);
1825 
1826         dmu_tx_commit(tx);
1827 out:
1828         if (realnmp)
1829                 pn_free(realnmp);
1830 
1831         zfs_dirent_unlock(dl);
1832 
1833         if (!delete_now)
1834                 VN_RELE(vp);
1835         if (xzp)
1836                 VN_RELE(ZTOV(xzp));
1837 
1838         if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1839                 zil_commit(zilog, 0);
1840 
1841         ZFS_EXIT(zfsvfs);
1842         return (error);
1843 }
1844 
1845 /*
1846  * Create a new directory and insert it into dvp using the name
1847  * provided.  Return a pointer to the inserted directory.
1848  *
1849  *      IN:     dvp     - vnode of directory to add subdir to.
1850  *              dirname - name of new directory.
1851  *              vap     - attributes of new directory.
1852  *              cr      - credentials of caller.
1853  *              ct      - caller context
1854  *              flags   - case flags
1855  *              vsecp   - ACL to be set
1856  *
1857  *      OUT:    vpp     - vnode of created directory.
1858  *
1859  *      RETURN: 0 on success, error code on failure.
1860  *
1861  * Timestamps:
1862  *      dvp - ctime|mtime updated
1863  *       vp - ctime|mtime|atime updated
1864  */
1865 /*ARGSUSED*/
1866 static int
1867 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr,
1868     caller_context_t *ct, int flags, vsecattr_t *vsecp)
1869 {
1870         znode_t         *zp, *dzp = VTOZ(dvp);
1871         zfsvfs_t        *zfsvfs = dzp->z_zfsvfs;
1872         zilog_t         *zilog;
1873         zfs_dirlock_t   *dl;
1874         uint64_t        txtype;
1875         dmu_tx_t        *tx;
1876         int             error;
1877         int             zf = ZNEW;
1878         ksid_t          *ksid;
1879         uid_t           uid;
1880         gid_t           gid = crgetgid(cr);
1881         zfs_acl_ids_t   acl_ids;
1882         boolean_t       fuid_dirtied;
1883         boolean_t       waited = B_FALSE;
1884 
1885         ASSERT(vap->va_type == VDIR);
1886 
1887         /*
1888          * If we have an ephemeral id, ACL, or XVATTR then
1889          * make sure file system is at proper version
1890          */
1891 
1892         ksid = crgetsid(cr, KSID_OWNER);
1893         if (ksid)
1894                 uid = ksid_getid(ksid);
1895         else
1896                 uid = crgetuid(cr);
1897         if (zfsvfs->z_use_fuids == B_FALSE &&
1898             (vsecp || (vap->va_mask & AT_XVATTR) ||
1899             IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1900                 return (SET_ERROR(EINVAL));
1901 
1902         ZFS_ENTER(zfsvfs);
1903         ZFS_VERIFY_ZP(dzp);
1904         zilog = zfsvfs->z_log;
1905 
1906         if (dzp->z_pflags & ZFS_XATTR) {
1907                 ZFS_EXIT(zfsvfs);
1908                 return (SET_ERROR(EINVAL));
1909         }
1910 
1911         if (zfsvfs->z_utf8 && u8_validate(dirname,
1912             strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1913                 ZFS_EXIT(zfsvfs);
1914                 return (SET_ERROR(EILSEQ));
1915         }
1916         if (flags & FIGNORECASE)
1917                 zf |= ZCILOOK;
1918 
1919         if (vap->va_mask & AT_XVATTR) {
1920                 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1921                     crgetuid(cr), cr, vap->va_type)) != 0) {
1922                         ZFS_EXIT(zfsvfs);
1923                         return (error);
1924                 }
1925         }
1926 
1927         if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
1928             vsecp, &acl_ids)) != 0) {
1929                 ZFS_EXIT(zfsvfs);
1930                 return (error);
1931         }
1932         /*
1933          * First make sure the new directory doesn't exist.
1934          *
1935          * Existence is checked first to make sure we don't return
1936          * EACCES instead of EEXIST which can cause some applications
1937          * to fail.
1938          */
1939 top:
1940         *vpp = NULL;
1941 
1942         if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
1943             NULL, NULL)) {
1944                 zfs_acl_ids_free(&acl_ids);
1945                 ZFS_EXIT(zfsvfs);
1946                 return (error);
1947         }
1948 
1949         if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) {
1950                 zfs_acl_ids_free(&acl_ids);
1951                 zfs_dirent_unlock(dl);
1952                 ZFS_EXIT(zfsvfs);
1953                 return (error);
1954         }
1955 
1956         if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1957                 zfs_acl_ids_free(&acl_ids);
1958                 zfs_dirent_unlock(dl);
1959                 ZFS_EXIT(zfsvfs);
1960                 return (SET_ERROR(EDQUOT));
1961         }
1962 
1963         /*
1964          * Add a new entry to the directory.
1965          */
1966         tx = dmu_tx_create(zfsvfs->z_os);
1967         dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
1968         dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1969         fuid_dirtied = zfsvfs->z_fuid_dirty;
1970         if (fuid_dirtied)
1971                 zfs_fuid_txhold(zfsvfs, tx);
1972         if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1973                 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
1974                     acl_ids.z_aclp->z_acl_bytes);
1975         }
1976 
1977         dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1978             ZFS_SA_BASE_ATTR_SIZE);
1979 
1980         error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1981         if (error) {
1982                 zfs_dirent_unlock(dl);
1983                 if (error == ERESTART) {
1984                         waited = B_TRUE;
1985                         dmu_tx_wait(tx);
1986                         dmu_tx_abort(tx);
1987                         goto top;
1988                 }
1989                 zfs_acl_ids_free(&acl_ids);
1990                 dmu_tx_abort(tx);
1991                 ZFS_EXIT(zfsvfs);
1992                 return (error);
1993         }
1994 
1995         /*
1996          * Create new node.
1997          */
1998         zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1999 
2000         if (fuid_dirtied)
2001                 zfs_fuid_sync(zfsvfs, tx);
2002 
2003         /*
2004          * Now put new name in parent dir.
2005          */
2006         (void) zfs_link_create(dl, zp, tx, ZNEW);
2007 
2008         *vpp = ZTOV(zp);
2009 
2010         txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
2011         if (flags & FIGNORECASE)
2012                 txtype |= TX_CI;
2013         zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
2014             acl_ids.z_fuidp, vap);
2015 
2016         zfs_acl_ids_free(&acl_ids);
2017 
2018         dmu_tx_commit(tx);
2019 
2020         zfs_dirent_unlock(dl);
2021 
2022         if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2023                 zil_commit(zilog, 0);
2024 
2025         ZFS_EXIT(zfsvfs);
2026         return (0);
2027 }
2028 
2029 /*
2030  * Remove a directory subdir entry.  If the current working
2031  * directory is the same as the subdir to be removed, the
2032  * remove will fail.
2033  *
2034  *      IN:     dvp     - vnode of directory to remove from.
2035  *              name    - name of directory to be removed.
2036  *              cwd     - vnode of current working directory.
2037  *              cr      - credentials of caller.
2038  *              ct      - caller context
2039  *              flags   - case flags
2040  *
2041  *      RETURN: 0 on success, error code on failure.
2042  *
2043  * Timestamps:
2044  *      dvp - ctime|mtime updated
2045  */
2046 /*ARGSUSED*/
2047 static int
2048 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr,
2049     caller_context_t *ct, int flags)
2050 {
2051         znode_t         *dzp = VTOZ(dvp);
2052         znode_t         *zp;
2053         vnode_t         *vp;
2054         zfsvfs_t        *zfsvfs = dzp->z_zfsvfs;
2055         zilog_t         *zilog;
2056         zfs_dirlock_t   *dl;
2057         dmu_tx_t        *tx;
2058         int             error;
2059         int             zflg = ZEXISTS;
2060         boolean_t       waited = B_FALSE;
2061 
2062         ZFS_ENTER(zfsvfs);
2063         ZFS_VERIFY_ZP(dzp);
2064         zilog = zfsvfs->z_log;
2065 
2066         if (flags & FIGNORECASE)
2067                 zflg |= ZCILOOK;
2068 top:
2069         zp = NULL;
2070 
2071         /*
2072          * Attempt to lock directory; fail if entry doesn't exist.
2073          */
2074         if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
2075             NULL, NULL)) {
2076                 ZFS_EXIT(zfsvfs);
2077                 return (error);
2078         }
2079 
2080         vp = ZTOV(zp);
2081 
2082         if (error = zfs_zaccess_delete(dzp, zp, cr)) {
2083                 goto out;
2084         }
2085 
2086         if (vp->v_type != VDIR) {
2087                 error = SET_ERROR(ENOTDIR);
2088                 goto out;
2089         }
2090 
2091         if (vp == cwd) {
2092                 error = SET_ERROR(EINVAL);
2093                 goto out;
2094         }
2095 
2096         vnevent_rmdir(vp, dvp, name, ct);
2097 
2098         /*
2099          * Grab a lock on the directory to make sure that noone is
2100          * trying to add (or lookup) entries while we are removing it.
2101          */
2102         rw_enter(&zp->z_name_lock, RW_WRITER);
2103 
2104         /*
2105          * Grab a lock on the parent pointer to make sure we play well
2106          * with the treewalk and directory rename code.
2107          */
2108         rw_enter(&zp->z_parent_lock, RW_WRITER);
2109 
2110         tx = dmu_tx_create(zfsvfs->z_os);
2111         dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
2112         dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2113         dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
2114         zfs_sa_upgrade_txholds(tx, zp);
2115         zfs_sa_upgrade_txholds(tx, dzp);
2116         dmu_tx_mark_netfree(tx);
2117         error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
2118         if (error) {
2119                 rw_exit(&zp->z_parent_lock);
2120                 rw_exit(&zp->z_name_lock);
2121                 zfs_dirent_unlock(dl);
2122                 VN_RELE(vp);
2123                 if (error == ERESTART) {
2124                         waited = B_TRUE;
2125                         dmu_tx_wait(tx);
2126                         dmu_tx_abort(tx);
2127                         goto top;
2128                 }
2129                 dmu_tx_abort(tx);
2130                 ZFS_EXIT(zfsvfs);
2131                 return (error);
2132         }
2133 
2134         error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
2135 
2136         if (error == 0) {
2137                 uint64_t txtype = TX_RMDIR;
2138                 if (flags & FIGNORECASE)
2139                         txtype |= TX_CI;
2140                 zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT);
2141         }
2142 
2143         dmu_tx_commit(tx);
2144 
2145         rw_exit(&zp->z_parent_lock);
2146         rw_exit(&zp->z_name_lock);
2147 out:
2148         zfs_dirent_unlock(dl);
2149 
2150         VN_RELE(vp);
2151 
2152         if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2153                 zil_commit(zilog, 0);
2154 
2155         ZFS_EXIT(zfsvfs);
2156         return (error);
2157 }
2158 
2159 /*
2160  * Read as many directory entries as will fit into the provided
2161  * buffer from the given directory cursor position (specified in
2162  * the uio structure).
2163  *
2164  *      IN:     vp      - vnode of directory to read.
2165  *              uio     - structure supplying read location, range info,
2166  *                        and return buffer.
2167  *              cr      - credentials of caller.
2168  *              ct      - caller context
2169  *              flags   - case flags
2170  *
2171  *      OUT:    uio     - updated offset and range, buffer filled.
2172  *              eofp    - set to true if end-of-file detected.
2173  *
2174  *      RETURN: 0 on success, error code on failure.
2175  *
2176  * Timestamps:
2177  *      vp - atime updated
2178  *
2179  * Note that the low 4 bits of the cookie returned by zap is always zero.
2180  * This allows us to use the low range for "special" directory entries:
2181  * We use 0 for '.', and 1 for '..'.  If this is the root of the filesystem,
2182  * we use the offset 2 for the '.zfs' directory.
2183  */
2184 /* ARGSUSED */
2185 static int
2186 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp,
2187     caller_context_t *ct, int flags)
2188 {
2189         znode_t         *zp = VTOZ(vp);
2190         iovec_t         *iovp;
2191         edirent_t       *eodp;
2192         dirent64_t      *odp;
2193         zfsvfs_t        *zfsvfs = zp->z_zfsvfs;
2194         objset_t        *os;
2195         caddr_t         outbuf;
2196         size_t          bufsize;
2197         zap_cursor_t    zc;
2198         zap_attribute_t zap;
2199         uint_t          bytes_wanted;
2200         uint64_t        offset; /* must be unsigned; checks for < 1 */
2201         uint64_t        parent;
2202         int             local_eof;
2203         int             outcount;
2204         int             error;
2205         uint8_t         prefetch;
2206         boolean_t       check_sysattrs;
2207 
2208         ZFS_ENTER(zfsvfs);
2209         ZFS_VERIFY_ZP(zp);
2210 
2211         if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
2212             &parent, sizeof (parent))) != 0) {
2213                 ZFS_EXIT(zfsvfs);
2214                 return (error);
2215         }
2216 
2217         /*
2218          * If we are not given an eof variable,
2219          * use a local one.
2220          */
2221         if (eofp == NULL)
2222                 eofp = &local_eof;
2223 
2224         /*
2225          * Check for valid iov_len.
2226          */
2227         if (uio->uio_iov->iov_len <= 0) {
2228                 ZFS_EXIT(zfsvfs);
2229                 return (SET_ERROR(EINVAL));
2230         }
2231 
2232         /*
2233          * Quit if directory has been removed (posix)
2234          */
2235         if ((*eofp = zp->z_unlinked) != 0) {
2236                 ZFS_EXIT(zfsvfs);
2237                 return (0);
2238         }
2239 
2240         error = 0;
2241         os = zfsvfs->z_os;
2242         offset = uio->uio_loffset;
2243         prefetch = zp->z_zn_prefetch;
2244 
2245         /*
2246          * Initialize the iterator cursor.
2247          */
2248         if (offset <= 3) {
2249                 /*
2250                  * Start iteration from the beginning of the directory.
2251                  */
2252                 zap_cursor_init(&zc, os, zp->z_id);
2253         } else {
2254                 /*
2255                  * The offset is a serialized cursor.
2256                  */
2257                 zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
2258         }
2259 
2260         /*
2261          * Get space to change directory entries into fs independent format.
2262          */
2263         iovp = uio->uio_iov;
2264         bytes_wanted = iovp->iov_len;
2265         if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) {
2266                 bufsize = bytes_wanted;
2267                 outbuf = kmem_alloc(bufsize, KM_SLEEP);
2268                 odp = (struct dirent64 *)outbuf;
2269         } else {
2270                 bufsize = bytes_wanted;
2271                 outbuf = NULL;
2272                 odp = (struct dirent64 *)iovp->iov_base;
2273         }
2274         eodp = (struct edirent *)odp;
2275 
2276         /*
2277          * If this VFS supports the system attribute view interface; and
2278          * we're looking at an extended attribute directory; and we care
2279          * about normalization conflicts on this vfs; then we must check
2280          * for normalization conflicts with the sysattr name space.
2281          */
2282         check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
2283             (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm &&
2284             (flags & V_RDDIR_ENTFLAGS);
2285 
2286         /*
2287          * Transform to file-system independent format
2288          */
2289         outcount = 0;
2290         while (outcount < bytes_wanted) {
2291                 ino64_t objnum;
2292                 ushort_t reclen;
2293                 off64_t *next = NULL;
2294 
2295                 /*
2296                  * Special case `.', `..', and `.zfs'.
2297                  */
2298                 if (offset == 0) {
2299                         (void) strcpy(zap.za_name, ".");
2300                         zap.za_normalization_conflict = 0;
2301                         objnum = zp->z_id;
2302                 } else if (offset == 1) {
2303                         (void) strcpy(zap.za_name, "..");
2304                         zap.za_normalization_conflict = 0;
2305                         objnum = parent;
2306                 } else if (offset == 2 && zfs_show_ctldir(zp)) {
2307                         (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
2308                         zap.za_normalization_conflict = 0;
2309                         objnum = ZFSCTL_INO_ROOT;
2310                 } else {
2311                         /*
2312                          * Grab next entry.
2313                          */
2314                         if (error = zap_cursor_retrieve(&zc, &zap)) {
2315                                 if ((*eofp = (error == ENOENT)) != 0)
2316                                         break;
2317                                 else
2318                                         goto update;
2319                         }
2320 
2321                         if (zap.za_integer_length != 8 ||
2322                             zap.za_num_integers != 1) {
2323                                 cmn_err(CE_WARN, "zap_readdir: bad directory "
2324                                     "entry, obj = %lld, offset = %lld\n",
2325                                     (u_longlong_t)zp->z_id,
2326                                     (u_longlong_t)offset);
2327                                 error = SET_ERROR(ENXIO);
2328                                 goto update;
2329                         }
2330 
2331                         objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
2332                         /*
2333                          * MacOS X can extract the object type here such as:
2334                          * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2335                          */
2336 
2337                         if (check_sysattrs && !zap.za_normalization_conflict) {
2338                                 zap.za_normalization_conflict =
2339                                     xattr_sysattr_casechk(zap.za_name);
2340                         }
2341                 }
2342 
2343                 if (flags & V_RDDIR_ACCFILTER) {
2344                         /*
2345                          * If we have no access at all, don't include
2346                          * this entry in the returned information
2347                          */
2348                         znode_t *ezp;
2349                         if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0)
2350                                 goto skip_entry;
2351                         if (!zfs_has_access(ezp, cr)) {
2352                                 VN_RELE(ZTOV(ezp));
2353                                 goto skip_entry;
2354                         }
2355                         VN_RELE(ZTOV(ezp));
2356                 }
2357 
2358                 if (flags & V_RDDIR_ENTFLAGS)
2359                         reclen = EDIRENT_RECLEN(strlen(zap.za_name));
2360                 else
2361                         reclen = DIRENT64_RECLEN(strlen(zap.za_name));
2362 
2363                 /*
2364                  * Will this entry fit in the buffer?
2365                  */
2366                 if (outcount + reclen > bufsize) {
2367                         /*
2368                          * Did we manage to fit anything in the buffer?
2369                          */
2370                         if (!outcount) {
2371                                 error = SET_ERROR(EINVAL);
2372                                 goto update;
2373                         }
2374                         break;
2375                 }
2376                 if (flags & V_RDDIR_ENTFLAGS) {
2377                         /*
2378                          * Add extended flag entry:
2379                          */
2380                         eodp->ed_ino = objnum;
2381                         eodp->ed_reclen = reclen;
2382                         /* NOTE: ed_off is the offset for the *next* entry */
2383                         next = &(eodp->ed_off);
2384                         eodp->ed_eflags = zap.za_normalization_conflict ?
2385                             ED_CASE_CONFLICT : 0;
2386                         (void) strncpy(eodp->ed_name, zap.za_name,
2387                             EDIRENT_NAMELEN(reclen));
2388                         eodp = (edirent_t *)((intptr_t)eodp + reclen);
2389                 } else {
2390                         /*
2391                          * Add normal entry:
2392                          */
2393                         odp->d_ino = objnum;
2394                         odp->d_reclen = reclen;
2395                         /* NOTE: d_off is the offset for the *next* entry */
2396                         next = &(odp->d_off);
2397                         (void) strncpy(odp->d_name, zap.za_name,
2398                             DIRENT64_NAMELEN(reclen));
2399                         odp = (dirent64_t *)((intptr_t)odp + reclen);
2400                 }
2401                 outcount += reclen;
2402 
2403                 ASSERT(outcount <= bufsize);
2404 
2405                 /* Prefetch znode */
2406                 if (prefetch)
2407                         dmu_prefetch(os, objnum, 0, 0, 0,
2408                             ZIO_PRIORITY_SYNC_READ);
2409 
2410         skip_entry:
2411                 /*
2412                  * Move to the next entry, fill in the previous offset.
2413                  */
2414                 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
2415                         zap_cursor_advance(&zc);
2416                         offset = zap_cursor_serialize(&zc);
2417                 } else {
2418                         offset += 1;
2419                 }
2420                 if (next)
2421                         *next = offset;
2422         }
2423         zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
2424 
2425         if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) {
2426                 iovp->iov_base += outcount;
2427                 iovp->iov_len -= outcount;
2428                 uio->uio_resid -= outcount;
2429         } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) {
2430                 /*
2431                  * Reset the pointer.
2432                  */
2433                 offset = uio->uio_loffset;
2434         }
2435 
2436 update:
2437         zap_cursor_fini(&zc);
2438         if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1)
2439                 kmem_free(outbuf, bufsize);
2440 
2441         if (error == ENOENT)
2442                 error = 0;
2443 
2444         ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
2445 
2446         uio->uio_loffset = offset;
2447         ZFS_EXIT(zfsvfs);
2448         return (error);
2449 }
2450 
2451 ulong_t zfs_fsync_sync_cnt = 4;
2452 
2453 static int
2454 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
2455 {
2456         znode_t *zp = VTOZ(vp);
2457         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2458 
2459         /*
2460          * Regardless of whether this is required for standards conformance,
2461          * this is the logical behavior when fsync() is called on a file with
2462          * dirty pages.  We use B_ASYNC since the ZIL transactions are already
2463          * going to be pushed out as part of the zil_commit().
2464          */
2465         if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) &&
2466             (vp->v_type == VREG) && !(IS_SWAPVP(vp)))
2467                 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct);
2468 
2469         (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
2470 
2471         if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
2472                 ZFS_ENTER(zfsvfs);
2473                 ZFS_VERIFY_ZP(zp);
2474                 zil_commit(zfsvfs->z_log, zp->z_id);
2475                 ZFS_EXIT(zfsvfs);
2476         }
2477         return (0);
2478 }
2479 
2480 
2481 /*
2482  * Get the requested file attributes and place them in the provided
2483  * vattr structure.
2484  *
2485  *      IN:     vp      - vnode of file.
2486  *              vap     - va_mask identifies requested attributes.
2487  *                        If AT_XVATTR set, then optional attrs are requested
2488  *              flags   - ATTR_NOACLCHECK (CIFS server context)
2489  *              cr      - credentials of caller.
2490  *              ct      - caller context
2491  *
2492  *      OUT:    vap     - attribute values.
2493  *
2494  *      RETURN: 0 (always succeeds).
2495  */
2496 /* ARGSUSED */
2497 static int
2498 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2499     caller_context_t *ct)
2500 {
2501         znode_t *zp = VTOZ(vp);
2502         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2503         int     error = 0;
2504         uint64_t links;
2505         uint64_t mtime[2], ctime[2];
2506         xvattr_t *xvap = (xvattr_t *)vap;       /* vap may be an xvattr_t * */
2507         xoptattr_t *xoap = NULL;
2508         boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2509         sa_bulk_attr_t bulk[2];
2510         int count = 0;
2511 
2512         ZFS_ENTER(zfsvfs);
2513         ZFS_VERIFY_ZP(zp);
2514 
2515         zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid);
2516 
2517         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
2518         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
2519 
2520         if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) {
2521                 ZFS_EXIT(zfsvfs);
2522                 return (error);
2523         }
2524 
2525         /*
2526          * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
2527          * Also, if we are the owner don't bother, since owner should
2528          * always be allowed to read basic attributes of file.
2529          */
2530         if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) &&
2531             (vap->va_uid != crgetuid(cr))) {
2532                 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
2533                     skipaclchk, cr)) {
2534                         ZFS_EXIT(zfsvfs);
2535                         return (error);
2536                 }
2537         }
2538 
2539         /*
2540          * Return all attributes.  It's cheaper to provide the answer
2541          * than to determine whether we were asked the question.
2542          */
2543 
2544         mutex_enter(&zp->z_lock);
2545         vap->va_type = vp->v_type;
2546         vap->va_mode = zp->z_mode & MODEMASK;
2547         vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev;
2548         vap->va_nodeid = zp->z_id;
2549         if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp))
2550                 links = zp->z_links + 1;
2551         else
2552                 links = zp->z_links;
2553         vap->va_nlink = MIN(links, UINT32_MAX);      /* nlink_t limit! */
2554         vap->va_size = zp->z_size;
2555         vap->va_rdev = vp->v_rdev;
2556         vap->va_seq = zp->z_seq;
2557 
2558         /*
2559          * Add in any requested optional attributes and the create time.
2560          * Also set the corresponding bits in the returned attribute bitmap.
2561          */
2562         if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) {
2563                 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
2564                         xoap->xoa_archive =
2565                             ((zp->z_pflags & ZFS_ARCHIVE) != 0);
2566                         XVA_SET_RTN(xvap, XAT_ARCHIVE);
2567                 }
2568 
2569                 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
2570                         xoap->xoa_readonly =
2571                             ((zp->z_pflags & ZFS_READONLY) != 0);
2572                         XVA_SET_RTN(xvap, XAT_READONLY);
2573                 }
2574 
2575                 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
2576                         xoap->xoa_system =
2577                             ((zp->z_pflags & ZFS_SYSTEM) != 0);
2578                         XVA_SET_RTN(xvap, XAT_SYSTEM);
2579                 }
2580 
2581                 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
2582                         xoap->xoa_hidden =
2583                             ((zp->z_pflags & ZFS_HIDDEN) != 0);
2584                         XVA_SET_RTN(xvap, XAT_HIDDEN);
2585                 }
2586 
2587                 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2588                         xoap->xoa_nounlink =
2589                             ((zp->z_pflags & ZFS_NOUNLINK) != 0);
2590                         XVA_SET_RTN(xvap, XAT_NOUNLINK);
2591                 }
2592 
2593                 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2594                         xoap->xoa_immutable =
2595                             ((zp->z_pflags & ZFS_IMMUTABLE) != 0);
2596                         XVA_SET_RTN(xvap, XAT_IMMUTABLE);
2597                 }
2598 
2599                 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2600                         xoap->xoa_appendonly =
2601                             ((zp->z_pflags & ZFS_APPENDONLY) != 0);
2602                         XVA_SET_RTN(xvap, XAT_APPENDONLY);
2603                 }
2604 
2605                 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2606                         xoap->xoa_nodump =
2607                             ((zp->z_pflags & ZFS_NODUMP) != 0);
2608                         XVA_SET_RTN(xvap, XAT_NODUMP);
2609                 }
2610 
2611                 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
2612                         xoap->xoa_opaque =
2613                             ((zp->z_pflags & ZFS_OPAQUE) != 0);
2614                         XVA_SET_RTN(xvap, XAT_OPAQUE);
2615                 }
2616 
2617                 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2618                         xoap->xoa_av_quarantined =
2619                             ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0);
2620                         XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
2621                 }
2622 
2623                 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2624                         xoap->xoa_av_modified =
2625                             ((zp->z_pflags & ZFS_AV_MODIFIED) != 0);
2626                         XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
2627                 }
2628 
2629                 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) &&
2630                     vp->v_type == VREG) {
2631                         zfs_sa_get_scanstamp(zp, xvap);
2632                 }
2633 
2634                 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
2635                         uint64_t times[2];
2636 
2637                         (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs),
2638                             times, sizeof (times));
2639                         ZFS_TIME_DECODE(&xoap->xoa_createtime, times);
2640                         XVA_SET_RTN(xvap, XAT_CREATETIME);
2641                 }
2642 
2643                 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2644                         xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0);
2645                         XVA_SET_RTN(xvap, XAT_REPARSE);
2646                 }
2647                 if (XVA_ISSET_REQ(xvap, XAT_GEN)) {
2648                         xoap->xoa_generation = zp->z_gen;
2649                         XVA_SET_RTN(xvap, XAT_GEN);
2650                 }
2651 
2652                 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
2653                         xoap->xoa_offline =
2654                             ((zp->z_pflags & ZFS_OFFLINE) != 0);
2655                         XVA_SET_RTN(xvap, XAT_OFFLINE);
2656                 }
2657 
2658                 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
2659                         xoap->xoa_sparse =
2660                             ((zp->z_pflags & ZFS_SPARSE) != 0);
2661                         XVA_SET_RTN(xvap, XAT_SPARSE);
2662                 }
2663         }
2664 
2665         ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime);
2666         ZFS_TIME_DECODE(&vap->va_mtime, mtime);
2667         ZFS_TIME_DECODE(&vap->va_ctime, ctime);
2668 
2669         mutex_exit(&zp->z_lock);
2670 
2671         sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks);
2672 
2673         if (zp->z_blksz == 0) {
2674                 /*
2675                  * Block size hasn't been set; suggest maximal I/O transfers.
2676                  */
2677                 vap->va_blksize = zfsvfs->z_max_blksz;
2678         }
2679 
2680         ZFS_EXIT(zfsvfs);
2681         return (0);
2682 }
2683 
2684 /*
2685  * Set the file attributes to the values contained in the
2686  * vattr structure.
2687  *
2688  *      IN:     vp      - vnode of file to be modified.
2689  *              vap     - new attribute values.
2690  *                        If AT_XVATTR set, then optional attrs are being set
2691  *              flags   - ATTR_UTIME set if non-default time values provided.
2692  *                      - ATTR_NOACLCHECK (CIFS context only).
2693  *              cr      - credentials of caller.
2694  *              ct      - caller context
2695  *
2696  *      RETURN: 0 on success, error code on failure.
2697  *
2698  * Timestamps:
2699  *      vp - ctime updated, mtime updated if size changed.
2700  */
2701 /* ARGSUSED */
2702 static int
2703 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2704     caller_context_t *ct)
2705 {
2706         znode_t         *zp = VTOZ(vp);
2707         zfsvfs_t        *zfsvfs = zp->z_zfsvfs;
2708         zilog_t         *zilog;
2709         dmu_tx_t        *tx;
2710         vattr_t         oldva;
2711         xvattr_t        tmpxvattr;
2712         uint_t          mask = vap->va_mask;
2713         uint_t          saved_mask = 0;
2714         int             trim_mask = 0;
2715         uint64_t        new_mode;
2716         uint64_t        new_uid, new_gid;
2717         uint64_t        xattr_obj;
2718         uint64_t        mtime[2], ctime[2];
2719         znode_t         *attrzp;
2720         int             need_policy = FALSE;
2721         int             err, err2;
2722         zfs_fuid_info_t *fuidp = NULL;
2723         xvattr_t *xvap = (xvattr_t *)vap;       /* vap may be an xvattr_t * */
2724         xoptattr_t      *xoap;
2725         zfs_acl_t       *aclp;
2726         boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2727         boolean_t       fuid_dirtied = B_FALSE;
2728         sa_bulk_attr_t  bulk[7], xattr_bulk[7];
2729         int             count = 0, xattr_count = 0;
2730 
2731         if (mask == 0)
2732                 return (0);
2733 
2734         if (mask & AT_NOSET)
2735                 return (SET_ERROR(EINVAL));
2736 
2737         ZFS_ENTER(zfsvfs);
2738         ZFS_VERIFY_ZP(zp);
2739 
2740         zilog = zfsvfs->z_log;
2741 
2742         /*
2743          * Make sure that if we have ephemeral uid/gid or xvattr specified
2744          * that file system is at proper version level
2745          */
2746 
2747         if (zfsvfs->z_use_fuids == B_FALSE &&
2748             (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) ||
2749             ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) ||
2750             (mask & AT_XVATTR))) {
2751                 ZFS_EXIT(zfsvfs);
2752                 return (SET_ERROR(EINVAL));
2753         }
2754 
2755         if (mask & AT_SIZE && vp->v_type == VDIR) {
2756                 ZFS_EXIT(zfsvfs);
2757                 return (SET_ERROR(EISDIR));
2758         }
2759 
2760         if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) {
2761                 ZFS_EXIT(zfsvfs);
2762                 return (SET_ERROR(EINVAL));
2763         }
2764 
2765         /*
2766          * If this is an xvattr_t, then get a pointer to the structure of
2767          * optional attributes.  If this is NULL, then we have a vattr_t.
2768          */
2769         xoap = xva_getxoptattr(xvap);
2770 
2771         xva_init(&tmpxvattr);
2772 
2773         /*
2774          * Immutable files can only alter immutable bit and atime
2775          */
2776         if ((zp->z_pflags & ZFS_IMMUTABLE) &&
2777             ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) ||
2778             ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
2779                 ZFS_EXIT(zfsvfs);
2780                 return (SET_ERROR(EPERM));
2781         }
2782 
2783         if ((mask & AT_SIZE) && (zp->z_pflags & ZFS_READONLY)) {
2784                 ZFS_EXIT(zfsvfs);
2785                 return (SET_ERROR(EPERM));
2786         }
2787 
2788         /*
2789          * Verify timestamps doesn't overflow 32 bits.
2790          * ZFS can handle large timestamps, but 32bit syscalls can't
2791          * handle times greater than 2039.  This check should be removed
2792          * once large timestamps are fully supported.
2793          */
2794         if (mask & (AT_ATIME | AT_MTIME)) {
2795                 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) ||
2796                     ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) {
2797                         ZFS_EXIT(zfsvfs);
2798                         return (SET_ERROR(EOVERFLOW));
2799                 }
2800         }
2801 
2802 top:
2803         attrzp = NULL;
2804         aclp = NULL;
2805 
2806         /* Can this be moved to before the top label? */
2807         if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
2808                 ZFS_EXIT(zfsvfs);
2809                 return (SET_ERROR(EROFS));
2810         }
2811 
2812         /*
2813          * First validate permissions
2814          */
2815 
2816         if (mask & AT_SIZE) {
2817                 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr);
2818                 if (err) {
2819                         ZFS_EXIT(zfsvfs);
2820                         return (err);
2821                 }
2822                 /*
2823                  * XXX - Note, we are not providing any open
2824                  * mode flags here (like FNDELAY), so we may
2825                  * block if there are locks present... this
2826                  * should be addressed in openat().
2827                  */
2828                 /* XXX - would it be OK to generate a log record here? */
2829                 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
2830                 if (err) {
2831                         ZFS_EXIT(zfsvfs);
2832                         return (err);
2833                 }
2834 
2835                 if (vap->va_size == 0)
2836                         vnevent_truncate(ZTOV(zp), ct);
2837         }
2838 
2839         if (mask & (AT_ATIME|AT_MTIME) ||
2840             ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
2841             XVA_ISSET_REQ(xvap, XAT_READONLY) ||
2842             XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
2843             XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
2844             XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
2845             XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
2846             XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
2847                 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
2848                     skipaclchk, cr);
2849         }
2850 
2851         if (mask & (AT_UID|AT_GID)) {
2852                 int     idmask = (mask & (AT_UID|AT_GID));
2853                 int     take_owner;
2854                 int     take_group;
2855 
2856                 /*
2857                  * NOTE: even if a new mode is being set,
2858                  * we may clear S_ISUID/S_ISGID bits.
2859                  */
2860 
2861                 if (!(mask & AT_MODE))
2862                         vap->va_mode = zp->z_mode;
2863 
2864                 /*
2865                  * Take ownership or chgrp to group we are a member of
2866                  */
2867 
2868                 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr));
2869                 take_group = (mask & AT_GID) &&
2870                     zfs_groupmember(zfsvfs, vap->va_gid, cr);
2871 
2872                 /*
2873                  * If both AT_UID and AT_GID are set then take_owner and
2874                  * take_group must both be set in order to allow taking
2875                  * ownership.
2876                  *
2877                  * Otherwise, send the check through secpolicy_vnode_setattr()
2878                  *
2879                  */
2880 
2881                 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) ||
2882                     ((idmask == AT_UID) && take_owner) ||
2883                     ((idmask == AT_GID) && take_group)) {
2884                         if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
2885                             skipaclchk, cr) == 0) {
2886                                 /*
2887                                  * Remove setuid/setgid for non-privileged users
2888                                  */
2889                                 secpolicy_setid_clear(vap, cr);
2890                                 trim_mask = (mask & (AT_UID|AT_GID));
2891                         } else {
2892                                 need_policy =  TRUE;
2893                         }
2894                 } else {
2895                         need_policy =  TRUE;
2896                 }
2897         }
2898 
2899         mutex_enter(&zp->z_lock);
2900         oldva.va_mode = zp->z_mode;
2901         zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
2902         if (mask & AT_XVATTR) {
2903                 /*
2904                  * Update xvattr mask to include only those attributes
2905                  * that are actually changing.
2906                  *
2907                  * the bits will be restored prior to actually setting
2908                  * the attributes so the caller thinks they were set.
2909                  */
2910                 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2911                         if (xoap->xoa_appendonly !=
2912                             ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
2913                                 need_policy = TRUE;
2914                         } else {
2915                                 XVA_CLR_REQ(xvap, XAT_APPENDONLY);
2916                                 XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY);
2917                         }
2918                 }
2919 
2920                 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2921                         if (xoap->xoa_nounlink !=
2922                             ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
2923                                 need_policy = TRUE;
2924                         } else {
2925                                 XVA_CLR_REQ(xvap, XAT_NOUNLINK);
2926                                 XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK);
2927                         }
2928                 }
2929 
2930                 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2931                         if (xoap->xoa_immutable !=
2932                             ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
2933                                 need_policy = TRUE;
2934                         } else {
2935                                 XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
2936                                 XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE);
2937                         }
2938                 }
2939 
2940                 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2941                         if (xoap->xoa_nodump !=
2942                             ((zp->z_pflags & ZFS_NODUMP) != 0)) {
2943                                 need_policy = TRUE;
2944                         } else {
2945                                 XVA_CLR_REQ(xvap, XAT_NODUMP);
2946                                 XVA_SET_REQ(&tmpxvattr, XAT_NODUMP);
2947                         }
2948                 }
2949 
2950                 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2951                         if (xoap->xoa_av_modified !=
2952                             ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
2953                                 need_policy = TRUE;
2954                         } else {
2955                                 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
2956                                 XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED);
2957                         }
2958                 }
2959 
2960                 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2961                         if ((vp->v_type != VREG &&
2962                             xoap->xoa_av_quarantined) ||
2963                             xoap->xoa_av_quarantined !=
2964                             ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
2965                                 need_policy = TRUE;
2966                         } else {
2967                                 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
2968                                 XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED);
2969                         }
2970                 }
2971 
2972                 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2973                         mutex_exit(&zp->z_lock);
2974                         ZFS_EXIT(zfsvfs);
2975                         return (SET_ERROR(EPERM));
2976                 }
2977 
2978                 if (need_policy == FALSE &&
2979                     (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
2980                     XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
2981                         need_policy = TRUE;
2982                 }
2983         }
2984 
2985         mutex_exit(&zp->z_lock);
2986 
2987         if (mask & AT_MODE) {
2988                 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
2989                         err = secpolicy_setid_setsticky_clear(vp, vap,
2990                             &oldva, cr);
2991                         if (err) {
2992                                 ZFS_EXIT(zfsvfs);
2993                                 return (err);
2994                         }
2995                         trim_mask |= AT_MODE;
2996                 } else {
2997                         need_policy = TRUE;
2998                 }
2999         }
3000 
3001         if (need_policy) {
3002                 /*
3003                  * If trim_mask is set then take ownership
3004                  * has been granted or write_acl is present and user
3005                  * has the ability to modify mode.  In that case remove
3006                  * UID|GID and or MODE from mask so that
3007                  * secpolicy_vnode_setattr() doesn't revoke it.
3008                  */
3009 
3010                 if (trim_mask) {
3011                         saved_mask = vap->va_mask;
3012                         vap->va_mask &= ~trim_mask;
3013                 }
3014                 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
3015                     (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
3016                 if (err) {
3017                         ZFS_EXIT(zfsvfs);
3018                         return (err);
3019                 }
3020 
3021                 if (trim_mask)
3022                         vap->va_mask |= saved_mask;
3023         }
3024 
3025         /*
3026          * secpolicy_vnode_setattr, or take ownership may have
3027          * changed va_mask
3028          */
3029         mask = vap->va_mask;
3030 
3031         if ((mask & (AT_UID | AT_GID))) {
3032                 err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
3033                     &xattr_obj, sizeof (xattr_obj));
3034 
3035                 if (err == 0 && xattr_obj) {
3036                         err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp);
3037                         if (err)
3038                                 goto out2;
3039                 }
3040                 if (mask & AT_UID) {
3041                         new_uid = zfs_fuid_create(zfsvfs,
3042                             (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
3043                         if (new_uid != zp->z_uid &&
3044                             zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) {
3045                                 if (attrzp)
3046                                         VN_RELE(ZTOV(attrzp));
3047                                 err = SET_ERROR(EDQUOT);
3048                                 goto out2;
3049                         }
3050                 }
3051 
3052                 if (mask & AT_GID) {
3053                         new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid,
3054                             cr, ZFS_GROUP, &fuidp);
3055                         if (new_gid != zp->z_gid &&
3056                             zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) {
3057                                 if (attrzp)
3058                                         VN_RELE(ZTOV(attrzp));
3059                                 err = SET_ERROR(EDQUOT);
3060                                 goto out2;
3061                         }
3062                 }
3063         }
3064         tx = dmu_tx_create(zfsvfs->z_os);
3065 
3066         if (mask & AT_MODE) {
3067                 uint64_t pmode = zp->z_mode;
3068                 uint64_t acl_obj;
3069                 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
3070 
3071                 if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED &&
3072                     !(zp->z_pflags & ZFS_ACL_TRIVIAL)) {
3073                         err = SET_ERROR(EPERM);
3074                         goto out;
3075                 }
3076 
3077                 if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode))
3078                         goto out;
3079 
3080                 mutex_enter(&zp->z_lock);
3081                 if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
3082                         /*
3083                          * Are we upgrading ACL from old V0 format
3084                          * to V1 format?
3085                          */
3086                         if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
3087                             zfs_znode_acl_version(zp) ==
3088                             ZFS_ACL_VERSION_INITIAL) {
3089                                 dmu_tx_hold_free(tx, acl_obj, 0,
3090                                     DMU_OBJECT_END);
3091                                 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3092                                     0, aclp->z_acl_bytes);
3093                         } else {
3094                                 dmu_tx_hold_write(tx, acl_obj, 0,
3095                                     aclp->z_acl_bytes);
3096                         }
3097                 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3098                         dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3099                             0, aclp->z_acl_bytes);
3100                 }
3101                 mutex_exit(&zp->z_lock);
3102                 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3103         } else {
3104                 if ((mask & AT_XVATTR) &&
3105                     XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3106                         dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3107                 else
3108                         dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3109         }
3110 
3111         if (attrzp) {
3112                 dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
3113         }
3114 
3115         fuid_dirtied = zfsvfs->z_fuid_dirty;
3116         if (fuid_dirtied)
3117                 zfs_fuid_txhold(zfsvfs, tx);
3118 
3119         zfs_sa_upgrade_txholds(tx, zp);
3120 
3121         err = dmu_tx_assign(tx, TXG_WAIT);
3122         if (err)
3123                 goto out;
3124 
3125         count = 0;
3126         /*
3127          * Set each attribute requested.
3128          * We group settings according to the locks they need to acquire.
3129          *
3130          * Note: you cannot set ctime directly, although it will be
3131          * updated as a side-effect of calling this function.
3132          */
3133 
3134 
3135         if (mask & (AT_UID|AT_GID|AT_MODE))
3136                 mutex_enter(&zp->z_acl_lock);
3137         mutex_enter(&zp->z_lock);
3138 
3139         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
3140             &zp->z_pflags, sizeof (zp->z_pflags));
3141 
3142         if (attrzp) {
3143                 if (mask & (AT_UID|AT_GID|AT_MODE))
3144                         mutex_enter(&attrzp->z_acl_lock);
3145                 mutex_enter(&attrzp->z_lock);
3146                 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3147                     SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
3148                     sizeof (attrzp->z_pflags));
3149         }
3150 
3151         if (mask & (AT_UID|AT_GID)) {
3152 
3153                 if (mask & AT_UID) {
3154                         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
3155                             &new_uid, sizeof (new_uid));
3156                         zp->z_uid = new_uid;
3157                         if (attrzp) {
3158                                 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3159                                     SA_ZPL_UID(zfsvfs), NULL, &new_uid,
3160                                     sizeof (new_uid));
3161                                 attrzp->z_uid = new_uid;
3162                         }
3163                 }
3164 
3165                 if (mask & AT_GID) {
3166                         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
3167                             NULL, &new_gid, sizeof (new_gid));
3168                         zp->z_gid = new_gid;
3169                         if (attrzp) {
3170                                 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3171                                     SA_ZPL_GID(zfsvfs), NULL, &new_gid,
3172                                     sizeof (new_gid));
3173                                 attrzp->z_gid = new_gid;
3174                         }
3175                 }
3176                 if (!(mask & AT_MODE)) {
3177                         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
3178                             NULL, &new_mode, sizeof (new_mode));
3179                         new_mode = zp->z_mode;
3180                 }
3181                 err = zfs_acl_chown_setattr(zp);
3182                 ASSERT(err == 0);
3183                 if (attrzp) {
3184                         err = zfs_acl_chown_setattr(attrzp);
3185                         ASSERT(err == 0);
3186                 }
3187         }
3188 
3189         if (mask & AT_MODE) {
3190                 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
3191                     &new_mode, sizeof (new_mode));
3192                 zp->z_mode = new_mode;
3193                 ASSERT3U((uintptr_t)aclp, !=, NULL);
3194                 err = zfs_aclset_common(zp, aclp, cr, tx);
3195                 ASSERT0(err);
3196                 if (zp->z_acl_cached)
3197                         zfs_acl_free(zp->z_acl_cached);
3198                 zp->z_acl_cached = aclp;
3199                 aclp = NULL;
3200         }
3201 
3202 
3203         if (mask & AT_ATIME) {
3204                 ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime);
3205                 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
3206                     &zp->z_atime, sizeof (zp->z_atime));
3207         }
3208 
3209         if (mask & AT_MTIME) {
3210                 ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
3211                 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
3212                     mtime, sizeof (mtime));
3213         }
3214 
3215         /* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */
3216         if (mask & AT_SIZE && !(mask & AT_MTIME)) {
3217                 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs),
3218                     NULL, mtime, sizeof (mtime));
3219                 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3220                     &ctime, sizeof (ctime));
3221                 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
3222                     B_TRUE);
3223         } else if (mask != 0) {
3224                 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3225                     &ctime, sizeof (ctime));
3226                 zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime,
3227                     B_TRUE);
3228                 if (attrzp) {
3229                         SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3230                             SA_ZPL_CTIME(zfsvfs), NULL,
3231                             &ctime, sizeof (ctime));
3232                         zfs_tstamp_update_setup(attrzp, STATE_CHANGED,
3233                             mtime, ctime, B_TRUE);
3234                 }
3235         }
3236         /*
3237          * Do this after setting timestamps to prevent timestamp
3238          * update from toggling bit
3239          */
3240 
3241         if (xoap && (mask & AT_XVATTR)) {
3242 
3243                 /*
3244                  * restore trimmed off masks
3245                  * so that return masks can be set for caller.
3246                  */
3247 
3248                 if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) {
3249                         XVA_SET_REQ(xvap, XAT_APPENDONLY);
3250                 }
3251                 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) {
3252                         XVA_SET_REQ(xvap, XAT_NOUNLINK);
3253                 }
3254                 if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) {
3255                         XVA_SET_REQ(xvap, XAT_IMMUTABLE);
3256                 }
3257                 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) {
3258                         XVA_SET_REQ(xvap, XAT_NODUMP);
3259                 }
3260                 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) {
3261                         XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
3262                 }
3263                 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) {
3264                         XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
3265                 }
3266 
3267                 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3268                         ASSERT(vp->v_type == VREG);
3269 
3270                 zfs_xvattr_set(zp, xvap, tx);
3271         }
3272 
3273         if (fuid_dirtied)
3274                 zfs_fuid_sync(zfsvfs, tx);
3275 
3276         if (mask != 0)
3277                 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
3278 
3279         mutex_exit(&zp->z_lock);
3280         if (mask & (AT_UID|AT_GID|AT_MODE))
3281                 mutex_exit(&zp->z_acl_lock);
3282 
3283         if (attrzp) {
3284                 if (mask & (AT_UID|AT_GID|AT_MODE))
3285                         mutex_exit(&attrzp->z_acl_lock);
3286                 mutex_exit(&attrzp->z_lock);
3287         }
3288 out:
3289         if (err == 0 && attrzp) {
3290                 err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
3291                     xattr_count, tx);
3292                 ASSERT(err2 == 0);
3293         }
3294 
3295         if (attrzp)
3296                 VN_RELE(ZTOV(attrzp));
3297 
3298         if (aclp)
3299                 zfs_acl_free(aclp);
3300 
3301         if (fuidp) {
3302                 zfs_fuid_info_free(fuidp);
3303                 fuidp = NULL;
3304         }
3305 
3306         if (err) {
3307                 dmu_tx_abort(tx);
3308                 if (err == ERESTART)
3309                         goto top;
3310         } else {
3311                 err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
3312                 dmu_tx_commit(tx);
3313         }
3314 
3315 out2:
3316         if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3317                 zil_commit(zilog, 0);
3318 
3319         ZFS_EXIT(zfsvfs);
3320         return (err);
3321 }
3322 
3323 typedef struct zfs_zlock {
3324         krwlock_t       *zl_rwlock;     /* lock we acquired */
3325         znode_t         *zl_znode;      /* znode we held */
3326         struct zfs_zlock *zl_next;      /* next in list */
3327 } zfs_zlock_t;
3328 
3329 /*
3330  * Drop locks and release vnodes that were held by zfs_rename_lock().
3331  */
3332 static void
3333 zfs_rename_unlock(zfs_zlock_t **zlpp)
3334 {
3335         zfs_zlock_t *zl;
3336 
3337         while ((zl = *zlpp) != NULL) {
3338                 if (zl->zl_znode != NULL)
3339                         VN_RELE(ZTOV(zl->zl_znode));
3340                 rw_exit(zl->zl_rwlock);
3341                 *zlpp = zl->zl_next;
3342                 kmem_free(zl, sizeof (*zl));
3343         }
3344 }
3345 
3346 /*
3347  * Search back through the directory tree, using the ".." entries.
3348  * Lock each directory in the chain to prevent concurrent renames.
3349  * Fail any attempt to move a directory into one of its own descendants.
3350  * XXX - z_parent_lock can overlap with map or grow locks
3351  */
3352 static int
3353 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
3354 {
3355         zfs_zlock_t     *zl;
3356         znode_t         *zp = tdzp;
3357         uint64_t        rootid = zp->z_zfsvfs->z_root;
3358         uint64_t        oidp = zp->z_id;
3359         krwlock_t       *rwlp = &szp->z_parent_lock;
3360         krw_t           rw = RW_WRITER;
3361 
3362         /*
3363          * First pass write-locks szp and compares to zp->z_id.
3364          * Later passes read-lock zp and compare to zp->z_parent.
3365          */
3366         do {
3367                 if (!rw_tryenter(rwlp, rw)) {
3368                         /*
3369                          * Another thread is renaming in this path.
3370                          * Note that if we are a WRITER, we don't have any
3371                          * parent_locks held yet.
3372                          */
3373                         if (rw == RW_READER && zp->z_id > szp->z_id) {
3374                                 /*
3375                                  * Drop our locks and restart
3376                                  */
3377                                 zfs_rename_unlock(&zl);
3378                                 *zlpp = NULL;
3379                                 zp = tdzp;
3380                                 oidp = zp->z_id;
3381                                 rwlp = &szp->z_parent_lock;
3382                                 rw = RW_WRITER;
3383                                 continue;
3384                         } else {
3385                                 /*
3386                                  * Wait for other thread to drop its locks
3387                                  */
3388                                 rw_enter(rwlp, rw);
3389                         }
3390                 }
3391 
3392                 zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
3393                 zl->zl_rwlock = rwlp;
3394                 zl->zl_znode = NULL;
3395                 zl->zl_next = *zlpp;
3396                 *zlpp = zl;
3397 
3398                 if (oidp == szp->z_id)               /* We're a descendant of szp */
3399                         return (SET_ERROR(EINVAL));
3400 
3401                 if (oidp == rootid)             /* We've hit the top */
3402                         return (0);
3403 
3404                 if (rw == RW_READER) {          /* i.e. not the first pass */
3405                         int error = zfs_zget(zp->z_zfsvfs, oidp, &zp);
3406                         if (error)
3407                                 return (error);
3408                         zl->zl_znode = zp;
3409                 }
3410                 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs),
3411                     &oidp, sizeof (oidp));
3412                 rwlp = &zp->z_parent_lock;
3413                 rw = RW_READER;
3414 
3415         } while (zp->z_id != sdzp->z_id);
3416 
3417         return (0);
3418 }
3419 
3420 /*
3421  * Move an entry from the provided source directory to the target
3422  * directory.  Change the entry name as indicated.
3423  *
3424  *      IN:     sdvp    - Source directory containing the "old entry".
3425  *              snm     - Old entry name.
3426  *              tdvp    - Target directory to contain the "new entry".
3427  *              tnm     - New entry name.
3428  *              cr      - credentials of caller.
3429  *              ct      - caller context
3430  *              flags   - case flags
3431  *
3432  *      RETURN: 0 on success, error code on failure.
3433  *
3434  * Timestamps:
3435  *      sdvp,tdvp - ctime|mtime updated
3436  */
3437 /*ARGSUSED*/
3438 static int
3439 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr,
3440     caller_context_t *ct, int flags)
3441 {
3442         znode_t         *tdzp, *szp, *tzp;
3443         znode_t         *sdzp = VTOZ(sdvp);
3444         zfsvfs_t        *zfsvfs = sdzp->z_zfsvfs;
3445         zilog_t         *zilog;
3446         vnode_t         *realvp;
3447         zfs_dirlock_t   *sdl, *tdl;
3448         dmu_tx_t        *tx;
3449         zfs_zlock_t     *zl;
3450         int             cmp, serr, terr;
3451         int             error = 0, rm_err = 0;
3452         int             zflg = 0;
3453         boolean_t       waited = B_FALSE;
3454 
3455         ZFS_ENTER(zfsvfs);
3456         ZFS_VERIFY_ZP(sdzp);
3457         zilog = zfsvfs->z_log;
3458 
3459         /*
3460          * Make sure we have the real vp for the target directory.
3461          */
3462         if (VOP_REALVP(tdvp, &realvp, ct) == 0)
3463                 tdvp = realvp;
3464 
3465         tdzp = VTOZ(tdvp);
3466         ZFS_VERIFY_ZP(tdzp);
3467 
3468         /*
3469          * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
3470          * ctldir appear to have the same v_vfsp.
3471          */
3472         if (tdzp->z_zfsvfs != zfsvfs || zfsctl_is_node(tdvp)) {
3473                 ZFS_EXIT(zfsvfs);
3474                 return (SET_ERROR(EXDEV));
3475         }
3476 
3477         if (zfsvfs->z_utf8 && u8_validate(tnm,
3478             strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3479                 ZFS_EXIT(zfsvfs);
3480                 return (SET_ERROR(EILSEQ));
3481         }
3482 
3483         if (flags & FIGNORECASE)
3484                 zflg |= ZCILOOK;
3485 
3486 top:
3487         szp = NULL;
3488         tzp = NULL;
3489         zl = NULL;
3490 
3491         /*
3492          * This is to prevent the creation of links into attribute space
3493          * by renaming a linked file into/outof an attribute directory.
3494          * See the comment in zfs_link() for why this is considered bad.
3495          */
3496         if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
3497                 ZFS_EXIT(zfsvfs);
3498                 return (SET_ERROR(EINVAL));
3499         }
3500 
3501         /*
3502          * Lock source and target directory entries.  To prevent deadlock,
3503          * a lock ordering must be defined.  We lock the directory with
3504          * the smallest object id first, or if it's a tie, the one with
3505          * the lexically first name.
3506          */
3507         if (sdzp->z_id < tdzp->z_id) {
3508                 cmp = -1;
3509         } else if (sdzp->z_id > tdzp->z_id) {
3510                 cmp = 1;
3511         } else {
3512                 /*
3513                  * First compare the two name arguments without
3514                  * considering any case folding.
3515                  */
3516                 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
3517 
3518                 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
3519                 ASSERT(error == 0 || !zfsvfs->z_utf8);
3520                 if (cmp == 0) {
3521                         /*
3522                          * POSIX: "If the old argument and the new argument
3523                          * both refer to links to the same existing file,
3524                          * the rename() function shall return successfully
3525                          * and perform no other action."
3526                          */
3527                         ZFS_EXIT(zfsvfs);
3528                         return (0);
3529                 }
3530                 /*
3531                  * If the file system is case-folding, then we may
3532                  * have some more checking to do.  A case-folding file
3533                  * system is either supporting mixed case sensitivity
3534                  * access or is completely case-insensitive.  Note
3535                  * that the file system is always case preserving.
3536                  *
3537                  * In mixed sensitivity mode case sensitive behavior
3538                  * is the default.  FIGNORECASE must be used to
3539                  * explicitly request case insensitive behavior.
3540                  *
3541                  * If the source and target names provided differ only
3542                  * by case (e.g., a request to rename 'tim' to 'Tim'),
3543                  * we will treat this as a special case in the
3544                  * case-insensitive mode: as long as the source name
3545                  * is an exact match, we will allow this to proceed as
3546                  * a name-change request.
3547                  */
3548                 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
3549                     (zfsvfs->z_case == ZFS_CASE_MIXED &&
3550                     flags & FIGNORECASE)) &&
3551                     u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
3552                     &error) == 0) {
3553                         /*
3554                          * case preserving rename request, require exact
3555                          * name matches
3556                          */
3557                         zflg |= ZCIEXACT;
3558                         zflg &= ~ZCILOOK;
3559                 }
3560         }
3561 
3562         /*
3563          * If the source and destination directories are the same, we should
3564          * grab the z_name_lock of that directory only once.
3565          */
3566         if (sdzp == tdzp) {
3567                 zflg |= ZHAVELOCK;
3568                 rw_enter(&sdzp->z_name_lock, RW_READER);
3569         }
3570 
3571         if (cmp < 0) {
3572                 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
3573                     ZEXISTS | zflg, NULL, NULL);
3574                 terr = zfs_dirent_lock(&tdl,
3575                     tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
3576         } else {
3577                 terr = zfs_dirent_lock(&tdl,
3578                     tdzp, tnm, &tzp, zflg, NULL, NULL);
3579                 serr = zfs_dirent_lock(&sdl,
3580                     sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
3581                     NULL, NULL);
3582         }
3583 
3584         if (serr) {
3585                 /*
3586                  * Source entry invalid or not there.
3587                  */
3588                 if (!terr) {
3589                         zfs_dirent_unlock(tdl);
3590                         if (tzp)
3591                                 VN_RELE(ZTOV(tzp));
3592                 }
3593 
3594                 if (sdzp == tdzp)
3595                         rw_exit(&sdzp->z_name_lock);
3596 
3597                 if (strcmp(snm, "..") == 0)
3598                         serr = SET_ERROR(EINVAL);
3599                 ZFS_EXIT(zfsvfs);
3600                 return (serr);
3601         }
3602         if (terr) {
3603                 zfs_dirent_unlock(sdl);
3604                 VN_RELE(ZTOV(szp));
3605 
3606                 if (sdzp == tdzp)
3607                         rw_exit(&sdzp->z_name_lock);
3608 
3609                 if (strcmp(tnm, "..") == 0)
3610                         terr = SET_ERROR(EINVAL);
3611                 ZFS_EXIT(zfsvfs);
3612                 return (terr);
3613         }
3614 
3615         /*
3616          * Must have write access at the source to remove the old entry
3617          * and write access at the target to create the new entry.
3618          * Note that if target and source are the same, this can be
3619          * done in a single check.
3620          */
3621 
3622         if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr))
3623                 goto out;
3624 
3625         if (ZTOV(szp)->v_type == VDIR) {
3626                 /*
3627                  * Check to make sure rename is valid.
3628                  * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
3629                  */
3630                 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl))
3631                         goto out;
3632         }
3633 
3634         /*
3635          * Does target exist?
3636          */
3637         if (tzp) {
3638                 /*
3639                  * Source and target must be the same type.
3640                  */
3641                 if (ZTOV(szp)->v_type == VDIR) {
3642                         if (ZTOV(tzp)->v_type != VDIR) {
3643                                 error = SET_ERROR(ENOTDIR);
3644                                 goto out;
3645                         }
3646                 } else {
3647                         if (ZTOV(tzp)->v_type == VDIR) {
3648                                 error = SET_ERROR(EISDIR);
3649                                 goto out;
3650                         }
3651                 }
3652                 /*
3653                  * POSIX dictates that when the source and target
3654                  * entries refer to the same file object, rename
3655                  * must do nothing and exit without error.
3656                  */
3657                 if (szp->z_id == tzp->z_id) {
3658                         error = 0;
3659                         goto out;
3660                 }
3661         }
3662 
3663         vnevent_pre_rename_src(ZTOV(szp), sdvp, snm, ct);
3664         if (tzp)
3665                 vnevent_pre_rename_dest(ZTOV(tzp), tdvp, tnm, ct);
3666 
3667         /*
3668          * notify the target directory if it is not the same
3669          * as source directory.
3670          */
3671         if (tdvp != sdvp) {
3672                 vnevent_pre_rename_dest_dir(tdvp, ZTOV(szp), tnm, ct);
3673         }
3674 
3675         tx = dmu_tx_create(zfsvfs->z_os);
3676         dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3677         dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
3678         dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
3679         dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
3680         if (sdzp != tdzp) {
3681                 dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
3682                 zfs_sa_upgrade_txholds(tx, tdzp);
3683         }
3684         if (tzp) {
3685                 dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
3686                 zfs_sa_upgrade_txholds(tx, tzp);
3687         }
3688 
3689         zfs_sa_upgrade_txholds(tx, szp);
3690         dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3691         error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
3692         if (error) {
3693                 if (zl != NULL)
3694                         zfs_rename_unlock(&zl);
3695                 zfs_dirent_unlock(sdl);
3696                 zfs_dirent_unlock(tdl);
3697 
3698                 if (sdzp == tdzp)
3699                         rw_exit(&sdzp->z_name_lock);
3700 
3701                 VN_RELE(ZTOV(szp));
3702                 if (tzp)
3703                         VN_RELE(ZTOV(tzp));
3704                 if (error == ERESTART) {
3705                         waited = B_TRUE;
3706                         dmu_tx_wait(tx);
3707                         dmu_tx_abort(tx);
3708                         goto top;
3709                 }
3710                 dmu_tx_abort(tx);
3711                 ZFS_EXIT(zfsvfs);
3712                 return (error);
3713         }
3714 
3715         if (tzp)        /* Attempt to remove the existing target */
3716                 error = rm_err = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
3717 
3718         if (error == 0) {
3719                 error = zfs_link_create(tdl, szp, tx, ZRENAMING);
3720                 if (error == 0) {
3721                         szp->z_pflags |= ZFS_AV_MODIFIED;
3722 
3723                         error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
3724                             (void *)&szp->z_pflags, sizeof (uint64_t), tx);
3725                         ASSERT0(error);
3726 
3727                         error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
3728                         if (error == 0) {
3729                                 zfs_log_rename(zilog, tx, TX_RENAME |
3730                                     (flags & FIGNORECASE ? TX_CI : 0), sdzp,
3731                                     sdl->dl_name, tdzp, tdl->dl_name, szp);
3732 
3733                                 /*
3734                                  * Update path information for the target vnode
3735                                  */
3736                                 vn_renamepath(tdvp, ZTOV(szp), tnm,
3737                                     strlen(tnm));
3738                         } else {
3739                                 /*
3740                                  * At this point, we have successfully created
3741                                  * the target name, but have failed to remove
3742                                  * the source name.  Since the create was done
3743                                  * with the ZRENAMING flag, there are
3744                                  * complications; for one, the link count is
3745                                  * wrong.  The easiest way to deal with this
3746                                  * is to remove the newly created target, and
3747                                  * return the original error.  This must
3748                                  * succeed; fortunately, it is very unlikely to
3749                                  * fail, since we just created it.
3750                                  */
3751                                 VERIFY3U(zfs_link_destroy(tdl, szp, tx,
3752                                     ZRENAMING, NULL), ==, 0);
3753                         }
3754                 }
3755         }
3756 
3757         dmu_tx_commit(tx);
3758 
3759         if (tzp && rm_err == 0)
3760                 vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct);
3761 
3762         if (error == 0) {
3763                 vnevent_rename_src(ZTOV(szp), sdvp, snm, ct);
3764                 /* notify the target dir if it is not the same as source dir */
3765                 if (tdvp != sdvp)
3766                         vnevent_rename_dest_dir(tdvp, ct);
3767         }
3768 out:
3769         if (zl != NULL)
3770                 zfs_rename_unlock(&zl);
3771 
3772         zfs_dirent_unlock(sdl);
3773         zfs_dirent_unlock(tdl);
3774 
3775         if (sdzp == tdzp)
3776                 rw_exit(&sdzp->z_name_lock);
3777 
3778 
3779         VN_RELE(ZTOV(szp));
3780         if (tzp)
3781                 VN_RELE(ZTOV(tzp));
3782 
3783         if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3784                 zil_commit(zilog, 0);
3785 
3786         ZFS_EXIT(zfsvfs);
3787         return (error);
3788 }
3789 
3790 /*
3791  * Insert the indicated symbolic reference entry into the directory.
3792  *
3793  *      IN:     dvp     - Directory to contain new symbolic link.
3794  *              link    - Name for new symlink entry.
3795  *              vap     - Attributes of new entry.
3796  *              cr      - credentials of caller.
3797  *              ct      - caller context
3798  *              flags   - case flags
3799  *
3800  *      RETURN: 0 on success, error code on failure.
3801  *
3802  * Timestamps:
3803  *      dvp - ctime|mtime updated
3804  */
3805 /*ARGSUSED*/
3806 static int
3807 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr,
3808     caller_context_t *ct, int flags)
3809 {
3810         znode_t         *zp, *dzp = VTOZ(dvp);
3811         zfs_dirlock_t   *dl;
3812         dmu_tx_t        *tx;
3813         zfsvfs_t        *zfsvfs = dzp->z_zfsvfs;
3814         zilog_t         *zilog;
3815         uint64_t        len = strlen(link);
3816         int             error;
3817         int             zflg = ZNEW;
3818         zfs_acl_ids_t   acl_ids;
3819         boolean_t       fuid_dirtied;
3820         uint64_t        txtype = TX_SYMLINK;
3821         boolean_t       waited = B_FALSE;
3822 
3823         ASSERT(vap->va_type == VLNK);
3824 
3825         ZFS_ENTER(zfsvfs);
3826         ZFS_VERIFY_ZP(dzp);
3827         zilog = zfsvfs->z_log;
3828 
3829         if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
3830             NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3831                 ZFS_EXIT(zfsvfs);
3832                 return (SET_ERROR(EILSEQ));
3833         }
3834         if (flags & FIGNORECASE)
3835                 zflg |= ZCILOOK;
3836 
3837         if (len > MAXPATHLEN) {
3838                 ZFS_EXIT(zfsvfs);
3839                 return (SET_ERROR(ENAMETOOLONG));
3840         }
3841 
3842         if ((error = zfs_acl_ids_create(dzp, 0,
3843             vap, cr, NULL, &acl_ids)) != 0) {
3844                 ZFS_EXIT(zfsvfs);
3845                 return (error);
3846         }
3847 top:
3848         /*
3849          * Attempt to lock directory; fail if entry already exists.
3850          */
3851         error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
3852         if (error) {
3853                 zfs_acl_ids_free(&acl_ids);
3854                 ZFS_EXIT(zfsvfs);
3855                 return (error);
3856         }
3857 
3858         if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
3859                 zfs_acl_ids_free(&acl_ids);
3860                 zfs_dirent_unlock(dl);
3861                 ZFS_EXIT(zfsvfs);
3862                 return (error);
3863         }
3864 
3865         if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
3866                 zfs_acl_ids_free(&acl_ids);
3867                 zfs_dirent_unlock(dl);
3868                 ZFS_EXIT(zfsvfs);
3869                 return (SET_ERROR(EDQUOT));
3870         }
3871         tx = dmu_tx_create(zfsvfs->z_os);
3872         fuid_dirtied = zfsvfs->z_fuid_dirty;
3873         dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
3874         dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3875         dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
3876             ZFS_SA_BASE_ATTR_SIZE + len);
3877         dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
3878         if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3879                 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
3880                     acl_ids.z_aclp->z_acl_bytes);
3881         }
3882         if (fuid_dirtied)
3883                 zfs_fuid_txhold(zfsvfs, tx);
3884         error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
3885         if (error) {
3886                 zfs_dirent_unlock(dl);
3887                 if (error == ERESTART) {
3888                         waited = B_TRUE;
3889                         dmu_tx_wait(tx);
3890                         dmu_tx_abort(tx);
3891                         goto top;
3892                 }
3893                 zfs_acl_ids_free(&acl_ids);
3894                 dmu_tx_abort(tx);
3895                 ZFS_EXIT(zfsvfs);
3896                 return (error);
3897         }
3898 
3899         /*
3900          * Create a new object for the symlink.
3901          * for version 4 ZPL datsets the symlink will be an SA attribute
3902          */
3903         zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
3904 
3905         if (fuid_dirtied)
3906                 zfs_fuid_sync(zfsvfs, tx);
3907 
3908         mutex_enter(&zp->z_lock);
3909         if (zp->z_is_sa)
3910                 error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
3911                     link, len, tx);
3912         else
3913                 zfs_sa_symlink(zp, link, len, tx);
3914         mutex_exit(&zp->z_lock);
3915 
3916         zp->z_size = len;
3917         (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
3918             &zp->z_size, sizeof (zp->z_size), tx);
3919         /*
3920          * Insert the new object into the directory.
3921          */
3922         (void) zfs_link_create(dl, zp, tx, ZNEW);
3923 
3924         if (flags & FIGNORECASE)
3925                 txtype |= TX_CI;
3926         zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
3927 
3928         zfs_acl_ids_free(&acl_ids);
3929 
3930         dmu_tx_commit(tx);
3931 
3932         zfs_dirent_unlock(dl);
3933 
3934         VN_RELE(ZTOV(zp));
3935 
3936         if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3937                 zil_commit(zilog, 0);
3938 
3939         ZFS_EXIT(zfsvfs);
3940         return (error);
3941 }
3942 
3943 /*
3944  * Return, in the buffer contained in the provided uio structure,
3945  * the symbolic path referred to by vp.
3946  *
3947  *      IN:     vp      - vnode of symbolic link.
3948  *              uio     - structure to contain the link path.
3949  *              cr      - credentials of caller.
3950  *              ct      - caller context
3951  *
3952  *      OUT:    uio     - structure containing the link path.
3953  *
3954  *      RETURN: 0 on success, error code on failure.
3955  *
3956  * Timestamps:
3957  *      vp - atime updated
3958  */
3959 /* ARGSUSED */
3960 static int
3961 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct)
3962 {
3963         znode_t         *zp = VTOZ(vp);
3964         zfsvfs_t        *zfsvfs = zp->z_zfsvfs;
3965         int             error;
3966 
3967         ZFS_ENTER(zfsvfs);
3968         ZFS_VERIFY_ZP(zp);
3969 
3970         mutex_enter(&zp->z_lock);
3971         if (zp->z_is_sa)
3972                 error = sa_lookup_uio(zp->z_sa_hdl,
3973                     SA_ZPL_SYMLINK(zfsvfs), uio);
3974         else
3975                 error = zfs_sa_readlink(zp, uio);
3976         mutex_exit(&zp->z_lock);
3977 
3978         ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
3979 
3980         ZFS_EXIT(zfsvfs);
3981         return (error);
3982 }
3983 
3984 /*
3985  * Insert a new entry into directory tdvp referencing svp.
3986  *
3987  *      IN:     tdvp    - Directory to contain new entry.
3988  *              svp     - vnode of new entry.
3989  *              name    - name of new entry.
3990  *              cr      - credentials of caller.
3991  *              ct      - caller context
3992  *
3993  *      RETURN: 0 on success, error code on failure.
3994  *
3995  * Timestamps:
3996  *      tdvp - ctime|mtime updated
3997  *       svp - ctime updated
3998  */
3999 /* ARGSUSED */
4000 static int
4001 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr,
4002     caller_context_t *ct, int flags)
4003 {
4004         znode_t         *dzp = VTOZ(tdvp);
4005         znode_t         *tzp, *szp;
4006         zfsvfs_t        *zfsvfs = dzp->z_zfsvfs;
4007         zilog_t         *zilog;
4008         zfs_dirlock_t   *dl;
4009         dmu_tx_t        *tx;
4010         vnode_t         *realvp;
4011         int             error;
4012         int             zf = ZNEW;
4013         uint64_t        parent;
4014         uid_t           owner;
4015         boolean_t       waited = B_FALSE;
4016 
4017         ASSERT(tdvp->v_type == VDIR);
4018 
4019         ZFS_ENTER(zfsvfs);
4020         ZFS_VERIFY_ZP(dzp);
4021         zilog = zfsvfs->z_log;
4022 
4023         if (VOP_REALVP(svp, &realvp, ct) == 0)
4024                 svp = realvp;
4025 
4026         /*
4027          * POSIX dictates that we return EPERM here.
4028          * Better choices include ENOTSUP or EISDIR.
4029          */
4030         if (svp->v_type == VDIR) {
4031                 ZFS_EXIT(zfsvfs);
4032                 return (SET_ERROR(EPERM));
4033         }
4034 
4035         szp = VTOZ(svp);
4036         ZFS_VERIFY_ZP(szp);
4037 
4038         /*
4039          * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
4040          * ctldir appear to have the same v_vfsp.
4041          */
4042         if (szp->z_zfsvfs != zfsvfs || zfsctl_is_node(svp)) {
4043                 ZFS_EXIT(zfsvfs);
4044                 return (SET_ERROR(EXDEV));
4045         }
4046 
4047         /* Prevent links to .zfs/shares files */
4048 
4049         if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
4050             &parent, sizeof (uint64_t))) != 0) {
4051                 ZFS_EXIT(zfsvfs);
4052                 return (error);
4053         }
4054         if (parent == zfsvfs->z_shares_dir) {
4055                 ZFS_EXIT(zfsvfs);
4056                 return (SET_ERROR(EPERM));
4057         }
4058 
4059         if (zfsvfs->z_utf8 && u8_validate(name,
4060             strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
4061                 ZFS_EXIT(zfsvfs);
4062                 return (SET_ERROR(EILSEQ));
4063         }
4064         if (flags & FIGNORECASE)
4065                 zf |= ZCILOOK;
4066 
4067         /*
4068          * We do not support links between attributes and non-attributes
4069          * because of the potential security risk of creating links
4070          * into "normal" file space in order to circumvent restrictions
4071          * imposed in attribute space.
4072          */
4073         if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) {
4074                 ZFS_EXIT(zfsvfs);
4075                 return (SET_ERROR(EINVAL));
4076         }
4077 
4078 
4079         owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER);
4080         if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) {
4081                 ZFS_EXIT(zfsvfs);
4082                 return (SET_ERROR(EPERM));
4083         }
4084 
4085         if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
4086                 ZFS_EXIT(zfsvfs);
4087                 return (error);
4088         }
4089 
4090 top:
4091         /*
4092          * Attempt to lock directory; fail if entry already exists.
4093          */
4094         error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL);
4095         if (error) {
4096                 ZFS_EXIT(zfsvfs);
4097                 return (error);
4098         }
4099 
4100         tx = dmu_tx_create(zfsvfs->z_os);
4101         dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
4102         dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
4103         zfs_sa_upgrade_txholds(tx, szp);
4104         zfs_sa_upgrade_txholds(tx, dzp);
4105         error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
4106         if (error) {
4107                 zfs_dirent_unlock(dl);
4108                 if (error == ERESTART) {
4109                         waited = B_TRUE;
4110                         dmu_tx_wait(tx);
4111                         dmu_tx_abort(tx);
4112                         goto top;
4113                 }
4114                 dmu_tx_abort(tx);
4115                 ZFS_EXIT(zfsvfs);
4116                 return (error);
4117         }
4118 
4119         error = zfs_link_create(dl, szp, tx, 0);
4120 
4121         if (error == 0) {
4122                 uint64_t txtype = TX_LINK;
4123                 if (flags & FIGNORECASE)
4124                         txtype |= TX_CI;
4125                 zfs_log_link(zilog, tx, txtype, dzp, szp, name);
4126         }
4127 
4128         dmu_tx_commit(tx);
4129 
4130         zfs_dirent_unlock(dl);
4131 
4132         if (error == 0) {
4133                 vnevent_link(svp, ct);
4134         }
4135 
4136         if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4137                 zil_commit(zilog, 0);
4138 
4139         ZFS_EXIT(zfsvfs);
4140         return (error);
4141 }
4142 
4143 /*
4144  * zfs_null_putapage() is used when the file system has been force
4145  * unmounted. It just drops the pages.
4146  */
4147 /* ARGSUSED */
4148 static int
4149 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4150     size_t *lenp, int flags, cred_t *cr)
4151 {
4152         pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR);
4153         return (0);
4154 }
4155 
4156 /*
4157  * Push a page out to disk, klustering if possible.
4158  *
4159  *      IN:     vp      - file to push page to.
4160  *              pp      - page to push.
4161  *              flags   - additional flags.
4162  *              cr      - credentials of caller.
4163  *
4164  *      OUT:    offp    - start of range pushed.
4165  *              lenp    - len of range pushed.
4166  *
4167  *      RETURN: 0 on success, error code on failure.
4168  *
4169  * NOTE: callers must have locked the page to be pushed.  On
4170  * exit, the page (and all other pages in the kluster) must be
4171  * unlocked.
4172  */
4173 /* ARGSUSED */
4174 static int
4175 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4176     size_t *lenp, int flags, cred_t *cr)
4177 {
4178         znode_t         *zp = VTOZ(vp);
4179         zfsvfs_t        *zfsvfs = zp->z_zfsvfs;
4180         dmu_tx_t        *tx;
4181         u_offset_t      off, koff;
4182         size_t          len, klen;
4183         int             err;
4184 
4185         off = pp->p_offset;
4186         len = PAGESIZE;
4187         /*
4188          * If our blocksize is bigger than the page size, try to kluster
4189          * multiple pages so that we write a full block (thus avoiding
4190          * a read-modify-write).
4191          */
4192         if (off < zp->z_size && zp->z_blksz > PAGESIZE) {
4193                 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE);
4194                 koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0;
4195                 ASSERT(koff <= zp->z_size);
4196                 if (koff + klen > zp->z_size)
4197                         klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE);
4198                 pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags);
4199         }
4200         ASSERT3U(btop(len), ==, btopr(len));
4201 
4202         /*
4203          * Can't push pages past end-of-file.
4204          */
4205         if (off >= zp->z_size) {
4206                 /* ignore all pages */
4207                 err = 0;
4208                 goto out;
4209         } else if (off + len > zp->z_size) {
4210                 int npages = btopr(zp->z_size - off);
4211                 page_t *trunc;
4212 
4213                 page_list_break(&pp, &trunc, npages);
4214                 /* ignore pages past end of file */
4215                 if (trunc)
4216                         pvn_write_done(trunc, flags);
4217                 len = zp->z_size - off;
4218         }
4219 
4220         if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
4221             zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
4222                 err = SET_ERROR(EDQUOT);
4223                 goto out;
4224         }
4225         tx = dmu_tx_create(zfsvfs->z_os);
4226         dmu_tx_hold_write(tx, zp->z_id, off, len);
4227 
4228         dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4229         zfs_sa_upgrade_txholds(tx, zp);
4230         err = dmu_tx_assign(tx, TXG_WAIT);
4231         if (err != 0) {
4232                 dmu_tx_abort(tx);
4233                 goto out;
4234         }
4235 
4236         if (zp->z_blksz <= PAGESIZE) {
4237                 caddr_t va = zfs_map_page(pp, S_READ);
4238                 ASSERT3U(len, <=, PAGESIZE);
4239                 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx);
4240                 zfs_unmap_page(pp, va);
4241         } else {
4242                 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx);
4243         }
4244 
4245         if (err == 0) {
4246                 uint64_t mtime[2], ctime[2];
4247                 sa_bulk_attr_t bulk[3];
4248                 int count = 0;
4249 
4250                 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
4251                     &mtime, 16);
4252                 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
4253                     &ctime, 16);
4254                 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
4255                     &zp->z_pflags, 8);
4256                 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
4257                     B_TRUE);
4258                 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0);
4259         }
4260         dmu_tx_commit(tx);
4261 
4262 out:
4263         pvn_write_done(pp, (err ? B_ERROR : 0) | flags);
4264         if (offp)
4265                 *offp = off;
4266         if (lenp)
4267                 *lenp = len;
4268 
4269         return (err);
4270 }
4271 
4272 /*
4273  * Copy the portion of the file indicated from pages into the file.
4274  * The pages are stored in a page list attached to the files vnode.
4275  *
4276  *      IN:     vp      - vnode of file to push page data to.
4277  *              off     - position in file to put data.
4278  *              len     - amount of data to write.
4279  *              flags   - flags to control the operation.
4280  *              cr      - credentials of caller.
4281  *              ct      - caller context.
4282  *
4283  *      RETURN: 0 on success, error code on failure.
4284  *
4285  * Timestamps:
4286  *      vp - ctime|mtime updated
4287  */
4288 /*ARGSUSED*/
4289 static int
4290 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
4291     caller_context_t *ct)
4292 {
4293         znode_t         *zp = VTOZ(vp);
4294         zfsvfs_t        *zfsvfs = zp->z_zfsvfs;
4295         page_t          *pp;
4296         size_t          io_len;
4297         u_offset_t      io_off;
4298         uint_t          blksz;
4299         rl_t            *rl;
4300         int             error = 0;
4301 
4302         ZFS_ENTER(zfsvfs);
4303         ZFS_VERIFY_ZP(zp);
4304 
4305         /*
4306          * There's nothing to do if no data is cached.
4307          */
4308         if (!vn_has_cached_data(vp)) {
4309                 ZFS_EXIT(zfsvfs);
4310                 return (0);
4311         }
4312 
4313         /*
4314          * Align this request to the file block size in case we kluster.
4315          * XXX - this can result in pretty aggresive locking, which can
4316          * impact simultanious read/write access.  One option might be
4317          * to break up long requests (len == 0) into block-by-block
4318          * operations to get narrower locking.
4319          */
4320         blksz = zp->z_blksz;
4321         if (ISP2(blksz))
4322                 io_off = P2ALIGN_TYPED(off, blksz, u_offset_t);
4323         else
4324                 io_off = 0;
4325         if (len > 0 && ISP2(blksz))
4326                 io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t);
4327         else
4328                 io_len = 0;
4329 
4330         if (io_len == 0) {
4331                 /*
4332                  * Search the entire vp list for pages >= io_off.
4333                  */
4334                 rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER);
4335                 error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr);
4336                 goto out;
4337         }
4338         rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER);
4339 
4340         if (off > zp->z_size) {
4341                 /* past end of file */
4342                 zfs_range_unlock(rl);
4343                 ZFS_EXIT(zfsvfs);
4344                 return (0);
4345         }
4346 
4347         len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off);
4348 
4349         for (off = io_off; io_off < off + len; io_off += io_len) {
4350                 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
4351                         pp = page_lookup(vp, io_off,
4352                             (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED);
4353                 } else {
4354                         pp = page_lookup_nowait(vp, io_off,
4355                             (flags & B_FREE) ? SE_EXCL : SE_SHARED);
4356                 }
4357 
4358                 if (pp != NULL && pvn_getdirty(pp, flags)) {
4359                         int err;
4360 
4361                         /*
4362                          * Found a dirty page to push
4363                          */
4364                         err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr);
4365                         if (err)
4366                                 error = err;
4367                 } else {
4368                         io_len = PAGESIZE;
4369                 }
4370         }
4371 out:
4372         zfs_range_unlock(rl);
4373         if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4374                 zil_commit(zfsvfs->z_log, zp->z_id);
4375         ZFS_EXIT(zfsvfs);
4376         return (error);
4377 }
4378 
4379 /*ARGSUSED*/
4380 void
4381 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
4382 {
4383         znode_t *zp = VTOZ(vp);
4384         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4385         int error;
4386 
4387         rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
4388         if (zp->z_sa_hdl == NULL) {
4389                 /*
4390                  * The fs has been unmounted, or we did a
4391                  * suspend/resume and this file no longer exists.
4392                  */
4393                 if (vn_has_cached_data(vp)) {
4394                         (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage,
4395                             B_INVAL, cr);
4396                 }
4397 
4398                 mutex_enter(&zp->z_lock);
4399                 mutex_enter(&vp->v_lock);
4400                 ASSERT(vp->v_count == 1);
4401                 vp->v_count = 0;
4402                 mutex_exit(&vp->v_lock);
4403                 mutex_exit(&zp->z_lock);
4404                 rw_exit(&zfsvfs->z_teardown_inactive_lock);
4405                 zfs_znode_free(zp);
4406                 return;
4407         }
4408 
4409         /*
4410          * Attempt to push any data in the page cache.  If this fails
4411          * we will get kicked out later in zfs_zinactive().
4412          */
4413         if (vn_has_cached_data(vp)) {
4414                 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC,
4415                     cr);
4416         }
4417 
4418         if (zp->z_atime_dirty && zp->z_unlinked == 0) {
4419                 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
4420 
4421                 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4422                 zfs_sa_upgrade_txholds(tx, zp);
4423                 error = dmu_tx_assign(tx, TXG_WAIT);
4424                 if (error) {
4425                         dmu_tx_abort(tx);
4426                 } else {
4427                         mutex_enter(&zp->z_lock);
4428                         (void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
4429                             (void *)&zp->z_atime, sizeof (zp->z_atime), tx);
4430                         zp->z_atime_dirty = 0;
4431                         mutex_exit(&zp->z_lock);
4432                         dmu_tx_commit(tx);
4433                 }
4434         }
4435 
4436         zfs_zinactive(zp);
4437         rw_exit(&zfsvfs->z_teardown_inactive_lock);
4438 }
4439 
4440 /*
4441  * Bounds-check the seek operation.
4442  *
4443  *      IN:     vp      - vnode seeking within
4444  *              ooff    - old file offset
4445  *              noffp   - pointer to new file offset
4446  *              ct      - caller context
4447  *
4448  *      RETURN: 0 on success, EINVAL if new offset invalid.
4449  */
4450 /* ARGSUSED */
4451 static int
4452 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp,
4453     caller_context_t *ct)
4454 {
4455         if (vp->v_type == VDIR)
4456                 return (0);
4457         return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
4458 }
4459 
4460 /*
4461  * Pre-filter the generic locking function to trap attempts to place
4462  * a mandatory lock on a memory mapped file.
4463  */
4464 static int
4465 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset,
4466     flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct)
4467 {
4468         znode_t *zp = VTOZ(vp);
4469         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4470 
4471         ZFS_ENTER(zfsvfs);
4472         ZFS_VERIFY_ZP(zp);
4473 
4474         /*
4475          * We are following the UFS semantics with respect to mapcnt
4476          * here: If we see that the file is mapped already, then we will
4477          * return an error, but we don't worry about races between this
4478          * function and zfs_map().
4479          */
4480         if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) {
4481                 ZFS_EXIT(zfsvfs);
4482                 return (SET_ERROR(EAGAIN));
4483         }
4484         ZFS_EXIT(zfsvfs);
4485         return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
4486 }
4487 
4488 /*
4489  * If we can't find a page in the cache, we will create a new page
4490  * and fill it with file data.  For efficiency, we may try to fill
4491  * multiple pages at once (klustering) to fill up the supplied page
4492  * list.  Note that the pages to be filled are held with an exclusive
4493  * lock to prevent access by other threads while they are being filled.
4494  */
4495 static int
4496 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg,
4497     caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw)
4498 {
4499         znode_t *zp = VTOZ(vp);
4500         page_t *pp, *cur_pp;
4501         objset_t *os = zp->z_zfsvfs->z_os;
4502         u_offset_t io_off, total;
4503         size_t io_len;
4504         int err;
4505 
4506         if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) {
4507                 /*
4508                  * We only have a single page, don't bother klustering
4509                  */
4510                 io_off = off;
4511                 io_len = PAGESIZE;
4512                 pp = page_create_va(vp, io_off, io_len,
4513                     PG_EXCL | PG_WAIT, seg, addr);
4514         } else {
4515                 /*
4516                  * Try to find enough pages to fill the page list
4517                  */
4518                 pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
4519                     &io_len, off, plsz, 0);
4520         }
4521         if (pp == NULL) {
4522                 /*
4523                  * The page already exists, nothing to do here.
4524                  */
4525                 *pl = NULL;
4526                 return (0);
4527         }
4528 
4529         /*
4530          * Fill the pages in the kluster.
4531          */
4532         cur_pp = pp;
4533         for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
4534                 caddr_t va;
4535 
4536                 ASSERT3U(io_off, ==, cur_pp->p_offset);
4537                 va = zfs_map_page(cur_pp, S_WRITE);
4538                 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va,
4539                     DMU_READ_PREFETCH);
4540                 zfs_unmap_page(cur_pp, va);
4541                 if (err) {
4542                         /* On error, toss the entire kluster */
4543                         pvn_read_done(pp, B_ERROR);
4544                         /* convert checksum errors into IO errors */
4545                         if (err == ECKSUM)
4546                                 err = SET_ERROR(EIO);
4547                         return (err);
4548                 }
4549                 cur_pp = cur_pp->p_next;
4550         }
4551 
4552         /*
4553          * Fill in the page list array from the kluster starting
4554          * from the desired offset `off'.
4555          * NOTE: the page list will always be null terminated.
4556          */
4557         pvn_plist_init(pp, pl, plsz, off, io_len, rw);
4558         ASSERT(pl == NULL || (*pl)->p_offset == off);
4559 
4560         return (0);
4561 }
4562 
4563 /*
4564  * Return pointers to the pages for the file region [off, off + len]
4565  * in the pl array.  If plsz is greater than len, this function may
4566  * also return page pointers from after the specified region
4567  * (i.e. the region [off, off + plsz]).  These additional pages are
4568  * only returned if they are already in the cache, or were created as
4569  * part of a klustered read.
4570  *
4571  *      IN:     vp      - vnode of file to get data from.
4572  *              off     - position in file to get data from.
4573  *              len     - amount of data to retrieve.
4574  *              plsz    - length of provided page list.
4575  *              seg     - segment to obtain pages for.
4576  *              addr    - virtual address of fault.
4577  *              rw      - mode of created pages.
4578  *              cr      - credentials of caller.
4579  *              ct      - caller context.
4580  *
4581  *      OUT:    protp   - protection mode of created pages.
4582  *              pl      - list of pages created.
4583  *
4584  *      RETURN: 0 on success, error code on failure.
4585  *
4586  * Timestamps:
4587  *      vp - atime updated
4588  */
4589 /* ARGSUSED */
4590 static int
4591 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
4592     page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
4593     enum seg_rw rw, cred_t *cr, caller_context_t *ct)
4594 {
4595         znode_t         *zp = VTOZ(vp);
4596         zfsvfs_t        *zfsvfs = zp->z_zfsvfs;
4597         page_t          **pl0 = pl;
4598         int             err = 0;
4599 
4600         /* we do our own caching, faultahead is unnecessary */
4601         if (pl == NULL)
4602                 return (0);
4603         else if (len > plsz)
4604                 len = plsz;
4605         else
4606                 len = P2ROUNDUP(len, PAGESIZE);
4607         ASSERT(plsz >= len);
4608 
4609         ZFS_ENTER(zfsvfs);
4610         ZFS_VERIFY_ZP(zp);
4611 
4612         if (protp)
4613                 *protp = PROT_ALL;
4614 
4615         /*
4616          * Loop through the requested range [off, off + len) looking
4617          * for pages.  If we don't find a page, we will need to create
4618          * a new page and fill it with data from the file.
4619          */
4620         while (len > 0) {
4621                 if (*pl = page_lookup(vp, off, SE_SHARED))
4622                         *(pl+1) = NULL;
4623                 else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw))
4624                         goto out;
4625                 while (*pl) {
4626                         ASSERT3U((*pl)->p_offset, ==, off);
4627                         off += PAGESIZE;
4628                         addr += PAGESIZE;
4629                         if (len > 0) {
4630                                 ASSERT3U(len, >=, PAGESIZE);
4631                                 len -= PAGESIZE;
4632                         }
4633                         ASSERT3U(plsz, >=, PAGESIZE);
4634                         plsz -= PAGESIZE;
4635                         pl++;
4636                 }
4637         }
4638 
4639         /*
4640          * Fill out the page array with any pages already in the cache.
4641          */
4642         while (plsz > 0 &&
4643             (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) {
4644                         off += PAGESIZE;
4645                         plsz -= PAGESIZE;
4646         }
4647 out:
4648         if (err) {
4649                 /*
4650                  * Release any pages we have previously locked.
4651                  */
4652                 while (pl > pl0)
4653                         page_unlock(*--pl);
4654         } else {
4655                 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
4656         }
4657 
4658         *pl = NULL;
4659 
4660         ZFS_EXIT(zfsvfs);
4661         return (err);
4662 }
4663 
4664 /*
4665  * Request a memory map for a section of a file.  This code interacts
4666  * with common code and the VM system as follows:
4667  *
4668  * - common code calls mmap(), which ends up in smmap_common()
4669  * - this calls VOP_MAP(), which takes you into (say) zfs
4670  * - zfs_map() calls as_map(), passing segvn_create() as the callback
4671  * - segvn_create() creates the new segment and calls VOP_ADDMAP()
4672  * - zfs_addmap() updates z_mapcnt
4673  */
4674 /*ARGSUSED*/
4675 static int
4676 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
4677     size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4678     caller_context_t *ct)
4679 {
4680         znode_t *zp = VTOZ(vp);
4681         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4682         segvn_crargs_t  vn_a;
4683         int             error;
4684 
4685         ZFS_ENTER(zfsvfs);
4686         ZFS_VERIFY_ZP(zp);
4687 
4688         if ((prot & PROT_WRITE) && (zp->z_pflags &
4689             (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) {
4690                 ZFS_EXIT(zfsvfs);
4691                 return (SET_ERROR(EPERM));
4692         }
4693 
4694         if ((prot & (PROT_READ | PROT_EXEC)) &&
4695             (zp->z_pflags & ZFS_AV_QUARANTINED)) {
4696                 ZFS_EXIT(zfsvfs);
4697                 return (SET_ERROR(EACCES));
4698         }
4699 
4700         if (vp->v_flag & VNOMAP) {
4701                 ZFS_EXIT(zfsvfs);
4702                 return (SET_ERROR(ENOSYS));
4703         }
4704 
4705         if (off < 0 || len > MAXOFFSET_T - off) {
4706                 ZFS_EXIT(zfsvfs);
4707                 return (SET_ERROR(ENXIO));
4708         }
4709 
4710         if (vp->v_type != VREG) {
4711                 ZFS_EXIT(zfsvfs);
4712                 return (SET_ERROR(ENODEV));
4713         }
4714 
4715         /*
4716          * If file is locked, disallow mapping.
4717          */
4718         if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) {
4719                 ZFS_EXIT(zfsvfs);
4720                 return (SET_ERROR(EAGAIN));
4721         }
4722 
4723         as_rangelock(as);
4724         error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
4725         if (error != 0) {
4726                 as_rangeunlock(as);
4727                 ZFS_EXIT(zfsvfs);
4728                 return (error);
4729         }
4730 
4731         vn_a.vp = vp;
4732         vn_a.offset = (u_offset_t)off;
4733         vn_a.type = flags & MAP_TYPE;
4734         vn_a.prot = prot;
4735         vn_a.maxprot = maxprot;
4736         vn_a.cred = cr;
4737         vn_a.amp = NULL;
4738         vn_a.flags = flags & ~MAP_TYPE;
4739         vn_a.szc = 0;
4740         vn_a.lgrp_mem_policy_flags = 0;
4741 
4742         error = as_map(as, *addrp, len, segvn_create, &vn_a);
4743 
4744         as_rangeunlock(as);
4745         ZFS_EXIT(zfsvfs);
4746         return (error);
4747 }
4748 
4749 /* ARGSUSED */
4750 static int
4751 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4752     size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4753     caller_context_t *ct)
4754 {
4755         uint64_t pages = btopr(len);
4756 
4757         atomic_add_64(&VTOZ(vp)->z_mapcnt, pages);
4758         return (0);
4759 }
4760 
4761 /*
4762  * The reason we push dirty pages as part of zfs_delmap() is so that we get a
4763  * more accurate mtime for the associated file.  Since we don't have a way of
4764  * detecting when the data was actually modified, we have to resort to
4765  * heuristics.  If an explicit msync() is done, then we mark the mtime when the
4766  * last page is pushed.  The problem occurs when the msync() call is omitted,
4767  * which by far the most common case:
4768  *
4769  *      open()
4770  *      mmap()
4771  *      <modify memory>
4772  *      munmap()
4773  *      close()
4774  *      <time lapse>
4775  *      putpage() via fsflush
4776  *
4777  * If we wait until fsflush to come along, we can have a modification time that
4778  * is some arbitrary point in the future.  In order to prevent this in the
4779  * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is
4780  * torn down.
4781  */
4782 /* ARGSUSED */
4783 static int
4784 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4785     size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
4786     caller_context_t *ct)
4787 {
4788         uint64_t pages = btopr(len);
4789 
4790         ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages);
4791         atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages);
4792 
4793         if ((flags & MAP_SHARED) && (prot & PROT_WRITE) &&
4794             vn_has_cached_data(vp))
4795                 (void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct);
4796 
4797         return (0);
4798 }
4799 
4800 /*
4801  * Free or allocate space in a file.  Currently, this function only
4802  * supports the `F_FREESP' command.  However, this command is somewhat
4803  * misnamed, as its functionality includes the ability to allocate as
4804  * well as free space.
4805  *
4806  *      IN:     vp      - vnode of file to free data in.
4807  *              cmd     - action to take (only F_FREESP supported).
4808  *              bfp     - section of file to free/alloc.
4809  *              flag    - current file open mode flags.
4810  *              offset  - current file offset.
4811  *              cr      - credentials of caller [UNUSED].
4812  *              ct      - caller context.
4813  *
4814  *      RETURN: 0 on success, error code on failure.
4815  *
4816  * Timestamps:
4817  *      vp - ctime|mtime updated
4818  */
4819 /* ARGSUSED */
4820 static int
4821 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag,
4822     offset_t offset, cred_t *cr, caller_context_t *ct)
4823 {
4824         znode_t         *zp = VTOZ(vp);
4825         zfsvfs_t        *zfsvfs = zp->z_zfsvfs;
4826         uint64_t        off, len;
4827         int             error;
4828 
4829         ZFS_ENTER(zfsvfs);
4830         ZFS_VERIFY_ZP(zp);
4831 
4832         if (cmd != F_FREESP) {
4833                 ZFS_EXIT(zfsvfs);
4834                 return (SET_ERROR(EINVAL));
4835         }
4836 
4837         /*
4838          * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our
4839          * callers might not be able to detect properly that we are read-only,
4840          * so check it explicitly here.
4841          */
4842         if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
4843                 ZFS_EXIT(zfsvfs);
4844                 return (SET_ERROR(EROFS));
4845         }
4846 
4847         if (error = convoff(vp, bfp, 0, offset)) {
4848                 ZFS_EXIT(zfsvfs);
4849                 return (error);
4850         }
4851 
4852         if (bfp->l_len < 0) {
4853                 ZFS_EXIT(zfsvfs);
4854                 return (SET_ERROR(EINVAL));
4855         }
4856 
4857         off = bfp->l_start;
4858         len = bfp->l_len; /* 0 means from off to end of file */
4859 
4860         error = zfs_freesp(zp, off, len, flag, TRUE);
4861 
4862         if (error == 0 && off == 0 && len == 0)
4863                 vnevent_truncate(ZTOV(zp), ct);
4864 
4865         ZFS_EXIT(zfsvfs);
4866         return (error);
4867 }
4868 
4869 /*ARGSUSED*/
4870 static int
4871 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
4872 {
4873         znode_t         *zp = VTOZ(vp);
4874         zfsvfs_t        *zfsvfs = zp->z_zfsvfs;
4875         uint32_t        gen;
4876         uint64_t        gen64;
4877         uint64_t        object = zp->z_id;
4878         zfid_short_t    *zfid;
4879         int             size, i, error;
4880 
4881         ZFS_ENTER(zfsvfs);
4882         ZFS_VERIFY_ZP(zp);
4883 
4884         if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
4885             &gen64, sizeof (uint64_t))) != 0) {
4886                 ZFS_EXIT(zfsvfs);
4887                 return (error);
4888         }
4889 
4890         gen = (uint32_t)gen64;
4891 
4892         size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN;
4893         if (fidp->fid_len < size) {
4894                 fidp->fid_len = size;
4895                 ZFS_EXIT(zfsvfs);
4896                 return (SET_ERROR(ENOSPC));
4897         }
4898 
4899         zfid = (zfid_short_t *)fidp;
4900 
4901         zfid->zf_len = size;
4902 
4903         for (i = 0; i < sizeof (zfid->zf_object); i++)
4904                 zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
4905 
4906         /* Must have a non-zero generation number to distinguish from .zfs */
4907         if (gen == 0)
4908                 gen = 1;
4909         for (i = 0; i < sizeof (zfid->zf_gen); i++)
4910                 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
4911 
4912         if (size == LONG_FID_LEN) {
4913                 uint64_t        objsetid = dmu_objset_id(zfsvfs->z_os);
4914                 zfid_long_t     *zlfid;
4915 
4916                 zlfid = (zfid_long_t *)fidp;
4917 
4918                 for (i = 0; i < sizeof (zlfid->zf_setid); i++)
4919                         zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
4920 
4921                 /* XXX - this should be the generation number for the objset */
4922                 for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
4923                         zlfid->zf_setgen[i] = 0;
4924         }
4925 
4926         ZFS_EXIT(zfsvfs);
4927         return (0);
4928 }
4929 
4930 static int
4931 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
4932     caller_context_t *ct)
4933 {
4934         znode_t         *zp, *xzp;
4935         zfsvfs_t        *zfsvfs;
4936         zfs_dirlock_t   *dl;
4937         int             error;
4938 
4939         switch (cmd) {
4940         case _PC_LINK_MAX:
4941                 *valp = ULONG_MAX;
4942                 return (0);
4943 
4944         case _PC_FILESIZEBITS:
4945                 *valp = 64;
4946                 return (0);
4947 
4948         case _PC_XATTR_EXISTS:
4949                 zp = VTOZ(vp);
4950                 zfsvfs = zp->z_zfsvfs;
4951                 ZFS_ENTER(zfsvfs);
4952                 ZFS_VERIFY_ZP(zp);
4953                 *valp = 0;
4954                 error = zfs_dirent_lock(&dl, zp, "", &xzp,
4955                     ZXATTR | ZEXISTS | ZSHARED, NULL, NULL);
4956                 if (error == 0) {
4957                         zfs_dirent_unlock(dl);
4958                         if (!zfs_dirempty(xzp))
4959                                 *valp = 1;
4960                         VN_RELE(ZTOV(xzp));
4961                 } else if (error == ENOENT) {
4962                         /*
4963                          * If there aren't extended attributes, it's the
4964                          * same as having zero of them.
4965                          */
4966                         error = 0;
4967                 }
4968                 ZFS_EXIT(zfsvfs);
4969                 return (error);
4970 
4971         case _PC_SATTR_ENABLED:
4972         case _PC_SATTR_EXISTS:
4973                 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
4974                     (vp->v_type == VREG || vp->v_type == VDIR);
4975                 return (0);
4976 
4977         case _PC_ACCESS_FILTERING:
4978                 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) &&
4979                     vp->v_type == VDIR;
4980                 return (0);
4981 
4982         case _PC_ACL_ENABLED:
4983                 *valp = _ACL_ACE_ENABLED;
4984                 return (0);
4985 
4986         case _PC_MIN_HOLE_SIZE:
4987                 *valp = (ulong_t)SPA_MINBLOCKSIZE;
4988                 return (0);
4989 
4990         case _PC_TIMESTAMP_RESOLUTION:
4991                 /* nanosecond timestamp resolution */
4992                 *valp = 1L;
4993                 return (0);
4994 
4995         default:
4996                 return (fs_pathconf(vp, cmd, valp, cr, ct));
4997         }
4998 }
4999 
5000 /*ARGSUSED*/
5001 static int
5002 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
5003     caller_context_t *ct)
5004 {
5005         znode_t *zp = VTOZ(vp);
5006         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5007         int error;
5008         boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
5009 
5010         ZFS_ENTER(zfsvfs);
5011         ZFS_VERIFY_ZP(zp);
5012         error = zfs_getacl(zp, vsecp, skipaclchk, cr);
5013         ZFS_EXIT(zfsvfs);
5014 
5015         return (error);
5016 }
5017 
5018 /*ARGSUSED*/
5019 static int
5020 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
5021     caller_context_t *ct)
5022 {
5023         znode_t *zp = VTOZ(vp);
5024         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5025         int error;
5026         boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
5027         zilog_t *zilog = zfsvfs->z_log;
5028 
5029         ZFS_ENTER(zfsvfs);
5030         ZFS_VERIFY_ZP(zp);
5031 
5032         error = zfs_setacl(zp, vsecp, skipaclchk, cr);
5033 
5034         if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
5035                 zil_commit(zilog, 0);
5036 
5037         ZFS_EXIT(zfsvfs);
5038         return (error);
5039 }
5040 
5041 /*
5042  * The smallest read we may consider to loan out an arcbuf.
5043  * This must be a power of 2.
5044  */
5045 int zcr_blksz_min = (1 << 10);    /* 1K */
5046 /*
5047  * If set to less than the file block size, allow loaning out of an
5048  * arcbuf for a partial block read.  This must be a power of 2.
5049  */
5050 int zcr_blksz_max = (1 << 17);    /* 128K */
5051 
5052 /*ARGSUSED*/
5053 static int
5054 zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr,
5055     caller_context_t *ct)
5056 {
5057         znode_t *zp = VTOZ(vp);
5058         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5059         int max_blksz = zfsvfs->z_max_blksz;
5060         uio_t *uio = &xuio->xu_uio;
5061         ssize_t size = uio->uio_resid;
5062         offset_t offset = uio->uio_loffset;
5063         int blksz;
5064         int fullblk, i;
5065         arc_buf_t *abuf;
5066         ssize_t maxsize;
5067         int preamble, postamble;
5068 
5069         if (xuio->xu_type != UIOTYPE_ZEROCOPY)
5070                 return (SET_ERROR(EINVAL));
5071 
5072         ZFS_ENTER(zfsvfs);
5073         ZFS_VERIFY_ZP(zp);
5074         switch (ioflag) {
5075         case UIO_WRITE:
5076                 /*
5077                  * Loan out an arc_buf for write if write size is bigger than
5078                  * max_blksz, and the file's block size is also max_blksz.
5079                  */
5080                 blksz = max_blksz;
5081                 if (size < blksz || zp->z_blksz != blksz) {
5082                         ZFS_EXIT(zfsvfs);
5083                         return (SET_ERROR(EINVAL));
5084                 }
5085                 /*
5086                  * Caller requests buffers for write before knowing where the
5087                  * write offset might be (e.g. NFS TCP write).
5088                  */
5089                 if (offset == -1) {
5090                         preamble = 0;
5091                 } else {
5092                         preamble = P2PHASE(offset, blksz);
5093                         if (preamble) {
5094                                 preamble = blksz - preamble;
5095                                 size -= preamble;
5096                         }
5097                 }
5098 
5099                 postamble = P2PHASE(size, blksz);
5100                 size -= postamble;
5101 
5102                 fullblk = size / blksz;
5103                 (void) dmu_xuio_init(xuio,
5104                     (preamble != 0) + fullblk + (postamble != 0));
5105                 DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble,
5106                     int, postamble, int,
5107                     (preamble != 0) + fullblk + (postamble != 0));
5108 
5109                 /*
5110                  * Have to fix iov base/len for partial buffers.  They
5111                  * currently represent full arc_buf's.
5112                  */
5113                 if (preamble) {
5114                         /* data begins in the middle of the arc_buf */
5115                         abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5116                             blksz);
5117                         ASSERT(abuf);
5118                         (void) dmu_xuio_add(xuio, abuf,
5119                             blksz - preamble, preamble);
5120                 }
5121 
5122                 for (i = 0; i < fullblk; i++) {
5123                         abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5124                             blksz);
5125                         ASSERT(abuf);
5126                         (void) dmu_xuio_add(xuio, abuf, 0, blksz);
5127                 }
5128 
5129                 if (postamble) {
5130                         /* data ends in the middle of the arc_buf */
5131                         abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5132                             blksz);
5133                         ASSERT(abuf);
5134                         (void) dmu_xuio_add(xuio, abuf, 0, postamble);
5135                 }
5136                 break;
5137         case UIO_READ:
5138                 /*
5139                  * Loan out an arc_buf for read if the read size is larger than
5140                  * the current file block size.  Block alignment is not
5141                  * considered.  Partial arc_buf will be loaned out for read.
5142                  */
5143                 blksz = zp->z_blksz;
5144                 if (blksz < zcr_blksz_min)
5145                         blksz = zcr_blksz_min;
5146                 if (blksz > zcr_blksz_max)
5147                         blksz = zcr_blksz_max;
5148                 /* avoid potential complexity of dealing with it */
5149                 if (blksz > max_blksz) {
5150                         ZFS_EXIT(zfsvfs);
5151                         return (SET_ERROR(EINVAL));
5152                 }
5153 
5154                 maxsize = zp->z_size - uio->uio_loffset;
5155                 if (size > maxsize)
5156                         size = maxsize;
5157 
5158                 if (size < blksz || vn_has_cached_data(vp)) {
5159                         ZFS_EXIT(zfsvfs);
5160                         return (SET_ERROR(EINVAL));
5161                 }
5162                 break;
5163         default:
5164                 ZFS_EXIT(zfsvfs);
5165                 return (SET_ERROR(EINVAL));
5166         }
5167 
5168         uio->uio_extflg = UIO_XUIO;
5169         XUIO_XUZC_RW(xuio) = ioflag;
5170         ZFS_EXIT(zfsvfs);
5171         return (0);
5172 }
5173 
5174 /*ARGSUSED*/
5175 static int
5176 zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct)
5177 {
5178         int i;
5179         arc_buf_t *abuf;
5180         int ioflag = XUIO_XUZC_RW(xuio);
5181 
5182         ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY);
5183 
5184         i = dmu_xuio_cnt(xuio);
5185         while (i-- > 0) {
5186                 abuf = dmu_xuio_arcbuf(xuio, i);
5187                 /*
5188                  * if abuf == NULL, it must be a write buffer
5189                  * that has been returned in zfs_write().
5190                  */
5191                 if (abuf)
5192                         dmu_return_arcbuf(abuf);
5193                 ASSERT(abuf || ioflag == UIO_WRITE);
5194         }
5195 
5196         dmu_xuio_fini(xuio);
5197         return (0);
5198 }
5199 
5200 /*
5201  * Predeclare these here so that the compiler assumes that
5202  * this is an "old style" function declaration that does
5203  * not include arguments => we won't get type mismatch errors
5204  * in the initializations that follow.
5205  */
5206 static int zfs_inval();
5207 static int zfs_isdir();
5208 
5209 static int
5210 zfs_inval()
5211 {
5212         return (SET_ERROR(EINVAL));
5213 }
5214 
5215 static int
5216 zfs_isdir()
5217 {
5218         return (SET_ERROR(EISDIR));
5219 }
5220 /*
5221  * Directory vnode operations template
5222  */
5223 vnodeops_t *zfs_dvnodeops;
5224 const fs_operation_def_t zfs_dvnodeops_template[] = {
5225         { VOPNAME_OPEN,         { .vop_open = zfs_open } },
5226         { VOPNAME_CLOSE,        { .vop_close = zfs_close } },
5227         { VOPNAME_READ,         { .error = zfs_isdir } },
5228         { VOPNAME_WRITE,        { .error = zfs_isdir } },
5229         { VOPNAME_IOCTL,        { .vop_ioctl = zfs_ioctl } },
5230         { VOPNAME_GETATTR,      { .vop_getattr = zfs_getattr } },
5231         { VOPNAME_SETATTR,      { .vop_setattr = zfs_setattr } },
5232         { VOPNAME_ACCESS,       { .vop_access = zfs_access } },
5233         { VOPNAME_LOOKUP,       { .vop_lookup = zfs_lookup } },
5234         { VOPNAME_CREATE,       { .vop_create = zfs_create } },
5235         { VOPNAME_REMOVE,       { .vop_remove = zfs_remove } },
5236         { VOPNAME_LINK,         { .vop_link = zfs_link } },
5237         { VOPNAME_RENAME,       { .vop_rename = zfs_rename } },
5238         { VOPNAME_MKDIR,        { .vop_mkdir = zfs_mkdir } },
5239         { VOPNAME_RMDIR,        { .vop_rmdir = zfs_rmdir } },
5240         { VOPNAME_READDIR,      { .vop_readdir = zfs_readdir } },
5241         { VOPNAME_SYMLINK,      { .vop_symlink = zfs_symlink } },
5242         { VOPNAME_FSYNC,        { .vop_fsync = zfs_fsync } },
5243         { VOPNAME_INACTIVE,     { .vop_inactive = zfs_inactive } },
5244         { VOPNAME_FID,          { .vop_fid = zfs_fid } },
5245         { VOPNAME_SEEK,         { .vop_seek = zfs_seek } },
5246         { VOPNAME_PATHCONF,     { .vop_pathconf = zfs_pathconf } },
5247         { VOPNAME_GETSECATTR,   { .vop_getsecattr = zfs_getsecattr } },
5248         { VOPNAME_SETSECATTR,   { .vop_setsecattr = zfs_setsecattr } },
5249         { VOPNAME_VNEVENT,      { .vop_vnevent = fs_vnevent_support } },
5250         { NULL,                 { NULL } }
5251 };
5252 
5253 /*
5254  * Regular file vnode operations template
5255  */
5256 vnodeops_t *zfs_fvnodeops;
5257 const fs_operation_def_t zfs_fvnodeops_template[] = {
5258         { VOPNAME_OPEN,         { .vop_open = zfs_open } },
5259         { VOPNAME_CLOSE,        { .vop_close = zfs_close } },
5260         { VOPNAME_READ,         { .vop_read = zfs_read } },
5261         { VOPNAME_WRITE,        { .vop_write = zfs_write } },
5262         { VOPNAME_IOCTL,        { .vop_ioctl = zfs_ioctl } },
5263         { VOPNAME_GETATTR,      { .vop_getattr = zfs_getattr } },
5264         { VOPNAME_SETATTR,      { .vop_setattr = zfs_setattr } },
5265         { VOPNAME_ACCESS,       { .vop_access = zfs_access } },
5266         { VOPNAME_LOOKUP,       { .vop_lookup = zfs_lookup } },
5267         { VOPNAME_RENAME,       { .vop_rename = zfs_rename } },
5268         { VOPNAME_FSYNC,        { .vop_fsync = zfs_fsync } },
5269         { VOPNAME_INACTIVE,     { .vop_inactive = zfs_inactive } },
5270         { VOPNAME_FID,          { .vop_fid = zfs_fid } },
5271         { VOPNAME_SEEK,         { .vop_seek = zfs_seek } },
5272         { VOPNAME_FRLOCK,       { .vop_frlock = zfs_frlock } },
5273         { VOPNAME_SPACE,        { .vop_space = zfs_space } },
5274         { VOPNAME_GETPAGE,      { .vop_getpage = zfs_getpage } },
5275         { VOPNAME_PUTPAGE,      { .vop_putpage = zfs_putpage } },
5276         { VOPNAME_MAP,          { .vop_map = zfs_map } },
5277         { VOPNAME_ADDMAP,       { .vop_addmap = zfs_addmap } },
5278         { VOPNAME_DELMAP,       { .vop_delmap = zfs_delmap } },
5279         { VOPNAME_PATHCONF,     { .vop_pathconf = zfs_pathconf } },
5280         { VOPNAME_GETSECATTR,   { .vop_getsecattr = zfs_getsecattr } },
5281         { VOPNAME_SETSECATTR,   { .vop_setsecattr = zfs_setsecattr } },
5282         { VOPNAME_VNEVENT,      { .vop_vnevent = fs_vnevent_support } },
5283         { VOPNAME_REQZCBUF,     { .vop_reqzcbuf = zfs_reqzcbuf } },
5284         { VOPNAME_RETZCBUF,     { .vop_retzcbuf = zfs_retzcbuf } },
5285         { NULL,                 { NULL } }
5286 };
5287 
5288 /*
5289  * Symbolic link vnode operations template
5290  */
5291 vnodeops_t *zfs_symvnodeops;
5292 const fs_operation_def_t zfs_symvnodeops_template[] = {
5293         { VOPNAME_GETATTR,      { .vop_getattr = zfs_getattr } },
5294         { VOPNAME_SETATTR,      { .vop_setattr = zfs_setattr } },
5295         { VOPNAME_ACCESS,       { .vop_access = zfs_access } },
5296         { VOPNAME_RENAME,       { .vop_rename = zfs_rename } },
5297         { VOPNAME_READLINK,     { .vop_readlink = zfs_readlink } },
5298         { VOPNAME_INACTIVE,     { .vop_inactive = zfs_inactive } },
5299         { VOPNAME_FID,          { .vop_fid = zfs_fid } },
5300         { VOPNAME_PATHCONF,     { .vop_pathconf = zfs_pathconf } },
5301         { VOPNAME_VNEVENT,      { .vop_vnevent = fs_vnevent_support } },
5302         { NULL,                 { NULL } }
5303 };
5304 
5305 /*
5306  * special share hidden files vnode operations template
5307  */
5308 vnodeops_t *zfs_sharevnodeops;
5309 const fs_operation_def_t zfs_sharevnodeops_template[] = {
5310         { VOPNAME_GETATTR,      { .vop_getattr = zfs_getattr } },
5311         { VOPNAME_ACCESS,       { .vop_access = zfs_access } },
5312         { VOPNAME_INACTIVE,     { .vop_inactive = zfs_inactive } },
5313         { VOPNAME_FID,          { .vop_fid = zfs_fid } },
5314         { VOPNAME_PATHCONF,     { .vop_pathconf = zfs_pathconf } },
5315         { VOPNAME_GETSECATTR,   { .vop_getsecattr = zfs_getsecattr } },
5316         { VOPNAME_SETSECATTR,   { .vop_setsecattr = zfs_setsecattr } },
5317         { VOPNAME_VNEVENT,      { .vop_vnevent = fs_vnevent_support } },
5318         { NULL,                 { NULL } }
5319 };
5320 
5321 /*
5322  * Extended attribute directory vnode operations template
5323  *
5324  * This template is identical to the directory vnodes
5325  * operation template except for restricted operations:
5326  *      VOP_MKDIR()
5327  *      VOP_SYMLINK()
5328  *
5329  * Note that there are other restrictions embedded in:
5330  *      zfs_create()    - restrict type to VREG
5331  *      zfs_link()      - no links into/out of attribute space
5332  *      zfs_rename()    - no moves into/out of attribute space
5333  */
5334 vnodeops_t *zfs_xdvnodeops;
5335 const fs_operation_def_t zfs_xdvnodeops_template[] = {
5336         { VOPNAME_OPEN,         { .vop_open = zfs_open } },
5337         { VOPNAME_CLOSE,        { .vop_close = zfs_close } },
5338         { VOPNAME_IOCTL,        { .vop_ioctl = zfs_ioctl } },
5339         { VOPNAME_GETATTR,      { .vop_getattr = zfs_getattr } },
5340         { VOPNAME_SETATTR,      { .vop_setattr = zfs_setattr } },
5341         { VOPNAME_ACCESS,       { .vop_access = zfs_access } },
5342         { VOPNAME_LOOKUP,       { .vop_lookup = zfs_lookup } },
5343         { VOPNAME_CREATE,       { .vop_create = zfs_create } },
5344         { VOPNAME_REMOVE,       { .vop_remove = zfs_remove } },
5345         { VOPNAME_LINK,         { .vop_link = zfs_link } },
5346         { VOPNAME_RENAME,       { .vop_rename = zfs_rename } },
5347         { VOPNAME_MKDIR,        { .error = zfs_inval } },
5348         { VOPNAME_RMDIR,        { .vop_rmdir = zfs_rmdir } },
5349         { VOPNAME_READDIR,      { .vop_readdir = zfs_readdir } },
5350         { VOPNAME_SYMLINK,      { .error = zfs_inval } },
5351         { VOPNAME_FSYNC,        { .vop_fsync = zfs_fsync } },
5352         { VOPNAME_INACTIVE,     { .vop_inactive = zfs_inactive } },
5353         { VOPNAME_FID,          { .vop_fid = zfs_fid } },
5354         { VOPNAME_SEEK,         { .vop_seek = zfs_seek } },
5355         { VOPNAME_PATHCONF,     { .vop_pathconf = zfs_pathconf } },
5356         { VOPNAME_GETSECATTR,   { .vop_getsecattr = zfs_getsecattr } },
5357         { VOPNAME_SETSECATTR,   { .vop_setsecattr = zfs_setsecattr } },
5358         { VOPNAME_VNEVENT,      { .vop_vnevent = fs_vnevent_support } },
5359         { NULL,                 { NULL } }
5360 };
5361 
5362 /*
5363  * Error vnode operations template
5364  */
5365 vnodeops_t *zfs_evnodeops;
5366 const fs_operation_def_t zfs_evnodeops_template[] = {
5367         { VOPNAME_INACTIVE,     { .vop_inactive = zfs_inactive } },
5368         { VOPNAME_PATHCONF,     { .vop_pathconf = zfs_pathconf } },
5369         { NULL,                 { NULL } }
5370 };