Print this page
7127 remove -Wno-missing-braces from Makefile.uts
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/uts/common/fs/zfs/zfs_vfsops.c
+++ new/usr/src/uts/common/fs/zfs/zfs_vfsops.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21 /*
22 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 23 * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
24 24 * Copyright (c) 2014 Integros [integros.com]
25 25 */
26 26
27 27 /* Portions Copyright 2010 Robert Milkowski */
28 28
29 29 #include <sys/types.h>
30 30 #include <sys/param.h>
31 31 #include <sys/systm.h>
32 32 #include <sys/sysmacros.h>
33 33 #include <sys/kmem.h>
34 34 #include <sys/pathname.h>
35 35 #include <sys/vnode.h>
36 36 #include <sys/vfs.h>
37 37 #include <sys/vfs_opreg.h>
38 38 #include <sys/mntent.h>
39 39 #include <sys/mount.h>
40 40 #include <sys/cmn_err.h>
41 41 #include "fs/fs_subr.h"
42 42 #include <sys/zfs_znode.h>
43 43 #include <sys/zfs_dir.h>
44 44 #include <sys/zil.h>
45 45 #include <sys/fs/zfs.h>
46 46 #include <sys/dmu.h>
47 47 #include <sys/dsl_prop.h>
48 48 #include <sys/dsl_dataset.h>
49 49 #include <sys/dsl_deleg.h>
50 50 #include <sys/spa.h>
51 51 #include <sys/zap.h>
52 52 #include <sys/sa.h>
53 53 #include <sys/sa_impl.h>
54 54 #include <sys/varargs.h>
55 55 #include <sys/policy.h>
56 56 #include <sys/atomic.h>
57 57 #include <sys/mkdev.h>
58 58 #include <sys/modctl.h>
59 59 #include <sys/refstr.h>
60 60 #include <sys/zfs_ioctl.h>
61 61 #include <sys/zfs_ctldir.h>
62 62 #include <sys/zfs_fuid.h>
63 63 #include <sys/bootconf.h>
64 64 #include <sys/sunddi.h>
65 65 #include <sys/dnlc.h>
66 66 #include <sys/dmu_objset.h>
67 67 #include <sys/spa_boot.h>
68 68 #include "zfs_comutil.h"
69 69
70 70 int zfsfstype;
71 71 vfsops_t *zfs_vfsops = NULL;
72 72 static major_t zfs_major;
73 73 static minor_t zfs_minor;
74 74 static kmutex_t zfs_dev_mtx;
75 75
76 76 extern int sys_shutdown;
↓ open down ↓ |
76 lines elided |
↑ open up ↑ |
77 77
78 78 static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr);
79 79 static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr);
80 80 static int zfs_mountroot(vfs_t *vfsp, enum whymountroot);
81 81 static int zfs_root(vfs_t *vfsp, vnode_t **vpp);
82 82 static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp);
83 83 static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp);
84 84 static void zfs_freevfs(vfs_t *vfsp);
85 85
86 86 static const fs_operation_def_t zfs_vfsops_template[] = {
87 - VFSNAME_MOUNT, { .vfs_mount = zfs_mount },
88 - VFSNAME_MOUNTROOT, { .vfs_mountroot = zfs_mountroot },
89 - VFSNAME_UNMOUNT, { .vfs_unmount = zfs_umount },
90 - VFSNAME_ROOT, { .vfs_root = zfs_root },
91 - VFSNAME_STATVFS, { .vfs_statvfs = zfs_statvfs },
92 - VFSNAME_SYNC, { .vfs_sync = zfs_sync },
93 - VFSNAME_VGET, { .vfs_vget = zfs_vget },
94 - VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs },
95 - NULL, NULL
87 + { VFSNAME_MOUNT, { .vfs_mount = zfs_mount } },
88 + { VFSNAME_MOUNTROOT, { .vfs_mountroot = zfs_mountroot } },
89 + { VFSNAME_UNMOUNT, { .vfs_unmount = zfs_umount } },
90 + { VFSNAME_ROOT, { .vfs_root = zfs_root } },
91 + { VFSNAME_STATVFS, { .vfs_statvfs = zfs_statvfs } },
92 + { VFSNAME_SYNC, { .vfs_sync = zfs_sync } },
93 + { VFSNAME_VGET, { .vfs_vget = zfs_vget } },
94 + { VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs } },
95 + { NULL, { NULL } }
96 96 };
97 97
98 98 static const fs_operation_def_t zfs_vfsops_eio_template[] = {
99 - VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs },
100 - NULL, NULL
99 + { VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs } },
100 + { NULL, { NULL } }
101 101 };
102 102
103 103 /*
104 104 * We need to keep a count of active fs's.
105 105 * This is necessary to prevent our module
106 106 * from being unloaded after a umount -f
107 107 */
108 108 static uint32_t zfs_active_fs_count = 0;
109 109
110 110 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL };
111 111 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL };
112 112 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL };
113 113 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL };
114 114
115 115 /*
116 116 * MO_DEFAULT is not used since the default value is determined
117 117 * by the equivalent property.
118 118 */
119 119 static mntopt_t mntopts[] = {
120 120 { MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL },
121 121 { MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL },
122 122 { MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL },
123 123 { MNTOPT_ATIME, atime_cancel, NULL, 0, NULL }
124 124 };
125 125
126 126 static mntopts_t zfs_mntopts = {
127 127 sizeof (mntopts) / sizeof (mntopt_t),
128 128 mntopts
129 129 };
130 130
131 131 /*ARGSUSED*/
132 132 int
133 133 zfs_sync(vfs_t *vfsp, short flag, cred_t *cr)
134 134 {
135 135 /*
136 136 * Data integrity is job one. We don't want a compromised kernel
137 137 * writing to the storage pool, so we never sync during panic.
138 138 */
139 139 if (panicstr)
140 140 return (0);
141 141
142 142 /*
143 143 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS
144 144 * to sync metadata, which they would otherwise cache indefinitely.
145 145 * Semantically, the only requirement is that the sync be initiated.
146 146 * The DMU syncs out txgs frequently, so there's nothing to do.
147 147 */
148 148 if (flag & SYNC_ATTR)
149 149 return (0);
150 150
151 151 if (vfsp != NULL) {
152 152 /*
153 153 * Sync a specific filesystem.
154 154 */
155 155 zfsvfs_t *zfsvfs = vfsp->vfs_data;
156 156 dsl_pool_t *dp;
157 157
158 158 ZFS_ENTER(zfsvfs);
159 159 dp = dmu_objset_pool(zfsvfs->z_os);
160 160
161 161 /*
162 162 * If the system is shutting down, then skip any
163 163 * filesystems which may exist on a suspended pool.
164 164 */
165 165 if (sys_shutdown && spa_suspended(dp->dp_spa)) {
166 166 ZFS_EXIT(zfsvfs);
167 167 return (0);
168 168 }
169 169
170 170 if (zfsvfs->z_log != NULL)
171 171 zil_commit(zfsvfs->z_log, 0);
172 172
173 173 ZFS_EXIT(zfsvfs);
174 174 } else {
175 175 /*
176 176 * Sync all ZFS filesystems. This is what happens when you
177 177 * run sync(1M). Unlike other filesystems, ZFS honors the
178 178 * request by waiting for all pools to commit all dirty data.
179 179 */
180 180 spa_sync_allpools();
181 181 }
182 182
183 183 return (0);
184 184 }
185 185
186 186 static int
187 187 zfs_create_unique_device(dev_t *dev)
188 188 {
189 189 major_t new_major;
190 190
191 191 do {
192 192 ASSERT3U(zfs_minor, <=, MAXMIN32);
193 193 minor_t start = zfs_minor;
194 194 do {
195 195 mutex_enter(&zfs_dev_mtx);
196 196 if (zfs_minor >= MAXMIN32) {
197 197 /*
198 198 * If we're still using the real major
199 199 * keep out of /dev/zfs and /dev/zvol minor
200 200 * number space. If we're using a getudev()'ed
201 201 * major number, we can use all of its minors.
202 202 */
203 203 if (zfs_major == ddi_name_to_major(ZFS_DRIVER))
204 204 zfs_minor = ZFS_MIN_MINOR;
205 205 else
206 206 zfs_minor = 0;
207 207 } else {
208 208 zfs_minor++;
209 209 }
210 210 *dev = makedevice(zfs_major, zfs_minor);
211 211 mutex_exit(&zfs_dev_mtx);
212 212 } while (vfs_devismounted(*dev) && zfs_minor != start);
213 213 if (zfs_minor == start) {
214 214 /*
215 215 * We are using all ~262,000 minor numbers for the
216 216 * current major number. Create a new major number.
217 217 */
218 218 if ((new_major = getudev()) == (major_t)-1) {
219 219 cmn_err(CE_WARN,
220 220 "zfs_mount: Can't get unique major "
221 221 "device number.");
222 222 return (-1);
223 223 }
224 224 mutex_enter(&zfs_dev_mtx);
225 225 zfs_major = new_major;
226 226 zfs_minor = 0;
227 227
228 228 mutex_exit(&zfs_dev_mtx);
229 229 } else {
230 230 break;
231 231 }
232 232 /* CONSTANTCONDITION */
233 233 } while (1);
234 234
235 235 return (0);
236 236 }
237 237
238 238 static void
239 239 atime_changed_cb(void *arg, uint64_t newval)
240 240 {
241 241 zfsvfs_t *zfsvfs = arg;
242 242
243 243 if (newval == TRUE) {
244 244 zfsvfs->z_atime = TRUE;
245 245 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME);
246 246 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0);
247 247 } else {
248 248 zfsvfs->z_atime = FALSE;
249 249 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME);
250 250 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0);
251 251 }
252 252 }
253 253
254 254 static void
255 255 xattr_changed_cb(void *arg, uint64_t newval)
256 256 {
257 257 zfsvfs_t *zfsvfs = arg;
258 258
259 259 if (newval == TRUE) {
260 260 /* XXX locking on vfs_flag? */
261 261 zfsvfs->z_vfs->vfs_flag |= VFS_XATTR;
262 262 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR);
263 263 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0);
264 264 } else {
265 265 /* XXX locking on vfs_flag? */
266 266 zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR;
267 267 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR);
268 268 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0);
269 269 }
270 270 }
271 271
272 272 static void
273 273 blksz_changed_cb(void *arg, uint64_t newval)
274 274 {
275 275 zfsvfs_t *zfsvfs = arg;
276 276 ASSERT3U(newval, <=, spa_maxblocksize(dmu_objset_spa(zfsvfs->z_os)));
277 277 ASSERT3U(newval, >=, SPA_MINBLOCKSIZE);
278 278 ASSERT(ISP2(newval));
279 279
280 280 zfsvfs->z_max_blksz = newval;
281 281 zfsvfs->z_vfs->vfs_bsize = newval;
282 282 }
283 283
284 284 static void
285 285 readonly_changed_cb(void *arg, uint64_t newval)
286 286 {
287 287 zfsvfs_t *zfsvfs = arg;
288 288
289 289 if (newval) {
290 290 /* XXX locking on vfs_flag? */
291 291 zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY;
292 292 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW);
293 293 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0);
294 294 } else {
295 295 /* XXX locking on vfs_flag? */
296 296 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
297 297 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO);
298 298 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0);
299 299 }
300 300 }
301 301
302 302 static void
303 303 devices_changed_cb(void *arg, uint64_t newval)
304 304 {
305 305 zfsvfs_t *zfsvfs = arg;
306 306
307 307 if (newval == FALSE) {
308 308 zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES;
309 309 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES);
310 310 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0);
311 311 } else {
312 312 zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES;
313 313 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES);
314 314 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0);
315 315 }
316 316 }
317 317
318 318 static void
319 319 setuid_changed_cb(void *arg, uint64_t newval)
320 320 {
321 321 zfsvfs_t *zfsvfs = arg;
322 322
323 323 if (newval == FALSE) {
324 324 zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID;
325 325 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID);
326 326 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0);
327 327 } else {
328 328 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID;
329 329 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID);
330 330 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0);
331 331 }
332 332 }
333 333
334 334 static void
335 335 exec_changed_cb(void *arg, uint64_t newval)
336 336 {
337 337 zfsvfs_t *zfsvfs = arg;
338 338
339 339 if (newval == FALSE) {
340 340 zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC;
341 341 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC);
342 342 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0);
343 343 } else {
344 344 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC;
345 345 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC);
346 346 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0);
347 347 }
348 348 }
349 349
350 350 /*
351 351 * The nbmand mount option can be changed at mount time.
352 352 * We can't allow it to be toggled on live file systems or incorrect
353 353 * behavior may be seen from cifs clients
354 354 *
355 355 * This property isn't registered via dsl_prop_register(), but this callback
356 356 * will be called when a file system is first mounted
357 357 */
358 358 static void
359 359 nbmand_changed_cb(void *arg, uint64_t newval)
360 360 {
361 361 zfsvfs_t *zfsvfs = arg;
362 362 if (newval == FALSE) {
363 363 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND);
364 364 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0);
365 365 } else {
366 366 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND);
367 367 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0);
368 368 }
369 369 }
370 370
371 371 static void
372 372 snapdir_changed_cb(void *arg, uint64_t newval)
373 373 {
374 374 zfsvfs_t *zfsvfs = arg;
375 375
376 376 zfsvfs->z_show_ctldir = newval;
377 377 }
378 378
379 379 static void
380 380 vscan_changed_cb(void *arg, uint64_t newval)
381 381 {
382 382 zfsvfs_t *zfsvfs = arg;
383 383
384 384 zfsvfs->z_vscan = newval;
385 385 }
386 386
387 387 static void
388 388 acl_mode_changed_cb(void *arg, uint64_t newval)
389 389 {
390 390 zfsvfs_t *zfsvfs = arg;
391 391
392 392 zfsvfs->z_acl_mode = newval;
393 393 }
394 394
395 395 static void
396 396 acl_inherit_changed_cb(void *arg, uint64_t newval)
397 397 {
398 398 zfsvfs_t *zfsvfs = arg;
399 399
400 400 zfsvfs->z_acl_inherit = newval;
401 401 }
402 402
403 403 static int
404 404 zfs_register_callbacks(vfs_t *vfsp)
405 405 {
406 406 struct dsl_dataset *ds = NULL;
407 407 objset_t *os = NULL;
408 408 zfsvfs_t *zfsvfs = NULL;
409 409 uint64_t nbmand;
410 410 boolean_t readonly = B_FALSE;
411 411 boolean_t do_readonly = B_FALSE;
412 412 boolean_t setuid = B_FALSE;
413 413 boolean_t do_setuid = B_FALSE;
414 414 boolean_t exec = B_FALSE;
415 415 boolean_t do_exec = B_FALSE;
416 416 boolean_t devices = B_FALSE;
417 417 boolean_t do_devices = B_FALSE;
418 418 boolean_t xattr = B_FALSE;
419 419 boolean_t do_xattr = B_FALSE;
420 420 boolean_t atime = B_FALSE;
421 421 boolean_t do_atime = B_FALSE;
422 422 int error = 0;
423 423
424 424 ASSERT(vfsp);
425 425 zfsvfs = vfsp->vfs_data;
426 426 ASSERT(zfsvfs);
427 427 os = zfsvfs->z_os;
428 428
429 429 /*
430 430 * The act of registering our callbacks will destroy any mount
431 431 * options we may have. In order to enable temporary overrides
432 432 * of mount options, we stash away the current values and
433 433 * restore them after we register the callbacks.
434 434 */
435 435 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL) ||
436 436 !spa_writeable(dmu_objset_spa(os))) {
437 437 readonly = B_TRUE;
438 438 do_readonly = B_TRUE;
439 439 } else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) {
440 440 readonly = B_FALSE;
441 441 do_readonly = B_TRUE;
442 442 }
443 443 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
444 444 devices = B_FALSE;
445 445 setuid = B_FALSE;
446 446 do_devices = B_TRUE;
447 447 do_setuid = B_TRUE;
448 448 } else {
449 449 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) {
450 450 devices = B_FALSE;
451 451 do_devices = B_TRUE;
452 452 } else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) {
453 453 devices = B_TRUE;
454 454 do_devices = B_TRUE;
455 455 }
456 456
457 457 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) {
458 458 setuid = B_FALSE;
459 459 do_setuid = B_TRUE;
460 460 } else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) {
461 461 setuid = B_TRUE;
462 462 do_setuid = B_TRUE;
463 463 }
464 464 }
465 465 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) {
466 466 exec = B_FALSE;
467 467 do_exec = B_TRUE;
468 468 } else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) {
469 469 exec = B_TRUE;
470 470 do_exec = B_TRUE;
471 471 }
472 472 if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) {
473 473 xattr = B_FALSE;
474 474 do_xattr = B_TRUE;
475 475 } else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) {
476 476 xattr = B_TRUE;
477 477 do_xattr = B_TRUE;
478 478 }
479 479 if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) {
480 480 atime = B_FALSE;
481 481 do_atime = B_TRUE;
482 482 } else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) {
483 483 atime = B_TRUE;
484 484 do_atime = B_TRUE;
485 485 }
486 486
487 487 /*
488 488 * nbmand is a special property. It can only be changed at
489 489 * mount time.
490 490 *
491 491 * This is weird, but it is documented to only be changeable
492 492 * at mount time.
493 493 */
494 494 if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) {
495 495 nbmand = B_FALSE;
496 496 } else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) {
497 497 nbmand = B_TRUE;
498 498 } else {
499 499 char osname[ZFS_MAX_DATASET_NAME_LEN];
500 500
501 501 dmu_objset_name(os, osname);
502 502 if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand,
503 503 NULL)) {
504 504 return (error);
505 505 }
506 506 }
507 507
508 508 /*
509 509 * Register property callbacks.
510 510 *
511 511 * It would probably be fine to just check for i/o error from
512 512 * the first prop_register(), but I guess I like to go
513 513 * overboard...
514 514 */
515 515 ds = dmu_objset_ds(os);
516 516 dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
517 517 error = dsl_prop_register(ds,
518 518 zfs_prop_to_name(ZFS_PROP_ATIME), atime_changed_cb, zfsvfs);
519 519 error = error ? error : dsl_prop_register(ds,
520 520 zfs_prop_to_name(ZFS_PROP_XATTR), xattr_changed_cb, zfsvfs);
521 521 error = error ? error : dsl_prop_register(ds,
522 522 zfs_prop_to_name(ZFS_PROP_RECORDSIZE), blksz_changed_cb, zfsvfs);
523 523 error = error ? error : dsl_prop_register(ds,
524 524 zfs_prop_to_name(ZFS_PROP_READONLY), readonly_changed_cb, zfsvfs);
525 525 error = error ? error : dsl_prop_register(ds,
526 526 zfs_prop_to_name(ZFS_PROP_DEVICES), devices_changed_cb, zfsvfs);
527 527 error = error ? error : dsl_prop_register(ds,
528 528 zfs_prop_to_name(ZFS_PROP_SETUID), setuid_changed_cb, zfsvfs);
529 529 error = error ? error : dsl_prop_register(ds,
530 530 zfs_prop_to_name(ZFS_PROP_EXEC), exec_changed_cb, zfsvfs);
531 531 error = error ? error : dsl_prop_register(ds,
532 532 zfs_prop_to_name(ZFS_PROP_SNAPDIR), snapdir_changed_cb, zfsvfs);
533 533 error = error ? error : dsl_prop_register(ds,
534 534 zfs_prop_to_name(ZFS_PROP_ACLMODE), acl_mode_changed_cb, zfsvfs);
535 535 error = error ? error : dsl_prop_register(ds,
536 536 zfs_prop_to_name(ZFS_PROP_ACLINHERIT), acl_inherit_changed_cb,
537 537 zfsvfs);
538 538 error = error ? error : dsl_prop_register(ds,
539 539 zfs_prop_to_name(ZFS_PROP_VSCAN), vscan_changed_cb, zfsvfs);
540 540 dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
541 541 if (error)
542 542 goto unregister;
543 543
544 544 /*
545 545 * Invoke our callbacks to restore temporary mount options.
546 546 */
547 547 if (do_readonly)
548 548 readonly_changed_cb(zfsvfs, readonly);
549 549 if (do_setuid)
550 550 setuid_changed_cb(zfsvfs, setuid);
551 551 if (do_exec)
552 552 exec_changed_cb(zfsvfs, exec);
553 553 if (do_devices)
554 554 devices_changed_cb(zfsvfs, devices);
555 555 if (do_xattr)
556 556 xattr_changed_cb(zfsvfs, xattr);
557 557 if (do_atime)
558 558 atime_changed_cb(zfsvfs, atime);
559 559
560 560 nbmand_changed_cb(zfsvfs, nbmand);
561 561
562 562 return (0);
563 563
564 564 unregister:
565 565 dsl_prop_unregister_all(ds, zfsvfs);
566 566 return (error);
567 567 }
568 568
569 569 static int
570 570 zfs_space_delta_cb(dmu_object_type_t bonustype, void *data,
571 571 uint64_t *userp, uint64_t *groupp)
572 572 {
573 573 /*
574 574 * Is it a valid type of object to track?
575 575 */
576 576 if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA)
577 577 return (SET_ERROR(ENOENT));
578 578
579 579 /*
580 580 * If we have a NULL data pointer
581 581 * then assume the id's aren't changing and
582 582 * return EEXIST to the dmu to let it know to
583 583 * use the same ids
584 584 */
585 585 if (data == NULL)
586 586 return (SET_ERROR(EEXIST));
587 587
588 588 if (bonustype == DMU_OT_ZNODE) {
589 589 znode_phys_t *znp = data;
590 590 *userp = znp->zp_uid;
591 591 *groupp = znp->zp_gid;
592 592 } else {
593 593 int hdrsize;
594 594 sa_hdr_phys_t *sap = data;
595 595 sa_hdr_phys_t sa = *sap;
596 596 boolean_t swap = B_FALSE;
597 597
598 598 ASSERT(bonustype == DMU_OT_SA);
599 599
600 600 if (sa.sa_magic == 0) {
601 601 /*
602 602 * This should only happen for newly created
603 603 * files that haven't had the znode data filled
604 604 * in yet.
605 605 */
606 606 *userp = 0;
607 607 *groupp = 0;
608 608 return (0);
609 609 }
610 610 if (sa.sa_magic == BSWAP_32(SA_MAGIC)) {
611 611 sa.sa_magic = SA_MAGIC;
612 612 sa.sa_layout_info = BSWAP_16(sa.sa_layout_info);
613 613 swap = B_TRUE;
614 614 } else {
615 615 VERIFY3U(sa.sa_magic, ==, SA_MAGIC);
616 616 }
617 617
618 618 hdrsize = sa_hdrsize(&sa);
619 619 VERIFY3U(hdrsize, >=, sizeof (sa_hdr_phys_t));
620 620 *userp = *((uint64_t *)((uintptr_t)data + hdrsize +
621 621 SA_UID_OFFSET));
622 622 *groupp = *((uint64_t *)((uintptr_t)data + hdrsize +
623 623 SA_GID_OFFSET));
624 624 if (swap) {
625 625 *userp = BSWAP_64(*userp);
626 626 *groupp = BSWAP_64(*groupp);
627 627 }
628 628 }
629 629 return (0);
630 630 }
631 631
632 632 static void
633 633 fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr,
634 634 char *domainbuf, int buflen, uid_t *ridp)
635 635 {
636 636 uint64_t fuid;
637 637 const char *domain;
638 638
639 639 fuid = strtonum(fuidstr, NULL);
640 640
641 641 domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid));
642 642 if (domain)
643 643 (void) strlcpy(domainbuf, domain, buflen);
644 644 else
645 645 domainbuf[0] = '\0';
646 646 *ridp = FUID_RID(fuid);
647 647 }
648 648
649 649 static uint64_t
650 650 zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type)
651 651 {
652 652 switch (type) {
653 653 case ZFS_PROP_USERUSED:
654 654 return (DMU_USERUSED_OBJECT);
655 655 case ZFS_PROP_GROUPUSED:
656 656 return (DMU_GROUPUSED_OBJECT);
657 657 case ZFS_PROP_USERQUOTA:
658 658 return (zfsvfs->z_userquota_obj);
659 659 case ZFS_PROP_GROUPQUOTA:
660 660 return (zfsvfs->z_groupquota_obj);
661 661 }
662 662 return (0);
663 663 }
664 664
665 665 int
666 666 zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
667 667 uint64_t *cookiep, void *vbuf, uint64_t *bufsizep)
668 668 {
669 669 int error;
670 670 zap_cursor_t zc;
671 671 zap_attribute_t za;
672 672 zfs_useracct_t *buf = vbuf;
673 673 uint64_t obj;
674 674
675 675 if (!dmu_objset_userspace_present(zfsvfs->z_os))
676 676 return (SET_ERROR(ENOTSUP));
677 677
678 678 obj = zfs_userquota_prop_to_obj(zfsvfs, type);
679 679 if (obj == 0) {
680 680 *bufsizep = 0;
681 681 return (0);
682 682 }
683 683
684 684 for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep);
685 685 (error = zap_cursor_retrieve(&zc, &za)) == 0;
686 686 zap_cursor_advance(&zc)) {
687 687 if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) >
688 688 *bufsizep)
689 689 break;
690 690
691 691 fuidstr_to_sid(zfsvfs, za.za_name,
692 692 buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid);
693 693
694 694 buf->zu_space = za.za_first_integer;
695 695 buf++;
696 696 }
697 697 if (error == ENOENT)
698 698 error = 0;
699 699
700 700 ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep);
701 701 *bufsizep = (uintptr_t)buf - (uintptr_t)vbuf;
702 702 *cookiep = zap_cursor_serialize(&zc);
703 703 zap_cursor_fini(&zc);
704 704 return (error);
705 705 }
706 706
707 707 /*
708 708 * buf must be big enough (eg, 32 bytes)
709 709 */
710 710 static int
711 711 id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid,
712 712 char *buf, boolean_t addok)
713 713 {
714 714 uint64_t fuid;
715 715 int domainid = 0;
716 716
717 717 if (domain && domain[0]) {
718 718 domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok);
719 719 if (domainid == -1)
720 720 return (SET_ERROR(ENOENT));
721 721 }
722 722 fuid = FUID_ENCODE(domainid, rid);
723 723 (void) sprintf(buf, "%llx", (longlong_t)fuid);
724 724 return (0);
725 725 }
726 726
727 727 int
728 728 zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
729 729 const char *domain, uint64_t rid, uint64_t *valp)
730 730 {
731 731 char buf[32];
732 732 int err;
733 733 uint64_t obj;
734 734
735 735 *valp = 0;
736 736
737 737 if (!dmu_objset_userspace_present(zfsvfs->z_os))
738 738 return (SET_ERROR(ENOTSUP));
739 739
740 740 obj = zfs_userquota_prop_to_obj(zfsvfs, type);
741 741 if (obj == 0)
742 742 return (0);
743 743
744 744 err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_FALSE);
745 745 if (err)
746 746 return (err);
747 747
748 748 err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp);
749 749 if (err == ENOENT)
750 750 err = 0;
751 751 return (err);
752 752 }
753 753
754 754 int
755 755 zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
756 756 const char *domain, uint64_t rid, uint64_t quota)
757 757 {
758 758 char buf[32];
759 759 int err;
760 760 dmu_tx_t *tx;
761 761 uint64_t *objp;
762 762 boolean_t fuid_dirtied;
763 763
764 764 if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA)
765 765 return (SET_ERROR(EINVAL));
766 766
767 767 if (zfsvfs->z_version < ZPL_VERSION_USERSPACE)
768 768 return (SET_ERROR(ENOTSUP));
769 769
770 770 objp = (type == ZFS_PROP_USERQUOTA) ? &zfsvfs->z_userquota_obj :
771 771 &zfsvfs->z_groupquota_obj;
772 772
773 773 err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE);
774 774 if (err)
775 775 return (err);
776 776 fuid_dirtied = zfsvfs->z_fuid_dirty;
777 777
778 778 tx = dmu_tx_create(zfsvfs->z_os);
779 779 dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL);
780 780 if (*objp == 0) {
781 781 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
782 782 zfs_userquota_prop_prefixes[type]);
783 783 }
784 784 if (fuid_dirtied)
785 785 zfs_fuid_txhold(zfsvfs, tx);
786 786 err = dmu_tx_assign(tx, TXG_WAIT);
787 787 if (err) {
788 788 dmu_tx_abort(tx);
789 789 return (err);
790 790 }
791 791
792 792 mutex_enter(&zfsvfs->z_lock);
793 793 if (*objp == 0) {
794 794 *objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA,
795 795 DMU_OT_NONE, 0, tx);
796 796 VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
797 797 zfs_userquota_prop_prefixes[type], 8, 1, objp, tx));
798 798 }
799 799 mutex_exit(&zfsvfs->z_lock);
800 800
801 801 if (quota == 0) {
802 802 err = zap_remove(zfsvfs->z_os, *objp, buf, tx);
803 803 if (err == ENOENT)
804 804 err = 0;
805 805 } else {
806 806 err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, "a, tx);
807 807 }
808 808 ASSERT(err == 0);
809 809 if (fuid_dirtied)
810 810 zfs_fuid_sync(zfsvfs, tx);
811 811 dmu_tx_commit(tx);
812 812 return (err);
813 813 }
814 814
815 815 boolean_t
816 816 zfs_fuid_overquota(zfsvfs_t *zfsvfs, boolean_t isgroup, uint64_t fuid)
817 817 {
818 818 char buf[32];
819 819 uint64_t used, quota, usedobj, quotaobj;
820 820 int err;
821 821
822 822 usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
823 823 quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
824 824
825 825 if (quotaobj == 0 || zfsvfs->z_replay)
826 826 return (B_FALSE);
827 827
828 828 (void) sprintf(buf, "%llx", (longlong_t)fuid);
829 829 err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, "a);
830 830 if (err != 0)
831 831 return (B_FALSE);
832 832
833 833 err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used);
834 834 if (err != 0)
835 835 return (B_FALSE);
836 836 return (used >= quota);
837 837 }
838 838
839 839 boolean_t
840 840 zfs_owner_overquota(zfsvfs_t *zfsvfs, znode_t *zp, boolean_t isgroup)
841 841 {
842 842 uint64_t fuid;
843 843 uint64_t quotaobj;
844 844
845 845 quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
846 846
847 847 fuid = isgroup ? zp->z_gid : zp->z_uid;
848 848
849 849 if (quotaobj == 0 || zfsvfs->z_replay)
850 850 return (B_FALSE);
851 851
852 852 return (zfs_fuid_overquota(zfsvfs, isgroup, fuid));
853 853 }
854 854
855 855 /*
856 856 * Associate this zfsvfs with the given objset, which must be owned.
857 857 * This will cache a bunch of on-disk state from the objset in the
858 858 * zfsvfs.
859 859 */
860 860 static int
861 861 zfsvfs_init(zfsvfs_t *zfsvfs, objset_t *os)
862 862 {
863 863 int error;
864 864 uint64_t val;
865 865
866 866 zfsvfs->z_max_blksz = SPA_OLD_MAXBLOCKSIZE;
867 867 zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
868 868 zfsvfs->z_os = os;
869 869
870 870 error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
871 871 if (error != 0)
872 872 return (error);
873 873 if (zfsvfs->z_version >
874 874 zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) {
875 875 (void) printf("Can't mount a version %lld file system "
876 876 "on a version %lld pool\n. Pool must be upgraded to mount "
877 877 "this file system.", (u_longlong_t)zfsvfs->z_version,
878 878 (u_longlong_t)spa_version(dmu_objset_spa(os)));
879 879 return (SET_ERROR(ENOTSUP));
880 880 }
881 881 error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &val);
882 882 if (error != 0)
883 883 return (error);
884 884 zfsvfs->z_norm = (int)val;
885 885
886 886 error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &val);
887 887 if (error != 0)
888 888 return (error);
889 889 zfsvfs->z_utf8 = (val != 0);
890 890
891 891 error = zfs_get_zplprop(os, ZFS_PROP_CASE, &val);
892 892 if (error != 0)
893 893 return (error);
894 894 zfsvfs->z_case = (uint_t)val;
895 895
896 896 /*
897 897 * Fold case on file systems that are always or sometimes case
898 898 * insensitive.
899 899 */
900 900 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
901 901 zfsvfs->z_case == ZFS_CASE_MIXED)
902 902 zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
903 903
904 904 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
905 905 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
906 906
907 907 uint64_t sa_obj = 0;
908 908 if (zfsvfs->z_use_sa) {
909 909 /* should either have both of these objects or none */
910 910 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
911 911 &sa_obj);
912 912 if (error != 0)
913 913 return (error);
914 914 }
915 915
916 916 error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
917 917 &zfsvfs->z_attr_table);
918 918 if (error != 0)
919 919 return (error);
920 920
921 921 if (zfsvfs->z_version >= ZPL_VERSION_SA)
922 922 sa_register_update_callback(os, zfs_sa_upgrade);
923 923
924 924 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
925 925 &zfsvfs->z_root);
926 926 if (error != 0)
927 927 return (error);
928 928 ASSERT(zfsvfs->z_root != 0);
929 929
930 930 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
931 931 &zfsvfs->z_unlinkedobj);
932 932 if (error != 0)
933 933 return (error);
934 934
935 935 error = zap_lookup(os, MASTER_NODE_OBJ,
936 936 zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
937 937 8, 1, &zfsvfs->z_userquota_obj);
938 938 if (error == ENOENT)
939 939 zfsvfs->z_userquota_obj = 0;
940 940 else if (error != 0)
941 941 return (error);
942 942
943 943 error = zap_lookup(os, MASTER_NODE_OBJ,
944 944 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
945 945 8, 1, &zfsvfs->z_groupquota_obj);
946 946 if (error == ENOENT)
947 947 zfsvfs->z_groupquota_obj = 0;
948 948 else if (error != 0)
949 949 return (error);
950 950
951 951 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
952 952 &zfsvfs->z_fuid_obj);
953 953 if (error == ENOENT)
954 954 zfsvfs->z_fuid_obj = 0;
955 955 else if (error != 0)
956 956 return (error);
957 957
958 958 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
959 959 &zfsvfs->z_shares_dir);
960 960 if (error == ENOENT)
961 961 zfsvfs->z_shares_dir = 0;
962 962 else if (error != 0)
963 963 return (error);
964 964
965 965 return (0);
966 966 }
967 967
968 968 int
969 969 zfsvfs_create(const char *osname, zfsvfs_t **zfvp)
970 970 {
971 971 objset_t *os;
972 972 zfsvfs_t *zfsvfs;
973 973 int error;
974 974
975 975 zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
976 976
977 977 /*
978 978 * We claim to always be readonly so we can open snapshots;
979 979 * other ZPL code will prevent us from writing to snapshots.
980 980 */
981 981 error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zfsvfs, &os);
982 982 if (error) {
983 983 kmem_free(zfsvfs, sizeof (zfsvfs_t));
984 984 return (error);
985 985 }
986 986
987 987 zfsvfs->z_vfs = NULL;
988 988 zfsvfs->z_parent = zfsvfs;
989 989
990 990 mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
991 991 mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL);
992 992 list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
993 993 offsetof(znode_t, z_link_node));
994 994 rrm_init(&zfsvfs->z_teardown_lock, B_FALSE);
995 995 rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
996 996 rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
997 997 for (int i = 0; i != ZFS_OBJ_MTX_SZ; i++)
998 998 mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
999 999
1000 1000 error = zfsvfs_init(zfsvfs, os);
1001 1001 if (error != 0) {
1002 1002 dmu_objset_disown(os, zfsvfs);
1003 1003 *zfvp = NULL;
1004 1004 kmem_free(zfsvfs, sizeof (zfsvfs_t));
1005 1005 return (error);
1006 1006 }
1007 1007
1008 1008 *zfvp = zfsvfs;
1009 1009 return (0);
1010 1010 }
1011 1011
1012 1012 static int
1013 1013 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
1014 1014 {
1015 1015 int error;
1016 1016
1017 1017 error = zfs_register_callbacks(zfsvfs->z_vfs);
1018 1018 if (error)
1019 1019 return (error);
1020 1020
1021 1021 /*
1022 1022 * Set the objset user_ptr to track its zfsvfs.
1023 1023 */
1024 1024 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1025 1025 dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1026 1026 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1027 1027
1028 1028 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data);
1029 1029
1030 1030 /*
1031 1031 * If we are not mounting (ie: online recv), then we don't
1032 1032 * have to worry about replaying the log as we blocked all
1033 1033 * operations out since we closed the ZIL.
1034 1034 */
1035 1035 if (mounting) {
1036 1036 boolean_t readonly;
1037 1037
1038 1038 /*
1039 1039 * During replay we remove the read only flag to
1040 1040 * allow replays to succeed.
1041 1041 */
1042 1042 readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY;
1043 1043 if (readonly != 0)
1044 1044 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
1045 1045 else
1046 1046 zfs_unlinked_drain(zfsvfs);
1047 1047
1048 1048 /*
1049 1049 * Parse and replay the intent log.
1050 1050 *
1051 1051 * Because of ziltest, this must be done after
1052 1052 * zfs_unlinked_drain(). (Further note: ziltest
1053 1053 * doesn't use readonly mounts, where
1054 1054 * zfs_unlinked_drain() isn't called.) This is because
1055 1055 * ziltest causes spa_sync() to think it's committed,
1056 1056 * but actually it is not, so the intent log contains
1057 1057 * many txg's worth of changes.
1058 1058 *
1059 1059 * In particular, if object N is in the unlinked set in
1060 1060 * the last txg to actually sync, then it could be
1061 1061 * actually freed in a later txg and then reallocated
1062 1062 * in a yet later txg. This would write a "create
1063 1063 * object N" record to the intent log. Normally, this
1064 1064 * would be fine because the spa_sync() would have
1065 1065 * written out the fact that object N is free, before
1066 1066 * we could write the "create object N" intent log
1067 1067 * record.
1068 1068 *
1069 1069 * But when we are in ziltest mode, we advance the "open
1070 1070 * txg" without actually spa_sync()-ing the changes to
1071 1071 * disk. So we would see that object N is still
1072 1072 * allocated and in the unlinked set, and there is an
1073 1073 * intent log record saying to allocate it.
1074 1074 */
1075 1075 if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) {
1076 1076 if (zil_replay_disable) {
1077 1077 zil_destroy(zfsvfs->z_log, B_FALSE);
1078 1078 } else {
1079 1079 zfsvfs->z_replay = B_TRUE;
1080 1080 zil_replay(zfsvfs->z_os, zfsvfs,
1081 1081 zfs_replay_vector);
1082 1082 zfsvfs->z_replay = B_FALSE;
1083 1083 }
1084 1084 }
1085 1085 zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */
1086 1086 }
1087 1087
1088 1088 return (0);
1089 1089 }
1090 1090
1091 1091 void
1092 1092 zfsvfs_free(zfsvfs_t *zfsvfs)
1093 1093 {
1094 1094 int i;
1095 1095 extern krwlock_t zfsvfs_lock; /* in zfs_znode.c */
1096 1096
1097 1097 /*
1098 1098 * This is a barrier to prevent the filesystem from going away in
1099 1099 * zfs_znode_move() until we can safely ensure that the filesystem is
1100 1100 * not unmounted. We consider the filesystem valid before the barrier
1101 1101 * and invalid after the barrier.
1102 1102 */
1103 1103 rw_enter(&zfsvfs_lock, RW_READER);
1104 1104 rw_exit(&zfsvfs_lock);
1105 1105
1106 1106 zfs_fuid_destroy(zfsvfs);
1107 1107
1108 1108 mutex_destroy(&zfsvfs->z_znodes_lock);
1109 1109 mutex_destroy(&zfsvfs->z_lock);
1110 1110 list_destroy(&zfsvfs->z_all_znodes);
1111 1111 rrm_destroy(&zfsvfs->z_teardown_lock);
1112 1112 rw_destroy(&zfsvfs->z_teardown_inactive_lock);
1113 1113 rw_destroy(&zfsvfs->z_fuid_lock);
1114 1114 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1115 1115 mutex_destroy(&zfsvfs->z_hold_mtx[i]);
1116 1116 kmem_free(zfsvfs, sizeof (zfsvfs_t));
1117 1117 }
1118 1118
1119 1119 static void
1120 1120 zfs_set_fuid_feature(zfsvfs_t *zfsvfs)
1121 1121 {
1122 1122 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
1123 1123 if (zfsvfs->z_vfs) {
1124 1124 if (zfsvfs->z_use_fuids) {
1125 1125 vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1126 1126 vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1127 1127 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1128 1128 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1129 1129 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1130 1130 vfs_set_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
1131 1131 } else {
1132 1132 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1133 1133 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1134 1134 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1135 1135 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1136 1136 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1137 1137 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
1138 1138 }
1139 1139 }
1140 1140 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
1141 1141 }
1142 1142
1143 1143 static int
1144 1144 zfs_domount(vfs_t *vfsp, char *osname)
1145 1145 {
1146 1146 dev_t mount_dev;
1147 1147 uint64_t recordsize, fsid_guid;
1148 1148 int error = 0;
1149 1149 zfsvfs_t *zfsvfs;
1150 1150
1151 1151 ASSERT(vfsp);
1152 1152 ASSERT(osname);
1153 1153
1154 1154 error = zfsvfs_create(osname, &zfsvfs);
1155 1155 if (error)
1156 1156 return (error);
1157 1157 zfsvfs->z_vfs = vfsp;
1158 1158
1159 1159 /* Initialize the generic filesystem structure. */
1160 1160 vfsp->vfs_bcount = 0;
1161 1161 vfsp->vfs_data = NULL;
1162 1162
1163 1163 if (zfs_create_unique_device(&mount_dev) == -1) {
1164 1164 error = SET_ERROR(ENODEV);
1165 1165 goto out;
1166 1166 }
1167 1167 ASSERT(vfs_devismounted(mount_dev) == 0);
1168 1168
1169 1169 if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize,
1170 1170 NULL))
1171 1171 goto out;
1172 1172
1173 1173 vfsp->vfs_dev = mount_dev;
1174 1174 vfsp->vfs_fstype = zfsfstype;
1175 1175 vfsp->vfs_bsize = recordsize;
1176 1176 vfsp->vfs_flag |= VFS_NOTRUNC;
1177 1177 vfsp->vfs_data = zfsvfs;
1178 1178
1179 1179 /*
1180 1180 * The fsid is 64 bits, composed of an 8-bit fs type, which
1181 1181 * separates our fsid from any other filesystem types, and a
1182 1182 * 56-bit objset unique ID. The objset unique ID is unique to
1183 1183 * all objsets open on this system, provided by unique_create().
1184 1184 * The 8-bit fs type must be put in the low bits of fsid[1]
1185 1185 * because that's where other Solaris filesystems put it.
1186 1186 */
1187 1187 fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os);
1188 1188 ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0);
1189 1189 vfsp->vfs_fsid.val[0] = fsid_guid;
1190 1190 vfsp->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) |
1191 1191 zfsfstype & 0xFF;
1192 1192
1193 1193 /*
1194 1194 * Set features for file system.
1195 1195 */
1196 1196 zfs_set_fuid_feature(zfsvfs);
1197 1197 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
1198 1198 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1199 1199 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1200 1200 vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE);
1201 1201 } else if (zfsvfs->z_case == ZFS_CASE_MIXED) {
1202 1202 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1203 1203 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1204 1204 }
1205 1205 vfs_set_feature(vfsp, VFSFT_ZEROCOPY_SUPPORTED);
1206 1206
1207 1207 if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
1208 1208 uint64_t pval;
1209 1209
1210 1210 atime_changed_cb(zfsvfs, B_FALSE);
1211 1211 readonly_changed_cb(zfsvfs, B_TRUE);
1212 1212 if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL))
1213 1213 goto out;
1214 1214 xattr_changed_cb(zfsvfs, pval);
1215 1215 zfsvfs->z_issnap = B_TRUE;
1216 1216 zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED;
1217 1217
1218 1218 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1219 1219 dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1220 1220 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1221 1221 } else {
1222 1222 error = zfsvfs_setup(zfsvfs, B_TRUE);
1223 1223 }
1224 1224
1225 1225 if (!zfsvfs->z_issnap)
1226 1226 zfsctl_create(zfsvfs);
1227 1227 out:
1228 1228 if (error) {
1229 1229 dmu_objset_disown(zfsvfs->z_os, zfsvfs);
1230 1230 zfsvfs_free(zfsvfs);
1231 1231 } else {
1232 1232 atomic_inc_32(&zfs_active_fs_count);
1233 1233 }
1234 1234
1235 1235 return (error);
1236 1236 }
1237 1237
1238 1238 void
1239 1239 zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
1240 1240 {
1241 1241 objset_t *os = zfsvfs->z_os;
1242 1242
1243 1243 if (!dmu_objset_is_snapshot(os))
1244 1244 dsl_prop_unregister_all(dmu_objset_ds(os), zfsvfs);
1245 1245 }
1246 1246
1247 1247 /*
1248 1248 * Convert a decimal digit string to a uint64_t integer.
1249 1249 */
1250 1250 static int
1251 1251 str_to_uint64(char *str, uint64_t *objnum)
1252 1252 {
1253 1253 uint64_t num = 0;
1254 1254
1255 1255 while (*str) {
1256 1256 if (*str < '0' || *str > '9')
1257 1257 return (SET_ERROR(EINVAL));
1258 1258
1259 1259 num = num*10 + *str++ - '0';
1260 1260 }
1261 1261
1262 1262 *objnum = num;
1263 1263 return (0);
1264 1264 }
1265 1265
1266 1266 /*
1267 1267 * The boot path passed from the boot loader is in the form of
1268 1268 * "rootpool-name/root-filesystem-object-number'. Convert this
1269 1269 * string to a dataset name: "rootpool-name/root-filesystem-name".
1270 1270 */
1271 1271 static int
1272 1272 zfs_parse_bootfs(char *bpath, char *outpath)
1273 1273 {
1274 1274 char *slashp;
1275 1275 uint64_t objnum;
1276 1276 int error;
1277 1277
1278 1278 if (*bpath == 0 || *bpath == '/')
1279 1279 return (SET_ERROR(EINVAL));
1280 1280
1281 1281 (void) strcpy(outpath, bpath);
1282 1282
1283 1283 slashp = strchr(bpath, '/');
1284 1284
1285 1285 /* if no '/', just return the pool name */
1286 1286 if (slashp == NULL) {
1287 1287 return (0);
1288 1288 }
1289 1289
1290 1290 /* if not a number, just return the root dataset name */
1291 1291 if (str_to_uint64(slashp+1, &objnum)) {
1292 1292 return (0);
1293 1293 }
1294 1294
1295 1295 *slashp = '\0';
1296 1296 error = dsl_dsobj_to_dsname(bpath, objnum, outpath);
1297 1297 *slashp = '/';
1298 1298
1299 1299 return (error);
1300 1300 }
1301 1301
1302 1302 /*
1303 1303 * Check that the hex label string is appropriate for the dataset being
1304 1304 * mounted into the global_zone proper.
1305 1305 *
1306 1306 * Return an error if the hex label string is not default or
1307 1307 * admin_low/admin_high. For admin_low labels, the corresponding
1308 1308 * dataset must be readonly.
1309 1309 */
1310 1310 int
1311 1311 zfs_check_global_label(const char *dsname, const char *hexsl)
1312 1312 {
1313 1313 if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1314 1314 return (0);
1315 1315 if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
1316 1316 return (0);
1317 1317 if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
1318 1318 /* must be readonly */
1319 1319 uint64_t rdonly;
1320 1320
1321 1321 if (dsl_prop_get_integer(dsname,
1322 1322 zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
1323 1323 return (SET_ERROR(EACCES));
1324 1324 return (rdonly ? 0 : EACCES);
1325 1325 }
1326 1326 return (SET_ERROR(EACCES));
1327 1327 }
1328 1328
1329 1329 /*
1330 1330 * Determine whether the mount is allowed according to MAC check.
1331 1331 * by comparing (where appropriate) label of the dataset against
1332 1332 * the label of the zone being mounted into. If the dataset has
1333 1333 * no label, create one.
1334 1334 *
1335 1335 * Returns 0 if access allowed, error otherwise (e.g. EACCES)
1336 1336 */
1337 1337 static int
1338 1338 zfs_mount_label_policy(vfs_t *vfsp, char *osname)
1339 1339 {
1340 1340 int error, retv;
1341 1341 zone_t *mntzone = NULL;
1342 1342 ts_label_t *mnt_tsl;
1343 1343 bslabel_t *mnt_sl;
1344 1344 bslabel_t ds_sl;
1345 1345 char ds_hexsl[MAXNAMELEN];
1346 1346
1347 1347 retv = EACCES; /* assume the worst */
1348 1348
1349 1349 /*
1350 1350 * Start by getting the dataset label if it exists.
1351 1351 */
1352 1352 error = dsl_prop_get(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1353 1353 1, sizeof (ds_hexsl), &ds_hexsl, NULL);
1354 1354 if (error)
1355 1355 return (SET_ERROR(EACCES));
1356 1356
1357 1357 /*
1358 1358 * If labeling is NOT enabled, then disallow the mount of datasets
1359 1359 * which have a non-default label already. No other label checks
1360 1360 * are needed.
1361 1361 */
1362 1362 if (!is_system_labeled()) {
1363 1363 if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1364 1364 return (0);
1365 1365 return (SET_ERROR(EACCES));
1366 1366 }
1367 1367
1368 1368 /*
1369 1369 * Get the label of the mountpoint. If mounting into the global
1370 1370 * zone (i.e. mountpoint is not within an active zone and the
1371 1371 * zoned property is off), the label must be default or
1372 1372 * admin_low/admin_high only; no other checks are needed.
1373 1373 */
1374 1374 mntzone = zone_find_by_any_path(refstr_value(vfsp->vfs_mntpt), B_FALSE);
1375 1375 if (mntzone->zone_id == GLOBAL_ZONEID) {
1376 1376 uint64_t zoned;
1377 1377
1378 1378 zone_rele(mntzone);
1379 1379
1380 1380 if (dsl_prop_get_integer(osname,
1381 1381 zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL))
1382 1382 return (SET_ERROR(EACCES));
1383 1383 if (!zoned)
1384 1384 return (zfs_check_global_label(osname, ds_hexsl));
1385 1385 else
1386 1386 /*
1387 1387 * This is the case of a zone dataset being mounted
1388 1388 * initially, before the zone has been fully created;
1389 1389 * allow this mount into global zone.
1390 1390 */
1391 1391 return (0);
1392 1392 }
1393 1393
1394 1394 mnt_tsl = mntzone->zone_slabel;
1395 1395 ASSERT(mnt_tsl != NULL);
1396 1396 label_hold(mnt_tsl);
1397 1397 mnt_sl = label2bslabel(mnt_tsl);
1398 1398
1399 1399 if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) {
1400 1400 /*
1401 1401 * The dataset doesn't have a real label, so fabricate one.
1402 1402 */
1403 1403 char *str = NULL;
1404 1404
1405 1405 if (l_to_str_internal(mnt_sl, &str) == 0 &&
1406 1406 dsl_prop_set_string(osname,
1407 1407 zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1408 1408 ZPROP_SRC_LOCAL, str) == 0)
1409 1409 retv = 0;
1410 1410 if (str != NULL)
1411 1411 kmem_free(str, strlen(str) + 1);
1412 1412 } else if (hexstr_to_label(ds_hexsl, &ds_sl) == 0) {
1413 1413 /*
1414 1414 * Now compare labels to complete the MAC check. If the
1415 1415 * labels are equal then allow access. If the mountpoint
1416 1416 * label dominates the dataset label, allow readonly access.
1417 1417 * Otherwise, access is denied.
1418 1418 */
1419 1419 if (blequal(mnt_sl, &ds_sl))
1420 1420 retv = 0;
1421 1421 else if (bldominates(mnt_sl, &ds_sl)) {
1422 1422 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
1423 1423 retv = 0;
1424 1424 }
1425 1425 }
1426 1426
1427 1427 label_rele(mnt_tsl);
1428 1428 zone_rele(mntzone);
1429 1429 return (retv);
1430 1430 }
1431 1431
1432 1432 static int
1433 1433 zfs_mountroot(vfs_t *vfsp, enum whymountroot why)
1434 1434 {
1435 1435 int error = 0;
1436 1436 static int zfsrootdone = 0;
1437 1437 zfsvfs_t *zfsvfs = NULL;
1438 1438 znode_t *zp = NULL;
1439 1439 vnode_t *vp = NULL;
1440 1440 char *zfs_bootfs;
1441 1441 char *zfs_devid;
1442 1442
1443 1443 ASSERT(vfsp);
1444 1444
1445 1445 /*
1446 1446 * The filesystem that we mount as root is defined in the
1447 1447 * boot property "zfs-bootfs" with a format of
1448 1448 * "poolname/root-dataset-objnum".
1449 1449 */
1450 1450 if (why == ROOT_INIT) {
1451 1451 if (zfsrootdone++)
1452 1452 return (SET_ERROR(EBUSY));
1453 1453 /*
1454 1454 * the process of doing a spa_load will require the
1455 1455 * clock to be set before we could (for example) do
1456 1456 * something better by looking at the timestamp on
1457 1457 * an uberblock, so just set it to -1.
1458 1458 */
1459 1459 clkset(-1);
1460 1460
1461 1461 if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) {
1462 1462 cmn_err(CE_NOTE, "spa_get_bootfs: can not get "
1463 1463 "bootfs name");
1464 1464 return (SET_ERROR(EINVAL));
1465 1465 }
1466 1466 zfs_devid = spa_get_bootprop("diskdevid");
1467 1467 error = spa_import_rootpool(rootfs.bo_name, zfs_devid);
1468 1468 if (zfs_devid)
1469 1469 spa_free_bootprop(zfs_devid);
1470 1470 if (error) {
1471 1471 spa_free_bootprop(zfs_bootfs);
1472 1472 cmn_err(CE_NOTE, "spa_import_rootpool: error %d",
1473 1473 error);
1474 1474 return (error);
1475 1475 }
1476 1476 if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) {
1477 1477 spa_free_bootprop(zfs_bootfs);
1478 1478 cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d",
1479 1479 error);
1480 1480 return (error);
1481 1481 }
1482 1482
1483 1483 spa_free_bootprop(zfs_bootfs);
1484 1484
1485 1485 if (error = vfs_lock(vfsp))
1486 1486 return (error);
1487 1487
1488 1488 if (error = zfs_domount(vfsp, rootfs.bo_name)) {
1489 1489 cmn_err(CE_NOTE, "zfs_domount: error %d", error);
1490 1490 goto out;
1491 1491 }
1492 1492
1493 1493 zfsvfs = (zfsvfs_t *)vfsp->vfs_data;
1494 1494 ASSERT(zfsvfs);
1495 1495 if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) {
1496 1496 cmn_err(CE_NOTE, "zfs_zget: error %d", error);
1497 1497 goto out;
1498 1498 }
1499 1499
1500 1500 vp = ZTOV(zp);
1501 1501 mutex_enter(&vp->v_lock);
1502 1502 vp->v_flag |= VROOT;
1503 1503 mutex_exit(&vp->v_lock);
1504 1504 rootvp = vp;
1505 1505
1506 1506 /*
1507 1507 * Leave rootvp held. The root file system is never unmounted.
1508 1508 */
1509 1509
1510 1510 vfs_add((struct vnode *)0, vfsp,
1511 1511 (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0);
1512 1512 out:
1513 1513 vfs_unlock(vfsp);
1514 1514 return (error);
1515 1515 } else if (why == ROOT_REMOUNT) {
1516 1516 readonly_changed_cb(vfsp->vfs_data, B_FALSE);
1517 1517 vfsp->vfs_flag |= VFS_REMOUNT;
1518 1518
1519 1519 /* refresh mount options */
1520 1520 zfs_unregister_callbacks(vfsp->vfs_data);
1521 1521 return (zfs_register_callbacks(vfsp));
1522 1522
1523 1523 } else if (why == ROOT_UNMOUNT) {
1524 1524 zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data);
1525 1525 (void) zfs_sync(vfsp, 0, 0);
1526 1526 return (0);
1527 1527 }
1528 1528
1529 1529 /*
1530 1530 * if "why" is equal to anything else other than ROOT_INIT,
1531 1531 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it.
1532 1532 */
1533 1533 return (SET_ERROR(ENOTSUP));
1534 1534 }
1535 1535
1536 1536 /*ARGSUSED*/
1537 1537 static int
1538 1538 zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
1539 1539 {
1540 1540 char *osname;
1541 1541 pathname_t spn;
1542 1542 int error = 0;
1543 1543 uio_seg_t fromspace = (uap->flags & MS_SYSSPACE) ?
1544 1544 UIO_SYSSPACE : UIO_USERSPACE;
1545 1545 int canwrite;
1546 1546
1547 1547 if (mvp->v_type != VDIR)
1548 1548 return (SET_ERROR(ENOTDIR));
1549 1549
1550 1550 mutex_enter(&mvp->v_lock);
1551 1551 if ((uap->flags & MS_REMOUNT) == 0 &&
1552 1552 (uap->flags & MS_OVERLAY) == 0 &&
1553 1553 (mvp->v_count != 1 || (mvp->v_flag & VROOT))) {
1554 1554 mutex_exit(&mvp->v_lock);
1555 1555 return (SET_ERROR(EBUSY));
1556 1556 }
1557 1557 mutex_exit(&mvp->v_lock);
1558 1558
1559 1559 /*
1560 1560 * ZFS does not support passing unparsed data in via MS_DATA.
1561 1561 * Users should use the MS_OPTIONSTR interface; this means
1562 1562 * that all option parsing is already done and the options struct
1563 1563 * can be interrogated.
1564 1564 */
1565 1565 if ((uap->flags & MS_DATA) && uap->datalen > 0)
1566 1566 return (SET_ERROR(EINVAL));
1567 1567
1568 1568 /*
1569 1569 * Get the objset name (the "special" mount argument).
1570 1570 */
1571 1571 if (error = pn_get(uap->spec, fromspace, &spn))
1572 1572 return (error);
1573 1573
1574 1574 osname = spn.pn_path;
1575 1575
1576 1576 /*
1577 1577 * Check for mount privilege?
1578 1578 *
1579 1579 * If we don't have privilege then see if
1580 1580 * we have local permission to allow it
1581 1581 */
1582 1582 error = secpolicy_fs_mount(cr, mvp, vfsp);
1583 1583 if (error) {
1584 1584 if (dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) == 0) {
1585 1585 vattr_t vattr;
1586 1586
1587 1587 /*
1588 1588 * Make sure user is the owner of the mount point
1589 1589 * or has sufficient privileges.
1590 1590 */
1591 1591
1592 1592 vattr.va_mask = AT_UID;
1593 1593
1594 1594 if (VOP_GETATTR(mvp, &vattr, 0, cr, NULL)) {
1595 1595 goto out;
1596 1596 }
1597 1597
1598 1598 if (secpolicy_vnode_owner(cr, vattr.va_uid) != 0 &&
1599 1599 VOP_ACCESS(mvp, VWRITE, 0, cr, NULL) != 0) {
1600 1600 goto out;
1601 1601 }
1602 1602 secpolicy_fs_mount_clearopts(cr, vfsp);
1603 1603 } else {
1604 1604 goto out;
1605 1605 }
1606 1606 }
1607 1607
1608 1608 /*
1609 1609 * Refuse to mount a filesystem if we are in a local zone and the
1610 1610 * dataset is not visible.
1611 1611 */
1612 1612 if (!INGLOBALZONE(curproc) &&
1613 1613 (!zone_dataset_visible(osname, &canwrite) || !canwrite)) {
1614 1614 error = SET_ERROR(EPERM);
1615 1615 goto out;
1616 1616 }
1617 1617
1618 1618 error = zfs_mount_label_policy(vfsp, osname);
1619 1619 if (error)
1620 1620 goto out;
1621 1621
1622 1622 /*
1623 1623 * When doing a remount, we simply refresh our temporary properties
1624 1624 * according to those options set in the current VFS options.
1625 1625 */
1626 1626 if (uap->flags & MS_REMOUNT) {
1627 1627 /* refresh mount options */
1628 1628 zfs_unregister_callbacks(vfsp->vfs_data);
1629 1629 error = zfs_register_callbacks(vfsp);
1630 1630 goto out;
1631 1631 }
1632 1632
1633 1633 error = zfs_domount(vfsp, osname);
1634 1634
1635 1635 /*
1636 1636 * Add an extra VFS_HOLD on our parent vfs so that it can't
1637 1637 * disappear due to a forced unmount.
1638 1638 */
1639 1639 if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap)
1640 1640 VFS_HOLD(mvp->v_vfsp);
1641 1641
1642 1642 out:
1643 1643 pn_free(&spn);
1644 1644 return (error);
1645 1645 }
1646 1646
1647 1647 static int
1648 1648 zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp)
1649 1649 {
1650 1650 zfsvfs_t *zfsvfs = vfsp->vfs_data;
1651 1651 dev32_t d32;
1652 1652 uint64_t refdbytes, availbytes, usedobjs, availobjs;
1653 1653
1654 1654 ZFS_ENTER(zfsvfs);
1655 1655
1656 1656 dmu_objset_space(zfsvfs->z_os,
1657 1657 &refdbytes, &availbytes, &usedobjs, &availobjs);
1658 1658
1659 1659 /*
1660 1660 * The underlying storage pool actually uses multiple block sizes.
1661 1661 * We report the fragsize as the smallest block size we support,
1662 1662 * and we report our blocksize as the filesystem's maximum blocksize.
1663 1663 */
1664 1664 statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT;
1665 1665 statp->f_bsize = zfsvfs->z_max_blksz;
1666 1666
1667 1667 /*
1668 1668 * The following report "total" blocks of various kinds in the
1669 1669 * file system, but reported in terms of f_frsize - the
1670 1670 * "fragment" size.
1671 1671 */
1672 1672
1673 1673 statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT;
1674 1674 statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT;
1675 1675 statp->f_bavail = statp->f_bfree; /* no root reservation */
1676 1676
1677 1677 /*
1678 1678 * statvfs() should really be called statufs(), because it assumes
1679 1679 * static metadata. ZFS doesn't preallocate files, so the best
1680 1680 * we can do is report the max that could possibly fit in f_files,
1681 1681 * and that minus the number actually used in f_ffree.
1682 1682 * For f_ffree, report the smaller of the number of object available
1683 1683 * and the number of blocks (each object will take at least a block).
1684 1684 */
1685 1685 statp->f_ffree = MIN(availobjs, statp->f_bfree);
1686 1686 statp->f_favail = statp->f_ffree; /* no "root reservation" */
1687 1687 statp->f_files = statp->f_ffree + usedobjs;
1688 1688
1689 1689 (void) cmpldev(&d32, vfsp->vfs_dev);
1690 1690 statp->f_fsid = d32;
1691 1691
1692 1692 /*
1693 1693 * We're a zfs filesystem.
1694 1694 */
1695 1695 (void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name);
1696 1696
1697 1697 statp->f_flag = vf_to_stf(vfsp->vfs_flag);
1698 1698
1699 1699 statp->f_namemax = MAXNAMELEN - 1;
1700 1700
1701 1701 /*
1702 1702 * We have all of 32 characters to stuff a string here.
1703 1703 * Is there anything useful we could/should provide?
1704 1704 */
1705 1705 bzero(statp->f_fstr, sizeof (statp->f_fstr));
1706 1706
1707 1707 ZFS_EXIT(zfsvfs);
1708 1708 return (0);
1709 1709 }
1710 1710
1711 1711 static int
1712 1712 zfs_root(vfs_t *vfsp, vnode_t **vpp)
1713 1713 {
1714 1714 zfsvfs_t *zfsvfs = vfsp->vfs_data;
1715 1715 znode_t *rootzp;
1716 1716 int error;
1717 1717
1718 1718 ZFS_ENTER(zfsvfs);
1719 1719
1720 1720 error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
1721 1721 if (error == 0)
1722 1722 *vpp = ZTOV(rootzp);
1723 1723
1724 1724 ZFS_EXIT(zfsvfs);
1725 1725 return (error);
1726 1726 }
1727 1727
1728 1728 /*
1729 1729 * Teardown the zfsvfs::z_os.
1730 1730 *
1731 1731 * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock'
1732 1732 * and 'z_teardown_inactive_lock' held.
1733 1733 */
1734 1734 static int
1735 1735 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
1736 1736 {
1737 1737 znode_t *zp;
1738 1738
1739 1739 rrm_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
1740 1740
1741 1741 if (!unmounting) {
1742 1742 /*
1743 1743 * We purge the parent filesystem's vfsp as the parent
1744 1744 * filesystem and all of its snapshots have their vnode's
1745 1745 * v_vfsp set to the parent's filesystem's vfsp. Note,
1746 1746 * 'z_parent' is self referential for non-snapshots.
1747 1747 */
1748 1748 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1749 1749 }
1750 1750
1751 1751 /*
1752 1752 * Close the zil. NB: Can't close the zil while zfs_inactive
1753 1753 * threads are blocked as zil_close can call zfs_inactive.
1754 1754 */
1755 1755 if (zfsvfs->z_log) {
1756 1756 zil_close(zfsvfs->z_log);
1757 1757 zfsvfs->z_log = NULL;
1758 1758 }
1759 1759
1760 1760 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER);
1761 1761
1762 1762 /*
1763 1763 * If we are not unmounting (ie: online recv) and someone already
1764 1764 * unmounted this file system while we were doing the switcheroo,
1765 1765 * or a reopen of z_os failed then just bail out now.
1766 1766 */
1767 1767 if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
1768 1768 rw_exit(&zfsvfs->z_teardown_inactive_lock);
1769 1769 rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
1770 1770 return (SET_ERROR(EIO));
1771 1771 }
1772 1772
1773 1773 /*
1774 1774 * At this point there are no vops active, and any new vops will
1775 1775 * fail with EIO since we have z_teardown_lock for writer (only
1776 1776 * relavent for forced unmount).
1777 1777 *
1778 1778 * Release all holds on dbufs.
1779 1779 */
1780 1780 mutex_enter(&zfsvfs->z_znodes_lock);
1781 1781 for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
1782 1782 zp = list_next(&zfsvfs->z_all_znodes, zp))
1783 1783 if (zp->z_sa_hdl) {
1784 1784 ASSERT(ZTOV(zp)->v_count > 0);
1785 1785 zfs_znode_dmu_fini(zp);
1786 1786 }
1787 1787 mutex_exit(&zfsvfs->z_znodes_lock);
1788 1788
1789 1789 /*
1790 1790 * If we are unmounting, set the unmounted flag and let new vops
1791 1791 * unblock. zfs_inactive will have the unmounted behavior, and all
1792 1792 * other vops will fail with EIO.
1793 1793 */
1794 1794 if (unmounting) {
1795 1795 zfsvfs->z_unmounted = B_TRUE;
1796 1796 rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
1797 1797 rw_exit(&zfsvfs->z_teardown_inactive_lock);
1798 1798 }
1799 1799
1800 1800 /*
1801 1801 * z_os will be NULL if there was an error in attempting to reopen
1802 1802 * zfsvfs, so just return as the properties had already been
1803 1803 * unregistered and cached data had been evicted before.
1804 1804 */
1805 1805 if (zfsvfs->z_os == NULL)
1806 1806 return (0);
1807 1807
1808 1808 /*
1809 1809 * Unregister properties.
1810 1810 */
1811 1811 zfs_unregister_callbacks(zfsvfs);
1812 1812
1813 1813 /*
1814 1814 * Evict cached data
1815 1815 */
1816 1816 if (dsl_dataset_is_dirty(dmu_objset_ds(zfsvfs->z_os)) &&
1817 1817 !(zfsvfs->z_vfs->vfs_flag & VFS_RDONLY))
1818 1818 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1819 1819 dmu_objset_evict_dbufs(zfsvfs->z_os);
1820 1820
1821 1821 return (0);
1822 1822 }
1823 1823
1824 1824 /*ARGSUSED*/
1825 1825 static int
1826 1826 zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr)
1827 1827 {
1828 1828 zfsvfs_t *zfsvfs = vfsp->vfs_data;
1829 1829 objset_t *os;
1830 1830 int ret;
1831 1831
1832 1832 ret = secpolicy_fs_unmount(cr, vfsp);
1833 1833 if (ret) {
1834 1834 if (dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource),
1835 1835 ZFS_DELEG_PERM_MOUNT, cr))
1836 1836 return (ret);
1837 1837 }
1838 1838
1839 1839 /*
1840 1840 * We purge the parent filesystem's vfsp as the parent filesystem
1841 1841 * and all of its snapshots have their vnode's v_vfsp set to the
1842 1842 * parent's filesystem's vfsp. Note, 'z_parent' is self
1843 1843 * referential for non-snapshots.
1844 1844 */
1845 1845 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1846 1846
1847 1847 /*
1848 1848 * Unmount any snapshots mounted under .zfs before unmounting the
1849 1849 * dataset itself.
1850 1850 */
1851 1851 if (zfsvfs->z_ctldir != NULL &&
1852 1852 (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) {
1853 1853 return (ret);
1854 1854 }
1855 1855
1856 1856 if (!(fflag & MS_FORCE)) {
1857 1857 /*
1858 1858 * Check the number of active vnodes in the file system.
1859 1859 * Our count is maintained in the vfs structure, but the
1860 1860 * number is off by 1 to indicate a hold on the vfs
1861 1861 * structure itself.
1862 1862 *
1863 1863 * The '.zfs' directory maintains a reference of its
1864 1864 * own, and any active references underneath are
1865 1865 * reflected in the vnode count.
1866 1866 */
1867 1867 if (zfsvfs->z_ctldir == NULL) {
1868 1868 if (vfsp->vfs_count > 1)
1869 1869 return (SET_ERROR(EBUSY));
1870 1870 } else {
1871 1871 if (vfsp->vfs_count > 2 ||
1872 1872 zfsvfs->z_ctldir->v_count > 1)
1873 1873 return (SET_ERROR(EBUSY));
1874 1874 }
1875 1875 }
1876 1876
1877 1877 vfsp->vfs_flag |= VFS_UNMOUNTED;
1878 1878
1879 1879 VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0);
1880 1880 os = zfsvfs->z_os;
1881 1881
1882 1882 /*
1883 1883 * z_os will be NULL if there was an error in
1884 1884 * attempting to reopen zfsvfs.
1885 1885 */
1886 1886 if (os != NULL) {
1887 1887 /*
1888 1888 * Unset the objset user_ptr.
1889 1889 */
1890 1890 mutex_enter(&os->os_user_ptr_lock);
1891 1891 dmu_objset_set_user(os, NULL);
1892 1892 mutex_exit(&os->os_user_ptr_lock);
1893 1893
1894 1894 /*
1895 1895 * Finally release the objset
1896 1896 */
1897 1897 dmu_objset_disown(os, zfsvfs);
1898 1898 }
1899 1899
1900 1900 /*
1901 1901 * We can now safely destroy the '.zfs' directory node.
1902 1902 */
1903 1903 if (zfsvfs->z_ctldir != NULL)
1904 1904 zfsctl_destroy(zfsvfs);
1905 1905
1906 1906 return (0);
1907 1907 }
1908 1908
1909 1909 static int
1910 1910 zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp)
1911 1911 {
1912 1912 zfsvfs_t *zfsvfs = vfsp->vfs_data;
1913 1913 znode_t *zp;
1914 1914 uint64_t object = 0;
1915 1915 uint64_t fid_gen = 0;
1916 1916 uint64_t gen_mask;
1917 1917 uint64_t zp_gen;
1918 1918 int i, err;
1919 1919
1920 1920 *vpp = NULL;
1921 1921
1922 1922 ZFS_ENTER(zfsvfs);
1923 1923
1924 1924 if (fidp->fid_len == LONG_FID_LEN) {
1925 1925 zfid_long_t *zlfid = (zfid_long_t *)fidp;
1926 1926 uint64_t objsetid = 0;
1927 1927 uint64_t setgen = 0;
1928 1928
1929 1929 for (i = 0; i < sizeof (zlfid->zf_setid); i++)
1930 1930 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
1931 1931
1932 1932 for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
1933 1933 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
1934 1934
1935 1935 ZFS_EXIT(zfsvfs);
1936 1936
1937 1937 err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs);
1938 1938 if (err)
1939 1939 return (SET_ERROR(EINVAL));
1940 1940 ZFS_ENTER(zfsvfs);
1941 1941 }
1942 1942
1943 1943 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
1944 1944 zfid_short_t *zfid = (zfid_short_t *)fidp;
1945 1945
1946 1946 for (i = 0; i < sizeof (zfid->zf_object); i++)
1947 1947 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
1948 1948
1949 1949 for (i = 0; i < sizeof (zfid->zf_gen); i++)
1950 1950 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
1951 1951 } else {
1952 1952 ZFS_EXIT(zfsvfs);
1953 1953 return (SET_ERROR(EINVAL));
1954 1954 }
1955 1955
1956 1956 /* A zero fid_gen means we are in the .zfs control directories */
1957 1957 if (fid_gen == 0 &&
1958 1958 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
1959 1959 *vpp = zfsvfs->z_ctldir;
1960 1960 ASSERT(*vpp != NULL);
1961 1961 if (object == ZFSCTL_INO_SNAPDIR) {
1962 1962 VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL,
1963 1963 0, NULL, NULL, NULL, NULL, NULL) == 0);
1964 1964 } else {
1965 1965 VN_HOLD(*vpp);
1966 1966 }
1967 1967 ZFS_EXIT(zfsvfs);
1968 1968 return (0);
1969 1969 }
1970 1970
1971 1971 gen_mask = -1ULL >> (64 - 8 * i);
1972 1972
1973 1973 dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask);
1974 1974 if (err = zfs_zget(zfsvfs, object, &zp)) {
1975 1975 ZFS_EXIT(zfsvfs);
1976 1976 return (err);
1977 1977 }
1978 1978 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
1979 1979 sizeof (uint64_t));
1980 1980 zp_gen = zp_gen & gen_mask;
1981 1981 if (zp_gen == 0)
1982 1982 zp_gen = 1;
1983 1983 if (zp->z_unlinked || zp_gen != fid_gen) {
1984 1984 dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen);
1985 1985 VN_RELE(ZTOV(zp));
1986 1986 ZFS_EXIT(zfsvfs);
1987 1987 return (SET_ERROR(EINVAL));
1988 1988 }
1989 1989
1990 1990 *vpp = ZTOV(zp);
1991 1991 ZFS_EXIT(zfsvfs);
1992 1992 return (0);
1993 1993 }
1994 1994
1995 1995 /*
1996 1996 * Block out VOPs and close zfsvfs_t::z_os
1997 1997 *
1998 1998 * Note, if successful, then we return with the 'z_teardown_lock' and
1999 1999 * 'z_teardown_inactive_lock' write held. We leave ownership of the underlying
2000 2000 * dataset and objset intact so that they can be atomically handed off during
2001 2001 * a subsequent rollback or recv operation and the resume thereafter.
2002 2002 */
2003 2003 int
2004 2004 zfs_suspend_fs(zfsvfs_t *zfsvfs)
2005 2005 {
2006 2006 int error;
2007 2007
2008 2008 if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
2009 2009 return (error);
2010 2010
2011 2011 return (0);
2012 2012 }
2013 2013
2014 2014 /*
2015 2015 * Rebuild SA and release VOPs. Note that ownership of the underlying dataset
2016 2016 * is an invariant across any of the operations that can be performed while the
2017 2017 * filesystem was suspended. Whether it succeeded or failed, the preconditions
2018 2018 * are the same: the relevant objset and associated dataset are owned by
2019 2019 * zfsvfs, held, and long held on entry.
2020 2020 */
2021 2021 int
2022 2022 zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname)
2023 2023 {
2024 2024 int err;
2025 2025 znode_t *zp;
2026 2026
2027 2027 ASSERT(RRM_WRITE_HELD(&zfsvfs->z_teardown_lock));
2028 2028 ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
2029 2029
2030 2030 /*
2031 2031 * We already own this, so just hold and rele it to update the
2032 2032 * objset_t, as the one we had before may have been evicted.
2033 2033 */
2034 2034 objset_t *os;
2035 2035 VERIFY0(dmu_objset_hold(osname, zfsvfs, &os));
2036 2036 VERIFY3P(os->os_dsl_dataset->ds_owner, ==, zfsvfs);
2037 2037 VERIFY(dsl_dataset_long_held(os->os_dsl_dataset));
2038 2038 dmu_objset_rele(os, zfsvfs);
2039 2039
2040 2040 err = zfsvfs_init(zfsvfs, os);
2041 2041 if (err != 0)
2042 2042 goto bail;
2043 2043
2044 2044 VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0);
2045 2045
2046 2046 zfs_set_fuid_feature(zfsvfs);
2047 2047
2048 2048 /*
2049 2049 * Attempt to re-establish all the active znodes with
2050 2050 * their dbufs. If a zfs_rezget() fails, then we'll let
2051 2051 * any potential callers discover that via ZFS_ENTER_VERIFY_VP
2052 2052 * when they try to use their znode.
2053 2053 */
2054 2054 mutex_enter(&zfsvfs->z_znodes_lock);
2055 2055 for (zp = list_head(&zfsvfs->z_all_znodes); zp;
2056 2056 zp = list_next(&zfsvfs->z_all_znodes, zp)) {
2057 2057 (void) zfs_rezget(zp);
2058 2058 }
2059 2059 mutex_exit(&zfsvfs->z_znodes_lock);
2060 2060
2061 2061 bail:
2062 2062 /* release the VOPs */
2063 2063 rw_exit(&zfsvfs->z_teardown_inactive_lock);
2064 2064 rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
2065 2065
2066 2066 if (err) {
2067 2067 /*
2068 2068 * Since we couldn't setup the sa framework, try to force
2069 2069 * unmount this file system.
2070 2070 */
2071 2071 if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0)
2072 2072 (void) dounmount(zfsvfs->z_vfs, MS_FORCE, CRED());
2073 2073 }
2074 2074 return (err);
2075 2075 }
2076 2076
2077 2077 static void
2078 2078 zfs_freevfs(vfs_t *vfsp)
2079 2079 {
2080 2080 zfsvfs_t *zfsvfs = vfsp->vfs_data;
2081 2081
2082 2082 /*
2083 2083 * If this is a snapshot, we have an extra VFS_HOLD on our parent
2084 2084 * from zfs_mount(). Release it here. If we came through
2085 2085 * zfs_mountroot() instead, we didn't grab an extra hold, so
2086 2086 * skip the VFS_RELE for rootvfs.
2087 2087 */
2088 2088 if (zfsvfs->z_issnap && (vfsp != rootvfs))
2089 2089 VFS_RELE(zfsvfs->z_parent->z_vfs);
2090 2090
2091 2091 zfsvfs_free(zfsvfs);
2092 2092
2093 2093 atomic_dec_32(&zfs_active_fs_count);
2094 2094 }
2095 2095
2096 2096 /*
2097 2097 * VFS_INIT() initialization. Note that there is no VFS_FINI(),
2098 2098 * so we can't safely do any non-idempotent initialization here.
2099 2099 * Leave that to zfs_init() and zfs_fini(), which are called
2100 2100 * from the module's _init() and _fini() entry points.
2101 2101 */
2102 2102 /*ARGSUSED*/
2103 2103 static int
2104 2104 zfs_vfsinit(int fstype, char *name)
2105 2105 {
2106 2106 int error;
2107 2107
2108 2108 zfsfstype = fstype;
2109 2109
2110 2110 /*
2111 2111 * Setup vfsops and vnodeops tables.
2112 2112 */
2113 2113 error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops);
2114 2114 if (error != 0) {
2115 2115 cmn_err(CE_WARN, "zfs: bad vfs ops template");
2116 2116 }
2117 2117
2118 2118 error = zfs_create_op_tables();
2119 2119 if (error) {
2120 2120 zfs_remove_op_tables();
2121 2121 cmn_err(CE_WARN, "zfs: bad vnode ops template");
2122 2122 (void) vfs_freevfsops_by_type(zfsfstype);
2123 2123 return (error);
2124 2124 }
2125 2125
2126 2126 mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
2127 2127
2128 2128 /*
2129 2129 * Unique major number for all zfs mounts.
2130 2130 * If we run out of 32-bit minors, we'll getudev() another major.
2131 2131 */
2132 2132 zfs_major = ddi_name_to_major(ZFS_DRIVER);
2133 2133 zfs_minor = ZFS_MIN_MINOR;
2134 2134
2135 2135 return (0);
2136 2136 }
2137 2137
2138 2138 void
2139 2139 zfs_init(void)
2140 2140 {
2141 2141 /*
2142 2142 * Initialize .zfs directory structures
2143 2143 */
2144 2144 zfsctl_init();
2145 2145
2146 2146 /*
2147 2147 * Initialize znode cache, vnode ops, etc...
2148 2148 */
2149 2149 zfs_znode_init();
2150 2150
2151 2151 dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb);
2152 2152 }
2153 2153
2154 2154 void
2155 2155 zfs_fini(void)
2156 2156 {
2157 2157 zfsctl_fini();
2158 2158 zfs_znode_fini();
2159 2159 }
2160 2160
2161 2161 int
2162 2162 zfs_busy(void)
2163 2163 {
2164 2164 return (zfs_active_fs_count != 0);
2165 2165 }
2166 2166
2167 2167 int
2168 2168 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
2169 2169 {
2170 2170 int error;
2171 2171 objset_t *os = zfsvfs->z_os;
2172 2172 dmu_tx_t *tx;
2173 2173
2174 2174 if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
2175 2175 return (SET_ERROR(EINVAL));
2176 2176
2177 2177 if (newvers < zfsvfs->z_version)
2178 2178 return (SET_ERROR(EINVAL));
2179 2179
2180 2180 if (zfs_spa_version_map(newvers) >
2181 2181 spa_version(dmu_objset_spa(zfsvfs->z_os)))
2182 2182 return (SET_ERROR(ENOTSUP));
2183 2183
2184 2184 tx = dmu_tx_create(os);
2185 2185 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
2186 2186 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2187 2187 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
2188 2188 ZFS_SA_ATTRS);
2189 2189 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
2190 2190 }
2191 2191 error = dmu_tx_assign(tx, TXG_WAIT);
2192 2192 if (error) {
2193 2193 dmu_tx_abort(tx);
2194 2194 return (error);
2195 2195 }
2196 2196
2197 2197 error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
2198 2198 8, 1, &newvers, tx);
2199 2199
2200 2200 if (error) {
2201 2201 dmu_tx_commit(tx);
2202 2202 return (error);
2203 2203 }
2204 2204
2205 2205 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2206 2206 uint64_t sa_obj;
2207 2207
2208 2208 ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=,
2209 2209 SPA_VERSION_SA);
2210 2210 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
2211 2211 DMU_OT_NONE, 0, tx);
2212 2212
2213 2213 error = zap_add(os, MASTER_NODE_OBJ,
2214 2214 ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
2215 2215 ASSERT0(error);
2216 2216
2217 2217 VERIFY(0 == sa_set_sa_object(os, sa_obj));
2218 2218 sa_register_update_callback(os, zfs_sa_upgrade);
2219 2219 }
2220 2220
2221 2221 spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx,
2222 2222 "from %llu to %llu", zfsvfs->z_version, newvers);
2223 2223
2224 2224 dmu_tx_commit(tx);
2225 2225
2226 2226 zfsvfs->z_version = newvers;
2227 2227
2228 2228 zfs_set_fuid_feature(zfsvfs);
2229 2229
2230 2230 return (0);
2231 2231 }
2232 2232
2233 2233 /*
2234 2234 * Read a property stored within the master node.
2235 2235 */
2236 2236 int
2237 2237 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
2238 2238 {
2239 2239 const char *pname;
2240 2240 int error = ENOENT;
2241 2241
2242 2242 /*
2243 2243 * Look up the file system's value for the property. For the
2244 2244 * version property, we look up a slightly different string.
2245 2245 */
2246 2246 if (prop == ZFS_PROP_VERSION)
2247 2247 pname = ZPL_VERSION_STR;
2248 2248 else
2249 2249 pname = zfs_prop_to_name(prop);
2250 2250
2251 2251 if (os != NULL)
2252 2252 error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
2253 2253
2254 2254 if (error == ENOENT) {
2255 2255 /* No value set, use the default value */
2256 2256 switch (prop) {
2257 2257 case ZFS_PROP_VERSION:
2258 2258 *value = ZPL_VERSION;
2259 2259 break;
2260 2260 case ZFS_PROP_NORMALIZE:
2261 2261 case ZFS_PROP_UTF8ONLY:
2262 2262 *value = 0;
2263 2263 break;
2264 2264 case ZFS_PROP_CASE:
2265 2265 *value = ZFS_CASE_SENSITIVE;
2266 2266 break;
2267 2267 default:
2268 2268 return (error);
2269 2269 }
2270 2270 error = 0;
2271 2271 }
2272 2272 return (error);
2273 2273 }
2274 2274
2275 2275 static vfsdef_t vfw = {
2276 2276 VFSDEF_VERSION,
2277 2277 MNTTYPE_ZFS,
2278 2278 zfs_vfsinit,
2279 2279 VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS|
2280 2280 VSW_XID|VSW_ZMOUNT,
2281 2281 &zfs_mntopts
2282 2282 };
2283 2283
2284 2284 struct modlfs zfs_modlfs = {
2285 2285 &mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw
2286 2286 };
↓ open down ↓ |
2176 lines elided |
↑ open up ↑ |
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX