1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2014, Joyent, Inc. All rights reserved. 24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 25 * Copyright 2016 Toomas Soome <tsoome@me.com> 26 */ 27 28 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 29 /* All Rights Reserved */ 30 31 /* 32 * University Copyright- Copyright (c) 1982, 1986, 1988 33 * The Regents of the University of California 34 * All Rights Reserved 35 * 36 * University Acknowledgment- Portions of this document are derived from 37 * software developed by the University of California, Berkeley, and its 38 * contributors. 39 */ 40 41 #include <sys/types.h> 42 #include <sys/t_lock.h> 43 #include <sys/param.h> 44 #include <sys/errno.h> 45 #include <sys/user.h> 46 #include <sys/fstyp.h> 47 #include <sys/kmem.h> 48 #include <sys/systm.h> 49 #include <sys/proc.h> 50 #include <sys/mount.h> 51 #include <sys/vfs.h> 52 #include <sys/vfs_opreg.h> 53 #include <sys/fem.h> 54 #include <sys/mntent.h> 55 #include <sys/stat.h> 56 #include <sys/statvfs.h> 57 #include <sys/statfs.h> 58 #include <sys/cred.h> 59 #include <sys/vnode.h> 60 #include <sys/rwstlock.h> 61 #include <sys/dnlc.h> 62 #include <sys/file.h> 63 #include <sys/time.h> 64 #include <sys/atomic.h> 65 #include <sys/cmn_err.h> 66 #include <sys/buf.h> 67 #include <sys/swap.h> 68 #include <sys/debug.h> 69 #include <sys/vnode.h> 70 #include <sys/modctl.h> 71 #include <sys/ddi.h> 72 #include <sys/pathname.h> 73 #include <sys/bootconf.h> 74 #include <sys/dumphdr.h> 75 #include <sys/dc_ki.h> 76 #include <sys/poll.h> 77 #include <sys/sunddi.h> 78 #include <sys/sysmacros.h> 79 #include <sys/zone.h> 80 #include <sys/policy.h> 81 #include <sys/ctfs.h> 82 #include <sys/objfs.h> 83 #include <sys/console.h> 84 #include <sys/reboot.h> 85 #include <sys/attr.h> 86 #include <sys/zio.h> 87 #include <sys/spa.h> 88 #include <sys/lofi.h> 89 #include <sys/bootprops.h> 90 91 #include <vm/page.h> 92 93 #include <fs/fs_subr.h> 94 /* Private interfaces to create vopstats-related data structures */ 95 extern void initialize_vopstats(vopstats_t *); 96 extern vopstats_t *get_fstype_vopstats(struct vfs *, struct vfssw *); 97 extern vsk_anchor_t *get_vskstat_anchor(struct vfs *); 98 99 static void vfs_clearmntopt_nolock(mntopts_t *, const char *, int); 100 static void vfs_setmntopt_nolock(mntopts_t *, const char *, 101 const char *, int, int); 102 static int vfs_optionisset_nolock(const mntopts_t *, const char *, char **); 103 static void vfs_freemnttab(struct vfs *); 104 static void vfs_freeopt(mntopt_t *); 105 static void vfs_swapopttbl_nolock(mntopts_t *, mntopts_t *); 106 static void vfs_swapopttbl(mntopts_t *, mntopts_t *); 107 static void vfs_copyopttbl_extend(const mntopts_t *, mntopts_t *, int); 108 static void vfs_createopttbl_extend(mntopts_t *, const char *, 109 const mntopts_t *); 110 static char **vfs_copycancelopt_extend(char **const, int); 111 static void vfs_freecancelopt(char **); 112 static void getrootfs(char **, char **); 113 static int getmacpath(dev_info_t *, void *); 114 static void vfs_mnttabvp_setup(void); 115 116 struct ipmnt { 117 struct ipmnt *mip_next; 118 dev_t mip_dev; 119 struct vfs *mip_vfsp; 120 }; 121 122 static kmutex_t vfs_miplist_mutex; 123 static struct ipmnt *vfs_miplist = NULL; 124 static struct ipmnt *vfs_miplist_end = NULL; 125 126 static kmem_cache_t *vfs_cache; /* Pointer to VFS kmem cache */ 127 128 /* 129 * VFS global data. 130 */ 131 vnode_t *rootdir; /* pointer to root inode vnode. */ 132 vnode_t *devicesdir; /* pointer to inode of devices root */ 133 vnode_t *devdir; /* pointer to inode of dev root */ 134 135 char *server_rootpath; /* root path for diskless clients */ 136 char *server_hostname; /* hostname of diskless server */ 137 138 static struct vfs root; 139 static struct vfs devices; 140 static struct vfs dev; 141 struct vfs *rootvfs = &root; /* pointer to root vfs; head of VFS list. */ 142 rvfs_t *rvfs_list; /* array of vfs ptrs for vfs hash list */ 143 int vfshsz = 512; /* # of heads/locks in vfs hash arrays */ 144 /* must be power of 2! */ 145 timespec_t vfs_mnttab_ctime; /* mnttab created time */ 146 timespec_t vfs_mnttab_mtime; /* mnttab last modified time */ 147 char *vfs_dummyfstype = "\0"; 148 struct pollhead vfs_pollhd; /* for mnttab pollers */ 149 struct vnode *vfs_mntdummyvp; /* to fake mnttab read/write for file events */ 150 int mntfstype; /* will be set once mnt fs is mounted */ 151 152 /* 153 * Table for generic options recognized in the VFS layer and acted 154 * on at this level before parsing file system specific options. 155 * The nosuid option is stronger than any of the devices and setuid 156 * options, so those are canceled when nosuid is seen. 157 * 158 * All options which are added here need to be added to the 159 * list of standard options in usr/src/cmd/fs.d/fslib.c as well. 160 */ 161 /* 162 * VFS Mount options table 163 */ 164 static char *ro_cancel[] = { MNTOPT_RW, NULL }; 165 static char *rw_cancel[] = { MNTOPT_RO, NULL }; 166 static char *suid_cancel[] = { MNTOPT_NOSUID, NULL }; 167 static char *nosuid_cancel[] = { MNTOPT_SUID, MNTOPT_DEVICES, MNTOPT_NODEVICES, 168 MNTOPT_NOSETUID, MNTOPT_SETUID, NULL }; 169 static char *devices_cancel[] = { MNTOPT_NODEVICES, NULL }; 170 static char *nodevices_cancel[] = { MNTOPT_DEVICES, NULL }; 171 static char *setuid_cancel[] = { MNTOPT_NOSETUID, NULL }; 172 static char *nosetuid_cancel[] = { MNTOPT_SETUID, NULL }; 173 static char *nbmand_cancel[] = { MNTOPT_NONBMAND, NULL }; 174 static char *nonbmand_cancel[] = { MNTOPT_NBMAND, NULL }; 175 static char *exec_cancel[] = { MNTOPT_NOEXEC, NULL }; 176 static char *noexec_cancel[] = { MNTOPT_EXEC, NULL }; 177 178 static const mntopt_t mntopts[] = { 179 /* 180 * option name cancel options default arg flags 181 */ 182 { MNTOPT_REMOUNT, NULL, NULL, 183 MO_NODISPLAY, (void *)0 }, 184 { MNTOPT_RO, ro_cancel, NULL, 0, 185 (void *)0 }, 186 { MNTOPT_RW, rw_cancel, NULL, 0, 187 (void *)0 }, 188 { MNTOPT_SUID, suid_cancel, NULL, 0, 189 (void *)0 }, 190 { MNTOPT_NOSUID, nosuid_cancel, NULL, 0, 191 (void *)0 }, 192 { MNTOPT_DEVICES, devices_cancel, NULL, 0, 193 (void *)0 }, 194 { MNTOPT_NODEVICES, nodevices_cancel, NULL, 0, 195 (void *)0 }, 196 { MNTOPT_SETUID, setuid_cancel, NULL, 0, 197 (void *)0 }, 198 { MNTOPT_NOSETUID, nosetuid_cancel, NULL, 0, 199 (void *)0 }, 200 { MNTOPT_NBMAND, nbmand_cancel, NULL, 0, 201 (void *)0 }, 202 { MNTOPT_NONBMAND, nonbmand_cancel, NULL, 0, 203 (void *)0 }, 204 { MNTOPT_EXEC, exec_cancel, NULL, 0, 205 (void *)0 }, 206 { MNTOPT_NOEXEC, noexec_cancel, NULL, 0, 207 (void *)0 }, 208 }; 209 210 const mntopts_t vfs_mntopts = { 211 sizeof (mntopts) / sizeof (mntopt_t), 212 (mntopt_t *)&mntopts[0] 213 }; 214 215 /* 216 * File system operation dispatch functions. 217 */ 218 219 int 220 fsop_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 221 { 222 return (*(vfsp)->vfs_op->vfs_mount)(vfsp, mvp, uap, cr); 223 } 224 225 int 226 fsop_unmount(vfs_t *vfsp, int flag, cred_t *cr) 227 { 228 return (*(vfsp)->vfs_op->vfs_unmount)(vfsp, flag, cr); 229 } 230 231 int 232 fsop_root(vfs_t *vfsp, vnode_t **vpp) 233 { 234 refstr_t *mntpt; 235 int ret = (*(vfsp)->vfs_op->vfs_root)(vfsp, vpp); 236 /* 237 * Make sure this root has a path. With lofs, it is possible to have 238 * a NULL mountpoint. 239 */ 240 if (ret == 0 && vfsp->vfs_mntpt != NULL && (*vpp)->v_path == NULL) { 241 mntpt = vfs_getmntpoint(vfsp); 242 vn_setpath_str(*vpp, refstr_value(mntpt), 243 strlen(refstr_value(mntpt))); 244 refstr_rele(mntpt); 245 } 246 247 return (ret); 248 } 249 250 int 251 fsop_statfs(vfs_t *vfsp, statvfs64_t *sp) 252 { 253 return (*(vfsp)->vfs_op->vfs_statvfs)(vfsp, sp); 254 } 255 256 int 257 fsop_sync(vfs_t *vfsp, short flag, cred_t *cr) 258 { 259 return (*(vfsp)->vfs_op->vfs_sync)(vfsp, flag, cr); 260 } 261 262 int 263 fsop_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) 264 { 265 /* 266 * In order to handle system attribute fids in a manner 267 * transparent to the underlying fs, we embed the fid for 268 * the sysattr parent object in the sysattr fid and tack on 269 * some extra bytes that only the sysattr layer knows about. 270 * 271 * This guarantees that sysattr fids are larger than other fids 272 * for this vfs. If the vfs supports the sysattr view interface 273 * (as indicated by VFSFT_SYSATTR_VIEWS), we cannot have a size 274 * collision with XATTR_FIDSZ. 275 */ 276 if (vfs_has_feature(vfsp, VFSFT_SYSATTR_VIEWS) && 277 fidp->fid_len == XATTR_FIDSZ) 278 return (xattr_dir_vget(vfsp, vpp, fidp)); 279 280 return (*(vfsp)->vfs_op->vfs_vget)(vfsp, vpp, fidp); 281 } 282 283 int 284 fsop_mountroot(vfs_t *vfsp, enum whymountroot reason) 285 { 286 return (*(vfsp)->vfs_op->vfs_mountroot)(vfsp, reason); 287 } 288 289 void 290 fsop_freefs(vfs_t *vfsp) 291 { 292 (*(vfsp)->vfs_op->vfs_freevfs)(vfsp); 293 } 294 295 int 296 fsop_vnstate(vfs_t *vfsp, vnode_t *vp, vntrans_t nstate) 297 { 298 return ((*(vfsp)->vfs_op->vfs_vnstate)(vfsp, vp, nstate)); 299 } 300 301 int 302 fsop_sync_by_kind(int fstype, short flag, cred_t *cr) 303 { 304 ASSERT((fstype >= 0) && (fstype < nfstype)); 305 306 if (ALLOCATED_VFSSW(&vfssw[fstype]) && VFS_INSTALLED(&vfssw[fstype])) 307 return (*vfssw[fstype].vsw_vfsops.vfs_sync) (NULL, flag, cr); 308 else 309 return (ENOTSUP); 310 } 311 312 /* 313 * File system initialization. vfs_setfsops() must be called from a file 314 * system's init routine. 315 */ 316 317 static int 318 fs_copyfsops(const fs_operation_def_t *template, vfsops_t *actual, 319 int *unused_ops) 320 { 321 static const fs_operation_trans_def_t vfs_ops_table[] = { 322 VFSNAME_MOUNT, offsetof(vfsops_t, vfs_mount), 323 fs_nosys, fs_nosys, 324 325 VFSNAME_UNMOUNT, offsetof(vfsops_t, vfs_unmount), 326 fs_nosys, fs_nosys, 327 328 VFSNAME_ROOT, offsetof(vfsops_t, vfs_root), 329 fs_nosys, fs_nosys, 330 331 VFSNAME_STATVFS, offsetof(vfsops_t, vfs_statvfs), 332 fs_nosys, fs_nosys, 333 334 VFSNAME_SYNC, offsetof(vfsops_t, vfs_sync), 335 (fs_generic_func_p) fs_sync, 336 (fs_generic_func_p) fs_sync, /* No errors allowed */ 337 338 VFSNAME_VGET, offsetof(vfsops_t, vfs_vget), 339 fs_nosys, fs_nosys, 340 341 VFSNAME_MOUNTROOT, offsetof(vfsops_t, vfs_mountroot), 342 fs_nosys, fs_nosys, 343 344 VFSNAME_FREEVFS, offsetof(vfsops_t, vfs_freevfs), 345 (fs_generic_func_p)fs_freevfs, 346 (fs_generic_func_p)fs_freevfs, /* Shouldn't fail */ 347 348 VFSNAME_VNSTATE, offsetof(vfsops_t, vfs_vnstate), 349 (fs_generic_func_p)fs_nosys, 350 (fs_generic_func_p)fs_nosys, 351 352 NULL, 0, NULL, NULL 353 }; 354 355 return (fs_build_vector(actual, unused_ops, vfs_ops_table, template)); 356 } 357 358 void 359 zfs_boot_init(void) 360 { 361 if (strcmp(rootfs.bo_fstype, MNTTYPE_ZFS) == 0) 362 spa_boot_init(); 363 } 364 365 int 366 vfs_setfsops(int fstype, const fs_operation_def_t *template, vfsops_t **actual) 367 { 368 int error; 369 int unused_ops; 370 371 /* 372 * Verify that fstype refers to a valid fs. Note that 373 * 0 is valid since it's used to set "stray" ops. 374 */ 375 if ((fstype < 0) || (fstype >= nfstype)) 376 return (EINVAL); 377 378 if (!ALLOCATED_VFSSW(&vfssw[fstype])) 379 return (EINVAL); 380 381 /* Set up the operations vector. */ 382 383 error = fs_copyfsops(template, &vfssw[fstype].vsw_vfsops, &unused_ops); 384 385 if (error != 0) 386 return (error); 387 388 vfssw[fstype].vsw_flag |= VSW_INSTALLED; 389 390 if (actual != NULL) 391 *actual = &vfssw[fstype].vsw_vfsops; 392 393 #if DEBUG 394 if (unused_ops != 0) 395 cmn_err(CE_WARN, "vfs_setfsops: %s: %d operations supplied " 396 "but not used", vfssw[fstype].vsw_name, unused_ops); 397 #endif 398 399 return (0); 400 } 401 402 int 403 vfs_makefsops(const fs_operation_def_t *template, vfsops_t **actual) 404 { 405 int error; 406 int unused_ops; 407 408 *actual = (vfsops_t *)kmem_alloc(sizeof (vfsops_t), KM_SLEEP); 409 410 error = fs_copyfsops(template, *actual, &unused_ops); 411 if (error != 0) { 412 kmem_free(*actual, sizeof (vfsops_t)); 413 *actual = NULL; 414 return (error); 415 } 416 417 return (0); 418 } 419 420 /* 421 * Free a vfsops structure created as a result of vfs_makefsops(). 422 * NOTE: For a vfsops structure initialized by vfs_setfsops(), use 423 * vfs_freevfsops_by_type(). 424 */ 425 void 426 vfs_freevfsops(vfsops_t *vfsops) 427 { 428 kmem_free(vfsops, sizeof (vfsops_t)); 429 } 430 431 /* 432 * Since the vfsops structure is part of the vfssw table and wasn't 433 * really allocated, we're not really freeing anything. We keep 434 * the name for consistency with vfs_freevfsops(). We do, however, 435 * need to take care of a little bookkeeping. 436 * NOTE: For a vfsops structure created by vfs_setfsops(), use 437 * vfs_freevfsops_by_type(). 438 */ 439 int 440 vfs_freevfsops_by_type(int fstype) 441 { 442 443 /* Verify that fstype refers to a loaded fs (and not fsid 0). */ 444 if ((fstype <= 0) || (fstype >= nfstype)) 445 return (EINVAL); 446 447 WLOCK_VFSSW(); 448 if ((vfssw[fstype].vsw_flag & VSW_INSTALLED) == 0) { 449 WUNLOCK_VFSSW(); 450 return (EINVAL); 451 } 452 453 vfssw[fstype].vsw_flag &= ~VSW_INSTALLED; 454 WUNLOCK_VFSSW(); 455 456 return (0); 457 } 458 459 /* Support routines used to reference vfs_op */ 460 461 /* Set the operations vector for a vfs */ 462 void 463 vfs_setops(vfs_t *vfsp, vfsops_t *vfsops) 464 { 465 vfsops_t *op; 466 467 ASSERT(vfsp != NULL); 468 ASSERT(vfsops != NULL); 469 470 op = vfsp->vfs_op; 471 membar_consumer(); 472 if (vfsp->vfs_femhead == NULL && 473 atomic_cas_ptr(&vfsp->vfs_op, op, vfsops) == op) { 474 return; 475 } 476 fsem_setvfsops(vfsp, vfsops); 477 } 478 479 /* Retrieve the operations vector for a vfs */ 480 vfsops_t * 481 vfs_getops(vfs_t *vfsp) 482 { 483 vfsops_t *op; 484 485 ASSERT(vfsp != NULL); 486 487 op = vfsp->vfs_op; 488 membar_consumer(); 489 if (vfsp->vfs_femhead == NULL && op == vfsp->vfs_op) { 490 return (op); 491 } else { 492 return (fsem_getvfsops(vfsp)); 493 } 494 } 495 496 /* 497 * Returns non-zero (1) if the vfsops matches that of the vfs. 498 * Returns zero (0) if not. 499 */ 500 int 501 vfs_matchops(vfs_t *vfsp, vfsops_t *vfsops) 502 { 503 return (vfs_getops(vfsp) == vfsops); 504 } 505 506 /* 507 * Returns non-zero (1) if the file system has installed a non-default, 508 * non-error vfs_sync routine. Returns zero (0) otherwise. 509 */ 510 int 511 vfs_can_sync(vfs_t *vfsp) 512 { 513 /* vfs_sync() routine is not the default/error function */ 514 return (vfs_getops(vfsp)->vfs_sync != fs_sync); 515 } 516 517 /* 518 * Initialize a vfs structure. 519 */ 520 void 521 vfs_init(vfs_t *vfsp, vfsops_t *op, void *data) 522 { 523 /* Other initialization has been moved to vfs_alloc() */ 524 vfsp->vfs_count = 0; 525 vfsp->vfs_next = vfsp; 526 vfsp->vfs_prev = vfsp; 527 vfsp->vfs_zone_next = vfsp; 528 vfsp->vfs_zone_prev = vfsp; 529 vfsp->vfs_lofi_id = 0; 530 sema_init(&vfsp->vfs_reflock, 1, NULL, SEMA_DEFAULT, NULL); 531 vfsimpl_setup(vfsp); 532 vfsp->vfs_data = (data); 533 vfs_setops((vfsp), (op)); 534 } 535 536 /* 537 * Allocate and initialize the vfs implementation private data 538 * structure, vfs_impl_t. 539 */ 540 void 541 vfsimpl_setup(vfs_t *vfsp) 542 { 543 int i; 544 545 if (vfsp->vfs_implp != NULL) { 546 return; 547 } 548 549 vfsp->vfs_implp = kmem_alloc(sizeof (vfs_impl_t), KM_SLEEP); 550 /* Note that these are #define'd in vfs.h */ 551 vfsp->vfs_vskap = NULL; 552 vfsp->vfs_fstypevsp = NULL; 553 554 /* Set size of counted array, then zero the array */ 555 vfsp->vfs_featureset[0] = VFS_FEATURE_MAXSZ - 1; 556 for (i = 1; i < VFS_FEATURE_MAXSZ; i++) { 557 vfsp->vfs_featureset[i] = 0; 558 } 559 } 560 561 /* 562 * Release the vfs_impl_t structure, if it exists. Some unbundled 563 * filesystems may not use the newer version of vfs and thus 564 * would not contain this implementation private data structure. 565 */ 566 void 567 vfsimpl_teardown(vfs_t *vfsp) 568 { 569 vfs_impl_t *vip = vfsp->vfs_implp; 570 571 if (vip == NULL) 572 return; 573 574 kmem_free(vfsp->vfs_implp, sizeof (vfs_impl_t)); 575 vfsp->vfs_implp = NULL; 576 } 577 578 /* 579 * VFS system calls: mount, umount, syssync, statfs, fstatfs, statvfs, 580 * fstatvfs, and sysfs moved to common/syscall. 581 */ 582 583 /* 584 * Update every mounted file system. We call the vfs_sync operation of 585 * each file system type, passing it a NULL vfsp to indicate that all 586 * mounted file systems of that type should be updated. 587 */ 588 void 589 vfs_sync(int flag) 590 { 591 struct vfssw *vswp; 592 RLOCK_VFSSW(); 593 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 594 if (ALLOCATED_VFSSW(vswp) && VFS_INSTALLED(vswp)) { 595 vfs_refvfssw(vswp); 596 RUNLOCK_VFSSW(); 597 (void) (*vswp->vsw_vfsops.vfs_sync)(NULL, flag, 598 CRED()); 599 vfs_unrefvfssw(vswp); 600 RLOCK_VFSSW(); 601 } 602 } 603 RUNLOCK_VFSSW(); 604 } 605 606 void 607 sync(void) 608 { 609 vfs_sync(0); 610 } 611 612 /* 613 * External routines. 614 */ 615 616 krwlock_t vfssw_lock; /* lock accesses to vfssw */ 617 618 /* 619 * Lock for accessing the vfs linked list. Initialized in vfs_mountroot(), 620 * but otherwise should be accessed only via vfs_list_lock() and 621 * vfs_list_unlock(). Also used to protect the timestamp for mods to the list. 622 */ 623 static krwlock_t vfslist; 624 625 /* 626 * Mount devfs on /devices. This is done right after root is mounted 627 * to provide device access support for the system 628 */ 629 static void 630 vfs_mountdevices(void) 631 { 632 struct vfssw *vsw; 633 struct vnode *mvp; 634 struct mounta mounta = { /* fake mounta for devfs_mount() */ 635 NULL, 636 NULL, 637 MS_SYSSPACE, 638 NULL, 639 NULL, 640 0, 641 NULL, 642 0 643 }; 644 645 /* 646 * _init devfs module to fill in the vfssw 647 */ 648 if (modload("fs", "devfs") == -1) 649 panic("Cannot _init devfs module"); 650 651 /* 652 * Hold vfs 653 */ 654 RLOCK_VFSSW(); 655 vsw = vfs_getvfsswbyname("devfs"); 656 VFS_INIT(&devices, &vsw->vsw_vfsops, NULL); 657 VFS_HOLD(&devices); 658 659 /* 660 * Locate mount point 661 */ 662 if (lookupname("/devices", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) 663 panic("Cannot find /devices"); 664 665 /* 666 * Perform the mount of /devices 667 */ 668 if (VFS_MOUNT(&devices, mvp, &mounta, CRED())) 669 panic("Cannot mount /devices"); 670 671 RUNLOCK_VFSSW(); 672 673 /* 674 * Set appropriate members and add to vfs list for mnttab display 675 */ 676 vfs_setresource(&devices, "/devices", 0); 677 vfs_setmntpoint(&devices, "/devices", 0); 678 679 /* 680 * Hold the root of /devices so it won't go away 681 */ 682 if (VFS_ROOT(&devices, &devicesdir)) 683 panic("vfs_mountdevices: not devices root"); 684 685 if (vfs_lock(&devices) != 0) { 686 VN_RELE(devicesdir); 687 cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /devices"); 688 return; 689 } 690 691 if (vn_vfswlock(mvp) != 0) { 692 vfs_unlock(&devices); 693 VN_RELE(devicesdir); 694 cmn_err(CE_NOTE, "Cannot acquire vfswlock of /devices"); 695 return; 696 } 697 698 vfs_add(mvp, &devices, 0); 699 vn_vfsunlock(mvp); 700 vfs_unlock(&devices); 701 VN_RELE(devicesdir); 702 } 703 704 /* 705 * mount the first instance of /dev to root and remain mounted 706 */ 707 static void 708 vfs_mountdev1(void) 709 { 710 struct vfssw *vsw; 711 struct vnode *mvp; 712 struct mounta mounta = { /* fake mounta for sdev_mount() */ 713 NULL, 714 NULL, 715 MS_SYSSPACE | MS_OVERLAY, 716 NULL, 717 NULL, 718 0, 719 NULL, 720 0 721 }; 722 723 /* 724 * _init dev module to fill in the vfssw 725 */ 726 if (modload("fs", "dev") == -1) 727 cmn_err(CE_PANIC, "Cannot _init dev module\n"); 728 729 /* 730 * Hold vfs 731 */ 732 RLOCK_VFSSW(); 733 vsw = vfs_getvfsswbyname("dev"); 734 VFS_INIT(&dev, &vsw->vsw_vfsops, NULL); 735 VFS_HOLD(&dev); 736 737 /* 738 * Locate mount point 739 */ 740 if (lookupname("/dev", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) 741 cmn_err(CE_PANIC, "Cannot find /dev\n"); 742 743 /* 744 * Perform the mount of /dev 745 */ 746 if (VFS_MOUNT(&dev, mvp, &mounta, CRED())) 747 cmn_err(CE_PANIC, "Cannot mount /dev 1\n"); 748 749 RUNLOCK_VFSSW(); 750 751 /* 752 * Set appropriate members and add to vfs list for mnttab display 753 */ 754 vfs_setresource(&dev, "/dev", 0); 755 vfs_setmntpoint(&dev, "/dev", 0); 756 757 /* 758 * Hold the root of /dev so it won't go away 759 */ 760 if (VFS_ROOT(&dev, &devdir)) 761 cmn_err(CE_PANIC, "vfs_mountdev1: not dev root"); 762 763 if (vfs_lock(&dev) != 0) { 764 VN_RELE(devdir); 765 cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /dev"); 766 return; 767 } 768 769 if (vn_vfswlock(mvp) != 0) { 770 vfs_unlock(&dev); 771 VN_RELE(devdir); 772 cmn_err(CE_NOTE, "Cannot acquire vfswlock of /dev"); 773 return; 774 } 775 776 vfs_add(mvp, &dev, 0); 777 vn_vfsunlock(mvp); 778 vfs_unlock(&dev); 779 VN_RELE(devdir); 780 } 781 782 /* 783 * Mount required filesystem. This is done right after root is mounted. 784 */ 785 static void 786 vfs_mountfs(char *module, char *spec, char *path) 787 { 788 struct vnode *mvp; 789 struct mounta mounta; 790 vfs_t *vfsp; 791 792 mounta.flags = MS_SYSSPACE | MS_DATA; 793 mounta.fstype = module; 794 mounta.spec = spec; 795 mounta.dir = path; 796 if (lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) { 797 cmn_err(CE_WARN, "Cannot find %s", path); 798 return; 799 } 800 if (domount(NULL, &mounta, mvp, CRED(), &vfsp)) 801 cmn_err(CE_WARN, "Cannot mount %s", path); 802 else 803 VFS_RELE(vfsp); 804 VN_RELE(mvp); 805 } 806 807 /* 808 * vfs_mountroot is called by main() to mount the root filesystem. 809 */ 810 void 811 vfs_mountroot(void) 812 { 813 struct vnode *rvp = NULL; 814 char *path; 815 size_t plen; 816 struct vfssw *vswp; 817 proc_t *p; 818 819 rw_init(&vfssw_lock, NULL, RW_DEFAULT, NULL); 820 rw_init(&vfslist, NULL, RW_DEFAULT, NULL); 821 822 /* 823 * Alloc the vfs hash bucket array and locks 824 */ 825 rvfs_list = kmem_zalloc(vfshsz * sizeof (rvfs_t), KM_SLEEP); 826 827 /* 828 * Call machine-dependent routine "rootconf" to choose a root 829 * file system type. 830 */ 831 if (rootconf()) 832 panic("vfs_mountroot: cannot mount root"); 833 /* 834 * Get vnode for '/'. Set up rootdir, u.u_rdir and u.u_cdir 835 * to point to it. These are used by lookuppn() so that it 836 * knows where to start from ('/' or '.'). 837 */ 838 vfs_setmntpoint(rootvfs, "/", 0); 839 if (VFS_ROOT(rootvfs, &rootdir)) 840 panic("vfs_mountroot: no root vnode"); 841 842 /* 843 * At this point, the process tree consists of p0 and possibly some 844 * direct children of p0. (i.e. there are no grandchildren) 845 * 846 * Walk through them all, setting their current directory. 847 */ 848 mutex_enter(&pidlock); 849 for (p = practive; p != NULL; p = p->p_next) { 850 ASSERT(p == &p0 || p->p_parent == &p0); 851 852 PTOU(p)->u_cdir = rootdir; 853 VN_HOLD(PTOU(p)->u_cdir); 854 PTOU(p)->u_rdir = NULL; 855 } 856 mutex_exit(&pidlock); 857 858 /* 859 * Setup the global zone's rootvp, now that it exists. 860 */ 861 global_zone->zone_rootvp = rootdir; 862 VN_HOLD(global_zone->zone_rootvp); 863 864 /* 865 * Notify the module code that it can begin using the 866 * root filesystem instead of the boot program's services. 867 */ 868 modrootloaded = 1; 869 870 /* 871 * Special handling for a ZFS root file system. 872 */ 873 zfs_boot_init(); 874 875 /* 876 * Set up mnttab information for root 877 */ 878 vfs_setresource(rootvfs, rootfs.bo_name, 0); 879 880 /* 881 * Notify cluster software that the root filesystem is available. 882 */ 883 clboot_mountroot(); 884 885 /* Now that we're all done with the root FS, set up its vopstats */ 886 if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) != NULL) { 887 /* Set flag for statistics collection */ 888 if (vswp->vsw_flag & VSW_STATS) { 889 initialize_vopstats(&rootvfs->vfs_vopstats); 890 rootvfs->vfs_flag |= VFS_STATS; 891 rootvfs->vfs_fstypevsp = 892 get_fstype_vopstats(rootvfs, vswp); 893 rootvfs->vfs_vskap = get_vskstat_anchor(rootvfs); 894 } 895 vfs_unrefvfssw(vswp); 896 } 897 898 /* 899 * Mount /devices, /dev instance 1, /system/contract, /etc/mnttab, 900 * /etc/svc/volatile, /etc/dfs/sharetab, /system/object, and /proc. 901 */ 902 vfs_mountdevices(); 903 vfs_mountdev1(); 904 905 vfs_mountfs("ctfs", "ctfs", CTFS_ROOT); 906 vfs_mountfs("proc", "/proc", "/proc"); 907 vfs_mountfs("mntfs", "/etc/mnttab", "/etc/mnttab"); 908 vfs_mountfs("tmpfs", "/etc/svc/volatile", "/etc/svc/volatile"); 909 vfs_mountfs("objfs", "objfs", OBJFS_ROOT); 910 vfs_mountfs("bootfs", "bootfs", "/system/boot"); 911 912 if (getzoneid() == GLOBAL_ZONEID) { 913 vfs_mountfs("sharefs", "sharefs", "/etc/dfs/sharetab"); 914 } 915 916 #ifdef __sparc 917 /* 918 * This bit of magic can go away when we convert sparc to 919 * the new boot architecture based on ramdisk. 920 * 921 * Booting off a mirrored root volume: 922 * At this point, we have booted and mounted root on a 923 * single component of the mirror. Complete the boot 924 * by configuring SVM and converting the root to the 925 * dev_t of the mirrored root device. This dev_t conversion 926 * only works because the underlying device doesn't change. 927 */ 928 if (root_is_svm) { 929 if (svm_rootconf()) { 930 panic("vfs_mountroot: cannot remount root"); 931 } 932 933 /* 934 * mnttab should reflect the new root device 935 */ 936 vfs_lock_wait(rootvfs); 937 vfs_setresource(rootvfs, rootfs.bo_name, 0); 938 vfs_unlock(rootvfs); 939 } 940 #endif /* __sparc */ 941 942 if (strcmp(rootfs.bo_fstype, "zfs") != 0) { 943 /* 944 * Look up the root device via devfs so that a dv_node is 945 * created for it. The vnode is never VN_RELE()ed. 946 * We allocate more than MAXPATHLEN so that the 947 * buffer passed to i_ddi_prompath_to_devfspath() is 948 * exactly MAXPATHLEN (the function expects a buffer 949 * of that length). 950 */ 951 plen = strlen("/devices"); 952 path = kmem_alloc(plen + MAXPATHLEN, KM_SLEEP); 953 (void) strcpy(path, "/devices"); 954 955 if (i_ddi_prompath_to_devfspath(rootfs.bo_name, path + plen) 956 != DDI_SUCCESS || 957 lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &rvp)) { 958 959 /* NUL terminate in case "path" has garbage */ 960 path[plen + MAXPATHLEN - 1] = '\0'; 961 #ifdef DEBUG 962 cmn_err(CE_WARN, "!Cannot lookup root device: %s", 963 path); 964 #endif 965 } 966 kmem_free(path, plen + MAXPATHLEN); 967 } 968 969 vfs_mnttabvp_setup(); 970 } 971 972 /* 973 * Check to see if our "block device" is actually a file. If so, 974 * automatically add a lofi device, and keep track of this fact. 975 */ 976 static int 977 lofi_add(const char *fsname, struct vfs *vfsp, 978 mntopts_t *mntopts, struct mounta *uap) 979 { 980 int fromspace = (uap->flags & MS_SYSSPACE) ? 981 UIO_SYSSPACE : UIO_USERSPACE; 982 struct lofi_ioctl *li = NULL; 983 struct vnode *vp = NULL; 984 struct pathname pn = { NULL }; 985 ldi_ident_t ldi_id; 986 ldi_handle_t ldi_hdl; 987 vfssw_t *vfssw; 988 int id; 989 int err = 0; 990 991 if ((vfssw = vfs_getvfssw(fsname)) == NULL) 992 return (0); 993 994 if (!(vfssw->vsw_flag & VSW_CANLOFI)) { 995 vfs_unrefvfssw(vfssw); 996 return (0); 997 } 998 999 vfs_unrefvfssw(vfssw); 1000 vfssw = NULL; 1001 1002 if (pn_get(uap->spec, fromspace, &pn) != 0) 1003 return (0); 1004 1005 if (lookupname(uap->spec, fromspace, FOLLOW, NULL, &vp) != 0) 1006 goto out; 1007 1008 if (vp->v_type != VREG) 1009 goto out; 1010 1011 /* OK, this is a lofi mount. */ 1012 1013 if ((uap->flags & (MS_REMOUNT|MS_GLOBAL)) || 1014 vfs_optionisset_nolock(mntopts, MNTOPT_SUID, NULL) || 1015 vfs_optionisset_nolock(mntopts, MNTOPT_SETUID, NULL) || 1016 vfs_optionisset_nolock(mntopts, MNTOPT_DEVICES, NULL)) { 1017 err = EINVAL; 1018 goto out; 1019 } 1020 1021 ldi_id = ldi_ident_from_anon(); 1022 li = kmem_zalloc(sizeof (*li), KM_SLEEP); 1023 (void) strlcpy(li->li_filename, pn.pn_path, MAXPATHLEN); 1024 1025 err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE, kcred, 1026 &ldi_hdl, ldi_id); 1027 1028 if (err) 1029 goto out2; 1030 1031 err = ldi_ioctl(ldi_hdl, LOFI_MAP_FILE, (intptr_t)li, 1032 FREAD | FWRITE | FKIOCTL, kcred, &id); 1033 1034 (void) ldi_close(ldi_hdl, FREAD | FWRITE, kcred); 1035 1036 if (!err) 1037 vfsp->vfs_lofi_id = id; 1038 1039 out2: 1040 ldi_ident_release(ldi_id); 1041 out: 1042 if (li != NULL) 1043 kmem_free(li, sizeof (*li)); 1044 if (vp != NULL) 1045 VN_RELE(vp); 1046 pn_free(&pn); 1047 return (err); 1048 } 1049 1050 static void 1051 lofi_remove(struct vfs *vfsp) 1052 { 1053 struct lofi_ioctl *li = NULL; 1054 ldi_ident_t ldi_id; 1055 ldi_handle_t ldi_hdl; 1056 int err; 1057 1058 if (vfsp->vfs_lofi_id == 0) 1059 return; 1060 1061 ldi_id = ldi_ident_from_anon(); 1062 1063 li = kmem_zalloc(sizeof (*li), KM_SLEEP); 1064 li->li_id = vfsp->vfs_lofi_id; 1065 li->li_cleanup = B_TRUE; 1066 1067 err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE, kcred, 1068 &ldi_hdl, ldi_id); 1069 1070 if (err) 1071 goto out; 1072 1073 err = ldi_ioctl(ldi_hdl, LOFI_UNMAP_FILE_MINOR, (intptr_t)li, 1074 FREAD | FWRITE | FKIOCTL, kcred, NULL); 1075 1076 (void) ldi_close(ldi_hdl, FREAD | FWRITE, kcred); 1077 1078 if (!err) 1079 vfsp->vfs_lofi_id = 0; 1080 1081 out: 1082 ldi_ident_release(ldi_id); 1083 if (li != NULL) 1084 kmem_free(li, sizeof (*li)); 1085 } 1086 1087 /* 1088 * Common mount code. Called from the system call entry point, from autofs, 1089 * nfsv4 trigger mounts, and from pxfs. 1090 * 1091 * Takes the effective file system type, mount arguments, the mount point 1092 * vnode, flags specifying whether the mount is a remount and whether it 1093 * should be entered into the vfs list, and credentials. Fills in its vfspp 1094 * parameter with the mounted file system instance's vfs. 1095 * 1096 * Note that the effective file system type is specified as a string. It may 1097 * be null, in which case it's determined from the mount arguments, and may 1098 * differ from the type specified in the mount arguments; this is a hook to 1099 * allow interposition when instantiating file system instances. 1100 * 1101 * The caller is responsible for releasing its own hold on the mount point 1102 * vp (this routine does its own hold when necessary). 1103 * Also note that for remounts, the mount point vp should be the vnode for 1104 * the root of the file system rather than the vnode that the file system 1105 * is mounted on top of. 1106 */ 1107 int 1108 domount(char *fsname, struct mounta *uap, vnode_t *vp, struct cred *credp, 1109 struct vfs **vfspp) 1110 { 1111 struct vfssw *vswp; 1112 vfsops_t *vfsops; 1113 struct vfs *vfsp; 1114 struct vnode *bvp; 1115 dev_t bdev = 0; 1116 mntopts_t mnt_mntopts; 1117 int error = 0; 1118 int copyout_error = 0; 1119 int ovflags; 1120 char *opts = uap->optptr; 1121 char *inargs = opts; 1122 int optlen = uap->optlen; 1123 int remount; 1124 int rdonly; 1125 int nbmand = 0; 1126 int delmip = 0; 1127 int addmip = 0; 1128 int splice = ((uap->flags & MS_NOSPLICE) == 0); 1129 int fromspace = (uap->flags & MS_SYSSPACE) ? 1130 UIO_SYSSPACE : UIO_USERSPACE; 1131 char *resource = NULL, *mountpt = NULL; 1132 refstr_t *oldresource, *oldmntpt; 1133 struct pathname pn, rpn; 1134 vsk_anchor_t *vskap; 1135 char fstname[FSTYPSZ]; 1136 zone_t *zone; 1137 1138 /* 1139 * The v_flag value for the mount point vp is permanently set 1140 * to VVFSLOCK so that no one bypasses the vn_vfs*locks routine 1141 * for mount point locking. 1142 */ 1143 mutex_enter(&vp->v_lock); 1144 vp->v_flag |= VVFSLOCK; 1145 mutex_exit(&vp->v_lock); 1146 1147 mnt_mntopts.mo_count = 0; 1148 /* 1149 * Find the ops vector to use to invoke the file system-specific mount 1150 * method. If the fsname argument is non-NULL, use it directly. 1151 * Otherwise, dig the file system type information out of the mount 1152 * arguments. 1153 * 1154 * A side effect is to hold the vfssw entry. 1155 * 1156 * Mount arguments can be specified in several ways, which are 1157 * distinguished by flag bit settings. The preferred way is to set 1158 * MS_OPTIONSTR, indicating an 8 argument mount with the file system 1159 * type supplied as a character string and the last two arguments 1160 * being a pointer to a character buffer and the size of the buffer. 1161 * On entry, the buffer holds a null terminated list of options; on 1162 * return, the string is the list of options the file system 1163 * recognized. If MS_DATA is set arguments five and six point to a 1164 * block of binary data which the file system interprets. 1165 * A further wrinkle is that some callers don't set MS_FSS and MS_DATA 1166 * consistently with these conventions. To handle them, we check to 1167 * see whether the pointer to the file system name has a numeric value 1168 * less than 256. If so, we treat it as an index. 1169 */ 1170 if (fsname != NULL) { 1171 if ((vswp = vfs_getvfssw(fsname)) == NULL) { 1172 return (EINVAL); 1173 } 1174 } else if (uap->flags & (MS_OPTIONSTR | MS_DATA | MS_FSS)) { 1175 size_t n; 1176 uint_t fstype; 1177 1178 fsname = fstname; 1179 1180 if ((fstype = (uintptr_t)uap->fstype) < 256) { 1181 RLOCK_VFSSW(); 1182 if (fstype == 0 || fstype >= nfstype || 1183 !ALLOCATED_VFSSW(&vfssw[fstype])) { 1184 RUNLOCK_VFSSW(); 1185 return (EINVAL); 1186 } 1187 (void) strcpy(fsname, vfssw[fstype].vsw_name); 1188 RUNLOCK_VFSSW(); 1189 if ((vswp = vfs_getvfssw(fsname)) == NULL) 1190 return (EINVAL); 1191 } else { 1192 /* 1193 * Handle either kernel or user address space. 1194 */ 1195 if (uap->flags & MS_SYSSPACE) { 1196 error = copystr(uap->fstype, fsname, 1197 FSTYPSZ, &n); 1198 } else { 1199 error = copyinstr(uap->fstype, fsname, 1200 FSTYPSZ, &n); 1201 } 1202 if (error) { 1203 if (error == ENAMETOOLONG) 1204 return (EINVAL); 1205 return (error); 1206 } 1207 if ((vswp = vfs_getvfssw(fsname)) == NULL) 1208 return (EINVAL); 1209 } 1210 } else { 1211 if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) == NULL) 1212 return (EINVAL); 1213 fsname = vswp->vsw_name; 1214 } 1215 if (!VFS_INSTALLED(vswp)) 1216 return (EINVAL); 1217 1218 if ((error = secpolicy_fs_allowed_mount(fsname)) != 0) { 1219 vfs_unrefvfssw(vswp); 1220 return (error); 1221 } 1222 1223 vfsops = &vswp->vsw_vfsops; 1224 1225 vfs_copyopttbl(&vswp->vsw_optproto, &mnt_mntopts); 1226 /* 1227 * Fetch mount options and parse them for generic vfs options 1228 */ 1229 if (uap->flags & MS_OPTIONSTR) { 1230 /* 1231 * Limit the buffer size 1232 */ 1233 if (optlen < 0 || optlen > MAX_MNTOPT_STR) { 1234 error = EINVAL; 1235 goto errout; 1236 } 1237 if ((uap->flags & MS_SYSSPACE) == 0) { 1238 inargs = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP); 1239 inargs[0] = '\0'; 1240 if (optlen) { 1241 error = copyinstr(opts, inargs, (size_t)optlen, 1242 NULL); 1243 if (error) { 1244 goto errout; 1245 } 1246 } 1247 } 1248 vfs_parsemntopts(&mnt_mntopts, inargs, 0); 1249 } 1250 /* 1251 * Flag bits override the options string. 1252 */ 1253 if (uap->flags & MS_REMOUNT) 1254 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_REMOUNT, NULL, 0, 0); 1255 if (uap->flags & MS_RDONLY) 1256 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_RO, NULL, 0, 0); 1257 if (uap->flags & MS_NOSUID) 1258 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0); 1259 1260 /* 1261 * Check if this is a remount; must be set in the option string and 1262 * the file system must support a remount option. 1263 */ 1264 if (remount = vfs_optionisset_nolock(&mnt_mntopts, 1265 MNTOPT_REMOUNT, NULL)) { 1266 if (!(vswp->vsw_flag & VSW_CANREMOUNT)) { 1267 error = ENOTSUP; 1268 goto errout; 1269 } 1270 uap->flags |= MS_REMOUNT; 1271 } 1272 1273 /* 1274 * uap->flags and vfs_optionisset() should agree. 1275 */ 1276 if (rdonly = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_RO, NULL)) { 1277 uap->flags |= MS_RDONLY; 1278 } 1279 if (vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL)) { 1280 uap->flags |= MS_NOSUID; 1281 } 1282 nbmand = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NBMAND, NULL); 1283 ASSERT(splice || !remount); 1284 /* 1285 * If we are splicing the fs into the namespace, 1286 * perform mount point checks. 1287 * 1288 * We want to resolve the path for the mount point to eliminate 1289 * '.' and ".." and symlinks in mount points; we can't do the 1290 * same for the resource string, since it would turn 1291 * "/dev/dsk/c0t0d0s0" into "/devices/pci@...". We need to do 1292 * this before grabbing vn_vfswlock(), because otherwise we 1293 * would deadlock with lookuppn(). 1294 */ 1295 if (splice) { 1296 ASSERT(vp->v_count > 0); 1297 1298 /* 1299 * Pick up mount point and device from appropriate space. 1300 */ 1301 if (pn_get(uap->spec, fromspace, &pn) == 0) { 1302 resource = kmem_alloc(pn.pn_pathlen + 1, 1303 KM_SLEEP); 1304 (void) strcpy(resource, pn.pn_path); 1305 pn_free(&pn); 1306 } 1307 /* 1308 * Do a lookupname prior to taking the 1309 * writelock. Mark this as completed if 1310 * successful for later cleanup and addition to 1311 * the mount in progress table. 1312 */ 1313 if ((uap->flags & MS_GLOBAL) == 0 && 1314 lookupname(uap->spec, fromspace, 1315 FOLLOW, NULL, &bvp) == 0) { 1316 addmip = 1; 1317 } 1318 1319 if ((error = pn_get(uap->dir, fromspace, &pn)) == 0) { 1320 pathname_t *pnp; 1321 1322 if (*pn.pn_path != '/') { 1323 error = EINVAL; 1324 pn_free(&pn); 1325 goto errout; 1326 } 1327 pn_alloc(&rpn); 1328 /* 1329 * Kludge to prevent autofs from deadlocking with 1330 * itself when it calls domount(). 1331 * 1332 * If autofs is calling, it is because it is doing 1333 * (autofs) mounts in the process of an NFS mount. A 1334 * lookuppn() here would cause us to block waiting for 1335 * said NFS mount to complete, which can't since this 1336 * is the thread that was supposed to doing it. 1337 */ 1338 if (fromspace == UIO_USERSPACE) { 1339 if ((error = lookuppn(&pn, &rpn, FOLLOW, NULL, 1340 NULL)) == 0) { 1341 pnp = &rpn; 1342 } else { 1343 /* 1344 * The file disappeared or otherwise 1345 * became inaccessible since we opened 1346 * it; might as well fail the mount 1347 * since the mount point is no longer 1348 * accessible. 1349 */ 1350 pn_free(&rpn); 1351 pn_free(&pn); 1352 goto errout; 1353 } 1354 } else { 1355 pnp = &pn; 1356 } 1357 mountpt = kmem_alloc(pnp->pn_pathlen + 1, KM_SLEEP); 1358 (void) strcpy(mountpt, pnp->pn_path); 1359 1360 /* 1361 * If the addition of the zone's rootpath 1362 * would push us over a total path length 1363 * of MAXPATHLEN, we fail the mount with 1364 * ENAMETOOLONG, which is what we would have 1365 * gotten if we were trying to perform the same 1366 * mount in the global zone. 1367 * 1368 * strlen() doesn't count the trailing 1369 * '\0', but zone_rootpathlen counts both a 1370 * trailing '/' and the terminating '\0'. 1371 */ 1372 if ((curproc->p_zone->zone_rootpathlen - 1 + 1373 strlen(mountpt)) > MAXPATHLEN || 1374 (resource != NULL && 1375 (curproc->p_zone->zone_rootpathlen - 1 + 1376 strlen(resource)) > MAXPATHLEN)) { 1377 error = ENAMETOOLONG; 1378 } 1379 1380 pn_free(&rpn); 1381 pn_free(&pn); 1382 } 1383 1384 if (error) 1385 goto errout; 1386 1387 /* 1388 * Prevent path name resolution from proceeding past 1389 * the mount point. 1390 */ 1391 if (vn_vfswlock(vp) != 0) { 1392 error = EBUSY; 1393 goto errout; 1394 } 1395 1396 /* 1397 * Verify that it's legitimate to establish a mount on 1398 * the prospective mount point. 1399 */ 1400 if (vn_mountedvfs(vp) != NULL) { 1401 /* 1402 * The mount point lock was obtained after some 1403 * other thread raced through and established a mount. 1404 */ 1405 vn_vfsunlock(vp); 1406 error = EBUSY; 1407 goto errout; 1408 } 1409 if (vp->v_flag & VNOMOUNT) { 1410 vn_vfsunlock(vp); 1411 error = EINVAL; 1412 goto errout; 1413 } 1414 } 1415 if ((uap->flags & (MS_DATA | MS_OPTIONSTR)) == 0) { 1416 uap->dataptr = NULL; 1417 uap->datalen = 0; 1418 } 1419 1420 /* 1421 * If this is a remount, we don't want to create a new VFS. 1422 * Instead, we pass the existing one with a remount flag. 1423 */ 1424 if (remount) { 1425 /* 1426 * Confirm that the mount point is the root vnode of the 1427 * file system that is being remounted. 1428 * This can happen if the user specifies a different 1429 * mount point directory pathname in the (re)mount command. 1430 * 1431 * Code below can only be reached if splice is true, so it's 1432 * safe to do vn_vfsunlock() here. 1433 */ 1434 if ((vp->v_flag & VROOT) == 0) { 1435 vn_vfsunlock(vp); 1436 error = ENOENT; 1437 goto errout; 1438 } 1439 /* 1440 * Disallow making file systems read-only unless file system 1441 * explicitly allows it in its vfssw. Ignore other flags. 1442 */ 1443 if (rdonly && vn_is_readonly(vp) == 0 && 1444 (vswp->vsw_flag & VSW_CANRWRO) == 0) { 1445 vn_vfsunlock(vp); 1446 error = EINVAL; 1447 goto errout; 1448 } 1449 /* 1450 * Disallow changing the NBMAND disposition of the file 1451 * system on remounts. 1452 */ 1453 if ((nbmand && ((vp->v_vfsp->vfs_flag & VFS_NBMAND) == 0)) || 1454 (!nbmand && (vp->v_vfsp->vfs_flag & VFS_NBMAND))) { 1455 vn_vfsunlock(vp); 1456 error = EINVAL; 1457 goto errout; 1458 } 1459 vfsp = vp->v_vfsp; 1460 ovflags = vfsp->vfs_flag; 1461 vfsp->vfs_flag |= VFS_REMOUNT; 1462 vfsp->vfs_flag &= ~VFS_RDONLY; 1463 } else { 1464 vfsp = vfs_alloc(KM_SLEEP); 1465 VFS_INIT(vfsp, vfsops, NULL); 1466 } 1467 1468 VFS_HOLD(vfsp); 1469 1470 if ((error = lofi_add(fsname, vfsp, &mnt_mntopts, uap)) != 0) { 1471 if (!remount) { 1472 if (splice) 1473 vn_vfsunlock(vp); 1474 vfs_free(vfsp); 1475 } else { 1476 vn_vfsunlock(vp); 1477 VFS_RELE(vfsp); 1478 } 1479 goto errout; 1480 } 1481 1482 /* 1483 * PRIV_SYS_MOUNT doesn't mean you can become root. 1484 */ 1485 if (vfsp->vfs_lofi_id != 0) { 1486 uap->flags |= MS_NOSUID; 1487 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0); 1488 } 1489 1490 /* 1491 * The vfs_reflock is not used anymore the code below explicitly 1492 * holds it preventing others accesing it directly. 1493 */ 1494 if ((sema_tryp(&vfsp->vfs_reflock) == 0) && 1495 !(vfsp->vfs_flag & VFS_REMOUNT)) 1496 cmn_err(CE_WARN, 1497 "mount type %s couldn't get vfs_reflock", vswp->vsw_name); 1498 1499 /* 1500 * Lock the vfs. If this is a remount we want to avoid spurious umount 1501 * failures that happen as a side-effect of fsflush() and other mount 1502 * and unmount operations that might be going on simultaneously and 1503 * may have locked the vfs currently. To not return EBUSY immediately 1504 * here we use vfs_lock_wait() instead vfs_lock() for the remount case. 1505 */ 1506 if (!remount) { 1507 if (error = vfs_lock(vfsp)) { 1508 vfsp->vfs_flag = ovflags; 1509 1510 lofi_remove(vfsp); 1511 1512 if (splice) 1513 vn_vfsunlock(vp); 1514 vfs_free(vfsp); 1515 goto errout; 1516 } 1517 } else { 1518 vfs_lock_wait(vfsp); 1519 } 1520 1521 /* 1522 * Add device to mount in progress table, global mounts require special 1523 * handling. It is possible that we have already done the lookupname 1524 * on a spliced, non-global fs. If so, we don't want to do it again 1525 * since we cannot do a lookupname after taking the 1526 * wlock above. This case is for a non-spliced, non-global filesystem. 1527 */ 1528 if (!addmip) { 1529 if ((uap->flags & MS_GLOBAL) == 0 && 1530 lookupname(uap->spec, fromspace, FOLLOW, NULL, &bvp) == 0) { 1531 addmip = 1; 1532 } 1533 } 1534 1535 if (addmip) { 1536 vnode_t *lvp = NULL; 1537 1538 error = vfs_get_lofi(vfsp, &lvp); 1539 if (error > 0) { 1540 lofi_remove(vfsp); 1541 1542 if (splice) 1543 vn_vfsunlock(vp); 1544 vfs_unlock(vfsp); 1545 1546 if (remount) { 1547 VFS_RELE(vfsp); 1548 } else { 1549 vfs_free(vfsp); 1550 } 1551 1552 goto errout; 1553 } else if (error == -1) { 1554 bdev = bvp->v_rdev; 1555 VN_RELE(bvp); 1556 } else { 1557 bdev = lvp->v_rdev; 1558 VN_RELE(lvp); 1559 VN_RELE(bvp); 1560 } 1561 1562 vfs_addmip(bdev, vfsp); 1563 addmip = 0; 1564 delmip = 1; 1565 } 1566 /* 1567 * Invalidate cached entry for the mount point. 1568 */ 1569 if (splice) 1570 dnlc_purge_vp(vp); 1571 1572 /* 1573 * If have an option string but the filesystem doesn't supply a 1574 * prototype options table, create a table with the global 1575 * options and sufficient room to accept all the options in the 1576 * string. Then parse the passed in option string 1577 * accepting all the options in the string. This gives us an 1578 * option table with all the proper cancel properties for the 1579 * global options. 1580 * 1581 * Filesystems that supply a prototype options table are handled 1582 * earlier in this function. 1583 */ 1584 if (uap->flags & MS_OPTIONSTR) { 1585 if (!(vswp->vsw_flag & VSW_HASPROTO)) { 1586 mntopts_t tmp_mntopts; 1587 1588 tmp_mntopts.mo_count = 0; 1589 vfs_createopttbl_extend(&tmp_mntopts, inargs, 1590 &mnt_mntopts); 1591 vfs_parsemntopts(&tmp_mntopts, inargs, 1); 1592 vfs_swapopttbl_nolock(&mnt_mntopts, &tmp_mntopts); 1593 vfs_freeopttbl(&tmp_mntopts); 1594 } 1595 } 1596 1597 /* 1598 * Serialize with zone state transitions. 1599 * See vfs_list_add; zone mounted into is: 1600 * zone_find_by_path(refstr_value(vfsp->vfs_mntpt)) 1601 * not the zone doing the mount (curproc->p_zone), but if we're already 1602 * inside a NGZ, then we know what zone we are. 1603 */ 1604 if (INGLOBALZONE(curproc)) { 1605 zone = zone_find_by_path(mountpt); 1606 ASSERT(zone != NULL); 1607 } else { 1608 zone = curproc->p_zone; 1609 /* 1610 * zone_find_by_path does a hold, so do one here too so that 1611 * we can do a zone_rele after mount_completed. 1612 */ 1613 zone_hold(zone); 1614 } 1615 mount_in_progress(zone); 1616 /* 1617 * Instantiate (or reinstantiate) the file system. If appropriate, 1618 * splice it into the file system name space. 1619 * 1620 * We want VFS_MOUNT() to be able to override the vfs_resource 1621 * string if necessary (ie, mntfs), and also for a remount to 1622 * change the same (necessary when remounting '/' during boot). 1623 * So we set up vfs_mntpt and vfs_resource to what we think they 1624 * should be, then hand off control to VFS_MOUNT() which can 1625 * override this. 1626 * 1627 * For safety's sake, when changing vfs_resource or vfs_mntpt of 1628 * a vfs which is on the vfs list (i.e. during a remount), we must 1629 * never set those fields to NULL. Several bits of code make 1630 * assumptions that the fields are always valid. 1631 */ 1632 vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts); 1633 if (remount) { 1634 if ((oldresource = vfsp->vfs_resource) != NULL) 1635 refstr_hold(oldresource); 1636 if ((oldmntpt = vfsp->vfs_mntpt) != NULL) 1637 refstr_hold(oldmntpt); 1638 } 1639 vfs_setresource(vfsp, resource, 0); 1640 vfs_setmntpoint(vfsp, mountpt, 0); 1641 1642 /* 1643 * going to mount on this vnode, so notify. 1644 */ 1645 vnevent_mountedover(vp, NULL); 1646 error = VFS_MOUNT(vfsp, vp, uap, credp); 1647 1648 if (uap->flags & MS_RDONLY) 1649 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0); 1650 if (uap->flags & MS_NOSUID) 1651 vfs_setmntopt(vfsp, MNTOPT_NOSUID, NULL, 0); 1652 if (uap->flags & MS_GLOBAL) 1653 vfs_setmntopt(vfsp, MNTOPT_GLOBAL, NULL, 0); 1654 1655 if (error) { 1656 lofi_remove(vfsp); 1657 1658 if (remount) { 1659 /* put back pre-remount options */ 1660 vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts); 1661 vfs_setmntpoint(vfsp, refstr_value(oldmntpt), 1662 VFSSP_VERBATIM); 1663 if (oldmntpt) 1664 refstr_rele(oldmntpt); 1665 vfs_setresource(vfsp, refstr_value(oldresource), 1666 VFSSP_VERBATIM); 1667 if (oldresource) 1668 refstr_rele(oldresource); 1669 vfsp->vfs_flag = ovflags; 1670 vfs_unlock(vfsp); 1671 VFS_RELE(vfsp); 1672 } else { 1673 vfs_unlock(vfsp); 1674 vfs_freemnttab(vfsp); 1675 vfs_free(vfsp); 1676 } 1677 } else { 1678 /* 1679 * Set the mount time to now 1680 */ 1681 vfsp->vfs_mtime = ddi_get_time(); 1682 if (remount) { 1683 vfsp->vfs_flag &= ~VFS_REMOUNT; 1684 if (oldresource) 1685 refstr_rele(oldresource); 1686 if (oldmntpt) 1687 refstr_rele(oldmntpt); 1688 } else if (splice) { 1689 /* 1690 * Link vfsp into the name space at the mount 1691 * point. Vfs_add() is responsible for 1692 * holding the mount point which will be 1693 * released when vfs_remove() is called. 1694 */ 1695 vfs_add(vp, vfsp, uap->flags); 1696 } else { 1697 /* 1698 * Hold the reference to file system which is 1699 * not linked into the name space. 1700 */ 1701 vfsp->vfs_zone = NULL; 1702 VFS_HOLD(vfsp); 1703 vfsp->vfs_vnodecovered = NULL; 1704 } 1705 /* 1706 * Set flags for global options encountered 1707 */ 1708 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) 1709 vfsp->vfs_flag |= VFS_RDONLY; 1710 else 1711 vfsp->vfs_flag &= ~VFS_RDONLY; 1712 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 1713 vfsp->vfs_flag |= (VFS_NOSETUID|VFS_NODEVICES); 1714 } else { 1715 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) 1716 vfsp->vfs_flag |= VFS_NODEVICES; 1717 else 1718 vfsp->vfs_flag &= ~VFS_NODEVICES; 1719 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) 1720 vfsp->vfs_flag |= VFS_NOSETUID; 1721 else 1722 vfsp->vfs_flag &= ~VFS_NOSETUID; 1723 } 1724 if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) 1725 vfsp->vfs_flag |= VFS_NBMAND; 1726 else 1727 vfsp->vfs_flag &= ~VFS_NBMAND; 1728 1729 if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) 1730 vfsp->vfs_flag |= VFS_XATTR; 1731 else 1732 vfsp->vfs_flag &= ~VFS_XATTR; 1733 1734 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) 1735 vfsp->vfs_flag |= VFS_NOEXEC; 1736 else 1737 vfsp->vfs_flag &= ~VFS_NOEXEC; 1738 1739 /* 1740 * Now construct the output option string of options 1741 * we recognized. 1742 */ 1743 if (uap->flags & MS_OPTIONSTR) { 1744 vfs_list_read_lock(); 1745 copyout_error = vfs_buildoptionstr( 1746 &vfsp->vfs_mntopts, inargs, optlen); 1747 vfs_list_unlock(); 1748 if (copyout_error == 0 && 1749 (uap->flags & MS_SYSSPACE) == 0) { 1750 copyout_error = copyoutstr(inargs, opts, 1751 optlen, NULL); 1752 } 1753 } 1754 1755 /* 1756 * If this isn't a remount, set up the vopstats before 1757 * anyone can touch this. We only allow spliced file 1758 * systems (file systems which are in the namespace) to 1759 * have the VFS_STATS flag set. 1760 * NOTE: PxFS mounts the underlying file system with 1761 * MS_NOSPLICE set and copies those vfs_flags to its private 1762 * vfs structure. As a result, PxFS should never have 1763 * the VFS_STATS flag or else we might access the vfs 1764 * statistics-related fields prior to them being 1765 * properly initialized. 1766 */ 1767 if (!remount && (vswp->vsw_flag & VSW_STATS) && splice) { 1768 initialize_vopstats(&vfsp->vfs_vopstats); 1769 /* 1770 * We need to set vfs_vskap to NULL because there's 1771 * a chance it won't be set below. This is checked 1772 * in teardown_vopstats() so we can't have garbage. 1773 */ 1774 vfsp->vfs_vskap = NULL; 1775 vfsp->vfs_flag |= VFS_STATS; 1776 vfsp->vfs_fstypevsp = get_fstype_vopstats(vfsp, vswp); 1777 } 1778 1779 if (vswp->vsw_flag & VSW_XID) 1780 vfsp->vfs_flag |= VFS_XID; 1781 1782 vfs_unlock(vfsp); 1783 } 1784 mount_completed(zone); 1785 zone_rele(zone); 1786 if (splice) 1787 vn_vfsunlock(vp); 1788 1789 if ((error == 0) && (copyout_error == 0)) { 1790 if (!remount) { 1791 /* 1792 * Don't call get_vskstat_anchor() while holding 1793 * locks since it allocates memory and calls 1794 * VFS_STATVFS(). For NFS, the latter can generate 1795 * an over-the-wire call. 1796 */ 1797 vskap = get_vskstat_anchor(vfsp); 1798 /* Only take the lock if we have something to do */ 1799 if (vskap != NULL) { 1800 vfs_lock_wait(vfsp); 1801 if (vfsp->vfs_flag & VFS_STATS) { 1802 vfsp->vfs_vskap = vskap; 1803 } 1804 vfs_unlock(vfsp); 1805 } 1806 } 1807 /* Return vfsp to caller. */ 1808 *vfspp = vfsp; 1809 } 1810 errout: 1811 vfs_freeopttbl(&mnt_mntopts); 1812 if (resource != NULL) 1813 kmem_free(resource, strlen(resource) + 1); 1814 if (mountpt != NULL) 1815 kmem_free(mountpt, strlen(mountpt) + 1); 1816 /* 1817 * It is possible we errored prior to adding to mount in progress 1818 * table. Must free vnode we acquired with successful lookupname. 1819 */ 1820 if (addmip) 1821 VN_RELE(bvp); 1822 if (delmip) 1823 vfs_delmip(vfsp); 1824 ASSERT(vswp != NULL); 1825 vfs_unrefvfssw(vswp); 1826 if (inargs != opts) 1827 kmem_free(inargs, MAX_MNTOPT_STR); 1828 if (copyout_error) { 1829 lofi_remove(vfsp); 1830 VFS_RELE(vfsp); 1831 error = copyout_error; 1832 } 1833 return (error); 1834 } 1835 1836 static void 1837 vfs_setpath( 1838 struct vfs *vfsp, /* vfs being updated */ 1839 refstr_t **refp, /* Ref-count string to contain the new path */ 1840 const char *newpath, /* Path to add to refp (above) */ 1841 uint32_t flag) /* flag */ 1842 { 1843 size_t len; 1844 refstr_t *ref; 1845 zone_t *zone = curproc->p_zone; 1846 char *sp; 1847 int have_list_lock = 0; 1848 1849 ASSERT(!VFS_ON_LIST(vfsp) || vfs_lock_held(vfsp)); 1850 1851 /* 1852 * New path must be less than MAXPATHLEN because mntfs 1853 * will only display up to MAXPATHLEN bytes. This is currently 1854 * safe, because domount() uses pn_get(), and other callers 1855 * similarly cap the size to fewer than MAXPATHLEN bytes. 1856 */ 1857 1858 ASSERT(strlen(newpath) < MAXPATHLEN); 1859 1860 /* mntfs requires consistency while vfs list lock is held */ 1861 1862 if (VFS_ON_LIST(vfsp)) { 1863 have_list_lock = 1; 1864 vfs_list_lock(); 1865 } 1866 1867 if (*refp != NULL) 1868 refstr_rele(*refp); 1869 1870 /* 1871 * If we are in a non-global zone then we prefix the supplied path, 1872 * newpath, with the zone's root path, with two exceptions. The first 1873 * is where we have been explicitly directed to avoid doing so; this 1874 * will be the case following a failed remount, where the path supplied 1875 * will be a saved version which must now be restored. The second 1876 * exception is where newpath is not a pathname but a descriptive name, 1877 * e.g. "procfs". 1878 */ 1879 if (zone == global_zone || (flag & VFSSP_VERBATIM) || *newpath != '/') { 1880 ref = refstr_alloc(newpath); 1881 goto out; 1882 } 1883 1884 /* 1885 * Truncate the trailing '/' in the zoneroot, and merge 1886 * in the zone's rootpath with the "newpath" (resource 1887 * or mountpoint) passed in. 1888 * 1889 * The size of the required buffer is thus the size of 1890 * the buffer required for the passed-in newpath 1891 * (strlen(newpath) + 1), plus the size of the buffer 1892 * required to hold zone_rootpath (zone_rootpathlen) 1893 * minus one for one of the now-superfluous NUL 1894 * terminations, minus one for the trailing '/'. 1895 * 1896 * That gives us: 1897 * 1898 * (strlen(newpath) + 1) + zone_rootpathlen - 1 - 1 1899 * 1900 * Which is what we have below. 1901 */ 1902 1903 len = strlen(newpath) + zone->zone_rootpathlen - 1; 1904 sp = kmem_alloc(len, KM_SLEEP); 1905 1906 /* 1907 * Copy everything including the trailing slash, which 1908 * we then overwrite with the NUL character. 1909 */ 1910 1911 (void) strcpy(sp, zone->zone_rootpath); 1912 sp[zone->zone_rootpathlen - 2] = '\0'; 1913 (void) strcat(sp, newpath); 1914 1915 ref = refstr_alloc(sp); 1916 kmem_free(sp, len); 1917 out: 1918 *refp = ref; 1919 1920 if (have_list_lock) { 1921 vfs_mnttab_modtimeupd(); 1922 vfs_list_unlock(); 1923 } 1924 } 1925 1926 /* 1927 * Record a mounted resource name in a vfs structure. 1928 * If vfsp is already mounted, caller must hold the vfs lock. 1929 */ 1930 void 1931 vfs_setresource(struct vfs *vfsp, const char *resource, uint32_t flag) 1932 { 1933 if (resource == NULL || resource[0] == '\0') 1934 resource = VFS_NORESOURCE; 1935 vfs_setpath(vfsp, &vfsp->vfs_resource, resource, flag); 1936 } 1937 1938 /* 1939 * Record a mount point name in a vfs structure. 1940 * If vfsp is already mounted, caller must hold the vfs lock. 1941 */ 1942 void 1943 vfs_setmntpoint(struct vfs *vfsp, const char *mntpt, uint32_t flag) 1944 { 1945 if (mntpt == NULL || mntpt[0] == '\0') 1946 mntpt = VFS_NOMNTPT; 1947 vfs_setpath(vfsp, &vfsp->vfs_mntpt, mntpt, flag); 1948 } 1949 1950 /* Returns the vfs_resource. Caller must call refstr_rele() when finished. */ 1951 1952 refstr_t * 1953 vfs_getresource(const struct vfs *vfsp) 1954 { 1955 refstr_t *resource; 1956 1957 vfs_list_read_lock(); 1958 resource = vfsp->vfs_resource; 1959 refstr_hold(resource); 1960 vfs_list_unlock(); 1961 1962 return (resource); 1963 } 1964 1965 /* Returns the vfs_mntpt. Caller must call refstr_rele() when finished. */ 1966 1967 refstr_t * 1968 vfs_getmntpoint(const struct vfs *vfsp) 1969 { 1970 refstr_t *mntpt; 1971 1972 vfs_list_read_lock(); 1973 mntpt = vfsp->vfs_mntpt; 1974 refstr_hold(mntpt); 1975 vfs_list_unlock(); 1976 1977 return (mntpt); 1978 } 1979 1980 /* 1981 * Create an empty options table with enough empty slots to hold all 1982 * The options in the options string passed as an argument. 1983 * Potentially prepend another options table. 1984 * 1985 * Note: caller is responsible for locking the vfs list, if needed, 1986 * to protect mops. 1987 */ 1988 static void 1989 vfs_createopttbl_extend(mntopts_t *mops, const char *opts, 1990 const mntopts_t *mtmpl) 1991 { 1992 const char *s = opts; 1993 uint_t count; 1994 1995 if (opts == NULL || *opts == '\0') { 1996 count = 0; 1997 } else { 1998 count = 1; 1999 2000 /* 2001 * Count number of options in the string 2002 */ 2003 for (s = strchr(s, ','); s != NULL; s = strchr(s, ',')) { 2004 count++; 2005 s++; 2006 } 2007 } 2008 vfs_copyopttbl_extend(mtmpl, mops, count); 2009 } 2010 2011 /* 2012 * Create an empty options table with enough empty slots to hold all 2013 * The options in the options string passed as an argument. 2014 * 2015 * This function is *not* for general use by filesystems. 2016 * 2017 * Note: caller is responsible for locking the vfs list, if needed, 2018 * to protect mops. 2019 */ 2020 void 2021 vfs_createopttbl(mntopts_t *mops, const char *opts) 2022 { 2023 vfs_createopttbl_extend(mops, opts, NULL); 2024 } 2025 2026 2027 /* 2028 * Swap two mount options tables 2029 */ 2030 static void 2031 vfs_swapopttbl_nolock(mntopts_t *optbl1, mntopts_t *optbl2) 2032 { 2033 uint_t tmpcnt; 2034 mntopt_t *tmplist; 2035 2036 tmpcnt = optbl2->mo_count; 2037 tmplist = optbl2->mo_list; 2038 optbl2->mo_count = optbl1->mo_count; 2039 optbl2->mo_list = optbl1->mo_list; 2040 optbl1->mo_count = tmpcnt; 2041 optbl1->mo_list = tmplist; 2042 } 2043 2044 static void 2045 vfs_swapopttbl(mntopts_t *optbl1, mntopts_t *optbl2) 2046 { 2047 vfs_list_lock(); 2048 vfs_swapopttbl_nolock(optbl1, optbl2); 2049 vfs_mnttab_modtimeupd(); 2050 vfs_list_unlock(); 2051 } 2052 2053 static char ** 2054 vfs_copycancelopt_extend(char **const moc, int extend) 2055 { 2056 int i = 0; 2057 int j; 2058 char **result; 2059 2060 if (moc != NULL) { 2061 for (; moc[i] != NULL; i++) 2062 /* count number of options to cancel */; 2063 } 2064 2065 if (i + extend == 0) 2066 return (NULL); 2067 2068 result = kmem_alloc((i + extend + 1) * sizeof (char *), KM_SLEEP); 2069 2070 for (j = 0; j < i; j++) { 2071 result[j] = kmem_alloc(strlen(moc[j]) + 1, KM_SLEEP); 2072 (void) strcpy(result[j], moc[j]); 2073 } 2074 for (; j <= i + extend; j++) 2075 result[j] = NULL; 2076 2077 return (result); 2078 } 2079 2080 static void 2081 vfs_copyopt(const mntopt_t *s, mntopt_t *d) 2082 { 2083 char *sp, *dp; 2084 2085 d->mo_flags = s->mo_flags; 2086 d->mo_data = s->mo_data; 2087 sp = s->mo_name; 2088 if (sp != NULL) { 2089 dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP); 2090 (void) strcpy(dp, sp); 2091 d->mo_name = dp; 2092 } else { 2093 d->mo_name = NULL; /* should never happen */ 2094 } 2095 2096 d->mo_cancel = vfs_copycancelopt_extend(s->mo_cancel, 0); 2097 2098 sp = s->mo_arg; 2099 if (sp != NULL) { 2100 dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP); 2101 (void) strcpy(dp, sp); 2102 d->mo_arg = dp; 2103 } else { 2104 d->mo_arg = NULL; 2105 } 2106 } 2107 2108 /* 2109 * Copy a mount options table, possibly allocating some spare 2110 * slots at the end. It is permissible to copy_extend the NULL table. 2111 */ 2112 static void 2113 vfs_copyopttbl_extend(const mntopts_t *smo, mntopts_t *dmo, int extra) 2114 { 2115 uint_t i, count; 2116 mntopt_t *motbl; 2117 2118 /* 2119 * Clear out any existing stuff in the options table being initialized 2120 */ 2121 vfs_freeopttbl(dmo); 2122 count = (smo == NULL) ? 0 : smo->mo_count; 2123 if ((count + extra) == 0) /* nothing to do */ 2124 return; 2125 dmo->mo_count = count + extra; 2126 motbl = kmem_zalloc((count + extra) * sizeof (mntopt_t), KM_SLEEP); 2127 dmo->mo_list = motbl; 2128 for (i = 0; i < count; i++) { 2129 vfs_copyopt(&smo->mo_list[i], &motbl[i]); 2130 } 2131 for (i = count; i < count + extra; i++) { 2132 motbl[i].mo_flags = MO_EMPTY; 2133 } 2134 } 2135 2136 /* 2137 * Copy a mount options table. 2138 * 2139 * This function is *not* for general use by filesystems. 2140 * 2141 * Note: caller is responsible for locking the vfs list, if needed, 2142 * to protect smo and dmo. 2143 */ 2144 void 2145 vfs_copyopttbl(const mntopts_t *smo, mntopts_t *dmo) 2146 { 2147 vfs_copyopttbl_extend(smo, dmo, 0); 2148 } 2149 2150 static char ** 2151 vfs_mergecancelopts(const mntopt_t *mop1, const mntopt_t *mop2) 2152 { 2153 int c1 = 0; 2154 int c2 = 0; 2155 char **result; 2156 char **sp1, **sp2, **dp; 2157 2158 /* 2159 * First we count both lists of cancel options. 2160 * If either is NULL or has no elements, we return a copy of 2161 * the other. 2162 */ 2163 if (mop1->mo_cancel != NULL) { 2164 for (; mop1->mo_cancel[c1] != NULL; c1++) 2165 /* count cancel options in mop1 */; 2166 } 2167 2168 if (c1 == 0) 2169 return (vfs_copycancelopt_extend(mop2->mo_cancel, 0)); 2170 2171 if (mop2->mo_cancel != NULL) { 2172 for (; mop2->mo_cancel[c2] != NULL; c2++) 2173 /* count cancel options in mop2 */; 2174 } 2175 2176 result = vfs_copycancelopt_extend(mop1->mo_cancel, c2); 2177 2178 if (c2 == 0) 2179 return (result); 2180 2181 /* 2182 * When we get here, we've got two sets of cancel options; 2183 * we need to merge the two sets. We know that the result 2184 * array has "c1+c2+1" entries and in the end we might shrink 2185 * it. 2186 * Result now has a copy of the c1 entries from mop1; we'll 2187 * now lookup all the entries of mop2 in mop1 and copy it if 2188 * it is unique. 2189 * This operation is O(n^2) but it's only called once per 2190 * filesystem per duplicate option. This is a situation 2191 * which doesn't arise with the filesystems in ON and 2192 * n is generally 1. 2193 */ 2194 2195 dp = &result[c1]; 2196 for (sp2 = mop2->mo_cancel; *sp2 != NULL; sp2++) { 2197 for (sp1 = mop1->mo_cancel; *sp1 != NULL; sp1++) { 2198 if (strcmp(*sp1, *sp2) == 0) 2199 break; 2200 } 2201 if (*sp1 == NULL) { 2202 /* 2203 * Option *sp2 not found in mop1, so copy it. 2204 * The calls to vfs_copycancelopt_extend() 2205 * guarantee that there's enough room. 2206 */ 2207 *dp = kmem_alloc(strlen(*sp2) + 1, KM_SLEEP); 2208 (void) strcpy(*dp++, *sp2); 2209 } 2210 } 2211 if (dp != &result[c1+c2]) { 2212 size_t bytes = (dp - result + 1) * sizeof (char *); 2213 char **nres = kmem_alloc(bytes, KM_SLEEP); 2214 2215 bcopy(result, nres, bytes); 2216 kmem_free(result, (c1 + c2 + 1) * sizeof (char *)); 2217 result = nres; 2218 } 2219 return (result); 2220 } 2221 2222 /* 2223 * Merge two mount option tables (outer and inner) into one. This is very 2224 * similar to "merging" global variables and automatic variables in C. 2225 * 2226 * This isn't (and doesn't have to be) fast. 2227 * 2228 * This function is *not* for general use by filesystems. 2229 * 2230 * Note: caller is responsible for locking the vfs list, if needed, 2231 * to protect omo, imo & dmo. 2232 */ 2233 void 2234 vfs_mergeopttbl(const mntopts_t *omo, const mntopts_t *imo, mntopts_t *dmo) 2235 { 2236 uint_t i, count; 2237 mntopt_t *mop, *motbl; 2238 uint_t freeidx; 2239 2240 /* 2241 * First determine how much space we need to allocate. 2242 */ 2243 count = omo->mo_count; 2244 for (i = 0; i < imo->mo_count; i++) { 2245 if (imo->mo_list[i].mo_flags & MO_EMPTY) 2246 continue; 2247 if (vfs_hasopt(omo, imo->mo_list[i].mo_name) == NULL) 2248 count++; 2249 } 2250 ASSERT(count >= omo->mo_count && 2251 count <= omo->mo_count + imo->mo_count); 2252 motbl = kmem_alloc(count * sizeof (mntopt_t), KM_SLEEP); 2253 for (i = 0; i < omo->mo_count; i++) 2254 vfs_copyopt(&omo->mo_list[i], &motbl[i]); 2255 freeidx = omo->mo_count; 2256 for (i = 0; i < imo->mo_count; i++) { 2257 if (imo->mo_list[i].mo_flags & MO_EMPTY) 2258 continue; 2259 if ((mop = vfs_hasopt(omo, imo->mo_list[i].mo_name)) != NULL) { 2260 char **newcanp; 2261 uint_t index = mop - omo->mo_list; 2262 2263 newcanp = vfs_mergecancelopts(mop, &motbl[index]); 2264 2265 vfs_freeopt(&motbl[index]); 2266 vfs_copyopt(&imo->mo_list[i], &motbl[index]); 2267 2268 vfs_freecancelopt(motbl[index].mo_cancel); 2269 motbl[index].mo_cancel = newcanp; 2270 } else { 2271 /* 2272 * If it's a new option, just copy it over to the first 2273 * free location. 2274 */ 2275 vfs_copyopt(&imo->mo_list[i], &motbl[freeidx++]); 2276 } 2277 } 2278 dmo->mo_count = count; 2279 dmo->mo_list = motbl; 2280 } 2281 2282 /* 2283 * Functions to set and clear mount options in a mount options table. 2284 */ 2285 2286 /* 2287 * Clear a mount option, if it exists. 2288 * 2289 * The update_mnttab arg indicates whether mops is part of a vfs that is on 2290 * the vfs list. 2291 */ 2292 static void 2293 vfs_clearmntopt_nolock(mntopts_t *mops, const char *opt, int update_mnttab) 2294 { 2295 struct mntopt *mop; 2296 uint_t i, count; 2297 2298 ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist)); 2299 2300 count = mops->mo_count; 2301 for (i = 0; i < count; i++) { 2302 mop = &mops->mo_list[i]; 2303 2304 if (mop->mo_flags & MO_EMPTY) 2305 continue; 2306 if (strcmp(opt, mop->mo_name)) 2307 continue; 2308 mop->mo_flags &= ~MO_SET; 2309 if (mop->mo_arg != NULL) { 2310 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2311 } 2312 mop->mo_arg = NULL; 2313 if (update_mnttab) 2314 vfs_mnttab_modtimeupd(); 2315 break; 2316 } 2317 } 2318 2319 void 2320 vfs_clearmntopt(struct vfs *vfsp, const char *opt) 2321 { 2322 int gotlock = 0; 2323 2324 if (VFS_ON_LIST(vfsp)) { 2325 gotlock = 1; 2326 vfs_list_lock(); 2327 } 2328 vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, opt, gotlock); 2329 if (gotlock) 2330 vfs_list_unlock(); 2331 } 2332 2333 2334 /* 2335 * Set a mount option on. If it's not found in the table, it's silently 2336 * ignored. If the option has MO_IGNORE set, it is still set unless the 2337 * VFS_NOFORCEOPT bit is set in the flags. Also, VFS_DISPLAY/VFS_NODISPLAY flag 2338 * bits can be used to toggle the MO_NODISPLAY bit for the option. 2339 * If the VFS_CREATEOPT flag bit is set then the first option slot with 2340 * MO_EMPTY set is created as the option passed in. 2341 * 2342 * The update_mnttab arg indicates whether mops is part of a vfs that is on 2343 * the vfs list. 2344 */ 2345 static void 2346 vfs_setmntopt_nolock(mntopts_t *mops, const char *opt, 2347 const char *arg, int flags, int update_mnttab) 2348 { 2349 mntopt_t *mop; 2350 uint_t i, count; 2351 char *sp; 2352 2353 ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist)); 2354 2355 if (flags & VFS_CREATEOPT) { 2356 if (vfs_hasopt(mops, opt) != NULL) { 2357 flags &= ~VFS_CREATEOPT; 2358 } 2359 } 2360 count = mops->mo_count; 2361 for (i = 0; i < count; i++) { 2362 mop = &mops->mo_list[i]; 2363 2364 if (mop->mo_flags & MO_EMPTY) { 2365 if ((flags & VFS_CREATEOPT) == 0) 2366 continue; 2367 sp = kmem_alloc(strlen(opt) + 1, KM_SLEEP); 2368 (void) strcpy(sp, opt); 2369 mop->mo_name = sp; 2370 if (arg != NULL) 2371 mop->mo_flags = MO_HASVALUE; 2372 else 2373 mop->mo_flags = 0; 2374 } else if (strcmp(opt, mop->mo_name)) { 2375 continue; 2376 } 2377 if ((mop->mo_flags & MO_IGNORE) && (flags & VFS_NOFORCEOPT)) 2378 break; 2379 if (arg != NULL && (mop->mo_flags & MO_HASVALUE) != 0) { 2380 sp = kmem_alloc(strlen(arg) + 1, KM_SLEEP); 2381 (void) strcpy(sp, arg); 2382 } else { 2383 sp = NULL; 2384 } 2385 if (mop->mo_arg != NULL) 2386 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2387 mop->mo_arg = sp; 2388 if (flags & VFS_DISPLAY) 2389 mop->mo_flags &= ~MO_NODISPLAY; 2390 if (flags & VFS_NODISPLAY) 2391 mop->mo_flags |= MO_NODISPLAY; 2392 mop->mo_flags |= MO_SET; 2393 if (mop->mo_cancel != NULL) { 2394 char **cp; 2395 2396 for (cp = mop->mo_cancel; *cp != NULL; cp++) 2397 vfs_clearmntopt_nolock(mops, *cp, 0); 2398 } 2399 if (update_mnttab) 2400 vfs_mnttab_modtimeupd(); 2401 break; 2402 } 2403 } 2404 2405 void 2406 vfs_setmntopt(struct vfs *vfsp, const char *opt, const char *arg, int flags) 2407 { 2408 int gotlock = 0; 2409 2410 if (VFS_ON_LIST(vfsp)) { 2411 gotlock = 1; 2412 vfs_list_lock(); 2413 } 2414 vfs_setmntopt_nolock(&vfsp->vfs_mntopts, opt, arg, flags, gotlock); 2415 if (gotlock) 2416 vfs_list_unlock(); 2417 } 2418 2419 2420 /* 2421 * Add a "tag" option to a mounted file system's options list. 2422 * 2423 * Note: caller is responsible for locking the vfs list, if needed, 2424 * to protect mops. 2425 */ 2426 static mntopt_t * 2427 vfs_addtag(mntopts_t *mops, const char *tag) 2428 { 2429 uint_t count; 2430 mntopt_t *mop, *motbl; 2431 2432 count = mops->mo_count + 1; 2433 motbl = kmem_zalloc(count * sizeof (mntopt_t), KM_SLEEP); 2434 if (mops->mo_count) { 2435 size_t len = (count - 1) * sizeof (mntopt_t); 2436 2437 bcopy(mops->mo_list, motbl, len); 2438 kmem_free(mops->mo_list, len); 2439 } 2440 mops->mo_count = count; 2441 mops->mo_list = motbl; 2442 mop = &motbl[count - 1]; 2443 mop->mo_flags = MO_TAG; 2444 mop->mo_name = kmem_alloc(strlen(tag) + 1, KM_SLEEP); 2445 (void) strcpy(mop->mo_name, tag); 2446 return (mop); 2447 } 2448 2449 /* 2450 * Allow users to set arbitrary "tags" in a vfs's mount options. 2451 * Broader use within the kernel is discouraged. 2452 */ 2453 int 2454 vfs_settag(uint_t major, uint_t minor, const char *mntpt, const char *tag, 2455 cred_t *cr) 2456 { 2457 vfs_t *vfsp; 2458 mntopts_t *mops; 2459 mntopt_t *mop; 2460 int found = 0; 2461 dev_t dev = makedevice(major, minor); 2462 int err = 0; 2463 char *buf = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP); 2464 2465 /* 2466 * Find the desired mounted file system 2467 */ 2468 vfs_list_lock(); 2469 vfsp = rootvfs; 2470 do { 2471 if (vfsp->vfs_dev == dev && 2472 strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) { 2473 found = 1; 2474 break; 2475 } 2476 vfsp = vfsp->vfs_next; 2477 } while (vfsp != rootvfs); 2478 2479 if (!found) { 2480 err = EINVAL; 2481 goto out; 2482 } 2483 err = secpolicy_fs_config(cr, vfsp); 2484 if (err != 0) 2485 goto out; 2486 2487 mops = &vfsp->vfs_mntopts; 2488 /* 2489 * Add tag if it doesn't already exist 2490 */ 2491 if ((mop = vfs_hasopt(mops, tag)) == NULL) { 2492 int len; 2493 2494 (void) vfs_buildoptionstr(mops, buf, MAX_MNTOPT_STR); 2495 len = strlen(buf); 2496 if (len + strlen(tag) + 2 > MAX_MNTOPT_STR) { 2497 err = ENAMETOOLONG; 2498 goto out; 2499 } 2500 mop = vfs_addtag(mops, tag); 2501 } 2502 if ((mop->mo_flags & MO_TAG) == 0) { 2503 err = EINVAL; 2504 goto out; 2505 } 2506 vfs_setmntopt_nolock(mops, tag, NULL, 0, 1); 2507 out: 2508 vfs_list_unlock(); 2509 kmem_free(buf, MAX_MNTOPT_STR); 2510 return (err); 2511 } 2512 2513 /* 2514 * Allow users to remove arbitrary "tags" in a vfs's mount options. 2515 * Broader use within the kernel is discouraged. 2516 */ 2517 int 2518 vfs_clrtag(uint_t major, uint_t minor, const char *mntpt, const char *tag, 2519 cred_t *cr) 2520 { 2521 vfs_t *vfsp; 2522 mntopt_t *mop; 2523 int found = 0; 2524 dev_t dev = makedevice(major, minor); 2525 int err = 0; 2526 2527 /* 2528 * Find the desired mounted file system 2529 */ 2530 vfs_list_lock(); 2531 vfsp = rootvfs; 2532 do { 2533 if (vfsp->vfs_dev == dev && 2534 strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) { 2535 found = 1; 2536 break; 2537 } 2538 vfsp = vfsp->vfs_next; 2539 } while (vfsp != rootvfs); 2540 2541 if (!found) { 2542 err = EINVAL; 2543 goto out; 2544 } 2545 err = secpolicy_fs_config(cr, vfsp); 2546 if (err != 0) 2547 goto out; 2548 2549 if ((mop = vfs_hasopt(&vfsp->vfs_mntopts, tag)) == NULL) { 2550 err = EINVAL; 2551 goto out; 2552 } 2553 if ((mop->mo_flags & MO_TAG) == 0) { 2554 err = EINVAL; 2555 goto out; 2556 } 2557 vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, tag, 1); 2558 out: 2559 vfs_list_unlock(); 2560 return (err); 2561 } 2562 2563 /* 2564 * Function to parse an option string and fill in a mount options table. 2565 * Unknown options are silently ignored. The input option string is modified 2566 * by replacing separators with nulls. If the create flag is set, options 2567 * not found in the table are just added on the fly. The table must have 2568 * an option slot marked MO_EMPTY to add an option on the fly. 2569 * 2570 * This function is *not* for general use by filesystems. 2571 * 2572 * Note: caller is responsible for locking the vfs list, if needed, 2573 * to protect mops.. 2574 */ 2575 void 2576 vfs_parsemntopts(mntopts_t *mops, char *osp, int create) 2577 { 2578 char *s = osp, *p, *nextop, *valp, *cp, *ep; 2579 int setflg = VFS_NOFORCEOPT; 2580 2581 if (osp == NULL) 2582 return; 2583 while (*s != '\0') { 2584 p = strchr(s, ','); /* find next option */ 2585 if (p == NULL) { 2586 cp = NULL; 2587 p = s + strlen(s); 2588 } else { 2589 cp = p; /* save location of comma */ 2590 *p++ = '\0'; /* mark end and point to next option */ 2591 } 2592 nextop = p; 2593 p = strchr(s, '='); /* look for value */ 2594 if (p == NULL) { 2595 valp = NULL; /* no value supplied */ 2596 } else { 2597 ep = p; /* save location of equals */ 2598 *p++ = '\0'; /* end option and point to value */ 2599 valp = p; 2600 } 2601 /* 2602 * set option into options table 2603 */ 2604 if (create) 2605 setflg |= VFS_CREATEOPT; 2606 vfs_setmntopt_nolock(mops, s, valp, setflg, 0); 2607 if (cp != NULL) 2608 *cp = ','; /* restore the comma */ 2609 if (valp != NULL) 2610 *ep = '='; /* restore the equals */ 2611 s = nextop; 2612 } 2613 } 2614 2615 /* 2616 * Function to inquire if an option exists in a mount options table. 2617 * Returns a pointer to the option if it exists, else NULL. 2618 * 2619 * This function is *not* for general use by filesystems. 2620 * 2621 * Note: caller is responsible for locking the vfs list, if needed, 2622 * to protect mops. 2623 */ 2624 struct mntopt * 2625 vfs_hasopt(const mntopts_t *mops, const char *opt) 2626 { 2627 struct mntopt *mop; 2628 uint_t i, count; 2629 2630 count = mops->mo_count; 2631 for (i = 0; i < count; i++) { 2632 mop = &mops->mo_list[i]; 2633 2634 if (mop->mo_flags & MO_EMPTY) 2635 continue; 2636 if (strcmp(opt, mop->mo_name) == 0) 2637 return (mop); 2638 } 2639 return (NULL); 2640 } 2641 2642 /* 2643 * Function to inquire if an option is set in a mount options table. 2644 * Returns non-zero if set and fills in the arg pointer with a pointer to 2645 * the argument string or NULL if there is no argument string. 2646 */ 2647 static int 2648 vfs_optionisset_nolock(const mntopts_t *mops, const char *opt, char **argp) 2649 { 2650 struct mntopt *mop; 2651 uint_t i, count; 2652 2653 count = mops->mo_count; 2654 for (i = 0; i < count; i++) { 2655 mop = &mops->mo_list[i]; 2656 2657 if (mop->mo_flags & MO_EMPTY) 2658 continue; 2659 if (strcmp(opt, mop->mo_name)) 2660 continue; 2661 if ((mop->mo_flags & MO_SET) == 0) 2662 return (0); 2663 if (argp != NULL && (mop->mo_flags & MO_HASVALUE) != 0) 2664 *argp = mop->mo_arg; 2665 return (1); 2666 } 2667 return (0); 2668 } 2669 2670 2671 int 2672 vfs_optionisset(const struct vfs *vfsp, const char *opt, char **argp) 2673 { 2674 int ret; 2675 2676 vfs_list_read_lock(); 2677 ret = vfs_optionisset_nolock(&vfsp->vfs_mntopts, opt, argp); 2678 vfs_list_unlock(); 2679 return (ret); 2680 } 2681 2682 2683 /* 2684 * Construct a comma separated string of the options set in the given 2685 * mount table, return the string in the given buffer. Return non-zero if 2686 * the buffer would overflow. 2687 * 2688 * This function is *not* for general use by filesystems. 2689 * 2690 * Note: caller is responsible for locking the vfs list, if needed, 2691 * to protect mp. 2692 */ 2693 int 2694 vfs_buildoptionstr(const mntopts_t *mp, char *buf, int len) 2695 { 2696 char *cp; 2697 uint_t i; 2698 2699 buf[0] = '\0'; 2700 cp = buf; 2701 for (i = 0; i < mp->mo_count; i++) { 2702 struct mntopt *mop; 2703 2704 mop = &mp->mo_list[i]; 2705 if (mop->mo_flags & MO_SET) { 2706 int optlen, comma = 0; 2707 2708 if (buf[0] != '\0') 2709 comma = 1; 2710 optlen = strlen(mop->mo_name); 2711 if (strlen(buf) + comma + optlen + 1 > len) 2712 goto err; 2713 if (comma) 2714 *cp++ = ','; 2715 (void) strcpy(cp, mop->mo_name); 2716 cp += optlen; 2717 /* 2718 * Append option value if there is one 2719 */ 2720 if (mop->mo_arg != NULL) { 2721 int arglen; 2722 2723 arglen = strlen(mop->mo_arg); 2724 if (strlen(buf) + arglen + 2 > len) 2725 goto err; 2726 *cp++ = '='; 2727 (void) strcpy(cp, mop->mo_arg); 2728 cp += arglen; 2729 } 2730 } 2731 } 2732 return (0); 2733 err: 2734 return (EOVERFLOW); 2735 } 2736 2737 static void 2738 vfs_freecancelopt(char **moc) 2739 { 2740 if (moc != NULL) { 2741 int ccnt = 0; 2742 char **cp; 2743 2744 for (cp = moc; *cp != NULL; cp++) { 2745 kmem_free(*cp, strlen(*cp) + 1); 2746 ccnt++; 2747 } 2748 kmem_free(moc, (ccnt + 1) * sizeof (char *)); 2749 } 2750 } 2751 2752 static void 2753 vfs_freeopt(mntopt_t *mop) 2754 { 2755 if (mop->mo_name != NULL) 2756 kmem_free(mop->mo_name, strlen(mop->mo_name) + 1); 2757 2758 vfs_freecancelopt(mop->mo_cancel); 2759 2760 if (mop->mo_arg != NULL) 2761 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2762 } 2763 2764 /* 2765 * Free a mount options table 2766 * 2767 * This function is *not* for general use by filesystems. 2768 * 2769 * Note: caller is responsible for locking the vfs list, if needed, 2770 * to protect mp. 2771 */ 2772 void 2773 vfs_freeopttbl(mntopts_t *mp) 2774 { 2775 uint_t i, count; 2776 2777 count = mp->mo_count; 2778 for (i = 0; i < count; i++) { 2779 vfs_freeopt(&mp->mo_list[i]); 2780 } 2781 if (count) { 2782 kmem_free(mp->mo_list, sizeof (mntopt_t) * count); 2783 mp->mo_count = 0; 2784 mp->mo_list = NULL; 2785 } 2786 } 2787 2788 2789 /* ARGSUSED */ 2790 static int 2791 vfs_mntdummyread(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred, 2792 caller_context_t *ct) 2793 { 2794 return (0); 2795 } 2796 2797 /* ARGSUSED */ 2798 static int 2799 vfs_mntdummywrite(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred, 2800 caller_context_t *ct) 2801 { 2802 return (0); 2803 } 2804 2805 /* 2806 * The dummy vnode is currently used only by file events notification 2807 * module which is just interested in the timestamps. 2808 */ 2809 /* ARGSUSED */ 2810 static int 2811 vfs_mntdummygetattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2812 caller_context_t *ct) 2813 { 2814 bzero(vap, sizeof (vattr_t)); 2815 vap->va_type = VREG; 2816 vap->va_nlink = 1; 2817 vap->va_ctime = vfs_mnttab_ctime; 2818 /* 2819 * it is ok to just copy mtime as the time will be monotonically 2820 * increasing. 2821 */ 2822 vap->va_mtime = vfs_mnttab_mtime; 2823 vap->va_atime = vap->va_mtime; 2824 return (0); 2825 } 2826 2827 static void 2828 vfs_mnttabvp_setup(void) 2829 { 2830 vnode_t *tvp; 2831 vnodeops_t *vfs_mntdummyvnops; 2832 const fs_operation_def_t mnt_dummyvnodeops_template[] = { 2833 VOPNAME_READ, { .vop_read = vfs_mntdummyread }, 2834 VOPNAME_WRITE, { .vop_write = vfs_mntdummywrite }, 2835 VOPNAME_GETATTR, { .vop_getattr = vfs_mntdummygetattr }, 2836 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 2837 NULL, NULL 2838 }; 2839 2840 if (vn_make_ops("mnttab", mnt_dummyvnodeops_template, 2841 &vfs_mntdummyvnops) != 0) { 2842 cmn_err(CE_WARN, "vfs_mnttabvp_setup: vn_make_ops failed"); 2843 /* Shouldn't happen, but not bad enough to panic */ 2844 return; 2845 } 2846 2847 /* 2848 * A global dummy vnode is allocated to represent mntfs files. 2849 * The mntfs file (/etc/mnttab) can be monitored for file events 2850 * and receive an event when mnttab changes. Dummy VOP calls 2851 * will be made on this vnode. The file events notification module 2852 * intercepts this vnode and delivers relevant events. 2853 */ 2854 tvp = vn_alloc(KM_SLEEP); 2855 tvp->v_flag = VNOMOUNT|VNOMAP|VNOSWAP|VNOCACHE; 2856 vn_setops(tvp, vfs_mntdummyvnops); 2857 tvp->v_type = VREG; 2858 /* 2859 * The mnt dummy ops do not reference v_data. 2860 * No other module intercepting this vnode should either. 2861 * Just set it to point to itself. 2862 */ 2863 tvp->v_data = (caddr_t)tvp; 2864 tvp->v_vfsp = rootvfs; 2865 vfs_mntdummyvp = tvp; 2866 } 2867 2868 /* 2869 * performs fake read/write ops 2870 */ 2871 static void 2872 vfs_mnttab_rwop(int rw) 2873 { 2874 struct uio uio; 2875 struct iovec iov; 2876 char buf[1]; 2877 2878 if (vfs_mntdummyvp == NULL) 2879 return; 2880 2881 bzero(&uio, sizeof (uio)); 2882 bzero(&iov, sizeof (iov)); 2883 iov.iov_base = buf; 2884 iov.iov_len = 0; 2885 uio.uio_iov = &iov; 2886 uio.uio_iovcnt = 1; 2887 uio.uio_loffset = 0; 2888 uio.uio_segflg = UIO_SYSSPACE; 2889 uio.uio_resid = 0; 2890 if (rw) { 2891 (void) VOP_WRITE(vfs_mntdummyvp, &uio, 0, kcred, NULL); 2892 } else { 2893 (void) VOP_READ(vfs_mntdummyvp, &uio, 0, kcred, NULL); 2894 } 2895 } 2896 2897 /* 2898 * Generate a write operation. 2899 */ 2900 void 2901 vfs_mnttab_writeop(void) 2902 { 2903 vfs_mnttab_rwop(1); 2904 } 2905 2906 /* 2907 * Generate a read operation. 2908 */ 2909 void 2910 vfs_mnttab_readop(void) 2911 { 2912 vfs_mnttab_rwop(0); 2913 } 2914 2915 /* 2916 * Free any mnttab information recorded in the vfs struct. 2917 * The vfs must not be on the vfs list. 2918 */ 2919 static void 2920 vfs_freemnttab(struct vfs *vfsp) 2921 { 2922 ASSERT(!VFS_ON_LIST(vfsp)); 2923 2924 /* 2925 * Free device and mount point information 2926 */ 2927 if (vfsp->vfs_mntpt != NULL) { 2928 refstr_rele(vfsp->vfs_mntpt); 2929 vfsp->vfs_mntpt = NULL; 2930 } 2931 if (vfsp->vfs_resource != NULL) { 2932 refstr_rele(vfsp->vfs_resource); 2933 vfsp->vfs_resource = NULL; 2934 } 2935 /* 2936 * Now free mount options information 2937 */ 2938 vfs_freeopttbl(&vfsp->vfs_mntopts); 2939 } 2940 2941 /* 2942 * Return the last mnttab modification time 2943 */ 2944 void 2945 vfs_mnttab_modtime(timespec_t *ts) 2946 { 2947 ASSERT(RW_LOCK_HELD(&vfslist)); 2948 *ts = vfs_mnttab_mtime; 2949 } 2950 2951 /* 2952 * See if mnttab is changed 2953 */ 2954 void 2955 vfs_mnttab_poll(timespec_t *old, struct pollhead **phpp) 2956 { 2957 int changed; 2958 2959 *phpp = (struct pollhead *)NULL; 2960 2961 /* 2962 * Note: don't grab vfs list lock before accessing vfs_mnttab_mtime. 2963 * Can lead to deadlock against vfs_mnttab_modtimeupd(). It is safe 2964 * to not grab the vfs list lock because tv_sec is monotonically 2965 * increasing. 2966 */ 2967 2968 changed = (old->tv_nsec != vfs_mnttab_mtime.tv_nsec) || 2969 (old->tv_sec != vfs_mnttab_mtime.tv_sec); 2970 if (!changed) { 2971 *phpp = &vfs_pollhd; 2972 } 2973 } 2974 2975 /* Provide a unique and monotonically-increasing timestamp. */ 2976 void 2977 vfs_mono_time(timespec_t *ts) 2978 { 2979 static volatile hrtime_t hrt; /* The saved time. */ 2980 hrtime_t newhrt, oldhrt; /* For effecting the CAS. */ 2981 timespec_t newts; 2982 2983 /* 2984 * Try gethrestime() first, but be prepared to fabricate a sensible 2985 * answer at the first sign of any trouble. 2986 */ 2987 gethrestime(&newts); 2988 newhrt = ts2hrt(&newts); 2989 for (;;) { 2990 oldhrt = hrt; 2991 if (newhrt <= hrt) 2992 newhrt = hrt + 1; 2993 if (atomic_cas_64((uint64_t *)&hrt, oldhrt, newhrt) == oldhrt) 2994 break; 2995 } 2996 hrt2ts(newhrt, ts); 2997 } 2998 2999 /* 3000 * Update the mnttab modification time and wake up any waiters for 3001 * mnttab changes 3002 */ 3003 void 3004 vfs_mnttab_modtimeupd() 3005 { 3006 hrtime_t oldhrt, newhrt; 3007 3008 ASSERT(RW_WRITE_HELD(&vfslist)); 3009 oldhrt = ts2hrt(&vfs_mnttab_mtime); 3010 gethrestime(&vfs_mnttab_mtime); 3011 newhrt = ts2hrt(&vfs_mnttab_mtime); 3012 if (oldhrt == (hrtime_t)0) 3013 vfs_mnttab_ctime = vfs_mnttab_mtime; 3014 /* 3015 * Attempt to provide unique mtime (like uniqtime but not). 3016 */ 3017 if (newhrt == oldhrt) { 3018 newhrt++; 3019 hrt2ts(newhrt, &vfs_mnttab_mtime); 3020 } 3021 pollwakeup(&vfs_pollhd, (short)POLLRDBAND); 3022 vfs_mnttab_writeop(); 3023 } 3024 3025 int 3026 dounmount(struct vfs *vfsp, int flag, cred_t *cr) 3027 { 3028 vnode_t *coveredvp; 3029 int error; 3030 extern void teardown_vopstats(vfs_t *); 3031 3032 /* 3033 * Get covered vnode. This will be NULL if the vfs is not linked 3034 * into the file system name space (i.e., domount() with MNT_NOSPICE). 3035 */ 3036 coveredvp = vfsp->vfs_vnodecovered; 3037 ASSERT(coveredvp == NULL || vn_vfswlock_held(coveredvp)); 3038 3039 /* 3040 * Purge all dnlc entries for this vfs. 3041 */ 3042 (void) dnlc_purge_vfsp(vfsp, 0); 3043 3044 /* For forcible umount, skip VFS_SYNC() since it may hang */ 3045 if ((flag & MS_FORCE) == 0) 3046 (void) VFS_SYNC(vfsp, 0, cr); 3047 3048 /* 3049 * Lock the vfs to maintain fs status quo during unmount. This 3050 * has to be done after the sync because ufs_update tries to acquire 3051 * the vfs_reflock. 3052 */ 3053 vfs_lock_wait(vfsp); 3054 3055 if (error = VFS_UNMOUNT(vfsp, flag, cr)) { 3056 vfs_unlock(vfsp); 3057 if (coveredvp != NULL) 3058 vn_vfsunlock(coveredvp); 3059 } else if (coveredvp != NULL) { 3060 teardown_vopstats(vfsp); 3061 /* 3062 * vfs_remove() will do a VN_RELE(vfsp->vfs_vnodecovered) 3063 * when it frees vfsp so we do a VN_HOLD() so we can 3064 * continue to use coveredvp afterwards. 3065 */ 3066 VN_HOLD(coveredvp); 3067 vfs_remove(vfsp); 3068 vn_vfsunlock(coveredvp); 3069 VN_RELE(coveredvp); 3070 } else { 3071 teardown_vopstats(vfsp); 3072 /* 3073 * Release the reference to vfs that is not linked 3074 * into the name space. 3075 */ 3076 vfs_unlock(vfsp); 3077 VFS_RELE(vfsp); 3078 } 3079 return (error); 3080 } 3081 3082 3083 /* 3084 * Vfs_unmountall() is called by uadmin() to unmount all 3085 * mounted file systems (except the root file system) during shutdown. 3086 * It follows the existing locking protocol when traversing the vfs list 3087 * to sync and unmount vfses. Even though there should be no 3088 * other thread running while the system is shutting down, it is prudent 3089 * to still follow the locking protocol. 3090 */ 3091 void 3092 vfs_unmountall(void) 3093 { 3094 struct vfs *vfsp; 3095 struct vfs *prev_vfsp = NULL; 3096 int error; 3097 3098 /* 3099 * Toss all dnlc entries now so that the per-vfs sync 3100 * and unmount operations don't have to slog through 3101 * a bunch of uninteresting vnodes over and over again. 3102 */ 3103 dnlc_purge(); 3104 3105 vfs_list_lock(); 3106 for (vfsp = rootvfs->vfs_prev; vfsp != rootvfs; vfsp = prev_vfsp) { 3107 prev_vfsp = vfsp->vfs_prev; 3108 3109 if (vfs_lock(vfsp) != 0) 3110 continue; 3111 error = vn_vfswlock(vfsp->vfs_vnodecovered); 3112 vfs_unlock(vfsp); 3113 if (error) 3114 continue; 3115 3116 vfs_list_unlock(); 3117 3118 (void) VFS_SYNC(vfsp, SYNC_CLOSE, CRED()); 3119 (void) dounmount(vfsp, 0, CRED()); 3120 3121 /* 3122 * Since we dropped the vfslist lock above we must 3123 * verify that next_vfsp still exists, else start over. 3124 */ 3125 vfs_list_lock(); 3126 for (vfsp = rootvfs->vfs_prev; 3127 vfsp != rootvfs; vfsp = vfsp->vfs_prev) 3128 if (vfsp == prev_vfsp) 3129 break; 3130 if (vfsp == rootvfs && prev_vfsp != rootvfs) 3131 prev_vfsp = rootvfs->vfs_prev; 3132 } 3133 vfs_list_unlock(); 3134 } 3135 3136 /* 3137 * Called to add an entry to the end of the vfs mount in progress list 3138 */ 3139 void 3140 vfs_addmip(dev_t dev, struct vfs *vfsp) 3141 { 3142 struct ipmnt *mipp; 3143 3144 mipp = (struct ipmnt *)kmem_alloc(sizeof (struct ipmnt), KM_SLEEP); 3145 mipp->mip_next = NULL; 3146 mipp->mip_dev = dev; 3147 mipp->mip_vfsp = vfsp; 3148 mutex_enter(&vfs_miplist_mutex); 3149 if (vfs_miplist_end != NULL) 3150 vfs_miplist_end->mip_next = mipp; 3151 else 3152 vfs_miplist = mipp; 3153 vfs_miplist_end = mipp; 3154 mutex_exit(&vfs_miplist_mutex); 3155 } 3156 3157 /* 3158 * Called to remove an entry from the mount in progress list 3159 * Either because the mount completed or it failed. 3160 */ 3161 void 3162 vfs_delmip(struct vfs *vfsp) 3163 { 3164 struct ipmnt *mipp, *mipprev; 3165 3166 mutex_enter(&vfs_miplist_mutex); 3167 mipprev = NULL; 3168 for (mipp = vfs_miplist; 3169 mipp && mipp->mip_vfsp != vfsp; mipp = mipp->mip_next) { 3170 mipprev = mipp; 3171 } 3172 if (mipp == NULL) 3173 return; /* shouldn't happen */ 3174 if (mipp == vfs_miplist_end) 3175 vfs_miplist_end = mipprev; 3176 if (mipprev == NULL) 3177 vfs_miplist = mipp->mip_next; 3178 else 3179 mipprev->mip_next = mipp->mip_next; 3180 mutex_exit(&vfs_miplist_mutex); 3181 kmem_free(mipp, sizeof (struct ipmnt)); 3182 } 3183 3184 /* 3185 * vfs_add is called by a specific filesystem's mount routine to add 3186 * the new vfs into the vfs list/hash and to cover the mounted-on vnode. 3187 * The vfs should already have been locked by the caller. 3188 * 3189 * coveredvp is NULL if this is the root. 3190 */ 3191 void 3192 vfs_add(vnode_t *coveredvp, struct vfs *vfsp, int mflag) 3193 { 3194 int newflag; 3195 3196 ASSERT(vfs_lock_held(vfsp)); 3197 VFS_HOLD(vfsp); 3198 newflag = vfsp->vfs_flag; 3199 if (mflag & MS_RDONLY) 3200 newflag |= VFS_RDONLY; 3201 else 3202 newflag &= ~VFS_RDONLY; 3203 if (mflag & MS_NOSUID) 3204 newflag |= (VFS_NOSETUID|VFS_NODEVICES); 3205 else 3206 newflag &= ~(VFS_NOSETUID|VFS_NODEVICES); 3207 if (mflag & MS_NOMNTTAB) 3208 newflag |= VFS_NOMNTTAB; 3209 else 3210 newflag &= ~VFS_NOMNTTAB; 3211 3212 if (coveredvp != NULL) { 3213 ASSERT(vn_vfswlock_held(coveredvp)); 3214 coveredvp->v_vfsmountedhere = vfsp; 3215 VN_HOLD(coveredvp); 3216 } 3217 vfsp->vfs_vnodecovered = coveredvp; 3218 vfsp->vfs_flag = newflag; 3219 3220 vfs_list_add(vfsp); 3221 } 3222 3223 /* 3224 * Remove a vfs from the vfs list, null out the pointer from the 3225 * covered vnode to the vfs (v_vfsmountedhere), and null out the pointer 3226 * from the vfs to the covered vnode (vfs_vnodecovered). Release the 3227 * reference to the vfs and to the covered vnode. 3228 * 3229 * Called from dounmount after it's confirmed with the file system 3230 * that the unmount is legal. 3231 */ 3232 void 3233 vfs_remove(struct vfs *vfsp) 3234 { 3235 vnode_t *vp; 3236 3237 ASSERT(vfs_lock_held(vfsp)); 3238 3239 /* 3240 * Can't unmount root. Should never happen because fs will 3241 * be busy. 3242 */ 3243 if (vfsp == rootvfs) 3244 panic("vfs_remove: unmounting root"); 3245 3246 vfs_list_remove(vfsp); 3247 3248 /* 3249 * Unhook from the file system name space. 3250 */ 3251 vp = vfsp->vfs_vnodecovered; 3252 ASSERT(vn_vfswlock_held(vp)); 3253 vp->v_vfsmountedhere = NULL; 3254 vfsp->vfs_vnodecovered = NULL; 3255 VN_RELE(vp); 3256 3257 /* 3258 * Release lock and wakeup anybody waiting. 3259 */ 3260 vfs_unlock(vfsp); 3261 VFS_RELE(vfsp); 3262 } 3263 3264 /* 3265 * Lock a filesystem to prevent access to it while mounting, 3266 * unmounting and syncing. Return EBUSY immediately if lock 3267 * can't be acquired. 3268 */ 3269 int 3270 vfs_lock(vfs_t *vfsp) 3271 { 3272 vn_vfslocks_entry_t *vpvfsentry; 3273 3274 vpvfsentry = vn_vfslocks_getlock(vfsp); 3275 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_WRITER)) 3276 return (0); 3277 3278 vn_vfslocks_rele(vpvfsentry); 3279 return (EBUSY); 3280 } 3281 3282 int 3283 vfs_rlock(vfs_t *vfsp) 3284 { 3285 vn_vfslocks_entry_t *vpvfsentry; 3286 3287 vpvfsentry = vn_vfslocks_getlock(vfsp); 3288 3289 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_READER)) 3290 return (0); 3291 3292 vn_vfslocks_rele(vpvfsentry); 3293 return (EBUSY); 3294 } 3295 3296 void 3297 vfs_lock_wait(vfs_t *vfsp) 3298 { 3299 vn_vfslocks_entry_t *vpvfsentry; 3300 3301 vpvfsentry = vn_vfslocks_getlock(vfsp); 3302 rwst_enter(&vpvfsentry->ve_lock, RW_WRITER); 3303 } 3304 3305 void 3306 vfs_rlock_wait(vfs_t *vfsp) 3307 { 3308 vn_vfslocks_entry_t *vpvfsentry; 3309 3310 vpvfsentry = vn_vfslocks_getlock(vfsp); 3311 rwst_enter(&vpvfsentry->ve_lock, RW_READER); 3312 } 3313 3314 /* 3315 * Unlock a locked filesystem. 3316 */ 3317 void 3318 vfs_unlock(vfs_t *vfsp) 3319 { 3320 vn_vfslocks_entry_t *vpvfsentry; 3321 3322 /* 3323 * vfs_unlock will mimic sema_v behaviour to fix 4748018. 3324 * And these changes should remain for the patch changes as it is. 3325 */ 3326 if (panicstr) 3327 return; 3328 3329 /* 3330 * ve_refcount needs to be dropped twice here. 3331 * 1. To release refernce after a call to vfs_locks_getlock() 3332 * 2. To release the reference from the locking routines like 3333 * vfs_rlock_wait/vfs_wlock_wait/vfs_wlock etc,. 3334 */ 3335 3336 vpvfsentry = vn_vfslocks_getlock(vfsp); 3337 vn_vfslocks_rele(vpvfsentry); 3338 3339 rwst_exit(&vpvfsentry->ve_lock); 3340 vn_vfslocks_rele(vpvfsentry); 3341 } 3342 3343 /* 3344 * Utility routine that allows a filesystem to construct its 3345 * fsid in "the usual way" - by munging some underlying dev_t and 3346 * the filesystem type number into the 64-bit fsid. Note that 3347 * this implicitly relies on dev_t persistence to make filesystem 3348 * id's persistent. 3349 * 3350 * There's nothing to prevent an individual fs from constructing its 3351 * fsid in a different way, and indeed they should. 3352 * 3353 * Since we want fsids to be 32-bit quantities (so that they can be 3354 * exported identically by either 32-bit or 64-bit APIs, as well as 3355 * the fact that fsid's are "known" to NFS), we compress the device 3356 * number given down to 32-bits, and panic if that isn't possible. 3357 */ 3358 void 3359 vfs_make_fsid(fsid_t *fsi, dev_t dev, int val) 3360 { 3361 if (!cmpldev((dev32_t *)&fsi->val[0], dev)) 3362 panic("device number too big for fsid!"); 3363 fsi->val[1] = val; 3364 } 3365 3366 int 3367 vfs_lock_held(vfs_t *vfsp) 3368 { 3369 int held; 3370 vn_vfslocks_entry_t *vpvfsentry; 3371 3372 /* 3373 * vfs_lock_held will mimic sema_held behaviour 3374 * if panicstr is set. And these changes should remain 3375 * for the patch changes as it is. 3376 */ 3377 if (panicstr) 3378 return (1); 3379 3380 vpvfsentry = vn_vfslocks_getlock(vfsp); 3381 held = rwst_lock_held(&vpvfsentry->ve_lock, RW_WRITER); 3382 3383 vn_vfslocks_rele(vpvfsentry); 3384 return (held); 3385 } 3386 3387 struct _kthread * 3388 vfs_lock_owner(vfs_t *vfsp) 3389 { 3390 struct _kthread *owner; 3391 vn_vfslocks_entry_t *vpvfsentry; 3392 3393 /* 3394 * vfs_wlock_held will mimic sema_held behaviour 3395 * if panicstr is set. And these changes should remain 3396 * for the patch changes as it is. 3397 */ 3398 if (panicstr) 3399 return (NULL); 3400 3401 vpvfsentry = vn_vfslocks_getlock(vfsp); 3402 owner = rwst_owner(&vpvfsentry->ve_lock); 3403 3404 vn_vfslocks_rele(vpvfsentry); 3405 return (owner); 3406 } 3407 3408 /* 3409 * vfs list locking. 3410 * 3411 * Rather than manipulate the vfslist lock directly, we abstract into lock 3412 * and unlock routines to allow the locking implementation to be changed for 3413 * clustering. 3414 * 3415 * Whenever the vfs list is modified through its hash links, the overall list 3416 * lock must be obtained before locking the relevant hash bucket. But to see 3417 * whether a given vfs is on the list, it suffices to obtain the lock for the 3418 * hash bucket without getting the overall list lock. (See getvfs() below.) 3419 */ 3420 3421 void 3422 vfs_list_lock() 3423 { 3424 rw_enter(&vfslist, RW_WRITER); 3425 } 3426 3427 void 3428 vfs_list_read_lock() 3429 { 3430 rw_enter(&vfslist, RW_READER); 3431 } 3432 3433 void 3434 vfs_list_unlock() 3435 { 3436 rw_exit(&vfslist); 3437 } 3438 3439 /* 3440 * Low level worker routines for adding entries to and removing entries from 3441 * the vfs list. 3442 */ 3443 3444 static void 3445 vfs_hash_add(struct vfs *vfsp, int insert_at_head) 3446 { 3447 int vhno; 3448 struct vfs **hp; 3449 dev_t dev; 3450 3451 ASSERT(RW_WRITE_HELD(&vfslist)); 3452 3453 dev = expldev(vfsp->vfs_fsid.val[0]); 3454 vhno = VFSHASH(getmajor(dev), getminor(dev)); 3455 3456 mutex_enter(&rvfs_list[vhno].rvfs_lock); 3457 3458 /* 3459 * Link into the hash table, inserting it at the end, so that LOFS 3460 * with the same fsid as UFS (or other) file systems will not hide the 3461 * UFS. 3462 */ 3463 if (insert_at_head) { 3464 vfsp->vfs_hash = rvfs_list[vhno].rvfs_head; 3465 rvfs_list[vhno].rvfs_head = vfsp; 3466 } else { 3467 for (hp = &rvfs_list[vhno].rvfs_head; *hp != NULL; 3468 hp = &(*hp)->vfs_hash) 3469 continue; 3470 /* 3471 * hp now contains the address of the pointer to update 3472 * to effect the insertion. 3473 */ 3474 vfsp->vfs_hash = NULL; 3475 *hp = vfsp; 3476 } 3477 3478 rvfs_list[vhno].rvfs_len++; 3479 mutex_exit(&rvfs_list[vhno].rvfs_lock); 3480 } 3481 3482 3483 static void 3484 vfs_hash_remove(struct vfs *vfsp) 3485 { 3486 int vhno; 3487 struct vfs *tvfsp; 3488 dev_t dev; 3489 3490 ASSERT(RW_WRITE_HELD(&vfslist)); 3491 3492 dev = expldev(vfsp->vfs_fsid.val[0]); 3493 vhno = VFSHASH(getmajor(dev), getminor(dev)); 3494 3495 mutex_enter(&rvfs_list[vhno].rvfs_lock); 3496 3497 /* 3498 * Remove from hash. 3499 */ 3500 if (rvfs_list[vhno].rvfs_head == vfsp) { 3501 rvfs_list[vhno].rvfs_head = vfsp->vfs_hash; 3502 rvfs_list[vhno].rvfs_len--; 3503 goto foundit; 3504 } 3505 for (tvfsp = rvfs_list[vhno].rvfs_head; tvfsp != NULL; 3506 tvfsp = tvfsp->vfs_hash) { 3507 if (tvfsp->vfs_hash == vfsp) { 3508 tvfsp->vfs_hash = vfsp->vfs_hash; 3509 rvfs_list[vhno].rvfs_len--; 3510 goto foundit; 3511 } 3512 } 3513 cmn_err(CE_WARN, "vfs_list_remove: vfs not found in hash"); 3514 3515 foundit: 3516 3517 mutex_exit(&rvfs_list[vhno].rvfs_lock); 3518 } 3519 3520 3521 void 3522 vfs_list_add(struct vfs *vfsp) 3523 { 3524 zone_t *zone; 3525 3526 /* 3527 * Typically, the vfs_t will have been created on behalf of the file 3528 * system in vfs_init, where it will have been provided with a 3529 * vfs_impl_t. This, however, might be lacking if the vfs_t was created 3530 * by an unbundled file system. We therefore check for such an example 3531 * before stamping the vfs_t with its creation time for the benefit of 3532 * mntfs. 3533 */ 3534 if (vfsp->vfs_implp == NULL) 3535 vfsimpl_setup(vfsp); 3536 vfs_mono_time(&vfsp->vfs_hrctime); 3537 3538 /* 3539 * The zone that owns the mount is the one that performed the mount. 3540 * Note that this isn't necessarily the same as the zone mounted into. 3541 * The corresponding zone_rele_ref() will be done when the vfs_t 3542 * is being free'd. 3543 */ 3544 vfsp->vfs_zone = curproc->p_zone; 3545 zone_init_ref(&vfsp->vfs_implp->vi_zone_ref); 3546 zone_hold_ref(vfsp->vfs_zone, &vfsp->vfs_implp->vi_zone_ref, 3547 ZONE_REF_VFS); 3548 3549 /* 3550 * Find the zone mounted into, and put this mount on its vfs list. 3551 */ 3552 zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt)); 3553 ASSERT(zone != NULL); 3554 /* 3555 * Special casing for the root vfs. This structure is allocated 3556 * statically and hooked onto rootvfs at link time. During the 3557 * vfs_mountroot call at system startup time, the root file system's 3558 * VFS_MOUNTROOT routine will call vfs_add with this root vfs struct 3559 * as argument. The code below must detect and handle this special 3560 * case. The only apparent justification for this special casing is 3561 * to ensure that the root file system appears at the head of the 3562 * list. 3563 * 3564 * XXX: I'm assuming that it's ok to do normal list locking when 3565 * adding the entry for the root file system (this used to be 3566 * done with no locks held). 3567 */ 3568 vfs_list_lock(); 3569 /* 3570 * Link into the vfs list proper. 3571 */ 3572 if (vfsp == &root) { 3573 /* 3574 * Assert: This vfs is already on the list as its first entry. 3575 * Thus, there's nothing to do. 3576 */ 3577 ASSERT(rootvfs == vfsp); 3578 /* 3579 * Add it to the head of the global zone's vfslist. 3580 */ 3581 ASSERT(zone == global_zone); 3582 ASSERT(zone->zone_vfslist == NULL); 3583 zone->zone_vfslist = vfsp; 3584 } else { 3585 /* 3586 * Link to end of list using vfs_prev (as rootvfs is now a 3587 * doubly linked circular list) so list is in mount order for 3588 * mnttab use. 3589 */ 3590 rootvfs->vfs_prev->vfs_next = vfsp; 3591 vfsp->vfs_prev = rootvfs->vfs_prev; 3592 rootvfs->vfs_prev = vfsp; 3593 vfsp->vfs_next = rootvfs; 3594 3595 /* 3596 * Do it again for the zone-private list (which may be NULL). 3597 */ 3598 if (zone->zone_vfslist == NULL) { 3599 ASSERT(zone != global_zone); 3600 zone->zone_vfslist = vfsp; 3601 } else { 3602 zone->zone_vfslist->vfs_zone_prev->vfs_zone_next = vfsp; 3603 vfsp->vfs_zone_prev = zone->zone_vfslist->vfs_zone_prev; 3604 zone->zone_vfslist->vfs_zone_prev = vfsp; 3605 vfsp->vfs_zone_next = zone->zone_vfslist; 3606 } 3607 } 3608 3609 /* 3610 * Link into the hash table, inserting it at the end, so that LOFS 3611 * with the same fsid as UFS (or other) file systems will not hide 3612 * the UFS. 3613 */ 3614 vfs_hash_add(vfsp, 0); 3615 3616 /* 3617 * update the mnttab modification time 3618 */ 3619 vfs_mnttab_modtimeupd(); 3620 vfs_list_unlock(); 3621 zone_rele(zone); 3622 } 3623 3624 void 3625 vfs_list_remove(struct vfs *vfsp) 3626 { 3627 zone_t *zone; 3628 3629 zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt)); 3630 ASSERT(zone != NULL); 3631 /* 3632 * Callers are responsible for preventing attempts to unmount the 3633 * root. 3634 */ 3635 ASSERT(vfsp != rootvfs); 3636 3637 vfs_list_lock(); 3638 3639 /* 3640 * Remove from hash. 3641 */ 3642 vfs_hash_remove(vfsp); 3643 3644 /* 3645 * Remove from vfs list. 3646 */ 3647 vfsp->vfs_prev->vfs_next = vfsp->vfs_next; 3648 vfsp->vfs_next->vfs_prev = vfsp->vfs_prev; 3649 vfsp->vfs_next = vfsp->vfs_prev = NULL; 3650 3651 /* 3652 * Remove from zone-specific vfs list. 3653 */ 3654 if (zone->zone_vfslist == vfsp) 3655 zone->zone_vfslist = vfsp->vfs_zone_next; 3656 3657 if (vfsp->vfs_zone_next == vfsp) { 3658 ASSERT(vfsp->vfs_zone_prev == vfsp); 3659 ASSERT(zone->zone_vfslist == vfsp); 3660 zone->zone_vfslist = NULL; 3661 } 3662 3663 vfsp->vfs_zone_prev->vfs_zone_next = vfsp->vfs_zone_next; 3664 vfsp->vfs_zone_next->vfs_zone_prev = vfsp->vfs_zone_prev; 3665 vfsp->vfs_zone_next = vfsp->vfs_zone_prev = NULL; 3666 3667 /* 3668 * update the mnttab modification time 3669 */ 3670 vfs_mnttab_modtimeupd(); 3671 vfs_list_unlock(); 3672 zone_rele(zone); 3673 } 3674 3675 struct vfs * 3676 getvfs(fsid_t *fsid) 3677 { 3678 struct vfs *vfsp; 3679 int val0 = fsid->val[0]; 3680 int val1 = fsid->val[1]; 3681 dev_t dev = expldev(val0); 3682 int vhno = VFSHASH(getmajor(dev), getminor(dev)); 3683 kmutex_t *hmp = &rvfs_list[vhno].rvfs_lock; 3684 3685 mutex_enter(hmp); 3686 for (vfsp = rvfs_list[vhno].rvfs_head; vfsp; vfsp = vfsp->vfs_hash) { 3687 if (vfsp->vfs_fsid.val[0] == val0 && 3688 vfsp->vfs_fsid.val[1] == val1) { 3689 VFS_HOLD(vfsp); 3690 mutex_exit(hmp); 3691 return (vfsp); 3692 } 3693 } 3694 mutex_exit(hmp); 3695 return (NULL); 3696 } 3697 3698 /* 3699 * Search the vfs mount in progress list for a specified device/vfs entry. 3700 * Returns 0 if the first entry in the list that the device matches has the 3701 * given vfs pointer as well. If the device matches but a different vfs 3702 * pointer is encountered in the list before the given vfs pointer then 3703 * a 1 is returned. 3704 */ 3705 3706 int 3707 vfs_devmounting(dev_t dev, struct vfs *vfsp) 3708 { 3709 int retval = 0; 3710 struct ipmnt *mipp; 3711 3712 mutex_enter(&vfs_miplist_mutex); 3713 for (mipp = vfs_miplist; mipp != NULL; mipp = mipp->mip_next) { 3714 if (mipp->mip_dev == dev) { 3715 if (mipp->mip_vfsp != vfsp) 3716 retval = 1; 3717 break; 3718 } 3719 } 3720 mutex_exit(&vfs_miplist_mutex); 3721 return (retval); 3722 } 3723 3724 /* 3725 * Search the vfs list for a specified device. Returns 1, if entry is found 3726 * or 0 if no suitable entry is found. 3727 */ 3728 3729 int 3730 vfs_devismounted(dev_t dev) 3731 { 3732 struct vfs *vfsp; 3733 int found; 3734 3735 vfs_list_read_lock(); 3736 vfsp = rootvfs; 3737 found = 0; 3738 do { 3739 if (vfsp->vfs_dev == dev) { 3740 found = 1; 3741 break; 3742 } 3743 vfsp = vfsp->vfs_next; 3744 } while (vfsp != rootvfs); 3745 3746 vfs_list_unlock(); 3747 return (found); 3748 } 3749 3750 /* 3751 * Search the vfs list for a specified device. Returns a pointer to it 3752 * or NULL if no suitable entry is found. The caller of this routine 3753 * is responsible for releasing the returned vfs pointer. 3754 */ 3755 struct vfs * 3756 vfs_dev2vfsp(dev_t dev) 3757 { 3758 struct vfs *vfsp; 3759 int found; 3760 3761 vfs_list_read_lock(); 3762 vfsp = rootvfs; 3763 found = 0; 3764 do { 3765 /* 3766 * The following could be made more efficient by making 3767 * the entire loop use vfs_zone_next if the call is from 3768 * a zone. The only callers, however, ustat(2) and 3769 * umount2(2), don't seem to justify the added 3770 * complexity at present. 3771 */ 3772 if (vfsp->vfs_dev == dev && 3773 ZONE_PATH_VISIBLE(refstr_value(vfsp->vfs_mntpt), 3774 curproc->p_zone)) { 3775 VFS_HOLD(vfsp); 3776 found = 1; 3777 break; 3778 } 3779 vfsp = vfsp->vfs_next; 3780 } while (vfsp != rootvfs); 3781 vfs_list_unlock(); 3782 return (found ? vfsp: NULL); 3783 } 3784 3785 /* 3786 * Search the vfs list for a specified mntpoint. Returns a pointer to it 3787 * or NULL if no suitable entry is found. The caller of this routine 3788 * is responsible for releasing the returned vfs pointer. 3789 * 3790 * Note that if multiple mntpoints match, the last one matching is 3791 * returned in an attempt to return the "top" mount when overlay 3792 * mounts are covering the same mount point. This is accomplished by starting 3793 * at the end of the list and working our way backwards, stopping at the first 3794 * matching mount. 3795 */ 3796 struct vfs * 3797 vfs_mntpoint2vfsp(const char *mp) 3798 { 3799 struct vfs *vfsp; 3800 struct vfs *retvfsp = NULL; 3801 zone_t *zone = curproc->p_zone; 3802 struct vfs *list; 3803 3804 vfs_list_read_lock(); 3805 if (getzoneid() == GLOBAL_ZONEID) { 3806 /* 3807 * The global zone may see filesystems in any zone. 3808 */ 3809 vfsp = rootvfs->vfs_prev; 3810 do { 3811 if (strcmp(refstr_value(vfsp->vfs_mntpt), mp) == 0) { 3812 retvfsp = vfsp; 3813 break; 3814 } 3815 vfsp = vfsp->vfs_prev; 3816 } while (vfsp != rootvfs->vfs_prev); 3817 } else if ((list = zone->zone_vfslist) != NULL) { 3818 const char *mntpt; 3819 3820 vfsp = list->vfs_zone_prev; 3821 do { 3822 mntpt = refstr_value(vfsp->vfs_mntpt); 3823 mntpt = ZONE_PATH_TRANSLATE(mntpt, zone); 3824 if (strcmp(mntpt, mp) == 0) { 3825 retvfsp = vfsp; 3826 break; 3827 } 3828 vfsp = vfsp->vfs_zone_prev; 3829 } while (vfsp != list->vfs_zone_prev); 3830 } 3831 if (retvfsp) 3832 VFS_HOLD(retvfsp); 3833 vfs_list_unlock(); 3834 return (retvfsp); 3835 } 3836 3837 /* 3838 * Search the vfs list for a specified vfsops. 3839 * if vfs entry is found then return 1, else 0. 3840 */ 3841 int 3842 vfs_opsinuse(vfsops_t *ops) 3843 { 3844 struct vfs *vfsp; 3845 int found; 3846 3847 vfs_list_read_lock(); 3848 vfsp = rootvfs; 3849 found = 0; 3850 do { 3851 if (vfs_getops(vfsp) == ops) { 3852 found = 1; 3853 break; 3854 } 3855 vfsp = vfsp->vfs_next; 3856 } while (vfsp != rootvfs); 3857 vfs_list_unlock(); 3858 return (found); 3859 } 3860 3861 /* 3862 * Allocate an entry in vfssw for a file system type 3863 */ 3864 struct vfssw * 3865 allocate_vfssw(const char *type) 3866 { 3867 struct vfssw *vswp; 3868 3869 if (type[0] == '\0' || strlen(type) + 1 > _ST_FSTYPSZ) { 3870 /* 3871 * The vfssw table uses the empty string to identify an 3872 * available entry; we cannot add any type which has 3873 * a leading NUL. The string length is limited to 3874 * the size of the st_fstype array in struct stat. 3875 */ 3876 return (NULL); 3877 } 3878 3879 ASSERT(VFSSW_WRITE_LOCKED()); 3880 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) 3881 if (!ALLOCATED_VFSSW(vswp)) { 3882 vswp->vsw_name = kmem_alloc(strlen(type) + 1, KM_SLEEP); 3883 (void) strcpy(vswp->vsw_name, type); 3884 ASSERT(vswp->vsw_count == 0); 3885 vswp->vsw_count = 1; 3886 mutex_init(&vswp->vsw_lock, NULL, MUTEX_DEFAULT, NULL); 3887 return (vswp); 3888 } 3889 return (NULL); 3890 } 3891 3892 /* 3893 * Impose additional layer of translation between vfstype names 3894 * and module names in the filesystem. 3895 */ 3896 static const char * 3897 vfs_to_modname(const char *vfstype) 3898 { 3899 if (strcmp(vfstype, "proc") == 0) { 3900 vfstype = "procfs"; 3901 } else if (strcmp(vfstype, "fd") == 0) { 3902 vfstype = "fdfs"; 3903 } else if (strncmp(vfstype, "nfs", 3) == 0) { 3904 vfstype = "nfs"; 3905 } 3906 3907 return (vfstype); 3908 } 3909 3910 /* 3911 * Find a vfssw entry given a file system type name. 3912 * Try to autoload the filesystem if it's not found. 3913 * If it's installed, return the vfssw locked to prevent unloading. 3914 */ 3915 struct vfssw * 3916 vfs_getvfssw(const char *type) 3917 { 3918 struct vfssw *vswp; 3919 const char *modname; 3920 3921 RLOCK_VFSSW(); 3922 vswp = vfs_getvfsswbyname(type); 3923 modname = vfs_to_modname(type); 3924 3925 if (rootdir == NULL) { 3926 /* 3927 * If we haven't yet loaded the root file system, then our 3928 * _init won't be called until later. Allocate vfssw entry, 3929 * because mod_installfs won't be called. 3930 */ 3931 if (vswp == NULL) { 3932 RUNLOCK_VFSSW(); 3933 WLOCK_VFSSW(); 3934 if ((vswp = vfs_getvfsswbyname(type)) == NULL) { 3935 if ((vswp = allocate_vfssw(type)) == NULL) { 3936 WUNLOCK_VFSSW(); 3937 return (NULL); 3938 } 3939 } 3940 WUNLOCK_VFSSW(); 3941 RLOCK_VFSSW(); 3942 } 3943 if (!VFS_INSTALLED(vswp)) { 3944 RUNLOCK_VFSSW(); 3945 (void) modloadonly("fs", modname); 3946 } else 3947 RUNLOCK_VFSSW(); 3948 return (vswp); 3949 } 3950 3951 /* 3952 * Try to load the filesystem. Before calling modload(), we drop 3953 * our lock on the VFS switch table, and pick it up after the 3954 * module is loaded. However, there is a potential race: the 3955 * module could be unloaded after the call to modload() completes 3956 * but before we pick up the lock and drive on. Therefore, 3957 * we keep reloading the module until we've loaded the module 3958 * _and_ we have the lock on the VFS switch table. 3959 */ 3960 while (vswp == NULL || !VFS_INSTALLED(vswp)) { 3961 RUNLOCK_VFSSW(); 3962 if (modload("fs", modname) == -1) 3963 return (NULL); 3964 RLOCK_VFSSW(); 3965 if (vswp == NULL) 3966 if ((vswp = vfs_getvfsswbyname(type)) == NULL) 3967 break; 3968 } 3969 RUNLOCK_VFSSW(); 3970 3971 return (vswp); 3972 } 3973 3974 /* 3975 * Find a vfssw entry given a file system type name. 3976 */ 3977 struct vfssw * 3978 vfs_getvfsswbyname(const char *type) 3979 { 3980 struct vfssw *vswp; 3981 3982 ASSERT(VFSSW_LOCKED()); 3983 if (type == NULL || *type == '\0') 3984 return (NULL); 3985 3986 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 3987 if (strcmp(type, vswp->vsw_name) == 0) { 3988 vfs_refvfssw(vswp); 3989 return (vswp); 3990 } 3991 } 3992 3993 return (NULL); 3994 } 3995 3996 /* 3997 * Find a vfssw entry given a set of vfsops. 3998 */ 3999 struct vfssw * 4000 vfs_getvfsswbyvfsops(vfsops_t *vfsops) 4001 { 4002 struct vfssw *vswp; 4003 4004 RLOCK_VFSSW(); 4005 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 4006 if (ALLOCATED_VFSSW(vswp) && &vswp->vsw_vfsops == vfsops) { 4007 vfs_refvfssw(vswp); 4008 RUNLOCK_VFSSW(); 4009 return (vswp); 4010 } 4011 } 4012 RUNLOCK_VFSSW(); 4013 4014 return (NULL); 4015 } 4016 4017 /* 4018 * Reference a vfssw entry. 4019 */ 4020 void 4021 vfs_refvfssw(struct vfssw *vswp) 4022 { 4023 4024 mutex_enter(&vswp->vsw_lock); 4025 vswp->vsw_count++; 4026 mutex_exit(&vswp->vsw_lock); 4027 } 4028 4029 /* 4030 * Unreference a vfssw entry. 4031 */ 4032 void 4033 vfs_unrefvfssw(struct vfssw *vswp) 4034 { 4035 4036 mutex_enter(&vswp->vsw_lock); 4037 vswp->vsw_count--; 4038 mutex_exit(&vswp->vsw_lock); 4039 } 4040 4041 int sync_timeout = 30; /* timeout for syncing a page during panic */ 4042 int sync_timeleft; /* portion of sync_timeout remaining */ 4043 4044 static int sync_retries = 20; /* number of retries when not making progress */ 4045 static int sync_triesleft; /* portion of sync_retries remaining */ 4046 4047 static pgcnt_t old_pgcnt, new_pgcnt; 4048 static int new_bufcnt, old_bufcnt; 4049 4050 /* 4051 * Sync all of the mounted filesystems, and then wait for the actual i/o to 4052 * complete. We wait by counting the number of dirty pages and buffers, 4053 * pushing them out using bio_busy() and page_busy(), and then counting again. 4054 * This routine is used during both the uadmin A_SHUTDOWN code as well as 4055 * the SYNC phase of the panic code (see comments in panic.c). It should only 4056 * be used after some higher-level mechanism has quiesced the system so that 4057 * new writes are not being initiated while we are waiting for completion. 4058 * 4059 * To ensure finite running time, our algorithm uses two timeout mechanisms: 4060 * sync_timeleft (a timer implemented by the omnipresent deadman() cyclic), and 4061 * sync_triesleft (a progress counter used by the vfs_syncall() loop below). 4062 * Together these ensure that syncing completes if our i/o paths are stuck. 4063 * The counters are declared above so they can be found easily in the debugger. 4064 * 4065 * The sync_timeleft counter is reset by bio_busy() and page_busy() using the 4066 * vfs_syncprogress() subroutine whenever we make progress through the lists of 4067 * pages and buffers. It is decremented and expired by the deadman() cyclic. 4068 * When vfs_syncall() decides it is done, we disable the deadman() counter by 4069 * setting sync_timeleft to zero. This timer guards against vfs_syncall() 4070 * deadlocking or hanging inside of a broken filesystem or driver routine. 4071 * 4072 * The sync_triesleft counter is updated by vfs_syncall() itself. If we make 4073 * sync_retries consecutive calls to bio_busy() and page_busy() without 4074 * decreasing either the number of dirty buffers or dirty pages below the 4075 * lowest count we have seen so far, we give up and return from vfs_syncall(). 4076 * 4077 * Each loop iteration ends with a call to delay() one second to allow time for 4078 * i/o completion and to permit the user time to read our progress messages. 4079 */ 4080 void 4081 vfs_syncall(void) 4082 { 4083 if (rootdir == NULL && !modrootloaded) 4084 return; /* panic during boot - no filesystems yet */ 4085 4086 printf("syncing file systems..."); 4087 vfs_syncprogress(); 4088 sync(); 4089 4090 vfs_syncprogress(); 4091 sync_triesleft = sync_retries; 4092 4093 old_bufcnt = new_bufcnt = INT_MAX; 4094 old_pgcnt = new_pgcnt = ULONG_MAX; 4095 4096 while (sync_triesleft > 0) { 4097 old_bufcnt = MIN(old_bufcnt, new_bufcnt); 4098 old_pgcnt = MIN(old_pgcnt, new_pgcnt); 4099 4100 new_bufcnt = bio_busy(B_TRUE); 4101 new_pgcnt = page_busy(B_TRUE); 4102 vfs_syncprogress(); 4103 4104 if (new_bufcnt == 0 && new_pgcnt == 0) 4105 break; 4106 4107 if (new_bufcnt < old_bufcnt || new_pgcnt < old_pgcnt) 4108 sync_triesleft = sync_retries; 4109 else 4110 sync_triesleft--; 4111 4112 if (new_bufcnt) 4113 printf(" [%d]", new_bufcnt); 4114 if (new_pgcnt) 4115 printf(" %lu", new_pgcnt); 4116 4117 delay(hz); 4118 } 4119 4120 if (new_bufcnt != 0 || new_pgcnt != 0) 4121 printf(" done (not all i/o completed)\n"); 4122 else 4123 printf(" done\n"); 4124 4125 sync_timeleft = 0; 4126 delay(hz); 4127 } 4128 4129 /* 4130 * If we are in the middle of the sync phase of panic, reset sync_timeleft to 4131 * sync_timeout to indicate that we are making progress and the deadman() 4132 * omnipresent cyclic should not yet time us out. Note that it is safe to 4133 * store to sync_timeleft here since the deadman() is firing at high-level 4134 * on top of us. If we are racing with the deadman(), either the deadman() 4135 * will decrement the old value and then we will reset it, or we will 4136 * reset it and then the deadman() will immediately decrement it. In either 4137 * case, correct behavior results. 4138 */ 4139 void 4140 vfs_syncprogress(void) 4141 { 4142 if (panicstr) 4143 sync_timeleft = sync_timeout; 4144 } 4145 4146 /* 4147 * Map VFS flags to statvfs flags. These shouldn't really be separate 4148 * flags at all. 4149 */ 4150 uint_t 4151 vf_to_stf(uint_t vf) 4152 { 4153 uint_t stf = 0; 4154 4155 if (vf & VFS_RDONLY) 4156 stf |= ST_RDONLY; 4157 if (vf & VFS_NOSETUID) 4158 stf |= ST_NOSUID; 4159 if (vf & VFS_NOTRUNC) 4160 stf |= ST_NOTRUNC; 4161 4162 return (stf); 4163 } 4164 4165 /* 4166 * Entries for (illegal) fstype 0. 4167 */ 4168 /* ARGSUSED */ 4169 int 4170 vfsstray_sync(struct vfs *vfsp, short arg, struct cred *cr) 4171 { 4172 cmn_err(CE_PANIC, "stray vfs operation"); 4173 return (0); 4174 } 4175 4176 /* 4177 * Entries for (illegal) fstype 0. 4178 */ 4179 int 4180 vfsstray(void) 4181 { 4182 cmn_err(CE_PANIC, "stray vfs operation"); 4183 return (0); 4184 } 4185 4186 /* 4187 * Support for dealing with forced UFS unmount and its interaction with 4188 * LOFS. Could be used by any filesystem. 4189 * See bug 1203132. 4190 */ 4191 int 4192 vfs_EIO(void) 4193 { 4194 return (EIO); 4195 } 4196 4197 /* 4198 * We've gotta define the op for sync separately, since the compiler gets 4199 * confused if we mix and match ANSI and normal style prototypes when 4200 * a "short" argument is present and spits out a warning. 4201 */ 4202 /*ARGSUSED*/ 4203 int 4204 vfs_EIO_sync(struct vfs *vfsp, short arg, struct cred *cr) 4205 { 4206 return (EIO); 4207 } 4208 4209 vfs_t EIO_vfs; 4210 vfsops_t *EIO_vfsops; 4211 4212 /* 4213 * Called from startup() to initialize all loaded vfs's 4214 */ 4215 void 4216 vfsinit(void) 4217 { 4218 struct vfssw *vswp; 4219 int error; 4220 extern int vopstats_enabled; 4221 extern void vopstats_startup(); 4222 4223 static const fs_operation_def_t EIO_vfsops_template[] = { 4224 VFSNAME_MOUNT, { .error = vfs_EIO }, 4225 VFSNAME_UNMOUNT, { .error = vfs_EIO }, 4226 VFSNAME_ROOT, { .error = vfs_EIO }, 4227 VFSNAME_STATVFS, { .error = vfs_EIO }, 4228 VFSNAME_SYNC, { .vfs_sync = vfs_EIO_sync }, 4229 VFSNAME_VGET, { .error = vfs_EIO }, 4230 VFSNAME_MOUNTROOT, { .error = vfs_EIO }, 4231 VFSNAME_FREEVFS, { .error = vfs_EIO }, 4232 VFSNAME_VNSTATE, { .error = vfs_EIO }, 4233 NULL, NULL 4234 }; 4235 4236 static const fs_operation_def_t stray_vfsops_template[] = { 4237 VFSNAME_MOUNT, { .error = vfsstray }, 4238 VFSNAME_UNMOUNT, { .error = vfsstray }, 4239 VFSNAME_ROOT, { .error = vfsstray }, 4240 VFSNAME_STATVFS, { .error = vfsstray }, 4241 VFSNAME_SYNC, { .vfs_sync = vfsstray_sync }, 4242 VFSNAME_VGET, { .error = vfsstray }, 4243 VFSNAME_MOUNTROOT, { .error = vfsstray }, 4244 VFSNAME_FREEVFS, { .error = vfsstray }, 4245 VFSNAME_VNSTATE, { .error = vfsstray }, 4246 NULL, NULL 4247 }; 4248 4249 /* Create vfs cache */ 4250 vfs_cache = kmem_cache_create("vfs_cache", sizeof (struct vfs), 4251 sizeof (uintptr_t), NULL, NULL, NULL, NULL, NULL, 0); 4252 4253 /* Initialize the vnode cache (file systems may use it during init). */ 4254 vn_create_cache(); 4255 4256 /* Setup event monitor framework */ 4257 fem_init(); 4258 4259 /* Initialize the dummy stray file system type. */ 4260 error = vfs_setfsops(0, stray_vfsops_template, NULL); 4261 4262 /* Initialize the dummy EIO file system. */ 4263 error = vfs_makefsops(EIO_vfsops_template, &EIO_vfsops); 4264 if (error != 0) { 4265 cmn_err(CE_WARN, "vfsinit: bad EIO vfs ops template"); 4266 /* Shouldn't happen, but not bad enough to panic */ 4267 } 4268 4269 VFS_INIT(&EIO_vfs, EIO_vfsops, (caddr_t)NULL); 4270 4271 /* 4272 * Default EIO_vfs.vfs_flag to VFS_UNMOUNTED so a lookup 4273 * on this vfs can immediately notice it's invalid. 4274 */ 4275 EIO_vfs.vfs_flag |= VFS_UNMOUNTED; 4276 4277 /* 4278 * Call the init routines of non-loadable filesystems only. 4279 * Filesystems which are loaded as separate modules will be 4280 * initialized by the module loading code instead. 4281 */ 4282 4283 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 4284 RLOCK_VFSSW(); 4285 if (vswp->vsw_init != NULL) 4286 (*vswp->vsw_init)(vswp - vfssw, vswp->vsw_name); 4287 RUNLOCK_VFSSW(); 4288 } 4289 4290 vopstats_startup(); 4291 4292 if (vopstats_enabled) { 4293 /* EIO_vfs can collect stats, but we don't retrieve them */ 4294 initialize_vopstats(&EIO_vfs.vfs_vopstats); 4295 EIO_vfs.vfs_fstypevsp = NULL; 4296 EIO_vfs.vfs_vskap = NULL; 4297 EIO_vfs.vfs_flag |= VFS_STATS; 4298 } 4299 4300 xattr_init(); 4301 4302 reparse_point_init(); 4303 } 4304 4305 vfs_t * 4306 vfs_alloc(int kmflag) 4307 { 4308 vfs_t *vfsp; 4309 4310 vfsp = kmem_cache_alloc(vfs_cache, kmflag); 4311 4312 /* 4313 * Do the simplest initialization here. 4314 * Everything else gets done in vfs_init() 4315 */ 4316 bzero(vfsp, sizeof (vfs_t)); 4317 return (vfsp); 4318 } 4319 4320 void 4321 vfs_free(vfs_t *vfsp) 4322 { 4323 /* 4324 * One would be tempted to assert that "vfsp->vfs_count == 0". 4325 * The problem is that this gets called out of domount() with 4326 * a partially initialized vfs and a vfs_count of 1. This is 4327 * also called from vfs_rele() with a vfs_count of 0. We can't 4328 * call VFS_RELE() from domount() if VFS_MOUNT() hasn't successfully 4329 * returned. This is because VFS_MOUNT() fully initializes the 4330 * vfs structure and its associated data. VFS_RELE() will call 4331 * VFS_FREEVFS() which may panic the system if the data structures 4332 * aren't fully initialized from a successful VFS_MOUNT()). 4333 */ 4334 4335 /* If FEM was in use, make sure everything gets cleaned up */ 4336 if (vfsp->vfs_femhead) { 4337 ASSERT(vfsp->vfs_femhead->femh_list == NULL); 4338 mutex_destroy(&vfsp->vfs_femhead->femh_lock); 4339 kmem_free(vfsp->vfs_femhead, sizeof (*(vfsp->vfs_femhead))); 4340 vfsp->vfs_femhead = NULL; 4341 } 4342 4343 if (vfsp->vfs_implp) 4344 vfsimpl_teardown(vfsp); 4345 sema_destroy(&vfsp->vfs_reflock); 4346 kmem_cache_free(vfs_cache, vfsp); 4347 } 4348 4349 /* 4350 * Increments the vfs reference count by one atomically. 4351 */ 4352 void 4353 vfs_hold(vfs_t *vfsp) 4354 { 4355 atomic_inc_32(&vfsp->vfs_count); 4356 ASSERT(vfsp->vfs_count != 0); 4357 } 4358 4359 /* 4360 * Decrements the vfs reference count by one atomically. When 4361 * vfs reference count becomes zero, it calls the file system 4362 * specific vfs_freevfs() to free up the resources. 4363 */ 4364 void 4365 vfs_rele(vfs_t *vfsp) 4366 { 4367 ASSERT(vfsp->vfs_count != 0); 4368 if (atomic_dec_32_nv(&vfsp->vfs_count) == 0) { 4369 VFS_FREEVFS(vfsp); 4370 lofi_remove(vfsp); 4371 if (vfsp->vfs_zone) 4372 zone_rele_ref(&vfsp->vfs_implp->vi_zone_ref, 4373 ZONE_REF_VFS); 4374 vfs_freemnttab(vfsp); 4375 vfs_free(vfsp); 4376 } 4377 } 4378 4379 /* 4380 * Generic operations vector support. 4381 * 4382 * This is used to build operations vectors for both the vfs and vnode. 4383 * It's normally called only when a file system is loaded. 4384 * 4385 * There are many possible algorithms for this, including the following: 4386 * 4387 * (1) scan the list of known operations; for each, see if the file system 4388 * includes an entry for it, and fill it in as appropriate. 4389 * 4390 * (2) set up defaults for all known operations. scan the list of ops 4391 * supplied by the file system; for each which is both supplied and 4392 * known, fill it in. 4393 * 4394 * (3) sort the lists of known ops & supplied ops; scan the list, filling 4395 * in entries as we go. 4396 * 4397 * we choose (1) for simplicity, and because performance isn't critical here. 4398 * note that (2) could be sped up using a precomputed hash table on known ops. 4399 * (3) could be faster than either, but only if the lists were very large or 4400 * supplied in sorted order. 4401 * 4402 */ 4403 4404 int 4405 fs_build_vector(void *vector, int *unused_ops, 4406 const fs_operation_trans_def_t *translation, 4407 const fs_operation_def_t *operations) 4408 { 4409 int i, num_trans, num_ops, used; 4410 4411 /* 4412 * Count the number of translations and the number of supplied 4413 * operations. 4414 */ 4415 4416 { 4417 const fs_operation_trans_def_t *p; 4418 4419 for (num_trans = 0, p = translation; 4420 p->name != NULL; 4421 num_trans++, p++) 4422 ; 4423 } 4424 4425 { 4426 const fs_operation_def_t *p; 4427 4428 for (num_ops = 0, p = operations; 4429 p->name != NULL; 4430 num_ops++, p++) 4431 ; 4432 } 4433 4434 /* Walk through each operation known to our caller. There will be */ 4435 /* one entry in the supplied "translation table" for each. */ 4436 4437 used = 0; 4438 4439 for (i = 0; i < num_trans; i++) { 4440 int j, found; 4441 char *curname; 4442 fs_generic_func_p result; 4443 fs_generic_func_p *location; 4444 4445 curname = translation[i].name; 4446 4447 /* Look for a matching operation in the list supplied by the */ 4448 /* file system. */ 4449 4450 found = 0; 4451 4452 for (j = 0; j < num_ops; j++) { 4453 if (strcmp(operations[j].name, curname) == 0) { 4454 used++; 4455 found = 1; 4456 break; 4457 } 4458 } 4459 4460 /* 4461 * If the file system is using a "placeholder" for default 4462 * or error functions, grab the appropriate function out of 4463 * the translation table. If the file system didn't supply 4464 * this operation at all, use the default function. 4465 */ 4466 4467 if (found) { 4468 result = operations[j].func.fs_generic; 4469 if (result == fs_default) { 4470 result = translation[i].defaultFunc; 4471 } else if (result == fs_error) { 4472 result = translation[i].errorFunc; 4473 } else if (result == NULL) { 4474 /* Null values are PROHIBITED */ 4475 return (EINVAL); 4476 } 4477 } else { 4478 result = translation[i].defaultFunc; 4479 } 4480 4481 /* Now store the function into the operations vector. */ 4482 4483 location = (fs_generic_func_p *) 4484 (((char *)vector) + translation[i].offset); 4485 4486 *location = result; 4487 } 4488 4489 *unused_ops = num_ops - used; 4490 4491 return (0); 4492 } 4493 4494 /* Placeholder functions, should never be called. */ 4495 4496 int 4497 fs_error(void) 4498 { 4499 cmn_err(CE_PANIC, "fs_error called"); 4500 return (0); 4501 } 4502 4503 int 4504 fs_default(void) 4505 { 4506 cmn_err(CE_PANIC, "fs_default called"); 4507 return (0); 4508 } 4509 4510 #ifdef __sparc 4511 4512 /* 4513 * Part of the implementation of booting off a mirrored root 4514 * involves a change of dev_t for the root device. To 4515 * accomplish this, first remove the existing hash table 4516 * entry for the root device, convert to the new dev_t, 4517 * then re-insert in the hash table at the head of the list. 4518 */ 4519 void 4520 vfs_root_redev(vfs_t *vfsp, dev_t ndev, int fstype) 4521 { 4522 vfs_list_lock(); 4523 4524 vfs_hash_remove(vfsp); 4525 4526 vfsp->vfs_dev = ndev; 4527 vfs_make_fsid(&vfsp->vfs_fsid, ndev, fstype); 4528 4529 vfs_hash_add(vfsp, 1); 4530 4531 vfs_list_unlock(); 4532 } 4533 4534 #else /* x86 NEWBOOT */ 4535 4536 #if defined(__x86) 4537 extern int hvmboot_rootconf(); 4538 #endif /* __x86 */ 4539 4540 extern ib_boot_prop_t *iscsiboot_prop; 4541 4542 int 4543 rootconf() 4544 { 4545 int error; 4546 struct vfssw *vsw; 4547 extern void pm_init(); 4548 char *fstyp, *fsmod; 4549 int ret = -1; 4550 4551 getrootfs(&fstyp, &fsmod); 4552 4553 #if defined(__x86) 4554 /* 4555 * hvmboot_rootconf() is defined in the hvm_bootstrap misc module, 4556 * which lives in /platform/i86hvm, and hence is only available when 4557 * booted in an x86 hvm environment. If the hvm_bootstrap misc module 4558 * is not available then the modstub for this function will return 0. 4559 * If the hvm_bootstrap misc module is available it will be loaded 4560 * and hvmboot_rootconf() will be invoked. 4561 */ 4562 if (error = hvmboot_rootconf()) 4563 return (error); 4564 #endif /* __x86 */ 4565 4566 if (error = clboot_rootconf()) 4567 return (error); 4568 4569 if (modload("fs", fsmod) == -1) 4570 panic("Cannot _init %s module", fsmod); 4571 4572 RLOCK_VFSSW(); 4573 vsw = vfs_getvfsswbyname(fstyp); 4574 RUNLOCK_VFSSW(); 4575 if (vsw == NULL) { 4576 cmn_err(CE_CONT, "Cannot find %s filesystem\n", fstyp); 4577 return (ENXIO); 4578 } 4579 VFS_INIT(rootvfs, &vsw->vsw_vfsops, 0); 4580 VFS_HOLD(rootvfs); 4581 4582 /* always mount readonly first */ 4583 rootvfs->vfs_flag |= VFS_RDONLY; 4584 4585 pm_init(); 4586 4587 if (netboot && iscsiboot_prop) { 4588 cmn_err(CE_WARN, "NFS boot and iSCSI boot" 4589 " shouldn't happen in the same time"); 4590 return (EINVAL); 4591 } 4592 4593 if (netboot || iscsiboot_prop) { 4594 ret = strplumb(); 4595 if (ret != 0) { 4596 cmn_err(CE_WARN, "Cannot plumb network device %d", ret); 4597 return (EFAULT); 4598 } 4599 } 4600 4601 if ((ret == 0) && iscsiboot_prop) { 4602 ret = modload("drv", "iscsi"); 4603 /* -1 indicates fail */ 4604 if (ret == -1) { 4605 cmn_err(CE_WARN, "Failed to load iscsi module"); 4606 iscsi_boot_prop_free(); 4607 return (EINVAL); 4608 } else { 4609 if (!i_ddi_attach_pseudo_node("iscsi")) { 4610 cmn_err(CE_WARN, 4611 "Failed to attach iscsi driver"); 4612 iscsi_boot_prop_free(); 4613 return (ENODEV); 4614 } 4615 } 4616 } 4617 4618 error = VFS_MOUNTROOT(rootvfs, ROOT_INIT); 4619 vfs_unrefvfssw(vsw); 4620 rootdev = rootvfs->vfs_dev; 4621 4622 if (error) 4623 cmn_err(CE_CONT, "Cannot mount root on %s fstype %s\n", 4624 rootfs.bo_name, fstyp); 4625 else 4626 cmn_err(CE_CONT, "?root on %s fstype %s\n", 4627 rootfs.bo_name, fstyp); 4628 return (error); 4629 } 4630 4631 /* 4632 * XXX this is called by nfs only and should probably be removed 4633 * If booted with ASKNAME, prompt on the console for a filesystem 4634 * name and return it. 4635 */ 4636 void 4637 getfsname(char *askfor, char *name, size_t namelen) 4638 { 4639 if (boothowto & RB_ASKNAME) { 4640 printf("%s name: ", askfor); 4641 console_gets(name, namelen); 4642 } 4643 } 4644 4645 /* 4646 * Init the root filesystem type (rootfs.bo_fstype) from the "fstype" 4647 * property. 4648 * 4649 * Filesystem types starting with the prefix "nfs" are diskless clients; 4650 * init the root filename name (rootfs.bo_name), too. 4651 * 4652 * If we are booting via NFS we currently have these options: 4653 * nfs - dynamically choose NFS V2, V3, or V4 (default) 4654 * nfs2 - force NFS V2 4655 * nfs3 - force NFS V3 4656 * nfs4 - force NFS V4 4657 * Because we need to maintain backward compatibility with the naming 4658 * convention that the NFS V2 filesystem name is "nfs" (see vfs_conf.c) 4659 * we need to map "nfs" => "nfsdyn" and "nfs2" => "nfs". The dynamic 4660 * nfs module will map the type back to either "nfs", "nfs3", or "nfs4". 4661 * This is only for root filesystems, all other uses will expect 4662 * that "nfs" == NFS V2. 4663 */ 4664 static void 4665 getrootfs(char **fstypp, char **fsmodp) 4666 { 4667 extern char *strplumb_get_netdev_path(void); 4668 char *propstr = NULL; 4669 4670 /* 4671 * Check fstype property; for diskless it should be one of "nfs", 4672 * "nfs2", "nfs3" or "nfs4". 4673 */ 4674 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4675 DDI_PROP_DONTPASS, "fstype", &propstr) 4676 == DDI_SUCCESS) { 4677 (void) strncpy(rootfs.bo_fstype, propstr, BO_MAXFSNAME); 4678 ddi_prop_free(propstr); 4679 4680 /* 4681 * if the boot property 'fstype' is not set, but 'zfs-bootfs' is set, 4682 * assume the type of this root filesystem is 'zfs'. 4683 */ 4684 } else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4685 DDI_PROP_DONTPASS, "zfs-bootfs", &propstr) 4686 == DDI_SUCCESS) { 4687 (void) strncpy(rootfs.bo_fstype, "zfs", BO_MAXFSNAME); 4688 ddi_prop_free(propstr); 4689 } 4690 4691 if (strncmp(rootfs.bo_fstype, "nfs", 3) != 0) { 4692 *fstypp = *fsmodp = rootfs.bo_fstype; 4693 return; 4694 } 4695 4696 ++netboot; 4697 4698 if (strcmp(rootfs.bo_fstype, "nfs2") == 0) 4699 (void) strcpy(rootfs.bo_fstype, "nfs"); 4700 else if (strcmp(rootfs.bo_fstype, "nfs") == 0) 4701 (void) strcpy(rootfs.bo_fstype, "nfsdyn"); 4702 4703 /* 4704 * check if path to network interface is specified in bootpath 4705 * or by a hypervisor domain configuration file. 4706 * XXPV - enable strlumb_get_netdev_path() 4707 */ 4708 if (ddi_prop_exists(DDI_DEV_T_ANY, ddi_root_node(), DDI_PROP_DONTPASS, 4709 "xpv-nfsroot")) { 4710 (void) strcpy(rootfs.bo_name, "/xpvd/xnf@0"); 4711 } else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4712 DDI_PROP_DONTPASS, "bootpath", &propstr) 4713 == DDI_SUCCESS) { 4714 (void) strncpy(rootfs.bo_name, propstr, BO_MAXOBJNAME); 4715 ddi_prop_free(propstr); 4716 } else { 4717 /* attempt to determine netdev_path via boot_mac address */ 4718 netdev_path = strplumb_get_netdev_path(); 4719 if (netdev_path == NULL) 4720 panic("cannot find boot network interface"); 4721 (void) strncpy(rootfs.bo_name, netdev_path, BO_MAXOBJNAME); 4722 } 4723 *fstypp = rootfs.bo_fstype; 4724 *fsmodp = "nfs"; 4725 } 4726 #endif 4727 4728 /* 4729 * VFS feature routines 4730 */ 4731 4732 #define VFTINDEX(feature) (((feature) >> 32) & 0xFFFFFFFF) 4733 #define VFTBITS(feature) ((feature) & 0xFFFFFFFFLL) 4734 4735 /* Register a feature in the vfs */ 4736 void 4737 vfs_set_feature(vfs_t *vfsp, vfs_feature_t feature) 4738 { 4739 /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */ 4740 if (vfsp->vfs_implp == NULL) 4741 return; 4742 4743 vfsp->vfs_featureset[VFTINDEX(feature)] |= VFTBITS(feature); 4744 } 4745 4746 void 4747 vfs_clear_feature(vfs_t *vfsp, vfs_feature_t feature) 4748 { 4749 /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */ 4750 if (vfsp->vfs_implp == NULL) 4751 return; 4752 vfsp->vfs_featureset[VFTINDEX(feature)] &= VFTBITS(~feature); 4753 } 4754 4755 /* 4756 * Query a vfs for a feature. 4757 * Returns 1 if feature is present, 0 if not 4758 */ 4759 int 4760 vfs_has_feature(vfs_t *vfsp, vfs_feature_t feature) 4761 { 4762 int ret = 0; 4763 4764 /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */ 4765 if (vfsp->vfs_implp == NULL) 4766 return (ret); 4767 4768 if (vfsp->vfs_featureset[VFTINDEX(feature)] & VFTBITS(feature)) 4769 ret = 1; 4770 4771 return (ret); 4772 } 4773 4774 /* 4775 * Propagate feature set from one vfs to another 4776 */ 4777 void 4778 vfs_propagate_features(vfs_t *from, vfs_t *to) 4779 { 4780 int i; 4781 4782 if (to->vfs_implp == NULL || from->vfs_implp == NULL) 4783 return; 4784 4785 for (i = 1; i <= to->vfs_featureset[0]; i++) { 4786 to->vfs_featureset[i] = from->vfs_featureset[i]; 4787 } 4788 } 4789 4790 #define LOFINODE_PATH "/dev/lofi/%d" 4791 4792 /* 4793 * Return the vnode for the lofi node if there's a lofi mount in place. 4794 * Returns -1 when there's no lofi node, 0 on success, and > 0 on 4795 * failure. 4796 */ 4797 int 4798 vfs_get_lofi(vfs_t *vfsp, vnode_t **vpp) 4799 { 4800 char *path = NULL; 4801 int strsize; 4802 int err; 4803 4804 if (vfsp->vfs_lofi_id == 0) { 4805 *vpp = NULL; 4806 return (-1); 4807 } 4808 4809 strsize = snprintf(NULL, 0, LOFINODE_PATH, vfsp->vfs_lofi_id); 4810 path = kmem_alloc(strsize + 1, KM_SLEEP); 4811 (void) snprintf(path, strsize + 1, LOFINODE_PATH, vfsp->vfs_lofi_id); 4812 4813 /* 4814 * We may be inside a zone, so we need to use the /dev path, but 4815 * it's created asynchronously, so we wait here. 4816 */ 4817 for (;;) { 4818 err = lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, vpp); 4819 4820 if (err != ENOENT) 4821 break; 4822 4823 if ((err = delay_sig(hz / 8)) == EINTR) 4824 break; 4825 } 4826 4827 if (err) 4828 *vpp = NULL; 4829 4830 kmem_free(path, strsize + 1); 4831 return (err); 4832 }