1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1984, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2015, Joyent, Inc. 25 */ 26 27 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 28 /* All Rights Reserved */ 29 30 /* 31 * Portions of this source code were derived from Berkeley 4.3 BSD 32 * under license from the Regents of the University of California. 33 */ 34 35 #include <sys/types.h> 36 #include <sys/t_lock.h> 37 #include <sys/ksynch.h> 38 #include <sys/param.h> 39 #include <sys/time.h> 40 #include <sys/systm.h> 41 #include <sys/sysmacros.h> 42 #include <sys/resource.h> 43 #include <sys/signal.h> 44 #include <sys/cred.h> 45 #include <sys/user.h> 46 #include <sys/buf.h> 47 #include <sys/vfs.h> 48 #include <sys/vfs_opreg.h> 49 #include <sys/vnode.h> 50 #include <sys/proc.h> 51 #include <sys/disp.h> 52 #include <sys/file.h> 53 #include <sys/fcntl.h> 54 #include <sys/flock.h> 55 #include <sys/atomic.h> 56 #include <sys/kmem.h> 57 #include <sys/uio.h> 58 #include <sys/dnlc.h> 59 #include <sys/conf.h> 60 #include <sys/mman.h> 61 #include <sys/pathname.h> 62 #include <sys/debug.h> 63 #include <sys/vmsystm.h> 64 #include <sys/cmn_err.h> 65 #include <sys/filio.h> 66 #include <sys/policy.h> 67 68 #include <sys/fs/ufs_fs.h> 69 #include <sys/fs/ufs_lockfs.h> 70 #include <sys/fs/ufs_filio.h> 71 #include <sys/fs/ufs_inode.h> 72 #include <sys/fs/ufs_fsdir.h> 73 #include <sys/fs/ufs_quota.h> 74 #include <sys/fs/ufs_log.h> 75 #include <sys/fs/ufs_snap.h> 76 #include <sys/fs/ufs_trans.h> 77 #include <sys/fs/ufs_panic.h> 78 #include <sys/fs/ufs_bio.h> 79 #include <sys/dirent.h> /* must be AFTER <sys/fs/fsdir.h>! */ 80 #include <sys/errno.h> 81 #include <sys/fssnap_if.h> 82 #include <sys/unistd.h> 83 #include <sys/sunddi.h> 84 85 #include <sys/filio.h> /* _FIOIO */ 86 87 #include <vm/hat.h> 88 #include <vm/page.h> 89 #include <vm/pvn.h> 90 #include <vm/as.h> 91 #include <vm/seg.h> 92 #include <vm/seg_map.h> 93 #include <vm/seg_vn.h> 94 #include <vm/seg_kmem.h> 95 #include <vm/rm.h> 96 #include <sys/swap.h> 97 98 #include <fs/fs_subr.h> 99 100 #include <sys/fs/decomp.h> 101 102 static struct instats ins; 103 104 static int ufs_getpage_ra(struct vnode *, u_offset_t, struct seg *, caddr_t); 105 static int ufs_getpage_miss(struct vnode *, u_offset_t, size_t, struct seg *, 106 caddr_t, struct page **, size_t, enum seg_rw, int); 107 static int ufs_open(struct vnode **, int, struct cred *, caller_context_t *); 108 static int ufs_close(struct vnode *, int, int, offset_t, struct cred *, 109 caller_context_t *); 110 static int ufs_read(struct vnode *, struct uio *, int, struct cred *, 111 struct caller_context *); 112 static int ufs_write(struct vnode *, struct uio *, int, struct cred *, 113 struct caller_context *); 114 static int ufs_ioctl(struct vnode *, int, intptr_t, int, struct cred *, 115 int *, caller_context_t *); 116 static int ufs_getattr(struct vnode *, struct vattr *, int, struct cred *, 117 caller_context_t *); 118 static int ufs_setattr(struct vnode *, struct vattr *, int, struct cred *, 119 caller_context_t *); 120 static int ufs_access(struct vnode *, int, int, struct cred *, 121 caller_context_t *); 122 static int ufs_lookup(struct vnode *, char *, struct vnode **, 123 struct pathname *, int, struct vnode *, struct cred *, 124 caller_context_t *, int *, pathname_t *); 125 static int ufs_create(struct vnode *, char *, struct vattr *, enum vcexcl, 126 int, struct vnode **, struct cred *, int, 127 caller_context_t *, vsecattr_t *); 128 static int ufs_remove(struct vnode *, char *, struct cred *, 129 caller_context_t *, int); 130 static int ufs_link(struct vnode *, struct vnode *, char *, struct cred *, 131 caller_context_t *, int); 132 static int ufs_rename(struct vnode *, char *, struct vnode *, char *, 133 struct cred *, caller_context_t *, int); 134 static int ufs_mkdir(struct vnode *, char *, struct vattr *, struct vnode **, 135 struct cred *, caller_context_t *, int, vsecattr_t *); 136 static int ufs_rmdir(struct vnode *, char *, struct vnode *, struct cred *, 137 caller_context_t *, int); 138 static int ufs_readdir(struct vnode *, struct uio *, struct cred *, int *, 139 caller_context_t *, int); 140 static int ufs_symlink(struct vnode *, char *, struct vattr *, char *, 141 struct cred *, caller_context_t *, int); 142 static int ufs_readlink(struct vnode *, struct uio *, struct cred *, 143 caller_context_t *); 144 static int ufs_fsync(struct vnode *, int, struct cred *, caller_context_t *); 145 static void ufs_inactive(struct vnode *, struct cred *, caller_context_t *); 146 static int ufs_fid(struct vnode *, struct fid *, caller_context_t *); 147 static int ufs_rwlock(struct vnode *, int, caller_context_t *); 148 static void ufs_rwunlock(struct vnode *, int, caller_context_t *); 149 static int ufs_seek(struct vnode *, offset_t, offset_t *, caller_context_t *); 150 static int ufs_frlock(struct vnode *, int, struct flock64 *, int, offset_t, 151 struct flk_callback *, struct cred *, 152 caller_context_t *); 153 static int ufs_space(struct vnode *, int, struct flock64 *, int, offset_t, 154 cred_t *, caller_context_t *); 155 static int ufs_getpage(struct vnode *, offset_t, size_t, uint_t *, 156 struct page **, size_t, struct seg *, caddr_t, 157 enum seg_rw, struct cred *, caller_context_t *); 158 static int ufs_putpage(struct vnode *, offset_t, size_t, int, struct cred *, 159 caller_context_t *); 160 static int ufs_putpages(struct vnode *, offset_t, size_t, int, struct cred *); 161 static int ufs_map(struct vnode *, offset_t, struct as *, caddr_t *, size_t, 162 uchar_t, uchar_t, uint_t, struct cred *, caller_context_t *); 163 static int ufs_addmap(struct vnode *, offset_t, struct as *, caddr_t, size_t, 164 uchar_t, uchar_t, uint_t, struct cred *, caller_context_t *); 165 static int ufs_delmap(struct vnode *, offset_t, struct as *, caddr_t, size_t, 166 uint_t, uint_t, uint_t, struct cred *, caller_context_t *); 167 static int ufs_poll(vnode_t *, short, int, short *, struct pollhead **, 168 caller_context_t *); 169 static int ufs_dump(vnode_t *, caddr_t, offset_t, offset_t, 170 caller_context_t *); 171 static int ufs_l_pathconf(struct vnode *, int, ulong_t *, struct cred *, 172 caller_context_t *); 173 static int ufs_pageio(struct vnode *, struct page *, u_offset_t, size_t, int, 174 struct cred *, caller_context_t *); 175 static int ufs_dumpctl(vnode_t *, int, offset_t *, caller_context_t *); 176 static daddr32_t *save_dblks(struct inode *, struct ufsvfs *, daddr32_t *, 177 daddr32_t *, int, int); 178 static int ufs_getsecattr(struct vnode *, vsecattr_t *, int, struct cred *, 179 caller_context_t *); 180 static int ufs_setsecattr(struct vnode *, vsecattr_t *, int, struct cred *, 181 caller_context_t *); 182 static int ufs_priv_access(void *, int, struct cred *); 183 static int ufs_eventlookup(struct vnode *, char *, struct cred *, 184 struct vnode **); 185 extern int as_map_locked(struct as *, caddr_t, size_t, int ((*)()), void *); 186 187 /* 188 * For lockfs: ulockfs begin/end is now inlined in the ufs_xxx functions. 189 * 190 * XXX - ULOCKFS in fs_pathconf and ufs_ioctl is not inlined yet. 191 */ 192 struct vnodeops *ufs_vnodeops; 193 194 /* NOTE: "not blkd" below means that the operation isn't blocked by lockfs */ 195 const fs_operation_def_t ufs_vnodeops_template[] = { 196 { VOPNAME_OPEN, { .vop_open = ufs_open } }, /* not blkd */ 197 { VOPNAME_CLOSE, { .vop_close = ufs_close } }, /* not blkd */ 198 { VOPNAME_READ, { .vop_read = ufs_read } }, 199 { VOPNAME_WRITE, { .vop_write = ufs_write } }, 200 { VOPNAME_IOCTL, { .vop_ioctl = ufs_ioctl } }, 201 { VOPNAME_GETATTR, { .vop_getattr = ufs_getattr } }, 202 { VOPNAME_SETATTR, { .vop_setattr = ufs_setattr } }, 203 { VOPNAME_ACCESS, { .vop_access = ufs_access } }, 204 { VOPNAME_LOOKUP, { .vop_lookup = ufs_lookup } }, 205 { VOPNAME_CREATE, { .vop_create = ufs_create } }, 206 { VOPNAME_REMOVE, { .vop_remove = ufs_remove } }, 207 { VOPNAME_LINK, { .vop_link = ufs_link } }, 208 { VOPNAME_RENAME, { .vop_rename = ufs_rename } }, 209 { VOPNAME_MKDIR, { .vop_mkdir = ufs_mkdir } }, 210 { VOPNAME_RMDIR, { .vop_rmdir = ufs_rmdir } }, 211 { VOPNAME_READDIR, { .vop_readdir = ufs_readdir } }, 212 { VOPNAME_SYMLINK, { .vop_symlink = ufs_symlink } }, 213 { VOPNAME_READLINK, { .vop_readlink = ufs_readlink } }, 214 { VOPNAME_FSYNC, { .vop_fsync = ufs_fsync } }, 215 { VOPNAME_INACTIVE, { .vop_inactive = ufs_inactive } }, /* !blkd */ 216 { VOPNAME_FID, { .vop_fid = ufs_fid } }, 217 { VOPNAME_RWLOCK, { .vop_rwlock = ufs_rwlock } }, /* not blkd */ 218 { VOPNAME_RWUNLOCK, { .vop_rwunlock = ufs_rwunlock } }, /* !blkd */ 219 { VOPNAME_SEEK, { .vop_seek = ufs_seek } }, 220 { VOPNAME_FRLOCK, { .vop_frlock = ufs_frlock } }, 221 { VOPNAME_SPACE, { .vop_space = ufs_space } }, 222 { VOPNAME_GETPAGE, { .vop_getpage = ufs_getpage } }, 223 { VOPNAME_PUTPAGE, { .vop_putpage = ufs_putpage } }, 224 { VOPNAME_MAP, { .vop_map = ufs_map } }, 225 { VOPNAME_ADDMAP, { .vop_addmap = ufs_addmap } }, /* not blkd */ 226 { VOPNAME_DELMAP, { .vop_delmap = ufs_delmap } }, /* not blkd */ 227 { VOPNAME_POLL, { .vop_poll = ufs_poll } }, /* not blkd */ 228 { VOPNAME_DUMP, { .vop_dump = ufs_dump } }, 229 { VOPNAME_PATHCONF, { .vop_pathconf = ufs_l_pathconf } }, 230 { VOPNAME_PAGEIO, { .vop_pageio = ufs_pageio } }, 231 { VOPNAME_DUMPCTL, { .vop_dumpctl = ufs_dumpctl } }, 232 { VOPNAME_GETSECATTR, { .vop_getsecattr = ufs_getsecattr } }, 233 { VOPNAME_SETSECATTR, { .vop_setsecattr = ufs_setsecattr } }, 234 { VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support } }, 235 { NULL, { NULL } } 236 }; 237 238 #define MAX_BACKFILE_COUNT 9999 239 240 /* 241 * Created by ufs_dumpctl() to store a file's disk block info into memory. 242 * Used by ufs_dump() to dump data to disk directly. 243 */ 244 struct dump { 245 struct inode *ip; /* the file we contain */ 246 daddr_t fsbs; /* number of blocks stored */ 247 struct timeval32 time; /* time stamp for the struct */ 248 daddr32_t dblk[1]; /* place holder for block info */ 249 }; 250 251 static struct dump *dump_info = NULL; 252 253 /* 254 * Previously there was no special action required for ordinary files. 255 * (Devices are handled through the device file system.) 256 * Now we support Large Files and Large File API requires open to 257 * fail if file is large. 258 * We could take care to prevent data corruption 259 * by doing an atomic check of size and truncate if file is opened with 260 * FTRUNC flag set but traditionally this is being done by the vfs/vnode 261 * layers. So taking care of truncation here is a change in the existing 262 * semantics of VOP_OPEN and therefore we chose not to implement any thing 263 * here. The check for the size of the file > 2GB is being done at the 264 * vfs layer in routine vn_open(). 265 */ 266 267 /* ARGSUSED */ 268 static int 269 ufs_open(struct vnode **vpp, int flag, struct cred *cr, caller_context_t *ct) 270 { 271 return (0); 272 } 273 274 /*ARGSUSED*/ 275 static int 276 ufs_close(struct vnode *vp, int flag, int count, offset_t offset, 277 struct cred *cr, caller_context_t *ct) 278 { 279 cleanlocks(vp, ttoproc(curthread)->p_pid, 0); 280 cleanshares(vp, ttoproc(curthread)->p_pid); 281 282 /* 283 * Push partially filled cluster at last close. 284 * ``last close'' is approximated because the dnlc 285 * may have a hold on the vnode. 286 * Checking for VBAD here will also act as a forced umount check. 287 */ 288 if (vp->v_count <= 2 && vp->v_type != VBAD) { 289 struct inode *ip = VTOI(vp); 290 if (ip->i_delaylen) { 291 ins.in_poc.value.ul++; 292 (void) ufs_putpages(vp, ip->i_delayoff, ip->i_delaylen, 293 B_ASYNC | B_FREE, cr); 294 ip->i_delaylen = 0; 295 } 296 } 297 298 return (0); 299 } 300 301 /*ARGSUSED*/ 302 static int 303 ufs_read(struct vnode *vp, struct uio *uiop, int ioflag, struct cred *cr, 304 struct caller_context *ct) 305 { 306 struct inode *ip = VTOI(vp); 307 struct ufsvfs *ufsvfsp; 308 struct ulockfs *ulp = NULL; 309 int error = 0; 310 int intrans = 0; 311 312 ASSERT(RW_READ_HELD(&ip->i_rwlock)); 313 314 /* 315 * Mandatory locking needs to be done before ufs_lockfs_begin() 316 * and TRANS_BEGIN_SYNC() calls since mandatory locks can sleep. 317 */ 318 if (MANDLOCK(vp, ip->i_mode)) { 319 /* 320 * ufs_getattr ends up being called by chklock 321 */ 322 error = chklock(vp, FREAD, uiop->uio_loffset, 323 uiop->uio_resid, uiop->uio_fmode, ct); 324 if (error) 325 goto out; 326 } 327 328 ufsvfsp = ip->i_ufsvfs; 329 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_READ_MASK); 330 if (error) 331 goto out; 332 333 /* 334 * In the case that a directory is opened for reading as a file 335 * (eg "cat .") with the O_RSYNC, O_SYNC and O_DSYNC flags set. 336 * The locking order had to be changed to avoid a deadlock with 337 * an update taking place on that directory at the same time. 338 */ 339 if ((ip->i_mode & IFMT) == IFDIR) { 340 341 rw_enter(&ip->i_contents, RW_READER); 342 error = rdip(ip, uiop, ioflag, cr); 343 rw_exit(&ip->i_contents); 344 345 if (error) { 346 if (ulp) 347 ufs_lockfs_end(ulp); 348 goto out; 349 } 350 351 if (ulp && (ioflag & FRSYNC) && (ioflag & (FSYNC | FDSYNC)) && 352 TRANS_ISTRANS(ufsvfsp)) { 353 rw_exit(&ip->i_rwlock); 354 TRANS_BEGIN_SYNC(ufsvfsp, TOP_READ_SYNC, TOP_READ_SIZE, 355 error); 356 ASSERT(!error); 357 TRANS_END_SYNC(ufsvfsp, error, TOP_READ_SYNC, 358 TOP_READ_SIZE); 359 rw_enter(&ip->i_rwlock, RW_READER); 360 } 361 } else { 362 /* 363 * Only transact reads to files opened for sync-read and 364 * sync-write on a file system that is not write locked. 365 * 366 * The ``not write locked'' check prevents problems with 367 * enabling/disabling logging on a busy file system. E.g., 368 * logging exists at the beginning of the read but does not 369 * at the end. 370 * 371 */ 372 if (ulp && (ioflag & FRSYNC) && (ioflag & (FSYNC | FDSYNC)) && 373 TRANS_ISTRANS(ufsvfsp)) { 374 TRANS_BEGIN_SYNC(ufsvfsp, TOP_READ_SYNC, TOP_READ_SIZE, 375 error); 376 ASSERT(!error); 377 intrans = 1; 378 } 379 380 rw_enter(&ip->i_contents, RW_READER); 381 error = rdip(ip, uiop, ioflag, cr); 382 rw_exit(&ip->i_contents); 383 384 if (intrans) { 385 TRANS_END_SYNC(ufsvfsp, error, TOP_READ_SYNC, 386 TOP_READ_SIZE); 387 } 388 } 389 390 if (ulp) { 391 ufs_lockfs_end(ulp); 392 } 393 out: 394 395 return (error); 396 } 397 398 extern int ufs_HW; /* high water mark */ 399 extern int ufs_LW; /* low water mark */ 400 int ufs_WRITES = 1; /* XXX - enable/disable */ 401 int ufs_throttles = 0; /* throttling count */ 402 int ufs_allow_shared_writes = 1; /* directio shared writes */ 403 404 static int 405 ufs_check_rewrite(struct inode *ip, struct uio *uiop, int ioflag) 406 { 407 int shared_write; 408 409 /* 410 * If the FDSYNC flag is set then ignore the global 411 * ufs_allow_shared_writes in this case. 412 */ 413 shared_write = (ioflag & FDSYNC) | ufs_allow_shared_writes; 414 415 /* 416 * Filter to determine if this request is suitable as a 417 * concurrent rewrite. This write must not allocate blocks 418 * by extending the file or filling in holes. No use trying 419 * through FSYNC descriptors as the inode will be synchronously 420 * updated after the write. The uio structure has not yet been 421 * checked for sanity, so assume nothing. 422 */ 423 return (((ip->i_mode & IFMT) == IFREG) && !(ioflag & FAPPEND) && 424 (uiop->uio_loffset >= (offset_t)0) && 425 (uiop->uio_loffset < ip->i_size) && (uiop->uio_resid > 0) && 426 ((ip->i_size - uiop->uio_loffset) >= uiop->uio_resid) && 427 !(ioflag & FSYNC) && !bmap_has_holes(ip) && 428 shared_write); 429 } 430 431 /*ARGSUSED*/ 432 static int 433 ufs_write(struct vnode *vp, struct uio *uiop, int ioflag, cred_t *cr, 434 caller_context_t *ct) 435 { 436 struct inode *ip = VTOI(vp); 437 struct ufsvfs *ufsvfsp; 438 struct ulockfs *ulp; 439 int retry = 1; 440 int error, resv, resid = 0; 441 int directio_status; 442 int exclusive; 443 int rewriteflg; 444 long start_resid = uiop->uio_resid; 445 446 ASSERT(RW_LOCK_HELD(&ip->i_rwlock)); 447 448 retry_mandlock: 449 /* 450 * Mandatory locking needs to be done before ufs_lockfs_begin() 451 * and TRANS_BEGIN_[A]SYNC() calls since mandatory locks can sleep. 452 * Check for forced unmounts normally done in ufs_lockfs_begin(). 453 */ 454 if ((ufsvfsp = ip->i_ufsvfs) == NULL) { 455 error = EIO; 456 goto out; 457 } 458 if (MANDLOCK(vp, ip->i_mode)) { 459 460 ASSERT(RW_WRITE_HELD(&ip->i_rwlock)); 461 462 /* 463 * ufs_getattr ends up being called by chklock 464 */ 465 error = chklock(vp, FWRITE, uiop->uio_loffset, 466 uiop->uio_resid, uiop->uio_fmode, ct); 467 if (error) 468 goto out; 469 } 470 471 /* i_rwlock can change in chklock */ 472 exclusive = rw_write_held(&ip->i_rwlock); 473 rewriteflg = ufs_check_rewrite(ip, uiop, ioflag); 474 475 /* 476 * Check for fast-path special case of directio re-writes. 477 */ 478 if ((ip->i_flag & IDIRECTIO || ufsvfsp->vfs_forcedirectio) && 479 !exclusive && rewriteflg) { 480 481 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_WRITE_MASK); 482 if (error) 483 goto out; 484 485 rw_enter(&ip->i_contents, RW_READER); 486 error = ufs_directio_write(ip, uiop, ioflag, 1, cr, 487 &directio_status); 488 if (directio_status == DIRECTIO_SUCCESS) { 489 uint_t i_flag_save; 490 491 if (start_resid != uiop->uio_resid) 492 error = 0; 493 /* 494 * Special treatment of access times for re-writes. 495 * If IMOD is not already set, then convert it 496 * to IMODACC for this operation. This defers 497 * entering a delta into the log until the inode 498 * is flushed. This mimics what is done for read 499 * operations and inode access time. 500 */ 501 mutex_enter(&ip->i_tlock); 502 i_flag_save = ip->i_flag; 503 ip->i_flag |= IUPD | ICHG; 504 ip->i_seq++; 505 ITIMES_NOLOCK(ip); 506 if ((i_flag_save & IMOD) == 0) { 507 ip->i_flag &= ~IMOD; 508 ip->i_flag |= IMODACC; 509 } 510 mutex_exit(&ip->i_tlock); 511 rw_exit(&ip->i_contents); 512 if (ulp) 513 ufs_lockfs_end(ulp); 514 goto out; 515 } 516 rw_exit(&ip->i_contents); 517 if (ulp) 518 ufs_lockfs_end(ulp); 519 } 520 521 if (!exclusive && !rw_tryupgrade(&ip->i_rwlock)) { 522 rw_exit(&ip->i_rwlock); 523 rw_enter(&ip->i_rwlock, RW_WRITER); 524 /* 525 * Mandatory locking could have been enabled 526 * after dropping the i_rwlock. 527 */ 528 if (MANDLOCK(vp, ip->i_mode)) 529 goto retry_mandlock; 530 } 531 532 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_WRITE_MASK); 533 if (error) 534 goto out; 535 536 /* 537 * Amount of log space needed for this write 538 */ 539 if (!rewriteflg || !(ioflag & FDSYNC)) 540 TRANS_WRITE_RESV(ip, uiop, ulp, &resv, &resid); 541 542 /* 543 * Throttle writes. 544 */ 545 if (ufs_WRITES && (ip->i_writes > ufs_HW)) { 546 mutex_enter(&ip->i_tlock); 547 while (ip->i_writes > ufs_HW) { 548 ufs_throttles++; 549 cv_wait(&ip->i_wrcv, &ip->i_tlock); 550 } 551 mutex_exit(&ip->i_tlock); 552 } 553 554 /* 555 * Enter Transaction 556 * 557 * If the write is a rewrite there is no need to open a transaction 558 * if the FDSYNC flag is set and not the FSYNC. In this case just 559 * set the IMODACC flag to modify do the update at a later time 560 * thus avoiding the overhead of the logging transaction that is 561 * not required. 562 */ 563 if (ioflag & (FSYNC|FDSYNC)) { 564 if (ulp) { 565 if (rewriteflg) { 566 uint_t i_flag_save; 567 568 rw_enter(&ip->i_contents, RW_READER); 569 mutex_enter(&ip->i_tlock); 570 i_flag_save = ip->i_flag; 571 ip->i_flag |= IUPD | ICHG; 572 ip->i_seq++; 573 ITIMES_NOLOCK(ip); 574 if ((i_flag_save & IMOD) == 0) { 575 ip->i_flag &= ~IMOD; 576 ip->i_flag |= IMODACC; 577 } 578 mutex_exit(&ip->i_tlock); 579 rw_exit(&ip->i_contents); 580 } else { 581 int terr = 0; 582 TRANS_BEGIN_SYNC(ufsvfsp, TOP_WRITE_SYNC, resv, 583 terr); 584 ASSERT(!terr); 585 } 586 } 587 } else { 588 if (ulp) 589 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_WRITE, resv); 590 } 591 592 /* 593 * Write the file 594 */ 595 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 596 rw_enter(&ip->i_contents, RW_WRITER); 597 if ((ioflag & FAPPEND) != 0 && (ip->i_mode & IFMT) == IFREG) { 598 /* 599 * In append mode start at end of file. 600 */ 601 uiop->uio_loffset = ip->i_size; 602 } 603 604 /* 605 * Mild optimisation, don't call ufs_trans_write() unless we have to 606 * Also, suppress file system full messages if we will retry. 607 */ 608 if (retry) 609 ip->i_flag |= IQUIET; 610 if (resid) { 611 TRANS_WRITE(ip, uiop, ioflag, error, ulp, cr, resv, resid); 612 } else { 613 error = wrip(ip, uiop, ioflag, cr); 614 } 615 ip->i_flag &= ~IQUIET; 616 617 rw_exit(&ip->i_contents); 618 rw_exit(&ufsvfsp->vfs_dqrwlock); 619 620 /* 621 * Leave Transaction 622 */ 623 if (ulp) { 624 if (ioflag & (FSYNC|FDSYNC)) { 625 if (!rewriteflg) { 626 int terr = 0; 627 628 TRANS_END_SYNC(ufsvfsp, terr, TOP_WRITE_SYNC, 629 resv); 630 if (error == 0) 631 error = terr; 632 } 633 } else { 634 TRANS_END_ASYNC(ufsvfsp, TOP_WRITE, resv); 635 } 636 ufs_lockfs_end(ulp); 637 } 638 out: 639 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) { 640 /* 641 * Any blocks tied up in pending deletes? 642 */ 643 ufs_delete_drain_wait(ufsvfsp, 1); 644 retry = 0; 645 goto retry_mandlock; 646 } 647 648 if (error == ENOSPC && (start_resid != uiop->uio_resid)) 649 error = 0; 650 651 return (error); 652 } 653 654 /* 655 * Don't cache write blocks to files with the sticky bit set. 656 * Used to keep swap files from blowing the page cache on a server. 657 */ 658 int stickyhack = 1; 659 660 /* 661 * Free behind hacks. The pager is busted. 662 * XXX - need to pass the information down to writedone() in a flag like B_SEQ 663 * or B_FREE_IF_TIGHT_ON_MEMORY. 664 */ 665 int freebehind = 1; 666 int smallfile = 0; 667 u_offset_t smallfile64 = 32 * 1024; 668 669 /* 670 * While we should, in most cases, cache the pages for write, we 671 * may also want to cache the pages for read as long as they are 672 * frequently re-usable. 673 * 674 * If cache_read_ahead = 1, the pages for read will go to the tail 675 * of the cache list when they are released, otherwise go to the head. 676 */ 677 int cache_read_ahead = 0; 678 679 /* 680 * Freebehind exists so that as we read large files sequentially we 681 * don't consume most of memory with pages from a few files. It takes 682 * longer to re-read from disk multiple small files as it does reading 683 * one large one sequentially. As system memory grows customers need 684 * to retain bigger chunks of files in memory. The advent of the 685 * cachelist opens up of the possibility freeing pages to the head or 686 * tail of the list. 687 * 688 * Not freeing a page is a bet that the page will be read again before 689 * it's segmap slot is needed for something else. If we loose the bet, 690 * it means some other thread is burdened with the page free we did 691 * not do. If we win we save a free and reclaim. 692 * 693 * Freeing it at the tail vs the head of cachelist is a bet that the 694 * page will survive until the next read. It's also saying that this 695 * page is more likely to be re-used than a page freed some time ago 696 * and never reclaimed. 697 * 698 * Freebehind maintains a range of file offset [smallfile1; smallfile2] 699 * 700 * 0 < offset < smallfile1 : pages are not freed. 701 * smallfile1 < offset < smallfile2 : pages freed to tail of cachelist. 702 * smallfile2 < offset : pages freed to head of cachelist. 703 * 704 * The range is computed at most once per second and depends on 705 * freemem and ncpus_online. Both parameters are bounded to be 706 * >= smallfile && >= smallfile64. 707 * 708 * smallfile1 = (free memory / ncpu) / 1000 709 * smallfile2 = (free memory / ncpu) / 10 710 * 711 * A few examples values: 712 * 713 * Free Mem (in Bytes) [smallfile1; smallfile2] [smallfile1; smallfile2] 714 * ncpus_online = 4 ncpus_online = 64 715 * ------------------ ----------------------- ----------------------- 716 * 1G [256K; 25M] [32K; 1.5M] 717 * 10G [2.5M; 250M] [156K; 15M] 718 * 100G [25M; 2.5G] [1.5M; 150M] 719 * 720 */ 721 722 #define SMALLFILE1_D 1000 723 #define SMALLFILE2_D 10 724 static u_offset_t smallfile1 = 32 * 1024; 725 static u_offset_t smallfile2 = 32 * 1024; 726 static clock_t smallfile_update = 0; /* lbolt value of when to recompute */ 727 uint_t smallfile1_d = SMALLFILE1_D; 728 uint_t smallfile2_d = SMALLFILE2_D; 729 730 /* 731 * wrip does the real work of write requests for ufs. 732 */ 733 int 734 wrip(struct inode *ip, struct uio *uio, int ioflag, struct cred *cr) 735 { 736 rlim64_t limit = uio->uio_llimit; 737 u_offset_t off; 738 u_offset_t old_i_size; 739 struct fs *fs; 740 struct vnode *vp; 741 struct ufsvfs *ufsvfsp; 742 caddr_t base; 743 long start_resid = uio->uio_resid; /* save starting resid */ 744 long premove_resid; /* resid before uiomove() */ 745 uint_t flags; 746 int newpage; 747 int iupdat_flag, directio_status; 748 int n, on, mapon; 749 int error, pagecreate; 750 int do_dqrwlock; /* drop/reacquire vfs_dqrwlock */ 751 int32_t iblocks; 752 int new_iblocks; 753 754 /* 755 * ip->i_size is incremented before the uiomove 756 * is done on a write. If the move fails (bad user 757 * address) reset ip->i_size. 758 * The better way would be to increment ip->i_size 759 * only if the uiomove succeeds. 760 */ 761 int i_size_changed = 0; 762 o_mode_t type; 763 int i_seq_needed = 0; 764 765 vp = ITOV(ip); 766 767 /* 768 * check for forced unmount - should not happen as 769 * the request passed the lockfs checks. 770 */ 771 if ((ufsvfsp = ip->i_ufsvfs) == NULL) 772 return (EIO); 773 774 fs = ip->i_fs; 775 776 ASSERT(RW_WRITE_HELD(&ip->i_contents)); 777 778 /* check for valid filetype */ 779 type = ip->i_mode & IFMT; 780 if ((type != IFREG) && (type != IFDIR) && (type != IFATTRDIR) && 781 (type != IFLNK) && (type != IFSHAD)) { 782 return (EIO); 783 } 784 785 /* 786 * the actual limit of UFS file size 787 * is UFS_MAXOFFSET_T 788 */ 789 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 790 limit = MAXOFFSET_T; 791 792 if (uio->uio_loffset >= limit) { 793 proc_t *p = ttoproc(curthread); 794 795 mutex_enter(&p->p_lock); 796 (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE], p->p_rctls, 797 p, RCA_UNSAFE_SIGINFO); 798 mutex_exit(&p->p_lock); 799 return (EFBIG); 800 } 801 802 /* 803 * if largefiles are disallowed, the limit is 804 * the pre-largefiles value of 2GB 805 */ 806 if (ufsvfsp->vfs_lfflags & UFS_LARGEFILES) 807 limit = MIN(UFS_MAXOFFSET_T, limit); 808 else 809 limit = MIN(MAXOFF32_T, limit); 810 811 if (uio->uio_loffset < (offset_t)0) { 812 return (EINVAL); 813 } 814 if (uio->uio_resid == 0) { 815 return (0); 816 } 817 818 if (uio->uio_loffset >= limit) 819 return (EFBIG); 820 821 ip->i_flag |= INOACC; /* don't update ref time in getpage */ 822 823 if (ioflag & (FSYNC|FDSYNC)) { 824 ip->i_flag |= ISYNC; 825 iupdat_flag = 1; 826 } 827 /* 828 * Try to go direct 829 */ 830 if (ip->i_flag & IDIRECTIO || ufsvfsp->vfs_forcedirectio) { 831 uio->uio_llimit = limit; 832 error = ufs_directio_write(ip, uio, ioflag, 0, cr, 833 &directio_status); 834 /* 835 * If ufs_directio wrote to the file or set the flags, 836 * we need to update i_seq, but it may be deferred. 837 */ 838 if (start_resid != uio->uio_resid || 839 (ip->i_flag & (ICHG|IUPD))) { 840 i_seq_needed = 1; 841 ip->i_flag |= ISEQ; 842 } 843 if (directio_status == DIRECTIO_SUCCESS) 844 goto out; 845 } 846 847 /* 848 * Behavior with respect to dropping/reacquiring vfs_dqrwlock: 849 * 850 * o shadow inodes: vfs_dqrwlock is not held at all 851 * o quota updates: vfs_dqrwlock is read or write held 852 * o other updates: vfs_dqrwlock is read held 853 * 854 * The first case is the only one where we do not hold 855 * vfs_dqrwlock at all while entering wrip(). 856 * We must make sure not to downgrade/drop vfs_dqrwlock if we 857 * have it as writer, i.e. if we are updating the quota inode. 858 * There is no potential deadlock scenario in this case as 859 * ufs_getpage() takes care of this and avoids reacquiring 860 * vfs_dqrwlock in that case. 861 * 862 * This check is done here since the above conditions do not change 863 * and we possibly loop below, so save a few cycles. 864 */ 865 if ((type == IFSHAD) || 866 (rw_owner(&ufsvfsp->vfs_dqrwlock) == curthread)) { 867 do_dqrwlock = 0; 868 } else { 869 do_dqrwlock = 1; 870 } 871 872 /* 873 * Large Files: We cast MAXBMASK to offset_t 874 * inorder to mask out the higher bits. Since offset_t 875 * is a signed value, the high order bit set in MAXBMASK 876 * value makes it do the right thing by having all bits 1 877 * in the higher word. May be removed for _SOLARIS64_. 878 */ 879 880 fs = ip->i_fs; 881 do { 882 u_offset_t uoff = uio->uio_loffset; 883 off = uoff & (offset_t)MAXBMASK; 884 mapon = (int)(uoff & (offset_t)MAXBOFFSET); 885 on = (int)blkoff(fs, uoff); 886 n = (int)MIN(fs->fs_bsize - on, uio->uio_resid); 887 new_iblocks = 1; 888 889 if (type == IFREG && uoff + n >= limit) { 890 if (uoff >= limit) { 891 error = EFBIG; 892 goto out; 893 } 894 /* 895 * since uoff + n >= limit, 896 * therefore n >= limit - uoff, and n is an int 897 * so it is safe to cast it to an int 898 */ 899 n = (int)(limit - (rlim64_t)uoff); 900 } 901 if (uoff + n > ip->i_size) { 902 /* 903 * We are extending the length of the file. 904 * bmap is used so that we are sure that 905 * if we need to allocate new blocks, that it 906 * is done here before we up the file size. 907 */ 908 error = bmap_write(ip, uoff, (int)(on + n), 909 mapon == 0, NULL, cr); 910 /* 911 * bmap_write never drops i_contents so if 912 * the flags are set it changed the file. 913 */ 914 if (ip->i_flag & (ICHG|IUPD)) { 915 i_seq_needed = 1; 916 ip->i_flag |= ISEQ; 917 } 918 if (error) 919 break; 920 /* 921 * There is a window of vulnerability here. 922 * The sequence of operations: allocate file 923 * system blocks, uiomove the data into pages, 924 * and then update the size of the file in the 925 * inode, must happen atomically. However, due 926 * to current locking constraints, this can not 927 * be done. 928 */ 929 ASSERT(ip->i_writer == NULL); 930 ip->i_writer = curthread; 931 i_size_changed = 1; 932 /* 933 * If we are writing from the beginning of 934 * the mapping, we can just create the 935 * pages without having to read them. 936 */ 937 pagecreate = (mapon == 0); 938 } else if (n == MAXBSIZE) { 939 /* 940 * Going to do a whole mappings worth, 941 * so we can just create the pages w/o 942 * having to read them in. But before 943 * we do that, we need to make sure any 944 * needed blocks are allocated first. 945 */ 946 iblocks = ip->i_blocks; 947 error = bmap_write(ip, uoff, (int)(on + n), 948 BI_ALLOC_ONLY, NULL, cr); 949 /* 950 * bmap_write never drops i_contents so if 951 * the flags are set it changed the file. 952 */ 953 if (ip->i_flag & (ICHG|IUPD)) { 954 i_seq_needed = 1; 955 ip->i_flag |= ISEQ; 956 } 957 if (error) 958 break; 959 pagecreate = 1; 960 /* 961 * check if the new created page needed the 962 * allocation of new disk blocks. 963 */ 964 if (iblocks == ip->i_blocks) 965 new_iblocks = 0; /* no new blocks allocated */ 966 } else { 967 pagecreate = 0; 968 /* 969 * In sync mode flush the indirect blocks which 970 * may have been allocated and not written on 971 * disk. In above cases bmap_write will allocate 972 * in sync mode. 973 */ 974 if (ioflag & (FSYNC|FDSYNC)) { 975 error = ufs_indirblk_sync(ip, uoff); 976 if (error) 977 break; 978 } 979 } 980 981 /* 982 * At this point we can enter ufs_getpage() in one 983 * of two ways: 984 * 1) segmap_getmapflt() calls ufs_getpage() when the 985 * forcefault parameter is true (pagecreate == 0) 986 * 2) uiomove() causes a page fault. 987 * 988 * We have to drop the contents lock to prevent the VM 989 * system from trying to reacquire it in ufs_getpage() 990 * should the uiomove cause a pagefault. 991 * 992 * We have to drop the reader vfs_dqrwlock here as well. 993 */ 994 rw_exit(&ip->i_contents); 995 if (do_dqrwlock) { 996 ASSERT(RW_LOCK_HELD(&ufsvfsp->vfs_dqrwlock)); 997 ASSERT(!(RW_WRITE_HELD(&ufsvfsp->vfs_dqrwlock))); 998 rw_exit(&ufsvfsp->vfs_dqrwlock); 999 } 1000 1001 newpage = 0; 1002 premove_resid = uio->uio_resid; 1003 1004 /* 1005 * Touch the page and fault it in if it is not in core 1006 * before segmap_getmapflt or vpm_data_copy can lock it. 1007 * This is to avoid the deadlock if the buffer is mapped 1008 * to the same file through mmap which we want to write. 1009 */ 1010 uio_prefaultpages((long)n, uio); 1011 1012 if (vpm_enable) { 1013 /* 1014 * Copy data. If new pages are created, part of 1015 * the page that is not written will be initizliazed 1016 * with zeros. 1017 */ 1018 error = vpm_data_copy(vp, (off + mapon), (uint_t)n, 1019 uio, !pagecreate, &newpage, 0, S_WRITE); 1020 } else { 1021 1022 base = segmap_getmapflt(segkmap, vp, (off + mapon), 1023 (uint_t)n, !pagecreate, S_WRITE); 1024 1025 /* 1026 * segmap_pagecreate() returns 1 if it calls 1027 * page_create_va() to allocate any pages. 1028 */ 1029 1030 if (pagecreate) 1031 newpage = segmap_pagecreate(segkmap, base, 1032 (size_t)n, 0); 1033 1034 error = uiomove(base + mapon, (long)n, UIO_WRITE, uio); 1035 } 1036 1037 /* 1038 * If "newpage" is set, then a new page was created and it 1039 * does not contain valid data, so it needs to be initialized 1040 * at this point. 1041 * Otherwise the page contains old data, which was overwritten 1042 * partially or as a whole in uiomove. 1043 * If there is only one iovec structure within uio, then 1044 * on error uiomove will not be able to update uio->uio_loffset 1045 * and we would zero the whole page here! 1046 * 1047 * If uiomove fails because of an error, the old valid data 1048 * is kept instead of filling the rest of the page with zero's. 1049 */ 1050 if (!vpm_enable && newpage && 1051 uio->uio_loffset < roundup(off + mapon + n, PAGESIZE)) { 1052 /* 1053 * We created pages w/o initializing them completely, 1054 * thus we need to zero the part that wasn't set up. 1055 * This happens on most EOF write cases and if 1056 * we had some sort of error during the uiomove. 1057 */ 1058 int nzero, nmoved; 1059 1060 nmoved = (int)(uio->uio_loffset - (off + mapon)); 1061 ASSERT(nmoved >= 0 && nmoved <= n); 1062 nzero = roundup(on + n, PAGESIZE) - nmoved; 1063 ASSERT(nzero > 0 && mapon + nmoved + nzero <= MAXBSIZE); 1064 (void) kzero(base + mapon + nmoved, (uint_t)nzero); 1065 } 1066 1067 /* 1068 * Unlock the pages allocated by page_create_va() 1069 * in segmap_pagecreate() 1070 */ 1071 if (!vpm_enable && newpage) 1072 segmap_pageunlock(segkmap, base, (size_t)n, S_WRITE); 1073 1074 /* 1075 * If the size of the file changed, then update the 1076 * size field in the inode now. This can't be done 1077 * before the call to segmap_pageunlock or there is 1078 * a potential deadlock with callers to ufs_putpage(). 1079 * They will be holding i_contents and trying to lock 1080 * a page, while this thread is holding a page locked 1081 * and trying to acquire i_contents. 1082 */ 1083 if (i_size_changed) { 1084 rw_enter(&ip->i_contents, RW_WRITER); 1085 old_i_size = ip->i_size; 1086 UFS_SET_ISIZE(uoff + n, ip); 1087 TRANS_INODE(ufsvfsp, ip); 1088 /* 1089 * file has grown larger than 2GB. Set flag 1090 * in superblock to indicate this, if it 1091 * is not already set. 1092 */ 1093 if ((ip->i_size > MAXOFF32_T) && 1094 !(fs->fs_flags & FSLARGEFILES)) { 1095 ASSERT(ufsvfsp->vfs_lfflags & UFS_LARGEFILES); 1096 mutex_enter(&ufsvfsp->vfs_lock); 1097 fs->fs_flags |= FSLARGEFILES; 1098 ufs_sbwrite(ufsvfsp); 1099 mutex_exit(&ufsvfsp->vfs_lock); 1100 } 1101 mutex_enter(&ip->i_tlock); 1102 ip->i_writer = NULL; 1103 cv_broadcast(&ip->i_wrcv); 1104 mutex_exit(&ip->i_tlock); 1105 rw_exit(&ip->i_contents); 1106 } 1107 1108 if (error) { 1109 /* 1110 * If we failed on a write, we may have already 1111 * allocated file blocks as well as pages. It's 1112 * hard to undo the block allocation, but we must 1113 * be sure to invalidate any pages that may have 1114 * been allocated. 1115 * 1116 * If the page was created without initialization 1117 * then we must check if it should be possible 1118 * to destroy the new page and to keep the old data 1119 * on the disk. 1120 * 1121 * It is possible to destroy the page without 1122 * having to write back its contents only when 1123 * - the size of the file keeps unchanged 1124 * - bmap_write() did not allocate new disk blocks 1125 * it is possible to create big files using "seek" and 1126 * write to the end of the file. A "write" to a 1127 * position before the end of the file would not 1128 * change the size of the file but it would allocate 1129 * new disk blocks. 1130 * - uiomove intended to overwrite the whole page. 1131 * - a new page was created (newpage == 1). 1132 */ 1133 1134 if (i_size_changed == 0 && new_iblocks == 0 && 1135 newpage) { 1136 1137 /* unwind what uiomove eventually last did */ 1138 uio->uio_resid = premove_resid; 1139 1140 /* 1141 * destroy the page, do not write ambiguous 1142 * data to the disk. 1143 */ 1144 flags = SM_DESTROY; 1145 } else { 1146 /* 1147 * write the page back to the disk, if dirty, 1148 * and remove the page from the cache. 1149 */ 1150 flags = SM_INVAL; 1151 } 1152 1153 if (vpm_enable) { 1154 /* 1155 * Flush pages. 1156 */ 1157 (void) vpm_sync_pages(vp, off, n, flags); 1158 } else { 1159 (void) segmap_release(segkmap, base, flags); 1160 } 1161 } else { 1162 flags = 0; 1163 /* 1164 * Force write back for synchronous write cases. 1165 */ 1166 if ((ioflag & (FSYNC|FDSYNC)) || type == IFDIR) { 1167 /* 1168 * If the sticky bit is set but the 1169 * execute bit is not set, we do a 1170 * synchronous write back and free 1171 * the page when done. We set up swap 1172 * files to be handled this way to 1173 * prevent servers from keeping around 1174 * the client's swap pages too long. 1175 * XXX - there ought to be a better way. 1176 */ 1177 if (IS_SWAPVP(vp)) { 1178 flags = SM_WRITE | SM_FREE | 1179 SM_DONTNEED; 1180 iupdat_flag = 0; 1181 } else { 1182 flags = SM_WRITE; 1183 } 1184 } else if (n + on == MAXBSIZE || IS_SWAPVP(vp)) { 1185 /* 1186 * Have written a whole block. 1187 * Start an asynchronous write and 1188 * mark the buffer to indicate that 1189 * it won't be needed again soon. 1190 */ 1191 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED; 1192 } 1193 if (vpm_enable) { 1194 /* 1195 * Flush pages. 1196 */ 1197 error = vpm_sync_pages(vp, off, n, flags); 1198 } else { 1199 error = segmap_release(segkmap, base, flags); 1200 } 1201 /* 1202 * If the operation failed and is synchronous, 1203 * then we need to unwind what uiomove() last 1204 * did so we can potentially return an error to 1205 * the caller. If this write operation was 1206 * done in two pieces and the first succeeded, 1207 * then we won't return an error for the second 1208 * piece that failed. However, we only want to 1209 * return a resid value that reflects what was 1210 * really done. 1211 * 1212 * Failures for non-synchronous operations can 1213 * be ignored since the page subsystem will 1214 * retry the operation until it succeeds or the 1215 * file system is unmounted. 1216 */ 1217 if (error) { 1218 if ((ioflag & (FSYNC | FDSYNC)) || 1219 type == IFDIR) { 1220 uio->uio_resid = premove_resid; 1221 } else { 1222 error = 0; 1223 } 1224 } 1225 } 1226 1227 /* 1228 * Re-acquire contents lock. 1229 * If it was dropped, reacquire reader vfs_dqrwlock as well. 1230 */ 1231 if (do_dqrwlock) 1232 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 1233 rw_enter(&ip->i_contents, RW_WRITER); 1234 1235 /* 1236 * If the uiomove() failed or if a synchronous 1237 * page push failed, fix up i_size. 1238 */ 1239 if (error) { 1240 if (i_size_changed) { 1241 /* 1242 * The uiomove failed, and we 1243 * allocated blocks,so get rid 1244 * of them. 1245 */ 1246 (void) ufs_itrunc(ip, old_i_size, 0, cr); 1247 } 1248 } else { 1249 /* 1250 * XXX - Can this be out of the loop? 1251 */ 1252 ip->i_flag |= IUPD | ICHG; 1253 /* 1254 * Only do one increase of i_seq for multiple 1255 * pieces. Because we drop locks, record 1256 * the fact that we changed the timestamp and 1257 * are deferring the increase in case another thread 1258 * pushes our timestamp update. 1259 */ 1260 i_seq_needed = 1; 1261 ip->i_flag |= ISEQ; 1262 if (i_size_changed) 1263 ip->i_flag |= IATTCHG; 1264 if ((ip->i_mode & (IEXEC | (IEXEC >> 3) | 1265 (IEXEC >> 6))) != 0 && 1266 (ip->i_mode & (ISUID | ISGID)) != 0 && 1267 secpolicy_vnode_setid_retain(cr, 1268 (ip->i_mode & ISUID) != 0 && ip->i_uid == 0) != 0) { 1269 /* 1270 * Clear Set-UID & Set-GID bits on 1271 * successful write if not privileged 1272 * and at least one of the execute bits 1273 * is set. If we always clear Set-GID, 1274 * mandatory file and record locking is 1275 * unuseable. 1276 */ 1277 ip->i_mode &= ~(ISUID | ISGID); 1278 } 1279 } 1280 /* 1281 * In the case the FDSYNC flag is set and this is a 1282 * "rewrite" we won't log a delta. 1283 * The FSYNC flag overrides all cases. 1284 */ 1285 if (!ufs_check_rewrite(ip, uio, ioflag) || !(ioflag & FDSYNC)) { 1286 TRANS_INODE(ufsvfsp, ip); 1287 } 1288 } while (error == 0 && uio->uio_resid > 0 && n != 0); 1289 1290 out: 1291 /* 1292 * Make sure i_seq is increased at least once per write 1293 */ 1294 if (i_seq_needed) { 1295 ip->i_seq++; 1296 ip->i_flag &= ~ISEQ; /* no longer deferred */ 1297 } 1298 1299 /* 1300 * Inode is updated according to this table - 1301 * 1302 * FSYNC FDSYNC(posix.4) 1303 * -------------------------- 1304 * always@ IATTCHG|IBDWRITE 1305 * 1306 * @ - If we are doing synchronous write the only time we should 1307 * not be sync'ing the ip here is if we have the stickyhack 1308 * activated, the file is marked with the sticky bit and 1309 * no exec bit, the file length has not been changed and 1310 * no new blocks have been allocated during this write. 1311 */ 1312 1313 if ((ip->i_flag & ISYNC) != 0) { 1314 /* 1315 * we have eliminated nosync 1316 */ 1317 if ((ip->i_flag & (IATTCHG|IBDWRITE)) || 1318 ((ioflag & FSYNC) && iupdat_flag)) { 1319 ufs_iupdat(ip, 1); 1320 } 1321 } 1322 1323 /* 1324 * If we've already done a partial-write, terminate 1325 * the write but return no error unless the error is ENOSPC 1326 * because the caller can detect this and free resources and 1327 * try again. 1328 */ 1329 if ((start_resid != uio->uio_resid) && (error != ENOSPC)) 1330 error = 0; 1331 1332 ip->i_flag &= ~(INOACC | ISYNC); 1333 ITIMES_NOLOCK(ip); 1334 return (error); 1335 } 1336 1337 /* 1338 * rdip does the real work of read requests for ufs. 1339 */ 1340 int 1341 rdip(struct inode *ip, struct uio *uio, int ioflag, cred_t *cr) 1342 { 1343 u_offset_t off; 1344 caddr_t base; 1345 struct fs *fs; 1346 struct ufsvfs *ufsvfsp; 1347 struct vnode *vp; 1348 long oresid = uio->uio_resid; 1349 u_offset_t n, on, mapon; 1350 int error = 0; 1351 int doupdate = 1; 1352 uint_t flags; 1353 int dofree, directio_status; 1354 krw_t rwtype; 1355 o_mode_t type; 1356 clock_t now; 1357 1358 vp = ITOV(ip); 1359 1360 ASSERT(RW_LOCK_HELD(&ip->i_contents)); 1361 1362 ufsvfsp = ip->i_ufsvfs; 1363 1364 if (ufsvfsp == NULL) 1365 return (EIO); 1366 1367 fs = ufsvfsp->vfs_fs; 1368 1369 /* check for valid filetype */ 1370 type = ip->i_mode & IFMT; 1371 if ((type != IFREG) && (type != IFDIR) && (type != IFATTRDIR) && 1372 (type != IFLNK) && (type != IFSHAD)) { 1373 return (EIO); 1374 } 1375 1376 if (uio->uio_loffset > UFS_MAXOFFSET_T) { 1377 error = 0; 1378 goto out; 1379 } 1380 if (uio->uio_loffset < (offset_t)0) { 1381 return (EINVAL); 1382 } 1383 if (uio->uio_resid == 0) { 1384 return (0); 1385 } 1386 1387 if (!ULOCKFS_IS_NOIACC(ITOUL(ip)) && (fs->fs_ronly == 0) && 1388 (!ufsvfsp->vfs_noatime)) { 1389 mutex_enter(&ip->i_tlock); 1390 ip->i_flag |= IACC; 1391 mutex_exit(&ip->i_tlock); 1392 } 1393 /* 1394 * Try to go direct 1395 */ 1396 if (ip->i_flag & IDIRECTIO || ufsvfsp->vfs_forcedirectio) { 1397 error = ufs_directio_read(ip, uio, cr, &directio_status); 1398 if (directio_status == DIRECTIO_SUCCESS) 1399 goto out; 1400 } 1401 1402 rwtype = (rw_write_held(&ip->i_contents)?RW_WRITER:RW_READER); 1403 1404 do { 1405 offset_t diff; 1406 u_offset_t uoff = uio->uio_loffset; 1407 off = uoff & (offset_t)MAXBMASK; 1408 mapon = (u_offset_t)(uoff & (offset_t)MAXBOFFSET); 1409 on = (u_offset_t)blkoff(fs, uoff); 1410 n = MIN((u_offset_t)fs->fs_bsize - on, 1411 (u_offset_t)uio->uio_resid); 1412 1413 diff = ip->i_size - uoff; 1414 1415 if (diff <= (offset_t)0) { 1416 error = 0; 1417 goto out; 1418 } 1419 if (diff < (offset_t)n) 1420 n = (int)diff; 1421 1422 /* 1423 * We update smallfile2 and smallfile1 at most every second. 1424 */ 1425 now = ddi_get_lbolt(); 1426 if (now >= smallfile_update) { 1427 uint64_t percpufreeb; 1428 if (smallfile1_d == 0) smallfile1_d = SMALLFILE1_D; 1429 if (smallfile2_d == 0) smallfile2_d = SMALLFILE2_D; 1430 percpufreeb = ptob((uint64_t)freemem) / ncpus_online; 1431 smallfile1 = percpufreeb / smallfile1_d; 1432 smallfile2 = percpufreeb / smallfile2_d; 1433 smallfile1 = MAX(smallfile1, smallfile); 1434 smallfile1 = MAX(smallfile1, smallfile64); 1435 smallfile2 = MAX(smallfile1, smallfile2); 1436 smallfile_update = now + hz; 1437 } 1438 1439 dofree = freebehind && 1440 ip->i_nextr == (off & PAGEMASK) && off > smallfile1; 1441 1442 /* 1443 * At this point we can enter ufs_getpage() in one of two 1444 * ways: 1445 * 1) segmap_getmapflt() calls ufs_getpage() when the 1446 * forcefault parameter is true (value of 1 is passed) 1447 * 2) uiomove() causes a page fault. 1448 * 1449 * We cannot hold onto an i_contents reader lock without 1450 * risking deadlock in ufs_getpage() so drop a reader lock. 1451 * The ufs_getpage() dolock logic already allows for a 1452 * thread holding i_contents as writer to work properly 1453 * so we keep a writer lock. 1454 */ 1455 if (rwtype == RW_READER) 1456 rw_exit(&ip->i_contents); 1457 1458 if (vpm_enable) { 1459 /* 1460 * Copy data. 1461 */ 1462 error = vpm_data_copy(vp, (off + mapon), (uint_t)n, 1463 uio, 1, NULL, 0, S_READ); 1464 } else { 1465 base = segmap_getmapflt(segkmap, vp, (off + mapon), 1466 (uint_t)n, 1, S_READ); 1467 error = uiomove(base + mapon, (long)n, UIO_READ, uio); 1468 } 1469 1470 flags = 0; 1471 if (!error) { 1472 /* 1473 * If reading sequential we won't need this 1474 * buffer again soon. For offsets in range 1475 * [smallfile1, smallfile2] release the pages 1476 * at the tail of the cache list, larger 1477 * offsets are released at the head. 1478 */ 1479 if (dofree) { 1480 flags = SM_FREE | SM_ASYNC; 1481 if ((cache_read_ahead == 0) && 1482 (off > smallfile2)) 1483 flags |= SM_DONTNEED; 1484 } 1485 /* 1486 * In POSIX SYNC (FSYNC and FDSYNC) read mode, 1487 * we want to make sure that the page which has 1488 * been read, is written on disk if it is dirty. 1489 * And corresponding indirect blocks should also 1490 * be flushed out. 1491 */ 1492 if ((ioflag & FRSYNC) && (ioflag & (FSYNC|FDSYNC))) { 1493 flags &= ~SM_ASYNC; 1494 flags |= SM_WRITE; 1495 } 1496 if (vpm_enable) { 1497 error = vpm_sync_pages(vp, off, n, flags); 1498 } else { 1499 error = segmap_release(segkmap, base, flags); 1500 } 1501 } else { 1502 if (vpm_enable) { 1503 (void) vpm_sync_pages(vp, off, n, flags); 1504 } else { 1505 (void) segmap_release(segkmap, base, flags); 1506 } 1507 } 1508 1509 if (rwtype == RW_READER) 1510 rw_enter(&ip->i_contents, rwtype); 1511 } while (error == 0 && uio->uio_resid > 0 && n != 0); 1512 out: 1513 /* 1514 * Inode is updated according to this table if FRSYNC is set. 1515 * 1516 * FSYNC FDSYNC(posix.4) 1517 * -------------------------- 1518 * always IATTCHG|IBDWRITE 1519 */ 1520 /* 1521 * The inode is not updated if we're logging and the inode is a 1522 * directory with FRSYNC, FSYNC and FDSYNC flags set. 1523 */ 1524 if (ioflag & FRSYNC) { 1525 if (TRANS_ISTRANS(ufsvfsp) && ((ip->i_mode & IFMT) == IFDIR)) { 1526 doupdate = 0; 1527 } 1528 if (doupdate) { 1529 if ((ioflag & FSYNC) || 1530 ((ioflag & FDSYNC) && 1531 (ip->i_flag & (IATTCHG|IBDWRITE)))) { 1532 ufs_iupdat(ip, 1); 1533 } 1534 } 1535 } 1536 /* 1537 * If we've already done a partial read, terminate 1538 * the read but return no error. 1539 */ 1540 if (oresid != uio->uio_resid) 1541 error = 0; 1542 ITIMES(ip); 1543 1544 return (error); 1545 } 1546 1547 /* ARGSUSED */ 1548 static int 1549 ufs_ioctl( 1550 struct vnode *vp, 1551 int cmd, 1552 intptr_t arg, 1553 int flag, 1554 struct cred *cr, 1555 int *rvalp, 1556 caller_context_t *ct) 1557 { 1558 struct lockfs lockfs, lockfs_out; 1559 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs; 1560 char *comment, *original_comment; 1561 struct fs *fs; 1562 struct ulockfs *ulp; 1563 offset_t off; 1564 extern int maxphys; 1565 int error; 1566 int issync; 1567 int trans_size; 1568 1569 1570 /* 1571 * forcibly unmounted 1572 */ 1573 if (ufsvfsp == NULL || vp->v_vfsp == NULL || 1574 vp->v_vfsp->vfs_flag & VFS_UNMOUNTED) 1575 return (EIO); 1576 fs = ufsvfsp->vfs_fs; 1577 1578 if (cmd == Q_QUOTACTL) { 1579 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_QUOTA_MASK); 1580 if (error) 1581 return (error); 1582 1583 if (ulp) { 1584 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_QUOTA, 1585 TOP_SETQUOTA_SIZE(fs)); 1586 } 1587 1588 error = quotactl(vp, arg, flag, cr); 1589 1590 if (ulp) { 1591 TRANS_END_ASYNC(ufsvfsp, TOP_QUOTA, 1592 TOP_SETQUOTA_SIZE(fs)); 1593 ufs_lockfs_end(ulp); 1594 } 1595 return (error); 1596 } 1597 1598 switch (cmd) { 1599 case _FIOLFS: 1600 /* 1601 * file system locking 1602 */ 1603 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0) 1604 return (EPERM); 1605 1606 if ((flag & DATAMODEL_MASK) == DATAMODEL_NATIVE) { 1607 if (copyin((caddr_t)arg, &lockfs, 1608 sizeof (struct lockfs))) 1609 return (EFAULT); 1610 } 1611 #ifdef _SYSCALL32_IMPL 1612 else { 1613 struct lockfs32 lockfs32; 1614 /* Translate ILP32 lockfs to LP64 lockfs */ 1615 if (copyin((caddr_t)arg, &lockfs32, 1616 sizeof (struct lockfs32))) 1617 return (EFAULT); 1618 lockfs.lf_lock = (ulong_t)lockfs32.lf_lock; 1619 lockfs.lf_flags = (ulong_t)lockfs32.lf_flags; 1620 lockfs.lf_key = (ulong_t)lockfs32.lf_key; 1621 lockfs.lf_comlen = (ulong_t)lockfs32.lf_comlen; 1622 lockfs.lf_comment = 1623 (caddr_t)(uintptr_t)lockfs32.lf_comment; 1624 } 1625 #endif /* _SYSCALL32_IMPL */ 1626 1627 if (lockfs.lf_comlen) { 1628 if (lockfs.lf_comlen > LOCKFS_MAXCOMMENTLEN) 1629 return (ENAMETOOLONG); 1630 comment = 1631 kmem_alloc(lockfs.lf_comlen, KM_SLEEP); 1632 if (copyin(lockfs.lf_comment, comment, 1633 lockfs.lf_comlen)) { 1634 kmem_free(comment, lockfs.lf_comlen); 1635 return (EFAULT); 1636 } 1637 original_comment = lockfs.lf_comment; 1638 lockfs.lf_comment = comment; 1639 } 1640 if ((error = ufs_fiolfs(vp, &lockfs, 0)) == 0) { 1641 lockfs.lf_comment = original_comment; 1642 1643 if ((flag & DATAMODEL_MASK) == 1644 DATAMODEL_NATIVE) { 1645 (void) copyout(&lockfs, (caddr_t)arg, 1646 sizeof (struct lockfs)); 1647 } 1648 #ifdef _SYSCALL32_IMPL 1649 else { 1650 struct lockfs32 lockfs32; 1651 /* Translate LP64 to ILP32 lockfs */ 1652 lockfs32.lf_lock = 1653 (uint32_t)lockfs.lf_lock; 1654 lockfs32.lf_flags = 1655 (uint32_t)lockfs.lf_flags; 1656 lockfs32.lf_key = 1657 (uint32_t)lockfs.lf_key; 1658 lockfs32.lf_comlen = 1659 (uint32_t)lockfs.lf_comlen; 1660 lockfs32.lf_comment = 1661 (uint32_t)(uintptr_t) 1662 lockfs.lf_comment; 1663 (void) copyout(&lockfs32, (caddr_t)arg, 1664 sizeof (struct lockfs32)); 1665 } 1666 #endif /* _SYSCALL32_IMPL */ 1667 1668 } else { 1669 if (lockfs.lf_comlen) 1670 kmem_free(comment, lockfs.lf_comlen); 1671 } 1672 return (error); 1673 1674 case _FIOLFSS: 1675 /* 1676 * get file system locking status 1677 */ 1678 1679 if ((flag & DATAMODEL_MASK) == DATAMODEL_NATIVE) { 1680 if (copyin((caddr_t)arg, &lockfs, 1681 sizeof (struct lockfs))) 1682 return (EFAULT); 1683 } 1684 #ifdef _SYSCALL32_IMPL 1685 else { 1686 struct lockfs32 lockfs32; 1687 /* Translate ILP32 lockfs to LP64 lockfs */ 1688 if (copyin((caddr_t)arg, &lockfs32, 1689 sizeof (struct lockfs32))) 1690 return (EFAULT); 1691 lockfs.lf_lock = (ulong_t)lockfs32.lf_lock; 1692 lockfs.lf_flags = (ulong_t)lockfs32.lf_flags; 1693 lockfs.lf_key = (ulong_t)lockfs32.lf_key; 1694 lockfs.lf_comlen = (ulong_t)lockfs32.lf_comlen; 1695 lockfs.lf_comment = 1696 (caddr_t)(uintptr_t)lockfs32.lf_comment; 1697 } 1698 #endif /* _SYSCALL32_IMPL */ 1699 1700 if (error = ufs_fiolfss(vp, &lockfs_out)) 1701 return (error); 1702 lockfs.lf_lock = lockfs_out.lf_lock; 1703 lockfs.lf_key = lockfs_out.lf_key; 1704 lockfs.lf_flags = lockfs_out.lf_flags; 1705 lockfs.lf_comlen = MIN(lockfs.lf_comlen, 1706 lockfs_out.lf_comlen); 1707 1708 if ((flag & DATAMODEL_MASK) == DATAMODEL_NATIVE) { 1709 if (copyout(&lockfs, (caddr_t)arg, 1710 sizeof (struct lockfs))) 1711 return (EFAULT); 1712 } 1713 #ifdef _SYSCALL32_IMPL 1714 else { 1715 /* Translate LP64 to ILP32 lockfs */ 1716 struct lockfs32 lockfs32; 1717 lockfs32.lf_lock = (uint32_t)lockfs.lf_lock; 1718 lockfs32.lf_flags = (uint32_t)lockfs.lf_flags; 1719 lockfs32.lf_key = (uint32_t)lockfs.lf_key; 1720 lockfs32.lf_comlen = (uint32_t)lockfs.lf_comlen; 1721 lockfs32.lf_comment = 1722 (uint32_t)(uintptr_t)lockfs.lf_comment; 1723 if (copyout(&lockfs32, (caddr_t)arg, 1724 sizeof (struct lockfs32))) 1725 return (EFAULT); 1726 } 1727 #endif /* _SYSCALL32_IMPL */ 1728 1729 if (lockfs.lf_comlen && 1730 lockfs.lf_comment && lockfs_out.lf_comment) 1731 if (copyout(lockfs_out.lf_comment, 1732 lockfs.lf_comment, lockfs.lf_comlen)) 1733 return (EFAULT); 1734 return (0); 1735 1736 case _FIOSATIME: 1737 /* 1738 * set access time 1739 */ 1740 1741 /* 1742 * if mounted w/o atime, return quietly. 1743 * I briefly thought about returning ENOSYS, but 1744 * figured that most apps would consider this fatal 1745 * but the idea is to make this as seamless as poss. 1746 */ 1747 if (ufsvfsp->vfs_noatime) 1748 return (0); 1749 1750 error = ufs_lockfs_begin(ufsvfsp, &ulp, 1751 ULOCKFS_SETATTR_MASK); 1752 if (error) 1753 return (error); 1754 1755 if (ulp) { 1756 trans_size = (int)TOP_SETATTR_SIZE(VTOI(vp)); 1757 TRANS_BEGIN_CSYNC(ufsvfsp, issync, 1758 TOP_SETATTR, trans_size); 1759 } 1760 1761 error = ufs_fiosatime(vp, (struct timeval *)arg, 1762 flag, cr); 1763 1764 if (ulp) { 1765 TRANS_END_CSYNC(ufsvfsp, error, issync, 1766 TOP_SETATTR, trans_size); 1767 ufs_lockfs_end(ulp); 1768 } 1769 return (error); 1770 1771 case _FIOSDIO: 1772 /* 1773 * set delayed-io 1774 */ 1775 return (ufs_fiosdio(vp, (uint_t *)arg, flag, cr)); 1776 1777 case _FIOGDIO: 1778 /* 1779 * get delayed-io 1780 */ 1781 return (ufs_fiogdio(vp, (uint_t *)arg, flag, cr)); 1782 1783 case _FIOIO: 1784 /* 1785 * inode open 1786 */ 1787 error = ufs_lockfs_begin(ufsvfsp, &ulp, 1788 ULOCKFS_VGET_MASK); 1789 if (error) 1790 return (error); 1791 1792 error = ufs_fioio(vp, (struct fioio *)arg, flag, cr); 1793 1794 if (ulp) { 1795 ufs_lockfs_end(ulp); 1796 } 1797 return (error); 1798 1799 case _FIOFFS: 1800 /* 1801 * file system flush (push w/invalidate) 1802 */ 1803 if ((caddr_t)arg != NULL) 1804 return (EINVAL); 1805 return (ufs_fioffs(vp, NULL, cr)); 1806 1807 case _FIOISBUSY: 1808 /* 1809 * Contract-private interface for Legato 1810 * Purge this vnode from the DNLC and decide 1811 * if this vnode is busy (*arg == 1) or not 1812 * (*arg == 0) 1813 */ 1814 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0) 1815 return (EPERM); 1816 error = ufs_fioisbusy(vp, (int *)arg, cr); 1817 return (error); 1818 1819 case _FIODIRECTIO: 1820 return (ufs_fiodirectio(vp, (int)arg, cr)); 1821 1822 case _FIOTUNE: 1823 /* 1824 * Tune the file system (aka setting fs attributes) 1825 */ 1826 error = ufs_lockfs_begin(ufsvfsp, &ulp, 1827 ULOCKFS_SETATTR_MASK); 1828 if (error) 1829 return (error); 1830 1831 error = ufs_fiotune(vp, (struct fiotune *)arg, cr); 1832 1833 if (ulp) 1834 ufs_lockfs_end(ulp); 1835 return (error); 1836 1837 case _FIOLOGENABLE: 1838 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0) 1839 return (EPERM); 1840 return (ufs_fiologenable(vp, (void *)arg, cr, flag)); 1841 1842 case _FIOLOGDISABLE: 1843 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0) 1844 return (EPERM); 1845 return (ufs_fiologdisable(vp, (void *)arg, cr, flag)); 1846 1847 case _FIOISLOG: 1848 return (ufs_fioislog(vp, (void *)arg, cr, flag)); 1849 1850 case _FIOSNAPSHOTCREATE_MULTI: 1851 { 1852 struct fiosnapcreate_multi fc, *fcp; 1853 size_t fcm_size; 1854 1855 if (copyin((void *)arg, &fc, sizeof (fc))) 1856 return (EFAULT); 1857 if (fc.backfilecount > MAX_BACKFILE_COUNT) 1858 return (EINVAL); 1859 fcm_size = sizeof (struct fiosnapcreate_multi) + 1860 (fc.backfilecount - 1) * sizeof (int); 1861 fcp = (struct fiosnapcreate_multi *) 1862 kmem_alloc(fcm_size, KM_SLEEP); 1863 if (copyin((void *)arg, fcp, fcm_size)) { 1864 kmem_free(fcp, fcm_size); 1865 return (EFAULT); 1866 } 1867 error = ufs_snap_create(vp, fcp, cr); 1868 /* 1869 * Do copyout even if there is an error because 1870 * the details of error is stored in fcp. 1871 */ 1872 if (copyout(fcp, (void *)arg, fcm_size)) 1873 error = EFAULT; 1874 kmem_free(fcp, fcm_size); 1875 return (error); 1876 } 1877 1878 case _FIOSNAPSHOTDELETE: 1879 { 1880 struct fiosnapdelete fc; 1881 1882 if (copyin((void *)arg, &fc, sizeof (fc))) 1883 return (EFAULT); 1884 error = ufs_snap_delete(vp, &fc, cr); 1885 if (!error && copyout(&fc, (void *)arg, sizeof (fc))) 1886 error = EFAULT; 1887 return (error); 1888 } 1889 1890 case _FIOGETSUPERBLOCK: 1891 if (copyout(fs, (void *)arg, SBSIZE)) 1892 return (EFAULT); 1893 return (0); 1894 1895 case _FIOGETMAXPHYS: 1896 if (copyout(&maxphys, (void *)arg, sizeof (maxphys))) 1897 return (EFAULT); 1898 return (0); 1899 1900 /* 1901 * The following 3 ioctls are for TSufs support 1902 * although could potentially be used elsewhere 1903 */ 1904 case _FIO_SET_LUFS_DEBUG: 1905 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0) 1906 return (EPERM); 1907 lufs_debug = (uint32_t)arg; 1908 return (0); 1909 1910 case _FIO_SET_LUFS_ERROR: 1911 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0) 1912 return (EPERM); 1913 TRANS_SETERROR(ufsvfsp); 1914 return (0); 1915 1916 case _FIO_GET_TOP_STATS: 1917 { 1918 fio_lufs_stats_t *ls; 1919 ml_unit_t *ul = ufsvfsp->vfs_log; 1920 1921 ls = kmem_zalloc(sizeof (*ls), KM_SLEEP); 1922 ls->ls_debug = ul->un_debug; /* return debug value */ 1923 /* Copy stucture if statistics are being kept */ 1924 if (ul->un_logmap->mtm_tops) { 1925 ls->ls_topstats = *(ul->un_logmap->mtm_tops); 1926 } 1927 error = 0; 1928 if (copyout(ls, (void *)arg, sizeof (*ls))) 1929 error = EFAULT; 1930 kmem_free(ls, sizeof (*ls)); 1931 return (error); 1932 } 1933 1934 case _FIO_SEEK_DATA: 1935 case _FIO_SEEK_HOLE: 1936 if (ddi_copyin((void *)arg, &off, sizeof (off), flag)) 1937 return (EFAULT); 1938 /* offset paramater is in/out */ 1939 error = ufs_fio_holey(vp, cmd, &off); 1940 if (error) 1941 return (error); 1942 if (ddi_copyout(&off, (void *)arg, sizeof (off), flag)) 1943 return (EFAULT); 1944 return (0); 1945 1946 case _FIO_COMPRESSED: 1947 { 1948 /* 1949 * This is a project private ufs ioctl() to mark 1950 * the inode as that belonging to a compressed 1951 * file. This is used to mark individual 1952 * compressed files in a miniroot archive. 1953 * The files compressed in this manner are 1954 * automatically decompressed by the dcfs filesystem 1955 * (via an interception in ufs_lookup - see decompvp()) 1956 * which is layered on top of ufs on a system running 1957 * from the archive. See uts/common/fs/dcfs for details. 1958 * This ioctl only marks the file as compressed - the 1959 * actual compression is done by fiocompress (a 1960 * userland utility) which invokes this ioctl(). 1961 */ 1962 struct inode *ip = VTOI(vp); 1963 1964 error = ufs_lockfs_begin(ufsvfsp, &ulp, 1965 ULOCKFS_SETATTR_MASK); 1966 if (error) 1967 return (error); 1968 1969 if (ulp) { 1970 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_IUPDAT, 1971 TOP_IUPDAT_SIZE(ip)); 1972 } 1973 1974 error = ufs_mark_compressed(vp); 1975 1976 if (ulp) { 1977 TRANS_END_ASYNC(ufsvfsp, TOP_IUPDAT, 1978 TOP_IUPDAT_SIZE(ip)); 1979 ufs_lockfs_end(ulp); 1980 } 1981 1982 return (error); 1983 1984 } 1985 1986 default: 1987 return (ENOTTY); 1988 } 1989 } 1990 1991 1992 /* ARGSUSED */ 1993 static int 1994 ufs_getattr(struct vnode *vp, struct vattr *vap, int flags, 1995 struct cred *cr, caller_context_t *ct) 1996 { 1997 struct inode *ip = VTOI(vp); 1998 struct ufsvfs *ufsvfsp; 1999 int err; 2000 2001 if (vap->va_mask == AT_SIZE) { 2002 /* 2003 * for performance, if only the size is requested don't bother 2004 * with anything else. 2005 */ 2006 UFS_GET_ISIZE(&vap->va_size, ip); 2007 return (0); 2008 } 2009 2010 /* 2011 * inlined lockfs checks 2012 */ 2013 ufsvfsp = ip->i_ufsvfs; 2014 if ((ufsvfsp == NULL) || ULOCKFS_IS_HLOCK(&ufsvfsp->vfs_ulockfs)) { 2015 err = EIO; 2016 goto out; 2017 } 2018 2019 rw_enter(&ip->i_contents, RW_READER); 2020 /* 2021 * Return all the attributes. This should be refined so 2022 * that it only returns what's asked for. 2023 */ 2024 2025 /* 2026 * Copy from inode table. 2027 */ 2028 vap->va_type = vp->v_type; 2029 vap->va_mode = ip->i_mode & MODEMASK; 2030 /* 2031 * If there is an ACL and there is a mask entry, then do the 2032 * extra work that completes the equivalent of an acltomode(3) 2033 * call. According to POSIX P1003.1e, the acl mask should be 2034 * returned in the group permissions field. 2035 * 2036 * - start with the original permission and mode bits (from above) 2037 * - clear the group owner bits 2038 * - add in the mask bits. 2039 */ 2040 if (ip->i_ufs_acl && ip->i_ufs_acl->aclass.acl_ismask) { 2041 vap->va_mode &= ~((VREAD | VWRITE | VEXEC) >> 3); 2042 vap->va_mode |= 2043 (ip->i_ufs_acl->aclass.acl_maskbits & PERMMASK) << 3; 2044 } 2045 vap->va_uid = ip->i_uid; 2046 vap->va_gid = ip->i_gid; 2047 vap->va_fsid = ip->i_dev; 2048 vap->va_nodeid = (ino64_t)ip->i_number; 2049 vap->va_nlink = ip->i_nlink; 2050 vap->va_size = ip->i_size; 2051 if (vp->v_type == VCHR || vp->v_type == VBLK) 2052 vap->va_rdev = ip->i_rdev; 2053 else 2054 vap->va_rdev = 0; /* not a b/c spec. */ 2055 mutex_enter(&ip->i_tlock); 2056 ITIMES_NOLOCK(ip); /* mark correct time in inode */ 2057 vap->va_seq = ip->i_seq; 2058 vap->va_atime.tv_sec = (time_t)ip->i_atime.tv_sec; 2059 vap->va_atime.tv_nsec = ip->i_atime.tv_usec*1000; 2060 vap->va_mtime.tv_sec = (time_t)ip->i_mtime.tv_sec; 2061 vap->va_mtime.tv_nsec = ip->i_mtime.tv_usec*1000; 2062 vap->va_ctime.tv_sec = (time_t)ip->i_ctime.tv_sec; 2063 vap->va_ctime.tv_nsec = ip->i_ctime.tv_usec*1000; 2064 mutex_exit(&ip->i_tlock); 2065 2066 switch (ip->i_mode & IFMT) { 2067 2068 case IFBLK: 2069 vap->va_blksize = MAXBSIZE; /* was BLKDEV_IOSIZE */ 2070 break; 2071 2072 case IFCHR: 2073 vap->va_blksize = MAXBSIZE; 2074 break; 2075 2076 default: 2077 vap->va_blksize = ip->i_fs->fs_bsize; 2078 break; 2079 } 2080 vap->va_nblocks = (fsblkcnt64_t)ip->i_blocks; 2081 rw_exit(&ip->i_contents); 2082 err = 0; 2083 2084 out: 2085 return (err); 2086 } 2087 2088 /* 2089 * Special wrapper to provide a callback for secpolicy_vnode_setattr(). 2090 * The i_contents lock is already held by the caller and we need to 2091 * declare the inode as 'void *' argument. 2092 */ 2093 static int 2094 ufs_priv_access(void *vip, int mode, struct cred *cr) 2095 { 2096 struct inode *ip = vip; 2097 2098 return (ufs_iaccess(ip, mode, cr, 0)); 2099 } 2100 2101 /*ARGSUSED4*/ 2102 static int 2103 ufs_setattr( 2104 struct vnode *vp, 2105 struct vattr *vap, 2106 int flags, 2107 struct cred *cr, 2108 caller_context_t *ct) 2109 { 2110 struct inode *ip = VTOI(vp); 2111 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 2112 struct fs *fs; 2113 struct ulockfs *ulp; 2114 char *errmsg1; 2115 char *errmsg2; 2116 long blocks; 2117 long int mask = vap->va_mask; 2118 size_t len1, len2; 2119 int issync; 2120 int trans_size; 2121 int dotrans; 2122 int dorwlock; 2123 int error; 2124 int owner_change; 2125 int dodqlock; 2126 timestruc_t now; 2127 vattr_t oldva; 2128 int retry = 1; 2129 int indeadlock; 2130 2131 /* 2132 * Cannot set these attributes. 2133 */ 2134 if ((mask & AT_NOSET) || (mask & AT_XVATTR)) 2135 return (EINVAL); 2136 2137 /* 2138 * check for forced unmount 2139 */ 2140 if (ufsvfsp == NULL) 2141 return (EIO); 2142 2143 fs = ufsvfsp->vfs_fs; 2144 if (fs->fs_ronly != 0) 2145 return (EROFS); 2146 2147 again: 2148 errmsg1 = NULL; 2149 errmsg2 = NULL; 2150 dotrans = 0; 2151 dorwlock = 0; 2152 dodqlock = 0; 2153 2154 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_SETATTR_MASK); 2155 if (error) 2156 goto out; 2157 2158 /* 2159 * Acquire i_rwlock before TRANS_BEGIN_CSYNC() if this is a file. 2160 * This follows the protocol for read()/write(). 2161 */ 2162 if (vp->v_type != VDIR) { 2163 /* 2164 * ufs_tryirwlock uses rw_tryenter and checks for SLOCK to 2165 * avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock 2166 * possible, retries the operation. 2167 */ 2168 ufs_tryirwlock(&ip->i_rwlock, RW_WRITER, retry_file); 2169 if (indeadlock) { 2170 if (ulp) 2171 ufs_lockfs_end(ulp); 2172 goto again; 2173 } 2174 dorwlock = 1; 2175 } 2176 2177 /* 2178 * Truncate file. Must have write permission and not be a directory. 2179 */ 2180 if (mask & AT_SIZE) { 2181 rw_enter(&ip->i_contents, RW_WRITER); 2182 if (vp->v_type == VDIR) { 2183 error = EISDIR; 2184 goto update_inode; 2185 } 2186 if (error = ufs_iaccess(ip, IWRITE, cr, 0)) 2187 goto update_inode; 2188 2189 rw_exit(&ip->i_contents); 2190 error = TRANS_ITRUNC(ip, vap->va_size, 0, cr); 2191 if (error) { 2192 rw_enter(&ip->i_contents, RW_WRITER); 2193 goto update_inode; 2194 } 2195 2196 if (error == 0 && vap->va_size) 2197 vnevent_truncate(vp, ct); 2198 } 2199 2200 if (ulp) { 2201 trans_size = (int)TOP_SETATTR_SIZE(ip); 2202 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_SETATTR, trans_size); 2203 ++dotrans; 2204 } 2205 2206 /* 2207 * Acquire i_rwlock after TRANS_BEGIN_CSYNC() if this is a directory. 2208 * This follows the protocol established by 2209 * ufs_link/create/remove/rename/mkdir/rmdir/symlink. 2210 */ 2211 if (vp->v_type == VDIR) { 2212 ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_SETATTR, 2213 retry_dir); 2214 if (indeadlock) 2215 goto again; 2216 dorwlock = 1; 2217 } 2218 2219 /* 2220 * Grab quota lock if we are changing the file's owner. 2221 */ 2222 if (mask & AT_UID) { 2223 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 2224 dodqlock = 1; 2225 } 2226 rw_enter(&ip->i_contents, RW_WRITER); 2227 2228 oldva.va_mode = ip->i_mode; 2229 oldva.va_uid = ip->i_uid; 2230 oldva.va_gid = ip->i_gid; 2231 2232 vap->va_mask &= ~AT_SIZE; 2233 2234 error = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags, 2235 ufs_priv_access, ip); 2236 if (error) 2237 goto update_inode; 2238 2239 mask = vap->va_mask; 2240 2241 /* 2242 * Change file access modes. 2243 */ 2244 if (mask & AT_MODE) { 2245 ip->i_mode = (ip->i_mode & IFMT) | (vap->va_mode & ~IFMT); 2246 TRANS_INODE(ufsvfsp, ip); 2247 ip->i_flag |= ICHG; 2248 if (stickyhack) { 2249 mutex_enter(&vp->v_lock); 2250 if ((ip->i_mode & (ISVTX | IEXEC | IFDIR)) == ISVTX) 2251 vp->v_flag |= VSWAPLIKE; 2252 else 2253 vp->v_flag &= ~VSWAPLIKE; 2254 mutex_exit(&vp->v_lock); 2255 } 2256 } 2257 if (mask & (AT_UID|AT_GID)) { 2258 if (mask & AT_UID) { 2259 /* 2260 * Don't change ownership of the quota inode. 2261 */ 2262 if (ufsvfsp->vfs_qinod == ip) { 2263 ASSERT(ufsvfsp->vfs_qflags & MQ_ENABLED); 2264 error = EINVAL; 2265 goto update_inode; 2266 } 2267 2268 /* 2269 * No real ownership change. 2270 */ 2271 if (ip->i_uid == vap->va_uid) { 2272 blocks = 0; 2273 owner_change = 0; 2274 } 2275 /* 2276 * Remove the blocks and the file, from the old user's 2277 * quota. 2278 */ 2279 else { 2280 blocks = ip->i_blocks; 2281 owner_change = 1; 2282 2283 (void) chkdq(ip, -blocks, /* force */ 1, cr, 2284 (char **)NULL, (size_t *)NULL); 2285 (void) chkiq(ufsvfsp, /* change */ -1, ip, 2286 (uid_t)ip->i_uid, /* force */ 1, cr, 2287 (char **)NULL, (size_t *)NULL); 2288 dqrele(ip->i_dquot); 2289 } 2290 2291 ip->i_uid = vap->va_uid; 2292 2293 /* 2294 * There is a real ownership change. 2295 */ 2296 if (owner_change) { 2297 /* 2298 * Add the blocks and the file to the new 2299 * user's quota. 2300 */ 2301 ip->i_dquot = getinoquota(ip); 2302 (void) chkdq(ip, blocks, /* force */ 1, cr, 2303 &errmsg1, &len1); 2304 (void) chkiq(ufsvfsp, /* change */ 1, 2305 (struct inode *)NULL, (uid_t)ip->i_uid, 2306 /* force */ 1, cr, &errmsg2, &len2); 2307 } 2308 } 2309 if (mask & AT_GID) { 2310 ip->i_gid = vap->va_gid; 2311 } 2312 TRANS_INODE(ufsvfsp, ip); 2313 ip->i_flag |= ICHG; 2314 } 2315 /* 2316 * Change file access or modified times. 2317 */ 2318 if (mask & (AT_ATIME|AT_MTIME)) { 2319 /* Check that the time value is within ufs range */ 2320 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) || 2321 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) { 2322 error = EOVERFLOW; 2323 goto update_inode; 2324 } 2325 2326 /* 2327 * if the "noaccess" mount option is set and only atime 2328 * update is requested, do nothing. No error is returned. 2329 */ 2330 if ((ufsvfsp->vfs_noatime) && 2331 ((mask & (AT_ATIME|AT_MTIME)) == AT_ATIME)) 2332 goto skip_atime; 2333 2334 if (mask & AT_ATIME) { 2335 ip->i_atime.tv_sec = vap->va_atime.tv_sec; 2336 ip->i_atime.tv_usec = vap->va_atime.tv_nsec / 1000; 2337 ip->i_flag &= ~IACC; 2338 } 2339 if (mask & AT_MTIME) { 2340 ip->i_mtime.tv_sec = vap->va_mtime.tv_sec; 2341 ip->i_mtime.tv_usec = vap->va_mtime.tv_nsec / 1000; 2342 gethrestime(&now); 2343 if (now.tv_sec > TIME32_MAX) { 2344 /* 2345 * In 2038, ctime sticks forever.. 2346 */ 2347 ip->i_ctime.tv_sec = TIME32_MAX; 2348 ip->i_ctime.tv_usec = 0; 2349 } else { 2350 ip->i_ctime.tv_sec = now.tv_sec; 2351 ip->i_ctime.tv_usec = now.tv_nsec / 1000; 2352 } 2353 ip->i_flag &= ~(IUPD|ICHG); 2354 ip->i_flag |= IMODTIME; 2355 } 2356 TRANS_INODE(ufsvfsp, ip); 2357 ip->i_flag |= IMOD; 2358 } 2359 2360 skip_atime: 2361 /* 2362 * The presence of a shadow inode may indicate an ACL, but does 2363 * not imply an ACL. Future FSD types should be handled here too 2364 * and check for the presence of the attribute-specific data 2365 * before referencing it. 2366 */ 2367 if (ip->i_shadow) { 2368 /* 2369 * XXX if ufs_iupdat is changed to sandbagged write fix 2370 * ufs_acl_setattr to push ip to keep acls consistent 2371 * 2372 * Suppress out of inodes messages if we will retry. 2373 */ 2374 if (retry) 2375 ip->i_flag |= IQUIET; 2376 error = ufs_acl_setattr(ip, vap, cr); 2377 ip->i_flag &= ~IQUIET; 2378 } 2379 2380 update_inode: 2381 /* 2382 * Setattr always increases the sequence number 2383 */ 2384 ip->i_seq++; 2385 2386 /* 2387 * if nfsd and not logging; push synchronously 2388 */ 2389 if ((curthread->t_flag & T_DONTPEND) && !TRANS_ISTRANS(ufsvfsp)) { 2390 ufs_iupdat(ip, 1); 2391 } else { 2392 ITIMES_NOLOCK(ip); 2393 } 2394 2395 rw_exit(&ip->i_contents); 2396 if (dodqlock) { 2397 rw_exit(&ufsvfsp->vfs_dqrwlock); 2398 } 2399 if (dorwlock) 2400 rw_exit(&ip->i_rwlock); 2401 2402 if (ulp) { 2403 if (dotrans) { 2404 int terr = 0; 2405 TRANS_END_CSYNC(ufsvfsp, terr, issync, TOP_SETATTR, 2406 trans_size); 2407 if (error == 0) 2408 error = terr; 2409 } 2410 ufs_lockfs_end(ulp); 2411 } 2412 out: 2413 /* 2414 * If out of inodes or blocks, see if we can free something 2415 * up from the delete queue. 2416 */ 2417 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) { 2418 ufs_delete_drain_wait(ufsvfsp, 1); 2419 retry = 0; 2420 if (errmsg1 != NULL) 2421 kmem_free(errmsg1, len1); 2422 if (errmsg2 != NULL) 2423 kmem_free(errmsg2, len2); 2424 goto again; 2425 } 2426 if (errmsg1 != NULL) { 2427 uprintf(errmsg1); 2428 kmem_free(errmsg1, len1); 2429 } 2430 if (errmsg2 != NULL) { 2431 uprintf(errmsg2); 2432 kmem_free(errmsg2, len2); 2433 } 2434 return (error); 2435 } 2436 2437 /*ARGSUSED*/ 2438 static int 2439 ufs_access(struct vnode *vp, int mode, int flags, struct cred *cr, 2440 caller_context_t *ct) 2441 { 2442 struct inode *ip = VTOI(vp); 2443 2444 if (ip->i_ufsvfs == NULL) 2445 return (EIO); 2446 2447 /* 2448 * The ufs_iaccess function wants to be called with 2449 * mode bits expressed as "ufs specific" bits. 2450 * I.e., VWRITE|VREAD|VEXEC do not make sense to 2451 * ufs_iaccess() but IWRITE|IREAD|IEXEC do. 2452 * But since they're the same we just pass the vnode mode 2453 * bit but just verify that assumption at compile time. 2454 */ 2455 #if IWRITE != VWRITE || IREAD != VREAD || IEXEC != VEXEC 2456 #error "ufs_access needs to map Vmodes to Imodes" 2457 #endif 2458 return (ufs_iaccess(ip, mode, cr, 1)); 2459 } 2460 2461 /* ARGSUSED */ 2462 static int 2463 ufs_readlink(struct vnode *vp, struct uio *uiop, struct cred *cr, 2464 caller_context_t *ct) 2465 { 2466 struct inode *ip = VTOI(vp); 2467 struct ufsvfs *ufsvfsp; 2468 struct ulockfs *ulp; 2469 int error; 2470 int fastsymlink; 2471 2472 if (vp->v_type != VLNK) { 2473 error = EINVAL; 2474 goto nolockout; 2475 } 2476 2477 /* 2478 * If the symbolic link is empty there is nothing to read. 2479 * Fast-track these empty symbolic links 2480 */ 2481 if (ip->i_size == 0) { 2482 error = 0; 2483 goto nolockout; 2484 } 2485 2486 ufsvfsp = ip->i_ufsvfs; 2487 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_READLINK_MASK); 2488 if (error) 2489 goto nolockout; 2490 /* 2491 * The ip->i_rwlock protects the data blocks used for FASTSYMLINK 2492 */ 2493 again: 2494 fastsymlink = 0; 2495 if (ip->i_flag & IFASTSYMLNK) { 2496 rw_enter(&ip->i_rwlock, RW_READER); 2497 rw_enter(&ip->i_contents, RW_READER); 2498 if (ip->i_flag & IFASTSYMLNK) { 2499 if (!ULOCKFS_IS_NOIACC(ITOUL(ip)) && 2500 (ip->i_fs->fs_ronly == 0) && 2501 (!ufsvfsp->vfs_noatime)) { 2502 mutex_enter(&ip->i_tlock); 2503 ip->i_flag |= IACC; 2504 mutex_exit(&ip->i_tlock); 2505 } 2506 error = uiomove((caddr_t)&ip->i_db[1], 2507 MIN(ip->i_size, uiop->uio_resid), 2508 UIO_READ, uiop); 2509 ITIMES(ip); 2510 ++fastsymlink; 2511 } 2512 rw_exit(&ip->i_contents); 2513 rw_exit(&ip->i_rwlock); 2514 } 2515 if (!fastsymlink) { 2516 ssize_t size; /* number of bytes read */ 2517 caddr_t basep; /* pointer to input data */ 2518 ino_t ino; 2519 long igen; 2520 struct uio tuio; /* temp uio struct */ 2521 struct uio *tuiop; 2522 iovec_t tiov; /* temp iovec struct */ 2523 char kbuf[FSL_SIZE]; /* buffer to hold fast symlink */ 2524 int tflag = 0; /* flag to indicate temp vars used */ 2525 2526 ino = ip->i_number; 2527 igen = ip->i_gen; 2528 size = uiop->uio_resid; 2529 basep = uiop->uio_iov->iov_base; 2530 tuiop = uiop; 2531 2532 rw_enter(&ip->i_rwlock, RW_WRITER); 2533 rw_enter(&ip->i_contents, RW_WRITER); 2534 if (ip->i_flag & IFASTSYMLNK) { 2535 rw_exit(&ip->i_contents); 2536 rw_exit(&ip->i_rwlock); 2537 goto again; 2538 } 2539 2540 /* can this be a fast symlink and is it a user buffer? */ 2541 if (ip->i_size <= FSL_SIZE && 2542 (uiop->uio_segflg == UIO_USERSPACE || 2543 uiop->uio_segflg == UIO_USERISPACE)) { 2544 2545 bzero(&tuio, sizeof (struct uio)); 2546 /* 2547 * setup a kernel buffer to read link into. this 2548 * is to fix a race condition where the user buffer 2549 * got corrupted before copying it into the inode. 2550 */ 2551 size = ip->i_size; 2552 tiov.iov_len = size; 2553 tiov.iov_base = kbuf; 2554 tuio.uio_iov = &tiov; 2555 tuio.uio_iovcnt = 1; 2556 tuio.uio_offset = uiop->uio_offset; 2557 tuio.uio_segflg = UIO_SYSSPACE; 2558 tuio.uio_fmode = uiop->uio_fmode; 2559 tuio.uio_extflg = uiop->uio_extflg; 2560 tuio.uio_limit = uiop->uio_limit; 2561 tuio.uio_resid = size; 2562 2563 basep = tuio.uio_iov->iov_base; 2564 tuiop = &tuio; 2565 tflag = 1; 2566 } 2567 2568 error = rdip(ip, tuiop, 0, cr); 2569 if (!(error == 0 && ip->i_number == ino && ip->i_gen == igen)) { 2570 rw_exit(&ip->i_contents); 2571 rw_exit(&ip->i_rwlock); 2572 goto out; 2573 } 2574 2575 if (tflag == 0) 2576 size -= uiop->uio_resid; 2577 2578 if ((tflag == 0 && ip->i_size <= FSL_SIZE && 2579 ip->i_size == size) || (tflag == 1 && 2580 tuio.uio_resid == 0)) { 2581 error = kcopy(basep, &ip->i_db[1], ip->i_size); 2582 if (error == 0) { 2583 ip->i_flag |= IFASTSYMLNK; 2584 /* 2585 * free page 2586 */ 2587 (void) VOP_PUTPAGE(ITOV(ip), 2588 (offset_t)0, PAGESIZE, 2589 (B_DONTNEED | B_FREE | B_FORCE | B_ASYNC), 2590 cr, ct); 2591 } else { 2592 int i; 2593 /* error, clear garbage left behind */ 2594 for (i = 1; i < NDADDR; i++) 2595 ip->i_db[i] = 0; 2596 for (i = 0; i < NIADDR; i++) 2597 ip->i_ib[i] = 0; 2598 } 2599 } 2600 if (tflag == 1) { 2601 /* now, copy it into the user buffer */ 2602 error = uiomove((caddr_t)kbuf, 2603 MIN(size, uiop->uio_resid), 2604 UIO_READ, uiop); 2605 } 2606 rw_exit(&ip->i_contents); 2607 rw_exit(&ip->i_rwlock); 2608 } 2609 out: 2610 if (ulp) { 2611 ufs_lockfs_end(ulp); 2612 } 2613 nolockout: 2614 return (error); 2615 } 2616 2617 /* ARGSUSED */ 2618 static int 2619 ufs_fsync(struct vnode *vp, int syncflag, struct cred *cr, 2620 caller_context_t *ct) 2621 { 2622 struct inode *ip = VTOI(vp); 2623 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 2624 struct ulockfs *ulp; 2625 int error; 2626 2627 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_FSYNC_MASK); 2628 if (error) 2629 return (error); 2630 2631 if (TRANS_ISTRANS(ufsvfsp)) { 2632 /* 2633 * First push out any data pages 2634 */ 2635 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) && 2636 (vp->v_type != VCHR) && !(IS_SWAPVP(vp))) { 2637 error = VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, 2638 0, CRED(), ct); 2639 if (error) 2640 goto out; 2641 } 2642 2643 /* 2644 * Delta any delayed inode times updates 2645 * and push inode to log. 2646 * All other inode deltas will have already been delta'd 2647 * and will be pushed during the commit. 2648 */ 2649 if (!(syncflag & FDSYNC) && 2650 ((ip->i_flag & (IMOD|IMODACC)) == IMODACC)) { 2651 if (ulp) { 2652 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_FSYNC, 2653 TOP_SYNCIP_SIZE); 2654 } 2655 rw_enter(&ip->i_contents, RW_READER); 2656 mutex_enter(&ip->i_tlock); 2657 ip->i_flag &= ~IMODTIME; 2658 mutex_exit(&ip->i_tlock); 2659 ufs_iupdat(ip, I_SYNC); 2660 rw_exit(&ip->i_contents); 2661 if (ulp) { 2662 TRANS_END_ASYNC(ufsvfsp, TOP_FSYNC, 2663 TOP_SYNCIP_SIZE); 2664 } 2665 } 2666 2667 /* 2668 * Commit the Moby transaction 2669 * 2670 * Deltas have already been made so we just need to 2671 * commit them with a synchronous transaction. 2672 * TRANS_BEGIN_SYNC() will return an error 2673 * if there are no deltas to commit, for an 2674 * empty transaction. 2675 */ 2676 if (ulp) { 2677 TRANS_BEGIN_SYNC(ufsvfsp, TOP_FSYNC, TOP_COMMIT_SIZE, 2678 error); 2679 if (error) { 2680 error = 0; /* commit wasn't needed */ 2681 goto out; 2682 } 2683 TRANS_END_SYNC(ufsvfsp, error, TOP_FSYNC, 2684 TOP_COMMIT_SIZE); 2685 } 2686 } else { /* not logging */ 2687 if (!(IS_SWAPVP(vp))) 2688 if (syncflag & FNODSYNC) { 2689 /* Just update the inode only */ 2690 TRANS_IUPDAT(ip, 1); 2691 error = 0; 2692 } else if (syncflag & FDSYNC) 2693 /* Do data-synchronous writes */ 2694 error = TRANS_SYNCIP(ip, 0, I_DSYNC, TOP_FSYNC); 2695 else 2696 /* Do synchronous writes */ 2697 error = TRANS_SYNCIP(ip, 0, I_SYNC, TOP_FSYNC); 2698 2699 rw_enter(&ip->i_contents, RW_WRITER); 2700 if (!error) 2701 error = ufs_sync_indir(ip); 2702 rw_exit(&ip->i_contents); 2703 } 2704 out: 2705 if (ulp) { 2706 ufs_lockfs_end(ulp); 2707 } 2708 return (error); 2709 } 2710 2711 /*ARGSUSED*/ 2712 static void 2713 ufs_inactive(struct vnode *vp, struct cred *cr, caller_context_t *ct) 2714 { 2715 ufs_iinactive(VTOI(vp)); 2716 } 2717 2718 /* 2719 * Unix file system operations having to do with directory manipulation. 2720 */ 2721 int ufs_lookup_idle_count = 2; /* Number of inodes to idle each time */ 2722 /* ARGSUSED */ 2723 static int 2724 ufs_lookup(struct vnode *dvp, char *nm, struct vnode **vpp, 2725 struct pathname *pnp, int flags, struct vnode *rdir, struct cred *cr, 2726 caller_context_t *ct, int *direntflags, pathname_t *realpnp) 2727 { 2728 struct inode *ip; 2729 struct inode *sip; 2730 struct inode *xip; 2731 struct ufsvfs *ufsvfsp; 2732 struct ulockfs *ulp; 2733 struct vnode *vp; 2734 int error; 2735 2736 /* 2737 * Check flags for type of lookup (regular file or attribute file) 2738 */ 2739 2740 ip = VTOI(dvp); 2741 2742 if (flags & LOOKUP_XATTR) { 2743 2744 /* 2745 * If not mounted with XATTR support then return EINVAL 2746 */ 2747 2748 if (!(ip->i_ufsvfs->vfs_vfs->vfs_flag & VFS_XATTR)) 2749 return (EINVAL); 2750 /* 2751 * We don't allow recursive attributes... 2752 * Maybe someday we will. 2753 */ 2754 if ((ip->i_cflags & IXATTR)) { 2755 return (EINVAL); 2756 } 2757 2758 if ((vp = dnlc_lookup(dvp, XATTR_DIR_NAME)) == NULL) { 2759 error = ufs_xattr_getattrdir(dvp, &sip, flags, cr); 2760 if (error) { 2761 *vpp = NULL; 2762 goto out; 2763 } 2764 2765 vp = ITOV(sip); 2766 dnlc_update(dvp, XATTR_DIR_NAME, vp); 2767 } 2768 2769 /* 2770 * Check accessibility of directory. 2771 */ 2772 if (vp == DNLC_NO_VNODE) { 2773 VN_RELE(vp); 2774 error = ENOENT; 2775 goto out; 2776 } 2777 if ((error = ufs_iaccess(VTOI(vp), IEXEC, cr, 1)) != 0) { 2778 VN_RELE(vp); 2779 goto out; 2780 } 2781 2782 *vpp = vp; 2783 return (0); 2784 } 2785 2786 /* 2787 * Check for a null component, which we should treat as 2788 * looking at dvp from within it's parent, so we don't 2789 * need a call to ufs_iaccess(), as it has already been 2790 * done. 2791 */ 2792 if (nm[0] == 0) { 2793 VN_HOLD(dvp); 2794 error = 0; 2795 *vpp = dvp; 2796 goto out; 2797 } 2798 2799 /* 2800 * Check for "." ie itself. this is a quick check and 2801 * avoids adding "." into the dnlc (which have been seen 2802 * to occupy >10% of the cache). 2803 */ 2804 if ((nm[0] == '.') && (nm[1] == 0)) { 2805 /* 2806 * Don't return without checking accessibility 2807 * of the directory. We only need the lock if 2808 * we are going to return it. 2809 */ 2810 if ((error = ufs_iaccess(ip, IEXEC, cr, 1)) == 0) { 2811 VN_HOLD(dvp); 2812 *vpp = dvp; 2813 } 2814 goto out; 2815 } 2816 2817 /* 2818 * Fast path: Check the directory name lookup cache. 2819 */ 2820 if (vp = dnlc_lookup(dvp, nm)) { 2821 /* 2822 * Check accessibility of directory. 2823 */ 2824 if ((error = ufs_iaccess(ip, IEXEC, cr, 1)) != 0) { 2825 VN_RELE(vp); 2826 goto out; 2827 } 2828 if (vp == DNLC_NO_VNODE) { 2829 VN_RELE(vp); 2830 error = ENOENT; 2831 goto out; 2832 } 2833 xip = VTOI(vp); 2834 ulp = NULL; 2835 goto fastpath; 2836 } 2837 2838 /* 2839 * Keep the idle queue from getting too long by 2840 * idling two inodes before attempting to allocate another. 2841 * This operation must be performed before entering 2842 * lockfs or a transaction. 2843 */ 2844 if (ufs_idle_q.uq_ne > ufs_idle_q.uq_hiwat) 2845 if ((curthread->t_flag & T_DONTBLOCK) == 0) { 2846 ins.in_lidles.value.ul += ufs_lookup_idle_count; 2847 ufs_idle_some(ufs_lookup_idle_count); 2848 } 2849 2850 retry_lookup: 2851 /* 2852 * Check accessibility of directory. 2853 */ 2854 if (error = ufs_diraccess(ip, IEXEC, cr)) 2855 goto out; 2856 2857 ufsvfsp = ip->i_ufsvfs; 2858 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_LOOKUP_MASK); 2859 if (error) 2860 goto out; 2861 2862 error = ufs_dirlook(ip, nm, &xip, cr, 1, 0); 2863 2864 fastpath: 2865 if (error == 0) { 2866 ip = xip; 2867 *vpp = ITOV(ip); 2868 2869 /* 2870 * If vnode is a device return special vnode instead. 2871 */ 2872 if (IS_DEVVP(*vpp)) { 2873 struct vnode *newvp; 2874 2875 newvp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, 2876 cr); 2877 VN_RELE(*vpp); 2878 if (newvp == NULL) 2879 error = ENOSYS; 2880 else 2881 *vpp = newvp; 2882 } else if (ip->i_cflags & ICOMPRESS) { 2883 struct vnode *newvp; 2884 2885 /* 2886 * Compressed file, substitute dcfs vnode 2887 */ 2888 newvp = decompvp(*vpp, cr, ct); 2889 VN_RELE(*vpp); 2890 if (newvp == NULL) 2891 error = ENOSYS; 2892 else 2893 *vpp = newvp; 2894 } 2895 } 2896 if (ulp) { 2897 ufs_lockfs_end(ulp); 2898 } 2899 2900 if (error == EAGAIN) 2901 goto retry_lookup; 2902 2903 out: 2904 return (error); 2905 } 2906 2907 /*ARGSUSED*/ 2908 static int 2909 ufs_create(struct vnode *dvp, char *name, struct vattr *vap, enum vcexcl excl, 2910 int mode, struct vnode **vpp, struct cred *cr, int flag, 2911 caller_context_t *ct, vsecattr_t *vsecp) 2912 { 2913 struct inode *ip; 2914 struct inode *xip; 2915 struct inode *dip; 2916 struct vnode *xvp; 2917 struct ufsvfs *ufsvfsp; 2918 struct ulockfs *ulp; 2919 int error; 2920 int issync; 2921 int truncflag; 2922 int trans_size; 2923 int noentry; 2924 int defer_dip_seq_update = 0; /* need to defer update of dip->i_seq */ 2925 int retry = 1; 2926 int indeadlock; 2927 2928 again: 2929 ip = VTOI(dvp); 2930 ufsvfsp = ip->i_ufsvfs; 2931 truncflag = 0; 2932 2933 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_CREATE_MASK); 2934 if (error) 2935 goto out; 2936 2937 if (ulp) { 2938 trans_size = (int)TOP_CREATE_SIZE(ip); 2939 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_CREATE, trans_size); 2940 } 2941 2942 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr) != 0) 2943 vap->va_mode &= ~VSVTX; 2944 2945 if (*name == '\0') { 2946 /* 2947 * Null component name refers to the directory itself. 2948 */ 2949 VN_HOLD(dvp); 2950 /* 2951 * Even though this is an error case, we need to grab the 2952 * quota lock since the error handling code below is common. 2953 */ 2954 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 2955 rw_enter(&ip->i_contents, RW_WRITER); 2956 error = EEXIST; 2957 } else { 2958 xip = NULL; 2959 noentry = 0; 2960 /* 2961 * ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK 2962 * to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock 2963 * possible, retries the operation. 2964 */ 2965 ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_CREATE, 2966 retry_dir); 2967 if (indeadlock) 2968 goto again; 2969 2970 xvp = dnlc_lookup(dvp, name); 2971 if (xvp == DNLC_NO_VNODE) { 2972 noentry = 1; 2973 VN_RELE(xvp); 2974 xvp = NULL; 2975 } 2976 if (xvp) { 2977 rw_exit(&ip->i_rwlock); 2978 if (error = ufs_iaccess(ip, IEXEC, cr, 1)) { 2979 VN_RELE(xvp); 2980 } else { 2981 error = EEXIST; 2982 xip = VTOI(xvp); 2983 } 2984 } else { 2985 /* 2986 * Suppress file system full message if we will retry 2987 */ 2988 error = ufs_direnter_cm(ip, name, DE_CREATE, 2989 vap, &xip, cr, (noentry | (retry ? IQUIET : 0))); 2990 if (error == EAGAIN) { 2991 if (ulp) { 2992 TRANS_END_CSYNC(ufsvfsp, error, issync, 2993 TOP_CREATE, trans_size); 2994 ufs_lockfs_end(ulp); 2995 } 2996 goto again; 2997 } 2998 rw_exit(&ip->i_rwlock); 2999 } 3000 ip = xip; 3001 if (ip != NULL) { 3002 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 3003 rw_enter(&ip->i_contents, RW_WRITER); 3004 } 3005 } 3006 3007 /* 3008 * If the file already exists and this is a non-exclusive create, 3009 * check permissions and allow access for non-directories. 3010 * Read-only create of an existing directory is also allowed. 3011 * We fail an exclusive create of anything which already exists. 3012 */ 3013 if (error == EEXIST) { 3014 dip = VTOI(dvp); 3015 if (excl == NONEXCL) { 3016 if ((((ip->i_mode & IFMT) == IFDIR) || 3017 ((ip->i_mode & IFMT) == IFATTRDIR)) && 3018 (mode & IWRITE)) 3019 error = EISDIR; 3020 else if (mode) 3021 error = ufs_iaccess(ip, mode, cr, 0); 3022 else 3023 error = 0; 3024 } 3025 if (error) { 3026 rw_exit(&ip->i_contents); 3027 rw_exit(&ufsvfsp->vfs_dqrwlock); 3028 VN_RELE(ITOV(ip)); 3029 goto unlock; 3030 } 3031 /* 3032 * If the error EEXIST was set, then i_seq can not 3033 * have been updated. The sequence number interface 3034 * is defined such that a non-error VOP_CREATE must 3035 * increase the dir va_seq it by at least one. If we 3036 * have cleared the error, increase i_seq. Note that 3037 * we are increasing the dir i_seq and in rare cases 3038 * ip may actually be from the dvp, so we already have 3039 * the locks and it will not be subject to truncation. 3040 * In case we have to update i_seq of the parent 3041 * directory dip, we have to defer it till we have 3042 * released our locks on ip due to lock ordering requirements. 3043 */ 3044 if (ip != dip) 3045 defer_dip_seq_update = 1; 3046 else 3047 ip->i_seq++; 3048 3049 if (((ip->i_mode & IFMT) == IFREG) && 3050 (vap->va_mask & AT_SIZE) && vap->va_size == 0) { 3051 /* 3052 * Truncate regular files, if requested by caller. 3053 * Grab i_rwlock to make sure no one else is 3054 * currently writing to the file (we promised 3055 * bmap we would do this). 3056 * Must get the locks in the correct order. 3057 */ 3058 if (ip->i_size == 0) { 3059 ip->i_flag |= ICHG | IUPD; 3060 ip->i_seq++; 3061 TRANS_INODE(ufsvfsp, ip); 3062 } else { 3063 /* 3064 * Large Files: Why this check here? 3065 * Though we do it in vn_create() we really 3066 * want to guarantee that we do not destroy 3067 * Large file data by atomically checking 3068 * the size while holding the contents 3069 * lock. 3070 */ 3071 if (flag && !(flag & FOFFMAX) && 3072 ((ip->i_mode & IFMT) == IFREG) && 3073 (ip->i_size > (offset_t)MAXOFF32_T)) { 3074 rw_exit(&ip->i_contents); 3075 rw_exit(&ufsvfsp->vfs_dqrwlock); 3076 error = EOVERFLOW; 3077 goto unlock; 3078 } 3079 if (TRANS_ISTRANS(ufsvfsp)) 3080 truncflag++; 3081 else { 3082 rw_exit(&ip->i_contents); 3083 rw_exit(&ufsvfsp->vfs_dqrwlock); 3084 ufs_tryirwlock_trans(&ip->i_rwlock, 3085 RW_WRITER, TOP_CREATE, 3086 retry_file); 3087 if (indeadlock) { 3088 VN_RELE(ITOV(ip)); 3089 goto again; 3090 } 3091 rw_enter(&ufsvfsp->vfs_dqrwlock, 3092 RW_READER); 3093 rw_enter(&ip->i_contents, RW_WRITER); 3094 (void) ufs_itrunc(ip, (u_offset_t)0, 0, 3095 cr); 3096 rw_exit(&ip->i_rwlock); 3097 } 3098 3099 } 3100 if (error == 0) { 3101 vnevent_create(ITOV(ip), ct); 3102 } 3103 } 3104 } 3105 3106 if (error) { 3107 if (ip != NULL) { 3108 rw_exit(&ufsvfsp->vfs_dqrwlock); 3109 rw_exit(&ip->i_contents); 3110 } 3111 goto unlock; 3112 } 3113 3114 *vpp = ITOV(ip); 3115 ITIMES(ip); 3116 rw_exit(&ip->i_contents); 3117 rw_exit(&ufsvfsp->vfs_dqrwlock); 3118 3119 /* 3120 * If vnode is a device return special vnode instead. 3121 */ 3122 if (!error && IS_DEVVP(*vpp)) { 3123 struct vnode *newvp; 3124 3125 newvp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 3126 VN_RELE(*vpp); 3127 if (newvp == NULL) { 3128 error = ENOSYS; 3129 goto unlock; 3130 } 3131 truncflag = 0; 3132 *vpp = newvp; 3133 } 3134 unlock: 3135 3136 /* 3137 * Do the deferred update of the parent directory's sequence 3138 * number now. 3139 */ 3140 if (defer_dip_seq_update == 1) { 3141 rw_enter(&dip->i_contents, RW_READER); 3142 mutex_enter(&dip->i_tlock); 3143 dip->i_seq++; 3144 mutex_exit(&dip->i_tlock); 3145 rw_exit(&dip->i_contents); 3146 } 3147 3148 if (ulp) { 3149 int terr = 0; 3150 3151 TRANS_END_CSYNC(ufsvfsp, terr, issync, TOP_CREATE, 3152 trans_size); 3153 3154 /* 3155 * If we haven't had a more interesting failure 3156 * already, then anything that might've happened 3157 * here should be reported. 3158 */ 3159 if (error == 0) 3160 error = terr; 3161 } 3162 3163 if (!error && truncflag) { 3164 ufs_tryirwlock(&ip->i_rwlock, RW_WRITER, retry_trunc); 3165 if (indeadlock) { 3166 if (ulp) 3167 ufs_lockfs_end(ulp); 3168 VN_RELE(ITOV(ip)); 3169 goto again; 3170 } 3171 (void) TRANS_ITRUNC(ip, (u_offset_t)0, 0, cr); 3172 rw_exit(&ip->i_rwlock); 3173 } 3174 3175 if (ulp) 3176 ufs_lockfs_end(ulp); 3177 3178 /* 3179 * If no inodes available, try to free one up out of the 3180 * pending delete queue. 3181 */ 3182 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) { 3183 ufs_delete_drain_wait(ufsvfsp, 1); 3184 retry = 0; 3185 goto again; 3186 } 3187 3188 out: 3189 return (error); 3190 } 3191 3192 extern int ufs_idle_max; 3193 /*ARGSUSED*/ 3194 static int 3195 ufs_remove(struct vnode *vp, char *nm, struct cred *cr, 3196 caller_context_t *ct, int flags) 3197 { 3198 struct inode *ip = VTOI(vp); 3199 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 3200 struct ulockfs *ulp; 3201 vnode_t *rmvp = NULL; /* Vnode corresponding to name being removed */ 3202 int indeadlock; 3203 int error; 3204 int issync; 3205 int trans_size; 3206 3207 /* 3208 * don't let the delete queue get too long 3209 */ 3210 if (ufsvfsp == NULL) { 3211 error = EIO; 3212 goto out; 3213 } 3214 if (ufsvfsp->vfs_delete.uq_ne > ufs_idle_max) 3215 ufs_delete_drain(vp->v_vfsp, 1, 1); 3216 3217 error = ufs_eventlookup(vp, nm, cr, &rmvp); 3218 if (rmvp != NULL) { 3219 /* Only send the event if there were no errors */ 3220 if (error == 0) 3221 vnevent_remove(rmvp, vp, nm, ct); 3222 VN_RELE(rmvp); 3223 } 3224 3225 retry_remove: 3226 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_REMOVE_MASK); 3227 if (error) 3228 goto out; 3229 3230 if (ulp) 3231 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_REMOVE, 3232 trans_size = (int)TOP_REMOVE_SIZE(VTOI(vp))); 3233 3234 /* 3235 * ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK 3236 * to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock 3237 * possible, retries the operation. 3238 */ 3239 ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_REMOVE, retry); 3240 if (indeadlock) 3241 goto retry_remove; 3242 error = ufs_dirremove(ip, nm, (struct inode *)0, (struct vnode *)0, 3243 DR_REMOVE, cr); 3244 rw_exit(&ip->i_rwlock); 3245 3246 if (ulp) { 3247 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_REMOVE, trans_size); 3248 ufs_lockfs_end(ulp); 3249 } 3250 3251 out: 3252 return (error); 3253 } 3254 3255 /* 3256 * Link a file or a directory. Only privileged processes are allowed to 3257 * make links to directories. 3258 */ 3259 /*ARGSUSED*/ 3260 static int 3261 ufs_link(struct vnode *tdvp, struct vnode *svp, char *tnm, struct cred *cr, 3262 caller_context_t *ct, int flags) 3263 { 3264 struct inode *sip; 3265 struct inode *tdp = VTOI(tdvp); 3266 struct ufsvfs *ufsvfsp = tdp->i_ufsvfs; 3267 struct ulockfs *ulp; 3268 struct vnode *realvp; 3269 int error; 3270 int issync; 3271 int trans_size; 3272 int isdev; 3273 int indeadlock; 3274 3275 retry_link: 3276 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_LINK_MASK); 3277 if (error) 3278 goto out; 3279 3280 if (ulp) 3281 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_LINK, 3282 trans_size = (int)TOP_LINK_SIZE(VTOI(tdvp))); 3283 3284 if (VOP_REALVP(svp, &realvp, ct) == 0) 3285 svp = realvp; 3286 3287 /* 3288 * Make sure link for extended attributes is valid 3289 * We only support hard linking of attr in ATTRDIR to ATTRDIR 3290 * 3291 * Make certain we don't attempt to look at a device node as 3292 * a ufs inode. 3293 */ 3294 3295 isdev = IS_DEVVP(svp); 3296 if (((isdev == 0) && ((VTOI(svp)->i_cflags & IXATTR) == 0) && 3297 ((tdp->i_mode & IFMT) == IFATTRDIR)) || 3298 ((isdev == 0) && (VTOI(svp)->i_cflags & IXATTR) && 3299 ((tdp->i_mode & IFMT) == IFDIR))) { 3300 error = EINVAL; 3301 goto unlock; 3302 } 3303 3304 sip = VTOI(svp); 3305 if ((svp->v_type == VDIR && 3306 secpolicy_fs_linkdir(cr, ufsvfsp->vfs_vfs) != 0) || 3307 (sip->i_uid != crgetuid(cr) && secpolicy_basic_link(cr) != 0)) { 3308 error = EPERM; 3309 goto unlock; 3310 } 3311 3312 /* 3313 * ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK 3314 * to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock 3315 * possible, retries the operation. 3316 */ 3317 ufs_tryirwlock_trans(&tdp->i_rwlock, RW_WRITER, TOP_LINK, retry); 3318 if (indeadlock) 3319 goto retry_link; 3320 error = ufs_direnter_lr(tdp, tnm, DE_LINK, (struct inode *)0, 3321 sip, cr); 3322 rw_exit(&tdp->i_rwlock); 3323 3324 unlock: 3325 if (ulp) { 3326 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_LINK, trans_size); 3327 ufs_lockfs_end(ulp); 3328 } 3329 3330 if (!error) { 3331 vnevent_link(svp, ct); 3332 } 3333 out: 3334 return (error); 3335 } 3336 3337 uint64_t ufs_rename_retry_cnt; 3338 uint64_t ufs_rename_upgrade_retry_cnt; 3339 uint64_t ufs_rename_dircheck_retry_cnt; 3340 clock_t ufs_rename_backoff_delay = 1; 3341 3342 /* 3343 * Rename a file or directory. 3344 * We are given the vnode and entry string of the source and the 3345 * vnode and entry string of the place we want to move the source 3346 * to (the target). The essential operation is: 3347 * unlink(target); 3348 * link(source, target); 3349 * unlink(source); 3350 * but "atomically". Can't do full commit without saving state in 3351 * the inode on disk, which isn't feasible at this time. Best we 3352 * can do is always guarantee that the TARGET exists. 3353 */ 3354 3355 /*ARGSUSED*/ 3356 static int 3357 ufs_rename( 3358 struct vnode *sdvp, /* old (source) parent vnode */ 3359 char *snm, /* old (source) entry name */ 3360 struct vnode *tdvp, /* new (target) parent vnode */ 3361 char *tnm, /* new (target) entry name */ 3362 struct cred *cr, 3363 caller_context_t *ct, 3364 int flags) 3365 { 3366 struct inode *sip = NULL; /* source inode */ 3367 struct inode *ip = NULL; /* check inode */ 3368 struct inode *sdp; /* old (source) parent inode */ 3369 struct inode *tdp; /* new (target) parent inode */ 3370 struct vnode *svp = NULL; /* source vnode */ 3371 struct vnode *tvp = NULL; /* target vnode, if it exists */ 3372 struct vnode *realvp; 3373 struct ufsvfs *ufsvfsp; 3374 struct ulockfs *ulp = NULL; 3375 struct ufs_slot slot; 3376 timestruc_t now; 3377 int error; 3378 int issync; 3379 int trans_size; 3380 krwlock_t *first_lock; 3381 krwlock_t *second_lock; 3382 krwlock_t *reverse_lock; 3383 int serr, terr; 3384 3385 sdp = VTOI(sdvp); 3386 slot.fbp = NULL; 3387 ufsvfsp = sdp->i_ufsvfs; 3388 3389 if (VOP_REALVP(tdvp, &realvp, ct) == 0) 3390 tdvp = realvp; 3391 3392 /* Must do this before taking locks in case of DNLC miss */ 3393 terr = ufs_eventlookup(tdvp, tnm, cr, &tvp); 3394 serr = ufs_eventlookup(sdvp, snm, cr, &svp); 3395 3396 if ((serr == 0) && ((terr == 0) || (terr == ENOENT))) { 3397 if (tvp != NULL) 3398 vnevent_pre_rename_dest(tvp, tdvp, tnm, ct); 3399 3400 /* 3401 * Notify the target directory of the rename event 3402 * if source and target directories are not the same. 3403 */ 3404 if (sdvp != tdvp) 3405 vnevent_pre_rename_dest_dir(tdvp, svp, tnm, ct); 3406 3407 if (svp != NULL) 3408 vnevent_pre_rename_src(svp, sdvp, snm, ct); 3409 } 3410 3411 if (svp != NULL) 3412 VN_RELE(svp); 3413 3414 retry_rename: 3415 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_RENAME_MASK); 3416 if (error) 3417 goto unlock; 3418 3419 if (ulp) 3420 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_RENAME, 3421 trans_size = (int)TOP_RENAME_SIZE(sdp)); 3422 3423 if (VOP_REALVP(tdvp, &realvp, ct) == 0) 3424 tdvp = realvp; 3425 3426 tdp = VTOI(tdvp); 3427 3428 /* 3429 * We only allow renaming of attributes from ATTRDIR to ATTRDIR. 3430 */ 3431 if ((tdp->i_mode & IFMT) != (sdp->i_mode & IFMT)) { 3432 error = EINVAL; 3433 goto unlock; 3434 } 3435 3436 /* 3437 * Check accessibility of directory. 3438 */ 3439 if (error = ufs_diraccess(sdp, IEXEC, cr)) 3440 goto unlock; 3441 3442 /* 3443 * Look up inode of file we're supposed to rename. 3444 */ 3445 gethrestime(&now); 3446 if (error = ufs_dirlook(sdp, snm, &sip, cr, 0, 0)) { 3447 if (error == EAGAIN) { 3448 if (ulp) { 3449 TRANS_END_CSYNC(ufsvfsp, error, issync, 3450 TOP_RENAME, trans_size); 3451 ufs_lockfs_end(ulp); 3452 } 3453 goto retry_rename; 3454 } 3455 3456 goto unlock; 3457 } 3458 3459 /* 3460 * Lock both the source and target directories (they may be 3461 * the same) to provide the atomicity semantics that was 3462 * previously provided by the per file system vfs_rename_lock 3463 * 3464 * with vfs_rename_lock removed to allow simultaneous renames 3465 * within a file system, ufs_dircheckpath can deadlock while 3466 * traversing back to ensure that source is not a parent directory 3467 * of target parent directory. This is because we get into 3468 * ufs_dircheckpath with the sdp and tdp locks held as RW_WRITER. 3469 * If the tdp and sdp of the simultaneous renames happen to be 3470 * in the path of each other, it can lead to a deadlock. This 3471 * can be avoided by getting the locks as RW_READER here and then 3472 * upgrading to RW_WRITER after completing the ufs_dircheckpath. 3473 * 3474 * We hold the target directory's i_rwlock after calling 3475 * ufs_lockfs_begin but in many other operations (like ufs_readdir) 3476 * VOP_RWLOCK is explicitly called by the filesystem independent code 3477 * before calling the file system operation. In these cases the order 3478 * is reversed (i.e i_rwlock is taken first and then ufs_lockfs_begin 3479 * is called). This is fine as long as ufs_lockfs_begin acts as a VOP 3480 * counter but with ufs_quiesce setting the SLOCK bit this becomes a 3481 * synchronizing object which might lead to a deadlock. So we use 3482 * rw_tryenter instead of rw_enter. If we fail to get this lock and 3483 * find that SLOCK bit is set, we call ufs_lockfs_end and restart the 3484 * operation. 3485 */ 3486 retry: 3487 first_lock = &tdp->i_rwlock; 3488 second_lock = &sdp->i_rwlock; 3489 retry_firstlock: 3490 if (!rw_tryenter(first_lock, RW_READER)) { 3491 /* 3492 * We didn't get the lock. Check if the SLOCK is set in the 3493 * ufsvfs. If yes, we might be in a deadlock. Safer to give up 3494 * and wait for SLOCK to be cleared. 3495 */ 3496 3497 if (ulp && ULOCKFS_IS_SLOCK(ulp)) { 3498 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_RENAME, 3499 trans_size); 3500 ufs_lockfs_end(ulp); 3501 goto retry_rename; 3502 3503 } else { 3504 /* 3505 * SLOCK isn't set so this is a genuine synchronization 3506 * case. Let's try again after giving them a breather. 3507 */ 3508 delay(RETRY_LOCK_DELAY); 3509 goto retry_firstlock; 3510 } 3511 } 3512 /* 3513 * Need to check if the tdp and sdp are same !!! 3514 */ 3515 if ((tdp != sdp) && (!rw_tryenter(second_lock, RW_READER))) { 3516 /* 3517 * We didn't get the lock. Check if the SLOCK is set in the 3518 * ufsvfs. If yes, we might be in a deadlock. Safer to give up 3519 * and wait for SLOCK to be cleared. 3520 */ 3521 3522 rw_exit(first_lock); 3523 if (ulp && ULOCKFS_IS_SLOCK(ulp)) { 3524 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_RENAME, 3525 trans_size); 3526 ufs_lockfs_end(ulp); 3527 goto retry_rename; 3528 3529 } else { 3530 /* 3531 * So we couldn't get the second level peer lock *and* 3532 * the SLOCK bit isn't set. Too bad we can be 3533 * contentding with someone wanting these locks otherway 3534 * round. Reverse the locks in case there is a heavy 3535 * contention for the second level lock. 3536 */ 3537 reverse_lock = first_lock; 3538 first_lock = second_lock; 3539 second_lock = reverse_lock; 3540 ufs_rename_retry_cnt++; 3541 goto retry_firstlock; 3542 } 3543 } 3544 3545 if (sip == tdp) { 3546 error = EINVAL; 3547 goto errout; 3548 } 3549 /* 3550 * Make sure we can delete the source entry. This requires 3551 * write permission on the containing directory. 3552 * Check for sticky directories. 3553 */ 3554 rw_enter(&sdp->i_contents, RW_READER); 3555 rw_enter(&sip->i_contents, RW_READER); 3556 if ((error = ufs_iaccess(sdp, IWRITE, cr, 0)) != 0 || 3557 (error = ufs_sticky_remove_access(sdp, sip, cr)) != 0) { 3558 rw_exit(&sip->i_contents); 3559 rw_exit(&sdp->i_contents); 3560 goto errout; 3561 } 3562 3563 /* 3564 * If this is a rename of a directory and the parent is 3565 * different (".." must be changed), then the source 3566 * directory must not be in the directory hierarchy 3567 * above the target, as this would orphan everything 3568 * below the source directory. Also the user must have 3569 * write permission in the source so as to be able to 3570 * change "..". 3571 */ 3572 if ((((sip->i_mode & IFMT) == IFDIR) || 3573 ((sip->i_mode & IFMT) == IFATTRDIR)) && sdp != tdp) { 3574 ino_t inum; 3575 3576 if (error = ufs_iaccess(sip, IWRITE, cr, 0)) { 3577 rw_exit(&sip->i_contents); 3578 rw_exit(&sdp->i_contents); 3579 goto errout; 3580 } 3581 inum = sip->i_number; 3582 rw_exit(&sip->i_contents); 3583 rw_exit(&sdp->i_contents); 3584 if ((error = ufs_dircheckpath(inum, tdp, sdp, cr))) { 3585 /* 3586 * If we got EAGAIN ufs_dircheckpath detected a 3587 * potential deadlock and backed out. We need 3588 * to retry the operation since sdp and tdp have 3589 * to be released to avoid the deadlock. 3590 */ 3591 if (error == EAGAIN) { 3592 rw_exit(&tdp->i_rwlock); 3593 if (tdp != sdp) 3594 rw_exit(&sdp->i_rwlock); 3595 delay(ufs_rename_backoff_delay); 3596 ufs_rename_dircheck_retry_cnt++; 3597 goto retry; 3598 } 3599 goto errout; 3600 } 3601 } else { 3602 rw_exit(&sip->i_contents); 3603 rw_exit(&sdp->i_contents); 3604 } 3605 3606 3607 /* 3608 * Check for renaming '.' or '..' or alias of '.' 3609 */ 3610 if (strcmp(snm, ".") == 0 || strcmp(snm, "..") == 0 || sdp == sip) { 3611 error = EINVAL; 3612 goto errout; 3613 } 3614 3615 /* 3616 * Simultaneous renames can deadlock in ufs_dircheckpath since it 3617 * tries to traverse back the file tree with both tdp and sdp held 3618 * as RW_WRITER. To avoid that we have to hold the tdp and sdp locks 3619 * as RW_READERS till ufs_dircheckpath is done. 3620 * Now that ufs_dircheckpath is done with, we can upgrade the locks 3621 * to RW_WRITER. 3622 */ 3623 if (!rw_tryupgrade(&tdp->i_rwlock)) { 3624 /* 3625 * The upgrade failed. We got to give away the lock 3626 * as to avoid deadlocking with someone else who is 3627 * waiting for writer lock. With the lock gone, we 3628 * cannot be sure the checks done above will hold 3629 * good when we eventually get them back as writer. 3630 * So if we can't upgrade we drop the locks and retry 3631 * everything again. 3632 */ 3633 rw_exit(&tdp->i_rwlock); 3634 if (tdp != sdp) 3635 rw_exit(&sdp->i_rwlock); 3636 delay(ufs_rename_backoff_delay); 3637 ufs_rename_upgrade_retry_cnt++; 3638 goto retry; 3639 } 3640 if (tdp != sdp) { 3641 if (!rw_tryupgrade(&sdp->i_rwlock)) { 3642 /* 3643 * The upgrade failed. We got to give away the lock 3644 * as to avoid deadlocking with someone else who is 3645 * waiting for writer lock. With the lock gone, we 3646 * cannot be sure the checks done above will hold 3647 * good when we eventually get them back as writer. 3648 * So if we can't upgrade we drop the locks and retry 3649 * everything again. 3650 */ 3651 rw_exit(&tdp->i_rwlock); 3652 rw_exit(&sdp->i_rwlock); 3653 delay(ufs_rename_backoff_delay); 3654 ufs_rename_upgrade_retry_cnt++; 3655 goto retry; 3656 } 3657 } 3658 3659 /* 3660 * Now that all the locks are held check to make sure another thread 3661 * didn't slip in and take out the sip. 3662 */ 3663 slot.status = NONE; 3664 if ((sip->i_ctime.tv_usec * 1000) > now.tv_nsec || 3665 sip->i_ctime.tv_sec > now.tv_sec) { 3666 rw_enter(&sdp->i_ufsvfs->vfs_dqrwlock, RW_READER); 3667 rw_enter(&sdp->i_contents, RW_WRITER); 3668 error = ufs_dircheckforname(sdp, snm, strlen(snm), &slot, 3669 &ip, cr, 0); 3670 rw_exit(&sdp->i_contents); 3671 rw_exit(&sdp->i_ufsvfs->vfs_dqrwlock); 3672 if (error) { 3673 goto errout; 3674 } 3675 if (ip == NULL) { 3676 error = ENOENT; 3677 goto errout; 3678 } else { 3679 /* 3680 * If the inode was found need to drop the v_count 3681 * so as not to keep the filesystem from being 3682 * unmounted at a later time. 3683 */ 3684 VN_RELE(ITOV(ip)); 3685 } 3686 3687 /* 3688 * Release the slot.fbp that has the page mapped and 3689 * locked SE_SHARED, and could be used in in 3690 * ufs_direnter_lr() which needs to get the SE_EXCL lock 3691 * on said page. 3692 */ 3693 if (slot.fbp) { 3694 fbrelse(slot.fbp, S_OTHER); 3695 slot.fbp = NULL; 3696 } 3697 } 3698 3699 /* 3700 * Link source to the target. 3701 */ 3702 if (error = ufs_direnter_lr(tdp, tnm, DE_RENAME, sdp, sip, cr)) { 3703 /* 3704 * ESAME isn't really an error; it indicates that the 3705 * operation should not be done because the source and target 3706 * are the same file, but that no error should be reported. 3707 */ 3708 if (error == ESAME) 3709 error = 0; 3710 goto errout; 3711 } 3712 3713 if (error == 0 && tvp != NULL) 3714 vnevent_rename_dest(tvp, tdvp, tnm, ct); 3715 3716 /* 3717 * Unlink the source. 3718 * Remove the source entry. ufs_dirremove() checks that the entry 3719 * still reflects sip, and returns an error if it doesn't. 3720 * If the entry has changed just forget about it. Release 3721 * the source inode. 3722 */ 3723 if ((error = ufs_dirremove(sdp, snm, sip, (struct vnode *)0, 3724 DR_RENAME, cr)) == ENOENT) 3725 error = 0; 3726 3727 if (error == 0) { 3728 vnevent_rename_src(ITOV(sip), sdvp, snm, ct); 3729 /* 3730 * Notify the target directory of the rename event 3731 * if source and target directories are not the same. 3732 */ 3733 if (sdvp != tdvp) 3734 vnevent_rename_dest_dir(tdvp, ct); 3735 } 3736 3737 errout: 3738 if (slot.fbp) 3739 fbrelse(slot.fbp, S_OTHER); 3740 3741 rw_exit(&tdp->i_rwlock); 3742 if (sdp != tdp) { 3743 rw_exit(&sdp->i_rwlock); 3744 } 3745 3746 unlock: 3747 if (tvp != NULL) 3748 VN_RELE(tvp); 3749 if (sip != NULL) 3750 VN_RELE(ITOV(sip)); 3751 3752 if (ulp) { 3753 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_RENAME, trans_size); 3754 ufs_lockfs_end(ulp); 3755 } 3756 3757 return (error); 3758 } 3759 3760 /*ARGSUSED*/ 3761 static int 3762 ufs_mkdir(struct vnode *dvp, char *dirname, struct vattr *vap, 3763 struct vnode **vpp, struct cred *cr, caller_context_t *ct, int flags, 3764 vsecattr_t *vsecp) 3765 { 3766 struct inode *ip; 3767 struct inode *xip; 3768 struct ufsvfs *ufsvfsp; 3769 struct ulockfs *ulp; 3770 int error; 3771 int issync; 3772 int trans_size; 3773 int indeadlock; 3774 int retry = 1; 3775 3776 ASSERT((vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE)); 3777 3778 /* 3779 * Can't make directory in attr hidden dir 3780 */ 3781 if ((VTOI(dvp)->i_mode & IFMT) == IFATTRDIR) 3782 return (EINVAL); 3783 3784 again: 3785 ip = VTOI(dvp); 3786 ufsvfsp = ip->i_ufsvfs; 3787 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_MKDIR_MASK); 3788 if (error) 3789 goto out; 3790 if (ulp) 3791 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_MKDIR, 3792 trans_size = (int)TOP_MKDIR_SIZE(ip)); 3793 3794 /* 3795 * ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK 3796 * to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock 3797 * possible, retries the operation. 3798 */ 3799 ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_MKDIR, retry); 3800 if (indeadlock) 3801 goto again; 3802 3803 error = ufs_direnter_cm(ip, dirname, DE_MKDIR, vap, &xip, cr, 3804 (retry ? IQUIET : 0)); 3805 if (error == EAGAIN) { 3806 if (ulp) { 3807 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_MKDIR, 3808 trans_size); 3809 ufs_lockfs_end(ulp); 3810 } 3811 goto again; 3812 } 3813 3814 rw_exit(&ip->i_rwlock); 3815 if (error == 0) { 3816 ip = xip; 3817 *vpp = ITOV(ip); 3818 } else if (error == EEXIST) 3819 VN_RELE(ITOV(xip)); 3820 3821 if (ulp) { 3822 int terr = 0; 3823 TRANS_END_CSYNC(ufsvfsp, terr, issync, TOP_MKDIR, trans_size); 3824 ufs_lockfs_end(ulp); 3825 if (error == 0) 3826 error = terr; 3827 } 3828 out: 3829 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) { 3830 ufs_delete_drain_wait(ufsvfsp, 1); 3831 retry = 0; 3832 goto again; 3833 } 3834 3835 return (error); 3836 } 3837 3838 /*ARGSUSED*/ 3839 static int 3840 ufs_rmdir(struct vnode *vp, char *nm, struct vnode *cdir, struct cred *cr, 3841 caller_context_t *ct, int flags) 3842 { 3843 struct inode *ip = VTOI(vp); 3844 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 3845 struct ulockfs *ulp; 3846 vnode_t *rmvp = NULL; /* Vnode of removed directory */ 3847 int error; 3848 int issync; 3849 int trans_size; 3850 int indeadlock; 3851 3852 /* 3853 * don't let the delete queue get too long 3854 */ 3855 if (ufsvfsp == NULL) { 3856 error = EIO; 3857 goto out; 3858 } 3859 if (ufsvfsp->vfs_delete.uq_ne > ufs_idle_max) 3860 ufs_delete_drain(vp->v_vfsp, 1, 1); 3861 3862 error = ufs_eventlookup(vp, nm, cr, &rmvp); 3863 if (rmvp != NULL) { 3864 /* Only send the event if there were no errors */ 3865 if (error == 0) 3866 vnevent_rmdir(rmvp, vp, nm, ct); 3867 VN_RELE(rmvp); 3868 } 3869 3870 retry_rmdir: 3871 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_RMDIR_MASK); 3872 if (error) 3873 goto out; 3874 3875 if (ulp) 3876 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_RMDIR, 3877 trans_size = TOP_RMDIR_SIZE); 3878 3879 /* 3880 * ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK 3881 * to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock 3882 * possible, retries the operation. 3883 */ 3884 ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_RMDIR, retry); 3885 if (indeadlock) 3886 goto retry_rmdir; 3887 error = ufs_dirremove(ip, nm, (struct inode *)0, cdir, DR_RMDIR, cr); 3888 3889 rw_exit(&ip->i_rwlock); 3890 3891 if (ulp) { 3892 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_RMDIR, 3893 trans_size); 3894 ufs_lockfs_end(ulp); 3895 } 3896 3897 out: 3898 return (error); 3899 } 3900 3901 /* ARGSUSED */ 3902 static int 3903 ufs_readdir( 3904 struct vnode *vp, 3905 struct uio *uiop, 3906 struct cred *cr, 3907 int *eofp, 3908 caller_context_t *ct, 3909 int flags) 3910 { 3911 struct iovec *iovp; 3912 struct inode *ip; 3913 struct direct *idp; 3914 struct dirent64 *odp; 3915 struct fbuf *fbp; 3916 struct ufsvfs *ufsvfsp; 3917 struct ulockfs *ulp; 3918 caddr_t outbuf; 3919 size_t bufsize; 3920 uint_t offset; 3921 uint_t bytes_wanted, total_bytes_wanted; 3922 int incount = 0; 3923 int outcount = 0; 3924 int error; 3925 3926 ip = VTOI(vp); 3927 ASSERT(RW_READ_HELD(&ip->i_rwlock)); 3928 3929 if (uiop->uio_loffset >= MAXOFF32_T) { 3930 if (eofp) 3931 *eofp = 1; 3932 return (0); 3933 } 3934 3935 /* 3936 * Check if we have been called with a valid iov_len 3937 * and bail out if not, otherwise we may potentially loop 3938 * forever further down. 3939 */ 3940 if (uiop->uio_iov->iov_len <= 0) { 3941 error = EINVAL; 3942 goto out; 3943 } 3944 3945 /* 3946 * Large Files: When we come here we are guaranteed that 3947 * uio_offset can be used safely. The high word is zero. 3948 */ 3949 3950 ufsvfsp = ip->i_ufsvfs; 3951 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_READDIR_MASK); 3952 if (error) 3953 goto out; 3954 3955 iovp = uiop->uio_iov; 3956 total_bytes_wanted = iovp->iov_len; 3957 3958 /* Large Files: directory files should not be "large" */ 3959 3960 ASSERT(ip->i_size <= MAXOFF32_T); 3961 3962 /* Force offset to be valid (to guard against bogus lseek() values) */ 3963 offset = (uint_t)uiop->uio_offset & ~(DIRBLKSIZ - 1); 3964 3965 /* Quit if at end of file or link count of zero (posix) */ 3966 if (offset >= (uint_t)ip->i_size || ip->i_nlink <= 0) { 3967 if (eofp) 3968 *eofp = 1; 3969 error = 0; 3970 goto unlock; 3971 } 3972 3973 /* 3974 * Get space to change directory entries into fs independent format. 3975 * Do fast alloc for the most commonly used-request size (filesystem 3976 * block size). 3977 */ 3978 if (uiop->uio_segflg != UIO_SYSSPACE || uiop->uio_iovcnt != 1) { 3979 bufsize = total_bytes_wanted; 3980 outbuf = kmem_alloc(bufsize, KM_SLEEP); 3981 odp = (struct dirent64 *)outbuf; 3982 } else { 3983 bufsize = total_bytes_wanted; 3984 odp = (struct dirent64 *)iovp->iov_base; 3985 } 3986 3987 nextblk: 3988 bytes_wanted = total_bytes_wanted; 3989 3990 /* Truncate request to file size */ 3991 if (offset + bytes_wanted > (int)ip->i_size) 3992 bytes_wanted = (int)(ip->i_size - offset); 3993 3994 /* Comply with MAXBSIZE boundary restrictions of fbread() */ 3995 if ((offset & MAXBOFFSET) + bytes_wanted > MAXBSIZE) 3996 bytes_wanted = MAXBSIZE - (offset & MAXBOFFSET); 3997 3998 /* 3999 * Read in the next chunk. 4000 * We are still holding the i_rwlock. 4001 */ 4002 error = fbread(vp, (offset_t)offset, bytes_wanted, S_OTHER, &fbp); 4003 4004 if (error) 4005 goto update_inode; 4006 if (!ULOCKFS_IS_NOIACC(ITOUL(ip)) && (ip->i_fs->fs_ronly == 0) && 4007 (!ufsvfsp->vfs_noatime)) { 4008 ip->i_flag |= IACC; 4009 } 4010 incount = 0; 4011 idp = (struct direct *)fbp->fb_addr; 4012 if (idp->d_ino == 0 && idp->d_reclen == 0 && idp->d_namlen == 0) { 4013 cmn_err(CE_WARN, "ufs_readdir: bad dir, inumber = %llu, " 4014 "fs = %s\n", 4015 (u_longlong_t)ip->i_number, ufsvfsp->vfs_fs->fs_fsmnt); 4016 fbrelse(fbp, S_OTHER); 4017 error = ENXIO; 4018 goto update_inode; 4019 } 4020 /* Transform to file-system independent format */ 4021 while (incount < bytes_wanted) { 4022 /* 4023 * If the current directory entry is mangled, then skip 4024 * to the next block. It would be nice to set the FSBAD 4025 * flag in the super-block so that a fsck is forced on 4026 * next reboot, but locking is a problem. 4027 */ 4028 if (idp->d_reclen & 0x3) { 4029 offset = (offset + DIRBLKSIZ) & ~(DIRBLKSIZ-1); 4030 break; 4031 } 4032 4033 /* Skip to requested offset and skip empty entries */ 4034 if (idp->d_ino != 0 && offset >= (uint_t)uiop->uio_offset) { 4035 ushort_t this_reclen = 4036 DIRENT64_RECLEN(idp->d_namlen); 4037 /* Buffer too small for any entries */ 4038 if (!outcount && this_reclen > bufsize) { 4039 fbrelse(fbp, S_OTHER); 4040 error = EINVAL; 4041 goto update_inode; 4042 } 4043 /* If would overrun the buffer, quit */ 4044 if (outcount + this_reclen > bufsize) { 4045 break; 4046 } 4047 /* Take this entry */ 4048 odp->d_ino = (ino64_t)idp->d_ino; 4049 odp->d_reclen = (ushort_t)this_reclen; 4050 odp->d_off = (offset_t)(offset + idp->d_reclen); 4051 4052 /* use strncpy(9f) to zero out uninitialized bytes */ 4053 4054 ASSERT(strlen(idp->d_name) + 1 <= 4055 DIRENT64_NAMELEN(this_reclen)); 4056 (void) strncpy(odp->d_name, idp->d_name, 4057 DIRENT64_NAMELEN(this_reclen)); 4058 outcount += odp->d_reclen; 4059 odp = (struct dirent64 *) 4060 ((intptr_t)odp + odp->d_reclen); 4061 ASSERT(outcount <= bufsize); 4062 } 4063 if (idp->d_reclen) { 4064 incount += idp->d_reclen; 4065 offset += idp->d_reclen; 4066 idp = (struct direct *)((intptr_t)idp + idp->d_reclen); 4067 } else { 4068 offset = (offset + DIRBLKSIZ) & ~(DIRBLKSIZ-1); 4069 break; 4070 } 4071 } 4072 /* Release the chunk */ 4073 fbrelse(fbp, S_OTHER); 4074 4075 /* Read whole block, but got no entries, read another if not eof */ 4076 4077 /* 4078 * Large Files: casting i_size to int here is not a problem 4079 * because directory sizes are always less than MAXOFF32_T. 4080 * See assertion above. 4081 */ 4082 4083 if (offset < (int)ip->i_size && !outcount) 4084 goto nextblk; 4085 4086 /* Copy out the entry data */ 4087 if (uiop->uio_segflg == UIO_SYSSPACE && uiop->uio_iovcnt == 1) { 4088 iovp->iov_base += outcount; 4089 iovp->iov_len -= outcount; 4090 uiop->uio_resid -= outcount; 4091 uiop->uio_offset = offset; 4092 } else if ((error = uiomove(outbuf, (long)outcount, UIO_READ, 4093 uiop)) == 0) 4094 uiop->uio_offset = offset; 4095 update_inode: 4096 ITIMES(ip); 4097 if (uiop->uio_segflg != UIO_SYSSPACE || uiop->uio_iovcnt != 1) 4098 kmem_free(outbuf, bufsize); 4099 4100 if (eofp && error == 0) 4101 *eofp = (uiop->uio_offset >= (int)ip->i_size); 4102 unlock: 4103 if (ulp) { 4104 ufs_lockfs_end(ulp); 4105 } 4106 out: 4107 return (error); 4108 } 4109 4110 /*ARGSUSED*/ 4111 static int 4112 ufs_symlink( 4113 struct vnode *dvp, /* ptr to parent dir vnode */ 4114 char *linkname, /* name of symbolic link */ 4115 struct vattr *vap, /* attributes */ 4116 char *target, /* target path */ 4117 struct cred *cr, /* user credentials */ 4118 caller_context_t *ct, 4119 int flags) 4120 { 4121 struct inode *ip, *dip = VTOI(dvp); 4122 struct ufsvfs *ufsvfsp = dip->i_ufsvfs; 4123 struct ulockfs *ulp; 4124 int error; 4125 int issync; 4126 int trans_size; 4127 int residual; 4128 int ioflag; 4129 int retry = 1; 4130 4131 /* 4132 * No symlinks in attrdirs at this time 4133 */ 4134 if ((VTOI(dvp)->i_mode & IFMT) == IFATTRDIR) 4135 return (EINVAL); 4136 4137 again: 4138 ip = (struct inode *)NULL; 4139 vap->va_type = VLNK; 4140 vap->va_rdev = 0; 4141 4142 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_SYMLINK_MASK); 4143 if (error) 4144 goto out; 4145 4146 if (ulp) 4147 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_SYMLINK, 4148 trans_size = (int)TOP_SYMLINK_SIZE(dip)); 4149 4150 /* 4151 * We must create the inode before the directory entry, to avoid 4152 * racing with readlink(). ufs_dirmakeinode requires that we 4153 * hold the quota lock as reader, and directory locks as writer. 4154 */ 4155 4156 rw_enter(&dip->i_rwlock, RW_WRITER); 4157 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 4158 rw_enter(&dip->i_contents, RW_WRITER); 4159 4160 /* 4161 * Suppress any out of inodes messages if we will retry on 4162 * ENOSP 4163 */ 4164 if (retry) 4165 dip->i_flag |= IQUIET; 4166 4167 error = ufs_dirmakeinode(dip, &ip, vap, DE_SYMLINK, cr); 4168 4169 dip->i_flag &= ~IQUIET; 4170 4171 rw_exit(&dip->i_contents); 4172 rw_exit(&ufsvfsp->vfs_dqrwlock); 4173 rw_exit(&dip->i_rwlock); 4174 4175 if (error) 4176 goto unlock; 4177 4178 /* 4179 * OK. The inode has been created. Write out the data of the 4180 * symbolic link. Since symbolic links are metadata, and should 4181 * remain consistent across a system crash, we need to force the 4182 * data out synchronously. 4183 * 4184 * (This is a change from the semantics in earlier releases, which 4185 * only created symbolic links synchronously if the semi-documented 4186 * 'syncdir' option was set, or if we were being invoked by the NFS 4187 * server, which requires symbolic links to be created synchronously.) 4188 * 4189 * We need to pass in a pointer for the residual length; otherwise 4190 * ufs_rdwri() will always return EIO if it can't write the data, 4191 * even if the error was really ENOSPC or EDQUOT. 4192 */ 4193 4194 ioflag = FWRITE | FDSYNC; 4195 residual = 0; 4196 4197 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 4198 rw_enter(&ip->i_contents, RW_WRITER); 4199 4200 /* 4201 * Suppress file system full messages if we will retry 4202 */ 4203 if (retry) 4204 ip->i_flag |= IQUIET; 4205 4206 error = ufs_rdwri(UIO_WRITE, ioflag, ip, target, strlen(target), 4207 (offset_t)0, UIO_SYSSPACE, &residual, cr); 4208 4209 ip->i_flag &= ~IQUIET; 4210 4211 if (error) { 4212 rw_exit(&ip->i_contents); 4213 rw_exit(&ufsvfsp->vfs_dqrwlock); 4214 goto remove; 4215 } 4216 4217 /* 4218 * If the link's data is small enough, we can cache it in the inode. 4219 * This is a "fast symbolic link". We don't use the first direct 4220 * block because that's actually used to point at the symbolic link's 4221 * contents on disk; but we know that none of the other direct or 4222 * indirect blocks can be used because symbolic links are restricted 4223 * to be smaller than a file system block. 4224 */ 4225 4226 ASSERT(MAXPATHLEN <= VBSIZE(ITOV(ip))); 4227 4228 if (ip->i_size > 0 && ip->i_size <= FSL_SIZE) { 4229 if (kcopy(target, &ip->i_db[1], ip->i_size) == 0) { 4230 ip->i_flag |= IFASTSYMLNK; 4231 } else { 4232 int i; 4233 /* error, clear garbage left behind */ 4234 for (i = 1; i < NDADDR; i++) 4235 ip->i_db[i] = 0; 4236 for (i = 0; i < NIADDR; i++) 4237 ip->i_ib[i] = 0; 4238 } 4239 } 4240 4241 rw_exit(&ip->i_contents); 4242 rw_exit(&ufsvfsp->vfs_dqrwlock); 4243 4244 /* 4245 * OK. We've successfully created the symbolic link. All that 4246 * remains is to insert it into the appropriate directory. 4247 */ 4248 4249 rw_enter(&dip->i_rwlock, RW_WRITER); 4250 error = ufs_direnter_lr(dip, linkname, DE_SYMLINK, NULL, ip, cr); 4251 rw_exit(&dip->i_rwlock); 4252 4253 /* 4254 * Fall through into remove-on-error code. We're either done, or we 4255 * need to remove the inode (if we couldn't insert it). 4256 */ 4257 4258 remove: 4259 if (error && (ip != NULL)) { 4260 rw_enter(&ip->i_contents, RW_WRITER); 4261 ip->i_nlink--; 4262 ip->i_flag |= ICHG; 4263 ip->i_seq++; 4264 ufs_setreclaim(ip); 4265 rw_exit(&ip->i_contents); 4266 } 4267 4268 unlock: 4269 if (ip != NULL) 4270 VN_RELE(ITOV(ip)); 4271 4272 if (ulp) { 4273 int terr = 0; 4274 4275 TRANS_END_CSYNC(ufsvfsp, terr, issync, TOP_SYMLINK, 4276 trans_size); 4277 ufs_lockfs_end(ulp); 4278 if (error == 0) 4279 error = terr; 4280 } 4281 4282 /* 4283 * We may have failed due to lack of an inode or of a block to 4284 * store the target in. Try flushing the delete queue to free 4285 * logically-available things up and try again. 4286 */ 4287 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) { 4288 ufs_delete_drain_wait(ufsvfsp, 1); 4289 retry = 0; 4290 goto again; 4291 } 4292 4293 out: 4294 return (error); 4295 } 4296 4297 /* 4298 * Ufs specific routine used to do ufs io. 4299 */ 4300 int 4301 ufs_rdwri(enum uio_rw rw, int ioflag, struct inode *ip, caddr_t base, 4302 ssize_t len, offset_t offset, enum uio_seg seg, int *aresid, 4303 struct cred *cr) 4304 { 4305 struct uio auio; 4306 struct iovec aiov; 4307 int error; 4308 4309 ASSERT(RW_LOCK_HELD(&ip->i_contents)); 4310 4311 bzero((caddr_t)&auio, sizeof (uio_t)); 4312 bzero((caddr_t)&aiov, sizeof (iovec_t)); 4313 4314 aiov.iov_base = base; 4315 aiov.iov_len = len; 4316 auio.uio_iov = &aiov; 4317 auio.uio_iovcnt = 1; 4318 auio.uio_loffset = offset; 4319 auio.uio_segflg = (short)seg; 4320 auio.uio_resid = len; 4321 4322 if (rw == UIO_WRITE) { 4323 auio.uio_fmode = FWRITE; 4324 auio.uio_extflg = UIO_COPY_DEFAULT; 4325 auio.uio_llimit = curproc->p_fsz_ctl; 4326 error = wrip(ip, &auio, ioflag, cr); 4327 } else { 4328 auio.uio_fmode = FREAD; 4329 auio.uio_extflg = UIO_COPY_CACHED; 4330 auio.uio_llimit = MAXOFFSET_T; 4331 error = rdip(ip, &auio, ioflag, cr); 4332 } 4333 4334 if (aresid) { 4335 *aresid = auio.uio_resid; 4336 } else if (auio.uio_resid) { 4337 error = EIO; 4338 } 4339 return (error); 4340 } 4341 4342 /*ARGSUSED*/ 4343 static int 4344 ufs_fid(struct vnode *vp, struct fid *fidp, caller_context_t *ct) 4345 { 4346 struct ufid *ufid; 4347 struct inode *ip = VTOI(vp); 4348 4349 if (ip->i_ufsvfs == NULL) 4350 return (EIO); 4351 4352 if (fidp->fid_len < (sizeof (struct ufid) - sizeof (ushort_t))) { 4353 fidp->fid_len = sizeof (struct ufid) - sizeof (ushort_t); 4354 return (ENOSPC); 4355 } 4356 4357 ufid = (struct ufid *)fidp; 4358 bzero((char *)ufid, sizeof (struct ufid)); 4359 ufid->ufid_len = sizeof (struct ufid) - sizeof (ushort_t); 4360 ufid->ufid_ino = ip->i_number; 4361 ufid->ufid_gen = ip->i_gen; 4362 4363 return (0); 4364 } 4365 4366 /* ARGSUSED2 */ 4367 static int 4368 ufs_rwlock(struct vnode *vp, int write_lock, caller_context_t *ctp) 4369 { 4370 struct inode *ip = VTOI(vp); 4371 struct ufsvfs *ufsvfsp; 4372 int forcedirectio; 4373 4374 /* 4375 * Read case is easy. 4376 */ 4377 if (!write_lock) { 4378 rw_enter(&ip->i_rwlock, RW_READER); 4379 return (V_WRITELOCK_FALSE); 4380 } 4381 4382 /* 4383 * Caller has requested a writer lock, but that inhibits any 4384 * concurrency in the VOPs that follow. Acquire the lock shared 4385 * and defer exclusive access until it is known to be needed in 4386 * other VOP handlers. Some cases can be determined here. 4387 */ 4388 4389 /* 4390 * If directio is not set, there is no chance of concurrency, 4391 * so just acquire the lock exclusive. Beware of a forced 4392 * unmount before looking at the mount option. 4393 */ 4394 ufsvfsp = ip->i_ufsvfs; 4395 forcedirectio = ufsvfsp ? ufsvfsp->vfs_forcedirectio : 0; 4396 if (!(ip->i_flag & IDIRECTIO || forcedirectio) || 4397 !ufs_allow_shared_writes) { 4398 rw_enter(&ip->i_rwlock, RW_WRITER); 4399 return (V_WRITELOCK_TRUE); 4400 } 4401 4402 /* 4403 * Mandatory locking forces acquiring i_rwlock exclusive. 4404 */ 4405 if (MANDLOCK(vp, ip->i_mode)) { 4406 rw_enter(&ip->i_rwlock, RW_WRITER); 4407 return (V_WRITELOCK_TRUE); 4408 } 4409 4410 /* 4411 * Acquire the lock shared in case a concurrent write follows. 4412 * Mandatory locking could have become enabled before the lock 4413 * was acquired. Re-check and upgrade if needed. 4414 */ 4415 rw_enter(&ip->i_rwlock, RW_READER); 4416 if (MANDLOCK(vp, ip->i_mode)) { 4417 rw_exit(&ip->i_rwlock); 4418 rw_enter(&ip->i_rwlock, RW_WRITER); 4419 return (V_WRITELOCK_TRUE); 4420 } 4421 return (V_WRITELOCK_FALSE); 4422 } 4423 4424 /*ARGSUSED*/ 4425 static void 4426 ufs_rwunlock(struct vnode *vp, int write_lock, caller_context_t *ctp) 4427 { 4428 struct inode *ip = VTOI(vp); 4429 4430 rw_exit(&ip->i_rwlock); 4431 } 4432 4433 /* ARGSUSED */ 4434 static int 4435 ufs_seek(struct vnode *vp, offset_t ooff, offset_t *noffp, 4436 caller_context_t *ct) 4437 { 4438 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0); 4439 } 4440 4441 /* ARGSUSED */ 4442 static int 4443 ufs_frlock(struct vnode *vp, int cmd, struct flock64 *bfp, int flag, 4444 offset_t offset, struct flk_callback *flk_cbp, struct cred *cr, 4445 caller_context_t *ct) 4446 { 4447 struct inode *ip = VTOI(vp); 4448 4449 if (ip->i_ufsvfs == NULL) 4450 return (EIO); 4451 4452 /* 4453 * If file is being mapped, disallow frlock. 4454 * XXX I am not holding tlock while checking i_mapcnt because the 4455 * current locking strategy drops all locks before calling fs_frlock. 4456 * So, mapcnt could change before we enter fs_frlock making is 4457 * meaningless to have held tlock in the first place. 4458 */ 4459 if (ip->i_mapcnt > 0 && MANDLOCK(vp, ip->i_mode)) 4460 return (EAGAIN); 4461 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 4462 } 4463 4464 /* ARGSUSED */ 4465 static int 4466 ufs_space(struct vnode *vp, int cmd, struct flock64 *bfp, int flag, 4467 offset_t offset, cred_t *cr, caller_context_t *ct) 4468 { 4469 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs; 4470 struct ulockfs *ulp; 4471 int error; 4472 4473 if ((error = convoff(vp, bfp, 0, offset)) == 0) { 4474 if (cmd == F_FREESP) { 4475 error = ufs_lockfs_begin(ufsvfsp, &ulp, 4476 ULOCKFS_SPACE_MASK); 4477 if (error) 4478 return (error); 4479 error = ufs_freesp(vp, bfp, flag, cr); 4480 4481 if (error == 0 && bfp->l_start == 0) 4482 vnevent_truncate(vp, ct); 4483 } else if (cmd == F_ALLOCSP) { 4484 error = ufs_lockfs_begin(ufsvfsp, &ulp, 4485 ULOCKFS_FALLOCATE_MASK); 4486 if (error) 4487 return (error); 4488 error = ufs_allocsp(vp, bfp, cr); 4489 } else 4490 return (EINVAL); /* Command not handled here */ 4491 4492 if (ulp) 4493 ufs_lockfs_end(ulp); 4494 4495 } 4496 return (error); 4497 } 4498 4499 /* 4500 * Used to determine if read ahead should be done. Also used to 4501 * to determine when write back occurs. 4502 */ 4503 #define CLUSTSZ(ip) ((ip)->i_ufsvfs->vfs_ioclustsz) 4504 4505 /* 4506 * A faster version of ufs_getpage. 4507 * 4508 * We optimize by inlining the pvn_getpages iterator, eliminating 4509 * calls to bmap_read if file doesn't have UFS holes, and avoiding 4510 * the overhead of page_exists(). 4511 * 4512 * When files has UFS_HOLES and ufs_getpage is called with S_READ, 4513 * we set *protp to PROT_READ to avoid calling bmap_read. This approach 4514 * victimizes performance when a file with UFS holes is faulted 4515 * first in the S_READ mode, and then in the S_WRITE mode. We will get 4516 * two MMU faults in this case. 4517 * 4518 * XXX - the inode fields which control the sequential mode are not 4519 * protected by any mutex. The read ahead will act wild if 4520 * multiple processes will access the file concurrently and 4521 * some of them in sequential mode. One particulary bad case 4522 * is if another thread will change the value of i_nextrio between 4523 * the time this thread tests the i_nextrio value and then reads it 4524 * again to use it as the offset for the read ahead. 4525 */ 4526 /*ARGSUSED*/ 4527 static int 4528 ufs_getpage(struct vnode *vp, offset_t off, size_t len, uint_t *protp, 4529 page_t *plarr[], size_t plsz, struct seg *seg, caddr_t addr, 4530 enum seg_rw rw, struct cred *cr, caller_context_t *ct) 4531 { 4532 u_offset_t uoff = (u_offset_t)off; /* type conversion */ 4533 u_offset_t pgoff; 4534 u_offset_t eoff; 4535 struct inode *ip = VTOI(vp); 4536 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 4537 struct fs *fs; 4538 struct ulockfs *ulp; 4539 page_t **pl; 4540 caddr_t pgaddr; 4541 krw_t rwtype; 4542 int err; 4543 int has_holes; 4544 int beyond_eof; 4545 int seqmode; 4546 int pgsize = PAGESIZE; 4547 int dolock; 4548 int do_qlock; 4549 int trans_size; 4550 4551 ASSERT((uoff & PAGEOFFSET) == 0); 4552 4553 if (protp) 4554 *protp = PROT_ALL; 4555 4556 /* 4557 * Obey the lockfs protocol 4558 */ 4559 err = ufs_lockfs_begin_getpage(ufsvfsp, &ulp, seg, 4560 rw == S_READ || rw == S_EXEC, protp); 4561 if (err) 4562 goto out; 4563 4564 fs = ufsvfsp->vfs_fs; 4565 4566 if (ulp && (rw == S_CREATE || rw == S_WRITE) && 4567 !(vp->v_flag & VISSWAP)) { 4568 /* 4569 * Try to start a transaction, will return if blocking is 4570 * expected to occur and the address space is not the 4571 * kernel address space. 4572 */ 4573 trans_size = TOP_GETPAGE_SIZE(ip); 4574 if (seg->s_as != &kas) { 4575 TRANS_TRY_BEGIN_ASYNC(ufsvfsp, TOP_GETPAGE, 4576 trans_size, err) 4577 if (err == EWOULDBLOCK) { 4578 /* 4579 * Use EDEADLK here because the VM code 4580 * can normally never see this error. 4581 */ 4582 err = EDEADLK; 4583 ufs_lockfs_end(ulp); 4584 goto out; 4585 } 4586 } else { 4587 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_GETPAGE, trans_size); 4588 } 4589 } 4590 4591 if (vp->v_flag & VNOMAP) { 4592 err = ENOSYS; 4593 goto unlock; 4594 } 4595 4596 seqmode = ip->i_nextr == uoff && rw != S_CREATE; 4597 4598 rwtype = RW_READER; /* start as a reader */ 4599 dolock = (rw_owner(&ip->i_contents) != curthread); 4600 /* 4601 * If this thread owns the lock, i.e., this thread grabbed it 4602 * as writer somewhere above, then we don't need to grab the 4603 * lock as reader in this routine. 4604 */ 4605 do_qlock = (rw_owner(&ufsvfsp->vfs_dqrwlock) != curthread); 4606 4607 retrylock: 4608 if (dolock) { 4609 /* 4610 * Grab the quota lock if we need to call 4611 * bmap_write() below (with i_contents as writer). 4612 */ 4613 if (do_qlock && rwtype == RW_WRITER) 4614 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 4615 rw_enter(&ip->i_contents, rwtype); 4616 } 4617 4618 /* 4619 * We may be getting called as a side effect of a bmap using 4620 * fbread() when the blocks might be being allocated and the 4621 * size has not yet been up'ed. In this case we want to be 4622 * able to return zero pages if we get back UFS_HOLE from 4623 * calling bmap for a non write case here. We also might have 4624 * to read some frags from the disk into a page if we are 4625 * extending the number of frags for a given lbn in bmap(). 4626 * Large Files: The read of i_size here is atomic because 4627 * i_contents is held here. If dolock is zero, the lock 4628 * is held in bmap routines. 4629 */ 4630 beyond_eof = uoff + len > 4631 P2ROUNDUP_TYPED(ip->i_size, PAGESIZE, u_offset_t); 4632 if (beyond_eof && seg != segkmap) { 4633 if (dolock) { 4634 rw_exit(&ip->i_contents); 4635 if (do_qlock && rwtype == RW_WRITER) 4636 rw_exit(&ufsvfsp->vfs_dqrwlock); 4637 } 4638 err = EFAULT; 4639 goto unlock; 4640 } 4641 4642 /* 4643 * Must hold i_contents lock throughout the call to pvn_getpages 4644 * since locked pages are returned from each call to ufs_getapage. 4645 * Must *not* return locked pages and then try for contents lock 4646 * due to lock ordering requirements (inode > page) 4647 */ 4648 4649 has_holes = bmap_has_holes(ip); 4650 4651 if ((rw == S_WRITE || rw == S_CREATE) && has_holes && !beyond_eof) { 4652 int blk_size; 4653 u_offset_t offset; 4654 4655 /* 4656 * We must acquire the RW_WRITER lock in order to 4657 * call bmap_write(). 4658 */ 4659 if (dolock && rwtype == RW_READER) { 4660 rwtype = RW_WRITER; 4661 4662 /* 4663 * Grab the quota lock before 4664 * upgrading i_contents, but if we can't grab it 4665 * don't wait here due to lock order: 4666 * vfs_dqrwlock > i_contents. 4667 */ 4668 if (do_qlock && 4669 rw_tryenter(&ufsvfsp->vfs_dqrwlock, RW_READER) 4670 == 0) { 4671 rw_exit(&ip->i_contents); 4672 goto retrylock; 4673 } 4674 if (!rw_tryupgrade(&ip->i_contents)) { 4675 rw_exit(&ip->i_contents); 4676 if (do_qlock) 4677 rw_exit(&ufsvfsp->vfs_dqrwlock); 4678 goto retrylock; 4679 } 4680 } 4681 4682 /* 4683 * May be allocating disk blocks for holes here as 4684 * a result of mmap faults. write(2) does the bmap_write 4685 * in rdip/wrip, not here. We are not dealing with frags 4686 * in this case. 4687 */ 4688 /* 4689 * Large Files: We cast fs_bmask field to offset_t 4690 * just as we do for MAXBMASK because uoff is a 64-bit 4691 * data type. fs_bmask will still be a 32-bit type 4692 * as we cannot change any ondisk data structures. 4693 */ 4694 4695 offset = uoff & (offset_t)fs->fs_bmask; 4696 while (offset < uoff + len) { 4697 blk_size = (int)blksize(fs, ip, lblkno(fs, offset)); 4698 err = bmap_write(ip, offset, blk_size, 4699 BI_NORMAL, NULL, cr); 4700 if (ip->i_flag & (ICHG|IUPD)) 4701 ip->i_seq++; 4702 if (err) 4703 goto update_inode; 4704 offset += blk_size; /* XXX - make this contig */ 4705 } 4706 } 4707 4708 /* 4709 * Can be a reader from now on. 4710 */ 4711 if (dolock && rwtype == RW_WRITER) { 4712 rw_downgrade(&ip->i_contents); 4713 /* 4714 * We can release vfs_dqrwlock early so do it, but make 4715 * sure we don't try to release it again at the bottom. 4716 */ 4717 if (do_qlock) { 4718 rw_exit(&ufsvfsp->vfs_dqrwlock); 4719 do_qlock = 0; 4720 } 4721 } 4722 4723 /* 4724 * We remove PROT_WRITE in cases when the file has UFS holes 4725 * because we don't want to call bmap_read() to check each 4726 * page if it is backed with a disk block. 4727 */ 4728 if (protp && has_holes && rw != S_WRITE && rw != S_CREATE) 4729 *protp &= ~PROT_WRITE; 4730 4731 err = 0; 4732 4733 /* 4734 * The loop looks up pages in the range [off, off + len). 4735 * For each page, we first check if we should initiate an asynchronous 4736 * read ahead before we call page_lookup (we may sleep in page_lookup 4737 * for a previously initiated disk read). 4738 */ 4739 eoff = (uoff + len); 4740 for (pgoff = uoff, pgaddr = addr, pl = plarr; 4741 pgoff < eoff; /* empty */) { 4742 page_t *pp; 4743 u_offset_t nextrio; 4744 se_t se; 4745 int retval; 4746 4747 se = ((rw == S_CREATE || rw == S_OTHER) ? SE_EXCL : SE_SHARED); 4748 4749 /* Handle async getpage (faultahead) */ 4750 if (plarr == NULL) { 4751 ip->i_nextrio = pgoff; 4752 (void) ufs_getpage_ra(vp, pgoff, seg, pgaddr); 4753 pgoff += pgsize; 4754 pgaddr += pgsize; 4755 continue; 4756 } 4757 /* 4758 * Check if we should initiate read ahead of next cluster. 4759 * We call page_exists only when we need to confirm that 4760 * we have the current page before we initiate the read ahead. 4761 */ 4762 nextrio = ip->i_nextrio; 4763 if (seqmode && 4764 pgoff + CLUSTSZ(ip) >= nextrio && pgoff <= nextrio && 4765 nextrio < ip->i_size && page_exists(vp, pgoff)) { 4766 retval = ufs_getpage_ra(vp, pgoff, seg, pgaddr); 4767 /* 4768 * We always read ahead the next cluster of data 4769 * starting from i_nextrio. If the page (vp,nextrio) 4770 * is actually in core at this point, the routine 4771 * ufs_getpage_ra() will stop pre-fetching data 4772 * until we read that page in a synchronized manner 4773 * through ufs_getpage_miss(). So, we should increase 4774 * i_nextrio if the page (vp, nextrio) exists. 4775 */ 4776 if ((retval == 0) && page_exists(vp, nextrio)) { 4777 ip->i_nextrio = nextrio + pgsize; 4778 } 4779 } 4780 4781 if ((pp = page_lookup(vp, pgoff, se)) != NULL) { 4782 /* 4783 * We found the page in the page cache. 4784 */ 4785 *pl++ = pp; 4786 pgoff += pgsize; 4787 pgaddr += pgsize; 4788 len -= pgsize; 4789 plsz -= pgsize; 4790 } else { 4791 /* 4792 * We have to create the page, or read it from disk. 4793 */ 4794 if (err = ufs_getpage_miss(vp, pgoff, len, seg, pgaddr, 4795 pl, plsz, rw, seqmode)) 4796 goto error; 4797 4798 while (*pl != NULL) { 4799 pl++; 4800 pgoff += pgsize; 4801 pgaddr += pgsize; 4802 len -= pgsize; 4803 plsz -= pgsize; 4804 } 4805 } 4806 } 4807 4808 /* 4809 * Return pages up to plsz if they are in the page cache. 4810 * We cannot return pages if there is a chance that they are 4811 * backed with a UFS hole and rw is S_WRITE or S_CREATE. 4812 */ 4813 if (plarr && !(has_holes && (rw == S_WRITE || rw == S_CREATE))) { 4814 4815 ASSERT((protp == NULL) || 4816 !(has_holes && (*protp & PROT_WRITE))); 4817 4818 eoff = pgoff + plsz; 4819 while (pgoff < eoff) { 4820 page_t *pp; 4821 4822 if ((pp = page_lookup_nowait(vp, pgoff, 4823 SE_SHARED)) == NULL) 4824 break; 4825 4826 *pl++ = pp; 4827 pgoff += pgsize; 4828 plsz -= pgsize; 4829 } 4830 } 4831 4832 if (plarr) 4833 *pl = NULL; /* Terminate page list */ 4834 ip->i_nextr = pgoff; 4835 4836 error: 4837 if (err && plarr) { 4838 /* 4839 * Release any pages we have locked. 4840 */ 4841 while (pl > &plarr[0]) 4842 page_unlock(*--pl); 4843 4844 plarr[0] = NULL; 4845 } 4846 4847 update_inode: 4848 /* 4849 * If the inode is not already marked for IACC (in rdip() for read) 4850 * and the inode is not marked for no access time update (in wrip() 4851 * for write) then update the inode access time and mod time now. 4852 */ 4853 if ((ip->i_flag & (IACC | INOACC)) == 0) { 4854 if ((rw != S_OTHER) && (ip->i_mode & IFMT) != IFDIR) { 4855 if (!ULOCKFS_IS_NOIACC(ITOUL(ip)) && 4856 (fs->fs_ronly == 0) && 4857 (!ufsvfsp->vfs_noatime)) { 4858 mutex_enter(&ip->i_tlock); 4859 ip->i_flag |= IACC; 4860 ITIMES_NOLOCK(ip); 4861 mutex_exit(&ip->i_tlock); 4862 } 4863 } 4864 } 4865 4866 if (dolock) { 4867 rw_exit(&ip->i_contents); 4868 if (do_qlock && rwtype == RW_WRITER) 4869 rw_exit(&ufsvfsp->vfs_dqrwlock); 4870 } 4871 4872 unlock: 4873 if (ulp) { 4874 if ((rw == S_CREATE || rw == S_WRITE) && 4875 !(vp->v_flag & VISSWAP)) { 4876 TRANS_END_ASYNC(ufsvfsp, TOP_GETPAGE, trans_size); 4877 } 4878 ufs_lockfs_end(ulp); 4879 } 4880 out: 4881 return (err); 4882 } 4883 4884 /* 4885 * ufs_getpage_miss is called when ufs_getpage missed the page in the page 4886 * cache. The page is either read from the disk, or it's created. 4887 * A page is created (without disk read) if rw == S_CREATE, or if 4888 * the page is not backed with a real disk block (UFS hole). 4889 */ 4890 /* ARGSUSED */ 4891 static int 4892 ufs_getpage_miss(struct vnode *vp, u_offset_t off, size_t len, struct seg *seg, 4893 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw, int seq) 4894 { 4895 struct inode *ip = VTOI(vp); 4896 page_t *pp; 4897 daddr_t bn; 4898 size_t io_len; 4899 int crpage = 0; 4900 int err; 4901 int contig; 4902 int bsize = ip->i_fs->fs_bsize; 4903 4904 /* 4905 * Figure out whether the page can be created, or must be 4906 * must be read from the disk. 4907 */ 4908 if (rw == S_CREATE) 4909 crpage = 1; 4910 else { 4911 contig = 0; 4912 if (err = bmap_read(ip, off, &bn, &contig)) 4913 return (err); 4914 4915 crpage = (bn == UFS_HOLE); 4916 4917 /* 4918 * If its also a fallocated block that hasn't been written to 4919 * yet, we will treat it just like a UFS_HOLE and create 4920 * a zero page for it 4921 */ 4922 if (ISFALLOCBLK(ip, bn)) 4923 crpage = 1; 4924 } 4925 4926 if (crpage) { 4927 if ((pp = page_create_va(vp, off, PAGESIZE, PG_WAIT, seg, 4928 addr)) == NULL) { 4929 return (ufs_fault(vp, 4930 "ufs_getpage_miss: page_create == NULL")); 4931 } 4932 4933 if (rw != S_CREATE) 4934 pagezero(pp, 0, PAGESIZE); 4935 4936 io_len = PAGESIZE; 4937 } else { 4938 u_offset_t io_off; 4939 uint_t xlen; 4940 struct buf *bp; 4941 ufsvfs_t *ufsvfsp = ip->i_ufsvfs; 4942 4943 /* 4944 * If access is not in sequential order, we read from disk 4945 * in bsize units. 4946 * 4947 * We limit the size of the transfer to bsize if we are reading 4948 * from the beginning of the file. Note in this situation we 4949 * will hedge our bets and initiate an async read ahead of 4950 * the second block. 4951 */ 4952 if (!seq || off == 0) 4953 contig = MIN(contig, bsize); 4954 4955 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 4956 &io_len, off, contig, 0); 4957 4958 /* 4959 * Some other thread has entered the page. 4960 * ufs_getpage will retry page_lookup. 4961 */ 4962 if (pp == NULL) { 4963 pl[0] = NULL; 4964 return (0); 4965 } 4966 4967 /* 4968 * Zero part of the page which we are not 4969 * going to read from the disk. 4970 */ 4971 xlen = io_len & PAGEOFFSET; 4972 if (xlen != 0) 4973 pagezero(pp->p_prev, xlen, PAGESIZE - xlen); 4974 4975 bp = pageio_setup(pp, io_len, ip->i_devvp, B_READ); 4976 bp->b_edev = ip->i_dev; 4977 bp->b_dev = cmpdev(ip->i_dev); 4978 bp->b_blkno = bn; 4979 bp->b_un.b_addr = (caddr_t)0; 4980 bp->b_file = ip->i_vnode; 4981 bp->b_offset = off; 4982 4983 if (ufsvfsp->vfs_log) { 4984 lufs_read_strategy(ufsvfsp->vfs_log, bp); 4985 } else if (ufsvfsp->vfs_snapshot) { 4986 fssnap_strategy(&ufsvfsp->vfs_snapshot, bp); 4987 } else { 4988 ufsvfsp->vfs_iotstamp = ddi_get_lbolt(); 4989 ub.ub_getpages.value.ul++; 4990 (void) bdev_strategy(bp); 4991 lwp_stat_update(LWP_STAT_INBLK, 1); 4992 } 4993 4994 ip->i_nextrio = off + ((io_len + PAGESIZE - 1) & PAGEMASK); 4995 4996 /* 4997 * If the file access is sequential, initiate read ahead 4998 * of the next cluster. 4999 */ 5000 if (seq && ip->i_nextrio < ip->i_size) 5001 (void) ufs_getpage_ra(vp, off, seg, addr); 5002 err = biowait(bp); 5003 pageio_done(bp); 5004 5005 if (err) { 5006 pvn_read_done(pp, B_ERROR); 5007 return (err); 5008 } 5009 } 5010 5011 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 5012 return (0); 5013 } 5014 5015 /* 5016 * Read ahead a cluster from the disk. Returns the length in bytes. 5017 */ 5018 static int 5019 ufs_getpage_ra(struct vnode *vp, u_offset_t off, struct seg *seg, caddr_t addr) 5020 { 5021 struct inode *ip = VTOI(vp); 5022 page_t *pp; 5023 u_offset_t io_off = ip->i_nextrio; 5024 ufsvfs_t *ufsvfsp; 5025 caddr_t addr2 = addr + (io_off - off); 5026 struct buf *bp; 5027 daddr_t bn; 5028 size_t io_len; 5029 int err; 5030 int contig; 5031 int xlen; 5032 int bsize = ip->i_fs->fs_bsize; 5033 5034 /* 5035 * If the directio advisory is in effect on this file, 5036 * then do not do buffered read ahead. Read ahead makes 5037 * it more difficult on threads using directio as they 5038 * will be forced to flush the pages from this vnode. 5039 */ 5040 if ((ufsvfsp = ip->i_ufsvfs) == NULL) 5041 return (0); 5042 if (ip->i_flag & IDIRECTIO || ufsvfsp->vfs_forcedirectio) 5043 return (0); 5044 5045 /* 5046 * Is this test needed? 5047 */ 5048 if (addr2 >= seg->s_base + seg->s_size) 5049 return (0); 5050 5051 contig = 0; 5052 err = bmap_read(ip, io_off, &bn, &contig); 5053 /* 5054 * If its a UFS_HOLE or a fallocated block, do not perform 5055 * any read ahead's since there probably is nothing to read ahead 5056 */ 5057 if (err || bn == UFS_HOLE || ISFALLOCBLK(ip, bn)) 5058 return (0); 5059 5060 /* 5061 * Limit the transfer size to bsize if this is the 2nd block. 5062 */ 5063 if (io_off == (u_offset_t)bsize) 5064 contig = MIN(contig, bsize); 5065 5066 if ((pp = pvn_read_kluster(vp, io_off, seg, addr2, &io_off, 5067 &io_len, io_off, contig, 1)) == NULL) 5068 return (0); 5069 5070 /* 5071 * Zero part of page which we are not going to read from disk 5072 */ 5073 if ((xlen = (io_len & PAGEOFFSET)) > 0) 5074 pagezero(pp->p_prev, xlen, PAGESIZE - xlen); 5075 5076 ip->i_nextrio = (io_off + io_len + PAGESIZE - 1) & PAGEMASK; 5077 5078 bp = pageio_setup(pp, io_len, ip->i_devvp, B_READ | B_ASYNC); 5079 bp->b_edev = ip->i_dev; 5080 bp->b_dev = cmpdev(ip->i_dev); 5081 bp->b_blkno = bn; 5082 bp->b_un.b_addr = (caddr_t)0; 5083 bp->b_file = ip->i_vnode; 5084 bp->b_offset = off; 5085 5086 if (ufsvfsp->vfs_log) { 5087 lufs_read_strategy(ufsvfsp->vfs_log, bp); 5088 } else if (ufsvfsp->vfs_snapshot) { 5089 fssnap_strategy(&ufsvfsp->vfs_snapshot, bp); 5090 } else { 5091 ufsvfsp->vfs_iotstamp = ddi_get_lbolt(); 5092 ub.ub_getras.value.ul++; 5093 (void) bdev_strategy(bp); 5094 lwp_stat_update(LWP_STAT_INBLK, 1); 5095 } 5096 5097 return (io_len); 5098 } 5099 5100 int ufs_delay = 1; 5101 /* 5102 * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE, B_ASYNC} 5103 * 5104 * LMXXX - the inode really ought to contain a pointer to one of these 5105 * async args. Stuff gunk in there and just hand the whole mess off. 5106 * This would replace i_delaylen, i_delayoff. 5107 */ 5108 /*ARGSUSED*/ 5109 static int 5110 ufs_putpage(struct vnode *vp, offset_t off, size_t len, int flags, 5111 struct cred *cr, caller_context_t *ct) 5112 { 5113 struct inode *ip = VTOI(vp); 5114 int err = 0; 5115 5116 if (vp->v_count == 0) { 5117 return (ufs_fault(vp, "ufs_putpage: bad v_count == 0")); 5118 } 5119 5120 /* 5121 * XXX - Why should this check be made here? 5122 */ 5123 if (vp->v_flag & VNOMAP) { 5124 err = ENOSYS; 5125 goto errout; 5126 } 5127 5128 if (ip->i_ufsvfs == NULL) { 5129 err = EIO; 5130 goto errout; 5131 } 5132 5133 if (flags & B_ASYNC) { 5134 if (ufs_delay && len && 5135 (flags & ~(B_ASYNC|B_DONTNEED|B_FREE)) == 0) { 5136 mutex_enter(&ip->i_tlock); 5137 /* 5138 * If nobody stalled, start a new cluster. 5139 */ 5140 if (ip->i_delaylen == 0) { 5141 ip->i_delayoff = off; 5142 ip->i_delaylen = len; 5143 mutex_exit(&ip->i_tlock); 5144 goto errout; 5145 } 5146 /* 5147 * If we have a full cluster or they are not contig, 5148 * then push last cluster and start over. 5149 */ 5150 if (ip->i_delaylen >= CLUSTSZ(ip) || 5151 ip->i_delayoff + ip->i_delaylen != off) { 5152 u_offset_t doff; 5153 size_t dlen; 5154 5155 doff = ip->i_delayoff; 5156 dlen = ip->i_delaylen; 5157 ip->i_delayoff = off; 5158 ip->i_delaylen = len; 5159 mutex_exit(&ip->i_tlock); 5160 err = ufs_putpages(vp, doff, dlen, 5161 flags, cr); 5162 /* LMXXX - flags are new val, not old */ 5163 goto errout; 5164 } 5165 /* 5166 * There is something there, it's not full, and 5167 * it is contig. 5168 */ 5169 ip->i_delaylen += len; 5170 mutex_exit(&ip->i_tlock); 5171 goto errout; 5172 } 5173 /* 5174 * Must have weird flags or we are not clustering. 5175 */ 5176 } 5177 5178 err = ufs_putpages(vp, off, len, flags, cr); 5179 5180 errout: 5181 return (err); 5182 } 5183 5184 /* 5185 * If len == 0, do from off to EOF. 5186 * 5187 * The normal cases should be len == 0 & off == 0 (entire vp list), 5188 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE 5189 * (from pageout). 5190 */ 5191 /*ARGSUSED*/ 5192 static int 5193 ufs_putpages( 5194 struct vnode *vp, 5195 offset_t off, 5196 size_t len, 5197 int flags, 5198 struct cred *cr) 5199 { 5200 u_offset_t io_off; 5201 u_offset_t eoff; 5202 struct inode *ip = VTOI(vp); 5203 page_t *pp; 5204 size_t io_len; 5205 int err = 0; 5206 int dolock; 5207 5208 if (vp->v_count == 0) 5209 return (ufs_fault(vp, "ufs_putpages: v_count == 0")); 5210 /* 5211 * Acquire the readers/write inode lock before locking 5212 * any pages in this inode. 5213 * The inode lock is held during i/o. 5214 */ 5215 if (len == 0) { 5216 mutex_enter(&ip->i_tlock); 5217 ip->i_delayoff = ip->i_delaylen = 0; 5218 mutex_exit(&ip->i_tlock); 5219 } 5220 dolock = (rw_owner(&ip->i_contents) != curthread); 5221 if (dolock) { 5222 /* 5223 * Must synchronize this thread and any possible thread 5224 * operating in the window of vulnerability in wrip(). 5225 * It is dangerous to allow both a thread doing a putpage 5226 * and a thread writing, so serialize them. The exception 5227 * is when the thread in wrip() does something which causes 5228 * a putpage operation. Then, the thread must be allowed 5229 * to continue. It may encounter a bmap_read problem in 5230 * ufs_putapage, but that is handled in ufs_putapage. 5231 * Allow async writers to proceed, we don't want to block 5232 * the pageout daemon. 5233 */ 5234 if (ip->i_writer == curthread) 5235 rw_enter(&ip->i_contents, RW_READER); 5236 else { 5237 for (;;) { 5238 rw_enter(&ip->i_contents, RW_READER); 5239 mutex_enter(&ip->i_tlock); 5240 /* 5241 * If there is no thread in the critical 5242 * section of wrip(), then proceed. 5243 * Otherwise, wait until there isn't one. 5244 */ 5245 if (ip->i_writer == NULL) { 5246 mutex_exit(&ip->i_tlock); 5247 break; 5248 } 5249 rw_exit(&ip->i_contents); 5250 /* 5251 * Bounce async writers when we have a writer 5252 * working on this file so we don't deadlock 5253 * the pageout daemon. 5254 */ 5255 if (flags & B_ASYNC) { 5256 mutex_exit(&ip->i_tlock); 5257 return (0); 5258 } 5259 cv_wait(&ip->i_wrcv, &ip->i_tlock); 5260 mutex_exit(&ip->i_tlock); 5261 } 5262 } 5263 } 5264 5265 if (!vn_has_cached_data(vp)) { 5266 if (dolock) 5267 rw_exit(&ip->i_contents); 5268 return (0); 5269 } 5270 5271 if (len == 0) { 5272 /* 5273 * Search the entire vp list for pages >= off. 5274 */ 5275 err = pvn_vplist_dirty(vp, (u_offset_t)off, ufs_putapage, 5276 flags, cr); 5277 } else { 5278 /* 5279 * Loop over all offsets in the range looking for 5280 * pages to deal with. 5281 */ 5282 if ((eoff = blkroundup(ip->i_fs, ip->i_size)) != 0) 5283 eoff = MIN(off + len, eoff); 5284 else 5285 eoff = off + len; 5286 5287 for (io_off = off; io_off < eoff; io_off += io_len) { 5288 /* 5289 * If we are not invalidating, synchronously 5290 * freeing or writing pages, use the routine 5291 * page_lookup_nowait() to prevent reclaiming 5292 * them from the free list. 5293 */ 5294 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 5295 pp = page_lookup(vp, io_off, 5296 (flags & (B_INVAL | B_FREE)) ? 5297 SE_EXCL : SE_SHARED); 5298 } else { 5299 pp = page_lookup_nowait(vp, io_off, 5300 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 5301 } 5302 5303 if (pp == NULL || pvn_getdirty(pp, flags) == 0) 5304 io_len = PAGESIZE; 5305 else { 5306 u_offset_t *io_offp = &io_off; 5307 5308 err = ufs_putapage(vp, pp, io_offp, &io_len, 5309 flags, cr); 5310 if (err != 0) 5311 break; 5312 /* 5313 * "io_off" and "io_len" are returned as 5314 * the range of pages we actually wrote. 5315 * This allows us to skip ahead more quickly 5316 * since several pages may've been dealt 5317 * with by this iteration of the loop. 5318 */ 5319 } 5320 } 5321 } 5322 if (err == 0 && off == 0 && (len == 0 || len >= ip->i_size)) { 5323 /* 5324 * We have just sync'ed back all the pages on 5325 * the inode, turn off the IMODTIME flag. 5326 */ 5327 mutex_enter(&ip->i_tlock); 5328 ip->i_flag &= ~IMODTIME; 5329 mutex_exit(&ip->i_tlock); 5330 } 5331 if (dolock) 5332 rw_exit(&ip->i_contents); 5333 return (err); 5334 } 5335 5336 static void 5337 ufs_iodone(buf_t *bp) 5338 { 5339 struct inode *ip; 5340 5341 ASSERT((bp->b_pages->p_vnode != NULL) && !(bp->b_flags & B_READ)); 5342 5343 bp->b_iodone = NULL; 5344 5345 ip = VTOI(bp->b_pages->p_vnode); 5346 5347 mutex_enter(&ip->i_tlock); 5348 if (ip->i_writes >= ufs_LW) { 5349 if ((ip->i_writes -= bp->b_bcount) <= ufs_LW) 5350 if (ufs_WRITES) 5351 cv_broadcast(&ip->i_wrcv); /* wake all up */ 5352 } else { 5353 ip->i_writes -= bp->b_bcount; 5354 } 5355 5356 mutex_exit(&ip->i_tlock); 5357 iodone(bp); 5358 } 5359 5360 /* 5361 * Write out a single page, possibly klustering adjacent 5362 * dirty pages. The inode lock must be held. 5363 * 5364 * LMXXX - bsize < pagesize not done. 5365 */ 5366 /*ARGSUSED*/ 5367 int 5368 ufs_putapage( 5369 struct vnode *vp, 5370 page_t *pp, 5371 u_offset_t *offp, 5372 size_t *lenp, /* return values */ 5373 int flags, 5374 struct cred *cr) 5375 { 5376 u_offset_t io_off; 5377 u_offset_t off; 5378 struct inode *ip = VTOI(vp); 5379 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 5380 struct fs *fs; 5381 struct buf *bp; 5382 size_t io_len; 5383 daddr_t bn; 5384 int err; 5385 int contig; 5386 int dotrans; 5387 5388 ASSERT(RW_LOCK_HELD(&ip->i_contents)); 5389 5390 if (ufsvfsp == NULL) { 5391 err = EIO; 5392 goto out_trace; 5393 } 5394 5395 fs = ip->i_fs; 5396 ASSERT(fs->fs_ronly == 0); 5397 5398 /* 5399 * If the modified time on the inode has not already been 5400 * set elsewhere (e.g. for write/setattr) we set the time now. 5401 * This gives us approximate modified times for mmap'ed files 5402 * which are modified via stores in the user address space. 5403 */ 5404 if ((ip->i_flag & IMODTIME) == 0) { 5405 mutex_enter(&ip->i_tlock); 5406 ip->i_flag |= IUPD; 5407 ip->i_seq++; 5408 ITIMES_NOLOCK(ip); 5409 mutex_exit(&ip->i_tlock); 5410 } 5411 5412 /* 5413 * Align the request to a block boundry (for old file systems), 5414 * and go ask bmap() how contiguous things are for this file. 5415 */ 5416 off = pp->p_offset & (offset_t)fs->fs_bmask; /* block align it */ 5417 contig = 0; 5418 err = bmap_read(ip, off, &bn, &contig); 5419 if (err) 5420 goto out; 5421 if (bn == UFS_HOLE) { /* putpage never allocates */ 5422 /* 5423 * logging device is in error mode; simply return EIO 5424 */ 5425 if (TRANS_ISERROR(ufsvfsp)) { 5426 err = EIO; 5427 goto out; 5428 } 5429 /* 5430 * Oops, the thread in the window in wrip() did some 5431 * sort of operation which caused a putpage in the bad 5432 * range. In this case, just return an error which will 5433 * cause the software modified bit on the page to set 5434 * and the page will get written out again later. 5435 */ 5436 if (ip->i_writer == curthread) { 5437 err = EIO; 5438 goto out; 5439 } 5440 /* 5441 * If the pager is trying to push a page in the bad range 5442 * just tell him to try again later when things are better. 5443 */ 5444 if (flags & B_ASYNC) { 5445 err = EAGAIN; 5446 goto out; 5447 } 5448 err = ufs_fault(ITOV(ip), "ufs_putapage: bn == UFS_HOLE"); 5449 goto out; 5450 } 5451 5452 /* 5453 * If it is an fallocate'd block, reverse the negativity since 5454 * we are now writing to it 5455 */ 5456 if (ISFALLOCBLK(ip, bn)) { 5457 err = bmap_set_bn(vp, off, dbtofsb(fs, -bn)); 5458 if (err) 5459 goto out; 5460 5461 bn = -bn; 5462 } 5463 5464 /* 5465 * Take the length (of contiguous bytes) passed back from bmap() 5466 * and _try_ and get a set of pages covering that extent. 5467 */ 5468 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, off, contig, flags); 5469 5470 /* 5471 * May have run out of memory and not clustered backwards. 5472 * off p_offset 5473 * [ pp - 1 ][ pp ] 5474 * [ block ] 5475 * We told bmap off, so we have to adjust the bn accordingly. 5476 */ 5477 if (io_off > off) { 5478 bn += btod(io_off - off); 5479 contig -= (io_off - off); 5480 } 5481 5482 /* 5483 * bmap was carefull to tell us the right size so use that. 5484 * There might be unallocated frags at the end. 5485 * LMXXX - bzero the end of the page? We must be writing after EOF. 5486 */ 5487 if (io_len > contig) { 5488 ASSERT(io_len - contig < fs->fs_bsize); 5489 io_len -= (io_len - contig); 5490 } 5491 5492 /* 5493 * Handle the case where we are writing the last page after EOF. 5494 * 5495 * XXX - just a patch for i-mt3. 5496 */ 5497 if (io_len == 0) { 5498 ASSERT(pp->p_offset >= 5499 (u_offset_t)(roundup(ip->i_size, PAGESIZE))); 5500 io_len = PAGESIZE; 5501 } 5502 5503 bp = pageio_setup(pp, io_len, ip->i_devvp, B_WRITE | flags); 5504 5505 ULOCKFS_SET_MOD(ITOUL(ip)); 5506 5507 bp->b_edev = ip->i_dev; 5508 bp->b_dev = cmpdev(ip->i_dev); 5509 bp->b_blkno = bn; 5510 bp->b_un.b_addr = (caddr_t)0; 5511 bp->b_file = ip->i_vnode; 5512 5513 /* 5514 * File contents of shadow or quota inodes are metadata, and updates 5515 * to these need to be put into a logging transaction. All direct 5516 * callers in UFS do that, but fsflush can come here _before_ the 5517 * normal codepath. An example would be updating ACL information, for 5518 * which the normal codepath would be: 5519 * ufs_si_store() 5520 * ufs_rdwri() 5521 * wrip() 5522 * segmap_release() 5523 * VOP_PUTPAGE() 5524 * Here, fsflush can pick up the dirty page before segmap_release() 5525 * forces it out. If that happens, there's no transaction. 5526 * We therefore need to test whether a transaction exists, and if not 5527 * create one - for fsflush. 5528 */ 5529 dotrans = 5530 (((ip->i_mode & IFMT) == IFSHAD || ufsvfsp->vfs_qinod == ip) && 5531 ((curthread->t_flag & T_DONTBLOCK) == 0) && 5532 (TRANS_ISTRANS(ufsvfsp))); 5533 5534 if (dotrans) { 5535 curthread->t_flag |= T_DONTBLOCK; 5536 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_PUTPAGE, TOP_PUTPAGE_SIZE(ip)); 5537 } 5538 if (TRANS_ISTRANS(ufsvfsp)) { 5539 if ((ip->i_mode & IFMT) == IFSHAD) { 5540 TRANS_BUF(ufsvfsp, 0, io_len, bp, DT_SHAD); 5541 } else if (ufsvfsp->vfs_qinod == ip) { 5542 TRANS_DELTA(ufsvfsp, ldbtob(bn), bp->b_bcount, DT_QR, 5543 0, 0); 5544 } 5545 } 5546 if (dotrans) { 5547 TRANS_END_ASYNC(ufsvfsp, TOP_PUTPAGE, TOP_PUTPAGE_SIZE(ip)); 5548 curthread->t_flag &= ~T_DONTBLOCK; 5549 } 5550 5551 /* write throttle */ 5552 5553 ASSERT(bp->b_iodone == NULL); 5554 bp->b_iodone = (int (*)())ufs_iodone; 5555 mutex_enter(&ip->i_tlock); 5556 ip->i_writes += bp->b_bcount; 5557 mutex_exit(&ip->i_tlock); 5558 5559 if (bp->b_flags & B_ASYNC) { 5560 if (ufsvfsp->vfs_log) { 5561 lufs_write_strategy(ufsvfsp->vfs_log, bp); 5562 } else if (ufsvfsp->vfs_snapshot) { 5563 fssnap_strategy(&ufsvfsp->vfs_snapshot, bp); 5564 } else { 5565 ufsvfsp->vfs_iotstamp = ddi_get_lbolt(); 5566 ub.ub_putasyncs.value.ul++; 5567 (void) bdev_strategy(bp); 5568 lwp_stat_update(LWP_STAT_OUBLK, 1); 5569 } 5570 } else { 5571 if (ufsvfsp->vfs_log) { 5572 lufs_write_strategy(ufsvfsp->vfs_log, bp); 5573 } else if (ufsvfsp->vfs_snapshot) { 5574 fssnap_strategy(&ufsvfsp->vfs_snapshot, bp); 5575 } else { 5576 ufsvfsp->vfs_iotstamp = ddi_get_lbolt(); 5577 ub.ub_putsyncs.value.ul++; 5578 (void) bdev_strategy(bp); 5579 lwp_stat_update(LWP_STAT_OUBLK, 1); 5580 } 5581 err = biowait(bp); 5582 pageio_done(bp); 5583 pvn_write_done(pp, ((err) ? B_ERROR : 0) | B_WRITE | flags); 5584 } 5585 5586 pp = NULL; 5587 5588 out: 5589 if (err != 0 && pp != NULL) 5590 pvn_write_done(pp, B_ERROR | B_WRITE | flags); 5591 5592 if (offp) 5593 *offp = io_off; 5594 if (lenp) 5595 *lenp = io_len; 5596 out_trace: 5597 return (err); 5598 } 5599 5600 uint64_t ufs_map_alock_retry_cnt; 5601 uint64_t ufs_map_lockfs_retry_cnt; 5602 5603 /* ARGSUSED */ 5604 static int 5605 ufs_map(struct vnode *vp, 5606 offset_t off, 5607 struct as *as, 5608 caddr_t *addrp, 5609 size_t len, 5610 uchar_t prot, 5611 uchar_t maxprot, 5612 uint_t flags, 5613 struct cred *cr, 5614 caller_context_t *ct) 5615 { 5616 struct segvn_crargs vn_a; 5617 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs; 5618 struct ulockfs *ulp; 5619 int error, sig; 5620 k_sigset_t smask; 5621 caddr_t hint = *addrp; 5622 5623 if (vp->v_flag & VNOMAP) { 5624 error = ENOSYS; 5625 goto out; 5626 } 5627 5628 if (off < (offset_t)0 || (offset_t)(off + len) < (offset_t)0) { 5629 error = ENXIO; 5630 goto out; 5631 } 5632 5633 if (vp->v_type != VREG) { 5634 error = ENODEV; 5635 goto out; 5636 } 5637 5638 retry_map: 5639 *addrp = hint; 5640 /* 5641 * If file is being locked, disallow mapping. 5642 */ 5643 if (vn_has_mandatory_locks(vp, VTOI(vp)->i_mode)) { 5644 error = EAGAIN; 5645 goto out; 5646 } 5647 5648 as_rangelock(as); 5649 /* 5650 * Note that if we are retrying (because ufs_lockfs_trybegin failed in 5651 * the previous attempt), some other thread could have grabbed 5652 * the same VA range if MAP_FIXED is set. In that case, choose_addr 5653 * would unmap the valid VA range, that is ok. 5654 */ 5655 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 5656 if (error != 0) { 5657 as_rangeunlock(as); 5658 goto out; 5659 } 5660 5661 /* 5662 * a_lock has to be acquired before entering the lockfs protocol 5663 * because that is the order in which pagefault works. Also we cannot 5664 * block on a_lock here because this waiting writer will prevent 5665 * further readers like ufs_read from progressing and could cause 5666 * deadlock between ufs_read/ufs_map/pagefault when a quiesce is 5667 * pending. 5668 */ 5669 while (!AS_LOCK_TRYENTER(as, RW_WRITER)) { 5670 ufs_map_alock_retry_cnt++; 5671 delay(RETRY_LOCK_DELAY); 5672 } 5673 5674 /* 5675 * We can't hold as->a_lock and wait for lockfs to succeed because 5676 * the proc tools might hang on a_lock, so call ufs_lockfs_trybegin() 5677 * instead. 5678 */ 5679 if (error = ufs_lockfs_trybegin(ufsvfsp, &ulp, ULOCKFS_MAP_MASK)) { 5680 /* 5681 * ufs_lockfs_trybegin() did not succeed. It is safer to give up 5682 * as->a_lock and wait for ulp->ul_fs_lock status to change. 5683 */ 5684 ufs_map_lockfs_retry_cnt++; 5685 AS_LOCK_EXIT(as); 5686 as_rangeunlock(as); 5687 if (error == EIO) 5688 goto out; 5689 5690 mutex_enter(&ulp->ul_lock); 5691 while (ulp->ul_fs_lock & ULOCKFS_MAP_MASK) { 5692 if (ULOCKFS_IS_SLOCK(ulp) || ufsvfsp->vfs_nointr) { 5693 cv_wait(&ulp->ul_cv, &ulp->ul_lock); 5694 } else { 5695 sigintr(&smask, 1); 5696 sig = cv_wait_sig(&ulp->ul_cv, &ulp->ul_lock); 5697 sigunintr(&smask); 5698 if (((ulp->ul_fs_lock & ULOCKFS_MAP_MASK) && 5699 !sig) || ufsvfsp->vfs_dontblock) { 5700 mutex_exit(&ulp->ul_lock); 5701 return (EINTR); 5702 } 5703 } 5704 } 5705 mutex_exit(&ulp->ul_lock); 5706 goto retry_map; 5707 } 5708 5709 vn_a.vp = vp; 5710 vn_a.offset = (u_offset_t)off; 5711 vn_a.type = flags & MAP_TYPE; 5712 vn_a.prot = prot; 5713 vn_a.maxprot = maxprot; 5714 vn_a.cred = cr; 5715 vn_a.amp = NULL; 5716 vn_a.flags = flags & ~MAP_TYPE; 5717 vn_a.szc = 0; 5718 vn_a.lgrp_mem_policy_flags = 0; 5719 5720 error = as_map_locked(as, *addrp, len, segvn_create, &vn_a); 5721 if (ulp) 5722 ufs_lockfs_end(ulp); 5723 as_rangeunlock(as); 5724 out: 5725 return (error); 5726 } 5727 5728 /* ARGSUSED */ 5729 static int 5730 ufs_addmap(struct vnode *vp, 5731 offset_t off, 5732 struct as *as, 5733 caddr_t addr, 5734 size_t len, 5735 uchar_t prot, 5736 uchar_t maxprot, 5737 uint_t flags, 5738 struct cred *cr, 5739 caller_context_t *ct) 5740 { 5741 struct inode *ip = VTOI(vp); 5742 5743 if (vp->v_flag & VNOMAP) { 5744 return (ENOSYS); 5745 } 5746 5747 mutex_enter(&ip->i_tlock); 5748 ip->i_mapcnt += btopr(len); 5749 mutex_exit(&ip->i_tlock); 5750 return (0); 5751 } 5752 5753 /*ARGSUSED*/ 5754 static int 5755 ufs_delmap(struct vnode *vp, offset_t off, struct as *as, caddr_t addr, 5756 size_t len, uint_t prot, uint_t maxprot, uint_t flags, 5757 struct cred *cr, caller_context_t *ct) 5758 { 5759 struct inode *ip = VTOI(vp); 5760 5761 if (vp->v_flag & VNOMAP) { 5762 return (ENOSYS); 5763 } 5764 5765 mutex_enter(&ip->i_tlock); 5766 ip->i_mapcnt -= btopr(len); /* Count released mappings */ 5767 ASSERT(ip->i_mapcnt >= 0); 5768 mutex_exit(&ip->i_tlock); 5769 return (0); 5770 } 5771 /* 5772 * Return the answer requested to poll() for non-device files 5773 */ 5774 struct pollhead ufs_pollhd; 5775 5776 /* ARGSUSED */ 5777 int 5778 ufs_poll(vnode_t *vp, short ev, int any, short *revp, struct pollhead **phpp, 5779 caller_context_t *ct) 5780 { 5781 struct ufsvfs *ufsvfsp; 5782 5783 *revp = 0; 5784 ufsvfsp = VTOI(vp)->i_ufsvfs; 5785 5786 if (!ufsvfsp) { 5787 *revp = POLLHUP; 5788 goto out; 5789 } 5790 5791 if (ULOCKFS_IS_HLOCK(&ufsvfsp->vfs_ulockfs) || 5792 ULOCKFS_IS_ELOCK(&ufsvfsp->vfs_ulockfs)) { 5793 *revp |= POLLERR; 5794 5795 } else { 5796 if ((ev & POLLOUT) && !ufsvfsp->vfs_fs->fs_ronly && 5797 !ULOCKFS_IS_WLOCK(&ufsvfsp->vfs_ulockfs)) 5798 *revp |= POLLOUT; 5799 5800 if ((ev & POLLWRBAND) && !ufsvfsp->vfs_fs->fs_ronly && 5801 !ULOCKFS_IS_WLOCK(&ufsvfsp->vfs_ulockfs)) 5802 *revp |= POLLWRBAND; 5803 5804 if (ev & POLLIN) 5805 *revp |= POLLIN; 5806 5807 if (ev & POLLRDNORM) 5808 *revp |= POLLRDNORM; 5809 5810 if (ev & POLLRDBAND) 5811 *revp |= POLLRDBAND; 5812 } 5813 5814 if ((ev & POLLPRI) && (*revp & (POLLERR|POLLHUP))) 5815 *revp |= POLLPRI; 5816 out: 5817 *phpp = !any && !*revp ? &ufs_pollhd : (struct pollhead *)NULL; 5818 5819 return (0); 5820 } 5821 5822 /* ARGSUSED */ 5823 static int 5824 ufs_l_pathconf(struct vnode *vp, int cmd, ulong_t *valp, struct cred *cr, 5825 caller_context_t *ct) 5826 { 5827 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs; 5828 struct ulockfs *ulp = NULL; 5829 struct inode *sip = NULL; 5830 int error; 5831 struct inode *ip = VTOI(vp); 5832 int issync; 5833 5834 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_PATHCONF_MASK); 5835 if (error) 5836 return (error); 5837 5838 switch (cmd) { 5839 /* 5840 * Have to handle _PC_NAME_MAX here, because the normal way 5841 * [fs_pathconf() -> VOP_STATVFS() -> ufs_statvfs()] 5842 * results in a lock ordering reversal between 5843 * ufs_lockfs_{begin,end}() and 5844 * ufs_thread_{suspend,continue}(). 5845 * 5846 * Keep in sync with ufs_statvfs(). 5847 */ 5848 case _PC_NAME_MAX: 5849 *valp = MAXNAMLEN; 5850 break; 5851 5852 case _PC_FILESIZEBITS: 5853 if (ufsvfsp->vfs_lfflags & UFS_LARGEFILES) 5854 *valp = UFS_FILESIZE_BITS; 5855 else 5856 *valp = 32; 5857 break; 5858 5859 case _PC_XATTR_EXISTS: 5860 if (vp->v_vfsp->vfs_flag & VFS_XATTR) { 5861 5862 error = 5863 ufs_xattr_getattrdir(vp, &sip, LOOKUP_XATTR, cr); 5864 if (error == 0 && sip != NULL) { 5865 /* Start transaction */ 5866 if (ulp) { 5867 TRANS_BEGIN_CSYNC(ufsvfsp, issync, 5868 TOP_RMDIR, TOP_RMDIR_SIZE); 5869 } 5870 /* 5871 * Is directory empty 5872 */ 5873 rw_enter(&sip->i_rwlock, RW_WRITER); 5874 rw_enter(&sip->i_contents, RW_WRITER); 5875 if (ufs_xattrdirempty(sip, 5876 sip->i_number, CRED())) { 5877 rw_enter(&ip->i_contents, RW_WRITER); 5878 ufs_unhook_shadow(ip, sip); 5879 rw_exit(&ip->i_contents); 5880 5881 *valp = 0; 5882 5883 } else 5884 *valp = 1; 5885 rw_exit(&sip->i_contents); 5886 rw_exit(&sip->i_rwlock); 5887 if (ulp) { 5888 TRANS_END_CSYNC(ufsvfsp, error, issync, 5889 TOP_RMDIR, TOP_RMDIR_SIZE); 5890 } 5891 VN_RELE(ITOV(sip)); 5892 } else if (error == ENOENT) { 5893 *valp = 0; 5894 error = 0; 5895 } 5896 } else { 5897 error = fs_pathconf(vp, cmd, valp, cr, ct); 5898 } 5899 break; 5900 5901 case _PC_ACL_ENABLED: 5902 *valp = _ACL_ACLENT_ENABLED; 5903 break; 5904 5905 case _PC_MIN_HOLE_SIZE: 5906 *valp = (ulong_t)ip->i_fs->fs_bsize; 5907 break; 5908 5909 case _PC_SATTR_ENABLED: 5910 case _PC_SATTR_EXISTS: 5911 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 5912 (vp->v_type == VREG || vp->v_type == VDIR); 5913 break; 5914 5915 case _PC_TIMESTAMP_RESOLUTION: 5916 /* 5917 * UFS keeps only microsecond timestamp resolution. 5918 * This is historical and will probably never change. 5919 */ 5920 *valp = 1000L; 5921 break; 5922 5923 default: 5924 error = fs_pathconf(vp, cmd, valp, cr, ct); 5925 break; 5926 } 5927 5928 if (ulp != NULL) { 5929 ufs_lockfs_end(ulp); 5930 } 5931 return (error); 5932 } 5933 5934 int ufs_pageio_writes, ufs_pageio_reads; 5935 5936 /*ARGSUSED*/ 5937 static int 5938 ufs_pageio(struct vnode *vp, page_t *pp, u_offset_t io_off, size_t io_len, 5939 int flags, struct cred *cr, caller_context_t *ct) 5940 { 5941 struct inode *ip = VTOI(vp); 5942 struct ufsvfs *ufsvfsp; 5943 page_t *npp = NULL, *opp = NULL, *cpp = pp; 5944 struct buf *bp; 5945 daddr_t bn; 5946 size_t done_len = 0, cur_len = 0; 5947 int err = 0; 5948 int contig = 0; 5949 int dolock; 5950 int vmpss = 0; 5951 struct ulockfs *ulp; 5952 5953 if ((flags & B_READ) && pp != NULL && pp->p_vnode == vp && 5954 vp->v_mpssdata != NULL) { 5955 vmpss = 1; 5956 } 5957 5958 dolock = (rw_owner(&ip->i_contents) != curthread); 5959 /* 5960 * We need a better check. Ideally, we would use another 5961 * vnodeops so that hlocked and forcibly unmounted file 5962 * systems would return EIO where appropriate and w/o the 5963 * need for these checks. 5964 */ 5965 if ((ufsvfsp = ip->i_ufsvfs) == NULL) 5966 return (EIO); 5967 5968 /* 5969 * For vmpss (pp can be NULL) case respect the quiesce protocol. 5970 * ul_lock must be taken before locking pages so we can't use it here 5971 * if pp is non NULL because segvn already locked pages 5972 * SE_EXCL. Instead we rely on the fact that a forced umount or 5973 * applying a filesystem lock via ufs_fiolfs() will block in the 5974 * implicit call to ufs_flush() until we unlock the pages after the 5975 * return to segvn. Other ufs_quiesce() callers keep ufs_quiesce_pend 5976 * above 0 until they are done. We have to be careful not to increment 5977 * ul_vnops_cnt here after forceful unmount hlocks the file system. 5978 * 5979 * If pp is NULL use ul_lock to make sure we don't increment 5980 * ul_vnops_cnt after forceful unmount hlocks the file system. 5981 */ 5982 if (vmpss || pp == NULL) { 5983 ulp = &ufsvfsp->vfs_ulockfs; 5984 if (pp == NULL) 5985 mutex_enter(&ulp->ul_lock); 5986 if (ulp->ul_fs_lock & ULOCKFS_GETREAD_MASK) { 5987 if (pp == NULL) { 5988 mutex_exit(&ulp->ul_lock); 5989 } 5990 return (vmpss ? EIO : EINVAL); 5991 } 5992 atomic_inc_ulong(&ulp->ul_vnops_cnt); 5993 if (pp == NULL) 5994 mutex_exit(&ulp->ul_lock); 5995 if (ufs_quiesce_pend) { 5996 if (!atomic_dec_ulong_nv(&ulp->ul_vnops_cnt)) 5997 cv_broadcast(&ulp->ul_cv); 5998 return (vmpss ? EIO : EINVAL); 5999 } 6000 } 6001 6002 if (dolock) { 6003 /* 6004 * segvn may call VOP_PAGEIO() instead of VOP_GETPAGE() to 6005 * handle a fault against a segment that maps vnode pages with 6006 * large mappings. Segvn creates pages and holds them locked 6007 * SE_EXCL during VOP_PAGEIO() call. In this case we have to 6008 * use rw_tryenter() to avoid a potential deadlock since in 6009 * lock order i_contents needs to be taken first. 6010 * Segvn will retry via VOP_GETPAGE() if VOP_PAGEIO() fails. 6011 */ 6012 if (!vmpss) { 6013 rw_enter(&ip->i_contents, RW_READER); 6014 } else if (!rw_tryenter(&ip->i_contents, RW_READER)) { 6015 if (!atomic_dec_ulong_nv(&ulp->ul_vnops_cnt)) 6016 cv_broadcast(&ulp->ul_cv); 6017 return (EDEADLK); 6018 } 6019 } 6020 6021 /* 6022 * Return an error to segvn because the pagefault request is beyond 6023 * PAGESIZE rounded EOF. 6024 */ 6025 if (vmpss && btopr(io_off + io_len) > btopr(ip->i_size)) { 6026 if (dolock) 6027 rw_exit(&ip->i_contents); 6028 if (!atomic_dec_ulong_nv(&ulp->ul_vnops_cnt)) 6029 cv_broadcast(&ulp->ul_cv); 6030 return (EFAULT); 6031 } 6032 6033 if (pp == NULL) { 6034 if (bmap_has_holes(ip)) { 6035 err = ENOSYS; 6036 } else { 6037 err = EINVAL; 6038 } 6039 if (dolock) 6040 rw_exit(&ip->i_contents); 6041 if (!atomic_dec_ulong_nv(&ulp->ul_vnops_cnt)) 6042 cv_broadcast(&ulp->ul_cv); 6043 return (err); 6044 } 6045 6046 /* 6047 * Break the io request into chunks, one for each contiguous 6048 * stretch of disk blocks in the target file. 6049 */ 6050 while (done_len < io_len) { 6051 ASSERT(cpp); 6052 contig = 0; 6053 if (err = bmap_read(ip, (u_offset_t)(io_off + done_len), 6054 &bn, &contig)) 6055 break; 6056 6057 if (bn == UFS_HOLE) { /* No holey swapfiles */ 6058 if (vmpss) { 6059 err = EFAULT; 6060 break; 6061 } 6062 err = ufs_fault(ITOV(ip), "ufs_pageio: bn == UFS_HOLE"); 6063 break; 6064 } 6065 6066 cur_len = MIN(io_len - done_len, contig); 6067 /* 6068 * Zero out a page beyond EOF, when the last block of 6069 * a file is a UFS fragment so that ufs_pageio() can be used 6070 * instead of ufs_getpage() to handle faults against 6071 * segvn segments that use large pages. 6072 */ 6073 page_list_break(&cpp, &npp, btopr(cur_len)); 6074 if ((flags & B_READ) && (cur_len & PAGEOFFSET)) { 6075 size_t xlen = cur_len & PAGEOFFSET; 6076 pagezero(cpp->p_prev, xlen, PAGESIZE - xlen); 6077 } 6078 6079 bp = pageio_setup(cpp, cur_len, ip->i_devvp, flags); 6080 ASSERT(bp != NULL); 6081 6082 bp->b_edev = ip->i_dev; 6083 bp->b_dev = cmpdev(ip->i_dev); 6084 bp->b_blkno = bn; 6085 bp->b_un.b_addr = (caddr_t)0; 6086 bp->b_file = ip->i_vnode; 6087 6088 ufsvfsp->vfs_iotstamp = ddi_get_lbolt(); 6089 ub.ub_pageios.value.ul++; 6090 if (ufsvfsp->vfs_snapshot) 6091 fssnap_strategy(&(ufsvfsp->vfs_snapshot), bp); 6092 else 6093 (void) bdev_strategy(bp); 6094 6095 if (flags & B_READ) 6096 ufs_pageio_reads++; 6097 else 6098 ufs_pageio_writes++; 6099 if (flags & B_READ) 6100 lwp_stat_update(LWP_STAT_INBLK, 1); 6101 else 6102 lwp_stat_update(LWP_STAT_OUBLK, 1); 6103 /* 6104 * If the request is not B_ASYNC, wait for i/o to complete 6105 * and re-assemble the page list to return to the caller. 6106 * If it is B_ASYNC we leave the page list in pieces and 6107 * cleanup() will dispose of them. 6108 */ 6109 if ((flags & B_ASYNC) == 0) { 6110 err = biowait(bp); 6111 pageio_done(bp); 6112 if (err) 6113 break; 6114 page_list_concat(&opp, &cpp); 6115 } 6116 cpp = npp; 6117 npp = NULL; 6118 if (flags & B_READ) 6119 cur_len = P2ROUNDUP_TYPED(cur_len, PAGESIZE, size_t); 6120 done_len += cur_len; 6121 } 6122 ASSERT(err || (cpp == NULL && npp == NULL && done_len == io_len)); 6123 if (err) { 6124 if (flags & B_ASYNC) { 6125 /* Cleanup unprocessed parts of list */ 6126 page_list_concat(&cpp, &npp); 6127 if (flags & B_READ) 6128 pvn_read_done(cpp, B_ERROR); 6129 else 6130 pvn_write_done(cpp, B_ERROR); 6131 } else { 6132 /* Re-assemble list and let caller clean up */ 6133 page_list_concat(&opp, &cpp); 6134 page_list_concat(&opp, &npp); 6135 } 6136 } 6137 6138 if (vmpss && !(ip->i_flag & IACC) && !ULOCKFS_IS_NOIACC(ulp) && 6139 ufsvfsp->vfs_fs->fs_ronly == 0 && !ufsvfsp->vfs_noatime) { 6140 mutex_enter(&ip->i_tlock); 6141 ip->i_flag |= IACC; 6142 ITIMES_NOLOCK(ip); 6143 mutex_exit(&ip->i_tlock); 6144 } 6145 6146 if (dolock) 6147 rw_exit(&ip->i_contents); 6148 if (vmpss && !atomic_dec_ulong_nv(&ulp->ul_vnops_cnt)) 6149 cv_broadcast(&ulp->ul_cv); 6150 return (err); 6151 } 6152 6153 /* 6154 * Called when the kernel is in a frozen state to dump data 6155 * directly to the device. It uses a private dump data structure, 6156 * set up by dump_ctl, to locate the correct disk block to which to dump. 6157 */ 6158 /*ARGSUSED*/ 6159 static int 6160 ufs_dump(vnode_t *vp, caddr_t addr, offset_t ldbn, offset_t dblks, 6161 caller_context_t *ct) 6162 { 6163 u_offset_t file_size; 6164 struct inode *ip = VTOI(vp); 6165 struct fs *fs = ip->i_fs; 6166 daddr_t dbn, lfsbn; 6167 int disk_blks = fs->fs_bsize >> DEV_BSHIFT; 6168 int error = 0; 6169 int ndbs, nfsbs; 6170 6171 /* 6172 * forced unmount case 6173 */ 6174 if (ip->i_ufsvfs == NULL) 6175 return (EIO); 6176 /* 6177 * Validate the inode that it has not been modified since 6178 * the dump structure is allocated. 6179 */ 6180 mutex_enter(&ip->i_tlock); 6181 if ((dump_info == NULL) || 6182 (dump_info->ip != ip) || 6183 (dump_info->time.tv_sec != ip->i_mtime.tv_sec) || 6184 (dump_info->time.tv_usec != ip->i_mtime.tv_usec)) { 6185 mutex_exit(&ip->i_tlock); 6186 return (-1); 6187 } 6188 mutex_exit(&ip->i_tlock); 6189 6190 /* 6191 * See that the file has room for this write 6192 */ 6193 UFS_GET_ISIZE(&file_size, ip); 6194 6195 if (ldbtob(ldbn + dblks) > file_size) 6196 return (ENOSPC); 6197 6198 /* 6199 * Find the physical disk block numbers from the dump 6200 * private data structure directly and write out the data 6201 * in contiguous block lumps 6202 */ 6203 while (dblks > 0 && !error) { 6204 lfsbn = (daddr_t)lblkno(fs, ldbtob(ldbn)); 6205 dbn = fsbtodb(fs, dump_info->dblk[lfsbn]) + ldbn % disk_blks; 6206 nfsbs = 1; 6207 ndbs = disk_blks - ldbn % disk_blks; 6208 while (ndbs < dblks && fsbtodb(fs, dump_info->dblk[lfsbn + 6209 nfsbs]) == dbn + ndbs) { 6210 nfsbs++; 6211 ndbs += disk_blks; 6212 } 6213 if (ndbs > dblks) 6214 ndbs = dblks; 6215 error = bdev_dump(ip->i_dev, addr, dbn, ndbs); 6216 addr += ldbtob((offset_t)ndbs); 6217 dblks -= ndbs; 6218 ldbn += ndbs; 6219 } 6220 return (error); 6221 6222 } 6223 6224 /* 6225 * Prepare the file system before and after the dump operation. 6226 * 6227 * action = DUMP_ALLOC: 6228 * Preparation before dump, allocate dump private data structure 6229 * to hold all the direct and indirect block info for dump. 6230 * 6231 * action = DUMP_FREE: 6232 * Clean up after dump, deallocate the dump private data structure. 6233 * 6234 * action = DUMP_SCAN: 6235 * Scan dump_info for *blkp DEV_BSIZE blocks of contig fs space; 6236 * if found, the starting file-relative DEV_BSIZE lbn is written 6237 * to *bklp; that lbn is intended for use with VOP_DUMP() 6238 */ 6239 /*ARGSUSED*/ 6240 static int 6241 ufs_dumpctl(vnode_t *vp, int action, offset_t *blkp, caller_context_t *ct) 6242 { 6243 struct inode *ip = VTOI(vp); 6244 ufsvfs_t *ufsvfsp = ip->i_ufsvfs; 6245 struct fs *fs; 6246 daddr32_t *dblk, *storeblk; 6247 daddr32_t *nextblk, *endblk; 6248 struct buf *bp; 6249 int i, entry, entries; 6250 int n, ncontig; 6251 6252 /* 6253 * check for forced unmount 6254 */ 6255 if (ufsvfsp == NULL) 6256 return (EIO); 6257 6258 if (action == DUMP_ALLOC) { 6259 /* 6260 * alloc and record dump_info 6261 */ 6262 if (dump_info != NULL) 6263 return (EINVAL); 6264 6265 ASSERT(vp->v_type == VREG); 6266 fs = ufsvfsp->vfs_fs; 6267 6268 rw_enter(&ip->i_contents, RW_READER); 6269 6270 if (bmap_has_holes(ip)) { 6271 rw_exit(&ip->i_contents); 6272 return (EFAULT); 6273 } 6274 6275 /* 6276 * calculate and allocate space needed according to i_size 6277 */ 6278 entries = (int)lblkno(fs, blkroundup(fs, ip->i_size)); 6279 dump_info = kmem_alloc(sizeof (struct dump) + 6280 (entries - 1) * sizeof (daddr32_t), KM_NOSLEEP); 6281 if (dump_info == NULL) { 6282 rw_exit(&ip->i_contents); 6283 return (ENOMEM); 6284 } 6285 6286 /* Start saving the info */ 6287 dump_info->fsbs = entries; 6288 dump_info->ip = ip; 6289 storeblk = &dump_info->dblk[0]; 6290 6291 /* Direct Blocks */ 6292 for (entry = 0; entry < NDADDR && entry < entries; entry++) 6293 *storeblk++ = ip->i_db[entry]; 6294 6295 /* Indirect Blocks */ 6296 for (i = 0; i < NIADDR; i++) { 6297 int error = 0; 6298 6299 bp = UFS_BREAD(ufsvfsp, 6300 ip->i_dev, fsbtodb(fs, ip->i_ib[i]), fs->fs_bsize); 6301 if (bp->b_flags & B_ERROR) 6302 error = EIO; 6303 else { 6304 dblk = bp->b_un.b_daddr; 6305 if ((storeblk = save_dblks(ip, ufsvfsp, 6306 storeblk, dblk, i, entries)) == NULL) 6307 error = EIO; 6308 } 6309 6310 brelse(bp); 6311 6312 if (error != 0) { 6313 kmem_free(dump_info, sizeof (struct dump) + 6314 (entries - 1) * sizeof (daddr32_t)); 6315 rw_exit(&ip->i_contents); 6316 dump_info = NULL; 6317 return (error); 6318 } 6319 } 6320 /* and time stamp the information */ 6321 mutex_enter(&ip->i_tlock); 6322 dump_info->time = ip->i_mtime; 6323 mutex_exit(&ip->i_tlock); 6324 6325 rw_exit(&ip->i_contents); 6326 } else if (action == DUMP_FREE) { 6327 /* 6328 * free dump_info 6329 */ 6330 if (dump_info == NULL) 6331 return (EINVAL); 6332 entries = dump_info->fsbs - 1; 6333 kmem_free(dump_info, sizeof (struct dump) + 6334 entries * sizeof (daddr32_t)); 6335 dump_info = NULL; 6336 } else if (action == DUMP_SCAN) { 6337 /* 6338 * scan dump_info 6339 */ 6340 if (dump_info == NULL) 6341 return (EINVAL); 6342 6343 dblk = dump_info->dblk; 6344 nextblk = dblk + 1; 6345 endblk = dblk + dump_info->fsbs - 1; 6346 fs = ufsvfsp->vfs_fs; 6347 ncontig = *blkp >> (fs->fs_bshift - DEV_BSHIFT); 6348 6349 /* 6350 * scan dblk[] entries; contig fs space is found when: 6351 * ((current blkno + frags per block) == next blkno) 6352 */ 6353 n = 0; 6354 while (n < ncontig && dblk < endblk) { 6355 if ((*dblk + fs->fs_frag) == *nextblk) 6356 n++; 6357 else 6358 n = 0; 6359 dblk++; 6360 nextblk++; 6361 } 6362 6363 /* 6364 * index is where size bytes of contig space begins; 6365 * conversion from index to the file's DEV_BSIZE lbn 6366 * is equivalent to: (index * fs_bsize) / DEV_BSIZE 6367 */ 6368 if (n == ncontig) { 6369 i = (dblk - dump_info->dblk) - ncontig; 6370 *blkp = i << (fs->fs_bshift - DEV_BSHIFT); 6371 } else 6372 return (EFAULT); 6373 } 6374 return (0); 6375 } 6376 6377 /* 6378 * Recursive helper function for ufs_dumpctl(). It follows the indirect file 6379 * system blocks until it reaches the the disk block addresses, which are 6380 * then stored into the given buffer, storeblk. 6381 */ 6382 static daddr32_t * 6383 save_dblks(struct inode *ip, struct ufsvfs *ufsvfsp, daddr32_t *storeblk, 6384 daddr32_t *dblk, int level, int entries) 6385 { 6386 struct fs *fs = ufsvfsp->vfs_fs; 6387 struct buf *bp; 6388 int i; 6389 6390 if (level == 0) { 6391 for (i = 0; i < NINDIR(fs); i++) { 6392 if (storeblk - dump_info->dblk >= entries) 6393 break; 6394 *storeblk++ = dblk[i]; 6395 } 6396 return (storeblk); 6397 } 6398 for (i = 0; i < NINDIR(fs); i++) { 6399 if (storeblk - dump_info->dblk >= entries) 6400 break; 6401 bp = UFS_BREAD(ufsvfsp, 6402 ip->i_dev, fsbtodb(fs, dblk[i]), fs->fs_bsize); 6403 if (bp->b_flags & B_ERROR) { 6404 brelse(bp); 6405 return (NULL); 6406 } 6407 storeblk = save_dblks(ip, ufsvfsp, storeblk, bp->b_un.b_daddr, 6408 level - 1, entries); 6409 brelse(bp); 6410 6411 if (storeblk == NULL) 6412 return (NULL); 6413 } 6414 return (storeblk); 6415 } 6416 6417 /* ARGSUSED */ 6418 static int 6419 ufs_getsecattr(struct vnode *vp, vsecattr_t *vsap, int flag, 6420 struct cred *cr, caller_context_t *ct) 6421 { 6422 struct inode *ip = VTOI(vp); 6423 struct ulockfs *ulp; 6424 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 6425 ulong_t vsa_mask = vsap->vsa_mask; 6426 int err = EINVAL; 6427 6428 vsa_mask &= (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT); 6429 6430 /* 6431 * Only grab locks if needed - they're not needed to check vsa_mask 6432 * or if the mask contains no acl flags. 6433 */ 6434 if (vsa_mask != 0) { 6435 if (err = ufs_lockfs_begin(ufsvfsp, &ulp, 6436 ULOCKFS_GETATTR_MASK)) 6437 return (err); 6438 6439 rw_enter(&ip->i_contents, RW_READER); 6440 err = ufs_acl_get(ip, vsap, flag, cr); 6441 rw_exit(&ip->i_contents); 6442 6443 if (ulp) 6444 ufs_lockfs_end(ulp); 6445 } 6446 return (err); 6447 } 6448 6449 /* ARGSUSED */ 6450 static int 6451 ufs_setsecattr(struct vnode *vp, vsecattr_t *vsap, int flag, struct cred *cr, 6452 caller_context_t *ct) 6453 { 6454 struct inode *ip = VTOI(vp); 6455 struct ulockfs *ulp = NULL; 6456 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs; 6457 ulong_t vsa_mask = vsap->vsa_mask; 6458 int err; 6459 int haverwlock = 1; 6460 int trans_size; 6461 int donetrans = 0; 6462 int retry = 1; 6463 6464 ASSERT(RW_LOCK_HELD(&ip->i_rwlock)); 6465 6466 /* Abort now if the request is either empty or invalid. */ 6467 vsa_mask &= (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT); 6468 if ((vsa_mask == 0) || 6469 ((vsap->vsa_aclentp == NULL) && 6470 (vsap->vsa_dfaclentp == NULL))) { 6471 err = EINVAL; 6472 goto out; 6473 } 6474 6475 /* 6476 * Following convention, if this is a directory then we acquire the 6477 * inode's i_rwlock after starting a UFS logging transaction; 6478 * otherwise, we acquire it beforehand. Since we were called (and 6479 * must therefore return) with the lock held, we will have to drop it, 6480 * and later reacquire it, if operating on a directory. 6481 */ 6482 if (vp->v_type == VDIR) { 6483 rw_exit(&ip->i_rwlock); 6484 haverwlock = 0; 6485 } else { 6486 /* Upgrade the lock if required. */ 6487 if (!rw_write_held(&ip->i_rwlock)) { 6488 rw_exit(&ip->i_rwlock); 6489 rw_enter(&ip->i_rwlock, RW_WRITER); 6490 } 6491 } 6492 6493 again: 6494 ASSERT(!(vp->v_type == VDIR && haverwlock)); 6495 if (err = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_SETATTR_MASK)) { 6496 ulp = NULL; 6497 retry = 0; 6498 goto out; 6499 } 6500 6501 /* 6502 * Check that the file system supports this operation. Note that 6503 * ufs_lockfs_begin() will have checked that the file system had 6504 * not been forcibly unmounted. 6505 */ 6506 if (ufsvfsp->vfs_fs->fs_ronly) { 6507 err = EROFS; 6508 goto out; 6509 } 6510 if (ufsvfsp->vfs_nosetsec) { 6511 err = ENOSYS; 6512 goto out; 6513 } 6514 6515 if (ulp) { 6516 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_SETSECATTR, 6517 trans_size = TOP_SETSECATTR_SIZE(VTOI(vp))); 6518 donetrans = 1; 6519 } 6520 6521 if (vp->v_type == VDIR) { 6522 rw_enter(&ip->i_rwlock, RW_WRITER); 6523 haverwlock = 1; 6524 } 6525 6526 ASSERT(haverwlock); 6527 6528 /* Do the actual work. */ 6529 rw_enter(&ip->i_contents, RW_WRITER); 6530 /* 6531 * Suppress out of inodes messages if we will retry. 6532 */ 6533 if (retry) 6534 ip->i_flag |= IQUIET; 6535 err = ufs_acl_set(ip, vsap, flag, cr); 6536 ip->i_flag &= ~IQUIET; 6537 rw_exit(&ip->i_contents); 6538 6539 out: 6540 if (ulp) { 6541 if (donetrans) { 6542 /* 6543 * top_end_async() can eventually call 6544 * top_end_sync(), which can block. We must 6545 * therefore observe the lock-ordering protocol 6546 * here as well. 6547 */ 6548 if (vp->v_type == VDIR) { 6549 rw_exit(&ip->i_rwlock); 6550 haverwlock = 0; 6551 } 6552 TRANS_END_ASYNC(ufsvfsp, TOP_SETSECATTR, trans_size); 6553 } 6554 ufs_lockfs_end(ulp); 6555 } 6556 /* 6557 * If no inodes available, try scaring a logically- 6558 * free one out of the delete queue to someplace 6559 * that we can find it. 6560 */ 6561 if ((err == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) { 6562 ufs_delete_drain_wait(ufsvfsp, 1); 6563 retry = 0; 6564 if (vp->v_type == VDIR && haverwlock) { 6565 rw_exit(&ip->i_rwlock); 6566 haverwlock = 0; 6567 } 6568 goto again; 6569 } 6570 /* 6571 * If we need to reacquire the lock then it is safe to do so 6572 * as a reader. This is because ufs_rwunlock(), which will be 6573 * called by our caller after we return, does not differentiate 6574 * between shared and exclusive locks. 6575 */ 6576 if (!haverwlock) { 6577 ASSERT(vp->v_type == VDIR); 6578 rw_enter(&ip->i_rwlock, RW_READER); 6579 } 6580 6581 return (err); 6582 } 6583 6584 /* 6585 * Locate the vnode to be used for an event notification. As this will 6586 * be called prior to the name space change perform basic verification 6587 * that the change will be allowed. 6588 */ 6589 6590 static int 6591 ufs_eventlookup(struct vnode *dvp, char *nm, struct cred *cr, 6592 struct vnode **vpp) 6593 { 6594 int namlen; 6595 int error; 6596 struct vnode *vp; 6597 struct inode *ip; 6598 struct inode *xip; 6599 struct ufsvfs *ufsvfsp; 6600 struct ulockfs *ulp; 6601 6602 ip = VTOI(dvp); 6603 *vpp = NULL; 6604 6605 if ((namlen = strlen(nm)) == 0) 6606 return (EINVAL); 6607 6608 if (nm[0] == '.') { 6609 if (namlen == 1) 6610 return (EINVAL); 6611 else if ((namlen == 2) && nm[1] == '.') { 6612 return (EEXIST); 6613 } 6614 } 6615 6616 /* 6617 * Check accessibility and write access of parent directory as we 6618 * only want to post the event if we're able to make a change. 6619 */ 6620 if (error = ufs_diraccess(ip, IEXEC|IWRITE, cr)) 6621 return (error); 6622 6623 if (vp = dnlc_lookup(dvp, nm)) { 6624 if (vp == DNLC_NO_VNODE) { 6625 VN_RELE(vp); 6626 return (ENOENT); 6627 } 6628 6629 *vpp = vp; 6630 return (0); 6631 } 6632 6633 /* 6634 * Keep the idle queue from getting too long by idling two 6635 * inodes before attempting to allocate another. 6636 * This operation must be performed before entering lockfs 6637 * or a transaction. 6638 */ 6639 if (ufs_idle_q.uq_ne > ufs_idle_q.uq_hiwat) 6640 if ((curthread->t_flag & T_DONTBLOCK) == 0) { 6641 ins.in_lidles.value.ul += ufs_lookup_idle_count; 6642 ufs_idle_some(ufs_lookup_idle_count); 6643 } 6644 6645 ufsvfsp = ip->i_ufsvfs; 6646 6647 retry_lookup: 6648 if (error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_LOOKUP_MASK)) 6649 return (error); 6650 6651 if ((error = ufs_dirlook(ip, nm, &xip, cr, 1, 1)) == 0) { 6652 vp = ITOV(xip); 6653 *vpp = vp; 6654 } 6655 6656 if (ulp) { 6657 ufs_lockfs_end(ulp); 6658 } 6659 6660 if (error == EAGAIN) 6661 goto retry_lookup; 6662 6663 return (error); 6664 }