1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 1984, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2015, Joyent, Inc.
25 */
26
27 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */
28 /* All Rights Reserved */
29
30 /*
31 * Portions of this source code were derived from Berkeley 4.3 BSD
32 * under license from the Regents of the University of California.
33 */
34
35 #include <sys/types.h>
36 #include <sys/t_lock.h>
37 #include <sys/ksynch.h>
38 #include <sys/param.h>
39 #include <sys/time.h>
40 #include <sys/systm.h>
41 #include <sys/sysmacros.h>
42 #include <sys/resource.h>
43 #include <sys/signal.h>
44 #include <sys/cred.h>
45 #include <sys/user.h>
46 #include <sys/buf.h>
47 #include <sys/vfs.h>
48 #include <sys/vfs_opreg.h>
49 #include <sys/vnode.h>
50 #include <sys/proc.h>
51 #include <sys/disp.h>
52 #include <sys/file.h>
53 #include <sys/fcntl.h>
54 #include <sys/flock.h>
55 #include <sys/atomic.h>
56 #include <sys/kmem.h>
57 #include <sys/uio.h>
58 #include <sys/dnlc.h>
59 #include <sys/conf.h>
60 #include <sys/mman.h>
61 #include <sys/pathname.h>
62 #include <sys/debug.h>
63 #include <sys/vmsystm.h>
64 #include <sys/cmn_err.h>
65 #include <sys/filio.h>
66 #include <sys/policy.h>
67
68 #include <sys/fs/ufs_fs.h>
69 #include <sys/fs/ufs_lockfs.h>
70 #include <sys/fs/ufs_filio.h>
71 #include <sys/fs/ufs_inode.h>
72 #include <sys/fs/ufs_fsdir.h>
73 #include <sys/fs/ufs_quota.h>
74 #include <sys/fs/ufs_log.h>
75 #include <sys/fs/ufs_snap.h>
76 #include <sys/fs/ufs_trans.h>
77 #include <sys/fs/ufs_panic.h>
78 #include <sys/fs/ufs_bio.h>
79 #include <sys/dirent.h> /* must be AFTER <sys/fs/fsdir.h>! */
80 #include <sys/errno.h>
81 #include <sys/fssnap_if.h>
82 #include <sys/unistd.h>
83 #include <sys/sunddi.h>
84
85 #include <sys/filio.h> /* _FIOIO */
86
87 #include <vm/hat.h>
88 #include <vm/page.h>
89 #include <vm/pvn.h>
90 #include <vm/as.h>
91 #include <vm/seg.h>
92 #include <vm/seg_map.h>
93 #include <vm/seg_vn.h>
94 #include <vm/seg_kmem.h>
95 #include <vm/rm.h>
96 #include <sys/swap.h>
97
98 #include <fs/fs_subr.h>
99
100 #include <sys/fs/decomp.h>
101
102 static struct instats ins;
103
104 static int ufs_getpage_ra(struct vnode *, u_offset_t, struct seg *, caddr_t);
105 static int ufs_getpage_miss(struct vnode *, u_offset_t, size_t, struct seg *,
106 caddr_t, struct page **, size_t, enum seg_rw, int);
107 static int ufs_open(struct vnode **, int, struct cred *, caller_context_t *);
108 static int ufs_close(struct vnode *, int, int, offset_t, struct cred *,
109 caller_context_t *);
110 static int ufs_read(struct vnode *, struct uio *, int, struct cred *,
111 struct caller_context *);
112 static int ufs_write(struct vnode *, struct uio *, int, struct cred *,
113 struct caller_context *);
114 static int ufs_ioctl(struct vnode *, int, intptr_t, int, struct cred *,
115 int *, caller_context_t *);
116 static int ufs_getattr(struct vnode *, struct vattr *, int, struct cred *,
117 caller_context_t *);
118 static int ufs_setattr(struct vnode *, struct vattr *, int, struct cred *,
119 caller_context_t *);
120 static int ufs_access(struct vnode *, int, int, struct cred *,
121 caller_context_t *);
122 static int ufs_lookup(struct vnode *, char *, struct vnode **,
123 struct pathname *, int, struct vnode *, struct cred *,
124 caller_context_t *, int *, pathname_t *);
125 static int ufs_create(struct vnode *, char *, struct vattr *, enum vcexcl,
126 int, struct vnode **, struct cred *, int,
127 caller_context_t *, vsecattr_t *);
128 static int ufs_remove(struct vnode *, char *, struct cred *,
129 caller_context_t *, int);
130 static int ufs_link(struct vnode *, struct vnode *, char *, struct cred *,
131 caller_context_t *, int);
132 static int ufs_rename(struct vnode *, char *, struct vnode *, char *,
133 struct cred *, caller_context_t *, int);
134 static int ufs_mkdir(struct vnode *, char *, struct vattr *, struct vnode **,
135 struct cred *, caller_context_t *, int, vsecattr_t *);
136 static int ufs_rmdir(struct vnode *, char *, struct vnode *, struct cred *,
137 caller_context_t *, int);
138 static int ufs_readdir(struct vnode *, struct uio *, struct cred *, int *,
139 caller_context_t *, int);
140 static int ufs_symlink(struct vnode *, char *, struct vattr *, char *,
141 struct cred *, caller_context_t *, int);
142 static int ufs_readlink(struct vnode *, struct uio *, struct cred *,
143 caller_context_t *);
144 static int ufs_fsync(struct vnode *, int, struct cred *, caller_context_t *);
145 static void ufs_inactive(struct vnode *, struct cred *, caller_context_t *);
146 static int ufs_fid(struct vnode *, struct fid *, caller_context_t *);
147 static int ufs_rwlock(struct vnode *, int, caller_context_t *);
148 static void ufs_rwunlock(struct vnode *, int, caller_context_t *);
149 static int ufs_seek(struct vnode *, offset_t, offset_t *, caller_context_t *);
150 static int ufs_frlock(struct vnode *, int, struct flock64 *, int, offset_t,
151 struct flk_callback *, struct cred *,
152 caller_context_t *);
153 static int ufs_space(struct vnode *, int, struct flock64 *, int, offset_t,
154 cred_t *, caller_context_t *);
155 static int ufs_getpage(struct vnode *, offset_t, size_t, uint_t *,
156 struct page **, size_t, struct seg *, caddr_t,
157 enum seg_rw, struct cred *, caller_context_t *);
158 static int ufs_putpage(struct vnode *, offset_t, size_t, int, struct cred *,
159 caller_context_t *);
160 static int ufs_putpages(struct vnode *, offset_t, size_t, int, struct cred *);
161 static int ufs_map(struct vnode *, offset_t, struct as *, caddr_t *, size_t,
162 uchar_t, uchar_t, uint_t, struct cred *, caller_context_t *);
163 static int ufs_addmap(struct vnode *, offset_t, struct as *, caddr_t, size_t,
164 uchar_t, uchar_t, uint_t, struct cred *, caller_context_t *);
165 static int ufs_delmap(struct vnode *, offset_t, struct as *, caddr_t, size_t,
166 uint_t, uint_t, uint_t, struct cred *, caller_context_t *);
167 static int ufs_poll(vnode_t *, short, int, short *, struct pollhead **,
168 caller_context_t *);
169 static int ufs_dump(vnode_t *, caddr_t, offset_t, offset_t,
170 caller_context_t *);
171 static int ufs_l_pathconf(struct vnode *, int, ulong_t *, struct cred *,
172 caller_context_t *);
173 static int ufs_pageio(struct vnode *, struct page *, u_offset_t, size_t, int,
174 struct cred *, caller_context_t *);
175 static int ufs_dumpctl(vnode_t *, int, offset_t *, caller_context_t *);
176 static daddr32_t *save_dblks(struct inode *, struct ufsvfs *, daddr32_t *,
177 daddr32_t *, int, int);
178 static int ufs_getsecattr(struct vnode *, vsecattr_t *, int, struct cred *,
179 caller_context_t *);
180 static int ufs_setsecattr(struct vnode *, vsecattr_t *, int, struct cred *,
181 caller_context_t *);
182 static int ufs_priv_access(void *, int, struct cred *);
183 static int ufs_eventlookup(struct vnode *, char *, struct cred *,
184 struct vnode **);
185 extern int as_map_locked(struct as *, caddr_t, size_t, int ((*)()), void *);
186
187 /*
188 * For lockfs: ulockfs begin/end is now inlined in the ufs_xxx functions.
189 *
190 * XXX - ULOCKFS in fs_pathconf and ufs_ioctl is not inlined yet.
191 */
192 struct vnodeops *ufs_vnodeops;
193
194 /* NOTE: "not blkd" below means that the operation isn't blocked by lockfs */
195 const fs_operation_def_t ufs_vnodeops_template[] = {
196 VOPNAME_OPEN, { .vop_open = ufs_open }, /* not blkd */
197 VOPNAME_CLOSE, { .vop_close = ufs_close }, /* not blkd */
198 VOPNAME_READ, { .vop_read = ufs_read },
199 VOPNAME_WRITE, { .vop_write = ufs_write },
200 VOPNAME_IOCTL, { .vop_ioctl = ufs_ioctl },
201 VOPNAME_GETATTR, { .vop_getattr = ufs_getattr },
202 VOPNAME_SETATTR, { .vop_setattr = ufs_setattr },
203 VOPNAME_ACCESS, { .vop_access = ufs_access },
204 VOPNAME_LOOKUP, { .vop_lookup = ufs_lookup },
205 VOPNAME_CREATE, { .vop_create = ufs_create },
206 VOPNAME_REMOVE, { .vop_remove = ufs_remove },
207 VOPNAME_LINK, { .vop_link = ufs_link },
208 VOPNAME_RENAME, { .vop_rename = ufs_rename },
209 VOPNAME_MKDIR, { .vop_mkdir = ufs_mkdir },
210 VOPNAME_RMDIR, { .vop_rmdir = ufs_rmdir },
211 VOPNAME_READDIR, { .vop_readdir = ufs_readdir },
212 VOPNAME_SYMLINK, { .vop_symlink = ufs_symlink },
213 VOPNAME_READLINK, { .vop_readlink = ufs_readlink },
214 VOPNAME_FSYNC, { .vop_fsync = ufs_fsync },
215 VOPNAME_INACTIVE, { .vop_inactive = ufs_inactive }, /* not blkd */
216 VOPNAME_FID, { .vop_fid = ufs_fid },
217 VOPNAME_RWLOCK, { .vop_rwlock = ufs_rwlock }, /* not blkd */
218 VOPNAME_RWUNLOCK, { .vop_rwunlock = ufs_rwunlock }, /* not blkd */
219 VOPNAME_SEEK, { .vop_seek = ufs_seek },
220 VOPNAME_FRLOCK, { .vop_frlock = ufs_frlock },
221 VOPNAME_SPACE, { .vop_space = ufs_space },
222 VOPNAME_GETPAGE, { .vop_getpage = ufs_getpage },
223 VOPNAME_PUTPAGE, { .vop_putpage = ufs_putpage },
224 VOPNAME_MAP, { .vop_map = ufs_map },
225 VOPNAME_ADDMAP, { .vop_addmap = ufs_addmap }, /* not blkd */
226 VOPNAME_DELMAP, { .vop_delmap = ufs_delmap }, /* not blkd */
227 VOPNAME_POLL, { .vop_poll = ufs_poll }, /* not blkd */
228 VOPNAME_DUMP, { .vop_dump = ufs_dump },
229 VOPNAME_PATHCONF, { .vop_pathconf = ufs_l_pathconf },
230 VOPNAME_PAGEIO, { .vop_pageio = ufs_pageio },
231 VOPNAME_DUMPCTL, { .vop_dumpctl = ufs_dumpctl },
232 VOPNAME_GETSECATTR, { .vop_getsecattr = ufs_getsecattr },
233 VOPNAME_SETSECATTR, { .vop_setsecattr = ufs_setsecattr },
234 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
235 NULL, NULL
236 };
237
238 #define MAX_BACKFILE_COUNT 9999
239
240 /*
241 * Created by ufs_dumpctl() to store a file's disk block info into memory.
242 * Used by ufs_dump() to dump data to disk directly.
243 */
244 struct dump {
245 struct inode *ip; /* the file we contain */
246 daddr_t fsbs; /* number of blocks stored */
247 struct timeval32 time; /* time stamp for the struct */
248 daddr32_t dblk[1]; /* place holder for block info */
249 };
250
251 static struct dump *dump_info = NULL;
252
253 /*
254 * Previously there was no special action required for ordinary files.
255 * (Devices are handled through the device file system.)
256 * Now we support Large Files and Large File API requires open to
257 * fail if file is large.
258 * We could take care to prevent data corruption
259 * by doing an atomic check of size and truncate if file is opened with
260 * FTRUNC flag set but traditionally this is being done by the vfs/vnode
261 * layers. So taking care of truncation here is a change in the existing
262 * semantics of VOP_OPEN and therefore we chose not to implement any thing
263 * here. The check for the size of the file > 2GB is being done at the
264 * vfs layer in routine vn_open().
265 */
266
267 /* ARGSUSED */
268 static int
269 ufs_open(struct vnode **vpp, int flag, struct cred *cr, caller_context_t *ct)
270 {
271 return (0);
272 }
273
274 /*ARGSUSED*/
275 static int
276 ufs_close(struct vnode *vp, int flag, int count, offset_t offset,
277 struct cred *cr, caller_context_t *ct)
278 {
279 cleanlocks(vp, ttoproc(curthread)->p_pid, 0);
280 cleanshares(vp, ttoproc(curthread)->p_pid);
281
282 /*
283 * Push partially filled cluster at last close.
284 * ``last close'' is approximated because the dnlc
285 * may have a hold on the vnode.
286 * Checking for VBAD here will also act as a forced umount check.
287 */
288 if (vp->v_count <= 2 && vp->v_type != VBAD) {
289 struct inode *ip = VTOI(vp);
290 if (ip->i_delaylen) {
291 ins.in_poc.value.ul++;
292 (void) ufs_putpages(vp, ip->i_delayoff, ip->i_delaylen,
293 B_ASYNC | B_FREE, cr);
294 ip->i_delaylen = 0;
295 }
296 }
297
298 return (0);
299 }
300
301 /*ARGSUSED*/
302 static int
303 ufs_read(struct vnode *vp, struct uio *uiop, int ioflag, struct cred *cr,
304 struct caller_context *ct)
305 {
306 struct inode *ip = VTOI(vp);
307 struct ufsvfs *ufsvfsp;
308 struct ulockfs *ulp = NULL;
309 int error = 0;
310 int intrans = 0;
311
312 ASSERT(RW_READ_HELD(&ip->i_rwlock));
313
314 /*
315 * Mandatory locking needs to be done before ufs_lockfs_begin()
316 * and TRANS_BEGIN_SYNC() calls since mandatory locks can sleep.
317 */
318 if (MANDLOCK(vp, ip->i_mode)) {
319 /*
320 * ufs_getattr ends up being called by chklock
321 */
322 error = chklock(vp, FREAD, uiop->uio_loffset,
323 uiop->uio_resid, uiop->uio_fmode, ct);
324 if (error)
325 goto out;
326 }
327
328 ufsvfsp = ip->i_ufsvfs;
329 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_READ_MASK);
330 if (error)
331 goto out;
332
333 /*
334 * In the case that a directory is opened for reading as a file
335 * (eg "cat .") with the O_RSYNC, O_SYNC and O_DSYNC flags set.
336 * The locking order had to be changed to avoid a deadlock with
337 * an update taking place on that directory at the same time.
338 */
339 if ((ip->i_mode & IFMT) == IFDIR) {
340
341 rw_enter(&ip->i_contents, RW_READER);
342 error = rdip(ip, uiop, ioflag, cr);
343 rw_exit(&ip->i_contents);
344
345 if (error) {
346 if (ulp)
347 ufs_lockfs_end(ulp);
348 goto out;
349 }
350
351 if (ulp && (ioflag & FRSYNC) && (ioflag & (FSYNC | FDSYNC)) &&
352 TRANS_ISTRANS(ufsvfsp)) {
353 rw_exit(&ip->i_rwlock);
354 TRANS_BEGIN_SYNC(ufsvfsp, TOP_READ_SYNC, TOP_READ_SIZE,
355 error);
356 ASSERT(!error);
357 TRANS_END_SYNC(ufsvfsp, error, TOP_READ_SYNC,
358 TOP_READ_SIZE);
359 rw_enter(&ip->i_rwlock, RW_READER);
360 }
361 } else {
362 /*
363 * Only transact reads to files opened for sync-read and
364 * sync-write on a file system that is not write locked.
365 *
366 * The ``not write locked'' check prevents problems with
367 * enabling/disabling logging on a busy file system. E.g.,
368 * logging exists at the beginning of the read but does not
369 * at the end.
370 *
371 */
372 if (ulp && (ioflag & FRSYNC) && (ioflag & (FSYNC | FDSYNC)) &&
373 TRANS_ISTRANS(ufsvfsp)) {
374 TRANS_BEGIN_SYNC(ufsvfsp, TOP_READ_SYNC, TOP_READ_SIZE,
375 error);
376 ASSERT(!error);
377 intrans = 1;
378 }
379
380 rw_enter(&ip->i_contents, RW_READER);
381 error = rdip(ip, uiop, ioflag, cr);
382 rw_exit(&ip->i_contents);
383
384 if (intrans) {
385 TRANS_END_SYNC(ufsvfsp, error, TOP_READ_SYNC,
386 TOP_READ_SIZE);
387 }
388 }
389
390 if (ulp) {
391 ufs_lockfs_end(ulp);
392 }
393 out:
394
395 return (error);
396 }
397
398 extern int ufs_HW; /* high water mark */
399 extern int ufs_LW; /* low water mark */
400 int ufs_WRITES = 1; /* XXX - enable/disable */
401 int ufs_throttles = 0; /* throttling count */
402 int ufs_allow_shared_writes = 1; /* directio shared writes */
403
404 static int
405 ufs_check_rewrite(struct inode *ip, struct uio *uiop, int ioflag)
406 {
407 int shared_write;
408
409 /*
410 * If the FDSYNC flag is set then ignore the global
411 * ufs_allow_shared_writes in this case.
412 */
413 shared_write = (ioflag & FDSYNC) | ufs_allow_shared_writes;
414
415 /*
416 * Filter to determine if this request is suitable as a
417 * concurrent rewrite. This write must not allocate blocks
418 * by extending the file or filling in holes. No use trying
419 * through FSYNC descriptors as the inode will be synchronously
420 * updated after the write. The uio structure has not yet been
421 * checked for sanity, so assume nothing.
422 */
423 return (((ip->i_mode & IFMT) == IFREG) && !(ioflag & FAPPEND) &&
424 (uiop->uio_loffset >= (offset_t)0) &&
425 (uiop->uio_loffset < ip->i_size) && (uiop->uio_resid > 0) &&
426 ((ip->i_size - uiop->uio_loffset) >= uiop->uio_resid) &&
427 !(ioflag & FSYNC) && !bmap_has_holes(ip) &&
428 shared_write);
429 }
430
431 /*ARGSUSED*/
432 static int
433 ufs_write(struct vnode *vp, struct uio *uiop, int ioflag, cred_t *cr,
434 caller_context_t *ct)
435 {
436 struct inode *ip = VTOI(vp);
437 struct ufsvfs *ufsvfsp;
438 struct ulockfs *ulp;
439 int retry = 1;
440 int error, resv, resid = 0;
441 int directio_status;
442 int exclusive;
443 int rewriteflg;
444 long start_resid = uiop->uio_resid;
445
446 ASSERT(RW_LOCK_HELD(&ip->i_rwlock));
447
448 retry_mandlock:
449 /*
450 * Mandatory locking needs to be done before ufs_lockfs_begin()
451 * and TRANS_BEGIN_[A]SYNC() calls since mandatory locks can sleep.
452 * Check for forced unmounts normally done in ufs_lockfs_begin().
453 */
454 if ((ufsvfsp = ip->i_ufsvfs) == NULL) {
455 error = EIO;
456 goto out;
457 }
458 if (MANDLOCK(vp, ip->i_mode)) {
459
460 ASSERT(RW_WRITE_HELD(&ip->i_rwlock));
461
462 /*
463 * ufs_getattr ends up being called by chklock
464 */
465 error = chklock(vp, FWRITE, uiop->uio_loffset,
466 uiop->uio_resid, uiop->uio_fmode, ct);
467 if (error)
468 goto out;
469 }
470
471 /* i_rwlock can change in chklock */
472 exclusive = rw_write_held(&ip->i_rwlock);
473 rewriteflg = ufs_check_rewrite(ip, uiop, ioflag);
474
475 /*
476 * Check for fast-path special case of directio re-writes.
477 */
478 if ((ip->i_flag & IDIRECTIO || ufsvfsp->vfs_forcedirectio) &&
479 !exclusive && rewriteflg) {
480
481 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_WRITE_MASK);
482 if (error)
483 goto out;
484
485 rw_enter(&ip->i_contents, RW_READER);
486 error = ufs_directio_write(ip, uiop, ioflag, 1, cr,
487 &directio_status);
488 if (directio_status == DIRECTIO_SUCCESS) {
489 uint_t i_flag_save;
490
491 if (start_resid != uiop->uio_resid)
492 error = 0;
493 /*
494 * Special treatment of access times for re-writes.
495 * If IMOD is not already set, then convert it
496 * to IMODACC for this operation. This defers
497 * entering a delta into the log until the inode
498 * is flushed. This mimics what is done for read
499 * operations and inode access time.
500 */
501 mutex_enter(&ip->i_tlock);
502 i_flag_save = ip->i_flag;
503 ip->i_flag |= IUPD | ICHG;
504 ip->i_seq++;
505 ITIMES_NOLOCK(ip);
506 if ((i_flag_save & IMOD) == 0) {
507 ip->i_flag &= ~IMOD;
508 ip->i_flag |= IMODACC;
509 }
510 mutex_exit(&ip->i_tlock);
511 rw_exit(&ip->i_contents);
512 if (ulp)
513 ufs_lockfs_end(ulp);
514 goto out;
515 }
516 rw_exit(&ip->i_contents);
517 if (ulp)
518 ufs_lockfs_end(ulp);
519 }
520
521 if (!exclusive && !rw_tryupgrade(&ip->i_rwlock)) {
522 rw_exit(&ip->i_rwlock);
523 rw_enter(&ip->i_rwlock, RW_WRITER);
524 /*
525 * Mandatory locking could have been enabled
526 * after dropping the i_rwlock.
527 */
528 if (MANDLOCK(vp, ip->i_mode))
529 goto retry_mandlock;
530 }
531
532 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_WRITE_MASK);
533 if (error)
534 goto out;
535
536 /*
537 * Amount of log space needed for this write
538 */
539 if (!rewriteflg || !(ioflag & FDSYNC))
540 TRANS_WRITE_RESV(ip, uiop, ulp, &resv, &resid);
541
542 /*
543 * Throttle writes.
544 */
545 if (ufs_WRITES && (ip->i_writes > ufs_HW)) {
546 mutex_enter(&ip->i_tlock);
547 while (ip->i_writes > ufs_HW) {
548 ufs_throttles++;
549 cv_wait(&ip->i_wrcv, &ip->i_tlock);
550 }
551 mutex_exit(&ip->i_tlock);
552 }
553
554 /*
555 * Enter Transaction
556 *
557 * If the write is a rewrite there is no need to open a transaction
558 * if the FDSYNC flag is set and not the FSYNC. In this case just
559 * set the IMODACC flag to modify do the update at a later time
560 * thus avoiding the overhead of the logging transaction that is
561 * not required.
562 */
563 if (ioflag & (FSYNC|FDSYNC)) {
564 if (ulp) {
565 if (rewriteflg) {
566 uint_t i_flag_save;
567
568 rw_enter(&ip->i_contents, RW_READER);
569 mutex_enter(&ip->i_tlock);
570 i_flag_save = ip->i_flag;
571 ip->i_flag |= IUPD | ICHG;
572 ip->i_seq++;
573 ITIMES_NOLOCK(ip);
574 if ((i_flag_save & IMOD) == 0) {
575 ip->i_flag &= ~IMOD;
576 ip->i_flag |= IMODACC;
577 }
578 mutex_exit(&ip->i_tlock);
579 rw_exit(&ip->i_contents);
580 } else {
581 int terr = 0;
582 TRANS_BEGIN_SYNC(ufsvfsp, TOP_WRITE_SYNC, resv,
583 terr);
584 ASSERT(!terr);
585 }
586 }
587 } else {
588 if (ulp)
589 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_WRITE, resv);
590 }
591
592 /*
593 * Write the file
594 */
595 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
596 rw_enter(&ip->i_contents, RW_WRITER);
597 if ((ioflag & FAPPEND) != 0 && (ip->i_mode & IFMT) == IFREG) {
598 /*
599 * In append mode start at end of file.
600 */
601 uiop->uio_loffset = ip->i_size;
602 }
603
604 /*
605 * Mild optimisation, don't call ufs_trans_write() unless we have to
606 * Also, suppress file system full messages if we will retry.
607 */
608 if (retry)
609 ip->i_flag |= IQUIET;
610 if (resid) {
611 TRANS_WRITE(ip, uiop, ioflag, error, ulp, cr, resv, resid);
612 } else {
613 error = wrip(ip, uiop, ioflag, cr);
614 }
615 ip->i_flag &= ~IQUIET;
616
617 rw_exit(&ip->i_contents);
618 rw_exit(&ufsvfsp->vfs_dqrwlock);
619
620 /*
621 * Leave Transaction
622 */
623 if (ulp) {
624 if (ioflag & (FSYNC|FDSYNC)) {
625 if (!rewriteflg) {
626 int terr = 0;
627
628 TRANS_END_SYNC(ufsvfsp, terr, TOP_WRITE_SYNC,
629 resv);
630 if (error == 0)
631 error = terr;
632 }
633 } else {
634 TRANS_END_ASYNC(ufsvfsp, TOP_WRITE, resv);
635 }
636 ufs_lockfs_end(ulp);
637 }
638 out:
639 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) {
640 /*
641 * Any blocks tied up in pending deletes?
642 */
643 ufs_delete_drain_wait(ufsvfsp, 1);
644 retry = 0;
645 goto retry_mandlock;
646 }
647
648 if (error == ENOSPC && (start_resid != uiop->uio_resid))
649 error = 0;
650
651 return (error);
652 }
653
654 /*
655 * Don't cache write blocks to files with the sticky bit set.
656 * Used to keep swap files from blowing the page cache on a server.
657 */
658 int stickyhack = 1;
659
660 /*
661 * Free behind hacks. The pager is busted.
662 * XXX - need to pass the information down to writedone() in a flag like B_SEQ
663 * or B_FREE_IF_TIGHT_ON_MEMORY.
664 */
665 int freebehind = 1;
666 int smallfile = 0;
667 u_offset_t smallfile64 = 32 * 1024;
668
669 /*
670 * While we should, in most cases, cache the pages for write, we
671 * may also want to cache the pages for read as long as they are
672 * frequently re-usable.
673 *
674 * If cache_read_ahead = 1, the pages for read will go to the tail
675 * of the cache list when they are released, otherwise go to the head.
676 */
677 int cache_read_ahead = 0;
678
679 /*
680 * Freebehind exists so that as we read large files sequentially we
681 * don't consume most of memory with pages from a few files. It takes
682 * longer to re-read from disk multiple small files as it does reading
683 * one large one sequentially. As system memory grows customers need
684 * to retain bigger chunks of files in memory. The advent of the
685 * cachelist opens up of the possibility freeing pages to the head or
686 * tail of the list.
687 *
688 * Not freeing a page is a bet that the page will be read again before
689 * it's segmap slot is needed for something else. If we loose the bet,
690 * it means some other thread is burdened with the page free we did
691 * not do. If we win we save a free and reclaim.
692 *
693 * Freeing it at the tail vs the head of cachelist is a bet that the
694 * page will survive until the next read. It's also saying that this
695 * page is more likely to be re-used than a page freed some time ago
696 * and never reclaimed.
697 *
698 * Freebehind maintains a range of file offset [smallfile1; smallfile2]
699 *
700 * 0 < offset < smallfile1 : pages are not freed.
701 * smallfile1 < offset < smallfile2 : pages freed to tail of cachelist.
702 * smallfile2 < offset : pages freed to head of cachelist.
703 *
704 * The range is computed at most once per second and depends on
705 * freemem and ncpus_online. Both parameters are bounded to be
706 * >= smallfile && >= smallfile64.
707 *
708 * smallfile1 = (free memory / ncpu) / 1000
709 * smallfile2 = (free memory / ncpu) / 10
710 *
711 * A few examples values:
712 *
713 * Free Mem (in Bytes) [smallfile1; smallfile2] [smallfile1; smallfile2]
714 * ncpus_online = 4 ncpus_online = 64
715 * ------------------ ----------------------- -----------------------
716 * 1G [256K; 25M] [32K; 1.5M]
717 * 10G [2.5M; 250M] [156K; 15M]
718 * 100G [25M; 2.5G] [1.5M; 150M]
719 *
720 */
721
722 #define SMALLFILE1_D 1000
723 #define SMALLFILE2_D 10
724 static u_offset_t smallfile1 = 32 * 1024;
725 static u_offset_t smallfile2 = 32 * 1024;
726 static clock_t smallfile_update = 0; /* lbolt value of when to recompute */
727 uint_t smallfile1_d = SMALLFILE1_D;
728 uint_t smallfile2_d = SMALLFILE2_D;
729
730 /*
731 * wrip does the real work of write requests for ufs.
732 */
733 int
734 wrip(struct inode *ip, struct uio *uio, int ioflag, struct cred *cr)
735 {
736 rlim64_t limit = uio->uio_llimit;
737 u_offset_t off;
738 u_offset_t old_i_size;
739 struct fs *fs;
740 struct vnode *vp;
741 struct ufsvfs *ufsvfsp;
742 caddr_t base;
743 long start_resid = uio->uio_resid; /* save starting resid */
744 long premove_resid; /* resid before uiomove() */
745 uint_t flags;
746 int newpage;
747 int iupdat_flag, directio_status;
748 int n, on, mapon;
749 int error, pagecreate;
750 int do_dqrwlock; /* drop/reacquire vfs_dqrwlock */
751 int32_t iblocks;
752 int new_iblocks;
753
754 /*
755 * ip->i_size is incremented before the uiomove
756 * is done on a write. If the move fails (bad user
757 * address) reset ip->i_size.
758 * The better way would be to increment ip->i_size
759 * only if the uiomove succeeds.
760 */
761 int i_size_changed = 0;
762 o_mode_t type;
763 int i_seq_needed = 0;
764
765 vp = ITOV(ip);
766
767 /*
768 * check for forced unmount - should not happen as
769 * the request passed the lockfs checks.
770 */
771 if ((ufsvfsp = ip->i_ufsvfs) == NULL)
772 return (EIO);
773
774 fs = ip->i_fs;
775
776 ASSERT(RW_WRITE_HELD(&ip->i_contents));
777
778 /* check for valid filetype */
779 type = ip->i_mode & IFMT;
780 if ((type != IFREG) && (type != IFDIR) && (type != IFATTRDIR) &&
781 (type != IFLNK) && (type != IFSHAD)) {
782 return (EIO);
783 }
784
785 /*
786 * the actual limit of UFS file size
787 * is UFS_MAXOFFSET_T
788 */
789 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
790 limit = MAXOFFSET_T;
791
792 if (uio->uio_loffset >= limit) {
793 proc_t *p = ttoproc(curthread);
794
795 mutex_enter(&p->p_lock);
796 (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE], p->p_rctls,
797 p, RCA_UNSAFE_SIGINFO);
798 mutex_exit(&p->p_lock);
799 return (EFBIG);
800 }
801
802 /*
803 * if largefiles are disallowed, the limit is
804 * the pre-largefiles value of 2GB
805 */
806 if (ufsvfsp->vfs_lfflags & UFS_LARGEFILES)
807 limit = MIN(UFS_MAXOFFSET_T, limit);
808 else
809 limit = MIN(MAXOFF32_T, limit);
810
811 if (uio->uio_loffset < (offset_t)0) {
812 return (EINVAL);
813 }
814 if (uio->uio_resid == 0) {
815 return (0);
816 }
817
818 if (uio->uio_loffset >= limit)
819 return (EFBIG);
820
821 ip->i_flag |= INOACC; /* don't update ref time in getpage */
822
823 if (ioflag & (FSYNC|FDSYNC)) {
824 ip->i_flag |= ISYNC;
825 iupdat_flag = 1;
826 }
827 /*
828 * Try to go direct
829 */
830 if (ip->i_flag & IDIRECTIO || ufsvfsp->vfs_forcedirectio) {
831 uio->uio_llimit = limit;
832 error = ufs_directio_write(ip, uio, ioflag, 0, cr,
833 &directio_status);
834 /*
835 * If ufs_directio wrote to the file or set the flags,
836 * we need to update i_seq, but it may be deferred.
837 */
838 if (start_resid != uio->uio_resid ||
839 (ip->i_flag & (ICHG|IUPD))) {
840 i_seq_needed = 1;
841 ip->i_flag |= ISEQ;
842 }
843 if (directio_status == DIRECTIO_SUCCESS)
844 goto out;
845 }
846
847 /*
848 * Behavior with respect to dropping/reacquiring vfs_dqrwlock:
849 *
850 * o shadow inodes: vfs_dqrwlock is not held at all
851 * o quota updates: vfs_dqrwlock is read or write held
852 * o other updates: vfs_dqrwlock is read held
853 *
854 * The first case is the only one where we do not hold
855 * vfs_dqrwlock at all while entering wrip().
856 * We must make sure not to downgrade/drop vfs_dqrwlock if we
857 * have it as writer, i.e. if we are updating the quota inode.
858 * There is no potential deadlock scenario in this case as
859 * ufs_getpage() takes care of this and avoids reacquiring
860 * vfs_dqrwlock in that case.
861 *
862 * This check is done here since the above conditions do not change
863 * and we possibly loop below, so save a few cycles.
864 */
865 if ((type == IFSHAD) ||
866 (rw_owner(&ufsvfsp->vfs_dqrwlock) == curthread)) {
867 do_dqrwlock = 0;
868 } else {
869 do_dqrwlock = 1;
870 }
871
872 /*
873 * Large Files: We cast MAXBMASK to offset_t
874 * inorder to mask out the higher bits. Since offset_t
875 * is a signed value, the high order bit set in MAXBMASK
876 * value makes it do the right thing by having all bits 1
877 * in the higher word. May be removed for _SOLARIS64_.
878 */
879
880 fs = ip->i_fs;
881 do {
882 u_offset_t uoff = uio->uio_loffset;
883 off = uoff & (offset_t)MAXBMASK;
884 mapon = (int)(uoff & (offset_t)MAXBOFFSET);
885 on = (int)blkoff(fs, uoff);
886 n = (int)MIN(fs->fs_bsize - on, uio->uio_resid);
887 new_iblocks = 1;
888
889 if (type == IFREG && uoff + n >= limit) {
890 if (uoff >= limit) {
891 error = EFBIG;
892 goto out;
893 }
894 /*
895 * since uoff + n >= limit,
896 * therefore n >= limit - uoff, and n is an int
897 * so it is safe to cast it to an int
898 */
899 n = (int)(limit - (rlim64_t)uoff);
900 }
901 if (uoff + n > ip->i_size) {
902 /*
903 * We are extending the length of the file.
904 * bmap is used so that we are sure that
905 * if we need to allocate new blocks, that it
906 * is done here before we up the file size.
907 */
908 error = bmap_write(ip, uoff, (int)(on + n),
909 mapon == 0, NULL, cr);
910 /*
911 * bmap_write never drops i_contents so if
912 * the flags are set it changed the file.
913 */
914 if (ip->i_flag & (ICHG|IUPD)) {
915 i_seq_needed = 1;
916 ip->i_flag |= ISEQ;
917 }
918 if (error)
919 break;
920 /*
921 * There is a window of vulnerability here.
922 * The sequence of operations: allocate file
923 * system blocks, uiomove the data into pages,
924 * and then update the size of the file in the
925 * inode, must happen atomically. However, due
926 * to current locking constraints, this can not
927 * be done.
928 */
929 ASSERT(ip->i_writer == NULL);
930 ip->i_writer = curthread;
931 i_size_changed = 1;
932 /*
933 * If we are writing from the beginning of
934 * the mapping, we can just create the
935 * pages without having to read them.
936 */
937 pagecreate = (mapon == 0);
938 } else if (n == MAXBSIZE) {
939 /*
940 * Going to do a whole mappings worth,
941 * so we can just create the pages w/o
942 * having to read them in. But before
943 * we do that, we need to make sure any
944 * needed blocks are allocated first.
945 */
946 iblocks = ip->i_blocks;
947 error = bmap_write(ip, uoff, (int)(on + n),
948 BI_ALLOC_ONLY, NULL, cr);
949 /*
950 * bmap_write never drops i_contents so if
951 * the flags are set it changed the file.
952 */
953 if (ip->i_flag & (ICHG|IUPD)) {
954 i_seq_needed = 1;
955 ip->i_flag |= ISEQ;
956 }
957 if (error)
958 break;
959 pagecreate = 1;
960 /*
961 * check if the new created page needed the
962 * allocation of new disk blocks.
963 */
964 if (iblocks == ip->i_blocks)
965 new_iblocks = 0; /* no new blocks allocated */
966 } else {
967 pagecreate = 0;
968 /*
969 * In sync mode flush the indirect blocks which
970 * may have been allocated and not written on
971 * disk. In above cases bmap_write will allocate
972 * in sync mode.
973 */
974 if (ioflag & (FSYNC|FDSYNC)) {
975 error = ufs_indirblk_sync(ip, uoff);
976 if (error)
977 break;
978 }
979 }
980
981 /*
982 * At this point we can enter ufs_getpage() in one
983 * of two ways:
984 * 1) segmap_getmapflt() calls ufs_getpage() when the
985 * forcefault parameter is true (pagecreate == 0)
986 * 2) uiomove() causes a page fault.
987 *
988 * We have to drop the contents lock to prevent the VM
989 * system from trying to reacquire it in ufs_getpage()
990 * should the uiomove cause a pagefault.
991 *
992 * We have to drop the reader vfs_dqrwlock here as well.
993 */
994 rw_exit(&ip->i_contents);
995 if (do_dqrwlock) {
996 ASSERT(RW_LOCK_HELD(&ufsvfsp->vfs_dqrwlock));
997 ASSERT(!(RW_WRITE_HELD(&ufsvfsp->vfs_dqrwlock)));
998 rw_exit(&ufsvfsp->vfs_dqrwlock);
999 }
1000
1001 newpage = 0;
1002 premove_resid = uio->uio_resid;
1003
1004 /*
1005 * Touch the page and fault it in if it is not in core
1006 * before segmap_getmapflt or vpm_data_copy can lock it.
1007 * This is to avoid the deadlock if the buffer is mapped
1008 * to the same file through mmap which we want to write.
1009 */
1010 uio_prefaultpages((long)n, uio);
1011
1012 if (vpm_enable) {
1013 /*
1014 * Copy data. If new pages are created, part of
1015 * the page that is not written will be initizliazed
1016 * with zeros.
1017 */
1018 error = vpm_data_copy(vp, (off + mapon), (uint_t)n,
1019 uio, !pagecreate, &newpage, 0, S_WRITE);
1020 } else {
1021
1022 base = segmap_getmapflt(segkmap, vp, (off + mapon),
1023 (uint_t)n, !pagecreate, S_WRITE);
1024
1025 /*
1026 * segmap_pagecreate() returns 1 if it calls
1027 * page_create_va() to allocate any pages.
1028 */
1029
1030 if (pagecreate)
1031 newpage = segmap_pagecreate(segkmap, base,
1032 (size_t)n, 0);
1033
1034 error = uiomove(base + mapon, (long)n, UIO_WRITE, uio);
1035 }
1036
1037 /*
1038 * If "newpage" is set, then a new page was created and it
1039 * does not contain valid data, so it needs to be initialized
1040 * at this point.
1041 * Otherwise the page contains old data, which was overwritten
1042 * partially or as a whole in uiomove.
1043 * If there is only one iovec structure within uio, then
1044 * on error uiomove will not be able to update uio->uio_loffset
1045 * and we would zero the whole page here!
1046 *
1047 * If uiomove fails because of an error, the old valid data
1048 * is kept instead of filling the rest of the page with zero's.
1049 */
1050 if (!vpm_enable && newpage &&
1051 uio->uio_loffset < roundup(off + mapon + n, PAGESIZE)) {
1052 /*
1053 * We created pages w/o initializing them completely,
1054 * thus we need to zero the part that wasn't set up.
1055 * This happens on most EOF write cases and if
1056 * we had some sort of error during the uiomove.
1057 */
1058 int nzero, nmoved;
1059
1060 nmoved = (int)(uio->uio_loffset - (off + mapon));
1061 ASSERT(nmoved >= 0 && nmoved <= n);
1062 nzero = roundup(on + n, PAGESIZE) - nmoved;
1063 ASSERT(nzero > 0 && mapon + nmoved + nzero <= MAXBSIZE);
1064 (void) kzero(base + mapon + nmoved, (uint_t)nzero);
1065 }
1066
1067 /*
1068 * Unlock the pages allocated by page_create_va()
1069 * in segmap_pagecreate()
1070 */
1071 if (!vpm_enable && newpage)
1072 segmap_pageunlock(segkmap, base, (size_t)n, S_WRITE);
1073
1074 /*
1075 * If the size of the file changed, then update the
1076 * size field in the inode now. This can't be done
1077 * before the call to segmap_pageunlock or there is
1078 * a potential deadlock with callers to ufs_putpage().
1079 * They will be holding i_contents and trying to lock
1080 * a page, while this thread is holding a page locked
1081 * and trying to acquire i_contents.
1082 */
1083 if (i_size_changed) {
1084 rw_enter(&ip->i_contents, RW_WRITER);
1085 old_i_size = ip->i_size;
1086 UFS_SET_ISIZE(uoff + n, ip);
1087 TRANS_INODE(ufsvfsp, ip);
1088 /*
1089 * file has grown larger than 2GB. Set flag
1090 * in superblock to indicate this, if it
1091 * is not already set.
1092 */
1093 if ((ip->i_size > MAXOFF32_T) &&
1094 !(fs->fs_flags & FSLARGEFILES)) {
1095 ASSERT(ufsvfsp->vfs_lfflags & UFS_LARGEFILES);
1096 mutex_enter(&ufsvfsp->vfs_lock);
1097 fs->fs_flags |= FSLARGEFILES;
1098 ufs_sbwrite(ufsvfsp);
1099 mutex_exit(&ufsvfsp->vfs_lock);
1100 }
1101 mutex_enter(&ip->i_tlock);
1102 ip->i_writer = NULL;
1103 cv_broadcast(&ip->i_wrcv);
1104 mutex_exit(&ip->i_tlock);
1105 rw_exit(&ip->i_contents);
1106 }
1107
1108 if (error) {
1109 /*
1110 * If we failed on a write, we may have already
1111 * allocated file blocks as well as pages. It's
1112 * hard to undo the block allocation, but we must
1113 * be sure to invalidate any pages that may have
1114 * been allocated.
1115 *
1116 * If the page was created without initialization
1117 * then we must check if it should be possible
1118 * to destroy the new page and to keep the old data
1119 * on the disk.
1120 *
1121 * It is possible to destroy the page without
1122 * having to write back its contents only when
1123 * - the size of the file keeps unchanged
1124 * - bmap_write() did not allocate new disk blocks
1125 * it is possible to create big files using "seek" and
1126 * write to the end of the file. A "write" to a
1127 * position before the end of the file would not
1128 * change the size of the file but it would allocate
1129 * new disk blocks.
1130 * - uiomove intended to overwrite the whole page.
1131 * - a new page was created (newpage == 1).
1132 */
1133
1134 if (i_size_changed == 0 && new_iblocks == 0 &&
1135 newpage) {
1136
1137 /* unwind what uiomove eventually last did */
1138 uio->uio_resid = premove_resid;
1139
1140 /*
1141 * destroy the page, do not write ambiguous
1142 * data to the disk.
1143 */
1144 flags = SM_DESTROY;
1145 } else {
1146 /*
1147 * write the page back to the disk, if dirty,
1148 * and remove the page from the cache.
1149 */
1150 flags = SM_INVAL;
1151 }
1152
1153 if (vpm_enable) {
1154 /*
1155 * Flush pages.
1156 */
1157 (void) vpm_sync_pages(vp, off, n, flags);
1158 } else {
1159 (void) segmap_release(segkmap, base, flags);
1160 }
1161 } else {
1162 flags = 0;
1163 /*
1164 * Force write back for synchronous write cases.
1165 */
1166 if ((ioflag & (FSYNC|FDSYNC)) || type == IFDIR) {
1167 /*
1168 * If the sticky bit is set but the
1169 * execute bit is not set, we do a
1170 * synchronous write back and free
1171 * the page when done. We set up swap
1172 * files to be handled this way to
1173 * prevent servers from keeping around
1174 * the client's swap pages too long.
1175 * XXX - there ought to be a better way.
1176 */
1177 if (IS_SWAPVP(vp)) {
1178 flags = SM_WRITE | SM_FREE |
1179 SM_DONTNEED;
1180 iupdat_flag = 0;
1181 } else {
1182 flags = SM_WRITE;
1183 }
1184 } else if (n + on == MAXBSIZE || IS_SWAPVP(vp)) {
1185 /*
1186 * Have written a whole block.
1187 * Start an asynchronous write and
1188 * mark the buffer to indicate that
1189 * it won't be needed again soon.
1190 */
1191 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED;
1192 }
1193 if (vpm_enable) {
1194 /*
1195 * Flush pages.
1196 */
1197 error = vpm_sync_pages(vp, off, n, flags);
1198 } else {
1199 error = segmap_release(segkmap, base, flags);
1200 }
1201 /*
1202 * If the operation failed and is synchronous,
1203 * then we need to unwind what uiomove() last
1204 * did so we can potentially return an error to
1205 * the caller. If this write operation was
1206 * done in two pieces and the first succeeded,
1207 * then we won't return an error for the second
1208 * piece that failed. However, we only want to
1209 * return a resid value that reflects what was
1210 * really done.
1211 *
1212 * Failures for non-synchronous operations can
1213 * be ignored since the page subsystem will
1214 * retry the operation until it succeeds or the
1215 * file system is unmounted.
1216 */
1217 if (error) {
1218 if ((ioflag & (FSYNC | FDSYNC)) ||
1219 type == IFDIR) {
1220 uio->uio_resid = premove_resid;
1221 } else {
1222 error = 0;
1223 }
1224 }
1225 }
1226
1227 /*
1228 * Re-acquire contents lock.
1229 * If it was dropped, reacquire reader vfs_dqrwlock as well.
1230 */
1231 if (do_dqrwlock)
1232 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
1233 rw_enter(&ip->i_contents, RW_WRITER);
1234
1235 /*
1236 * If the uiomove() failed or if a synchronous
1237 * page push failed, fix up i_size.
1238 */
1239 if (error) {
1240 if (i_size_changed) {
1241 /*
1242 * The uiomove failed, and we
1243 * allocated blocks,so get rid
1244 * of them.
1245 */
1246 (void) ufs_itrunc(ip, old_i_size, 0, cr);
1247 }
1248 } else {
1249 /*
1250 * XXX - Can this be out of the loop?
1251 */
1252 ip->i_flag |= IUPD | ICHG;
1253 /*
1254 * Only do one increase of i_seq for multiple
1255 * pieces. Because we drop locks, record
1256 * the fact that we changed the timestamp and
1257 * are deferring the increase in case another thread
1258 * pushes our timestamp update.
1259 */
1260 i_seq_needed = 1;
1261 ip->i_flag |= ISEQ;
1262 if (i_size_changed)
1263 ip->i_flag |= IATTCHG;
1264 if ((ip->i_mode & (IEXEC | (IEXEC >> 3) |
1265 (IEXEC >> 6))) != 0 &&
1266 (ip->i_mode & (ISUID | ISGID)) != 0 &&
1267 secpolicy_vnode_setid_retain(cr,
1268 (ip->i_mode & ISUID) != 0 && ip->i_uid == 0) != 0) {
1269 /*
1270 * Clear Set-UID & Set-GID bits on
1271 * successful write if not privileged
1272 * and at least one of the execute bits
1273 * is set. If we always clear Set-GID,
1274 * mandatory file and record locking is
1275 * unuseable.
1276 */
1277 ip->i_mode &= ~(ISUID | ISGID);
1278 }
1279 }
1280 /*
1281 * In the case the FDSYNC flag is set and this is a
1282 * "rewrite" we won't log a delta.
1283 * The FSYNC flag overrides all cases.
1284 */
1285 if (!ufs_check_rewrite(ip, uio, ioflag) || !(ioflag & FDSYNC)) {
1286 TRANS_INODE(ufsvfsp, ip);
1287 }
1288 } while (error == 0 && uio->uio_resid > 0 && n != 0);
1289
1290 out:
1291 /*
1292 * Make sure i_seq is increased at least once per write
1293 */
1294 if (i_seq_needed) {
1295 ip->i_seq++;
1296 ip->i_flag &= ~ISEQ; /* no longer deferred */
1297 }
1298
1299 /*
1300 * Inode is updated according to this table -
1301 *
1302 * FSYNC FDSYNC(posix.4)
1303 * --------------------------
1304 * always@ IATTCHG|IBDWRITE
1305 *
1306 * @ - If we are doing synchronous write the only time we should
1307 * not be sync'ing the ip here is if we have the stickyhack
1308 * activated, the file is marked with the sticky bit and
1309 * no exec bit, the file length has not been changed and
1310 * no new blocks have been allocated during this write.
1311 */
1312
1313 if ((ip->i_flag & ISYNC) != 0) {
1314 /*
1315 * we have eliminated nosync
1316 */
1317 if ((ip->i_flag & (IATTCHG|IBDWRITE)) ||
1318 ((ioflag & FSYNC) && iupdat_flag)) {
1319 ufs_iupdat(ip, 1);
1320 }
1321 }
1322
1323 /*
1324 * If we've already done a partial-write, terminate
1325 * the write but return no error unless the error is ENOSPC
1326 * because the caller can detect this and free resources and
1327 * try again.
1328 */
1329 if ((start_resid != uio->uio_resid) && (error != ENOSPC))
1330 error = 0;
1331
1332 ip->i_flag &= ~(INOACC | ISYNC);
1333 ITIMES_NOLOCK(ip);
1334 return (error);
1335 }
1336
1337 /*
1338 * rdip does the real work of read requests for ufs.
1339 */
1340 int
1341 rdip(struct inode *ip, struct uio *uio, int ioflag, cred_t *cr)
1342 {
1343 u_offset_t off;
1344 caddr_t base;
1345 struct fs *fs;
1346 struct ufsvfs *ufsvfsp;
1347 struct vnode *vp;
1348 long oresid = uio->uio_resid;
1349 u_offset_t n, on, mapon;
1350 int error = 0;
1351 int doupdate = 1;
1352 uint_t flags;
1353 int dofree, directio_status;
1354 krw_t rwtype;
1355 o_mode_t type;
1356 clock_t now;
1357
1358 vp = ITOV(ip);
1359
1360 ASSERT(RW_LOCK_HELD(&ip->i_contents));
1361
1362 ufsvfsp = ip->i_ufsvfs;
1363
1364 if (ufsvfsp == NULL)
1365 return (EIO);
1366
1367 fs = ufsvfsp->vfs_fs;
1368
1369 /* check for valid filetype */
1370 type = ip->i_mode & IFMT;
1371 if ((type != IFREG) && (type != IFDIR) && (type != IFATTRDIR) &&
1372 (type != IFLNK) && (type != IFSHAD)) {
1373 return (EIO);
1374 }
1375
1376 if (uio->uio_loffset > UFS_MAXOFFSET_T) {
1377 error = 0;
1378 goto out;
1379 }
1380 if (uio->uio_loffset < (offset_t)0) {
1381 return (EINVAL);
1382 }
1383 if (uio->uio_resid == 0) {
1384 return (0);
1385 }
1386
1387 if (!ULOCKFS_IS_NOIACC(ITOUL(ip)) && (fs->fs_ronly == 0) &&
1388 (!ufsvfsp->vfs_noatime)) {
1389 mutex_enter(&ip->i_tlock);
1390 ip->i_flag |= IACC;
1391 mutex_exit(&ip->i_tlock);
1392 }
1393 /*
1394 * Try to go direct
1395 */
1396 if (ip->i_flag & IDIRECTIO || ufsvfsp->vfs_forcedirectio) {
1397 error = ufs_directio_read(ip, uio, cr, &directio_status);
1398 if (directio_status == DIRECTIO_SUCCESS)
1399 goto out;
1400 }
1401
1402 rwtype = (rw_write_held(&ip->i_contents)?RW_WRITER:RW_READER);
1403
1404 do {
1405 offset_t diff;
1406 u_offset_t uoff = uio->uio_loffset;
1407 off = uoff & (offset_t)MAXBMASK;
1408 mapon = (u_offset_t)(uoff & (offset_t)MAXBOFFSET);
1409 on = (u_offset_t)blkoff(fs, uoff);
1410 n = MIN((u_offset_t)fs->fs_bsize - on,
1411 (u_offset_t)uio->uio_resid);
1412
1413 diff = ip->i_size - uoff;
1414
1415 if (diff <= (offset_t)0) {
1416 error = 0;
1417 goto out;
1418 }
1419 if (diff < (offset_t)n)
1420 n = (int)diff;
1421
1422 /*
1423 * We update smallfile2 and smallfile1 at most every second.
1424 */
1425 now = ddi_get_lbolt();
1426 if (now >= smallfile_update) {
1427 uint64_t percpufreeb;
1428 if (smallfile1_d == 0) smallfile1_d = SMALLFILE1_D;
1429 if (smallfile2_d == 0) smallfile2_d = SMALLFILE2_D;
1430 percpufreeb = ptob((uint64_t)freemem) / ncpus_online;
1431 smallfile1 = percpufreeb / smallfile1_d;
1432 smallfile2 = percpufreeb / smallfile2_d;
1433 smallfile1 = MAX(smallfile1, smallfile);
1434 smallfile1 = MAX(smallfile1, smallfile64);
1435 smallfile2 = MAX(smallfile1, smallfile2);
1436 smallfile_update = now + hz;
1437 }
1438
1439 dofree = freebehind &&
1440 ip->i_nextr == (off & PAGEMASK) && off > smallfile1;
1441
1442 /*
1443 * At this point we can enter ufs_getpage() in one of two
1444 * ways:
1445 * 1) segmap_getmapflt() calls ufs_getpage() when the
1446 * forcefault parameter is true (value of 1 is passed)
1447 * 2) uiomove() causes a page fault.
1448 *
1449 * We cannot hold onto an i_contents reader lock without
1450 * risking deadlock in ufs_getpage() so drop a reader lock.
1451 * The ufs_getpage() dolock logic already allows for a
1452 * thread holding i_contents as writer to work properly
1453 * so we keep a writer lock.
1454 */
1455 if (rwtype == RW_READER)
1456 rw_exit(&ip->i_contents);
1457
1458 if (vpm_enable) {
1459 /*
1460 * Copy data.
1461 */
1462 error = vpm_data_copy(vp, (off + mapon), (uint_t)n,
1463 uio, 1, NULL, 0, S_READ);
1464 } else {
1465 base = segmap_getmapflt(segkmap, vp, (off + mapon),
1466 (uint_t)n, 1, S_READ);
1467 error = uiomove(base + mapon, (long)n, UIO_READ, uio);
1468 }
1469
1470 flags = 0;
1471 if (!error) {
1472 /*
1473 * If reading sequential we won't need this
1474 * buffer again soon. For offsets in range
1475 * [smallfile1, smallfile2] release the pages
1476 * at the tail of the cache list, larger
1477 * offsets are released at the head.
1478 */
1479 if (dofree) {
1480 flags = SM_FREE | SM_ASYNC;
1481 if ((cache_read_ahead == 0) &&
1482 (off > smallfile2))
1483 flags |= SM_DONTNEED;
1484 }
1485 /*
1486 * In POSIX SYNC (FSYNC and FDSYNC) read mode,
1487 * we want to make sure that the page which has
1488 * been read, is written on disk if it is dirty.
1489 * And corresponding indirect blocks should also
1490 * be flushed out.
1491 */
1492 if ((ioflag & FRSYNC) && (ioflag & (FSYNC|FDSYNC))) {
1493 flags &= ~SM_ASYNC;
1494 flags |= SM_WRITE;
1495 }
1496 if (vpm_enable) {
1497 error = vpm_sync_pages(vp, off, n, flags);
1498 } else {
1499 error = segmap_release(segkmap, base, flags);
1500 }
1501 } else {
1502 if (vpm_enable) {
1503 (void) vpm_sync_pages(vp, off, n, flags);
1504 } else {
1505 (void) segmap_release(segkmap, base, flags);
1506 }
1507 }
1508
1509 if (rwtype == RW_READER)
1510 rw_enter(&ip->i_contents, rwtype);
1511 } while (error == 0 && uio->uio_resid > 0 && n != 0);
1512 out:
1513 /*
1514 * Inode is updated according to this table if FRSYNC is set.
1515 *
1516 * FSYNC FDSYNC(posix.4)
1517 * --------------------------
1518 * always IATTCHG|IBDWRITE
1519 */
1520 /*
1521 * The inode is not updated if we're logging and the inode is a
1522 * directory with FRSYNC, FSYNC and FDSYNC flags set.
1523 */
1524 if (ioflag & FRSYNC) {
1525 if (TRANS_ISTRANS(ufsvfsp) && ((ip->i_mode & IFMT) == IFDIR)) {
1526 doupdate = 0;
1527 }
1528 if (doupdate) {
1529 if ((ioflag & FSYNC) ||
1530 ((ioflag & FDSYNC) &&
1531 (ip->i_flag & (IATTCHG|IBDWRITE)))) {
1532 ufs_iupdat(ip, 1);
1533 }
1534 }
1535 }
1536 /*
1537 * If we've already done a partial read, terminate
1538 * the read but return no error.
1539 */
1540 if (oresid != uio->uio_resid)
1541 error = 0;
1542 ITIMES(ip);
1543
1544 return (error);
1545 }
1546
1547 /* ARGSUSED */
1548 static int
1549 ufs_ioctl(
1550 struct vnode *vp,
1551 int cmd,
1552 intptr_t arg,
1553 int flag,
1554 struct cred *cr,
1555 int *rvalp,
1556 caller_context_t *ct)
1557 {
1558 struct lockfs lockfs, lockfs_out;
1559 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs;
1560 char *comment, *original_comment;
1561 struct fs *fs;
1562 struct ulockfs *ulp;
1563 offset_t off;
1564 extern int maxphys;
1565 int error;
1566 int issync;
1567 int trans_size;
1568
1569
1570 /*
1571 * forcibly unmounted
1572 */
1573 if (ufsvfsp == NULL || vp->v_vfsp == NULL ||
1574 vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)
1575 return (EIO);
1576 fs = ufsvfsp->vfs_fs;
1577
1578 if (cmd == Q_QUOTACTL) {
1579 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_QUOTA_MASK);
1580 if (error)
1581 return (error);
1582
1583 if (ulp) {
1584 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_QUOTA,
1585 TOP_SETQUOTA_SIZE(fs));
1586 }
1587
1588 error = quotactl(vp, arg, flag, cr);
1589
1590 if (ulp) {
1591 TRANS_END_ASYNC(ufsvfsp, TOP_QUOTA,
1592 TOP_SETQUOTA_SIZE(fs));
1593 ufs_lockfs_end(ulp);
1594 }
1595 return (error);
1596 }
1597
1598 switch (cmd) {
1599 case _FIOLFS:
1600 /*
1601 * file system locking
1602 */
1603 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0)
1604 return (EPERM);
1605
1606 if ((flag & DATAMODEL_MASK) == DATAMODEL_NATIVE) {
1607 if (copyin((caddr_t)arg, &lockfs,
1608 sizeof (struct lockfs)))
1609 return (EFAULT);
1610 }
1611 #ifdef _SYSCALL32_IMPL
1612 else {
1613 struct lockfs32 lockfs32;
1614 /* Translate ILP32 lockfs to LP64 lockfs */
1615 if (copyin((caddr_t)arg, &lockfs32,
1616 sizeof (struct lockfs32)))
1617 return (EFAULT);
1618 lockfs.lf_lock = (ulong_t)lockfs32.lf_lock;
1619 lockfs.lf_flags = (ulong_t)lockfs32.lf_flags;
1620 lockfs.lf_key = (ulong_t)lockfs32.lf_key;
1621 lockfs.lf_comlen = (ulong_t)lockfs32.lf_comlen;
1622 lockfs.lf_comment =
1623 (caddr_t)(uintptr_t)lockfs32.lf_comment;
1624 }
1625 #endif /* _SYSCALL32_IMPL */
1626
1627 if (lockfs.lf_comlen) {
1628 if (lockfs.lf_comlen > LOCKFS_MAXCOMMENTLEN)
1629 return (ENAMETOOLONG);
1630 comment =
1631 kmem_alloc(lockfs.lf_comlen, KM_SLEEP);
1632 if (copyin(lockfs.lf_comment, comment,
1633 lockfs.lf_comlen)) {
1634 kmem_free(comment, lockfs.lf_comlen);
1635 return (EFAULT);
1636 }
1637 original_comment = lockfs.lf_comment;
1638 lockfs.lf_comment = comment;
1639 }
1640 if ((error = ufs_fiolfs(vp, &lockfs, 0)) == 0) {
1641 lockfs.lf_comment = original_comment;
1642
1643 if ((flag & DATAMODEL_MASK) ==
1644 DATAMODEL_NATIVE) {
1645 (void) copyout(&lockfs, (caddr_t)arg,
1646 sizeof (struct lockfs));
1647 }
1648 #ifdef _SYSCALL32_IMPL
1649 else {
1650 struct lockfs32 lockfs32;
1651 /* Translate LP64 to ILP32 lockfs */
1652 lockfs32.lf_lock =
1653 (uint32_t)lockfs.lf_lock;
1654 lockfs32.lf_flags =
1655 (uint32_t)lockfs.lf_flags;
1656 lockfs32.lf_key =
1657 (uint32_t)lockfs.lf_key;
1658 lockfs32.lf_comlen =
1659 (uint32_t)lockfs.lf_comlen;
1660 lockfs32.lf_comment =
1661 (uint32_t)(uintptr_t)
1662 lockfs.lf_comment;
1663 (void) copyout(&lockfs32, (caddr_t)arg,
1664 sizeof (struct lockfs32));
1665 }
1666 #endif /* _SYSCALL32_IMPL */
1667
1668 } else {
1669 if (lockfs.lf_comlen)
1670 kmem_free(comment, lockfs.lf_comlen);
1671 }
1672 return (error);
1673
1674 case _FIOLFSS:
1675 /*
1676 * get file system locking status
1677 */
1678
1679 if ((flag & DATAMODEL_MASK) == DATAMODEL_NATIVE) {
1680 if (copyin((caddr_t)arg, &lockfs,
1681 sizeof (struct lockfs)))
1682 return (EFAULT);
1683 }
1684 #ifdef _SYSCALL32_IMPL
1685 else {
1686 struct lockfs32 lockfs32;
1687 /* Translate ILP32 lockfs to LP64 lockfs */
1688 if (copyin((caddr_t)arg, &lockfs32,
1689 sizeof (struct lockfs32)))
1690 return (EFAULT);
1691 lockfs.lf_lock = (ulong_t)lockfs32.lf_lock;
1692 lockfs.lf_flags = (ulong_t)lockfs32.lf_flags;
1693 lockfs.lf_key = (ulong_t)lockfs32.lf_key;
1694 lockfs.lf_comlen = (ulong_t)lockfs32.lf_comlen;
1695 lockfs.lf_comment =
1696 (caddr_t)(uintptr_t)lockfs32.lf_comment;
1697 }
1698 #endif /* _SYSCALL32_IMPL */
1699
1700 if (error = ufs_fiolfss(vp, &lockfs_out))
1701 return (error);
1702 lockfs.lf_lock = lockfs_out.lf_lock;
1703 lockfs.lf_key = lockfs_out.lf_key;
1704 lockfs.lf_flags = lockfs_out.lf_flags;
1705 lockfs.lf_comlen = MIN(lockfs.lf_comlen,
1706 lockfs_out.lf_comlen);
1707
1708 if ((flag & DATAMODEL_MASK) == DATAMODEL_NATIVE) {
1709 if (copyout(&lockfs, (caddr_t)arg,
1710 sizeof (struct lockfs)))
1711 return (EFAULT);
1712 }
1713 #ifdef _SYSCALL32_IMPL
1714 else {
1715 /* Translate LP64 to ILP32 lockfs */
1716 struct lockfs32 lockfs32;
1717 lockfs32.lf_lock = (uint32_t)lockfs.lf_lock;
1718 lockfs32.lf_flags = (uint32_t)lockfs.lf_flags;
1719 lockfs32.lf_key = (uint32_t)lockfs.lf_key;
1720 lockfs32.lf_comlen = (uint32_t)lockfs.lf_comlen;
1721 lockfs32.lf_comment =
1722 (uint32_t)(uintptr_t)lockfs.lf_comment;
1723 if (copyout(&lockfs32, (caddr_t)arg,
1724 sizeof (struct lockfs32)))
1725 return (EFAULT);
1726 }
1727 #endif /* _SYSCALL32_IMPL */
1728
1729 if (lockfs.lf_comlen &&
1730 lockfs.lf_comment && lockfs_out.lf_comment)
1731 if (copyout(lockfs_out.lf_comment,
1732 lockfs.lf_comment, lockfs.lf_comlen))
1733 return (EFAULT);
1734 return (0);
1735
1736 case _FIOSATIME:
1737 /*
1738 * set access time
1739 */
1740
1741 /*
1742 * if mounted w/o atime, return quietly.
1743 * I briefly thought about returning ENOSYS, but
1744 * figured that most apps would consider this fatal
1745 * but the idea is to make this as seamless as poss.
1746 */
1747 if (ufsvfsp->vfs_noatime)
1748 return (0);
1749
1750 error = ufs_lockfs_begin(ufsvfsp, &ulp,
1751 ULOCKFS_SETATTR_MASK);
1752 if (error)
1753 return (error);
1754
1755 if (ulp) {
1756 trans_size = (int)TOP_SETATTR_SIZE(VTOI(vp));
1757 TRANS_BEGIN_CSYNC(ufsvfsp, issync,
1758 TOP_SETATTR, trans_size);
1759 }
1760
1761 error = ufs_fiosatime(vp, (struct timeval *)arg,
1762 flag, cr);
1763
1764 if (ulp) {
1765 TRANS_END_CSYNC(ufsvfsp, error, issync,
1766 TOP_SETATTR, trans_size);
1767 ufs_lockfs_end(ulp);
1768 }
1769 return (error);
1770
1771 case _FIOSDIO:
1772 /*
1773 * set delayed-io
1774 */
1775 return (ufs_fiosdio(vp, (uint_t *)arg, flag, cr));
1776
1777 case _FIOGDIO:
1778 /*
1779 * get delayed-io
1780 */
1781 return (ufs_fiogdio(vp, (uint_t *)arg, flag, cr));
1782
1783 case _FIOIO:
1784 /*
1785 * inode open
1786 */
1787 error = ufs_lockfs_begin(ufsvfsp, &ulp,
1788 ULOCKFS_VGET_MASK);
1789 if (error)
1790 return (error);
1791
1792 error = ufs_fioio(vp, (struct fioio *)arg, flag, cr);
1793
1794 if (ulp) {
1795 ufs_lockfs_end(ulp);
1796 }
1797 return (error);
1798
1799 case _FIOFFS:
1800 /*
1801 * file system flush (push w/invalidate)
1802 */
1803 if ((caddr_t)arg != NULL)
1804 return (EINVAL);
1805 return (ufs_fioffs(vp, NULL, cr));
1806
1807 case _FIOISBUSY:
1808 /*
1809 * Contract-private interface for Legato
1810 * Purge this vnode from the DNLC and decide
1811 * if this vnode is busy (*arg == 1) or not
1812 * (*arg == 0)
1813 */
1814 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0)
1815 return (EPERM);
1816 error = ufs_fioisbusy(vp, (int *)arg, cr);
1817 return (error);
1818
1819 case _FIODIRECTIO:
1820 return (ufs_fiodirectio(vp, (int)arg, cr));
1821
1822 case _FIOTUNE:
1823 /*
1824 * Tune the file system (aka setting fs attributes)
1825 */
1826 error = ufs_lockfs_begin(ufsvfsp, &ulp,
1827 ULOCKFS_SETATTR_MASK);
1828 if (error)
1829 return (error);
1830
1831 error = ufs_fiotune(vp, (struct fiotune *)arg, cr);
1832
1833 if (ulp)
1834 ufs_lockfs_end(ulp);
1835 return (error);
1836
1837 case _FIOLOGENABLE:
1838 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0)
1839 return (EPERM);
1840 return (ufs_fiologenable(vp, (void *)arg, cr, flag));
1841
1842 case _FIOLOGDISABLE:
1843 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0)
1844 return (EPERM);
1845 return (ufs_fiologdisable(vp, (void *)arg, cr, flag));
1846
1847 case _FIOISLOG:
1848 return (ufs_fioislog(vp, (void *)arg, cr, flag));
1849
1850 case _FIOSNAPSHOTCREATE_MULTI:
1851 {
1852 struct fiosnapcreate_multi fc, *fcp;
1853 size_t fcm_size;
1854
1855 if (copyin((void *)arg, &fc, sizeof (fc)))
1856 return (EFAULT);
1857 if (fc.backfilecount > MAX_BACKFILE_COUNT)
1858 return (EINVAL);
1859 fcm_size = sizeof (struct fiosnapcreate_multi) +
1860 (fc.backfilecount - 1) * sizeof (int);
1861 fcp = (struct fiosnapcreate_multi *)
1862 kmem_alloc(fcm_size, KM_SLEEP);
1863 if (copyin((void *)arg, fcp, fcm_size)) {
1864 kmem_free(fcp, fcm_size);
1865 return (EFAULT);
1866 }
1867 error = ufs_snap_create(vp, fcp, cr);
1868 /*
1869 * Do copyout even if there is an error because
1870 * the details of error is stored in fcp.
1871 */
1872 if (copyout(fcp, (void *)arg, fcm_size))
1873 error = EFAULT;
1874 kmem_free(fcp, fcm_size);
1875 return (error);
1876 }
1877
1878 case _FIOSNAPSHOTDELETE:
1879 {
1880 struct fiosnapdelete fc;
1881
1882 if (copyin((void *)arg, &fc, sizeof (fc)))
1883 return (EFAULT);
1884 error = ufs_snap_delete(vp, &fc, cr);
1885 if (!error && copyout(&fc, (void *)arg, sizeof (fc)))
1886 error = EFAULT;
1887 return (error);
1888 }
1889
1890 case _FIOGETSUPERBLOCK:
1891 if (copyout(fs, (void *)arg, SBSIZE))
1892 return (EFAULT);
1893 return (0);
1894
1895 case _FIOGETMAXPHYS:
1896 if (copyout(&maxphys, (void *)arg, sizeof (maxphys)))
1897 return (EFAULT);
1898 return (0);
1899
1900 /*
1901 * The following 3 ioctls are for TSufs support
1902 * although could potentially be used elsewhere
1903 */
1904 case _FIO_SET_LUFS_DEBUG:
1905 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0)
1906 return (EPERM);
1907 lufs_debug = (uint32_t)arg;
1908 return (0);
1909
1910 case _FIO_SET_LUFS_ERROR:
1911 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0)
1912 return (EPERM);
1913 TRANS_SETERROR(ufsvfsp);
1914 return (0);
1915
1916 case _FIO_GET_TOP_STATS:
1917 {
1918 fio_lufs_stats_t *ls;
1919 ml_unit_t *ul = ufsvfsp->vfs_log;
1920
1921 ls = kmem_zalloc(sizeof (*ls), KM_SLEEP);
1922 ls->ls_debug = ul->un_debug; /* return debug value */
1923 /* Copy stucture if statistics are being kept */
1924 if (ul->un_logmap->mtm_tops) {
1925 ls->ls_topstats = *(ul->un_logmap->mtm_tops);
1926 }
1927 error = 0;
1928 if (copyout(ls, (void *)arg, sizeof (*ls)))
1929 error = EFAULT;
1930 kmem_free(ls, sizeof (*ls));
1931 return (error);
1932 }
1933
1934 case _FIO_SEEK_DATA:
1935 case _FIO_SEEK_HOLE:
1936 if (ddi_copyin((void *)arg, &off, sizeof (off), flag))
1937 return (EFAULT);
1938 /* offset paramater is in/out */
1939 error = ufs_fio_holey(vp, cmd, &off);
1940 if (error)
1941 return (error);
1942 if (ddi_copyout(&off, (void *)arg, sizeof (off), flag))
1943 return (EFAULT);
1944 return (0);
1945
1946 case _FIO_COMPRESSED:
1947 {
1948 /*
1949 * This is a project private ufs ioctl() to mark
1950 * the inode as that belonging to a compressed
1951 * file. This is used to mark individual
1952 * compressed files in a miniroot archive.
1953 * The files compressed in this manner are
1954 * automatically decompressed by the dcfs filesystem
1955 * (via an interception in ufs_lookup - see decompvp())
1956 * which is layered on top of ufs on a system running
1957 * from the archive. See uts/common/fs/dcfs for details.
1958 * This ioctl only marks the file as compressed - the
1959 * actual compression is done by fiocompress (a
1960 * userland utility) which invokes this ioctl().
1961 */
1962 struct inode *ip = VTOI(vp);
1963
1964 error = ufs_lockfs_begin(ufsvfsp, &ulp,
1965 ULOCKFS_SETATTR_MASK);
1966 if (error)
1967 return (error);
1968
1969 if (ulp) {
1970 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_IUPDAT,
1971 TOP_IUPDAT_SIZE(ip));
1972 }
1973
1974 error = ufs_mark_compressed(vp);
1975
1976 if (ulp) {
1977 TRANS_END_ASYNC(ufsvfsp, TOP_IUPDAT,
1978 TOP_IUPDAT_SIZE(ip));
1979 ufs_lockfs_end(ulp);
1980 }
1981
1982 return (error);
1983
1984 }
1985
1986 default:
1987 return (ENOTTY);
1988 }
1989 }
1990
1991
1992 /* ARGSUSED */
1993 static int
1994 ufs_getattr(struct vnode *vp, struct vattr *vap, int flags,
1995 struct cred *cr, caller_context_t *ct)
1996 {
1997 struct inode *ip = VTOI(vp);
1998 struct ufsvfs *ufsvfsp;
1999 int err;
2000
2001 if (vap->va_mask == AT_SIZE) {
2002 /*
2003 * for performance, if only the size is requested don't bother
2004 * with anything else.
2005 */
2006 UFS_GET_ISIZE(&vap->va_size, ip);
2007 return (0);
2008 }
2009
2010 /*
2011 * inlined lockfs checks
2012 */
2013 ufsvfsp = ip->i_ufsvfs;
2014 if ((ufsvfsp == NULL) || ULOCKFS_IS_HLOCK(&ufsvfsp->vfs_ulockfs)) {
2015 err = EIO;
2016 goto out;
2017 }
2018
2019 rw_enter(&ip->i_contents, RW_READER);
2020 /*
2021 * Return all the attributes. This should be refined so
2022 * that it only returns what's asked for.
2023 */
2024
2025 /*
2026 * Copy from inode table.
2027 */
2028 vap->va_type = vp->v_type;
2029 vap->va_mode = ip->i_mode & MODEMASK;
2030 /*
2031 * If there is an ACL and there is a mask entry, then do the
2032 * extra work that completes the equivalent of an acltomode(3)
2033 * call. According to POSIX P1003.1e, the acl mask should be
2034 * returned in the group permissions field.
2035 *
2036 * - start with the original permission and mode bits (from above)
2037 * - clear the group owner bits
2038 * - add in the mask bits.
2039 */
2040 if (ip->i_ufs_acl && ip->i_ufs_acl->aclass.acl_ismask) {
2041 vap->va_mode &= ~((VREAD | VWRITE | VEXEC) >> 3);
2042 vap->va_mode |=
2043 (ip->i_ufs_acl->aclass.acl_maskbits & PERMMASK) << 3;
2044 }
2045 vap->va_uid = ip->i_uid;
2046 vap->va_gid = ip->i_gid;
2047 vap->va_fsid = ip->i_dev;
2048 vap->va_nodeid = (ino64_t)ip->i_number;
2049 vap->va_nlink = ip->i_nlink;
2050 vap->va_size = ip->i_size;
2051 if (vp->v_type == VCHR || vp->v_type == VBLK)
2052 vap->va_rdev = ip->i_rdev;
2053 else
2054 vap->va_rdev = 0; /* not a b/c spec. */
2055 mutex_enter(&ip->i_tlock);
2056 ITIMES_NOLOCK(ip); /* mark correct time in inode */
2057 vap->va_seq = ip->i_seq;
2058 vap->va_atime.tv_sec = (time_t)ip->i_atime.tv_sec;
2059 vap->va_atime.tv_nsec = ip->i_atime.tv_usec*1000;
2060 vap->va_mtime.tv_sec = (time_t)ip->i_mtime.tv_sec;
2061 vap->va_mtime.tv_nsec = ip->i_mtime.tv_usec*1000;
2062 vap->va_ctime.tv_sec = (time_t)ip->i_ctime.tv_sec;
2063 vap->va_ctime.tv_nsec = ip->i_ctime.tv_usec*1000;
2064 mutex_exit(&ip->i_tlock);
2065
2066 switch (ip->i_mode & IFMT) {
2067
2068 case IFBLK:
2069 vap->va_blksize = MAXBSIZE; /* was BLKDEV_IOSIZE */
2070 break;
2071
2072 case IFCHR:
2073 vap->va_blksize = MAXBSIZE;
2074 break;
2075
2076 default:
2077 vap->va_blksize = ip->i_fs->fs_bsize;
2078 break;
2079 }
2080 vap->va_nblocks = (fsblkcnt64_t)ip->i_blocks;
2081 rw_exit(&ip->i_contents);
2082 err = 0;
2083
2084 out:
2085 return (err);
2086 }
2087
2088 /*
2089 * Special wrapper to provide a callback for secpolicy_vnode_setattr().
2090 * The i_contents lock is already held by the caller and we need to
2091 * declare the inode as 'void *' argument.
2092 */
2093 static int
2094 ufs_priv_access(void *vip, int mode, struct cred *cr)
2095 {
2096 struct inode *ip = vip;
2097
2098 return (ufs_iaccess(ip, mode, cr, 0));
2099 }
2100
2101 /*ARGSUSED4*/
2102 static int
2103 ufs_setattr(
2104 struct vnode *vp,
2105 struct vattr *vap,
2106 int flags,
2107 struct cred *cr,
2108 caller_context_t *ct)
2109 {
2110 struct inode *ip = VTOI(vp);
2111 struct ufsvfs *ufsvfsp = ip->i_ufsvfs;
2112 struct fs *fs;
2113 struct ulockfs *ulp;
2114 char *errmsg1;
2115 char *errmsg2;
2116 long blocks;
2117 long int mask = vap->va_mask;
2118 size_t len1, len2;
2119 int issync;
2120 int trans_size;
2121 int dotrans;
2122 int dorwlock;
2123 int error;
2124 int owner_change;
2125 int dodqlock;
2126 timestruc_t now;
2127 vattr_t oldva;
2128 int retry = 1;
2129 int indeadlock;
2130
2131 /*
2132 * Cannot set these attributes.
2133 */
2134 if ((mask & AT_NOSET) || (mask & AT_XVATTR))
2135 return (EINVAL);
2136
2137 /*
2138 * check for forced unmount
2139 */
2140 if (ufsvfsp == NULL)
2141 return (EIO);
2142
2143 fs = ufsvfsp->vfs_fs;
2144 if (fs->fs_ronly != 0)
2145 return (EROFS);
2146
2147 again:
2148 errmsg1 = NULL;
2149 errmsg2 = NULL;
2150 dotrans = 0;
2151 dorwlock = 0;
2152 dodqlock = 0;
2153
2154 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_SETATTR_MASK);
2155 if (error)
2156 goto out;
2157
2158 /*
2159 * Acquire i_rwlock before TRANS_BEGIN_CSYNC() if this is a file.
2160 * This follows the protocol for read()/write().
2161 */
2162 if (vp->v_type != VDIR) {
2163 /*
2164 * ufs_tryirwlock uses rw_tryenter and checks for SLOCK to
2165 * avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock
2166 * possible, retries the operation.
2167 */
2168 ufs_tryirwlock(&ip->i_rwlock, RW_WRITER, retry_file);
2169 if (indeadlock) {
2170 if (ulp)
2171 ufs_lockfs_end(ulp);
2172 goto again;
2173 }
2174 dorwlock = 1;
2175 }
2176
2177 /*
2178 * Truncate file. Must have write permission and not be a directory.
2179 */
2180 if (mask & AT_SIZE) {
2181 rw_enter(&ip->i_contents, RW_WRITER);
2182 if (vp->v_type == VDIR) {
2183 error = EISDIR;
2184 goto update_inode;
2185 }
2186 if (error = ufs_iaccess(ip, IWRITE, cr, 0))
2187 goto update_inode;
2188
2189 rw_exit(&ip->i_contents);
2190 error = TRANS_ITRUNC(ip, vap->va_size, 0, cr);
2191 if (error) {
2192 rw_enter(&ip->i_contents, RW_WRITER);
2193 goto update_inode;
2194 }
2195
2196 if (error == 0 && vap->va_size)
2197 vnevent_truncate(vp, ct);
2198 }
2199
2200 if (ulp) {
2201 trans_size = (int)TOP_SETATTR_SIZE(ip);
2202 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_SETATTR, trans_size);
2203 ++dotrans;
2204 }
2205
2206 /*
2207 * Acquire i_rwlock after TRANS_BEGIN_CSYNC() if this is a directory.
2208 * This follows the protocol established by
2209 * ufs_link/create/remove/rename/mkdir/rmdir/symlink.
2210 */
2211 if (vp->v_type == VDIR) {
2212 ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_SETATTR,
2213 retry_dir);
2214 if (indeadlock)
2215 goto again;
2216 dorwlock = 1;
2217 }
2218
2219 /*
2220 * Grab quota lock if we are changing the file's owner.
2221 */
2222 if (mask & AT_UID) {
2223 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
2224 dodqlock = 1;
2225 }
2226 rw_enter(&ip->i_contents, RW_WRITER);
2227
2228 oldva.va_mode = ip->i_mode;
2229 oldva.va_uid = ip->i_uid;
2230 oldva.va_gid = ip->i_gid;
2231
2232 vap->va_mask &= ~AT_SIZE;
2233
2234 error = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
2235 ufs_priv_access, ip);
2236 if (error)
2237 goto update_inode;
2238
2239 mask = vap->va_mask;
2240
2241 /*
2242 * Change file access modes.
2243 */
2244 if (mask & AT_MODE) {
2245 ip->i_mode = (ip->i_mode & IFMT) | (vap->va_mode & ~IFMT);
2246 TRANS_INODE(ufsvfsp, ip);
2247 ip->i_flag |= ICHG;
2248 if (stickyhack) {
2249 mutex_enter(&vp->v_lock);
2250 if ((ip->i_mode & (ISVTX | IEXEC | IFDIR)) == ISVTX)
2251 vp->v_flag |= VSWAPLIKE;
2252 else
2253 vp->v_flag &= ~VSWAPLIKE;
2254 mutex_exit(&vp->v_lock);
2255 }
2256 }
2257 if (mask & (AT_UID|AT_GID)) {
2258 if (mask & AT_UID) {
2259 /*
2260 * Don't change ownership of the quota inode.
2261 */
2262 if (ufsvfsp->vfs_qinod == ip) {
2263 ASSERT(ufsvfsp->vfs_qflags & MQ_ENABLED);
2264 error = EINVAL;
2265 goto update_inode;
2266 }
2267
2268 /*
2269 * No real ownership change.
2270 */
2271 if (ip->i_uid == vap->va_uid) {
2272 blocks = 0;
2273 owner_change = 0;
2274 }
2275 /*
2276 * Remove the blocks and the file, from the old user's
2277 * quota.
2278 */
2279 else {
2280 blocks = ip->i_blocks;
2281 owner_change = 1;
2282
2283 (void) chkdq(ip, -blocks, /* force */ 1, cr,
2284 (char **)NULL, (size_t *)NULL);
2285 (void) chkiq(ufsvfsp, /* change */ -1, ip,
2286 (uid_t)ip->i_uid, /* force */ 1, cr,
2287 (char **)NULL, (size_t *)NULL);
2288 dqrele(ip->i_dquot);
2289 }
2290
2291 ip->i_uid = vap->va_uid;
2292
2293 /*
2294 * There is a real ownership change.
2295 */
2296 if (owner_change) {
2297 /*
2298 * Add the blocks and the file to the new
2299 * user's quota.
2300 */
2301 ip->i_dquot = getinoquota(ip);
2302 (void) chkdq(ip, blocks, /* force */ 1, cr,
2303 &errmsg1, &len1);
2304 (void) chkiq(ufsvfsp, /* change */ 1,
2305 (struct inode *)NULL, (uid_t)ip->i_uid,
2306 /* force */ 1, cr, &errmsg2, &len2);
2307 }
2308 }
2309 if (mask & AT_GID) {
2310 ip->i_gid = vap->va_gid;
2311 }
2312 TRANS_INODE(ufsvfsp, ip);
2313 ip->i_flag |= ICHG;
2314 }
2315 /*
2316 * Change file access or modified times.
2317 */
2318 if (mask & (AT_ATIME|AT_MTIME)) {
2319 /* Check that the time value is within ufs range */
2320 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) ||
2321 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) {
2322 error = EOVERFLOW;
2323 goto update_inode;
2324 }
2325
2326 /*
2327 * if the "noaccess" mount option is set and only atime
2328 * update is requested, do nothing. No error is returned.
2329 */
2330 if ((ufsvfsp->vfs_noatime) &&
2331 ((mask & (AT_ATIME|AT_MTIME)) == AT_ATIME))
2332 goto skip_atime;
2333
2334 if (mask & AT_ATIME) {
2335 ip->i_atime.tv_sec = vap->va_atime.tv_sec;
2336 ip->i_atime.tv_usec = vap->va_atime.tv_nsec / 1000;
2337 ip->i_flag &= ~IACC;
2338 }
2339 if (mask & AT_MTIME) {
2340 ip->i_mtime.tv_sec = vap->va_mtime.tv_sec;
2341 ip->i_mtime.tv_usec = vap->va_mtime.tv_nsec / 1000;
2342 gethrestime(&now);
2343 if (now.tv_sec > TIME32_MAX) {
2344 /*
2345 * In 2038, ctime sticks forever..
2346 */
2347 ip->i_ctime.tv_sec = TIME32_MAX;
2348 ip->i_ctime.tv_usec = 0;
2349 } else {
2350 ip->i_ctime.tv_sec = now.tv_sec;
2351 ip->i_ctime.tv_usec = now.tv_nsec / 1000;
2352 }
2353 ip->i_flag &= ~(IUPD|ICHG);
2354 ip->i_flag |= IMODTIME;
2355 }
2356 TRANS_INODE(ufsvfsp, ip);
2357 ip->i_flag |= IMOD;
2358 }
2359
2360 skip_atime:
2361 /*
2362 * The presence of a shadow inode may indicate an ACL, but does
2363 * not imply an ACL. Future FSD types should be handled here too
2364 * and check for the presence of the attribute-specific data
2365 * before referencing it.
2366 */
2367 if (ip->i_shadow) {
2368 /*
2369 * XXX if ufs_iupdat is changed to sandbagged write fix
2370 * ufs_acl_setattr to push ip to keep acls consistent
2371 *
2372 * Suppress out of inodes messages if we will retry.
2373 */
2374 if (retry)
2375 ip->i_flag |= IQUIET;
2376 error = ufs_acl_setattr(ip, vap, cr);
2377 ip->i_flag &= ~IQUIET;
2378 }
2379
2380 update_inode:
2381 /*
2382 * Setattr always increases the sequence number
2383 */
2384 ip->i_seq++;
2385
2386 /*
2387 * if nfsd and not logging; push synchronously
2388 */
2389 if ((curthread->t_flag & T_DONTPEND) && !TRANS_ISTRANS(ufsvfsp)) {
2390 ufs_iupdat(ip, 1);
2391 } else {
2392 ITIMES_NOLOCK(ip);
2393 }
2394
2395 rw_exit(&ip->i_contents);
2396 if (dodqlock) {
2397 rw_exit(&ufsvfsp->vfs_dqrwlock);
2398 }
2399 if (dorwlock)
2400 rw_exit(&ip->i_rwlock);
2401
2402 if (ulp) {
2403 if (dotrans) {
2404 int terr = 0;
2405 TRANS_END_CSYNC(ufsvfsp, terr, issync, TOP_SETATTR,
2406 trans_size);
2407 if (error == 0)
2408 error = terr;
2409 }
2410 ufs_lockfs_end(ulp);
2411 }
2412 out:
2413 /*
2414 * If out of inodes or blocks, see if we can free something
2415 * up from the delete queue.
2416 */
2417 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) {
2418 ufs_delete_drain_wait(ufsvfsp, 1);
2419 retry = 0;
2420 if (errmsg1 != NULL)
2421 kmem_free(errmsg1, len1);
2422 if (errmsg2 != NULL)
2423 kmem_free(errmsg2, len2);
2424 goto again;
2425 }
2426 if (errmsg1 != NULL) {
2427 uprintf(errmsg1);
2428 kmem_free(errmsg1, len1);
2429 }
2430 if (errmsg2 != NULL) {
2431 uprintf(errmsg2);
2432 kmem_free(errmsg2, len2);
2433 }
2434 return (error);
2435 }
2436
2437 /*ARGSUSED*/
2438 static int
2439 ufs_access(struct vnode *vp, int mode, int flags, struct cred *cr,
2440 caller_context_t *ct)
2441 {
2442 struct inode *ip = VTOI(vp);
2443
2444 if (ip->i_ufsvfs == NULL)
2445 return (EIO);
2446
2447 /*
2448 * The ufs_iaccess function wants to be called with
2449 * mode bits expressed as "ufs specific" bits.
2450 * I.e., VWRITE|VREAD|VEXEC do not make sense to
2451 * ufs_iaccess() but IWRITE|IREAD|IEXEC do.
2452 * But since they're the same we just pass the vnode mode
2453 * bit but just verify that assumption at compile time.
2454 */
2455 #if IWRITE != VWRITE || IREAD != VREAD || IEXEC != VEXEC
2456 #error "ufs_access needs to map Vmodes to Imodes"
2457 #endif
2458 return (ufs_iaccess(ip, mode, cr, 1));
2459 }
2460
2461 /* ARGSUSED */
2462 static int
2463 ufs_readlink(struct vnode *vp, struct uio *uiop, struct cred *cr,
2464 caller_context_t *ct)
2465 {
2466 struct inode *ip = VTOI(vp);
2467 struct ufsvfs *ufsvfsp;
2468 struct ulockfs *ulp;
2469 int error;
2470 int fastsymlink;
2471
2472 if (vp->v_type != VLNK) {
2473 error = EINVAL;
2474 goto nolockout;
2475 }
2476
2477 /*
2478 * If the symbolic link is empty there is nothing to read.
2479 * Fast-track these empty symbolic links
2480 */
2481 if (ip->i_size == 0) {
2482 error = 0;
2483 goto nolockout;
2484 }
2485
2486 ufsvfsp = ip->i_ufsvfs;
2487 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_READLINK_MASK);
2488 if (error)
2489 goto nolockout;
2490 /*
2491 * The ip->i_rwlock protects the data blocks used for FASTSYMLINK
2492 */
2493 again:
2494 fastsymlink = 0;
2495 if (ip->i_flag & IFASTSYMLNK) {
2496 rw_enter(&ip->i_rwlock, RW_READER);
2497 rw_enter(&ip->i_contents, RW_READER);
2498 if (ip->i_flag & IFASTSYMLNK) {
2499 if (!ULOCKFS_IS_NOIACC(ITOUL(ip)) &&
2500 (ip->i_fs->fs_ronly == 0) &&
2501 (!ufsvfsp->vfs_noatime)) {
2502 mutex_enter(&ip->i_tlock);
2503 ip->i_flag |= IACC;
2504 mutex_exit(&ip->i_tlock);
2505 }
2506 error = uiomove((caddr_t)&ip->i_db[1],
2507 MIN(ip->i_size, uiop->uio_resid),
2508 UIO_READ, uiop);
2509 ITIMES(ip);
2510 ++fastsymlink;
2511 }
2512 rw_exit(&ip->i_contents);
2513 rw_exit(&ip->i_rwlock);
2514 }
2515 if (!fastsymlink) {
2516 ssize_t size; /* number of bytes read */
2517 caddr_t basep; /* pointer to input data */
2518 ino_t ino;
2519 long igen;
2520 struct uio tuio; /* temp uio struct */
2521 struct uio *tuiop;
2522 iovec_t tiov; /* temp iovec struct */
2523 char kbuf[FSL_SIZE]; /* buffer to hold fast symlink */
2524 int tflag = 0; /* flag to indicate temp vars used */
2525
2526 ino = ip->i_number;
2527 igen = ip->i_gen;
2528 size = uiop->uio_resid;
2529 basep = uiop->uio_iov->iov_base;
2530 tuiop = uiop;
2531
2532 rw_enter(&ip->i_rwlock, RW_WRITER);
2533 rw_enter(&ip->i_contents, RW_WRITER);
2534 if (ip->i_flag & IFASTSYMLNK) {
2535 rw_exit(&ip->i_contents);
2536 rw_exit(&ip->i_rwlock);
2537 goto again;
2538 }
2539
2540 /* can this be a fast symlink and is it a user buffer? */
2541 if (ip->i_size <= FSL_SIZE &&
2542 (uiop->uio_segflg == UIO_USERSPACE ||
2543 uiop->uio_segflg == UIO_USERISPACE)) {
2544
2545 bzero(&tuio, sizeof (struct uio));
2546 /*
2547 * setup a kernel buffer to read link into. this
2548 * is to fix a race condition where the user buffer
2549 * got corrupted before copying it into the inode.
2550 */
2551 size = ip->i_size;
2552 tiov.iov_len = size;
2553 tiov.iov_base = kbuf;
2554 tuio.uio_iov = &tiov;
2555 tuio.uio_iovcnt = 1;
2556 tuio.uio_offset = uiop->uio_offset;
2557 tuio.uio_segflg = UIO_SYSSPACE;
2558 tuio.uio_fmode = uiop->uio_fmode;
2559 tuio.uio_extflg = uiop->uio_extflg;
2560 tuio.uio_limit = uiop->uio_limit;
2561 tuio.uio_resid = size;
2562
2563 basep = tuio.uio_iov->iov_base;
2564 tuiop = &tuio;
2565 tflag = 1;
2566 }
2567
2568 error = rdip(ip, tuiop, 0, cr);
2569 if (!(error == 0 && ip->i_number == ino && ip->i_gen == igen)) {
2570 rw_exit(&ip->i_contents);
2571 rw_exit(&ip->i_rwlock);
2572 goto out;
2573 }
2574
2575 if (tflag == 0)
2576 size -= uiop->uio_resid;
2577
2578 if ((tflag == 0 && ip->i_size <= FSL_SIZE &&
2579 ip->i_size == size) || (tflag == 1 &&
2580 tuio.uio_resid == 0)) {
2581 error = kcopy(basep, &ip->i_db[1], ip->i_size);
2582 if (error == 0) {
2583 ip->i_flag |= IFASTSYMLNK;
2584 /*
2585 * free page
2586 */
2587 (void) VOP_PUTPAGE(ITOV(ip),
2588 (offset_t)0, PAGESIZE,
2589 (B_DONTNEED | B_FREE | B_FORCE | B_ASYNC),
2590 cr, ct);
2591 } else {
2592 int i;
2593 /* error, clear garbage left behind */
2594 for (i = 1; i < NDADDR; i++)
2595 ip->i_db[i] = 0;
2596 for (i = 0; i < NIADDR; i++)
2597 ip->i_ib[i] = 0;
2598 }
2599 }
2600 if (tflag == 1) {
2601 /* now, copy it into the user buffer */
2602 error = uiomove((caddr_t)kbuf,
2603 MIN(size, uiop->uio_resid),
2604 UIO_READ, uiop);
2605 }
2606 rw_exit(&ip->i_contents);
2607 rw_exit(&ip->i_rwlock);
2608 }
2609 out:
2610 if (ulp) {
2611 ufs_lockfs_end(ulp);
2612 }
2613 nolockout:
2614 return (error);
2615 }
2616
2617 /* ARGSUSED */
2618 static int
2619 ufs_fsync(struct vnode *vp, int syncflag, struct cred *cr,
2620 caller_context_t *ct)
2621 {
2622 struct inode *ip = VTOI(vp);
2623 struct ufsvfs *ufsvfsp = ip->i_ufsvfs;
2624 struct ulockfs *ulp;
2625 int error;
2626
2627 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_FSYNC_MASK);
2628 if (error)
2629 return (error);
2630
2631 if (TRANS_ISTRANS(ufsvfsp)) {
2632 /*
2633 * First push out any data pages
2634 */
2635 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) &&
2636 (vp->v_type != VCHR) && !(IS_SWAPVP(vp))) {
2637 error = VOP_PUTPAGE(vp, (offset_t)0, (size_t)0,
2638 0, CRED(), ct);
2639 if (error)
2640 goto out;
2641 }
2642
2643 /*
2644 * Delta any delayed inode times updates
2645 * and push inode to log.
2646 * All other inode deltas will have already been delta'd
2647 * and will be pushed during the commit.
2648 */
2649 if (!(syncflag & FDSYNC) &&
2650 ((ip->i_flag & (IMOD|IMODACC)) == IMODACC)) {
2651 if (ulp) {
2652 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_FSYNC,
2653 TOP_SYNCIP_SIZE);
2654 }
2655 rw_enter(&ip->i_contents, RW_READER);
2656 mutex_enter(&ip->i_tlock);
2657 ip->i_flag &= ~IMODTIME;
2658 mutex_exit(&ip->i_tlock);
2659 ufs_iupdat(ip, I_SYNC);
2660 rw_exit(&ip->i_contents);
2661 if (ulp) {
2662 TRANS_END_ASYNC(ufsvfsp, TOP_FSYNC,
2663 TOP_SYNCIP_SIZE);
2664 }
2665 }
2666
2667 /*
2668 * Commit the Moby transaction
2669 *
2670 * Deltas have already been made so we just need to
2671 * commit them with a synchronous transaction.
2672 * TRANS_BEGIN_SYNC() will return an error
2673 * if there are no deltas to commit, for an
2674 * empty transaction.
2675 */
2676 if (ulp) {
2677 TRANS_BEGIN_SYNC(ufsvfsp, TOP_FSYNC, TOP_COMMIT_SIZE,
2678 error);
2679 if (error) {
2680 error = 0; /* commit wasn't needed */
2681 goto out;
2682 }
2683 TRANS_END_SYNC(ufsvfsp, error, TOP_FSYNC,
2684 TOP_COMMIT_SIZE);
2685 }
2686 } else { /* not logging */
2687 if (!(IS_SWAPVP(vp)))
2688 if (syncflag & FNODSYNC) {
2689 /* Just update the inode only */
2690 TRANS_IUPDAT(ip, 1);
2691 error = 0;
2692 } else if (syncflag & FDSYNC)
2693 /* Do data-synchronous writes */
2694 error = TRANS_SYNCIP(ip, 0, I_DSYNC, TOP_FSYNC);
2695 else
2696 /* Do synchronous writes */
2697 error = TRANS_SYNCIP(ip, 0, I_SYNC, TOP_FSYNC);
2698
2699 rw_enter(&ip->i_contents, RW_WRITER);
2700 if (!error)
2701 error = ufs_sync_indir(ip);
2702 rw_exit(&ip->i_contents);
2703 }
2704 out:
2705 if (ulp) {
2706 ufs_lockfs_end(ulp);
2707 }
2708 return (error);
2709 }
2710
2711 /*ARGSUSED*/
2712 static void
2713 ufs_inactive(struct vnode *vp, struct cred *cr, caller_context_t *ct)
2714 {
2715 ufs_iinactive(VTOI(vp));
2716 }
2717
2718 /*
2719 * Unix file system operations having to do with directory manipulation.
2720 */
2721 int ufs_lookup_idle_count = 2; /* Number of inodes to idle each time */
2722 /* ARGSUSED */
2723 static int
2724 ufs_lookup(struct vnode *dvp, char *nm, struct vnode **vpp,
2725 struct pathname *pnp, int flags, struct vnode *rdir, struct cred *cr,
2726 caller_context_t *ct, int *direntflags, pathname_t *realpnp)
2727 {
2728 struct inode *ip;
2729 struct inode *sip;
2730 struct inode *xip;
2731 struct ufsvfs *ufsvfsp;
2732 struct ulockfs *ulp;
2733 struct vnode *vp;
2734 int error;
2735
2736 /*
2737 * Check flags for type of lookup (regular file or attribute file)
2738 */
2739
2740 ip = VTOI(dvp);
2741
2742 if (flags & LOOKUP_XATTR) {
2743
2744 /*
2745 * If not mounted with XATTR support then return EINVAL
2746 */
2747
2748 if (!(ip->i_ufsvfs->vfs_vfs->vfs_flag & VFS_XATTR))
2749 return (EINVAL);
2750 /*
2751 * We don't allow recursive attributes...
2752 * Maybe someday we will.
2753 */
2754 if ((ip->i_cflags & IXATTR)) {
2755 return (EINVAL);
2756 }
2757
2758 if ((vp = dnlc_lookup(dvp, XATTR_DIR_NAME)) == NULL) {
2759 error = ufs_xattr_getattrdir(dvp, &sip, flags, cr);
2760 if (error) {
2761 *vpp = NULL;
2762 goto out;
2763 }
2764
2765 vp = ITOV(sip);
2766 dnlc_update(dvp, XATTR_DIR_NAME, vp);
2767 }
2768
2769 /*
2770 * Check accessibility of directory.
2771 */
2772 if (vp == DNLC_NO_VNODE) {
2773 VN_RELE(vp);
2774 error = ENOENT;
2775 goto out;
2776 }
2777 if ((error = ufs_iaccess(VTOI(vp), IEXEC, cr, 1)) != 0) {
2778 VN_RELE(vp);
2779 goto out;
2780 }
2781
2782 *vpp = vp;
2783 return (0);
2784 }
2785
2786 /*
2787 * Check for a null component, which we should treat as
2788 * looking at dvp from within it's parent, so we don't
2789 * need a call to ufs_iaccess(), as it has already been
2790 * done.
2791 */
2792 if (nm[0] == 0) {
2793 VN_HOLD(dvp);
2794 error = 0;
2795 *vpp = dvp;
2796 goto out;
2797 }
2798
2799 /*
2800 * Check for "." ie itself. this is a quick check and
2801 * avoids adding "." into the dnlc (which have been seen
2802 * to occupy >10% of the cache).
2803 */
2804 if ((nm[0] == '.') && (nm[1] == 0)) {
2805 /*
2806 * Don't return without checking accessibility
2807 * of the directory. We only need the lock if
2808 * we are going to return it.
2809 */
2810 if ((error = ufs_iaccess(ip, IEXEC, cr, 1)) == 0) {
2811 VN_HOLD(dvp);
2812 *vpp = dvp;
2813 }
2814 goto out;
2815 }
2816
2817 /*
2818 * Fast path: Check the directory name lookup cache.
2819 */
2820 if (vp = dnlc_lookup(dvp, nm)) {
2821 /*
2822 * Check accessibility of directory.
2823 */
2824 if ((error = ufs_iaccess(ip, IEXEC, cr, 1)) != 0) {
2825 VN_RELE(vp);
2826 goto out;
2827 }
2828 if (vp == DNLC_NO_VNODE) {
2829 VN_RELE(vp);
2830 error = ENOENT;
2831 goto out;
2832 }
2833 xip = VTOI(vp);
2834 ulp = NULL;
2835 goto fastpath;
2836 }
2837
2838 /*
2839 * Keep the idle queue from getting too long by
2840 * idling two inodes before attempting to allocate another.
2841 * This operation must be performed before entering
2842 * lockfs or a transaction.
2843 */
2844 if (ufs_idle_q.uq_ne > ufs_idle_q.uq_hiwat)
2845 if ((curthread->t_flag & T_DONTBLOCK) == 0) {
2846 ins.in_lidles.value.ul += ufs_lookup_idle_count;
2847 ufs_idle_some(ufs_lookup_idle_count);
2848 }
2849
2850 retry_lookup:
2851 /*
2852 * Check accessibility of directory.
2853 */
2854 if (error = ufs_diraccess(ip, IEXEC, cr))
2855 goto out;
2856
2857 ufsvfsp = ip->i_ufsvfs;
2858 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_LOOKUP_MASK);
2859 if (error)
2860 goto out;
2861
2862 error = ufs_dirlook(ip, nm, &xip, cr, 1, 0);
2863
2864 fastpath:
2865 if (error == 0) {
2866 ip = xip;
2867 *vpp = ITOV(ip);
2868
2869 /*
2870 * If vnode is a device return special vnode instead.
2871 */
2872 if (IS_DEVVP(*vpp)) {
2873 struct vnode *newvp;
2874
2875 newvp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type,
2876 cr);
2877 VN_RELE(*vpp);
2878 if (newvp == NULL)
2879 error = ENOSYS;
2880 else
2881 *vpp = newvp;
2882 } else if (ip->i_cflags & ICOMPRESS) {
2883 struct vnode *newvp;
2884
2885 /*
2886 * Compressed file, substitute dcfs vnode
2887 */
2888 newvp = decompvp(*vpp, cr, ct);
2889 VN_RELE(*vpp);
2890 if (newvp == NULL)
2891 error = ENOSYS;
2892 else
2893 *vpp = newvp;
2894 }
2895 }
2896 if (ulp) {
2897 ufs_lockfs_end(ulp);
2898 }
2899
2900 if (error == EAGAIN)
2901 goto retry_lookup;
2902
2903 out:
2904 return (error);
2905 }
2906
2907 /*ARGSUSED*/
2908 static int
2909 ufs_create(struct vnode *dvp, char *name, struct vattr *vap, enum vcexcl excl,
2910 int mode, struct vnode **vpp, struct cred *cr, int flag,
2911 caller_context_t *ct, vsecattr_t *vsecp)
2912 {
2913 struct inode *ip;
2914 struct inode *xip;
2915 struct inode *dip;
2916 struct vnode *xvp;
2917 struct ufsvfs *ufsvfsp;
2918 struct ulockfs *ulp;
2919 int error;
2920 int issync;
2921 int truncflag;
2922 int trans_size;
2923 int noentry;
2924 int defer_dip_seq_update = 0; /* need to defer update of dip->i_seq */
2925 int retry = 1;
2926 int indeadlock;
2927
2928 again:
2929 ip = VTOI(dvp);
2930 ufsvfsp = ip->i_ufsvfs;
2931 truncflag = 0;
2932
2933 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_CREATE_MASK);
2934 if (error)
2935 goto out;
2936
2937 if (ulp) {
2938 trans_size = (int)TOP_CREATE_SIZE(ip);
2939 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_CREATE, trans_size);
2940 }
2941
2942 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr) != 0)
2943 vap->va_mode &= ~VSVTX;
2944
2945 if (*name == '\0') {
2946 /*
2947 * Null component name refers to the directory itself.
2948 */
2949 VN_HOLD(dvp);
2950 /*
2951 * Even though this is an error case, we need to grab the
2952 * quota lock since the error handling code below is common.
2953 */
2954 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
2955 rw_enter(&ip->i_contents, RW_WRITER);
2956 error = EEXIST;
2957 } else {
2958 xip = NULL;
2959 noentry = 0;
2960 /*
2961 * ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK
2962 * to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock
2963 * possible, retries the operation.
2964 */
2965 ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_CREATE,
2966 retry_dir);
2967 if (indeadlock)
2968 goto again;
2969
2970 xvp = dnlc_lookup(dvp, name);
2971 if (xvp == DNLC_NO_VNODE) {
2972 noentry = 1;
2973 VN_RELE(xvp);
2974 xvp = NULL;
2975 }
2976 if (xvp) {
2977 rw_exit(&ip->i_rwlock);
2978 if (error = ufs_iaccess(ip, IEXEC, cr, 1)) {
2979 VN_RELE(xvp);
2980 } else {
2981 error = EEXIST;
2982 xip = VTOI(xvp);
2983 }
2984 } else {
2985 /*
2986 * Suppress file system full message if we will retry
2987 */
2988 error = ufs_direnter_cm(ip, name, DE_CREATE,
2989 vap, &xip, cr, (noentry | (retry ? IQUIET : 0)));
2990 if (error == EAGAIN) {
2991 if (ulp) {
2992 TRANS_END_CSYNC(ufsvfsp, error, issync,
2993 TOP_CREATE, trans_size);
2994 ufs_lockfs_end(ulp);
2995 }
2996 goto again;
2997 }
2998 rw_exit(&ip->i_rwlock);
2999 }
3000 ip = xip;
3001 if (ip != NULL) {
3002 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
3003 rw_enter(&ip->i_contents, RW_WRITER);
3004 }
3005 }
3006
3007 /*
3008 * If the file already exists and this is a non-exclusive create,
3009 * check permissions and allow access for non-directories.
3010 * Read-only create of an existing directory is also allowed.
3011 * We fail an exclusive create of anything which already exists.
3012 */
3013 if (error == EEXIST) {
3014 dip = VTOI(dvp);
3015 if (excl == NONEXCL) {
3016 if ((((ip->i_mode & IFMT) == IFDIR) ||
3017 ((ip->i_mode & IFMT) == IFATTRDIR)) &&
3018 (mode & IWRITE))
3019 error = EISDIR;
3020 else if (mode)
3021 error = ufs_iaccess(ip, mode, cr, 0);
3022 else
3023 error = 0;
3024 }
3025 if (error) {
3026 rw_exit(&ip->i_contents);
3027 rw_exit(&ufsvfsp->vfs_dqrwlock);
3028 VN_RELE(ITOV(ip));
3029 goto unlock;
3030 }
3031 /*
3032 * If the error EEXIST was set, then i_seq can not
3033 * have been updated. The sequence number interface
3034 * is defined such that a non-error VOP_CREATE must
3035 * increase the dir va_seq it by at least one. If we
3036 * have cleared the error, increase i_seq. Note that
3037 * we are increasing the dir i_seq and in rare cases
3038 * ip may actually be from the dvp, so we already have
3039 * the locks and it will not be subject to truncation.
3040 * In case we have to update i_seq of the parent
3041 * directory dip, we have to defer it till we have
3042 * released our locks on ip due to lock ordering requirements.
3043 */
3044 if (ip != dip)
3045 defer_dip_seq_update = 1;
3046 else
3047 ip->i_seq++;
3048
3049 if (((ip->i_mode & IFMT) == IFREG) &&
3050 (vap->va_mask & AT_SIZE) && vap->va_size == 0) {
3051 /*
3052 * Truncate regular files, if requested by caller.
3053 * Grab i_rwlock to make sure no one else is
3054 * currently writing to the file (we promised
3055 * bmap we would do this).
3056 * Must get the locks in the correct order.
3057 */
3058 if (ip->i_size == 0) {
3059 ip->i_flag |= ICHG | IUPD;
3060 ip->i_seq++;
3061 TRANS_INODE(ufsvfsp, ip);
3062 } else {
3063 /*
3064 * Large Files: Why this check here?
3065 * Though we do it in vn_create() we really
3066 * want to guarantee that we do not destroy
3067 * Large file data by atomically checking
3068 * the size while holding the contents
3069 * lock.
3070 */
3071 if (flag && !(flag & FOFFMAX) &&
3072 ((ip->i_mode & IFMT) == IFREG) &&
3073 (ip->i_size > (offset_t)MAXOFF32_T)) {
3074 rw_exit(&ip->i_contents);
3075 rw_exit(&ufsvfsp->vfs_dqrwlock);
3076 error = EOVERFLOW;
3077 goto unlock;
3078 }
3079 if (TRANS_ISTRANS(ufsvfsp))
3080 truncflag++;
3081 else {
3082 rw_exit(&ip->i_contents);
3083 rw_exit(&ufsvfsp->vfs_dqrwlock);
3084 ufs_tryirwlock_trans(&ip->i_rwlock,
3085 RW_WRITER, TOP_CREATE,
3086 retry_file);
3087 if (indeadlock) {
3088 VN_RELE(ITOV(ip));
3089 goto again;
3090 }
3091 rw_enter(&ufsvfsp->vfs_dqrwlock,
3092 RW_READER);
3093 rw_enter(&ip->i_contents, RW_WRITER);
3094 (void) ufs_itrunc(ip, (u_offset_t)0, 0,
3095 cr);
3096 rw_exit(&ip->i_rwlock);
3097 }
3098
3099 }
3100 if (error == 0) {
3101 vnevent_create(ITOV(ip), ct);
3102 }
3103 }
3104 }
3105
3106 if (error) {
3107 if (ip != NULL) {
3108 rw_exit(&ufsvfsp->vfs_dqrwlock);
3109 rw_exit(&ip->i_contents);
3110 }
3111 goto unlock;
3112 }
3113
3114 *vpp = ITOV(ip);
3115 ITIMES(ip);
3116 rw_exit(&ip->i_contents);
3117 rw_exit(&ufsvfsp->vfs_dqrwlock);
3118
3119 /*
3120 * If vnode is a device return special vnode instead.
3121 */
3122 if (!error && IS_DEVVP(*vpp)) {
3123 struct vnode *newvp;
3124
3125 newvp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
3126 VN_RELE(*vpp);
3127 if (newvp == NULL) {
3128 error = ENOSYS;
3129 goto unlock;
3130 }
3131 truncflag = 0;
3132 *vpp = newvp;
3133 }
3134 unlock:
3135
3136 /*
3137 * Do the deferred update of the parent directory's sequence
3138 * number now.
3139 */
3140 if (defer_dip_seq_update == 1) {
3141 rw_enter(&dip->i_contents, RW_READER);
3142 mutex_enter(&dip->i_tlock);
3143 dip->i_seq++;
3144 mutex_exit(&dip->i_tlock);
3145 rw_exit(&dip->i_contents);
3146 }
3147
3148 if (ulp) {
3149 int terr = 0;
3150
3151 TRANS_END_CSYNC(ufsvfsp, terr, issync, TOP_CREATE,
3152 trans_size);
3153
3154 /*
3155 * If we haven't had a more interesting failure
3156 * already, then anything that might've happened
3157 * here should be reported.
3158 */
3159 if (error == 0)
3160 error = terr;
3161 }
3162
3163 if (!error && truncflag) {
3164 ufs_tryirwlock(&ip->i_rwlock, RW_WRITER, retry_trunc);
3165 if (indeadlock) {
3166 if (ulp)
3167 ufs_lockfs_end(ulp);
3168 VN_RELE(ITOV(ip));
3169 goto again;
3170 }
3171 (void) TRANS_ITRUNC(ip, (u_offset_t)0, 0, cr);
3172 rw_exit(&ip->i_rwlock);
3173 }
3174
3175 if (ulp)
3176 ufs_lockfs_end(ulp);
3177
3178 /*
3179 * If no inodes available, try to free one up out of the
3180 * pending delete queue.
3181 */
3182 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) {
3183 ufs_delete_drain_wait(ufsvfsp, 1);
3184 retry = 0;
3185 goto again;
3186 }
3187
3188 out:
3189 return (error);
3190 }
3191
3192 extern int ufs_idle_max;
3193 /*ARGSUSED*/
3194 static int
3195 ufs_remove(struct vnode *vp, char *nm, struct cred *cr,
3196 caller_context_t *ct, int flags)
3197 {
3198 struct inode *ip = VTOI(vp);
3199 struct ufsvfs *ufsvfsp = ip->i_ufsvfs;
3200 struct ulockfs *ulp;
3201 vnode_t *rmvp = NULL; /* Vnode corresponding to name being removed */
3202 int indeadlock;
3203 int error;
3204 int issync;
3205 int trans_size;
3206
3207 /*
3208 * don't let the delete queue get too long
3209 */
3210 if (ufsvfsp == NULL) {
3211 error = EIO;
3212 goto out;
3213 }
3214 if (ufsvfsp->vfs_delete.uq_ne > ufs_idle_max)
3215 ufs_delete_drain(vp->v_vfsp, 1, 1);
3216
3217 error = ufs_eventlookup(vp, nm, cr, &rmvp);
3218 if (rmvp != NULL) {
3219 /* Only send the event if there were no errors */
3220 if (error == 0)
3221 vnevent_remove(rmvp, vp, nm, ct);
3222 VN_RELE(rmvp);
3223 }
3224
3225 retry_remove:
3226 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_REMOVE_MASK);
3227 if (error)
3228 goto out;
3229
3230 if (ulp)
3231 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_REMOVE,
3232 trans_size = (int)TOP_REMOVE_SIZE(VTOI(vp)));
3233
3234 /*
3235 * ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK
3236 * to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock
3237 * possible, retries the operation.
3238 */
3239 ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_REMOVE, retry);
3240 if (indeadlock)
3241 goto retry_remove;
3242 error = ufs_dirremove(ip, nm, (struct inode *)0, (struct vnode *)0,
3243 DR_REMOVE, cr);
3244 rw_exit(&ip->i_rwlock);
3245
3246 if (ulp) {
3247 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_REMOVE, trans_size);
3248 ufs_lockfs_end(ulp);
3249 }
3250
3251 out:
3252 return (error);
3253 }
3254
3255 /*
3256 * Link a file or a directory. Only privileged processes are allowed to
3257 * make links to directories.
3258 */
3259 /*ARGSUSED*/
3260 static int
3261 ufs_link(struct vnode *tdvp, struct vnode *svp, char *tnm, struct cred *cr,
3262 caller_context_t *ct, int flags)
3263 {
3264 struct inode *sip;
3265 struct inode *tdp = VTOI(tdvp);
3266 struct ufsvfs *ufsvfsp = tdp->i_ufsvfs;
3267 struct ulockfs *ulp;
3268 struct vnode *realvp;
3269 int error;
3270 int issync;
3271 int trans_size;
3272 int isdev;
3273 int indeadlock;
3274
3275 retry_link:
3276 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_LINK_MASK);
3277 if (error)
3278 goto out;
3279
3280 if (ulp)
3281 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_LINK,
3282 trans_size = (int)TOP_LINK_SIZE(VTOI(tdvp)));
3283
3284 if (VOP_REALVP(svp, &realvp, ct) == 0)
3285 svp = realvp;
3286
3287 /*
3288 * Make sure link for extended attributes is valid
3289 * We only support hard linking of attr in ATTRDIR to ATTRDIR
3290 *
3291 * Make certain we don't attempt to look at a device node as
3292 * a ufs inode.
3293 */
3294
3295 isdev = IS_DEVVP(svp);
3296 if (((isdev == 0) && ((VTOI(svp)->i_cflags & IXATTR) == 0) &&
3297 ((tdp->i_mode & IFMT) == IFATTRDIR)) ||
3298 ((isdev == 0) && (VTOI(svp)->i_cflags & IXATTR) &&
3299 ((tdp->i_mode & IFMT) == IFDIR))) {
3300 error = EINVAL;
3301 goto unlock;
3302 }
3303
3304 sip = VTOI(svp);
3305 if ((svp->v_type == VDIR &&
3306 secpolicy_fs_linkdir(cr, ufsvfsp->vfs_vfs) != 0) ||
3307 (sip->i_uid != crgetuid(cr) && secpolicy_basic_link(cr) != 0)) {
3308 error = EPERM;
3309 goto unlock;
3310 }
3311
3312 /*
3313 * ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK
3314 * to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock
3315 * possible, retries the operation.
3316 */
3317 ufs_tryirwlock_trans(&tdp->i_rwlock, RW_WRITER, TOP_LINK, retry);
3318 if (indeadlock)
3319 goto retry_link;
3320 error = ufs_direnter_lr(tdp, tnm, DE_LINK, (struct inode *)0,
3321 sip, cr);
3322 rw_exit(&tdp->i_rwlock);
3323
3324 unlock:
3325 if (ulp) {
3326 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_LINK, trans_size);
3327 ufs_lockfs_end(ulp);
3328 }
3329
3330 if (!error) {
3331 vnevent_link(svp, ct);
3332 }
3333 out:
3334 return (error);
3335 }
3336
3337 uint64_t ufs_rename_retry_cnt;
3338 uint64_t ufs_rename_upgrade_retry_cnt;
3339 uint64_t ufs_rename_dircheck_retry_cnt;
3340 clock_t ufs_rename_backoff_delay = 1;
3341
3342 /*
3343 * Rename a file or directory.
3344 * We are given the vnode and entry string of the source and the
3345 * vnode and entry string of the place we want to move the source
3346 * to (the target). The essential operation is:
3347 * unlink(target);
3348 * link(source, target);
3349 * unlink(source);
3350 * but "atomically". Can't do full commit without saving state in
3351 * the inode on disk, which isn't feasible at this time. Best we
3352 * can do is always guarantee that the TARGET exists.
3353 */
3354
3355 /*ARGSUSED*/
3356 static int
3357 ufs_rename(
3358 struct vnode *sdvp, /* old (source) parent vnode */
3359 char *snm, /* old (source) entry name */
3360 struct vnode *tdvp, /* new (target) parent vnode */
3361 char *tnm, /* new (target) entry name */
3362 struct cred *cr,
3363 caller_context_t *ct,
3364 int flags)
3365 {
3366 struct inode *sip = NULL; /* source inode */
3367 struct inode *ip = NULL; /* check inode */
3368 struct inode *sdp; /* old (source) parent inode */
3369 struct inode *tdp; /* new (target) parent inode */
3370 struct vnode *svp = NULL; /* source vnode */
3371 struct vnode *tvp = NULL; /* target vnode, if it exists */
3372 struct vnode *realvp;
3373 struct ufsvfs *ufsvfsp;
3374 struct ulockfs *ulp = NULL;
3375 struct ufs_slot slot;
3376 timestruc_t now;
3377 int error;
3378 int issync;
3379 int trans_size;
3380 krwlock_t *first_lock;
3381 krwlock_t *second_lock;
3382 krwlock_t *reverse_lock;
3383 int serr, terr;
3384
3385 sdp = VTOI(sdvp);
3386 slot.fbp = NULL;
3387 ufsvfsp = sdp->i_ufsvfs;
3388
3389 if (VOP_REALVP(tdvp, &realvp, ct) == 0)
3390 tdvp = realvp;
3391
3392 /* Must do this before taking locks in case of DNLC miss */
3393 terr = ufs_eventlookup(tdvp, tnm, cr, &tvp);
3394 serr = ufs_eventlookup(sdvp, snm, cr, &svp);
3395
3396 if ((serr == 0) && ((terr == 0) || (terr == ENOENT))) {
3397 if (tvp != NULL)
3398 vnevent_pre_rename_dest(tvp, tdvp, tnm, ct);
3399
3400 /*
3401 * Notify the target directory of the rename event
3402 * if source and target directories are not the same.
3403 */
3404 if (sdvp != tdvp)
3405 vnevent_pre_rename_dest_dir(tdvp, svp, tnm, ct);
3406
3407 if (svp != NULL)
3408 vnevent_pre_rename_src(svp, sdvp, snm, ct);
3409 }
3410
3411 if (svp != NULL)
3412 VN_RELE(svp);
3413
3414 retry_rename:
3415 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_RENAME_MASK);
3416 if (error)
3417 goto unlock;
3418
3419 if (ulp)
3420 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_RENAME,
3421 trans_size = (int)TOP_RENAME_SIZE(sdp));
3422
3423 if (VOP_REALVP(tdvp, &realvp, ct) == 0)
3424 tdvp = realvp;
3425
3426 tdp = VTOI(tdvp);
3427
3428 /*
3429 * We only allow renaming of attributes from ATTRDIR to ATTRDIR.
3430 */
3431 if ((tdp->i_mode & IFMT) != (sdp->i_mode & IFMT)) {
3432 error = EINVAL;
3433 goto unlock;
3434 }
3435
3436 /*
3437 * Check accessibility of directory.
3438 */
3439 if (error = ufs_diraccess(sdp, IEXEC, cr))
3440 goto unlock;
3441
3442 /*
3443 * Look up inode of file we're supposed to rename.
3444 */
3445 gethrestime(&now);
3446 if (error = ufs_dirlook(sdp, snm, &sip, cr, 0, 0)) {
3447 if (error == EAGAIN) {
3448 if (ulp) {
3449 TRANS_END_CSYNC(ufsvfsp, error, issync,
3450 TOP_RENAME, trans_size);
3451 ufs_lockfs_end(ulp);
3452 }
3453 goto retry_rename;
3454 }
3455
3456 goto unlock;
3457 }
3458
3459 /*
3460 * Lock both the source and target directories (they may be
3461 * the same) to provide the atomicity semantics that was
3462 * previously provided by the per file system vfs_rename_lock
3463 *
3464 * with vfs_rename_lock removed to allow simultaneous renames
3465 * within a file system, ufs_dircheckpath can deadlock while
3466 * traversing back to ensure that source is not a parent directory
3467 * of target parent directory. This is because we get into
3468 * ufs_dircheckpath with the sdp and tdp locks held as RW_WRITER.
3469 * If the tdp and sdp of the simultaneous renames happen to be
3470 * in the path of each other, it can lead to a deadlock. This
3471 * can be avoided by getting the locks as RW_READER here and then
3472 * upgrading to RW_WRITER after completing the ufs_dircheckpath.
3473 *
3474 * We hold the target directory's i_rwlock after calling
3475 * ufs_lockfs_begin but in many other operations (like ufs_readdir)
3476 * VOP_RWLOCK is explicitly called by the filesystem independent code
3477 * before calling the file system operation. In these cases the order
3478 * is reversed (i.e i_rwlock is taken first and then ufs_lockfs_begin
3479 * is called). This is fine as long as ufs_lockfs_begin acts as a VOP
3480 * counter but with ufs_quiesce setting the SLOCK bit this becomes a
3481 * synchronizing object which might lead to a deadlock. So we use
3482 * rw_tryenter instead of rw_enter. If we fail to get this lock and
3483 * find that SLOCK bit is set, we call ufs_lockfs_end and restart the
3484 * operation.
3485 */
3486 retry:
3487 first_lock = &tdp->i_rwlock;
3488 second_lock = &sdp->i_rwlock;
3489 retry_firstlock:
3490 if (!rw_tryenter(first_lock, RW_READER)) {
3491 /*
3492 * We didn't get the lock. Check if the SLOCK is set in the
3493 * ufsvfs. If yes, we might be in a deadlock. Safer to give up
3494 * and wait for SLOCK to be cleared.
3495 */
3496
3497 if (ulp && ULOCKFS_IS_SLOCK(ulp)) {
3498 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_RENAME,
3499 trans_size);
3500 ufs_lockfs_end(ulp);
3501 goto retry_rename;
3502
3503 } else {
3504 /*
3505 * SLOCK isn't set so this is a genuine synchronization
3506 * case. Let's try again after giving them a breather.
3507 */
3508 delay(RETRY_LOCK_DELAY);
3509 goto retry_firstlock;
3510 }
3511 }
3512 /*
3513 * Need to check if the tdp and sdp are same !!!
3514 */
3515 if ((tdp != sdp) && (!rw_tryenter(second_lock, RW_READER))) {
3516 /*
3517 * We didn't get the lock. Check if the SLOCK is set in the
3518 * ufsvfs. If yes, we might be in a deadlock. Safer to give up
3519 * and wait for SLOCK to be cleared.
3520 */
3521
3522 rw_exit(first_lock);
3523 if (ulp && ULOCKFS_IS_SLOCK(ulp)) {
3524 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_RENAME,
3525 trans_size);
3526 ufs_lockfs_end(ulp);
3527 goto retry_rename;
3528
3529 } else {
3530 /*
3531 * So we couldn't get the second level peer lock *and*
3532 * the SLOCK bit isn't set. Too bad we can be
3533 * contentding with someone wanting these locks otherway
3534 * round. Reverse the locks in case there is a heavy
3535 * contention for the second level lock.
3536 */
3537 reverse_lock = first_lock;
3538 first_lock = second_lock;
3539 second_lock = reverse_lock;
3540 ufs_rename_retry_cnt++;
3541 goto retry_firstlock;
3542 }
3543 }
3544
3545 if (sip == tdp) {
3546 error = EINVAL;
3547 goto errout;
3548 }
3549 /*
3550 * Make sure we can delete the source entry. This requires
3551 * write permission on the containing directory.
3552 * Check for sticky directories.
3553 */
3554 rw_enter(&sdp->i_contents, RW_READER);
3555 rw_enter(&sip->i_contents, RW_READER);
3556 if ((error = ufs_iaccess(sdp, IWRITE, cr, 0)) != 0 ||
3557 (error = ufs_sticky_remove_access(sdp, sip, cr)) != 0) {
3558 rw_exit(&sip->i_contents);
3559 rw_exit(&sdp->i_contents);
3560 goto errout;
3561 }
3562
3563 /*
3564 * If this is a rename of a directory and the parent is
3565 * different (".." must be changed), then the source
3566 * directory must not be in the directory hierarchy
3567 * above the target, as this would orphan everything
3568 * below the source directory. Also the user must have
3569 * write permission in the source so as to be able to
3570 * change "..".
3571 */
3572 if ((((sip->i_mode & IFMT) == IFDIR) ||
3573 ((sip->i_mode & IFMT) == IFATTRDIR)) && sdp != tdp) {
3574 ino_t inum;
3575
3576 if (error = ufs_iaccess(sip, IWRITE, cr, 0)) {
3577 rw_exit(&sip->i_contents);
3578 rw_exit(&sdp->i_contents);
3579 goto errout;
3580 }
3581 inum = sip->i_number;
3582 rw_exit(&sip->i_contents);
3583 rw_exit(&sdp->i_contents);
3584 if ((error = ufs_dircheckpath(inum, tdp, sdp, cr))) {
3585 /*
3586 * If we got EAGAIN ufs_dircheckpath detected a
3587 * potential deadlock and backed out. We need
3588 * to retry the operation since sdp and tdp have
3589 * to be released to avoid the deadlock.
3590 */
3591 if (error == EAGAIN) {
3592 rw_exit(&tdp->i_rwlock);
3593 if (tdp != sdp)
3594 rw_exit(&sdp->i_rwlock);
3595 delay(ufs_rename_backoff_delay);
3596 ufs_rename_dircheck_retry_cnt++;
3597 goto retry;
3598 }
3599 goto errout;
3600 }
3601 } else {
3602 rw_exit(&sip->i_contents);
3603 rw_exit(&sdp->i_contents);
3604 }
3605
3606
3607 /*
3608 * Check for renaming '.' or '..' or alias of '.'
3609 */
3610 if (strcmp(snm, ".") == 0 || strcmp(snm, "..") == 0 || sdp == sip) {
3611 error = EINVAL;
3612 goto errout;
3613 }
3614
3615 /*
3616 * Simultaneous renames can deadlock in ufs_dircheckpath since it
3617 * tries to traverse back the file tree with both tdp and sdp held
3618 * as RW_WRITER. To avoid that we have to hold the tdp and sdp locks
3619 * as RW_READERS till ufs_dircheckpath is done.
3620 * Now that ufs_dircheckpath is done with, we can upgrade the locks
3621 * to RW_WRITER.
3622 */
3623 if (!rw_tryupgrade(&tdp->i_rwlock)) {
3624 /*
3625 * The upgrade failed. We got to give away the lock
3626 * as to avoid deadlocking with someone else who is
3627 * waiting for writer lock. With the lock gone, we
3628 * cannot be sure the checks done above will hold
3629 * good when we eventually get them back as writer.
3630 * So if we can't upgrade we drop the locks and retry
3631 * everything again.
3632 */
3633 rw_exit(&tdp->i_rwlock);
3634 if (tdp != sdp)
3635 rw_exit(&sdp->i_rwlock);
3636 delay(ufs_rename_backoff_delay);
3637 ufs_rename_upgrade_retry_cnt++;
3638 goto retry;
3639 }
3640 if (tdp != sdp) {
3641 if (!rw_tryupgrade(&sdp->i_rwlock)) {
3642 /*
3643 * The upgrade failed. We got to give away the lock
3644 * as to avoid deadlocking with someone else who is
3645 * waiting for writer lock. With the lock gone, we
3646 * cannot be sure the checks done above will hold
3647 * good when we eventually get them back as writer.
3648 * So if we can't upgrade we drop the locks and retry
3649 * everything again.
3650 */
3651 rw_exit(&tdp->i_rwlock);
3652 rw_exit(&sdp->i_rwlock);
3653 delay(ufs_rename_backoff_delay);
3654 ufs_rename_upgrade_retry_cnt++;
3655 goto retry;
3656 }
3657 }
3658
3659 /*
3660 * Now that all the locks are held check to make sure another thread
3661 * didn't slip in and take out the sip.
3662 */
3663 slot.status = NONE;
3664 if ((sip->i_ctime.tv_usec * 1000) > now.tv_nsec ||
3665 sip->i_ctime.tv_sec > now.tv_sec) {
3666 rw_enter(&sdp->i_ufsvfs->vfs_dqrwlock, RW_READER);
3667 rw_enter(&sdp->i_contents, RW_WRITER);
3668 error = ufs_dircheckforname(sdp, snm, strlen(snm), &slot,
3669 &ip, cr, 0);
3670 rw_exit(&sdp->i_contents);
3671 rw_exit(&sdp->i_ufsvfs->vfs_dqrwlock);
3672 if (error) {
3673 goto errout;
3674 }
3675 if (ip == NULL) {
3676 error = ENOENT;
3677 goto errout;
3678 } else {
3679 /*
3680 * If the inode was found need to drop the v_count
3681 * so as not to keep the filesystem from being
3682 * unmounted at a later time.
3683 */
3684 VN_RELE(ITOV(ip));
3685 }
3686
3687 /*
3688 * Release the slot.fbp that has the page mapped and
3689 * locked SE_SHARED, and could be used in in
3690 * ufs_direnter_lr() which needs to get the SE_EXCL lock
3691 * on said page.
3692 */
3693 if (slot.fbp) {
3694 fbrelse(slot.fbp, S_OTHER);
3695 slot.fbp = NULL;
3696 }
3697 }
3698
3699 /*
3700 * Link source to the target.
3701 */
3702 if (error = ufs_direnter_lr(tdp, tnm, DE_RENAME, sdp, sip, cr)) {
3703 /*
3704 * ESAME isn't really an error; it indicates that the
3705 * operation should not be done because the source and target
3706 * are the same file, but that no error should be reported.
3707 */
3708 if (error == ESAME)
3709 error = 0;
3710 goto errout;
3711 }
3712
3713 if (error == 0 && tvp != NULL)
3714 vnevent_rename_dest(tvp, tdvp, tnm, ct);
3715
3716 /*
3717 * Unlink the source.
3718 * Remove the source entry. ufs_dirremove() checks that the entry
3719 * still reflects sip, and returns an error if it doesn't.
3720 * If the entry has changed just forget about it. Release
3721 * the source inode.
3722 */
3723 if ((error = ufs_dirremove(sdp, snm, sip, (struct vnode *)0,
3724 DR_RENAME, cr)) == ENOENT)
3725 error = 0;
3726
3727 if (error == 0) {
3728 vnevent_rename_src(ITOV(sip), sdvp, snm, ct);
3729 /*
3730 * Notify the target directory of the rename event
3731 * if source and target directories are not the same.
3732 */
3733 if (sdvp != tdvp)
3734 vnevent_rename_dest_dir(tdvp, ct);
3735 }
3736
3737 errout:
3738 if (slot.fbp)
3739 fbrelse(slot.fbp, S_OTHER);
3740
3741 rw_exit(&tdp->i_rwlock);
3742 if (sdp != tdp) {
3743 rw_exit(&sdp->i_rwlock);
3744 }
3745
3746 unlock:
3747 if (tvp != NULL)
3748 VN_RELE(tvp);
3749 if (sip != NULL)
3750 VN_RELE(ITOV(sip));
3751
3752 if (ulp) {
3753 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_RENAME, trans_size);
3754 ufs_lockfs_end(ulp);
3755 }
3756
3757 return (error);
3758 }
3759
3760 /*ARGSUSED*/
3761 static int
3762 ufs_mkdir(struct vnode *dvp, char *dirname, struct vattr *vap,
3763 struct vnode **vpp, struct cred *cr, caller_context_t *ct, int flags,
3764 vsecattr_t *vsecp)
3765 {
3766 struct inode *ip;
3767 struct inode *xip;
3768 struct ufsvfs *ufsvfsp;
3769 struct ulockfs *ulp;
3770 int error;
3771 int issync;
3772 int trans_size;
3773 int indeadlock;
3774 int retry = 1;
3775
3776 ASSERT((vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE));
3777
3778 /*
3779 * Can't make directory in attr hidden dir
3780 */
3781 if ((VTOI(dvp)->i_mode & IFMT) == IFATTRDIR)
3782 return (EINVAL);
3783
3784 again:
3785 ip = VTOI(dvp);
3786 ufsvfsp = ip->i_ufsvfs;
3787 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_MKDIR_MASK);
3788 if (error)
3789 goto out;
3790 if (ulp)
3791 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_MKDIR,
3792 trans_size = (int)TOP_MKDIR_SIZE(ip));
3793
3794 /*
3795 * ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK
3796 * to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock
3797 * possible, retries the operation.
3798 */
3799 ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_MKDIR, retry);
3800 if (indeadlock)
3801 goto again;
3802
3803 error = ufs_direnter_cm(ip, dirname, DE_MKDIR, vap, &xip, cr,
3804 (retry ? IQUIET : 0));
3805 if (error == EAGAIN) {
3806 if (ulp) {
3807 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_MKDIR,
3808 trans_size);
3809 ufs_lockfs_end(ulp);
3810 }
3811 goto again;
3812 }
3813
3814 rw_exit(&ip->i_rwlock);
3815 if (error == 0) {
3816 ip = xip;
3817 *vpp = ITOV(ip);
3818 } else if (error == EEXIST)
3819 VN_RELE(ITOV(xip));
3820
3821 if (ulp) {
3822 int terr = 0;
3823 TRANS_END_CSYNC(ufsvfsp, terr, issync, TOP_MKDIR, trans_size);
3824 ufs_lockfs_end(ulp);
3825 if (error == 0)
3826 error = terr;
3827 }
3828 out:
3829 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) {
3830 ufs_delete_drain_wait(ufsvfsp, 1);
3831 retry = 0;
3832 goto again;
3833 }
3834
3835 return (error);
3836 }
3837
3838 /*ARGSUSED*/
3839 static int
3840 ufs_rmdir(struct vnode *vp, char *nm, struct vnode *cdir, struct cred *cr,
3841 caller_context_t *ct, int flags)
3842 {
3843 struct inode *ip = VTOI(vp);
3844 struct ufsvfs *ufsvfsp = ip->i_ufsvfs;
3845 struct ulockfs *ulp;
3846 vnode_t *rmvp = NULL; /* Vnode of removed directory */
3847 int error;
3848 int issync;
3849 int trans_size;
3850 int indeadlock;
3851
3852 /*
3853 * don't let the delete queue get too long
3854 */
3855 if (ufsvfsp == NULL) {
3856 error = EIO;
3857 goto out;
3858 }
3859 if (ufsvfsp->vfs_delete.uq_ne > ufs_idle_max)
3860 ufs_delete_drain(vp->v_vfsp, 1, 1);
3861
3862 error = ufs_eventlookup(vp, nm, cr, &rmvp);
3863 if (rmvp != NULL) {
3864 /* Only send the event if there were no errors */
3865 if (error == 0)
3866 vnevent_rmdir(rmvp, vp, nm, ct);
3867 VN_RELE(rmvp);
3868 }
3869
3870 retry_rmdir:
3871 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_RMDIR_MASK);
3872 if (error)
3873 goto out;
3874
3875 if (ulp)
3876 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_RMDIR,
3877 trans_size = TOP_RMDIR_SIZE);
3878
3879 /*
3880 * ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK
3881 * to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock
3882 * possible, retries the operation.
3883 */
3884 ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_RMDIR, retry);
3885 if (indeadlock)
3886 goto retry_rmdir;
3887 error = ufs_dirremove(ip, nm, (struct inode *)0, cdir, DR_RMDIR, cr);
3888
3889 rw_exit(&ip->i_rwlock);
3890
3891 if (ulp) {
3892 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_RMDIR,
3893 trans_size);
3894 ufs_lockfs_end(ulp);
3895 }
3896
3897 out:
3898 return (error);
3899 }
3900
3901 /* ARGSUSED */
3902 static int
3903 ufs_readdir(
3904 struct vnode *vp,
3905 struct uio *uiop,
3906 struct cred *cr,
3907 int *eofp,
3908 caller_context_t *ct,
3909 int flags)
3910 {
3911 struct iovec *iovp;
3912 struct inode *ip;
3913 struct direct *idp;
3914 struct dirent64 *odp;
3915 struct fbuf *fbp;
3916 struct ufsvfs *ufsvfsp;
3917 struct ulockfs *ulp;
3918 caddr_t outbuf;
3919 size_t bufsize;
3920 uint_t offset;
3921 uint_t bytes_wanted, total_bytes_wanted;
3922 int incount = 0;
3923 int outcount = 0;
3924 int error;
3925
3926 ip = VTOI(vp);
3927 ASSERT(RW_READ_HELD(&ip->i_rwlock));
3928
3929 if (uiop->uio_loffset >= MAXOFF32_T) {
3930 if (eofp)
3931 *eofp = 1;
3932 return (0);
3933 }
3934
3935 /*
3936 * Check if we have been called with a valid iov_len
3937 * and bail out if not, otherwise we may potentially loop
3938 * forever further down.
3939 */
3940 if (uiop->uio_iov->iov_len <= 0) {
3941 error = EINVAL;
3942 goto out;
3943 }
3944
3945 /*
3946 * Large Files: When we come here we are guaranteed that
3947 * uio_offset can be used safely. The high word is zero.
3948 */
3949
3950 ufsvfsp = ip->i_ufsvfs;
3951 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_READDIR_MASK);
3952 if (error)
3953 goto out;
3954
3955 iovp = uiop->uio_iov;
3956 total_bytes_wanted = iovp->iov_len;
3957
3958 /* Large Files: directory files should not be "large" */
3959
3960 ASSERT(ip->i_size <= MAXOFF32_T);
3961
3962 /* Force offset to be valid (to guard against bogus lseek() values) */
3963 offset = (uint_t)uiop->uio_offset & ~(DIRBLKSIZ - 1);
3964
3965 /* Quit if at end of file or link count of zero (posix) */
3966 if (offset >= (uint_t)ip->i_size || ip->i_nlink <= 0) {
3967 if (eofp)
3968 *eofp = 1;
3969 error = 0;
3970 goto unlock;
3971 }
3972
3973 /*
3974 * Get space to change directory entries into fs independent format.
3975 * Do fast alloc for the most commonly used-request size (filesystem
3976 * block size).
3977 */
3978 if (uiop->uio_segflg != UIO_SYSSPACE || uiop->uio_iovcnt != 1) {
3979 bufsize = total_bytes_wanted;
3980 outbuf = kmem_alloc(bufsize, KM_SLEEP);
3981 odp = (struct dirent64 *)outbuf;
3982 } else {
3983 bufsize = total_bytes_wanted;
3984 odp = (struct dirent64 *)iovp->iov_base;
3985 }
3986
3987 nextblk:
3988 bytes_wanted = total_bytes_wanted;
3989
3990 /* Truncate request to file size */
3991 if (offset + bytes_wanted > (int)ip->i_size)
3992 bytes_wanted = (int)(ip->i_size - offset);
3993
3994 /* Comply with MAXBSIZE boundary restrictions of fbread() */
3995 if ((offset & MAXBOFFSET) + bytes_wanted > MAXBSIZE)
3996 bytes_wanted = MAXBSIZE - (offset & MAXBOFFSET);
3997
3998 /*
3999 * Read in the next chunk.
4000 * We are still holding the i_rwlock.
4001 */
4002 error = fbread(vp, (offset_t)offset, bytes_wanted, S_OTHER, &fbp);
4003
4004 if (error)
4005 goto update_inode;
4006 if (!ULOCKFS_IS_NOIACC(ITOUL(ip)) && (ip->i_fs->fs_ronly == 0) &&
4007 (!ufsvfsp->vfs_noatime)) {
4008 ip->i_flag |= IACC;
4009 }
4010 incount = 0;
4011 idp = (struct direct *)fbp->fb_addr;
4012 if (idp->d_ino == 0 && idp->d_reclen == 0 && idp->d_namlen == 0) {
4013 cmn_err(CE_WARN, "ufs_readdir: bad dir, inumber = %llu, "
4014 "fs = %s\n",
4015 (u_longlong_t)ip->i_number, ufsvfsp->vfs_fs->fs_fsmnt);
4016 fbrelse(fbp, S_OTHER);
4017 error = ENXIO;
4018 goto update_inode;
4019 }
4020 /* Transform to file-system independent format */
4021 while (incount < bytes_wanted) {
4022 /*
4023 * If the current directory entry is mangled, then skip
4024 * to the next block. It would be nice to set the FSBAD
4025 * flag in the super-block so that a fsck is forced on
4026 * next reboot, but locking is a problem.
4027 */
4028 if (idp->d_reclen & 0x3) {
4029 offset = (offset + DIRBLKSIZ) & ~(DIRBLKSIZ-1);
4030 break;
4031 }
4032
4033 /* Skip to requested offset and skip empty entries */
4034 if (idp->d_ino != 0 && offset >= (uint_t)uiop->uio_offset) {
4035 ushort_t this_reclen =
4036 DIRENT64_RECLEN(idp->d_namlen);
4037 /* Buffer too small for any entries */
4038 if (!outcount && this_reclen > bufsize) {
4039 fbrelse(fbp, S_OTHER);
4040 error = EINVAL;
4041 goto update_inode;
4042 }
4043 /* If would overrun the buffer, quit */
4044 if (outcount + this_reclen > bufsize) {
4045 break;
4046 }
4047 /* Take this entry */
4048 odp->d_ino = (ino64_t)idp->d_ino;
4049 odp->d_reclen = (ushort_t)this_reclen;
4050 odp->d_off = (offset_t)(offset + idp->d_reclen);
4051
4052 /* use strncpy(9f) to zero out uninitialized bytes */
4053
4054 ASSERT(strlen(idp->d_name) + 1 <=
4055 DIRENT64_NAMELEN(this_reclen));
4056 (void) strncpy(odp->d_name, idp->d_name,
4057 DIRENT64_NAMELEN(this_reclen));
4058 outcount += odp->d_reclen;
4059 odp = (struct dirent64 *)
4060 ((intptr_t)odp + odp->d_reclen);
4061 ASSERT(outcount <= bufsize);
4062 }
4063 if (idp->d_reclen) {
4064 incount += idp->d_reclen;
4065 offset += idp->d_reclen;
4066 idp = (struct direct *)((intptr_t)idp + idp->d_reclen);
4067 } else {
4068 offset = (offset + DIRBLKSIZ) & ~(DIRBLKSIZ-1);
4069 break;
4070 }
4071 }
4072 /* Release the chunk */
4073 fbrelse(fbp, S_OTHER);
4074
4075 /* Read whole block, but got no entries, read another if not eof */
4076
4077 /*
4078 * Large Files: casting i_size to int here is not a problem
4079 * because directory sizes are always less than MAXOFF32_T.
4080 * See assertion above.
4081 */
4082
4083 if (offset < (int)ip->i_size && !outcount)
4084 goto nextblk;
4085
4086 /* Copy out the entry data */
4087 if (uiop->uio_segflg == UIO_SYSSPACE && uiop->uio_iovcnt == 1) {
4088 iovp->iov_base += outcount;
4089 iovp->iov_len -= outcount;
4090 uiop->uio_resid -= outcount;
4091 uiop->uio_offset = offset;
4092 } else if ((error = uiomove(outbuf, (long)outcount, UIO_READ,
4093 uiop)) == 0)
4094 uiop->uio_offset = offset;
4095 update_inode:
4096 ITIMES(ip);
4097 if (uiop->uio_segflg != UIO_SYSSPACE || uiop->uio_iovcnt != 1)
4098 kmem_free(outbuf, bufsize);
4099
4100 if (eofp && error == 0)
4101 *eofp = (uiop->uio_offset >= (int)ip->i_size);
4102 unlock:
4103 if (ulp) {
4104 ufs_lockfs_end(ulp);
4105 }
4106 out:
4107 return (error);
4108 }
4109
4110 /*ARGSUSED*/
4111 static int
4112 ufs_symlink(
4113 struct vnode *dvp, /* ptr to parent dir vnode */
4114 char *linkname, /* name of symbolic link */
4115 struct vattr *vap, /* attributes */
4116 char *target, /* target path */
4117 struct cred *cr, /* user credentials */
4118 caller_context_t *ct,
4119 int flags)
4120 {
4121 struct inode *ip, *dip = VTOI(dvp);
4122 struct ufsvfs *ufsvfsp = dip->i_ufsvfs;
4123 struct ulockfs *ulp;
4124 int error;
4125 int issync;
4126 int trans_size;
4127 int residual;
4128 int ioflag;
4129 int retry = 1;
4130
4131 /*
4132 * No symlinks in attrdirs at this time
4133 */
4134 if ((VTOI(dvp)->i_mode & IFMT) == IFATTRDIR)
4135 return (EINVAL);
4136
4137 again:
4138 ip = (struct inode *)NULL;
4139 vap->va_type = VLNK;
4140 vap->va_rdev = 0;
4141
4142 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_SYMLINK_MASK);
4143 if (error)
4144 goto out;
4145
4146 if (ulp)
4147 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_SYMLINK,
4148 trans_size = (int)TOP_SYMLINK_SIZE(dip));
4149
4150 /*
4151 * We must create the inode before the directory entry, to avoid
4152 * racing with readlink(). ufs_dirmakeinode requires that we
4153 * hold the quota lock as reader, and directory locks as writer.
4154 */
4155
4156 rw_enter(&dip->i_rwlock, RW_WRITER);
4157 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
4158 rw_enter(&dip->i_contents, RW_WRITER);
4159
4160 /*
4161 * Suppress any out of inodes messages if we will retry on
4162 * ENOSP
4163 */
4164 if (retry)
4165 dip->i_flag |= IQUIET;
4166
4167 error = ufs_dirmakeinode(dip, &ip, vap, DE_SYMLINK, cr);
4168
4169 dip->i_flag &= ~IQUIET;
4170
4171 rw_exit(&dip->i_contents);
4172 rw_exit(&ufsvfsp->vfs_dqrwlock);
4173 rw_exit(&dip->i_rwlock);
4174
4175 if (error)
4176 goto unlock;
4177
4178 /*
4179 * OK. The inode has been created. Write out the data of the
4180 * symbolic link. Since symbolic links are metadata, and should
4181 * remain consistent across a system crash, we need to force the
4182 * data out synchronously.
4183 *
4184 * (This is a change from the semantics in earlier releases, which
4185 * only created symbolic links synchronously if the semi-documented
4186 * 'syncdir' option was set, or if we were being invoked by the NFS
4187 * server, which requires symbolic links to be created synchronously.)
4188 *
4189 * We need to pass in a pointer for the residual length; otherwise
4190 * ufs_rdwri() will always return EIO if it can't write the data,
4191 * even if the error was really ENOSPC or EDQUOT.
4192 */
4193
4194 ioflag = FWRITE | FDSYNC;
4195 residual = 0;
4196
4197 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
4198 rw_enter(&ip->i_contents, RW_WRITER);
4199
4200 /*
4201 * Suppress file system full messages if we will retry
4202 */
4203 if (retry)
4204 ip->i_flag |= IQUIET;
4205
4206 error = ufs_rdwri(UIO_WRITE, ioflag, ip, target, strlen(target),
4207 (offset_t)0, UIO_SYSSPACE, &residual, cr);
4208
4209 ip->i_flag &= ~IQUIET;
4210
4211 if (error) {
4212 rw_exit(&ip->i_contents);
4213 rw_exit(&ufsvfsp->vfs_dqrwlock);
4214 goto remove;
4215 }
4216
4217 /*
4218 * If the link's data is small enough, we can cache it in the inode.
4219 * This is a "fast symbolic link". We don't use the first direct
4220 * block because that's actually used to point at the symbolic link's
4221 * contents on disk; but we know that none of the other direct or
4222 * indirect blocks can be used because symbolic links are restricted
4223 * to be smaller than a file system block.
4224 */
4225
4226 ASSERT(MAXPATHLEN <= VBSIZE(ITOV(ip)));
4227
4228 if (ip->i_size > 0 && ip->i_size <= FSL_SIZE) {
4229 if (kcopy(target, &ip->i_db[1], ip->i_size) == 0) {
4230 ip->i_flag |= IFASTSYMLNK;
4231 } else {
4232 int i;
4233 /* error, clear garbage left behind */
4234 for (i = 1; i < NDADDR; i++)
4235 ip->i_db[i] = 0;
4236 for (i = 0; i < NIADDR; i++)
4237 ip->i_ib[i] = 0;
4238 }
4239 }
4240
4241 rw_exit(&ip->i_contents);
4242 rw_exit(&ufsvfsp->vfs_dqrwlock);
4243
4244 /*
4245 * OK. We've successfully created the symbolic link. All that
4246 * remains is to insert it into the appropriate directory.
4247 */
4248
4249 rw_enter(&dip->i_rwlock, RW_WRITER);
4250 error = ufs_direnter_lr(dip, linkname, DE_SYMLINK, NULL, ip, cr);
4251 rw_exit(&dip->i_rwlock);
4252
4253 /*
4254 * Fall through into remove-on-error code. We're either done, or we
4255 * need to remove the inode (if we couldn't insert it).
4256 */
4257
4258 remove:
4259 if (error && (ip != NULL)) {
4260 rw_enter(&ip->i_contents, RW_WRITER);
4261 ip->i_nlink--;
4262 ip->i_flag |= ICHG;
4263 ip->i_seq++;
4264 ufs_setreclaim(ip);
4265 rw_exit(&ip->i_contents);
4266 }
4267
4268 unlock:
4269 if (ip != NULL)
4270 VN_RELE(ITOV(ip));
4271
4272 if (ulp) {
4273 int terr = 0;
4274
4275 TRANS_END_CSYNC(ufsvfsp, terr, issync, TOP_SYMLINK,
4276 trans_size);
4277 ufs_lockfs_end(ulp);
4278 if (error == 0)
4279 error = terr;
4280 }
4281
4282 /*
4283 * We may have failed due to lack of an inode or of a block to
4284 * store the target in. Try flushing the delete queue to free
4285 * logically-available things up and try again.
4286 */
4287 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) {
4288 ufs_delete_drain_wait(ufsvfsp, 1);
4289 retry = 0;
4290 goto again;
4291 }
4292
4293 out:
4294 return (error);
4295 }
4296
4297 /*
4298 * Ufs specific routine used to do ufs io.
4299 */
4300 int
4301 ufs_rdwri(enum uio_rw rw, int ioflag, struct inode *ip, caddr_t base,
4302 ssize_t len, offset_t offset, enum uio_seg seg, int *aresid,
4303 struct cred *cr)
4304 {
4305 struct uio auio;
4306 struct iovec aiov;
4307 int error;
4308
4309 ASSERT(RW_LOCK_HELD(&ip->i_contents));
4310
4311 bzero((caddr_t)&auio, sizeof (uio_t));
4312 bzero((caddr_t)&aiov, sizeof (iovec_t));
4313
4314 aiov.iov_base = base;
4315 aiov.iov_len = len;
4316 auio.uio_iov = &aiov;
4317 auio.uio_iovcnt = 1;
4318 auio.uio_loffset = offset;
4319 auio.uio_segflg = (short)seg;
4320 auio.uio_resid = len;
4321
4322 if (rw == UIO_WRITE) {
4323 auio.uio_fmode = FWRITE;
4324 auio.uio_extflg = UIO_COPY_DEFAULT;
4325 auio.uio_llimit = curproc->p_fsz_ctl;
4326 error = wrip(ip, &auio, ioflag, cr);
4327 } else {
4328 auio.uio_fmode = FREAD;
4329 auio.uio_extflg = UIO_COPY_CACHED;
4330 auio.uio_llimit = MAXOFFSET_T;
4331 error = rdip(ip, &auio, ioflag, cr);
4332 }
4333
4334 if (aresid) {
4335 *aresid = auio.uio_resid;
4336 } else if (auio.uio_resid) {
4337 error = EIO;
4338 }
4339 return (error);
4340 }
4341
4342 /*ARGSUSED*/
4343 static int
4344 ufs_fid(struct vnode *vp, struct fid *fidp, caller_context_t *ct)
4345 {
4346 struct ufid *ufid;
4347 struct inode *ip = VTOI(vp);
4348
4349 if (ip->i_ufsvfs == NULL)
4350 return (EIO);
4351
4352 if (fidp->fid_len < (sizeof (struct ufid) - sizeof (ushort_t))) {
4353 fidp->fid_len = sizeof (struct ufid) - sizeof (ushort_t);
4354 return (ENOSPC);
4355 }
4356
4357 ufid = (struct ufid *)fidp;
4358 bzero((char *)ufid, sizeof (struct ufid));
4359 ufid->ufid_len = sizeof (struct ufid) - sizeof (ushort_t);
4360 ufid->ufid_ino = ip->i_number;
4361 ufid->ufid_gen = ip->i_gen;
4362
4363 return (0);
4364 }
4365
4366 /* ARGSUSED2 */
4367 static int
4368 ufs_rwlock(struct vnode *vp, int write_lock, caller_context_t *ctp)
4369 {
4370 struct inode *ip = VTOI(vp);
4371 struct ufsvfs *ufsvfsp;
4372 int forcedirectio;
4373
4374 /*
4375 * Read case is easy.
4376 */
4377 if (!write_lock) {
4378 rw_enter(&ip->i_rwlock, RW_READER);
4379 return (V_WRITELOCK_FALSE);
4380 }
4381
4382 /*
4383 * Caller has requested a writer lock, but that inhibits any
4384 * concurrency in the VOPs that follow. Acquire the lock shared
4385 * and defer exclusive access until it is known to be needed in
4386 * other VOP handlers. Some cases can be determined here.
4387 */
4388
4389 /*
4390 * If directio is not set, there is no chance of concurrency,
4391 * so just acquire the lock exclusive. Beware of a forced
4392 * unmount before looking at the mount option.
4393 */
4394 ufsvfsp = ip->i_ufsvfs;
4395 forcedirectio = ufsvfsp ? ufsvfsp->vfs_forcedirectio : 0;
4396 if (!(ip->i_flag & IDIRECTIO || forcedirectio) ||
4397 !ufs_allow_shared_writes) {
4398 rw_enter(&ip->i_rwlock, RW_WRITER);
4399 return (V_WRITELOCK_TRUE);
4400 }
4401
4402 /*
4403 * Mandatory locking forces acquiring i_rwlock exclusive.
4404 */
4405 if (MANDLOCK(vp, ip->i_mode)) {
4406 rw_enter(&ip->i_rwlock, RW_WRITER);
4407 return (V_WRITELOCK_TRUE);
4408 }
4409
4410 /*
4411 * Acquire the lock shared in case a concurrent write follows.
4412 * Mandatory locking could have become enabled before the lock
4413 * was acquired. Re-check and upgrade if needed.
4414 */
4415 rw_enter(&ip->i_rwlock, RW_READER);
4416 if (MANDLOCK(vp, ip->i_mode)) {
4417 rw_exit(&ip->i_rwlock);
4418 rw_enter(&ip->i_rwlock, RW_WRITER);
4419 return (V_WRITELOCK_TRUE);
4420 }
4421 return (V_WRITELOCK_FALSE);
4422 }
4423
4424 /*ARGSUSED*/
4425 static void
4426 ufs_rwunlock(struct vnode *vp, int write_lock, caller_context_t *ctp)
4427 {
4428 struct inode *ip = VTOI(vp);
4429
4430 rw_exit(&ip->i_rwlock);
4431 }
4432
4433 /* ARGSUSED */
4434 static int
4435 ufs_seek(struct vnode *vp, offset_t ooff, offset_t *noffp,
4436 caller_context_t *ct)
4437 {
4438 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
4439 }
4440
4441 /* ARGSUSED */
4442 static int
4443 ufs_frlock(struct vnode *vp, int cmd, struct flock64 *bfp, int flag,
4444 offset_t offset, struct flk_callback *flk_cbp, struct cred *cr,
4445 caller_context_t *ct)
4446 {
4447 struct inode *ip = VTOI(vp);
4448
4449 if (ip->i_ufsvfs == NULL)
4450 return (EIO);
4451
4452 /*
4453 * If file is being mapped, disallow frlock.
4454 * XXX I am not holding tlock while checking i_mapcnt because the
4455 * current locking strategy drops all locks before calling fs_frlock.
4456 * So, mapcnt could change before we enter fs_frlock making is
4457 * meaningless to have held tlock in the first place.
4458 */
4459 if (ip->i_mapcnt > 0 && MANDLOCK(vp, ip->i_mode))
4460 return (EAGAIN);
4461 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
4462 }
4463
4464 /* ARGSUSED */
4465 static int
4466 ufs_space(struct vnode *vp, int cmd, struct flock64 *bfp, int flag,
4467 offset_t offset, cred_t *cr, caller_context_t *ct)
4468 {
4469 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs;
4470 struct ulockfs *ulp;
4471 int error;
4472
4473 if ((error = convoff(vp, bfp, 0, offset)) == 0) {
4474 if (cmd == F_FREESP) {
4475 error = ufs_lockfs_begin(ufsvfsp, &ulp,
4476 ULOCKFS_SPACE_MASK);
4477 if (error)
4478 return (error);
4479 error = ufs_freesp(vp, bfp, flag, cr);
4480
4481 if (error == 0 && bfp->l_start == 0)
4482 vnevent_truncate(vp, ct);
4483 } else if (cmd == F_ALLOCSP) {
4484 error = ufs_lockfs_begin(ufsvfsp, &ulp,
4485 ULOCKFS_FALLOCATE_MASK);
4486 if (error)
4487 return (error);
4488 error = ufs_allocsp(vp, bfp, cr);
4489 } else
4490 return (EINVAL); /* Command not handled here */
4491
4492 if (ulp)
4493 ufs_lockfs_end(ulp);
4494
4495 }
4496 return (error);
4497 }
4498
4499 /*
4500 * Used to determine if read ahead should be done. Also used to
4501 * to determine when write back occurs.
4502 */
4503 #define CLUSTSZ(ip) ((ip)->i_ufsvfs->vfs_ioclustsz)
4504
4505 /*
4506 * A faster version of ufs_getpage.
4507 *
4508 * We optimize by inlining the pvn_getpages iterator, eliminating
4509 * calls to bmap_read if file doesn't have UFS holes, and avoiding
4510 * the overhead of page_exists().
4511 *
4512 * When files has UFS_HOLES and ufs_getpage is called with S_READ,
4513 * we set *protp to PROT_READ to avoid calling bmap_read. This approach
4514 * victimizes performance when a file with UFS holes is faulted
4515 * first in the S_READ mode, and then in the S_WRITE mode. We will get
4516 * two MMU faults in this case.
4517 *
4518 * XXX - the inode fields which control the sequential mode are not
4519 * protected by any mutex. The read ahead will act wild if
4520 * multiple processes will access the file concurrently and
4521 * some of them in sequential mode. One particulary bad case
4522 * is if another thread will change the value of i_nextrio between
4523 * the time this thread tests the i_nextrio value and then reads it
4524 * again to use it as the offset for the read ahead.
4525 */
4526 /*ARGSUSED*/
4527 static int
4528 ufs_getpage(struct vnode *vp, offset_t off, size_t len, uint_t *protp,
4529 page_t *plarr[], size_t plsz, struct seg *seg, caddr_t addr,
4530 enum seg_rw rw, struct cred *cr, caller_context_t *ct)
4531 {
4532 u_offset_t uoff = (u_offset_t)off; /* type conversion */
4533 u_offset_t pgoff;
4534 u_offset_t eoff;
4535 struct inode *ip = VTOI(vp);
4536 struct ufsvfs *ufsvfsp = ip->i_ufsvfs;
4537 struct fs *fs;
4538 struct ulockfs *ulp;
4539 page_t **pl;
4540 caddr_t pgaddr;
4541 krw_t rwtype;
4542 int err;
4543 int has_holes;
4544 int beyond_eof;
4545 int seqmode;
4546 int pgsize = PAGESIZE;
4547 int dolock;
4548 int do_qlock;
4549 int trans_size;
4550
4551 ASSERT((uoff & PAGEOFFSET) == 0);
4552
4553 if (protp)
4554 *protp = PROT_ALL;
4555
4556 /*
4557 * Obey the lockfs protocol
4558 */
4559 err = ufs_lockfs_begin_getpage(ufsvfsp, &ulp, seg,
4560 rw == S_READ || rw == S_EXEC, protp);
4561 if (err)
4562 goto out;
4563
4564 fs = ufsvfsp->vfs_fs;
4565
4566 if (ulp && (rw == S_CREATE || rw == S_WRITE) &&
4567 !(vp->v_flag & VISSWAP)) {
4568 /*
4569 * Try to start a transaction, will return if blocking is
4570 * expected to occur and the address space is not the
4571 * kernel address space.
4572 */
4573 trans_size = TOP_GETPAGE_SIZE(ip);
4574 if (seg->s_as != &kas) {
4575 TRANS_TRY_BEGIN_ASYNC(ufsvfsp, TOP_GETPAGE,
4576 trans_size, err)
4577 if (err == EWOULDBLOCK) {
4578 /*
4579 * Use EDEADLK here because the VM code
4580 * can normally never see this error.
4581 */
4582 err = EDEADLK;
4583 ufs_lockfs_end(ulp);
4584 goto out;
4585 }
4586 } else {
4587 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_GETPAGE, trans_size);
4588 }
4589 }
4590
4591 if (vp->v_flag & VNOMAP) {
4592 err = ENOSYS;
4593 goto unlock;
4594 }
4595
4596 seqmode = ip->i_nextr == uoff && rw != S_CREATE;
4597
4598 rwtype = RW_READER; /* start as a reader */
4599 dolock = (rw_owner(&ip->i_contents) != curthread);
4600 /*
4601 * If this thread owns the lock, i.e., this thread grabbed it
4602 * as writer somewhere above, then we don't need to grab the
4603 * lock as reader in this routine.
4604 */
4605 do_qlock = (rw_owner(&ufsvfsp->vfs_dqrwlock) != curthread);
4606
4607 retrylock:
4608 if (dolock) {
4609 /*
4610 * Grab the quota lock if we need to call
4611 * bmap_write() below (with i_contents as writer).
4612 */
4613 if (do_qlock && rwtype == RW_WRITER)
4614 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
4615 rw_enter(&ip->i_contents, rwtype);
4616 }
4617
4618 /*
4619 * We may be getting called as a side effect of a bmap using
4620 * fbread() when the blocks might be being allocated and the
4621 * size has not yet been up'ed. In this case we want to be
4622 * able to return zero pages if we get back UFS_HOLE from
4623 * calling bmap for a non write case here. We also might have
4624 * to read some frags from the disk into a page if we are
4625 * extending the number of frags for a given lbn in bmap().
4626 * Large Files: The read of i_size here is atomic because
4627 * i_contents is held here. If dolock is zero, the lock
4628 * is held in bmap routines.
4629 */
4630 beyond_eof = uoff + len >
4631 P2ROUNDUP_TYPED(ip->i_size, PAGESIZE, u_offset_t);
4632 if (beyond_eof && seg != segkmap) {
4633 if (dolock) {
4634 rw_exit(&ip->i_contents);
4635 if (do_qlock && rwtype == RW_WRITER)
4636 rw_exit(&ufsvfsp->vfs_dqrwlock);
4637 }
4638 err = EFAULT;
4639 goto unlock;
4640 }
4641
4642 /*
4643 * Must hold i_contents lock throughout the call to pvn_getpages
4644 * since locked pages are returned from each call to ufs_getapage.
4645 * Must *not* return locked pages and then try for contents lock
4646 * due to lock ordering requirements (inode > page)
4647 */
4648
4649 has_holes = bmap_has_holes(ip);
4650
4651 if ((rw == S_WRITE || rw == S_CREATE) && has_holes && !beyond_eof) {
4652 int blk_size;
4653 u_offset_t offset;
4654
4655 /*
4656 * We must acquire the RW_WRITER lock in order to
4657 * call bmap_write().
4658 */
4659 if (dolock && rwtype == RW_READER) {
4660 rwtype = RW_WRITER;
4661
4662 /*
4663 * Grab the quota lock before
4664 * upgrading i_contents, but if we can't grab it
4665 * don't wait here due to lock order:
4666 * vfs_dqrwlock > i_contents.
4667 */
4668 if (do_qlock &&
4669 rw_tryenter(&ufsvfsp->vfs_dqrwlock, RW_READER)
4670 == 0) {
4671 rw_exit(&ip->i_contents);
4672 goto retrylock;
4673 }
4674 if (!rw_tryupgrade(&ip->i_contents)) {
4675 rw_exit(&ip->i_contents);
4676 if (do_qlock)
4677 rw_exit(&ufsvfsp->vfs_dqrwlock);
4678 goto retrylock;
4679 }
4680 }
4681
4682 /*
4683 * May be allocating disk blocks for holes here as
4684 * a result of mmap faults. write(2) does the bmap_write
4685 * in rdip/wrip, not here. We are not dealing with frags
4686 * in this case.
4687 */
4688 /*
4689 * Large Files: We cast fs_bmask field to offset_t
4690 * just as we do for MAXBMASK because uoff is a 64-bit
4691 * data type. fs_bmask will still be a 32-bit type
4692 * as we cannot change any ondisk data structures.
4693 */
4694
4695 offset = uoff & (offset_t)fs->fs_bmask;
4696 while (offset < uoff + len) {
4697 blk_size = (int)blksize(fs, ip, lblkno(fs, offset));
4698 err = bmap_write(ip, offset, blk_size,
4699 BI_NORMAL, NULL, cr);
4700 if (ip->i_flag & (ICHG|IUPD))
4701 ip->i_seq++;
4702 if (err)
4703 goto update_inode;
4704 offset += blk_size; /* XXX - make this contig */
4705 }
4706 }
4707
4708 /*
4709 * Can be a reader from now on.
4710 */
4711 if (dolock && rwtype == RW_WRITER) {
4712 rw_downgrade(&ip->i_contents);
4713 /*
4714 * We can release vfs_dqrwlock early so do it, but make
4715 * sure we don't try to release it again at the bottom.
4716 */
4717 if (do_qlock) {
4718 rw_exit(&ufsvfsp->vfs_dqrwlock);
4719 do_qlock = 0;
4720 }
4721 }
4722
4723 /*
4724 * We remove PROT_WRITE in cases when the file has UFS holes
4725 * because we don't want to call bmap_read() to check each
4726 * page if it is backed with a disk block.
4727 */
4728 if (protp && has_holes && rw != S_WRITE && rw != S_CREATE)
4729 *protp &= ~PROT_WRITE;
4730
4731 err = 0;
4732
4733 /*
4734 * The loop looks up pages in the range [off, off + len).
4735 * For each page, we first check if we should initiate an asynchronous
4736 * read ahead before we call page_lookup (we may sleep in page_lookup
4737 * for a previously initiated disk read).
4738 */
4739 eoff = (uoff + len);
4740 for (pgoff = uoff, pgaddr = addr, pl = plarr;
4741 pgoff < eoff; /* empty */) {
4742 page_t *pp;
4743 u_offset_t nextrio;
4744 se_t se;
4745 int retval;
4746
4747 se = ((rw == S_CREATE || rw == S_OTHER) ? SE_EXCL : SE_SHARED);
4748
4749 /* Handle async getpage (faultahead) */
4750 if (plarr == NULL) {
4751 ip->i_nextrio = pgoff;
4752 (void) ufs_getpage_ra(vp, pgoff, seg, pgaddr);
4753 pgoff += pgsize;
4754 pgaddr += pgsize;
4755 continue;
4756 }
4757 /*
4758 * Check if we should initiate read ahead of next cluster.
4759 * We call page_exists only when we need to confirm that
4760 * we have the current page before we initiate the read ahead.
4761 */
4762 nextrio = ip->i_nextrio;
4763 if (seqmode &&
4764 pgoff + CLUSTSZ(ip) >= nextrio && pgoff <= nextrio &&
4765 nextrio < ip->i_size && page_exists(vp, pgoff)) {
4766 retval = ufs_getpage_ra(vp, pgoff, seg, pgaddr);
4767 /*
4768 * We always read ahead the next cluster of data
4769 * starting from i_nextrio. If the page (vp,nextrio)
4770 * is actually in core at this point, the routine
4771 * ufs_getpage_ra() will stop pre-fetching data
4772 * until we read that page in a synchronized manner
4773 * through ufs_getpage_miss(). So, we should increase
4774 * i_nextrio if the page (vp, nextrio) exists.
4775 */
4776 if ((retval == 0) && page_exists(vp, nextrio)) {
4777 ip->i_nextrio = nextrio + pgsize;
4778 }
4779 }
4780
4781 if ((pp = page_lookup(vp, pgoff, se)) != NULL) {
4782 /*
4783 * We found the page in the page cache.
4784 */
4785 *pl++ = pp;
4786 pgoff += pgsize;
4787 pgaddr += pgsize;
4788 len -= pgsize;
4789 plsz -= pgsize;
4790 } else {
4791 /*
4792 * We have to create the page, or read it from disk.
4793 */
4794 if (err = ufs_getpage_miss(vp, pgoff, len, seg, pgaddr,
4795 pl, plsz, rw, seqmode))
4796 goto error;
4797
4798 while (*pl != NULL) {
4799 pl++;
4800 pgoff += pgsize;
4801 pgaddr += pgsize;
4802 len -= pgsize;
4803 plsz -= pgsize;
4804 }
4805 }
4806 }
4807
4808 /*
4809 * Return pages up to plsz if they are in the page cache.
4810 * We cannot return pages if there is a chance that they are
4811 * backed with a UFS hole and rw is S_WRITE or S_CREATE.
4812 */
4813 if (plarr && !(has_holes && (rw == S_WRITE || rw == S_CREATE))) {
4814
4815 ASSERT((protp == NULL) ||
4816 !(has_holes && (*protp & PROT_WRITE)));
4817
4818 eoff = pgoff + plsz;
4819 while (pgoff < eoff) {
4820 page_t *pp;
4821
4822 if ((pp = page_lookup_nowait(vp, pgoff,
4823 SE_SHARED)) == NULL)
4824 break;
4825
4826 *pl++ = pp;
4827 pgoff += pgsize;
4828 plsz -= pgsize;
4829 }
4830 }
4831
4832 if (plarr)
4833 *pl = NULL; /* Terminate page list */
4834 ip->i_nextr = pgoff;
4835
4836 error:
4837 if (err && plarr) {
4838 /*
4839 * Release any pages we have locked.
4840 */
4841 while (pl > &plarr[0])
4842 page_unlock(*--pl);
4843
4844 plarr[0] = NULL;
4845 }
4846
4847 update_inode:
4848 /*
4849 * If the inode is not already marked for IACC (in rdip() for read)
4850 * and the inode is not marked for no access time update (in wrip()
4851 * for write) then update the inode access time and mod time now.
4852 */
4853 if ((ip->i_flag & (IACC | INOACC)) == 0) {
4854 if ((rw != S_OTHER) && (ip->i_mode & IFMT) != IFDIR) {
4855 if (!ULOCKFS_IS_NOIACC(ITOUL(ip)) &&
4856 (fs->fs_ronly == 0) &&
4857 (!ufsvfsp->vfs_noatime)) {
4858 mutex_enter(&ip->i_tlock);
4859 ip->i_flag |= IACC;
4860 ITIMES_NOLOCK(ip);
4861 mutex_exit(&ip->i_tlock);
4862 }
4863 }
4864 }
4865
4866 if (dolock) {
4867 rw_exit(&ip->i_contents);
4868 if (do_qlock && rwtype == RW_WRITER)
4869 rw_exit(&ufsvfsp->vfs_dqrwlock);
4870 }
4871
4872 unlock:
4873 if (ulp) {
4874 if ((rw == S_CREATE || rw == S_WRITE) &&
4875 !(vp->v_flag & VISSWAP)) {
4876 TRANS_END_ASYNC(ufsvfsp, TOP_GETPAGE, trans_size);
4877 }
4878 ufs_lockfs_end(ulp);
4879 }
4880 out:
4881 return (err);
4882 }
4883
4884 /*
4885 * ufs_getpage_miss is called when ufs_getpage missed the page in the page
4886 * cache. The page is either read from the disk, or it's created.
4887 * A page is created (without disk read) if rw == S_CREATE, or if
4888 * the page is not backed with a real disk block (UFS hole).
4889 */
4890 /* ARGSUSED */
4891 static int
4892 ufs_getpage_miss(struct vnode *vp, u_offset_t off, size_t len, struct seg *seg,
4893 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw, int seq)
4894 {
4895 struct inode *ip = VTOI(vp);
4896 page_t *pp;
4897 daddr_t bn;
4898 size_t io_len;
4899 int crpage = 0;
4900 int err;
4901 int contig;
4902 int bsize = ip->i_fs->fs_bsize;
4903
4904 /*
4905 * Figure out whether the page can be created, or must be
4906 * must be read from the disk.
4907 */
4908 if (rw == S_CREATE)
4909 crpage = 1;
4910 else {
4911 contig = 0;
4912 if (err = bmap_read(ip, off, &bn, &contig))
4913 return (err);
4914
4915 crpage = (bn == UFS_HOLE);
4916
4917 /*
4918 * If its also a fallocated block that hasn't been written to
4919 * yet, we will treat it just like a UFS_HOLE and create
4920 * a zero page for it
4921 */
4922 if (ISFALLOCBLK(ip, bn))
4923 crpage = 1;
4924 }
4925
4926 if (crpage) {
4927 if ((pp = page_create_va(vp, off, PAGESIZE, PG_WAIT, seg,
4928 addr)) == NULL) {
4929 return (ufs_fault(vp,
4930 "ufs_getpage_miss: page_create == NULL"));
4931 }
4932
4933 if (rw != S_CREATE)
4934 pagezero(pp, 0, PAGESIZE);
4935
4936 io_len = PAGESIZE;
4937 } else {
4938 u_offset_t io_off;
4939 uint_t xlen;
4940 struct buf *bp;
4941 ufsvfs_t *ufsvfsp = ip->i_ufsvfs;
4942
4943 /*
4944 * If access is not in sequential order, we read from disk
4945 * in bsize units.
4946 *
4947 * We limit the size of the transfer to bsize if we are reading
4948 * from the beginning of the file. Note in this situation we
4949 * will hedge our bets and initiate an async read ahead of
4950 * the second block.
4951 */
4952 if (!seq || off == 0)
4953 contig = MIN(contig, bsize);
4954
4955 pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
4956 &io_len, off, contig, 0);
4957
4958 /*
4959 * Some other thread has entered the page.
4960 * ufs_getpage will retry page_lookup.
4961 */
4962 if (pp == NULL) {
4963 pl[0] = NULL;
4964 return (0);
4965 }
4966
4967 /*
4968 * Zero part of the page which we are not
4969 * going to read from the disk.
4970 */
4971 xlen = io_len & PAGEOFFSET;
4972 if (xlen != 0)
4973 pagezero(pp->p_prev, xlen, PAGESIZE - xlen);
4974
4975 bp = pageio_setup(pp, io_len, ip->i_devvp, B_READ);
4976 bp->b_edev = ip->i_dev;
4977 bp->b_dev = cmpdev(ip->i_dev);
4978 bp->b_blkno = bn;
4979 bp->b_un.b_addr = (caddr_t)0;
4980 bp->b_file = ip->i_vnode;
4981 bp->b_offset = off;
4982
4983 if (ufsvfsp->vfs_log) {
4984 lufs_read_strategy(ufsvfsp->vfs_log, bp);
4985 } else if (ufsvfsp->vfs_snapshot) {
4986 fssnap_strategy(&ufsvfsp->vfs_snapshot, bp);
4987 } else {
4988 ufsvfsp->vfs_iotstamp = ddi_get_lbolt();
4989 ub.ub_getpages.value.ul++;
4990 (void) bdev_strategy(bp);
4991 lwp_stat_update(LWP_STAT_INBLK, 1);
4992 }
4993
4994 ip->i_nextrio = off + ((io_len + PAGESIZE - 1) & PAGEMASK);
4995
4996 /*
4997 * If the file access is sequential, initiate read ahead
4998 * of the next cluster.
4999 */
5000 if (seq && ip->i_nextrio < ip->i_size)
5001 (void) ufs_getpage_ra(vp, off, seg, addr);
5002 err = biowait(bp);
5003 pageio_done(bp);
5004
5005 if (err) {
5006 pvn_read_done(pp, B_ERROR);
5007 return (err);
5008 }
5009 }
5010
5011 pvn_plist_init(pp, pl, plsz, off, io_len, rw);
5012 return (0);
5013 }
5014
5015 /*
5016 * Read ahead a cluster from the disk. Returns the length in bytes.
5017 */
5018 static int
5019 ufs_getpage_ra(struct vnode *vp, u_offset_t off, struct seg *seg, caddr_t addr)
5020 {
5021 struct inode *ip = VTOI(vp);
5022 page_t *pp;
5023 u_offset_t io_off = ip->i_nextrio;
5024 ufsvfs_t *ufsvfsp;
5025 caddr_t addr2 = addr + (io_off - off);
5026 struct buf *bp;
5027 daddr_t bn;
5028 size_t io_len;
5029 int err;
5030 int contig;
5031 int xlen;
5032 int bsize = ip->i_fs->fs_bsize;
5033
5034 /*
5035 * If the directio advisory is in effect on this file,
5036 * then do not do buffered read ahead. Read ahead makes
5037 * it more difficult on threads using directio as they
5038 * will be forced to flush the pages from this vnode.
5039 */
5040 if ((ufsvfsp = ip->i_ufsvfs) == NULL)
5041 return (0);
5042 if (ip->i_flag & IDIRECTIO || ufsvfsp->vfs_forcedirectio)
5043 return (0);
5044
5045 /*
5046 * Is this test needed?
5047 */
5048 if (addr2 >= seg->s_base + seg->s_size)
5049 return (0);
5050
5051 contig = 0;
5052 err = bmap_read(ip, io_off, &bn, &contig);
5053 /*
5054 * If its a UFS_HOLE or a fallocated block, do not perform
5055 * any read ahead's since there probably is nothing to read ahead
5056 */
5057 if (err || bn == UFS_HOLE || ISFALLOCBLK(ip, bn))
5058 return (0);
5059
5060 /*
5061 * Limit the transfer size to bsize if this is the 2nd block.
5062 */
5063 if (io_off == (u_offset_t)bsize)
5064 contig = MIN(contig, bsize);
5065
5066 if ((pp = pvn_read_kluster(vp, io_off, seg, addr2, &io_off,
5067 &io_len, io_off, contig, 1)) == NULL)
5068 return (0);
5069
5070 /*
5071 * Zero part of page which we are not going to read from disk
5072 */
5073 if ((xlen = (io_len & PAGEOFFSET)) > 0)
5074 pagezero(pp->p_prev, xlen, PAGESIZE - xlen);
5075
5076 ip->i_nextrio = (io_off + io_len + PAGESIZE - 1) & PAGEMASK;
5077
5078 bp = pageio_setup(pp, io_len, ip->i_devvp, B_READ | B_ASYNC);
5079 bp->b_edev = ip->i_dev;
5080 bp->b_dev = cmpdev(ip->i_dev);
5081 bp->b_blkno = bn;
5082 bp->b_un.b_addr = (caddr_t)0;
5083 bp->b_file = ip->i_vnode;
5084 bp->b_offset = off;
5085
5086 if (ufsvfsp->vfs_log) {
5087 lufs_read_strategy(ufsvfsp->vfs_log, bp);
5088 } else if (ufsvfsp->vfs_snapshot) {
5089 fssnap_strategy(&ufsvfsp->vfs_snapshot, bp);
5090 } else {
5091 ufsvfsp->vfs_iotstamp = ddi_get_lbolt();
5092 ub.ub_getras.value.ul++;
5093 (void) bdev_strategy(bp);
5094 lwp_stat_update(LWP_STAT_INBLK, 1);
5095 }
5096
5097 return (io_len);
5098 }
5099
5100 int ufs_delay = 1;
5101 /*
5102 * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE, B_ASYNC}
5103 *
5104 * LMXXX - the inode really ought to contain a pointer to one of these
5105 * async args. Stuff gunk in there and just hand the whole mess off.
5106 * This would replace i_delaylen, i_delayoff.
5107 */
5108 /*ARGSUSED*/
5109 static int
5110 ufs_putpage(struct vnode *vp, offset_t off, size_t len, int flags,
5111 struct cred *cr, caller_context_t *ct)
5112 {
5113 struct inode *ip = VTOI(vp);
5114 int err = 0;
5115
5116 if (vp->v_count == 0) {
5117 return (ufs_fault(vp, "ufs_putpage: bad v_count == 0"));
5118 }
5119
5120 /*
5121 * XXX - Why should this check be made here?
5122 */
5123 if (vp->v_flag & VNOMAP) {
5124 err = ENOSYS;
5125 goto errout;
5126 }
5127
5128 if (ip->i_ufsvfs == NULL) {
5129 err = EIO;
5130 goto errout;
5131 }
5132
5133 if (flags & B_ASYNC) {
5134 if (ufs_delay && len &&
5135 (flags & ~(B_ASYNC|B_DONTNEED|B_FREE)) == 0) {
5136 mutex_enter(&ip->i_tlock);
5137 /*
5138 * If nobody stalled, start a new cluster.
5139 */
5140 if (ip->i_delaylen == 0) {
5141 ip->i_delayoff = off;
5142 ip->i_delaylen = len;
5143 mutex_exit(&ip->i_tlock);
5144 goto errout;
5145 }
5146 /*
5147 * If we have a full cluster or they are not contig,
5148 * then push last cluster and start over.
5149 */
5150 if (ip->i_delaylen >= CLUSTSZ(ip) ||
5151 ip->i_delayoff + ip->i_delaylen != off) {
5152 u_offset_t doff;
5153 size_t dlen;
5154
5155 doff = ip->i_delayoff;
5156 dlen = ip->i_delaylen;
5157 ip->i_delayoff = off;
5158 ip->i_delaylen = len;
5159 mutex_exit(&ip->i_tlock);
5160 err = ufs_putpages(vp, doff, dlen,
5161 flags, cr);
5162 /* LMXXX - flags are new val, not old */
5163 goto errout;
5164 }
5165 /*
5166 * There is something there, it's not full, and
5167 * it is contig.
5168 */
5169 ip->i_delaylen += len;
5170 mutex_exit(&ip->i_tlock);
5171 goto errout;
5172 }
5173 /*
5174 * Must have weird flags or we are not clustering.
5175 */
5176 }
5177
5178 err = ufs_putpages(vp, off, len, flags, cr);
5179
5180 errout:
5181 return (err);
5182 }
5183
5184 /*
5185 * If len == 0, do from off to EOF.
5186 *
5187 * The normal cases should be len == 0 & off == 0 (entire vp list),
5188 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE
5189 * (from pageout).
5190 */
5191 /*ARGSUSED*/
5192 static int
5193 ufs_putpages(
5194 struct vnode *vp,
5195 offset_t off,
5196 size_t len,
5197 int flags,
5198 struct cred *cr)
5199 {
5200 u_offset_t io_off;
5201 u_offset_t eoff;
5202 struct inode *ip = VTOI(vp);
5203 page_t *pp;
5204 size_t io_len;
5205 int err = 0;
5206 int dolock;
5207
5208 if (vp->v_count == 0)
5209 return (ufs_fault(vp, "ufs_putpages: v_count == 0"));
5210 /*
5211 * Acquire the readers/write inode lock before locking
5212 * any pages in this inode.
5213 * The inode lock is held during i/o.
5214 */
5215 if (len == 0) {
5216 mutex_enter(&ip->i_tlock);
5217 ip->i_delayoff = ip->i_delaylen = 0;
5218 mutex_exit(&ip->i_tlock);
5219 }
5220 dolock = (rw_owner(&ip->i_contents) != curthread);
5221 if (dolock) {
5222 /*
5223 * Must synchronize this thread and any possible thread
5224 * operating in the window of vulnerability in wrip().
5225 * It is dangerous to allow both a thread doing a putpage
5226 * and a thread writing, so serialize them. The exception
5227 * is when the thread in wrip() does something which causes
5228 * a putpage operation. Then, the thread must be allowed
5229 * to continue. It may encounter a bmap_read problem in
5230 * ufs_putapage, but that is handled in ufs_putapage.
5231 * Allow async writers to proceed, we don't want to block
5232 * the pageout daemon.
5233 */
5234 if (ip->i_writer == curthread)
5235 rw_enter(&ip->i_contents, RW_READER);
5236 else {
5237 for (;;) {
5238 rw_enter(&ip->i_contents, RW_READER);
5239 mutex_enter(&ip->i_tlock);
5240 /*
5241 * If there is no thread in the critical
5242 * section of wrip(), then proceed.
5243 * Otherwise, wait until there isn't one.
5244 */
5245 if (ip->i_writer == NULL) {
5246 mutex_exit(&ip->i_tlock);
5247 break;
5248 }
5249 rw_exit(&ip->i_contents);
5250 /*
5251 * Bounce async writers when we have a writer
5252 * working on this file so we don't deadlock
5253 * the pageout daemon.
5254 */
5255 if (flags & B_ASYNC) {
5256 mutex_exit(&ip->i_tlock);
5257 return (0);
5258 }
5259 cv_wait(&ip->i_wrcv, &ip->i_tlock);
5260 mutex_exit(&ip->i_tlock);
5261 }
5262 }
5263 }
5264
5265 if (!vn_has_cached_data(vp)) {
5266 if (dolock)
5267 rw_exit(&ip->i_contents);
5268 return (0);
5269 }
5270
5271 if (len == 0) {
5272 /*
5273 * Search the entire vp list for pages >= off.
5274 */
5275 err = pvn_vplist_dirty(vp, (u_offset_t)off, ufs_putapage,
5276 flags, cr);
5277 } else {
5278 /*
5279 * Loop over all offsets in the range looking for
5280 * pages to deal with.
5281 */
5282 if ((eoff = blkroundup(ip->i_fs, ip->i_size)) != 0)
5283 eoff = MIN(off + len, eoff);
5284 else
5285 eoff = off + len;
5286
5287 for (io_off = off; io_off < eoff; io_off += io_len) {
5288 /*
5289 * If we are not invalidating, synchronously
5290 * freeing or writing pages, use the routine
5291 * page_lookup_nowait() to prevent reclaiming
5292 * them from the free list.
5293 */
5294 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
5295 pp = page_lookup(vp, io_off,
5296 (flags & (B_INVAL | B_FREE)) ?
5297 SE_EXCL : SE_SHARED);
5298 } else {
5299 pp = page_lookup_nowait(vp, io_off,
5300 (flags & B_FREE) ? SE_EXCL : SE_SHARED);
5301 }
5302
5303 if (pp == NULL || pvn_getdirty(pp, flags) == 0)
5304 io_len = PAGESIZE;
5305 else {
5306 u_offset_t *io_offp = &io_off;
5307
5308 err = ufs_putapage(vp, pp, io_offp, &io_len,
5309 flags, cr);
5310 if (err != 0)
5311 break;
5312 /*
5313 * "io_off" and "io_len" are returned as
5314 * the range of pages we actually wrote.
5315 * This allows us to skip ahead more quickly
5316 * since several pages may've been dealt
5317 * with by this iteration of the loop.
5318 */
5319 }
5320 }
5321 }
5322 if (err == 0 && off == 0 && (len == 0 || len >= ip->i_size)) {
5323 /*
5324 * We have just sync'ed back all the pages on
5325 * the inode, turn off the IMODTIME flag.
5326 */
5327 mutex_enter(&ip->i_tlock);
5328 ip->i_flag &= ~IMODTIME;
5329 mutex_exit(&ip->i_tlock);
5330 }
5331 if (dolock)
5332 rw_exit(&ip->i_contents);
5333 return (err);
5334 }
5335
5336 static void
5337 ufs_iodone(buf_t *bp)
5338 {
5339 struct inode *ip;
5340
5341 ASSERT((bp->b_pages->p_vnode != NULL) && !(bp->b_flags & B_READ));
5342
5343 bp->b_iodone = NULL;
5344
5345 ip = VTOI(bp->b_pages->p_vnode);
5346
5347 mutex_enter(&ip->i_tlock);
5348 if (ip->i_writes >= ufs_LW) {
5349 if ((ip->i_writes -= bp->b_bcount) <= ufs_LW)
5350 if (ufs_WRITES)
5351 cv_broadcast(&ip->i_wrcv); /* wake all up */
5352 } else {
5353 ip->i_writes -= bp->b_bcount;
5354 }
5355
5356 mutex_exit(&ip->i_tlock);
5357 iodone(bp);
5358 }
5359
5360 /*
5361 * Write out a single page, possibly klustering adjacent
5362 * dirty pages. The inode lock must be held.
5363 *
5364 * LMXXX - bsize < pagesize not done.
5365 */
5366 /*ARGSUSED*/
5367 int
5368 ufs_putapage(
5369 struct vnode *vp,
5370 page_t *pp,
5371 u_offset_t *offp,
5372 size_t *lenp, /* return values */
5373 int flags,
5374 struct cred *cr)
5375 {
5376 u_offset_t io_off;
5377 u_offset_t off;
5378 struct inode *ip = VTOI(vp);
5379 struct ufsvfs *ufsvfsp = ip->i_ufsvfs;
5380 struct fs *fs;
5381 struct buf *bp;
5382 size_t io_len;
5383 daddr_t bn;
5384 int err;
5385 int contig;
5386 int dotrans;
5387
5388 ASSERT(RW_LOCK_HELD(&ip->i_contents));
5389
5390 if (ufsvfsp == NULL) {
5391 err = EIO;
5392 goto out_trace;
5393 }
5394
5395 fs = ip->i_fs;
5396 ASSERT(fs->fs_ronly == 0);
5397
5398 /*
5399 * If the modified time on the inode has not already been
5400 * set elsewhere (e.g. for write/setattr) we set the time now.
5401 * This gives us approximate modified times for mmap'ed files
5402 * which are modified via stores in the user address space.
5403 */
5404 if ((ip->i_flag & IMODTIME) == 0) {
5405 mutex_enter(&ip->i_tlock);
5406 ip->i_flag |= IUPD;
5407 ip->i_seq++;
5408 ITIMES_NOLOCK(ip);
5409 mutex_exit(&ip->i_tlock);
5410 }
5411
5412 /*
5413 * Align the request to a block boundry (for old file systems),
5414 * and go ask bmap() how contiguous things are for this file.
5415 */
5416 off = pp->p_offset & (offset_t)fs->fs_bmask; /* block align it */
5417 contig = 0;
5418 err = bmap_read(ip, off, &bn, &contig);
5419 if (err)
5420 goto out;
5421 if (bn == UFS_HOLE) { /* putpage never allocates */
5422 /*
5423 * logging device is in error mode; simply return EIO
5424 */
5425 if (TRANS_ISERROR(ufsvfsp)) {
5426 err = EIO;
5427 goto out;
5428 }
5429 /*
5430 * Oops, the thread in the window in wrip() did some
5431 * sort of operation which caused a putpage in the bad
5432 * range. In this case, just return an error which will
5433 * cause the software modified bit on the page to set
5434 * and the page will get written out again later.
5435 */
5436 if (ip->i_writer == curthread) {
5437 err = EIO;
5438 goto out;
5439 }
5440 /*
5441 * If the pager is trying to push a page in the bad range
5442 * just tell him to try again later when things are better.
5443 */
5444 if (flags & B_ASYNC) {
5445 err = EAGAIN;
5446 goto out;
5447 }
5448 err = ufs_fault(ITOV(ip), "ufs_putapage: bn == UFS_HOLE");
5449 goto out;
5450 }
5451
5452 /*
5453 * If it is an fallocate'd block, reverse the negativity since
5454 * we are now writing to it
5455 */
5456 if (ISFALLOCBLK(ip, bn)) {
5457 err = bmap_set_bn(vp, off, dbtofsb(fs, -bn));
5458 if (err)
5459 goto out;
5460
5461 bn = -bn;
5462 }
5463
5464 /*
5465 * Take the length (of contiguous bytes) passed back from bmap()
5466 * and _try_ and get a set of pages covering that extent.
5467 */
5468 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, off, contig, flags);
5469
5470 /*
5471 * May have run out of memory and not clustered backwards.
5472 * off p_offset
5473 * [ pp - 1 ][ pp ]
5474 * [ block ]
5475 * We told bmap off, so we have to adjust the bn accordingly.
5476 */
5477 if (io_off > off) {
5478 bn += btod(io_off - off);
5479 contig -= (io_off - off);
5480 }
5481
5482 /*
5483 * bmap was carefull to tell us the right size so use that.
5484 * There might be unallocated frags at the end.
5485 * LMXXX - bzero the end of the page? We must be writing after EOF.
5486 */
5487 if (io_len > contig) {
5488 ASSERT(io_len - contig < fs->fs_bsize);
5489 io_len -= (io_len - contig);
5490 }
5491
5492 /*
5493 * Handle the case where we are writing the last page after EOF.
5494 *
5495 * XXX - just a patch for i-mt3.
5496 */
5497 if (io_len == 0) {
5498 ASSERT(pp->p_offset >=
5499 (u_offset_t)(roundup(ip->i_size, PAGESIZE)));
5500 io_len = PAGESIZE;
5501 }
5502
5503 bp = pageio_setup(pp, io_len, ip->i_devvp, B_WRITE | flags);
5504
5505 ULOCKFS_SET_MOD(ITOUL(ip));
5506
5507 bp->b_edev = ip->i_dev;
5508 bp->b_dev = cmpdev(ip->i_dev);
5509 bp->b_blkno = bn;
5510 bp->b_un.b_addr = (caddr_t)0;
5511 bp->b_file = ip->i_vnode;
5512
5513 /*
5514 * File contents of shadow or quota inodes are metadata, and updates
5515 * to these need to be put into a logging transaction. All direct
5516 * callers in UFS do that, but fsflush can come here _before_ the
5517 * normal codepath. An example would be updating ACL information, for
5518 * which the normal codepath would be:
5519 * ufs_si_store()
5520 * ufs_rdwri()
5521 * wrip()
5522 * segmap_release()
5523 * VOP_PUTPAGE()
5524 * Here, fsflush can pick up the dirty page before segmap_release()
5525 * forces it out. If that happens, there's no transaction.
5526 * We therefore need to test whether a transaction exists, and if not
5527 * create one - for fsflush.
5528 */
5529 dotrans =
5530 (((ip->i_mode & IFMT) == IFSHAD || ufsvfsp->vfs_qinod == ip) &&
5531 ((curthread->t_flag & T_DONTBLOCK) == 0) &&
5532 (TRANS_ISTRANS(ufsvfsp)));
5533
5534 if (dotrans) {
5535 curthread->t_flag |= T_DONTBLOCK;
5536 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_PUTPAGE, TOP_PUTPAGE_SIZE(ip));
5537 }
5538 if (TRANS_ISTRANS(ufsvfsp)) {
5539 if ((ip->i_mode & IFMT) == IFSHAD) {
5540 TRANS_BUF(ufsvfsp, 0, io_len, bp, DT_SHAD);
5541 } else if (ufsvfsp->vfs_qinod == ip) {
5542 TRANS_DELTA(ufsvfsp, ldbtob(bn), bp->b_bcount, DT_QR,
5543 0, 0);
5544 }
5545 }
5546 if (dotrans) {
5547 TRANS_END_ASYNC(ufsvfsp, TOP_PUTPAGE, TOP_PUTPAGE_SIZE(ip));
5548 curthread->t_flag &= ~T_DONTBLOCK;
5549 }
5550
5551 /* write throttle */
5552
5553 ASSERT(bp->b_iodone == NULL);
5554 bp->b_iodone = (int (*)())ufs_iodone;
5555 mutex_enter(&ip->i_tlock);
5556 ip->i_writes += bp->b_bcount;
5557 mutex_exit(&ip->i_tlock);
5558
5559 if (bp->b_flags & B_ASYNC) {
5560 if (ufsvfsp->vfs_log) {
5561 lufs_write_strategy(ufsvfsp->vfs_log, bp);
5562 } else if (ufsvfsp->vfs_snapshot) {
5563 fssnap_strategy(&ufsvfsp->vfs_snapshot, bp);
5564 } else {
5565 ufsvfsp->vfs_iotstamp = ddi_get_lbolt();
5566 ub.ub_putasyncs.value.ul++;
5567 (void) bdev_strategy(bp);
5568 lwp_stat_update(LWP_STAT_OUBLK, 1);
5569 }
5570 } else {
5571 if (ufsvfsp->vfs_log) {
5572 lufs_write_strategy(ufsvfsp->vfs_log, bp);
5573 } else if (ufsvfsp->vfs_snapshot) {
5574 fssnap_strategy(&ufsvfsp->vfs_snapshot, bp);
5575 } else {
5576 ufsvfsp->vfs_iotstamp = ddi_get_lbolt();
5577 ub.ub_putsyncs.value.ul++;
5578 (void) bdev_strategy(bp);
5579 lwp_stat_update(LWP_STAT_OUBLK, 1);
5580 }
5581 err = biowait(bp);
5582 pageio_done(bp);
5583 pvn_write_done(pp, ((err) ? B_ERROR : 0) | B_WRITE | flags);
5584 }
5585
5586 pp = NULL;
5587
5588 out:
5589 if (err != 0 && pp != NULL)
5590 pvn_write_done(pp, B_ERROR | B_WRITE | flags);
5591
5592 if (offp)
5593 *offp = io_off;
5594 if (lenp)
5595 *lenp = io_len;
5596 out_trace:
5597 return (err);
5598 }
5599
5600 uint64_t ufs_map_alock_retry_cnt;
5601 uint64_t ufs_map_lockfs_retry_cnt;
5602
5603 /* ARGSUSED */
5604 static int
5605 ufs_map(struct vnode *vp,
5606 offset_t off,
5607 struct as *as,
5608 caddr_t *addrp,
5609 size_t len,
5610 uchar_t prot,
5611 uchar_t maxprot,
5612 uint_t flags,
5613 struct cred *cr,
5614 caller_context_t *ct)
5615 {
5616 struct segvn_crargs vn_a;
5617 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs;
5618 struct ulockfs *ulp;
5619 int error, sig;
5620 k_sigset_t smask;
5621 caddr_t hint = *addrp;
5622
5623 if (vp->v_flag & VNOMAP) {
5624 error = ENOSYS;
5625 goto out;
5626 }
5627
5628 if (off < (offset_t)0 || (offset_t)(off + len) < (offset_t)0) {
5629 error = ENXIO;
5630 goto out;
5631 }
5632
5633 if (vp->v_type != VREG) {
5634 error = ENODEV;
5635 goto out;
5636 }
5637
5638 retry_map:
5639 *addrp = hint;
5640 /*
5641 * If file is being locked, disallow mapping.
5642 */
5643 if (vn_has_mandatory_locks(vp, VTOI(vp)->i_mode)) {
5644 error = EAGAIN;
5645 goto out;
5646 }
5647
5648 as_rangelock(as);
5649 /*
5650 * Note that if we are retrying (because ufs_lockfs_trybegin failed in
5651 * the previous attempt), some other thread could have grabbed
5652 * the same VA range if MAP_FIXED is set. In that case, choose_addr
5653 * would unmap the valid VA range, that is ok.
5654 */
5655 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
5656 if (error != 0) {
5657 as_rangeunlock(as);
5658 goto out;
5659 }
5660
5661 /*
5662 * a_lock has to be acquired before entering the lockfs protocol
5663 * because that is the order in which pagefault works. Also we cannot
5664 * block on a_lock here because this waiting writer will prevent
5665 * further readers like ufs_read from progressing and could cause
5666 * deadlock between ufs_read/ufs_map/pagefault when a quiesce is
5667 * pending.
5668 */
5669 while (!AS_LOCK_TRYENTER(as, RW_WRITER)) {
5670 ufs_map_alock_retry_cnt++;
5671 delay(RETRY_LOCK_DELAY);
5672 }
5673
5674 /*
5675 * We can't hold as->a_lock and wait for lockfs to succeed because
5676 * the proc tools might hang on a_lock, so call ufs_lockfs_trybegin()
5677 * instead.
5678 */
5679 if (error = ufs_lockfs_trybegin(ufsvfsp, &ulp, ULOCKFS_MAP_MASK)) {
5680 /*
5681 * ufs_lockfs_trybegin() did not succeed. It is safer to give up
5682 * as->a_lock and wait for ulp->ul_fs_lock status to change.
5683 */
5684 ufs_map_lockfs_retry_cnt++;
5685 AS_LOCK_EXIT(as);
5686 as_rangeunlock(as);
5687 if (error == EIO)
5688 goto out;
5689
5690 mutex_enter(&ulp->ul_lock);
5691 while (ulp->ul_fs_lock & ULOCKFS_MAP_MASK) {
5692 if (ULOCKFS_IS_SLOCK(ulp) || ufsvfsp->vfs_nointr) {
5693 cv_wait(&ulp->ul_cv, &ulp->ul_lock);
5694 } else {
5695 sigintr(&smask, 1);
5696 sig = cv_wait_sig(&ulp->ul_cv, &ulp->ul_lock);
5697 sigunintr(&smask);
5698 if (((ulp->ul_fs_lock & ULOCKFS_MAP_MASK) &&
5699 !sig) || ufsvfsp->vfs_dontblock) {
5700 mutex_exit(&ulp->ul_lock);
5701 return (EINTR);
5702 }
5703 }
5704 }
5705 mutex_exit(&ulp->ul_lock);
5706 goto retry_map;
5707 }
5708
5709 vn_a.vp = vp;
5710 vn_a.offset = (u_offset_t)off;
5711 vn_a.type = flags & MAP_TYPE;
5712 vn_a.prot = prot;
5713 vn_a.maxprot = maxprot;
5714 vn_a.cred = cr;
5715 vn_a.amp = NULL;
5716 vn_a.flags = flags & ~MAP_TYPE;
5717 vn_a.szc = 0;
5718 vn_a.lgrp_mem_policy_flags = 0;
5719
5720 error = as_map_locked(as, *addrp, len, segvn_create, &vn_a);
5721 if (ulp)
5722 ufs_lockfs_end(ulp);
5723 as_rangeunlock(as);
5724 out:
5725 return (error);
5726 }
5727
5728 /* ARGSUSED */
5729 static int
5730 ufs_addmap(struct vnode *vp,
5731 offset_t off,
5732 struct as *as,
5733 caddr_t addr,
5734 size_t len,
5735 uchar_t prot,
5736 uchar_t maxprot,
5737 uint_t flags,
5738 struct cred *cr,
5739 caller_context_t *ct)
5740 {
5741 struct inode *ip = VTOI(vp);
5742
5743 if (vp->v_flag & VNOMAP) {
5744 return (ENOSYS);
5745 }
5746
5747 mutex_enter(&ip->i_tlock);
5748 ip->i_mapcnt += btopr(len);
5749 mutex_exit(&ip->i_tlock);
5750 return (0);
5751 }
5752
5753 /*ARGSUSED*/
5754 static int
5755 ufs_delmap(struct vnode *vp, offset_t off, struct as *as, caddr_t addr,
5756 size_t len, uint_t prot, uint_t maxprot, uint_t flags,
5757 struct cred *cr, caller_context_t *ct)
5758 {
5759 struct inode *ip = VTOI(vp);
5760
5761 if (vp->v_flag & VNOMAP) {
5762 return (ENOSYS);
5763 }
5764
5765 mutex_enter(&ip->i_tlock);
5766 ip->i_mapcnt -= btopr(len); /* Count released mappings */
5767 ASSERT(ip->i_mapcnt >= 0);
5768 mutex_exit(&ip->i_tlock);
5769 return (0);
5770 }
5771 /*
5772 * Return the answer requested to poll() for non-device files
5773 */
5774 struct pollhead ufs_pollhd;
5775
5776 /* ARGSUSED */
5777 int
5778 ufs_poll(vnode_t *vp, short ev, int any, short *revp, struct pollhead **phpp,
5779 caller_context_t *ct)
5780 {
5781 struct ufsvfs *ufsvfsp;
5782
5783 *revp = 0;
5784 ufsvfsp = VTOI(vp)->i_ufsvfs;
5785
5786 if (!ufsvfsp) {
5787 *revp = POLLHUP;
5788 goto out;
5789 }
5790
5791 if (ULOCKFS_IS_HLOCK(&ufsvfsp->vfs_ulockfs) ||
5792 ULOCKFS_IS_ELOCK(&ufsvfsp->vfs_ulockfs)) {
5793 *revp |= POLLERR;
5794
5795 } else {
5796 if ((ev & POLLOUT) && !ufsvfsp->vfs_fs->fs_ronly &&
5797 !ULOCKFS_IS_WLOCK(&ufsvfsp->vfs_ulockfs))
5798 *revp |= POLLOUT;
5799
5800 if ((ev & POLLWRBAND) && !ufsvfsp->vfs_fs->fs_ronly &&
5801 !ULOCKFS_IS_WLOCK(&ufsvfsp->vfs_ulockfs))
5802 *revp |= POLLWRBAND;
5803
5804 if (ev & POLLIN)
5805 *revp |= POLLIN;
5806
5807 if (ev & POLLRDNORM)
5808 *revp |= POLLRDNORM;
5809
5810 if (ev & POLLRDBAND)
5811 *revp |= POLLRDBAND;
5812 }
5813
5814 if ((ev & POLLPRI) && (*revp & (POLLERR|POLLHUP)))
5815 *revp |= POLLPRI;
5816 out:
5817 *phpp = !any && !*revp ? &ufs_pollhd : (struct pollhead *)NULL;
5818
5819 return (0);
5820 }
5821
5822 /* ARGSUSED */
5823 static int
5824 ufs_l_pathconf(struct vnode *vp, int cmd, ulong_t *valp, struct cred *cr,
5825 caller_context_t *ct)
5826 {
5827 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs;
5828 struct ulockfs *ulp = NULL;
5829 struct inode *sip = NULL;
5830 int error;
5831 struct inode *ip = VTOI(vp);
5832 int issync;
5833
5834 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_PATHCONF_MASK);
5835 if (error)
5836 return (error);
5837
5838 switch (cmd) {
5839 /*
5840 * Have to handle _PC_NAME_MAX here, because the normal way
5841 * [fs_pathconf() -> VOP_STATVFS() -> ufs_statvfs()]
5842 * results in a lock ordering reversal between
5843 * ufs_lockfs_{begin,end}() and
5844 * ufs_thread_{suspend,continue}().
5845 *
5846 * Keep in sync with ufs_statvfs().
5847 */
5848 case _PC_NAME_MAX:
5849 *valp = MAXNAMLEN;
5850 break;
5851
5852 case _PC_FILESIZEBITS:
5853 if (ufsvfsp->vfs_lfflags & UFS_LARGEFILES)
5854 *valp = UFS_FILESIZE_BITS;
5855 else
5856 *valp = 32;
5857 break;
5858
5859 case _PC_XATTR_EXISTS:
5860 if (vp->v_vfsp->vfs_flag & VFS_XATTR) {
5861
5862 error =
5863 ufs_xattr_getattrdir(vp, &sip, LOOKUP_XATTR, cr);
5864 if (error == 0 && sip != NULL) {
5865 /* Start transaction */
5866 if (ulp) {
5867 TRANS_BEGIN_CSYNC(ufsvfsp, issync,
5868 TOP_RMDIR, TOP_RMDIR_SIZE);
5869 }
5870 /*
5871 * Is directory empty
5872 */
5873 rw_enter(&sip->i_rwlock, RW_WRITER);
5874 rw_enter(&sip->i_contents, RW_WRITER);
5875 if (ufs_xattrdirempty(sip,
5876 sip->i_number, CRED())) {
5877 rw_enter(&ip->i_contents, RW_WRITER);
5878 ufs_unhook_shadow(ip, sip);
5879 rw_exit(&ip->i_contents);
5880
5881 *valp = 0;
5882
5883 } else
5884 *valp = 1;
5885 rw_exit(&sip->i_contents);
5886 rw_exit(&sip->i_rwlock);
5887 if (ulp) {
5888 TRANS_END_CSYNC(ufsvfsp, error, issync,
5889 TOP_RMDIR, TOP_RMDIR_SIZE);
5890 }
5891 VN_RELE(ITOV(sip));
5892 } else if (error == ENOENT) {
5893 *valp = 0;
5894 error = 0;
5895 }
5896 } else {
5897 error = fs_pathconf(vp, cmd, valp, cr, ct);
5898 }
5899 break;
5900
5901 case _PC_ACL_ENABLED:
5902 *valp = _ACL_ACLENT_ENABLED;
5903 break;
5904
5905 case _PC_MIN_HOLE_SIZE:
5906 *valp = (ulong_t)ip->i_fs->fs_bsize;
5907 break;
5908
5909 case _PC_SATTR_ENABLED:
5910 case _PC_SATTR_EXISTS:
5911 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
5912 (vp->v_type == VREG || vp->v_type == VDIR);
5913 break;
5914
5915 case _PC_TIMESTAMP_RESOLUTION:
5916 /*
5917 * UFS keeps only microsecond timestamp resolution.
5918 * This is historical and will probably never change.
5919 */
5920 *valp = 1000L;
5921 break;
5922
5923 default:
5924 error = fs_pathconf(vp, cmd, valp, cr, ct);
5925 break;
5926 }
5927
5928 if (ulp != NULL) {
5929 ufs_lockfs_end(ulp);
5930 }
5931 return (error);
5932 }
5933
5934 int ufs_pageio_writes, ufs_pageio_reads;
5935
5936 /*ARGSUSED*/
5937 static int
5938 ufs_pageio(struct vnode *vp, page_t *pp, u_offset_t io_off, size_t io_len,
5939 int flags, struct cred *cr, caller_context_t *ct)
5940 {
5941 struct inode *ip = VTOI(vp);
5942 struct ufsvfs *ufsvfsp;
5943 page_t *npp = NULL, *opp = NULL, *cpp = pp;
5944 struct buf *bp;
5945 daddr_t bn;
5946 size_t done_len = 0, cur_len = 0;
5947 int err = 0;
5948 int contig = 0;
5949 int dolock;
5950 int vmpss = 0;
5951 struct ulockfs *ulp;
5952
5953 if ((flags & B_READ) && pp != NULL && pp->p_vnode == vp &&
5954 vp->v_mpssdata != NULL) {
5955 vmpss = 1;
5956 }
5957
5958 dolock = (rw_owner(&ip->i_contents) != curthread);
5959 /*
5960 * We need a better check. Ideally, we would use another
5961 * vnodeops so that hlocked and forcibly unmounted file
5962 * systems would return EIO where appropriate and w/o the
5963 * need for these checks.
5964 */
5965 if ((ufsvfsp = ip->i_ufsvfs) == NULL)
5966 return (EIO);
5967
5968 /*
5969 * For vmpss (pp can be NULL) case respect the quiesce protocol.
5970 * ul_lock must be taken before locking pages so we can't use it here
5971 * if pp is non NULL because segvn already locked pages
5972 * SE_EXCL. Instead we rely on the fact that a forced umount or
5973 * applying a filesystem lock via ufs_fiolfs() will block in the
5974 * implicit call to ufs_flush() until we unlock the pages after the
5975 * return to segvn. Other ufs_quiesce() callers keep ufs_quiesce_pend
5976 * above 0 until they are done. We have to be careful not to increment
5977 * ul_vnops_cnt here after forceful unmount hlocks the file system.
5978 *
5979 * If pp is NULL use ul_lock to make sure we don't increment
5980 * ul_vnops_cnt after forceful unmount hlocks the file system.
5981 */
5982 if (vmpss || pp == NULL) {
5983 ulp = &ufsvfsp->vfs_ulockfs;
5984 if (pp == NULL)
5985 mutex_enter(&ulp->ul_lock);
5986 if (ulp->ul_fs_lock & ULOCKFS_GETREAD_MASK) {
5987 if (pp == NULL) {
5988 mutex_exit(&ulp->ul_lock);
5989 }
5990 return (vmpss ? EIO : EINVAL);
5991 }
5992 atomic_inc_ulong(&ulp->ul_vnops_cnt);
5993 if (pp == NULL)
5994 mutex_exit(&ulp->ul_lock);
5995 if (ufs_quiesce_pend) {
5996 if (!atomic_dec_ulong_nv(&ulp->ul_vnops_cnt))
5997 cv_broadcast(&ulp->ul_cv);
5998 return (vmpss ? EIO : EINVAL);
5999 }
6000 }
6001
6002 if (dolock) {
6003 /*
6004 * segvn may call VOP_PAGEIO() instead of VOP_GETPAGE() to
6005 * handle a fault against a segment that maps vnode pages with
6006 * large mappings. Segvn creates pages and holds them locked
6007 * SE_EXCL during VOP_PAGEIO() call. In this case we have to
6008 * use rw_tryenter() to avoid a potential deadlock since in
6009 * lock order i_contents needs to be taken first.
6010 * Segvn will retry via VOP_GETPAGE() if VOP_PAGEIO() fails.
6011 */
6012 if (!vmpss) {
6013 rw_enter(&ip->i_contents, RW_READER);
6014 } else if (!rw_tryenter(&ip->i_contents, RW_READER)) {
6015 if (!atomic_dec_ulong_nv(&ulp->ul_vnops_cnt))
6016 cv_broadcast(&ulp->ul_cv);
6017 return (EDEADLK);
6018 }
6019 }
6020
6021 /*
6022 * Return an error to segvn because the pagefault request is beyond
6023 * PAGESIZE rounded EOF.
6024 */
6025 if (vmpss && btopr(io_off + io_len) > btopr(ip->i_size)) {
6026 if (dolock)
6027 rw_exit(&ip->i_contents);
6028 if (!atomic_dec_ulong_nv(&ulp->ul_vnops_cnt))
6029 cv_broadcast(&ulp->ul_cv);
6030 return (EFAULT);
6031 }
6032
6033 if (pp == NULL) {
6034 if (bmap_has_holes(ip)) {
6035 err = ENOSYS;
6036 } else {
6037 err = EINVAL;
6038 }
6039 if (dolock)
6040 rw_exit(&ip->i_contents);
6041 if (!atomic_dec_ulong_nv(&ulp->ul_vnops_cnt))
6042 cv_broadcast(&ulp->ul_cv);
6043 return (err);
6044 }
6045
6046 /*
6047 * Break the io request into chunks, one for each contiguous
6048 * stretch of disk blocks in the target file.
6049 */
6050 while (done_len < io_len) {
6051 ASSERT(cpp);
6052 contig = 0;
6053 if (err = bmap_read(ip, (u_offset_t)(io_off + done_len),
6054 &bn, &contig))
6055 break;
6056
6057 if (bn == UFS_HOLE) { /* No holey swapfiles */
6058 if (vmpss) {
6059 err = EFAULT;
6060 break;
6061 }
6062 err = ufs_fault(ITOV(ip), "ufs_pageio: bn == UFS_HOLE");
6063 break;
6064 }
6065
6066 cur_len = MIN(io_len - done_len, contig);
6067 /*
6068 * Zero out a page beyond EOF, when the last block of
6069 * a file is a UFS fragment so that ufs_pageio() can be used
6070 * instead of ufs_getpage() to handle faults against
6071 * segvn segments that use large pages.
6072 */
6073 page_list_break(&cpp, &npp, btopr(cur_len));
6074 if ((flags & B_READ) && (cur_len & PAGEOFFSET)) {
6075 size_t xlen = cur_len & PAGEOFFSET;
6076 pagezero(cpp->p_prev, xlen, PAGESIZE - xlen);
6077 }
6078
6079 bp = pageio_setup(cpp, cur_len, ip->i_devvp, flags);
6080 ASSERT(bp != NULL);
6081
6082 bp->b_edev = ip->i_dev;
6083 bp->b_dev = cmpdev(ip->i_dev);
6084 bp->b_blkno = bn;
6085 bp->b_un.b_addr = (caddr_t)0;
6086 bp->b_file = ip->i_vnode;
6087
6088 ufsvfsp->vfs_iotstamp = ddi_get_lbolt();
6089 ub.ub_pageios.value.ul++;
6090 if (ufsvfsp->vfs_snapshot)
6091 fssnap_strategy(&(ufsvfsp->vfs_snapshot), bp);
6092 else
6093 (void) bdev_strategy(bp);
6094
6095 if (flags & B_READ)
6096 ufs_pageio_reads++;
6097 else
6098 ufs_pageio_writes++;
6099 if (flags & B_READ)
6100 lwp_stat_update(LWP_STAT_INBLK, 1);
6101 else
6102 lwp_stat_update(LWP_STAT_OUBLK, 1);
6103 /*
6104 * If the request is not B_ASYNC, wait for i/o to complete
6105 * and re-assemble the page list to return to the caller.
6106 * If it is B_ASYNC we leave the page list in pieces and
6107 * cleanup() will dispose of them.
6108 */
6109 if ((flags & B_ASYNC) == 0) {
6110 err = biowait(bp);
6111 pageio_done(bp);
6112 if (err)
6113 break;
6114 page_list_concat(&opp, &cpp);
6115 }
6116 cpp = npp;
6117 npp = NULL;
6118 if (flags & B_READ)
6119 cur_len = P2ROUNDUP_TYPED(cur_len, PAGESIZE, size_t);
6120 done_len += cur_len;
6121 }
6122 ASSERT(err || (cpp == NULL && npp == NULL && done_len == io_len));
6123 if (err) {
6124 if (flags & B_ASYNC) {
6125 /* Cleanup unprocessed parts of list */
6126 page_list_concat(&cpp, &npp);
6127 if (flags & B_READ)
6128 pvn_read_done(cpp, B_ERROR);
6129 else
6130 pvn_write_done(cpp, B_ERROR);
6131 } else {
6132 /* Re-assemble list and let caller clean up */
6133 page_list_concat(&opp, &cpp);
6134 page_list_concat(&opp, &npp);
6135 }
6136 }
6137
6138 if (vmpss && !(ip->i_flag & IACC) && !ULOCKFS_IS_NOIACC(ulp) &&
6139 ufsvfsp->vfs_fs->fs_ronly == 0 && !ufsvfsp->vfs_noatime) {
6140 mutex_enter(&ip->i_tlock);
6141 ip->i_flag |= IACC;
6142 ITIMES_NOLOCK(ip);
6143 mutex_exit(&ip->i_tlock);
6144 }
6145
6146 if (dolock)
6147 rw_exit(&ip->i_contents);
6148 if (vmpss && !atomic_dec_ulong_nv(&ulp->ul_vnops_cnt))
6149 cv_broadcast(&ulp->ul_cv);
6150 return (err);
6151 }
6152
6153 /*
6154 * Called when the kernel is in a frozen state to dump data
6155 * directly to the device. It uses a private dump data structure,
6156 * set up by dump_ctl, to locate the correct disk block to which to dump.
6157 */
6158 /*ARGSUSED*/
6159 static int
6160 ufs_dump(vnode_t *vp, caddr_t addr, offset_t ldbn, offset_t dblks,
6161 caller_context_t *ct)
6162 {
6163 u_offset_t file_size;
6164 struct inode *ip = VTOI(vp);
6165 struct fs *fs = ip->i_fs;
6166 daddr_t dbn, lfsbn;
6167 int disk_blks = fs->fs_bsize >> DEV_BSHIFT;
6168 int error = 0;
6169 int ndbs, nfsbs;
6170
6171 /*
6172 * forced unmount case
6173 */
6174 if (ip->i_ufsvfs == NULL)
6175 return (EIO);
6176 /*
6177 * Validate the inode that it has not been modified since
6178 * the dump structure is allocated.
6179 */
6180 mutex_enter(&ip->i_tlock);
6181 if ((dump_info == NULL) ||
6182 (dump_info->ip != ip) ||
6183 (dump_info->time.tv_sec != ip->i_mtime.tv_sec) ||
6184 (dump_info->time.tv_usec != ip->i_mtime.tv_usec)) {
6185 mutex_exit(&ip->i_tlock);
6186 return (-1);
6187 }
6188 mutex_exit(&ip->i_tlock);
6189
6190 /*
6191 * See that the file has room for this write
6192 */
6193 UFS_GET_ISIZE(&file_size, ip);
6194
6195 if (ldbtob(ldbn + dblks) > file_size)
6196 return (ENOSPC);
6197
6198 /*
6199 * Find the physical disk block numbers from the dump
6200 * private data structure directly and write out the data
6201 * in contiguous block lumps
6202 */
6203 while (dblks > 0 && !error) {
6204 lfsbn = (daddr_t)lblkno(fs, ldbtob(ldbn));
6205 dbn = fsbtodb(fs, dump_info->dblk[lfsbn]) + ldbn % disk_blks;
6206 nfsbs = 1;
6207 ndbs = disk_blks - ldbn % disk_blks;
6208 while (ndbs < dblks && fsbtodb(fs, dump_info->dblk[lfsbn +
6209 nfsbs]) == dbn + ndbs) {
6210 nfsbs++;
6211 ndbs += disk_blks;
6212 }
6213 if (ndbs > dblks)
6214 ndbs = dblks;
6215 error = bdev_dump(ip->i_dev, addr, dbn, ndbs);
6216 addr += ldbtob((offset_t)ndbs);
6217 dblks -= ndbs;
6218 ldbn += ndbs;
6219 }
6220 return (error);
6221
6222 }
6223
6224 /*
6225 * Prepare the file system before and after the dump operation.
6226 *
6227 * action = DUMP_ALLOC:
6228 * Preparation before dump, allocate dump private data structure
6229 * to hold all the direct and indirect block info for dump.
6230 *
6231 * action = DUMP_FREE:
6232 * Clean up after dump, deallocate the dump private data structure.
6233 *
6234 * action = DUMP_SCAN:
6235 * Scan dump_info for *blkp DEV_BSIZE blocks of contig fs space;
6236 * if found, the starting file-relative DEV_BSIZE lbn is written
6237 * to *bklp; that lbn is intended for use with VOP_DUMP()
6238 */
6239 /*ARGSUSED*/
6240 static int
6241 ufs_dumpctl(vnode_t *vp, int action, offset_t *blkp, caller_context_t *ct)
6242 {
6243 struct inode *ip = VTOI(vp);
6244 ufsvfs_t *ufsvfsp = ip->i_ufsvfs;
6245 struct fs *fs;
6246 daddr32_t *dblk, *storeblk;
6247 daddr32_t *nextblk, *endblk;
6248 struct buf *bp;
6249 int i, entry, entries;
6250 int n, ncontig;
6251
6252 /*
6253 * check for forced unmount
6254 */
6255 if (ufsvfsp == NULL)
6256 return (EIO);
6257
6258 if (action == DUMP_ALLOC) {
6259 /*
6260 * alloc and record dump_info
6261 */
6262 if (dump_info != NULL)
6263 return (EINVAL);
6264
6265 ASSERT(vp->v_type == VREG);
6266 fs = ufsvfsp->vfs_fs;
6267
6268 rw_enter(&ip->i_contents, RW_READER);
6269
6270 if (bmap_has_holes(ip)) {
6271 rw_exit(&ip->i_contents);
6272 return (EFAULT);
6273 }
6274
6275 /*
6276 * calculate and allocate space needed according to i_size
6277 */
6278 entries = (int)lblkno(fs, blkroundup(fs, ip->i_size));
6279 dump_info = kmem_alloc(sizeof (struct dump) +
6280 (entries - 1) * sizeof (daddr32_t), KM_NOSLEEP);
6281 if (dump_info == NULL) {
6282 rw_exit(&ip->i_contents);
6283 return (ENOMEM);
6284 }
6285
6286 /* Start saving the info */
6287 dump_info->fsbs = entries;
6288 dump_info->ip = ip;
6289 storeblk = &dump_info->dblk[0];
6290
6291 /* Direct Blocks */
6292 for (entry = 0; entry < NDADDR && entry < entries; entry++)
6293 *storeblk++ = ip->i_db[entry];
6294
6295 /* Indirect Blocks */
6296 for (i = 0; i < NIADDR; i++) {
6297 int error = 0;
6298
6299 bp = UFS_BREAD(ufsvfsp,
6300 ip->i_dev, fsbtodb(fs, ip->i_ib[i]), fs->fs_bsize);
6301 if (bp->b_flags & B_ERROR)
6302 error = EIO;
6303 else {
6304 dblk = bp->b_un.b_daddr;
6305 if ((storeblk = save_dblks(ip, ufsvfsp,
6306 storeblk, dblk, i, entries)) == NULL)
6307 error = EIO;
6308 }
6309
6310 brelse(bp);
6311
6312 if (error != 0) {
6313 kmem_free(dump_info, sizeof (struct dump) +
6314 (entries - 1) * sizeof (daddr32_t));
6315 rw_exit(&ip->i_contents);
6316 dump_info = NULL;
6317 return (error);
6318 }
6319 }
6320 /* and time stamp the information */
6321 mutex_enter(&ip->i_tlock);
6322 dump_info->time = ip->i_mtime;
6323 mutex_exit(&ip->i_tlock);
6324
6325 rw_exit(&ip->i_contents);
6326 } else if (action == DUMP_FREE) {
6327 /*
6328 * free dump_info
6329 */
6330 if (dump_info == NULL)
6331 return (EINVAL);
6332 entries = dump_info->fsbs - 1;
6333 kmem_free(dump_info, sizeof (struct dump) +
6334 entries * sizeof (daddr32_t));
6335 dump_info = NULL;
6336 } else if (action == DUMP_SCAN) {
6337 /*
6338 * scan dump_info
6339 */
6340 if (dump_info == NULL)
6341 return (EINVAL);
6342
6343 dblk = dump_info->dblk;
6344 nextblk = dblk + 1;
6345 endblk = dblk + dump_info->fsbs - 1;
6346 fs = ufsvfsp->vfs_fs;
6347 ncontig = *blkp >> (fs->fs_bshift - DEV_BSHIFT);
6348
6349 /*
6350 * scan dblk[] entries; contig fs space is found when:
6351 * ((current blkno + frags per block) == next blkno)
6352 */
6353 n = 0;
6354 while (n < ncontig && dblk < endblk) {
6355 if ((*dblk + fs->fs_frag) == *nextblk)
6356 n++;
6357 else
6358 n = 0;
6359 dblk++;
6360 nextblk++;
6361 }
6362
6363 /*
6364 * index is where size bytes of contig space begins;
6365 * conversion from index to the file's DEV_BSIZE lbn
6366 * is equivalent to: (index * fs_bsize) / DEV_BSIZE
6367 */
6368 if (n == ncontig) {
6369 i = (dblk - dump_info->dblk) - ncontig;
6370 *blkp = i << (fs->fs_bshift - DEV_BSHIFT);
6371 } else
6372 return (EFAULT);
6373 }
6374 return (0);
6375 }
6376
6377 /*
6378 * Recursive helper function for ufs_dumpctl(). It follows the indirect file
6379 * system blocks until it reaches the the disk block addresses, which are
6380 * then stored into the given buffer, storeblk.
6381 */
6382 static daddr32_t *
6383 save_dblks(struct inode *ip, struct ufsvfs *ufsvfsp, daddr32_t *storeblk,
6384 daddr32_t *dblk, int level, int entries)
6385 {
6386 struct fs *fs = ufsvfsp->vfs_fs;
6387 struct buf *bp;
6388 int i;
6389
6390 if (level == 0) {
6391 for (i = 0; i < NINDIR(fs); i++) {
6392 if (storeblk - dump_info->dblk >= entries)
6393 break;
6394 *storeblk++ = dblk[i];
6395 }
6396 return (storeblk);
6397 }
6398 for (i = 0; i < NINDIR(fs); i++) {
6399 if (storeblk - dump_info->dblk >= entries)
6400 break;
6401 bp = UFS_BREAD(ufsvfsp,
6402 ip->i_dev, fsbtodb(fs, dblk[i]), fs->fs_bsize);
6403 if (bp->b_flags & B_ERROR) {
6404 brelse(bp);
6405 return (NULL);
6406 }
6407 storeblk = save_dblks(ip, ufsvfsp, storeblk, bp->b_un.b_daddr,
6408 level - 1, entries);
6409 brelse(bp);
6410
6411 if (storeblk == NULL)
6412 return (NULL);
6413 }
6414 return (storeblk);
6415 }
6416
6417 /* ARGSUSED */
6418 static int
6419 ufs_getsecattr(struct vnode *vp, vsecattr_t *vsap, int flag,
6420 struct cred *cr, caller_context_t *ct)
6421 {
6422 struct inode *ip = VTOI(vp);
6423 struct ulockfs *ulp;
6424 struct ufsvfs *ufsvfsp = ip->i_ufsvfs;
6425 ulong_t vsa_mask = vsap->vsa_mask;
6426 int err = EINVAL;
6427
6428 vsa_mask &= (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT);
6429
6430 /*
6431 * Only grab locks if needed - they're not needed to check vsa_mask
6432 * or if the mask contains no acl flags.
6433 */
6434 if (vsa_mask != 0) {
6435 if (err = ufs_lockfs_begin(ufsvfsp, &ulp,
6436 ULOCKFS_GETATTR_MASK))
6437 return (err);
6438
6439 rw_enter(&ip->i_contents, RW_READER);
6440 err = ufs_acl_get(ip, vsap, flag, cr);
6441 rw_exit(&ip->i_contents);
6442
6443 if (ulp)
6444 ufs_lockfs_end(ulp);
6445 }
6446 return (err);
6447 }
6448
6449 /* ARGSUSED */
6450 static int
6451 ufs_setsecattr(struct vnode *vp, vsecattr_t *vsap, int flag, struct cred *cr,
6452 caller_context_t *ct)
6453 {
6454 struct inode *ip = VTOI(vp);
6455 struct ulockfs *ulp = NULL;
6456 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs;
6457 ulong_t vsa_mask = vsap->vsa_mask;
6458 int err;
6459 int haverwlock = 1;
6460 int trans_size;
6461 int donetrans = 0;
6462 int retry = 1;
6463
6464 ASSERT(RW_LOCK_HELD(&ip->i_rwlock));
6465
6466 /* Abort now if the request is either empty or invalid. */
6467 vsa_mask &= (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT);
6468 if ((vsa_mask == 0) ||
6469 ((vsap->vsa_aclentp == NULL) &&
6470 (vsap->vsa_dfaclentp == NULL))) {
6471 err = EINVAL;
6472 goto out;
6473 }
6474
6475 /*
6476 * Following convention, if this is a directory then we acquire the
6477 * inode's i_rwlock after starting a UFS logging transaction;
6478 * otherwise, we acquire it beforehand. Since we were called (and
6479 * must therefore return) with the lock held, we will have to drop it,
6480 * and later reacquire it, if operating on a directory.
6481 */
6482 if (vp->v_type == VDIR) {
6483 rw_exit(&ip->i_rwlock);
6484 haverwlock = 0;
6485 } else {
6486 /* Upgrade the lock if required. */
6487 if (!rw_write_held(&ip->i_rwlock)) {
6488 rw_exit(&ip->i_rwlock);
6489 rw_enter(&ip->i_rwlock, RW_WRITER);
6490 }
6491 }
6492
6493 again:
6494 ASSERT(!(vp->v_type == VDIR && haverwlock));
6495 if (err = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_SETATTR_MASK)) {
6496 ulp = NULL;
6497 retry = 0;
6498 goto out;
6499 }
6500
6501 /*
6502 * Check that the file system supports this operation. Note that
6503 * ufs_lockfs_begin() will have checked that the file system had
6504 * not been forcibly unmounted.
6505 */
6506 if (ufsvfsp->vfs_fs->fs_ronly) {
6507 err = EROFS;
6508 goto out;
6509 }
6510 if (ufsvfsp->vfs_nosetsec) {
6511 err = ENOSYS;
6512 goto out;
6513 }
6514
6515 if (ulp) {
6516 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_SETSECATTR,
6517 trans_size = TOP_SETSECATTR_SIZE(VTOI(vp)));
6518 donetrans = 1;
6519 }
6520
6521 if (vp->v_type == VDIR) {
6522 rw_enter(&ip->i_rwlock, RW_WRITER);
6523 haverwlock = 1;
6524 }
6525
6526 ASSERT(haverwlock);
6527
6528 /* Do the actual work. */
6529 rw_enter(&ip->i_contents, RW_WRITER);
6530 /*
6531 * Suppress out of inodes messages if we will retry.
6532 */
6533 if (retry)
6534 ip->i_flag |= IQUIET;
6535 err = ufs_acl_set(ip, vsap, flag, cr);
6536 ip->i_flag &= ~IQUIET;
6537 rw_exit(&ip->i_contents);
6538
6539 out:
6540 if (ulp) {
6541 if (donetrans) {
6542 /*
6543 * top_end_async() can eventually call
6544 * top_end_sync(), which can block. We must
6545 * therefore observe the lock-ordering protocol
6546 * here as well.
6547 */
6548 if (vp->v_type == VDIR) {
6549 rw_exit(&ip->i_rwlock);
6550 haverwlock = 0;
6551 }
6552 TRANS_END_ASYNC(ufsvfsp, TOP_SETSECATTR, trans_size);
6553 }
6554 ufs_lockfs_end(ulp);
6555 }
6556 /*
6557 * If no inodes available, try scaring a logically-
6558 * free one out of the delete queue to someplace
6559 * that we can find it.
6560 */
6561 if ((err == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) {
6562 ufs_delete_drain_wait(ufsvfsp, 1);
6563 retry = 0;
6564 if (vp->v_type == VDIR && haverwlock) {
6565 rw_exit(&ip->i_rwlock);
6566 haverwlock = 0;
6567 }
6568 goto again;
6569 }
6570 /*
6571 * If we need to reacquire the lock then it is safe to do so
6572 * as a reader. This is because ufs_rwunlock(), which will be
6573 * called by our caller after we return, does not differentiate
6574 * between shared and exclusive locks.
6575 */
6576 if (!haverwlock) {
6577 ASSERT(vp->v_type == VDIR);
6578 rw_enter(&ip->i_rwlock, RW_READER);
6579 }
6580
6581 return (err);
6582 }
6583
6584 /*
6585 * Locate the vnode to be used for an event notification. As this will
6586 * be called prior to the name space change perform basic verification
6587 * that the change will be allowed.
6588 */
6589
6590 static int
6591 ufs_eventlookup(struct vnode *dvp, char *nm, struct cred *cr,
6592 struct vnode **vpp)
6593 {
6594 int namlen;
6595 int error;
6596 struct vnode *vp;
6597 struct inode *ip;
6598 struct inode *xip;
6599 struct ufsvfs *ufsvfsp;
6600 struct ulockfs *ulp;
6601
6602 ip = VTOI(dvp);
6603 *vpp = NULL;
6604
6605 if ((namlen = strlen(nm)) == 0)
6606 return (EINVAL);
6607
6608 if (nm[0] == '.') {
6609 if (namlen == 1)
6610 return (EINVAL);
6611 else if ((namlen == 2) && nm[1] == '.') {
6612 return (EEXIST);
6613 }
6614 }
6615
6616 /*
6617 * Check accessibility and write access of parent directory as we
6618 * only want to post the event if we're able to make a change.
6619 */
6620 if (error = ufs_diraccess(ip, IEXEC|IWRITE, cr))
6621 return (error);
6622
6623 if (vp = dnlc_lookup(dvp, nm)) {
6624 if (vp == DNLC_NO_VNODE) {
6625 VN_RELE(vp);
6626 return (ENOENT);
6627 }
6628
6629 *vpp = vp;
6630 return (0);
6631 }
6632
6633 /*
6634 * Keep the idle queue from getting too long by idling two
6635 * inodes before attempting to allocate another.
6636 * This operation must be performed before entering lockfs
6637 * or a transaction.
6638 */
6639 if (ufs_idle_q.uq_ne > ufs_idle_q.uq_hiwat)
6640 if ((curthread->t_flag & T_DONTBLOCK) == 0) {
6641 ins.in_lidles.value.ul += ufs_lookup_idle_count;
6642 ufs_idle_some(ufs_lookup_idle_count);
6643 }
6644
6645 ufsvfsp = ip->i_ufsvfs;
6646
6647 retry_lookup:
6648 if (error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_LOOKUP_MASK))
6649 return (error);
6650
6651 if ((error = ufs_dirlook(ip, nm, &xip, cr, 1, 1)) == 0) {
6652 vp = ITOV(xip);
6653 *vpp = vp;
6654 }
6655
6656 if (ulp) {
6657 ufs_lockfs_end(ulp);
6658 }
6659
6660 if (error == EAGAIN)
6661 goto retry_lookup;
6662
6663 return (error);
6664 }