1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 25 */ 26 27 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 28 /* All Rights Reserved */ 29 30 /* 31 * University Copyright- Copyright (c) 1982, 1986, 1988 32 * The Regents of the University of California 33 * All Rights Reserved 34 * 35 * University Acknowledgment- Portions of this document are derived from 36 * software developed by the University of California, Berkeley, and its 37 * contributors. 38 */ 39 40 #include <sys/types.h> 41 #include <sys/thread.h> 42 #include <sys/t_lock.h> 43 #include <sys/param.h> 44 #include <sys/systm.h> 45 #include <sys/bitmap.h> 46 #include <sys/buf.h> 47 #include <sys/cmn_err.h> 48 #include <sys/conf.h> 49 #include <sys/ddi.h> 50 #include <sys/debug.h> 51 #include <sys/dkio.h> 52 #include <sys/errno.h> 53 #include <sys/time.h> 54 #include <sys/fcntl.h> 55 #include <sys/flock.h> 56 #include <sys/file.h> 57 #include <sys/kmem.h> 58 #include <sys/mman.h> 59 #include <sys/open.h> 60 #include <sys/swap.h> 61 #include <sys/sysmacros.h> 62 #include <sys/uio.h> 63 #include <sys/vfs.h> 64 #include <sys/vfs_opreg.h> 65 #include <sys/vnode.h> 66 #include <sys/stat.h> 67 #include <sys/poll.h> 68 #include <sys/stream.h> 69 #include <sys/strsubr.h> 70 #include <sys/policy.h> 71 #include <sys/devpolicy.h> 72 73 #include <sys/proc.h> 74 #include <sys/user.h> 75 #include <sys/session.h> 76 #include <sys/vmsystm.h> 77 #include <sys/vtrace.h> 78 #include <sys/pathname.h> 79 80 #include <sys/fs/snode.h> 81 82 #include <vm/seg.h> 83 #include <vm/seg_map.h> 84 #include <vm/page.h> 85 #include <vm/pvn.h> 86 #include <vm/seg_dev.h> 87 #include <vm/seg_vn.h> 88 89 #include <fs/fs_subr.h> 90 91 #include <sys/esunddi.h> 92 #include <sys/autoconf.h> 93 #include <sys/sunndi.h> 94 #include <sys/contract/device_impl.h> 95 96 97 static int spec_open(struct vnode **, int, struct cred *, caller_context_t *); 98 static int spec_close(struct vnode *, int, int, offset_t, struct cred *, 99 caller_context_t *); 100 static int spec_read(struct vnode *, struct uio *, int, struct cred *, 101 caller_context_t *); 102 static int spec_write(struct vnode *, struct uio *, int, struct cred *, 103 caller_context_t *); 104 static int spec_ioctl(struct vnode *, int, intptr_t, int, struct cred *, int *, 105 caller_context_t *); 106 static int spec_getattr(struct vnode *, struct vattr *, int, struct cred *, 107 caller_context_t *); 108 static int spec_setattr(struct vnode *, struct vattr *, int, struct cred *, 109 caller_context_t *); 110 static int spec_access(struct vnode *, int, int, struct cred *, 111 caller_context_t *); 112 static int spec_create(struct vnode *, char *, vattr_t *, enum vcexcl, int, 113 struct vnode **, struct cred *, int, caller_context_t *, vsecattr_t *); 114 static int spec_fsync(struct vnode *, int, struct cred *, caller_context_t *); 115 static void spec_inactive(struct vnode *, struct cred *, caller_context_t *); 116 static int spec_fid(struct vnode *, struct fid *, caller_context_t *); 117 static int spec_seek(struct vnode *, offset_t, offset_t *, caller_context_t *); 118 static int spec_frlock(struct vnode *, int, struct flock64 *, int, offset_t, 119 struct flk_callback *, struct cred *, caller_context_t *); 120 static int spec_realvp(struct vnode *, struct vnode **, caller_context_t *); 121 122 static int spec_getpage(struct vnode *, offset_t, size_t, uint_t *, page_t **, 123 size_t, struct seg *, caddr_t, enum seg_rw, struct cred *, 124 caller_context_t *); 125 static int spec_putapage(struct vnode *, page_t *, u_offset_t *, size_t *, int, 126 struct cred *); 127 static struct buf *spec_startio(struct vnode *, page_t *, u_offset_t, size_t, 128 int); 129 static int spec_getapage(struct vnode *, u_offset_t, size_t, uint_t *, 130 page_t **, size_t, struct seg *, caddr_t, enum seg_rw, struct cred *); 131 static int spec_map(struct vnode *, offset_t, struct as *, caddr_t *, size_t, 132 uchar_t, uchar_t, uint_t, struct cred *, caller_context_t *); 133 static int spec_addmap(struct vnode *, offset_t, struct as *, caddr_t, size_t, 134 uchar_t, uchar_t, uint_t, struct cred *, caller_context_t *); 135 static int spec_delmap(struct vnode *, offset_t, struct as *, caddr_t, size_t, 136 uint_t, uint_t, uint_t, struct cred *, caller_context_t *); 137 138 static int spec_poll(struct vnode *, short, int, short *, struct pollhead **, 139 caller_context_t *); 140 static int spec_dump(struct vnode *, caddr_t, offset_t, offset_t, 141 caller_context_t *); 142 static int spec_pageio(struct vnode *, page_t *, u_offset_t, size_t, int, 143 cred_t *, caller_context_t *); 144 145 static int spec_getsecattr(struct vnode *, vsecattr_t *, int, struct cred *, 146 caller_context_t *); 147 static int spec_setsecattr(struct vnode *, vsecattr_t *, int, struct cred *, 148 caller_context_t *); 149 static int spec_pathconf(struct vnode *, int, ulong_t *, struct cred *, 150 caller_context_t *); 151 152 #define SN_HOLD(csp) { \ 153 mutex_enter(&csp->s_lock); \ 154 csp->s_count++; \ 155 mutex_exit(&csp->s_lock); \ 156 } 157 158 #define SN_RELE(csp) { \ 159 mutex_enter(&csp->s_lock); \ 160 csp->s_count--; \ 161 ASSERT((csp->s_count > 0) || (csp->s_vnode->v_stream == NULL)); \ 162 mutex_exit(&csp->s_lock); \ 163 } 164 165 #define S_ISFENCED(sp) ((VTOS((sp)->s_commonvp))->s_flag & SFENCED) 166 167 struct vnodeops *spec_vnodeops; 168 169 /* 170 * *PLEASE NOTE*: If you add new entry points to specfs, do 171 * not forget to add support for fencing. A fenced snode 172 * is indicated by the SFENCED flag in the common snode. 173 * If a snode is fenced, determine if your entry point is 174 * a configuration operation (Example: open), a detection 175 * operation (Example: gettattr), an I/O operation (Example: ioctl()) 176 * or an unconfiguration operation (Example: close). If it is 177 * a configuration or detection operation, fail the operation 178 * for a fenced snode with an ENXIO or EIO as appropriate. If 179 * it is any other operation, let it through. 180 */ 181 182 const fs_operation_def_t spec_vnodeops_template[] = { 183 { VOPNAME_OPEN, { .vop_open = spec_open } }, 184 { VOPNAME_CLOSE, { .vop_close = spec_close } }, 185 { VOPNAME_READ, { .vop_read = spec_read } }, 186 { VOPNAME_WRITE, { .vop_write = spec_write } }, 187 { VOPNAME_IOCTL, { .vop_ioctl = spec_ioctl } }, 188 { VOPNAME_GETATTR, { .vop_getattr = spec_getattr } }, 189 { VOPNAME_SETATTR, { .vop_setattr = spec_setattr } }, 190 { VOPNAME_ACCESS, { .vop_access = spec_access } }, 191 { VOPNAME_CREATE, { .vop_create = spec_create } }, 192 { VOPNAME_FSYNC, { .vop_fsync = spec_fsync } }, 193 { VOPNAME_INACTIVE, { .vop_inactive = spec_inactive } }, 194 { VOPNAME_FID, { .vop_fid = spec_fid } }, 195 { VOPNAME_SEEK, { .vop_seek = spec_seek } }, 196 { VOPNAME_PATHCONF, { .vop_pathconf = spec_pathconf } }, 197 { VOPNAME_FRLOCK, { .vop_frlock = spec_frlock } }, 198 { VOPNAME_REALVP, { .vop_realvp = spec_realvp } }, 199 { VOPNAME_GETPAGE, { .vop_getpage = spec_getpage } }, 200 { VOPNAME_PUTPAGE, { .vop_putpage = spec_putpage } }, 201 { VOPNAME_MAP, { .vop_map = spec_map } }, 202 { VOPNAME_ADDMAP, { .vop_addmap = spec_addmap } }, 203 { VOPNAME_DELMAP, { .vop_delmap = spec_delmap } }, 204 { VOPNAME_POLL, { .vop_poll = spec_poll } }, 205 { VOPNAME_DUMP, { .vop_dump = spec_dump } }, 206 { VOPNAME_PAGEIO, { .vop_pageio = spec_pageio } }, 207 { VOPNAME_SETSECATTR, { .vop_setsecattr = spec_setsecattr } }, 208 { VOPNAME_GETSECATTR, { .vop_getsecattr = spec_getsecattr } }, 209 { NULL, { NULL } } 210 }; 211 212 /* 213 * Return address of spec_vnodeops 214 */ 215 struct vnodeops * 216 spec_getvnodeops(void) 217 { 218 return (spec_vnodeops); 219 } 220 221 extern vnode_t *rconsvp; 222 223 /* 224 * Acquire the serial lock on the common snode. 225 */ 226 #define LOCK_CSP(csp) (void) spec_lockcsp(csp, 0, 1, 0) 227 #define LOCKHOLD_CSP_SIG(csp) spec_lockcsp(csp, 1, 1, 1) 228 #define SYNCHOLD_CSP_SIG(csp, intr) spec_lockcsp(csp, intr, 0, 1) 229 230 typedef enum { 231 LOOP, 232 INTR, 233 SUCCESS 234 } slock_ret_t; 235 236 /* 237 * Synchronize with active SLOCKED snode, optionally checking for a signal and 238 * optionally returning with SLOCKED set and SN_HOLD done. The 'intr' 239 * argument determines if the thread is interruptible by a signal while 240 * waiting, the function returns INTR if interrupted while there is another 241 * thread closing this snonde and LOOP if interrupted otherwise. 242 * When SUCCESS is returned the 'hold' argument determines if the open 243 * count (SN_HOLD) has been incremented and the 'setlock' argument 244 * determines if the function returns with SLOCKED set. 245 */ 246 static slock_ret_t 247 spec_lockcsp(struct snode *csp, int intr, int setlock, int hold) 248 { 249 slock_ret_t ret = SUCCESS; 250 mutex_enter(&csp->s_lock); 251 while (csp->s_flag & SLOCKED) { 252 csp->s_flag |= SWANT; 253 if (intr) { 254 if (!cv_wait_sig(&csp->s_cv, &csp->s_lock)) { 255 if (csp->s_flag & SCLOSING) 256 ret = INTR; 257 else 258 ret = LOOP; 259 mutex_exit(&csp->s_lock); 260 return (ret); /* interrupted */ 261 } 262 } else { 263 cv_wait(&csp->s_cv, &csp->s_lock); 264 } 265 } 266 if (setlock) 267 csp->s_flag |= SLOCKED; 268 if (hold) 269 csp->s_count++; /* one more open reference : SN_HOLD */ 270 mutex_exit(&csp->s_lock); 271 return (ret); /* serialized/locked */ 272 } 273 274 /* 275 * Unlock the serial lock on the common snode 276 */ 277 #define UNLOCK_CSP_LOCK_HELD(csp) \ 278 ASSERT(mutex_owned(&csp->s_lock)); \ 279 if (csp->s_flag & SWANT) \ 280 cv_broadcast(&csp->s_cv); \ 281 csp->s_flag &= ~(SWANT|SLOCKED); 282 283 #define UNLOCK_CSP(csp) \ 284 mutex_enter(&csp->s_lock); \ 285 UNLOCK_CSP_LOCK_HELD(csp); \ 286 mutex_exit(&csp->s_lock); 287 288 /* 289 * compute/return the size of the device 290 */ 291 #define SPEC_SIZE(csp) \ 292 (((csp)->s_flag & SSIZEVALID) ? (csp)->s_size : spec_size(csp)) 293 294 /* 295 * Compute and return the size. If the size in the common snode is valid then 296 * return it. If not valid then get the size from the driver and set size in 297 * the common snode. If the device has not been attached then we don't ask for 298 * an update from the driver- for non-streams SSIZEVALID stays unset until the 299 * device is attached. A stat of a mknod outside /devices (non-devfs) may 300 * report UNKNOWN_SIZE because the device may not be attached yet (SDIPSET not 301 * established in mknod until open time). An stat in /devices will report the 302 * size correctly. Specfs should always call SPEC_SIZE instead of referring 303 * directly to s_size to initialize/retrieve the size of a device. 304 * 305 * XXX There is an inconsistency between block and raw - "unknown" is 306 * UNKNOWN_SIZE for VBLK and 0 for VCHR(raw). 307 */ 308 static u_offset_t 309 spec_size(struct snode *csp) 310 { 311 struct vnode *cvp = STOV(csp); 312 u_offset_t size; 313 int plen; 314 uint32_t size32; 315 dev_t dev; 316 dev_info_t *devi; 317 major_t maj; 318 uint_t blksize; 319 int blkshift; 320 321 ASSERT((csp)->s_commonvp == cvp); /* must be common node */ 322 323 /* return cached value */ 324 mutex_enter(&csp->s_lock); 325 if (csp->s_flag & SSIZEVALID) { 326 mutex_exit(&csp->s_lock); 327 return (csp->s_size); 328 } 329 330 /* VOP_GETATTR of mknod has not had devcnt restriction applied */ 331 dev = cvp->v_rdev; 332 maj = getmajor(dev); 333 if (maj >= devcnt) { 334 /* return non-cached UNKNOWN_SIZE */ 335 mutex_exit(&csp->s_lock); 336 return ((cvp->v_type == VCHR) ? 0 : UNKNOWN_SIZE); 337 } 338 339 /* establish cached zero size for streams */ 340 if (STREAMSTAB(maj)) { 341 csp->s_size = 0; 342 csp->s_flag |= SSIZEVALID; 343 mutex_exit(&csp->s_lock); 344 return (0); 345 } 346 347 /* 348 * Return non-cached UNKNOWN_SIZE if not open. 349 * 350 * NB: This check is bogus, calling prop_op(9E) should be gated by 351 * attach, not open. Not having this check however opens up a new 352 * context under which a driver's prop_op(9E) could be called. Calling 353 * prop_op(9E) in this new context has been shown to expose latent 354 * driver bugs (insufficient NULL pointer checks that lead to panic). 355 * We are keeping this open check for now to avoid these panics. 356 */ 357 if (csp->s_count == 0) { 358 mutex_exit(&csp->s_lock); 359 return ((cvp->v_type == VCHR) ? 0 : UNKNOWN_SIZE); 360 } 361 362 /* Return non-cached UNKNOWN_SIZE if not attached. */ 363 if (((csp->s_flag & SDIPSET) == 0) || (csp->s_dip == NULL) || 364 !i_ddi_devi_attached(csp->s_dip)) { 365 mutex_exit(&csp->s_lock); 366 return ((cvp->v_type == VCHR) ? 0 : UNKNOWN_SIZE); 367 } 368 369 devi = csp->s_dip; 370 371 /* 372 * Established cached size obtained from the attached driver. Since we 373 * know the devinfo node, for efficiency we use cdev_prop_op directly 374 * instead of [cb]dev_[Ss]size. 375 */ 376 if (cvp->v_type == VCHR) { 377 size = 0; 378 plen = sizeof (size); 379 if (cdev_prop_op(dev, devi, PROP_LEN_AND_VAL_BUF, 380 DDI_PROP_NOTPROM | DDI_PROP_DONTPASS | 381 DDI_PROP_CONSUMER_TYPED, "Size", (caddr_t)&size, 382 &plen) != DDI_PROP_SUCCESS) { 383 plen = sizeof (size32); 384 if (cdev_prop_op(dev, devi, PROP_LEN_AND_VAL_BUF, 385 DDI_PROP_NOTPROM | DDI_PROP_DONTPASS, 386 "size", (caddr_t)&size32, &plen) == 387 DDI_PROP_SUCCESS) 388 size = size32; 389 } 390 } else { 391 size = UNKNOWN_SIZE; 392 plen = sizeof (size); 393 if (cdev_prop_op(dev, devi, PROP_LEN_AND_VAL_BUF, 394 DDI_PROP_NOTPROM | DDI_PROP_DONTPASS | 395 DDI_PROP_CONSUMER_TYPED, "Nblocks", (caddr_t)&size, 396 &plen) != DDI_PROP_SUCCESS) { 397 plen = sizeof (size32); 398 if (cdev_prop_op(dev, devi, PROP_LEN_AND_VAL_BUF, 399 DDI_PROP_NOTPROM | DDI_PROP_DONTPASS, 400 "nblocks", (caddr_t)&size32, &plen) == 401 DDI_PROP_SUCCESS) 402 size = size32; 403 } 404 405 if (size != UNKNOWN_SIZE) { 406 blksize = DEV_BSIZE; /* default */ 407 plen = sizeof (blksize); 408 409 /* try to get dev_t specific "blksize" */ 410 if (cdev_prop_op(dev, devi, PROP_LEN_AND_VAL_BUF, 411 DDI_PROP_NOTPROM | DDI_PROP_DONTPASS, 412 "blksize", (caddr_t)&blksize, &plen) != 413 DDI_PROP_SUCCESS) { 414 /* 415 * Try for dev_info node "device-blksize". 416 * If this fails then blksize will still be 417 * DEV_BSIZE default value. 418 */ 419 (void) cdev_prop_op(DDI_DEV_T_ANY, devi, 420 PROP_LEN_AND_VAL_BUF, 421 DDI_PROP_NOTPROM | DDI_PROP_DONTPASS, 422 "device-blksize", (caddr_t)&blksize, &plen); 423 } 424 425 /* blksize must be a power of two */ 426 ASSERT(BIT_ONLYONESET(blksize)); 427 blkshift = highbit(blksize) - 1; 428 429 /* convert from block size to byte size */ 430 if (size < (MAXOFFSET_T >> blkshift)) 431 size = size << blkshift; 432 else 433 size = UNKNOWN_SIZE; 434 } 435 } 436 437 csp->s_size = size; 438 csp->s_flag |= SSIZEVALID; 439 440 mutex_exit(&csp->s_lock); 441 return (size); 442 } 443 444 /* 445 * This function deal with vnode substitution in the case of 446 * device cloning. 447 */ 448 static int 449 spec_clone(struct vnode **vpp, dev_t newdev, int vtype, struct stdata *stp) 450 { 451 dev_t dev = (*vpp)->v_rdev; 452 major_t maj = getmajor(dev); 453 major_t newmaj = getmajor(newdev); 454 int sysclone = (maj == clone_major); 455 int qassociate_used = 0; 456 struct snode *oldsp, *oldcsp; 457 struct snode *newsp, *newcsp; 458 struct vnode *newvp, *newcvp; 459 dev_info_t *dip; 460 queue_t *dq; 461 462 ASSERT(dev != newdev); 463 464 /* 465 * Check for cloning across different drivers. 466 * We only support this under the system provided clone driver 467 */ 468 if ((maj != newmaj) && !sysclone) { 469 cmn_err(CE_NOTE, 470 "unsupported clone open maj = %u, newmaj = %u", 471 maj, newmaj); 472 return (ENXIO); 473 } 474 475 /* old */ 476 oldsp = VTOS(*vpp); 477 oldcsp = VTOS(oldsp->s_commonvp); 478 479 /* new */ 480 newvp = makespecvp(newdev, vtype); 481 ASSERT(newvp != NULL); 482 newsp = VTOS(newvp); 483 newcvp = newsp->s_commonvp; 484 newcsp = VTOS(newcvp); 485 486 /* 487 * Clones inherit fsid, realvp, and dip. 488 * XXX realvp inherit is not occurring, does fstat of clone work? 489 */ 490 newsp->s_fsid = oldsp->s_fsid; 491 if (sysclone) { 492 newsp->s_flag |= SCLONE; 493 dip = NULL; 494 } else { 495 newsp->s_flag |= SSELFCLONE; 496 dip = oldcsp->s_dip; 497 } 498 499 /* 500 * If we cloned to an opened newdev that already has called 501 * spec_assoc_vp_with_devi (SDIPSET set) then the association is 502 * already established. 503 */ 504 if (!(newcsp->s_flag & SDIPSET)) { 505 /* 506 * Establish s_dip association for newdev. 507 * 508 * If we trusted the getinfo(9E) DDI_INFO_DEVT2INSTANCE 509 * implementation of all cloning drivers (SCLONE and SELFCLONE) 510 * we would always use e_ddi_hold_devi_by_dev(). We know that 511 * many drivers have had (still have?) problems with 512 * DDI_INFO_DEVT2INSTANCE, so we try to minimize reliance by 513 * detecting drivers that use QASSOCIATE (by looking down the 514 * stream) and setting their s_dip association to NULL. 515 */ 516 qassociate_used = 0; 517 if (stp) { 518 for (dq = stp->sd_wrq; dq; dq = dq->q_next) { 519 if (_RD(dq)->q_flag & _QASSOCIATED) { 520 qassociate_used = 1; 521 dip = NULL; 522 break; 523 } 524 } 525 } 526 527 if (dip || qassociate_used) { 528 spec_assoc_vp_with_devi(newvp, dip); 529 } else { 530 /* derive association from newdev */ 531 dip = e_ddi_hold_devi_by_dev(newdev, 0); 532 spec_assoc_vp_with_devi(newvp, dip); 533 if (dip) 534 ddi_release_devi(dip); 535 } 536 } 537 538 SN_HOLD(newcsp); 539 540 /* deal with stream stuff */ 541 if (stp != NULL) { 542 LOCK_CSP(newcsp); /* synchronize stream open/close */ 543 mutex_enter(&newcsp->s_lock); 544 newcvp->v_stream = newvp->v_stream = stp; 545 stp->sd_vnode = newcvp; 546 stp->sd_strtab = STREAMSTAB(newmaj); 547 mutex_exit(&newcsp->s_lock); 548 UNLOCK_CSP(newcsp); 549 } 550 551 /* substitute the vnode */ 552 SN_RELE(oldcsp); 553 VN_RELE(*vpp); 554 *vpp = newvp; 555 556 return (0); 557 } 558 559 static int 560 spec_open(struct vnode **vpp, int flag, struct cred *cr, caller_context_t *cc) 561 { 562 major_t maj; 563 dev_t dev, newdev; 564 struct vnode *vp, *cvp; 565 struct snode *sp, *csp; 566 struct stdata *stp; 567 dev_info_t *dip; 568 int error, type; 569 contract_t *ct = NULL; 570 int open_returns_eintr; 571 slock_ret_t spec_locksp_ret; 572 573 574 flag &= ~FCREAT; /* paranoia */ 575 576 vp = *vpp; 577 sp = VTOS(vp); 578 ASSERT((vp->v_type == VCHR) || (vp->v_type == VBLK)); 579 if ((vp->v_type != VCHR) && (vp->v_type != VBLK)) 580 return (ENXIO); 581 582 /* 583 * If the VFS_NODEVICES bit was set for the mount, 584 * do not allow opens of special devices. 585 */ 586 if (sp->s_realvp && (sp->s_realvp->v_vfsp->vfs_flag & VFS_NODEVICES)) 587 return (ENXIO); 588 589 newdev = dev = vp->v_rdev; 590 591 /* 592 * If we are opening a node that has not had spec_assoc_vp_with_devi 593 * called against it (mknod outside /devices or a non-dacf makespecvp 594 * node) then SDIPSET will not be set. In this case we call an 595 * interface which will reconstruct the path and lookup (drive attach) 596 * through devfs (e_ddi_hold_devi_by_dev -> e_ddi_hold_devi_by_path -> 597 * devfs_lookupname). For support of broken drivers that don't call 598 * ddi_create_minor_node for all minor nodes in their instance space, 599 * we call interfaces that operates at the directory/devinfo 600 * (major/instance) level instead of to the leaf/minor node level. 601 * After finding and attaching the dip we associate it with the 602 * common specfs vnode (s_dip), which sets SDIPSET. A DL_DETACH_REQ 603 * to style-2 stream driver may set s_dip to NULL with SDIPSET set. 604 * 605 * NOTE: Although e_ddi_hold_devi_by_dev takes a dev_t argument, its 606 * implementation operates at the major/instance level since it only 607 * need to return a dip. 608 */ 609 cvp = sp->s_commonvp; 610 csp = VTOS(cvp); 611 if (!(csp->s_flag & SDIPSET)) { 612 /* try to attach, return error if we fail */ 613 if ((dip = e_ddi_hold_devi_by_dev(dev, 0)) == NULL) 614 return (ENXIO); 615 616 /* associate dip with the common snode s_dip */ 617 spec_assoc_vp_with_devi(vp, dip); 618 ddi_release_devi(dip); /* from e_ddi_hold_devi_by_dev */ 619 } 620 621 /* check if device fenced off */ 622 if (S_ISFENCED(sp)) 623 return (ENXIO); 624 625 #ifdef DEBUG 626 /* verify attach/open exclusion guarantee */ 627 dip = csp->s_dip; 628 ASSERT((dip == NULL) || i_ddi_devi_attached(dip)); 629 #endif /* DEBUG */ 630 631 if ((error = secpolicy_spec_open(cr, vp, flag)) != 0) 632 return (error); 633 634 /* Verify existance of open(9E) implementation. */ 635 maj = getmajor(dev); 636 if ((maj >= devcnt) || 637 (devopsp[maj]->devo_cb_ops == NULL) || 638 (devopsp[maj]->devo_cb_ops->cb_open == NULL)) 639 return (ENXIO); 640 641 /* 642 * split STREAMS vs. non-STREAMS 643 * 644 * If the device is a dual-personality device, then we might want 645 * to allow for a regular OTYP_BLK open. If however it's strictly 646 * a pure STREAMS device, the cb_open entry point will be 647 * nodev() which returns ENXIO. This does make this failure path 648 * somewhat longer, but such attempts to use OTYP_BLK with STREAMS 649 * devices should be exceedingly rare. (Most of the time they will 650 * be due to programmer error.) 651 */ 652 if ((vp->v_type == VCHR) && (STREAMSTAB(maj))) 653 goto streams_open; 654 655 not_streams: 656 /* 657 * Wait for in progress last close to complete. This guarantees 658 * to the driver writer that we will never be in the drivers 659 * open and close on the same (dev_t, otype) at the same time. 660 * Open count already incremented (SN_HOLD) on non-zero return. 661 * The wait is interruptible by a signal if the driver sets the 662 * D_OPEN_RETURNS_EINTR cb_ops(9S) cb_flag or sets the 663 * ddi-open-returns-eintr(9P) property in its driver.conf. 664 */ 665 if ((devopsp[maj]->devo_cb_ops->cb_flag & D_OPEN_RETURNS_EINTR) || 666 (devnamesp[maj].dn_flags & DN_OPEN_RETURNS_EINTR)) 667 open_returns_eintr = 1; 668 else 669 open_returns_eintr = 0; 670 while ((spec_locksp_ret = SYNCHOLD_CSP_SIG(csp, open_returns_eintr)) != 671 SUCCESS) { 672 if (spec_locksp_ret == INTR) 673 return (EINTR); 674 } 675 676 /* non streams open */ 677 type = (vp->v_type == VBLK ? OTYP_BLK : OTYP_CHR); 678 error = dev_open(&newdev, flag, type, cr); 679 680 /* deal with clone case */ 681 if (error == 0 && dev != newdev) { 682 error = spec_clone(vpp, newdev, vp->v_type, NULL); 683 /* 684 * bail on clone failure, further processing 685 * results in undefined behaviors. 686 */ 687 if (error != 0) 688 return (error); 689 sp = VTOS(*vpp); 690 csp = VTOS(sp->s_commonvp); 691 } 692 693 /* 694 * create contracts only for userland opens 695 * Successful open and cloning is done at this point. 696 */ 697 if (error == 0 && !(flag & FKLYR)) { 698 int spec_type; 699 spec_type = (STOV(csp)->v_type == VCHR) ? S_IFCHR : S_IFBLK; 700 if (contract_device_open(newdev, spec_type, NULL) != 0) { 701 error = EIO; 702 } 703 } 704 705 if (error == 0) { 706 sp->s_size = SPEC_SIZE(csp); 707 708 if ((csp->s_flag & SNEEDCLOSE) == 0) { 709 int nmaj = getmajor(newdev); 710 mutex_enter(&csp->s_lock); 711 /* successful open needs a close later */ 712 csp->s_flag |= SNEEDCLOSE; 713 714 /* 715 * Invalidate possible cached "unknown" size 716 * established by a VOP_GETATTR while open was in 717 * progress, and the driver might fail prop_op(9E). 718 */ 719 if (((cvp->v_type == VCHR) && (csp->s_size == 0)) || 720 ((cvp->v_type == VBLK) && 721 (csp->s_size == UNKNOWN_SIZE))) 722 csp->s_flag &= ~SSIZEVALID; 723 724 if (devopsp[nmaj]->devo_cb_ops->cb_flag & D_64BIT) 725 csp->s_flag |= SLOFFSET; 726 if (devopsp[nmaj]->devo_cb_ops->cb_flag & D_U64BIT) 727 csp->s_flag |= SLOFFSET | SANYOFFSET; 728 mutex_exit(&csp->s_lock); 729 } 730 return (0); 731 } 732 733 /* 734 * Open failed. If we missed a close operation because 735 * we were trying to get the device open and it is the 736 * last in progress open that is failing then call close. 737 * 738 * NOTE: Only non-streams open has this race condition. 739 */ 740 mutex_enter(&csp->s_lock); 741 csp->s_count--; /* decrement open count : SN_RELE */ 742 if ((csp->s_count == 0) && /* no outstanding open */ 743 (csp->s_mapcnt == 0) && /* no mapping */ 744 (csp->s_flag & SNEEDCLOSE)) { /* need a close */ 745 csp->s_flag &= ~(SNEEDCLOSE | SSIZEVALID); 746 747 /* See comment in spec_close() */ 748 if (csp->s_flag & (SCLONE | SSELFCLONE)) 749 csp->s_flag &= ~SDIPSET; 750 751 csp->s_flag |= SCLOSING; 752 mutex_exit(&csp->s_lock); 753 754 ASSERT(*vpp != NULL); 755 (void) device_close(*vpp, flag, cr); 756 757 mutex_enter(&csp->s_lock); 758 csp->s_flag &= ~SCLOSING; 759 mutex_exit(&csp->s_lock); 760 } else { 761 mutex_exit(&csp->s_lock); 762 } 763 return (error); 764 765 streams_open: 766 /* 767 * Lock common snode to prevent any new clone opens on this 768 * stream while one is in progress. This is necessary since 769 * the stream currently associated with the clone device will 770 * not be part of it after the clone open completes. Unfortunately 771 * we don't know in advance if this is a clone 772 * device so we have to lock all opens. 773 * 774 * If we fail, it's because of an interrupt - EINTR return is an 775 * expected aspect of opening a stream so we don't need to check 776 * D_OPEN_RETURNS_EINTR. Open count already incremented (SN_HOLD) 777 * on non-zero return. 778 */ 779 if (LOCKHOLD_CSP_SIG(csp) != SUCCESS) 780 return (EINTR); 781 782 error = stropen(cvp, &newdev, flag, cr); 783 stp = cvp->v_stream; 784 785 /* deal with the clone case */ 786 if ((error == 0) && (dev != newdev)) { 787 vp->v_stream = cvp->v_stream = NULL; 788 UNLOCK_CSP(csp); 789 error = spec_clone(vpp, newdev, vp->v_type, stp); 790 /* 791 * bail on clone failure, further processing 792 * results in undefined behaviors. 793 */ 794 if (error != 0) 795 return (error); 796 sp = VTOS(*vpp); 797 csp = VTOS(sp->s_commonvp); 798 } else if (error == 0) { 799 vp->v_stream = stp; 800 UNLOCK_CSP(csp); 801 } 802 803 /* 804 * create contracts only for userland opens 805 * Successful open and cloning is done at this point. 806 */ 807 if (error == 0 && !(flag & FKLYR)) { 808 /* STREAM is of type S_IFCHR */ 809 if (contract_device_open(newdev, S_IFCHR, &ct) != 0) { 810 UNLOCK_CSP(csp); 811 (void) spec_close(vp, flag, 1, 0, cr, cc); 812 return (EIO); 813 } 814 } 815 816 if (error == 0) { 817 /* STREAMS devices don't have a size */ 818 sp->s_size = csp->s_size = 0; 819 820 if (!(stp->sd_flag & STRISTTY) || (flag & FNOCTTY)) 821 return (0); 822 823 /* try to allocate it as a controlling terminal */ 824 if (strctty(stp) != EINTR) 825 return (0); 826 827 /* strctty() was interrupted by a signal */ 828 if (ct) { 829 /* we only create contracts for userland opens */ 830 ASSERT(ttoproc(curthread)); 831 (void) contract_abandon(ct, ttoproc(curthread), 0); 832 } 833 (void) spec_close(vp, flag, 1, 0, cr, cc); 834 return (EINTR); 835 } 836 837 /* 838 * Deal with stropen failure. 839 * 840 * sd_flag in the stream head cannot change since the 841 * common snode is locked before the call to stropen(). 842 */ 843 if ((stp != NULL) && (stp->sd_flag & STREOPENFAIL)) { 844 /* 845 * Open failed part way through. 846 */ 847 mutex_enter(&stp->sd_lock); 848 stp->sd_flag &= ~STREOPENFAIL; 849 mutex_exit(&stp->sd_lock); 850 851 UNLOCK_CSP(csp); 852 (void) spec_close(vp, flag, 1, 0, cr, cc); 853 } else { 854 UNLOCK_CSP(csp); 855 SN_RELE(csp); 856 } 857 858 /* 859 * Resolution for STREAMS vs. regular character device: If the 860 * STREAMS open(9e) returns ENOSTR, then try an ordinary device 861 * open instead. 862 */ 863 if (error == ENOSTR) { 864 goto not_streams; 865 } 866 return (error); 867 } 868 869 /*ARGSUSED2*/ 870 static int 871 spec_close( 872 struct vnode *vp, 873 int flag, 874 int count, 875 offset_t offset, 876 struct cred *cr, 877 caller_context_t *ct) 878 { 879 struct vnode *cvp; 880 struct snode *sp, *csp; 881 enum vtype type; 882 dev_t dev; 883 int error = 0; 884 int sysclone; 885 886 if (!(flag & FKLYR)) { 887 /* this only applies to closes of devices from userland */ 888 cleanlocks(vp, ttoproc(curthread)->p_pid, 0); 889 cleanshares(vp, ttoproc(curthread)->p_pid); 890 if (vp->v_stream) 891 strclean(vp); 892 } 893 if (count > 1) 894 return (0); 895 896 /* we allow close to succeed even if device is fenced off */ 897 sp = VTOS(vp); 898 cvp = sp->s_commonvp; 899 900 dev = sp->s_dev; 901 type = vp->v_type; 902 903 ASSERT(type == VCHR || type == VBLK); 904 905 /* 906 * Prevent close/close and close/open races by serializing closes 907 * on this common snode. Clone opens are held up until after 908 * we have closed this device so the streams linkage is maintained 909 */ 910 csp = VTOS(cvp); 911 912 LOCK_CSP(csp); 913 mutex_enter(&csp->s_lock); 914 915 csp->s_count--; /* one fewer open reference : SN_RELE */ 916 sysclone = sp->s_flag & SCLONE; 917 918 /* 919 * Invalidate size on each close. 920 * 921 * XXX We do this on each close because we don't have interfaces that 922 * allow a driver to invalidate the size. Since clearing this on each 923 * close this causes property overhead we skip /dev/null and 924 * /dev/zero to avoid degrading kenbus performance. 925 */ 926 if (getmajor(dev) != mm_major) 927 csp->s_flag &= ~SSIZEVALID; 928 929 /* 930 * Only call the close routine when the last open reference through 931 * any [s, v]node goes away. This can be checked by looking at 932 * s_count on the common vnode. 933 */ 934 if ((csp->s_count == 0) && (csp->s_mapcnt == 0)) { 935 /* we don't need a close */ 936 csp->s_flag &= ~(SNEEDCLOSE | SSIZEVALID); 937 938 /* 939 * A cloning driver may open-clone to the same dev_t that we 940 * are closing before spec_inactive destroys the common snode. 941 * If this occurs the s_dip association needs to be reevaluated. 942 * We clear SDIPSET to force reevaluation in this case. When 943 * reevaluation occurs (by spec_clone after open), if the 944 * devinfo association has changed then the old association 945 * will be released as the new association is established by 946 * spec_assoc_vp_with_devi(). 947 */ 948 if (csp->s_flag & (SCLONE | SSELFCLONE)) 949 csp->s_flag &= ~SDIPSET; 950 951 csp->s_flag |= SCLOSING; 952 mutex_exit(&csp->s_lock); 953 error = device_close(vp, flag, cr); 954 955 /* 956 * Decrement the devops held in clnopen() 957 */ 958 if (sysclone) { 959 ddi_rele_driver(getmajor(dev)); 960 } 961 mutex_enter(&csp->s_lock); 962 csp->s_flag &= ~SCLOSING; 963 } 964 965 UNLOCK_CSP_LOCK_HELD(csp); 966 mutex_exit(&csp->s_lock); 967 968 return (error); 969 } 970 971 /*ARGSUSED2*/ 972 static int 973 spec_read( 974 struct vnode *vp, 975 struct uio *uiop, 976 int ioflag, 977 struct cred *cr, 978 caller_context_t *ct) 979 { 980 int error; 981 struct snode *sp = VTOS(vp); 982 dev_t dev = sp->s_dev; 983 size_t n; 984 ulong_t on; 985 u_offset_t bdevsize; 986 offset_t maxoff; 987 offset_t off; 988 struct vnode *blkvp; 989 990 ASSERT(vp->v_type == VCHR || vp->v_type == VBLK); 991 992 if (vp->v_stream) { 993 ASSERT(vp->v_type == VCHR); 994 smark(sp, SACC); 995 return (strread(vp, uiop, cr)); 996 } 997 998 if (uiop->uio_resid == 0) 999 return (0); 1000 1001 /* 1002 * Plain old character devices that set D_U64BIT can have 1003 * unrestricted offsets. 1004 */ 1005 maxoff = spec_maxoffset(vp); 1006 ASSERT(maxoff != -1 || vp->v_type == VCHR); 1007 1008 if (maxoff != -1 && (uiop->uio_loffset < 0 || 1009 uiop->uio_loffset + uiop->uio_resid > maxoff)) 1010 return (EINVAL); 1011 1012 if (vp->v_type == VCHR) { 1013 smark(sp, SACC); 1014 ASSERT(vp->v_stream == NULL); 1015 return (cdev_read(dev, uiop, cr)); 1016 } 1017 1018 /* 1019 * Block device. 1020 */ 1021 error = 0; 1022 blkvp = sp->s_commonvp; 1023 bdevsize = SPEC_SIZE(VTOS(blkvp)); 1024 1025 do { 1026 caddr_t base; 1027 offset_t diff; 1028 1029 off = uiop->uio_loffset & (offset_t)MAXBMASK; 1030 on = (size_t)(uiop->uio_loffset & MAXBOFFSET); 1031 n = (size_t)MIN(MAXBSIZE - on, uiop->uio_resid); 1032 diff = bdevsize - uiop->uio_loffset; 1033 1034 if (diff <= 0) 1035 break; 1036 if (diff < n) 1037 n = (size_t)diff; 1038 1039 if (vpm_enable) { 1040 error = vpm_data_copy(blkvp, (u_offset_t)(off + on), 1041 n, uiop, 1, NULL, 0, S_READ); 1042 } else { 1043 base = segmap_getmapflt(segkmap, blkvp, 1044 (u_offset_t)(off + on), n, 1, S_READ); 1045 1046 error = uiomove(base + on, n, UIO_READ, uiop); 1047 } 1048 if (!error) { 1049 int flags = 0; 1050 /* 1051 * If we read a whole block, we won't need this 1052 * buffer again soon. 1053 */ 1054 if (n + on == MAXBSIZE) 1055 flags = SM_DONTNEED | SM_FREE; 1056 if (vpm_enable) { 1057 error = vpm_sync_pages(blkvp, off, n, flags); 1058 } else { 1059 error = segmap_release(segkmap, base, flags); 1060 } 1061 } else { 1062 if (vpm_enable) { 1063 (void) vpm_sync_pages(blkvp, off, n, 0); 1064 } else { 1065 (void) segmap_release(segkmap, base, 0); 1066 } 1067 if (bdevsize == UNKNOWN_SIZE) { 1068 error = 0; 1069 break; 1070 } 1071 } 1072 } while (error == 0 && uiop->uio_resid > 0 && n != 0); 1073 1074 return (error); 1075 } 1076 1077 /*ARGSUSED*/ 1078 static int 1079 spec_write( 1080 struct vnode *vp, 1081 struct uio *uiop, 1082 int ioflag, 1083 struct cred *cr, 1084 caller_context_t *ct) 1085 { 1086 int error; 1087 struct snode *sp = VTOS(vp); 1088 dev_t dev = sp->s_dev; 1089 size_t n; 1090 ulong_t on; 1091 u_offset_t bdevsize; 1092 offset_t maxoff; 1093 offset_t off; 1094 struct vnode *blkvp; 1095 1096 ASSERT(vp->v_type == VCHR || vp->v_type == VBLK); 1097 1098 if (vp->v_stream) { 1099 ASSERT(vp->v_type == VCHR); 1100 smark(sp, SUPD); 1101 return (strwrite(vp, uiop, cr)); 1102 } 1103 1104 /* 1105 * Plain old character devices that set D_U64BIT can have 1106 * unrestricted offsets. 1107 */ 1108 maxoff = spec_maxoffset(vp); 1109 ASSERT(maxoff != -1 || vp->v_type == VCHR); 1110 1111 if (maxoff != -1 && (uiop->uio_loffset < 0 || 1112 uiop->uio_loffset + uiop->uio_resid > maxoff)) 1113 return (EINVAL); 1114 1115 if (vp->v_type == VCHR) { 1116 smark(sp, SUPD); 1117 ASSERT(vp->v_stream == NULL); 1118 return (cdev_write(dev, uiop, cr)); 1119 } 1120 1121 if (uiop->uio_resid == 0) 1122 return (0); 1123 1124 error = 0; 1125 blkvp = sp->s_commonvp; 1126 bdevsize = SPEC_SIZE(VTOS(blkvp)); 1127 1128 do { 1129 int pagecreate; 1130 int newpage; 1131 caddr_t base; 1132 offset_t diff; 1133 1134 off = uiop->uio_loffset & (offset_t)MAXBMASK; 1135 on = (ulong_t)(uiop->uio_loffset & MAXBOFFSET); 1136 n = (size_t)MIN(MAXBSIZE - on, uiop->uio_resid); 1137 pagecreate = 0; 1138 1139 diff = bdevsize - uiop->uio_loffset; 1140 if (diff <= 0) { 1141 error = ENXIO; 1142 break; 1143 } 1144 if (diff < n) 1145 n = (size_t)diff; 1146 1147 /* 1148 * Check to see if we can skip reading in the page 1149 * and just allocate the memory. We can do this 1150 * if we are going to rewrite the entire mapping 1151 * or if we are going to write to end of the device 1152 * from the beginning of the mapping. 1153 */ 1154 if (n == MAXBSIZE || (on == 0 && (off + n) == bdevsize)) 1155 pagecreate = 1; 1156 1157 newpage = 0; 1158 1159 /* 1160 * Touch the page and fault it in if it is not in core 1161 * before segmap_getmapflt or vpm_data_copy can lock it. 1162 * This is to avoid the deadlock if the buffer is mapped 1163 * to the same file through mmap which we want to write. 1164 */ 1165 uio_prefaultpages((long)n, uiop); 1166 1167 if (vpm_enable) { 1168 error = vpm_data_copy(blkvp, (u_offset_t)(off + on), 1169 n, uiop, !pagecreate, NULL, 0, S_WRITE); 1170 } else { 1171 base = segmap_getmapflt(segkmap, blkvp, 1172 (u_offset_t)(off + on), n, !pagecreate, S_WRITE); 1173 1174 /* 1175 * segmap_pagecreate() returns 1 if it calls 1176 * page_create_va() to allocate any pages. 1177 */ 1178 1179 if (pagecreate) 1180 newpage = segmap_pagecreate(segkmap, base + on, 1181 n, 0); 1182 1183 error = uiomove(base + on, n, UIO_WRITE, uiop); 1184 } 1185 1186 if (!vpm_enable && pagecreate && 1187 uiop->uio_loffset < 1188 P2ROUNDUP_TYPED(off + on + n, PAGESIZE, offset_t)) { 1189 /* 1190 * We created pages w/o initializing them completely, 1191 * thus we need to zero the part that wasn't set up. 1192 * This can happen if we write to the end of the device 1193 * or if we had some sort of error during the uiomove. 1194 */ 1195 long nzero; 1196 offset_t nmoved; 1197 1198 nmoved = (uiop->uio_loffset - (off + on)); 1199 if (nmoved < 0 || nmoved > n) { 1200 panic("spec_write: nmoved bogus"); 1201 /*NOTREACHED*/ 1202 } 1203 nzero = (long)P2ROUNDUP(on + n, PAGESIZE) - 1204 (on + nmoved); 1205 if (nzero < 0 || (on + nmoved + nzero > MAXBSIZE)) { 1206 panic("spec_write: nzero bogus"); 1207 /*NOTREACHED*/ 1208 } 1209 (void) kzero(base + on + nmoved, (size_t)nzero); 1210 } 1211 1212 /* 1213 * Unlock the pages which have been allocated by 1214 * page_create_va() in segmap_pagecreate(). 1215 */ 1216 if (!vpm_enable && newpage) 1217 segmap_pageunlock(segkmap, base + on, 1218 (size_t)n, S_WRITE); 1219 1220 if (error == 0) { 1221 int flags = 0; 1222 1223 /* 1224 * Force write back for synchronous write cases. 1225 */ 1226 if (ioflag & (FSYNC|FDSYNC)) 1227 flags = SM_WRITE; 1228 else if (n + on == MAXBSIZE || IS_SWAPVP(vp)) { 1229 /* 1230 * Have written a whole block. 1231 * Start an asynchronous write and 1232 * mark the buffer to indicate that 1233 * it won't be needed again soon. 1234 * Push swap files here, since it 1235 * won't happen anywhere else. 1236 */ 1237 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED; 1238 } 1239 smark(sp, SUPD|SCHG); 1240 if (vpm_enable) { 1241 error = vpm_sync_pages(blkvp, off, n, flags); 1242 } else { 1243 error = segmap_release(segkmap, base, flags); 1244 } 1245 } else { 1246 if (vpm_enable) { 1247 (void) vpm_sync_pages(blkvp, off, n, SM_INVAL); 1248 } else { 1249 (void) segmap_release(segkmap, base, SM_INVAL); 1250 } 1251 } 1252 1253 } while (error == 0 && uiop->uio_resid > 0 && n != 0); 1254 1255 return (error); 1256 } 1257 1258 /*ARGSUSED6*/ 1259 static int 1260 spec_ioctl(struct vnode *vp, int cmd, intptr_t arg, int mode, struct cred *cr, 1261 int *rvalp, caller_context_t *ct) 1262 { 1263 struct snode *sp; 1264 dev_t dev; 1265 int error; 1266 1267 if (vp->v_type != VCHR) 1268 return (ENOTTY); 1269 1270 /* 1271 * allow ioctls() to go through even for fenced snodes, as they 1272 * may include unconfiguration operation - for example popping of 1273 * streams modules. 1274 */ 1275 1276 sp = VTOS(vp); 1277 dev = sp->s_dev; 1278 if (vp->v_stream) { 1279 error = strioctl(vp, cmd, arg, mode, U_TO_K, cr, rvalp); 1280 } else { 1281 error = cdev_ioctl(dev, cmd, arg, mode, cr, rvalp); 1282 } 1283 return (error); 1284 } 1285 1286 static int 1287 spec_getattr( 1288 struct vnode *vp, 1289 struct vattr *vap, 1290 int flags, 1291 struct cred *cr, 1292 caller_context_t *ct) 1293 { 1294 int error; 1295 struct snode *sp; 1296 struct vnode *realvp; 1297 1298 /* With ATTR_COMM we will not get attributes from realvp */ 1299 if (flags & ATTR_COMM) { 1300 sp = VTOS(vp); 1301 vp = sp->s_commonvp; 1302 } 1303 sp = VTOS(vp); 1304 1305 /* we want stat() to fail with ENXIO if the device is fenced off */ 1306 if (S_ISFENCED(sp)) 1307 return (ENXIO); 1308 1309 realvp = sp->s_realvp; 1310 1311 if (realvp == NULL) { 1312 static int snode_shift = 0; 1313 1314 /* 1315 * Calculate the amount of bitshift to a snode pointer which 1316 * will still keep it unique. See below. 1317 */ 1318 if (snode_shift == 0) 1319 snode_shift = highbit(sizeof (struct snode)); 1320 ASSERT(snode_shift > 0); 1321 1322 /* 1323 * No real vnode behind this one. Fill in the fields 1324 * from the snode. 1325 * 1326 * This code should be refined to return only the 1327 * attributes asked for instead of all of them. 1328 */ 1329 vap->va_type = vp->v_type; 1330 vap->va_mode = 0; 1331 vap->va_uid = vap->va_gid = 0; 1332 vap->va_fsid = sp->s_fsid; 1333 1334 /* 1335 * If the va_nodeid is > MAX_USHORT, then i386 stats might 1336 * fail. So we shift down the snode pointer to try and get 1337 * the most uniqueness into 16-bits. 1338 */ 1339 vap->va_nodeid = ((ino64_t)(uintptr_t)sp >> snode_shift) & 1340 0xFFFF; 1341 vap->va_nlink = 0; 1342 vap->va_rdev = sp->s_dev; 1343 1344 /* 1345 * va_nblocks is the number of 512 byte blocks used to store 1346 * the mknod for the device, not the number of blocks on the 1347 * device itself. This is typically zero since the mknod is 1348 * represented directly in the inode itself. 1349 */ 1350 vap->va_nblocks = 0; 1351 } else { 1352 error = VOP_GETATTR(realvp, vap, flags, cr, ct); 1353 if (error != 0) 1354 return (error); 1355 } 1356 1357 /* set the size from the snode */ 1358 vap->va_size = SPEC_SIZE(VTOS(sp->s_commonvp)); 1359 vap->va_blksize = MAXBSIZE; 1360 1361 mutex_enter(&sp->s_lock); 1362 vap->va_atime.tv_sec = sp->s_atime; 1363 vap->va_mtime.tv_sec = sp->s_mtime; 1364 vap->va_ctime.tv_sec = sp->s_ctime; 1365 mutex_exit(&sp->s_lock); 1366 1367 vap->va_atime.tv_nsec = 0; 1368 vap->va_mtime.tv_nsec = 0; 1369 vap->va_ctime.tv_nsec = 0; 1370 vap->va_seq = 0; 1371 1372 return (0); 1373 } 1374 1375 static int 1376 spec_setattr( 1377 struct vnode *vp, 1378 struct vattr *vap, 1379 int flags, 1380 struct cred *cr, 1381 caller_context_t *ct) 1382 { 1383 struct snode *sp = VTOS(vp); 1384 struct vnode *realvp; 1385 int error; 1386 1387 /* fail with ENXIO if the device is fenced off */ 1388 if (S_ISFENCED(sp)) 1389 return (ENXIO); 1390 1391 if (vp->v_type == VCHR && vp->v_stream && (vap->va_mask & AT_SIZE)) { 1392 /* 1393 * 1135080: O_TRUNC should have no effect on 1394 * named pipes and terminal devices. 1395 */ 1396 ASSERT(vap->va_mask == AT_SIZE); 1397 return (0); 1398 } 1399 1400 if ((realvp = sp->s_realvp) == NULL) 1401 error = 0; /* no real vnode to update */ 1402 else 1403 error = VOP_SETATTR(realvp, vap, flags, cr, ct); 1404 if (error == 0) { 1405 /* 1406 * If times were changed, update snode. 1407 */ 1408 mutex_enter(&sp->s_lock); 1409 if (vap->va_mask & AT_ATIME) 1410 sp->s_atime = vap->va_atime.tv_sec; 1411 if (vap->va_mask & AT_MTIME) { 1412 sp->s_mtime = vap->va_mtime.tv_sec; 1413 sp->s_ctime = gethrestime_sec(); 1414 } 1415 mutex_exit(&sp->s_lock); 1416 } 1417 return (error); 1418 } 1419 1420 static int 1421 spec_access( 1422 struct vnode *vp, 1423 int mode, 1424 int flags, 1425 struct cred *cr, 1426 caller_context_t *ct) 1427 { 1428 struct vnode *realvp; 1429 struct snode *sp = VTOS(vp); 1430 1431 /* fail with ENXIO if the device is fenced off */ 1432 if (S_ISFENCED(sp)) 1433 return (ENXIO); 1434 1435 if ((realvp = sp->s_realvp) != NULL) 1436 return (VOP_ACCESS(realvp, mode, flags, cr, ct)); 1437 else 1438 return (0); /* Allow all access. */ 1439 } 1440 1441 /* 1442 * This can be called if creat or an open with O_CREAT is done on the root 1443 * of a lofs mount where the mounted entity is a special file. 1444 */ 1445 /*ARGSUSED*/ 1446 static int 1447 spec_create( 1448 struct vnode *dvp, 1449 char *name, 1450 vattr_t *vap, 1451 enum vcexcl excl, 1452 int mode, 1453 struct vnode **vpp, 1454 struct cred *cr, 1455 int flag, 1456 caller_context_t *ct, 1457 vsecattr_t *vsecp) 1458 { 1459 int error; 1460 struct snode *sp = VTOS(dvp); 1461 1462 /* fail with ENXIO if the device is fenced off */ 1463 if (S_ISFENCED(sp)) 1464 return (ENXIO); 1465 1466 ASSERT(dvp && (dvp->v_flag & VROOT) && *name == '\0'); 1467 if (excl == NONEXCL) { 1468 if (mode && (error = spec_access(dvp, mode, 0, cr, ct))) 1469 return (error); 1470 VN_HOLD(dvp); 1471 return (0); 1472 } 1473 return (EEXIST); 1474 } 1475 1476 /* 1477 * In order to sync out the snode times without multi-client problems, 1478 * make sure the times written out are never earlier than the times 1479 * already set in the vnode. 1480 */ 1481 static int 1482 spec_fsync( 1483 struct vnode *vp, 1484 int syncflag, 1485 struct cred *cr, 1486 caller_context_t *ct) 1487 { 1488 struct snode *sp = VTOS(vp); 1489 struct vnode *realvp; 1490 struct vnode *cvp; 1491 struct vattr va, vatmp; 1492 1493 /* allow syncing even if device is fenced off */ 1494 1495 /* If times didn't change, don't flush anything. */ 1496 mutex_enter(&sp->s_lock); 1497 if ((sp->s_flag & (SACC|SUPD|SCHG)) == 0 && vp->v_type != VBLK) { 1498 mutex_exit(&sp->s_lock); 1499 return (0); 1500 } 1501 sp->s_flag &= ~(SACC|SUPD|SCHG); 1502 mutex_exit(&sp->s_lock); 1503 cvp = sp->s_commonvp; 1504 realvp = sp->s_realvp; 1505 1506 if (vp->v_type == VBLK && cvp != vp && vn_has_cached_data(cvp) && 1507 (cvp->v_flag & VISSWAP) == 0) 1508 (void) VOP_PUTPAGE(cvp, (offset_t)0, 0, 0, cr, ct); 1509 1510 /* 1511 * For devices that support it, force write cache to stable storage. 1512 * We don't need the lock to check s_flags since we can treat 1513 * SNOFLUSH as a hint. 1514 */ 1515 if ((vp->v_type == VBLK || vp->v_type == VCHR) && 1516 !(sp->s_flag & SNOFLUSH)) { 1517 int rval, rc; 1518 struct dk_callback spec_callback; 1519 1520 spec_callback.dkc_flag = FLUSH_VOLATILE; 1521 spec_callback.dkc_callback = NULL; 1522 1523 /* synchronous flush on volatile cache */ 1524 rc = cdev_ioctl(vp->v_rdev, DKIOCFLUSHWRITECACHE, 1525 (intptr_t)&spec_callback, FNATIVE|FKIOCTL, cr, &rval); 1526 1527 if (rc == ENOTSUP || rc == ENOTTY) { 1528 mutex_enter(&sp->s_lock); 1529 sp->s_flag |= SNOFLUSH; 1530 mutex_exit(&sp->s_lock); 1531 } 1532 } 1533 1534 /* 1535 * If no real vnode to update, don't flush anything. 1536 */ 1537 if (realvp == NULL) 1538 return (0); 1539 1540 vatmp.va_mask = AT_ATIME|AT_MTIME; 1541 if (VOP_GETATTR(realvp, &vatmp, 0, cr, ct) == 0) { 1542 1543 mutex_enter(&sp->s_lock); 1544 if (vatmp.va_atime.tv_sec > sp->s_atime) 1545 va.va_atime = vatmp.va_atime; 1546 else { 1547 va.va_atime.tv_sec = sp->s_atime; 1548 va.va_atime.tv_nsec = 0; 1549 } 1550 if (vatmp.va_mtime.tv_sec > sp->s_mtime) 1551 va.va_mtime = vatmp.va_mtime; 1552 else { 1553 va.va_mtime.tv_sec = sp->s_mtime; 1554 va.va_mtime.tv_nsec = 0; 1555 } 1556 mutex_exit(&sp->s_lock); 1557 1558 va.va_mask = AT_ATIME|AT_MTIME; 1559 (void) VOP_SETATTR(realvp, &va, 0, cr, ct); 1560 } 1561 (void) VOP_FSYNC(realvp, syncflag, cr, ct); 1562 return (0); 1563 } 1564 1565 /*ARGSUSED*/ 1566 static void 1567 spec_inactive(struct vnode *vp, struct cred *cr, caller_context_t *ct) 1568 { 1569 struct snode *sp = VTOS(vp); 1570 struct vnode *cvp; 1571 struct vnode *rvp; 1572 1573 /* 1574 * If no one has reclaimed the vnode, remove from the 1575 * cache now. 1576 */ 1577 if (vp->v_count < 1) { 1578 panic("spec_inactive: Bad v_count"); 1579 /*NOTREACHED*/ 1580 } 1581 mutex_enter(&stable_lock); 1582 1583 mutex_enter(&vp->v_lock); 1584 /* 1585 * Drop the temporary hold by vn_rele now 1586 */ 1587 if (--vp->v_count != 0) { 1588 mutex_exit(&vp->v_lock); 1589 mutex_exit(&stable_lock); 1590 return; 1591 } 1592 mutex_exit(&vp->v_lock); 1593 1594 sdelete(sp); 1595 mutex_exit(&stable_lock); 1596 1597 /* We are the sole owner of sp now */ 1598 cvp = sp->s_commonvp; 1599 rvp = sp->s_realvp; 1600 1601 if (rvp) { 1602 /* 1603 * If the snode times changed, then update the times 1604 * associated with the "realvp". 1605 */ 1606 if ((sp->s_flag & (SACC|SUPD|SCHG)) != 0) { 1607 1608 struct vattr va, vatmp; 1609 1610 mutex_enter(&sp->s_lock); 1611 sp->s_flag &= ~(SACC|SUPD|SCHG); 1612 mutex_exit(&sp->s_lock); 1613 vatmp.va_mask = AT_ATIME|AT_MTIME; 1614 /* 1615 * The user may not own the device, but we 1616 * want to update the attributes anyway. 1617 */ 1618 if (VOP_GETATTR(rvp, &vatmp, 0, kcred, ct) == 0) { 1619 if (vatmp.va_atime.tv_sec > sp->s_atime) 1620 va.va_atime = vatmp.va_atime; 1621 else { 1622 va.va_atime.tv_sec = sp->s_atime; 1623 va.va_atime.tv_nsec = 0; 1624 } 1625 if (vatmp.va_mtime.tv_sec > sp->s_mtime) 1626 va.va_mtime = vatmp.va_mtime; 1627 else { 1628 va.va_mtime.tv_sec = sp->s_mtime; 1629 va.va_mtime.tv_nsec = 0; 1630 } 1631 1632 va.va_mask = AT_ATIME|AT_MTIME; 1633 (void) VOP_SETATTR(rvp, &va, 0, kcred, ct); 1634 } 1635 } 1636 } 1637 ASSERT(!vn_has_cached_data(vp)); 1638 vn_invalid(vp); 1639 1640 /* if we are sharing another file systems vfs, release it */ 1641 if (vp->v_vfsp && (vp->v_vfsp != &spec_vfs)) 1642 VFS_RELE(vp->v_vfsp); 1643 1644 /* if we have a realvp, release the realvp */ 1645 if (rvp) 1646 VN_RELE(rvp); 1647 1648 /* if we have a common, release the common */ 1649 if (cvp && (cvp != vp)) { 1650 VN_RELE(cvp); 1651 #ifdef DEBUG 1652 } else if (cvp) { 1653 /* 1654 * if this is the last reference to a common vnode, any 1655 * associated stream had better have been closed 1656 */ 1657 ASSERT(cvp == vp); 1658 ASSERT(cvp->v_stream == NULL); 1659 #endif /* DEBUG */ 1660 } 1661 1662 /* 1663 * if we have a hold on a devinfo node (established by 1664 * spec_assoc_vp_with_devi), release the hold 1665 */ 1666 if (sp->s_dip) 1667 ddi_release_devi(sp->s_dip); 1668 1669 /* 1670 * If we have an associated device policy, release it. 1671 */ 1672 if (sp->s_plcy != NULL) 1673 dpfree(sp->s_plcy); 1674 1675 /* 1676 * If all holds on the devinfo node are through specfs/devfs 1677 * and we just destroyed the last specfs node associated with the 1678 * device, then the devinfo node reference count should now be 1679 * zero. We can't check this because there may be other holds 1680 * on the node from non file system sources: ddi_hold_devi_by_instance 1681 * for example. 1682 */ 1683 kmem_cache_free(snode_cache, sp); 1684 } 1685 1686 static int 1687 spec_fid(struct vnode *vp, struct fid *fidp, caller_context_t *ct) 1688 { 1689 struct vnode *realvp; 1690 struct snode *sp = VTOS(vp); 1691 1692 if ((realvp = sp->s_realvp) != NULL) 1693 return (VOP_FID(realvp, fidp, ct)); 1694 else 1695 return (EINVAL); 1696 } 1697 1698 /*ARGSUSED1*/ 1699 static int 1700 spec_seek( 1701 struct vnode *vp, 1702 offset_t ooff, 1703 offset_t *noffp, 1704 caller_context_t *ct) 1705 { 1706 offset_t maxoff = spec_maxoffset(vp); 1707 1708 if (maxoff == -1 || *noffp <= maxoff) 1709 return (0); 1710 else 1711 return (EINVAL); 1712 } 1713 1714 static int 1715 spec_frlock( 1716 struct vnode *vp, 1717 int cmd, 1718 struct flock64 *bfp, 1719 int flag, 1720 offset_t offset, 1721 struct flk_callback *flk_cbp, 1722 struct cred *cr, 1723 caller_context_t *ct) 1724 { 1725 struct snode *sp = VTOS(vp); 1726 struct snode *csp; 1727 1728 csp = VTOS(sp->s_commonvp); 1729 /* 1730 * If file is being mapped, disallow frlock. 1731 */ 1732 if (csp->s_mapcnt > 0) 1733 return (EAGAIN); 1734 1735 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 1736 } 1737 1738 static int 1739 spec_realvp(struct vnode *vp, struct vnode **vpp, caller_context_t *ct) 1740 { 1741 struct vnode *rvp; 1742 1743 if ((rvp = VTOS(vp)->s_realvp) != NULL) { 1744 vp = rvp; 1745 if (VOP_REALVP(vp, &rvp, ct) == 0) 1746 vp = rvp; 1747 } 1748 1749 *vpp = vp; 1750 return (0); 1751 } 1752 1753 /* 1754 * Return all the pages from [off..off + len] in block 1755 * or character device. 1756 */ 1757 /*ARGSUSED*/ 1758 static int 1759 spec_getpage( 1760 struct vnode *vp, 1761 offset_t off, 1762 size_t len, 1763 uint_t *protp, 1764 page_t *pl[], 1765 size_t plsz, 1766 struct seg *seg, 1767 caddr_t addr, 1768 enum seg_rw rw, 1769 struct cred *cr, 1770 caller_context_t *ct) 1771 { 1772 struct snode *sp = VTOS(vp); 1773 int err; 1774 1775 ASSERT(sp->s_commonvp == vp); 1776 1777 /* 1778 * XXX Given the above assertion, this might not do 1779 * what is wanted here. 1780 */ 1781 if (vp->v_flag & VNOMAP) 1782 return (ENOSYS); 1783 TRACE_4(TR_FAC_SPECFS, TR_SPECFS_GETPAGE, 1784 "specfs getpage:vp %p off %llx len %ld snode %p", 1785 vp, off, len, sp); 1786 1787 switch (vp->v_type) { 1788 case VBLK: 1789 if (protp != NULL) 1790 *protp = PROT_ALL; 1791 1792 if (((u_offset_t)off + len) > (SPEC_SIZE(sp) + PAGEOFFSET)) 1793 return (EFAULT); /* beyond EOF */ 1794 1795 err = pvn_getpages(spec_getapage, vp, (u_offset_t)off, len, 1796 protp, pl, plsz, seg, addr, rw, cr); 1797 break; 1798 1799 case VCHR: 1800 cmn_err(CE_NOTE, "spec_getpage called for character device. " 1801 "Check any non-ON consolidation drivers"); 1802 err = 0; 1803 pl[0] = (page_t *)0; 1804 break; 1805 1806 default: 1807 panic("spec_getpage: bad v_type 0x%x", vp->v_type); 1808 /*NOTREACHED*/ 1809 } 1810 1811 return (err); 1812 } 1813 1814 extern int klustsize; /* set in machdep.c */ 1815 1816 int spec_ra = 1; 1817 int spec_lostpage; /* number of times we lost original page */ 1818 1819 /*ARGSUSED2*/ 1820 static int 1821 spec_getapage( 1822 struct vnode *vp, 1823 u_offset_t off, 1824 size_t len, 1825 uint_t *protp, 1826 page_t *pl[], 1827 size_t plsz, 1828 struct seg *seg, 1829 caddr_t addr, 1830 enum seg_rw rw, 1831 struct cred *cr) 1832 { 1833 struct snode *sp; 1834 struct buf *bp; 1835 page_t *pp, *pp2; 1836 u_offset_t io_off1, io_off2; 1837 size_t io_len1; 1838 size_t io_len2; 1839 size_t blksz; 1840 u_offset_t blkoff; 1841 int dora, err; 1842 page_t *pagefound; 1843 uint_t xlen; 1844 size_t adj_klustsize; 1845 u_offset_t size; 1846 u_offset_t tmpoff; 1847 1848 sp = VTOS(vp); 1849 TRACE_3(TR_FAC_SPECFS, TR_SPECFS_GETAPAGE, 1850 "specfs getapage:vp %p off %llx snode %p", vp, off, sp); 1851 reread: 1852 1853 err = 0; 1854 bp = NULL; 1855 pp = NULL; 1856 pp2 = NULL; 1857 1858 if (pl != NULL) 1859 pl[0] = NULL; 1860 1861 size = SPEC_SIZE(VTOS(sp->s_commonvp)); 1862 1863 if (spec_ra && sp->s_nextr == off) 1864 dora = 1; 1865 else 1866 dora = 0; 1867 1868 if (size == UNKNOWN_SIZE) { 1869 dora = 0; 1870 adj_klustsize = PAGESIZE; 1871 } else { 1872 adj_klustsize = dora ? klustsize : PAGESIZE; 1873 } 1874 1875 again: 1876 if ((pagefound = page_exists(vp, off)) == NULL) { 1877 if (rw == S_CREATE) { 1878 /* 1879 * We're allocating a swap slot and it's 1880 * associated page was not found, so allocate 1881 * and return it. 1882 */ 1883 if ((pp = page_create_va(vp, off, 1884 PAGESIZE, PG_WAIT, seg, addr)) == NULL) { 1885 panic("spec_getapage: page_create"); 1886 /*NOTREACHED*/ 1887 } 1888 io_len1 = PAGESIZE; 1889 sp->s_nextr = off + PAGESIZE; 1890 } else { 1891 /* 1892 * Need to really do disk I/O to get the page(s). 1893 */ 1894 blkoff = (off / adj_klustsize) * adj_klustsize; 1895 if (size == UNKNOWN_SIZE) { 1896 blksz = PAGESIZE; 1897 } else { 1898 if (blkoff + adj_klustsize <= size) 1899 blksz = adj_klustsize; 1900 else 1901 blksz = 1902 MIN(size - blkoff, adj_klustsize); 1903 } 1904 1905 pp = pvn_read_kluster(vp, off, seg, addr, &tmpoff, 1906 &io_len1, blkoff, blksz, 0); 1907 io_off1 = tmpoff; 1908 /* 1909 * Make sure the page didn't sneek into the 1910 * cache while we blocked in pvn_read_kluster. 1911 */ 1912 if (pp == NULL) 1913 goto again; 1914 1915 /* 1916 * Zero part of page which we are not 1917 * going to be reading from disk now. 1918 */ 1919 xlen = (uint_t)(io_len1 & PAGEOFFSET); 1920 if (xlen != 0) 1921 pagezero(pp->p_prev, xlen, PAGESIZE - xlen); 1922 1923 bp = spec_startio(vp, pp, io_off1, io_len1, 1924 pl == NULL ? (B_ASYNC | B_READ) : B_READ); 1925 sp->s_nextr = io_off1 + io_len1; 1926 } 1927 } 1928 1929 if (dora && rw != S_CREATE) { 1930 u_offset_t off2; 1931 caddr_t addr2; 1932 1933 off2 = ((off / adj_klustsize) + 1) * adj_klustsize; 1934 addr2 = addr + (off2 - off); 1935 1936 pp2 = NULL; 1937 /* 1938 * If we are past EOF then don't bother trying 1939 * with read-ahead. 1940 */ 1941 if (off2 >= size) 1942 pp2 = NULL; 1943 else { 1944 if (off2 + adj_klustsize <= size) 1945 blksz = adj_klustsize; 1946 else 1947 blksz = MIN(size - off2, adj_klustsize); 1948 1949 pp2 = pvn_read_kluster(vp, off2, seg, addr2, &tmpoff, 1950 &io_len2, off2, blksz, 1); 1951 io_off2 = tmpoff; 1952 } 1953 1954 if (pp2 != NULL) { 1955 /* 1956 * Zero part of page which we are not 1957 * going to be reading from disk now. 1958 */ 1959 xlen = (uint_t)(io_len2 & PAGEOFFSET); 1960 if (xlen != 0) 1961 pagezero(pp2->p_prev, xlen, PAGESIZE - xlen); 1962 1963 (void) spec_startio(vp, pp2, io_off2, io_len2, 1964 B_READ | B_ASYNC); 1965 } 1966 } 1967 1968 if (pl == NULL) 1969 return (err); 1970 1971 if (bp != NULL) { 1972 err = biowait(bp); 1973 pageio_done(bp); 1974 1975 if (err) { 1976 if (pp != NULL) 1977 pvn_read_done(pp, B_ERROR); 1978 return (err); 1979 } 1980 } 1981 1982 if (pagefound) { 1983 se_t se = (rw == S_CREATE ? SE_EXCL : SE_SHARED); 1984 /* 1985 * Page exists in the cache, acquire the appropriate 1986 * lock. If this fails, start all over again. 1987 */ 1988 1989 if ((pp = page_lookup(vp, off, se)) == NULL) { 1990 spec_lostpage++; 1991 goto reread; 1992 } 1993 pl[0] = pp; 1994 pl[1] = NULL; 1995 1996 sp->s_nextr = off + PAGESIZE; 1997 return (0); 1998 } 1999 2000 if (pp != NULL) 2001 pvn_plist_init(pp, pl, plsz, off, io_len1, rw); 2002 return (0); 2003 } 2004 2005 /* 2006 * Flags are composed of {B_INVAL, B_DIRTY B_FREE, B_DONTNEED, B_FORCE}. 2007 * If len == 0, do from off to EOF. 2008 * 2009 * The normal cases should be len == 0 & off == 0 (entire vp list), 2010 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE 2011 * (from pageout). 2012 */ 2013 /*ARGSUSED5*/ 2014 int 2015 spec_putpage( 2016 struct vnode *vp, 2017 offset_t off, 2018 size_t len, 2019 int flags, 2020 struct cred *cr, 2021 caller_context_t *ct) 2022 { 2023 struct snode *sp = VTOS(vp); 2024 struct vnode *cvp; 2025 page_t *pp; 2026 u_offset_t io_off; 2027 size_t io_len = 0; /* for lint */ 2028 int err = 0; 2029 u_offset_t size; 2030 u_offset_t tmpoff; 2031 2032 ASSERT(vp->v_count != 0); 2033 2034 if (vp->v_flag & VNOMAP) 2035 return (ENOSYS); 2036 2037 cvp = sp->s_commonvp; 2038 size = SPEC_SIZE(VTOS(cvp)); 2039 2040 if (!vn_has_cached_data(vp) || off >= size) 2041 return (0); 2042 2043 ASSERT(vp->v_type == VBLK && cvp == vp); 2044 TRACE_4(TR_FAC_SPECFS, TR_SPECFS_PUTPAGE, 2045 "specfs putpage:vp %p off %llx len %ld snode %p", 2046 vp, off, len, sp); 2047 2048 if (len == 0) { 2049 /* 2050 * Search the entire vp list for pages >= off. 2051 */ 2052 err = pvn_vplist_dirty(vp, off, spec_putapage, 2053 flags, cr); 2054 } else { 2055 u_offset_t eoff; 2056 2057 /* 2058 * Loop over all offsets in the range [off...off + len] 2059 * looking for pages to deal with. We set limits so 2060 * that we kluster to klustsize boundaries. 2061 */ 2062 eoff = off + len; 2063 for (io_off = off; io_off < eoff && io_off < size; 2064 io_off += io_len) { 2065 /* 2066 * If we are not invalidating, synchronously 2067 * freeing or writing pages use the routine 2068 * page_lookup_nowait() to prevent reclaiming 2069 * them from the free list. 2070 */ 2071 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 2072 pp = page_lookup(vp, io_off, 2073 (flags & (B_INVAL | B_FREE)) ? 2074 SE_EXCL : SE_SHARED); 2075 } else { 2076 pp = page_lookup_nowait(vp, io_off, 2077 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 2078 } 2079 2080 if (pp == NULL || pvn_getdirty(pp, flags) == 0) 2081 io_len = PAGESIZE; 2082 else { 2083 err = spec_putapage(vp, pp, &tmpoff, &io_len, 2084 flags, cr); 2085 io_off = tmpoff; 2086 if (err != 0) 2087 break; 2088 /* 2089 * "io_off" and "io_len" are returned as 2090 * the range of pages we actually wrote. 2091 * This allows us to skip ahead more quickly 2092 * since several pages may've been dealt 2093 * with by this iteration of the loop. 2094 */ 2095 } 2096 } 2097 } 2098 return (err); 2099 } 2100 2101 2102 /* 2103 * Write out a single page, possibly klustering adjacent 2104 * dirty pages. 2105 */ 2106 /*ARGSUSED5*/ 2107 static int 2108 spec_putapage( 2109 struct vnode *vp, 2110 page_t *pp, 2111 u_offset_t *offp, /* return value */ 2112 size_t *lenp, /* return value */ 2113 int flags, 2114 struct cred *cr) 2115 { 2116 struct snode *sp = VTOS(vp); 2117 u_offset_t io_off; 2118 size_t io_len; 2119 size_t blksz; 2120 u_offset_t blkoff; 2121 int err = 0; 2122 struct buf *bp; 2123 u_offset_t size; 2124 size_t adj_klustsize; 2125 u_offset_t tmpoff; 2126 2127 /* 2128 * Destroy read ahead value since we are really going to write. 2129 */ 2130 sp->s_nextr = 0; 2131 size = SPEC_SIZE(VTOS(sp->s_commonvp)); 2132 2133 adj_klustsize = klustsize; 2134 2135 blkoff = (pp->p_offset / adj_klustsize) * adj_klustsize; 2136 2137 if (blkoff + adj_klustsize <= size) 2138 blksz = adj_klustsize; 2139 else 2140 blksz = size - blkoff; 2141 2142 /* 2143 * Find a kluster that fits in one contiguous chunk. 2144 */ 2145 pp = pvn_write_kluster(vp, pp, &tmpoff, &io_len, blkoff, 2146 blksz, flags); 2147 io_off = tmpoff; 2148 2149 /* 2150 * Check for page length rounding problems 2151 * XXX - Is this necessary? 2152 */ 2153 if (io_off + io_len > size) { 2154 ASSERT((io_off + io_len) - size < PAGESIZE); 2155 io_len = size - io_off; 2156 } 2157 2158 bp = spec_startio(vp, pp, io_off, io_len, B_WRITE | flags); 2159 2160 /* 2161 * Wait for i/o to complete if the request is not B_ASYNC. 2162 */ 2163 if ((flags & B_ASYNC) == 0) { 2164 err = biowait(bp); 2165 pageio_done(bp); 2166 pvn_write_done(pp, ((err) ? B_ERROR : 0) | B_WRITE | flags); 2167 } 2168 2169 if (offp) 2170 *offp = io_off; 2171 if (lenp) 2172 *lenp = io_len; 2173 TRACE_4(TR_FAC_SPECFS, TR_SPECFS_PUTAPAGE, 2174 "specfs putapage:vp %p offp %p snode %p err %d", 2175 vp, offp, sp, err); 2176 return (err); 2177 } 2178 2179 /* 2180 * Flags are composed of {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED} 2181 */ 2182 static struct buf * 2183 spec_startio( 2184 struct vnode *vp, 2185 page_t *pp, 2186 u_offset_t io_off, 2187 size_t io_len, 2188 int flags) 2189 { 2190 struct buf *bp; 2191 2192 bp = pageio_setup(pp, io_len, vp, flags); 2193 2194 bp->b_edev = vp->v_rdev; 2195 bp->b_dev = cmpdev(vp->v_rdev); 2196 bp->b_blkno = btodt(io_off); 2197 bp->b_un.b_addr = (caddr_t)0; 2198 2199 (void) bdev_strategy(bp); 2200 2201 if (flags & B_READ) 2202 lwp_stat_update(LWP_STAT_INBLK, 1); 2203 else 2204 lwp_stat_update(LWP_STAT_OUBLK, 1); 2205 2206 return (bp); 2207 } 2208 2209 static int 2210 spec_poll( 2211 struct vnode *vp, 2212 short events, 2213 int anyyet, 2214 short *reventsp, 2215 struct pollhead **phpp, 2216 caller_context_t *ct) 2217 { 2218 dev_t dev; 2219 int error; 2220 2221 if (vp->v_type == VBLK) 2222 error = fs_poll(vp, events, anyyet, reventsp, phpp, ct); 2223 else { 2224 ASSERT(vp->v_type == VCHR); 2225 dev = vp->v_rdev; 2226 if (vp->v_stream) { 2227 ASSERT(vp->v_stream != NULL); 2228 error = strpoll(vp->v_stream, events, anyyet, 2229 reventsp, phpp); 2230 } else if (devopsp[getmajor(dev)]->devo_cb_ops->cb_chpoll) { 2231 error = cdev_poll(dev, events, anyyet, reventsp, phpp); 2232 } else { 2233 error = fs_poll(vp, events, anyyet, reventsp, phpp, ct); 2234 } 2235 } 2236 return (error); 2237 } 2238 2239 /* 2240 * This routine is called through the cdevsw[] table to handle 2241 * traditional mmap'able devices that support a d_mmap function. 2242 */ 2243 /*ARGSUSED8*/ 2244 int 2245 spec_segmap( 2246 dev_t dev, 2247 off_t off, 2248 struct as *as, 2249 caddr_t *addrp, 2250 off_t len, 2251 uint_t prot, 2252 uint_t maxprot, 2253 uint_t flags, 2254 struct cred *cred) 2255 { 2256 struct segdev_crargs dev_a; 2257 int (*mapfunc)(dev_t dev, off_t off, int prot); 2258 size_t i; 2259 int error; 2260 2261 if ((mapfunc = devopsp[getmajor(dev)]->devo_cb_ops->cb_mmap) == nodev) 2262 return (ENODEV); 2263 TRACE_4(TR_FAC_SPECFS, TR_SPECFS_SEGMAP, 2264 "specfs segmap:dev %x as %p len %lx prot %x", 2265 dev, as, len, prot); 2266 2267 /* 2268 * Character devices that support the d_mmap 2269 * interface can only be mmap'ed shared. 2270 */ 2271 if ((flags & MAP_TYPE) != MAP_SHARED) 2272 return (EINVAL); 2273 2274 /* 2275 * Check to ensure that the entire range is 2276 * legal and we are not trying to map in 2277 * more than the device will let us. 2278 */ 2279 for (i = 0; i < len; i += PAGESIZE) { 2280 if (cdev_mmap(mapfunc, dev, off + i, maxprot) == -1) 2281 return (ENXIO); 2282 } 2283 2284 as_rangelock(as); 2285 /* Pick an address w/o worrying about any vac alignment constraints. */ 2286 error = choose_addr(as, addrp, len, off, ADDR_NOVACALIGN, flags); 2287 if (error != 0) { 2288 as_rangeunlock(as); 2289 return (error); 2290 } 2291 2292 dev_a.mapfunc = mapfunc; 2293 dev_a.dev = dev; 2294 dev_a.offset = off; 2295 dev_a.prot = (uchar_t)prot; 2296 dev_a.maxprot = (uchar_t)maxprot; 2297 dev_a.hat_flags = 0; 2298 dev_a.hat_attr = 0; 2299 dev_a.devmap_data = NULL; 2300 2301 error = as_map(as, *addrp, len, segdev_create, &dev_a); 2302 as_rangeunlock(as); 2303 return (error); 2304 } 2305 2306 int 2307 spec_char_map( 2308 dev_t dev, 2309 offset_t off, 2310 struct as *as, 2311 caddr_t *addrp, 2312 size_t len, 2313 uchar_t prot, 2314 uchar_t maxprot, 2315 uint_t flags, 2316 struct cred *cred) 2317 { 2318 int error = 0; 2319 major_t maj = getmajor(dev); 2320 int map_flag; 2321 int (*segmap)(dev_t, off_t, struct as *, 2322 caddr_t *, off_t, uint_t, uint_t, uint_t, cred_t *); 2323 int (*devmap)(dev_t, devmap_cookie_t, offset_t, 2324 size_t, size_t *, uint_t); 2325 int (*mmap)(dev_t dev, off_t off, int prot); 2326 2327 /* 2328 * Character device: let the device driver 2329 * pick the appropriate segment driver. 2330 * 2331 * 4.x compat.: allow 'NULL' cb_segmap => spec_segmap 2332 * Kindness: allow 'nulldev' cb_segmap => spec_segmap 2333 */ 2334 segmap = devopsp[maj]->devo_cb_ops->cb_segmap; 2335 if (segmap == NULL || segmap == nulldev || segmap == nodev) { 2336 mmap = devopsp[maj]->devo_cb_ops->cb_mmap; 2337 map_flag = devopsp[maj]->devo_cb_ops->cb_flag; 2338 2339 /* 2340 * Use old mmap framework if the driver has both mmap 2341 * and devmap entry points. This is to prevent the 2342 * system from calling invalid devmap entry point 2343 * for some drivers that might have put garbage in the 2344 * devmap entry point. 2345 */ 2346 if ((map_flag & D_DEVMAP) || mmap == NULL || 2347 mmap == nulldev || mmap == nodev) { 2348 devmap = devopsp[maj]->devo_cb_ops->cb_devmap; 2349 2350 /* 2351 * If driver provides devmap entry point in 2352 * cb_ops but not xx_segmap(9E), call 2353 * devmap_setup with default settings 2354 * (NULL) for callback_ops and driver 2355 * callback private data 2356 */ 2357 if (devmap == nodev || devmap == NULL || 2358 devmap == nulldev) 2359 return (ENODEV); 2360 2361 error = devmap_setup(dev, off, as, addrp, 2362 len, prot, maxprot, flags, cred); 2363 2364 return (error); 2365 } else 2366 segmap = spec_segmap; 2367 } else 2368 segmap = cdev_segmap; 2369 2370 return ((*segmap)(dev, (off_t)off, as, addrp, len, prot, 2371 maxprot, flags, cred)); 2372 } 2373 2374 /*ARGSUSED9*/ 2375 static int 2376 spec_map( 2377 struct vnode *vp, 2378 offset_t off, 2379 struct as *as, 2380 caddr_t *addrp, 2381 size_t len, 2382 uchar_t prot, 2383 uchar_t maxprot, 2384 uint_t flags, 2385 struct cred *cred, 2386 caller_context_t *ct) 2387 { 2388 int error = 0; 2389 struct snode *sp = VTOS(vp); 2390 2391 if (vp->v_flag & VNOMAP) 2392 return (ENOSYS); 2393 2394 /* fail map with ENXIO if the device is fenced off */ 2395 if (S_ISFENCED(sp)) 2396 return (ENXIO); 2397 2398 /* 2399 * If file is locked, fail mapping attempt. 2400 */ 2401 if (vn_has_flocks(vp)) 2402 return (EAGAIN); 2403 2404 if (vp->v_type == VCHR) { 2405 return (spec_char_map(vp->v_rdev, off, as, addrp, len, prot, 2406 maxprot, flags, cred)); 2407 } else if (vp->v_type == VBLK) { 2408 struct segvn_crargs vn_a; 2409 struct vnode *cvp; 2410 struct snode *sp; 2411 2412 /* 2413 * Block device, use segvn mapping to the underlying commonvp 2414 * for pages. 2415 */ 2416 if (off > spec_maxoffset(vp)) 2417 return (ENXIO); 2418 2419 sp = VTOS(vp); 2420 cvp = sp->s_commonvp; 2421 ASSERT(cvp != NULL); 2422 2423 if (off < 0 || ((offset_t)(off + len) < 0)) 2424 return (ENXIO); 2425 2426 as_rangelock(as); 2427 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 2428 if (error != 0) { 2429 as_rangeunlock(as); 2430 return (error); 2431 } 2432 2433 vn_a.vp = cvp; 2434 vn_a.offset = off; 2435 vn_a.type = flags & MAP_TYPE; 2436 vn_a.prot = (uchar_t)prot; 2437 vn_a.maxprot = (uchar_t)maxprot; 2438 vn_a.flags = flags & ~MAP_TYPE; 2439 vn_a.cred = cred; 2440 vn_a.amp = NULL; 2441 vn_a.szc = 0; 2442 vn_a.lgrp_mem_policy_flags = 0; 2443 2444 error = as_map(as, *addrp, len, segvn_create, &vn_a); 2445 as_rangeunlock(as); 2446 } else 2447 return (ENODEV); 2448 2449 return (error); 2450 } 2451 2452 /*ARGSUSED1*/ 2453 static int 2454 spec_addmap( 2455 struct vnode *vp, /* the common vnode */ 2456 offset_t off, 2457 struct as *as, 2458 caddr_t addr, 2459 size_t len, /* how many bytes to add */ 2460 uchar_t prot, 2461 uchar_t maxprot, 2462 uint_t flags, 2463 struct cred *cred, 2464 caller_context_t *ct) 2465 { 2466 int error = 0; 2467 struct snode *csp = VTOS(vp); 2468 ulong_t npages; 2469 2470 ASSERT(vp != NULL && VTOS(vp)->s_commonvp == vp); 2471 2472 /* 2473 * XXX Given the above assertion, this might not 2474 * be a particularly sensible thing to test. 2475 */ 2476 if (vp->v_flag & VNOMAP) 2477 return (ENOSYS); 2478 2479 /* fail with EIO if the device is fenced off */ 2480 if (S_ISFENCED(csp)) 2481 return (EIO); 2482 2483 npages = btopr(len); 2484 LOCK_CSP(csp); 2485 csp->s_mapcnt += npages; 2486 2487 UNLOCK_CSP(csp); 2488 return (error); 2489 } 2490 2491 /*ARGSUSED1*/ 2492 static int 2493 spec_delmap( 2494 struct vnode *vp, /* the common vnode */ 2495 offset_t off, 2496 struct as *as, 2497 caddr_t addr, 2498 size_t len, /* how many bytes to take away */ 2499 uint_t prot, 2500 uint_t maxprot, 2501 uint_t flags, 2502 struct cred *cred, 2503 caller_context_t *ct) 2504 { 2505 struct snode *csp = VTOS(vp); 2506 ulong_t npages; 2507 long mcnt; 2508 2509 /* segdev passes us the common vp */ 2510 2511 ASSERT(vp != NULL && VTOS(vp)->s_commonvp == vp); 2512 2513 /* allow delmap to succeed even if device fenced off */ 2514 2515 /* 2516 * XXX Given the above assertion, this might not 2517 * be a particularly sensible thing to test.. 2518 */ 2519 if (vp->v_flag & VNOMAP) 2520 return (ENOSYS); 2521 2522 npages = btopr(len); 2523 2524 LOCK_CSP(csp); 2525 mutex_enter(&csp->s_lock); 2526 mcnt = (csp->s_mapcnt -= npages); 2527 2528 if (mcnt == 0) { 2529 /* 2530 * Call the close routine when the last reference of any 2531 * kind through any [s, v]node goes away. The s_dip hold 2532 * on the devinfo node is released when the vnode is 2533 * destroyed. 2534 */ 2535 if (csp->s_count == 0) { 2536 csp->s_flag &= ~(SNEEDCLOSE | SSIZEVALID); 2537 2538 /* See comment in spec_close() */ 2539 if (csp->s_flag & (SCLONE | SSELFCLONE)) 2540 csp->s_flag &= ~SDIPSET; 2541 2542 mutex_exit(&csp->s_lock); 2543 2544 (void) device_close(vp, 0, cred); 2545 } else 2546 mutex_exit(&csp->s_lock); 2547 2548 mutex_enter(&csp->s_lock); 2549 } 2550 ASSERT(mcnt >= 0); 2551 2552 UNLOCK_CSP_LOCK_HELD(csp); 2553 mutex_exit(&csp->s_lock); 2554 2555 return (0); 2556 } 2557 2558 /*ARGSUSED4*/ 2559 static int 2560 spec_dump( 2561 struct vnode *vp, 2562 caddr_t addr, 2563 offset_t bn, 2564 offset_t count, 2565 caller_context_t *ct) 2566 { 2567 /* allow dump to succeed even if device fenced off */ 2568 2569 ASSERT(vp->v_type == VBLK); 2570 return (bdev_dump(vp->v_rdev, addr, (daddr_t)bn, (int)count)); 2571 } 2572 2573 2574 /* 2575 * Do i/o on the given page list from/to vp, io_off for io_len. 2576 * Flags are composed of: 2577 * {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED, B_READ, B_WRITE} 2578 * If B_ASYNC is not set i/o is waited for. 2579 */ 2580 /*ARGSUSED5*/ 2581 static int 2582 spec_pageio( 2583 struct vnode *vp, 2584 page_t *pp, 2585 u_offset_t io_off, 2586 size_t io_len, 2587 int flags, 2588 cred_t *cr, 2589 caller_context_t *ct) 2590 { 2591 struct buf *bp = NULL; 2592 int err = 0; 2593 2594 if (pp == NULL) 2595 return (EINVAL); 2596 2597 bp = spec_startio(vp, pp, io_off, io_len, flags); 2598 2599 /* 2600 * Wait for i/o to complete if the request is not B_ASYNC. 2601 */ 2602 if ((flags & B_ASYNC) == 0) { 2603 err = biowait(bp); 2604 pageio_done(bp); 2605 } 2606 return (err); 2607 } 2608 2609 /* 2610 * Set ACL on underlying vnode if one exists, or return ENOSYS otherwise. 2611 */ 2612 int 2613 spec_setsecattr( 2614 struct vnode *vp, 2615 vsecattr_t *vsap, 2616 int flag, 2617 struct cred *cr, 2618 caller_context_t *ct) 2619 { 2620 struct vnode *realvp; 2621 struct snode *sp = VTOS(vp); 2622 int error; 2623 2624 /* fail with ENXIO if the device is fenced off */ 2625 if (S_ISFENCED(sp)) 2626 return (ENXIO); 2627 2628 /* 2629 * The acl(2) system calls VOP_RWLOCK on the file before setting an 2630 * ACL, but since specfs does not serialize reads and writes, this 2631 * VOP does not do anything. However, some backing file systems may 2632 * expect the lock to be held before setting an ACL, so it is taken 2633 * here privately to avoid serializing specfs reads and writes. 2634 */ 2635 if ((realvp = sp->s_realvp) != NULL) { 2636 (void) VOP_RWLOCK(realvp, V_WRITELOCK_TRUE, ct); 2637 error = VOP_SETSECATTR(realvp, vsap, flag, cr, ct); 2638 (void) VOP_RWUNLOCK(realvp, V_WRITELOCK_TRUE, ct); 2639 return (error); 2640 } else 2641 return (fs_nosys()); 2642 } 2643 2644 /* 2645 * Get ACL from underlying vnode if one exists, or fabricate it from 2646 * the permissions returned by spec_getattr() otherwise. 2647 */ 2648 int 2649 spec_getsecattr( 2650 struct vnode *vp, 2651 vsecattr_t *vsap, 2652 int flag, 2653 struct cred *cr, 2654 caller_context_t *ct) 2655 { 2656 struct vnode *realvp; 2657 struct snode *sp = VTOS(vp); 2658 2659 /* fail with ENXIO if the device is fenced off */ 2660 if (S_ISFENCED(sp)) 2661 return (ENXIO); 2662 2663 if ((realvp = sp->s_realvp) != NULL) 2664 return (VOP_GETSECATTR(realvp, vsap, flag, cr, ct)); 2665 else 2666 return (fs_fab_acl(vp, vsap, flag, cr, ct)); 2667 } 2668 2669 int 2670 spec_pathconf( 2671 vnode_t *vp, 2672 int cmd, 2673 ulong_t *valp, 2674 cred_t *cr, 2675 caller_context_t *ct) 2676 { 2677 vnode_t *realvp; 2678 struct snode *sp = VTOS(vp); 2679 2680 /* fail with ENXIO if the device is fenced off */ 2681 if (S_ISFENCED(sp)) 2682 return (ENXIO); 2683 2684 if ((realvp = sp->s_realvp) != NULL) 2685 return (VOP_PATHCONF(realvp, cmd, valp, cr, ct)); 2686 else 2687 return (fs_pathconf(vp, cmd, valp, cr, ct)); 2688 }