1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
  24  * Use is subject to license terms.
  25  */
  26 
  27 #pragma ident   "%Z%%M% %I%     %E% SMI"
  28 
  29 #include <sys/types.h>
  30 #include <sys/systm.h>
  31 #include <sys/cred.h>
  32 #include <sys/modctl.h>
  33 #include <sys/vfs.h>
  34 #include <sys/vfs_opreg.h>
  35 #include <sys/sysmacros.h>
  36 #include <sys/cmn_err.h>
  37 #include <sys/stat.h>
  38 #include <sys/errno.h>
  39 #include <sys/kmem.h>
  40 #include <sys/file.h>
  41 #include <sys/kstat.h>
  42 #include <sys/port_impl.h>
  43 #include <sys/task.h>
  44 #include <sys/project.h>
  45 
  46 /*
  47  * Event Ports can be shared across threads or across processes.
  48  * Every thread/process can use an own event port or a group of them
  49  * can use a single port. A major request was also to get the ability
  50  * to submit user-defined events to a port. The idea of the
  51  * user-defined events is to use the event ports for communication between
  52  * threads/processes (like message queues). User defined-events are queued
  53  * in a port with the same priority as other event types.
  54  *
  55  * Events are delivered only once. The thread/process which is waiting
  56  * for events with the "highest priority" (priority here is related to the
  57  * internal strategy to wakeup waiting threads) will retrieve the event,
  58  * all other threads/processes will not be notified. There is also
  59  * the requirement to have events which should be submitted immediately
  60  * to all "waiting" threads. That is the main task of the alert event.
  61  * The alert event is submitted by the application to a port. The port
  62  * changes from a standard mode to the alert mode. Now all waiting threads
  63  * will be awaken immediately and they will return with the alert event.
  64  * Threads trying to retrieve events from a port in alert mode will
  65  * return immediately with the alert event.
  66  *
  67  *
  68  * An event port is like a kernel queue, which accept events submitted from
  69  * user level as well as events submitted from kernel sub-systems. Sub-systems
  70  * able to submit events to a port are the so-called "event sources".
  71  * Current event sources:
  72  * PORT_SOURCE_AIO       : events submitted per transaction completion from
  73  *                         POSIX-I/O framework.
  74  * PORT_SOURCE_TIMER     : events submitted when a timer fires
  75  *                         (see timer_create(3RT)).
  76  * PORT_SOURCE_FD        : events submitted per file descriptor (see poll(2)).
  77  * PORT_SOURCE_ALERT     : events submitted from user. This is not really a
  78  *                         single event, this is actually a port mode
  79  *                         (see port_alert(3c)).
  80  * PORT_SOURCE_USER      : events submitted by applications with
  81  *                         port_send(3c) or port_sendn(3c).
  82  * PORT_SOURCE_FILE      : events submitted per file being watched for file
  83  *                         change events  (see port_create(3c).
  84  *
  85  * There is a user API implemented in the libc library as well as a
  86  * kernel API implemented in port_subr.c in genunix.
  87  * The available user API functions are:
  88  * port_create() : create a port as a file descriptor of portfs file system
  89  *                 The standard close(2) function closes a port.
  90  * port_associate() : associate a file descriptor with a port to be able to
  91  *                    retrieve events from that file descriptor.
  92  * port_dissociate(): remove the association of a file descriptor with a port.
  93  * port_alert()  : set/unset a port in alert mode
  94  * port_send()   : send an event of type PORT_SOURCE_USER to a port
  95  * port_sendn()  : send an event of type PORT_SOURCE_USER to a list of ports
  96  * port_get()    : retrieve a single event from a port
  97  * port_getn()   : retrieve a list of events from a port
  98  *
  99  * The available kernel API functions are:
 100  * port_allocate_event(): allocate an event slot/structure of/from a port
 101  * port_init_event()    : set event data in the event structure
 102  * port_send_event()    : send event to a port
 103  * port_free_event()    : deliver allocated slot/structure back to a port
 104  * port_associate_ksource(): associate a kernel event source with a port
 105  * port_dissociate_ksource(): dissociate a kernel event source from a port
 106  *
 107  * The libc implementation consists of small functions which pass the
 108  * arguments to the kernel using the "portfs" system call. It means, all the
 109  * synchronisation work is being done in the kernel. The "portfs" system
 110  * call loads the portfs file system into the kernel.
 111  *
 112  * PORT CREATION
 113  * The first function to be used is port_create() which internally creates
 114  * a vnode and a portfs node. The portfs node is represented by the port_t
 115  * structure, which again includes all the data necessary to control a port.
 116  * port_create() returns a file descriptor, which needs to be used in almost
 117  * all other event port functions.
 118  * The maximum number of ports per system is controlled by the resource
 119  * control: project:port-max-ids.
 120  *
 121  * EVENT GENERATION
 122  * The second step is the triggering of events, which could be sent to a port.
 123  * Every event source implements an own method to generate events for a port:
 124  * PORT_SOURCE_AIO:
 125  *      The sigevent structure of the standard POSIX-IO functions
 126  *      was extended by an additional notification type.
 127  *      Standard notification types:
 128  *      SIGEV_NONE, SIGEV_SIGNAL and SIGEV_THREAD
 129  *      Event ports introduced now SIGEV_PORT.
 130  *      The notification type SIGEV_PORT specifies that a structure
 131  *      of type port_notify_t has to be attached to the sigev_value.
 132  *      The port_notify_t structure contains the event port file
 133  *      descriptor and a user-defined pointer.
 134  *      Internally the AIO implementation will use the kernel API
 135  *      functions to allocate an event port slot per transaction (aiocb)
 136  *      and sent the event to the port as soon as the transaction completes.
 137  *      All the events submitted per transaction are of type
 138  *      PORT_SOURCE_AIO.
 139  * PORT_SOURCE_TIMER:
 140  *      The timer_create() function uses the same method as the
 141  *      PORT_SOURCE_AIO event source. It also uses the sigevent structure
 142  *      to deliver the port information.
 143  *      Internally the timer code will allocate a single event slot/struct
 144  *      per timer and it will send the timer event as soon as the timer
 145  *      fires. If the timer-fired event is not delivered to the application
 146  *      before the next period elapsed, then an overrun counter will be
 147  *      incremented. The timer event source uses a callback function to
 148  *      detect the delivery of the event to the application. At that time
 149  *      the timer callback function will update the event overrun counter.
 150  * PORT_SOURCE_FD:
 151  *      This event source uses the port_associate() function to allocate
 152  *      an event slot/struct from a port. The application defines in the
 153  *      events argument of port_associate() the type of events which it is
 154  *      interested on.
 155  *      The internal pollwakeup() function is used by all the file
 156  *      systems --which are supporting the VOP_POLL() interface- to notify
 157  *      the upper layer (poll(2), devpoll(7d) and now event ports) about
 158  *      the event triggered (see valid events in poll(2)).
 159  *      The pollwakeup() function forwards the event to the layer registered
 160  *      to receive the current event.
 161  *      The port_dissociate() function can be used to free the allocated
 162  *      event slot from the port. Anyway, file descriptors deliver events
 163  *      only one time and remain deactivated until the application
 164  *      reactivates the association of a file descriptor with port_associate().
 165  *      If an associated file descriptor is closed then the file descriptor
 166  *      will be dissociated automatically from the port.
 167  *
 168  * PORT_SOURCE_ALERT:
 169  *      This event type is generated when the port was previously set in
 170  *      alert mode using the port_alert() function.
 171  *      A single alert event is delivered to every thread which tries to
 172  *      retrieve events from a port.
 173  * PORT_SOURCE_USER:
 174  *      This type of event is generated from user level using the port_send()
 175  *      function to send a user event to a port or the port_sendn() function
 176  *      to send an event to a list of ports.
 177  * PORT_SOURCE_FILE:
 178  *      This event source uses the port_associate() interface to register
 179  *      a file to be monitored for changes. The file name that needs to be
 180  *      monitored is specified in the file_obj_t structure, a pointer to which
 181  *      is passed as an argument. The event types to be monitored are specified
 182  *      in the events argument.
 183  *      A file events monitor is represented internal per port per object
 184  *      address(the file_obj_t pointer). Which means there can be multiple
 185  *      watches registered on the same file using different file_obj_t
 186  *      structure pointer. With the help of the FEM(File Event Monitoring)
 187  *      hooks, the file's vnode ops are intercepted and relevant events
 188  *      delivered. The port_dissociate() function is used to de-register a
 189  *      file events monitor on a file. When the specified file is
 190  *      removed/renamed, the file events watch/monitor is automatically
 191  *      removed.
 192  *
 193  * EVENT DELIVERY / RETRIEVING EVENTS
 194  * Events remain in the port queue until:
 195  * - the application uses port_get() or port_getn() to retrieve events,
 196  * - the event source cancel the event,
 197  * - the event port is closed or
 198  * - the process exits.
 199  * The maximal number of events in a port queue is the maximal number
 200  * of event slots/structures which can be allocated by event sources.
 201  * The allocation of event slots/structures is controlled by the resource
 202  * control: process.port-max-events.
 203  * The port_get() function retrieves a single event and the port_getn()
 204  * function retrieves a list of events.
 205  * Events are classified as shareable and non-shareable events across processes.
 206  * Non-shareable events are invisible for the port_get(n)() functions of
 207  * processes other than the owner of the event.
 208  *    Shareable event types are:
 209  *    PORT_SOURCE_USER events
 210  *      This type of event is unconditionally shareable and without
 211  *      limitations. If the parent process sends a user event and closes
 212  *      the port afterwards, the event remains in the port and the child
 213  *      process will still be able to retrieve the user event.
 214  *    PORT_SOURCE_ALERT events
 215  *      This type of event is shareable between processes.
 216  *      Limitation:     The alert mode of the port is removed if the owner
 217  *                      (process which set the port in alert mode) of the
 218  *                      alert event closes the port.
 219  *    PORT_SOURCE_FD events
 220  *      This type of event is conditional shareable between processes.
 221  *      After fork(2) all forked file descriptors are shareable between
 222  *      the processes. The child process is allowed to retrieve events
 223  *      from the associated file descriptors and it can also re-associate
 224  *      the fd with the port.
 225  *      Limitations:    The child process is not allowed to dissociate
 226  *                      the file descriptor from the port. Only the
 227  *                      owner (process) of the association is allowed to
 228  *                      dissociate the file descriptor from the port.
 229  *                      If the owner of the association closes the port
 230  *                      the association will be removed.
 231  *    PORT_SOURCE_AIO events
 232  *      This type of event is not shareable between processes.
 233  *    PORT_SOURCE_TIMER events
 234  *      This type of event is not shareable between processes.
 235  *    PORT_SOURCE_FILE events
 236  *      This type of event is not shareable between processes.
 237  *
 238  * FORK BEHAVIOUR
 239  * On fork(2) the child process inherits all opened file descriptors from
 240  * the parent process. This is also valid for port file descriptors.
 241  * Associated file descriptors with a port maintain the association across the
 242  * fork(2). It means, the child process gets full access to the port and
 243  * it can retrieve events from all common associated file descriptors.
 244  * Events of file descriptors created and associated with a port after the
 245  * fork(2) are non-shareable and can only be retrieved by the same process.
 246  *
 247  * If the parent or the child process closes an exported port (using fork(2)
 248  * or I_SENDFD) all the file descriptors associated with the port by the
 249  * process will be dissociated from the port. Events of dissociated file
 250  * descriptors as well as all non-shareable events will be discarded.
 251  * The other process can continue working with the port as usual.
 252  *
 253  * CLOSING A PORT
 254  * close(2) has to be used to close a port. See FORK BEHAVIOUR for details.
 255  *
 256  * PORT EVENT STRUCTURES
 257  * The global control structure of the event ports framework is port_control_t.
 258  * port_control_t keeps track of the number of created ports in the system.
 259  * The cache of the port event structures is also located in port_control_t.
 260  *
 261  * On port_create() the vnode and the portfs node is also created.
 262  * The portfs node is represented by the port_t structure.
 263  * The port_t structure manages all port specific tasks:
 264  * - management of resource control values
 265  * - port VOP_POLL interface
 266  * - creation time
 267  * - uid and gid of the port
 268  *
 269  * The port_t structure contains the port_queue_t structure.
 270  * The port_queue_t structure contains all the data necessary for the
 271  * queue management:
 272  * - locking
 273  * - condition variables
 274  * - event counters
 275  * - submitted events   (represented by port_kevent_t structures)
 276  * - threads waiting for event delivery (check portget_t structure)
 277  * - PORT_SOURCE_FD cache       (managed by the port_fdcache_t structure)
 278  * - event source management (managed by the port_source_t structure)
 279  * - alert mode management      (check port_alert_t structure)
 280  *
 281  * EVENT MANAGEMENT
 282  * The event port file system creates a kmem_cache for internal allocation of
 283  * event port structures.
 284  *
 285  * 1. Event source association with a port:
 286  * The first step to do for event sources is to get associated with a port
 287  * using the port_associate_ksource() function or adding an entry to the
 288  * port_ksource_tab[]. An event source can get dissociated from a port
 289  * using the port_dissociate_ksource() function. An entry in the
 290  * port_ksource_tab[] implies that the source will be associated
 291  * automatically with every new created port.
 292  * The event source can deliver a callback function, which is used by the
 293  * port to notify the event source about close(2). The idea is that
 294  * in such a case the event source should free all allocated resources
 295  * and it must return to the port all allocated slots/structures.
 296  * The port_close() function will wait until all allocated event
 297  * structures/slots are returned to the port.
 298  * The callback function is not necessary when the event source does not
 299  * maintain local resources, a second condition is that the event source
 300  * can guarantee that allocated event slots will be returned without
 301  * delay to the port (it will not block and sleep somewhere).
 302  *
 303  * 2. Reservation of an event slot / event structure
 304  * The event port reliability is based on the reservation of an event "slot"
 305  * (allocation of an event structure) by the event source as part of the
 306  * application call. If the maximal number of event slots is exhausted then
 307  * the event source can return a corresponding error code to the application.
 308  *
 309  * The port_alloc_event() function has to be used by event sources to
 310  * allocate an event slot (reserve an event structure). The port_alloc_event()
 311  * doesn not block and it will return a 0 value on success or an error code
 312  * if it fails.
 313  * An argument of port_alloc_event() is a flag which determines the behavior
 314  * of the event after it was delivered to the application:
 315  * PORT_ALLOC_DEFAULT   : event slot becomes free after delivery to the
 316  *                        application.
 317  * PORT_ALLOC_PRIVATE   : event slot remains under the control of the event
 318  *                        source. This kind of slots can not be used for
 319  *                        event delivery and should only be used internally
 320  *                        by the event source.
 321  * PORT_KEV_CACHED      : event slot remains under the control of an event
 322  *                        port cache. It does not become free after delivery
 323  *                        to the application.
 324  * PORT_ALLOC_SCACHED   : event slot remains under the control of the event
 325  *                        source. The event source takes the control over
 326  *                        the slot after the event is delivered to the
 327  *                        application.
 328  *
 329  * 3. Delivery of events to the event port
 330  * Earlier allocated event structure/slot has to be used to deliver
 331  * event data to the port. Event source has to use the function
 332  * port_send_event(). The single argument is a pointer to the previously
 333  * reserved event structure/slot.
 334  * The portkev_events field of the port_kevent_t structure can be updated/set
 335  * in two ways:
 336  * 1. using the port_set_event() function, or
 337  * 2. updating the portkev_events field out of the callback function:
 338  *    The event source can deliver a callback function to the port as an
 339  *    argument of port_init_event().
 340  *    One of the arguments of the callback function is a pointer to the
 341  *    events field, which will be delivered to the application.
 342  *    (see Delivery of events to the application).
 343  * Event structures/slots can be delivered to the event port only one time,
 344  * they remain blocked until the data is delivered to the application and the
 345  * slot becomes free or it is delivered back to the event source
 346  * (PORT_ALLOC_SCACHED). The activation of the callback function mentioned above
 347  * is at the same time the indicator for the event source that the event
 348  * structure/slot is free for reuse.
 349  *
 350  * 4. Delivery of events to the application
 351  * The events structures/slots delivered by event sources remain in the
 352  * port queue until they are retrieved by the application or the port
 353  * is closed (exit(2) also closes all opened file descriptors)..
 354  * The application uses port_get() or port_getn() to retrieve events from
 355  * a port. port_get() retrieves a single event structure/slot and port_getn()
 356  * retrieves a list of event structures/slots.
 357  * Both functions are able to poll for events and return immediately or they
 358  * can specify a timeout value.
 359  * Before the events are delivered to the application they are moved to a
 360  * second temporary internal queue. The idea is to avoid lock collisions or
 361  * contentions of the global queue lock.
 362  * The global queue lock is used every time when an event source delivers
 363  * new events to the port.
 364  * The port_get() and port_getn() functions
 365  * a) retrieve single events from the temporary queue,
 366  * b) prepare the data to be passed to the application memory,
 367  * c) activate the callback function of the event sources:
 368  *    - to get the latest event data,
 369  *    - the event source can free all allocated resources associated with the
 370  *      current event,
 371  *    - the event source can re-use the current event slot/structure
 372  *    - the event source can deny the delivery of the event to the application
 373  *      (e.g. because of the wrong process).
 374  * d) put the event back to the temporary queue if the event delivery was denied
 375  * e) repeat a) until d) as long as there are events in the queue and
 376  *    there is enough user space available.
 377  *
 378  * The loop described above could block for a very long time the global mutex,
 379  * to avoid that a second mutex was introduced to synchronized concurrent
 380  * threads accessing the temporary queue.
 381  */
 382 
 383 static int64_t portfs(int, uintptr_t, uintptr_t, uintptr_t, uintptr_t,
 384     uintptr_t);
 385 
 386 static struct sysent port_sysent = {
 387         6,
 388         SE_ARGC | SE_64RVAL | SE_NOUNLOAD,
 389         (int (*)())portfs,
 390 };
 391 
 392 static struct modlsys modlsys = {
 393         &mod_syscallops, "event ports", &port_sysent
 394 };
 395 
 396 #ifdef _SYSCALL32_IMPL
 397 
 398 static int64_t
 399 portfs32(uint32_t arg1, int32_t arg2, uint32_t arg3, uint32_t arg4,
 400     uint32_t arg5, uint32_t arg6);
 401 
 402 static struct sysent port_sysent32 = {
 403         6,
 404         SE_ARGC | SE_64RVAL | SE_NOUNLOAD,
 405         (int (*)())portfs32,
 406 };
 407 
 408 static struct modlsys modlsys32 = {
 409         &mod_syscallops32,
 410         "32-bit event ports syscalls",
 411         &port_sysent32
 412 };
 413 #endif  /* _SYSCALL32_IMPL */
 414 
 415 static struct modlinkage modlinkage = {
 416         MODREV_1,
 417         &modlsys,
 418 #ifdef _SYSCALL32_IMPL
 419         &modlsys32,
 420 #endif
 421         NULL
 422 };
 423 
 424 port_kstat_t port_kstat = {
 425         { "ports",      KSTAT_DATA_UINT32 }
 426 };
 427 
 428 dev_t   portdev;
 429 struct  vnodeops *port_vnodeops;
 430 struct  vfs port_vfs;
 431 
 432 extern  rctl_hndl_t rc_process_portev;
 433 extern  rctl_hndl_t rc_project_portids;
 434 extern  void aio_close_port(void *, int, pid_t, int);
 435 
 436 /*
 437  * This table contains a list of event sources which need a static
 438  * association with a port (every port).
 439  * The last NULL entry in the table is required to detect "end of table".
 440  */
 441 struct port_ksource port_ksource_tab[] = {
 442         {PORT_SOURCE_AIO, aio_close_port, NULL, NULL},
 443         {0, NULL, NULL, NULL}
 444 };
 445 
 446 /* local functions */
 447 static int port_getn(port_t *, port_event_t *, uint_t, uint_t *,
 448     port_gettimer_t *);
 449 static int port_sendn(int [], int [], uint_t, int, void *, uint_t *);
 450 static int port_alert(port_t *, int, int, void *);
 451 static int port_dispatch_event(port_t *, int, int, int, uintptr_t, void *);
 452 static int port_send(port_t *, int, int, void *);
 453 static int port_create(int *);
 454 static int port_get_alert(port_alert_t *, port_event_t *);
 455 static int port_copy_event(port_event_t *, port_kevent_t *, list_t *);
 456 static int *port_errorn(int *, int, int, int);
 457 static int port_noshare(void *, int *, pid_t, int, void *);
 458 static int port_get_timeout(timespec_t *, timespec_t *, timespec_t **, int *,
 459     int);
 460 static void port_init(port_t *);
 461 static void port_remove_alert(port_queue_t *);
 462 static void port_add_ksource_local(port_t *, port_ksource_t *);
 463 static void port_check_return_cond(port_queue_t *);
 464 static void port_dequeue_thread(port_queue_t *, portget_t *);
 465 static portget_t *port_queue_thread(port_queue_t *, uint_t);
 466 static void port_kstat_init(void);
 467 
 468 #ifdef  _SYSCALL32_IMPL
 469 static int port_copy_event32(port_event32_t *, port_kevent_t *, list_t *);
 470 #endif
 471 
 472 int
 473 _init(void)
 474 {
 475         static const fs_operation_def_t port_vfsops_template[] = {
 476                 NULL, NULL
 477         };
 478         extern const    fs_operation_def_t port_vnodeops_template[];
 479         vfsops_t        *port_vfsops;
 480         int             error;
 481         major_t         major;
 482 
 483         if ((major = getudev()) == (major_t)-1)
 484                 return (ENXIO);
 485         portdev = makedevice(major, 0);
 486 
 487         /* Create a dummy vfs */
 488         error = vfs_makefsops(port_vfsops_template, &port_vfsops);
 489         if (error) {
 490                 cmn_err(CE_WARN, "port init: bad vfs ops");
 491                 return (error);
 492         }
 493         vfs_setops(&port_vfs, port_vfsops);
 494         port_vfs.vfs_flag = VFS_RDONLY;
 495         port_vfs.vfs_dev = portdev;
 496         vfs_make_fsid(&(port_vfs.vfs_fsid), portdev, 0);
 497 
 498         error = vn_make_ops("portfs", port_vnodeops_template, &port_vnodeops);
 499         if (error) {
 500                 vfs_freevfsops(port_vfsops);
 501                 cmn_err(CE_WARN, "port init: bad vnode ops");
 502                 return (error);
 503         }
 504 
 505         mutex_init(&port_control.pc_mutex, NULL, MUTEX_DEFAULT, NULL);
 506         port_control.pc_nents = 0;      /* number of active ports */
 507 
 508         /* create kmem_cache for port event structures */
 509         port_control.pc_cache = kmem_cache_create("port_cache",
 510             sizeof (port_kevent_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
 511 
 512         port_kstat_init();              /* init port kstats */
 513         return (mod_install(&modlinkage));
 514 }
 515 
 516 int
 517 _info(struct modinfo *modinfop)
 518 {
 519         return (mod_info(&modlinkage, modinfop));
 520 }
 521 
 522 /*
 523  * System call wrapper for all port related system calls from 32-bit programs.
 524  */
 525 #ifdef _SYSCALL32_IMPL
 526 static int64_t
 527 portfs32(uint32_t opcode, int32_t a0, uint32_t a1, uint32_t a2, uint32_t a3,
 528     uint32_t a4)
 529 {
 530         int64_t error;
 531 
 532         switch (opcode & PORT_CODE_MASK) {
 533         case PORT_GET:
 534                 error = portfs(PORT_GET, a0, a1, (int)a2, (int)a3, a4);
 535                 break;
 536         case PORT_SENDN:
 537                 error = portfs(opcode, (uint32_t)a0, a1, a2, a3, a4);
 538                 break;
 539         default:
 540                 error = portfs(opcode, a0, a1, a2, a3, a4);
 541                 break;
 542         }
 543         return (error);
 544 }
 545 #endif  /* _SYSCALL32_IMPL */
 546 
 547 /*
 548  * System entry point for port functions.
 549  * a0 is a port file descriptor (except for PORT_SENDN and PORT_CREATE).
 550  * The libc uses PORT_SYS_NOPORT in functions which do not deliver a
 551  * port file descriptor as first argument.
 552  */
 553 static int64_t
 554 portfs(int opcode, uintptr_t a0, uintptr_t a1, uintptr_t a2, uintptr_t a3,
 555     uintptr_t a4)
 556 {
 557         rval_t          r;
 558         port_t          *pp;
 559         int             error = 0;
 560         uint_t          nget;
 561         file_t          *fp;
 562         port_gettimer_t port_timer;
 563 
 564         r.r_vals = 0;
 565         if (opcode & PORT_SYS_NOPORT) {
 566                 opcode &= PORT_CODE_MASK;
 567                 if (opcode == PORT_SENDN) {
 568                         error = port_sendn((int *)a0, (int *)a1, (uint_t)a2,
 569                             (int)a3, (void *)a4, (uint_t *)&r.r_val1);
 570                         if (error && (error != EIO))
 571                                 return ((int64_t)set_errno(error));
 572                         return (r.r_vals);
 573                 }
 574 
 575                 if (opcode == PORT_CREATE) {
 576                         error = port_create(&r.r_val1);
 577                         if (error)
 578                                 return ((int64_t)set_errno(error));
 579                         return (r.r_vals);
 580                 }
 581         }
 582 
 583         /* opcodes using port as first argument (a0) */
 584 
 585         if ((fp = getf((int)a0)) == NULL)
 586                 return ((uintptr_t)set_errno(EBADF));
 587 
 588         if (fp->f_vnode->v_type != VPORT) {
 589                 releasef((int)a0);
 590                 return ((uintptr_t)set_errno(EBADFD));
 591         }
 592 
 593         pp = VTOEP(fp->f_vnode);
 594 
 595         switch (opcode & PORT_CODE_MASK) {
 596         case    PORT_GET:
 597         {
 598                 /* see PORT_GETN description */
 599                 struct  timespec timeout;
 600 
 601                 port_timer.pgt_flags = PORTGET_ONE;
 602                 port_timer.pgt_loop = 0;
 603                 port_timer.pgt_rqtp = NULL;
 604                 if (a4 != NULL) {
 605                         port_timer.pgt_timeout = &timeout;
 606                         timeout.tv_sec = (time_t)a2;
 607                         timeout.tv_nsec = (long)a3;
 608                 } else {
 609                         port_timer.pgt_timeout = NULL;
 610                 }
 611                 do {
 612                         nget = 1;
 613                         error = port_getn(pp, (port_event_t *)a1, 1,
 614                             (uint_t *)&nget, &port_timer);
 615                 } while (nget == 0 && error == 0 && port_timer.pgt_loop);
 616                 break;
 617         }
 618         case    PORT_GETN:
 619         {
 620                 /*
 621                  * port_getn() can only retrieve own or shareable events from
 622                  * other processes. The port_getn() function remains in the
 623                  * kernel until own or shareable events are available or the
 624                  * timeout elapses.
 625                  */
 626                 port_timer.pgt_flags = 0;
 627                 port_timer.pgt_loop = 0;
 628                 port_timer.pgt_rqtp = NULL;
 629                 port_timer.pgt_timeout = (struct timespec *)a4;
 630                 do {
 631                         nget = a3;
 632                         error = port_getn(pp, (port_event_t *)a1, (uint_t)a2,
 633                             (uint_t *)&nget, &port_timer);
 634                 } while (nget == 0 && error == 0 && port_timer.pgt_loop);
 635                 r.r_val1 = nget;
 636                 r.r_val2 = error;
 637                 releasef((int)a0);
 638                 if (error && error != ETIME)
 639                         return ((int64_t)set_errno(error));
 640                 return (r.r_vals);
 641         }
 642         case    PORT_ASSOCIATE:
 643         {
 644                 switch ((int)a1) {
 645                 case PORT_SOURCE_FD:
 646                         error = port_associate_fd(pp, (int)a1, (uintptr_t)a2,
 647                             (int)a3, (void *)a4);
 648                         break;
 649                 case PORT_SOURCE_FILE:
 650                         error = port_associate_fop(pp, (int)a1, (uintptr_t)a2,
 651                             (int)a3, (void *)a4);
 652                         break;
 653                 default:
 654                         error = EINVAL;
 655                         break;
 656                 }
 657                 break;
 658         }
 659         case    PORT_SEND:
 660         {
 661                 /* user-defined events */
 662                 error = port_send(pp, PORT_SOURCE_USER, (int)a1, (void *)a2);
 663                 break;
 664         }
 665         case    PORT_DISPATCH:
 666         {
 667                 /*
 668                  * library events, blocking
 669                  * Only events of type PORT_SOURCE_AIO or PORT_SOURCE_MQ
 670                  * are currently allowed.
 671                  */
 672                 if ((int)a1 != PORT_SOURCE_AIO && (int)a1 != PORT_SOURCE_MQ) {
 673                         error = EINVAL;
 674                         break;
 675                 }
 676                 error = port_dispatch_event(pp, (int)opcode, (int)a1, (int)a2,
 677                     (uintptr_t)a3, (void *)a4);
 678                 break;
 679         }
 680         case    PORT_DISSOCIATE:
 681         {
 682                 switch ((int)a1) {
 683                 case PORT_SOURCE_FD:
 684                         error = port_dissociate_fd(pp, (uintptr_t)a2);
 685                         break;
 686                 case PORT_SOURCE_FILE:
 687                         error = port_dissociate_fop(pp, (uintptr_t)a2);
 688                         break;
 689                 default:
 690                         error = EINVAL;
 691                         break;
 692                 }
 693                 break;
 694         }
 695         case    PORT_ALERT:
 696         {
 697                 if ((int)a2)    /* a2 = events */
 698                         error = port_alert(pp, (int)a1, (int)a2, (void *)a3);
 699                 else
 700                         port_remove_alert(&pp->port_queue);
 701                 break;
 702         }
 703         default:
 704                 error = EINVAL;
 705                 break;
 706         }
 707 
 708         releasef((int)a0);
 709         if (error)
 710                 return ((int64_t)set_errno(error));
 711         return (r.r_vals);
 712 }
 713 
 714 /*
 715  * System call to create a port.
 716  *
 717  * The port_create() function creates a vnode of type VPORT per port.
 718  * The port control data is associated with the vnode as vnode private data.
 719  * The port_create() function returns an event port file descriptor.
 720  */
 721 static int
 722 port_create(int *fdp)
 723 {
 724         port_t          *pp;
 725         vnode_t         *vp;
 726         struct file     *fp;
 727         proc_t          *p = curproc;
 728 
 729         /* initialize vnode and port private data */
 730         pp = kmem_zalloc(sizeof (port_t), KM_SLEEP);
 731 
 732         pp->port_vnode = vn_alloc(KM_SLEEP);
 733         vp = EPTOV(pp);
 734         vn_setops(vp, port_vnodeops);
 735         vp->v_type = VPORT;
 736         vp->v_vfsp = &port_vfs;
 737         vp->v_data = (caddr_t)pp;
 738 
 739         mutex_enter(&port_control.pc_mutex);
 740         /*
 741          * Retrieve the maximal number of event ports allowed per system from
 742          * the resource control: project.port-max-ids.
 743          */
 744         mutex_enter(&p->p_lock);
 745         if (rctl_test(rc_project_portids, p->p_task->tk_proj->kpj_rctls, p,
 746             port_control.pc_nents + 1, RCA_SAFE) & RCT_DENY) {
 747                 mutex_exit(&p->p_lock);
 748                 vn_free(vp);
 749                 kmem_free(pp, sizeof (port_t));
 750                 mutex_exit(&port_control.pc_mutex);
 751                 return (EAGAIN);
 752         }
 753 
 754         /*
 755          * Retrieve the maximal number of events allowed per port from
 756          * the resource control: process.port-max-events.
 757          */
 758         pp->port_max_events = rctl_enforced_value(rc_process_portev,
 759             p->p_rctls, p);
 760         mutex_exit(&p->p_lock);
 761 
 762         /* allocate a new user file descriptor and a file structure */
 763         if (falloc(vp, 0, &fp, fdp)) {
 764                 /*
 765                  * If the file table is full, free allocated resources.
 766                  */
 767                 vn_free(vp);
 768                 kmem_free(pp, sizeof (port_t));
 769                 mutex_exit(&port_control.pc_mutex);
 770                 return (EMFILE);
 771         }
 772 
 773         mutex_exit(&fp->f_tlock);
 774 
 775         pp->port_fd = *fdp;
 776         port_control.pc_nents++;
 777         p->p_portcnt++;
 778         port_kstat.pks_ports.value.ui32++;
 779         mutex_exit(&port_control.pc_mutex);
 780 
 781         /* initializes port private data */
 782         port_init(pp);
 783         /* set user file pointer */
 784         setf(*fdp, fp);
 785         return (0);
 786 }
 787 
 788 /*
 789  * port_init() initializes event port specific data
 790  */
 791 static void
 792 port_init(port_t *pp)
 793 {
 794         port_queue_t    *portq;
 795         port_ksource_t  *pks;
 796 
 797         mutex_init(&pp->port_mutex, NULL, MUTEX_DEFAULT, NULL);
 798         portq = &pp->port_queue;
 799         mutex_init(&portq->portq_mutex, NULL, MUTEX_DEFAULT, NULL);
 800         pp->port_flags |= PORT_INIT;
 801 
 802         /*
 803          * If it is not enough memory available to satisfy a user
 804          * request using a single port_getn() call then port_getn()
 805          * will reduce the size of the list to PORT_MAX_LIST.
 806          */
 807         pp->port_max_list = port_max_list;
 808 
 809         /* Set timestamp entries required for fstat(2) requests */
 810         gethrestime(&pp->port_ctime);
 811         pp->port_uid = crgetuid(curproc->p_cred);
 812         pp->port_gid = crgetgid(curproc->p_cred);
 813 
 814         /* initialize port queue structs */
 815         list_create(&portq->portq_list, sizeof (port_kevent_t),
 816             offsetof(port_kevent_t, portkev_node));
 817         list_create(&portq->portq_get_list, sizeof (port_kevent_t),
 818             offsetof(port_kevent_t, portkev_node));
 819         portq->portq_flags = 0;
 820         pp->port_pid = curproc->p_pid;
 821 
 822         /* Allocate cache skeleton for PORT_SOURCE_FD events */
 823         portq->portq_pcp = kmem_zalloc(sizeof (port_fdcache_t), KM_SLEEP);
 824         mutex_init(&portq->portq_pcp->pc_lock, NULL, MUTEX_DEFAULT, NULL);
 825 
 826         /*
 827          * Allocate cache skeleton for association of event sources.
 828          */
 829         mutex_init(&portq->portq_source_mutex, NULL, MUTEX_DEFAULT, NULL);
 830         portq->portq_scache = kmem_zalloc(
 831             PORT_SCACHE_SIZE * sizeof (port_source_t *), KM_SLEEP);
 832 
 833         /*
 834          * pre-associate some kernel sources with this port.
 835          * The pre-association is required to create port_source_t
 836          * structures for object association.
 837          * Some sources can not get associated with a port before the first
 838          * object association is requested. Another reason to pre_associate
 839          * a particular source with a port is because of performance.
 840          */
 841 
 842         for (pks = port_ksource_tab; pks->pks_source != 0; pks++)
 843                 port_add_ksource_local(pp, pks);
 844 }
 845 
 846 /*
 847  * The port_add_ksource_local() function is being used to associate
 848  * event sources with every new port.
 849  * The event sources need to be added to port_ksource_tab[].
 850  */
 851 static void
 852 port_add_ksource_local(port_t *pp, port_ksource_t *pks)
 853 {
 854         port_source_t   *pse;
 855         port_source_t   **ps;
 856 
 857         mutex_enter(&pp->port_queue.portq_source_mutex);
 858         ps = &pp->port_queue.portq_scache[PORT_SHASH(pks->pks_source)];
 859         for (pse = *ps; pse != NULL; pse = pse->portsrc_next) {
 860                 if (pse->portsrc_source == pks->pks_source)
 861                         break;
 862         }
 863 
 864         if (pse == NULL) {
 865                 /* associate new source with the port */
 866                 pse = kmem_zalloc(sizeof (port_source_t), KM_SLEEP);
 867                 pse->portsrc_source = pks->pks_source;
 868                 pse->portsrc_close = pks->pks_close;
 869                 pse->portsrc_closearg = pks->pks_closearg;
 870                 pse->portsrc_cnt = 1;
 871 
 872                 pks->pks_portsrc = pse;
 873                 if (*ps != NULL)
 874                         pse->portsrc_next = (*ps)->portsrc_next;
 875                 *ps = pse;
 876         }
 877         mutex_exit(&pp->port_queue.portq_source_mutex);
 878 }
 879 
 880 /*
 881  * The port_send() function sends an event of type "source" to a
 882  * port. This function is non-blocking. An event can be sent to
 883  * a port as long as the number of events per port does not achieve the
 884  * maximal allowed number of events. The max. number of events per port is
 885  * defined by the resource control process.max-port-events.
 886  * This function is used by the port library function port_send()
 887  * and port_dispatch(). The port_send(3c) function is part of the
 888  * event ports API and submits events of type PORT_SOURCE_USER. The
 889  * port_dispatch() function is project private and it is used by library
 890  * functions to submit events of other types than PORT_SOURCE_USER
 891  * (e.g. PORT_SOURCE_AIO).
 892  */
 893 static int
 894 port_send(port_t *pp, int source, int events, void *user)
 895 {
 896         port_kevent_t   *pev;
 897         int             error;
 898 
 899         error = port_alloc_event_local(pp, source, PORT_ALLOC_DEFAULT, &pev);
 900         if (error)
 901                 return (error);
 902 
 903         pev->portkev_object = 0;
 904         pev->portkev_events = events;
 905         pev->portkev_user = user;
 906         pev->portkev_callback = NULL;
 907         pev->portkev_arg = NULL;
 908         pev->portkev_flags = 0;
 909 
 910         port_send_event(pev);
 911         return (0);
 912 }
 913 
 914 /*
 915  * The port_noshare() function returns 0 if the current event was generated
 916  * by the same process. Otherwise is returns a value other than 0 and the
 917  * event should not be delivered to the current processe.
 918  * The port_noshare() function is normally used by the port_dispatch()
 919  * function. The port_dispatch() function is project private and can only be
 920  * used within the event port project.
 921  * Currently the libaio uses the port_dispatch() function to deliver events
 922  * of types PORT_SOURCE_AIO.
 923  */
 924 /* ARGSUSED */
 925 static int
 926 port_noshare(void *arg, int *events, pid_t pid, int flag, void *evp)
 927 {
 928         if (flag == PORT_CALLBACK_DEFAULT && curproc->p_pid != pid)
 929                 return (1);
 930         return (0);
 931 }
 932 
 933 /*
 934  * The port_dispatch_event() function is project private and it is used by
 935  * libraries involved in the project to deliver events to the port.
 936  * port_dispatch will sleep and wait for enough resources to satisfy the
 937  * request, if necessary.
 938  * The library can specify if the delivered event is shareable with other
 939  * processes (see PORT_SYS_NOSHARE flag).
 940  */
 941 static int
 942 port_dispatch_event(port_t *pp, int opcode, int source, int events,
 943     uintptr_t object, void *user)
 944 {
 945         port_kevent_t   *pev;
 946         int             error;
 947 
 948         error = port_alloc_event_block(pp, source, PORT_ALLOC_DEFAULT, &pev);
 949         if (error)
 950                 return (error);
 951 
 952         pev->portkev_object = object;
 953         pev->portkev_events = events;
 954         pev->portkev_user = user;
 955         pev->portkev_arg = NULL;
 956         if (opcode & PORT_SYS_NOSHARE) {
 957                 pev->portkev_flags = PORT_KEV_NOSHARE;
 958                 pev->portkev_callback = port_noshare;
 959         } else {
 960                 pev->portkev_flags = 0;
 961                 pev->portkev_callback = NULL;
 962         }
 963 
 964         port_send_event(pev);
 965         return (0);
 966 }
 967 
 968 
 969 /*
 970  * The port_sendn() function is the kernel implementation of the event
 971  * port API function port_sendn(3c).
 972  * This function is able to send an event to a list of event ports.
 973  */
 974 static int
 975 port_sendn(int ports[], int errors[], uint_t nent, int events, void *user,
 976     uint_t *nget)
 977 {
 978         port_kevent_t   *pev;
 979         int             errorcnt = 0;
 980         int             error = 0;
 981         int             count;
 982         int             port;
 983         int             *plist;
 984         int             *elist = NULL;
 985         file_t          *fp;
 986         port_t          *pp;
 987 
 988         if (nent == 0 || nent > port_max_list)
 989                 return (EINVAL);
 990 
 991         plist = kmem_alloc(nent * sizeof (int), KM_SLEEP);
 992         if (copyin((void *)ports, plist, nent * sizeof (int))) {
 993                 kmem_free(plist, nent * sizeof (int));
 994                 return (EFAULT);
 995         }
 996 
 997         /*
 998          * Scan the list for event port file descriptors and send the
 999          * attached user event data embedded in a event of type
1000          * PORT_SOURCE_USER to every event port in the list.
1001          * If a list entry is not a valid event port then the corresponding
1002          * error code will be stored in the errors[] list with the same
1003          * list offset as in the ports[] list.
1004          */
1005 
1006         for (count = 0; count < nent; count++) {
1007                 port = plist[count];
1008                 if ((fp = getf(port)) == NULL) {
1009                         elist = port_errorn(elist, nent, EBADF, count);
1010                         errorcnt++;
1011                         continue;
1012                 }
1013 
1014                 pp = VTOEP(fp->f_vnode);
1015                 if (fp->f_vnode->v_type != VPORT) {
1016                         releasef(port);
1017                         elist = port_errorn(elist, nent, EBADFD, count);
1018                         errorcnt++;
1019                         continue;
1020                 }
1021 
1022                 error = port_alloc_event_local(pp, PORT_SOURCE_USER,
1023                     PORT_ALLOC_DEFAULT, &pev);
1024                 if (error) {
1025                         releasef(port);
1026                         elist = port_errorn(elist, nent, error, count);
1027                         errorcnt++;
1028                         continue;
1029                 }
1030 
1031                 pev->portkev_object = 0;
1032                 pev->portkev_events = events;
1033                 pev->portkev_user = user;
1034                 pev->portkev_callback = NULL;
1035                 pev->portkev_arg = NULL;
1036                 pev->portkev_flags = 0;
1037 
1038                 port_send_event(pev);
1039                 releasef(port);
1040         }
1041         if (errorcnt) {
1042                 error = EIO;
1043                 if (copyout(elist, (void *)errors, nent * sizeof (int)))
1044                         error = EFAULT;
1045                 kmem_free(elist, nent * sizeof (int));
1046         }
1047         *nget = nent - errorcnt;
1048         kmem_free(plist, nent * sizeof (int));
1049         return (error);
1050 }
1051 
1052 static int *
1053 port_errorn(int *elist, int nent, int error, int index)
1054 {
1055         if (elist == NULL)
1056                 elist = kmem_zalloc(nent * sizeof (int), KM_SLEEP);
1057         elist[index] = error;
1058         return (elist);
1059 }
1060 
1061 /*
1062  * port_alert()
1063  * The port_alert() funcion is a high priority event and it is always set
1064  * on top of the queue. It is also delivered as single event.
1065  * flags:
1066  *      - SET   :overwrite current alert data
1067  *      - UPDATE:set alert data or return EBUSY if alert mode is already set
1068  *
1069  * - set the ALERT flag
1070  * - wakeup all sleeping threads
1071  */
1072 static int
1073 port_alert(port_t *pp, int flags, int events, void *user)
1074 {
1075         port_queue_t    *portq;
1076         portget_t       *pgetp;
1077         port_alert_t    *pa;
1078 
1079         if ((flags & PORT_ALERT_INVALID) == PORT_ALERT_INVALID)
1080                 return (EINVAL);
1081 
1082         portq = &pp->port_queue;
1083         pa = &portq->portq_alert;
1084         mutex_enter(&portq->portq_mutex);
1085 
1086         /* check alert conditions */
1087         if (flags == PORT_ALERT_UPDATE) {
1088                 if (portq->portq_flags & PORTQ_ALERT) {
1089                         mutex_exit(&portq->portq_mutex);
1090                         return (EBUSY);
1091                 }
1092         }
1093 
1094         /*
1095          * Store alert data in the port to be delivered to threads
1096          * which are using port_get(n) to retrieve events.
1097          */
1098 
1099         portq->portq_flags |= PORTQ_ALERT;
1100         pa->portal_events = events;          /* alert info */
1101         pa->portal_pid = curproc->p_pid;  /* process owner */
1102         pa->portal_object = 0;                       /* no object */
1103         pa->portal_user = user;                      /* user alert data */
1104 
1105         /* alert and deliver alert data to waiting threads */
1106         pgetp = portq->portq_thread;
1107         if (pgetp == NULL) {
1108                 /* no threads waiting for events */
1109                 mutex_exit(&portq->portq_mutex);
1110                 return (0);
1111         }
1112 
1113         /*
1114          * Set waiting threads in alert mode (PORTGET_ALERT)..
1115          * Every thread waiting for events already allocated a portget_t
1116          * structure to sleep on.
1117          * The port alert arguments are stored in the portget_t structure.
1118          * The PORTGET_ALERT flag is set to indicate the thread to return
1119          * immediately with the alert event.
1120          */
1121         do {
1122                 if ((pgetp->portget_state & PORTGET_ALERT) == 0) {
1123                         pa = &pgetp->portget_alert;
1124                         pa->portal_events = events;
1125                         pa->portal_object = 0;
1126                         pa->portal_user = user;
1127                         pgetp->portget_state |= PORTGET_ALERT;
1128                         cv_signal(&pgetp->portget_cv);
1129                 }
1130         } while ((pgetp = pgetp->portget_next) != portq->portq_thread);
1131         mutex_exit(&portq->portq_mutex);
1132         return (0);
1133 }
1134 
1135 /*
1136  * Clear alert state of the port
1137  */
1138 static void
1139 port_remove_alert(port_queue_t *portq)
1140 {
1141         mutex_enter(&portq->portq_mutex);
1142         portq->portq_flags &= ~PORTQ_ALERT;
1143         mutex_exit(&portq->portq_mutex);
1144 }
1145 
1146 /*
1147  * The port_getn() function is used to retrieve events from a port.
1148  *
1149  * The port_getn() function returns immediately if there are enough events
1150  * available in the port to satisfy the request or if the port is in alert
1151  * mode (see port_alert(3c)).
1152  * The timeout argument of port_getn(3c) -which is embedded in the
1153  * port_gettimer_t structure- specifies if the system call should block or if it
1154  * should return immediately depending on the number of events available.
1155  * This function is internally used by port_getn(3c) as well as by
1156  * port_get(3c).
1157  */
1158 static int
1159 port_getn(port_t *pp, port_event_t *uevp, uint_t max, uint_t *nget,
1160     port_gettimer_t *pgt)
1161 {
1162         port_queue_t    *portq;
1163         port_kevent_t   *pev;
1164         port_kevent_t   *lev;
1165         int             error = 0;
1166         uint_t          nmax;
1167         uint_t          nevents;
1168         uint_t          eventsz;
1169         port_event_t    *kevp;
1170         list_t          *glist;
1171         uint_t          tnent;
1172         int             rval;
1173         int             blocking = -1;
1174         int             timecheck;
1175         int             flag;
1176         timespec_t      rqtime;
1177         timespec_t      *rqtp = NULL;
1178         portget_t       *pgetp;
1179         void            *results;
1180         model_t         model = get_udatamodel();
1181 
1182         flag = pgt->pgt_flags;
1183 
1184         if (*nget > max && max > 0)
1185                 return (EINVAL);
1186 
1187         portq = &pp->port_queue;
1188         mutex_enter(&portq->portq_mutex);
1189         if (max == 0) {
1190                 /*
1191                  * Return number of objects with events.
1192                  * The port_block() call is required to synchronize this
1193                  * thread with another possible thread, which could be
1194                  * retrieving events from the port queue.
1195                  */
1196                 port_block(portq);
1197                 /*
1198                  * Check if a second thread is currently retrieving events
1199                  * and it is using the temporary event queue.
1200                  */
1201                 if (portq->portq_tnent) {
1202                         /* put remaining events back to the port queue */
1203                         port_push_eventq(portq);
1204                 }
1205                 *nget = portq->portq_nent;
1206                 port_unblock(portq);
1207                 mutex_exit(&portq->portq_mutex);
1208                 return (0);
1209         }
1210 
1211         if (uevp == NULL) {
1212                 mutex_exit(&portq->portq_mutex);
1213                 return (EFAULT);
1214         }
1215         if (*nget == 0) {               /* no events required */
1216                 mutex_exit(&portq->portq_mutex);
1217                 return (0);
1218         }
1219 
1220         /* port is being closed ... */
1221         if (portq->portq_flags & PORTQ_CLOSE) {
1222                 mutex_exit(&portq->portq_mutex);
1223                 return (EBADFD);
1224         }
1225 
1226         /* return immediately if port in alert mode */
1227         if (portq->portq_flags & PORTQ_ALERT) {
1228                 error = port_get_alert(&portq->portq_alert, uevp);
1229                 if (error == 0)
1230                         *nget = 1;
1231                 mutex_exit(&portq->portq_mutex);
1232                 return (error);
1233         }
1234 
1235         portq->portq_thrcnt++;
1236 
1237         /*
1238          * Now check if the completed events satisfy the
1239          * "wait" requirements of the current thread:
1240          */
1241 
1242         if (pgt->pgt_loop) {
1243                 /*
1244                  * loop entry of same thread
1245                  * pgt_loop is set when the current thread returns
1246                  * prematurely from this function. That could happen
1247                  * when a port is being shared between processes and
1248                  * this thread could not find events to return.
1249                  * It is not allowed to a thread to retrieve non-shareable
1250                  * events generated in other processes.
1251                  * PORTQ_WAIT_EVENTS is set when a thread already
1252                  * checked the current event queue and no new events
1253                  * are added to the queue.
1254                  */
1255                 if (((portq->portq_flags & PORTQ_WAIT_EVENTS) == 0) &&
1256                     (portq->portq_nent >= *nget)) {
1257                         /* some new events arrived ...check them */
1258                         goto portnowait;
1259                 }
1260                 rqtp = pgt->pgt_rqtp;
1261                 timecheck = pgt->pgt_timecheck;
1262                 pgt->pgt_flags |= PORTGET_WAIT_EVENTS;
1263         } else {
1264                 /* check if enough events are available ... */
1265                 if (portq->portq_nent >= *nget)
1266                         goto portnowait;
1267                 /*
1268                  * There are not enough events available to satisfy
1269                  * the request, check timeout value and wait for
1270                  * incoming events.
1271                  */
1272                 error = port_get_timeout(pgt->pgt_timeout, &rqtime, &rqtp,
1273                     &blocking, flag);
1274                 if (error) {
1275                         port_check_return_cond(portq);
1276                         mutex_exit(&portq->portq_mutex);
1277                         return (error);
1278                 }
1279 
1280                 if (blocking == 0) /* don't block, check fired events */
1281                         goto portnowait;
1282 
1283                 if (rqtp != NULL) {
1284                         timespec_t      now;
1285                         timecheck = timechanged;
1286                         gethrestime(&now);
1287                         timespecadd(rqtp, &now);
1288                 }
1289         }
1290 
1291         /* enqueue thread in the list of waiting threads */
1292         pgetp = port_queue_thread(portq, *nget);
1293 
1294 
1295         /* Wait here until return conditions met */
1296         for (;;) {
1297                 if (pgetp->portget_state & PORTGET_ALERT) {
1298                         /* reap alert event and return */
1299                         error = port_get_alert(&pgetp->portget_alert, uevp);
1300                         if (error)
1301                                 *nget = 0;
1302                         else
1303                                 *nget = 1;
1304                         port_dequeue_thread(&pp->port_queue, pgetp);
1305                         portq->portq_thrcnt--;
1306                         mutex_exit(&portq->portq_mutex);
1307                         return (error);
1308                 }
1309 
1310                 /*
1311                  * Check if some other thread is already retrieving
1312                  * events (portq_getn > 0).
1313                  */
1314 
1315                 if ((portq->portq_getn  == 0) &&
1316                     ((portq)->portq_nent >= *nget) &&
1317                     (!((pgt)->pgt_flags & PORTGET_WAIT_EVENTS) ||
1318                     !((portq)->portq_flags & PORTQ_WAIT_EVENTS)))
1319                         break;
1320 
1321                 if (portq->portq_flags & PORTQ_CLOSE) {
1322                         error = EBADFD;
1323                         break;
1324                 }
1325 
1326                 rval = cv_waituntil_sig(&pgetp->portget_cv, &portq->portq_mutex,
1327                     rqtp, timecheck);
1328 
1329                 if (rval <= 0) {
1330                         error = (rval == 0) ? EINTR : ETIME;
1331                         break;
1332                 }
1333         }
1334 
1335         /* take thread out of the wait queue */
1336         port_dequeue_thread(portq, pgetp);
1337 
1338         if (error != 0 && (error == EINTR || error == EBADFD ||
1339             (error == ETIME && flag))) {
1340                 /* return without events */
1341                 port_check_return_cond(portq);
1342                 mutex_exit(&portq->portq_mutex);
1343                 return (error);
1344         }
1345 
1346 portnowait:
1347         /*
1348          * Move port event queue to a temporary event queue .
1349          * New incoming events will be continue be posted to the event queue
1350          * and they will not be considered by the current thread.
1351          * The idea is to avoid lock contentions or an often locking/unlocking
1352          * of the port queue mutex. The contention and performance degradation
1353          * could happen because:
1354          * a) incoming events use the port queue mutex to enqueue new events and
1355          * b) before the event can be delivered to the application it is
1356          *    necessary to notify the event sources about the event delivery.
1357          *    Sometimes the event sources can require a long time to return and
1358          *    the queue mutex would block incoming events.
1359          * During this time incoming events (port_send_event()) do not need
1360          * to awake threads waiting for events. Before the current thread
1361          * returns it will check the conditions to awake other waiting threads.
1362          */
1363         portq->portq_getn++; /* number of threads retrieving events */
1364         port_block(portq);      /* block other threads here */
1365         nmax = max < portq->portq_nent ? max : portq->portq_nent;
1366 
1367         if (portq->portq_tnent) {
1368                 /*
1369                  * Move remaining events from previous thread back to the
1370                  * port event queue.
1371                  */
1372                 port_push_eventq(portq);
1373         }
1374         /* move port event queue to a temporary queue */
1375         list_move_tail(&portq->portq_get_list, &portq->portq_list);
1376         glist = &portq->portq_get_list;  /* use temporary event queue */
1377         tnent = portq->portq_nent;   /* get current number of events */
1378         portq->portq_nent = 0;               /* no events in the port event queue */
1379         portq->portq_flags |= PORTQ_WAIT_EVENTS; /* detect incoming events */
1380         mutex_exit(&portq->portq_mutex);    /* event queue can be reused now */
1381 
1382         if (model == DATAMODEL_NATIVE) {
1383                 eventsz = sizeof (port_event_t);
1384                 kevp = kmem_alloc(eventsz * nmax, KM_NOSLEEP);
1385                 if (kevp == NULL) {
1386                         if (nmax > pp->port_max_list)
1387                                 nmax = pp->port_max_list;
1388                         kevp = kmem_alloc(eventsz * nmax, KM_SLEEP);
1389                 }
1390                 results = kevp;
1391                 lev = NULL;     /* start with first event in the queue */
1392                 for (nevents = 0; nevents < nmax; ) {
1393                         pev = port_get_kevent(glist, lev);
1394                         if (pev == NULL)        /* no more events available */
1395                                 break;
1396                         if (pev->portkev_flags & PORT_KEV_FREE) {
1397                                 /* Just discard event */
1398                                 list_remove(glist, pev);
1399                                 pev->portkev_flags &= ~(PORT_CLEANUP_DONE);
1400                                 if (PORT_FREE_EVENT(pev))
1401                                         port_free_event_local(pev, 0);
1402                                 tnent--;
1403                                 continue;
1404                         }
1405 
1406                         /* move event data to copyout list */
1407                         if (port_copy_event(&kevp[nevents], pev, glist)) {
1408                                 /*
1409                                  * Event can not be delivered to the
1410                                  * current process.
1411                                  */
1412                                 if (lev != NULL)
1413                                         list_insert_after(glist, lev, pev);
1414                                 else
1415                                         list_insert_head(glist, pev);
1416                                 lev = pev;  /* last checked event */
1417                         } else {
1418                                 nevents++;      /* # of events ready */
1419                         }
1420                 }
1421 #ifdef  _SYSCALL32_IMPL
1422         } else {
1423                 port_event32_t  *kevp32;
1424 
1425                 eventsz = sizeof (port_event32_t);
1426                 kevp32 = kmem_alloc(eventsz * nmax, KM_NOSLEEP);
1427                 if (kevp32 == NULL) {
1428                         if (nmax > pp->port_max_list)
1429                                 nmax = pp->port_max_list;
1430                         kevp32 = kmem_alloc(eventsz * nmax, KM_SLEEP);
1431                 }
1432                 results = kevp32;
1433                 lev = NULL;     /* start with first event in the queue */
1434                 for (nevents = 0; nevents < nmax; ) {
1435                         pev = port_get_kevent(glist, lev);
1436                         if (pev == NULL)        /* no more events available */
1437                                 break;
1438                         if (pev->portkev_flags & PORT_KEV_FREE) {
1439                                 /* Just discard event */
1440                                 list_remove(glist, pev);
1441                                 pev->portkev_flags &= ~(PORT_CLEANUP_DONE);
1442                                 if (PORT_FREE_EVENT(pev))
1443                                         port_free_event_local(pev, 0);
1444                                 tnent--;
1445                                 continue;
1446                         }
1447 
1448                         /* move event data to copyout list */
1449                         if (port_copy_event32(&kevp32[nevents], pev, glist)) {
1450                                 /*
1451                                  * Event can not be delivered to the
1452                                  * current process.
1453                                  */
1454                                 if (lev != NULL)
1455                                         list_insert_after(glist, lev, pev);
1456                                 else
1457                                         list_insert_head(glist, pev);
1458                                 lev = pev;  /* last checked event */
1459                         } else {
1460                                 nevents++;      /* # of events ready */
1461                         }
1462                 }
1463 #endif  /* _SYSCALL32_IMPL */
1464         }
1465 
1466         /*
1467          *  Remember number of remaining events in the temporary event queue.
1468          */
1469         portq->portq_tnent = tnent - nevents;
1470 
1471         /*
1472          * Work to do before return :
1473          * - push list of remaining events back to the top of the standard
1474          *   port queue.
1475          * - if this is the last thread calling port_get(n) then wakeup the
1476          *   thread waiting on close(2).
1477          * - check for a deferred cv_signal from port_send_event() and wakeup
1478          *   the sleeping thread.
1479          */
1480 
1481         mutex_enter(&portq->portq_mutex);
1482         port_unblock(portq);
1483         if (portq->portq_tnent) {
1484                 /*
1485                  * move remaining events in the temporary event queue back
1486                  * to the port event queue
1487                  */
1488                 port_push_eventq(portq);
1489         }
1490         portq->portq_getn--; /* update # of threads retrieving events */
1491         if (--portq->portq_thrcnt == 0) { /* # of threads waiting ... */
1492                 /* Last thread => check close(2) conditions ... */
1493                 if (portq->portq_flags & PORTQ_CLOSE) {
1494                         cv_signal(&portq->portq_closecv);
1495                         mutex_exit(&portq->portq_mutex);
1496                         kmem_free(results, eventsz * nmax);
1497                         /* do not copyout events */
1498                         *nget = 0;
1499                         return (EBADFD);
1500                 }
1501         } else if (portq->portq_getn == 0) {
1502                 /*
1503                  * no other threads retrieving events ...
1504                  * check wakeup conditions of sleeping threads
1505                  */
1506                 if ((portq->portq_thread != NULL) &&
1507                     (portq->portq_nent >= portq->portq_nget))
1508                         cv_signal(&portq->portq_thread->portget_cv);
1509         }
1510 
1511         /*
1512          * Check PORTQ_POLLIN here because the current thread set temporarily
1513          * the number of events in the queue to zero.
1514          */
1515         if (portq->portq_flags & PORTQ_POLLIN) {
1516                 portq->portq_flags &= ~PORTQ_POLLIN;
1517                 mutex_exit(&portq->portq_mutex);
1518                 pollwakeup(&pp->port_pollhd, POLLIN);
1519         } else {
1520                 mutex_exit(&portq->portq_mutex);
1521         }
1522 
1523         /* now copyout list of user event structures to user space */
1524         if (nevents) {
1525                 if (copyout(results, uevp, nevents * eventsz))
1526                         error = EFAULT;
1527         }
1528         kmem_free(results, eventsz * nmax);
1529 
1530         if (nevents == 0 && error == 0 && pgt->pgt_loop == 0 && blocking != 0) {
1531                 /* no events retrieved: check loop conditions */
1532                 if (blocking == -1) {
1533                         /* no timeout checked */
1534                         error = port_get_timeout(pgt->pgt_timeout,
1535                             &pgt->pgt_rqtime, &rqtp, &blocking, flag);
1536                         if (error) {
1537                                 *nget = nevents;
1538                                 return (error);
1539                         }
1540                         if (rqtp != NULL) {
1541                                 timespec_t      now;
1542                                 pgt->pgt_timecheck = timechanged;
1543                                 gethrestime(&now);
1544                                 timespecadd(&pgt->pgt_rqtime, &now);
1545                         }
1546                         pgt->pgt_rqtp = rqtp;
1547                 } else {
1548                         /* timeout already checked -> remember values */
1549                         pgt->pgt_rqtp = rqtp;
1550                         if (rqtp != NULL) {
1551                                 pgt->pgt_timecheck = timecheck;
1552                                 pgt->pgt_rqtime = *rqtp;
1553                         }
1554                 }
1555                 if (blocking)
1556                         /* timeout remaining */
1557                         pgt->pgt_loop = 1;
1558         }
1559 
1560         /* set number of user event structures completed */
1561         *nget = nevents;
1562         return (error);
1563 }
1564 
1565 /*
1566  * 1. copy kernel event structure to user event structure.
1567  * 2. PORT_KEV_WIRED event structures will be reused by the "source"
1568  * 3. Remove PORT_KEV_DONEQ flag (event removed from the event queue)
1569  * 4. Other types of event structures can be delivered back to the port cache
1570  *    (port_free_event_local()).
1571  * 5. The event source callback function is the last opportunity for the
1572  *    event source to update events, to free local resources associated with
1573  *    the event or to deny the delivery of the event.
1574  */
1575 static int
1576 port_copy_event(port_event_t *puevp, port_kevent_t *pkevp, list_t *list)
1577 {
1578         int     free_event = 0;
1579         int     flags;
1580         int     error;
1581 
1582         puevp->portev_source = pkevp->portkev_source;
1583         puevp->portev_object = pkevp->portkev_object;
1584         puevp->portev_user = pkevp->portkev_user;
1585         puevp->portev_events = pkevp->portkev_events;
1586 
1587         /* remove event from the queue */
1588         list_remove(list, pkevp);
1589 
1590         /*
1591          * Events of type PORT_KEV_WIRED remain allocated by the
1592          * event source.
1593          */
1594         flags = pkevp->portkev_flags;
1595         if (pkevp->portkev_flags & PORT_KEV_WIRED)
1596                 pkevp->portkev_flags &= ~PORT_KEV_DONEQ;
1597         else
1598                 free_event = 1;
1599 
1600         if (pkevp->portkev_callback) {
1601                 error = (*pkevp->portkev_callback)(pkevp->portkev_arg,
1602                     &puevp->portev_events, pkevp->portkev_pid,
1603                     PORT_CALLBACK_DEFAULT, pkevp);
1604 
1605                 if (error) {
1606                         /*
1607                          * Event can not be delivered.
1608                          * Caller must reinsert the event into the queue.
1609                          */
1610                         pkevp->portkev_flags = flags;
1611                         return (error);
1612                 }
1613         }
1614         if (free_event)
1615                 port_free_event_local(pkevp, 0);
1616         return (0);
1617 }
1618 
1619 #ifdef  _SYSCALL32_IMPL
1620 /*
1621  * 1. copy kernel event structure to user event structure.
1622  * 2. PORT_KEV_WIRED event structures will be reused by the "source"
1623  * 3. Remove PORT_KEV_DONEQ flag (event removed from the event queue)
1624  * 4. Other types of event structures can be delivered back to the port cache
1625  *    (port_free_event_local()).
1626  * 5. The event source callback function is the last opportunity for the
1627  *    event source to update events, to free local resources associated with
1628  *    the event or to deny the delivery of the event.
1629  */
1630 static int
1631 port_copy_event32(port_event32_t *puevp, port_kevent_t *pkevp, list_t *list)
1632 {
1633         int     free_event = 0;
1634         int     error;
1635         int     flags;
1636 
1637         puevp->portev_source = pkevp->portkev_source;
1638         puevp->portev_object = (daddr32_t)pkevp->portkev_object;
1639         puevp->portev_user = (caddr32_t)(uintptr_t)pkevp->portkev_user;
1640         puevp->portev_events = pkevp->portkev_events;
1641 
1642         /* remove event from the queue */
1643         list_remove(list, pkevp);
1644 
1645         /*
1646          * Events if type PORT_KEV_WIRED remain allocated by the
1647          * sub-system (source).
1648          */
1649 
1650         flags = pkevp->portkev_flags;
1651         if (pkevp->portkev_flags & PORT_KEV_WIRED)
1652                 pkevp->portkev_flags &= ~PORT_KEV_DONEQ;
1653         else
1654                 free_event = 1;
1655 
1656         if (pkevp->portkev_callback != NULL) {
1657                 error = (*pkevp->portkev_callback)(pkevp->portkev_arg,
1658                     &puevp->portev_events, pkevp->portkev_pid,
1659                     PORT_CALLBACK_DEFAULT, pkevp);
1660                 if (error) {
1661                         /*
1662                          * Event can not be delivered.
1663                          * Caller must reinsert the event into the queue.
1664                          */
1665                         pkevp->portkev_flags = flags;
1666                         return (error);
1667                 }
1668         }
1669         if (free_event)
1670                 port_free_event_local(pkevp, 0);
1671         return (0);
1672 }
1673 #endif  /* _SYSCALL32_IMPL */
1674 
1675 /*
1676  * copyout alert event.
1677  */
1678 static int
1679 port_get_alert(port_alert_t *pa, port_event_t *uevp)
1680 {
1681         model_t model = get_udatamodel();
1682 
1683         /* copyout alert event structures to user space */
1684         if (model == DATAMODEL_NATIVE) {
1685                 port_event_t    uev;
1686                 uev.portev_source = PORT_SOURCE_ALERT;
1687                 uev.portev_object = pa->portal_object;
1688                 uev.portev_events = pa->portal_events;
1689                 uev.portev_user = pa->portal_user;
1690                 if (copyout(&uev, uevp, sizeof (port_event_t)))
1691                         return (EFAULT);
1692 #ifdef  _SYSCALL32_IMPL
1693         } else {
1694                 port_event32_t  uev32;
1695                 uev32.portev_source = PORT_SOURCE_ALERT;
1696                 uev32.portev_object = (daddr32_t)pa->portal_object;
1697                 uev32.portev_events = pa->portal_events;
1698                 uev32.portev_user = (daddr32_t)(uintptr_t)pa->portal_user;
1699                 if (copyout(&uev32, uevp, sizeof (port_event32_t)))
1700                         return (EFAULT);
1701 #endif  /* _SYSCALL32_IMPL */
1702         }
1703         return (0);
1704 }
1705 
1706 /*
1707  * Check return conditions :
1708  * - pending port close(2)
1709  * - threads waiting for events
1710  */
1711 static void
1712 port_check_return_cond(port_queue_t *portq)
1713 {
1714         ASSERT(MUTEX_HELD(&portq->portq_mutex));
1715         portq->portq_thrcnt--;
1716         if (portq->portq_flags & PORTQ_CLOSE) {
1717                 if (portq->portq_thrcnt == 0)
1718                         cv_signal(&portq->portq_closecv);
1719                 else
1720                         cv_signal(&portq->portq_thread->portget_cv);
1721         }
1722 }
1723 
1724 /*
1725  * The port_get_kevent() function returns
1726  * - the event located at the head of the queue if 'last' pointer is NULL
1727  * - the next event after the event pointed by 'last'
1728  * The caller of this function is responsible for the integrity of the queue
1729  * in use:
1730  * - port_getn() is using a temporary queue protected with port_block().
1731  * - port_close_events() is working on the global event queue and protects
1732  *   the queue with portq->portq_mutex.
1733  */
1734 port_kevent_t *
1735 port_get_kevent(list_t *list, port_kevent_t *last)
1736 {
1737         if (last == NULL)
1738                 return (list_head(list));
1739         else
1740                 return (list_next(list, last));
1741 }
1742 
1743 /*
1744  * The port_get_timeout() function gets the timeout data from user space
1745  * and converts that info into a corresponding internal representation.
1746  * The kerneldata flag means that the timeout data is already loaded.
1747  */
1748 static int
1749 port_get_timeout(timespec_t *timeout, timespec_t *rqtime, timespec_t **rqtp,
1750     int *blocking, int kerneldata)
1751 {
1752         model_t model = get_udatamodel();
1753 
1754         *rqtp = NULL;
1755         if (timeout == NULL) {
1756                 *blocking = 1;
1757                 return (0);
1758         }
1759 
1760         if (kerneldata) {
1761                 *rqtime = *timeout;
1762         } else {
1763                 if (model == DATAMODEL_NATIVE) {
1764                         if (copyin(timeout, rqtime, sizeof (*rqtime)))
1765                                 return (EFAULT);
1766 #ifdef  _SYSCALL32_IMPL
1767                 } else {
1768                         timespec32_t    wait_time_32;
1769                         if (copyin(timeout, &wait_time_32,
1770                             sizeof (wait_time_32)))
1771                                 return (EFAULT);
1772                         TIMESPEC32_TO_TIMESPEC(rqtime, &wait_time_32);
1773 #endif  /* _SYSCALL32_IMPL */
1774                 }
1775         }
1776 
1777         if (rqtime->tv_sec == 0 && rqtime->tv_nsec == 0) {
1778                 *blocking = 0;
1779                 return (0);
1780         }
1781 
1782         if (rqtime->tv_sec < 0 ||
1783             rqtime->tv_nsec < 0 || rqtime->tv_nsec >= NANOSEC)
1784                 return (EINVAL);
1785 
1786         *rqtp = rqtime;
1787         *blocking = 1;
1788         return (0);
1789 }
1790 
1791 /*
1792  * port_queue_thread()
1793  * Threads requiring more events than available will be put in a wait queue.
1794  * There is a "thread wait queue" per port.
1795  * Threads requiring less events get a higher priority than others and they
1796  * will be awoken first.
1797  */
1798 static portget_t *
1799 port_queue_thread(port_queue_t *portq, uint_t nget)
1800 {
1801         portget_t       *pgetp;
1802         portget_t       *ttp;
1803         portget_t       *htp;
1804 
1805         pgetp = kmem_zalloc(sizeof (portget_t), KM_SLEEP);
1806         pgetp->portget_nget = nget;
1807         pgetp->portget_pid = curproc->p_pid;
1808         if (portq->portq_thread == NULL) {
1809                 /* first waiting thread */
1810                 portq->portq_thread = pgetp;
1811                 portq->portq_nget = nget;
1812                 pgetp->portget_prev = pgetp;
1813                 pgetp->portget_next = pgetp;
1814                 return (pgetp);
1815         }
1816 
1817         /*
1818          * thread waiting for less events will be set on top of the queue.
1819          */
1820         ttp = portq->portq_thread;
1821         htp = ttp;
1822         for (;;) {
1823                 if (nget <= ttp->portget_nget)
1824                         break;
1825                 if (htp == ttp->portget_next)
1826                         break;  /* last event */
1827                 ttp = ttp->portget_next;
1828         }
1829 
1830         /* add thread to the queue */
1831         pgetp->portget_next = ttp;
1832         pgetp->portget_prev = ttp->portget_prev;
1833         ttp->portget_prev->portget_next = pgetp;
1834         ttp->portget_prev = pgetp;
1835         if (portq->portq_thread == ttp)
1836                 portq->portq_thread = pgetp;
1837         portq->portq_nget = portq->portq_thread->portget_nget;
1838         return (pgetp);
1839 }
1840 
1841 /*
1842  * Take thread out of the queue.
1843  */
1844 static void
1845 port_dequeue_thread(port_queue_t *portq, portget_t *pgetp)
1846 {
1847         if (pgetp->portget_next == pgetp) {
1848                 /* last (single) waiting thread */
1849                 portq->portq_thread = NULL;
1850                 portq->portq_nget = 0;
1851         } else {
1852                 pgetp->portget_prev->portget_next = pgetp->portget_next;
1853                 pgetp->portget_next->portget_prev = pgetp->portget_prev;
1854                 if (portq->portq_thread == pgetp)
1855                         portq->portq_thread = pgetp->portget_next;
1856                 portq->portq_nget = portq->portq_thread->portget_nget;
1857         }
1858         kmem_free(pgetp, sizeof (portget_t));
1859 }
1860 
1861 /*
1862  * Set up event port kstats.
1863  */
1864 static void
1865 port_kstat_init()
1866 {
1867         kstat_t *ksp;
1868         uint_t  ndata;
1869 
1870         ndata = sizeof (port_kstat) / sizeof (kstat_named_t);
1871         ksp = kstat_create("portfs", 0, "Event Ports", "misc",
1872             KSTAT_TYPE_NAMED, ndata, KSTAT_FLAG_VIRTUAL);
1873         if (ksp) {
1874                 ksp->ks_data = &port_kstat;
1875                 kstat_install(ksp);
1876         }
1877 }