Print this page
7127 remove -Wno-missing-braces from Makefile.uts
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/uts/common/fs/nfs/nfs_vnops.c
+++ new/usr/src/uts/common/fs/nfs/nfs_vnops.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21 /*
22 22 * Copyright (c) 1990, 2010, Oracle and/or its affiliates. All rights reserved.
23 23 *
24 24 * Copyright (c) 1983,1984,1985,1986,1987,1988,1989 AT&T.
25 25 * All rights reserved.
26 26 */
27 27
28 28 /*
29 29 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
30 30 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
31 31 */
32 32
33 33 #include <sys/param.h>
34 34 #include <sys/types.h>
35 35 #include <sys/systm.h>
36 36 #include <sys/cred.h>
37 37 #include <sys/time.h>
38 38 #include <sys/vnode.h>
39 39 #include <sys/vfs.h>
40 40 #include <sys/vfs_opreg.h>
41 41 #include <sys/file.h>
42 42 #include <sys/filio.h>
43 43 #include <sys/uio.h>
44 44 #include <sys/buf.h>
45 45 #include <sys/mman.h>
46 46 #include <sys/pathname.h>
47 47 #include <sys/dirent.h>
48 48 #include <sys/debug.h>
49 49 #include <sys/vmsystm.h>
50 50 #include <sys/fcntl.h>
51 51 #include <sys/flock.h>
52 52 #include <sys/swap.h>
53 53 #include <sys/errno.h>
54 54 #include <sys/strsubr.h>
55 55 #include <sys/sysmacros.h>
56 56 #include <sys/kmem.h>
57 57 #include <sys/cmn_err.h>
58 58 #include <sys/pathconf.h>
59 59 #include <sys/utsname.h>
60 60 #include <sys/dnlc.h>
61 61 #include <sys/acl.h>
62 62 #include <sys/atomic.h>
63 63 #include <sys/policy.h>
64 64 #include <sys/sdt.h>
65 65
66 66 #include <rpc/types.h>
67 67 #include <rpc/auth.h>
68 68 #include <rpc/clnt.h>
69 69
70 70 #include <nfs/nfs.h>
71 71 #include <nfs/nfs_clnt.h>
72 72 #include <nfs/rnode.h>
73 73 #include <nfs/nfs_acl.h>
74 74 #include <nfs/lm.h>
75 75
76 76 #include <vm/hat.h>
77 77 #include <vm/as.h>
78 78 #include <vm/page.h>
79 79 #include <vm/pvn.h>
80 80 #include <vm/seg.h>
81 81 #include <vm/seg_map.h>
82 82 #include <vm/seg_kpm.h>
83 83 #include <vm/seg_vn.h>
84 84
85 85 #include <fs/fs_subr.h>
86 86
87 87 #include <sys/ddi.h>
88 88
89 89 static int nfs_rdwrlbn(vnode_t *, page_t *, u_offset_t, size_t, int,
90 90 cred_t *);
91 91 static int nfswrite(vnode_t *, caddr_t, uint_t, int, cred_t *);
92 92 static int nfsread(vnode_t *, caddr_t, uint_t, int, size_t *, cred_t *);
93 93 static int nfssetattr(vnode_t *, struct vattr *, int, cred_t *);
94 94 static int nfslookup_dnlc(vnode_t *, char *, vnode_t **, cred_t *);
95 95 static int nfslookup_otw(vnode_t *, char *, vnode_t **, cred_t *, int);
96 96 static int nfsrename(vnode_t *, char *, vnode_t *, char *, cred_t *,
97 97 caller_context_t *);
98 98 static int nfsreaddir(vnode_t *, rddir_cache *, cred_t *);
99 99 static int nfs_bio(struct buf *, cred_t *);
100 100 static int nfs_getapage(vnode_t *, u_offset_t, size_t, uint_t *,
101 101 page_t *[], size_t, struct seg *, caddr_t,
102 102 enum seg_rw, cred_t *);
103 103 static void nfs_readahead(vnode_t *, u_offset_t, caddr_t, struct seg *,
104 104 cred_t *);
105 105 static int nfs_sync_putapage(vnode_t *, page_t *, u_offset_t, size_t,
106 106 int, cred_t *);
107 107 static int nfs_sync_pageio(vnode_t *, page_t *, u_offset_t, size_t,
108 108 int, cred_t *);
109 109 static void nfs_delmap_callback(struct as *, void *, uint_t);
110 110
111 111 /*
112 112 * Error flags used to pass information about certain special errors
113 113 * which need to be handled specially.
114 114 */
115 115 #define NFS_EOF -98
116 116
117 117 /*
118 118 * These are the vnode ops routines which implement the vnode interface to
119 119 * the networked file system. These routines just take their parameters,
120 120 * make them look networkish by putting the right info into interface structs,
121 121 * and then calling the appropriate remote routine(s) to do the work.
122 122 *
123 123 * Note on directory name lookup cacheing: If we detect a stale fhandle,
124 124 * we purge the directory cache relative to that vnode. This way, the
125 125 * user won't get burned by the cache repeatedly. See <nfs/rnode.h> for
126 126 * more details on rnode locking.
127 127 */
128 128
129 129 static int nfs_open(vnode_t **, int, cred_t *, caller_context_t *);
130 130 static int nfs_close(vnode_t *, int, int, offset_t, cred_t *,
131 131 caller_context_t *);
132 132 static int nfs_read(vnode_t *, struct uio *, int, cred_t *,
133 133 caller_context_t *);
134 134 static int nfs_write(vnode_t *, struct uio *, int, cred_t *,
135 135 caller_context_t *);
136 136 static int nfs_ioctl(vnode_t *, int, intptr_t, int, cred_t *, int *,
137 137 caller_context_t *);
138 138 static int nfs_getattr(vnode_t *, struct vattr *, int, cred_t *,
139 139 caller_context_t *);
140 140 static int nfs_setattr(vnode_t *, struct vattr *, int, cred_t *,
141 141 caller_context_t *);
142 142 static int nfs_access(vnode_t *, int, int, cred_t *, caller_context_t *);
143 143 static int nfs_accessx(void *, int, cred_t *);
144 144 static int nfs_readlink(vnode_t *, struct uio *, cred_t *,
145 145 caller_context_t *);
146 146 static int nfs_fsync(vnode_t *, int, cred_t *, caller_context_t *);
147 147 static void nfs_inactive(vnode_t *, cred_t *, caller_context_t *);
148 148 static int nfs_lookup(vnode_t *, char *, vnode_t **, struct pathname *,
149 149 int, vnode_t *, cred_t *, caller_context_t *,
150 150 int *, pathname_t *);
151 151 static int nfs_create(vnode_t *, char *, struct vattr *, enum vcexcl,
152 152 int, vnode_t **, cred_t *, int, caller_context_t *,
153 153 vsecattr_t *);
154 154 static int nfs_remove(vnode_t *, char *, cred_t *, caller_context_t *,
155 155 int);
156 156 static int nfs_link(vnode_t *, vnode_t *, char *, cred_t *,
157 157 caller_context_t *, int);
158 158 static int nfs_rename(vnode_t *, char *, vnode_t *, char *, cred_t *,
159 159 caller_context_t *, int);
160 160 static int nfs_mkdir(vnode_t *, char *, struct vattr *, vnode_t **,
161 161 cred_t *, caller_context_t *, int, vsecattr_t *);
162 162 static int nfs_rmdir(vnode_t *, char *, vnode_t *, cred_t *,
163 163 caller_context_t *, int);
164 164 static int nfs_symlink(vnode_t *, char *, struct vattr *, char *,
165 165 cred_t *, caller_context_t *, int);
166 166 static int nfs_readdir(vnode_t *, struct uio *, cred_t *, int *,
167 167 caller_context_t *, int);
168 168 static int nfs_fid(vnode_t *, fid_t *, caller_context_t *);
169 169 static int nfs_rwlock(vnode_t *, int, caller_context_t *);
170 170 static void nfs_rwunlock(vnode_t *, int, caller_context_t *);
171 171 static int nfs_seek(vnode_t *, offset_t, offset_t *, caller_context_t *);
172 172 static int nfs_getpage(vnode_t *, offset_t, size_t, uint_t *,
173 173 page_t *[], size_t, struct seg *, caddr_t,
174 174 enum seg_rw, cred_t *, caller_context_t *);
175 175 static int nfs_putpage(vnode_t *, offset_t, size_t, int, cred_t *,
176 176 caller_context_t *);
177 177 static int nfs_map(vnode_t *, offset_t, struct as *, caddr_t *, size_t,
178 178 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *);
179 179 static int nfs_addmap(vnode_t *, offset_t, struct as *, caddr_t, size_t,
180 180 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *);
181 181 static int nfs_frlock(vnode_t *, int, struct flock64 *, int, offset_t,
182 182 struct flk_callback *, cred_t *, caller_context_t *);
183 183 static int nfs_space(vnode_t *, int, struct flock64 *, int, offset_t,
184 184 cred_t *, caller_context_t *);
185 185 static int nfs_realvp(vnode_t *, vnode_t **, caller_context_t *);
186 186 static int nfs_delmap(vnode_t *, offset_t, struct as *, caddr_t, size_t,
187 187 uint_t, uint_t, uint_t, cred_t *, caller_context_t *);
188 188 static int nfs_pathconf(vnode_t *, int, ulong_t *, cred_t *,
189 189 caller_context_t *);
190 190 static int nfs_pageio(vnode_t *, page_t *, u_offset_t, size_t, int,
191 191 cred_t *, caller_context_t *);
↓ open down ↓ |
191 lines elided |
↑ open up ↑ |
192 192 static int nfs_setsecattr(vnode_t *, vsecattr_t *, int, cred_t *,
193 193 caller_context_t *);
194 194 static int nfs_getsecattr(vnode_t *, vsecattr_t *, int, cred_t *,
195 195 caller_context_t *);
196 196 static int nfs_shrlock(vnode_t *, int, struct shrlock *, int, cred_t *,
197 197 caller_context_t *);
198 198
199 199 struct vnodeops *nfs_vnodeops;
200 200
201 201 const fs_operation_def_t nfs_vnodeops_template[] = {
202 - VOPNAME_OPEN, { .vop_open = nfs_open },
203 - VOPNAME_CLOSE, { .vop_close = nfs_close },
204 - VOPNAME_READ, { .vop_read = nfs_read },
205 - VOPNAME_WRITE, { .vop_write = nfs_write },
206 - VOPNAME_IOCTL, { .vop_ioctl = nfs_ioctl },
207 - VOPNAME_GETATTR, { .vop_getattr = nfs_getattr },
208 - VOPNAME_SETATTR, { .vop_setattr = nfs_setattr },
209 - VOPNAME_ACCESS, { .vop_access = nfs_access },
210 - VOPNAME_LOOKUP, { .vop_lookup = nfs_lookup },
211 - VOPNAME_CREATE, { .vop_create = nfs_create },
212 - VOPNAME_REMOVE, { .vop_remove = nfs_remove },
213 - VOPNAME_LINK, { .vop_link = nfs_link },
214 - VOPNAME_RENAME, { .vop_rename = nfs_rename },
215 - VOPNAME_MKDIR, { .vop_mkdir = nfs_mkdir },
216 - VOPNAME_RMDIR, { .vop_rmdir = nfs_rmdir },
217 - VOPNAME_READDIR, { .vop_readdir = nfs_readdir },
218 - VOPNAME_SYMLINK, { .vop_symlink = nfs_symlink },
219 - VOPNAME_READLINK, { .vop_readlink = nfs_readlink },
220 - VOPNAME_FSYNC, { .vop_fsync = nfs_fsync },
221 - VOPNAME_INACTIVE, { .vop_inactive = nfs_inactive },
222 - VOPNAME_FID, { .vop_fid = nfs_fid },
223 - VOPNAME_RWLOCK, { .vop_rwlock = nfs_rwlock },
224 - VOPNAME_RWUNLOCK, { .vop_rwunlock = nfs_rwunlock },
225 - VOPNAME_SEEK, { .vop_seek = nfs_seek },
226 - VOPNAME_FRLOCK, { .vop_frlock = nfs_frlock },
227 - VOPNAME_SPACE, { .vop_space = nfs_space },
228 - VOPNAME_REALVP, { .vop_realvp = nfs_realvp },
229 - VOPNAME_GETPAGE, { .vop_getpage = nfs_getpage },
230 - VOPNAME_PUTPAGE, { .vop_putpage = nfs_putpage },
231 - VOPNAME_MAP, { .vop_map = nfs_map },
232 - VOPNAME_ADDMAP, { .vop_addmap = nfs_addmap },
233 - VOPNAME_DELMAP, { .vop_delmap = nfs_delmap },
234 - VOPNAME_DUMP, { .vop_dump = nfs_dump },
235 - VOPNAME_PATHCONF, { .vop_pathconf = nfs_pathconf },
236 - VOPNAME_PAGEIO, { .vop_pageio = nfs_pageio },
237 - VOPNAME_SETSECATTR, { .vop_setsecattr = nfs_setsecattr },
238 - VOPNAME_GETSECATTR, { .vop_getsecattr = nfs_getsecattr },
239 - VOPNAME_SHRLOCK, { .vop_shrlock = nfs_shrlock },
240 - VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
241 - NULL, NULL
202 + { VOPNAME_OPEN, { .vop_open = nfs_open } },
203 + { VOPNAME_CLOSE, { .vop_close = nfs_close } },
204 + { VOPNAME_READ, { .vop_read = nfs_read } },
205 + { VOPNAME_WRITE, { .vop_write = nfs_write } },
206 + { VOPNAME_IOCTL, { .vop_ioctl = nfs_ioctl } },
207 + { VOPNAME_GETATTR, { .vop_getattr = nfs_getattr } },
208 + { VOPNAME_SETATTR, { .vop_setattr = nfs_setattr } },
209 + { VOPNAME_ACCESS, { .vop_access = nfs_access } },
210 + { VOPNAME_LOOKUP, { .vop_lookup = nfs_lookup } },
211 + { VOPNAME_CREATE, { .vop_create = nfs_create } },
212 + { VOPNAME_REMOVE, { .vop_remove = nfs_remove } },
213 + { VOPNAME_LINK, { .vop_link = nfs_link } },
214 + { VOPNAME_RENAME, { .vop_rename = nfs_rename } },
215 + { VOPNAME_MKDIR, { .vop_mkdir = nfs_mkdir } },
216 + { VOPNAME_RMDIR, { .vop_rmdir = nfs_rmdir } },
217 + { VOPNAME_READDIR, { .vop_readdir = nfs_readdir } },
218 + { VOPNAME_SYMLINK, { .vop_symlink = nfs_symlink } },
219 + { VOPNAME_READLINK, { .vop_readlink = nfs_readlink } },
220 + { VOPNAME_FSYNC, { .vop_fsync = nfs_fsync } },
221 + { VOPNAME_INACTIVE, { .vop_inactive = nfs_inactive } },
222 + { VOPNAME_FID, { .vop_fid = nfs_fid } },
223 + { VOPNAME_RWLOCK, { .vop_rwlock = nfs_rwlock } },
224 + { VOPNAME_RWUNLOCK, { .vop_rwunlock = nfs_rwunlock } },
225 + { VOPNAME_SEEK, { .vop_seek = nfs_seek } },
226 + { VOPNAME_FRLOCK, { .vop_frlock = nfs_frlock } },
227 + { VOPNAME_SPACE, { .vop_space = nfs_space } },
228 + { VOPNAME_REALVP, { .vop_realvp = nfs_realvp } },
229 + { VOPNAME_GETPAGE, { .vop_getpage = nfs_getpage } },
230 + { VOPNAME_PUTPAGE, { .vop_putpage = nfs_putpage } },
231 + { VOPNAME_MAP, { .vop_map = nfs_map } },
232 + { VOPNAME_ADDMAP, { .vop_addmap = nfs_addmap } },
233 + { VOPNAME_DELMAP, { .vop_delmap = nfs_delmap } },
234 + { VOPNAME_DUMP, { .vop_dump = nfs_dump } },
235 + { VOPNAME_PATHCONF, { .vop_pathconf = nfs_pathconf } },
236 + { VOPNAME_PAGEIO, { .vop_pageio = nfs_pageio } },
237 + { VOPNAME_SETSECATTR, { .vop_setsecattr = nfs_setsecattr } },
238 + { VOPNAME_GETSECATTR, { .vop_getsecattr = nfs_getsecattr } },
239 + { VOPNAME_SHRLOCK, { .vop_shrlock = nfs_shrlock } },
240 + { VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support } },
241 + { NULL, { NULL } }
242 242 };
243 243
244 244 /*
245 245 * XXX: This is referenced in modstubs.s
246 246 */
247 247 struct vnodeops *
248 248 nfs_getvnodeops(void)
249 249 {
250 250 return (nfs_vnodeops);
251 251 }
252 252
253 253 /* ARGSUSED */
254 254 static int
255 255 nfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
256 256 {
257 257 int error;
258 258 struct vattr va;
259 259 rnode_t *rp;
260 260 vnode_t *vp;
261 261
262 262 vp = *vpp;
263 263 rp = VTOR(vp);
264 264 if (nfs_zone() != VTOMI(vp)->mi_zone)
265 265 return (EIO);
266 266 mutex_enter(&rp->r_statelock);
267 267 if (rp->r_cred == NULL) {
268 268 crhold(cr);
269 269 rp->r_cred = cr;
270 270 }
271 271 mutex_exit(&rp->r_statelock);
272 272
273 273 /*
274 274 * If there is no cached data or if close-to-open
275 275 * consistency checking is turned off, we can avoid
276 276 * the over the wire getattr. Otherwise, if the
277 277 * file system is mounted readonly, then just verify
278 278 * the caches are up to date using the normal mechanism.
279 279 * Else, if the file is not mmap'd, then just mark
280 280 * the attributes as timed out. They will be refreshed
281 281 * and the caches validated prior to being used.
282 282 * Else, the file system is mounted writeable so
283 283 * force an over the wire GETATTR in order to ensure
284 284 * that all cached data is valid.
285 285 */
286 286 if (vp->v_count > 1 ||
287 287 ((vn_has_cached_data(vp) || HAVE_RDDIR_CACHE(rp)) &&
288 288 !(VTOMI(vp)->mi_flags & MI_NOCTO))) {
289 289 if (vn_is_readonly(vp))
290 290 error = nfs_validate_caches(vp, cr);
291 291 else if (rp->r_mapcnt == 0 && vp->v_count == 1) {
292 292 PURGE_ATTRCACHE(vp);
293 293 error = 0;
294 294 } else {
295 295 va.va_mask = AT_ALL;
296 296 error = nfs_getattr_otw(vp, &va, cr);
297 297 }
298 298 } else
299 299 error = 0;
300 300
301 301 return (error);
302 302 }
303 303
304 304 /* ARGSUSED */
305 305 static int
306 306 nfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
307 307 caller_context_t *ct)
308 308 {
309 309 rnode_t *rp;
310 310 int error;
311 311 struct vattr va;
312 312
313 313 /*
314 314 * zone_enter(2) prevents processes from changing zones with NFS files
315 315 * open; if we happen to get here from the wrong zone we can't do
316 316 * anything over the wire.
317 317 */
318 318 if (VTOMI(vp)->mi_zone != nfs_zone()) {
319 319 /*
320 320 * We could attempt to clean up locks, except we're sure
321 321 * that the current process didn't acquire any locks on
322 322 * the file: any attempt to lock a file belong to another zone
323 323 * will fail, and one can't lock an NFS file and then change
324 324 * zones, as that fails too.
325 325 *
326 326 * Returning an error here is the sane thing to do. A
327 327 * subsequent call to VN_RELE() which translates to a
328 328 * nfs_inactive() will clean up state: if the zone of the
329 329 * vnode's origin is still alive and kicking, an async worker
330 330 * thread will handle the request (from the correct zone), and
331 331 * everything (minus the final nfs_getattr_otw() call) should
332 332 * be OK. If the zone is going away nfs_async_inactive() will
333 333 * throw away cached pages inline.
334 334 */
335 335 return (EIO);
336 336 }
337 337
338 338 /*
339 339 * If we are using local locking for this filesystem, then
340 340 * release all of the SYSV style record locks. Otherwise,
341 341 * we are doing network locking and we need to release all
342 342 * of the network locks. All of the locks held by this
343 343 * process on this file are released no matter what the
344 344 * incoming reference count is.
345 345 */
346 346 if (VTOMI(vp)->mi_flags & MI_LLOCK) {
347 347 cleanlocks(vp, ttoproc(curthread)->p_pid, 0);
348 348 cleanshares(vp, ttoproc(curthread)->p_pid);
349 349 } else
350 350 nfs_lockrelease(vp, flag, offset, cr);
351 351
352 352 if (count > 1)
353 353 return (0);
354 354
355 355 /*
356 356 * If the file has been `unlinked', then purge the
357 357 * DNLC so that this vnode will get reycled quicker
358 358 * and the .nfs* file on the server will get removed.
359 359 */
360 360 rp = VTOR(vp);
361 361 if (rp->r_unldvp != NULL)
362 362 dnlc_purge_vp(vp);
363 363
364 364 /*
365 365 * If the file was open for write and there are pages,
366 366 * then if the file system was mounted using the "no-close-
367 367 * to-open" semantics, then start an asynchronous flush
368 368 * of the all of the pages in the file.
369 369 * else the file system was not mounted using the "no-close-
370 370 * to-open" semantics, then do a synchronous flush and
371 371 * commit of all of the dirty and uncommitted pages.
372 372 *
373 373 * The asynchronous flush of the pages in the "nocto" path
374 374 * mostly just associates a cred pointer with the rnode so
375 375 * writes which happen later will have a better chance of
376 376 * working. It also starts the data being written to the
377 377 * server, but without unnecessarily delaying the application.
378 378 */
379 379 if ((flag & FWRITE) && vn_has_cached_data(vp)) {
380 380 if ((VTOMI(vp)->mi_flags & MI_NOCTO)) {
381 381 error = nfs_putpage(vp, (offset_t)0, 0, B_ASYNC,
382 382 cr, ct);
383 383 if (error == EAGAIN)
384 384 error = 0;
385 385 } else
386 386 error = nfs_putpage(vp, (offset_t)0, 0, 0, cr, ct);
387 387 if (!error) {
388 388 mutex_enter(&rp->r_statelock);
389 389 error = rp->r_error;
390 390 rp->r_error = 0;
391 391 mutex_exit(&rp->r_statelock);
392 392 }
393 393 } else {
394 394 mutex_enter(&rp->r_statelock);
395 395 error = rp->r_error;
396 396 rp->r_error = 0;
397 397 mutex_exit(&rp->r_statelock);
398 398 }
399 399
400 400 /*
401 401 * If RWRITEATTR is set, then issue an over the wire GETATTR to
402 402 * refresh the attribute cache with a set of attributes which
403 403 * weren't returned from a WRITE. This will enable the close-
404 404 * to-open processing to work.
405 405 */
406 406 if (rp->r_flags & RWRITEATTR)
407 407 (void) nfs_getattr_otw(vp, &va, cr);
408 408
409 409 return (error);
410 410 }
411 411
412 412 /* ARGSUSED */
413 413 static int
414 414 nfs_read(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr,
415 415 caller_context_t *ct)
416 416 {
417 417 rnode_t *rp;
418 418 u_offset_t off;
419 419 offset_t diff;
420 420 int on;
421 421 size_t n;
422 422 caddr_t base;
423 423 uint_t flags;
424 424 int error;
425 425 mntinfo_t *mi;
426 426
427 427 rp = VTOR(vp);
428 428 mi = VTOMI(vp);
429 429
430 430 if (nfs_zone() != mi->mi_zone)
431 431 return (EIO);
432 432
433 433 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER));
434 434
435 435 if (vp->v_type != VREG)
436 436 return (EISDIR);
437 437
438 438 if (uiop->uio_resid == 0)
439 439 return (0);
440 440
441 441 if (uiop->uio_loffset > MAXOFF32_T)
442 442 return (EFBIG);
443 443
444 444 if (uiop->uio_loffset < 0 ||
445 445 uiop->uio_loffset + uiop->uio_resid > MAXOFF32_T)
446 446 return (EINVAL);
447 447
448 448 /*
449 449 * Bypass VM if caching has been disabled (e.g., locking) or if
450 450 * using client-side direct I/O and the file is not mmap'd and
451 451 * there are no cached pages.
452 452 */
453 453 if ((vp->v_flag & VNOCACHE) ||
454 454 (((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) &&
455 455 rp->r_mapcnt == 0 && rp->r_inmap == 0 &&
456 456 !vn_has_cached_data(vp))) {
457 457 size_t bufsize;
458 458 size_t resid = 0;
459 459
460 460 /*
461 461 * Let's try to do read in as large a chunk as we can
462 462 * (Filesystem (NFS client) bsize if possible/needed).
463 463 * For V3, this is 32K and for V2, this is 8K.
464 464 */
465 465 bufsize = MIN(uiop->uio_resid, VTOMI(vp)->mi_curread);
466 466 base = kmem_alloc(bufsize, KM_SLEEP);
467 467 do {
468 468 n = MIN(uiop->uio_resid, bufsize);
469 469 error = nfsread(vp, base, uiop->uio_offset, n,
470 470 &resid, cr);
471 471 if (!error) {
472 472 n -= resid;
473 473 error = uiomove(base, n, UIO_READ, uiop);
474 474 }
475 475 } while (!error && uiop->uio_resid > 0 && n > 0);
476 476 kmem_free(base, bufsize);
477 477 return (error);
478 478 }
479 479
480 480 error = 0;
481 481
482 482 do {
483 483 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */
484 484 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */
485 485 n = MIN(MAXBSIZE - on, uiop->uio_resid);
486 486
487 487 error = nfs_validate_caches(vp, cr);
488 488 if (error)
489 489 break;
490 490
491 491 mutex_enter(&rp->r_statelock);
492 492 while (rp->r_flags & RINCACHEPURGE) {
493 493 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) {
494 494 mutex_exit(&rp->r_statelock);
495 495 return (EINTR);
496 496 }
497 497 }
498 498 diff = rp->r_size - uiop->uio_loffset;
499 499 mutex_exit(&rp->r_statelock);
500 500 if (diff <= 0)
501 501 break;
502 502 if (diff < n)
503 503 n = (size_t)diff;
504 504
505 505 if (vpm_enable) {
506 506 /*
507 507 * Copy data.
508 508 */
509 509 error = vpm_data_copy(vp, off + on, n, uiop,
510 510 1, NULL, 0, S_READ);
511 511 } else {
512 512 base = segmap_getmapflt(segkmap, vp, off + on, n,
513 513 1, S_READ);
514 514 error = uiomove(base + on, n, UIO_READ, uiop);
515 515 }
516 516
517 517 if (!error) {
518 518 /*
519 519 * If read a whole block or read to eof,
520 520 * won't need this buffer again soon.
521 521 */
522 522 mutex_enter(&rp->r_statelock);
523 523 if (n + on == MAXBSIZE ||
524 524 uiop->uio_loffset == rp->r_size)
525 525 flags = SM_DONTNEED;
526 526 else
527 527 flags = 0;
528 528 mutex_exit(&rp->r_statelock);
529 529 if (vpm_enable) {
530 530 error = vpm_sync_pages(vp, off, n, flags);
531 531 } else {
532 532 error = segmap_release(segkmap, base, flags);
533 533 }
534 534 } else {
535 535 if (vpm_enable) {
536 536 (void) vpm_sync_pages(vp, off, n, 0);
537 537 } else {
538 538 (void) segmap_release(segkmap, base, 0);
539 539 }
540 540 }
541 541 } while (!error && uiop->uio_resid > 0);
542 542
543 543 return (error);
544 544 }
545 545
546 546 /* ARGSUSED */
547 547 static int
548 548 nfs_write(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr,
549 549 caller_context_t *ct)
550 550 {
551 551 rnode_t *rp;
552 552 u_offset_t off;
553 553 caddr_t base;
554 554 uint_t flags;
555 555 int remainder;
556 556 size_t n;
557 557 int on;
558 558 int error;
559 559 int resid;
560 560 offset_t offset;
561 561 rlim_t limit;
562 562 mntinfo_t *mi;
563 563
564 564 rp = VTOR(vp);
565 565
566 566 mi = VTOMI(vp);
567 567 if (nfs_zone() != mi->mi_zone)
568 568 return (EIO);
569 569 if (vp->v_type != VREG)
570 570 return (EISDIR);
571 571
572 572 if (uiop->uio_resid == 0)
573 573 return (0);
574 574
575 575 if (ioflag & FAPPEND) {
576 576 struct vattr va;
577 577
578 578 /*
579 579 * Must serialize if appending.
580 580 */
581 581 if (nfs_rw_lock_held(&rp->r_rwlock, RW_READER)) {
582 582 nfs_rw_exit(&rp->r_rwlock);
583 583 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER,
584 584 INTR(vp)))
585 585 return (EINTR);
586 586 }
587 587
588 588 va.va_mask = AT_SIZE;
589 589 error = nfsgetattr(vp, &va, cr);
590 590 if (error)
591 591 return (error);
592 592 uiop->uio_loffset = va.va_size;
593 593 }
594 594
595 595 if (uiop->uio_loffset > MAXOFF32_T)
596 596 return (EFBIG);
597 597
598 598 offset = uiop->uio_loffset + uiop->uio_resid;
599 599
600 600 if (uiop->uio_loffset < 0 || offset > MAXOFF32_T)
601 601 return (EINVAL);
602 602
603 603 if (uiop->uio_llimit > (rlim64_t)MAXOFF32_T) {
604 604 limit = MAXOFF32_T;
605 605 } else {
606 606 limit = (rlim_t)uiop->uio_llimit;
607 607 }
608 608
609 609 /*
610 610 * Check to make sure that the process will not exceed
611 611 * its limit on file size. It is okay to write up to
612 612 * the limit, but not beyond. Thus, the write which
613 613 * reaches the limit will be short and the next write
614 614 * will return an error.
615 615 */
616 616 remainder = 0;
617 617 if (offset > limit) {
618 618 remainder = offset - limit;
619 619 uiop->uio_resid = limit - uiop->uio_offset;
620 620 if (uiop->uio_resid <= 0) {
621 621 proc_t *p = ttoproc(curthread);
622 622
623 623 uiop->uio_resid += remainder;
624 624 mutex_enter(&p->p_lock);
625 625 (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE],
626 626 p->p_rctls, p, RCA_UNSAFE_SIGINFO);
627 627 mutex_exit(&p->p_lock);
628 628 return (EFBIG);
629 629 }
630 630 }
631 631
632 632 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR(vp)))
633 633 return (EINTR);
634 634
635 635 /*
636 636 * Bypass VM if caching has been disabled (e.g., locking) or if
637 637 * using client-side direct I/O and the file is not mmap'd and
638 638 * there are no cached pages.
639 639 */
640 640 if ((vp->v_flag & VNOCACHE) ||
641 641 (((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) &&
642 642 rp->r_mapcnt == 0 && rp->r_inmap == 0 &&
643 643 !vn_has_cached_data(vp))) {
644 644 size_t bufsize;
645 645 int count;
646 646 uint_t org_offset;
647 647
648 648 nfs_fwrite:
649 649 if (rp->r_flags & RSTALE) {
650 650 resid = uiop->uio_resid;
651 651 offset = uiop->uio_loffset;
652 652 error = rp->r_error;
653 653 /*
654 654 * A close may have cleared r_error, if so,
655 655 * propagate ESTALE error return properly
656 656 */
657 657 if (error == 0)
658 658 error = ESTALE;
659 659 goto bottom;
660 660 }
661 661 bufsize = MIN(uiop->uio_resid, mi->mi_curwrite);
662 662 base = kmem_alloc(bufsize, KM_SLEEP);
663 663 do {
664 664 resid = uiop->uio_resid;
665 665 offset = uiop->uio_loffset;
666 666 count = MIN(uiop->uio_resid, bufsize);
667 667 org_offset = uiop->uio_offset;
668 668 error = uiomove(base, count, UIO_WRITE, uiop);
669 669 if (!error) {
670 670 error = nfswrite(vp, base, org_offset,
671 671 count, cr);
672 672 }
673 673 } while (!error && uiop->uio_resid > 0);
674 674 kmem_free(base, bufsize);
675 675 goto bottom;
676 676 }
677 677
678 678 do {
679 679 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */
680 680 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */
681 681 n = MIN(MAXBSIZE - on, uiop->uio_resid);
682 682
683 683 resid = uiop->uio_resid;
684 684 offset = uiop->uio_loffset;
685 685
686 686 if (rp->r_flags & RSTALE) {
687 687 error = rp->r_error;
688 688 /*
689 689 * A close may have cleared r_error, if so,
690 690 * propagate ESTALE error return properly
691 691 */
692 692 if (error == 0)
693 693 error = ESTALE;
694 694 break;
695 695 }
696 696
697 697 /*
698 698 * Don't create dirty pages faster than they
699 699 * can be cleaned so that the system doesn't
700 700 * get imbalanced. If the async queue is
701 701 * maxed out, then wait for it to drain before
702 702 * creating more dirty pages. Also, wait for
703 703 * any threads doing pagewalks in the vop_getattr
704 704 * entry points so that they don't block for
705 705 * long periods.
706 706 */
707 707 mutex_enter(&rp->r_statelock);
708 708 while ((mi->mi_max_threads != 0 &&
709 709 rp->r_awcount > 2 * mi->mi_max_threads) ||
710 710 rp->r_gcount > 0) {
711 711 if (INTR(vp)) {
712 712 klwp_t *lwp = ttolwp(curthread);
713 713
714 714 if (lwp != NULL)
715 715 lwp->lwp_nostop++;
716 716 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) {
717 717 mutex_exit(&rp->r_statelock);
718 718 if (lwp != NULL)
719 719 lwp->lwp_nostop--;
720 720 error = EINTR;
721 721 goto bottom;
722 722 }
723 723 if (lwp != NULL)
724 724 lwp->lwp_nostop--;
725 725 } else
726 726 cv_wait(&rp->r_cv, &rp->r_statelock);
727 727 }
728 728 mutex_exit(&rp->r_statelock);
729 729
730 730 /*
731 731 * Touch the page and fault it in if it is not in core
732 732 * before segmap_getmapflt or vpm_data_copy can lock it.
733 733 * This is to avoid the deadlock if the buffer is mapped
734 734 * to the same file through mmap which we want to write.
735 735 */
736 736 uio_prefaultpages((long)n, uiop);
737 737
738 738 if (vpm_enable) {
739 739 /*
740 740 * It will use kpm mappings, so no need to
741 741 * pass an address.
742 742 */
743 743 error = writerp(rp, NULL, n, uiop, 0);
744 744 } else {
745 745 if (segmap_kpm) {
746 746 int pon = uiop->uio_loffset & PAGEOFFSET;
747 747 size_t pn = MIN(PAGESIZE - pon,
748 748 uiop->uio_resid);
749 749 int pagecreate;
750 750
751 751 mutex_enter(&rp->r_statelock);
752 752 pagecreate = (pon == 0) && (pn == PAGESIZE ||
753 753 uiop->uio_loffset + pn >= rp->r_size);
754 754 mutex_exit(&rp->r_statelock);
755 755
756 756 base = segmap_getmapflt(segkmap, vp, off + on,
757 757 pn, !pagecreate, S_WRITE);
758 758
759 759 error = writerp(rp, base + pon, n, uiop,
760 760 pagecreate);
761 761
762 762 } else {
763 763 base = segmap_getmapflt(segkmap, vp, off + on,
764 764 n, 0, S_READ);
765 765 error = writerp(rp, base + on, n, uiop, 0);
766 766 }
767 767 }
768 768
769 769 if (!error) {
770 770 if (mi->mi_flags & MI_NOAC)
771 771 flags = SM_WRITE;
772 772 else if (n + on == MAXBSIZE || IS_SWAPVP(vp)) {
773 773 /*
774 774 * Have written a whole block.
775 775 * Start an asynchronous write
776 776 * and mark the buffer to
777 777 * indicate that it won't be
778 778 * needed again soon.
779 779 */
780 780 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED;
781 781 } else
782 782 flags = 0;
783 783 if ((ioflag & (FSYNC|FDSYNC)) ||
784 784 (rp->r_flags & ROUTOFSPACE)) {
785 785 flags &= ~SM_ASYNC;
786 786 flags |= SM_WRITE;
787 787 }
788 788 if (vpm_enable) {
789 789 error = vpm_sync_pages(vp, off, n, flags);
790 790 } else {
791 791 error = segmap_release(segkmap, base, flags);
792 792 }
793 793 } else {
794 794 if (vpm_enable) {
795 795 (void) vpm_sync_pages(vp, off, n, 0);
796 796 } else {
797 797 (void) segmap_release(segkmap, base, 0);
798 798 }
799 799 /*
800 800 * In the event that we got an access error while
801 801 * faulting in a page for a write-only file just
802 802 * force a write.
803 803 */
804 804 if (error == EACCES)
805 805 goto nfs_fwrite;
806 806 }
807 807 } while (!error && uiop->uio_resid > 0);
808 808
809 809 bottom:
810 810 if (error) {
811 811 uiop->uio_resid = resid + remainder;
812 812 uiop->uio_loffset = offset;
813 813 } else
814 814 uiop->uio_resid += remainder;
815 815
816 816 nfs_rw_exit(&rp->r_lkserlock);
817 817
818 818 return (error);
819 819 }
820 820
821 821 /*
822 822 * Flags are composed of {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED}
823 823 */
824 824 static int
825 825 nfs_rdwrlbn(vnode_t *vp, page_t *pp, u_offset_t off, size_t len,
826 826 int flags, cred_t *cr)
827 827 {
828 828 struct buf *bp;
829 829 int error;
830 830
831 831 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
832 832 bp = pageio_setup(pp, len, vp, flags);
833 833 ASSERT(bp != NULL);
834 834
835 835 /*
836 836 * pageio_setup should have set b_addr to 0. This
837 837 * is correct since we want to do I/O on a page
838 838 * boundary. bp_mapin will use this addr to calculate
839 839 * an offset, and then set b_addr to the kernel virtual
840 840 * address it allocated for us.
841 841 */
842 842 ASSERT(bp->b_un.b_addr == 0);
843 843
844 844 bp->b_edev = 0;
845 845 bp->b_dev = 0;
846 846 bp->b_lblkno = lbtodb(off);
847 847 bp->b_file = vp;
848 848 bp->b_offset = (offset_t)off;
849 849 bp_mapin(bp);
850 850
851 851 error = nfs_bio(bp, cr);
852 852
853 853 bp_mapout(bp);
854 854 pageio_done(bp);
855 855
856 856 return (error);
857 857 }
858 858
859 859 /*
860 860 * Write to file. Writes to remote server in largest size
861 861 * chunks that the server can handle. Write is synchronous.
862 862 */
863 863 static int
864 864 nfswrite(vnode_t *vp, caddr_t base, uint_t offset, int count, cred_t *cr)
865 865 {
866 866 rnode_t *rp;
867 867 mntinfo_t *mi;
868 868 struct nfswriteargs wa;
869 869 struct nfsattrstat ns;
870 870 int error;
871 871 int tsize;
872 872 int douprintf;
873 873
874 874 douprintf = 1;
875 875
876 876 rp = VTOR(vp);
877 877 mi = VTOMI(vp);
878 878
879 879 ASSERT(nfs_zone() == mi->mi_zone);
880 880
881 881 wa.wa_args = &wa.wa_args_buf;
882 882 wa.wa_fhandle = *VTOFH(vp);
883 883
884 884 do {
885 885 tsize = MIN(mi->mi_curwrite, count);
886 886 wa.wa_data = base;
887 887 wa.wa_begoff = offset;
888 888 wa.wa_totcount = tsize;
889 889 wa.wa_count = tsize;
890 890 wa.wa_offset = offset;
891 891
892 892 if (mi->mi_io_kstats) {
893 893 mutex_enter(&mi->mi_lock);
894 894 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
895 895 mutex_exit(&mi->mi_lock);
896 896 }
897 897 wa.wa_mblk = NULL;
898 898 do {
899 899 error = rfs2call(mi, RFS_WRITE,
900 900 xdr_writeargs, (caddr_t)&wa,
901 901 xdr_attrstat, (caddr_t)&ns, cr,
902 902 &douprintf, &ns.ns_status, 0, NULL);
903 903 } while (error == ENFS_TRYAGAIN);
904 904 if (mi->mi_io_kstats) {
905 905 mutex_enter(&mi->mi_lock);
906 906 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
907 907 mutex_exit(&mi->mi_lock);
908 908 }
909 909
910 910 if (!error) {
911 911 error = geterrno(ns.ns_status);
912 912 /*
913 913 * Can't check for stale fhandle and purge caches
914 914 * here because pages are held by nfs_getpage.
915 915 * Just mark the attribute cache as timed out
916 916 * and set RWRITEATTR to indicate that the file
917 917 * was modified with a WRITE operation.
918 918 */
919 919 if (!error) {
920 920 count -= tsize;
921 921 base += tsize;
922 922 offset += tsize;
923 923 if (mi->mi_io_kstats) {
924 924 mutex_enter(&mi->mi_lock);
925 925 KSTAT_IO_PTR(mi->mi_io_kstats)->
926 926 writes++;
927 927 KSTAT_IO_PTR(mi->mi_io_kstats)->
928 928 nwritten += tsize;
929 929 mutex_exit(&mi->mi_lock);
930 930 }
931 931 lwp_stat_update(LWP_STAT_OUBLK, 1);
932 932 mutex_enter(&rp->r_statelock);
933 933 PURGE_ATTRCACHE_LOCKED(rp);
934 934 rp->r_flags |= RWRITEATTR;
935 935 mutex_exit(&rp->r_statelock);
936 936 }
937 937 }
938 938 } while (!error && count);
939 939
940 940 return (error);
941 941 }
942 942
943 943 /*
944 944 * Read from a file. Reads data in largest chunks our interface can handle.
945 945 */
946 946 static int
947 947 nfsread(vnode_t *vp, caddr_t base, uint_t offset,
948 948 int count, size_t *residp, cred_t *cr)
949 949 {
950 950 mntinfo_t *mi;
951 951 struct nfsreadargs ra;
952 952 struct nfsrdresult rr;
953 953 int tsize;
954 954 int error;
955 955 int douprintf;
956 956 failinfo_t fi;
957 957 rnode_t *rp;
958 958 struct vattr va;
959 959 hrtime_t t;
960 960
961 961 rp = VTOR(vp);
962 962 mi = VTOMI(vp);
963 963
964 964 ASSERT(nfs_zone() == mi->mi_zone);
965 965
966 966 douprintf = 1;
967 967
968 968 ra.ra_fhandle = *VTOFH(vp);
969 969
970 970 fi.vp = vp;
971 971 fi.fhp = (caddr_t)&ra.ra_fhandle;
972 972 fi.copyproc = nfscopyfh;
973 973 fi.lookupproc = nfslookup;
974 974 fi.xattrdirproc = acl_getxattrdir2;
975 975
976 976 do {
977 977 if (mi->mi_io_kstats) {
978 978 mutex_enter(&mi->mi_lock);
979 979 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
980 980 mutex_exit(&mi->mi_lock);
981 981 }
982 982
983 983 do {
984 984 tsize = MIN(mi->mi_curread, count);
985 985 rr.rr_data = base;
986 986 ra.ra_offset = offset;
987 987 ra.ra_totcount = tsize;
988 988 ra.ra_count = tsize;
989 989 ra.ra_data = base;
990 990 t = gethrtime();
991 991 error = rfs2call(mi, RFS_READ,
992 992 xdr_readargs, (caddr_t)&ra,
993 993 xdr_rdresult, (caddr_t)&rr, cr,
994 994 &douprintf, &rr.rr_status, 0, &fi);
995 995 } while (error == ENFS_TRYAGAIN);
996 996
997 997 if (mi->mi_io_kstats) {
998 998 mutex_enter(&mi->mi_lock);
999 999 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
1000 1000 mutex_exit(&mi->mi_lock);
1001 1001 }
1002 1002
1003 1003 if (!error) {
1004 1004 error = geterrno(rr.rr_status);
1005 1005 if (!error) {
1006 1006 count -= rr.rr_count;
1007 1007 base += rr.rr_count;
1008 1008 offset += rr.rr_count;
1009 1009 if (mi->mi_io_kstats) {
1010 1010 mutex_enter(&mi->mi_lock);
1011 1011 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++;
1012 1012 KSTAT_IO_PTR(mi->mi_io_kstats)->nread +=
1013 1013 rr.rr_count;
1014 1014 mutex_exit(&mi->mi_lock);
1015 1015 }
1016 1016 lwp_stat_update(LWP_STAT_INBLK, 1);
1017 1017 }
1018 1018 }
1019 1019 } while (!error && count && rr.rr_count == tsize);
1020 1020
1021 1021 *residp = count;
1022 1022
1023 1023 if (!error) {
1024 1024 /*
1025 1025 * Since no error occurred, we have the current
1026 1026 * attributes and we need to do a cache check and then
1027 1027 * potentially update the cached attributes. We can't
1028 1028 * use the normal attribute check and cache mechanisms
1029 1029 * because they might cause a cache flush which would
1030 1030 * deadlock. Instead, we just check the cache to see
1031 1031 * if the attributes have changed. If it is, then we
1032 1032 * just mark the attributes as out of date. The next
1033 1033 * time that the attributes are checked, they will be
1034 1034 * out of date, new attributes will be fetched, and
1035 1035 * the page cache will be flushed. If the attributes
1036 1036 * weren't changed, then we just update the cached
1037 1037 * attributes with these attributes.
1038 1038 */
1039 1039 /*
1040 1040 * If NFS_ACL is supported on the server, then the
1041 1041 * attributes returned by server may have minimal
1042 1042 * permissions sometimes denying access to users having
1043 1043 * proper access. To get the proper attributes, mark
1044 1044 * the attributes as expired so that they will be
1045 1045 * regotten via the NFS_ACL GETATTR2 procedure.
1046 1046 */
1047 1047 error = nattr_to_vattr(vp, &rr.rr_attr, &va);
1048 1048 mutex_enter(&rp->r_statelock);
1049 1049 if (error || !CACHE_VALID(rp, va.va_mtime, va.va_size) ||
1050 1050 (mi->mi_flags & MI_ACL)) {
1051 1051 mutex_exit(&rp->r_statelock);
1052 1052 PURGE_ATTRCACHE(vp);
1053 1053 } else {
1054 1054 if (rp->r_mtime <= t) {
1055 1055 nfs_attrcache_va(vp, &va);
1056 1056 }
1057 1057 mutex_exit(&rp->r_statelock);
1058 1058 }
1059 1059 }
1060 1060
1061 1061 return (error);
1062 1062 }
1063 1063
1064 1064 /* ARGSUSED */
1065 1065 static int
1066 1066 nfs_ioctl(vnode_t *vp, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp,
1067 1067 caller_context_t *ct)
1068 1068 {
1069 1069
1070 1070 if (nfs_zone() != VTOMI(vp)->mi_zone)
1071 1071 return (EIO);
1072 1072 switch (cmd) {
1073 1073 case _FIODIRECTIO:
1074 1074 return (nfs_directio(vp, (int)arg, cr));
1075 1075 default:
1076 1076 return (ENOTTY);
1077 1077 }
1078 1078 }
1079 1079
1080 1080 /* ARGSUSED */
1081 1081 static int
1082 1082 nfs_getattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr,
1083 1083 caller_context_t *ct)
1084 1084 {
1085 1085 int error;
1086 1086 rnode_t *rp;
1087 1087
1088 1088 if (nfs_zone() != VTOMI(vp)->mi_zone)
1089 1089 return (EIO);
1090 1090 /*
1091 1091 * If it has been specified that the return value will
1092 1092 * just be used as a hint, and we are only being asked
1093 1093 * for size, fsid or rdevid, then return the client's
1094 1094 * notion of these values without checking to make sure
1095 1095 * that the attribute cache is up to date.
1096 1096 * The whole point is to avoid an over the wire GETATTR
1097 1097 * call.
1098 1098 */
1099 1099 rp = VTOR(vp);
1100 1100 if (flags & ATTR_HINT) {
1101 1101 if (vap->va_mask ==
1102 1102 (vap->va_mask & (AT_SIZE | AT_FSID | AT_RDEV))) {
1103 1103 mutex_enter(&rp->r_statelock);
1104 1104 if (vap->va_mask | AT_SIZE)
1105 1105 vap->va_size = rp->r_size;
1106 1106 if (vap->va_mask | AT_FSID)
1107 1107 vap->va_fsid = rp->r_attr.va_fsid;
1108 1108 if (vap->va_mask | AT_RDEV)
1109 1109 vap->va_rdev = rp->r_attr.va_rdev;
1110 1110 mutex_exit(&rp->r_statelock);
1111 1111 return (0);
1112 1112 }
1113 1113 }
1114 1114
1115 1115 /*
1116 1116 * Only need to flush pages if asking for the mtime
1117 1117 * and if there any dirty pages or any outstanding
1118 1118 * asynchronous (write) requests for this file.
1119 1119 */
1120 1120 if (vap->va_mask & AT_MTIME) {
1121 1121 if (vn_has_cached_data(vp) &&
1122 1122 ((rp->r_flags & RDIRTY) || rp->r_awcount > 0)) {
1123 1123 mutex_enter(&rp->r_statelock);
1124 1124 rp->r_gcount++;
1125 1125 mutex_exit(&rp->r_statelock);
1126 1126 error = nfs_putpage(vp, (offset_t)0, 0, 0, cr, ct);
1127 1127 mutex_enter(&rp->r_statelock);
1128 1128 if (error && (error == ENOSPC || error == EDQUOT)) {
1129 1129 if (!rp->r_error)
1130 1130 rp->r_error = error;
1131 1131 }
1132 1132 if (--rp->r_gcount == 0)
1133 1133 cv_broadcast(&rp->r_cv);
1134 1134 mutex_exit(&rp->r_statelock);
1135 1135 }
1136 1136 }
1137 1137
1138 1138 return (nfsgetattr(vp, vap, cr));
1139 1139 }
1140 1140
1141 1141 /*ARGSUSED4*/
1142 1142 static int
1143 1143 nfs_setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr,
1144 1144 caller_context_t *ct)
1145 1145 {
1146 1146 int error;
1147 1147 uint_t mask;
1148 1148 struct vattr va;
1149 1149
1150 1150 mask = vap->va_mask;
1151 1151
1152 1152 if (mask & AT_NOSET)
1153 1153 return (EINVAL);
1154 1154
1155 1155 if ((mask & AT_SIZE) &&
1156 1156 vap->va_type == VREG &&
1157 1157 vap->va_size > MAXOFF32_T)
1158 1158 return (EFBIG);
1159 1159
1160 1160 if (nfs_zone() != VTOMI(vp)->mi_zone)
1161 1161 return (EIO);
1162 1162
1163 1163 va.va_mask = AT_UID | AT_MODE;
1164 1164
1165 1165 error = nfsgetattr(vp, &va, cr);
1166 1166 if (error)
1167 1167 return (error);
1168 1168
1169 1169 error = secpolicy_vnode_setattr(cr, vp, vap, &va, flags, nfs_accessx,
1170 1170 vp);
1171 1171
1172 1172 if (error)
1173 1173 return (error);
1174 1174
1175 1175 error = nfssetattr(vp, vap, flags, cr);
1176 1176
1177 1177 if (error == 0 && (mask & AT_SIZE) && vap->va_size == 0)
1178 1178 vnevent_truncate(vp, ct);
1179 1179
1180 1180 return (error);
1181 1181 }
1182 1182
1183 1183 static int
1184 1184 nfssetattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr)
1185 1185 {
1186 1186 int error;
1187 1187 uint_t mask;
1188 1188 struct nfssaargs args;
1189 1189 struct nfsattrstat ns;
1190 1190 int douprintf;
1191 1191 rnode_t *rp;
1192 1192 struct vattr va;
1193 1193 mode_t omode;
1194 1194 mntinfo_t *mi;
1195 1195 vsecattr_t *vsp;
1196 1196 hrtime_t t;
1197 1197
1198 1198 mask = vap->va_mask;
1199 1199
1200 1200 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
1201 1201
1202 1202 rp = VTOR(vp);
1203 1203
1204 1204 /*
1205 1205 * Only need to flush pages if there are any pages and
1206 1206 * if the file is marked as dirty in some fashion. The
1207 1207 * file must be flushed so that we can accurately
1208 1208 * determine the size of the file and the cached data
1209 1209 * after the SETATTR returns. A file is considered to
1210 1210 * be dirty if it is either marked with RDIRTY, has
1211 1211 * outstanding i/o's active, or is mmap'd. In this
1212 1212 * last case, we can't tell whether there are dirty
1213 1213 * pages, so we flush just to be sure.
1214 1214 */
1215 1215 if (vn_has_cached_data(vp) &&
1216 1216 ((rp->r_flags & RDIRTY) ||
1217 1217 rp->r_count > 0 ||
1218 1218 rp->r_mapcnt > 0)) {
1219 1219 ASSERT(vp->v_type != VCHR);
1220 1220 error = nfs_putpage(vp, (offset_t)0, 0, 0, cr, NULL);
1221 1221 if (error && (error == ENOSPC || error == EDQUOT)) {
1222 1222 mutex_enter(&rp->r_statelock);
1223 1223 if (!rp->r_error)
1224 1224 rp->r_error = error;
1225 1225 mutex_exit(&rp->r_statelock);
1226 1226 }
1227 1227 }
1228 1228
1229 1229 /*
1230 1230 * If the system call was utime(2) or utimes(2) and the
1231 1231 * application did not specify the times, then set the
1232 1232 * mtime nanosecond field to 1 billion. This will get
1233 1233 * translated from 1 billion nanoseconds to 1 million
1234 1234 * microseconds in the over the wire request. The
1235 1235 * server will use 1 million in the microsecond field
1236 1236 * to tell whether both the mtime and atime should be
1237 1237 * set to the server's current time.
1238 1238 *
1239 1239 * This is an overload of the protocol and should be
1240 1240 * documented in the NFS Version 2 protocol specification.
1241 1241 */
1242 1242 if ((mask & AT_MTIME) && !(flags & ATTR_UTIME)) {
1243 1243 vap->va_mtime.tv_nsec = 1000000000;
1244 1244 if (NFS_TIME_T_OK(vap->va_mtime.tv_sec) &&
1245 1245 NFS_TIME_T_OK(vap->va_atime.tv_sec)) {
1246 1246 error = vattr_to_sattr(vap, &args.saa_sa);
1247 1247 } else {
1248 1248 /*
1249 1249 * Use server times. vap time values will not be used.
1250 1250 * To ensure no time overflow, make sure vap has
1251 1251 * valid values, but retain the original values.
1252 1252 */
1253 1253 timestruc_t mtime = vap->va_mtime;
1254 1254 timestruc_t atime = vap->va_atime;
1255 1255 time_t now;
1256 1256
1257 1257 now = gethrestime_sec();
1258 1258 if (NFS_TIME_T_OK(now)) {
1259 1259 /* Just in case server does not know of this */
1260 1260 vap->va_mtime.tv_sec = now;
1261 1261 vap->va_atime.tv_sec = now;
1262 1262 } else {
1263 1263 vap->va_mtime.tv_sec = 0;
1264 1264 vap->va_atime.tv_sec = 0;
1265 1265 }
1266 1266 error = vattr_to_sattr(vap, &args.saa_sa);
1267 1267 /* set vap times back on */
1268 1268 vap->va_mtime = mtime;
1269 1269 vap->va_atime = atime;
1270 1270 }
1271 1271 } else {
1272 1272 /* Either do not set times or use the client specified times */
1273 1273 error = vattr_to_sattr(vap, &args.saa_sa);
1274 1274 }
1275 1275 if (error) {
1276 1276 /* req time field(s) overflow - return immediately */
1277 1277 return (error);
1278 1278 }
1279 1279 args.saa_fh = *VTOFH(vp);
1280 1280
1281 1281 va.va_mask = AT_MODE;
1282 1282 error = nfsgetattr(vp, &va, cr);
1283 1283 if (error)
1284 1284 return (error);
1285 1285 omode = va.va_mode;
1286 1286
1287 1287 mi = VTOMI(vp);
1288 1288
1289 1289 douprintf = 1;
1290 1290
1291 1291 t = gethrtime();
1292 1292
1293 1293 error = rfs2call(mi, RFS_SETATTR,
1294 1294 xdr_saargs, (caddr_t)&args,
1295 1295 xdr_attrstat, (caddr_t)&ns, cr,
1296 1296 &douprintf, &ns.ns_status, 0, NULL);
1297 1297
1298 1298 /*
1299 1299 * Purge the access cache and ACL cache if changing either the
1300 1300 * owner of the file, the group owner, or the mode. These may
1301 1301 * change the access permissions of the file, so purge old
1302 1302 * information and start over again.
1303 1303 */
1304 1304 if ((mask & (AT_UID | AT_GID | AT_MODE)) && (mi->mi_flags & MI_ACL)) {
1305 1305 (void) nfs_access_purge_rp(rp);
1306 1306 if (rp->r_secattr != NULL) {
1307 1307 mutex_enter(&rp->r_statelock);
1308 1308 vsp = rp->r_secattr;
1309 1309 rp->r_secattr = NULL;
1310 1310 mutex_exit(&rp->r_statelock);
1311 1311 if (vsp != NULL)
1312 1312 nfs_acl_free(vsp);
1313 1313 }
1314 1314 }
1315 1315
1316 1316 if (!error) {
1317 1317 error = geterrno(ns.ns_status);
1318 1318 if (!error) {
1319 1319 /*
1320 1320 * If changing the size of the file, invalidate
1321 1321 * any local cached data which is no longer part
1322 1322 * of the file. We also possibly invalidate the
1323 1323 * last page in the file. We could use
1324 1324 * pvn_vpzero(), but this would mark the page as
1325 1325 * modified and require it to be written back to
1326 1326 * the server for no particularly good reason.
1327 1327 * This way, if we access it, then we bring it
1328 1328 * back in. A read should be cheaper than a
1329 1329 * write.
1330 1330 */
1331 1331 if (mask & AT_SIZE) {
1332 1332 nfs_invalidate_pages(vp,
1333 1333 (vap->va_size & PAGEMASK), cr);
1334 1334 }
1335 1335 (void) nfs_cache_fattr(vp, &ns.ns_attr, &va, t, cr);
1336 1336 /*
1337 1337 * If NFS_ACL is supported on the server, then the
1338 1338 * attributes returned by server may have minimal
1339 1339 * permissions sometimes denying access to users having
1340 1340 * proper access. To get the proper attributes, mark
1341 1341 * the attributes as expired so that they will be
1342 1342 * regotten via the NFS_ACL GETATTR2 procedure.
1343 1343 */
1344 1344 if (mi->mi_flags & MI_ACL) {
1345 1345 PURGE_ATTRCACHE(vp);
1346 1346 }
1347 1347 /*
1348 1348 * This next check attempts to deal with NFS
1349 1349 * servers which can not handle increasing
1350 1350 * the size of the file via setattr. Most
1351 1351 * of these servers do not return an error,
1352 1352 * but do not change the size of the file.
1353 1353 * Hence, this check and then attempt to set
1354 1354 * the file size by writing 1 byte at the
1355 1355 * offset of the end of the file that we need.
1356 1356 */
1357 1357 if ((mask & AT_SIZE) &&
1358 1358 ns.ns_attr.na_size < (uint32_t)vap->va_size) {
1359 1359 char zb = '\0';
1360 1360
1361 1361 error = nfswrite(vp, &zb,
1362 1362 vap->va_size - sizeof (zb),
1363 1363 sizeof (zb), cr);
1364 1364 }
1365 1365 /*
1366 1366 * Some servers will change the mode to clear the setuid
1367 1367 * and setgid bits when changing the uid or gid. The
1368 1368 * client needs to compensate appropriately.
1369 1369 */
1370 1370 if (mask & (AT_UID | AT_GID)) {
1371 1371 int terror;
1372 1372
1373 1373 va.va_mask = AT_MODE;
1374 1374 terror = nfsgetattr(vp, &va, cr);
1375 1375 if (!terror &&
1376 1376 (((mask & AT_MODE) &&
1377 1377 va.va_mode != vap->va_mode) ||
1378 1378 (!(mask & AT_MODE) &&
1379 1379 va.va_mode != omode))) {
1380 1380 va.va_mask = AT_MODE;
1381 1381 if (mask & AT_MODE)
1382 1382 va.va_mode = vap->va_mode;
1383 1383 else
1384 1384 va.va_mode = omode;
1385 1385 (void) nfssetattr(vp, &va, 0, cr);
1386 1386 }
1387 1387 }
1388 1388 } else {
1389 1389 PURGE_ATTRCACHE(vp);
1390 1390 PURGE_STALE_FH(error, vp, cr);
1391 1391 }
1392 1392 } else {
1393 1393 PURGE_ATTRCACHE(vp);
1394 1394 }
1395 1395
1396 1396 return (error);
1397 1397 }
1398 1398
1399 1399 static int
1400 1400 nfs_accessx(void *vp, int mode, cred_t *cr)
1401 1401 {
1402 1402 ASSERT(nfs_zone() == VTOMI((vnode_t *)vp)->mi_zone);
1403 1403 return (nfs_access(vp, mode, 0, cr, NULL));
1404 1404 }
1405 1405
1406 1406 /* ARGSUSED */
1407 1407 static int
1408 1408 nfs_access(vnode_t *vp, int mode, int flags, cred_t *cr, caller_context_t *ct)
1409 1409 {
1410 1410 struct vattr va;
1411 1411 int error;
1412 1412 mntinfo_t *mi;
1413 1413 int shift = 0;
1414 1414
1415 1415 mi = VTOMI(vp);
1416 1416
1417 1417 if (nfs_zone() != mi->mi_zone)
1418 1418 return (EIO);
1419 1419 if (mi->mi_flags & MI_ACL) {
1420 1420 error = acl_access2(vp, mode, flags, cr);
1421 1421 if (mi->mi_flags & MI_ACL)
1422 1422 return (error);
1423 1423 }
1424 1424
1425 1425 va.va_mask = AT_MODE | AT_UID | AT_GID;
1426 1426 error = nfsgetattr(vp, &va, cr);
1427 1427 if (error)
1428 1428 return (error);
1429 1429
1430 1430 /*
1431 1431 * Disallow write attempts on read-only
1432 1432 * file systems, unless the file is a
1433 1433 * device node.
1434 1434 */
1435 1435 if ((mode & VWRITE) && vn_is_readonly(vp) && !IS_DEVVP(vp))
1436 1436 return (EROFS);
1437 1437
1438 1438 /*
1439 1439 * Disallow attempts to access mandatory lock files.
1440 1440 */
1441 1441 if ((mode & (VWRITE | VREAD | VEXEC)) &&
1442 1442 MANDLOCK(vp, va.va_mode))
1443 1443 return (EACCES);
1444 1444
1445 1445 /*
1446 1446 * Access check is based on only
1447 1447 * one of owner, group, public.
1448 1448 * If not owner, then check group.
1449 1449 * If not a member of the group,
1450 1450 * then check public access.
1451 1451 */
1452 1452 if (crgetuid(cr) != va.va_uid) {
1453 1453 shift += 3;
1454 1454 if (!groupmember(va.va_gid, cr))
1455 1455 shift += 3;
1456 1456 }
1457 1457
1458 1458 return (secpolicy_vnode_access2(cr, vp, va.va_uid,
1459 1459 va.va_mode << shift, mode));
1460 1460 }
1461 1461
1462 1462 static int nfs_do_symlink_cache = 1;
1463 1463
1464 1464 /* ARGSUSED */
1465 1465 static int
1466 1466 nfs_readlink(vnode_t *vp, struct uio *uiop, cred_t *cr, caller_context_t *ct)
1467 1467 {
1468 1468 int error;
1469 1469 struct nfsrdlnres rl;
1470 1470 rnode_t *rp;
1471 1471 int douprintf;
1472 1472 failinfo_t fi;
1473 1473
1474 1474 /*
1475 1475 * We want to be consistent with UFS semantics so we will return
1476 1476 * EINVAL instead of ENXIO. This violates the XNFS spec and
1477 1477 * the RFC 1094, which are wrong any way. BUGID 1138002.
1478 1478 */
1479 1479 if (vp->v_type != VLNK)
1480 1480 return (EINVAL);
1481 1481
1482 1482 if (nfs_zone() != VTOMI(vp)->mi_zone)
1483 1483 return (EIO);
1484 1484
1485 1485 rp = VTOR(vp);
1486 1486 if (nfs_do_symlink_cache && rp->r_symlink.contents != NULL) {
1487 1487 error = nfs_validate_caches(vp, cr);
1488 1488 if (error)
1489 1489 return (error);
1490 1490 mutex_enter(&rp->r_statelock);
1491 1491 if (rp->r_symlink.contents != NULL) {
1492 1492 error = uiomove(rp->r_symlink.contents,
1493 1493 rp->r_symlink.len, UIO_READ, uiop);
1494 1494 mutex_exit(&rp->r_statelock);
1495 1495 return (error);
1496 1496 }
1497 1497 mutex_exit(&rp->r_statelock);
1498 1498 }
1499 1499
1500 1500
1501 1501 rl.rl_data = kmem_alloc(NFS_MAXPATHLEN, KM_SLEEP);
1502 1502
1503 1503 fi.vp = vp;
1504 1504 fi.fhp = NULL; /* no need to update, filehandle not copied */
1505 1505 fi.copyproc = nfscopyfh;
1506 1506 fi.lookupproc = nfslookup;
1507 1507 fi.xattrdirproc = acl_getxattrdir2;
1508 1508
1509 1509 douprintf = 1;
1510 1510
1511 1511 error = rfs2call(VTOMI(vp), RFS_READLINK,
1512 1512 xdr_readlink, (caddr_t)VTOFH(vp),
1513 1513 xdr_rdlnres, (caddr_t)&rl, cr,
1514 1514 &douprintf, &rl.rl_status, 0, &fi);
1515 1515
1516 1516 if (error) {
1517 1517
1518 1518 kmem_free((void *)rl.rl_data, NFS_MAXPATHLEN);
1519 1519 return (error);
1520 1520 }
1521 1521
1522 1522 error = geterrno(rl.rl_status);
1523 1523 if (!error) {
1524 1524 error = uiomove(rl.rl_data, (int)rl.rl_count, UIO_READ, uiop);
1525 1525 if (nfs_do_symlink_cache && rp->r_symlink.contents == NULL) {
1526 1526 mutex_enter(&rp->r_statelock);
1527 1527 if (rp->r_symlink.contents == NULL) {
1528 1528 rp->r_symlink.contents = rl.rl_data;
1529 1529 rp->r_symlink.len = (int)rl.rl_count;
1530 1530 rp->r_symlink.size = NFS_MAXPATHLEN;
1531 1531 mutex_exit(&rp->r_statelock);
1532 1532 } else {
1533 1533 mutex_exit(&rp->r_statelock);
1534 1534
1535 1535 kmem_free((void *)rl.rl_data,
1536 1536 NFS_MAXPATHLEN);
1537 1537 }
1538 1538 } else {
1539 1539
1540 1540 kmem_free((void *)rl.rl_data, NFS_MAXPATHLEN);
1541 1541 }
1542 1542 } else {
1543 1543 PURGE_STALE_FH(error, vp, cr);
1544 1544
1545 1545 kmem_free((void *)rl.rl_data, NFS_MAXPATHLEN);
1546 1546 }
1547 1547
1548 1548 /*
1549 1549 * Conform to UFS semantics (see comment above)
1550 1550 */
1551 1551 return (error == ENXIO ? EINVAL : error);
1552 1552 }
1553 1553
1554 1554 /*
1555 1555 * Flush local dirty pages to stable storage on the server.
1556 1556 *
1557 1557 * If FNODSYNC is specified, then there is nothing to do because
1558 1558 * metadata changes are not cached on the client before being
1559 1559 * sent to the server.
1560 1560 */
1561 1561 /* ARGSUSED */
1562 1562 static int
1563 1563 nfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
1564 1564 {
1565 1565 int error;
1566 1566
1567 1567 if ((syncflag & FNODSYNC) || IS_SWAPVP(vp))
1568 1568 return (0);
1569 1569
1570 1570 if (nfs_zone() != VTOMI(vp)->mi_zone)
1571 1571 return (EIO);
1572 1572
1573 1573 error = nfs_putpage(vp, (offset_t)0, 0, 0, cr, ct);
1574 1574 if (!error)
1575 1575 error = VTOR(vp)->r_error;
1576 1576 return (error);
1577 1577 }
1578 1578
1579 1579
1580 1580 /*
1581 1581 * Weirdness: if the file was removed or the target of a rename
1582 1582 * operation while it was open, it got renamed instead. Here we
1583 1583 * remove the renamed file.
1584 1584 */
1585 1585 /* ARGSUSED */
1586 1586 static void
1587 1587 nfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
1588 1588 {
1589 1589 rnode_t *rp;
1590 1590
1591 1591 ASSERT(vp != DNLC_NO_VNODE);
1592 1592
1593 1593 /*
1594 1594 * If this is coming from the wrong zone, we let someone in the right
1595 1595 * zone take care of it asynchronously. We can get here due to
1596 1596 * VN_RELE() being called from pageout() or fsflush(). This call may
1597 1597 * potentially turn into an expensive no-op if, for instance, v_count
1598 1598 * gets incremented in the meantime, but it's still correct.
1599 1599 */
1600 1600 if (nfs_zone() != VTOMI(vp)->mi_zone) {
1601 1601 nfs_async_inactive(vp, cr, nfs_inactive);
1602 1602 return;
1603 1603 }
1604 1604
1605 1605 rp = VTOR(vp);
1606 1606 redo:
1607 1607 if (rp->r_unldvp != NULL) {
1608 1608 /*
1609 1609 * Save the vnode pointer for the directory where the
1610 1610 * unlinked-open file got renamed, then set it to NULL
1611 1611 * to prevent another thread from getting here before
1612 1612 * we're done with the remove. While we have the
1613 1613 * statelock, make local copies of the pertinent rnode
1614 1614 * fields. If we weren't to do this in an atomic way, the
1615 1615 * the unl* fields could become inconsistent with respect
1616 1616 * to each other due to a race condition between this
1617 1617 * code and nfs_remove(). See bug report 1034328.
1618 1618 */
1619 1619 mutex_enter(&rp->r_statelock);
1620 1620 if (rp->r_unldvp != NULL) {
1621 1621 vnode_t *unldvp;
1622 1622 char *unlname;
1623 1623 cred_t *unlcred;
1624 1624 struct nfsdiropargs da;
1625 1625 enum nfsstat status;
1626 1626 int douprintf;
1627 1627 int error;
1628 1628
1629 1629 unldvp = rp->r_unldvp;
1630 1630 rp->r_unldvp = NULL;
1631 1631 unlname = rp->r_unlname;
1632 1632 rp->r_unlname = NULL;
1633 1633 unlcred = rp->r_unlcred;
1634 1634 rp->r_unlcred = NULL;
1635 1635 mutex_exit(&rp->r_statelock);
1636 1636
1637 1637 /*
1638 1638 * If there are any dirty pages left, then flush
1639 1639 * them. This is unfortunate because they just
1640 1640 * may get thrown away during the remove operation,
1641 1641 * but we have to do this for correctness.
1642 1642 */
1643 1643 if (vn_has_cached_data(vp) &&
1644 1644 ((rp->r_flags & RDIRTY) || rp->r_count > 0)) {
1645 1645 ASSERT(vp->v_type != VCHR);
1646 1646 error = nfs_putpage(vp, (offset_t)0, 0, 0,
1647 1647 cr, ct);
1648 1648 if (error) {
1649 1649 mutex_enter(&rp->r_statelock);
1650 1650 if (!rp->r_error)
1651 1651 rp->r_error = error;
1652 1652 mutex_exit(&rp->r_statelock);
1653 1653 }
1654 1654 }
1655 1655
1656 1656 /*
1657 1657 * Do the remove operation on the renamed file
1658 1658 */
1659 1659 setdiropargs(&da, unlname, unldvp);
1660 1660
1661 1661 douprintf = 1;
1662 1662
1663 1663 (void) rfs2call(VTOMI(unldvp), RFS_REMOVE,
1664 1664 xdr_diropargs, (caddr_t)&da,
1665 1665 xdr_enum, (caddr_t)&status, unlcred,
1666 1666 &douprintf, &status, 0, NULL);
1667 1667
1668 1668 if (HAVE_RDDIR_CACHE(VTOR(unldvp)))
1669 1669 nfs_purge_rddir_cache(unldvp);
1670 1670 PURGE_ATTRCACHE(unldvp);
1671 1671
1672 1672 /*
1673 1673 * Release stuff held for the remove
1674 1674 */
1675 1675 VN_RELE(unldvp);
1676 1676 kmem_free(unlname, MAXNAMELEN);
1677 1677 crfree(unlcred);
1678 1678 goto redo;
1679 1679 }
1680 1680 mutex_exit(&rp->r_statelock);
1681 1681 }
1682 1682
1683 1683 rp_addfree(rp, cr);
1684 1684 }
1685 1685
1686 1686 /*
1687 1687 * Remote file system operations having to do with directory manipulation.
1688 1688 */
1689 1689
1690 1690 /* ARGSUSED */
1691 1691 static int
1692 1692 nfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
1693 1693 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct,
1694 1694 int *direntflags, pathname_t *realpnp)
1695 1695 {
1696 1696 int error;
1697 1697 vnode_t *vp;
1698 1698 vnode_t *avp = NULL;
1699 1699 rnode_t *drp;
1700 1700
1701 1701 if (nfs_zone() != VTOMI(dvp)->mi_zone)
1702 1702 return (EPERM);
1703 1703
1704 1704 drp = VTOR(dvp);
1705 1705
1706 1706 /*
1707 1707 * Are we looking up extended attributes? If so, "dvp" is
1708 1708 * the file or directory for which we want attributes, and
1709 1709 * we need a lookup of the hidden attribute directory
1710 1710 * before we lookup the rest of the path.
1711 1711 */
1712 1712 if (flags & LOOKUP_XATTR) {
1713 1713 bool_t cflag = ((flags & CREATE_XATTR_DIR) != 0);
1714 1714 mntinfo_t *mi;
1715 1715
1716 1716 mi = VTOMI(dvp);
1717 1717 if (!(mi->mi_flags & MI_EXTATTR))
1718 1718 return (EINVAL);
1719 1719
1720 1720 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR(dvp)))
1721 1721 return (EINTR);
1722 1722
1723 1723 (void) nfslookup_dnlc(dvp, XATTR_DIR_NAME, &avp, cr);
1724 1724 if (avp == NULL)
1725 1725 error = acl_getxattrdir2(dvp, &avp, cflag, cr, 0);
1726 1726 else
1727 1727 error = 0;
1728 1728
1729 1729 nfs_rw_exit(&drp->r_rwlock);
1730 1730
1731 1731 if (error) {
1732 1732 if (mi->mi_flags & MI_EXTATTR)
1733 1733 return (error);
1734 1734 return (EINVAL);
1735 1735 }
1736 1736 dvp = avp;
1737 1737 drp = VTOR(dvp);
1738 1738 }
1739 1739
1740 1740 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR(dvp))) {
1741 1741 error = EINTR;
1742 1742 goto out;
1743 1743 }
1744 1744
1745 1745 error = nfslookup(dvp, nm, vpp, pnp, flags, rdir, cr, 0);
1746 1746
1747 1747 nfs_rw_exit(&drp->r_rwlock);
1748 1748
1749 1749 /*
1750 1750 * If vnode is a device, create special vnode.
1751 1751 */
1752 1752 if (!error && IS_DEVVP(*vpp)) {
1753 1753 vp = *vpp;
1754 1754 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr);
1755 1755 VN_RELE(vp);
1756 1756 }
1757 1757
1758 1758 out:
1759 1759 if (avp != NULL)
1760 1760 VN_RELE(avp);
1761 1761
1762 1762 return (error);
1763 1763 }
1764 1764
1765 1765 static int nfs_lookup_neg_cache = 1;
1766 1766
1767 1767 #ifdef DEBUG
1768 1768 static int nfs_lookup_dnlc_hits = 0;
1769 1769 static int nfs_lookup_dnlc_misses = 0;
1770 1770 static int nfs_lookup_dnlc_neg_hits = 0;
1771 1771 static int nfs_lookup_dnlc_disappears = 0;
1772 1772 static int nfs_lookup_dnlc_lookups = 0;
1773 1773 #endif
1774 1774
1775 1775 /* ARGSUSED */
1776 1776 int
1777 1777 nfslookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
1778 1778 int flags, vnode_t *rdir, cred_t *cr, int rfscall_flags)
1779 1779 {
1780 1780 int error;
1781 1781
1782 1782 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone);
1783 1783
1784 1784 /*
1785 1785 * If lookup is for "", just return dvp. Don't need
1786 1786 * to send it over the wire, look it up in the dnlc,
1787 1787 * or perform any access checks.
1788 1788 */
1789 1789 if (*nm == '\0') {
1790 1790 VN_HOLD(dvp);
1791 1791 *vpp = dvp;
1792 1792 return (0);
1793 1793 }
1794 1794
1795 1795 /*
1796 1796 * Can't do lookups in non-directories.
1797 1797 */
1798 1798 if (dvp->v_type != VDIR)
1799 1799 return (ENOTDIR);
1800 1800
1801 1801 /*
1802 1802 * If we're called with RFSCALL_SOFT, it's important that
1803 1803 * the only rfscall is one we make directly; if we permit
1804 1804 * an access call because we're looking up "." or validating
1805 1805 * a dnlc hit, we'll deadlock because that rfscall will not
1806 1806 * have the RFSCALL_SOFT set.
1807 1807 */
1808 1808 if (rfscall_flags & RFSCALL_SOFT)
1809 1809 goto callit;
1810 1810
1811 1811 /*
1812 1812 * If lookup is for ".", just return dvp. Don't need
1813 1813 * to send it over the wire or look it up in the dnlc,
1814 1814 * just need to check access.
1815 1815 */
1816 1816 if (strcmp(nm, ".") == 0) {
1817 1817 error = nfs_access(dvp, VEXEC, 0, cr, NULL);
1818 1818 if (error)
1819 1819 return (error);
1820 1820 VN_HOLD(dvp);
1821 1821 *vpp = dvp;
1822 1822 return (0);
1823 1823 }
1824 1824
1825 1825 /*
1826 1826 * Lookup this name in the DNLC. If there was a valid entry,
1827 1827 * then return the results of the lookup.
1828 1828 */
1829 1829 error = nfslookup_dnlc(dvp, nm, vpp, cr);
1830 1830 if (error || *vpp != NULL)
1831 1831 return (error);
1832 1832
1833 1833 callit:
1834 1834 error = nfslookup_otw(dvp, nm, vpp, cr, rfscall_flags);
1835 1835
1836 1836 return (error);
1837 1837 }
1838 1838
1839 1839 static int
1840 1840 nfslookup_dnlc(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr)
1841 1841 {
1842 1842 int error;
1843 1843 vnode_t *vp;
1844 1844
1845 1845 ASSERT(*nm != '\0');
1846 1846 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone);
1847 1847
1848 1848 /*
1849 1849 * Lookup this name in the DNLC. If successful, then validate
1850 1850 * the caches and then recheck the DNLC. The DNLC is rechecked
1851 1851 * just in case this entry got invalidated during the call
1852 1852 * to nfs_validate_caches.
1853 1853 *
1854 1854 * An assumption is being made that it is safe to say that a
1855 1855 * file exists which may not on the server. Any operations to
1856 1856 * the server will fail with ESTALE.
1857 1857 */
1858 1858 #ifdef DEBUG
1859 1859 nfs_lookup_dnlc_lookups++;
1860 1860 #endif
1861 1861 vp = dnlc_lookup(dvp, nm);
1862 1862 if (vp != NULL) {
1863 1863 VN_RELE(vp);
1864 1864 if (vp == DNLC_NO_VNODE && !vn_is_readonly(dvp)) {
1865 1865 PURGE_ATTRCACHE(dvp);
1866 1866 }
1867 1867 error = nfs_validate_caches(dvp, cr);
1868 1868 if (error)
1869 1869 return (error);
1870 1870 vp = dnlc_lookup(dvp, nm);
1871 1871 if (vp != NULL) {
1872 1872 error = nfs_access(dvp, VEXEC, 0, cr, NULL);
1873 1873 if (error) {
1874 1874 VN_RELE(vp);
1875 1875 return (error);
1876 1876 }
1877 1877 if (vp == DNLC_NO_VNODE) {
1878 1878 VN_RELE(vp);
1879 1879 #ifdef DEBUG
1880 1880 nfs_lookup_dnlc_neg_hits++;
1881 1881 #endif
1882 1882 return (ENOENT);
1883 1883 }
1884 1884 *vpp = vp;
1885 1885 #ifdef DEBUG
1886 1886 nfs_lookup_dnlc_hits++;
1887 1887 #endif
1888 1888 return (0);
1889 1889 }
1890 1890 #ifdef DEBUG
1891 1891 nfs_lookup_dnlc_disappears++;
1892 1892 #endif
1893 1893 }
1894 1894 #ifdef DEBUG
1895 1895 else
1896 1896 nfs_lookup_dnlc_misses++;
1897 1897 #endif
1898 1898
1899 1899 *vpp = NULL;
1900 1900
1901 1901 return (0);
1902 1902 }
1903 1903
1904 1904 static int
1905 1905 nfslookup_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr,
1906 1906 int rfscall_flags)
1907 1907 {
1908 1908 int error;
1909 1909 struct nfsdiropargs da;
1910 1910 struct nfsdiropres dr;
1911 1911 int douprintf;
1912 1912 failinfo_t fi;
1913 1913 hrtime_t t;
1914 1914
1915 1915 ASSERT(*nm != '\0');
1916 1916 ASSERT(dvp->v_type == VDIR);
1917 1917 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone);
1918 1918
1919 1919 setdiropargs(&da, nm, dvp);
1920 1920
1921 1921 fi.vp = dvp;
1922 1922 fi.fhp = NULL; /* no need to update, filehandle not copied */
1923 1923 fi.copyproc = nfscopyfh;
1924 1924 fi.lookupproc = nfslookup;
1925 1925 fi.xattrdirproc = acl_getxattrdir2;
1926 1926
1927 1927 douprintf = 1;
1928 1928
1929 1929 t = gethrtime();
1930 1930
1931 1931 error = rfs2call(VTOMI(dvp), RFS_LOOKUP,
1932 1932 xdr_diropargs, (caddr_t)&da,
1933 1933 xdr_diropres, (caddr_t)&dr, cr,
1934 1934 &douprintf, &dr.dr_status, rfscall_flags, &fi);
1935 1935
1936 1936 if (!error) {
1937 1937 error = geterrno(dr.dr_status);
1938 1938 if (!error) {
1939 1939 *vpp = makenfsnode(&dr.dr_fhandle, &dr.dr_attr,
1940 1940 dvp->v_vfsp, t, cr, VTOR(dvp)->r_path, nm);
1941 1941 /*
1942 1942 * If NFS_ACL is supported on the server, then the
1943 1943 * attributes returned by server may have minimal
1944 1944 * permissions sometimes denying access to users having
1945 1945 * proper access. To get the proper attributes, mark
1946 1946 * the attributes as expired so that they will be
1947 1947 * regotten via the NFS_ACL GETATTR2 procedure.
1948 1948 */
1949 1949 if (VTOMI(*vpp)->mi_flags & MI_ACL) {
1950 1950 PURGE_ATTRCACHE(*vpp);
1951 1951 }
1952 1952 if (!(rfscall_flags & RFSCALL_SOFT))
1953 1953 dnlc_update(dvp, nm, *vpp);
1954 1954 } else {
1955 1955 PURGE_STALE_FH(error, dvp, cr);
1956 1956 if (error == ENOENT && nfs_lookup_neg_cache)
1957 1957 dnlc_enter(dvp, nm, DNLC_NO_VNODE);
1958 1958 }
1959 1959 }
1960 1960
1961 1961 return (error);
1962 1962 }
1963 1963
1964 1964 /* ARGSUSED */
1965 1965 static int
1966 1966 nfs_create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive,
1967 1967 int mode, vnode_t **vpp, cred_t *cr, int lfaware, caller_context_t *ct,
1968 1968 vsecattr_t *vsecp)
1969 1969 {
1970 1970 int error;
1971 1971 struct nfscreatargs args;
1972 1972 struct nfsdiropres dr;
1973 1973 int douprintf;
1974 1974 vnode_t *vp;
1975 1975 rnode_t *rp;
1976 1976 struct vattr vattr;
1977 1977 rnode_t *drp;
1978 1978 vnode_t *tempvp;
1979 1979 hrtime_t t;
1980 1980
1981 1981 drp = VTOR(dvp);
1982 1982
1983 1983 if (nfs_zone() != VTOMI(dvp)->mi_zone)
1984 1984 return (EPERM);
1985 1985 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp)))
1986 1986 return (EINTR);
1987 1987
1988 1988 /*
1989 1989 * We make a copy of the attributes because the caller does not
1990 1990 * expect us to change what va points to.
1991 1991 */
1992 1992 vattr = *va;
1993 1993
1994 1994 /*
1995 1995 * If the pathname is "", just use dvp. Don't need
1996 1996 * to send it over the wire, look it up in the dnlc,
1997 1997 * or perform any access checks.
1998 1998 */
1999 1999 if (*nm == '\0') {
2000 2000 error = 0;
2001 2001 VN_HOLD(dvp);
2002 2002 vp = dvp;
2003 2003 /*
2004 2004 * If the pathname is ".", just use dvp. Don't need
2005 2005 * to send it over the wire or look it up in the dnlc,
2006 2006 * just need to check access.
2007 2007 */
2008 2008 } else if (strcmp(nm, ".") == 0) {
2009 2009 error = nfs_access(dvp, VEXEC, 0, cr, ct);
2010 2010 if (error) {
2011 2011 nfs_rw_exit(&drp->r_rwlock);
2012 2012 return (error);
2013 2013 }
2014 2014 VN_HOLD(dvp);
2015 2015 vp = dvp;
2016 2016 /*
2017 2017 * We need to go over the wire, just to be sure whether the
2018 2018 * file exists or not. Using the DNLC can be dangerous in
2019 2019 * this case when making a decision regarding existence.
2020 2020 */
2021 2021 } else {
2022 2022 error = nfslookup_otw(dvp, nm, &vp, cr, 0);
2023 2023 }
2024 2024 if (!error) {
2025 2025 if (exclusive == EXCL)
2026 2026 error = EEXIST;
2027 2027 else if (vp->v_type == VDIR && (mode & VWRITE))
2028 2028 error = EISDIR;
2029 2029 else {
2030 2030 /*
2031 2031 * If vnode is a device, create special vnode.
2032 2032 */
2033 2033 if (IS_DEVVP(vp)) {
2034 2034 tempvp = vp;
2035 2035 vp = specvp(vp, vp->v_rdev, vp->v_type, cr);
2036 2036 VN_RELE(tempvp);
2037 2037 }
2038 2038 if (!(error = VOP_ACCESS(vp, mode, 0, cr, ct))) {
2039 2039 if ((vattr.va_mask & AT_SIZE) &&
2040 2040 vp->v_type == VREG) {
2041 2041 vattr.va_mask = AT_SIZE;
2042 2042 error = nfssetattr(vp, &vattr, 0, cr);
2043 2043
2044 2044 if (!error) {
2045 2045 /*
2046 2046 * Existing file was truncated;
2047 2047 * emit a create event.
2048 2048 */
2049 2049 vnevent_create(vp, ct);
2050 2050 }
2051 2051 }
2052 2052 }
2053 2053 }
2054 2054 nfs_rw_exit(&drp->r_rwlock);
2055 2055 if (error) {
2056 2056 VN_RELE(vp);
2057 2057 } else {
2058 2058 *vpp = vp;
2059 2059 }
2060 2060 return (error);
2061 2061 }
2062 2062
2063 2063 ASSERT(vattr.va_mask & AT_TYPE);
2064 2064 if (vattr.va_type == VREG) {
2065 2065 ASSERT(vattr.va_mask & AT_MODE);
2066 2066 if (MANDMODE(vattr.va_mode)) {
2067 2067 nfs_rw_exit(&drp->r_rwlock);
2068 2068 return (EACCES);
2069 2069 }
2070 2070 }
2071 2071
2072 2072 dnlc_remove(dvp, nm);
2073 2073
2074 2074 setdiropargs(&args.ca_da, nm, dvp);
2075 2075
2076 2076 /*
2077 2077 * Decide what the group-id of the created file should be.
2078 2078 * Set it in attribute list as advisory...then do a setattr
2079 2079 * if the server didn't get it right the first time.
2080 2080 */
2081 2081 error = setdirgid(dvp, &vattr.va_gid, cr);
2082 2082 if (error) {
2083 2083 nfs_rw_exit(&drp->r_rwlock);
2084 2084 return (error);
2085 2085 }
2086 2086 vattr.va_mask |= AT_GID;
2087 2087
2088 2088 /*
2089 2089 * This is a completely gross hack to make mknod
2090 2090 * work over the wire until we can wack the protocol
2091 2091 */
2092 2092 #define IFCHR 0020000 /* character special */
2093 2093 #define IFBLK 0060000 /* block special */
2094 2094 #define IFSOCK 0140000 /* socket */
2095 2095
2096 2096 /*
2097 2097 * dev_t is uint_t in 5.x and short in 4.x. Both 4.x
2098 2098 * supports 8 bit majors. 5.x supports 14 bit majors. 5.x supports 18
2099 2099 * bits in the minor number where 4.x supports 8 bits. If the 5.x
2100 2100 * minor/major numbers <= 8 bits long, compress the device
2101 2101 * number before sending it. Otherwise, the 4.x server will not
2102 2102 * create the device with the correct device number and nothing can be
2103 2103 * done about this.
2104 2104 */
2105 2105 if (vattr.va_type == VCHR || vattr.va_type == VBLK) {
2106 2106 dev_t d = vattr.va_rdev;
2107 2107 dev32_t dev32;
2108 2108
2109 2109 if (vattr.va_type == VCHR)
2110 2110 vattr.va_mode |= IFCHR;
2111 2111 else
2112 2112 vattr.va_mode |= IFBLK;
2113 2113
2114 2114 (void) cmpldev(&dev32, d);
2115 2115 if (dev32 & ~((SO4_MAXMAJ << L_BITSMINOR32) | SO4_MAXMIN))
2116 2116 vattr.va_size = (u_offset_t)dev32;
2117 2117 else
2118 2118 vattr.va_size = (u_offset_t)nfsv2_cmpdev(d);
2119 2119
2120 2120 vattr.va_mask |= AT_MODE|AT_SIZE;
2121 2121 } else if (vattr.va_type == VFIFO) {
2122 2122 vattr.va_mode |= IFCHR; /* xtra kludge for namedpipe */
2123 2123 vattr.va_size = (u_offset_t)NFS_FIFO_DEV; /* blech */
2124 2124 vattr.va_mask |= AT_MODE|AT_SIZE;
2125 2125 } else if (vattr.va_type == VSOCK) {
2126 2126 vattr.va_mode |= IFSOCK;
2127 2127 /*
2128 2128 * To avoid triggering bugs in the servers set AT_SIZE
2129 2129 * (all other RFS_CREATE calls set this).
2130 2130 */
2131 2131 vattr.va_size = 0;
2132 2132 vattr.va_mask |= AT_MODE|AT_SIZE;
2133 2133 }
2134 2134
2135 2135 args.ca_sa = &args.ca_sa_buf;
2136 2136 error = vattr_to_sattr(&vattr, args.ca_sa);
2137 2137 if (error) {
2138 2138 /* req time field(s) overflow - return immediately */
2139 2139 nfs_rw_exit(&drp->r_rwlock);
2140 2140 return (error);
2141 2141 }
2142 2142
2143 2143 douprintf = 1;
2144 2144
2145 2145 t = gethrtime();
2146 2146
2147 2147 error = rfs2call(VTOMI(dvp), RFS_CREATE,
2148 2148 xdr_creatargs, (caddr_t)&args,
2149 2149 xdr_diropres, (caddr_t)&dr, cr,
2150 2150 &douprintf, &dr.dr_status, 0, NULL);
2151 2151
2152 2152 PURGE_ATTRCACHE(dvp); /* mod time changed */
2153 2153
2154 2154 if (!error) {
2155 2155 error = geterrno(dr.dr_status);
2156 2156 if (!error) {
2157 2157 if (HAVE_RDDIR_CACHE(drp))
2158 2158 nfs_purge_rddir_cache(dvp);
2159 2159 vp = makenfsnode(&dr.dr_fhandle, &dr.dr_attr,
2160 2160 dvp->v_vfsp, t, cr, NULL, NULL);
2161 2161 /*
2162 2162 * If NFS_ACL is supported on the server, then the
2163 2163 * attributes returned by server may have minimal
2164 2164 * permissions sometimes denying access to users having
2165 2165 * proper access. To get the proper attributes, mark
2166 2166 * the attributes as expired so that they will be
2167 2167 * regotten via the NFS_ACL GETATTR2 procedure.
2168 2168 */
2169 2169 if (VTOMI(vp)->mi_flags & MI_ACL) {
2170 2170 PURGE_ATTRCACHE(vp);
2171 2171 }
2172 2172 dnlc_update(dvp, nm, vp);
2173 2173 rp = VTOR(vp);
2174 2174 if (vattr.va_size == 0) {
2175 2175 mutex_enter(&rp->r_statelock);
2176 2176 rp->r_size = 0;
2177 2177 mutex_exit(&rp->r_statelock);
2178 2178 if (vn_has_cached_data(vp)) {
2179 2179 ASSERT(vp->v_type != VCHR);
2180 2180 nfs_invalidate_pages(vp,
2181 2181 (u_offset_t)0, cr);
2182 2182 }
2183 2183 }
2184 2184
2185 2185 /*
2186 2186 * Make sure the gid was set correctly.
2187 2187 * If not, try to set it (but don't lose
2188 2188 * any sleep over it).
2189 2189 */
2190 2190 if (vattr.va_gid != rp->r_attr.va_gid) {
2191 2191 vattr.va_mask = AT_GID;
2192 2192 (void) nfssetattr(vp, &vattr, 0, cr);
2193 2193 }
2194 2194
2195 2195 /*
2196 2196 * If vnode is a device create special vnode
2197 2197 */
2198 2198 if (IS_DEVVP(vp)) {
2199 2199 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr);
2200 2200 VN_RELE(vp);
2201 2201 } else
2202 2202 *vpp = vp;
2203 2203 } else {
2204 2204 PURGE_STALE_FH(error, dvp, cr);
2205 2205 }
2206 2206 }
2207 2207
2208 2208 nfs_rw_exit(&drp->r_rwlock);
2209 2209
2210 2210 return (error);
2211 2211 }
2212 2212
2213 2213 /*
2214 2214 * Weirdness: if the vnode to be removed is open
2215 2215 * we rename it instead of removing it and nfs_inactive
2216 2216 * will remove the new name.
2217 2217 */
2218 2218 /* ARGSUSED */
2219 2219 static int
2220 2220 nfs_remove(vnode_t *dvp, char *nm, cred_t *cr, caller_context_t *ct, int flags)
2221 2221 {
2222 2222 int error;
2223 2223 struct nfsdiropargs da;
2224 2224 enum nfsstat status;
2225 2225 vnode_t *vp;
2226 2226 char *tmpname;
2227 2227 int douprintf;
2228 2228 rnode_t *rp;
2229 2229 rnode_t *drp;
2230 2230
2231 2231 if (nfs_zone() != VTOMI(dvp)->mi_zone)
2232 2232 return (EPERM);
2233 2233 drp = VTOR(dvp);
2234 2234 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp)))
2235 2235 return (EINTR);
2236 2236
2237 2237 error = nfslookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0);
2238 2238 if (error) {
2239 2239 nfs_rw_exit(&drp->r_rwlock);
2240 2240 return (error);
2241 2241 }
2242 2242
2243 2243 if (vp->v_type == VDIR && secpolicy_fs_linkdir(cr, dvp->v_vfsp)) {
2244 2244 VN_RELE(vp);
2245 2245 nfs_rw_exit(&drp->r_rwlock);
2246 2246 return (EPERM);
2247 2247 }
2248 2248
2249 2249 /*
2250 2250 * First just remove the entry from the name cache, as it
2251 2251 * is most likely the only entry for this vp.
2252 2252 */
2253 2253 dnlc_remove(dvp, nm);
2254 2254
2255 2255 /*
2256 2256 * If the file has a v_count > 1 then there may be more than one
2257 2257 * entry in the name cache due multiple links or an open file,
2258 2258 * but we don't have the real reference count so flush all
2259 2259 * possible entries.
2260 2260 */
2261 2261 if (vp->v_count > 1)
2262 2262 dnlc_purge_vp(vp);
2263 2263
2264 2264 /*
2265 2265 * Now we have the real reference count on the vnode
2266 2266 */
2267 2267 rp = VTOR(vp);
2268 2268 mutex_enter(&rp->r_statelock);
2269 2269 if (vp->v_count > 1 &&
2270 2270 (rp->r_unldvp == NULL || strcmp(nm, rp->r_unlname) == 0)) {
2271 2271 mutex_exit(&rp->r_statelock);
2272 2272 tmpname = newname();
2273 2273 error = nfsrename(dvp, nm, dvp, tmpname, cr, ct);
2274 2274 if (error)
2275 2275 kmem_free(tmpname, MAXNAMELEN);
2276 2276 else {
2277 2277 mutex_enter(&rp->r_statelock);
2278 2278 if (rp->r_unldvp == NULL) {
2279 2279 VN_HOLD(dvp);
2280 2280 rp->r_unldvp = dvp;
2281 2281 if (rp->r_unlcred != NULL)
2282 2282 crfree(rp->r_unlcred);
2283 2283 crhold(cr);
2284 2284 rp->r_unlcred = cr;
2285 2285 rp->r_unlname = tmpname;
2286 2286 } else {
2287 2287 kmem_free(rp->r_unlname, MAXNAMELEN);
2288 2288 rp->r_unlname = tmpname;
2289 2289 }
2290 2290 mutex_exit(&rp->r_statelock);
2291 2291 }
2292 2292 } else {
2293 2293 mutex_exit(&rp->r_statelock);
2294 2294 /*
2295 2295 * We need to flush any dirty pages which happen to
2296 2296 * be hanging around before removing the file. This
2297 2297 * shouldn't happen very often and mostly on file
2298 2298 * systems mounted "nocto".
2299 2299 */
2300 2300 if (vn_has_cached_data(vp) &&
2301 2301 ((rp->r_flags & RDIRTY) || rp->r_count > 0)) {
2302 2302 error = nfs_putpage(vp, (offset_t)0, 0, 0, cr, ct);
2303 2303 if (error && (error == ENOSPC || error == EDQUOT)) {
2304 2304 mutex_enter(&rp->r_statelock);
2305 2305 if (!rp->r_error)
2306 2306 rp->r_error = error;
2307 2307 mutex_exit(&rp->r_statelock);
2308 2308 }
2309 2309 }
2310 2310
2311 2311 setdiropargs(&da, nm, dvp);
2312 2312
2313 2313 douprintf = 1;
2314 2314
2315 2315 error = rfs2call(VTOMI(dvp), RFS_REMOVE,
2316 2316 xdr_diropargs, (caddr_t)&da,
2317 2317 xdr_enum, (caddr_t)&status, cr,
2318 2318 &douprintf, &status, 0, NULL);
2319 2319
2320 2320 /*
2321 2321 * The xattr dir may be gone after last attr is removed,
2322 2322 * so flush it from dnlc.
2323 2323 */
2324 2324 if (dvp->v_flag & V_XATTRDIR)
2325 2325 dnlc_purge_vp(dvp);
2326 2326
2327 2327 PURGE_ATTRCACHE(dvp); /* mod time changed */
2328 2328 PURGE_ATTRCACHE(vp); /* link count changed */
2329 2329
2330 2330 if (!error) {
2331 2331 error = geterrno(status);
2332 2332 if (!error) {
2333 2333 if (HAVE_RDDIR_CACHE(drp))
2334 2334 nfs_purge_rddir_cache(dvp);
2335 2335 } else {
2336 2336 PURGE_STALE_FH(error, dvp, cr);
2337 2337 }
2338 2338 }
2339 2339 }
2340 2340
2341 2341 if (error == 0) {
2342 2342 vnevent_remove(vp, dvp, nm, ct);
2343 2343 }
2344 2344 VN_RELE(vp);
2345 2345
2346 2346 nfs_rw_exit(&drp->r_rwlock);
2347 2347
2348 2348 return (error);
2349 2349 }
2350 2350
2351 2351 /* ARGSUSED */
2352 2352 static int
2353 2353 nfs_link(vnode_t *tdvp, vnode_t *svp, char *tnm, cred_t *cr,
2354 2354 caller_context_t *ct, int flags)
2355 2355 {
2356 2356 int error;
2357 2357 struct nfslinkargs args;
2358 2358 enum nfsstat status;
2359 2359 vnode_t *realvp;
2360 2360 int douprintf;
2361 2361 rnode_t *tdrp;
2362 2362
2363 2363 if (nfs_zone() != VTOMI(tdvp)->mi_zone)
2364 2364 return (EPERM);
2365 2365 if (VOP_REALVP(svp, &realvp, ct) == 0)
2366 2366 svp = realvp;
2367 2367
2368 2368 args.la_from = VTOFH(svp);
2369 2369 setdiropargs(&args.la_to, tnm, tdvp);
2370 2370
2371 2371 tdrp = VTOR(tdvp);
2372 2372 if (nfs_rw_enter_sig(&tdrp->r_rwlock, RW_WRITER, INTR(tdvp)))
2373 2373 return (EINTR);
2374 2374
2375 2375 dnlc_remove(tdvp, tnm);
2376 2376
2377 2377 douprintf = 1;
2378 2378
2379 2379 error = rfs2call(VTOMI(svp), RFS_LINK,
2380 2380 xdr_linkargs, (caddr_t)&args,
2381 2381 xdr_enum, (caddr_t)&status, cr,
2382 2382 &douprintf, &status, 0, NULL);
2383 2383
2384 2384 PURGE_ATTRCACHE(tdvp); /* mod time changed */
2385 2385 PURGE_ATTRCACHE(svp); /* link count changed */
2386 2386
2387 2387 if (!error) {
2388 2388 error = geterrno(status);
2389 2389 if (!error) {
2390 2390 if (HAVE_RDDIR_CACHE(tdrp))
2391 2391 nfs_purge_rddir_cache(tdvp);
2392 2392 }
2393 2393 }
2394 2394
2395 2395 nfs_rw_exit(&tdrp->r_rwlock);
2396 2396
2397 2397 if (!error) {
2398 2398 /*
2399 2399 * Notify the source file of this link operation.
2400 2400 */
2401 2401 vnevent_link(svp, ct);
2402 2402 }
2403 2403 return (error);
2404 2404 }
2405 2405
2406 2406 /* ARGSUSED */
2407 2407 static int
2408 2408 nfs_rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr,
2409 2409 caller_context_t *ct, int flags)
2410 2410 {
2411 2411 vnode_t *realvp;
2412 2412
2413 2413 if (nfs_zone() != VTOMI(odvp)->mi_zone)
2414 2414 return (EPERM);
2415 2415 if (VOP_REALVP(ndvp, &realvp, ct) == 0)
2416 2416 ndvp = realvp;
2417 2417
2418 2418 return (nfsrename(odvp, onm, ndvp, nnm, cr, ct));
2419 2419 }
2420 2420
2421 2421 /*
2422 2422 * nfsrename does the real work of renaming in NFS Version 2.
2423 2423 */
2424 2424 static int
2425 2425 nfsrename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr,
2426 2426 caller_context_t *ct)
2427 2427 {
2428 2428 int error;
2429 2429 enum nfsstat status;
2430 2430 struct nfsrnmargs args;
2431 2431 int douprintf;
2432 2432 vnode_t *nvp = NULL;
2433 2433 vnode_t *ovp = NULL;
2434 2434 char *tmpname;
2435 2435 rnode_t *rp;
2436 2436 rnode_t *odrp;
2437 2437 rnode_t *ndrp;
2438 2438
2439 2439 ASSERT(nfs_zone() == VTOMI(odvp)->mi_zone);
2440 2440 if (strcmp(onm, ".") == 0 || strcmp(onm, "..") == 0 ||
2441 2441 strcmp(nnm, ".") == 0 || strcmp(nnm, "..") == 0)
2442 2442 return (EINVAL);
2443 2443
2444 2444 odrp = VTOR(odvp);
2445 2445 ndrp = VTOR(ndvp);
2446 2446 if ((intptr_t)odrp < (intptr_t)ndrp) {
2447 2447 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR(odvp)))
2448 2448 return (EINTR);
2449 2449 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR(ndvp))) {
2450 2450 nfs_rw_exit(&odrp->r_rwlock);
2451 2451 return (EINTR);
2452 2452 }
2453 2453 } else {
2454 2454 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR(ndvp)))
2455 2455 return (EINTR);
2456 2456 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR(odvp))) {
2457 2457 nfs_rw_exit(&ndrp->r_rwlock);
2458 2458 return (EINTR);
2459 2459 }
2460 2460 }
2461 2461
2462 2462 /*
2463 2463 * Lookup the target file. If it exists, it needs to be
2464 2464 * checked to see whether it is a mount point and whether
2465 2465 * it is active (open).
2466 2466 */
2467 2467 error = nfslookup(ndvp, nnm, &nvp, NULL, 0, NULL, cr, 0);
2468 2468 if (!error) {
2469 2469 /*
2470 2470 * If this file has been mounted on, then just
2471 2471 * return busy because renaming to it would remove
2472 2472 * the mounted file system from the name space.
2473 2473 */
2474 2474 if (vn_mountedvfs(nvp) != NULL) {
2475 2475 VN_RELE(nvp);
2476 2476 nfs_rw_exit(&odrp->r_rwlock);
2477 2477 nfs_rw_exit(&ndrp->r_rwlock);
2478 2478 return (EBUSY);
2479 2479 }
2480 2480
2481 2481 /*
2482 2482 * Purge the name cache of all references to this vnode
2483 2483 * so that we can check the reference count to infer
2484 2484 * whether it is active or not.
2485 2485 */
2486 2486 /*
2487 2487 * First just remove the entry from the name cache, as it
2488 2488 * is most likely the only entry for this vp.
2489 2489 */
2490 2490 dnlc_remove(ndvp, nnm);
2491 2491 /*
2492 2492 * If the file has a v_count > 1 then there may be more
2493 2493 * than one entry in the name cache due multiple links
2494 2494 * or an open file, but we don't have the real reference
2495 2495 * count so flush all possible entries.
2496 2496 */
2497 2497 if (nvp->v_count > 1)
2498 2498 dnlc_purge_vp(nvp);
2499 2499
2500 2500 /*
2501 2501 * If the vnode is active and is not a directory,
2502 2502 * arrange to rename it to a
2503 2503 * temporary file so that it will continue to be
2504 2504 * accessible. This implements the "unlink-open-file"
2505 2505 * semantics for the target of a rename operation.
2506 2506 * Before doing this though, make sure that the
2507 2507 * source and target files are not already the same.
2508 2508 */
2509 2509 if (nvp->v_count > 1 && nvp->v_type != VDIR) {
2510 2510 /*
2511 2511 * Lookup the source name.
2512 2512 */
2513 2513 error = nfslookup(odvp, onm, &ovp, NULL, 0, NULL,
2514 2514 cr, 0);
2515 2515
2516 2516 /*
2517 2517 * The source name *should* already exist.
2518 2518 */
2519 2519 if (error) {
2520 2520 VN_RELE(nvp);
2521 2521 nfs_rw_exit(&odrp->r_rwlock);
2522 2522 nfs_rw_exit(&ndrp->r_rwlock);
2523 2523 return (error);
2524 2524 }
2525 2525
2526 2526 /*
2527 2527 * Compare the two vnodes. If they are the same,
2528 2528 * just release all held vnodes and return success.
2529 2529 */
2530 2530 if (ovp == nvp) {
2531 2531 VN_RELE(ovp);
2532 2532 VN_RELE(nvp);
2533 2533 nfs_rw_exit(&odrp->r_rwlock);
2534 2534 nfs_rw_exit(&ndrp->r_rwlock);
2535 2535 return (0);
2536 2536 }
2537 2537
2538 2538 /*
2539 2539 * Can't mix and match directories and non-
2540 2540 * directories in rename operations. We already
2541 2541 * know that the target is not a directory. If
2542 2542 * the source is a directory, return an error.
2543 2543 */
2544 2544 if (ovp->v_type == VDIR) {
2545 2545 VN_RELE(ovp);
2546 2546 VN_RELE(nvp);
2547 2547 nfs_rw_exit(&odrp->r_rwlock);
2548 2548 nfs_rw_exit(&ndrp->r_rwlock);
2549 2549 return (ENOTDIR);
2550 2550 }
2551 2551
2552 2552 /*
2553 2553 * The target file exists, is not the same as
2554 2554 * the source file, and is active. Link it
2555 2555 * to a temporary filename to avoid having
2556 2556 * the server removing the file completely.
2557 2557 */
2558 2558 tmpname = newname();
2559 2559 error = nfs_link(ndvp, nvp, tmpname, cr, NULL, 0);
2560 2560 if (error == EOPNOTSUPP) {
2561 2561 error = nfs_rename(ndvp, nnm, ndvp, tmpname,
2562 2562 cr, NULL, 0);
2563 2563 }
2564 2564 if (error) {
2565 2565 kmem_free(tmpname, MAXNAMELEN);
2566 2566 VN_RELE(ovp);
2567 2567 VN_RELE(nvp);
2568 2568 nfs_rw_exit(&odrp->r_rwlock);
2569 2569 nfs_rw_exit(&ndrp->r_rwlock);
2570 2570 return (error);
2571 2571 }
2572 2572 rp = VTOR(nvp);
2573 2573 mutex_enter(&rp->r_statelock);
2574 2574 if (rp->r_unldvp == NULL) {
2575 2575 VN_HOLD(ndvp);
2576 2576 rp->r_unldvp = ndvp;
2577 2577 if (rp->r_unlcred != NULL)
2578 2578 crfree(rp->r_unlcred);
2579 2579 crhold(cr);
2580 2580 rp->r_unlcred = cr;
2581 2581 rp->r_unlname = tmpname;
2582 2582 } else {
2583 2583 kmem_free(rp->r_unlname, MAXNAMELEN);
2584 2584 rp->r_unlname = tmpname;
2585 2585 }
2586 2586 mutex_exit(&rp->r_statelock);
2587 2587 }
2588 2588 }
2589 2589
2590 2590 if (ovp == NULL) {
2591 2591 /*
2592 2592 * When renaming directories to be a subdirectory of a
2593 2593 * different parent, the dnlc entry for ".." will no
2594 2594 * longer be valid, so it must be removed.
2595 2595 *
2596 2596 * We do a lookup here to determine whether we are renaming
2597 2597 * a directory and we need to check if we are renaming
2598 2598 * an unlinked file. This might have already been done
2599 2599 * in previous code, so we check ovp == NULL to avoid
2600 2600 * doing it twice.
2601 2601 */
2602 2602
2603 2603 error = nfslookup(odvp, onm, &ovp, NULL, 0, NULL, cr, 0);
2604 2604
2605 2605 /*
2606 2606 * The source name *should* already exist.
2607 2607 */
2608 2608 if (error) {
2609 2609 nfs_rw_exit(&odrp->r_rwlock);
2610 2610 nfs_rw_exit(&ndrp->r_rwlock);
2611 2611 if (nvp) {
2612 2612 VN_RELE(nvp);
2613 2613 }
2614 2614 return (error);
2615 2615 }
2616 2616 ASSERT(ovp != NULL);
2617 2617 }
2618 2618
2619 2619 dnlc_remove(odvp, onm);
2620 2620 dnlc_remove(ndvp, nnm);
2621 2621
2622 2622 setdiropargs(&args.rna_from, onm, odvp);
2623 2623 setdiropargs(&args.rna_to, nnm, ndvp);
2624 2624
2625 2625 douprintf = 1;
2626 2626
2627 2627 error = rfs2call(VTOMI(odvp), RFS_RENAME,
2628 2628 xdr_rnmargs, (caddr_t)&args,
2629 2629 xdr_enum, (caddr_t)&status, cr,
2630 2630 &douprintf, &status, 0, NULL);
2631 2631
2632 2632 PURGE_ATTRCACHE(odvp); /* mod time changed */
2633 2633 PURGE_ATTRCACHE(ndvp); /* mod time changed */
2634 2634
2635 2635 if (!error) {
2636 2636 error = geterrno(status);
2637 2637 if (!error) {
2638 2638 if (HAVE_RDDIR_CACHE(odrp))
2639 2639 nfs_purge_rddir_cache(odvp);
2640 2640 if (HAVE_RDDIR_CACHE(ndrp))
2641 2641 nfs_purge_rddir_cache(ndvp);
2642 2642 /*
2643 2643 * when renaming directories to be a subdirectory of a
2644 2644 * different parent, the dnlc entry for ".." will no
2645 2645 * longer be valid, so it must be removed
2646 2646 */
2647 2647 rp = VTOR(ovp);
2648 2648 if (ndvp != odvp) {
2649 2649 if (ovp->v_type == VDIR) {
2650 2650 dnlc_remove(ovp, "..");
2651 2651 if (HAVE_RDDIR_CACHE(rp))
2652 2652 nfs_purge_rddir_cache(ovp);
2653 2653 }
2654 2654 }
2655 2655
2656 2656 /*
2657 2657 * If we are renaming the unlinked file, update the
2658 2658 * r_unldvp and r_unlname as needed.
2659 2659 */
2660 2660 mutex_enter(&rp->r_statelock);
2661 2661 if (rp->r_unldvp != NULL) {
2662 2662 if (strcmp(rp->r_unlname, onm) == 0) {
2663 2663 (void) strncpy(rp->r_unlname,
2664 2664 nnm, MAXNAMELEN);
2665 2665 rp->r_unlname[MAXNAMELEN - 1] = '\0';
2666 2666
2667 2667 if (ndvp != rp->r_unldvp) {
2668 2668 VN_RELE(rp->r_unldvp);
2669 2669 rp->r_unldvp = ndvp;
2670 2670 VN_HOLD(ndvp);
2671 2671 }
2672 2672 }
2673 2673 }
2674 2674 mutex_exit(&rp->r_statelock);
2675 2675 } else {
2676 2676 /*
2677 2677 * System V defines rename to return EEXIST, not
2678 2678 * ENOTEMPTY if the target directory is not empty.
2679 2679 * Over the wire, the error is NFSERR_ENOTEMPTY
2680 2680 * which geterrno maps to ENOTEMPTY.
2681 2681 */
2682 2682 if (error == ENOTEMPTY)
2683 2683 error = EEXIST;
2684 2684 }
2685 2685 }
2686 2686
2687 2687 if (error == 0) {
2688 2688 if (nvp)
2689 2689 vnevent_rename_dest(nvp, ndvp, nnm, ct);
2690 2690
2691 2691 if (odvp != ndvp)
2692 2692 vnevent_rename_dest_dir(ndvp, ct);
2693 2693
2694 2694 ASSERT(ovp != NULL);
2695 2695 vnevent_rename_src(ovp, odvp, onm, ct);
2696 2696 }
2697 2697
2698 2698 if (nvp) {
2699 2699 VN_RELE(nvp);
2700 2700 }
2701 2701 VN_RELE(ovp);
2702 2702
2703 2703 nfs_rw_exit(&odrp->r_rwlock);
2704 2704 nfs_rw_exit(&ndrp->r_rwlock);
2705 2705
2706 2706 return (error);
2707 2707 }
2708 2708
2709 2709 /* ARGSUSED */
2710 2710 static int
2711 2711 nfs_mkdir(vnode_t *dvp, char *nm, struct vattr *va, vnode_t **vpp, cred_t *cr,
2712 2712 caller_context_t *ct, int flags, vsecattr_t *vsecp)
2713 2713 {
2714 2714 int error;
2715 2715 struct nfscreatargs args;
2716 2716 struct nfsdiropres dr;
2717 2717 int douprintf;
2718 2718 rnode_t *drp;
2719 2719 hrtime_t t;
2720 2720
2721 2721 if (nfs_zone() != VTOMI(dvp)->mi_zone)
2722 2722 return (EPERM);
2723 2723
2724 2724 setdiropargs(&args.ca_da, nm, dvp);
2725 2725
2726 2726 /*
2727 2727 * Decide what the group-id and set-gid bit of the created directory
2728 2728 * should be. May have to do a setattr to get the gid right.
2729 2729 */
2730 2730 error = setdirgid(dvp, &va->va_gid, cr);
2731 2731 if (error)
2732 2732 return (error);
2733 2733 error = setdirmode(dvp, &va->va_mode, cr);
2734 2734 if (error)
2735 2735 return (error);
2736 2736 va->va_mask |= AT_MODE|AT_GID;
2737 2737
2738 2738 args.ca_sa = &args.ca_sa_buf;
2739 2739 error = vattr_to_sattr(va, args.ca_sa);
2740 2740 if (error) {
2741 2741 /* req time field(s) overflow - return immediately */
2742 2742 return (error);
2743 2743 }
2744 2744
2745 2745 drp = VTOR(dvp);
2746 2746 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp)))
2747 2747 return (EINTR);
2748 2748
2749 2749 dnlc_remove(dvp, nm);
2750 2750
2751 2751 douprintf = 1;
2752 2752
2753 2753 t = gethrtime();
2754 2754
2755 2755 error = rfs2call(VTOMI(dvp), RFS_MKDIR,
2756 2756 xdr_creatargs, (caddr_t)&args,
2757 2757 xdr_diropres, (caddr_t)&dr, cr,
2758 2758 &douprintf, &dr.dr_status, 0, NULL);
2759 2759
2760 2760 PURGE_ATTRCACHE(dvp); /* mod time changed */
2761 2761
2762 2762 if (!error) {
2763 2763 error = geterrno(dr.dr_status);
2764 2764 if (!error) {
2765 2765 if (HAVE_RDDIR_CACHE(drp))
2766 2766 nfs_purge_rddir_cache(dvp);
2767 2767 /*
2768 2768 * The attributes returned by RFS_MKDIR can not
2769 2769 * be depended upon, so mark the attribute cache
2770 2770 * as purged. A subsequent GETATTR will get the
2771 2771 * correct attributes from the server.
2772 2772 */
2773 2773 *vpp = makenfsnode(&dr.dr_fhandle, &dr.dr_attr,
2774 2774 dvp->v_vfsp, t, cr, NULL, NULL);
2775 2775 PURGE_ATTRCACHE(*vpp);
2776 2776 dnlc_update(dvp, nm, *vpp);
2777 2777
2778 2778 /*
2779 2779 * Make sure the gid was set correctly.
2780 2780 * If not, try to set it (but don't lose
2781 2781 * any sleep over it).
2782 2782 */
2783 2783 if (va->va_gid != VTOR(*vpp)->r_attr.va_gid) {
2784 2784 va->va_mask = AT_GID;
2785 2785 (void) nfssetattr(*vpp, va, 0, cr);
2786 2786 }
2787 2787 } else {
2788 2788 PURGE_STALE_FH(error, dvp, cr);
2789 2789 }
2790 2790 }
2791 2791
2792 2792 nfs_rw_exit(&drp->r_rwlock);
2793 2793
2794 2794 return (error);
2795 2795 }
2796 2796
2797 2797 /* ARGSUSED */
2798 2798 static int
2799 2799 nfs_rmdir(vnode_t *dvp, char *nm, vnode_t *cdir, cred_t *cr,
2800 2800 caller_context_t *ct, int flags)
2801 2801 {
2802 2802 int error;
2803 2803 enum nfsstat status;
2804 2804 struct nfsdiropargs da;
2805 2805 vnode_t *vp;
2806 2806 int douprintf;
2807 2807 rnode_t *drp;
2808 2808
2809 2809 if (nfs_zone() != VTOMI(dvp)->mi_zone)
2810 2810 return (EPERM);
2811 2811 drp = VTOR(dvp);
2812 2812 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp)))
2813 2813 return (EINTR);
2814 2814
2815 2815 /*
2816 2816 * Attempt to prevent a rmdir(".") from succeeding.
2817 2817 */
2818 2818 error = nfslookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0);
2819 2819 if (error) {
2820 2820 nfs_rw_exit(&drp->r_rwlock);
2821 2821 return (error);
2822 2822 }
2823 2823
2824 2824 if (vp == cdir) {
2825 2825 VN_RELE(vp);
2826 2826 nfs_rw_exit(&drp->r_rwlock);
2827 2827 return (EINVAL);
2828 2828 }
2829 2829
2830 2830 setdiropargs(&da, nm, dvp);
2831 2831
2832 2832 /*
2833 2833 * First just remove the entry from the name cache, as it
2834 2834 * is most likely an entry for this vp.
2835 2835 */
2836 2836 dnlc_remove(dvp, nm);
2837 2837
2838 2838 /*
2839 2839 * If there vnode reference count is greater than one, then
2840 2840 * there may be additional references in the DNLC which will
2841 2841 * need to be purged. First, trying removing the entry for
2842 2842 * the parent directory and see if that removes the additional
2843 2843 * reference(s). If that doesn't do it, then use dnlc_purge_vp
2844 2844 * to completely remove any references to the directory which
2845 2845 * might still exist in the DNLC.
2846 2846 */
2847 2847 if (vp->v_count > 1) {
2848 2848 dnlc_remove(vp, "..");
2849 2849 if (vp->v_count > 1)
2850 2850 dnlc_purge_vp(vp);
2851 2851 }
2852 2852
2853 2853 douprintf = 1;
2854 2854
2855 2855 error = rfs2call(VTOMI(dvp), RFS_RMDIR,
2856 2856 xdr_diropargs, (caddr_t)&da,
2857 2857 xdr_enum, (caddr_t)&status, cr,
2858 2858 &douprintf, &status, 0, NULL);
2859 2859
2860 2860 PURGE_ATTRCACHE(dvp); /* mod time changed */
2861 2861
2862 2862 if (error) {
2863 2863 VN_RELE(vp);
2864 2864 nfs_rw_exit(&drp->r_rwlock);
2865 2865 return (error);
2866 2866 }
2867 2867
2868 2868 error = geterrno(status);
2869 2869 if (!error) {
2870 2870 if (HAVE_RDDIR_CACHE(drp))
2871 2871 nfs_purge_rddir_cache(dvp);
2872 2872 if (HAVE_RDDIR_CACHE(VTOR(vp)))
2873 2873 nfs_purge_rddir_cache(vp);
2874 2874 } else {
2875 2875 PURGE_STALE_FH(error, dvp, cr);
2876 2876 /*
2877 2877 * System V defines rmdir to return EEXIST, not
2878 2878 * ENOTEMPTY if the directory is not empty. Over
2879 2879 * the wire, the error is NFSERR_ENOTEMPTY which
2880 2880 * geterrno maps to ENOTEMPTY.
2881 2881 */
2882 2882 if (error == ENOTEMPTY)
2883 2883 error = EEXIST;
2884 2884 }
2885 2885
2886 2886 if (error == 0) {
2887 2887 vnevent_rmdir(vp, dvp, nm, ct);
2888 2888 }
2889 2889 VN_RELE(vp);
2890 2890
2891 2891 nfs_rw_exit(&drp->r_rwlock);
2892 2892
2893 2893 return (error);
2894 2894 }
2895 2895
2896 2896 /* ARGSUSED */
2897 2897 static int
2898 2898 nfs_symlink(vnode_t *dvp, char *lnm, struct vattr *tva, char *tnm, cred_t *cr,
2899 2899 caller_context_t *ct, int flags)
2900 2900 {
2901 2901 int error;
2902 2902 struct nfsslargs args;
2903 2903 enum nfsstat status;
2904 2904 int douprintf;
2905 2905 rnode_t *drp;
2906 2906
2907 2907 if (nfs_zone() != VTOMI(dvp)->mi_zone)
2908 2908 return (EPERM);
2909 2909 setdiropargs(&args.sla_from, lnm, dvp);
2910 2910 args.sla_sa = &args.sla_sa_buf;
2911 2911 error = vattr_to_sattr(tva, args.sla_sa);
2912 2912 if (error) {
2913 2913 /* req time field(s) overflow - return immediately */
2914 2914 return (error);
2915 2915 }
2916 2916 args.sla_tnm = tnm;
2917 2917
2918 2918 drp = VTOR(dvp);
2919 2919 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp)))
2920 2920 return (EINTR);
2921 2921
2922 2922 dnlc_remove(dvp, lnm);
2923 2923
2924 2924 douprintf = 1;
2925 2925
2926 2926 error = rfs2call(VTOMI(dvp), RFS_SYMLINK,
2927 2927 xdr_slargs, (caddr_t)&args,
2928 2928 xdr_enum, (caddr_t)&status, cr,
2929 2929 &douprintf, &status, 0, NULL);
2930 2930
2931 2931 PURGE_ATTRCACHE(dvp); /* mod time changed */
2932 2932
2933 2933 if (!error) {
2934 2934 error = geterrno(status);
2935 2935 if (!error) {
2936 2936 if (HAVE_RDDIR_CACHE(drp))
2937 2937 nfs_purge_rddir_cache(dvp);
2938 2938 } else {
2939 2939 PURGE_STALE_FH(error, dvp, cr);
2940 2940 }
2941 2941 }
2942 2942
2943 2943 nfs_rw_exit(&drp->r_rwlock);
2944 2944
2945 2945 return (error);
2946 2946 }
2947 2947
2948 2948 #ifdef DEBUG
2949 2949 static int nfs_readdir_cache_hits = 0;
2950 2950 static int nfs_readdir_cache_shorts = 0;
2951 2951 static int nfs_readdir_cache_waits = 0;
2952 2952 static int nfs_readdir_cache_misses = 0;
2953 2953 static int nfs_readdir_readahead = 0;
2954 2954 #endif
2955 2955
2956 2956 static int nfs_shrinkreaddir = 0;
2957 2957
2958 2958 /*
2959 2959 * Read directory entries.
2960 2960 * There are some weird things to look out for here. The uio_offset
2961 2961 * field is either 0 or it is the offset returned from a previous
2962 2962 * readdir. It is an opaque value used by the server to find the
2963 2963 * correct directory block to read. The count field is the number
2964 2964 * of blocks to read on the server. This is advisory only, the server
2965 2965 * may return only one block's worth of entries. Entries may be compressed
2966 2966 * on the server.
2967 2967 */
2968 2968 /* ARGSUSED */
2969 2969 static int
2970 2970 nfs_readdir(vnode_t *vp, struct uio *uiop, cred_t *cr, int *eofp,
2971 2971 caller_context_t *ct, int flags)
2972 2972 {
2973 2973 int error;
2974 2974 size_t count;
2975 2975 rnode_t *rp;
2976 2976 rddir_cache *rdc;
2977 2977 rddir_cache *nrdc;
2978 2978 rddir_cache *rrdc;
2979 2979 #ifdef DEBUG
2980 2980 int missed;
2981 2981 #endif
2982 2982 rddir_cache srdc;
2983 2983 avl_index_t where;
2984 2984
2985 2985 rp = VTOR(vp);
2986 2986
2987 2987 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER));
2988 2988 if (nfs_zone() != VTOMI(vp)->mi_zone)
2989 2989 return (EIO);
2990 2990 /*
2991 2991 * Make sure that the directory cache is valid.
2992 2992 */
2993 2993 if (HAVE_RDDIR_CACHE(rp)) {
2994 2994 if (nfs_disable_rddir_cache) {
2995 2995 /*
2996 2996 * Setting nfs_disable_rddir_cache in /etc/system
2997 2997 * allows interoperability with servers that do not
2998 2998 * properly update the attributes of directories.
2999 2999 * Any cached information gets purged before an
3000 3000 * access is made to it.
3001 3001 */
3002 3002 nfs_purge_rddir_cache(vp);
3003 3003 } else {
3004 3004 error = nfs_validate_caches(vp, cr);
3005 3005 if (error)
3006 3006 return (error);
3007 3007 }
3008 3008 }
3009 3009
3010 3010 /*
3011 3011 * UGLINESS: SunOS 3.2 servers apparently cannot always handle an
3012 3012 * RFS_READDIR request with rda_count set to more than 0x400. So
3013 3013 * we reduce the request size here purely for compatibility.
3014 3014 *
3015 3015 * In general, this is no longer required. However, if a server
3016 3016 * is discovered which can not handle requests larger than 1024,
3017 3017 * nfs_shrinkreaddir can be set to 1 to enable this backwards
3018 3018 * compatibility.
3019 3019 *
3020 3020 * In any case, the request size is limited to NFS_MAXDATA bytes.
3021 3021 */
3022 3022 count = MIN(uiop->uio_iov->iov_len,
3023 3023 nfs_shrinkreaddir ? 0x400 : NFS_MAXDATA);
3024 3024
3025 3025 nrdc = NULL;
3026 3026 #ifdef DEBUG
3027 3027 missed = 0;
3028 3028 #endif
3029 3029 top:
3030 3030 /*
3031 3031 * Short circuit last readdir which always returns 0 bytes.
3032 3032 * This can be done after the directory has been read through
3033 3033 * completely at least once. This will set r_direof which
3034 3034 * can be used to find the value of the last cookie.
3035 3035 */
3036 3036 mutex_enter(&rp->r_statelock);
3037 3037 if (rp->r_direof != NULL &&
3038 3038 uiop->uio_offset == rp->r_direof->nfs_ncookie) {
3039 3039 mutex_exit(&rp->r_statelock);
3040 3040 #ifdef DEBUG
3041 3041 nfs_readdir_cache_shorts++;
3042 3042 #endif
3043 3043 if (eofp)
3044 3044 *eofp = 1;
3045 3045 if (nrdc != NULL)
3046 3046 rddir_cache_rele(nrdc);
3047 3047 return (0);
3048 3048 }
3049 3049 /*
3050 3050 * Look for a cache entry. Cache entries are identified
3051 3051 * by the NFS cookie value and the byte count requested.
3052 3052 */
3053 3053 srdc.nfs_cookie = uiop->uio_offset;
3054 3054 srdc.buflen = count;
3055 3055 rdc = avl_find(&rp->r_dir, &srdc, &where);
3056 3056 if (rdc != NULL) {
3057 3057 rddir_cache_hold(rdc);
3058 3058 /*
3059 3059 * If the cache entry is in the process of being
3060 3060 * filled in, wait until this completes. The
3061 3061 * RDDIRWAIT bit is set to indicate that someone
3062 3062 * is waiting and then the thread currently
3063 3063 * filling the entry is done, it should do a
3064 3064 * cv_broadcast to wakeup all of the threads
3065 3065 * waiting for it to finish.
3066 3066 */
3067 3067 if (rdc->flags & RDDIR) {
3068 3068 nfs_rw_exit(&rp->r_rwlock);
3069 3069 rdc->flags |= RDDIRWAIT;
3070 3070 #ifdef DEBUG
3071 3071 nfs_readdir_cache_waits++;
3072 3072 #endif
3073 3073 if (!cv_wait_sig(&rdc->cv, &rp->r_statelock)) {
3074 3074 /*
3075 3075 * We got interrupted, probably
3076 3076 * the user typed ^C or an alarm
3077 3077 * fired. We free the new entry
3078 3078 * if we allocated one.
3079 3079 */
3080 3080 mutex_exit(&rp->r_statelock);
3081 3081 (void) nfs_rw_enter_sig(&rp->r_rwlock,
3082 3082 RW_READER, FALSE);
3083 3083 rddir_cache_rele(rdc);
3084 3084 if (nrdc != NULL)
3085 3085 rddir_cache_rele(nrdc);
3086 3086 return (EINTR);
3087 3087 }
3088 3088 mutex_exit(&rp->r_statelock);
3089 3089 (void) nfs_rw_enter_sig(&rp->r_rwlock,
3090 3090 RW_READER, FALSE);
3091 3091 rddir_cache_rele(rdc);
3092 3092 goto top;
3093 3093 }
3094 3094 /*
3095 3095 * Check to see if a readdir is required to
3096 3096 * fill the entry. If so, mark this entry
3097 3097 * as being filled, remove our reference,
3098 3098 * and branch to the code to fill the entry.
3099 3099 */
3100 3100 if (rdc->flags & RDDIRREQ) {
3101 3101 rdc->flags &= ~RDDIRREQ;
3102 3102 rdc->flags |= RDDIR;
3103 3103 if (nrdc != NULL)
3104 3104 rddir_cache_rele(nrdc);
3105 3105 nrdc = rdc;
3106 3106 mutex_exit(&rp->r_statelock);
3107 3107 goto bottom;
3108 3108 }
3109 3109 #ifdef DEBUG
3110 3110 if (!missed)
3111 3111 nfs_readdir_cache_hits++;
3112 3112 #endif
3113 3113 /*
3114 3114 * If an error occurred while attempting
3115 3115 * to fill the cache entry, just return it.
3116 3116 */
3117 3117 if (rdc->error) {
3118 3118 error = rdc->error;
3119 3119 mutex_exit(&rp->r_statelock);
3120 3120 rddir_cache_rele(rdc);
3121 3121 if (nrdc != NULL)
3122 3122 rddir_cache_rele(nrdc);
3123 3123 return (error);
3124 3124 }
3125 3125
3126 3126 /*
3127 3127 * The cache entry is complete and good,
3128 3128 * copyout the dirent structs to the calling
3129 3129 * thread.
3130 3130 */
3131 3131 error = uiomove(rdc->entries, rdc->entlen, UIO_READ, uiop);
3132 3132
3133 3133 /*
3134 3134 * If no error occurred during the copyout,
3135 3135 * update the offset in the uio struct to
3136 3136 * contain the value of the next cookie
3137 3137 * and set the eof value appropriately.
3138 3138 */
3139 3139 if (!error) {
3140 3140 uiop->uio_offset = rdc->nfs_ncookie;
3141 3141 if (eofp)
3142 3142 *eofp = rdc->eof;
3143 3143 }
3144 3144
3145 3145 /*
3146 3146 * Decide whether to do readahead. Don't if
3147 3147 * have already read to the end of directory.
3148 3148 */
3149 3149 if (rdc->eof) {
3150 3150 rp->r_direof = rdc;
3151 3151 mutex_exit(&rp->r_statelock);
3152 3152 rddir_cache_rele(rdc);
3153 3153 if (nrdc != NULL)
3154 3154 rddir_cache_rele(nrdc);
3155 3155 return (error);
3156 3156 }
3157 3157
3158 3158 /*
3159 3159 * Check to see whether we found an entry
3160 3160 * for the readahead. If so, we don't need
3161 3161 * to do anything further, so free the new
3162 3162 * entry if one was allocated. Otherwise,
3163 3163 * allocate a new entry, add it to the cache,
3164 3164 * and then initiate an asynchronous readdir
3165 3165 * operation to fill it.
3166 3166 */
3167 3167 srdc.nfs_cookie = rdc->nfs_ncookie;
3168 3168 srdc.buflen = count;
3169 3169 rrdc = avl_find(&rp->r_dir, &srdc, &where);
3170 3170 if (rrdc != NULL) {
3171 3171 if (nrdc != NULL)
3172 3172 rddir_cache_rele(nrdc);
3173 3173 } else {
3174 3174 if (nrdc != NULL)
3175 3175 rrdc = nrdc;
3176 3176 else {
3177 3177 rrdc = rddir_cache_alloc(KM_NOSLEEP);
3178 3178 }
3179 3179 if (rrdc != NULL) {
3180 3180 rrdc->nfs_cookie = rdc->nfs_ncookie;
3181 3181 rrdc->buflen = count;
3182 3182 avl_insert(&rp->r_dir, rrdc, where);
3183 3183 rddir_cache_hold(rrdc);
3184 3184 mutex_exit(&rp->r_statelock);
3185 3185 rddir_cache_rele(rdc);
3186 3186 #ifdef DEBUG
3187 3187 nfs_readdir_readahead++;
3188 3188 #endif
3189 3189 nfs_async_readdir(vp, rrdc, cr, nfsreaddir);
3190 3190 return (error);
3191 3191 }
3192 3192 }
3193 3193
3194 3194 mutex_exit(&rp->r_statelock);
3195 3195 rddir_cache_rele(rdc);
3196 3196 return (error);
3197 3197 }
3198 3198
3199 3199 /*
3200 3200 * Didn't find an entry in the cache. Construct a new empty
3201 3201 * entry and link it into the cache. Other processes attempting
3202 3202 * to access this entry will need to wait until it is filled in.
3203 3203 *
3204 3204 * Since kmem_alloc may block, another pass through the cache
3205 3205 * will need to be taken to make sure that another process
3206 3206 * hasn't already added an entry to the cache for this request.
3207 3207 */
3208 3208 if (nrdc == NULL) {
3209 3209 mutex_exit(&rp->r_statelock);
3210 3210 nrdc = rddir_cache_alloc(KM_SLEEP);
3211 3211 nrdc->nfs_cookie = uiop->uio_offset;
3212 3212 nrdc->buflen = count;
3213 3213 goto top;
3214 3214 }
3215 3215
3216 3216 /*
3217 3217 * Add this entry to the cache.
3218 3218 */
3219 3219 avl_insert(&rp->r_dir, nrdc, where);
3220 3220 rddir_cache_hold(nrdc);
3221 3221 mutex_exit(&rp->r_statelock);
3222 3222
3223 3223 bottom:
3224 3224 #ifdef DEBUG
3225 3225 missed = 1;
3226 3226 nfs_readdir_cache_misses++;
3227 3227 #endif
3228 3228 /*
3229 3229 * Do the readdir.
3230 3230 */
3231 3231 error = nfsreaddir(vp, nrdc, cr);
3232 3232
3233 3233 /*
3234 3234 * If this operation failed, just return the error which occurred.
3235 3235 */
3236 3236 if (error != 0)
3237 3237 return (error);
3238 3238
3239 3239 /*
3240 3240 * Since the RPC operation will have taken sometime and blocked
3241 3241 * this process, another pass through the cache will need to be
3242 3242 * taken to find the correct cache entry. It is possible that
3243 3243 * the correct cache entry will not be there (although one was
3244 3244 * added) because the directory changed during the RPC operation
3245 3245 * and the readdir cache was flushed. In this case, just start
3246 3246 * over. It is hoped that this will not happen too often... :-)
3247 3247 */
3248 3248 nrdc = NULL;
3249 3249 goto top;
3250 3250 /* NOTREACHED */
3251 3251 }
3252 3252
3253 3253 static int
3254 3254 nfsreaddir(vnode_t *vp, rddir_cache *rdc, cred_t *cr)
3255 3255 {
3256 3256 int error;
3257 3257 struct nfsrddirargs rda;
3258 3258 struct nfsrddirres rd;
3259 3259 rnode_t *rp;
3260 3260 mntinfo_t *mi;
3261 3261 uint_t count;
3262 3262 int douprintf;
3263 3263 failinfo_t fi, *fip;
3264 3264
3265 3265 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
3266 3266 count = rdc->buflen;
3267 3267
3268 3268 rp = VTOR(vp);
3269 3269 mi = VTOMI(vp);
3270 3270
3271 3271 rda.rda_fh = *VTOFH(vp);
3272 3272 rda.rda_offset = rdc->nfs_cookie;
3273 3273
3274 3274 /*
3275 3275 * NFS client failover support
3276 3276 * suppress failover unless we have a zero cookie
3277 3277 */
3278 3278 if (rdc->nfs_cookie == (off_t)0) {
3279 3279 fi.vp = vp;
3280 3280 fi.fhp = (caddr_t)&rda.rda_fh;
3281 3281 fi.copyproc = nfscopyfh;
3282 3282 fi.lookupproc = nfslookup;
3283 3283 fi.xattrdirproc = acl_getxattrdir2;
3284 3284 fip = &fi;
3285 3285 } else {
3286 3286 fip = NULL;
3287 3287 }
3288 3288
3289 3289 rd.rd_entries = kmem_alloc(rdc->buflen, KM_SLEEP);
3290 3290 rd.rd_size = count;
3291 3291 rd.rd_offset = rda.rda_offset;
3292 3292
3293 3293 douprintf = 1;
3294 3294
3295 3295 if (mi->mi_io_kstats) {
3296 3296 mutex_enter(&mi->mi_lock);
3297 3297 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
3298 3298 mutex_exit(&mi->mi_lock);
3299 3299 }
3300 3300
3301 3301 do {
3302 3302 rda.rda_count = MIN(count, mi->mi_curread);
3303 3303 error = rfs2call(mi, RFS_READDIR,
3304 3304 xdr_rddirargs, (caddr_t)&rda,
3305 3305 xdr_getrddirres, (caddr_t)&rd, cr,
3306 3306 &douprintf, &rd.rd_status, 0, fip);
3307 3307 } while (error == ENFS_TRYAGAIN);
3308 3308
3309 3309 if (mi->mi_io_kstats) {
3310 3310 mutex_enter(&mi->mi_lock);
3311 3311 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
3312 3312 mutex_exit(&mi->mi_lock);
3313 3313 }
3314 3314
3315 3315 /*
3316 3316 * Since we are actually doing a READDIR RPC, we must have
3317 3317 * exclusive access to the cache entry being filled. Thus,
3318 3318 * it is safe to update all fields except for the flags
3319 3319 * field. The r_statelock in the rnode must be held to
3320 3320 * prevent two different threads from simultaneously
3321 3321 * attempting to update the flags field. This can happen
3322 3322 * if we are turning off RDDIR and the other thread is
3323 3323 * trying to set RDDIRWAIT.
3324 3324 */
3325 3325 ASSERT(rdc->flags & RDDIR);
3326 3326 if (!error) {
3327 3327 error = geterrno(rd.rd_status);
3328 3328 if (!error) {
3329 3329 rdc->nfs_ncookie = rd.rd_offset;
3330 3330 rdc->eof = rd.rd_eof ? 1 : 0;
3331 3331 rdc->entlen = rd.rd_size;
3332 3332 ASSERT(rdc->entlen <= rdc->buflen);
3333 3333 #ifdef DEBUG
3334 3334 rdc->entries = rddir_cache_buf_alloc(rdc->buflen,
3335 3335 KM_SLEEP);
3336 3336 #else
3337 3337 rdc->entries = kmem_alloc(rdc->buflen, KM_SLEEP);
3338 3338 #endif
3339 3339 bcopy(rd.rd_entries, rdc->entries, rdc->entlen);
3340 3340 rdc->error = 0;
3341 3341 if (mi->mi_io_kstats) {
3342 3342 mutex_enter(&mi->mi_lock);
3343 3343 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++;
3344 3344 KSTAT_IO_PTR(mi->mi_io_kstats)->nread +=
3345 3345 rd.rd_size;
3346 3346 mutex_exit(&mi->mi_lock);
3347 3347 }
3348 3348 } else {
3349 3349 PURGE_STALE_FH(error, vp, cr);
3350 3350 }
3351 3351 }
3352 3352 if (error) {
3353 3353 rdc->entries = NULL;
3354 3354 rdc->error = error;
3355 3355 }
3356 3356 kmem_free(rd.rd_entries, rdc->buflen);
3357 3357
3358 3358 mutex_enter(&rp->r_statelock);
3359 3359 rdc->flags &= ~RDDIR;
3360 3360 if (rdc->flags & RDDIRWAIT) {
3361 3361 rdc->flags &= ~RDDIRWAIT;
3362 3362 cv_broadcast(&rdc->cv);
3363 3363 }
3364 3364 if (error)
3365 3365 rdc->flags |= RDDIRREQ;
3366 3366 mutex_exit(&rp->r_statelock);
3367 3367
3368 3368 rddir_cache_rele(rdc);
3369 3369
3370 3370 return (error);
3371 3371 }
3372 3372
3373 3373 #ifdef DEBUG
3374 3374 static int nfs_bio_do_stop = 0;
3375 3375 #endif
3376 3376
3377 3377 static int
3378 3378 nfs_bio(struct buf *bp, cred_t *cr)
3379 3379 {
3380 3380 rnode_t *rp = VTOR(bp->b_vp);
3381 3381 int count;
3382 3382 int error;
3383 3383 cred_t *cred;
3384 3384 uint_t offset;
3385 3385
3386 3386 DTRACE_IO1(start, struct buf *, bp);
3387 3387
3388 3388 ASSERT(nfs_zone() == VTOMI(bp->b_vp)->mi_zone);
3389 3389 offset = dbtob(bp->b_blkno);
3390 3390
3391 3391 if (bp->b_flags & B_READ) {
3392 3392 mutex_enter(&rp->r_statelock);
3393 3393 if (rp->r_cred != NULL) {
3394 3394 cred = rp->r_cred;
3395 3395 crhold(cred);
3396 3396 } else {
3397 3397 rp->r_cred = cr;
3398 3398 crhold(cr);
3399 3399 cred = cr;
3400 3400 crhold(cred);
3401 3401 }
3402 3402 mutex_exit(&rp->r_statelock);
3403 3403 read_again:
3404 3404 error = bp->b_error = nfsread(bp->b_vp, bp->b_un.b_addr,
3405 3405 offset, bp->b_bcount, &bp->b_resid, cred);
3406 3406
3407 3407 crfree(cred);
3408 3408 if (!error) {
3409 3409 if (bp->b_resid) {
3410 3410 /*
3411 3411 * Didn't get it all because we hit EOF,
3412 3412 * zero all the memory beyond the EOF.
3413 3413 */
3414 3414 /* bzero(rdaddr + */
3415 3415 bzero(bp->b_un.b_addr +
3416 3416 bp->b_bcount - bp->b_resid, bp->b_resid);
3417 3417 }
3418 3418 mutex_enter(&rp->r_statelock);
3419 3419 if (bp->b_resid == bp->b_bcount &&
3420 3420 offset >= rp->r_size) {
3421 3421 /*
3422 3422 * We didn't read anything at all as we are
3423 3423 * past EOF. Return an error indicator back
3424 3424 * but don't destroy the pages (yet).
3425 3425 */
3426 3426 error = NFS_EOF;
3427 3427 }
3428 3428 mutex_exit(&rp->r_statelock);
3429 3429 } else if (error == EACCES) {
3430 3430 mutex_enter(&rp->r_statelock);
3431 3431 if (cred != cr) {
3432 3432 if (rp->r_cred != NULL)
3433 3433 crfree(rp->r_cred);
3434 3434 rp->r_cred = cr;
3435 3435 crhold(cr);
3436 3436 cred = cr;
3437 3437 crhold(cred);
3438 3438 mutex_exit(&rp->r_statelock);
3439 3439 goto read_again;
3440 3440 }
3441 3441 mutex_exit(&rp->r_statelock);
3442 3442 }
3443 3443 } else {
3444 3444 if (!(rp->r_flags & RSTALE)) {
3445 3445 mutex_enter(&rp->r_statelock);
3446 3446 if (rp->r_cred != NULL) {
3447 3447 cred = rp->r_cred;
3448 3448 crhold(cred);
3449 3449 } else {
3450 3450 rp->r_cred = cr;
3451 3451 crhold(cr);
3452 3452 cred = cr;
3453 3453 crhold(cred);
3454 3454 }
3455 3455 mutex_exit(&rp->r_statelock);
3456 3456 write_again:
3457 3457 mutex_enter(&rp->r_statelock);
3458 3458 count = MIN(bp->b_bcount, rp->r_size - offset);
3459 3459 mutex_exit(&rp->r_statelock);
3460 3460 if (count < 0)
3461 3461 cmn_err(CE_PANIC, "nfs_bio: write count < 0");
3462 3462 #ifdef DEBUG
3463 3463 if (count == 0) {
3464 3464 zcmn_err(getzoneid(), CE_WARN,
3465 3465 "nfs_bio: zero length write at %d",
3466 3466 offset);
3467 3467 nfs_printfhandle(&rp->r_fh);
3468 3468 if (nfs_bio_do_stop)
3469 3469 debug_enter("nfs_bio");
3470 3470 }
3471 3471 #endif
3472 3472 error = nfswrite(bp->b_vp, bp->b_un.b_addr, offset,
3473 3473 count, cred);
3474 3474 if (error == EACCES) {
3475 3475 mutex_enter(&rp->r_statelock);
3476 3476 if (cred != cr) {
3477 3477 if (rp->r_cred != NULL)
3478 3478 crfree(rp->r_cred);
3479 3479 rp->r_cred = cr;
3480 3480 crhold(cr);
3481 3481 crfree(cred);
3482 3482 cred = cr;
3483 3483 crhold(cred);
3484 3484 mutex_exit(&rp->r_statelock);
3485 3485 goto write_again;
3486 3486 }
3487 3487 mutex_exit(&rp->r_statelock);
3488 3488 }
3489 3489 bp->b_error = error;
3490 3490 if (error && error != EINTR) {
3491 3491 /*
3492 3492 * Don't print EDQUOT errors on the console.
3493 3493 * Don't print asynchronous EACCES errors.
3494 3494 * Don't print EFBIG errors.
3495 3495 * Print all other write errors.
3496 3496 */
3497 3497 if (error != EDQUOT && error != EFBIG &&
3498 3498 (error != EACCES ||
3499 3499 !(bp->b_flags & B_ASYNC)))
3500 3500 nfs_write_error(bp->b_vp, error, cred);
3501 3501 /*
3502 3502 * Update r_error and r_flags as appropriate.
3503 3503 * If the error was ESTALE, then mark the
3504 3504 * rnode as not being writeable and save
3505 3505 * the error status. Otherwise, save any
3506 3506 * errors which occur from asynchronous
3507 3507 * page invalidations. Any errors occurring
3508 3508 * from other operations should be saved
3509 3509 * by the caller.
3510 3510 */
3511 3511 mutex_enter(&rp->r_statelock);
3512 3512 if (error == ESTALE) {
3513 3513 rp->r_flags |= RSTALE;
3514 3514 if (!rp->r_error)
3515 3515 rp->r_error = error;
3516 3516 } else if (!rp->r_error &&
3517 3517 (bp->b_flags &
3518 3518 (B_INVAL|B_FORCE|B_ASYNC)) ==
3519 3519 (B_INVAL|B_FORCE|B_ASYNC)) {
3520 3520 rp->r_error = error;
3521 3521 }
3522 3522 mutex_exit(&rp->r_statelock);
3523 3523 }
3524 3524 crfree(cred);
3525 3525 } else {
3526 3526 error = rp->r_error;
3527 3527 /*
3528 3528 * A close may have cleared r_error, if so,
3529 3529 * propagate ESTALE error return properly
3530 3530 */
3531 3531 if (error == 0)
3532 3532 error = ESTALE;
3533 3533 }
3534 3534 }
3535 3535
3536 3536 if (error != 0 && error != NFS_EOF)
3537 3537 bp->b_flags |= B_ERROR;
3538 3538
3539 3539 DTRACE_IO1(done, struct buf *, bp);
3540 3540
3541 3541 return (error);
3542 3542 }
3543 3543
3544 3544 /* ARGSUSED */
3545 3545 static int
3546 3546 nfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
3547 3547 {
3548 3548 struct nfs_fid *fp;
3549 3549 rnode_t *rp;
3550 3550
3551 3551 rp = VTOR(vp);
3552 3552
3553 3553 if (fidp->fid_len < (sizeof (struct nfs_fid) - sizeof (short))) {
3554 3554 fidp->fid_len = sizeof (struct nfs_fid) - sizeof (short);
3555 3555 return (ENOSPC);
3556 3556 }
3557 3557 fp = (struct nfs_fid *)fidp;
3558 3558 fp->nf_pad = 0;
3559 3559 fp->nf_len = sizeof (struct nfs_fid) - sizeof (short);
3560 3560 bcopy(rp->r_fh.fh_buf, fp->nf_data, NFS_FHSIZE);
3561 3561 return (0);
3562 3562 }
3563 3563
3564 3564 /* ARGSUSED2 */
3565 3565 static int
3566 3566 nfs_rwlock(vnode_t *vp, int write_lock, caller_context_t *ctp)
3567 3567 {
3568 3568 rnode_t *rp = VTOR(vp);
3569 3569
3570 3570 if (!write_lock) {
3571 3571 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE);
3572 3572 return (V_WRITELOCK_FALSE);
3573 3573 }
3574 3574
3575 3575 if ((rp->r_flags & RDIRECTIO) || (VTOMI(vp)->mi_flags & MI_DIRECTIO)) {
3576 3576 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE);
3577 3577 if (rp->r_mapcnt == 0 && !vn_has_cached_data(vp))
3578 3578 return (V_WRITELOCK_FALSE);
3579 3579 nfs_rw_exit(&rp->r_rwlock);
3580 3580 }
3581 3581
3582 3582 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, FALSE);
3583 3583 return (V_WRITELOCK_TRUE);
3584 3584 }
3585 3585
3586 3586 /* ARGSUSED */
3587 3587 static void
3588 3588 nfs_rwunlock(vnode_t *vp, int write_lock, caller_context_t *ctp)
3589 3589 {
3590 3590 rnode_t *rp = VTOR(vp);
3591 3591
3592 3592 nfs_rw_exit(&rp->r_rwlock);
3593 3593 }
3594 3594
3595 3595 /* ARGSUSED */
3596 3596 static int
3597 3597 nfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, caller_context_t *ct)
3598 3598 {
3599 3599
3600 3600 /*
3601 3601 * Because we stuff the readdir cookie into the offset field
3602 3602 * someone may attempt to do an lseek with the cookie which
3603 3603 * we want to succeed.
3604 3604 */
3605 3605 if (vp->v_type == VDIR)
3606 3606 return (0);
3607 3607 if (*noffp < 0 || *noffp > MAXOFF32_T)
3608 3608 return (EINVAL);
3609 3609 return (0);
3610 3610 }
3611 3611
3612 3612 /*
3613 3613 * number of NFS_MAXDATA blocks to read ahead
3614 3614 * optimized for 100 base-T.
3615 3615 */
3616 3616 static int nfs_nra = 4;
3617 3617
3618 3618 #ifdef DEBUG
3619 3619 static int nfs_lostpage = 0; /* number of times we lost original page */
3620 3620 #endif
3621 3621
3622 3622 /*
3623 3623 * Return all the pages from [off..off+len) in file
3624 3624 */
3625 3625 /* ARGSUSED */
3626 3626 static int
3627 3627 nfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
3628 3628 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
3629 3629 enum seg_rw rw, cred_t *cr, caller_context_t *ct)
3630 3630 {
3631 3631 rnode_t *rp;
3632 3632 int error;
3633 3633 mntinfo_t *mi;
3634 3634
3635 3635 if (vp->v_flag & VNOMAP)
3636 3636 return (ENOSYS);
3637 3637
3638 3638 ASSERT(off <= MAXOFF32_T);
3639 3639 if (nfs_zone() != VTOMI(vp)->mi_zone)
3640 3640 return (EIO);
3641 3641 if (protp != NULL)
3642 3642 *protp = PROT_ALL;
3643 3643
3644 3644 /*
3645 3645 * Now valididate that the caches are up to date.
3646 3646 */
3647 3647 error = nfs_validate_caches(vp, cr);
3648 3648 if (error)
3649 3649 return (error);
3650 3650
3651 3651 rp = VTOR(vp);
3652 3652 mi = VTOMI(vp);
3653 3653 retry:
3654 3654 mutex_enter(&rp->r_statelock);
3655 3655
3656 3656 /*
3657 3657 * Don't create dirty pages faster than they
3658 3658 * can be cleaned so that the system doesn't
3659 3659 * get imbalanced. If the async queue is
3660 3660 * maxed out, then wait for it to drain before
3661 3661 * creating more dirty pages. Also, wait for
3662 3662 * any threads doing pagewalks in the vop_getattr
3663 3663 * entry points so that they don't block for
3664 3664 * long periods.
3665 3665 */
3666 3666 if (rw == S_CREATE) {
3667 3667 while ((mi->mi_max_threads != 0 &&
3668 3668 rp->r_awcount > 2 * mi->mi_max_threads) ||
3669 3669 rp->r_gcount > 0)
3670 3670 cv_wait(&rp->r_cv, &rp->r_statelock);
3671 3671 }
3672 3672
3673 3673 /*
3674 3674 * If we are getting called as a side effect of an nfs_write()
3675 3675 * operation the local file size might not be extended yet.
3676 3676 * In this case we want to be able to return pages of zeroes.
3677 3677 */
3678 3678 if (off + len > rp->r_size + PAGEOFFSET && seg != segkmap) {
3679 3679 mutex_exit(&rp->r_statelock);
3680 3680 return (EFAULT); /* beyond EOF */
3681 3681 }
3682 3682
3683 3683 mutex_exit(&rp->r_statelock);
3684 3684
3685 3685 error = pvn_getpages(nfs_getapage, vp, off, len, protp, pl, plsz,
3686 3686 seg, addr, rw, cr);
3687 3687
3688 3688 switch (error) {
3689 3689 case NFS_EOF:
3690 3690 nfs_purge_caches(vp, NFS_NOPURGE_DNLC, cr);
3691 3691 goto retry;
3692 3692 case ESTALE:
3693 3693 PURGE_STALE_FH(error, vp, cr);
3694 3694 }
3695 3695
3696 3696 return (error);
3697 3697 }
3698 3698
3699 3699 /*
3700 3700 * Called from pvn_getpages to get a particular page.
3701 3701 */
3702 3702 /* ARGSUSED */
3703 3703 static int
3704 3704 nfs_getapage(vnode_t *vp, u_offset_t off, size_t len, uint_t *protp,
3705 3705 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
3706 3706 enum seg_rw rw, cred_t *cr)
3707 3707 {
3708 3708 rnode_t *rp;
3709 3709 uint_t bsize;
3710 3710 struct buf *bp;
3711 3711 page_t *pp;
3712 3712 u_offset_t lbn;
3713 3713 u_offset_t io_off;
3714 3714 u_offset_t blkoff;
3715 3715 u_offset_t rablkoff;
3716 3716 size_t io_len;
3717 3717 uint_t blksize;
3718 3718 int error;
3719 3719 int readahead;
3720 3720 int readahead_issued = 0;
3721 3721 int ra_window; /* readahead window */
3722 3722 page_t *pagefound;
3723 3723
3724 3724 if (nfs_zone() != VTOMI(vp)->mi_zone)
3725 3725 return (EIO);
3726 3726 rp = VTOR(vp);
3727 3727 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE);
3728 3728
3729 3729 reread:
3730 3730 bp = NULL;
3731 3731 pp = NULL;
3732 3732 pagefound = NULL;
3733 3733
3734 3734 if (pl != NULL)
3735 3735 pl[0] = NULL;
3736 3736
3737 3737 error = 0;
3738 3738 lbn = off / bsize;
3739 3739 blkoff = lbn * bsize;
3740 3740
3741 3741 /*
3742 3742 * Queueing up the readahead before doing the synchronous read
3743 3743 * results in a significant increase in read throughput because
3744 3744 * of the increased parallelism between the async threads and
3745 3745 * the process context.
3746 3746 */
3747 3747 if ((off & ((vp->v_vfsp->vfs_bsize) - 1)) == 0 &&
3748 3748 rw != S_CREATE &&
3749 3749 !(vp->v_flag & VNOCACHE)) {
3750 3750 mutex_enter(&rp->r_statelock);
3751 3751
3752 3752 /*
3753 3753 * Calculate the number of readaheads to do.
3754 3754 * a) No readaheads at offset = 0.
3755 3755 * b) Do maximum(nfs_nra) readaheads when the readahead
3756 3756 * window is closed.
3757 3757 * c) Do readaheads between 1 to (nfs_nra - 1) depending
3758 3758 * upon how far the readahead window is open or close.
3759 3759 * d) No readaheads if rp->r_nextr is not within the scope
3760 3760 * of the readahead window (random i/o).
3761 3761 */
3762 3762
3763 3763 if (off == 0)
3764 3764 readahead = 0;
3765 3765 else if (blkoff == rp->r_nextr)
3766 3766 readahead = nfs_nra;
3767 3767 else if (rp->r_nextr > blkoff &&
3768 3768 ((ra_window = (rp->r_nextr - blkoff) / bsize)
3769 3769 <= (nfs_nra - 1)))
3770 3770 readahead = nfs_nra - ra_window;
3771 3771 else
3772 3772 readahead = 0;
3773 3773
3774 3774 rablkoff = rp->r_nextr;
3775 3775 while (readahead > 0 && rablkoff + bsize < rp->r_size) {
3776 3776 mutex_exit(&rp->r_statelock);
3777 3777 if (nfs_async_readahead(vp, rablkoff + bsize,
3778 3778 addr + (rablkoff + bsize - off), seg, cr,
3779 3779 nfs_readahead) < 0) {
3780 3780 mutex_enter(&rp->r_statelock);
3781 3781 break;
3782 3782 }
3783 3783 readahead--;
3784 3784 rablkoff += bsize;
3785 3785 /*
3786 3786 * Indicate that we did a readahead so
3787 3787 * readahead offset is not updated
3788 3788 * by the synchronous read below.
3789 3789 */
3790 3790 readahead_issued = 1;
3791 3791 mutex_enter(&rp->r_statelock);
3792 3792 /*
3793 3793 * set readahead offset to
3794 3794 * offset of last async readahead
3795 3795 * request.
3796 3796 */
3797 3797 rp->r_nextr = rablkoff;
3798 3798 }
3799 3799 mutex_exit(&rp->r_statelock);
3800 3800 }
3801 3801
3802 3802 again:
3803 3803 if ((pagefound = page_exists(vp, off)) == NULL) {
3804 3804 if (pl == NULL) {
3805 3805 (void) nfs_async_readahead(vp, blkoff, addr, seg, cr,
3806 3806 nfs_readahead);
3807 3807 } else if (rw == S_CREATE) {
3808 3808 /*
3809 3809 * Block for this page is not allocated, or the offset
3810 3810 * is beyond the current allocation size, or we're
3811 3811 * allocating a swap slot and the page was not found,
3812 3812 * so allocate it and return a zero page.
3813 3813 */
3814 3814 if ((pp = page_create_va(vp, off,
3815 3815 PAGESIZE, PG_WAIT, seg, addr)) == NULL)
3816 3816 cmn_err(CE_PANIC, "nfs_getapage: page_create");
3817 3817 io_len = PAGESIZE;
3818 3818 mutex_enter(&rp->r_statelock);
3819 3819 rp->r_nextr = off + PAGESIZE;
3820 3820 mutex_exit(&rp->r_statelock);
3821 3821 } else {
3822 3822 /*
3823 3823 * Need to go to server to get a BLOCK, exception to
3824 3824 * that being while reading at offset = 0 or doing
3825 3825 * random i/o, in that case read only a PAGE.
3826 3826 */
3827 3827 mutex_enter(&rp->r_statelock);
3828 3828 if (blkoff < rp->r_size &&
3829 3829 blkoff + bsize >= rp->r_size) {
3830 3830 /*
3831 3831 * If only a block or less is left in
3832 3832 * the file, read all that is remaining.
3833 3833 */
3834 3834 if (rp->r_size <= off) {
3835 3835 /*
3836 3836 * Trying to access beyond EOF,
3837 3837 * set up to get at least one page.
3838 3838 */
3839 3839 blksize = off + PAGESIZE - blkoff;
3840 3840 } else
3841 3841 blksize = rp->r_size - blkoff;
3842 3842 } else if ((off == 0) ||
3843 3843 (off != rp->r_nextr && !readahead_issued)) {
3844 3844 blksize = PAGESIZE;
3845 3845 blkoff = off; /* block = page here */
3846 3846 } else
3847 3847 blksize = bsize;
3848 3848 mutex_exit(&rp->r_statelock);
3849 3849
3850 3850 pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
3851 3851 &io_len, blkoff, blksize, 0);
3852 3852
3853 3853 /*
3854 3854 * Some other thread has entered the page,
3855 3855 * so just use it.
3856 3856 */
3857 3857 if (pp == NULL)
3858 3858 goto again;
3859 3859
3860 3860 /*
3861 3861 * Now round the request size up to page boundaries.
3862 3862 * This ensures that the entire page will be
3863 3863 * initialized to zeroes if EOF is encountered.
3864 3864 */
3865 3865 io_len = ptob(btopr(io_len));
3866 3866
3867 3867 bp = pageio_setup(pp, io_len, vp, B_READ);
3868 3868 ASSERT(bp != NULL);
3869 3869
3870 3870 /*
3871 3871 * pageio_setup should have set b_addr to 0. This
3872 3872 * is correct since we want to do I/O on a page
3873 3873 * boundary. bp_mapin will use this addr to calculate
3874 3874 * an offset, and then set b_addr to the kernel virtual
3875 3875 * address it allocated for us.
3876 3876 */
3877 3877 ASSERT(bp->b_un.b_addr == 0);
3878 3878
3879 3879 bp->b_edev = 0;
3880 3880 bp->b_dev = 0;
3881 3881 bp->b_lblkno = lbtodb(io_off);
3882 3882 bp->b_file = vp;
3883 3883 bp->b_offset = (offset_t)off;
3884 3884 bp_mapin(bp);
3885 3885
3886 3886 /*
3887 3887 * If doing a write beyond what we believe is EOF,
3888 3888 * don't bother trying to read the pages from the
3889 3889 * server, we'll just zero the pages here. We
3890 3890 * don't check that the rw flag is S_WRITE here
3891 3891 * because some implementations may attempt a
3892 3892 * read access to the buffer before copying data.
3893 3893 */
3894 3894 mutex_enter(&rp->r_statelock);
3895 3895 if (io_off >= rp->r_size && seg == segkmap) {
3896 3896 mutex_exit(&rp->r_statelock);
3897 3897 bzero(bp->b_un.b_addr, io_len);
3898 3898 } else {
3899 3899 mutex_exit(&rp->r_statelock);
3900 3900 error = nfs_bio(bp, cr);
3901 3901 }
3902 3902
3903 3903 /*
3904 3904 * Unmap the buffer before freeing it.
3905 3905 */
3906 3906 bp_mapout(bp);
3907 3907 pageio_done(bp);
3908 3908
3909 3909 if (error == NFS_EOF) {
3910 3910 /*
3911 3911 * If doing a write system call just return
3912 3912 * zeroed pages, else user tried to get pages
3913 3913 * beyond EOF, return error. We don't check
3914 3914 * that the rw flag is S_WRITE here because
3915 3915 * some implementations may attempt a read
3916 3916 * access to the buffer before copying data.
3917 3917 */
3918 3918 if (seg == segkmap)
3919 3919 error = 0;
3920 3920 else
3921 3921 error = EFAULT;
3922 3922 }
3923 3923
3924 3924 if (!readahead_issued && !error) {
3925 3925 mutex_enter(&rp->r_statelock);
3926 3926 rp->r_nextr = io_off + io_len;
3927 3927 mutex_exit(&rp->r_statelock);
3928 3928 }
3929 3929 }
3930 3930 }
3931 3931
3932 3932 out:
3933 3933 if (pl == NULL)
3934 3934 return (error);
3935 3935
3936 3936 if (error) {
3937 3937 if (pp != NULL)
3938 3938 pvn_read_done(pp, B_ERROR);
3939 3939 return (error);
3940 3940 }
3941 3941
3942 3942 if (pagefound) {
3943 3943 se_t se = (rw == S_CREATE ? SE_EXCL : SE_SHARED);
3944 3944
3945 3945 /*
3946 3946 * Page exists in the cache, acquire the appropriate lock.
3947 3947 * If this fails, start all over again.
3948 3948 */
3949 3949 if ((pp = page_lookup(vp, off, se)) == NULL) {
3950 3950 #ifdef DEBUG
3951 3951 nfs_lostpage++;
3952 3952 #endif
3953 3953 goto reread;
3954 3954 }
3955 3955 pl[0] = pp;
3956 3956 pl[1] = NULL;
3957 3957 return (0);
3958 3958 }
3959 3959
3960 3960 if (pp != NULL)
3961 3961 pvn_plist_init(pp, pl, plsz, off, io_len, rw);
3962 3962
3963 3963 return (error);
3964 3964 }
3965 3965
3966 3966 static void
3967 3967 nfs_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr, struct seg *seg,
3968 3968 cred_t *cr)
3969 3969 {
3970 3970 int error;
3971 3971 page_t *pp;
3972 3972 u_offset_t io_off;
3973 3973 size_t io_len;
3974 3974 struct buf *bp;
3975 3975 uint_t bsize, blksize;
3976 3976 rnode_t *rp = VTOR(vp);
3977 3977
3978 3978 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
3979 3979
3980 3980 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE);
3981 3981
3982 3982 mutex_enter(&rp->r_statelock);
3983 3983 if (blkoff < rp->r_size && blkoff + bsize > rp->r_size) {
3984 3984 /*
3985 3985 * If less than a block left in file read less
3986 3986 * than a block.
3987 3987 */
3988 3988 blksize = rp->r_size - blkoff;
3989 3989 } else
3990 3990 blksize = bsize;
3991 3991 mutex_exit(&rp->r_statelock);
3992 3992
3993 3993 pp = pvn_read_kluster(vp, blkoff, segkmap, addr,
3994 3994 &io_off, &io_len, blkoff, blksize, 1);
3995 3995 /*
3996 3996 * The isra flag passed to the kluster function is 1, we may have
3997 3997 * gotten a return value of NULL for a variety of reasons (# of free
3998 3998 * pages < minfree, someone entered the page on the vnode etc). In all
3999 3999 * cases, we want to punt on the readahead.
4000 4000 */
4001 4001 if (pp == NULL)
4002 4002 return;
4003 4003
4004 4004 /*
4005 4005 * Now round the request size up to page boundaries.
4006 4006 * This ensures that the entire page will be
4007 4007 * initialized to zeroes if EOF is encountered.
4008 4008 */
4009 4009 io_len = ptob(btopr(io_len));
4010 4010
4011 4011 bp = pageio_setup(pp, io_len, vp, B_READ);
4012 4012 ASSERT(bp != NULL);
4013 4013
4014 4014 /*
4015 4015 * pageio_setup should have set b_addr to 0. This is correct since
4016 4016 * we want to do I/O on a page boundary. bp_mapin() will use this addr
4017 4017 * to calculate an offset, and then set b_addr to the kernel virtual
4018 4018 * address it allocated for us.
4019 4019 */
4020 4020 ASSERT(bp->b_un.b_addr == 0);
4021 4021
4022 4022 bp->b_edev = 0;
4023 4023 bp->b_dev = 0;
4024 4024 bp->b_lblkno = lbtodb(io_off);
4025 4025 bp->b_file = vp;
4026 4026 bp->b_offset = (offset_t)blkoff;
4027 4027 bp_mapin(bp);
4028 4028
4029 4029 /*
4030 4030 * If doing a write beyond what we believe is EOF, don't bother trying
4031 4031 * to read the pages from the server, we'll just zero the pages here.
4032 4032 * We don't check that the rw flag is S_WRITE here because some
4033 4033 * implementations may attempt a read access to the buffer before
4034 4034 * copying data.
4035 4035 */
4036 4036 mutex_enter(&rp->r_statelock);
4037 4037 if (io_off >= rp->r_size && seg == segkmap) {
4038 4038 mutex_exit(&rp->r_statelock);
4039 4039 bzero(bp->b_un.b_addr, io_len);
4040 4040 error = 0;
4041 4041 } else {
4042 4042 mutex_exit(&rp->r_statelock);
4043 4043 error = nfs_bio(bp, cr);
4044 4044 if (error == NFS_EOF)
4045 4045 error = 0;
4046 4046 }
4047 4047
4048 4048 /*
4049 4049 * Unmap the buffer before freeing it.
4050 4050 */
4051 4051 bp_mapout(bp);
4052 4052 pageio_done(bp);
4053 4053
4054 4054 pvn_read_done(pp, error ? B_READ | B_ERROR : B_READ);
4055 4055
4056 4056 /*
4057 4057 * In case of error set readahead offset
4058 4058 * to the lowest offset.
4059 4059 * pvn_read_done() calls VN_DISPOSE to destroy the pages
4060 4060 */
4061 4061 if (error && rp->r_nextr > io_off) {
4062 4062 mutex_enter(&rp->r_statelock);
4063 4063 if (rp->r_nextr > io_off)
4064 4064 rp->r_nextr = io_off;
4065 4065 mutex_exit(&rp->r_statelock);
4066 4066 }
4067 4067 }
4068 4068
4069 4069 /*
4070 4070 * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE}
4071 4071 * If len == 0, do from off to EOF.
4072 4072 *
4073 4073 * The normal cases should be len == 0 && off == 0 (entire vp list),
4074 4074 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE
4075 4075 * (from pageout).
4076 4076 */
4077 4077 /* ARGSUSED */
4078 4078 static int
4079 4079 nfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
4080 4080 caller_context_t *ct)
4081 4081 {
4082 4082 int error;
4083 4083 rnode_t *rp;
4084 4084
4085 4085 ASSERT(cr != NULL);
4086 4086
4087 4087 /*
4088 4088 * XXX - Why should this check be made here?
4089 4089 */
4090 4090 if (vp->v_flag & VNOMAP)
4091 4091 return (ENOSYS);
4092 4092
4093 4093 if (len == 0 && !(flags & B_INVAL) && vn_is_readonly(vp))
4094 4094 return (0);
4095 4095
4096 4096 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI(vp)->mi_zone)
4097 4097 return (EIO);
4098 4098 ASSERT(off <= MAXOFF32_T);
4099 4099
4100 4100 rp = VTOR(vp);
4101 4101 mutex_enter(&rp->r_statelock);
4102 4102 rp->r_count++;
4103 4103 mutex_exit(&rp->r_statelock);
4104 4104 error = nfs_putpages(vp, off, len, flags, cr);
4105 4105 mutex_enter(&rp->r_statelock);
4106 4106 rp->r_count--;
4107 4107 cv_broadcast(&rp->r_cv);
4108 4108 mutex_exit(&rp->r_statelock);
4109 4109
4110 4110 return (error);
4111 4111 }
4112 4112
4113 4113 /*
4114 4114 * Write out a single page, possibly klustering adjacent dirty pages.
4115 4115 */
4116 4116 int
4117 4117 nfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp,
4118 4118 int flags, cred_t *cr)
4119 4119 {
4120 4120 u_offset_t io_off;
4121 4121 u_offset_t lbn_off;
4122 4122 u_offset_t lbn;
4123 4123 size_t io_len;
4124 4124 uint_t bsize;
4125 4125 int error;
4126 4126 rnode_t *rp;
4127 4127
4128 4128 ASSERT(!vn_is_readonly(vp));
4129 4129 ASSERT(pp != NULL);
4130 4130 ASSERT(cr != NULL);
4131 4131 ASSERT((flags & B_ASYNC) || nfs_zone() == VTOMI(vp)->mi_zone);
4132 4132
4133 4133 rp = VTOR(vp);
4134 4134 ASSERT(rp->r_count > 0);
4135 4135
4136 4136 ASSERT(pp->p_offset <= MAXOFF32_T);
4137 4137
4138 4138 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE);
4139 4139 lbn = pp->p_offset / bsize;
4140 4140 lbn_off = lbn * bsize;
4141 4141
4142 4142 /*
4143 4143 * Find a kluster that fits in one block, or in
4144 4144 * one page if pages are bigger than blocks. If
4145 4145 * there is less file space allocated than a whole
4146 4146 * page, we'll shorten the i/o request below.
4147 4147 */
4148 4148 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, lbn_off,
4149 4149 roundup(bsize, PAGESIZE), flags);
4150 4150
4151 4151 /*
4152 4152 * pvn_write_kluster shouldn't have returned a page with offset
4153 4153 * behind the original page we were given. Verify that.
4154 4154 */
4155 4155 ASSERT((pp->p_offset / bsize) >= lbn);
4156 4156
4157 4157 /*
4158 4158 * Now pp will have the list of kept dirty pages marked for
4159 4159 * write back. It will also handle invalidation and freeing
4160 4160 * of pages that are not dirty. Check for page length rounding
4161 4161 * problems.
4162 4162 */
4163 4163 if (io_off + io_len > lbn_off + bsize) {
4164 4164 ASSERT((io_off + io_len) - (lbn_off + bsize) < PAGESIZE);
4165 4165 io_len = lbn_off + bsize - io_off;
4166 4166 }
4167 4167 /*
4168 4168 * The RMODINPROGRESS flag makes sure that nfs(3)_bio() sees a
4169 4169 * consistent value of r_size. RMODINPROGRESS is set in writerp().
4170 4170 * When RMODINPROGRESS is set it indicates that a uiomove() is in
4171 4171 * progress and the r_size has not been made consistent with the
4172 4172 * new size of the file. When the uiomove() completes the r_size is
4173 4173 * updated and the RMODINPROGRESS flag is cleared.
4174 4174 *
4175 4175 * The RMODINPROGRESS flag makes sure that nfs(3)_bio() sees a
4176 4176 * consistent value of r_size. Without this handshaking, it is
4177 4177 * possible that nfs(3)_bio() picks up the old value of r_size
4178 4178 * before the uiomove() in writerp() completes. This will result
4179 4179 * in the write through nfs(3)_bio() being dropped.
4180 4180 *
4181 4181 * More precisely, there is a window between the time the uiomove()
4182 4182 * completes and the time the r_size is updated. If a VOP_PUTPAGE()
4183 4183 * operation intervenes in this window, the page will be picked up,
4184 4184 * because it is dirty (it will be unlocked, unless it was
4185 4185 * pagecreate'd). When the page is picked up as dirty, the dirty
4186 4186 * bit is reset (pvn_getdirty()). In nfs(3)write(), r_size is
4187 4187 * checked. This will still be the old size. Therefore the page will
4188 4188 * not be written out. When segmap_release() calls VOP_PUTPAGE(),
4189 4189 * the page will be found to be clean and the write will be dropped.
4190 4190 */
4191 4191 if (rp->r_flags & RMODINPROGRESS) {
4192 4192 mutex_enter(&rp->r_statelock);
4193 4193 if ((rp->r_flags & RMODINPROGRESS) &&
4194 4194 rp->r_modaddr + MAXBSIZE > io_off &&
4195 4195 rp->r_modaddr < io_off + io_len) {
4196 4196 page_t *plist;
4197 4197 /*
4198 4198 * A write is in progress for this region of the file.
4199 4199 * If we did not detect RMODINPROGRESS here then this
4200 4200 * path through nfs_putapage() would eventually go to
4201 4201 * nfs(3)_bio() and may not write out all of the data
4202 4202 * in the pages. We end up losing data. So we decide
4203 4203 * to set the modified bit on each page in the page
4204 4204 * list and mark the rnode with RDIRTY. This write
4205 4205 * will be restarted at some later time.
4206 4206 */
4207 4207 plist = pp;
4208 4208 while (plist != NULL) {
4209 4209 pp = plist;
4210 4210 page_sub(&plist, pp);
4211 4211 hat_setmod(pp);
4212 4212 page_io_unlock(pp);
4213 4213 page_unlock(pp);
4214 4214 }
4215 4215 rp->r_flags |= RDIRTY;
4216 4216 mutex_exit(&rp->r_statelock);
4217 4217 if (offp)
4218 4218 *offp = io_off;
4219 4219 if (lenp)
4220 4220 *lenp = io_len;
4221 4221 return (0);
4222 4222 }
4223 4223 mutex_exit(&rp->r_statelock);
4224 4224 }
4225 4225
4226 4226 if (flags & B_ASYNC) {
4227 4227 error = nfs_async_putapage(vp, pp, io_off, io_len, flags, cr,
4228 4228 nfs_sync_putapage);
4229 4229 } else
4230 4230 error = nfs_sync_putapage(vp, pp, io_off, io_len, flags, cr);
4231 4231
4232 4232 if (offp)
4233 4233 *offp = io_off;
4234 4234 if (lenp)
4235 4235 *lenp = io_len;
4236 4236 return (error);
4237 4237 }
4238 4238
4239 4239 static int
4240 4240 nfs_sync_putapage(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len,
4241 4241 int flags, cred_t *cr)
4242 4242 {
4243 4243 int error;
4244 4244 rnode_t *rp;
4245 4245
4246 4246 flags |= B_WRITE;
4247 4247
4248 4248 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
4249 4249 error = nfs_rdwrlbn(vp, pp, io_off, io_len, flags, cr);
4250 4250
4251 4251 rp = VTOR(vp);
4252 4252
4253 4253 if ((error == ENOSPC || error == EDQUOT || error == EACCES) &&
4254 4254 (flags & (B_INVAL|B_FORCE)) != (B_INVAL|B_FORCE)) {
4255 4255 if (!(rp->r_flags & ROUTOFSPACE)) {
4256 4256 mutex_enter(&rp->r_statelock);
4257 4257 rp->r_flags |= ROUTOFSPACE;
4258 4258 mutex_exit(&rp->r_statelock);
4259 4259 }
4260 4260 flags |= B_ERROR;
4261 4261 pvn_write_done(pp, flags);
4262 4262 /*
4263 4263 * If this was not an async thread, then try again to
4264 4264 * write out the pages, but this time, also destroy
4265 4265 * them whether or not the write is successful. This
4266 4266 * will prevent memory from filling up with these
4267 4267 * pages and destroying them is the only alternative
4268 4268 * if they can't be written out.
4269 4269 *
4270 4270 * Don't do this if this is an async thread because
4271 4271 * when the pages are unlocked in pvn_write_done,
4272 4272 * some other thread could have come along, locked
4273 4273 * them, and queued for an async thread. It would be
4274 4274 * possible for all of the async threads to be tied
4275 4275 * up waiting to lock the pages again and they would
4276 4276 * all already be locked and waiting for an async
4277 4277 * thread to handle them. Deadlock.
4278 4278 */
4279 4279 if (!(flags & B_ASYNC)) {
4280 4280 error = nfs_putpage(vp, io_off, io_len,
4281 4281 B_INVAL | B_FORCE, cr, NULL);
4282 4282 }
4283 4283 } else {
4284 4284 if (error)
4285 4285 flags |= B_ERROR;
4286 4286 else if (rp->r_flags & ROUTOFSPACE) {
4287 4287 mutex_enter(&rp->r_statelock);
4288 4288 rp->r_flags &= ~ROUTOFSPACE;
4289 4289 mutex_exit(&rp->r_statelock);
4290 4290 }
4291 4291 pvn_write_done(pp, flags);
4292 4292 }
4293 4293
4294 4294 return (error);
4295 4295 }
4296 4296
4297 4297 /* ARGSUSED */
4298 4298 static int
4299 4299 nfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
4300 4300 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4301 4301 caller_context_t *ct)
4302 4302 {
4303 4303 struct segvn_crargs vn_a;
4304 4304 int error;
4305 4305 rnode_t *rp;
4306 4306 struct vattr va;
4307 4307
4308 4308 if (nfs_zone() != VTOMI(vp)->mi_zone)
4309 4309 return (EIO);
4310 4310
4311 4311 if (vp->v_flag & VNOMAP)
4312 4312 return (ENOSYS);
4313 4313
4314 4314 if (off > MAXOFF32_T)
4315 4315 return (EFBIG);
4316 4316
4317 4317 if (off < 0 || off + len < 0)
4318 4318 return (ENXIO);
4319 4319
4320 4320 if (vp->v_type != VREG)
4321 4321 return (ENODEV);
4322 4322
4323 4323 /*
4324 4324 * If there is cached data and if close-to-open consistency
4325 4325 * checking is not turned off and if the file system is not
4326 4326 * mounted readonly, then force an over the wire getattr.
4327 4327 * Otherwise, just invoke nfsgetattr to get a copy of the
4328 4328 * attributes. The attribute cache will be used unless it
4329 4329 * is timed out and if it is, then an over the wire getattr
4330 4330 * will be issued.
4331 4331 */
4332 4332 va.va_mask = AT_ALL;
4333 4333 if (vn_has_cached_data(vp) &&
4334 4334 !(VTOMI(vp)->mi_flags & MI_NOCTO) && !vn_is_readonly(vp))
4335 4335 error = nfs_getattr_otw(vp, &va, cr);
4336 4336 else
4337 4337 error = nfsgetattr(vp, &va, cr);
4338 4338 if (error)
4339 4339 return (error);
4340 4340
4341 4341 /*
4342 4342 * Check to see if the vnode is currently marked as not cachable.
4343 4343 * This means portions of the file are locked (through VOP_FRLOCK).
4344 4344 * In this case the map request must be refused. We use
4345 4345 * rp->r_lkserlock to avoid a race with concurrent lock requests.
4346 4346 */
4347 4347 rp = VTOR(vp);
4348 4348
4349 4349 /*
4350 4350 * Atomically increment r_inmap after acquiring r_rwlock. The
4351 4351 * idea here is to acquire r_rwlock to block read/write and
4352 4352 * not to protect r_inmap. r_inmap will inform nfs_read/write()
4353 4353 * that we are in nfs_map(). Now, r_rwlock is acquired in order
4354 4354 * and we can prevent the deadlock that would have occurred
4355 4355 * when nfs_addmap() would have acquired it out of order.
4356 4356 *
4357 4357 * Since we are not protecting r_inmap by any lock, we do not
4358 4358 * hold any lock when we decrement it. We atomically decrement
4359 4359 * r_inmap after we release r_lkserlock.
4360 4360 */
4361 4361
4362 4362 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, INTR(vp)))
4363 4363 return (EINTR);
4364 4364 atomic_inc_uint(&rp->r_inmap);
4365 4365 nfs_rw_exit(&rp->r_rwlock);
4366 4366
4367 4367 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR(vp))) {
4368 4368 atomic_dec_uint(&rp->r_inmap);
4369 4369 return (EINTR);
4370 4370 }
4371 4371 if (vp->v_flag & VNOCACHE) {
4372 4372 error = EAGAIN;
4373 4373 goto done;
4374 4374 }
4375 4375
4376 4376 /*
4377 4377 * Don't allow concurrent locks and mapping if mandatory locking is
4378 4378 * enabled.
4379 4379 */
4380 4380 if ((flk_has_remote_locks(vp) || lm_has_sleep(vp)) &&
4381 4381 MANDLOCK(vp, va.va_mode)) {
4382 4382 error = EAGAIN;
4383 4383 goto done;
4384 4384 }
4385 4385
4386 4386 as_rangelock(as);
4387 4387 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
4388 4388 if (error != 0) {
4389 4389 as_rangeunlock(as);
4390 4390 goto done;
4391 4391 }
4392 4392
4393 4393 vn_a.vp = vp;
4394 4394 vn_a.offset = off;
4395 4395 vn_a.type = (flags & MAP_TYPE);
4396 4396 vn_a.prot = (uchar_t)prot;
4397 4397 vn_a.maxprot = (uchar_t)maxprot;
4398 4398 vn_a.flags = (flags & ~MAP_TYPE);
4399 4399 vn_a.cred = cr;
4400 4400 vn_a.amp = NULL;
4401 4401 vn_a.szc = 0;
4402 4402 vn_a.lgrp_mem_policy_flags = 0;
4403 4403
4404 4404 error = as_map(as, *addrp, len, segvn_create, &vn_a);
4405 4405 as_rangeunlock(as);
4406 4406
4407 4407 done:
4408 4408 nfs_rw_exit(&rp->r_lkserlock);
4409 4409 atomic_dec_uint(&rp->r_inmap);
4410 4410 return (error);
4411 4411 }
4412 4412
4413 4413 /* ARGSUSED */
4414 4414 static int
4415 4415 nfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4416 4416 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4417 4417 caller_context_t *ct)
4418 4418 {
4419 4419 rnode_t *rp;
4420 4420
4421 4421 if (vp->v_flag & VNOMAP)
4422 4422 return (ENOSYS);
4423 4423 if (nfs_zone() != VTOMI(vp)->mi_zone)
4424 4424 return (EIO);
4425 4425
4426 4426 rp = VTOR(vp);
4427 4427 atomic_add_long((ulong_t *)&rp->r_mapcnt, btopr(len));
4428 4428
4429 4429 return (0);
4430 4430 }
4431 4431
4432 4432 /* ARGSUSED */
4433 4433 static int
4434 4434 nfs_frlock(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, offset_t offset,
4435 4435 struct flk_callback *flk_cbp, cred_t *cr, caller_context_t *ct)
4436 4436 {
4437 4437 netobj lm_fh;
4438 4438 int rc;
4439 4439 u_offset_t start, end;
4440 4440 rnode_t *rp;
4441 4441 int error = 0, intr = INTR(vp);
4442 4442
4443 4443 /* check for valid cmd parameter */
4444 4444 if (cmd != F_GETLK && cmd != F_SETLK && cmd != F_SETLKW)
4445 4445 return (EINVAL);
4446 4446 if (nfs_zone() != VTOMI(vp)->mi_zone)
4447 4447 return (EIO);
4448 4448
4449 4449 /* Verify l_type. */
4450 4450 switch (bfp->l_type) {
4451 4451 case F_RDLCK:
4452 4452 if (cmd != F_GETLK && !(flag & FREAD))
4453 4453 return (EBADF);
4454 4454 break;
4455 4455 case F_WRLCK:
4456 4456 if (cmd != F_GETLK && !(flag & FWRITE))
4457 4457 return (EBADF);
4458 4458 break;
4459 4459 case F_UNLCK:
4460 4460 intr = 0;
4461 4461 break;
4462 4462
4463 4463 default:
4464 4464 return (EINVAL);
4465 4465 }
4466 4466
4467 4467 /* check the validity of the lock range */
4468 4468 if (rc = flk_convert_lock_data(vp, bfp, &start, &end, offset))
4469 4469 return (rc);
4470 4470 if (rc = flk_check_lock_data(start, end, MAXOFF32_T))
4471 4471 return (rc);
4472 4472
4473 4473 /*
4474 4474 * If the filesystem is mounted using local locking, pass the
4475 4475 * request off to the local locking code.
4476 4476 */
4477 4477 if (VTOMI(vp)->mi_flags & MI_LLOCK) {
4478 4478 if (offset > MAXOFF32_T)
4479 4479 return (EFBIG);
4480 4480 if (cmd == F_SETLK || cmd == F_SETLKW) {
4481 4481 /*
4482 4482 * For complete safety, we should be holding
4483 4483 * r_lkserlock. However, we can't call
4484 4484 * lm_safelock and then fs_frlock while
4485 4485 * holding r_lkserlock, so just invoke
4486 4486 * lm_safelock and expect that this will
4487 4487 * catch enough of the cases.
4488 4488 */
4489 4489 if (!lm_safelock(vp, bfp, cr))
4490 4490 return (EAGAIN);
4491 4491 }
4492 4492 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
4493 4493 }
4494 4494
4495 4495 rp = VTOR(vp);
4496 4496
4497 4497 /*
4498 4498 * Check whether the given lock request can proceed, given the
4499 4499 * current file mappings.
4500 4500 */
4501 4501 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER, intr))
4502 4502 return (EINTR);
4503 4503 if (cmd == F_SETLK || cmd == F_SETLKW) {
4504 4504 if (!lm_safelock(vp, bfp, cr)) {
4505 4505 rc = EAGAIN;
4506 4506 goto done;
4507 4507 }
4508 4508 }
4509 4509
4510 4510 /*
4511 4511 * Flush the cache after waiting for async I/O to finish. For new
4512 4512 * locks, this is so that the process gets the latest bits from the
4513 4513 * server. For unlocks, this is so that other clients see the
4514 4514 * latest bits once the file has been unlocked. If currently dirty
4515 4515 * pages can't be flushed, then don't allow a lock to be set. But
4516 4516 * allow unlocks to succeed, to avoid having orphan locks on the
4517 4517 * server.
4518 4518 */
4519 4519 if (cmd != F_GETLK) {
4520 4520 mutex_enter(&rp->r_statelock);
4521 4521 while (rp->r_count > 0) {
4522 4522 if (intr) {
4523 4523 klwp_t *lwp = ttolwp(curthread);
4524 4524
4525 4525 if (lwp != NULL)
4526 4526 lwp->lwp_nostop++;
4527 4527 if (cv_wait_sig(&rp->r_cv, &rp->r_statelock)
4528 4528 == 0) {
4529 4529 if (lwp != NULL)
4530 4530 lwp->lwp_nostop--;
4531 4531 rc = EINTR;
4532 4532 break;
4533 4533 }
4534 4534 if (lwp != NULL)
4535 4535 lwp->lwp_nostop--;
4536 4536 } else
4537 4537 cv_wait(&rp->r_cv, &rp->r_statelock);
4538 4538 }
4539 4539 mutex_exit(&rp->r_statelock);
4540 4540 if (rc != 0)
4541 4541 goto done;
4542 4542 error = nfs_putpage(vp, (offset_t)0, 0, B_INVAL, cr, ct);
4543 4543 if (error) {
4544 4544 if (error == ENOSPC || error == EDQUOT) {
4545 4545 mutex_enter(&rp->r_statelock);
4546 4546 if (!rp->r_error)
4547 4547 rp->r_error = error;
4548 4548 mutex_exit(&rp->r_statelock);
4549 4549 }
4550 4550 if (bfp->l_type != F_UNLCK) {
4551 4551 rc = ENOLCK;
4552 4552 goto done;
4553 4553 }
4554 4554 }
4555 4555 }
4556 4556
4557 4557 lm_fh.n_len = sizeof (fhandle_t);
4558 4558 lm_fh.n_bytes = (char *)VTOFH(vp);
4559 4559
4560 4560 /*
4561 4561 * Call the lock manager to do the real work of contacting
4562 4562 * the server and obtaining the lock.
4563 4563 */
4564 4564 rc = lm_frlock(vp, cmd, bfp, flag, offset, cr, &lm_fh, flk_cbp);
4565 4565
4566 4566 if (rc == 0)
4567 4567 nfs_lockcompletion(vp, cmd);
4568 4568
4569 4569 done:
4570 4570 nfs_rw_exit(&rp->r_lkserlock);
4571 4571 return (rc);
4572 4572 }
4573 4573
4574 4574 /*
4575 4575 * Free storage space associated with the specified vnode. The portion
4576 4576 * to be freed is specified by bfp->l_start and bfp->l_len (already
4577 4577 * normalized to a "whence" of 0).
4578 4578 *
4579 4579 * This is an experimental facility whose continued existence is not
4580 4580 * guaranteed. Currently, we only support the special case
4581 4581 * of l_len == 0, meaning free to end of file.
4582 4582 */
4583 4583 /* ARGSUSED */
4584 4584 static int
4585 4585 nfs_space(vnode_t *vp, int cmd, struct flock64 *bfp, int flag,
4586 4586 offset_t offset, cred_t *cr, caller_context_t *ct)
4587 4587 {
4588 4588 int error;
4589 4589
4590 4590 ASSERT(vp->v_type == VREG);
4591 4591 if (cmd != F_FREESP)
4592 4592 return (EINVAL);
4593 4593
4594 4594 if (offset > MAXOFF32_T)
4595 4595 return (EFBIG);
4596 4596
4597 4597 if ((bfp->l_start > MAXOFF32_T) || (bfp->l_end > MAXOFF32_T) ||
4598 4598 (bfp->l_len > MAXOFF32_T))
4599 4599 return (EFBIG);
4600 4600
4601 4601 if (nfs_zone() != VTOMI(vp)->mi_zone)
4602 4602 return (EIO);
4603 4603
4604 4604 error = convoff(vp, bfp, 0, offset);
4605 4605 if (!error) {
4606 4606 ASSERT(bfp->l_start >= 0);
4607 4607 if (bfp->l_len == 0) {
4608 4608 struct vattr va;
4609 4609
4610 4610 /*
4611 4611 * ftruncate should not change the ctime and
4612 4612 * mtime if we truncate the file to its
4613 4613 * previous size.
4614 4614 */
4615 4615 va.va_mask = AT_SIZE;
4616 4616 error = nfsgetattr(vp, &va, cr);
4617 4617 if (error || va.va_size == bfp->l_start)
4618 4618 return (error);
4619 4619 va.va_mask = AT_SIZE;
4620 4620 va.va_size = bfp->l_start;
4621 4621 error = nfssetattr(vp, &va, 0, cr);
4622 4622
4623 4623 if (error == 0 && bfp->l_start == 0)
4624 4624 vnevent_truncate(vp, ct);
4625 4625 } else
4626 4626 error = EINVAL;
4627 4627 }
4628 4628
4629 4629 return (error);
4630 4630 }
4631 4631
4632 4632 /* ARGSUSED */
4633 4633 static int
4634 4634 nfs_realvp(vnode_t *vp, vnode_t **vpp, caller_context_t *ct)
4635 4635 {
4636 4636
4637 4637 return (EINVAL);
4638 4638 }
4639 4639
4640 4640 /*
4641 4641 * Setup and add an address space callback to do the work of the delmap call.
4642 4642 * The callback will (and must be) deleted in the actual callback function.
4643 4643 *
4644 4644 * This is done in order to take care of the problem that we have with holding
4645 4645 * the address space's a_lock for a long period of time (e.g. if the NFS server
4646 4646 * is down). Callbacks will be executed in the address space code while the
4647 4647 * a_lock is not held. Holding the address space's a_lock causes things such
4648 4648 * as ps and fork to hang because they are trying to acquire this lock as well.
4649 4649 */
4650 4650 /* ARGSUSED */
4651 4651 static int
4652 4652 nfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4653 4653 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
4654 4654 caller_context_t *ct)
4655 4655 {
4656 4656 int caller_found;
4657 4657 int error;
4658 4658 rnode_t *rp;
4659 4659 nfs_delmap_args_t *dmapp;
4660 4660 nfs_delmapcall_t *delmap_call;
4661 4661
4662 4662 if (vp->v_flag & VNOMAP)
4663 4663 return (ENOSYS);
4664 4664 /*
4665 4665 * A process may not change zones if it has NFS pages mmap'ed
4666 4666 * in, so we can't legitimately get here from the wrong zone.
4667 4667 */
4668 4668 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
4669 4669
4670 4670 rp = VTOR(vp);
4671 4671
4672 4672 /*
4673 4673 * The way that the address space of this process deletes its mapping
4674 4674 * of this file is via the following call chains:
4675 4675 * - as_free()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs_delmap()
4676 4676 * - as_unmap()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs_delmap()
4677 4677 *
4678 4678 * With the use of address space callbacks we are allowed to drop the
4679 4679 * address space lock, a_lock, while executing the NFS operations that
4680 4680 * need to go over the wire. Returning EAGAIN to the caller of this
4681 4681 * function is what drives the execution of the callback that we add
4682 4682 * below. The callback will be executed by the address space code
4683 4683 * after dropping the a_lock. When the callback is finished, since
4684 4684 * we dropped the a_lock, it must be re-acquired and segvn_unmap()
4685 4685 * is called again on the same segment to finish the rest of the work
4686 4686 * that needs to happen during unmapping.
4687 4687 *
4688 4688 * This action of calling back into the segment driver causes
4689 4689 * nfs_delmap() to get called again, but since the callback was
4690 4690 * already executed at this point, it already did the work and there
4691 4691 * is nothing left for us to do.
4692 4692 *
4693 4693 * To Summarize:
4694 4694 * - The first time nfs_delmap is called by the current thread is when
4695 4695 * we add the caller associated with this delmap to the delmap caller
4696 4696 * list, add the callback, and return EAGAIN.
4697 4697 * - The second time in this call chain when nfs_delmap is called we
4698 4698 * will find this caller in the delmap caller list and realize there
4699 4699 * is no more work to do thus removing this caller from the list and
4700 4700 * returning the error that was set in the callback execution.
4701 4701 */
4702 4702 caller_found = nfs_find_and_delete_delmapcall(rp, &error);
4703 4703 if (caller_found) {
4704 4704 /*
4705 4705 * 'error' is from the actual delmap operations. To avoid
4706 4706 * hangs, we need to handle the return of EAGAIN differently
4707 4707 * since this is what drives the callback execution.
4708 4708 * In this case, we don't want to return EAGAIN and do the
4709 4709 * callback execution because there are none to execute.
4710 4710 */
4711 4711 if (error == EAGAIN)
4712 4712 return (0);
4713 4713 else
4714 4714 return (error);
4715 4715 }
4716 4716
4717 4717 /* current caller was not in the list */
4718 4718 delmap_call = nfs_init_delmapcall();
4719 4719
4720 4720 mutex_enter(&rp->r_statelock);
4721 4721 list_insert_tail(&rp->r_indelmap, delmap_call);
4722 4722 mutex_exit(&rp->r_statelock);
4723 4723
4724 4724 dmapp = kmem_alloc(sizeof (nfs_delmap_args_t), KM_SLEEP);
4725 4725
4726 4726 dmapp->vp = vp;
4727 4727 dmapp->off = off;
4728 4728 dmapp->addr = addr;
4729 4729 dmapp->len = len;
4730 4730 dmapp->prot = prot;
4731 4731 dmapp->maxprot = maxprot;
4732 4732 dmapp->flags = flags;
4733 4733 dmapp->cr = cr;
4734 4734 dmapp->caller = delmap_call;
4735 4735
4736 4736 error = as_add_callback(as, nfs_delmap_callback, dmapp,
4737 4737 AS_UNMAP_EVENT, addr, len, KM_SLEEP);
4738 4738
4739 4739 return (error ? error : EAGAIN);
4740 4740 }
4741 4741
4742 4742 /*
4743 4743 * Remove some pages from an mmap'd vnode. Just update the
4744 4744 * count of pages. If doing close-to-open, then flush all
4745 4745 * of the pages associated with this file. Otherwise, start
4746 4746 * an asynchronous page flush to write out any dirty pages.
4747 4747 * This will also associate a credential with the rnode which
4748 4748 * can be used to write the pages.
4749 4749 */
4750 4750 /* ARGSUSED */
4751 4751 static void
4752 4752 nfs_delmap_callback(struct as *as, void *arg, uint_t event)
4753 4753 {
4754 4754 int error;
4755 4755 rnode_t *rp;
4756 4756 mntinfo_t *mi;
4757 4757 nfs_delmap_args_t *dmapp = (nfs_delmap_args_t *)arg;
4758 4758
4759 4759 rp = VTOR(dmapp->vp);
4760 4760 mi = VTOMI(dmapp->vp);
4761 4761
4762 4762 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(dmapp->len));
4763 4763 ASSERT(rp->r_mapcnt >= 0);
4764 4764
4765 4765 /*
4766 4766 * Initiate a page flush if there are pages, the file system
4767 4767 * was not mounted readonly, the segment was mapped shared, and
4768 4768 * the pages themselves were writeable.
4769 4769 */
4770 4770 if (vn_has_cached_data(dmapp->vp) && !vn_is_readonly(dmapp->vp) &&
4771 4771 dmapp->flags == MAP_SHARED && (dmapp->maxprot & PROT_WRITE)) {
4772 4772 mutex_enter(&rp->r_statelock);
4773 4773 rp->r_flags |= RDIRTY;
4774 4774 mutex_exit(&rp->r_statelock);
4775 4775 /*
4776 4776 * If this is a cross-zone access a sync putpage won't work, so
4777 4777 * the best we can do is try an async putpage. That seems
4778 4778 * better than something more draconian such as discarding the
4779 4779 * dirty pages.
4780 4780 */
4781 4781 if ((mi->mi_flags & MI_NOCTO) ||
4782 4782 nfs_zone() != mi->mi_zone)
4783 4783 error = nfs_putpage(dmapp->vp, dmapp->off, dmapp->len,
4784 4784 B_ASYNC, dmapp->cr, NULL);
4785 4785 else
4786 4786 error = nfs_putpage(dmapp->vp, dmapp->off, dmapp->len,
4787 4787 0, dmapp->cr, NULL);
4788 4788 if (!error) {
4789 4789 mutex_enter(&rp->r_statelock);
4790 4790 error = rp->r_error;
4791 4791 rp->r_error = 0;
4792 4792 mutex_exit(&rp->r_statelock);
4793 4793 }
4794 4794 } else
4795 4795 error = 0;
4796 4796
4797 4797 if ((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO))
4798 4798 (void) nfs_putpage(dmapp->vp, dmapp->off, dmapp->len,
4799 4799 B_INVAL, dmapp->cr, NULL);
4800 4800
4801 4801 dmapp->caller->error = error;
4802 4802 (void) as_delete_callback(as, arg);
4803 4803 kmem_free(dmapp, sizeof (nfs_delmap_args_t));
4804 4804 }
4805 4805
4806 4806 /* ARGSUSED */
4807 4807 static int
4808 4808 nfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
4809 4809 caller_context_t *ct)
4810 4810 {
4811 4811 int error = 0;
4812 4812
4813 4813 if (nfs_zone() != VTOMI(vp)->mi_zone)
4814 4814 return (EIO);
4815 4815 /*
4816 4816 * This looks a little weird because it's written in a general
4817 4817 * manner but we make little use of cases. If cntl() ever gets
4818 4818 * widely used, the outer switch will make more sense.
4819 4819 */
4820 4820
4821 4821 switch (cmd) {
4822 4822
4823 4823 /*
4824 4824 * Large file spec - need to base answer new query with
4825 4825 * hardcoded constant based on the protocol.
4826 4826 */
4827 4827 case _PC_FILESIZEBITS:
4828 4828 *valp = 32;
4829 4829 return (0);
4830 4830
4831 4831 case _PC_LINK_MAX:
4832 4832 case _PC_NAME_MAX:
4833 4833 case _PC_PATH_MAX:
4834 4834 case _PC_SYMLINK_MAX:
4835 4835 case _PC_CHOWN_RESTRICTED:
4836 4836 case _PC_NO_TRUNC: {
4837 4837 mntinfo_t *mi;
4838 4838 struct pathcnf *pc;
4839 4839
4840 4840 if ((mi = VTOMI(vp)) == NULL || (pc = mi->mi_pathconf) == NULL)
4841 4841 return (EINVAL);
4842 4842 error = _PC_ISSET(cmd, pc->pc_mask); /* error or bool */
4843 4843 switch (cmd) {
4844 4844 case _PC_LINK_MAX:
4845 4845 *valp = pc->pc_link_max;
4846 4846 break;
4847 4847 case _PC_NAME_MAX:
4848 4848 *valp = pc->pc_name_max;
4849 4849 break;
4850 4850 case _PC_PATH_MAX:
4851 4851 case _PC_SYMLINK_MAX:
4852 4852 *valp = pc->pc_path_max;
4853 4853 break;
4854 4854 case _PC_CHOWN_RESTRICTED:
4855 4855 /*
4856 4856 * if we got here, error is really a boolean which
4857 4857 * indicates whether cmd is set or not.
4858 4858 */
4859 4859 *valp = error ? 1 : 0; /* see above */
4860 4860 error = 0;
4861 4861 break;
4862 4862 case _PC_NO_TRUNC:
4863 4863 /*
4864 4864 * if we got here, error is really a boolean which
4865 4865 * indicates whether cmd is set or not.
4866 4866 */
4867 4867 *valp = error ? 1 : 0; /* see above */
4868 4868 error = 0;
4869 4869 break;
4870 4870 }
4871 4871 return (error ? EINVAL : 0);
4872 4872 }
4873 4873
4874 4874 case _PC_XATTR_EXISTS:
4875 4875 *valp = 0;
4876 4876 if (vp->v_vfsp->vfs_flag & VFS_XATTR) {
4877 4877 vnode_t *avp;
4878 4878 rnode_t *rp;
4879 4879 mntinfo_t *mi = VTOMI(vp);
4880 4880
4881 4881 if (!(mi->mi_flags & MI_EXTATTR))
4882 4882 return (0);
4883 4883
4884 4884 rp = VTOR(vp);
4885 4885 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_READER,
4886 4886 INTR(vp)))
4887 4887 return (EINTR);
4888 4888
4889 4889 error = nfslookup_dnlc(vp, XATTR_DIR_NAME, &avp, cr);
4890 4890 if (error || avp == NULL)
4891 4891 error = acl_getxattrdir2(vp, &avp, 0, cr, 0);
4892 4892
4893 4893 nfs_rw_exit(&rp->r_rwlock);
4894 4894
4895 4895 if (error == 0 && avp != NULL) {
4896 4896 error = do_xattr_exists_check(avp, valp, cr);
4897 4897 VN_RELE(avp);
4898 4898 }
4899 4899 }
4900 4900 return (error ? EINVAL : 0);
4901 4901
4902 4902 case _PC_ACL_ENABLED:
4903 4903 *valp = _ACL_ACLENT_ENABLED;
4904 4904 return (0);
4905 4905
4906 4906 default:
4907 4907 return (EINVAL);
4908 4908 }
4909 4909 }
4910 4910
4911 4911 /*
4912 4912 * Called by async thread to do synchronous pageio. Do the i/o, wait
4913 4913 * for it to complete, and cleanup the page list when done.
4914 4914 */
4915 4915 static int
4916 4916 nfs_sync_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len,
4917 4917 int flags, cred_t *cr)
4918 4918 {
4919 4919 int error;
4920 4920
4921 4921 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
4922 4922 error = nfs_rdwrlbn(vp, pp, io_off, io_len, flags, cr);
4923 4923 if (flags & B_READ)
4924 4924 pvn_read_done(pp, (error ? B_ERROR : 0) | flags);
4925 4925 else
4926 4926 pvn_write_done(pp, (error ? B_ERROR : 0) | flags);
4927 4927 return (error);
4928 4928 }
4929 4929
4930 4930 /* ARGSUSED */
4931 4931 static int
4932 4932 nfs_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len,
4933 4933 int flags, cred_t *cr, caller_context_t *ct)
4934 4934 {
4935 4935 int error;
4936 4936 rnode_t *rp;
4937 4937
4938 4938 if (pp == NULL)
4939 4939 return (EINVAL);
4940 4940
4941 4941 if (io_off > MAXOFF32_T)
4942 4942 return (EFBIG);
4943 4943 if (nfs_zone() != VTOMI(vp)->mi_zone)
4944 4944 return (EIO);
4945 4945 rp = VTOR(vp);
4946 4946 mutex_enter(&rp->r_statelock);
4947 4947 rp->r_count++;
4948 4948 mutex_exit(&rp->r_statelock);
4949 4949
4950 4950 if (flags & B_ASYNC) {
4951 4951 error = nfs_async_pageio(vp, pp, io_off, io_len, flags, cr,
4952 4952 nfs_sync_pageio);
4953 4953 } else
4954 4954 error = nfs_rdwrlbn(vp, pp, io_off, io_len, flags, cr);
4955 4955 mutex_enter(&rp->r_statelock);
4956 4956 rp->r_count--;
4957 4957 cv_broadcast(&rp->r_cv);
4958 4958 mutex_exit(&rp->r_statelock);
4959 4959 return (error);
4960 4960 }
4961 4961
4962 4962 /* ARGSUSED */
4963 4963 static int
4964 4964 nfs_setsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr,
4965 4965 caller_context_t *ct)
4966 4966 {
4967 4967 int error;
4968 4968 mntinfo_t *mi;
4969 4969
4970 4970 mi = VTOMI(vp);
4971 4971
4972 4972 if (nfs_zone() != mi->mi_zone)
4973 4973 return (EIO);
4974 4974 if (mi->mi_flags & MI_ACL) {
4975 4975 error = acl_setacl2(vp, vsecattr, flag, cr);
4976 4976 if (mi->mi_flags & MI_ACL)
4977 4977 return (error);
4978 4978 }
4979 4979
4980 4980 return (ENOSYS);
4981 4981 }
4982 4982
4983 4983 /* ARGSUSED */
4984 4984 static int
4985 4985 nfs_getsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr,
4986 4986 caller_context_t *ct)
4987 4987 {
4988 4988 int error;
4989 4989 mntinfo_t *mi;
4990 4990
4991 4991 mi = VTOMI(vp);
4992 4992
4993 4993 if (nfs_zone() != mi->mi_zone)
4994 4994 return (EIO);
4995 4995 if (mi->mi_flags & MI_ACL) {
4996 4996 error = acl_getacl2(vp, vsecattr, flag, cr);
4997 4997 if (mi->mi_flags & MI_ACL)
4998 4998 return (error);
4999 4999 }
5000 5000
5001 5001 return (fs_fab_acl(vp, vsecattr, flag, cr, ct));
5002 5002 }
5003 5003
5004 5004 /* ARGSUSED */
5005 5005 static int
5006 5006 nfs_shrlock(vnode_t *vp, int cmd, struct shrlock *shr, int flag, cred_t *cr,
5007 5007 caller_context_t *ct)
5008 5008 {
5009 5009 int error;
5010 5010 struct shrlock nshr;
5011 5011 struct nfs_owner nfs_owner;
5012 5012 netobj lm_fh;
5013 5013
5014 5014 if (nfs_zone() != VTOMI(vp)->mi_zone)
5015 5015 return (EIO);
5016 5016
5017 5017 /*
5018 5018 * check for valid cmd parameter
5019 5019 */
5020 5020 if (cmd != F_SHARE && cmd != F_UNSHARE && cmd != F_HASREMOTELOCKS)
5021 5021 return (EINVAL);
5022 5022
5023 5023 /*
5024 5024 * Check access permissions
5025 5025 */
5026 5026 if (cmd == F_SHARE &&
5027 5027 (((shr->s_access & F_RDACC) && !(flag & FREAD)) ||
5028 5028 ((shr->s_access & F_WRACC) && !(flag & FWRITE))))
5029 5029 return (EBADF);
5030 5030
5031 5031 /*
5032 5032 * If the filesystem is mounted using local locking, pass the
5033 5033 * request off to the local share code.
5034 5034 */
5035 5035 if (VTOMI(vp)->mi_flags & MI_LLOCK)
5036 5036 return (fs_shrlock(vp, cmd, shr, flag, cr, ct));
5037 5037
5038 5038 switch (cmd) {
5039 5039 case F_SHARE:
5040 5040 case F_UNSHARE:
5041 5041 lm_fh.n_len = sizeof (fhandle_t);
5042 5042 lm_fh.n_bytes = (char *)VTOFH(vp);
5043 5043
5044 5044 /*
5045 5045 * If passed an owner that is too large to fit in an
5046 5046 * nfs_owner it is likely a recursive call from the
5047 5047 * lock manager client and pass it straight through. If
5048 5048 * it is not a nfs_owner then simply return an error.
5049 5049 */
5050 5050 if (shr->s_own_len > sizeof (nfs_owner.lowner)) {
5051 5051 if (((struct nfs_owner *)shr->s_owner)->magic !=
5052 5052 NFS_OWNER_MAGIC)
5053 5053 return (EINVAL);
5054 5054
5055 5055 if (error = lm_shrlock(vp, cmd, shr, flag, &lm_fh)) {
5056 5056 error = set_errno(error);
5057 5057 }
5058 5058 return (error);
5059 5059 }
5060 5060 /*
5061 5061 * Remote share reservations owner is a combination of
5062 5062 * a magic number, hostname, and the local owner
5063 5063 */
5064 5064 bzero(&nfs_owner, sizeof (nfs_owner));
5065 5065 nfs_owner.magic = NFS_OWNER_MAGIC;
5066 5066 (void) strncpy(nfs_owner.hname, uts_nodename(),
5067 5067 sizeof (nfs_owner.hname));
5068 5068 bcopy(shr->s_owner, nfs_owner.lowner, shr->s_own_len);
5069 5069 nshr.s_access = shr->s_access;
5070 5070 nshr.s_deny = shr->s_deny;
5071 5071 nshr.s_sysid = 0;
5072 5072 nshr.s_pid = ttoproc(curthread)->p_pid;
5073 5073 nshr.s_own_len = sizeof (nfs_owner);
5074 5074 nshr.s_owner = (caddr_t)&nfs_owner;
5075 5075
5076 5076 if (error = lm_shrlock(vp, cmd, &nshr, flag, &lm_fh)) {
5077 5077 error = set_errno(error);
5078 5078 }
5079 5079
5080 5080 break;
5081 5081
5082 5082 case F_HASREMOTELOCKS:
5083 5083 /*
5084 5084 * NFS client can't store remote locks itself
5085 5085 */
5086 5086 shr->s_access = 0;
5087 5087 error = 0;
5088 5088 break;
5089 5089
5090 5090 default:
5091 5091 error = EINVAL;
5092 5092 break;
5093 5093 }
5094 5094
5095 5095 return (error);
5096 5096 }
↓ open down ↓ |
4845 lines elided |
↑ open up ↑ |
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX