1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1990, 2010, Oracle and/or its affiliates. All rights reserved. 23 * 24 * Copyright (c) 1983,1984,1985,1986,1987,1988,1989 AT&T. 25 * All rights reserved. 26 */ 27 28 /* 29 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 30 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 31 */ 32 33 #include <sys/param.h> 34 #include <sys/types.h> 35 #include <sys/systm.h> 36 #include <sys/cred.h> 37 #include <sys/time.h> 38 #include <sys/vnode.h> 39 #include <sys/vfs.h> 40 #include <sys/vfs_opreg.h> 41 #include <sys/file.h> 42 #include <sys/filio.h> 43 #include <sys/uio.h> 44 #include <sys/buf.h> 45 #include <sys/mman.h> 46 #include <sys/pathname.h> 47 #include <sys/dirent.h> 48 #include <sys/debug.h> 49 #include <sys/vmsystm.h> 50 #include <sys/fcntl.h> 51 #include <sys/flock.h> 52 #include <sys/swap.h> 53 #include <sys/errno.h> 54 #include <sys/strsubr.h> 55 #include <sys/sysmacros.h> 56 #include <sys/kmem.h> 57 #include <sys/cmn_err.h> 58 #include <sys/pathconf.h> 59 #include <sys/utsname.h> 60 #include <sys/dnlc.h> 61 #include <sys/acl.h> 62 #include <sys/atomic.h> 63 #include <sys/policy.h> 64 #include <sys/sdt.h> 65 66 #include <rpc/types.h> 67 #include <rpc/auth.h> 68 #include <rpc/clnt.h> 69 70 #include <nfs/nfs.h> 71 #include <nfs/nfs_clnt.h> 72 #include <nfs/rnode.h> 73 #include <nfs/nfs_acl.h> 74 #include <nfs/lm.h> 75 76 #include <vm/hat.h> 77 #include <vm/as.h> 78 #include <vm/page.h> 79 #include <vm/pvn.h> 80 #include <vm/seg.h> 81 #include <vm/seg_map.h> 82 #include <vm/seg_kpm.h> 83 #include <vm/seg_vn.h> 84 85 #include <fs/fs_subr.h> 86 87 #include <sys/ddi.h> 88 89 static int nfs_rdwrlbn(vnode_t *, page_t *, u_offset_t, size_t, int, 90 cred_t *); 91 static int nfswrite(vnode_t *, caddr_t, uint_t, int, cred_t *); 92 static int nfsread(vnode_t *, caddr_t, uint_t, int, size_t *, cred_t *); 93 static int nfssetattr(vnode_t *, struct vattr *, int, cred_t *); 94 static int nfslookup_dnlc(vnode_t *, char *, vnode_t **, cred_t *); 95 static int nfslookup_otw(vnode_t *, char *, vnode_t **, cred_t *, int); 96 static int nfsrename(vnode_t *, char *, vnode_t *, char *, cred_t *, 97 caller_context_t *); 98 static int nfsreaddir(vnode_t *, rddir_cache *, cred_t *); 99 static int nfs_bio(struct buf *, cred_t *); 100 static int nfs_getapage(vnode_t *, u_offset_t, size_t, uint_t *, 101 page_t *[], size_t, struct seg *, caddr_t, 102 enum seg_rw, cred_t *); 103 static void nfs_readahead(vnode_t *, u_offset_t, caddr_t, struct seg *, 104 cred_t *); 105 static int nfs_sync_putapage(vnode_t *, page_t *, u_offset_t, size_t, 106 int, cred_t *); 107 static int nfs_sync_pageio(vnode_t *, page_t *, u_offset_t, size_t, 108 int, cred_t *); 109 static void nfs_delmap_callback(struct as *, void *, uint_t); 110 111 /* 112 * Error flags used to pass information about certain special errors 113 * which need to be handled specially. 114 */ 115 #define NFS_EOF -98 116 117 /* 118 * These are the vnode ops routines which implement the vnode interface to 119 * the networked file system. These routines just take their parameters, 120 * make them look networkish by putting the right info into interface structs, 121 * and then calling the appropriate remote routine(s) to do the work. 122 * 123 * Note on directory name lookup cacheing: If we detect a stale fhandle, 124 * we purge the directory cache relative to that vnode. This way, the 125 * user won't get burned by the cache repeatedly. See <nfs/rnode.h> for 126 * more details on rnode locking. 127 */ 128 129 static int nfs_open(vnode_t **, int, cred_t *, caller_context_t *); 130 static int nfs_close(vnode_t *, int, int, offset_t, cred_t *, 131 caller_context_t *); 132 static int nfs_read(vnode_t *, struct uio *, int, cred_t *, 133 caller_context_t *); 134 static int nfs_write(vnode_t *, struct uio *, int, cred_t *, 135 caller_context_t *); 136 static int nfs_ioctl(vnode_t *, int, intptr_t, int, cred_t *, int *, 137 caller_context_t *); 138 static int nfs_getattr(vnode_t *, struct vattr *, int, cred_t *, 139 caller_context_t *); 140 static int nfs_setattr(vnode_t *, struct vattr *, int, cred_t *, 141 caller_context_t *); 142 static int nfs_access(vnode_t *, int, int, cred_t *, caller_context_t *); 143 static int nfs_accessx(void *, int, cred_t *); 144 static int nfs_readlink(vnode_t *, struct uio *, cred_t *, 145 caller_context_t *); 146 static int nfs_fsync(vnode_t *, int, cred_t *, caller_context_t *); 147 static void nfs_inactive(vnode_t *, cred_t *, caller_context_t *); 148 static int nfs_lookup(vnode_t *, char *, vnode_t **, struct pathname *, 149 int, vnode_t *, cred_t *, caller_context_t *, 150 int *, pathname_t *); 151 static int nfs_create(vnode_t *, char *, struct vattr *, enum vcexcl, 152 int, vnode_t **, cred_t *, int, caller_context_t *, 153 vsecattr_t *); 154 static int nfs_remove(vnode_t *, char *, cred_t *, caller_context_t *, 155 int); 156 static int nfs_link(vnode_t *, vnode_t *, char *, cred_t *, 157 caller_context_t *, int); 158 static int nfs_rename(vnode_t *, char *, vnode_t *, char *, cred_t *, 159 caller_context_t *, int); 160 static int nfs_mkdir(vnode_t *, char *, struct vattr *, vnode_t **, 161 cred_t *, caller_context_t *, int, vsecattr_t *); 162 static int nfs_rmdir(vnode_t *, char *, vnode_t *, cred_t *, 163 caller_context_t *, int); 164 static int nfs_symlink(vnode_t *, char *, struct vattr *, char *, 165 cred_t *, caller_context_t *, int); 166 static int nfs_readdir(vnode_t *, struct uio *, cred_t *, int *, 167 caller_context_t *, int); 168 static int nfs_fid(vnode_t *, fid_t *, caller_context_t *); 169 static int nfs_rwlock(vnode_t *, int, caller_context_t *); 170 static void nfs_rwunlock(vnode_t *, int, caller_context_t *); 171 static int nfs_seek(vnode_t *, offset_t, offset_t *, caller_context_t *); 172 static int nfs_getpage(vnode_t *, offset_t, size_t, uint_t *, 173 page_t *[], size_t, struct seg *, caddr_t, 174 enum seg_rw, cred_t *, caller_context_t *); 175 static int nfs_putpage(vnode_t *, offset_t, size_t, int, cred_t *, 176 caller_context_t *); 177 static int nfs_map(vnode_t *, offset_t, struct as *, caddr_t *, size_t, 178 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *); 179 static int nfs_addmap(vnode_t *, offset_t, struct as *, caddr_t, size_t, 180 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *); 181 static int nfs_frlock(vnode_t *, int, struct flock64 *, int, offset_t, 182 struct flk_callback *, cred_t *, caller_context_t *); 183 static int nfs_space(vnode_t *, int, struct flock64 *, int, offset_t, 184 cred_t *, caller_context_t *); 185 static int nfs_realvp(vnode_t *, vnode_t **, caller_context_t *); 186 static int nfs_delmap(vnode_t *, offset_t, struct as *, caddr_t, size_t, 187 uint_t, uint_t, uint_t, cred_t *, caller_context_t *); 188 static int nfs_pathconf(vnode_t *, int, ulong_t *, cred_t *, 189 caller_context_t *); 190 static int nfs_pageio(vnode_t *, page_t *, u_offset_t, size_t, int, 191 cred_t *, caller_context_t *); 192 static int nfs_setsecattr(vnode_t *, vsecattr_t *, int, cred_t *, 193 caller_context_t *); 194 static int nfs_getsecattr(vnode_t *, vsecattr_t *, int, cred_t *, 195 caller_context_t *); 196 static int nfs_shrlock(vnode_t *, int, struct shrlock *, int, cred_t *, 197 caller_context_t *); 198 199 struct vnodeops *nfs_vnodeops; 200 201 const fs_operation_def_t nfs_vnodeops_template[] = { 202 { VOPNAME_OPEN, { .vop_open = nfs_open } }, 203 { VOPNAME_CLOSE, { .vop_close = nfs_close } }, 204 { VOPNAME_READ, { .vop_read = nfs_read } }, 205 { VOPNAME_WRITE, { .vop_write = nfs_write } }, 206 { VOPNAME_IOCTL, { .vop_ioctl = nfs_ioctl } }, 207 { VOPNAME_GETATTR, { .vop_getattr = nfs_getattr } }, 208 { VOPNAME_SETATTR, { .vop_setattr = nfs_setattr } }, 209 { VOPNAME_ACCESS, { .vop_access = nfs_access } }, 210 { VOPNAME_LOOKUP, { .vop_lookup = nfs_lookup } }, 211 { VOPNAME_CREATE, { .vop_create = nfs_create } }, 212 { VOPNAME_REMOVE, { .vop_remove = nfs_remove } }, 213 { VOPNAME_LINK, { .vop_link = nfs_link } }, 214 { VOPNAME_RENAME, { .vop_rename = nfs_rename } }, 215 { VOPNAME_MKDIR, { .vop_mkdir = nfs_mkdir } }, 216 { VOPNAME_RMDIR, { .vop_rmdir = nfs_rmdir } }, 217 { VOPNAME_READDIR, { .vop_readdir = nfs_readdir } }, 218 { VOPNAME_SYMLINK, { .vop_symlink = nfs_symlink } }, 219 { VOPNAME_READLINK, { .vop_readlink = nfs_readlink } }, 220 { VOPNAME_FSYNC, { .vop_fsync = nfs_fsync } }, 221 { VOPNAME_INACTIVE, { .vop_inactive = nfs_inactive } }, 222 { VOPNAME_FID, { .vop_fid = nfs_fid } }, 223 { VOPNAME_RWLOCK, { .vop_rwlock = nfs_rwlock } }, 224 { VOPNAME_RWUNLOCK, { .vop_rwunlock = nfs_rwunlock } }, 225 { VOPNAME_SEEK, { .vop_seek = nfs_seek } }, 226 { VOPNAME_FRLOCK, { .vop_frlock = nfs_frlock } }, 227 { VOPNAME_SPACE, { .vop_space = nfs_space } }, 228 { VOPNAME_REALVP, { .vop_realvp = nfs_realvp } }, 229 { VOPNAME_GETPAGE, { .vop_getpage = nfs_getpage } }, 230 { VOPNAME_PUTPAGE, { .vop_putpage = nfs_putpage } }, 231 { VOPNAME_MAP, { .vop_map = nfs_map } }, 232 { VOPNAME_ADDMAP, { .vop_addmap = nfs_addmap } }, 233 { VOPNAME_DELMAP, { .vop_delmap = nfs_delmap } }, 234 { VOPNAME_DUMP, { .vop_dump = nfs_dump } }, 235 { VOPNAME_PATHCONF, { .vop_pathconf = nfs_pathconf } }, 236 { VOPNAME_PAGEIO, { .vop_pageio = nfs_pageio } }, 237 { VOPNAME_SETSECATTR, { .vop_setsecattr = nfs_setsecattr } }, 238 { VOPNAME_GETSECATTR, { .vop_getsecattr = nfs_getsecattr } }, 239 { VOPNAME_SHRLOCK, { .vop_shrlock = nfs_shrlock } }, 240 { VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support } }, 241 { NULL, { NULL } } 242 }; 243 244 /* 245 * XXX: This is referenced in modstubs.s 246 */ 247 struct vnodeops * 248 nfs_getvnodeops(void) 249 { 250 return (nfs_vnodeops); 251 } 252 253 /* ARGSUSED */ 254 static int 255 nfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 256 { 257 int error; 258 struct vattr va; 259 rnode_t *rp; 260 vnode_t *vp; 261 262 vp = *vpp; 263 rp = VTOR(vp); 264 if (nfs_zone() != VTOMI(vp)->mi_zone) 265 return (EIO); 266 mutex_enter(&rp->r_statelock); 267 if (rp->r_cred == NULL) { 268 crhold(cr); 269 rp->r_cred = cr; 270 } 271 mutex_exit(&rp->r_statelock); 272 273 /* 274 * If there is no cached data or if close-to-open 275 * consistency checking is turned off, we can avoid 276 * the over the wire getattr. Otherwise, if the 277 * file system is mounted readonly, then just verify 278 * the caches are up to date using the normal mechanism. 279 * Else, if the file is not mmap'd, then just mark 280 * the attributes as timed out. They will be refreshed 281 * and the caches validated prior to being used. 282 * Else, the file system is mounted writeable so 283 * force an over the wire GETATTR in order to ensure 284 * that all cached data is valid. 285 */ 286 if (vp->v_count > 1 || 287 ((vn_has_cached_data(vp) || HAVE_RDDIR_CACHE(rp)) && 288 !(VTOMI(vp)->mi_flags & MI_NOCTO))) { 289 if (vn_is_readonly(vp)) 290 error = nfs_validate_caches(vp, cr); 291 else if (rp->r_mapcnt == 0 && vp->v_count == 1) { 292 PURGE_ATTRCACHE(vp); 293 error = 0; 294 } else { 295 va.va_mask = AT_ALL; 296 error = nfs_getattr_otw(vp, &va, cr); 297 } 298 } else 299 error = 0; 300 301 return (error); 302 } 303 304 /* ARGSUSED */ 305 static int 306 nfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 307 caller_context_t *ct) 308 { 309 rnode_t *rp; 310 int error; 311 struct vattr va; 312 313 /* 314 * zone_enter(2) prevents processes from changing zones with NFS files 315 * open; if we happen to get here from the wrong zone we can't do 316 * anything over the wire. 317 */ 318 if (VTOMI(vp)->mi_zone != nfs_zone()) { 319 /* 320 * We could attempt to clean up locks, except we're sure 321 * that the current process didn't acquire any locks on 322 * the file: any attempt to lock a file belong to another zone 323 * will fail, and one can't lock an NFS file and then change 324 * zones, as that fails too. 325 * 326 * Returning an error here is the sane thing to do. A 327 * subsequent call to VN_RELE() which translates to a 328 * nfs_inactive() will clean up state: if the zone of the 329 * vnode's origin is still alive and kicking, an async worker 330 * thread will handle the request (from the correct zone), and 331 * everything (minus the final nfs_getattr_otw() call) should 332 * be OK. If the zone is going away nfs_async_inactive() will 333 * throw away cached pages inline. 334 */ 335 return (EIO); 336 } 337 338 /* 339 * If we are using local locking for this filesystem, then 340 * release all of the SYSV style record locks. Otherwise, 341 * we are doing network locking and we need to release all 342 * of the network locks. All of the locks held by this 343 * process on this file are released no matter what the 344 * incoming reference count is. 345 */ 346 if (VTOMI(vp)->mi_flags & MI_LLOCK) { 347 cleanlocks(vp, ttoproc(curthread)->p_pid, 0); 348 cleanshares(vp, ttoproc(curthread)->p_pid); 349 } else 350 nfs_lockrelease(vp, flag, offset, cr); 351 352 if (count > 1) 353 return (0); 354 355 /* 356 * If the file has been `unlinked', then purge the 357 * DNLC so that this vnode will get reycled quicker 358 * and the .nfs* file on the server will get removed. 359 */ 360 rp = VTOR(vp); 361 if (rp->r_unldvp != NULL) 362 dnlc_purge_vp(vp); 363 364 /* 365 * If the file was open for write and there are pages, 366 * then if the file system was mounted using the "no-close- 367 * to-open" semantics, then start an asynchronous flush 368 * of the all of the pages in the file. 369 * else the file system was not mounted using the "no-close- 370 * to-open" semantics, then do a synchronous flush and 371 * commit of all of the dirty and uncommitted pages. 372 * 373 * The asynchronous flush of the pages in the "nocto" path 374 * mostly just associates a cred pointer with the rnode so 375 * writes which happen later will have a better chance of 376 * working. It also starts the data being written to the 377 * server, but without unnecessarily delaying the application. 378 */ 379 if ((flag & FWRITE) && vn_has_cached_data(vp)) { 380 if ((VTOMI(vp)->mi_flags & MI_NOCTO)) { 381 error = nfs_putpage(vp, (offset_t)0, 0, B_ASYNC, 382 cr, ct); 383 if (error == EAGAIN) 384 error = 0; 385 } else 386 error = nfs_putpage(vp, (offset_t)0, 0, 0, cr, ct); 387 if (!error) { 388 mutex_enter(&rp->r_statelock); 389 error = rp->r_error; 390 rp->r_error = 0; 391 mutex_exit(&rp->r_statelock); 392 } 393 } else { 394 mutex_enter(&rp->r_statelock); 395 error = rp->r_error; 396 rp->r_error = 0; 397 mutex_exit(&rp->r_statelock); 398 } 399 400 /* 401 * If RWRITEATTR is set, then issue an over the wire GETATTR to 402 * refresh the attribute cache with a set of attributes which 403 * weren't returned from a WRITE. This will enable the close- 404 * to-open processing to work. 405 */ 406 if (rp->r_flags & RWRITEATTR) 407 (void) nfs_getattr_otw(vp, &va, cr); 408 409 return (error); 410 } 411 412 /* ARGSUSED */ 413 static int 414 nfs_read(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 415 caller_context_t *ct) 416 { 417 rnode_t *rp; 418 u_offset_t off; 419 offset_t diff; 420 int on; 421 size_t n; 422 caddr_t base; 423 uint_t flags; 424 int error; 425 mntinfo_t *mi; 426 427 rp = VTOR(vp); 428 mi = VTOMI(vp); 429 430 if (nfs_zone() != mi->mi_zone) 431 return (EIO); 432 433 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 434 435 if (vp->v_type != VREG) 436 return (EISDIR); 437 438 if (uiop->uio_resid == 0) 439 return (0); 440 441 if (uiop->uio_loffset > MAXOFF32_T) 442 return (EFBIG); 443 444 if (uiop->uio_loffset < 0 || 445 uiop->uio_loffset + uiop->uio_resid > MAXOFF32_T) 446 return (EINVAL); 447 448 /* 449 * Bypass VM if caching has been disabled (e.g., locking) or if 450 * using client-side direct I/O and the file is not mmap'd and 451 * there are no cached pages. 452 */ 453 if ((vp->v_flag & VNOCACHE) || 454 (((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) && 455 rp->r_mapcnt == 0 && rp->r_inmap == 0 && 456 !vn_has_cached_data(vp))) { 457 size_t bufsize; 458 size_t resid = 0; 459 460 /* 461 * Let's try to do read in as large a chunk as we can 462 * (Filesystem (NFS client) bsize if possible/needed). 463 * For V3, this is 32K and for V2, this is 8K. 464 */ 465 bufsize = MIN(uiop->uio_resid, VTOMI(vp)->mi_curread); 466 base = kmem_alloc(bufsize, KM_SLEEP); 467 do { 468 n = MIN(uiop->uio_resid, bufsize); 469 error = nfsread(vp, base, uiop->uio_offset, n, 470 &resid, cr); 471 if (!error) { 472 n -= resid; 473 error = uiomove(base, n, UIO_READ, uiop); 474 } 475 } while (!error && uiop->uio_resid > 0 && n > 0); 476 kmem_free(base, bufsize); 477 return (error); 478 } 479 480 error = 0; 481 482 do { 483 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 484 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 485 n = MIN(MAXBSIZE - on, uiop->uio_resid); 486 487 error = nfs_validate_caches(vp, cr); 488 if (error) 489 break; 490 491 mutex_enter(&rp->r_statelock); 492 while (rp->r_flags & RINCACHEPURGE) { 493 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) { 494 mutex_exit(&rp->r_statelock); 495 return (EINTR); 496 } 497 } 498 diff = rp->r_size - uiop->uio_loffset; 499 mutex_exit(&rp->r_statelock); 500 if (diff <= 0) 501 break; 502 if (diff < n) 503 n = (size_t)diff; 504 505 if (vpm_enable) { 506 /* 507 * Copy data. 508 */ 509 error = vpm_data_copy(vp, off + on, n, uiop, 510 1, NULL, 0, S_READ); 511 } else { 512 base = segmap_getmapflt(segkmap, vp, off + on, n, 513 1, S_READ); 514 error = uiomove(base + on, n, UIO_READ, uiop); 515 } 516 517 if (!error) { 518 /* 519 * If read a whole block or read to eof, 520 * won't need this buffer again soon. 521 */ 522 mutex_enter(&rp->r_statelock); 523 if (n + on == MAXBSIZE || 524 uiop->uio_loffset == rp->r_size) 525 flags = SM_DONTNEED; 526 else 527 flags = 0; 528 mutex_exit(&rp->r_statelock); 529 if (vpm_enable) { 530 error = vpm_sync_pages(vp, off, n, flags); 531 } else { 532 error = segmap_release(segkmap, base, flags); 533 } 534 } else { 535 if (vpm_enable) { 536 (void) vpm_sync_pages(vp, off, n, 0); 537 } else { 538 (void) segmap_release(segkmap, base, 0); 539 } 540 } 541 } while (!error && uiop->uio_resid > 0); 542 543 return (error); 544 } 545 546 /* ARGSUSED */ 547 static int 548 nfs_write(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 549 caller_context_t *ct) 550 { 551 rnode_t *rp; 552 u_offset_t off; 553 caddr_t base; 554 uint_t flags; 555 int remainder; 556 size_t n; 557 int on; 558 int error; 559 int resid; 560 offset_t offset; 561 rlim_t limit; 562 mntinfo_t *mi; 563 564 rp = VTOR(vp); 565 566 mi = VTOMI(vp); 567 if (nfs_zone() != mi->mi_zone) 568 return (EIO); 569 if (vp->v_type != VREG) 570 return (EISDIR); 571 572 if (uiop->uio_resid == 0) 573 return (0); 574 575 if (ioflag & FAPPEND) { 576 struct vattr va; 577 578 /* 579 * Must serialize if appending. 580 */ 581 if (nfs_rw_lock_held(&rp->r_rwlock, RW_READER)) { 582 nfs_rw_exit(&rp->r_rwlock); 583 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, 584 INTR(vp))) 585 return (EINTR); 586 } 587 588 va.va_mask = AT_SIZE; 589 error = nfsgetattr(vp, &va, cr); 590 if (error) 591 return (error); 592 uiop->uio_loffset = va.va_size; 593 } 594 595 if (uiop->uio_loffset > MAXOFF32_T) 596 return (EFBIG); 597 598 offset = uiop->uio_loffset + uiop->uio_resid; 599 600 if (uiop->uio_loffset < 0 || offset > MAXOFF32_T) 601 return (EINVAL); 602 603 if (uiop->uio_llimit > (rlim64_t)MAXOFF32_T) { 604 limit = MAXOFF32_T; 605 } else { 606 limit = (rlim_t)uiop->uio_llimit; 607 } 608 609 /* 610 * Check to make sure that the process will not exceed 611 * its limit on file size. It is okay to write up to 612 * the limit, but not beyond. Thus, the write which 613 * reaches the limit will be short and the next write 614 * will return an error. 615 */ 616 remainder = 0; 617 if (offset > limit) { 618 remainder = offset - limit; 619 uiop->uio_resid = limit - uiop->uio_offset; 620 if (uiop->uio_resid <= 0) { 621 proc_t *p = ttoproc(curthread); 622 623 uiop->uio_resid += remainder; 624 mutex_enter(&p->p_lock); 625 (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE], 626 p->p_rctls, p, RCA_UNSAFE_SIGINFO); 627 mutex_exit(&p->p_lock); 628 return (EFBIG); 629 } 630 } 631 632 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR(vp))) 633 return (EINTR); 634 635 /* 636 * Bypass VM if caching has been disabled (e.g., locking) or if 637 * using client-side direct I/O and the file is not mmap'd and 638 * there are no cached pages. 639 */ 640 if ((vp->v_flag & VNOCACHE) || 641 (((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) && 642 rp->r_mapcnt == 0 && rp->r_inmap == 0 && 643 !vn_has_cached_data(vp))) { 644 size_t bufsize; 645 int count; 646 uint_t org_offset; 647 648 nfs_fwrite: 649 if (rp->r_flags & RSTALE) { 650 resid = uiop->uio_resid; 651 offset = uiop->uio_loffset; 652 error = rp->r_error; 653 /* 654 * A close may have cleared r_error, if so, 655 * propagate ESTALE error return properly 656 */ 657 if (error == 0) 658 error = ESTALE; 659 goto bottom; 660 } 661 bufsize = MIN(uiop->uio_resid, mi->mi_curwrite); 662 base = kmem_alloc(bufsize, KM_SLEEP); 663 do { 664 resid = uiop->uio_resid; 665 offset = uiop->uio_loffset; 666 count = MIN(uiop->uio_resid, bufsize); 667 org_offset = uiop->uio_offset; 668 error = uiomove(base, count, UIO_WRITE, uiop); 669 if (!error) { 670 error = nfswrite(vp, base, org_offset, 671 count, cr); 672 } 673 } while (!error && uiop->uio_resid > 0); 674 kmem_free(base, bufsize); 675 goto bottom; 676 } 677 678 do { 679 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 680 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 681 n = MIN(MAXBSIZE - on, uiop->uio_resid); 682 683 resid = uiop->uio_resid; 684 offset = uiop->uio_loffset; 685 686 if (rp->r_flags & RSTALE) { 687 error = rp->r_error; 688 /* 689 * A close may have cleared r_error, if so, 690 * propagate ESTALE error return properly 691 */ 692 if (error == 0) 693 error = ESTALE; 694 break; 695 } 696 697 /* 698 * Don't create dirty pages faster than they 699 * can be cleaned so that the system doesn't 700 * get imbalanced. If the async queue is 701 * maxed out, then wait for it to drain before 702 * creating more dirty pages. Also, wait for 703 * any threads doing pagewalks in the vop_getattr 704 * entry points so that they don't block for 705 * long periods. 706 */ 707 mutex_enter(&rp->r_statelock); 708 while ((mi->mi_max_threads != 0 && 709 rp->r_awcount > 2 * mi->mi_max_threads) || 710 rp->r_gcount > 0) { 711 if (INTR(vp)) { 712 klwp_t *lwp = ttolwp(curthread); 713 714 if (lwp != NULL) 715 lwp->lwp_nostop++; 716 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) { 717 mutex_exit(&rp->r_statelock); 718 if (lwp != NULL) 719 lwp->lwp_nostop--; 720 error = EINTR; 721 goto bottom; 722 } 723 if (lwp != NULL) 724 lwp->lwp_nostop--; 725 } else 726 cv_wait(&rp->r_cv, &rp->r_statelock); 727 } 728 mutex_exit(&rp->r_statelock); 729 730 /* 731 * Touch the page and fault it in if it is not in core 732 * before segmap_getmapflt or vpm_data_copy can lock it. 733 * This is to avoid the deadlock if the buffer is mapped 734 * to the same file through mmap which we want to write. 735 */ 736 uio_prefaultpages((long)n, uiop); 737 738 if (vpm_enable) { 739 /* 740 * It will use kpm mappings, so no need to 741 * pass an address. 742 */ 743 error = writerp(rp, NULL, n, uiop, 0); 744 } else { 745 if (segmap_kpm) { 746 int pon = uiop->uio_loffset & PAGEOFFSET; 747 size_t pn = MIN(PAGESIZE - pon, 748 uiop->uio_resid); 749 int pagecreate; 750 751 mutex_enter(&rp->r_statelock); 752 pagecreate = (pon == 0) && (pn == PAGESIZE || 753 uiop->uio_loffset + pn >= rp->r_size); 754 mutex_exit(&rp->r_statelock); 755 756 base = segmap_getmapflt(segkmap, vp, off + on, 757 pn, !pagecreate, S_WRITE); 758 759 error = writerp(rp, base + pon, n, uiop, 760 pagecreate); 761 762 } else { 763 base = segmap_getmapflt(segkmap, vp, off + on, 764 n, 0, S_READ); 765 error = writerp(rp, base + on, n, uiop, 0); 766 } 767 } 768 769 if (!error) { 770 if (mi->mi_flags & MI_NOAC) 771 flags = SM_WRITE; 772 else if (n + on == MAXBSIZE || IS_SWAPVP(vp)) { 773 /* 774 * Have written a whole block. 775 * Start an asynchronous write 776 * and mark the buffer to 777 * indicate that it won't be 778 * needed again soon. 779 */ 780 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED; 781 } else 782 flags = 0; 783 if ((ioflag & (FSYNC|FDSYNC)) || 784 (rp->r_flags & ROUTOFSPACE)) { 785 flags &= ~SM_ASYNC; 786 flags |= SM_WRITE; 787 } 788 if (vpm_enable) { 789 error = vpm_sync_pages(vp, off, n, flags); 790 } else { 791 error = segmap_release(segkmap, base, flags); 792 } 793 } else { 794 if (vpm_enable) { 795 (void) vpm_sync_pages(vp, off, n, 0); 796 } else { 797 (void) segmap_release(segkmap, base, 0); 798 } 799 /* 800 * In the event that we got an access error while 801 * faulting in a page for a write-only file just 802 * force a write. 803 */ 804 if (error == EACCES) 805 goto nfs_fwrite; 806 } 807 } while (!error && uiop->uio_resid > 0); 808 809 bottom: 810 if (error) { 811 uiop->uio_resid = resid + remainder; 812 uiop->uio_loffset = offset; 813 } else 814 uiop->uio_resid += remainder; 815 816 nfs_rw_exit(&rp->r_lkserlock); 817 818 return (error); 819 } 820 821 /* 822 * Flags are composed of {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED} 823 */ 824 static int 825 nfs_rdwrlbn(vnode_t *vp, page_t *pp, u_offset_t off, size_t len, 826 int flags, cred_t *cr) 827 { 828 struct buf *bp; 829 int error; 830 831 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 832 bp = pageio_setup(pp, len, vp, flags); 833 ASSERT(bp != NULL); 834 835 /* 836 * pageio_setup should have set b_addr to 0. This 837 * is correct since we want to do I/O on a page 838 * boundary. bp_mapin will use this addr to calculate 839 * an offset, and then set b_addr to the kernel virtual 840 * address it allocated for us. 841 */ 842 ASSERT(bp->b_un.b_addr == 0); 843 844 bp->b_edev = 0; 845 bp->b_dev = 0; 846 bp->b_lblkno = lbtodb(off); 847 bp->b_file = vp; 848 bp->b_offset = (offset_t)off; 849 bp_mapin(bp); 850 851 error = nfs_bio(bp, cr); 852 853 bp_mapout(bp); 854 pageio_done(bp); 855 856 return (error); 857 } 858 859 /* 860 * Write to file. Writes to remote server in largest size 861 * chunks that the server can handle. Write is synchronous. 862 */ 863 static int 864 nfswrite(vnode_t *vp, caddr_t base, uint_t offset, int count, cred_t *cr) 865 { 866 rnode_t *rp; 867 mntinfo_t *mi; 868 struct nfswriteargs wa; 869 struct nfsattrstat ns; 870 int error; 871 int tsize; 872 int douprintf; 873 874 douprintf = 1; 875 876 rp = VTOR(vp); 877 mi = VTOMI(vp); 878 879 ASSERT(nfs_zone() == mi->mi_zone); 880 881 wa.wa_args = &wa.wa_args_buf; 882 wa.wa_fhandle = *VTOFH(vp); 883 884 do { 885 tsize = MIN(mi->mi_curwrite, count); 886 wa.wa_data = base; 887 wa.wa_begoff = offset; 888 wa.wa_totcount = tsize; 889 wa.wa_count = tsize; 890 wa.wa_offset = offset; 891 892 if (mi->mi_io_kstats) { 893 mutex_enter(&mi->mi_lock); 894 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 895 mutex_exit(&mi->mi_lock); 896 } 897 wa.wa_mblk = NULL; 898 do { 899 error = rfs2call(mi, RFS_WRITE, 900 xdr_writeargs, (caddr_t)&wa, 901 xdr_attrstat, (caddr_t)&ns, cr, 902 &douprintf, &ns.ns_status, 0, NULL); 903 } while (error == ENFS_TRYAGAIN); 904 if (mi->mi_io_kstats) { 905 mutex_enter(&mi->mi_lock); 906 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 907 mutex_exit(&mi->mi_lock); 908 } 909 910 if (!error) { 911 error = geterrno(ns.ns_status); 912 /* 913 * Can't check for stale fhandle and purge caches 914 * here because pages are held by nfs_getpage. 915 * Just mark the attribute cache as timed out 916 * and set RWRITEATTR to indicate that the file 917 * was modified with a WRITE operation. 918 */ 919 if (!error) { 920 count -= tsize; 921 base += tsize; 922 offset += tsize; 923 if (mi->mi_io_kstats) { 924 mutex_enter(&mi->mi_lock); 925 KSTAT_IO_PTR(mi->mi_io_kstats)-> 926 writes++; 927 KSTAT_IO_PTR(mi->mi_io_kstats)-> 928 nwritten += tsize; 929 mutex_exit(&mi->mi_lock); 930 } 931 lwp_stat_update(LWP_STAT_OUBLK, 1); 932 mutex_enter(&rp->r_statelock); 933 PURGE_ATTRCACHE_LOCKED(rp); 934 rp->r_flags |= RWRITEATTR; 935 mutex_exit(&rp->r_statelock); 936 } 937 } 938 } while (!error && count); 939 940 return (error); 941 } 942 943 /* 944 * Read from a file. Reads data in largest chunks our interface can handle. 945 */ 946 static int 947 nfsread(vnode_t *vp, caddr_t base, uint_t offset, 948 int count, size_t *residp, cred_t *cr) 949 { 950 mntinfo_t *mi; 951 struct nfsreadargs ra; 952 struct nfsrdresult rr; 953 int tsize; 954 int error; 955 int douprintf; 956 failinfo_t fi; 957 rnode_t *rp; 958 struct vattr va; 959 hrtime_t t; 960 961 rp = VTOR(vp); 962 mi = VTOMI(vp); 963 964 ASSERT(nfs_zone() == mi->mi_zone); 965 966 douprintf = 1; 967 968 ra.ra_fhandle = *VTOFH(vp); 969 970 fi.vp = vp; 971 fi.fhp = (caddr_t)&ra.ra_fhandle; 972 fi.copyproc = nfscopyfh; 973 fi.lookupproc = nfslookup; 974 fi.xattrdirproc = acl_getxattrdir2; 975 976 do { 977 if (mi->mi_io_kstats) { 978 mutex_enter(&mi->mi_lock); 979 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 980 mutex_exit(&mi->mi_lock); 981 } 982 983 do { 984 tsize = MIN(mi->mi_curread, count); 985 rr.rr_data = base; 986 ra.ra_offset = offset; 987 ra.ra_totcount = tsize; 988 ra.ra_count = tsize; 989 ra.ra_data = base; 990 t = gethrtime(); 991 error = rfs2call(mi, RFS_READ, 992 xdr_readargs, (caddr_t)&ra, 993 xdr_rdresult, (caddr_t)&rr, cr, 994 &douprintf, &rr.rr_status, 0, &fi); 995 } while (error == ENFS_TRYAGAIN); 996 997 if (mi->mi_io_kstats) { 998 mutex_enter(&mi->mi_lock); 999 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 1000 mutex_exit(&mi->mi_lock); 1001 } 1002 1003 if (!error) { 1004 error = geterrno(rr.rr_status); 1005 if (!error) { 1006 count -= rr.rr_count; 1007 base += rr.rr_count; 1008 offset += rr.rr_count; 1009 if (mi->mi_io_kstats) { 1010 mutex_enter(&mi->mi_lock); 1011 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 1012 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += 1013 rr.rr_count; 1014 mutex_exit(&mi->mi_lock); 1015 } 1016 lwp_stat_update(LWP_STAT_INBLK, 1); 1017 } 1018 } 1019 } while (!error && count && rr.rr_count == tsize); 1020 1021 *residp = count; 1022 1023 if (!error) { 1024 /* 1025 * Since no error occurred, we have the current 1026 * attributes and we need to do a cache check and then 1027 * potentially update the cached attributes. We can't 1028 * use the normal attribute check and cache mechanisms 1029 * because they might cause a cache flush which would 1030 * deadlock. Instead, we just check the cache to see 1031 * if the attributes have changed. If it is, then we 1032 * just mark the attributes as out of date. The next 1033 * time that the attributes are checked, they will be 1034 * out of date, new attributes will be fetched, and 1035 * the page cache will be flushed. If the attributes 1036 * weren't changed, then we just update the cached 1037 * attributes with these attributes. 1038 */ 1039 /* 1040 * If NFS_ACL is supported on the server, then the 1041 * attributes returned by server may have minimal 1042 * permissions sometimes denying access to users having 1043 * proper access. To get the proper attributes, mark 1044 * the attributes as expired so that they will be 1045 * regotten via the NFS_ACL GETATTR2 procedure. 1046 */ 1047 error = nattr_to_vattr(vp, &rr.rr_attr, &va); 1048 mutex_enter(&rp->r_statelock); 1049 if (error || !CACHE_VALID(rp, va.va_mtime, va.va_size) || 1050 (mi->mi_flags & MI_ACL)) { 1051 mutex_exit(&rp->r_statelock); 1052 PURGE_ATTRCACHE(vp); 1053 } else { 1054 if (rp->r_mtime <= t) { 1055 nfs_attrcache_va(vp, &va); 1056 } 1057 mutex_exit(&rp->r_statelock); 1058 } 1059 } 1060 1061 return (error); 1062 } 1063 1064 /* ARGSUSED */ 1065 static int 1066 nfs_ioctl(vnode_t *vp, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp, 1067 caller_context_t *ct) 1068 { 1069 1070 if (nfs_zone() != VTOMI(vp)->mi_zone) 1071 return (EIO); 1072 switch (cmd) { 1073 case _FIODIRECTIO: 1074 return (nfs_directio(vp, (int)arg, cr)); 1075 default: 1076 return (ENOTTY); 1077 } 1078 } 1079 1080 /* ARGSUSED */ 1081 static int 1082 nfs_getattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 1083 caller_context_t *ct) 1084 { 1085 int error; 1086 rnode_t *rp; 1087 1088 if (nfs_zone() != VTOMI(vp)->mi_zone) 1089 return (EIO); 1090 /* 1091 * If it has been specified that the return value will 1092 * just be used as a hint, and we are only being asked 1093 * for size, fsid or rdevid, then return the client's 1094 * notion of these values without checking to make sure 1095 * that the attribute cache is up to date. 1096 * The whole point is to avoid an over the wire GETATTR 1097 * call. 1098 */ 1099 rp = VTOR(vp); 1100 if (flags & ATTR_HINT) { 1101 if (vap->va_mask == 1102 (vap->va_mask & (AT_SIZE | AT_FSID | AT_RDEV))) { 1103 mutex_enter(&rp->r_statelock); 1104 if (vap->va_mask | AT_SIZE) 1105 vap->va_size = rp->r_size; 1106 if (vap->va_mask | AT_FSID) 1107 vap->va_fsid = rp->r_attr.va_fsid; 1108 if (vap->va_mask | AT_RDEV) 1109 vap->va_rdev = rp->r_attr.va_rdev; 1110 mutex_exit(&rp->r_statelock); 1111 return (0); 1112 } 1113 } 1114 1115 /* 1116 * Only need to flush pages if asking for the mtime 1117 * and if there any dirty pages or any outstanding 1118 * asynchronous (write) requests for this file. 1119 */ 1120 if (vap->va_mask & AT_MTIME) { 1121 if (vn_has_cached_data(vp) && 1122 ((rp->r_flags & RDIRTY) || rp->r_awcount > 0)) { 1123 mutex_enter(&rp->r_statelock); 1124 rp->r_gcount++; 1125 mutex_exit(&rp->r_statelock); 1126 error = nfs_putpage(vp, (offset_t)0, 0, 0, cr, ct); 1127 mutex_enter(&rp->r_statelock); 1128 if (error && (error == ENOSPC || error == EDQUOT)) { 1129 if (!rp->r_error) 1130 rp->r_error = error; 1131 } 1132 if (--rp->r_gcount == 0) 1133 cv_broadcast(&rp->r_cv); 1134 mutex_exit(&rp->r_statelock); 1135 } 1136 } 1137 1138 return (nfsgetattr(vp, vap, cr)); 1139 } 1140 1141 /*ARGSUSED4*/ 1142 static int 1143 nfs_setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 1144 caller_context_t *ct) 1145 { 1146 int error; 1147 uint_t mask; 1148 struct vattr va; 1149 1150 mask = vap->va_mask; 1151 1152 if (mask & AT_NOSET) 1153 return (EINVAL); 1154 1155 if ((mask & AT_SIZE) && 1156 vap->va_type == VREG && 1157 vap->va_size > MAXOFF32_T) 1158 return (EFBIG); 1159 1160 if (nfs_zone() != VTOMI(vp)->mi_zone) 1161 return (EIO); 1162 1163 va.va_mask = AT_UID | AT_MODE; 1164 1165 error = nfsgetattr(vp, &va, cr); 1166 if (error) 1167 return (error); 1168 1169 error = secpolicy_vnode_setattr(cr, vp, vap, &va, flags, nfs_accessx, 1170 vp); 1171 1172 if (error) 1173 return (error); 1174 1175 error = nfssetattr(vp, vap, flags, cr); 1176 1177 if (error == 0 && (mask & AT_SIZE) && vap->va_size == 0) 1178 vnevent_truncate(vp, ct); 1179 1180 return (error); 1181 } 1182 1183 static int 1184 nfssetattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr) 1185 { 1186 int error; 1187 uint_t mask; 1188 struct nfssaargs args; 1189 struct nfsattrstat ns; 1190 int douprintf; 1191 rnode_t *rp; 1192 struct vattr va; 1193 mode_t omode; 1194 mntinfo_t *mi; 1195 vsecattr_t *vsp; 1196 hrtime_t t; 1197 1198 mask = vap->va_mask; 1199 1200 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 1201 1202 rp = VTOR(vp); 1203 1204 /* 1205 * Only need to flush pages if there are any pages and 1206 * if the file is marked as dirty in some fashion. The 1207 * file must be flushed so that we can accurately 1208 * determine the size of the file and the cached data 1209 * after the SETATTR returns. A file is considered to 1210 * be dirty if it is either marked with RDIRTY, has 1211 * outstanding i/o's active, or is mmap'd. In this 1212 * last case, we can't tell whether there are dirty 1213 * pages, so we flush just to be sure. 1214 */ 1215 if (vn_has_cached_data(vp) && 1216 ((rp->r_flags & RDIRTY) || 1217 rp->r_count > 0 || 1218 rp->r_mapcnt > 0)) { 1219 ASSERT(vp->v_type != VCHR); 1220 error = nfs_putpage(vp, (offset_t)0, 0, 0, cr, NULL); 1221 if (error && (error == ENOSPC || error == EDQUOT)) { 1222 mutex_enter(&rp->r_statelock); 1223 if (!rp->r_error) 1224 rp->r_error = error; 1225 mutex_exit(&rp->r_statelock); 1226 } 1227 } 1228 1229 /* 1230 * If the system call was utime(2) or utimes(2) and the 1231 * application did not specify the times, then set the 1232 * mtime nanosecond field to 1 billion. This will get 1233 * translated from 1 billion nanoseconds to 1 million 1234 * microseconds in the over the wire request. The 1235 * server will use 1 million in the microsecond field 1236 * to tell whether both the mtime and atime should be 1237 * set to the server's current time. 1238 * 1239 * This is an overload of the protocol and should be 1240 * documented in the NFS Version 2 protocol specification. 1241 */ 1242 if ((mask & AT_MTIME) && !(flags & ATTR_UTIME)) { 1243 vap->va_mtime.tv_nsec = 1000000000; 1244 if (NFS_TIME_T_OK(vap->va_mtime.tv_sec) && 1245 NFS_TIME_T_OK(vap->va_atime.tv_sec)) { 1246 error = vattr_to_sattr(vap, &args.saa_sa); 1247 } else { 1248 /* 1249 * Use server times. vap time values will not be used. 1250 * To ensure no time overflow, make sure vap has 1251 * valid values, but retain the original values. 1252 */ 1253 timestruc_t mtime = vap->va_mtime; 1254 timestruc_t atime = vap->va_atime; 1255 time_t now; 1256 1257 now = gethrestime_sec(); 1258 if (NFS_TIME_T_OK(now)) { 1259 /* Just in case server does not know of this */ 1260 vap->va_mtime.tv_sec = now; 1261 vap->va_atime.tv_sec = now; 1262 } else { 1263 vap->va_mtime.tv_sec = 0; 1264 vap->va_atime.tv_sec = 0; 1265 } 1266 error = vattr_to_sattr(vap, &args.saa_sa); 1267 /* set vap times back on */ 1268 vap->va_mtime = mtime; 1269 vap->va_atime = atime; 1270 } 1271 } else { 1272 /* Either do not set times or use the client specified times */ 1273 error = vattr_to_sattr(vap, &args.saa_sa); 1274 } 1275 if (error) { 1276 /* req time field(s) overflow - return immediately */ 1277 return (error); 1278 } 1279 args.saa_fh = *VTOFH(vp); 1280 1281 va.va_mask = AT_MODE; 1282 error = nfsgetattr(vp, &va, cr); 1283 if (error) 1284 return (error); 1285 omode = va.va_mode; 1286 1287 mi = VTOMI(vp); 1288 1289 douprintf = 1; 1290 1291 t = gethrtime(); 1292 1293 error = rfs2call(mi, RFS_SETATTR, 1294 xdr_saargs, (caddr_t)&args, 1295 xdr_attrstat, (caddr_t)&ns, cr, 1296 &douprintf, &ns.ns_status, 0, NULL); 1297 1298 /* 1299 * Purge the access cache and ACL cache if changing either the 1300 * owner of the file, the group owner, or the mode. These may 1301 * change the access permissions of the file, so purge old 1302 * information and start over again. 1303 */ 1304 if ((mask & (AT_UID | AT_GID | AT_MODE)) && (mi->mi_flags & MI_ACL)) { 1305 (void) nfs_access_purge_rp(rp); 1306 if (rp->r_secattr != NULL) { 1307 mutex_enter(&rp->r_statelock); 1308 vsp = rp->r_secattr; 1309 rp->r_secattr = NULL; 1310 mutex_exit(&rp->r_statelock); 1311 if (vsp != NULL) 1312 nfs_acl_free(vsp); 1313 } 1314 } 1315 1316 if (!error) { 1317 error = geterrno(ns.ns_status); 1318 if (!error) { 1319 /* 1320 * If changing the size of the file, invalidate 1321 * any local cached data which is no longer part 1322 * of the file. We also possibly invalidate the 1323 * last page in the file. We could use 1324 * pvn_vpzero(), but this would mark the page as 1325 * modified and require it to be written back to 1326 * the server for no particularly good reason. 1327 * This way, if we access it, then we bring it 1328 * back in. A read should be cheaper than a 1329 * write. 1330 */ 1331 if (mask & AT_SIZE) { 1332 nfs_invalidate_pages(vp, 1333 (vap->va_size & PAGEMASK), cr); 1334 } 1335 (void) nfs_cache_fattr(vp, &ns.ns_attr, &va, t, cr); 1336 /* 1337 * If NFS_ACL is supported on the server, then the 1338 * attributes returned by server may have minimal 1339 * permissions sometimes denying access to users having 1340 * proper access. To get the proper attributes, mark 1341 * the attributes as expired so that they will be 1342 * regotten via the NFS_ACL GETATTR2 procedure. 1343 */ 1344 if (mi->mi_flags & MI_ACL) { 1345 PURGE_ATTRCACHE(vp); 1346 } 1347 /* 1348 * This next check attempts to deal with NFS 1349 * servers which can not handle increasing 1350 * the size of the file via setattr. Most 1351 * of these servers do not return an error, 1352 * but do not change the size of the file. 1353 * Hence, this check and then attempt to set 1354 * the file size by writing 1 byte at the 1355 * offset of the end of the file that we need. 1356 */ 1357 if ((mask & AT_SIZE) && 1358 ns.ns_attr.na_size < (uint32_t)vap->va_size) { 1359 char zb = '\0'; 1360 1361 error = nfswrite(vp, &zb, 1362 vap->va_size - sizeof (zb), 1363 sizeof (zb), cr); 1364 } 1365 /* 1366 * Some servers will change the mode to clear the setuid 1367 * and setgid bits when changing the uid or gid. The 1368 * client needs to compensate appropriately. 1369 */ 1370 if (mask & (AT_UID | AT_GID)) { 1371 int terror; 1372 1373 va.va_mask = AT_MODE; 1374 terror = nfsgetattr(vp, &va, cr); 1375 if (!terror && 1376 (((mask & AT_MODE) && 1377 va.va_mode != vap->va_mode) || 1378 (!(mask & AT_MODE) && 1379 va.va_mode != omode))) { 1380 va.va_mask = AT_MODE; 1381 if (mask & AT_MODE) 1382 va.va_mode = vap->va_mode; 1383 else 1384 va.va_mode = omode; 1385 (void) nfssetattr(vp, &va, 0, cr); 1386 } 1387 } 1388 } else { 1389 PURGE_ATTRCACHE(vp); 1390 PURGE_STALE_FH(error, vp, cr); 1391 } 1392 } else { 1393 PURGE_ATTRCACHE(vp); 1394 } 1395 1396 return (error); 1397 } 1398 1399 static int 1400 nfs_accessx(void *vp, int mode, cred_t *cr) 1401 { 1402 ASSERT(nfs_zone() == VTOMI((vnode_t *)vp)->mi_zone); 1403 return (nfs_access(vp, mode, 0, cr, NULL)); 1404 } 1405 1406 /* ARGSUSED */ 1407 static int 1408 nfs_access(vnode_t *vp, int mode, int flags, cred_t *cr, caller_context_t *ct) 1409 { 1410 struct vattr va; 1411 int error; 1412 mntinfo_t *mi; 1413 int shift = 0; 1414 1415 mi = VTOMI(vp); 1416 1417 if (nfs_zone() != mi->mi_zone) 1418 return (EIO); 1419 if (mi->mi_flags & MI_ACL) { 1420 error = acl_access2(vp, mode, flags, cr); 1421 if (mi->mi_flags & MI_ACL) 1422 return (error); 1423 } 1424 1425 va.va_mask = AT_MODE | AT_UID | AT_GID; 1426 error = nfsgetattr(vp, &va, cr); 1427 if (error) 1428 return (error); 1429 1430 /* 1431 * Disallow write attempts on read-only 1432 * file systems, unless the file is a 1433 * device node. 1434 */ 1435 if ((mode & VWRITE) && vn_is_readonly(vp) && !IS_DEVVP(vp)) 1436 return (EROFS); 1437 1438 /* 1439 * Disallow attempts to access mandatory lock files. 1440 */ 1441 if ((mode & (VWRITE | VREAD | VEXEC)) && 1442 MANDLOCK(vp, va.va_mode)) 1443 return (EACCES); 1444 1445 /* 1446 * Access check is based on only 1447 * one of owner, group, public. 1448 * If not owner, then check group. 1449 * If not a member of the group, 1450 * then check public access. 1451 */ 1452 if (crgetuid(cr) != va.va_uid) { 1453 shift += 3; 1454 if (!groupmember(va.va_gid, cr)) 1455 shift += 3; 1456 } 1457 1458 return (secpolicy_vnode_access2(cr, vp, va.va_uid, 1459 va.va_mode << shift, mode)); 1460 } 1461 1462 static int nfs_do_symlink_cache = 1; 1463 1464 /* ARGSUSED */ 1465 static int 1466 nfs_readlink(vnode_t *vp, struct uio *uiop, cred_t *cr, caller_context_t *ct) 1467 { 1468 int error; 1469 struct nfsrdlnres rl; 1470 rnode_t *rp; 1471 int douprintf; 1472 failinfo_t fi; 1473 1474 /* 1475 * We want to be consistent with UFS semantics so we will return 1476 * EINVAL instead of ENXIO. This violates the XNFS spec and 1477 * the RFC 1094, which are wrong any way. BUGID 1138002. 1478 */ 1479 if (vp->v_type != VLNK) 1480 return (EINVAL); 1481 1482 if (nfs_zone() != VTOMI(vp)->mi_zone) 1483 return (EIO); 1484 1485 rp = VTOR(vp); 1486 if (nfs_do_symlink_cache && rp->r_symlink.contents != NULL) { 1487 error = nfs_validate_caches(vp, cr); 1488 if (error) 1489 return (error); 1490 mutex_enter(&rp->r_statelock); 1491 if (rp->r_symlink.contents != NULL) { 1492 error = uiomove(rp->r_symlink.contents, 1493 rp->r_symlink.len, UIO_READ, uiop); 1494 mutex_exit(&rp->r_statelock); 1495 return (error); 1496 } 1497 mutex_exit(&rp->r_statelock); 1498 } 1499 1500 1501 rl.rl_data = kmem_alloc(NFS_MAXPATHLEN, KM_SLEEP); 1502 1503 fi.vp = vp; 1504 fi.fhp = NULL; /* no need to update, filehandle not copied */ 1505 fi.copyproc = nfscopyfh; 1506 fi.lookupproc = nfslookup; 1507 fi.xattrdirproc = acl_getxattrdir2; 1508 1509 douprintf = 1; 1510 1511 error = rfs2call(VTOMI(vp), RFS_READLINK, 1512 xdr_readlink, (caddr_t)VTOFH(vp), 1513 xdr_rdlnres, (caddr_t)&rl, cr, 1514 &douprintf, &rl.rl_status, 0, &fi); 1515 1516 if (error) { 1517 1518 kmem_free((void *)rl.rl_data, NFS_MAXPATHLEN); 1519 return (error); 1520 } 1521 1522 error = geterrno(rl.rl_status); 1523 if (!error) { 1524 error = uiomove(rl.rl_data, (int)rl.rl_count, UIO_READ, uiop); 1525 if (nfs_do_symlink_cache && rp->r_symlink.contents == NULL) { 1526 mutex_enter(&rp->r_statelock); 1527 if (rp->r_symlink.contents == NULL) { 1528 rp->r_symlink.contents = rl.rl_data; 1529 rp->r_symlink.len = (int)rl.rl_count; 1530 rp->r_symlink.size = NFS_MAXPATHLEN; 1531 mutex_exit(&rp->r_statelock); 1532 } else { 1533 mutex_exit(&rp->r_statelock); 1534 1535 kmem_free((void *)rl.rl_data, 1536 NFS_MAXPATHLEN); 1537 } 1538 } else { 1539 1540 kmem_free((void *)rl.rl_data, NFS_MAXPATHLEN); 1541 } 1542 } else { 1543 PURGE_STALE_FH(error, vp, cr); 1544 1545 kmem_free((void *)rl.rl_data, NFS_MAXPATHLEN); 1546 } 1547 1548 /* 1549 * Conform to UFS semantics (see comment above) 1550 */ 1551 return (error == ENXIO ? EINVAL : error); 1552 } 1553 1554 /* 1555 * Flush local dirty pages to stable storage on the server. 1556 * 1557 * If FNODSYNC is specified, then there is nothing to do because 1558 * metadata changes are not cached on the client before being 1559 * sent to the server. 1560 */ 1561 /* ARGSUSED */ 1562 static int 1563 nfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 1564 { 1565 int error; 1566 1567 if ((syncflag & FNODSYNC) || IS_SWAPVP(vp)) 1568 return (0); 1569 1570 if (nfs_zone() != VTOMI(vp)->mi_zone) 1571 return (EIO); 1572 1573 error = nfs_putpage(vp, (offset_t)0, 0, 0, cr, ct); 1574 if (!error) 1575 error = VTOR(vp)->r_error; 1576 return (error); 1577 } 1578 1579 1580 /* 1581 * Weirdness: if the file was removed or the target of a rename 1582 * operation while it was open, it got renamed instead. Here we 1583 * remove the renamed file. 1584 */ 1585 /* ARGSUSED */ 1586 static void 1587 nfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 1588 { 1589 rnode_t *rp; 1590 1591 ASSERT(vp != DNLC_NO_VNODE); 1592 1593 /* 1594 * If this is coming from the wrong zone, we let someone in the right 1595 * zone take care of it asynchronously. We can get here due to 1596 * VN_RELE() being called from pageout() or fsflush(). This call may 1597 * potentially turn into an expensive no-op if, for instance, v_count 1598 * gets incremented in the meantime, but it's still correct. 1599 */ 1600 if (nfs_zone() != VTOMI(vp)->mi_zone) { 1601 nfs_async_inactive(vp, cr, nfs_inactive); 1602 return; 1603 } 1604 1605 rp = VTOR(vp); 1606 redo: 1607 if (rp->r_unldvp != NULL) { 1608 /* 1609 * Save the vnode pointer for the directory where the 1610 * unlinked-open file got renamed, then set it to NULL 1611 * to prevent another thread from getting here before 1612 * we're done with the remove. While we have the 1613 * statelock, make local copies of the pertinent rnode 1614 * fields. If we weren't to do this in an atomic way, the 1615 * the unl* fields could become inconsistent with respect 1616 * to each other due to a race condition between this 1617 * code and nfs_remove(). See bug report 1034328. 1618 */ 1619 mutex_enter(&rp->r_statelock); 1620 if (rp->r_unldvp != NULL) { 1621 vnode_t *unldvp; 1622 char *unlname; 1623 cred_t *unlcred; 1624 struct nfsdiropargs da; 1625 enum nfsstat status; 1626 int douprintf; 1627 int error; 1628 1629 unldvp = rp->r_unldvp; 1630 rp->r_unldvp = NULL; 1631 unlname = rp->r_unlname; 1632 rp->r_unlname = NULL; 1633 unlcred = rp->r_unlcred; 1634 rp->r_unlcred = NULL; 1635 mutex_exit(&rp->r_statelock); 1636 1637 /* 1638 * If there are any dirty pages left, then flush 1639 * them. This is unfortunate because they just 1640 * may get thrown away during the remove operation, 1641 * but we have to do this for correctness. 1642 */ 1643 if (vn_has_cached_data(vp) && 1644 ((rp->r_flags & RDIRTY) || rp->r_count > 0)) { 1645 ASSERT(vp->v_type != VCHR); 1646 error = nfs_putpage(vp, (offset_t)0, 0, 0, 1647 cr, ct); 1648 if (error) { 1649 mutex_enter(&rp->r_statelock); 1650 if (!rp->r_error) 1651 rp->r_error = error; 1652 mutex_exit(&rp->r_statelock); 1653 } 1654 } 1655 1656 /* 1657 * Do the remove operation on the renamed file 1658 */ 1659 setdiropargs(&da, unlname, unldvp); 1660 1661 douprintf = 1; 1662 1663 (void) rfs2call(VTOMI(unldvp), RFS_REMOVE, 1664 xdr_diropargs, (caddr_t)&da, 1665 xdr_enum, (caddr_t)&status, unlcred, 1666 &douprintf, &status, 0, NULL); 1667 1668 if (HAVE_RDDIR_CACHE(VTOR(unldvp))) 1669 nfs_purge_rddir_cache(unldvp); 1670 PURGE_ATTRCACHE(unldvp); 1671 1672 /* 1673 * Release stuff held for the remove 1674 */ 1675 VN_RELE(unldvp); 1676 kmem_free(unlname, MAXNAMELEN); 1677 crfree(unlcred); 1678 goto redo; 1679 } 1680 mutex_exit(&rp->r_statelock); 1681 } 1682 1683 rp_addfree(rp, cr); 1684 } 1685 1686 /* 1687 * Remote file system operations having to do with directory manipulation. 1688 */ 1689 1690 /* ARGSUSED */ 1691 static int 1692 nfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1693 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 1694 int *direntflags, pathname_t *realpnp) 1695 { 1696 int error; 1697 vnode_t *vp; 1698 vnode_t *avp = NULL; 1699 rnode_t *drp; 1700 1701 if (nfs_zone() != VTOMI(dvp)->mi_zone) 1702 return (EPERM); 1703 1704 drp = VTOR(dvp); 1705 1706 /* 1707 * Are we looking up extended attributes? If so, "dvp" is 1708 * the file or directory for which we want attributes, and 1709 * we need a lookup of the hidden attribute directory 1710 * before we lookup the rest of the path. 1711 */ 1712 if (flags & LOOKUP_XATTR) { 1713 bool_t cflag = ((flags & CREATE_XATTR_DIR) != 0); 1714 mntinfo_t *mi; 1715 1716 mi = VTOMI(dvp); 1717 if (!(mi->mi_flags & MI_EXTATTR)) 1718 return (EINVAL); 1719 1720 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR(dvp))) 1721 return (EINTR); 1722 1723 (void) nfslookup_dnlc(dvp, XATTR_DIR_NAME, &avp, cr); 1724 if (avp == NULL) 1725 error = acl_getxattrdir2(dvp, &avp, cflag, cr, 0); 1726 else 1727 error = 0; 1728 1729 nfs_rw_exit(&drp->r_rwlock); 1730 1731 if (error) { 1732 if (mi->mi_flags & MI_EXTATTR) 1733 return (error); 1734 return (EINVAL); 1735 } 1736 dvp = avp; 1737 drp = VTOR(dvp); 1738 } 1739 1740 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR(dvp))) { 1741 error = EINTR; 1742 goto out; 1743 } 1744 1745 error = nfslookup(dvp, nm, vpp, pnp, flags, rdir, cr, 0); 1746 1747 nfs_rw_exit(&drp->r_rwlock); 1748 1749 /* 1750 * If vnode is a device, create special vnode. 1751 */ 1752 if (!error && IS_DEVVP(*vpp)) { 1753 vp = *vpp; 1754 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 1755 VN_RELE(vp); 1756 } 1757 1758 out: 1759 if (avp != NULL) 1760 VN_RELE(avp); 1761 1762 return (error); 1763 } 1764 1765 static int nfs_lookup_neg_cache = 1; 1766 1767 #ifdef DEBUG 1768 static int nfs_lookup_dnlc_hits = 0; 1769 static int nfs_lookup_dnlc_misses = 0; 1770 static int nfs_lookup_dnlc_neg_hits = 0; 1771 static int nfs_lookup_dnlc_disappears = 0; 1772 static int nfs_lookup_dnlc_lookups = 0; 1773 #endif 1774 1775 /* ARGSUSED */ 1776 int 1777 nfslookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1778 int flags, vnode_t *rdir, cred_t *cr, int rfscall_flags) 1779 { 1780 int error; 1781 1782 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 1783 1784 /* 1785 * If lookup is for "", just return dvp. Don't need 1786 * to send it over the wire, look it up in the dnlc, 1787 * or perform any access checks. 1788 */ 1789 if (*nm == '\0') { 1790 VN_HOLD(dvp); 1791 *vpp = dvp; 1792 return (0); 1793 } 1794 1795 /* 1796 * Can't do lookups in non-directories. 1797 */ 1798 if (dvp->v_type != VDIR) 1799 return (ENOTDIR); 1800 1801 /* 1802 * If we're called with RFSCALL_SOFT, it's important that 1803 * the only rfscall is one we make directly; if we permit 1804 * an access call because we're looking up "." or validating 1805 * a dnlc hit, we'll deadlock because that rfscall will not 1806 * have the RFSCALL_SOFT set. 1807 */ 1808 if (rfscall_flags & RFSCALL_SOFT) 1809 goto callit; 1810 1811 /* 1812 * If lookup is for ".", just return dvp. Don't need 1813 * to send it over the wire or look it up in the dnlc, 1814 * just need to check access. 1815 */ 1816 if (strcmp(nm, ".") == 0) { 1817 error = nfs_access(dvp, VEXEC, 0, cr, NULL); 1818 if (error) 1819 return (error); 1820 VN_HOLD(dvp); 1821 *vpp = dvp; 1822 return (0); 1823 } 1824 1825 /* 1826 * Lookup this name in the DNLC. If there was a valid entry, 1827 * then return the results of the lookup. 1828 */ 1829 error = nfslookup_dnlc(dvp, nm, vpp, cr); 1830 if (error || *vpp != NULL) 1831 return (error); 1832 1833 callit: 1834 error = nfslookup_otw(dvp, nm, vpp, cr, rfscall_flags); 1835 1836 return (error); 1837 } 1838 1839 static int 1840 nfslookup_dnlc(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr) 1841 { 1842 int error; 1843 vnode_t *vp; 1844 1845 ASSERT(*nm != '\0'); 1846 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 1847 1848 /* 1849 * Lookup this name in the DNLC. If successful, then validate 1850 * the caches and then recheck the DNLC. The DNLC is rechecked 1851 * just in case this entry got invalidated during the call 1852 * to nfs_validate_caches. 1853 * 1854 * An assumption is being made that it is safe to say that a 1855 * file exists which may not on the server. Any operations to 1856 * the server will fail with ESTALE. 1857 */ 1858 #ifdef DEBUG 1859 nfs_lookup_dnlc_lookups++; 1860 #endif 1861 vp = dnlc_lookup(dvp, nm); 1862 if (vp != NULL) { 1863 VN_RELE(vp); 1864 if (vp == DNLC_NO_VNODE && !vn_is_readonly(dvp)) { 1865 PURGE_ATTRCACHE(dvp); 1866 } 1867 error = nfs_validate_caches(dvp, cr); 1868 if (error) 1869 return (error); 1870 vp = dnlc_lookup(dvp, nm); 1871 if (vp != NULL) { 1872 error = nfs_access(dvp, VEXEC, 0, cr, NULL); 1873 if (error) { 1874 VN_RELE(vp); 1875 return (error); 1876 } 1877 if (vp == DNLC_NO_VNODE) { 1878 VN_RELE(vp); 1879 #ifdef DEBUG 1880 nfs_lookup_dnlc_neg_hits++; 1881 #endif 1882 return (ENOENT); 1883 } 1884 *vpp = vp; 1885 #ifdef DEBUG 1886 nfs_lookup_dnlc_hits++; 1887 #endif 1888 return (0); 1889 } 1890 #ifdef DEBUG 1891 nfs_lookup_dnlc_disappears++; 1892 #endif 1893 } 1894 #ifdef DEBUG 1895 else 1896 nfs_lookup_dnlc_misses++; 1897 #endif 1898 1899 *vpp = NULL; 1900 1901 return (0); 1902 } 1903 1904 static int 1905 nfslookup_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr, 1906 int rfscall_flags) 1907 { 1908 int error; 1909 struct nfsdiropargs da; 1910 struct nfsdiropres dr; 1911 int douprintf; 1912 failinfo_t fi; 1913 hrtime_t t; 1914 1915 ASSERT(*nm != '\0'); 1916 ASSERT(dvp->v_type == VDIR); 1917 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 1918 1919 setdiropargs(&da, nm, dvp); 1920 1921 fi.vp = dvp; 1922 fi.fhp = NULL; /* no need to update, filehandle not copied */ 1923 fi.copyproc = nfscopyfh; 1924 fi.lookupproc = nfslookup; 1925 fi.xattrdirproc = acl_getxattrdir2; 1926 1927 douprintf = 1; 1928 1929 t = gethrtime(); 1930 1931 error = rfs2call(VTOMI(dvp), RFS_LOOKUP, 1932 xdr_diropargs, (caddr_t)&da, 1933 xdr_diropres, (caddr_t)&dr, cr, 1934 &douprintf, &dr.dr_status, rfscall_flags, &fi); 1935 1936 if (!error) { 1937 error = geterrno(dr.dr_status); 1938 if (!error) { 1939 *vpp = makenfsnode(&dr.dr_fhandle, &dr.dr_attr, 1940 dvp->v_vfsp, t, cr, VTOR(dvp)->r_path, nm); 1941 /* 1942 * If NFS_ACL is supported on the server, then the 1943 * attributes returned by server may have minimal 1944 * permissions sometimes denying access to users having 1945 * proper access. To get the proper attributes, mark 1946 * the attributes as expired so that they will be 1947 * regotten via the NFS_ACL GETATTR2 procedure. 1948 */ 1949 if (VTOMI(*vpp)->mi_flags & MI_ACL) { 1950 PURGE_ATTRCACHE(*vpp); 1951 } 1952 if (!(rfscall_flags & RFSCALL_SOFT)) 1953 dnlc_update(dvp, nm, *vpp); 1954 } else { 1955 PURGE_STALE_FH(error, dvp, cr); 1956 if (error == ENOENT && nfs_lookup_neg_cache) 1957 dnlc_enter(dvp, nm, DNLC_NO_VNODE); 1958 } 1959 } 1960 1961 return (error); 1962 } 1963 1964 /* ARGSUSED */ 1965 static int 1966 nfs_create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 1967 int mode, vnode_t **vpp, cred_t *cr, int lfaware, caller_context_t *ct, 1968 vsecattr_t *vsecp) 1969 { 1970 int error; 1971 struct nfscreatargs args; 1972 struct nfsdiropres dr; 1973 int douprintf; 1974 vnode_t *vp; 1975 rnode_t *rp; 1976 struct vattr vattr; 1977 rnode_t *drp; 1978 vnode_t *tempvp; 1979 hrtime_t t; 1980 1981 drp = VTOR(dvp); 1982 1983 if (nfs_zone() != VTOMI(dvp)->mi_zone) 1984 return (EPERM); 1985 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 1986 return (EINTR); 1987 1988 /* 1989 * We make a copy of the attributes because the caller does not 1990 * expect us to change what va points to. 1991 */ 1992 vattr = *va; 1993 1994 /* 1995 * If the pathname is "", just use dvp. Don't need 1996 * to send it over the wire, look it up in the dnlc, 1997 * or perform any access checks. 1998 */ 1999 if (*nm == '\0') { 2000 error = 0; 2001 VN_HOLD(dvp); 2002 vp = dvp; 2003 /* 2004 * If the pathname is ".", just use dvp. Don't need 2005 * to send it over the wire or look it up in the dnlc, 2006 * just need to check access. 2007 */ 2008 } else if (strcmp(nm, ".") == 0) { 2009 error = nfs_access(dvp, VEXEC, 0, cr, ct); 2010 if (error) { 2011 nfs_rw_exit(&drp->r_rwlock); 2012 return (error); 2013 } 2014 VN_HOLD(dvp); 2015 vp = dvp; 2016 /* 2017 * We need to go over the wire, just to be sure whether the 2018 * file exists or not. Using the DNLC can be dangerous in 2019 * this case when making a decision regarding existence. 2020 */ 2021 } else { 2022 error = nfslookup_otw(dvp, nm, &vp, cr, 0); 2023 } 2024 if (!error) { 2025 if (exclusive == EXCL) 2026 error = EEXIST; 2027 else if (vp->v_type == VDIR && (mode & VWRITE)) 2028 error = EISDIR; 2029 else { 2030 /* 2031 * If vnode is a device, create special vnode. 2032 */ 2033 if (IS_DEVVP(vp)) { 2034 tempvp = vp; 2035 vp = specvp(vp, vp->v_rdev, vp->v_type, cr); 2036 VN_RELE(tempvp); 2037 } 2038 if (!(error = VOP_ACCESS(vp, mode, 0, cr, ct))) { 2039 if ((vattr.va_mask & AT_SIZE) && 2040 vp->v_type == VREG) { 2041 vattr.va_mask = AT_SIZE; 2042 error = nfssetattr(vp, &vattr, 0, cr); 2043 2044 if (!error) { 2045 /* 2046 * Existing file was truncated; 2047 * emit a create event. 2048 */ 2049 vnevent_create(vp, ct); 2050 } 2051 } 2052 } 2053 } 2054 nfs_rw_exit(&drp->r_rwlock); 2055 if (error) { 2056 VN_RELE(vp); 2057 } else { 2058 *vpp = vp; 2059 } 2060 return (error); 2061 } 2062 2063 ASSERT(vattr.va_mask & AT_TYPE); 2064 if (vattr.va_type == VREG) { 2065 ASSERT(vattr.va_mask & AT_MODE); 2066 if (MANDMODE(vattr.va_mode)) { 2067 nfs_rw_exit(&drp->r_rwlock); 2068 return (EACCES); 2069 } 2070 } 2071 2072 dnlc_remove(dvp, nm); 2073 2074 setdiropargs(&args.ca_da, nm, dvp); 2075 2076 /* 2077 * Decide what the group-id of the created file should be. 2078 * Set it in attribute list as advisory...then do a setattr 2079 * if the server didn't get it right the first time. 2080 */ 2081 error = setdirgid(dvp, &vattr.va_gid, cr); 2082 if (error) { 2083 nfs_rw_exit(&drp->r_rwlock); 2084 return (error); 2085 } 2086 vattr.va_mask |= AT_GID; 2087 2088 /* 2089 * This is a completely gross hack to make mknod 2090 * work over the wire until we can wack the protocol 2091 */ 2092 #define IFCHR 0020000 /* character special */ 2093 #define IFBLK 0060000 /* block special */ 2094 #define IFSOCK 0140000 /* socket */ 2095 2096 /* 2097 * dev_t is uint_t in 5.x and short in 4.x. Both 4.x 2098 * supports 8 bit majors. 5.x supports 14 bit majors. 5.x supports 18 2099 * bits in the minor number where 4.x supports 8 bits. If the 5.x 2100 * minor/major numbers <= 8 bits long, compress the device 2101 * number before sending it. Otherwise, the 4.x server will not 2102 * create the device with the correct device number and nothing can be 2103 * done about this. 2104 */ 2105 if (vattr.va_type == VCHR || vattr.va_type == VBLK) { 2106 dev_t d = vattr.va_rdev; 2107 dev32_t dev32; 2108 2109 if (vattr.va_type == VCHR) 2110 vattr.va_mode |= IFCHR; 2111 else 2112 vattr.va_mode |= IFBLK; 2113 2114 (void) cmpldev(&dev32, d); 2115 if (dev32 & ~((SO4_MAXMAJ << L_BITSMINOR32) | SO4_MAXMIN)) 2116 vattr.va_size = (u_offset_t)dev32; 2117 else 2118 vattr.va_size = (u_offset_t)nfsv2_cmpdev(d); 2119 2120 vattr.va_mask |= AT_MODE|AT_SIZE; 2121 } else if (vattr.va_type == VFIFO) { 2122 vattr.va_mode |= IFCHR; /* xtra kludge for namedpipe */ 2123 vattr.va_size = (u_offset_t)NFS_FIFO_DEV; /* blech */ 2124 vattr.va_mask |= AT_MODE|AT_SIZE; 2125 } else if (vattr.va_type == VSOCK) { 2126 vattr.va_mode |= IFSOCK; 2127 /* 2128 * To avoid triggering bugs in the servers set AT_SIZE 2129 * (all other RFS_CREATE calls set this). 2130 */ 2131 vattr.va_size = 0; 2132 vattr.va_mask |= AT_MODE|AT_SIZE; 2133 } 2134 2135 args.ca_sa = &args.ca_sa_buf; 2136 error = vattr_to_sattr(&vattr, args.ca_sa); 2137 if (error) { 2138 /* req time field(s) overflow - return immediately */ 2139 nfs_rw_exit(&drp->r_rwlock); 2140 return (error); 2141 } 2142 2143 douprintf = 1; 2144 2145 t = gethrtime(); 2146 2147 error = rfs2call(VTOMI(dvp), RFS_CREATE, 2148 xdr_creatargs, (caddr_t)&args, 2149 xdr_diropres, (caddr_t)&dr, cr, 2150 &douprintf, &dr.dr_status, 0, NULL); 2151 2152 PURGE_ATTRCACHE(dvp); /* mod time changed */ 2153 2154 if (!error) { 2155 error = geterrno(dr.dr_status); 2156 if (!error) { 2157 if (HAVE_RDDIR_CACHE(drp)) 2158 nfs_purge_rddir_cache(dvp); 2159 vp = makenfsnode(&dr.dr_fhandle, &dr.dr_attr, 2160 dvp->v_vfsp, t, cr, NULL, NULL); 2161 /* 2162 * If NFS_ACL is supported on the server, then the 2163 * attributes returned by server may have minimal 2164 * permissions sometimes denying access to users having 2165 * proper access. To get the proper attributes, mark 2166 * the attributes as expired so that they will be 2167 * regotten via the NFS_ACL GETATTR2 procedure. 2168 */ 2169 if (VTOMI(vp)->mi_flags & MI_ACL) { 2170 PURGE_ATTRCACHE(vp); 2171 } 2172 dnlc_update(dvp, nm, vp); 2173 rp = VTOR(vp); 2174 if (vattr.va_size == 0) { 2175 mutex_enter(&rp->r_statelock); 2176 rp->r_size = 0; 2177 mutex_exit(&rp->r_statelock); 2178 if (vn_has_cached_data(vp)) { 2179 ASSERT(vp->v_type != VCHR); 2180 nfs_invalidate_pages(vp, 2181 (u_offset_t)0, cr); 2182 } 2183 } 2184 2185 /* 2186 * Make sure the gid was set correctly. 2187 * If not, try to set it (but don't lose 2188 * any sleep over it). 2189 */ 2190 if (vattr.va_gid != rp->r_attr.va_gid) { 2191 vattr.va_mask = AT_GID; 2192 (void) nfssetattr(vp, &vattr, 0, cr); 2193 } 2194 2195 /* 2196 * If vnode is a device create special vnode 2197 */ 2198 if (IS_DEVVP(vp)) { 2199 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 2200 VN_RELE(vp); 2201 } else 2202 *vpp = vp; 2203 } else { 2204 PURGE_STALE_FH(error, dvp, cr); 2205 } 2206 } 2207 2208 nfs_rw_exit(&drp->r_rwlock); 2209 2210 return (error); 2211 } 2212 2213 /* 2214 * Weirdness: if the vnode to be removed is open 2215 * we rename it instead of removing it and nfs_inactive 2216 * will remove the new name. 2217 */ 2218 /* ARGSUSED */ 2219 static int 2220 nfs_remove(vnode_t *dvp, char *nm, cred_t *cr, caller_context_t *ct, int flags) 2221 { 2222 int error; 2223 struct nfsdiropargs da; 2224 enum nfsstat status; 2225 vnode_t *vp; 2226 char *tmpname; 2227 int douprintf; 2228 rnode_t *rp; 2229 rnode_t *drp; 2230 2231 if (nfs_zone() != VTOMI(dvp)->mi_zone) 2232 return (EPERM); 2233 drp = VTOR(dvp); 2234 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 2235 return (EINTR); 2236 2237 error = nfslookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); 2238 if (error) { 2239 nfs_rw_exit(&drp->r_rwlock); 2240 return (error); 2241 } 2242 2243 if (vp->v_type == VDIR && secpolicy_fs_linkdir(cr, dvp->v_vfsp)) { 2244 VN_RELE(vp); 2245 nfs_rw_exit(&drp->r_rwlock); 2246 return (EPERM); 2247 } 2248 2249 /* 2250 * First just remove the entry from the name cache, as it 2251 * is most likely the only entry for this vp. 2252 */ 2253 dnlc_remove(dvp, nm); 2254 2255 /* 2256 * If the file has a v_count > 1 then there may be more than one 2257 * entry in the name cache due multiple links or an open file, 2258 * but we don't have the real reference count so flush all 2259 * possible entries. 2260 */ 2261 if (vp->v_count > 1) 2262 dnlc_purge_vp(vp); 2263 2264 /* 2265 * Now we have the real reference count on the vnode 2266 */ 2267 rp = VTOR(vp); 2268 mutex_enter(&rp->r_statelock); 2269 if (vp->v_count > 1 && 2270 (rp->r_unldvp == NULL || strcmp(nm, rp->r_unlname) == 0)) { 2271 mutex_exit(&rp->r_statelock); 2272 tmpname = newname(); 2273 error = nfsrename(dvp, nm, dvp, tmpname, cr, ct); 2274 if (error) 2275 kmem_free(tmpname, MAXNAMELEN); 2276 else { 2277 mutex_enter(&rp->r_statelock); 2278 if (rp->r_unldvp == NULL) { 2279 VN_HOLD(dvp); 2280 rp->r_unldvp = dvp; 2281 if (rp->r_unlcred != NULL) 2282 crfree(rp->r_unlcred); 2283 crhold(cr); 2284 rp->r_unlcred = cr; 2285 rp->r_unlname = tmpname; 2286 } else { 2287 kmem_free(rp->r_unlname, MAXNAMELEN); 2288 rp->r_unlname = tmpname; 2289 } 2290 mutex_exit(&rp->r_statelock); 2291 } 2292 } else { 2293 mutex_exit(&rp->r_statelock); 2294 /* 2295 * We need to flush any dirty pages which happen to 2296 * be hanging around before removing the file. This 2297 * shouldn't happen very often and mostly on file 2298 * systems mounted "nocto". 2299 */ 2300 if (vn_has_cached_data(vp) && 2301 ((rp->r_flags & RDIRTY) || rp->r_count > 0)) { 2302 error = nfs_putpage(vp, (offset_t)0, 0, 0, cr, ct); 2303 if (error && (error == ENOSPC || error == EDQUOT)) { 2304 mutex_enter(&rp->r_statelock); 2305 if (!rp->r_error) 2306 rp->r_error = error; 2307 mutex_exit(&rp->r_statelock); 2308 } 2309 } 2310 2311 setdiropargs(&da, nm, dvp); 2312 2313 douprintf = 1; 2314 2315 error = rfs2call(VTOMI(dvp), RFS_REMOVE, 2316 xdr_diropargs, (caddr_t)&da, 2317 xdr_enum, (caddr_t)&status, cr, 2318 &douprintf, &status, 0, NULL); 2319 2320 /* 2321 * The xattr dir may be gone after last attr is removed, 2322 * so flush it from dnlc. 2323 */ 2324 if (dvp->v_flag & V_XATTRDIR) 2325 dnlc_purge_vp(dvp); 2326 2327 PURGE_ATTRCACHE(dvp); /* mod time changed */ 2328 PURGE_ATTRCACHE(vp); /* link count changed */ 2329 2330 if (!error) { 2331 error = geterrno(status); 2332 if (!error) { 2333 if (HAVE_RDDIR_CACHE(drp)) 2334 nfs_purge_rddir_cache(dvp); 2335 } else { 2336 PURGE_STALE_FH(error, dvp, cr); 2337 } 2338 } 2339 } 2340 2341 if (error == 0) { 2342 vnevent_remove(vp, dvp, nm, ct); 2343 } 2344 VN_RELE(vp); 2345 2346 nfs_rw_exit(&drp->r_rwlock); 2347 2348 return (error); 2349 } 2350 2351 /* ARGSUSED */ 2352 static int 2353 nfs_link(vnode_t *tdvp, vnode_t *svp, char *tnm, cred_t *cr, 2354 caller_context_t *ct, int flags) 2355 { 2356 int error; 2357 struct nfslinkargs args; 2358 enum nfsstat status; 2359 vnode_t *realvp; 2360 int douprintf; 2361 rnode_t *tdrp; 2362 2363 if (nfs_zone() != VTOMI(tdvp)->mi_zone) 2364 return (EPERM); 2365 if (VOP_REALVP(svp, &realvp, ct) == 0) 2366 svp = realvp; 2367 2368 args.la_from = VTOFH(svp); 2369 setdiropargs(&args.la_to, tnm, tdvp); 2370 2371 tdrp = VTOR(tdvp); 2372 if (nfs_rw_enter_sig(&tdrp->r_rwlock, RW_WRITER, INTR(tdvp))) 2373 return (EINTR); 2374 2375 dnlc_remove(tdvp, tnm); 2376 2377 douprintf = 1; 2378 2379 error = rfs2call(VTOMI(svp), RFS_LINK, 2380 xdr_linkargs, (caddr_t)&args, 2381 xdr_enum, (caddr_t)&status, cr, 2382 &douprintf, &status, 0, NULL); 2383 2384 PURGE_ATTRCACHE(tdvp); /* mod time changed */ 2385 PURGE_ATTRCACHE(svp); /* link count changed */ 2386 2387 if (!error) { 2388 error = geterrno(status); 2389 if (!error) { 2390 if (HAVE_RDDIR_CACHE(tdrp)) 2391 nfs_purge_rddir_cache(tdvp); 2392 } 2393 } 2394 2395 nfs_rw_exit(&tdrp->r_rwlock); 2396 2397 if (!error) { 2398 /* 2399 * Notify the source file of this link operation. 2400 */ 2401 vnevent_link(svp, ct); 2402 } 2403 return (error); 2404 } 2405 2406 /* ARGSUSED */ 2407 static int 2408 nfs_rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr, 2409 caller_context_t *ct, int flags) 2410 { 2411 vnode_t *realvp; 2412 2413 if (nfs_zone() != VTOMI(odvp)->mi_zone) 2414 return (EPERM); 2415 if (VOP_REALVP(ndvp, &realvp, ct) == 0) 2416 ndvp = realvp; 2417 2418 return (nfsrename(odvp, onm, ndvp, nnm, cr, ct)); 2419 } 2420 2421 /* 2422 * nfsrename does the real work of renaming in NFS Version 2. 2423 */ 2424 static int 2425 nfsrename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr, 2426 caller_context_t *ct) 2427 { 2428 int error; 2429 enum nfsstat status; 2430 struct nfsrnmargs args; 2431 int douprintf; 2432 vnode_t *nvp = NULL; 2433 vnode_t *ovp = NULL; 2434 char *tmpname; 2435 rnode_t *rp; 2436 rnode_t *odrp; 2437 rnode_t *ndrp; 2438 2439 ASSERT(nfs_zone() == VTOMI(odvp)->mi_zone); 2440 if (strcmp(onm, ".") == 0 || strcmp(onm, "..") == 0 || 2441 strcmp(nnm, ".") == 0 || strcmp(nnm, "..") == 0) 2442 return (EINVAL); 2443 2444 odrp = VTOR(odvp); 2445 ndrp = VTOR(ndvp); 2446 if ((intptr_t)odrp < (intptr_t)ndrp) { 2447 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR(odvp))) 2448 return (EINTR); 2449 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR(ndvp))) { 2450 nfs_rw_exit(&odrp->r_rwlock); 2451 return (EINTR); 2452 } 2453 } else { 2454 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR(ndvp))) 2455 return (EINTR); 2456 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR(odvp))) { 2457 nfs_rw_exit(&ndrp->r_rwlock); 2458 return (EINTR); 2459 } 2460 } 2461 2462 /* 2463 * Lookup the target file. If it exists, it needs to be 2464 * checked to see whether it is a mount point and whether 2465 * it is active (open). 2466 */ 2467 error = nfslookup(ndvp, nnm, &nvp, NULL, 0, NULL, cr, 0); 2468 if (!error) { 2469 /* 2470 * If this file has been mounted on, then just 2471 * return busy because renaming to it would remove 2472 * the mounted file system from the name space. 2473 */ 2474 if (vn_mountedvfs(nvp) != NULL) { 2475 VN_RELE(nvp); 2476 nfs_rw_exit(&odrp->r_rwlock); 2477 nfs_rw_exit(&ndrp->r_rwlock); 2478 return (EBUSY); 2479 } 2480 2481 /* 2482 * Purge the name cache of all references to this vnode 2483 * so that we can check the reference count to infer 2484 * whether it is active or not. 2485 */ 2486 /* 2487 * First just remove the entry from the name cache, as it 2488 * is most likely the only entry for this vp. 2489 */ 2490 dnlc_remove(ndvp, nnm); 2491 /* 2492 * If the file has a v_count > 1 then there may be more 2493 * than one entry in the name cache due multiple links 2494 * or an open file, but we don't have the real reference 2495 * count so flush all possible entries. 2496 */ 2497 if (nvp->v_count > 1) 2498 dnlc_purge_vp(nvp); 2499 2500 /* 2501 * If the vnode is active and is not a directory, 2502 * arrange to rename it to a 2503 * temporary file so that it will continue to be 2504 * accessible. This implements the "unlink-open-file" 2505 * semantics for the target of a rename operation. 2506 * Before doing this though, make sure that the 2507 * source and target files are not already the same. 2508 */ 2509 if (nvp->v_count > 1 && nvp->v_type != VDIR) { 2510 /* 2511 * Lookup the source name. 2512 */ 2513 error = nfslookup(odvp, onm, &ovp, NULL, 0, NULL, 2514 cr, 0); 2515 2516 /* 2517 * The source name *should* already exist. 2518 */ 2519 if (error) { 2520 VN_RELE(nvp); 2521 nfs_rw_exit(&odrp->r_rwlock); 2522 nfs_rw_exit(&ndrp->r_rwlock); 2523 return (error); 2524 } 2525 2526 /* 2527 * Compare the two vnodes. If they are the same, 2528 * just release all held vnodes and return success. 2529 */ 2530 if (ovp == nvp) { 2531 VN_RELE(ovp); 2532 VN_RELE(nvp); 2533 nfs_rw_exit(&odrp->r_rwlock); 2534 nfs_rw_exit(&ndrp->r_rwlock); 2535 return (0); 2536 } 2537 2538 /* 2539 * Can't mix and match directories and non- 2540 * directories in rename operations. We already 2541 * know that the target is not a directory. If 2542 * the source is a directory, return an error. 2543 */ 2544 if (ovp->v_type == VDIR) { 2545 VN_RELE(ovp); 2546 VN_RELE(nvp); 2547 nfs_rw_exit(&odrp->r_rwlock); 2548 nfs_rw_exit(&ndrp->r_rwlock); 2549 return (ENOTDIR); 2550 } 2551 2552 /* 2553 * The target file exists, is not the same as 2554 * the source file, and is active. Link it 2555 * to a temporary filename to avoid having 2556 * the server removing the file completely. 2557 */ 2558 tmpname = newname(); 2559 error = nfs_link(ndvp, nvp, tmpname, cr, NULL, 0); 2560 if (error == EOPNOTSUPP) { 2561 error = nfs_rename(ndvp, nnm, ndvp, tmpname, 2562 cr, NULL, 0); 2563 } 2564 if (error) { 2565 kmem_free(tmpname, MAXNAMELEN); 2566 VN_RELE(ovp); 2567 VN_RELE(nvp); 2568 nfs_rw_exit(&odrp->r_rwlock); 2569 nfs_rw_exit(&ndrp->r_rwlock); 2570 return (error); 2571 } 2572 rp = VTOR(nvp); 2573 mutex_enter(&rp->r_statelock); 2574 if (rp->r_unldvp == NULL) { 2575 VN_HOLD(ndvp); 2576 rp->r_unldvp = ndvp; 2577 if (rp->r_unlcred != NULL) 2578 crfree(rp->r_unlcred); 2579 crhold(cr); 2580 rp->r_unlcred = cr; 2581 rp->r_unlname = tmpname; 2582 } else { 2583 kmem_free(rp->r_unlname, MAXNAMELEN); 2584 rp->r_unlname = tmpname; 2585 } 2586 mutex_exit(&rp->r_statelock); 2587 } 2588 } 2589 2590 if (ovp == NULL) { 2591 /* 2592 * When renaming directories to be a subdirectory of a 2593 * different parent, the dnlc entry for ".." will no 2594 * longer be valid, so it must be removed. 2595 * 2596 * We do a lookup here to determine whether we are renaming 2597 * a directory and we need to check if we are renaming 2598 * an unlinked file. This might have already been done 2599 * in previous code, so we check ovp == NULL to avoid 2600 * doing it twice. 2601 */ 2602 2603 error = nfslookup(odvp, onm, &ovp, NULL, 0, NULL, cr, 0); 2604 2605 /* 2606 * The source name *should* already exist. 2607 */ 2608 if (error) { 2609 nfs_rw_exit(&odrp->r_rwlock); 2610 nfs_rw_exit(&ndrp->r_rwlock); 2611 if (nvp) { 2612 VN_RELE(nvp); 2613 } 2614 return (error); 2615 } 2616 ASSERT(ovp != NULL); 2617 } 2618 2619 dnlc_remove(odvp, onm); 2620 dnlc_remove(ndvp, nnm); 2621 2622 setdiropargs(&args.rna_from, onm, odvp); 2623 setdiropargs(&args.rna_to, nnm, ndvp); 2624 2625 douprintf = 1; 2626 2627 error = rfs2call(VTOMI(odvp), RFS_RENAME, 2628 xdr_rnmargs, (caddr_t)&args, 2629 xdr_enum, (caddr_t)&status, cr, 2630 &douprintf, &status, 0, NULL); 2631 2632 PURGE_ATTRCACHE(odvp); /* mod time changed */ 2633 PURGE_ATTRCACHE(ndvp); /* mod time changed */ 2634 2635 if (!error) { 2636 error = geterrno(status); 2637 if (!error) { 2638 if (HAVE_RDDIR_CACHE(odrp)) 2639 nfs_purge_rddir_cache(odvp); 2640 if (HAVE_RDDIR_CACHE(ndrp)) 2641 nfs_purge_rddir_cache(ndvp); 2642 /* 2643 * when renaming directories to be a subdirectory of a 2644 * different parent, the dnlc entry for ".." will no 2645 * longer be valid, so it must be removed 2646 */ 2647 rp = VTOR(ovp); 2648 if (ndvp != odvp) { 2649 if (ovp->v_type == VDIR) { 2650 dnlc_remove(ovp, ".."); 2651 if (HAVE_RDDIR_CACHE(rp)) 2652 nfs_purge_rddir_cache(ovp); 2653 } 2654 } 2655 2656 /* 2657 * If we are renaming the unlinked file, update the 2658 * r_unldvp and r_unlname as needed. 2659 */ 2660 mutex_enter(&rp->r_statelock); 2661 if (rp->r_unldvp != NULL) { 2662 if (strcmp(rp->r_unlname, onm) == 0) { 2663 (void) strncpy(rp->r_unlname, 2664 nnm, MAXNAMELEN); 2665 rp->r_unlname[MAXNAMELEN - 1] = '\0'; 2666 2667 if (ndvp != rp->r_unldvp) { 2668 VN_RELE(rp->r_unldvp); 2669 rp->r_unldvp = ndvp; 2670 VN_HOLD(ndvp); 2671 } 2672 } 2673 } 2674 mutex_exit(&rp->r_statelock); 2675 } else { 2676 /* 2677 * System V defines rename to return EEXIST, not 2678 * ENOTEMPTY if the target directory is not empty. 2679 * Over the wire, the error is NFSERR_ENOTEMPTY 2680 * which geterrno maps to ENOTEMPTY. 2681 */ 2682 if (error == ENOTEMPTY) 2683 error = EEXIST; 2684 } 2685 } 2686 2687 if (error == 0) { 2688 if (nvp) 2689 vnevent_rename_dest(nvp, ndvp, nnm, ct); 2690 2691 if (odvp != ndvp) 2692 vnevent_rename_dest_dir(ndvp, ct); 2693 2694 ASSERT(ovp != NULL); 2695 vnevent_rename_src(ovp, odvp, onm, ct); 2696 } 2697 2698 if (nvp) { 2699 VN_RELE(nvp); 2700 } 2701 VN_RELE(ovp); 2702 2703 nfs_rw_exit(&odrp->r_rwlock); 2704 nfs_rw_exit(&ndrp->r_rwlock); 2705 2706 return (error); 2707 } 2708 2709 /* ARGSUSED */ 2710 static int 2711 nfs_mkdir(vnode_t *dvp, char *nm, struct vattr *va, vnode_t **vpp, cred_t *cr, 2712 caller_context_t *ct, int flags, vsecattr_t *vsecp) 2713 { 2714 int error; 2715 struct nfscreatargs args; 2716 struct nfsdiropres dr; 2717 int douprintf; 2718 rnode_t *drp; 2719 hrtime_t t; 2720 2721 if (nfs_zone() != VTOMI(dvp)->mi_zone) 2722 return (EPERM); 2723 2724 setdiropargs(&args.ca_da, nm, dvp); 2725 2726 /* 2727 * Decide what the group-id and set-gid bit of the created directory 2728 * should be. May have to do a setattr to get the gid right. 2729 */ 2730 error = setdirgid(dvp, &va->va_gid, cr); 2731 if (error) 2732 return (error); 2733 error = setdirmode(dvp, &va->va_mode, cr); 2734 if (error) 2735 return (error); 2736 va->va_mask |= AT_MODE|AT_GID; 2737 2738 args.ca_sa = &args.ca_sa_buf; 2739 error = vattr_to_sattr(va, args.ca_sa); 2740 if (error) { 2741 /* req time field(s) overflow - return immediately */ 2742 return (error); 2743 } 2744 2745 drp = VTOR(dvp); 2746 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 2747 return (EINTR); 2748 2749 dnlc_remove(dvp, nm); 2750 2751 douprintf = 1; 2752 2753 t = gethrtime(); 2754 2755 error = rfs2call(VTOMI(dvp), RFS_MKDIR, 2756 xdr_creatargs, (caddr_t)&args, 2757 xdr_diropres, (caddr_t)&dr, cr, 2758 &douprintf, &dr.dr_status, 0, NULL); 2759 2760 PURGE_ATTRCACHE(dvp); /* mod time changed */ 2761 2762 if (!error) { 2763 error = geterrno(dr.dr_status); 2764 if (!error) { 2765 if (HAVE_RDDIR_CACHE(drp)) 2766 nfs_purge_rddir_cache(dvp); 2767 /* 2768 * The attributes returned by RFS_MKDIR can not 2769 * be depended upon, so mark the attribute cache 2770 * as purged. A subsequent GETATTR will get the 2771 * correct attributes from the server. 2772 */ 2773 *vpp = makenfsnode(&dr.dr_fhandle, &dr.dr_attr, 2774 dvp->v_vfsp, t, cr, NULL, NULL); 2775 PURGE_ATTRCACHE(*vpp); 2776 dnlc_update(dvp, nm, *vpp); 2777 2778 /* 2779 * Make sure the gid was set correctly. 2780 * If not, try to set it (but don't lose 2781 * any sleep over it). 2782 */ 2783 if (va->va_gid != VTOR(*vpp)->r_attr.va_gid) { 2784 va->va_mask = AT_GID; 2785 (void) nfssetattr(*vpp, va, 0, cr); 2786 } 2787 } else { 2788 PURGE_STALE_FH(error, dvp, cr); 2789 } 2790 } 2791 2792 nfs_rw_exit(&drp->r_rwlock); 2793 2794 return (error); 2795 } 2796 2797 /* ARGSUSED */ 2798 static int 2799 nfs_rmdir(vnode_t *dvp, char *nm, vnode_t *cdir, cred_t *cr, 2800 caller_context_t *ct, int flags) 2801 { 2802 int error; 2803 enum nfsstat status; 2804 struct nfsdiropargs da; 2805 vnode_t *vp; 2806 int douprintf; 2807 rnode_t *drp; 2808 2809 if (nfs_zone() != VTOMI(dvp)->mi_zone) 2810 return (EPERM); 2811 drp = VTOR(dvp); 2812 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 2813 return (EINTR); 2814 2815 /* 2816 * Attempt to prevent a rmdir(".") from succeeding. 2817 */ 2818 error = nfslookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); 2819 if (error) { 2820 nfs_rw_exit(&drp->r_rwlock); 2821 return (error); 2822 } 2823 2824 if (vp == cdir) { 2825 VN_RELE(vp); 2826 nfs_rw_exit(&drp->r_rwlock); 2827 return (EINVAL); 2828 } 2829 2830 setdiropargs(&da, nm, dvp); 2831 2832 /* 2833 * First just remove the entry from the name cache, as it 2834 * is most likely an entry for this vp. 2835 */ 2836 dnlc_remove(dvp, nm); 2837 2838 /* 2839 * If there vnode reference count is greater than one, then 2840 * there may be additional references in the DNLC which will 2841 * need to be purged. First, trying removing the entry for 2842 * the parent directory and see if that removes the additional 2843 * reference(s). If that doesn't do it, then use dnlc_purge_vp 2844 * to completely remove any references to the directory which 2845 * might still exist in the DNLC. 2846 */ 2847 if (vp->v_count > 1) { 2848 dnlc_remove(vp, ".."); 2849 if (vp->v_count > 1) 2850 dnlc_purge_vp(vp); 2851 } 2852 2853 douprintf = 1; 2854 2855 error = rfs2call(VTOMI(dvp), RFS_RMDIR, 2856 xdr_diropargs, (caddr_t)&da, 2857 xdr_enum, (caddr_t)&status, cr, 2858 &douprintf, &status, 0, NULL); 2859 2860 PURGE_ATTRCACHE(dvp); /* mod time changed */ 2861 2862 if (error) { 2863 VN_RELE(vp); 2864 nfs_rw_exit(&drp->r_rwlock); 2865 return (error); 2866 } 2867 2868 error = geterrno(status); 2869 if (!error) { 2870 if (HAVE_RDDIR_CACHE(drp)) 2871 nfs_purge_rddir_cache(dvp); 2872 if (HAVE_RDDIR_CACHE(VTOR(vp))) 2873 nfs_purge_rddir_cache(vp); 2874 } else { 2875 PURGE_STALE_FH(error, dvp, cr); 2876 /* 2877 * System V defines rmdir to return EEXIST, not 2878 * ENOTEMPTY if the directory is not empty. Over 2879 * the wire, the error is NFSERR_ENOTEMPTY which 2880 * geterrno maps to ENOTEMPTY. 2881 */ 2882 if (error == ENOTEMPTY) 2883 error = EEXIST; 2884 } 2885 2886 if (error == 0) { 2887 vnevent_rmdir(vp, dvp, nm, ct); 2888 } 2889 VN_RELE(vp); 2890 2891 nfs_rw_exit(&drp->r_rwlock); 2892 2893 return (error); 2894 } 2895 2896 /* ARGSUSED */ 2897 static int 2898 nfs_symlink(vnode_t *dvp, char *lnm, struct vattr *tva, char *tnm, cred_t *cr, 2899 caller_context_t *ct, int flags) 2900 { 2901 int error; 2902 struct nfsslargs args; 2903 enum nfsstat status; 2904 int douprintf; 2905 rnode_t *drp; 2906 2907 if (nfs_zone() != VTOMI(dvp)->mi_zone) 2908 return (EPERM); 2909 setdiropargs(&args.sla_from, lnm, dvp); 2910 args.sla_sa = &args.sla_sa_buf; 2911 error = vattr_to_sattr(tva, args.sla_sa); 2912 if (error) { 2913 /* req time field(s) overflow - return immediately */ 2914 return (error); 2915 } 2916 args.sla_tnm = tnm; 2917 2918 drp = VTOR(dvp); 2919 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 2920 return (EINTR); 2921 2922 dnlc_remove(dvp, lnm); 2923 2924 douprintf = 1; 2925 2926 error = rfs2call(VTOMI(dvp), RFS_SYMLINK, 2927 xdr_slargs, (caddr_t)&args, 2928 xdr_enum, (caddr_t)&status, cr, 2929 &douprintf, &status, 0, NULL); 2930 2931 PURGE_ATTRCACHE(dvp); /* mod time changed */ 2932 2933 if (!error) { 2934 error = geterrno(status); 2935 if (!error) { 2936 if (HAVE_RDDIR_CACHE(drp)) 2937 nfs_purge_rddir_cache(dvp); 2938 } else { 2939 PURGE_STALE_FH(error, dvp, cr); 2940 } 2941 } 2942 2943 nfs_rw_exit(&drp->r_rwlock); 2944 2945 return (error); 2946 } 2947 2948 #ifdef DEBUG 2949 static int nfs_readdir_cache_hits = 0; 2950 static int nfs_readdir_cache_shorts = 0; 2951 static int nfs_readdir_cache_waits = 0; 2952 static int nfs_readdir_cache_misses = 0; 2953 static int nfs_readdir_readahead = 0; 2954 #endif 2955 2956 static int nfs_shrinkreaddir = 0; 2957 2958 /* 2959 * Read directory entries. 2960 * There are some weird things to look out for here. The uio_offset 2961 * field is either 0 or it is the offset returned from a previous 2962 * readdir. It is an opaque value used by the server to find the 2963 * correct directory block to read. The count field is the number 2964 * of blocks to read on the server. This is advisory only, the server 2965 * may return only one block's worth of entries. Entries may be compressed 2966 * on the server. 2967 */ 2968 /* ARGSUSED */ 2969 static int 2970 nfs_readdir(vnode_t *vp, struct uio *uiop, cred_t *cr, int *eofp, 2971 caller_context_t *ct, int flags) 2972 { 2973 int error; 2974 size_t count; 2975 rnode_t *rp; 2976 rddir_cache *rdc; 2977 rddir_cache *nrdc; 2978 rddir_cache *rrdc; 2979 #ifdef DEBUG 2980 int missed; 2981 #endif 2982 rddir_cache srdc; 2983 avl_index_t where; 2984 2985 rp = VTOR(vp); 2986 2987 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 2988 if (nfs_zone() != VTOMI(vp)->mi_zone) 2989 return (EIO); 2990 /* 2991 * Make sure that the directory cache is valid. 2992 */ 2993 if (HAVE_RDDIR_CACHE(rp)) { 2994 if (nfs_disable_rddir_cache) { 2995 /* 2996 * Setting nfs_disable_rddir_cache in /etc/system 2997 * allows interoperability with servers that do not 2998 * properly update the attributes of directories. 2999 * Any cached information gets purged before an 3000 * access is made to it. 3001 */ 3002 nfs_purge_rddir_cache(vp); 3003 } else { 3004 error = nfs_validate_caches(vp, cr); 3005 if (error) 3006 return (error); 3007 } 3008 } 3009 3010 /* 3011 * UGLINESS: SunOS 3.2 servers apparently cannot always handle an 3012 * RFS_READDIR request with rda_count set to more than 0x400. So 3013 * we reduce the request size here purely for compatibility. 3014 * 3015 * In general, this is no longer required. However, if a server 3016 * is discovered which can not handle requests larger than 1024, 3017 * nfs_shrinkreaddir can be set to 1 to enable this backwards 3018 * compatibility. 3019 * 3020 * In any case, the request size is limited to NFS_MAXDATA bytes. 3021 */ 3022 count = MIN(uiop->uio_iov->iov_len, 3023 nfs_shrinkreaddir ? 0x400 : NFS_MAXDATA); 3024 3025 nrdc = NULL; 3026 #ifdef DEBUG 3027 missed = 0; 3028 #endif 3029 top: 3030 /* 3031 * Short circuit last readdir which always returns 0 bytes. 3032 * This can be done after the directory has been read through 3033 * completely at least once. This will set r_direof which 3034 * can be used to find the value of the last cookie. 3035 */ 3036 mutex_enter(&rp->r_statelock); 3037 if (rp->r_direof != NULL && 3038 uiop->uio_offset == rp->r_direof->nfs_ncookie) { 3039 mutex_exit(&rp->r_statelock); 3040 #ifdef DEBUG 3041 nfs_readdir_cache_shorts++; 3042 #endif 3043 if (eofp) 3044 *eofp = 1; 3045 if (nrdc != NULL) 3046 rddir_cache_rele(nrdc); 3047 return (0); 3048 } 3049 /* 3050 * Look for a cache entry. Cache entries are identified 3051 * by the NFS cookie value and the byte count requested. 3052 */ 3053 srdc.nfs_cookie = uiop->uio_offset; 3054 srdc.buflen = count; 3055 rdc = avl_find(&rp->r_dir, &srdc, &where); 3056 if (rdc != NULL) { 3057 rddir_cache_hold(rdc); 3058 /* 3059 * If the cache entry is in the process of being 3060 * filled in, wait until this completes. The 3061 * RDDIRWAIT bit is set to indicate that someone 3062 * is waiting and then the thread currently 3063 * filling the entry is done, it should do a 3064 * cv_broadcast to wakeup all of the threads 3065 * waiting for it to finish. 3066 */ 3067 if (rdc->flags & RDDIR) { 3068 nfs_rw_exit(&rp->r_rwlock); 3069 rdc->flags |= RDDIRWAIT; 3070 #ifdef DEBUG 3071 nfs_readdir_cache_waits++; 3072 #endif 3073 if (!cv_wait_sig(&rdc->cv, &rp->r_statelock)) { 3074 /* 3075 * We got interrupted, probably 3076 * the user typed ^C or an alarm 3077 * fired. We free the new entry 3078 * if we allocated one. 3079 */ 3080 mutex_exit(&rp->r_statelock); 3081 (void) nfs_rw_enter_sig(&rp->r_rwlock, 3082 RW_READER, FALSE); 3083 rddir_cache_rele(rdc); 3084 if (nrdc != NULL) 3085 rddir_cache_rele(nrdc); 3086 return (EINTR); 3087 } 3088 mutex_exit(&rp->r_statelock); 3089 (void) nfs_rw_enter_sig(&rp->r_rwlock, 3090 RW_READER, FALSE); 3091 rddir_cache_rele(rdc); 3092 goto top; 3093 } 3094 /* 3095 * Check to see if a readdir is required to 3096 * fill the entry. If so, mark this entry 3097 * as being filled, remove our reference, 3098 * and branch to the code to fill the entry. 3099 */ 3100 if (rdc->flags & RDDIRREQ) { 3101 rdc->flags &= ~RDDIRREQ; 3102 rdc->flags |= RDDIR; 3103 if (nrdc != NULL) 3104 rddir_cache_rele(nrdc); 3105 nrdc = rdc; 3106 mutex_exit(&rp->r_statelock); 3107 goto bottom; 3108 } 3109 #ifdef DEBUG 3110 if (!missed) 3111 nfs_readdir_cache_hits++; 3112 #endif 3113 /* 3114 * If an error occurred while attempting 3115 * to fill the cache entry, just return it. 3116 */ 3117 if (rdc->error) { 3118 error = rdc->error; 3119 mutex_exit(&rp->r_statelock); 3120 rddir_cache_rele(rdc); 3121 if (nrdc != NULL) 3122 rddir_cache_rele(nrdc); 3123 return (error); 3124 } 3125 3126 /* 3127 * The cache entry is complete and good, 3128 * copyout the dirent structs to the calling 3129 * thread. 3130 */ 3131 error = uiomove(rdc->entries, rdc->entlen, UIO_READ, uiop); 3132 3133 /* 3134 * If no error occurred during the copyout, 3135 * update the offset in the uio struct to 3136 * contain the value of the next cookie 3137 * and set the eof value appropriately. 3138 */ 3139 if (!error) { 3140 uiop->uio_offset = rdc->nfs_ncookie; 3141 if (eofp) 3142 *eofp = rdc->eof; 3143 } 3144 3145 /* 3146 * Decide whether to do readahead. Don't if 3147 * have already read to the end of directory. 3148 */ 3149 if (rdc->eof) { 3150 rp->r_direof = rdc; 3151 mutex_exit(&rp->r_statelock); 3152 rddir_cache_rele(rdc); 3153 if (nrdc != NULL) 3154 rddir_cache_rele(nrdc); 3155 return (error); 3156 } 3157 3158 /* 3159 * Check to see whether we found an entry 3160 * for the readahead. If so, we don't need 3161 * to do anything further, so free the new 3162 * entry if one was allocated. Otherwise, 3163 * allocate a new entry, add it to the cache, 3164 * and then initiate an asynchronous readdir 3165 * operation to fill it. 3166 */ 3167 srdc.nfs_cookie = rdc->nfs_ncookie; 3168 srdc.buflen = count; 3169 rrdc = avl_find(&rp->r_dir, &srdc, &where); 3170 if (rrdc != NULL) { 3171 if (nrdc != NULL) 3172 rddir_cache_rele(nrdc); 3173 } else { 3174 if (nrdc != NULL) 3175 rrdc = nrdc; 3176 else { 3177 rrdc = rddir_cache_alloc(KM_NOSLEEP); 3178 } 3179 if (rrdc != NULL) { 3180 rrdc->nfs_cookie = rdc->nfs_ncookie; 3181 rrdc->buflen = count; 3182 avl_insert(&rp->r_dir, rrdc, where); 3183 rddir_cache_hold(rrdc); 3184 mutex_exit(&rp->r_statelock); 3185 rddir_cache_rele(rdc); 3186 #ifdef DEBUG 3187 nfs_readdir_readahead++; 3188 #endif 3189 nfs_async_readdir(vp, rrdc, cr, nfsreaddir); 3190 return (error); 3191 } 3192 } 3193 3194 mutex_exit(&rp->r_statelock); 3195 rddir_cache_rele(rdc); 3196 return (error); 3197 } 3198 3199 /* 3200 * Didn't find an entry in the cache. Construct a new empty 3201 * entry and link it into the cache. Other processes attempting 3202 * to access this entry will need to wait until it is filled in. 3203 * 3204 * Since kmem_alloc may block, another pass through the cache 3205 * will need to be taken to make sure that another process 3206 * hasn't already added an entry to the cache for this request. 3207 */ 3208 if (nrdc == NULL) { 3209 mutex_exit(&rp->r_statelock); 3210 nrdc = rddir_cache_alloc(KM_SLEEP); 3211 nrdc->nfs_cookie = uiop->uio_offset; 3212 nrdc->buflen = count; 3213 goto top; 3214 } 3215 3216 /* 3217 * Add this entry to the cache. 3218 */ 3219 avl_insert(&rp->r_dir, nrdc, where); 3220 rddir_cache_hold(nrdc); 3221 mutex_exit(&rp->r_statelock); 3222 3223 bottom: 3224 #ifdef DEBUG 3225 missed = 1; 3226 nfs_readdir_cache_misses++; 3227 #endif 3228 /* 3229 * Do the readdir. 3230 */ 3231 error = nfsreaddir(vp, nrdc, cr); 3232 3233 /* 3234 * If this operation failed, just return the error which occurred. 3235 */ 3236 if (error != 0) 3237 return (error); 3238 3239 /* 3240 * Since the RPC operation will have taken sometime and blocked 3241 * this process, another pass through the cache will need to be 3242 * taken to find the correct cache entry. It is possible that 3243 * the correct cache entry will not be there (although one was 3244 * added) because the directory changed during the RPC operation 3245 * and the readdir cache was flushed. In this case, just start 3246 * over. It is hoped that this will not happen too often... :-) 3247 */ 3248 nrdc = NULL; 3249 goto top; 3250 /* NOTREACHED */ 3251 } 3252 3253 static int 3254 nfsreaddir(vnode_t *vp, rddir_cache *rdc, cred_t *cr) 3255 { 3256 int error; 3257 struct nfsrddirargs rda; 3258 struct nfsrddirres rd; 3259 rnode_t *rp; 3260 mntinfo_t *mi; 3261 uint_t count; 3262 int douprintf; 3263 failinfo_t fi, *fip; 3264 3265 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 3266 count = rdc->buflen; 3267 3268 rp = VTOR(vp); 3269 mi = VTOMI(vp); 3270 3271 rda.rda_fh = *VTOFH(vp); 3272 rda.rda_offset = rdc->nfs_cookie; 3273 3274 /* 3275 * NFS client failover support 3276 * suppress failover unless we have a zero cookie 3277 */ 3278 if (rdc->nfs_cookie == (off_t)0) { 3279 fi.vp = vp; 3280 fi.fhp = (caddr_t)&rda.rda_fh; 3281 fi.copyproc = nfscopyfh; 3282 fi.lookupproc = nfslookup; 3283 fi.xattrdirproc = acl_getxattrdir2; 3284 fip = &fi; 3285 } else { 3286 fip = NULL; 3287 } 3288 3289 rd.rd_entries = kmem_alloc(rdc->buflen, KM_SLEEP); 3290 rd.rd_size = count; 3291 rd.rd_offset = rda.rda_offset; 3292 3293 douprintf = 1; 3294 3295 if (mi->mi_io_kstats) { 3296 mutex_enter(&mi->mi_lock); 3297 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 3298 mutex_exit(&mi->mi_lock); 3299 } 3300 3301 do { 3302 rda.rda_count = MIN(count, mi->mi_curread); 3303 error = rfs2call(mi, RFS_READDIR, 3304 xdr_rddirargs, (caddr_t)&rda, 3305 xdr_getrddirres, (caddr_t)&rd, cr, 3306 &douprintf, &rd.rd_status, 0, fip); 3307 } while (error == ENFS_TRYAGAIN); 3308 3309 if (mi->mi_io_kstats) { 3310 mutex_enter(&mi->mi_lock); 3311 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 3312 mutex_exit(&mi->mi_lock); 3313 } 3314 3315 /* 3316 * Since we are actually doing a READDIR RPC, we must have 3317 * exclusive access to the cache entry being filled. Thus, 3318 * it is safe to update all fields except for the flags 3319 * field. The r_statelock in the rnode must be held to 3320 * prevent two different threads from simultaneously 3321 * attempting to update the flags field. This can happen 3322 * if we are turning off RDDIR and the other thread is 3323 * trying to set RDDIRWAIT. 3324 */ 3325 ASSERT(rdc->flags & RDDIR); 3326 if (!error) { 3327 error = geterrno(rd.rd_status); 3328 if (!error) { 3329 rdc->nfs_ncookie = rd.rd_offset; 3330 rdc->eof = rd.rd_eof ? 1 : 0; 3331 rdc->entlen = rd.rd_size; 3332 ASSERT(rdc->entlen <= rdc->buflen); 3333 #ifdef DEBUG 3334 rdc->entries = rddir_cache_buf_alloc(rdc->buflen, 3335 KM_SLEEP); 3336 #else 3337 rdc->entries = kmem_alloc(rdc->buflen, KM_SLEEP); 3338 #endif 3339 bcopy(rd.rd_entries, rdc->entries, rdc->entlen); 3340 rdc->error = 0; 3341 if (mi->mi_io_kstats) { 3342 mutex_enter(&mi->mi_lock); 3343 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 3344 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += 3345 rd.rd_size; 3346 mutex_exit(&mi->mi_lock); 3347 } 3348 } else { 3349 PURGE_STALE_FH(error, vp, cr); 3350 } 3351 } 3352 if (error) { 3353 rdc->entries = NULL; 3354 rdc->error = error; 3355 } 3356 kmem_free(rd.rd_entries, rdc->buflen); 3357 3358 mutex_enter(&rp->r_statelock); 3359 rdc->flags &= ~RDDIR; 3360 if (rdc->flags & RDDIRWAIT) { 3361 rdc->flags &= ~RDDIRWAIT; 3362 cv_broadcast(&rdc->cv); 3363 } 3364 if (error) 3365 rdc->flags |= RDDIRREQ; 3366 mutex_exit(&rp->r_statelock); 3367 3368 rddir_cache_rele(rdc); 3369 3370 return (error); 3371 } 3372 3373 #ifdef DEBUG 3374 static int nfs_bio_do_stop = 0; 3375 #endif 3376 3377 static int 3378 nfs_bio(struct buf *bp, cred_t *cr) 3379 { 3380 rnode_t *rp = VTOR(bp->b_vp); 3381 int count; 3382 int error; 3383 cred_t *cred; 3384 uint_t offset; 3385 3386 DTRACE_IO1(start, struct buf *, bp); 3387 3388 ASSERT(nfs_zone() == VTOMI(bp->b_vp)->mi_zone); 3389 offset = dbtob(bp->b_blkno); 3390 3391 if (bp->b_flags & B_READ) { 3392 mutex_enter(&rp->r_statelock); 3393 if (rp->r_cred != NULL) { 3394 cred = rp->r_cred; 3395 crhold(cred); 3396 } else { 3397 rp->r_cred = cr; 3398 crhold(cr); 3399 cred = cr; 3400 crhold(cred); 3401 } 3402 mutex_exit(&rp->r_statelock); 3403 read_again: 3404 error = bp->b_error = nfsread(bp->b_vp, bp->b_un.b_addr, 3405 offset, bp->b_bcount, &bp->b_resid, cred); 3406 3407 crfree(cred); 3408 if (!error) { 3409 if (bp->b_resid) { 3410 /* 3411 * Didn't get it all because we hit EOF, 3412 * zero all the memory beyond the EOF. 3413 */ 3414 /* bzero(rdaddr + */ 3415 bzero(bp->b_un.b_addr + 3416 bp->b_bcount - bp->b_resid, bp->b_resid); 3417 } 3418 mutex_enter(&rp->r_statelock); 3419 if (bp->b_resid == bp->b_bcount && 3420 offset >= rp->r_size) { 3421 /* 3422 * We didn't read anything at all as we are 3423 * past EOF. Return an error indicator back 3424 * but don't destroy the pages (yet). 3425 */ 3426 error = NFS_EOF; 3427 } 3428 mutex_exit(&rp->r_statelock); 3429 } else if (error == EACCES) { 3430 mutex_enter(&rp->r_statelock); 3431 if (cred != cr) { 3432 if (rp->r_cred != NULL) 3433 crfree(rp->r_cred); 3434 rp->r_cred = cr; 3435 crhold(cr); 3436 cred = cr; 3437 crhold(cred); 3438 mutex_exit(&rp->r_statelock); 3439 goto read_again; 3440 } 3441 mutex_exit(&rp->r_statelock); 3442 } 3443 } else { 3444 if (!(rp->r_flags & RSTALE)) { 3445 mutex_enter(&rp->r_statelock); 3446 if (rp->r_cred != NULL) { 3447 cred = rp->r_cred; 3448 crhold(cred); 3449 } else { 3450 rp->r_cred = cr; 3451 crhold(cr); 3452 cred = cr; 3453 crhold(cred); 3454 } 3455 mutex_exit(&rp->r_statelock); 3456 write_again: 3457 mutex_enter(&rp->r_statelock); 3458 count = MIN(bp->b_bcount, rp->r_size - offset); 3459 mutex_exit(&rp->r_statelock); 3460 if (count < 0) 3461 cmn_err(CE_PANIC, "nfs_bio: write count < 0"); 3462 #ifdef DEBUG 3463 if (count == 0) { 3464 zcmn_err(getzoneid(), CE_WARN, 3465 "nfs_bio: zero length write at %d", 3466 offset); 3467 nfs_printfhandle(&rp->r_fh); 3468 if (nfs_bio_do_stop) 3469 debug_enter("nfs_bio"); 3470 } 3471 #endif 3472 error = nfswrite(bp->b_vp, bp->b_un.b_addr, offset, 3473 count, cred); 3474 if (error == EACCES) { 3475 mutex_enter(&rp->r_statelock); 3476 if (cred != cr) { 3477 if (rp->r_cred != NULL) 3478 crfree(rp->r_cred); 3479 rp->r_cred = cr; 3480 crhold(cr); 3481 crfree(cred); 3482 cred = cr; 3483 crhold(cred); 3484 mutex_exit(&rp->r_statelock); 3485 goto write_again; 3486 } 3487 mutex_exit(&rp->r_statelock); 3488 } 3489 bp->b_error = error; 3490 if (error && error != EINTR) { 3491 /* 3492 * Don't print EDQUOT errors on the console. 3493 * Don't print asynchronous EACCES errors. 3494 * Don't print EFBIG errors. 3495 * Print all other write errors. 3496 */ 3497 if (error != EDQUOT && error != EFBIG && 3498 (error != EACCES || 3499 !(bp->b_flags & B_ASYNC))) 3500 nfs_write_error(bp->b_vp, error, cred); 3501 /* 3502 * Update r_error and r_flags as appropriate. 3503 * If the error was ESTALE, then mark the 3504 * rnode as not being writeable and save 3505 * the error status. Otherwise, save any 3506 * errors which occur from asynchronous 3507 * page invalidations. Any errors occurring 3508 * from other operations should be saved 3509 * by the caller. 3510 */ 3511 mutex_enter(&rp->r_statelock); 3512 if (error == ESTALE) { 3513 rp->r_flags |= RSTALE; 3514 if (!rp->r_error) 3515 rp->r_error = error; 3516 } else if (!rp->r_error && 3517 (bp->b_flags & 3518 (B_INVAL|B_FORCE|B_ASYNC)) == 3519 (B_INVAL|B_FORCE|B_ASYNC)) { 3520 rp->r_error = error; 3521 } 3522 mutex_exit(&rp->r_statelock); 3523 } 3524 crfree(cred); 3525 } else { 3526 error = rp->r_error; 3527 /* 3528 * A close may have cleared r_error, if so, 3529 * propagate ESTALE error return properly 3530 */ 3531 if (error == 0) 3532 error = ESTALE; 3533 } 3534 } 3535 3536 if (error != 0 && error != NFS_EOF) 3537 bp->b_flags |= B_ERROR; 3538 3539 DTRACE_IO1(done, struct buf *, bp); 3540 3541 return (error); 3542 } 3543 3544 /* ARGSUSED */ 3545 static int 3546 nfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 3547 { 3548 struct nfs_fid *fp; 3549 rnode_t *rp; 3550 3551 rp = VTOR(vp); 3552 3553 if (fidp->fid_len < (sizeof (struct nfs_fid) - sizeof (short))) { 3554 fidp->fid_len = sizeof (struct nfs_fid) - sizeof (short); 3555 return (ENOSPC); 3556 } 3557 fp = (struct nfs_fid *)fidp; 3558 fp->nf_pad = 0; 3559 fp->nf_len = sizeof (struct nfs_fid) - sizeof (short); 3560 bcopy(rp->r_fh.fh_buf, fp->nf_data, NFS_FHSIZE); 3561 return (0); 3562 } 3563 3564 /* ARGSUSED2 */ 3565 static int 3566 nfs_rwlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 3567 { 3568 rnode_t *rp = VTOR(vp); 3569 3570 if (!write_lock) { 3571 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 3572 return (V_WRITELOCK_FALSE); 3573 } 3574 3575 if ((rp->r_flags & RDIRECTIO) || (VTOMI(vp)->mi_flags & MI_DIRECTIO)) { 3576 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 3577 if (rp->r_mapcnt == 0 && !vn_has_cached_data(vp)) 3578 return (V_WRITELOCK_FALSE); 3579 nfs_rw_exit(&rp->r_rwlock); 3580 } 3581 3582 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, FALSE); 3583 return (V_WRITELOCK_TRUE); 3584 } 3585 3586 /* ARGSUSED */ 3587 static void 3588 nfs_rwunlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 3589 { 3590 rnode_t *rp = VTOR(vp); 3591 3592 nfs_rw_exit(&rp->r_rwlock); 3593 } 3594 3595 /* ARGSUSED */ 3596 static int 3597 nfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, caller_context_t *ct) 3598 { 3599 3600 /* 3601 * Because we stuff the readdir cookie into the offset field 3602 * someone may attempt to do an lseek with the cookie which 3603 * we want to succeed. 3604 */ 3605 if (vp->v_type == VDIR) 3606 return (0); 3607 if (*noffp < 0 || *noffp > MAXOFF32_T) 3608 return (EINVAL); 3609 return (0); 3610 } 3611 3612 /* 3613 * number of NFS_MAXDATA blocks to read ahead 3614 * optimized for 100 base-T. 3615 */ 3616 static int nfs_nra = 4; 3617 3618 #ifdef DEBUG 3619 static int nfs_lostpage = 0; /* number of times we lost original page */ 3620 #endif 3621 3622 /* 3623 * Return all the pages from [off..off+len) in file 3624 */ 3625 /* ARGSUSED */ 3626 static int 3627 nfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 3628 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 3629 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 3630 { 3631 rnode_t *rp; 3632 int error; 3633 mntinfo_t *mi; 3634 3635 if (vp->v_flag & VNOMAP) 3636 return (ENOSYS); 3637 3638 ASSERT(off <= MAXOFF32_T); 3639 if (nfs_zone() != VTOMI(vp)->mi_zone) 3640 return (EIO); 3641 if (protp != NULL) 3642 *protp = PROT_ALL; 3643 3644 /* 3645 * Now valididate that the caches are up to date. 3646 */ 3647 error = nfs_validate_caches(vp, cr); 3648 if (error) 3649 return (error); 3650 3651 rp = VTOR(vp); 3652 mi = VTOMI(vp); 3653 retry: 3654 mutex_enter(&rp->r_statelock); 3655 3656 /* 3657 * Don't create dirty pages faster than they 3658 * can be cleaned so that the system doesn't 3659 * get imbalanced. If the async queue is 3660 * maxed out, then wait for it to drain before 3661 * creating more dirty pages. Also, wait for 3662 * any threads doing pagewalks in the vop_getattr 3663 * entry points so that they don't block for 3664 * long periods. 3665 */ 3666 if (rw == S_CREATE) { 3667 while ((mi->mi_max_threads != 0 && 3668 rp->r_awcount > 2 * mi->mi_max_threads) || 3669 rp->r_gcount > 0) 3670 cv_wait(&rp->r_cv, &rp->r_statelock); 3671 } 3672 3673 /* 3674 * If we are getting called as a side effect of an nfs_write() 3675 * operation the local file size might not be extended yet. 3676 * In this case we want to be able to return pages of zeroes. 3677 */ 3678 if (off + len > rp->r_size + PAGEOFFSET && seg != segkmap) { 3679 mutex_exit(&rp->r_statelock); 3680 return (EFAULT); /* beyond EOF */ 3681 } 3682 3683 mutex_exit(&rp->r_statelock); 3684 3685 error = pvn_getpages(nfs_getapage, vp, off, len, protp, pl, plsz, 3686 seg, addr, rw, cr); 3687 3688 switch (error) { 3689 case NFS_EOF: 3690 nfs_purge_caches(vp, NFS_NOPURGE_DNLC, cr); 3691 goto retry; 3692 case ESTALE: 3693 PURGE_STALE_FH(error, vp, cr); 3694 } 3695 3696 return (error); 3697 } 3698 3699 /* 3700 * Called from pvn_getpages to get a particular page. 3701 */ 3702 /* ARGSUSED */ 3703 static int 3704 nfs_getapage(vnode_t *vp, u_offset_t off, size_t len, uint_t *protp, 3705 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 3706 enum seg_rw rw, cred_t *cr) 3707 { 3708 rnode_t *rp; 3709 uint_t bsize; 3710 struct buf *bp; 3711 page_t *pp; 3712 u_offset_t lbn; 3713 u_offset_t io_off; 3714 u_offset_t blkoff; 3715 u_offset_t rablkoff; 3716 size_t io_len; 3717 uint_t blksize; 3718 int error; 3719 int readahead; 3720 int readahead_issued = 0; 3721 int ra_window; /* readahead window */ 3722 page_t *pagefound; 3723 3724 if (nfs_zone() != VTOMI(vp)->mi_zone) 3725 return (EIO); 3726 rp = VTOR(vp); 3727 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 3728 3729 reread: 3730 bp = NULL; 3731 pp = NULL; 3732 pagefound = NULL; 3733 3734 if (pl != NULL) 3735 pl[0] = NULL; 3736 3737 error = 0; 3738 lbn = off / bsize; 3739 blkoff = lbn * bsize; 3740 3741 /* 3742 * Queueing up the readahead before doing the synchronous read 3743 * results in a significant increase in read throughput because 3744 * of the increased parallelism between the async threads and 3745 * the process context. 3746 */ 3747 if ((off & ((vp->v_vfsp->vfs_bsize) - 1)) == 0 && 3748 rw != S_CREATE && 3749 !(vp->v_flag & VNOCACHE)) { 3750 mutex_enter(&rp->r_statelock); 3751 3752 /* 3753 * Calculate the number of readaheads to do. 3754 * a) No readaheads at offset = 0. 3755 * b) Do maximum(nfs_nra) readaheads when the readahead 3756 * window is closed. 3757 * c) Do readaheads between 1 to (nfs_nra - 1) depending 3758 * upon how far the readahead window is open or close. 3759 * d) No readaheads if rp->r_nextr is not within the scope 3760 * of the readahead window (random i/o). 3761 */ 3762 3763 if (off == 0) 3764 readahead = 0; 3765 else if (blkoff == rp->r_nextr) 3766 readahead = nfs_nra; 3767 else if (rp->r_nextr > blkoff && 3768 ((ra_window = (rp->r_nextr - blkoff) / bsize) 3769 <= (nfs_nra - 1))) 3770 readahead = nfs_nra - ra_window; 3771 else 3772 readahead = 0; 3773 3774 rablkoff = rp->r_nextr; 3775 while (readahead > 0 && rablkoff + bsize < rp->r_size) { 3776 mutex_exit(&rp->r_statelock); 3777 if (nfs_async_readahead(vp, rablkoff + bsize, 3778 addr + (rablkoff + bsize - off), seg, cr, 3779 nfs_readahead) < 0) { 3780 mutex_enter(&rp->r_statelock); 3781 break; 3782 } 3783 readahead--; 3784 rablkoff += bsize; 3785 /* 3786 * Indicate that we did a readahead so 3787 * readahead offset is not updated 3788 * by the synchronous read below. 3789 */ 3790 readahead_issued = 1; 3791 mutex_enter(&rp->r_statelock); 3792 /* 3793 * set readahead offset to 3794 * offset of last async readahead 3795 * request. 3796 */ 3797 rp->r_nextr = rablkoff; 3798 } 3799 mutex_exit(&rp->r_statelock); 3800 } 3801 3802 again: 3803 if ((pagefound = page_exists(vp, off)) == NULL) { 3804 if (pl == NULL) { 3805 (void) nfs_async_readahead(vp, blkoff, addr, seg, cr, 3806 nfs_readahead); 3807 } else if (rw == S_CREATE) { 3808 /* 3809 * Block for this page is not allocated, or the offset 3810 * is beyond the current allocation size, or we're 3811 * allocating a swap slot and the page was not found, 3812 * so allocate it and return a zero page. 3813 */ 3814 if ((pp = page_create_va(vp, off, 3815 PAGESIZE, PG_WAIT, seg, addr)) == NULL) 3816 cmn_err(CE_PANIC, "nfs_getapage: page_create"); 3817 io_len = PAGESIZE; 3818 mutex_enter(&rp->r_statelock); 3819 rp->r_nextr = off + PAGESIZE; 3820 mutex_exit(&rp->r_statelock); 3821 } else { 3822 /* 3823 * Need to go to server to get a BLOCK, exception to 3824 * that being while reading at offset = 0 or doing 3825 * random i/o, in that case read only a PAGE. 3826 */ 3827 mutex_enter(&rp->r_statelock); 3828 if (blkoff < rp->r_size && 3829 blkoff + bsize >= rp->r_size) { 3830 /* 3831 * If only a block or less is left in 3832 * the file, read all that is remaining. 3833 */ 3834 if (rp->r_size <= off) { 3835 /* 3836 * Trying to access beyond EOF, 3837 * set up to get at least one page. 3838 */ 3839 blksize = off + PAGESIZE - blkoff; 3840 } else 3841 blksize = rp->r_size - blkoff; 3842 } else if ((off == 0) || 3843 (off != rp->r_nextr && !readahead_issued)) { 3844 blksize = PAGESIZE; 3845 blkoff = off; /* block = page here */ 3846 } else 3847 blksize = bsize; 3848 mutex_exit(&rp->r_statelock); 3849 3850 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 3851 &io_len, blkoff, blksize, 0); 3852 3853 /* 3854 * Some other thread has entered the page, 3855 * so just use it. 3856 */ 3857 if (pp == NULL) 3858 goto again; 3859 3860 /* 3861 * Now round the request size up to page boundaries. 3862 * This ensures that the entire page will be 3863 * initialized to zeroes if EOF is encountered. 3864 */ 3865 io_len = ptob(btopr(io_len)); 3866 3867 bp = pageio_setup(pp, io_len, vp, B_READ); 3868 ASSERT(bp != NULL); 3869 3870 /* 3871 * pageio_setup should have set b_addr to 0. This 3872 * is correct since we want to do I/O on a page 3873 * boundary. bp_mapin will use this addr to calculate 3874 * an offset, and then set b_addr to the kernel virtual 3875 * address it allocated for us. 3876 */ 3877 ASSERT(bp->b_un.b_addr == 0); 3878 3879 bp->b_edev = 0; 3880 bp->b_dev = 0; 3881 bp->b_lblkno = lbtodb(io_off); 3882 bp->b_file = vp; 3883 bp->b_offset = (offset_t)off; 3884 bp_mapin(bp); 3885 3886 /* 3887 * If doing a write beyond what we believe is EOF, 3888 * don't bother trying to read the pages from the 3889 * server, we'll just zero the pages here. We 3890 * don't check that the rw flag is S_WRITE here 3891 * because some implementations may attempt a 3892 * read access to the buffer before copying data. 3893 */ 3894 mutex_enter(&rp->r_statelock); 3895 if (io_off >= rp->r_size && seg == segkmap) { 3896 mutex_exit(&rp->r_statelock); 3897 bzero(bp->b_un.b_addr, io_len); 3898 } else { 3899 mutex_exit(&rp->r_statelock); 3900 error = nfs_bio(bp, cr); 3901 } 3902 3903 /* 3904 * Unmap the buffer before freeing it. 3905 */ 3906 bp_mapout(bp); 3907 pageio_done(bp); 3908 3909 if (error == NFS_EOF) { 3910 /* 3911 * If doing a write system call just return 3912 * zeroed pages, else user tried to get pages 3913 * beyond EOF, return error. We don't check 3914 * that the rw flag is S_WRITE here because 3915 * some implementations may attempt a read 3916 * access to the buffer before copying data. 3917 */ 3918 if (seg == segkmap) 3919 error = 0; 3920 else 3921 error = EFAULT; 3922 } 3923 3924 if (!readahead_issued && !error) { 3925 mutex_enter(&rp->r_statelock); 3926 rp->r_nextr = io_off + io_len; 3927 mutex_exit(&rp->r_statelock); 3928 } 3929 } 3930 } 3931 3932 out: 3933 if (pl == NULL) 3934 return (error); 3935 3936 if (error) { 3937 if (pp != NULL) 3938 pvn_read_done(pp, B_ERROR); 3939 return (error); 3940 } 3941 3942 if (pagefound) { 3943 se_t se = (rw == S_CREATE ? SE_EXCL : SE_SHARED); 3944 3945 /* 3946 * Page exists in the cache, acquire the appropriate lock. 3947 * If this fails, start all over again. 3948 */ 3949 if ((pp = page_lookup(vp, off, se)) == NULL) { 3950 #ifdef DEBUG 3951 nfs_lostpage++; 3952 #endif 3953 goto reread; 3954 } 3955 pl[0] = pp; 3956 pl[1] = NULL; 3957 return (0); 3958 } 3959 3960 if (pp != NULL) 3961 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 3962 3963 return (error); 3964 } 3965 3966 static void 3967 nfs_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr, struct seg *seg, 3968 cred_t *cr) 3969 { 3970 int error; 3971 page_t *pp; 3972 u_offset_t io_off; 3973 size_t io_len; 3974 struct buf *bp; 3975 uint_t bsize, blksize; 3976 rnode_t *rp = VTOR(vp); 3977 3978 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 3979 3980 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 3981 3982 mutex_enter(&rp->r_statelock); 3983 if (blkoff < rp->r_size && blkoff + bsize > rp->r_size) { 3984 /* 3985 * If less than a block left in file read less 3986 * than a block. 3987 */ 3988 blksize = rp->r_size - blkoff; 3989 } else 3990 blksize = bsize; 3991 mutex_exit(&rp->r_statelock); 3992 3993 pp = pvn_read_kluster(vp, blkoff, segkmap, addr, 3994 &io_off, &io_len, blkoff, blksize, 1); 3995 /* 3996 * The isra flag passed to the kluster function is 1, we may have 3997 * gotten a return value of NULL for a variety of reasons (# of free 3998 * pages < minfree, someone entered the page on the vnode etc). In all 3999 * cases, we want to punt on the readahead. 4000 */ 4001 if (pp == NULL) 4002 return; 4003 4004 /* 4005 * Now round the request size up to page boundaries. 4006 * This ensures that the entire page will be 4007 * initialized to zeroes if EOF is encountered. 4008 */ 4009 io_len = ptob(btopr(io_len)); 4010 4011 bp = pageio_setup(pp, io_len, vp, B_READ); 4012 ASSERT(bp != NULL); 4013 4014 /* 4015 * pageio_setup should have set b_addr to 0. This is correct since 4016 * we want to do I/O on a page boundary. bp_mapin() will use this addr 4017 * to calculate an offset, and then set b_addr to the kernel virtual 4018 * address it allocated for us. 4019 */ 4020 ASSERT(bp->b_un.b_addr == 0); 4021 4022 bp->b_edev = 0; 4023 bp->b_dev = 0; 4024 bp->b_lblkno = lbtodb(io_off); 4025 bp->b_file = vp; 4026 bp->b_offset = (offset_t)blkoff; 4027 bp_mapin(bp); 4028 4029 /* 4030 * If doing a write beyond what we believe is EOF, don't bother trying 4031 * to read the pages from the server, we'll just zero the pages here. 4032 * We don't check that the rw flag is S_WRITE here because some 4033 * implementations may attempt a read access to the buffer before 4034 * copying data. 4035 */ 4036 mutex_enter(&rp->r_statelock); 4037 if (io_off >= rp->r_size && seg == segkmap) { 4038 mutex_exit(&rp->r_statelock); 4039 bzero(bp->b_un.b_addr, io_len); 4040 error = 0; 4041 } else { 4042 mutex_exit(&rp->r_statelock); 4043 error = nfs_bio(bp, cr); 4044 if (error == NFS_EOF) 4045 error = 0; 4046 } 4047 4048 /* 4049 * Unmap the buffer before freeing it. 4050 */ 4051 bp_mapout(bp); 4052 pageio_done(bp); 4053 4054 pvn_read_done(pp, error ? B_READ | B_ERROR : B_READ); 4055 4056 /* 4057 * In case of error set readahead offset 4058 * to the lowest offset. 4059 * pvn_read_done() calls VN_DISPOSE to destroy the pages 4060 */ 4061 if (error && rp->r_nextr > io_off) { 4062 mutex_enter(&rp->r_statelock); 4063 if (rp->r_nextr > io_off) 4064 rp->r_nextr = io_off; 4065 mutex_exit(&rp->r_statelock); 4066 } 4067 } 4068 4069 /* 4070 * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE} 4071 * If len == 0, do from off to EOF. 4072 * 4073 * The normal cases should be len == 0 && off == 0 (entire vp list), 4074 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE 4075 * (from pageout). 4076 */ 4077 /* ARGSUSED */ 4078 static int 4079 nfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 4080 caller_context_t *ct) 4081 { 4082 int error; 4083 rnode_t *rp; 4084 4085 ASSERT(cr != NULL); 4086 4087 /* 4088 * XXX - Why should this check be made here? 4089 */ 4090 if (vp->v_flag & VNOMAP) 4091 return (ENOSYS); 4092 4093 if (len == 0 && !(flags & B_INVAL) && vn_is_readonly(vp)) 4094 return (0); 4095 4096 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI(vp)->mi_zone) 4097 return (EIO); 4098 ASSERT(off <= MAXOFF32_T); 4099 4100 rp = VTOR(vp); 4101 mutex_enter(&rp->r_statelock); 4102 rp->r_count++; 4103 mutex_exit(&rp->r_statelock); 4104 error = nfs_putpages(vp, off, len, flags, cr); 4105 mutex_enter(&rp->r_statelock); 4106 rp->r_count--; 4107 cv_broadcast(&rp->r_cv); 4108 mutex_exit(&rp->r_statelock); 4109 4110 return (error); 4111 } 4112 4113 /* 4114 * Write out a single page, possibly klustering adjacent dirty pages. 4115 */ 4116 int 4117 nfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 4118 int flags, cred_t *cr) 4119 { 4120 u_offset_t io_off; 4121 u_offset_t lbn_off; 4122 u_offset_t lbn; 4123 size_t io_len; 4124 uint_t bsize; 4125 int error; 4126 rnode_t *rp; 4127 4128 ASSERT(!vn_is_readonly(vp)); 4129 ASSERT(pp != NULL); 4130 ASSERT(cr != NULL); 4131 ASSERT((flags & B_ASYNC) || nfs_zone() == VTOMI(vp)->mi_zone); 4132 4133 rp = VTOR(vp); 4134 ASSERT(rp->r_count > 0); 4135 4136 ASSERT(pp->p_offset <= MAXOFF32_T); 4137 4138 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 4139 lbn = pp->p_offset / bsize; 4140 lbn_off = lbn * bsize; 4141 4142 /* 4143 * Find a kluster that fits in one block, or in 4144 * one page if pages are bigger than blocks. If 4145 * there is less file space allocated than a whole 4146 * page, we'll shorten the i/o request below. 4147 */ 4148 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, lbn_off, 4149 roundup(bsize, PAGESIZE), flags); 4150 4151 /* 4152 * pvn_write_kluster shouldn't have returned a page with offset 4153 * behind the original page we were given. Verify that. 4154 */ 4155 ASSERT((pp->p_offset / bsize) >= lbn); 4156 4157 /* 4158 * Now pp will have the list of kept dirty pages marked for 4159 * write back. It will also handle invalidation and freeing 4160 * of pages that are not dirty. Check for page length rounding 4161 * problems. 4162 */ 4163 if (io_off + io_len > lbn_off + bsize) { 4164 ASSERT((io_off + io_len) - (lbn_off + bsize) < PAGESIZE); 4165 io_len = lbn_off + bsize - io_off; 4166 } 4167 /* 4168 * The RMODINPROGRESS flag makes sure that nfs(3)_bio() sees a 4169 * consistent value of r_size. RMODINPROGRESS is set in writerp(). 4170 * When RMODINPROGRESS is set it indicates that a uiomove() is in 4171 * progress and the r_size has not been made consistent with the 4172 * new size of the file. When the uiomove() completes the r_size is 4173 * updated and the RMODINPROGRESS flag is cleared. 4174 * 4175 * The RMODINPROGRESS flag makes sure that nfs(3)_bio() sees a 4176 * consistent value of r_size. Without this handshaking, it is 4177 * possible that nfs(3)_bio() picks up the old value of r_size 4178 * before the uiomove() in writerp() completes. This will result 4179 * in the write through nfs(3)_bio() being dropped. 4180 * 4181 * More precisely, there is a window between the time the uiomove() 4182 * completes and the time the r_size is updated. If a VOP_PUTPAGE() 4183 * operation intervenes in this window, the page will be picked up, 4184 * because it is dirty (it will be unlocked, unless it was 4185 * pagecreate'd). When the page is picked up as dirty, the dirty 4186 * bit is reset (pvn_getdirty()). In nfs(3)write(), r_size is 4187 * checked. This will still be the old size. Therefore the page will 4188 * not be written out. When segmap_release() calls VOP_PUTPAGE(), 4189 * the page will be found to be clean and the write will be dropped. 4190 */ 4191 if (rp->r_flags & RMODINPROGRESS) { 4192 mutex_enter(&rp->r_statelock); 4193 if ((rp->r_flags & RMODINPROGRESS) && 4194 rp->r_modaddr + MAXBSIZE > io_off && 4195 rp->r_modaddr < io_off + io_len) { 4196 page_t *plist; 4197 /* 4198 * A write is in progress for this region of the file. 4199 * If we did not detect RMODINPROGRESS here then this 4200 * path through nfs_putapage() would eventually go to 4201 * nfs(3)_bio() and may not write out all of the data 4202 * in the pages. We end up losing data. So we decide 4203 * to set the modified bit on each page in the page 4204 * list and mark the rnode with RDIRTY. This write 4205 * will be restarted at some later time. 4206 */ 4207 plist = pp; 4208 while (plist != NULL) { 4209 pp = plist; 4210 page_sub(&plist, pp); 4211 hat_setmod(pp); 4212 page_io_unlock(pp); 4213 page_unlock(pp); 4214 } 4215 rp->r_flags |= RDIRTY; 4216 mutex_exit(&rp->r_statelock); 4217 if (offp) 4218 *offp = io_off; 4219 if (lenp) 4220 *lenp = io_len; 4221 return (0); 4222 } 4223 mutex_exit(&rp->r_statelock); 4224 } 4225 4226 if (flags & B_ASYNC) { 4227 error = nfs_async_putapage(vp, pp, io_off, io_len, flags, cr, 4228 nfs_sync_putapage); 4229 } else 4230 error = nfs_sync_putapage(vp, pp, io_off, io_len, flags, cr); 4231 4232 if (offp) 4233 *offp = io_off; 4234 if (lenp) 4235 *lenp = io_len; 4236 return (error); 4237 } 4238 4239 static int 4240 nfs_sync_putapage(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 4241 int flags, cred_t *cr) 4242 { 4243 int error; 4244 rnode_t *rp; 4245 4246 flags |= B_WRITE; 4247 4248 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 4249 error = nfs_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 4250 4251 rp = VTOR(vp); 4252 4253 if ((error == ENOSPC || error == EDQUOT || error == EACCES) && 4254 (flags & (B_INVAL|B_FORCE)) != (B_INVAL|B_FORCE)) { 4255 if (!(rp->r_flags & ROUTOFSPACE)) { 4256 mutex_enter(&rp->r_statelock); 4257 rp->r_flags |= ROUTOFSPACE; 4258 mutex_exit(&rp->r_statelock); 4259 } 4260 flags |= B_ERROR; 4261 pvn_write_done(pp, flags); 4262 /* 4263 * If this was not an async thread, then try again to 4264 * write out the pages, but this time, also destroy 4265 * them whether or not the write is successful. This 4266 * will prevent memory from filling up with these 4267 * pages and destroying them is the only alternative 4268 * if they can't be written out. 4269 * 4270 * Don't do this if this is an async thread because 4271 * when the pages are unlocked in pvn_write_done, 4272 * some other thread could have come along, locked 4273 * them, and queued for an async thread. It would be 4274 * possible for all of the async threads to be tied 4275 * up waiting to lock the pages again and they would 4276 * all already be locked and waiting for an async 4277 * thread to handle them. Deadlock. 4278 */ 4279 if (!(flags & B_ASYNC)) { 4280 error = nfs_putpage(vp, io_off, io_len, 4281 B_INVAL | B_FORCE, cr, NULL); 4282 } 4283 } else { 4284 if (error) 4285 flags |= B_ERROR; 4286 else if (rp->r_flags & ROUTOFSPACE) { 4287 mutex_enter(&rp->r_statelock); 4288 rp->r_flags &= ~ROUTOFSPACE; 4289 mutex_exit(&rp->r_statelock); 4290 } 4291 pvn_write_done(pp, flags); 4292 } 4293 4294 return (error); 4295 } 4296 4297 /* ARGSUSED */ 4298 static int 4299 nfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 4300 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4301 caller_context_t *ct) 4302 { 4303 struct segvn_crargs vn_a; 4304 int error; 4305 rnode_t *rp; 4306 struct vattr va; 4307 4308 if (nfs_zone() != VTOMI(vp)->mi_zone) 4309 return (EIO); 4310 4311 if (vp->v_flag & VNOMAP) 4312 return (ENOSYS); 4313 4314 if (off > MAXOFF32_T) 4315 return (EFBIG); 4316 4317 if (off < 0 || off + len < 0) 4318 return (ENXIO); 4319 4320 if (vp->v_type != VREG) 4321 return (ENODEV); 4322 4323 /* 4324 * If there is cached data and if close-to-open consistency 4325 * checking is not turned off and if the file system is not 4326 * mounted readonly, then force an over the wire getattr. 4327 * Otherwise, just invoke nfsgetattr to get a copy of the 4328 * attributes. The attribute cache will be used unless it 4329 * is timed out and if it is, then an over the wire getattr 4330 * will be issued. 4331 */ 4332 va.va_mask = AT_ALL; 4333 if (vn_has_cached_data(vp) && 4334 !(VTOMI(vp)->mi_flags & MI_NOCTO) && !vn_is_readonly(vp)) 4335 error = nfs_getattr_otw(vp, &va, cr); 4336 else 4337 error = nfsgetattr(vp, &va, cr); 4338 if (error) 4339 return (error); 4340 4341 /* 4342 * Check to see if the vnode is currently marked as not cachable. 4343 * This means portions of the file are locked (through VOP_FRLOCK). 4344 * In this case the map request must be refused. We use 4345 * rp->r_lkserlock to avoid a race with concurrent lock requests. 4346 */ 4347 rp = VTOR(vp); 4348 4349 /* 4350 * Atomically increment r_inmap after acquiring r_rwlock. The 4351 * idea here is to acquire r_rwlock to block read/write and 4352 * not to protect r_inmap. r_inmap will inform nfs_read/write() 4353 * that we are in nfs_map(). Now, r_rwlock is acquired in order 4354 * and we can prevent the deadlock that would have occurred 4355 * when nfs_addmap() would have acquired it out of order. 4356 * 4357 * Since we are not protecting r_inmap by any lock, we do not 4358 * hold any lock when we decrement it. We atomically decrement 4359 * r_inmap after we release r_lkserlock. 4360 */ 4361 4362 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, INTR(vp))) 4363 return (EINTR); 4364 atomic_inc_uint(&rp->r_inmap); 4365 nfs_rw_exit(&rp->r_rwlock); 4366 4367 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR(vp))) { 4368 atomic_dec_uint(&rp->r_inmap); 4369 return (EINTR); 4370 } 4371 if (vp->v_flag & VNOCACHE) { 4372 error = EAGAIN; 4373 goto done; 4374 } 4375 4376 /* 4377 * Don't allow concurrent locks and mapping if mandatory locking is 4378 * enabled. 4379 */ 4380 if ((flk_has_remote_locks(vp) || lm_has_sleep(vp)) && 4381 MANDLOCK(vp, va.va_mode)) { 4382 error = EAGAIN; 4383 goto done; 4384 } 4385 4386 as_rangelock(as); 4387 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 4388 if (error != 0) { 4389 as_rangeunlock(as); 4390 goto done; 4391 } 4392 4393 vn_a.vp = vp; 4394 vn_a.offset = off; 4395 vn_a.type = (flags & MAP_TYPE); 4396 vn_a.prot = (uchar_t)prot; 4397 vn_a.maxprot = (uchar_t)maxprot; 4398 vn_a.flags = (flags & ~MAP_TYPE); 4399 vn_a.cred = cr; 4400 vn_a.amp = NULL; 4401 vn_a.szc = 0; 4402 vn_a.lgrp_mem_policy_flags = 0; 4403 4404 error = as_map(as, *addrp, len, segvn_create, &vn_a); 4405 as_rangeunlock(as); 4406 4407 done: 4408 nfs_rw_exit(&rp->r_lkserlock); 4409 atomic_dec_uint(&rp->r_inmap); 4410 return (error); 4411 } 4412 4413 /* ARGSUSED */ 4414 static int 4415 nfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4416 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4417 caller_context_t *ct) 4418 { 4419 rnode_t *rp; 4420 4421 if (vp->v_flag & VNOMAP) 4422 return (ENOSYS); 4423 if (nfs_zone() != VTOMI(vp)->mi_zone) 4424 return (EIO); 4425 4426 rp = VTOR(vp); 4427 atomic_add_long((ulong_t *)&rp->r_mapcnt, btopr(len)); 4428 4429 return (0); 4430 } 4431 4432 /* ARGSUSED */ 4433 static int 4434 nfs_frlock(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, offset_t offset, 4435 struct flk_callback *flk_cbp, cred_t *cr, caller_context_t *ct) 4436 { 4437 netobj lm_fh; 4438 int rc; 4439 u_offset_t start, end; 4440 rnode_t *rp; 4441 int error = 0, intr = INTR(vp); 4442 4443 /* check for valid cmd parameter */ 4444 if (cmd != F_GETLK && cmd != F_SETLK && cmd != F_SETLKW) 4445 return (EINVAL); 4446 if (nfs_zone() != VTOMI(vp)->mi_zone) 4447 return (EIO); 4448 4449 /* Verify l_type. */ 4450 switch (bfp->l_type) { 4451 case F_RDLCK: 4452 if (cmd != F_GETLK && !(flag & FREAD)) 4453 return (EBADF); 4454 break; 4455 case F_WRLCK: 4456 if (cmd != F_GETLK && !(flag & FWRITE)) 4457 return (EBADF); 4458 break; 4459 case F_UNLCK: 4460 intr = 0; 4461 break; 4462 4463 default: 4464 return (EINVAL); 4465 } 4466 4467 /* check the validity of the lock range */ 4468 if (rc = flk_convert_lock_data(vp, bfp, &start, &end, offset)) 4469 return (rc); 4470 if (rc = flk_check_lock_data(start, end, MAXOFF32_T)) 4471 return (rc); 4472 4473 /* 4474 * If the filesystem is mounted using local locking, pass the 4475 * request off to the local locking code. 4476 */ 4477 if (VTOMI(vp)->mi_flags & MI_LLOCK) { 4478 if (offset > MAXOFF32_T) 4479 return (EFBIG); 4480 if (cmd == F_SETLK || cmd == F_SETLKW) { 4481 /* 4482 * For complete safety, we should be holding 4483 * r_lkserlock. However, we can't call 4484 * lm_safelock and then fs_frlock while 4485 * holding r_lkserlock, so just invoke 4486 * lm_safelock and expect that this will 4487 * catch enough of the cases. 4488 */ 4489 if (!lm_safelock(vp, bfp, cr)) 4490 return (EAGAIN); 4491 } 4492 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 4493 } 4494 4495 rp = VTOR(vp); 4496 4497 /* 4498 * Check whether the given lock request can proceed, given the 4499 * current file mappings. 4500 */ 4501 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER, intr)) 4502 return (EINTR); 4503 if (cmd == F_SETLK || cmd == F_SETLKW) { 4504 if (!lm_safelock(vp, bfp, cr)) { 4505 rc = EAGAIN; 4506 goto done; 4507 } 4508 } 4509 4510 /* 4511 * Flush the cache after waiting for async I/O to finish. For new 4512 * locks, this is so that the process gets the latest bits from the 4513 * server. For unlocks, this is so that other clients see the 4514 * latest bits once the file has been unlocked. If currently dirty 4515 * pages can't be flushed, then don't allow a lock to be set. But 4516 * allow unlocks to succeed, to avoid having orphan locks on the 4517 * server. 4518 */ 4519 if (cmd != F_GETLK) { 4520 mutex_enter(&rp->r_statelock); 4521 while (rp->r_count > 0) { 4522 if (intr) { 4523 klwp_t *lwp = ttolwp(curthread); 4524 4525 if (lwp != NULL) 4526 lwp->lwp_nostop++; 4527 if (cv_wait_sig(&rp->r_cv, &rp->r_statelock) 4528 == 0) { 4529 if (lwp != NULL) 4530 lwp->lwp_nostop--; 4531 rc = EINTR; 4532 break; 4533 } 4534 if (lwp != NULL) 4535 lwp->lwp_nostop--; 4536 } else 4537 cv_wait(&rp->r_cv, &rp->r_statelock); 4538 } 4539 mutex_exit(&rp->r_statelock); 4540 if (rc != 0) 4541 goto done; 4542 error = nfs_putpage(vp, (offset_t)0, 0, B_INVAL, cr, ct); 4543 if (error) { 4544 if (error == ENOSPC || error == EDQUOT) { 4545 mutex_enter(&rp->r_statelock); 4546 if (!rp->r_error) 4547 rp->r_error = error; 4548 mutex_exit(&rp->r_statelock); 4549 } 4550 if (bfp->l_type != F_UNLCK) { 4551 rc = ENOLCK; 4552 goto done; 4553 } 4554 } 4555 } 4556 4557 lm_fh.n_len = sizeof (fhandle_t); 4558 lm_fh.n_bytes = (char *)VTOFH(vp); 4559 4560 /* 4561 * Call the lock manager to do the real work of contacting 4562 * the server and obtaining the lock. 4563 */ 4564 rc = lm_frlock(vp, cmd, bfp, flag, offset, cr, &lm_fh, flk_cbp); 4565 4566 if (rc == 0) 4567 nfs_lockcompletion(vp, cmd); 4568 4569 done: 4570 nfs_rw_exit(&rp->r_lkserlock); 4571 return (rc); 4572 } 4573 4574 /* 4575 * Free storage space associated with the specified vnode. The portion 4576 * to be freed is specified by bfp->l_start and bfp->l_len (already 4577 * normalized to a "whence" of 0). 4578 * 4579 * This is an experimental facility whose continued existence is not 4580 * guaranteed. Currently, we only support the special case 4581 * of l_len == 0, meaning free to end of file. 4582 */ 4583 /* ARGSUSED */ 4584 static int 4585 nfs_space(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 4586 offset_t offset, cred_t *cr, caller_context_t *ct) 4587 { 4588 int error; 4589 4590 ASSERT(vp->v_type == VREG); 4591 if (cmd != F_FREESP) 4592 return (EINVAL); 4593 4594 if (offset > MAXOFF32_T) 4595 return (EFBIG); 4596 4597 if ((bfp->l_start > MAXOFF32_T) || (bfp->l_end > MAXOFF32_T) || 4598 (bfp->l_len > MAXOFF32_T)) 4599 return (EFBIG); 4600 4601 if (nfs_zone() != VTOMI(vp)->mi_zone) 4602 return (EIO); 4603 4604 error = convoff(vp, bfp, 0, offset); 4605 if (!error) { 4606 ASSERT(bfp->l_start >= 0); 4607 if (bfp->l_len == 0) { 4608 struct vattr va; 4609 4610 /* 4611 * ftruncate should not change the ctime and 4612 * mtime if we truncate the file to its 4613 * previous size. 4614 */ 4615 va.va_mask = AT_SIZE; 4616 error = nfsgetattr(vp, &va, cr); 4617 if (error || va.va_size == bfp->l_start) 4618 return (error); 4619 va.va_mask = AT_SIZE; 4620 va.va_size = bfp->l_start; 4621 error = nfssetattr(vp, &va, 0, cr); 4622 4623 if (error == 0 && bfp->l_start == 0) 4624 vnevent_truncate(vp, ct); 4625 } else 4626 error = EINVAL; 4627 } 4628 4629 return (error); 4630 } 4631 4632 /* ARGSUSED */ 4633 static int 4634 nfs_realvp(vnode_t *vp, vnode_t **vpp, caller_context_t *ct) 4635 { 4636 4637 return (EINVAL); 4638 } 4639 4640 /* 4641 * Setup and add an address space callback to do the work of the delmap call. 4642 * The callback will (and must be) deleted in the actual callback function. 4643 * 4644 * This is done in order to take care of the problem that we have with holding 4645 * the address space's a_lock for a long period of time (e.g. if the NFS server 4646 * is down). Callbacks will be executed in the address space code while the 4647 * a_lock is not held. Holding the address space's a_lock causes things such 4648 * as ps and fork to hang because they are trying to acquire this lock as well. 4649 */ 4650 /* ARGSUSED */ 4651 static int 4652 nfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4653 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr, 4654 caller_context_t *ct) 4655 { 4656 int caller_found; 4657 int error; 4658 rnode_t *rp; 4659 nfs_delmap_args_t *dmapp; 4660 nfs_delmapcall_t *delmap_call; 4661 4662 if (vp->v_flag & VNOMAP) 4663 return (ENOSYS); 4664 /* 4665 * A process may not change zones if it has NFS pages mmap'ed 4666 * in, so we can't legitimately get here from the wrong zone. 4667 */ 4668 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 4669 4670 rp = VTOR(vp); 4671 4672 /* 4673 * The way that the address space of this process deletes its mapping 4674 * of this file is via the following call chains: 4675 * - as_free()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs_delmap() 4676 * - as_unmap()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs_delmap() 4677 * 4678 * With the use of address space callbacks we are allowed to drop the 4679 * address space lock, a_lock, while executing the NFS operations that 4680 * need to go over the wire. Returning EAGAIN to the caller of this 4681 * function is what drives the execution of the callback that we add 4682 * below. The callback will be executed by the address space code 4683 * after dropping the a_lock. When the callback is finished, since 4684 * we dropped the a_lock, it must be re-acquired and segvn_unmap() 4685 * is called again on the same segment to finish the rest of the work 4686 * that needs to happen during unmapping. 4687 * 4688 * This action of calling back into the segment driver causes 4689 * nfs_delmap() to get called again, but since the callback was 4690 * already executed at this point, it already did the work and there 4691 * is nothing left for us to do. 4692 * 4693 * To Summarize: 4694 * - The first time nfs_delmap is called by the current thread is when 4695 * we add the caller associated with this delmap to the delmap caller 4696 * list, add the callback, and return EAGAIN. 4697 * - The second time in this call chain when nfs_delmap is called we 4698 * will find this caller in the delmap caller list and realize there 4699 * is no more work to do thus removing this caller from the list and 4700 * returning the error that was set in the callback execution. 4701 */ 4702 caller_found = nfs_find_and_delete_delmapcall(rp, &error); 4703 if (caller_found) { 4704 /* 4705 * 'error' is from the actual delmap operations. To avoid 4706 * hangs, we need to handle the return of EAGAIN differently 4707 * since this is what drives the callback execution. 4708 * In this case, we don't want to return EAGAIN and do the 4709 * callback execution because there are none to execute. 4710 */ 4711 if (error == EAGAIN) 4712 return (0); 4713 else 4714 return (error); 4715 } 4716 4717 /* current caller was not in the list */ 4718 delmap_call = nfs_init_delmapcall(); 4719 4720 mutex_enter(&rp->r_statelock); 4721 list_insert_tail(&rp->r_indelmap, delmap_call); 4722 mutex_exit(&rp->r_statelock); 4723 4724 dmapp = kmem_alloc(sizeof (nfs_delmap_args_t), KM_SLEEP); 4725 4726 dmapp->vp = vp; 4727 dmapp->off = off; 4728 dmapp->addr = addr; 4729 dmapp->len = len; 4730 dmapp->prot = prot; 4731 dmapp->maxprot = maxprot; 4732 dmapp->flags = flags; 4733 dmapp->cr = cr; 4734 dmapp->caller = delmap_call; 4735 4736 error = as_add_callback(as, nfs_delmap_callback, dmapp, 4737 AS_UNMAP_EVENT, addr, len, KM_SLEEP); 4738 4739 return (error ? error : EAGAIN); 4740 } 4741 4742 /* 4743 * Remove some pages from an mmap'd vnode. Just update the 4744 * count of pages. If doing close-to-open, then flush all 4745 * of the pages associated with this file. Otherwise, start 4746 * an asynchronous page flush to write out any dirty pages. 4747 * This will also associate a credential with the rnode which 4748 * can be used to write the pages. 4749 */ 4750 /* ARGSUSED */ 4751 static void 4752 nfs_delmap_callback(struct as *as, void *arg, uint_t event) 4753 { 4754 int error; 4755 rnode_t *rp; 4756 mntinfo_t *mi; 4757 nfs_delmap_args_t *dmapp = (nfs_delmap_args_t *)arg; 4758 4759 rp = VTOR(dmapp->vp); 4760 mi = VTOMI(dmapp->vp); 4761 4762 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(dmapp->len)); 4763 ASSERT(rp->r_mapcnt >= 0); 4764 4765 /* 4766 * Initiate a page flush if there are pages, the file system 4767 * was not mounted readonly, the segment was mapped shared, and 4768 * the pages themselves were writeable. 4769 */ 4770 if (vn_has_cached_data(dmapp->vp) && !vn_is_readonly(dmapp->vp) && 4771 dmapp->flags == MAP_SHARED && (dmapp->maxprot & PROT_WRITE)) { 4772 mutex_enter(&rp->r_statelock); 4773 rp->r_flags |= RDIRTY; 4774 mutex_exit(&rp->r_statelock); 4775 /* 4776 * If this is a cross-zone access a sync putpage won't work, so 4777 * the best we can do is try an async putpage. That seems 4778 * better than something more draconian such as discarding the 4779 * dirty pages. 4780 */ 4781 if ((mi->mi_flags & MI_NOCTO) || 4782 nfs_zone() != mi->mi_zone) 4783 error = nfs_putpage(dmapp->vp, dmapp->off, dmapp->len, 4784 B_ASYNC, dmapp->cr, NULL); 4785 else 4786 error = nfs_putpage(dmapp->vp, dmapp->off, dmapp->len, 4787 0, dmapp->cr, NULL); 4788 if (!error) { 4789 mutex_enter(&rp->r_statelock); 4790 error = rp->r_error; 4791 rp->r_error = 0; 4792 mutex_exit(&rp->r_statelock); 4793 } 4794 } else 4795 error = 0; 4796 4797 if ((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) 4798 (void) nfs_putpage(dmapp->vp, dmapp->off, dmapp->len, 4799 B_INVAL, dmapp->cr, NULL); 4800 4801 dmapp->caller->error = error; 4802 (void) as_delete_callback(as, arg); 4803 kmem_free(dmapp, sizeof (nfs_delmap_args_t)); 4804 } 4805 4806 /* ARGSUSED */ 4807 static int 4808 nfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 4809 caller_context_t *ct) 4810 { 4811 int error = 0; 4812 4813 if (nfs_zone() != VTOMI(vp)->mi_zone) 4814 return (EIO); 4815 /* 4816 * This looks a little weird because it's written in a general 4817 * manner but we make little use of cases. If cntl() ever gets 4818 * widely used, the outer switch will make more sense. 4819 */ 4820 4821 switch (cmd) { 4822 4823 /* 4824 * Large file spec - need to base answer new query with 4825 * hardcoded constant based on the protocol. 4826 */ 4827 case _PC_FILESIZEBITS: 4828 *valp = 32; 4829 return (0); 4830 4831 case _PC_LINK_MAX: 4832 case _PC_NAME_MAX: 4833 case _PC_PATH_MAX: 4834 case _PC_SYMLINK_MAX: 4835 case _PC_CHOWN_RESTRICTED: 4836 case _PC_NO_TRUNC: { 4837 mntinfo_t *mi; 4838 struct pathcnf *pc; 4839 4840 if ((mi = VTOMI(vp)) == NULL || (pc = mi->mi_pathconf) == NULL) 4841 return (EINVAL); 4842 error = _PC_ISSET(cmd, pc->pc_mask); /* error or bool */ 4843 switch (cmd) { 4844 case _PC_LINK_MAX: 4845 *valp = pc->pc_link_max; 4846 break; 4847 case _PC_NAME_MAX: 4848 *valp = pc->pc_name_max; 4849 break; 4850 case _PC_PATH_MAX: 4851 case _PC_SYMLINK_MAX: 4852 *valp = pc->pc_path_max; 4853 break; 4854 case _PC_CHOWN_RESTRICTED: 4855 /* 4856 * if we got here, error is really a boolean which 4857 * indicates whether cmd is set or not. 4858 */ 4859 *valp = error ? 1 : 0; /* see above */ 4860 error = 0; 4861 break; 4862 case _PC_NO_TRUNC: 4863 /* 4864 * if we got here, error is really a boolean which 4865 * indicates whether cmd is set or not. 4866 */ 4867 *valp = error ? 1 : 0; /* see above */ 4868 error = 0; 4869 break; 4870 } 4871 return (error ? EINVAL : 0); 4872 } 4873 4874 case _PC_XATTR_EXISTS: 4875 *valp = 0; 4876 if (vp->v_vfsp->vfs_flag & VFS_XATTR) { 4877 vnode_t *avp; 4878 rnode_t *rp; 4879 mntinfo_t *mi = VTOMI(vp); 4880 4881 if (!(mi->mi_flags & MI_EXTATTR)) 4882 return (0); 4883 4884 rp = VTOR(vp); 4885 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, 4886 INTR(vp))) 4887 return (EINTR); 4888 4889 error = nfslookup_dnlc(vp, XATTR_DIR_NAME, &avp, cr); 4890 if (error || avp == NULL) 4891 error = acl_getxattrdir2(vp, &avp, 0, cr, 0); 4892 4893 nfs_rw_exit(&rp->r_rwlock); 4894 4895 if (error == 0 && avp != NULL) { 4896 error = do_xattr_exists_check(avp, valp, cr); 4897 VN_RELE(avp); 4898 } 4899 } 4900 return (error ? EINVAL : 0); 4901 4902 case _PC_ACL_ENABLED: 4903 *valp = _ACL_ACLENT_ENABLED; 4904 return (0); 4905 4906 default: 4907 return (EINVAL); 4908 } 4909 } 4910 4911 /* 4912 * Called by async thread to do synchronous pageio. Do the i/o, wait 4913 * for it to complete, and cleanup the page list when done. 4914 */ 4915 static int 4916 nfs_sync_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 4917 int flags, cred_t *cr) 4918 { 4919 int error; 4920 4921 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 4922 error = nfs_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 4923 if (flags & B_READ) 4924 pvn_read_done(pp, (error ? B_ERROR : 0) | flags); 4925 else 4926 pvn_write_done(pp, (error ? B_ERROR : 0) | flags); 4927 return (error); 4928 } 4929 4930 /* ARGSUSED */ 4931 static int 4932 nfs_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 4933 int flags, cred_t *cr, caller_context_t *ct) 4934 { 4935 int error; 4936 rnode_t *rp; 4937 4938 if (pp == NULL) 4939 return (EINVAL); 4940 4941 if (io_off > MAXOFF32_T) 4942 return (EFBIG); 4943 if (nfs_zone() != VTOMI(vp)->mi_zone) 4944 return (EIO); 4945 rp = VTOR(vp); 4946 mutex_enter(&rp->r_statelock); 4947 rp->r_count++; 4948 mutex_exit(&rp->r_statelock); 4949 4950 if (flags & B_ASYNC) { 4951 error = nfs_async_pageio(vp, pp, io_off, io_len, flags, cr, 4952 nfs_sync_pageio); 4953 } else 4954 error = nfs_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 4955 mutex_enter(&rp->r_statelock); 4956 rp->r_count--; 4957 cv_broadcast(&rp->r_cv); 4958 mutex_exit(&rp->r_statelock); 4959 return (error); 4960 } 4961 4962 /* ARGSUSED */ 4963 static int 4964 nfs_setsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr, 4965 caller_context_t *ct) 4966 { 4967 int error; 4968 mntinfo_t *mi; 4969 4970 mi = VTOMI(vp); 4971 4972 if (nfs_zone() != mi->mi_zone) 4973 return (EIO); 4974 if (mi->mi_flags & MI_ACL) { 4975 error = acl_setacl2(vp, vsecattr, flag, cr); 4976 if (mi->mi_flags & MI_ACL) 4977 return (error); 4978 } 4979 4980 return (ENOSYS); 4981 } 4982 4983 /* ARGSUSED */ 4984 static int 4985 nfs_getsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr, 4986 caller_context_t *ct) 4987 { 4988 int error; 4989 mntinfo_t *mi; 4990 4991 mi = VTOMI(vp); 4992 4993 if (nfs_zone() != mi->mi_zone) 4994 return (EIO); 4995 if (mi->mi_flags & MI_ACL) { 4996 error = acl_getacl2(vp, vsecattr, flag, cr); 4997 if (mi->mi_flags & MI_ACL) 4998 return (error); 4999 } 5000 5001 return (fs_fab_acl(vp, vsecattr, flag, cr, ct)); 5002 } 5003 5004 /* ARGSUSED */ 5005 static int 5006 nfs_shrlock(vnode_t *vp, int cmd, struct shrlock *shr, int flag, cred_t *cr, 5007 caller_context_t *ct) 5008 { 5009 int error; 5010 struct shrlock nshr; 5011 struct nfs_owner nfs_owner; 5012 netobj lm_fh; 5013 5014 if (nfs_zone() != VTOMI(vp)->mi_zone) 5015 return (EIO); 5016 5017 /* 5018 * check for valid cmd parameter 5019 */ 5020 if (cmd != F_SHARE && cmd != F_UNSHARE && cmd != F_HASREMOTELOCKS) 5021 return (EINVAL); 5022 5023 /* 5024 * Check access permissions 5025 */ 5026 if (cmd == F_SHARE && 5027 (((shr->s_access & F_RDACC) && !(flag & FREAD)) || 5028 ((shr->s_access & F_WRACC) && !(flag & FWRITE)))) 5029 return (EBADF); 5030 5031 /* 5032 * If the filesystem is mounted using local locking, pass the 5033 * request off to the local share code. 5034 */ 5035 if (VTOMI(vp)->mi_flags & MI_LLOCK) 5036 return (fs_shrlock(vp, cmd, shr, flag, cr, ct)); 5037 5038 switch (cmd) { 5039 case F_SHARE: 5040 case F_UNSHARE: 5041 lm_fh.n_len = sizeof (fhandle_t); 5042 lm_fh.n_bytes = (char *)VTOFH(vp); 5043 5044 /* 5045 * If passed an owner that is too large to fit in an 5046 * nfs_owner it is likely a recursive call from the 5047 * lock manager client and pass it straight through. If 5048 * it is not a nfs_owner then simply return an error. 5049 */ 5050 if (shr->s_own_len > sizeof (nfs_owner.lowner)) { 5051 if (((struct nfs_owner *)shr->s_owner)->magic != 5052 NFS_OWNER_MAGIC) 5053 return (EINVAL); 5054 5055 if (error = lm_shrlock(vp, cmd, shr, flag, &lm_fh)) { 5056 error = set_errno(error); 5057 } 5058 return (error); 5059 } 5060 /* 5061 * Remote share reservations owner is a combination of 5062 * a magic number, hostname, and the local owner 5063 */ 5064 bzero(&nfs_owner, sizeof (nfs_owner)); 5065 nfs_owner.magic = NFS_OWNER_MAGIC; 5066 (void) strncpy(nfs_owner.hname, uts_nodename(), 5067 sizeof (nfs_owner.hname)); 5068 bcopy(shr->s_owner, nfs_owner.lowner, shr->s_own_len); 5069 nshr.s_access = shr->s_access; 5070 nshr.s_deny = shr->s_deny; 5071 nshr.s_sysid = 0; 5072 nshr.s_pid = ttoproc(curthread)->p_pid; 5073 nshr.s_own_len = sizeof (nfs_owner); 5074 nshr.s_owner = (caddr_t)&nfs_owner; 5075 5076 if (error = lm_shrlock(vp, cmd, &nshr, flag, &lm_fh)) { 5077 error = set_errno(error); 5078 } 5079 5080 break; 5081 5082 case F_HASREMOTELOCKS: 5083 /* 5084 * NFS client can't store remote locks itself 5085 */ 5086 shr->s_access = 0; 5087 error = 0; 5088 break; 5089 5090 default: 5091 error = EINVAL; 5092 break; 5093 } 5094 5095 return (error); 5096 }