1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 1990, 2010, Oracle and/or its affiliates. All rights reserved. 25 * Copyright (c) 2011 Bayard G. Bell. All rights reserved. 26 * Copyright (c) 2013 by Delphix. All rights reserved. 27 */ 28 29 /* 30 * Copyright (c) 1983,1984,1985,1986,1987,1988,1989 AT&T. 31 * All rights reserved. 32 * Use is subject to license terms. 33 */ 34 35 #include <sys/param.h> 36 #include <sys/types.h> 37 #include <sys/systm.h> 38 #include <sys/cred.h> 39 #include <sys/proc.h> 40 #include <sys/user.h> 41 #include <sys/buf.h> 42 #include <sys/vfs.h> 43 #include <sys/vnode.h> 44 #include <sys/pathname.h> 45 #include <sys/uio.h> 46 #include <sys/file.h> 47 #include <sys/stat.h> 48 #include <sys/errno.h> 49 #include <sys/socket.h> 50 #include <sys/sysmacros.h> 51 #include <sys/siginfo.h> 52 #include <sys/tiuser.h> 53 #include <sys/statvfs.h> 54 #include <sys/stream.h> 55 #include <sys/strsun.h> 56 #include <sys/strsubr.h> 57 #include <sys/stropts.h> 58 #include <sys/timod.h> 59 #include <sys/t_kuser.h> 60 #include <sys/kmem.h> 61 #include <sys/kstat.h> 62 #include <sys/dirent.h> 63 #include <sys/cmn_err.h> 64 #include <sys/debug.h> 65 #include <sys/unistd.h> 66 #include <sys/vtrace.h> 67 #include <sys/mode.h> 68 #include <sys/acl.h> 69 #include <sys/sdt.h> 70 71 #include <rpc/types.h> 72 #include <rpc/auth.h> 73 #include <rpc/auth_unix.h> 74 #include <rpc/auth_des.h> 75 #include <rpc/svc.h> 76 #include <rpc/xdr.h> 77 #include <rpc/rpc_rdma.h> 78 79 #include <nfs/nfs.h> 80 #include <nfs/export.h> 81 #include <nfs/nfssys.h> 82 #include <nfs/nfs_clnt.h> 83 #include <nfs/nfs_acl.h> 84 #include <nfs/nfs_log.h> 85 #include <nfs/nfs_cmd.h> 86 #include <nfs/lm.h> 87 #include <nfs/nfs_dispatch.h> 88 #include <nfs/nfs4_drc.h> 89 90 #include <sys/modctl.h> 91 #include <sys/cladm.h> 92 #include <sys/clconf.h> 93 94 #include <sys/tsol/label.h> 95 96 #define MAXHOST 32 97 const char *kinet_ntop6(uchar_t *, char *, size_t); 98 99 /* 100 * Module linkage information. 101 */ 102 103 static struct modlmisc modlmisc = { 104 &mod_miscops, "NFS server module" 105 }; 106 107 static struct modlinkage modlinkage = { 108 MODREV_1, { (void *)&modlmisc, NULL } 109 }; 110 111 kmem_cache_t *nfs_xuio_cache; 112 int nfs_loaned_buffers = 0; 113 114 int 115 _init(void) 116 { 117 int status; 118 119 if ((status = nfs_srvinit()) != 0) { 120 cmn_err(CE_WARN, "_init: nfs_srvinit failed"); 121 return (status); 122 } 123 124 status = mod_install((struct modlinkage *)&modlinkage); 125 if (status != 0) { 126 /* 127 * Could not load module, cleanup previous 128 * initialization work. 129 */ 130 nfs_srvfini(); 131 132 return (status); 133 } 134 135 /* 136 * Initialise some placeholders for nfssys() calls. These have 137 * to be declared by the nfs module, since that handles nfssys() 138 * calls - also used by NFS clients - but are provided by this 139 * nfssrv module. These also then serve as confirmation to the 140 * relevant code in nfs that nfssrv has been loaded, as they're 141 * initially NULL. 142 */ 143 nfs_srv_quiesce_func = nfs_srv_quiesce_all; 144 nfs_srv_dss_func = rfs4_dss_setpaths; 145 146 /* setup DSS paths here; must be done before initial server startup */ 147 rfs4_dss_paths = rfs4_dss_oldpaths = NULL; 148 149 /* initialize the copy reduction caches */ 150 151 nfs_xuio_cache = kmem_cache_create("nfs_xuio_cache", 152 sizeof (nfs_xuio_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 153 154 return (status); 155 } 156 157 int 158 _fini() 159 { 160 return (EBUSY); 161 } 162 163 int 164 _info(struct modinfo *modinfop) 165 { 166 return (mod_info(&modlinkage, modinfop)); 167 } 168 169 /* 170 * PUBLICFH_CHECK() checks if the dispatch routine supports 171 * RPC_PUBLICFH_OK, if the filesystem is exported public, and if the 172 * incoming request is using the public filehandle. The check duplicates 173 * the exportmatch() call done in checkexport(), and we should consider 174 * modifying those routines to avoid the duplication. For now, we optimize 175 * by calling exportmatch() only after checking that the dispatch routine 176 * supports RPC_PUBLICFH_OK, and if the filesystem is explicitly exported 177 * public (i.e., not the placeholder). 178 */ 179 #define PUBLICFH_CHECK(disp, exi, fsid, xfid) \ 180 ((disp->dis_flags & RPC_PUBLICFH_OK) && \ 181 ((exi->exi_export.ex_flags & EX_PUBLIC) || \ 182 (exi == exi_public && exportmatch(exi_root, \ 183 fsid, xfid)))) 184 185 static void nfs_srv_shutdown_all(int); 186 static void rfs4_server_start(int); 187 static void nullfree(void); 188 static void rfs_dispatch(struct svc_req *, SVCXPRT *); 189 static void acl_dispatch(struct svc_req *, SVCXPRT *); 190 static void common_dispatch(struct svc_req *, SVCXPRT *, 191 rpcvers_t, rpcvers_t, char *, 192 struct rpc_disptable *); 193 static void hanfsv4_failover(void); 194 static int checkauth(struct exportinfo *, struct svc_req *, cred_t *, int, 195 bool_t, bool_t *); 196 static char *client_name(struct svc_req *req); 197 static char *client_addr(struct svc_req *req, char *buf); 198 extern int sec_svc_getcred(struct svc_req *, cred_t *cr, char **, int *); 199 extern bool_t sec_svc_inrootlist(int, caddr_t, int, caddr_t *); 200 201 #define NFSLOG_COPY_NETBUF(exi, xprt, nb) { \ 202 (nb)->maxlen = (xprt)->xp_rtaddr.maxlen; \ 203 (nb)->len = (xprt)->xp_rtaddr.len; \ 204 (nb)->buf = kmem_alloc((nb)->len, KM_SLEEP); \ 205 bcopy((xprt)->xp_rtaddr.buf, (nb)->buf, (nb)->len); \ 206 } 207 208 /* 209 * Public Filehandle common nfs routines 210 */ 211 static int MCLpath(char **); 212 static void URLparse(char *); 213 214 /* 215 * NFS callout table. 216 * This table is used by svc_getreq() to dispatch a request with 217 * a given prog/vers pair to an appropriate service provider 218 * dispatch routine. 219 * 220 * NOTE: ordering is relied upon below when resetting the version min/max 221 * for NFS_PROGRAM. Careful, if this is ever changed. 222 */ 223 static SVC_CALLOUT __nfs_sc_clts[] = { 224 { NFS_PROGRAM, NFS_VERSMIN, NFS_VERSMAX, rfs_dispatch }, 225 { NFS_ACL_PROGRAM, NFS_ACL_VERSMIN, NFS_ACL_VERSMAX, acl_dispatch } 226 }; 227 228 static SVC_CALLOUT_TABLE nfs_sct_clts = { 229 sizeof (__nfs_sc_clts) / sizeof (__nfs_sc_clts[0]), FALSE, 230 __nfs_sc_clts 231 }; 232 233 static SVC_CALLOUT __nfs_sc_cots[] = { 234 { NFS_PROGRAM, NFS_VERSMIN, NFS_VERSMAX, rfs_dispatch }, 235 { NFS_ACL_PROGRAM, NFS_ACL_VERSMIN, NFS_ACL_VERSMAX, acl_dispatch } 236 }; 237 238 static SVC_CALLOUT_TABLE nfs_sct_cots = { 239 sizeof (__nfs_sc_cots) / sizeof (__nfs_sc_cots[0]), FALSE, __nfs_sc_cots 240 }; 241 242 static SVC_CALLOUT __nfs_sc_rdma[] = { 243 { NFS_PROGRAM, NFS_VERSMIN, NFS_VERSMAX, rfs_dispatch }, 244 { NFS_ACL_PROGRAM, NFS_ACL_VERSMIN, NFS_ACL_VERSMAX, acl_dispatch } 245 }; 246 247 static SVC_CALLOUT_TABLE nfs_sct_rdma = { 248 sizeof (__nfs_sc_rdma) / sizeof (__nfs_sc_rdma[0]), FALSE, __nfs_sc_rdma 249 }; 250 rpcvers_t nfs_versmin = NFS_VERSMIN_DEFAULT; 251 rpcvers_t nfs_versmax = NFS_VERSMAX_DEFAULT; 252 253 /* 254 * Used to track the state of the server so that initialization 255 * can be done properly. 256 */ 257 typedef enum { 258 NFS_SERVER_STOPPED, /* server state destroyed */ 259 NFS_SERVER_STOPPING, /* server state being destroyed */ 260 NFS_SERVER_RUNNING, 261 NFS_SERVER_QUIESCED, /* server state preserved */ 262 NFS_SERVER_OFFLINE /* server pool offline */ 263 } nfs_server_running_t; 264 265 static nfs_server_running_t nfs_server_upordown; 266 static kmutex_t nfs_server_upordown_lock; 267 static kcondvar_t nfs_server_upordown_cv; 268 269 /* 270 * DSS: distributed stable storage 271 * lists of all DSS paths: current, and before last warmstart 272 */ 273 nvlist_t *rfs4_dss_paths, *rfs4_dss_oldpaths; 274 275 int rfs4_dispatch(struct rpcdisp *, struct svc_req *, SVCXPRT *, char *, 276 size_t *); 277 bool_t rfs4_minorvers_mismatch(struct svc_req *, SVCXPRT *, void *); 278 279 /* 280 * RDMA wait variables. 281 */ 282 static kcondvar_t rdma_wait_cv; 283 static kmutex_t rdma_wait_mutex; 284 285 /* 286 * Will be called at the point the server pool is being unregistered 287 * from the pool list. From that point onwards, the pool is waiting 288 * to be drained and as such the server state is stale and pertains 289 * to the old instantiation of the NFS server pool. 290 */ 291 void 292 nfs_srv_offline(void) 293 { 294 mutex_enter(&nfs_server_upordown_lock); 295 if (nfs_server_upordown == NFS_SERVER_RUNNING) { 296 nfs_server_upordown = NFS_SERVER_OFFLINE; 297 } 298 mutex_exit(&nfs_server_upordown_lock); 299 } 300 301 /* 302 * Will be called at the point the server pool is being destroyed so 303 * all transports have been closed and no service threads are in 304 * existence. 305 * 306 * If we quiesce the server, we're shutting it down without destroying the 307 * server state. This allows it to warm start subsequently. 308 */ 309 void 310 nfs_srv_stop_all(void) 311 { 312 int quiesce = 0; 313 nfs_srv_shutdown_all(quiesce); 314 } 315 316 /* 317 * This alternative shutdown routine can be requested via nfssys() 318 */ 319 void 320 nfs_srv_quiesce_all(void) 321 { 322 int quiesce = 1; 323 nfs_srv_shutdown_all(quiesce); 324 } 325 326 static void 327 nfs_srv_shutdown_all(int quiesce) { 328 mutex_enter(&nfs_server_upordown_lock); 329 if (quiesce) { 330 if (nfs_server_upordown == NFS_SERVER_RUNNING || 331 nfs_server_upordown == NFS_SERVER_OFFLINE) { 332 nfs_server_upordown = NFS_SERVER_QUIESCED; 333 cv_signal(&nfs_server_upordown_cv); 334 335 /* reset DSS state, for subsequent warm restart */ 336 rfs4_dss_numnewpaths = 0; 337 rfs4_dss_newpaths = NULL; 338 339 cmn_err(CE_NOTE, "nfs_server: server is now quiesced; " 340 "NFSv4 state has been preserved"); 341 } 342 } else { 343 if (nfs_server_upordown == NFS_SERVER_OFFLINE) { 344 nfs_server_upordown = NFS_SERVER_STOPPING; 345 mutex_exit(&nfs_server_upordown_lock); 346 rfs4_state_fini(); 347 rfs4_fini_drc(nfs4_drc); 348 mutex_enter(&nfs_server_upordown_lock); 349 nfs_server_upordown = NFS_SERVER_STOPPED; 350 cv_signal(&nfs_server_upordown_cv); 351 } 352 } 353 mutex_exit(&nfs_server_upordown_lock); 354 } 355 356 static int 357 nfs_srv_set_sc_versions(struct file *fp, SVC_CALLOUT_TABLE **sctpp, 358 rpcvers_t versmin, rpcvers_t versmax) 359 { 360 struct strioctl strioc; 361 struct T_info_ack tinfo; 362 int error, retval; 363 364 /* 365 * Find out what type of transport this is. 366 */ 367 strioc.ic_cmd = TI_GETINFO; 368 strioc.ic_timout = -1; 369 strioc.ic_len = sizeof (tinfo); 370 strioc.ic_dp = (char *)&tinfo; 371 tinfo.PRIM_type = T_INFO_REQ; 372 373 error = strioctl(fp->f_vnode, I_STR, (intptr_t)&strioc, 0, K_TO_K, 374 CRED(), &retval); 375 if (error || retval) 376 return (error); 377 378 /* 379 * Based on our query of the transport type... 380 * 381 * Reset the min/max versions based on the caller's request 382 * NOTE: This assumes that NFS_PROGRAM is first in the array!! 383 * And the second entry is the NFS_ACL_PROGRAM. 384 */ 385 switch (tinfo.SERV_type) { 386 case T_CLTS: 387 if (versmax == NFS_V4) 388 return (EINVAL); 389 __nfs_sc_clts[0].sc_versmin = versmin; 390 __nfs_sc_clts[0].sc_versmax = versmax; 391 __nfs_sc_clts[1].sc_versmin = versmin; 392 __nfs_sc_clts[1].sc_versmax = versmax; 393 *sctpp = &nfs_sct_clts; 394 break; 395 case T_COTS: 396 case T_COTS_ORD: 397 __nfs_sc_cots[0].sc_versmin = versmin; 398 __nfs_sc_cots[0].sc_versmax = versmax; 399 /* For the NFS_ACL program, check the max version */ 400 if (versmax > NFS_ACL_VERSMAX) 401 versmax = NFS_ACL_VERSMAX; 402 __nfs_sc_cots[1].sc_versmin = versmin; 403 __nfs_sc_cots[1].sc_versmax = versmax; 404 *sctpp = &nfs_sct_cots; 405 break; 406 default: 407 error = EINVAL; 408 } 409 410 return (error); 411 } 412 413 /* 414 * NFS Server system call. 415 * Does all of the work of running a NFS server. 416 * uap->fd is the fd of an open transport provider 417 */ 418 int 419 nfs_svc(struct nfs_svc_args *arg, model_t model) 420 { 421 file_t *fp; 422 SVCMASTERXPRT *xprt; 423 int error; 424 int readsize; 425 char buf[KNC_STRSIZE]; 426 size_t len; 427 STRUCT_HANDLE(nfs_svc_args, uap); 428 struct netbuf addrmask; 429 SVC_CALLOUT_TABLE *sctp = NULL; 430 431 #ifdef lint 432 model = model; /* STRUCT macros don't always refer to it */ 433 #endif 434 435 STRUCT_SET_HANDLE(uap, model, arg); 436 437 /* Check privileges in nfssys() */ 438 439 if ((fp = getf(STRUCT_FGET(uap, fd))) == NULL) 440 return (EBADF); 441 442 /* 443 * Set read buffer size to rsize 444 * and add room for RPC headers. 445 */ 446 readsize = nfs3tsize() + (RPC_MAXDATASIZE - NFS_MAXDATA); 447 if (readsize < RPC_MAXDATASIZE) 448 readsize = RPC_MAXDATASIZE; 449 450 error = copyinstr((const char *)STRUCT_FGETP(uap, netid), buf, 451 KNC_STRSIZE, &len); 452 if (error) { 453 releasef(STRUCT_FGET(uap, fd)); 454 return (error); 455 } 456 457 addrmask.len = STRUCT_FGET(uap, addrmask.len); 458 addrmask.maxlen = STRUCT_FGET(uap, addrmask.maxlen); 459 addrmask.buf = kmem_alloc(addrmask.maxlen, KM_SLEEP); 460 error = copyin(STRUCT_FGETP(uap, addrmask.buf), addrmask.buf, 461 addrmask.len); 462 if (error) { 463 releasef(STRUCT_FGET(uap, fd)); 464 kmem_free(addrmask.buf, addrmask.maxlen); 465 return (error); 466 } 467 468 nfs_versmin = STRUCT_FGET(uap, versmin); 469 nfs_versmax = STRUCT_FGET(uap, versmax); 470 471 /* Double check the vers min/max ranges */ 472 if ((nfs_versmin > nfs_versmax) || 473 (nfs_versmin < NFS_VERSMIN) || 474 (nfs_versmax > NFS_VERSMAX)) { 475 nfs_versmin = NFS_VERSMIN_DEFAULT; 476 nfs_versmax = NFS_VERSMAX_DEFAULT; 477 } 478 479 if (error = 480 nfs_srv_set_sc_versions(fp, &sctp, nfs_versmin, nfs_versmax)) { 481 releasef(STRUCT_FGET(uap, fd)); 482 kmem_free(addrmask.buf, addrmask.maxlen); 483 return (error); 484 } 485 486 /* Initialize nfsv4 server */ 487 if (nfs_versmax == (rpcvers_t)NFS_V4) 488 rfs4_server_start(STRUCT_FGET(uap, delegation)); 489 490 /* Create a transport handle. */ 491 error = svc_tli_kcreate(fp, readsize, buf, &addrmask, &xprt, 492 sctp, NULL, NFS_SVCPOOL_ID, TRUE); 493 494 if (error) 495 kmem_free(addrmask.buf, addrmask.maxlen); 496 497 releasef(STRUCT_FGET(uap, fd)); 498 499 /* HA-NFSv4: save the cluster nodeid */ 500 if (cluster_bootflags & CLUSTER_BOOTED) 501 lm_global_nlmid = clconf_get_nodeid(); 502 503 return (error); 504 } 505 506 static void 507 rfs4_server_start(int nfs4_srv_delegation) 508 { 509 /* 510 * Determine if the server has previously been "started" and 511 * if not, do the per instance initialization 512 */ 513 mutex_enter(&nfs_server_upordown_lock); 514 515 if (nfs_server_upordown != NFS_SERVER_RUNNING) { 516 /* Do we need to stop and wait on the previous server? */ 517 while (nfs_server_upordown == NFS_SERVER_STOPPING || 518 nfs_server_upordown == NFS_SERVER_OFFLINE) 519 cv_wait(&nfs_server_upordown_cv, 520 &nfs_server_upordown_lock); 521 522 if (nfs_server_upordown != NFS_SERVER_RUNNING) { 523 (void) svc_pool_control(NFS_SVCPOOL_ID, 524 SVCPSET_UNREGISTER_PROC, (void *)&nfs_srv_offline); 525 (void) svc_pool_control(NFS_SVCPOOL_ID, 526 SVCPSET_SHUTDOWN_PROC, (void *)&nfs_srv_stop_all); 527 528 /* is this an nfsd warm start? */ 529 if (nfs_server_upordown == NFS_SERVER_QUIESCED) { 530 cmn_err(CE_NOTE, "nfs_server: " 531 "server was previously quiesced; " 532 "existing NFSv4 state will be re-used"); 533 534 /* 535 * HA-NFSv4: this is also the signal 536 * that a Resource Group failover has 537 * occurred. 538 */ 539 if (cluster_bootflags & CLUSTER_BOOTED) 540 hanfsv4_failover(); 541 } else { 542 /* cold start */ 543 rfs4_state_init(); 544 nfs4_drc = rfs4_init_drc(nfs4_drc_max, 545 nfs4_drc_hash); 546 } 547 548 /* 549 * Check to see if delegation is to be 550 * enabled at the server 551 */ 552 if (nfs4_srv_delegation != FALSE) 553 rfs4_set_deleg_policy(SRV_NORMAL_DELEGATE); 554 555 nfs_server_upordown = NFS_SERVER_RUNNING; 556 } 557 cv_signal(&nfs_server_upordown_cv); 558 } 559 mutex_exit(&nfs_server_upordown_lock); 560 } 561 562 /* 563 * If RDMA device available, 564 * start RDMA listener. 565 */ 566 int 567 rdma_start(struct rdma_svc_args *rsa) 568 { 569 int error; 570 rdma_xprt_group_t started_rdma_xprts; 571 rdma_stat stat; 572 int svc_state = 0; 573 574 /* Double check the vers min/max ranges */ 575 if ((rsa->nfs_versmin > rsa->nfs_versmax) || 576 (rsa->nfs_versmin < NFS_VERSMIN) || 577 (rsa->nfs_versmax > NFS_VERSMAX)) { 578 rsa->nfs_versmin = NFS_VERSMIN_DEFAULT; 579 rsa->nfs_versmax = NFS_VERSMAX_DEFAULT; 580 } 581 nfs_versmin = rsa->nfs_versmin; 582 nfs_versmax = rsa->nfs_versmax; 583 584 /* Set the versions in the callout table */ 585 __nfs_sc_rdma[0].sc_versmin = rsa->nfs_versmin; 586 __nfs_sc_rdma[0].sc_versmax = rsa->nfs_versmax; 587 /* For the NFS_ACL program, check the max version */ 588 __nfs_sc_rdma[1].sc_versmin = rsa->nfs_versmin; 589 if (rsa->nfs_versmax > NFS_ACL_VERSMAX) 590 __nfs_sc_rdma[1].sc_versmax = NFS_ACL_VERSMAX; 591 else 592 __nfs_sc_rdma[1].sc_versmax = rsa->nfs_versmax; 593 594 /* Initialize nfsv4 server */ 595 if (rsa->nfs_versmax == (rpcvers_t)NFS_V4) 596 rfs4_server_start(rsa->delegation); 597 598 started_rdma_xprts.rtg_count = 0; 599 started_rdma_xprts.rtg_listhead = NULL; 600 started_rdma_xprts.rtg_poolid = rsa->poolid; 601 602 restart: 603 error = svc_rdma_kcreate(rsa->netid, &nfs_sct_rdma, rsa->poolid, 604 &started_rdma_xprts); 605 606 svc_state = !error; 607 608 while (!error) { 609 610 /* 611 * wait till either interrupted by a signal on 612 * nfs service stop/restart or signalled by a 613 * rdma plugin attach/detatch. 614 */ 615 616 stat = rdma_kwait(); 617 618 /* 619 * stop services if running -- either on a HCA detach event 620 * or if the nfs service is stopped/restarted. 621 */ 622 623 if ((stat == RDMA_HCA_DETACH || stat == RDMA_INTR) && 624 svc_state) { 625 rdma_stop(&started_rdma_xprts); 626 svc_state = 0; 627 } 628 629 /* 630 * nfs service stop/restart, break out of the 631 * wait loop and return; 632 */ 633 if (stat == RDMA_INTR) 634 return (0); 635 636 /* 637 * restart stopped services on a HCA attach event 638 * (if not already running) 639 */ 640 641 if ((stat == RDMA_HCA_ATTACH) && (svc_state == 0)) 642 goto restart; 643 644 /* 645 * loop until a nfs service stop/restart 646 */ 647 } 648 649 return (error); 650 } 651 652 /* ARGSUSED */ 653 void 654 rpc_null(caddr_t *argp, caddr_t *resp, struct exportinfo *exi, 655 struct svc_req *req, cred_t *cr, bool_t ro) 656 { 657 } 658 659 /* ARGSUSED */ 660 void 661 rpc_null_v3(caddr_t *argp, caddr_t *resp, struct exportinfo *exi, 662 struct svc_req *req, cred_t *cr, bool_t ro) 663 { 664 DTRACE_NFSV3_3(op__null__start, struct svc_req *, req, 665 cred_t *, cr, vnode_t *, NULL); 666 DTRACE_NFSV3_3(op__null__done, struct svc_req *, req, 667 cred_t *, cr, vnode_t *, NULL); 668 } 669 670 /* ARGSUSED */ 671 static void 672 rfs_error(caddr_t *argp, caddr_t *resp, struct exportinfo *exi, 673 struct svc_req *req, cred_t *cr, bool_t ro) 674 { 675 /* return (EOPNOTSUPP); */ 676 } 677 678 static void 679 nullfree(void) 680 { 681 } 682 683 static char *rfscallnames_v2[] = { 684 "RFS2_NULL", 685 "RFS2_GETATTR", 686 "RFS2_SETATTR", 687 "RFS2_ROOT", 688 "RFS2_LOOKUP", 689 "RFS2_READLINK", 690 "RFS2_READ", 691 "RFS2_WRITECACHE", 692 "RFS2_WRITE", 693 "RFS2_CREATE", 694 "RFS2_REMOVE", 695 "RFS2_RENAME", 696 "RFS2_LINK", 697 "RFS2_SYMLINK", 698 "RFS2_MKDIR", 699 "RFS2_RMDIR", 700 "RFS2_READDIR", 701 "RFS2_STATFS" 702 }; 703 704 static struct rpcdisp rfsdisptab_v2[] = { 705 /* 706 * NFS VERSION 2 707 */ 708 709 /* RFS_NULL = 0 */ 710 {rpc_null, 711 xdr_void, NULL_xdrproc_t, 0, 712 xdr_void, NULL_xdrproc_t, 0, 713 nullfree, RPC_IDEMPOTENT, 714 0}, 715 716 /* RFS_GETATTR = 1 */ 717 {rfs_getattr, 718 xdr_fhandle, xdr_fastfhandle, sizeof (fhandle_t), 719 xdr_attrstat, xdr_fastattrstat, sizeof (struct nfsattrstat), 720 nullfree, RPC_IDEMPOTENT|RPC_ALLOWANON|RPC_MAPRESP, 721 rfs_getattr_getfh}, 722 723 /* RFS_SETATTR = 2 */ 724 {rfs_setattr, 725 xdr_saargs, NULL_xdrproc_t, sizeof (struct nfssaargs), 726 xdr_attrstat, xdr_fastattrstat, sizeof (struct nfsattrstat), 727 nullfree, RPC_MAPRESP, 728 rfs_setattr_getfh}, 729 730 /* RFS_ROOT = 3 *** NO LONGER SUPPORTED *** */ 731 {rfs_error, 732 xdr_void, NULL_xdrproc_t, 0, 733 xdr_void, NULL_xdrproc_t, 0, 734 nullfree, RPC_IDEMPOTENT, 735 0}, 736 737 /* RFS_LOOKUP = 4 */ 738 {rfs_lookup, 739 xdr_diropargs, NULL_xdrproc_t, sizeof (struct nfsdiropargs), 740 xdr_diropres, xdr_fastdiropres, sizeof (struct nfsdiropres), 741 nullfree, RPC_IDEMPOTENT|RPC_MAPRESP|RPC_PUBLICFH_OK, 742 rfs_lookup_getfh}, 743 744 /* RFS_READLINK = 5 */ 745 {rfs_readlink, 746 xdr_fhandle, xdr_fastfhandle, sizeof (fhandle_t), 747 xdr_rdlnres, NULL_xdrproc_t, sizeof (struct nfsrdlnres), 748 rfs_rlfree, RPC_IDEMPOTENT, 749 rfs_readlink_getfh}, 750 751 /* RFS_READ = 6 */ 752 {rfs_read, 753 xdr_readargs, NULL_xdrproc_t, sizeof (struct nfsreadargs), 754 xdr_rdresult, NULL_xdrproc_t, sizeof (struct nfsrdresult), 755 rfs_rdfree, RPC_IDEMPOTENT, 756 rfs_read_getfh}, 757 758 /* RFS_WRITECACHE = 7 *** NO LONGER SUPPORTED *** */ 759 {rfs_error, 760 xdr_void, NULL_xdrproc_t, 0, 761 xdr_void, NULL_xdrproc_t, 0, 762 nullfree, RPC_IDEMPOTENT, 763 0}, 764 765 /* RFS_WRITE = 8 */ 766 {rfs_write, 767 xdr_writeargs, NULL_xdrproc_t, sizeof (struct nfswriteargs), 768 xdr_attrstat, xdr_fastattrstat, sizeof (struct nfsattrstat), 769 nullfree, RPC_MAPRESP, 770 rfs_write_getfh}, 771 772 /* RFS_CREATE = 9 */ 773 {rfs_create, 774 xdr_creatargs, NULL_xdrproc_t, sizeof (struct nfscreatargs), 775 xdr_diropres, xdr_fastdiropres, sizeof (struct nfsdiropres), 776 nullfree, RPC_MAPRESP, 777 rfs_create_getfh}, 778 779 /* RFS_REMOVE = 10 */ 780 {rfs_remove, 781 xdr_diropargs, NULL_xdrproc_t, sizeof (struct nfsdiropargs), 782 #ifdef _LITTLE_ENDIAN 783 xdr_enum, xdr_fastenum, sizeof (enum nfsstat), 784 #else 785 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat), 786 #endif 787 nullfree, RPC_MAPRESP, 788 rfs_remove_getfh}, 789 790 /* RFS_RENAME = 11 */ 791 {rfs_rename, 792 xdr_rnmargs, NULL_xdrproc_t, sizeof (struct nfsrnmargs), 793 #ifdef _LITTLE_ENDIAN 794 xdr_enum, xdr_fastenum, sizeof (enum nfsstat), 795 #else 796 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat), 797 #endif 798 nullfree, RPC_MAPRESP, 799 rfs_rename_getfh}, 800 801 /* RFS_LINK = 12 */ 802 {rfs_link, 803 xdr_linkargs, NULL_xdrproc_t, sizeof (struct nfslinkargs), 804 #ifdef _LITTLE_ENDIAN 805 xdr_enum, xdr_fastenum, sizeof (enum nfsstat), 806 #else 807 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat), 808 #endif 809 nullfree, RPC_MAPRESP, 810 rfs_link_getfh}, 811 812 /* RFS_SYMLINK = 13 */ 813 {rfs_symlink, 814 xdr_slargs, NULL_xdrproc_t, sizeof (struct nfsslargs), 815 #ifdef _LITTLE_ENDIAN 816 xdr_enum, xdr_fastenum, sizeof (enum nfsstat), 817 #else 818 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat), 819 #endif 820 nullfree, RPC_MAPRESP, 821 rfs_symlink_getfh}, 822 823 /* RFS_MKDIR = 14 */ 824 {rfs_mkdir, 825 xdr_creatargs, NULL_xdrproc_t, sizeof (struct nfscreatargs), 826 xdr_diropres, xdr_fastdiropres, sizeof (struct nfsdiropres), 827 nullfree, RPC_MAPRESP, 828 rfs_mkdir_getfh}, 829 830 /* RFS_RMDIR = 15 */ 831 {rfs_rmdir, 832 xdr_diropargs, NULL_xdrproc_t, sizeof (struct nfsdiropargs), 833 #ifdef _LITTLE_ENDIAN 834 xdr_enum, xdr_fastenum, sizeof (enum nfsstat), 835 #else 836 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat), 837 #endif 838 nullfree, RPC_MAPRESP, 839 rfs_rmdir_getfh}, 840 841 /* RFS_READDIR = 16 */ 842 {rfs_readdir, 843 xdr_rddirargs, NULL_xdrproc_t, sizeof (struct nfsrddirargs), 844 xdr_putrddirres, NULL_xdrproc_t, sizeof (struct nfsrddirres), 845 rfs_rddirfree, RPC_IDEMPOTENT, 846 rfs_readdir_getfh}, 847 848 /* RFS_STATFS = 17 */ 849 {rfs_statfs, 850 xdr_fhandle, xdr_fastfhandle, sizeof (fhandle_t), 851 xdr_statfs, xdr_faststatfs, sizeof (struct nfsstatfs), 852 nullfree, RPC_IDEMPOTENT|RPC_ALLOWANON|RPC_MAPRESP, 853 rfs_statfs_getfh}, 854 }; 855 856 static char *rfscallnames_v3[] = { 857 "RFS3_NULL", 858 "RFS3_GETATTR", 859 "RFS3_SETATTR", 860 "RFS3_LOOKUP", 861 "RFS3_ACCESS", 862 "RFS3_READLINK", 863 "RFS3_READ", 864 "RFS3_WRITE", 865 "RFS3_CREATE", 866 "RFS3_MKDIR", 867 "RFS3_SYMLINK", 868 "RFS3_MKNOD", 869 "RFS3_REMOVE", 870 "RFS3_RMDIR", 871 "RFS3_RENAME", 872 "RFS3_LINK", 873 "RFS3_READDIR", 874 "RFS3_READDIRPLUS", 875 "RFS3_FSSTAT", 876 "RFS3_FSINFO", 877 "RFS3_PATHCONF", 878 "RFS3_COMMIT" 879 }; 880 881 static struct rpcdisp rfsdisptab_v3[] = { 882 /* 883 * NFS VERSION 3 884 */ 885 886 /* RFS_NULL = 0 */ 887 {rpc_null_v3, 888 xdr_void, NULL_xdrproc_t, 0, 889 xdr_void, NULL_xdrproc_t, 0, 890 nullfree, RPC_IDEMPOTENT, 891 0}, 892 893 /* RFS3_GETATTR = 1 */ 894 {rfs3_getattr, 895 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (GETATTR3args), 896 xdr_GETATTR3res, NULL_xdrproc_t, sizeof (GETATTR3res), 897 nullfree, (RPC_IDEMPOTENT | RPC_ALLOWANON), 898 rfs3_getattr_getfh}, 899 900 /* RFS3_SETATTR = 2 */ 901 {rfs3_setattr, 902 xdr_SETATTR3args, NULL_xdrproc_t, sizeof (SETATTR3args), 903 xdr_SETATTR3res, NULL_xdrproc_t, sizeof (SETATTR3res), 904 nullfree, 0, 905 rfs3_setattr_getfh}, 906 907 /* RFS3_LOOKUP = 3 */ 908 {rfs3_lookup, 909 xdr_diropargs3, NULL_xdrproc_t, sizeof (LOOKUP3args), 910 xdr_LOOKUP3res, NULL_xdrproc_t, sizeof (LOOKUP3res), 911 nullfree, (RPC_IDEMPOTENT | RPC_PUBLICFH_OK), 912 rfs3_lookup_getfh}, 913 914 /* RFS3_ACCESS = 4 */ 915 {rfs3_access, 916 xdr_ACCESS3args, NULL_xdrproc_t, sizeof (ACCESS3args), 917 xdr_ACCESS3res, NULL_xdrproc_t, sizeof (ACCESS3res), 918 nullfree, RPC_IDEMPOTENT, 919 rfs3_access_getfh}, 920 921 /* RFS3_READLINK = 5 */ 922 {rfs3_readlink, 923 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (READLINK3args), 924 xdr_READLINK3res, NULL_xdrproc_t, sizeof (READLINK3res), 925 rfs3_readlink_free, RPC_IDEMPOTENT, 926 rfs3_readlink_getfh}, 927 928 /* RFS3_READ = 6 */ 929 {rfs3_read, 930 xdr_READ3args, NULL_xdrproc_t, sizeof (READ3args), 931 xdr_READ3res, NULL_xdrproc_t, sizeof (READ3res), 932 rfs3_read_free, RPC_IDEMPOTENT, 933 rfs3_read_getfh}, 934 935 /* RFS3_WRITE = 7 */ 936 {rfs3_write, 937 xdr_WRITE3args, NULL_xdrproc_t, sizeof (WRITE3args), 938 xdr_WRITE3res, NULL_xdrproc_t, sizeof (WRITE3res), 939 nullfree, 0, 940 rfs3_write_getfh}, 941 942 /* RFS3_CREATE = 8 */ 943 {rfs3_create, 944 xdr_CREATE3args, NULL_xdrproc_t, sizeof (CREATE3args), 945 xdr_CREATE3res, NULL_xdrproc_t, sizeof (CREATE3res), 946 nullfree, 0, 947 rfs3_create_getfh}, 948 949 /* RFS3_MKDIR = 9 */ 950 {rfs3_mkdir, 951 xdr_MKDIR3args, NULL_xdrproc_t, sizeof (MKDIR3args), 952 xdr_MKDIR3res, NULL_xdrproc_t, sizeof (MKDIR3res), 953 nullfree, 0, 954 rfs3_mkdir_getfh}, 955 956 /* RFS3_SYMLINK = 10 */ 957 {rfs3_symlink, 958 xdr_SYMLINK3args, NULL_xdrproc_t, sizeof (SYMLINK3args), 959 xdr_SYMLINK3res, NULL_xdrproc_t, sizeof (SYMLINK3res), 960 nullfree, 0, 961 rfs3_symlink_getfh}, 962 963 /* RFS3_MKNOD = 11 */ 964 {rfs3_mknod, 965 xdr_MKNOD3args, NULL_xdrproc_t, sizeof (MKNOD3args), 966 xdr_MKNOD3res, NULL_xdrproc_t, sizeof (MKNOD3res), 967 nullfree, 0, 968 rfs3_mknod_getfh}, 969 970 /* RFS3_REMOVE = 12 */ 971 {rfs3_remove, 972 xdr_diropargs3, NULL_xdrproc_t, sizeof (REMOVE3args), 973 xdr_REMOVE3res, NULL_xdrproc_t, sizeof (REMOVE3res), 974 nullfree, 0, 975 rfs3_remove_getfh}, 976 977 /* RFS3_RMDIR = 13 */ 978 {rfs3_rmdir, 979 xdr_diropargs3, NULL_xdrproc_t, sizeof (RMDIR3args), 980 xdr_RMDIR3res, NULL_xdrproc_t, sizeof (RMDIR3res), 981 nullfree, 0, 982 rfs3_rmdir_getfh}, 983 984 /* RFS3_RENAME = 14 */ 985 {rfs3_rename, 986 xdr_RENAME3args, NULL_xdrproc_t, sizeof (RENAME3args), 987 xdr_RENAME3res, NULL_xdrproc_t, sizeof (RENAME3res), 988 nullfree, 0, 989 rfs3_rename_getfh}, 990 991 /* RFS3_LINK = 15 */ 992 {rfs3_link, 993 xdr_LINK3args, NULL_xdrproc_t, sizeof (LINK3args), 994 xdr_LINK3res, NULL_xdrproc_t, sizeof (LINK3res), 995 nullfree, 0, 996 rfs3_link_getfh}, 997 998 /* RFS3_READDIR = 16 */ 999 {rfs3_readdir, 1000 xdr_READDIR3args, NULL_xdrproc_t, sizeof (READDIR3args), 1001 xdr_READDIR3res, NULL_xdrproc_t, sizeof (READDIR3res), 1002 rfs3_readdir_free, RPC_IDEMPOTENT, 1003 rfs3_readdir_getfh}, 1004 1005 /* RFS3_READDIRPLUS = 17 */ 1006 {rfs3_readdirplus, 1007 xdr_READDIRPLUS3args, NULL_xdrproc_t, sizeof (READDIRPLUS3args), 1008 xdr_READDIRPLUS3res, NULL_xdrproc_t, sizeof (READDIRPLUS3res), 1009 rfs3_readdirplus_free, RPC_AVOIDWORK, 1010 rfs3_readdirplus_getfh}, 1011 1012 /* RFS3_FSSTAT = 18 */ 1013 {rfs3_fsstat, 1014 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (FSSTAT3args), 1015 xdr_FSSTAT3res, NULL_xdrproc_t, sizeof (FSSTAT3res), 1016 nullfree, RPC_IDEMPOTENT, 1017 rfs3_fsstat_getfh}, 1018 1019 /* RFS3_FSINFO = 19 */ 1020 {rfs3_fsinfo, 1021 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (FSINFO3args), 1022 xdr_FSINFO3res, NULL_xdrproc_t, sizeof (FSINFO3res), 1023 nullfree, RPC_IDEMPOTENT|RPC_ALLOWANON, 1024 rfs3_fsinfo_getfh}, 1025 1026 /* RFS3_PATHCONF = 20 */ 1027 {rfs3_pathconf, 1028 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (PATHCONF3args), 1029 xdr_PATHCONF3res, NULL_xdrproc_t, sizeof (PATHCONF3res), 1030 nullfree, RPC_IDEMPOTENT, 1031 rfs3_pathconf_getfh}, 1032 1033 /* RFS3_COMMIT = 21 */ 1034 {rfs3_commit, 1035 xdr_COMMIT3args, NULL_xdrproc_t, sizeof (COMMIT3args), 1036 xdr_COMMIT3res, NULL_xdrproc_t, sizeof (COMMIT3res), 1037 nullfree, RPC_IDEMPOTENT, 1038 rfs3_commit_getfh}, 1039 }; 1040 1041 static char *rfscallnames_v4[] = { 1042 "RFS4_NULL", 1043 "RFS4_COMPOUND", 1044 "RFS4_NULL", 1045 "RFS4_NULL", 1046 "RFS4_NULL", 1047 "RFS4_NULL", 1048 "RFS4_NULL", 1049 "RFS4_NULL", 1050 "RFS4_CREATE" 1051 }; 1052 1053 static struct rpcdisp rfsdisptab_v4[] = { 1054 /* 1055 * NFS VERSION 4 1056 */ 1057 1058 /* RFS_NULL = 0 */ 1059 {rpc_null, 1060 xdr_void, NULL_xdrproc_t, 0, 1061 xdr_void, NULL_xdrproc_t, 0, 1062 nullfree, RPC_IDEMPOTENT, 0}, 1063 1064 /* RFS4_compound = 1 */ 1065 {rfs4_compound, 1066 xdr_COMPOUND4args_srv, NULL_xdrproc_t, sizeof (COMPOUND4args), 1067 xdr_COMPOUND4res_srv, NULL_xdrproc_t, sizeof (COMPOUND4res), 1068 rfs4_compound_free, 0, 0}, 1069 }; 1070 1071 union rfs_args { 1072 /* 1073 * NFS VERSION 2 1074 */ 1075 1076 /* RFS_NULL = 0 */ 1077 1078 /* RFS_GETATTR = 1 */ 1079 fhandle_t nfs2_getattr_args; 1080 1081 /* RFS_SETATTR = 2 */ 1082 struct nfssaargs nfs2_setattr_args; 1083 1084 /* RFS_ROOT = 3 *** NO LONGER SUPPORTED *** */ 1085 1086 /* RFS_LOOKUP = 4 */ 1087 struct nfsdiropargs nfs2_lookup_args; 1088 1089 /* RFS_READLINK = 5 */ 1090 fhandle_t nfs2_readlink_args; 1091 1092 /* RFS_READ = 6 */ 1093 struct nfsreadargs nfs2_read_args; 1094 1095 /* RFS_WRITECACHE = 7 *** NO LONGER SUPPORTED *** */ 1096 1097 /* RFS_WRITE = 8 */ 1098 struct nfswriteargs nfs2_write_args; 1099 1100 /* RFS_CREATE = 9 */ 1101 struct nfscreatargs nfs2_create_args; 1102 1103 /* RFS_REMOVE = 10 */ 1104 struct nfsdiropargs nfs2_remove_args; 1105 1106 /* RFS_RENAME = 11 */ 1107 struct nfsrnmargs nfs2_rename_args; 1108 1109 /* RFS_LINK = 12 */ 1110 struct nfslinkargs nfs2_link_args; 1111 1112 /* RFS_SYMLINK = 13 */ 1113 struct nfsslargs nfs2_symlink_args; 1114 1115 /* RFS_MKDIR = 14 */ 1116 struct nfscreatargs nfs2_mkdir_args; 1117 1118 /* RFS_RMDIR = 15 */ 1119 struct nfsdiropargs nfs2_rmdir_args; 1120 1121 /* RFS_READDIR = 16 */ 1122 struct nfsrddirargs nfs2_readdir_args; 1123 1124 /* RFS_STATFS = 17 */ 1125 fhandle_t nfs2_statfs_args; 1126 1127 /* 1128 * NFS VERSION 3 1129 */ 1130 1131 /* RFS_NULL = 0 */ 1132 1133 /* RFS3_GETATTR = 1 */ 1134 GETATTR3args nfs3_getattr_args; 1135 1136 /* RFS3_SETATTR = 2 */ 1137 SETATTR3args nfs3_setattr_args; 1138 1139 /* RFS3_LOOKUP = 3 */ 1140 LOOKUP3args nfs3_lookup_args; 1141 1142 /* RFS3_ACCESS = 4 */ 1143 ACCESS3args nfs3_access_args; 1144 1145 /* RFS3_READLINK = 5 */ 1146 READLINK3args nfs3_readlink_args; 1147 1148 /* RFS3_READ = 6 */ 1149 READ3args nfs3_read_args; 1150 1151 /* RFS3_WRITE = 7 */ 1152 WRITE3args nfs3_write_args; 1153 1154 /* RFS3_CREATE = 8 */ 1155 CREATE3args nfs3_create_args; 1156 1157 /* RFS3_MKDIR = 9 */ 1158 MKDIR3args nfs3_mkdir_args; 1159 1160 /* RFS3_SYMLINK = 10 */ 1161 SYMLINK3args nfs3_symlink_args; 1162 1163 /* RFS3_MKNOD = 11 */ 1164 MKNOD3args nfs3_mknod_args; 1165 1166 /* RFS3_REMOVE = 12 */ 1167 REMOVE3args nfs3_remove_args; 1168 1169 /* RFS3_RMDIR = 13 */ 1170 RMDIR3args nfs3_rmdir_args; 1171 1172 /* RFS3_RENAME = 14 */ 1173 RENAME3args nfs3_rename_args; 1174 1175 /* RFS3_LINK = 15 */ 1176 LINK3args nfs3_link_args; 1177 1178 /* RFS3_READDIR = 16 */ 1179 READDIR3args nfs3_readdir_args; 1180 1181 /* RFS3_READDIRPLUS = 17 */ 1182 READDIRPLUS3args nfs3_readdirplus_args; 1183 1184 /* RFS3_FSSTAT = 18 */ 1185 FSSTAT3args nfs3_fsstat_args; 1186 1187 /* RFS3_FSINFO = 19 */ 1188 FSINFO3args nfs3_fsinfo_args; 1189 1190 /* RFS3_PATHCONF = 20 */ 1191 PATHCONF3args nfs3_pathconf_args; 1192 1193 /* RFS3_COMMIT = 21 */ 1194 COMMIT3args nfs3_commit_args; 1195 1196 /* 1197 * NFS VERSION 4 1198 */ 1199 1200 /* RFS_NULL = 0 */ 1201 1202 /* COMPUND = 1 */ 1203 COMPOUND4args nfs4_compound_args; 1204 }; 1205 1206 union rfs_res { 1207 /* 1208 * NFS VERSION 2 1209 */ 1210 1211 /* RFS_NULL = 0 */ 1212 1213 /* RFS_GETATTR = 1 */ 1214 struct nfsattrstat nfs2_getattr_res; 1215 1216 /* RFS_SETATTR = 2 */ 1217 struct nfsattrstat nfs2_setattr_res; 1218 1219 /* RFS_ROOT = 3 *** NO LONGER SUPPORTED *** */ 1220 1221 /* RFS_LOOKUP = 4 */ 1222 struct nfsdiropres nfs2_lookup_res; 1223 1224 /* RFS_READLINK = 5 */ 1225 struct nfsrdlnres nfs2_readlink_res; 1226 1227 /* RFS_READ = 6 */ 1228 struct nfsrdresult nfs2_read_res; 1229 1230 /* RFS_WRITECACHE = 7 *** NO LONGER SUPPORTED *** */ 1231 1232 /* RFS_WRITE = 8 */ 1233 struct nfsattrstat nfs2_write_res; 1234 1235 /* RFS_CREATE = 9 */ 1236 struct nfsdiropres nfs2_create_res; 1237 1238 /* RFS_REMOVE = 10 */ 1239 enum nfsstat nfs2_remove_res; 1240 1241 /* RFS_RENAME = 11 */ 1242 enum nfsstat nfs2_rename_res; 1243 1244 /* RFS_LINK = 12 */ 1245 enum nfsstat nfs2_link_res; 1246 1247 /* RFS_SYMLINK = 13 */ 1248 enum nfsstat nfs2_symlink_res; 1249 1250 /* RFS_MKDIR = 14 */ 1251 struct nfsdiropres nfs2_mkdir_res; 1252 1253 /* RFS_RMDIR = 15 */ 1254 enum nfsstat nfs2_rmdir_res; 1255 1256 /* RFS_READDIR = 16 */ 1257 struct nfsrddirres nfs2_readdir_res; 1258 1259 /* RFS_STATFS = 17 */ 1260 struct nfsstatfs nfs2_statfs_res; 1261 1262 /* 1263 * NFS VERSION 3 1264 */ 1265 1266 /* RFS_NULL = 0 */ 1267 1268 /* RFS3_GETATTR = 1 */ 1269 GETATTR3res nfs3_getattr_res; 1270 1271 /* RFS3_SETATTR = 2 */ 1272 SETATTR3res nfs3_setattr_res; 1273 1274 /* RFS3_LOOKUP = 3 */ 1275 LOOKUP3res nfs3_lookup_res; 1276 1277 /* RFS3_ACCESS = 4 */ 1278 ACCESS3res nfs3_access_res; 1279 1280 /* RFS3_READLINK = 5 */ 1281 READLINK3res nfs3_readlink_res; 1282 1283 /* RFS3_READ = 6 */ 1284 READ3res nfs3_read_res; 1285 1286 /* RFS3_WRITE = 7 */ 1287 WRITE3res nfs3_write_res; 1288 1289 /* RFS3_CREATE = 8 */ 1290 CREATE3res nfs3_create_res; 1291 1292 /* RFS3_MKDIR = 9 */ 1293 MKDIR3res nfs3_mkdir_res; 1294 1295 /* RFS3_SYMLINK = 10 */ 1296 SYMLINK3res nfs3_symlink_res; 1297 1298 /* RFS3_MKNOD = 11 */ 1299 MKNOD3res nfs3_mknod_res; 1300 1301 /* RFS3_REMOVE = 12 */ 1302 REMOVE3res nfs3_remove_res; 1303 1304 /* RFS3_RMDIR = 13 */ 1305 RMDIR3res nfs3_rmdir_res; 1306 1307 /* RFS3_RENAME = 14 */ 1308 RENAME3res nfs3_rename_res; 1309 1310 /* RFS3_LINK = 15 */ 1311 LINK3res nfs3_link_res; 1312 1313 /* RFS3_READDIR = 16 */ 1314 READDIR3res nfs3_readdir_res; 1315 1316 /* RFS3_READDIRPLUS = 17 */ 1317 READDIRPLUS3res nfs3_readdirplus_res; 1318 1319 /* RFS3_FSSTAT = 18 */ 1320 FSSTAT3res nfs3_fsstat_res; 1321 1322 /* RFS3_FSINFO = 19 */ 1323 FSINFO3res nfs3_fsinfo_res; 1324 1325 /* RFS3_PATHCONF = 20 */ 1326 PATHCONF3res nfs3_pathconf_res; 1327 1328 /* RFS3_COMMIT = 21 */ 1329 COMMIT3res nfs3_commit_res; 1330 1331 /* 1332 * NFS VERSION 4 1333 */ 1334 1335 /* RFS_NULL = 0 */ 1336 1337 /* RFS4_COMPOUND = 1 */ 1338 COMPOUND4res nfs4_compound_res; 1339 1340 }; 1341 1342 static struct rpc_disptable rfs_disptable[] = { 1343 {sizeof (rfsdisptab_v2) / sizeof (rfsdisptab_v2[0]), 1344 rfscallnames_v2, 1345 &rfsproccnt_v2_ptr, &rfsprocio_v2_ptr, rfsdisptab_v2}, 1346 {sizeof (rfsdisptab_v3) / sizeof (rfsdisptab_v3[0]), 1347 rfscallnames_v3, 1348 &rfsproccnt_v3_ptr, &rfsprocio_v3_ptr, rfsdisptab_v3}, 1349 {sizeof (rfsdisptab_v4) / sizeof (rfsdisptab_v4[0]), 1350 rfscallnames_v4, 1351 &rfsproccnt_v4_ptr, &rfsprocio_v4_ptr, rfsdisptab_v4}, 1352 }; 1353 1354 /* 1355 * If nfs_portmon is set, then clients are required to use privileged 1356 * ports (ports < IPPORT_RESERVED) in order to get NFS services. 1357 * 1358 * N.B.: this attempt to carry forward the already ill-conceived notion 1359 * of privileged ports for TCP/UDP is really quite ineffectual. Not only 1360 * is it transport-dependent, it's laughably easy to spoof. If you're 1361 * really interested in security, you must start with secure RPC instead. 1362 */ 1363 static int nfs_portmon = 0; 1364 1365 #ifdef DEBUG 1366 static int cred_hits = 0; 1367 static int cred_misses = 0; 1368 #endif 1369 1370 1371 #ifdef DEBUG 1372 /* 1373 * Debug code to allow disabling of rfs_dispatch() use of 1374 * fastxdrargs() and fastxdrres() calls for testing purposes. 1375 */ 1376 static int rfs_no_fast_xdrargs = 0; 1377 static int rfs_no_fast_xdrres = 0; 1378 #endif 1379 1380 union acl_args { 1381 /* 1382 * ACL VERSION 2 1383 */ 1384 1385 /* ACL2_NULL = 0 */ 1386 1387 /* ACL2_GETACL = 1 */ 1388 GETACL2args acl2_getacl_args; 1389 1390 /* ACL2_SETACL = 2 */ 1391 SETACL2args acl2_setacl_args; 1392 1393 /* ACL2_GETATTR = 3 */ 1394 GETATTR2args acl2_getattr_args; 1395 1396 /* ACL2_ACCESS = 4 */ 1397 ACCESS2args acl2_access_args; 1398 1399 /* ACL2_GETXATTRDIR = 5 */ 1400 GETXATTRDIR2args acl2_getxattrdir_args; 1401 1402 /* 1403 * ACL VERSION 3 1404 */ 1405 1406 /* ACL3_NULL = 0 */ 1407 1408 /* ACL3_GETACL = 1 */ 1409 GETACL3args acl3_getacl_args; 1410 1411 /* ACL3_SETACL = 2 */ 1412 SETACL3args acl3_setacl; 1413 1414 /* ACL3_GETXATTRDIR = 3 */ 1415 GETXATTRDIR3args acl3_getxattrdir_args; 1416 1417 }; 1418 1419 union acl_res { 1420 /* 1421 * ACL VERSION 2 1422 */ 1423 1424 /* ACL2_NULL = 0 */ 1425 1426 /* ACL2_GETACL = 1 */ 1427 GETACL2res acl2_getacl_res; 1428 1429 /* ACL2_SETACL = 2 */ 1430 SETACL2res acl2_setacl_res; 1431 1432 /* ACL2_GETATTR = 3 */ 1433 GETATTR2res acl2_getattr_res; 1434 1435 /* ACL2_ACCESS = 4 */ 1436 ACCESS2res acl2_access_res; 1437 1438 /* ACL2_GETXATTRDIR = 5 */ 1439 GETXATTRDIR2args acl2_getxattrdir_res; 1440 1441 /* 1442 * ACL VERSION 3 1443 */ 1444 1445 /* ACL3_NULL = 0 */ 1446 1447 /* ACL3_GETACL = 1 */ 1448 GETACL3res acl3_getacl_res; 1449 1450 /* ACL3_SETACL = 2 */ 1451 SETACL3res acl3_setacl_res; 1452 1453 /* ACL3_GETXATTRDIR = 3 */ 1454 GETXATTRDIR3res acl3_getxattrdir_res; 1455 1456 }; 1457 1458 static bool_t 1459 auth_tooweak(struct svc_req *req, char *res) 1460 { 1461 1462 if (req->rq_vers == NFS_VERSION && req->rq_proc == RFS_LOOKUP) { 1463 struct nfsdiropres *dr = (struct nfsdiropres *)res; 1464 if ((enum wnfsstat)dr->dr_status == WNFSERR_CLNT_FLAVOR) 1465 return (TRUE); 1466 } else if (req->rq_vers == NFS_V3 && req->rq_proc == NFSPROC3_LOOKUP) { 1467 LOOKUP3res *resp = (LOOKUP3res *)res; 1468 if ((enum wnfsstat)resp->status == WNFSERR_CLNT_FLAVOR) 1469 return (TRUE); 1470 } 1471 return (FALSE); 1472 } 1473 1474 1475 static void 1476 common_dispatch(struct svc_req *req, SVCXPRT *xprt, rpcvers_t min_vers, 1477 rpcvers_t max_vers, char *pgmname, 1478 struct rpc_disptable *disptable) 1479 { 1480 int which; 1481 rpcvers_t vers; 1482 char *args; 1483 union { 1484 union rfs_args ra; 1485 union acl_args aa; 1486 } args_buf; 1487 char *res; 1488 union { 1489 union rfs_res rr; 1490 union acl_res ar; 1491 } res_buf; 1492 struct rpcdisp *disp = NULL; 1493 int dis_flags = 0; 1494 cred_t *cr; 1495 int error = 0; 1496 int anon_ok; 1497 struct exportinfo *exi = NULL; 1498 unsigned int nfslog_rec_id; 1499 int dupstat; 1500 struct dupreq *dr; 1501 int authres; 1502 bool_t publicfh_ok = FALSE; 1503 enum_t auth_flavor; 1504 bool_t dupcached = FALSE; 1505 struct netbuf nb; 1506 bool_t logging_enabled = FALSE; 1507 struct exportinfo *nfslog_exi = NULL; 1508 char **procnames; 1509 char cbuf[INET6_ADDRSTRLEN]; /* to hold both IPv4 and IPv6 addr */ 1510 bool_t ro = FALSE; 1511 kstat_t *ksp = NULL; 1512 kstat_t *exi_ksp = NULL; 1513 size_t pos; /* request size */ 1514 size_t rlen; /* reply size */ 1515 bool_t rsent = FALSE; /* reply was sent successfully */ 1516 1517 vers = req->rq_vers; 1518 1519 if (vers < min_vers || vers > max_vers) { 1520 svcerr_progvers(req->rq_xprt, min_vers, max_vers); 1521 error++; 1522 cmn_err(CE_NOTE, "%s: bad version number %u", pgmname, vers); 1523 goto done; 1524 } 1525 vers -= min_vers; 1526 1527 which = req->rq_proc; 1528 if (which < 0 || which >= disptable[(int)vers].dis_nprocs) { 1529 svcerr_noproc(req->rq_xprt); 1530 error++; 1531 goto done; 1532 } 1533 1534 (*(disptable[(int)vers].dis_proccntp))[which].value.ui64++; 1535 1536 ksp = (*(disptable[(int)vers].dis_prociop))[which]; 1537 if (ksp != NULL) { 1538 mutex_enter(ksp->ks_lock); 1539 kstat_runq_enter(KSTAT_IO_PTR(ksp)); 1540 mutex_exit(ksp->ks_lock); 1541 } 1542 pos = XDR_GETPOS(&xprt->xp_xdrin); 1543 1544 disp = &disptable[(int)vers].dis_table[which]; 1545 procnames = disptable[(int)vers].dis_procnames; 1546 1547 auth_flavor = req->rq_cred.oa_flavor; 1548 1549 /* 1550 * Deserialize into the args struct. 1551 */ 1552 args = (char *)&args_buf; 1553 1554 #ifdef DEBUG 1555 if (rfs_no_fast_xdrargs || (auth_flavor == RPCSEC_GSS) || 1556 disp->dis_fastxdrargs == NULL_xdrproc_t || 1557 !SVC_GETARGS(xprt, disp->dis_fastxdrargs, (char *)&args)) 1558 #else 1559 if ((auth_flavor == RPCSEC_GSS) || 1560 disp->dis_fastxdrargs == NULL_xdrproc_t || 1561 !SVC_GETARGS(xprt, disp->dis_fastxdrargs, (char *)&args)) 1562 #endif 1563 { 1564 bzero(args, disp->dis_argsz); 1565 if (!SVC_GETARGS(xprt, disp->dis_xdrargs, args)) { 1566 error++; 1567 /* 1568 * Check if we are outside our capabilities. 1569 */ 1570 if (rfs4_minorvers_mismatch(req, xprt, (void *)args)) 1571 goto done; 1572 1573 svcerr_decode(xprt); 1574 cmn_err(CE_NOTE, 1575 "Failed to decode arguments for %s version %u " 1576 "procedure %s client %s%s", 1577 pgmname, vers + min_vers, procnames[which], 1578 client_name(req), client_addr(req, cbuf)); 1579 goto done; 1580 } 1581 } 1582 1583 /* 1584 * If Version 4 use that specific dispatch function. 1585 */ 1586 if (req->rq_vers == 4) { 1587 error += rfs4_dispatch(disp, req, xprt, args, &rlen); 1588 if (error == 0) 1589 rsent = TRUE; 1590 goto done; 1591 } 1592 1593 dis_flags = disp->dis_flags; 1594 1595 /* 1596 * Find export information and check authentication, 1597 * setting the credential if everything is ok. 1598 */ 1599 if (disp->dis_getfh != NULL) { 1600 void *fh; 1601 fsid_t *fsid; 1602 fid_t *fid, *xfid; 1603 fhandle_t *fh2; 1604 nfs_fh3 *fh3; 1605 1606 fh = (*disp->dis_getfh)(args); 1607 switch (req->rq_vers) { 1608 case NFS_VERSION: 1609 fh2 = (fhandle_t *)fh; 1610 fsid = &fh2->fh_fsid; 1611 fid = (fid_t *)&fh2->fh_len; 1612 xfid = (fid_t *)&fh2->fh_xlen; 1613 break; 1614 case NFS_V3: 1615 fh3 = (nfs_fh3 *)fh; 1616 fsid = &fh3->fh3_fsid; 1617 fid = FH3TOFIDP(fh3); 1618 xfid = FH3TOXFIDP(fh3); 1619 break; 1620 } 1621 1622 /* 1623 * Fix for bug 1038302 - corbin 1624 * There is a problem here if anonymous access is 1625 * disallowed. If the current request is part of the 1626 * client's mount process for the requested filesystem, 1627 * then it will carry root (uid 0) credentials on it, and 1628 * will be denied by checkauth if that client does not 1629 * have explicit root=0 permission. This will cause the 1630 * client's mount operation to fail. As a work-around, 1631 * we check here to see if the request is a getattr or 1632 * statfs operation on the exported vnode itself, and 1633 * pass a flag to checkauth with the result of this test. 1634 * 1635 * The filehandle refers to the mountpoint itself if 1636 * the fh_data and fh_xdata portions of the filehandle 1637 * are equal. 1638 * 1639 * Added anon_ok argument to checkauth(). 1640 */ 1641 1642 if ((dis_flags & RPC_ALLOWANON) && EQFID(fid, xfid)) 1643 anon_ok = 1; 1644 else 1645 anon_ok = 0; 1646 1647 cr = xprt->xp_cred; 1648 ASSERT(cr != NULL); 1649 #ifdef DEBUG 1650 if (crgetref(cr) != 1) { 1651 crfree(cr); 1652 cr = crget(); 1653 xprt->xp_cred = cr; 1654 cred_misses++; 1655 } else 1656 cred_hits++; 1657 #else 1658 if (crgetref(cr) != 1) { 1659 crfree(cr); 1660 cr = crget(); 1661 xprt->xp_cred = cr; 1662 } 1663 #endif 1664 1665 exi = checkexport(fsid, xfid); 1666 1667 if (exi != NULL) { 1668 rw_enter(&exported_lock, RW_READER); 1669 1670 switch (req->rq_vers) { 1671 case NFS_VERSION: 1672 exi_ksp = (disptable == rfs_disptable) ? 1673 exi->exi_kstats->rfsprocio_v2_ptr[which] : 1674 exi->exi_kstats->aclprocio_v2_ptr[which]; 1675 break; 1676 case NFS_V3: 1677 exi_ksp = (disptable == rfs_disptable) ? 1678 exi->exi_kstats->rfsprocio_v3_ptr[which] : 1679 exi->exi_kstats->aclprocio_v3_ptr[which]; 1680 break; 1681 default: 1682 ASSERT(0); 1683 break; 1684 } 1685 1686 if (exi_ksp != NULL) { 1687 mutex_enter(exi_ksp->ks_lock); 1688 kstat_runq_enter(KSTAT_IO_PTR(exi_ksp)); 1689 mutex_exit(exi_ksp->ks_lock); 1690 } else { 1691 rw_exit(&exported_lock); 1692 } 1693 1694 publicfh_ok = PUBLICFH_CHECK(disp, exi, fsid, xfid); 1695 1696 /* 1697 * Don't allow non-V4 clients access 1698 * to pseudo exports 1699 */ 1700 if (PSEUDO(exi)) { 1701 svcerr_weakauth(xprt); 1702 error++; 1703 goto done; 1704 } 1705 1706 authres = checkauth(exi, req, cr, anon_ok, publicfh_ok, 1707 &ro); 1708 /* 1709 * authres > 0: authentication OK - proceed 1710 * authres == 0: authentication weak - return error 1711 * authres < 0: authentication timeout - drop 1712 */ 1713 if (authres <= 0) { 1714 if (authres == 0) { 1715 svcerr_weakauth(xprt); 1716 error++; 1717 } 1718 goto done; 1719 } 1720 } 1721 } else 1722 cr = NULL; 1723 1724 if ((dis_flags & RPC_MAPRESP) && (auth_flavor != RPCSEC_GSS)) { 1725 res = (char *)SVC_GETRES(xprt, disp->dis_ressz); 1726 if (res == NULL) 1727 res = (char *)&res_buf; 1728 } else 1729 res = (char *)&res_buf; 1730 1731 if (!(dis_flags & RPC_IDEMPOTENT)) { 1732 dupstat = SVC_DUP_EXT(xprt, req, res, disp->dis_ressz, &dr, 1733 &dupcached); 1734 1735 switch (dupstat) { 1736 case DUP_ERROR: 1737 svcerr_systemerr(xprt); 1738 error++; 1739 goto done; 1740 /* NOTREACHED */ 1741 case DUP_INPROGRESS: 1742 if (res != (char *)&res_buf) 1743 SVC_FREERES(xprt); 1744 error++; 1745 goto done; 1746 /* NOTREACHED */ 1747 case DUP_NEW: 1748 case DUP_DROP: 1749 curthread->t_flag |= T_DONTPEND; 1750 1751 (*disp->dis_proc)(args, res, exi, req, cr, ro); 1752 1753 curthread->t_flag &= ~T_DONTPEND; 1754 if (curthread->t_flag & T_WOULDBLOCK) { 1755 curthread->t_flag &= ~T_WOULDBLOCK; 1756 SVC_DUPDONE_EXT(xprt, dr, res, NULL, 1757 disp->dis_ressz, DUP_DROP); 1758 if (res != (char *)&res_buf) 1759 SVC_FREERES(xprt); 1760 error++; 1761 goto done; 1762 } 1763 if (dis_flags & RPC_AVOIDWORK) { 1764 SVC_DUPDONE_EXT(xprt, dr, res, NULL, 1765 disp->dis_ressz, DUP_DROP); 1766 } else { 1767 SVC_DUPDONE_EXT(xprt, dr, res, 1768 disp->dis_resfree == nullfree ? NULL : 1769 disp->dis_resfree, 1770 disp->dis_ressz, DUP_DONE); 1771 dupcached = TRUE; 1772 } 1773 break; 1774 case DUP_DONE: 1775 break; 1776 } 1777 1778 } else { 1779 curthread->t_flag |= T_DONTPEND; 1780 1781 (*disp->dis_proc)(args, res, exi, req, cr, ro); 1782 1783 curthread->t_flag &= ~T_DONTPEND; 1784 if (curthread->t_flag & T_WOULDBLOCK) { 1785 curthread->t_flag &= ~T_WOULDBLOCK; 1786 if (res != (char *)&res_buf) 1787 SVC_FREERES(xprt); 1788 error++; 1789 goto done; 1790 } 1791 } 1792 1793 if (auth_tooweak(req, res)) { 1794 svcerr_weakauth(xprt); 1795 error++; 1796 goto done; 1797 } 1798 1799 /* 1800 * Check to see if logging has been enabled on the server. 1801 * If so, then obtain the export info struct to be used for 1802 * the later writing of the log record. This is done for 1803 * the case that a lookup is done across a non-logged public 1804 * file system. 1805 */ 1806 if (nfslog_buffer_list != NULL) { 1807 nfslog_exi = nfslog_get_exi(exi, req, res, &nfslog_rec_id); 1808 /* 1809 * Is logging enabled? 1810 */ 1811 logging_enabled = (nfslog_exi != NULL); 1812 1813 /* 1814 * Copy the netbuf for logging purposes, before it is 1815 * freed by svc_sendreply(). 1816 */ 1817 if (logging_enabled) { 1818 NFSLOG_COPY_NETBUF(nfslog_exi, xprt, &nb); 1819 /* 1820 * If RPC_MAPRESP flag set (i.e. in V2 ops) the 1821 * res gets copied directly into the mbuf and 1822 * may be freed soon after the sendreply. So we 1823 * must copy it here to a safe place... 1824 */ 1825 if (res != (char *)&res_buf) { 1826 bcopy(res, (char *)&res_buf, disp->dis_ressz); 1827 } 1828 } 1829 } 1830 1831 /* 1832 * Serialize and send results struct 1833 */ 1834 #ifdef DEBUG 1835 if (rfs_no_fast_xdrres == 0 && res != (char *)&res_buf) 1836 #else 1837 if (res != (char *)&res_buf) 1838 #endif 1839 { 1840 if (!svc_sendreply(xprt, disp->dis_fastxdrres, res)) { 1841 cmn_err(CE_NOTE, "%s: bad sendreply", pgmname); 1842 svcerr_systemerr(xprt); 1843 error++; 1844 } else { 1845 rlen = xdr_sizeof(disp->dis_fastxdrres, res); 1846 rsent = TRUE; 1847 } 1848 } else { 1849 if (!svc_sendreply(xprt, disp->dis_xdrres, res)) { 1850 cmn_err(CE_NOTE, "%s: bad sendreply", pgmname); 1851 svcerr_systemerr(xprt); 1852 error++; 1853 } else { 1854 rlen = xdr_sizeof(disp->dis_xdrres, res); 1855 rsent = TRUE; 1856 } 1857 } 1858 1859 /* 1860 * Log if needed 1861 */ 1862 if (logging_enabled) { 1863 nfslog_write_record(nfslog_exi, req, args, (char *)&res_buf, 1864 cr, &nb, nfslog_rec_id, NFSLOG_ONE_BUFFER); 1865 exi_rele(nfslog_exi); 1866 kmem_free((&nb)->buf, (&nb)->len); 1867 } 1868 1869 /* 1870 * Free results struct. With the addition of NFS V4 we can 1871 * have non-idempotent procedures with functions. 1872 */ 1873 if (disp->dis_resfree != nullfree && dupcached == FALSE) { 1874 (*disp->dis_resfree)(res); 1875 } 1876 1877 done: 1878 if (ksp != NULL || exi_ksp != NULL) { 1879 pos = XDR_GETPOS(&xprt->xp_xdrin) - pos; 1880 } 1881 1882 /* 1883 * Free arguments struct 1884 */ 1885 if (disp) { 1886 if (!SVC_FREEARGS(xprt, disp->dis_xdrargs, args)) { 1887 cmn_err(CE_NOTE, "%s: bad freeargs", pgmname); 1888 error++; 1889 } 1890 } else { 1891 if (!SVC_FREEARGS(xprt, (xdrproc_t)0, (caddr_t)0)) { 1892 cmn_err(CE_NOTE, "%s: bad freeargs", pgmname); 1893 error++; 1894 } 1895 } 1896 1897 if (exi_ksp != NULL) { 1898 mutex_enter(exi_ksp->ks_lock); 1899 KSTAT_IO_PTR(exi_ksp)->nwritten += pos; 1900 KSTAT_IO_PTR(exi_ksp)->writes++; 1901 if (rsent) { 1902 KSTAT_IO_PTR(exi_ksp)->nread += rlen; 1903 KSTAT_IO_PTR(exi_ksp)->reads++; 1904 } 1905 kstat_runq_exit(KSTAT_IO_PTR(exi_ksp)); 1906 mutex_exit(exi_ksp->ks_lock); 1907 1908 rw_exit(&exported_lock); 1909 } 1910 1911 if (exi != NULL) 1912 exi_rele(exi); 1913 1914 if (ksp != NULL) { 1915 mutex_enter(ksp->ks_lock); 1916 KSTAT_IO_PTR(ksp)->nwritten += pos; 1917 KSTAT_IO_PTR(ksp)->writes++; 1918 if (rsent) { 1919 KSTAT_IO_PTR(ksp)->nread += rlen; 1920 KSTAT_IO_PTR(ksp)->reads++; 1921 } 1922 kstat_runq_exit(KSTAT_IO_PTR(ksp)); 1923 mutex_exit(ksp->ks_lock); 1924 } 1925 1926 global_svstat_ptr[req->rq_vers][NFS_BADCALLS].value.ui64 += error; 1927 1928 global_svstat_ptr[req->rq_vers][NFS_CALLS].value.ui64++; 1929 } 1930 1931 static void 1932 rfs_dispatch(struct svc_req *req, SVCXPRT *xprt) 1933 { 1934 common_dispatch(req, xprt, NFS_VERSMIN, NFS_VERSMAX, 1935 "NFS", rfs_disptable); 1936 } 1937 1938 static char *aclcallnames_v2[] = { 1939 "ACL2_NULL", 1940 "ACL2_GETACL", 1941 "ACL2_SETACL", 1942 "ACL2_GETATTR", 1943 "ACL2_ACCESS", 1944 "ACL2_GETXATTRDIR" 1945 }; 1946 1947 static struct rpcdisp acldisptab_v2[] = { 1948 /* 1949 * ACL VERSION 2 1950 */ 1951 1952 /* ACL2_NULL = 0 */ 1953 {rpc_null, 1954 xdr_void, NULL_xdrproc_t, 0, 1955 xdr_void, NULL_xdrproc_t, 0, 1956 nullfree, RPC_IDEMPOTENT, 1957 0}, 1958 1959 /* ACL2_GETACL = 1 */ 1960 {acl2_getacl, 1961 xdr_GETACL2args, xdr_fastGETACL2args, sizeof (GETACL2args), 1962 xdr_GETACL2res, NULL_xdrproc_t, sizeof (GETACL2res), 1963 acl2_getacl_free, RPC_IDEMPOTENT, 1964 acl2_getacl_getfh}, 1965 1966 /* ACL2_SETACL = 2 */ 1967 {acl2_setacl, 1968 xdr_SETACL2args, NULL_xdrproc_t, sizeof (SETACL2args), 1969 #ifdef _LITTLE_ENDIAN 1970 xdr_SETACL2res, xdr_fastSETACL2res, sizeof (SETACL2res), 1971 #else 1972 xdr_SETACL2res, NULL_xdrproc_t, sizeof (SETACL2res), 1973 #endif 1974 nullfree, RPC_MAPRESP, 1975 acl2_setacl_getfh}, 1976 1977 /* ACL2_GETATTR = 3 */ 1978 {acl2_getattr, 1979 xdr_GETATTR2args, xdr_fastGETATTR2args, sizeof (GETATTR2args), 1980 #ifdef _LITTLE_ENDIAN 1981 xdr_GETATTR2res, xdr_fastGETATTR2res, sizeof (GETATTR2res), 1982 #else 1983 xdr_GETATTR2res, NULL_xdrproc_t, sizeof (GETATTR2res), 1984 #endif 1985 nullfree, RPC_IDEMPOTENT|RPC_ALLOWANON|RPC_MAPRESP, 1986 acl2_getattr_getfh}, 1987 1988 /* ACL2_ACCESS = 4 */ 1989 {acl2_access, 1990 xdr_ACCESS2args, xdr_fastACCESS2args, sizeof (ACCESS2args), 1991 #ifdef _LITTLE_ENDIAN 1992 xdr_ACCESS2res, xdr_fastACCESS2res, sizeof (ACCESS2res), 1993 #else 1994 xdr_ACCESS2res, NULL_xdrproc_t, sizeof (ACCESS2res), 1995 #endif 1996 nullfree, RPC_IDEMPOTENT|RPC_MAPRESP, 1997 acl2_access_getfh}, 1998 1999 /* ACL2_GETXATTRDIR = 5 */ 2000 {acl2_getxattrdir, 2001 xdr_GETXATTRDIR2args, NULL_xdrproc_t, sizeof (GETXATTRDIR2args), 2002 xdr_GETXATTRDIR2res, NULL_xdrproc_t, sizeof (GETXATTRDIR2res), 2003 nullfree, RPC_IDEMPOTENT, 2004 acl2_getxattrdir_getfh}, 2005 }; 2006 2007 static char *aclcallnames_v3[] = { 2008 "ACL3_NULL", 2009 "ACL3_GETACL", 2010 "ACL3_SETACL", 2011 "ACL3_GETXATTRDIR" 2012 }; 2013 2014 static struct rpcdisp acldisptab_v3[] = { 2015 /* 2016 * ACL VERSION 3 2017 */ 2018 2019 /* ACL3_NULL = 0 */ 2020 {rpc_null, 2021 xdr_void, NULL_xdrproc_t, 0, 2022 xdr_void, NULL_xdrproc_t, 0, 2023 nullfree, RPC_IDEMPOTENT, 2024 0}, 2025 2026 /* ACL3_GETACL = 1 */ 2027 {acl3_getacl, 2028 xdr_GETACL3args, NULL_xdrproc_t, sizeof (GETACL3args), 2029 xdr_GETACL3res, NULL_xdrproc_t, sizeof (GETACL3res), 2030 acl3_getacl_free, RPC_IDEMPOTENT, 2031 acl3_getacl_getfh}, 2032 2033 /* ACL3_SETACL = 2 */ 2034 {acl3_setacl, 2035 xdr_SETACL3args, NULL_xdrproc_t, sizeof (SETACL3args), 2036 xdr_SETACL3res, NULL_xdrproc_t, sizeof (SETACL3res), 2037 nullfree, 0, 2038 acl3_setacl_getfh}, 2039 2040 /* ACL3_GETXATTRDIR = 3 */ 2041 {acl3_getxattrdir, 2042 xdr_GETXATTRDIR3args, NULL_xdrproc_t, sizeof (GETXATTRDIR3args), 2043 xdr_GETXATTRDIR3res, NULL_xdrproc_t, sizeof (GETXATTRDIR3res), 2044 nullfree, RPC_IDEMPOTENT, 2045 acl3_getxattrdir_getfh}, 2046 }; 2047 2048 static struct rpc_disptable acl_disptable[] = { 2049 {sizeof (acldisptab_v2) / sizeof (acldisptab_v2[0]), 2050 aclcallnames_v2, 2051 &aclproccnt_v2_ptr, &aclprocio_v2_ptr, acldisptab_v2}, 2052 {sizeof (acldisptab_v3) / sizeof (acldisptab_v3[0]), 2053 aclcallnames_v3, 2054 &aclproccnt_v3_ptr, &aclprocio_v3_ptr, acldisptab_v3}, 2055 }; 2056 2057 static void 2058 acl_dispatch(struct svc_req *req, SVCXPRT *xprt) 2059 { 2060 common_dispatch(req, xprt, NFS_ACL_VERSMIN, NFS_ACL_VERSMAX, 2061 "ACL", acl_disptable); 2062 } 2063 2064 int 2065 checkwin(int flavor, int window, struct svc_req *req) 2066 { 2067 struct authdes_cred *adc; 2068 2069 switch (flavor) { 2070 case AUTH_DES: 2071 adc = (struct authdes_cred *)req->rq_clntcred; 2072 if (adc->adc_fullname.window > window) 2073 return (0); 2074 break; 2075 2076 default: 2077 break; 2078 } 2079 return (1); 2080 } 2081 2082 2083 /* 2084 * checkauth() will check the access permission against the export 2085 * information. Then map root uid/gid to appropriate uid/gid. 2086 * 2087 * This routine is used by NFS V3 and V2 code. 2088 */ 2089 static int 2090 checkauth(struct exportinfo *exi, struct svc_req *req, cred_t *cr, int anon_ok, 2091 bool_t publicfh_ok, bool_t *ro) 2092 { 2093 int i, nfsflavor, rpcflavor, stat, access; 2094 struct secinfo *secp; 2095 caddr_t principal; 2096 char buf[INET6_ADDRSTRLEN]; /* to hold both IPv4 and IPv6 addr */ 2097 int anon_res = 0; 2098 2099 uid_t uid; 2100 gid_t gid; 2101 uint_t ngids; 2102 gid_t *gids; 2103 2104 /* 2105 * Check for privileged port number 2106 * N.B.: this assumes that we know the format of a netbuf. 2107 */ 2108 if (nfs_portmon) { 2109 struct sockaddr *ca; 2110 ca = (struct sockaddr *)svc_getrpccaller(req->rq_xprt)->buf; 2111 2112 if (ca == NULL) 2113 return (0); 2114 2115 if ((ca->sa_family == AF_INET && 2116 ntohs(((struct sockaddr_in *)ca)->sin_port) >= 2117 IPPORT_RESERVED) || 2118 (ca->sa_family == AF_INET6 && 2119 ntohs(((struct sockaddr_in6 *)ca)->sin6_port) >= 2120 IPPORT_RESERVED)) { 2121 cmn_err(CE_NOTE, 2122 "nfs_server: client %s%ssent NFS request from " 2123 "unprivileged port", 2124 client_name(req), client_addr(req, buf)); 2125 return (0); 2126 } 2127 } 2128 2129 /* 2130 * return 1 on success or 0 on failure 2131 */ 2132 stat = sec_svc_getcred(req, cr, &principal, &nfsflavor); 2133 2134 /* 2135 * A failed AUTH_UNIX sec_svc_getcred() implies we couldn't set 2136 * the credentials; below we map that to anonymous. 2137 */ 2138 if (!stat && nfsflavor != AUTH_UNIX) { 2139 cmn_err(CE_NOTE, 2140 "nfs_server: couldn't get unix cred for %s", 2141 client_name(req)); 2142 return (0); 2143 } 2144 2145 /* 2146 * Short circuit checkauth() on operations that support the 2147 * public filehandle, and if the request for that operation 2148 * is using the public filehandle. Note that we must call 2149 * sec_svc_getcred() first so that xp_cookie is set to the 2150 * right value. Normally xp_cookie is just the RPC flavor 2151 * of the the request, but in the case of RPCSEC_GSS it 2152 * could be a pseudo flavor. 2153 */ 2154 if (publicfh_ok) 2155 return (1); 2156 2157 rpcflavor = req->rq_cred.oa_flavor; 2158 /* 2159 * Check if the auth flavor is valid for this export 2160 */ 2161 access = nfsauth_access(exi, req, cr, &uid, &gid, &ngids, &gids); 2162 if (access & NFSAUTH_DROP) 2163 return (-1); /* drop the request */ 2164 2165 if (access & NFSAUTH_RO) 2166 *ro = TRUE; 2167 2168 if (access & NFSAUTH_DENIED) { 2169 /* 2170 * If anon_ok == 1 and we got NFSAUTH_DENIED, it was 2171 * probably due to the flavor not matching during 2172 * the mount attempt. So map the flavor to AUTH_NONE 2173 * so that the credentials get mapped to the anonymous 2174 * user. 2175 */ 2176 if (anon_ok == 1) 2177 rpcflavor = AUTH_NONE; 2178 else 2179 return (0); /* deny access */ 2180 2181 } else if (access & NFSAUTH_MAPNONE) { 2182 /* 2183 * Access was granted even though the flavor mismatched 2184 * because AUTH_NONE was one of the exported flavors. 2185 */ 2186 rpcflavor = AUTH_NONE; 2187 2188 } else if (access & NFSAUTH_WRONGSEC) { 2189 /* 2190 * NFSAUTH_WRONGSEC is used for NFSv4. If we get here, 2191 * it means a client ignored the list of allowed flavors 2192 * returned via the MOUNT protocol. So we just disallow it! 2193 */ 2194 return (0); 2195 } 2196 2197 if (rpcflavor != AUTH_SYS) 2198 kmem_free(gids, ngids * sizeof (gid_t)); 2199 2200 switch (rpcflavor) { 2201 case AUTH_NONE: 2202 anon_res = crsetugid(cr, exi->exi_export.ex_anon, 2203 exi->exi_export.ex_anon); 2204 (void) crsetgroups(cr, 0, NULL); 2205 break; 2206 2207 case AUTH_UNIX: 2208 if (!stat || crgetuid(cr) == 0 && !(access & NFSAUTH_UIDMAP)) { 2209 anon_res = crsetugid(cr, exi->exi_export.ex_anon, 2210 exi->exi_export.ex_anon); 2211 (void) crsetgroups(cr, 0, NULL); 2212 } else if (crgetuid(cr) == 0 && access & NFSAUTH_ROOT) { 2213 /* 2214 * It is root, so apply rootid to get real UID 2215 * Find the secinfo structure. We should be able 2216 * to find it by the time we reach here. 2217 * nfsauth_access() has done the checking. 2218 */ 2219 secp = NULL; 2220 for (i = 0; i < exi->exi_export.ex_seccnt; i++) { 2221 struct secinfo *sptr; 2222 sptr = &exi->exi_export.ex_secinfo[i]; 2223 if (sptr->s_secinfo.sc_nfsnum == nfsflavor) { 2224 secp = sptr; 2225 break; 2226 } 2227 } 2228 if (secp != NULL) { 2229 (void) crsetugid(cr, secp->s_rootid, 2230 secp->s_rootid); 2231 (void) crsetgroups(cr, 0, NULL); 2232 } 2233 } else if (crgetuid(cr) != uid || crgetgid(cr) != gid) { 2234 if (crsetugid(cr, uid, gid) != 0) 2235 anon_res = crsetugid(cr, 2236 exi->exi_export.ex_anon, 2237 exi->exi_export.ex_anon); 2238 (void) crsetgroups(cr, 0, NULL); 2239 } else if (access & NFSAUTH_GROUPS) { 2240 (void) crsetgroups(cr, ngids, gids); 2241 } 2242 2243 kmem_free(gids, ngids * sizeof (gid_t)); 2244 2245 break; 2246 2247 case AUTH_DES: 2248 case RPCSEC_GSS: 2249 /* 2250 * Find the secinfo structure. We should be able 2251 * to find it by the time we reach here. 2252 * nfsauth_access() has done the checking. 2253 */ 2254 secp = NULL; 2255 for (i = 0; i < exi->exi_export.ex_seccnt; i++) { 2256 if (exi->exi_export.ex_secinfo[i].s_secinfo.sc_nfsnum == 2257 nfsflavor) { 2258 secp = &exi->exi_export.ex_secinfo[i]; 2259 break; 2260 } 2261 } 2262 2263 if (!secp) { 2264 cmn_err(CE_NOTE, "nfs_server: client %s%shad " 2265 "no secinfo data for flavor %d", 2266 client_name(req), client_addr(req, buf), 2267 nfsflavor); 2268 return (0); 2269 } 2270 2271 if (!checkwin(rpcflavor, secp->s_window, req)) { 2272 cmn_err(CE_NOTE, 2273 "nfs_server: client %s%sused invalid " 2274 "auth window value", 2275 client_name(req), client_addr(req, buf)); 2276 return (0); 2277 } 2278 2279 /* 2280 * Map root principals listed in the share's root= list to root, 2281 * and map any others principals that were mapped to root by RPC 2282 * to anon. 2283 */ 2284 if (principal && sec_svc_inrootlist(rpcflavor, principal, 2285 secp->s_rootcnt, secp->s_rootnames)) { 2286 if (crgetuid(cr) == 0 && secp->s_rootid == 0) 2287 return (1); 2288 2289 2290 (void) crsetugid(cr, secp->s_rootid, secp->s_rootid); 2291 2292 /* 2293 * NOTE: If and when kernel-land privilege tracing is 2294 * added this may have to be replaced with code that 2295 * retrieves root's supplementary groups (e.g., using 2296 * kgss_get_group_info(). In the meantime principals 2297 * mapped to uid 0 get all privileges, so setting cr's 2298 * supplementary groups for them does nothing. 2299 */ 2300 (void) crsetgroups(cr, 0, NULL); 2301 2302 return (1); 2303 } 2304 2305 /* 2306 * Not a root princ, or not in root list, map UID 0/nobody to 2307 * the anon ID for the share. (RPC sets cr's UIDs and GIDs to 2308 * UID_NOBODY and GID_NOBODY, respectively.) 2309 */ 2310 if (crgetuid(cr) != 0 && 2311 (crgetuid(cr) != UID_NOBODY || crgetgid(cr) != GID_NOBODY)) 2312 return (1); 2313 2314 anon_res = crsetugid(cr, exi->exi_export.ex_anon, 2315 exi->exi_export.ex_anon); 2316 (void) crsetgroups(cr, 0, NULL); 2317 break; 2318 default: 2319 return (0); 2320 } /* switch on rpcflavor */ 2321 2322 /* 2323 * Even if anon access is disallowed via ex_anon == -1, we allow 2324 * this access if anon_ok is set. So set creds to the default 2325 * "nobody" id. 2326 */ 2327 if (anon_res != 0) { 2328 if (anon_ok == 0) { 2329 cmn_err(CE_NOTE, 2330 "nfs_server: client %s%ssent wrong " 2331 "authentication for %s", 2332 client_name(req), client_addr(req, buf), 2333 exi->exi_export.ex_path ? 2334 exi->exi_export.ex_path : "?"); 2335 return (0); 2336 } 2337 2338 if (crsetugid(cr, UID_NOBODY, GID_NOBODY) != 0) 2339 return (0); 2340 } 2341 2342 return (1); 2343 } 2344 2345 /* 2346 * returns 0 on failure, -1 on a drop, -2 on wrong security flavor, 2347 * and 1 on success 2348 */ 2349 int 2350 checkauth4(struct compound_state *cs, struct svc_req *req) 2351 { 2352 int i, rpcflavor, access; 2353 struct secinfo *secp; 2354 char buf[MAXHOST + 1]; 2355 int anon_res = 0, nfsflavor; 2356 struct exportinfo *exi; 2357 cred_t *cr; 2358 caddr_t principal; 2359 2360 uid_t uid; 2361 gid_t gid; 2362 uint_t ngids; 2363 gid_t *gids; 2364 2365 exi = cs->exi; 2366 cr = cs->cr; 2367 principal = cs->principal; 2368 nfsflavor = cs->nfsflavor; 2369 2370 ASSERT(cr != NULL); 2371 2372 rpcflavor = req->rq_cred.oa_flavor; 2373 cs->access &= ~CS_ACCESS_LIMITED; 2374 2375 /* 2376 * Check for privileged port number 2377 * N.B.: this assumes that we know the format of a netbuf. 2378 */ 2379 if (nfs_portmon) { 2380 struct sockaddr *ca; 2381 ca = (struct sockaddr *)svc_getrpccaller(req->rq_xprt)->buf; 2382 2383 if (ca == NULL) 2384 return (0); 2385 2386 if ((ca->sa_family == AF_INET && 2387 ntohs(((struct sockaddr_in *)ca)->sin_port) >= 2388 IPPORT_RESERVED) || 2389 (ca->sa_family == AF_INET6 && 2390 ntohs(((struct sockaddr_in6 *)ca)->sin6_port) >= 2391 IPPORT_RESERVED)) { 2392 cmn_err(CE_NOTE, 2393 "nfs_server: client %s%ssent NFSv4 request from " 2394 "unprivileged port", 2395 client_name(req), client_addr(req, buf)); 2396 return (0); 2397 } 2398 } 2399 2400 /* 2401 * Check the access right per auth flavor on the vnode of 2402 * this export for the given request. 2403 */ 2404 access = nfsauth4_access(cs->exi, cs->vp, req, cr, &uid, &gid, &ngids, 2405 &gids); 2406 2407 if (access & NFSAUTH_WRONGSEC) 2408 return (-2); /* no access for this security flavor */ 2409 2410 if (access & NFSAUTH_DROP) 2411 return (-1); /* drop the request */ 2412 2413 if (access & NFSAUTH_DENIED) { 2414 2415 if (exi->exi_export.ex_seccnt > 0) 2416 return (0); /* deny access */ 2417 2418 } else if (access & NFSAUTH_LIMITED) { 2419 2420 cs->access |= CS_ACCESS_LIMITED; 2421 2422 } else if (access & NFSAUTH_MAPNONE) { 2423 /* 2424 * Access was granted even though the flavor mismatched 2425 * because AUTH_NONE was one of the exported flavors. 2426 */ 2427 rpcflavor = AUTH_NONE; 2428 } 2429 2430 /* 2431 * XXX probably need to redo some of it for nfsv4? 2432 * return 1 on success or 0 on failure 2433 */ 2434 2435 if (rpcflavor != AUTH_SYS) 2436 kmem_free(gids, ngids * sizeof (gid_t)); 2437 2438 switch (rpcflavor) { 2439 case AUTH_NONE: 2440 anon_res = crsetugid(cr, exi->exi_export.ex_anon, 2441 exi->exi_export.ex_anon); 2442 (void) crsetgroups(cr, 0, NULL); 2443 break; 2444 2445 case AUTH_UNIX: 2446 if (crgetuid(cr) == 0 && !(access & NFSAUTH_UIDMAP)) { 2447 anon_res = crsetugid(cr, exi->exi_export.ex_anon, 2448 exi->exi_export.ex_anon); 2449 (void) crsetgroups(cr, 0, NULL); 2450 } else if (crgetuid(cr) == 0 && access & NFSAUTH_ROOT) { 2451 /* 2452 * It is root, so apply rootid to get real UID 2453 * Find the secinfo structure. We should be able 2454 * to find it by the time we reach here. 2455 * nfsauth_access() has done the checking. 2456 */ 2457 secp = NULL; 2458 for (i = 0; i < exi->exi_export.ex_seccnt; i++) { 2459 struct secinfo *sptr; 2460 sptr = &exi->exi_export.ex_secinfo[i]; 2461 if (sptr->s_secinfo.sc_nfsnum == nfsflavor) { 2462 secp = &exi->exi_export.ex_secinfo[i]; 2463 break; 2464 } 2465 } 2466 if (secp != NULL) { 2467 (void) crsetugid(cr, secp->s_rootid, 2468 secp->s_rootid); 2469 (void) crsetgroups(cr, 0, NULL); 2470 } 2471 } else if (crgetuid(cr) != uid || crgetgid(cr) != gid) { 2472 if (crsetugid(cr, uid, gid) != 0) 2473 anon_res = crsetugid(cr, 2474 exi->exi_export.ex_anon, 2475 exi->exi_export.ex_anon); 2476 (void) crsetgroups(cr, 0, NULL); 2477 } if (access & NFSAUTH_GROUPS) { 2478 (void) crsetgroups(cr, ngids, gids); 2479 } 2480 2481 kmem_free(gids, ngids * sizeof (gid_t)); 2482 2483 break; 2484 2485 default: 2486 /* 2487 * Find the secinfo structure. We should be able 2488 * to find it by the time we reach here. 2489 * nfsauth_access() has done the checking. 2490 */ 2491 secp = NULL; 2492 for (i = 0; i < exi->exi_export.ex_seccnt; i++) { 2493 if (exi->exi_export.ex_secinfo[i].s_secinfo.sc_nfsnum == 2494 nfsflavor) { 2495 secp = &exi->exi_export.ex_secinfo[i]; 2496 break; 2497 } 2498 } 2499 2500 if (!secp) { 2501 cmn_err(CE_NOTE, "nfs_server: client %s%shad " 2502 "no secinfo data for flavor %d", 2503 client_name(req), client_addr(req, buf), 2504 nfsflavor); 2505 return (0); 2506 } 2507 2508 if (!checkwin(rpcflavor, secp->s_window, req)) { 2509 cmn_err(CE_NOTE, 2510 "nfs_server: client %s%sused invalid " 2511 "auth window value", 2512 client_name(req), client_addr(req, buf)); 2513 return (0); 2514 } 2515 2516 /* 2517 * Map root principals listed in the share's root= list to root, 2518 * and map any others principals that were mapped to root by RPC 2519 * to anon. If not going to anon, set to rootid (root_mapping). 2520 */ 2521 if (principal && sec_svc_inrootlist(rpcflavor, principal, 2522 secp->s_rootcnt, secp->s_rootnames)) { 2523 if (crgetuid(cr) == 0 && secp->s_rootid == 0) 2524 return (1); 2525 2526 (void) crsetugid(cr, secp->s_rootid, secp->s_rootid); 2527 2528 /* 2529 * NOTE: If and when kernel-land privilege tracing is 2530 * added this may have to be replaced with code that 2531 * retrieves root's supplementary groups (e.g., using 2532 * kgss_get_group_info(). In the meantime principals 2533 * mapped to uid 0 get all privileges, so setting cr's 2534 * supplementary groups for them does nothing. 2535 */ 2536 (void) crsetgroups(cr, 0, NULL); 2537 2538 return (1); 2539 } 2540 2541 /* 2542 * Not a root princ, or not in root list, map UID 0/nobody to 2543 * the anon ID for the share. (RPC sets cr's UIDs and GIDs to 2544 * UID_NOBODY and GID_NOBODY, respectively.) 2545 */ 2546 if (crgetuid(cr) != 0 && 2547 (crgetuid(cr) != UID_NOBODY || crgetgid(cr) != GID_NOBODY)) 2548 return (1); 2549 2550 anon_res = crsetugid(cr, exi->exi_export.ex_anon, 2551 exi->exi_export.ex_anon); 2552 (void) crsetgroups(cr, 0, NULL); 2553 break; 2554 } /* switch on rpcflavor */ 2555 2556 /* 2557 * Even if anon access is disallowed via ex_anon == -1, we allow 2558 * this access if anon_ok is set. So set creds to the default 2559 * "nobody" id. 2560 */ 2561 2562 if (anon_res != 0) { 2563 cmn_err(CE_NOTE, 2564 "nfs_server: client %s%ssent wrong " 2565 "authentication for %s", 2566 client_name(req), client_addr(req, buf), 2567 exi->exi_export.ex_path ? 2568 exi->exi_export.ex_path : "?"); 2569 return (0); 2570 } 2571 2572 return (1); 2573 } 2574 2575 2576 static char * 2577 client_name(struct svc_req *req) 2578 { 2579 char *hostname = NULL; 2580 2581 /* 2582 * If it's a Unix cred then use the 2583 * hostname from the credential. 2584 */ 2585 if (req->rq_cred.oa_flavor == AUTH_UNIX) { 2586 hostname = ((struct authunix_parms *) 2587 req->rq_clntcred)->aup_machname; 2588 } 2589 if (hostname == NULL) 2590 hostname = ""; 2591 2592 return (hostname); 2593 } 2594 2595 static char * 2596 client_addr(struct svc_req *req, char *buf) 2597 { 2598 struct sockaddr *ca; 2599 uchar_t *b; 2600 char *frontspace = ""; 2601 2602 /* 2603 * We assume we are called in tandem with client_name and the 2604 * format string looks like "...client %s%sblah blah..." 2605 * 2606 * If it's a Unix cred then client_name returned 2607 * a host name, so we need insert a space between host name 2608 * and IP address. 2609 */ 2610 if (req->rq_cred.oa_flavor == AUTH_UNIX) 2611 frontspace = " "; 2612 2613 /* 2614 * Convert the caller's IP address to a dotted string 2615 */ 2616 ca = (struct sockaddr *)svc_getrpccaller(req->rq_xprt)->buf; 2617 2618 if (ca->sa_family == AF_INET) { 2619 b = (uchar_t *)&((struct sockaddr_in *)ca)->sin_addr; 2620 (void) sprintf(buf, "%s(%d.%d.%d.%d) ", frontspace, 2621 b[0] & 0xFF, b[1] & 0xFF, b[2] & 0xFF, b[3] & 0xFF); 2622 } else if (ca->sa_family == AF_INET6) { 2623 struct sockaddr_in6 *sin6; 2624 sin6 = (struct sockaddr_in6 *)ca; 2625 (void) kinet_ntop6((uchar_t *)&sin6->sin6_addr, 2626 buf, INET6_ADDRSTRLEN); 2627 2628 } else { 2629 2630 /* 2631 * No IP address to print. If there was a host name 2632 * printed, then we print a space. 2633 */ 2634 (void) sprintf(buf, frontspace); 2635 } 2636 2637 return (buf); 2638 } 2639 2640 /* 2641 * NFS Server initialization routine. This routine should only be called 2642 * once. It performs the following tasks: 2643 * - Call sub-initialization routines (localize access to variables) 2644 * - Initialize all locks 2645 * - initialize the version 3 write verifier 2646 */ 2647 int 2648 nfs_srvinit(void) 2649 { 2650 int error; 2651 2652 error = nfs_exportinit(); 2653 if (error != 0) 2654 return (error); 2655 error = rfs4_srvrinit(); 2656 if (error != 0) { 2657 nfs_exportfini(); 2658 return (error); 2659 } 2660 rfs_srvrinit(); 2661 rfs3_srvrinit(); 2662 nfsauth_init(); 2663 2664 /* Init the stuff to control start/stop */ 2665 nfs_server_upordown = NFS_SERVER_STOPPED; 2666 mutex_init(&nfs_server_upordown_lock, NULL, MUTEX_DEFAULT, NULL); 2667 cv_init(&nfs_server_upordown_cv, NULL, CV_DEFAULT, NULL); 2668 mutex_init(&rdma_wait_mutex, NULL, MUTEX_DEFAULT, NULL); 2669 cv_init(&rdma_wait_cv, NULL, CV_DEFAULT, NULL); 2670 2671 return (0); 2672 } 2673 2674 /* 2675 * NFS Server finalization routine. This routine is called to cleanup the 2676 * initialization work previously performed if the NFS server module could 2677 * not be loaded correctly. 2678 */ 2679 void 2680 nfs_srvfini(void) 2681 { 2682 nfsauth_fini(); 2683 rfs3_srvrfini(); 2684 rfs_srvrfini(); 2685 nfs_exportfini(); 2686 2687 mutex_destroy(&nfs_server_upordown_lock); 2688 cv_destroy(&nfs_server_upordown_cv); 2689 mutex_destroy(&rdma_wait_mutex); 2690 cv_destroy(&rdma_wait_cv); 2691 } 2692 2693 /* 2694 * Set up an iovec array of up to cnt pointers. 2695 */ 2696 2697 void 2698 mblk_to_iov(mblk_t *m, int cnt, struct iovec *iovp) 2699 { 2700 while (m != NULL && cnt-- > 0) { 2701 iovp->iov_base = (caddr_t)m->b_rptr; 2702 iovp->iov_len = (m->b_wptr - m->b_rptr); 2703 iovp++; 2704 m = m->b_cont; 2705 } 2706 } 2707 2708 /* 2709 * Common code between NFS Version 2 and NFS Version 3 for the public 2710 * filehandle multicomponent lookups. 2711 */ 2712 2713 /* 2714 * Public filehandle evaluation of a multi-component lookup, following 2715 * symbolic links, if necessary. This may result in a vnode in another 2716 * filesystem, which is OK as long as the other filesystem is exported. 2717 * 2718 * Note that the exi will be set either to NULL or a new reference to the 2719 * exportinfo struct that corresponds to the vnode of the multi-component path. 2720 * It is the callers responsibility to release this reference. 2721 */ 2722 int 2723 rfs_publicfh_mclookup(char *p, vnode_t *dvp, cred_t *cr, vnode_t **vpp, 2724 struct exportinfo **exi, struct sec_ol *sec) 2725 { 2726 int pathflag; 2727 vnode_t *mc_dvp = NULL; 2728 vnode_t *realvp; 2729 int error; 2730 2731 *exi = NULL; 2732 2733 /* 2734 * check if the given path is a url or native path. Since p is 2735 * modified by MCLpath(), it may be empty after returning from 2736 * there, and should be checked. 2737 */ 2738 if ((pathflag = MCLpath(&p)) == -1) 2739 return (EIO); 2740 2741 /* 2742 * If pathflag is SECURITY_QUERY, turn the SEC_QUERY bit 2743 * on in sec->sec_flags. This bit will later serve as an 2744 * indication in makefh_ol() or makefh3_ol() to overload the 2745 * filehandle to contain the sec modes used by the server for 2746 * the path. 2747 */ 2748 if (pathflag == SECURITY_QUERY) { 2749 if ((sec->sec_index = (uint_t)(*p)) > 0) { 2750 sec->sec_flags |= SEC_QUERY; 2751 p++; 2752 if ((pathflag = MCLpath(&p)) == -1) 2753 return (EIO); 2754 } else { 2755 cmn_err(CE_NOTE, 2756 "nfs_server: invalid security index %d, " 2757 "violating WebNFS SNEGO protocol.", sec->sec_index); 2758 return (EIO); 2759 } 2760 } 2761 2762 if (p[0] == '\0') { 2763 error = ENOENT; 2764 goto publicfh_done; 2765 } 2766 2767 error = rfs_pathname(p, &mc_dvp, vpp, dvp, cr, pathflag); 2768 2769 /* 2770 * If name resolves to "/" we get EINVAL since we asked for 2771 * the vnode of the directory that the file is in. Try again 2772 * with NULL directory vnode. 2773 */ 2774 if (error == EINVAL) { 2775 error = rfs_pathname(p, NULL, vpp, dvp, cr, pathflag); 2776 if (!error) { 2777 ASSERT(*vpp != NULL); 2778 if ((*vpp)->v_type == VDIR) { 2779 VN_HOLD(*vpp); 2780 mc_dvp = *vpp; 2781 } else { 2782 /* 2783 * This should not happen, the filesystem is 2784 * in an inconsistent state. Fail the lookup 2785 * at this point. 2786 */ 2787 VN_RELE(*vpp); 2788 error = EINVAL; 2789 } 2790 } 2791 } 2792 2793 if (error) 2794 goto publicfh_done; 2795 2796 if (*vpp == NULL) { 2797 error = ENOENT; 2798 goto publicfh_done; 2799 } 2800 2801 ASSERT(mc_dvp != NULL); 2802 ASSERT(*vpp != NULL); 2803 2804 if ((*vpp)->v_type == VDIR) { 2805 do { 2806 /* 2807 * *vpp may be an AutoFS node, so we perform 2808 * a VOP_ACCESS() to trigger the mount of the intended 2809 * filesystem, so we can perform the lookup in the 2810 * intended filesystem. 2811 */ 2812 (void) VOP_ACCESS(*vpp, 0, 0, cr, NULL); 2813 2814 /* 2815 * If vnode is covered, get the 2816 * the topmost vnode. 2817 */ 2818 if (vn_mountedvfs(*vpp) != NULL) { 2819 error = traverse(vpp); 2820 if (error) { 2821 VN_RELE(*vpp); 2822 goto publicfh_done; 2823 } 2824 } 2825 2826 if (VOP_REALVP(*vpp, &realvp, NULL) == 0 && 2827 realvp != *vpp) { 2828 /* 2829 * If realvp is different from *vpp 2830 * then release our reference on *vpp, so that 2831 * the export access check be performed on the 2832 * real filesystem instead. 2833 */ 2834 VN_HOLD(realvp); 2835 VN_RELE(*vpp); 2836 *vpp = realvp; 2837 } else { 2838 break; 2839 } 2840 /* LINTED */ 2841 } while (TRUE); 2842 2843 /* 2844 * Let nfs_vptexi() figure what the real parent is. 2845 */ 2846 VN_RELE(mc_dvp); 2847 mc_dvp = NULL; 2848 2849 } else { 2850 /* 2851 * If vnode is covered, get the 2852 * the topmost vnode. 2853 */ 2854 if (vn_mountedvfs(mc_dvp) != NULL) { 2855 error = traverse(&mc_dvp); 2856 if (error) { 2857 VN_RELE(*vpp); 2858 goto publicfh_done; 2859 } 2860 } 2861 2862 if (VOP_REALVP(mc_dvp, &realvp, NULL) == 0 && 2863 realvp != mc_dvp) { 2864 /* 2865 * *vpp is a file, obtain realvp of the parent 2866 * directory vnode. 2867 */ 2868 VN_HOLD(realvp); 2869 VN_RELE(mc_dvp); 2870 mc_dvp = realvp; 2871 } 2872 } 2873 2874 /* 2875 * The pathname may take us from the public filesystem to another. 2876 * If that's the case then just set the exportinfo to the new export 2877 * and build filehandle for it. Thanks to per-access checking there's 2878 * no security issues with doing this. If the client is not allowed 2879 * access to this new export then it will get an access error when it 2880 * tries to use the filehandle 2881 */ 2882 if (error = nfs_check_vpexi(mc_dvp, *vpp, kcred, exi)) { 2883 VN_RELE(*vpp); 2884 goto publicfh_done; 2885 } 2886 2887 /* 2888 * Not allowed access to pseudo exports. 2889 */ 2890 if (PSEUDO(*exi)) { 2891 error = ENOENT; 2892 VN_RELE(*vpp); 2893 goto publicfh_done; 2894 } 2895 2896 /* 2897 * Do a lookup for the index file. We know the index option doesn't 2898 * allow paths through handling in the share command, so mc_dvp will 2899 * be the parent for the index file vnode, if its present. Use 2900 * temporary pointers to preserve and reuse the vnode pointers of the 2901 * original directory in case there's no index file. Note that the 2902 * index file is a native path, and should not be interpreted by 2903 * the URL parser in rfs_pathname() 2904 */ 2905 if (((*exi)->exi_export.ex_flags & EX_INDEX) && 2906 ((*vpp)->v_type == VDIR) && (pathflag == URLPATH)) { 2907 vnode_t *tvp, *tmc_dvp; /* temporary vnode pointers */ 2908 2909 tmc_dvp = mc_dvp; 2910 mc_dvp = tvp = *vpp; 2911 2912 error = rfs_pathname((*exi)->exi_export.ex_index, NULL, vpp, 2913 mc_dvp, cr, NATIVEPATH); 2914 2915 if (error == ENOENT) { 2916 *vpp = tvp; 2917 mc_dvp = tmc_dvp; 2918 error = 0; 2919 } else { /* ok or error other than ENOENT */ 2920 if (tmc_dvp) 2921 VN_RELE(tmc_dvp); 2922 if (error) 2923 goto publicfh_done; 2924 2925 /* 2926 * Found a valid vp for index "filename". Sanity check 2927 * for odd case where a directory is provided as index 2928 * option argument and leads us to another filesystem 2929 */ 2930 2931 /* Release the reference on the old exi value */ 2932 ASSERT(*exi != NULL); 2933 exi_rele(*exi); 2934 2935 if (error = nfs_check_vpexi(mc_dvp, *vpp, kcred, exi)) { 2936 VN_RELE(*vpp); 2937 goto publicfh_done; 2938 } 2939 } 2940 } 2941 2942 publicfh_done: 2943 if (mc_dvp) 2944 VN_RELE(mc_dvp); 2945 2946 return (error); 2947 } 2948 2949 /* 2950 * Evaluate a multi-component path 2951 */ 2952 int 2953 rfs_pathname( 2954 char *path, /* pathname to evaluate */ 2955 vnode_t **dirvpp, /* ret for ptr to parent dir vnode */ 2956 vnode_t **compvpp, /* ret for ptr to component vnode */ 2957 vnode_t *startdvp, /* starting vnode */ 2958 cred_t *cr, /* user's credential */ 2959 int pathflag) /* flag to identify path, e.g. URL */ 2960 { 2961 char namebuf[TYPICALMAXPATHLEN]; 2962 struct pathname pn; 2963 int error; 2964 2965 /* 2966 * If pathname starts with '/', then set startdvp to root. 2967 */ 2968 if (*path == '/') { 2969 while (*path == '/') 2970 path++; 2971 2972 startdvp = rootdir; 2973 } 2974 2975 error = pn_get_buf(path, UIO_SYSSPACE, &pn, namebuf, sizeof (namebuf)); 2976 if (error == 0) { 2977 /* 2978 * Call the URL parser for URL paths to modify the original 2979 * string to handle any '%' encoded characters that exist. 2980 * Done here to avoid an extra bcopy in the lookup. 2981 * We need to be careful about pathlen's. We know that 2982 * rfs_pathname() is called with a non-empty path. However, 2983 * it could be emptied due to the path simply being all /'s, 2984 * which is valid to proceed with the lookup, or due to the 2985 * URL parser finding an encoded null character at the 2986 * beginning of path which should not proceed with the lookup. 2987 */ 2988 if (pn.pn_pathlen != 0 && pathflag == URLPATH) { 2989 URLparse(pn.pn_path); 2990 if ((pn.pn_pathlen = strlen(pn.pn_path)) == 0) 2991 return (ENOENT); 2992 } 2993 VN_HOLD(startdvp); 2994 error = lookuppnvp(&pn, NULL, NO_FOLLOW, dirvpp, compvpp, 2995 rootdir, startdvp, cr); 2996 } 2997 if (error == ENAMETOOLONG) { 2998 /* 2999 * This thread used a pathname > TYPICALMAXPATHLEN bytes long. 3000 */ 3001 if (error = pn_get(path, UIO_SYSSPACE, &pn)) 3002 return (error); 3003 if (pn.pn_pathlen != 0 && pathflag == URLPATH) { 3004 URLparse(pn.pn_path); 3005 if ((pn.pn_pathlen = strlen(pn.pn_path)) == 0) { 3006 pn_free(&pn); 3007 return (ENOENT); 3008 } 3009 } 3010 VN_HOLD(startdvp); 3011 error = lookuppnvp(&pn, NULL, NO_FOLLOW, dirvpp, compvpp, 3012 rootdir, startdvp, cr); 3013 pn_free(&pn); 3014 } 3015 3016 return (error); 3017 } 3018 3019 /* 3020 * Adapt the multicomponent lookup path depending on the pathtype 3021 */ 3022 static int 3023 MCLpath(char **path) 3024 { 3025 unsigned char c = (unsigned char)**path; 3026 3027 /* 3028 * If the MCL path is between 0x20 and 0x7E (graphic printable 3029 * character of the US-ASCII coded character set), its a URL path, 3030 * per RFC 1738. 3031 */ 3032 if (c >= 0x20 && c <= 0x7E) 3033 return (URLPATH); 3034 3035 /* 3036 * If the first octet of the MCL path is not an ASCII character 3037 * then it must be interpreted as a tag value that describes the 3038 * format of the remaining octets of the MCL path. 3039 * 3040 * If the first octet of the MCL path is 0x81 it is a query 3041 * for the security info. 3042 */ 3043 switch (c) { 3044 case 0x80: /* native path, i.e. MCL via mount protocol */ 3045 (*path)++; 3046 return (NATIVEPATH); 3047 case 0x81: /* security query */ 3048 (*path)++; 3049 return (SECURITY_QUERY); 3050 default: 3051 return (-1); 3052 } 3053 } 3054 3055 #define fromhex(c) ((c >= '0' && c <= '9') ? (c - '0') : \ 3056 ((c >= 'A' && c <= 'F') ? (c - 'A' + 10) :\ 3057 ((c >= 'a' && c <= 'f') ? (c - 'a' + 10) : 0))) 3058 3059 /* 3060 * The implementation of URLparse guarantees that the final string will 3061 * fit in the original one. Replaces '%' occurrences followed by 2 characters 3062 * with its corresponding hexadecimal character. 3063 */ 3064 static void 3065 URLparse(char *str) 3066 { 3067 char *p, *q; 3068 3069 p = q = str; 3070 while (*p) { 3071 *q = *p; 3072 if (*p++ == '%') { 3073 if (*p) { 3074 *q = fromhex(*p) * 16; 3075 p++; 3076 if (*p) { 3077 *q += fromhex(*p); 3078 p++; 3079 } 3080 } 3081 } 3082 q++; 3083 } 3084 *q = '\0'; 3085 } 3086 3087 3088 /* 3089 * Get the export information for the lookup vnode, and verify its 3090 * useable. 3091 */ 3092 int 3093 nfs_check_vpexi(vnode_t *mc_dvp, vnode_t *vp, cred_t *cr, 3094 struct exportinfo **exi) 3095 { 3096 int walk; 3097 int error = 0; 3098 3099 *exi = nfs_vptoexi(mc_dvp, vp, cr, &walk, NULL, FALSE); 3100 if (*exi == NULL) 3101 error = EACCES; 3102 else { 3103 /* 3104 * If nosub is set for this export then 3105 * a lookup relative to the public fh 3106 * must not terminate below the 3107 * exported directory. 3108 */ 3109 if ((*exi)->exi_export.ex_flags & EX_NOSUB && walk > 0) 3110 error = EACCES; 3111 } 3112 3113 return (error); 3114 } 3115 3116 /* 3117 * Do the main work of handling HA-NFSv4 Resource Group failover on 3118 * Sun Cluster. 3119 * We need to detect whether any RG admin paths have been added or removed, 3120 * and adjust resources accordingly. 3121 * Currently we're using a very inefficient algorithm, ~ 2 * O(n**2). In 3122 * order to scale, the list and array of paths need to be held in more 3123 * suitable data structures. 3124 */ 3125 static void 3126 hanfsv4_failover(void) 3127 { 3128 int i, start_grace, numadded_paths = 0; 3129 char **added_paths = NULL; 3130 rfs4_dss_path_t *dss_path; 3131 3132 /* 3133 * Note: currently, rfs4_dss_pathlist cannot be NULL, since 3134 * it will always include an entry for NFS4_DSS_VAR_DIR. If we 3135 * make the latter dynamically specified too, the following will 3136 * need to be adjusted. 3137 */ 3138 3139 /* 3140 * First, look for removed paths: RGs that have been failed-over 3141 * away from this node. 3142 * Walk the "currently-serving" rfs4_dss_pathlist and, for each 3143 * path, check if it is on the "passed-in" rfs4_dss_newpaths array 3144 * from nfsd. If not, that RG path has been removed. 3145 * 3146 * Note that nfsd has sorted rfs4_dss_newpaths for us, and removed 3147 * any duplicates. 3148 */ 3149 dss_path = rfs4_dss_pathlist; 3150 do { 3151 int found = 0; 3152 char *path = dss_path->path; 3153 3154 /* used only for non-HA so may not be removed */ 3155 if (strcmp(path, NFS4_DSS_VAR_DIR) == 0) { 3156 dss_path = dss_path->next; 3157 continue; 3158 } 3159 3160 for (i = 0; i < rfs4_dss_numnewpaths; i++) { 3161 int cmpret; 3162 char *newpath = rfs4_dss_newpaths[i]; 3163 3164 /* 3165 * Since nfsd has sorted rfs4_dss_newpaths for us, 3166 * once the return from strcmp is negative we know 3167 * we've passed the point where "path" should be, 3168 * and can stop searching: "path" has been removed. 3169 */ 3170 cmpret = strcmp(path, newpath); 3171 if (cmpret < 0) 3172 break; 3173 if (cmpret == 0) { 3174 found = 1; 3175 break; 3176 } 3177 } 3178 3179 if (found == 0) { 3180 unsigned index = dss_path->index; 3181 rfs4_servinst_t *sip = dss_path->sip; 3182 rfs4_dss_path_t *path_next = dss_path->next; 3183 3184 /* 3185 * This path has been removed. 3186 * We must clear out the servinst reference to 3187 * it, since it's now owned by another 3188 * node: we should not attempt to touch it. 3189 */ 3190 ASSERT(dss_path == sip->dss_paths[index]); 3191 sip->dss_paths[index] = NULL; 3192 3193 /* remove from "currently-serving" list, and destroy */ 3194 remque(dss_path); 3195 /* allow for NUL */ 3196 kmem_free(dss_path->path, strlen(dss_path->path) + 1); 3197 kmem_free(dss_path, sizeof (rfs4_dss_path_t)); 3198 3199 dss_path = path_next; 3200 } else { 3201 /* path was found; not removed */ 3202 dss_path = dss_path->next; 3203 } 3204 } while (dss_path != rfs4_dss_pathlist); 3205 3206 /* 3207 * Now, look for added paths: RGs that have been failed-over 3208 * to this node. 3209 * Walk the "passed-in" rfs4_dss_newpaths array from nfsd and, 3210 * for each path, check if it is on the "currently-serving" 3211 * rfs4_dss_pathlist. If not, that RG path has been added. 3212 * 3213 * Note: we don't do duplicate detection here; nfsd does that for us. 3214 * 3215 * Note: numadded_paths <= rfs4_dss_numnewpaths, which gives us 3216 * an upper bound for the size needed for added_paths[numadded_paths]. 3217 */ 3218 3219 /* probably more space than we need, but guaranteed to be enough */ 3220 if (rfs4_dss_numnewpaths > 0) { 3221 size_t sz = rfs4_dss_numnewpaths * sizeof (char *); 3222 added_paths = kmem_zalloc(sz, KM_SLEEP); 3223 } 3224 3225 /* walk the "passed-in" rfs4_dss_newpaths array from nfsd */ 3226 for (i = 0; i < rfs4_dss_numnewpaths; i++) { 3227 int found = 0; 3228 char *newpath = rfs4_dss_newpaths[i]; 3229 3230 dss_path = rfs4_dss_pathlist; 3231 do { 3232 char *path = dss_path->path; 3233 3234 /* used only for non-HA */ 3235 if (strcmp(path, NFS4_DSS_VAR_DIR) == 0) { 3236 dss_path = dss_path->next; 3237 continue; 3238 } 3239 3240 if (strncmp(path, newpath, strlen(path)) == 0) { 3241 found = 1; 3242 break; 3243 } 3244 3245 dss_path = dss_path->next; 3246 } while (dss_path != rfs4_dss_pathlist); 3247 3248 if (found == 0) { 3249 added_paths[numadded_paths] = newpath; 3250 numadded_paths++; 3251 } 3252 } 3253 3254 /* did we find any added paths? */ 3255 if (numadded_paths > 0) { 3256 /* create a new server instance, and start its grace period */ 3257 start_grace = 1; 3258 rfs4_servinst_create(start_grace, numadded_paths, added_paths); 3259 3260 /* read in the stable storage state from these paths */ 3261 rfs4_dss_readstate(numadded_paths, added_paths); 3262 3263 /* 3264 * Multiple failovers during a grace period will cause 3265 * clients of the same resource group to be partitioned 3266 * into different server instances, with different 3267 * grace periods. Since clients of the same resource 3268 * group must be subject to the same grace period, 3269 * we need to reset all currently active grace periods. 3270 */ 3271 rfs4_grace_reset_all(); 3272 } 3273 3274 if (rfs4_dss_numnewpaths > 0) 3275 kmem_free(added_paths, rfs4_dss_numnewpaths * sizeof (char *)); 3276 } 3277 3278 /* 3279 * Used by NFSv3 and NFSv4 server to query label of 3280 * a pathname component during lookup/access ops. 3281 */ 3282 ts_label_t * 3283 nfs_getflabel(vnode_t *vp, struct exportinfo *exi) 3284 { 3285 zone_t *zone; 3286 ts_label_t *zone_label; 3287 char *path; 3288 3289 mutex_enter(&vp->v_lock); 3290 if (vp->v_path != NULL) { 3291 zone = zone_find_by_any_path(vp->v_path, B_FALSE); 3292 mutex_exit(&vp->v_lock); 3293 } else { 3294 /* 3295 * v_path not cached. Fall back on pathname of exported 3296 * file system as we rely on pathname from which we can 3297 * derive a label. The exported file system portion of 3298 * path is sufficient to obtain a label. 3299 */ 3300 path = exi->exi_export.ex_path; 3301 if (path == NULL) { 3302 mutex_exit(&vp->v_lock); 3303 return (NULL); 3304 } 3305 zone = zone_find_by_any_path(path, B_FALSE); 3306 mutex_exit(&vp->v_lock); 3307 } 3308 /* 3309 * Caller has verified that the file is either 3310 * exported or visible. So if the path falls in 3311 * global zone, admin_low is returned; otherwise 3312 * the zone's label is returned. 3313 */ 3314 zone_label = zone->zone_slabel; 3315 label_hold(zone_label); 3316 zone_rele(zone); 3317 return (zone_label); 3318 } 3319 3320 /* 3321 * TX NFS routine used by NFSv3 and NFSv4 to do label check 3322 * on client label and server's file object lable. 3323 */ 3324 boolean_t 3325 do_rfs_label_check(bslabel_t *clabel, vnode_t *vp, int flag, 3326 struct exportinfo *exi) 3327 { 3328 bslabel_t *slabel; 3329 ts_label_t *tslabel; 3330 boolean_t result; 3331 3332 if ((tslabel = nfs_getflabel(vp, exi)) == NULL) { 3333 return (B_FALSE); 3334 } 3335 slabel = label2bslabel(tslabel); 3336 DTRACE_PROBE4(tx__rfs__log__info__labelcheck, char *, 3337 "comparing server's file label(1) with client label(2) (vp(3))", 3338 bslabel_t *, slabel, bslabel_t *, clabel, vnode_t *, vp); 3339 3340 if (flag == EQUALITY_CHECK) 3341 result = blequal(clabel, slabel); 3342 else 3343 result = bldominates(clabel, slabel); 3344 label_rele(tslabel); 3345 return (result); 3346 } 3347 3348 /* 3349 * Callback function to return the loaned buffers. 3350 * Calls VOP_RETZCBUF() only after all uio_iov[] 3351 * buffers are returned. nu_ref maintains the count. 3352 */ 3353 void 3354 rfs_free_xuio(void *free_arg) 3355 { 3356 uint_t ref; 3357 nfs_xuio_t *nfsuiop = (nfs_xuio_t *)free_arg; 3358 3359 ref = atomic_dec_uint_nv(&nfsuiop->nu_ref); 3360 3361 /* 3362 * Call VOP_RETZCBUF() only when all the iov buffers 3363 * are sent OTW. 3364 */ 3365 if (ref != 0) 3366 return; 3367 3368 if (((uio_t *)nfsuiop)->uio_extflg & UIO_XUIO) { 3369 (void) VOP_RETZCBUF(nfsuiop->nu_vp, (xuio_t *)free_arg, NULL, 3370 NULL); 3371 VN_RELE(nfsuiop->nu_vp); 3372 } 3373 3374 kmem_cache_free(nfs_xuio_cache, free_arg); 3375 } 3376 3377 xuio_t * 3378 rfs_setup_xuio(vnode_t *vp) 3379 { 3380 nfs_xuio_t *nfsuiop; 3381 3382 nfsuiop = kmem_cache_alloc(nfs_xuio_cache, KM_SLEEP); 3383 3384 bzero(nfsuiop, sizeof (nfs_xuio_t)); 3385 nfsuiop->nu_vp = vp; 3386 3387 /* 3388 * ref count set to 1. more may be added 3389 * if multiple mblks refer to multiple iov's. 3390 * This is done in uio_to_mblk(). 3391 */ 3392 3393 nfsuiop->nu_ref = 1; 3394 3395 nfsuiop->nu_frtn.free_func = rfs_free_xuio; 3396 nfsuiop->nu_frtn.free_arg = (char *)nfsuiop; 3397 3398 nfsuiop->nu_uio.xu_type = UIOTYPE_ZEROCOPY; 3399 3400 return (&nfsuiop->nu_uio); 3401 } 3402 3403 mblk_t * 3404 uio_to_mblk(uio_t *uiop) 3405 { 3406 struct iovec *iovp; 3407 int i; 3408 mblk_t *mp, *mp1; 3409 nfs_xuio_t *nfsuiop = (nfs_xuio_t *)uiop; 3410 3411 if (uiop->uio_iovcnt == 0) 3412 return (NULL); 3413 3414 iovp = uiop->uio_iov; 3415 mp = mp1 = esballoca((uchar_t *)iovp->iov_base, iovp->iov_len, 3416 BPRI_MED, &nfsuiop->nu_frtn); 3417 ASSERT(mp != NULL); 3418 3419 mp->b_wptr += iovp->iov_len; 3420 mp->b_datap->db_type = M_DATA; 3421 3422 for (i = 1; i < uiop->uio_iovcnt; i++) { 3423 iovp = (uiop->uio_iov + i); 3424 3425 mp1->b_cont = esballoca( 3426 (uchar_t *)iovp->iov_base, iovp->iov_len, BPRI_MED, 3427 &nfsuiop->nu_frtn); 3428 3429 mp1 = mp1->b_cont; 3430 ASSERT(mp1 != NULL); 3431 mp1->b_wptr += iovp->iov_len; 3432 mp1->b_datap->db_type = M_DATA; 3433 } 3434 3435 nfsuiop->nu_ref = uiop->uio_iovcnt; 3436 3437 return (mp); 3438 } 3439 3440 /* 3441 * Allocate memory to hold data for a read request of len bytes. 3442 * 3443 * We don't allocate buffers greater than kmem_max_cached in size to avoid 3444 * allocating memory from the kmem_oversized arena. If we allocate oversized 3445 * buffers, we incur heavy cross-call activity when freeing these large buffers 3446 * in the TCP receive path. Note that we can't set b_wptr here since the 3447 * length of the data returned may differ from the length requested when 3448 * reading the end of a file; we set b_wptr in rfs_rndup_mblks() once the 3449 * length of the read is known. 3450 */ 3451 mblk_t * 3452 rfs_read_alloc(uint_t len, struct iovec **iov, int *iovcnt) 3453 { 3454 struct iovec *iovarr; 3455 mblk_t *mp, **mpp = ∓ 3456 size_t mpsize; 3457 uint_t remain = len; 3458 int i, err = 0; 3459 3460 *iovcnt = howmany(len, kmem_max_cached); 3461 3462 iovarr = kmem_alloc(*iovcnt * sizeof (struct iovec), KM_SLEEP); 3463 *iov = iovarr; 3464 3465 for (i = 0; i < *iovcnt; remain -= mpsize, i++) { 3466 ASSERT(remain <= len); 3467 /* 3468 * We roundup the size we allocate to a multiple of 3469 * BYTES_PER_XDR_UNIT (4 bytes) so that the call to 3470 * xdrmblk_putmblk() never fails. 3471 */ 3472 ASSERT(kmem_max_cached % BYTES_PER_XDR_UNIT == 0); 3473 mpsize = MIN(kmem_max_cached, remain); 3474 *mpp = allocb_wait(RNDUP(mpsize), BPRI_MED, STR_NOSIG, &err); 3475 ASSERT(*mpp != NULL); 3476 ASSERT(err == 0); 3477 3478 iovarr[i].iov_base = (caddr_t)(*mpp)->b_rptr; 3479 iovarr[i].iov_len = mpsize; 3480 mpp = &(*mpp)->b_cont; 3481 } 3482 return (mp); 3483 } 3484 3485 void 3486 rfs_rndup_mblks(mblk_t *mp, uint_t len, int buf_loaned) 3487 { 3488 int i; 3489 int alloc_err = 0; 3490 mblk_t *rmp; 3491 uint_t mpsize, remainder; 3492 3493 remainder = P2NPHASE(len, BYTES_PER_XDR_UNIT); 3494 3495 /* 3496 * Non copy-reduction case. This function assumes that blocks were 3497 * allocated in multiples of BYTES_PER_XDR_UNIT bytes, which makes this 3498 * padding safe without bounds checking. 3499 */ 3500 if (!buf_loaned) { 3501 /* 3502 * Set the size of each mblk in the chain until we've consumed 3503 * the specified length for all but the last one. 3504 */ 3505 while ((mpsize = MBLKSIZE(mp)) < len) { 3506 ASSERT(mpsize % BYTES_PER_XDR_UNIT == 0); 3507 mp->b_wptr += mpsize; 3508 len -= mpsize; 3509 mp = mp->b_cont; 3510 ASSERT(mp != NULL); 3511 } 3512 3513 ASSERT(len + remainder <= mpsize); 3514 mp->b_wptr += len; 3515 for (i = 0; i < remainder; i++) 3516 *mp->b_wptr++ = '\0'; 3517 return; 3518 } 3519 3520 /* 3521 * No remainder mblk required. 3522 */ 3523 if (remainder == 0) 3524 return; 3525 3526 /* 3527 * Get to the last mblk in the chain. 3528 */ 3529 while (mp->b_cont != NULL) 3530 mp = mp->b_cont; 3531 3532 /* 3533 * In case of copy-reduction mblks, the size of the mblks are fixed 3534 * and are of the size of the loaned buffers. Allocate a remainder 3535 * mblk and chain it to the data buffers. This is sub-optimal, but not 3536 * expected to happen commonly. 3537 */ 3538 rmp = allocb_wait(remainder, BPRI_MED, STR_NOSIG, &alloc_err); 3539 ASSERT(rmp != NULL); 3540 ASSERT(alloc_err == 0); 3541 3542 for (i = 0; i < remainder; i++) 3543 *rmp->b_wptr++ = '\0'; 3544 3545 rmp->b_datap->db_type = M_DATA; 3546 mp->b_cont = rmp; 3547 }