1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 24 */ 25 26 /* 27 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 28 * Use is subject to license terms. 29 */ 30 31 /* 32 * Copyright 1983,1984,1985,1986,1987,1988,1989 AT&T. 33 * All Rights Reserved 34 */ 35 36 /* 37 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 38 */ 39 40 #include <sys/param.h> 41 #include <sys/types.h> 42 #include <sys/systm.h> 43 #include <sys/cred.h> 44 #include <sys/time.h> 45 #include <sys/vnode.h> 46 #include <sys/vfs.h> 47 #include <sys/vfs_opreg.h> 48 #include <sys/file.h> 49 #include <sys/filio.h> 50 #include <sys/uio.h> 51 #include <sys/buf.h> 52 #include <sys/mman.h> 53 #include <sys/pathname.h> 54 #include <sys/dirent.h> 55 #include <sys/debug.h> 56 #include <sys/vmsystm.h> 57 #include <sys/fcntl.h> 58 #include <sys/flock.h> 59 #include <sys/swap.h> 60 #include <sys/errno.h> 61 #include <sys/strsubr.h> 62 #include <sys/sysmacros.h> 63 #include <sys/kmem.h> 64 #include <sys/cmn_err.h> 65 #include <sys/pathconf.h> 66 #include <sys/utsname.h> 67 #include <sys/dnlc.h> 68 #include <sys/acl.h> 69 #include <sys/systeminfo.h> 70 #include <sys/policy.h> 71 #include <sys/sdt.h> 72 #include <sys/list.h> 73 #include <sys/stat.h> 74 #include <sys/zone.h> 75 76 #include <rpc/types.h> 77 #include <rpc/auth.h> 78 #include <rpc/clnt.h> 79 80 #include <nfs/nfs.h> 81 #include <nfs/nfs_clnt.h> 82 #include <nfs/nfs_acl.h> 83 #include <nfs/lm.h> 84 #include <nfs/nfs4.h> 85 #include <nfs/nfs4_kprot.h> 86 #include <nfs/rnode4.h> 87 #include <nfs/nfs4_clnt.h> 88 89 #include <vm/hat.h> 90 #include <vm/as.h> 91 #include <vm/page.h> 92 #include <vm/pvn.h> 93 #include <vm/seg.h> 94 #include <vm/seg_map.h> 95 #include <vm/seg_kpm.h> 96 #include <vm/seg_vn.h> 97 98 #include <fs/fs_subr.h> 99 100 #include <sys/ddi.h> 101 #include <sys/int_fmtio.h> 102 #include <sys/fs/autofs.h> 103 104 typedef struct { 105 nfs4_ga_res_t *di_garp; 106 cred_t *di_cred; 107 hrtime_t di_time_call; 108 } dirattr_info_t; 109 110 typedef enum nfs4_acl_op { 111 NFS4_ACL_GET, 112 NFS4_ACL_SET 113 } nfs4_acl_op_t; 114 115 static struct lm_sysid *nfs4_find_sysid(mntinfo4_t *mi); 116 117 static void nfs4_update_dircaches(change_info4 *, vnode_t *, vnode_t *, 118 char *, dirattr_info_t *); 119 120 static void nfs4close_otw(rnode4_t *, cred_t *, nfs4_open_owner_t *, 121 nfs4_open_stream_t *, int *, int *, nfs4_close_type_t, 122 nfs4_error_t *, int *); 123 static int nfs4_rdwrlbn(vnode_t *, page_t *, u_offset_t, size_t, int, 124 cred_t *); 125 static int nfs4write(vnode_t *, caddr_t, u_offset_t, int, cred_t *, 126 stable_how4 *); 127 static int nfs4read(vnode_t *, caddr_t, offset_t, int, size_t *, 128 cred_t *, bool_t, struct uio *); 129 static int nfs4setattr(vnode_t *, struct vattr *, int, cred_t *, 130 vsecattr_t *); 131 static int nfs4openattr(vnode_t *, vnode_t **, int, cred_t *); 132 static int nfs4lookup(vnode_t *, char *, vnode_t **, cred_t *, int); 133 static int nfs4lookup_xattr(vnode_t *, char *, vnode_t **, int, cred_t *); 134 static int nfs4lookupvalidate_otw(vnode_t *, char *, vnode_t **, cred_t *); 135 static int nfs4lookupnew_otw(vnode_t *, char *, vnode_t **, cred_t *); 136 static int nfs4mknod(vnode_t *, char *, struct vattr *, enum vcexcl, 137 int, vnode_t **, cred_t *); 138 static int nfs4open_otw(vnode_t *, char *, struct vattr *, vnode_t **, 139 cred_t *, int, int, enum createmode4, int); 140 static int nfs4rename(vnode_t *, char *, vnode_t *, char *, cred_t *, 141 caller_context_t *); 142 static int nfs4rename_persistent_fh(vnode_t *, char *, vnode_t *, 143 vnode_t *, char *, cred_t *, nfsstat4 *); 144 static int nfs4rename_volatile_fh(vnode_t *, char *, vnode_t *, 145 vnode_t *, char *, cred_t *, nfsstat4 *); 146 static int do_nfs4readdir(vnode_t *, rddir4_cache *, cred_t *); 147 static void nfs4readdir(vnode_t *, rddir4_cache *, cred_t *); 148 static int nfs4_bio(struct buf *, stable_how4 *, cred_t *, bool_t); 149 static int nfs4_getapage(vnode_t *, u_offset_t, size_t, uint_t *, 150 page_t *[], size_t, struct seg *, caddr_t, 151 enum seg_rw, cred_t *); 152 static void nfs4_readahead(vnode_t *, u_offset_t, caddr_t, struct seg *, 153 cred_t *); 154 static int nfs4_sync_putapage(vnode_t *, page_t *, u_offset_t, size_t, 155 int, cred_t *); 156 static int nfs4_sync_pageio(vnode_t *, page_t *, u_offset_t, size_t, 157 int, cred_t *); 158 static int nfs4_commit(vnode_t *, offset4, count4, cred_t *); 159 static void nfs4_set_mod(vnode_t *); 160 static void nfs4_get_commit(vnode_t *); 161 static void nfs4_get_commit_range(vnode_t *, u_offset_t, size_t); 162 static int nfs4_putpage_commit(vnode_t *, offset_t, size_t, cred_t *); 163 static int nfs4_commit_vp(vnode_t *, u_offset_t, size_t, cred_t *, int); 164 static int nfs4_sync_commit(vnode_t *, page_t *, offset3, count3, 165 cred_t *); 166 static void do_nfs4_async_commit(vnode_t *, page_t *, offset3, count3, 167 cred_t *); 168 static int nfs4_update_attrcache(nfsstat4, nfs4_ga_res_t *, 169 hrtime_t, vnode_t *, cred_t *); 170 static int nfs4_open_non_reg_file(vnode_t **, int, cred_t *); 171 static int nfs4_safelock(vnode_t *, const struct flock64 *, cred_t *); 172 static void nfs4_register_lock_locally(vnode_t *, struct flock64 *, int, 173 u_offset_t); 174 static int nfs4_lockrelease(vnode_t *, int, offset_t, cred_t *); 175 static int nfs4_block_and_wait(clock_t *, rnode4_t *); 176 static cred_t *state_to_cred(nfs4_open_stream_t *); 177 static void denied_to_flk(LOCK4denied *, flock64_t *, LOCKT4args *); 178 static pid_t lo_to_pid(lock_owner4 *); 179 static void nfs4_reinstitute_local_lock_state(vnode_t *, flock64_t *, 180 cred_t *, nfs4_lock_owner_t *); 181 static void push_reinstate(vnode_t *, int, flock64_t *, cred_t *, 182 nfs4_lock_owner_t *); 183 static int open_and_get_osp(vnode_t *, cred_t *, nfs4_open_stream_t **); 184 static void nfs4_delmap_callback(struct as *, void *, uint_t); 185 static void nfs4_free_delmapcall(nfs4_delmapcall_t *); 186 static nfs4_delmapcall_t *nfs4_init_delmapcall(); 187 static int nfs4_find_and_delete_delmapcall(rnode4_t *, int *); 188 static int nfs4_is_acl_mask_valid(uint_t, nfs4_acl_op_t); 189 static int nfs4_create_getsecattr_return(vsecattr_t *, vsecattr_t *, 190 uid_t, gid_t, int); 191 192 /* 193 * Routines that implement the setting of v4 args for the misc. ops 194 */ 195 static void nfs4args_lock_free(nfs_argop4 *); 196 static void nfs4args_lockt_free(nfs_argop4 *); 197 static void nfs4args_setattr(nfs_argop4 *, vattr_t *, vsecattr_t *, 198 int, rnode4_t *, cred_t *, bitmap4, int *, 199 nfs4_stateid_types_t *); 200 static void nfs4args_setattr_free(nfs_argop4 *); 201 static int nfs4args_verify(nfs_argop4 *, vattr_t *, enum nfs_opnum4, 202 bitmap4); 203 static void nfs4args_verify_free(nfs_argop4 *); 204 static void nfs4args_write(nfs_argop4 *, stable_how4, rnode4_t *, cred_t *, 205 WRITE4args **, nfs4_stateid_types_t *); 206 207 /* 208 * These are the vnode ops functions that implement the vnode interface to 209 * the networked file system. See more comments below at nfs4_vnodeops. 210 */ 211 static int nfs4_open(vnode_t **, int, cred_t *, caller_context_t *); 212 static int nfs4_close(vnode_t *, int, int, offset_t, cred_t *, 213 caller_context_t *); 214 static int nfs4_read(vnode_t *, struct uio *, int, cred_t *, 215 caller_context_t *); 216 static int nfs4_write(vnode_t *, struct uio *, int, cred_t *, 217 caller_context_t *); 218 static int nfs4_ioctl(vnode_t *, int, intptr_t, int, cred_t *, int *, 219 caller_context_t *); 220 static int nfs4_setattr(vnode_t *, struct vattr *, int, cred_t *, 221 caller_context_t *); 222 static int nfs4_access(vnode_t *, int, int, cred_t *, caller_context_t *); 223 static int nfs4_readlink(vnode_t *, struct uio *, cred_t *, 224 caller_context_t *); 225 static int nfs4_fsync(vnode_t *, int, cred_t *, caller_context_t *); 226 static int nfs4_create(vnode_t *, char *, struct vattr *, enum vcexcl, 227 int, vnode_t **, cred_t *, int, caller_context_t *, 228 vsecattr_t *); 229 static int nfs4_remove(vnode_t *, char *, cred_t *, caller_context_t *, 230 int); 231 static int nfs4_link(vnode_t *, vnode_t *, char *, cred_t *, 232 caller_context_t *, int); 233 static int nfs4_rename(vnode_t *, char *, vnode_t *, char *, cred_t *, 234 caller_context_t *, int); 235 static int nfs4_mkdir(vnode_t *, char *, struct vattr *, vnode_t **, 236 cred_t *, caller_context_t *, int, vsecattr_t *); 237 static int nfs4_rmdir(vnode_t *, char *, vnode_t *, cred_t *, 238 caller_context_t *, int); 239 static int nfs4_symlink(vnode_t *, char *, struct vattr *, char *, 240 cred_t *, caller_context_t *, int); 241 static int nfs4_readdir(vnode_t *, struct uio *, cred_t *, int *, 242 caller_context_t *, int); 243 static int nfs4_seek(vnode_t *, offset_t, offset_t *, caller_context_t *); 244 static int nfs4_getpage(vnode_t *, offset_t, size_t, uint_t *, 245 page_t *[], size_t, struct seg *, caddr_t, 246 enum seg_rw, cred_t *, caller_context_t *); 247 static int nfs4_putpage(vnode_t *, offset_t, size_t, int, cred_t *, 248 caller_context_t *); 249 static int nfs4_map(vnode_t *, offset_t, struct as *, caddr_t *, size_t, 250 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *); 251 static int nfs4_addmap(vnode_t *, offset_t, struct as *, caddr_t, size_t, 252 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *); 253 static int nfs4_cmp(vnode_t *, vnode_t *, caller_context_t *); 254 static int nfs4_frlock(vnode_t *, int, struct flock64 *, int, offset_t, 255 struct flk_callback *, cred_t *, caller_context_t *); 256 static int nfs4_space(vnode_t *, int, struct flock64 *, int, offset_t, 257 cred_t *, caller_context_t *); 258 static int nfs4_delmap(vnode_t *, offset_t, struct as *, caddr_t, size_t, 259 uint_t, uint_t, uint_t, cred_t *, caller_context_t *); 260 static int nfs4_pageio(vnode_t *, page_t *, u_offset_t, size_t, int, 261 cred_t *, caller_context_t *); 262 static void nfs4_dispose(vnode_t *, page_t *, int, int, cred_t *, 263 caller_context_t *); 264 static int nfs4_setsecattr(vnode_t *, vsecattr_t *, int, cred_t *, 265 caller_context_t *); 266 /* 267 * These vnode ops are required to be called from outside this source file, 268 * e.g. by ephemeral mount stub vnode ops, and so may not be declared 269 * as static. 270 */ 271 int nfs4_getattr(vnode_t *, struct vattr *, int, cred_t *, 272 caller_context_t *); 273 void nfs4_inactive(vnode_t *, cred_t *, caller_context_t *); 274 int nfs4_lookup(vnode_t *, char *, vnode_t **, 275 struct pathname *, int, vnode_t *, cred_t *, 276 caller_context_t *, int *, pathname_t *); 277 int nfs4_fid(vnode_t *, fid_t *, caller_context_t *); 278 int nfs4_rwlock(vnode_t *, int, caller_context_t *); 279 void nfs4_rwunlock(vnode_t *, int, caller_context_t *); 280 int nfs4_realvp(vnode_t *, vnode_t **, caller_context_t *); 281 int nfs4_pathconf(vnode_t *, int, ulong_t *, cred_t *, 282 caller_context_t *); 283 int nfs4_getsecattr(vnode_t *, vsecattr_t *, int, cred_t *, 284 caller_context_t *); 285 int nfs4_shrlock(vnode_t *, int, struct shrlock *, int, cred_t *, 286 caller_context_t *); 287 288 /* 289 * Used for nfs4_commit_vp() to indicate if we should 290 * wait on pending writes. 291 */ 292 #define NFS4_WRITE_NOWAIT 0 293 #define NFS4_WRITE_WAIT 1 294 295 #define NFS4_BASE_WAIT_TIME 1 /* 1 second */ 296 297 /* 298 * Error flags used to pass information about certain special errors 299 * which need to be handled specially. 300 */ 301 #define NFS_EOF -98 302 #define NFS_VERF_MISMATCH -97 303 304 /* 305 * Flags used to differentiate between which operation drove the 306 * potential CLOSE OTW. (see nfs4_close_otw_if_necessary) 307 */ 308 #define NFS4_CLOSE_OP 0x1 309 #define NFS4_DELMAP_OP 0x2 310 #define NFS4_INACTIVE_OP 0x3 311 312 #define ISVDEV(t) ((t == VBLK) || (t == VCHR) || (t == VFIFO)) 313 314 /* ALIGN64 aligns the given buffer and adjust buffer size to 64 bit */ 315 #define ALIGN64(x, ptr, sz) \ 316 x = ((uintptr_t)(ptr)) & (sizeof (uint64_t) - 1); \ 317 if (x) { \ 318 x = sizeof (uint64_t) - (x); \ 319 sz -= (x); \ 320 ptr += (x); \ 321 } 322 323 #ifdef DEBUG 324 int nfs4_client_attr_debug = 0; 325 int nfs4_client_state_debug = 0; 326 int nfs4_client_shadow_debug = 0; 327 int nfs4_client_lock_debug = 0; 328 int nfs4_seqid_sync = 0; 329 int nfs4_client_map_debug = 0; 330 static int nfs4_pageio_debug = 0; 331 int nfs4_client_inactive_debug = 0; 332 int nfs4_client_recov_debug = 0; 333 int nfs4_client_failover_debug = 0; 334 int nfs4_client_call_debug = 0; 335 int nfs4_client_lookup_debug = 0; 336 int nfs4_client_zone_debug = 0; 337 int nfs4_lost_rqst_debug = 0; 338 int nfs4_rdattrerr_debug = 0; 339 int nfs4_open_stream_debug = 0; 340 341 int nfs4read_error_inject; 342 343 static int nfs4_create_misses = 0; 344 345 static int nfs4_readdir_cache_shorts = 0; 346 static int nfs4_readdir_readahead = 0; 347 348 static int nfs4_bio_do_stop = 0; 349 350 static int nfs4_lostpage = 0; /* number of times we lost original page */ 351 352 int nfs4_mmap_debug = 0; 353 354 static int nfs4_pathconf_cache_hits = 0; 355 static int nfs4_pathconf_cache_misses = 0; 356 357 int nfs4close_all_cnt; 358 int nfs4close_one_debug = 0; 359 int nfs4close_notw_debug = 0; 360 361 int denied_to_flk_debug = 0; 362 void *lockt_denied_debug; 363 364 #endif 365 366 /* 367 * How long to wait before trying again if OPEN_CONFIRM gets ETIMEDOUT 368 * or NFS4ERR_RESOURCE. 369 */ 370 static int confirm_retry_sec = 30; 371 372 static int nfs4_lookup_neg_cache = 1; 373 374 /* 375 * number of pages to read ahead 376 * optimized for 100 base-T. 377 */ 378 static int nfs4_nra = 4; 379 380 static int nfs4_do_symlink_cache = 1; 381 382 static int nfs4_pathconf_disable_cache = 0; 383 384 /* 385 * These are the vnode ops routines which implement the vnode interface to 386 * the networked file system. These routines just take their parameters, 387 * make them look networkish by putting the right info into interface structs, 388 * and then calling the appropriate remote routine(s) to do the work. 389 * 390 * Note on directory name lookup cacheing: If we detect a stale fhandle, 391 * we purge the directory cache relative to that vnode. This way, the 392 * user won't get burned by the cache repeatedly. See <nfs/rnode4.h> for 393 * more details on rnode locking. 394 */ 395 396 struct vnodeops *nfs4_vnodeops; 397 398 const fs_operation_def_t nfs4_vnodeops_template[] = { 399 { VOPNAME_OPEN, { .vop_open = nfs4_open } }, 400 { VOPNAME_CLOSE, { .vop_close = nfs4_close } }, 401 { VOPNAME_READ, { .vop_read = nfs4_read } }, 402 { VOPNAME_WRITE, { .vop_write = nfs4_write } }, 403 { VOPNAME_IOCTL, { .vop_ioctl = nfs4_ioctl } }, 404 { VOPNAME_GETATTR, { .vop_getattr = nfs4_getattr } }, 405 { VOPNAME_SETATTR, { .vop_setattr = nfs4_setattr } }, 406 { VOPNAME_ACCESS, { .vop_access = nfs4_access } }, 407 { VOPNAME_LOOKUP, { .vop_lookup = nfs4_lookup } }, 408 { VOPNAME_CREATE, { .vop_create = nfs4_create } }, 409 { VOPNAME_REMOVE, { .vop_remove = nfs4_remove } }, 410 { VOPNAME_LINK, { .vop_link = nfs4_link } }, 411 { VOPNAME_RENAME, { .vop_rename = nfs4_rename } }, 412 { VOPNAME_MKDIR, { .vop_mkdir = nfs4_mkdir } }, 413 { VOPNAME_RMDIR, { .vop_rmdir = nfs4_rmdir } }, 414 { VOPNAME_READDIR, { .vop_readdir = nfs4_readdir } }, 415 { VOPNAME_SYMLINK, { .vop_symlink = nfs4_symlink } }, 416 { VOPNAME_READLINK, { .vop_readlink = nfs4_readlink } }, 417 { VOPNAME_FSYNC, { .vop_fsync = nfs4_fsync } }, 418 { VOPNAME_INACTIVE, { .vop_inactive = nfs4_inactive } }, 419 { VOPNAME_FID, { .vop_fid = nfs4_fid } }, 420 { VOPNAME_RWLOCK, { .vop_rwlock = nfs4_rwlock } }, 421 { VOPNAME_RWUNLOCK, { .vop_rwunlock = nfs4_rwunlock } }, 422 { VOPNAME_SEEK, { .vop_seek = nfs4_seek } }, 423 { VOPNAME_FRLOCK, { .vop_frlock = nfs4_frlock } }, 424 { VOPNAME_SPACE, { .vop_space = nfs4_space } }, 425 { VOPNAME_REALVP, { .vop_realvp = nfs4_realvp } }, 426 { VOPNAME_GETPAGE, { .vop_getpage = nfs4_getpage } }, 427 { VOPNAME_PUTPAGE, { .vop_putpage = nfs4_putpage } }, 428 { VOPNAME_MAP, { .vop_map = nfs4_map } }, 429 { VOPNAME_ADDMAP, { .vop_addmap = nfs4_addmap } }, 430 { VOPNAME_DELMAP, { .vop_delmap = nfs4_delmap } }, 431 /* no separate nfs4_dump */ 432 { VOPNAME_DUMP, { .vop_dump = nfs_dump } }, 433 { VOPNAME_PATHCONF, { .vop_pathconf = nfs4_pathconf } }, 434 { VOPNAME_PAGEIO, { .vop_pageio = nfs4_pageio } }, 435 { VOPNAME_DISPOSE, { .vop_dispose = nfs4_dispose } }, 436 { VOPNAME_SETSECATTR, { .vop_setsecattr = nfs4_setsecattr } }, 437 { VOPNAME_GETSECATTR, { .vop_getsecattr = nfs4_getsecattr } }, 438 { VOPNAME_SHRLOCK, { .vop_shrlock = nfs4_shrlock } }, 439 { VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support } }, 440 { NULL, { NULL } } 441 }; 442 443 /* 444 * The following are subroutines and definitions to set args or get res 445 * for the different nfsv4 ops 446 */ 447 448 void 449 nfs4args_lookup_free(nfs_argop4 *argop, int arglen) 450 { 451 int i; 452 453 for (i = 0; i < arglen; i++) { 454 if (argop[i].argop == OP_LOOKUP) { 455 kmem_free( 456 argop[i].nfs_argop4_u.oplookup. 457 objname.utf8string_val, 458 argop[i].nfs_argop4_u.oplookup. 459 objname.utf8string_len); 460 } 461 } 462 } 463 464 static void 465 nfs4args_lock_free(nfs_argop4 *argop) 466 { 467 locker4 *locker = &argop->nfs_argop4_u.oplock.locker; 468 469 if (locker->new_lock_owner == TRUE) { 470 open_to_lock_owner4 *open_owner; 471 472 open_owner = &locker->locker4_u.open_owner; 473 if (open_owner->lock_owner.owner_val != NULL) { 474 kmem_free(open_owner->lock_owner.owner_val, 475 open_owner->lock_owner.owner_len); 476 } 477 } 478 } 479 480 static void 481 nfs4args_lockt_free(nfs_argop4 *argop) 482 { 483 lock_owner4 *lowner = &argop->nfs_argop4_u.oplockt.owner; 484 485 if (lowner->owner_val != NULL) { 486 kmem_free(lowner->owner_val, lowner->owner_len); 487 } 488 } 489 490 static void 491 nfs4args_setattr(nfs_argop4 *argop, vattr_t *vap, vsecattr_t *vsap, int flags, 492 rnode4_t *rp, cred_t *cr, bitmap4 supp, int *error, 493 nfs4_stateid_types_t *sid_types) 494 { 495 fattr4 *attr = &argop->nfs_argop4_u.opsetattr.obj_attributes; 496 mntinfo4_t *mi; 497 498 argop->argop = OP_SETATTR; 499 /* 500 * The stateid is set to 0 if client is not modifying the size 501 * and otherwise to whatever nfs4_get_stateid() returns. 502 * 503 * XXX Note: nfs4_get_stateid() returns 0 if no lockowner and/or no 504 * state struct could be found for the process/file pair. We may 505 * want to change this in the future (by OPENing the file). See 506 * bug # 4474852. 507 */ 508 if (vap->va_mask & AT_SIZE) { 509 510 ASSERT(rp != NULL); 511 mi = VTOMI4(RTOV4(rp)); 512 513 argop->nfs_argop4_u.opsetattr.stateid = 514 nfs4_get_stateid(cr, rp, curproc->p_pidp->pid_id, mi, 515 OP_SETATTR, sid_types, FALSE); 516 } else { 517 bzero(&argop->nfs_argop4_u.opsetattr.stateid, 518 sizeof (stateid4)); 519 } 520 521 *error = vattr_to_fattr4(vap, vsap, attr, flags, OP_SETATTR, supp); 522 if (*error) 523 bzero(attr, sizeof (*attr)); 524 } 525 526 static void 527 nfs4args_setattr_free(nfs_argop4 *argop) 528 { 529 nfs4_fattr4_free(&argop->nfs_argop4_u.opsetattr.obj_attributes); 530 } 531 532 static int 533 nfs4args_verify(nfs_argop4 *argop, vattr_t *vap, enum nfs_opnum4 op, 534 bitmap4 supp) 535 { 536 fattr4 *attr; 537 int error = 0; 538 539 argop->argop = op; 540 switch (op) { 541 case OP_VERIFY: 542 attr = &argop->nfs_argop4_u.opverify.obj_attributes; 543 break; 544 case OP_NVERIFY: 545 attr = &argop->nfs_argop4_u.opnverify.obj_attributes; 546 break; 547 default: 548 return (EINVAL); 549 } 550 if (!error) 551 error = vattr_to_fattr4(vap, NULL, attr, 0, op, supp); 552 if (error) 553 bzero(attr, sizeof (*attr)); 554 return (error); 555 } 556 557 static void 558 nfs4args_verify_free(nfs_argop4 *argop) 559 { 560 switch (argop->argop) { 561 case OP_VERIFY: 562 nfs4_fattr4_free(&argop->nfs_argop4_u.opverify.obj_attributes); 563 break; 564 case OP_NVERIFY: 565 nfs4_fattr4_free(&argop->nfs_argop4_u.opnverify.obj_attributes); 566 break; 567 default: 568 break; 569 } 570 } 571 572 static void 573 nfs4args_write(nfs_argop4 *argop, stable_how4 stable, rnode4_t *rp, cred_t *cr, 574 WRITE4args **wargs_pp, nfs4_stateid_types_t *sid_tp) 575 { 576 WRITE4args *wargs = &argop->nfs_argop4_u.opwrite; 577 mntinfo4_t *mi = VTOMI4(RTOV4(rp)); 578 579 argop->argop = OP_WRITE; 580 wargs->stable = stable; 581 wargs->stateid = nfs4_get_w_stateid(cr, rp, curproc->p_pidp->pid_id, 582 mi, OP_WRITE, sid_tp); 583 wargs->mblk = NULL; 584 *wargs_pp = wargs; 585 } 586 587 void 588 nfs4args_copen_free(OPEN4cargs *open_args) 589 { 590 if (open_args->owner.owner_val) { 591 kmem_free(open_args->owner.owner_val, 592 open_args->owner.owner_len); 593 } 594 if ((open_args->opentype == OPEN4_CREATE) && 595 (open_args->mode != EXCLUSIVE4)) { 596 nfs4_fattr4_free(&open_args->createhow4_u.createattrs); 597 } 598 } 599 600 /* 601 * XXX: This is referenced in modstubs.s 602 */ 603 struct vnodeops * 604 nfs4_getvnodeops(void) 605 { 606 return (nfs4_vnodeops); 607 } 608 609 /* 610 * The OPEN operation opens a regular file. 611 */ 612 /*ARGSUSED3*/ 613 static int 614 nfs4_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 615 { 616 vnode_t *dvp = NULL; 617 rnode4_t *rp, *drp; 618 int error; 619 int just_been_created; 620 char fn[MAXNAMELEN]; 621 622 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4_open: ")); 623 if (nfs_zone() != VTOMI4(*vpp)->mi_zone) 624 return (EIO); 625 rp = VTOR4(*vpp); 626 627 /* 628 * Check to see if opening something besides a regular file; 629 * if so skip the OTW call 630 */ 631 if ((*vpp)->v_type != VREG) { 632 error = nfs4_open_non_reg_file(vpp, flag, cr); 633 return (error); 634 } 635 636 /* 637 * XXX - would like a check right here to know if the file is 638 * executable or not, so as to skip OTW 639 */ 640 641 if ((error = vtodv(*vpp, &dvp, cr, TRUE)) != 0) 642 return (error); 643 644 drp = VTOR4(dvp); 645 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) 646 return (EINTR); 647 648 if ((error = vtoname(*vpp, fn, MAXNAMELEN)) != 0) { 649 nfs_rw_exit(&drp->r_rwlock); 650 return (error); 651 } 652 653 /* 654 * See if this file has just been CREATEd. 655 * If so, clear the flag and update the dnlc, which was previously 656 * skipped in nfs4_create. 657 * XXX need better serilization on this. 658 * XXX move this into the nf4open_otw call, after we have 659 * XXX acquired the open owner seqid sync. 660 */ 661 mutex_enter(&rp->r_statev4_lock); 662 if (rp->created_v4) { 663 rp->created_v4 = 0; 664 mutex_exit(&rp->r_statev4_lock); 665 666 dnlc_update(dvp, fn, *vpp); 667 /* This is needed so we don't bump the open ref count */ 668 just_been_created = 1; 669 } else { 670 mutex_exit(&rp->r_statev4_lock); 671 just_been_created = 0; 672 } 673 674 /* 675 * If caller specified O_TRUNC/FTRUNC, then be sure to set 676 * FWRITE (to drive successful setattr(size=0) after open) 677 */ 678 if (flag & FTRUNC) 679 flag |= FWRITE; 680 681 error = nfs4open_otw(dvp, fn, NULL, vpp, cr, 0, flag, 0, 682 just_been_created); 683 684 if (!error && !((*vpp)->v_flag & VROOT)) 685 dnlc_update(dvp, fn, *vpp); 686 687 nfs_rw_exit(&drp->r_rwlock); 688 689 /* release the hold from vtodv */ 690 VN_RELE(dvp); 691 692 /* exchange the shadow for the master vnode, if needed */ 693 694 if (error == 0 && IS_SHADOW(*vpp, rp)) 695 sv_exchange(vpp); 696 697 return (error); 698 } 699 700 /* 701 * See if there's a "lost open" request to be saved and recovered. 702 */ 703 static void 704 nfs4open_save_lost_rqst(int error, nfs4_lost_rqst_t *lost_rqstp, 705 nfs4_open_owner_t *oop, cred_t *cr, vnode_t *vp, 706 vnode_t *dvp, OPEN4cargs *open_args) 707 { 708 vfs_t *vfsp; 709 char *srccfp; 710 711 vfsp = (dvp ? dvp->v_vfsp : vp->v_vfsp); 712 713 if (error != ETIMEDOUT && error != EINTR && 714 !NFS4_FRC_UNMT_ERR(error, vfsp)) { 715 lost_rqstp->lr_op = 0; 716 return; 717 } 718 719 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 720 "nfs4open_save_lost_rqst: error %d", error)); 721 722 lost_rqstp->lr_op = OP_OPEN; 723 724 /* 725 * The vp (if it is not NULL) and dvp are held and rele'd via 726 * the recovery code. See nfs4_save_lost_rqst. 727 */ 728 lost_rqstp->lr_vp = vp; 729 lost_rqstp->lr_dvp = dvp; 730 lost_rqstp->lr_oop = oop; 731 lost_rqstp->lr_osp = NULL; 732 lost_rqstp->lr_lop = NULL; 733 lost_rqstp->lr_cr = cr; 734 lost_rqstp->lr_flk = NULL; 735 lost_rqstp->lr_oacc = open_args->share_access; 736 lost_rqstp->lr_odeny = open_args->share_deny; 737 lost_rqstp->lr_oclaim = open_args->claim; 738 if (open_args->claim == CLAIM_DELEGATE_CUR) { 739 lost_rqstp->lr_ostateid = 740 open_args->open_claim4_u.delegate_cur_info.delegate_stateid; 741 srccfp = open_args->open_claim4_u.delegate_cur_info.cfile; 742 } else { 743 srccfp = open_args->open_claim4_u.cfile; 744 } 745 lost_rqstp->lr_ofile.utf8string_len = 0; 746 lost_rqstp->lr_ofile.utf8string_val = NULL; 747 (void) str_to_utf8(srccfp, &lost_rqstp->lr_ofile); 748 lost_rqstp->lr_putfirst = FALSE; 749 } 750 751 struct nfs4_excl_time { 752 uint32 seconds; 753 uint32 nseconds; 754 }; 755 756 /* 757 * The OPEN operation creates and/or opens a regular file 758 * 759 * ARGSUSED 760 */ 761 static int 762 nfs4open_otw(vnode_t *dvp, char *file_name, struct vattr *in_va, 763 vnode_t **vpp, cred_t *cr, int create_flag, int open_flag, 764 enum createmode4 createmode, int file_just_been_created) 765 { 766 rnode4_t *rp; 767 rnode4_t *drp = VTOR4(dvp); 768 vnode_t *vp = NULL; 769 vnode_t *vpi = *vpp; 770 bool_t needrecov = FALSE; 771 772 int doqueue = 1; 773 774 COMPOUND4args_clnt args; 775 COMPOUND4res_clnt res; 776 nfs_argop4 *argop; 777 nfs_resop4 *resop; 778 int argoplist_size; 779 int idx_open, idx_fattr; 780 781 GETFH4res *gf_res = NULL; 782 OPEN4res *op_res = NULL; 783 nfs4_ga_res_t *garp; 784 fattr4 *attr = NULL; 785 struct nfs4_excl_time verf; 786 bool_t did_excl_setup = FALSE; 787 int created_osp; 788 789 OPEN4cargs *open_args; 790 nfs4_open_owner_t *oop = NULL; 791 nfs4_open_stream_t *osp = NULL; 792 seqid4 seqid = 0; 793 bool_t retry_open = FALSE; 794 nfs4_recov_state_t recov_state; 795 nfs4_lost_rqst_t lost_rqst; 796 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 797 hrtime_t t; 798 int acc = 0; 799 cred_t *cred_otw = NULL; /* cred used to do the RPC call */ 800 cred_t *ncr = NULL; 801 802 nfs4_sharedfh_t *otw_sfh; 803 nfs4_sharedfh_t *orig_sfh; 804 int fh_differs = 0; 805 int numops, setgid_flag; 806 int num_bseqid_retry = NFS4_NUM_RETRY_BAD_SEQID + 1; 807 808 /* 809 * Make sure we properly deal with setting the right gid on 810 * a newly created file to reflect the parent's setgid bit 811 */ 812 setgid_flag = 0; 813 if (create_flag && in_va) { 814 815 /* 816 * If there is grpid mount flag used or 817 * the parent's directory has the setgid bit set 818 * _and_ the client was able to get a valid mapping 819 * for the parent dir's owner_group, we want to 820 * append NVERIFY(owner_group == dva.va_gid) and 821 * SETATTR to the CREATE compound. 822 */ 823 mutex_enter(&drp->r_statelock); 824 if ((VTOMI4(dvp)->mi_flags & MI4_GRPID || 825 drp->r_attr.va_mode & VSGID) && 826 drp->r_attr.va_gid != GID_NOBODY) { 827 in_va->va_mask |= AT_GID; 828 in_va->va_gid = drp->r_attr.va_gid; 829 setgid_flag = 1; 830 } 831 mutex_exit(&drp->r_statelock); 832 } 833 834 /* 835 * Normal/non-create compound: 836 * PUTFH(dfh) + OPEN(create) + GETFH + GETATTR(new) 837 * 838 * Open(create) compound no setgid: 839 * PUTFH(dfh) + SAVEFH + OPEN(create) + GETFH + GETATTR(new) + 840 * RESTOREFH + GETATTR 841 * 842 * Open(create) setgid: 843 * PUTFH(dfh) + OPEN(create) + GETFH + GETATTR(new) + 844 * SAVEFH + PUTFH(dfh) + GETATTR(dvp) + RESTOREFH + 845 * NVERIFY(grp) + SETATTR 846 */ 847 if (setgid_flag) { 848 numops = 10; 849 idx_open = 1; 850 idx_fattr = 3; 851 } else if (create_flag) { 852 numops = 7; 853 idx_open = 2; 854 idx_fattr = 4; 855 } else { 856 numops = 4; 857 idx_open = 1; 858 idx_fattr = 3; 859 } 860 861 args.array_len = numops; 862 argoplist_size = numops * sizeof (nfs_argop4); 863 argop = kmem_alloc(argoplist_size, KM_SLEEP); 864 865 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4open_otw: " 866 "open %s open flag 0x%x cred %p", file_name, open_flag, 867 (void *)cr)); 868 869 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 870 if (create_flag) { 871 /* 872 * We are to create a file. Initialize the passed in vnode 873 * pointer. 874 */ 875 vpi = NULL; 876 } else { 877 /* 878 * Check to see if the client owns a read delegation and is 879 * trying to open for write. If so, then return the delegation 880 * to avoid the server doing a cb_recall and returning DELAY. 881 * NB - we don't use the statev4_lock here because we'd have 882 * to drop the lock anyway and the result would be stale. 883 */ 884 if ((open_flag & FWRITE) && 885 VTOR4(vpi)->r_deleg_type == OPEN_DELEGATE_READ) 886 (void) nfs4delegreturn(VTOR4(vpi), NFS4_DR_REOPEN); 887 888 /* 889 * If the file has a delegation, then do an access check up 890 * front. This avoids having to an access check later after 891 * we've already done start_op, which could deadlock. 892 */ 893 if (VTOR4(vpi)->r_deleg_type != OPEN_DELEGATE_NONE) { 894 if (open_flag & FREAD && 895 nfs4_access(vpi, VREAD, 0, cr, NULL) == 0) 896 acc |= VREAD; 897 if (open_flag & FWRITE && 898 nfs4_access(vpi, VWRITE, 0, cr, NULL) == 0) 899 acc |= VWRITE; 900 } 901 } 902 903 drp = VTOR4(dvp); 904 905 recov_state.rs_flags = 0; 906 recov_state.rs_num_retry_despite_err = 0; 907 cred_otw = cr; 908 909 recov_retry: 910 fh_differs = 0; 911 nfs4_error_zinit(&e); 912 913 e.error = nfs4_start_op(VTOMI4(dvp), dvp, vpi, &recov_state); 914 if (e.error) { 915 if (ncr != NULL) 916 crfree(ncr); 917 kmem_free(argop, argoplist_size); 918 return (e.error); 919 } 920 921 args.ctag = TAG_OPEN; 922 args.array_len = numops; 923 args.array = argop; 924 925 /* putfh directory fh */ 926 argop[0].argop = OP_CPUTFH; 927 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 928 929 /* OPEN: either op 1 or op 2 depending upon create/setgid flags */ 930 argop[idx_open].argop = OP_COPEN; 931 open_args = &argop[idx_open].nfs_argop4_u.opcopen; 932 open_args->claim = CLAIM_NULL; 933 934 /* name of file */ 935 open_args->open_claim4_u.cfile = file_name; 936 open_args->owner.owner_len = 0; 937 open_args->owner.owner_val = NULL; 938 939 if (create_flag) { 940 /* CREATE a file */ 941 open_args->opentype = OPEN4_CREATE; 942 open_args->mode = createmode; 943 if (createmode == EXCLUSIVE4) { 944 if (did_excl_setup == FALSE) { 945 verf.seconds = zone_get_hostid(NULL); 946 if (verf.seconds != 0) 947 verf.nseconds = newnum(); 948 else { 949 timestruc_t now; 950 951 gethrestime(&now); 952 verf.seconds = now.tv_sec; 953 verf.nseconds = now.tv_nsec; 954 } 955 /* 956 * Since the server will use this value for the 957 * mtime, make sure that it can't overflow. Zero 958 * out the MSB. The actual value does not matter 959 * here, only its uniqeness. 960 */ 961 verf.seconds &= INT32_MAX; 962 did_excl_setup = TRUE; 963 } 964 965 /* Now copy over verifier to OPEN4args. */ 966 open_args->createhow4_u.createverf = *(uint64_t *)&verf; 967 } else { 968 int v_error; 969 bitmap4 supp_attrs; 970 servinfo4_t *svp; 971 972 attr = &open_args->createhow4_u.createattrs; 973 974 svp = drp->r_server; 975 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 976 supp_attrs = svp->sv_supp_attrs; 977 nfs_rw_exit(&svp->sv_lock); 978 979 /* GUARDED4 or UNCHECKED4 */ 980 v_error = vattr_to_fattr4(in_va, NULL, attr, 0, OP_OPEN, 981 supp_attrs); 982 if (v_error) { 983 bzero(attr, sizeof (*attr)); 984 nfs4args_copen_free(open_args); 985 nfs4_end_op(VTOMI4(dvp), dvp, vpi, 986 &recov_state, FALSE); 987 if (ncr != NULL) 988 crfree(ncr); 989 kmem_free(argop, argoplist_size); 990 return (v_error); 991 } 992 } 993 } else { 994 /* NO CREATE */ 995 open_args->opentype = OPEN4_NOCREATE; 996 } 997 998 if (recov_state.rs_sp != NULL) { 999 mutex_enter(&recov_state.rs_sp->s_lock); 1000 open_args->owner.clientid = recov_state.rs_sp->clientid; 1001 mutex_exit(&recov_state.rs_sp->s_lock); 1002 } else { 1003 /* XXX should we just fail here? */ 1004 open_args->owner.clientid = 0; 1005 } 1006 1007 /* 1008 * This increments oop's ref count or creates a temporary 'just_created' 1009 * open owner that will become valid when this OPEN/OPEN_CONFIRM call 1010 * completes. 1011 */ 1012 mutex_enter(&VTOMI4(dvp)->mi_lock); 1013 1014 /* See if a permanent or just created open owner exists */ 1015 oop = find_open_owner_nolock(cr, NFS4_JUST_CREATED, VTOMI4(dvp)); 1016 if (!oop) { 1017 /* 1018 * This open owner does not exist so create a temporary 1019 * just created one. 1020 */ 1021 oop = create_open_owner(cr, VTOMI4(dvp)); 1022 ASSERT(oop != NULL); 1023 } 1024 mutex_exit(&VTOMI4(dvp)->mi_lock); 1025 1026 /* this length never changes, do alloc before seqid sync */ 1027 open_args->owner.owner_len = sizeof (oop->oo_name); 1028 open_args->owner.owner_val = 1029 kmem_alloc(open_args->owner.owner_len, KM_SLEEP); 1030 1031 e.error = nfs4_start_open_seqid_sync(oop, VTOMI4(dvp)); 1032 if (e.error == EAGAIN) { 1033 open_owner_rele(oop); 1034 nfs4args_copen_free(open_args); 1035 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, TRUE); 1036 if (ncr != NULL) { 1037 crfree(ncr); 1038 ncr = NULL; 1039 } 1040 goto recov_retry; 1041 } 1042 1043 /* Check to see if we need to do the OTW call */ 1044 if (!create_flag) { 1045 if (!nfs4_is_otw_open_necessary(oop, open_flag, vpi, 1046 file_just_been_created, &e.error, acc, &recov_state)) { 1047 1048 /* 1049 * The OTW open is not necessary. Either 1050 * the open can succeed without it (eg. 1051 * delegation, error == 0) or the open 1052 * must fail due to an access failure 1053 * (error != 0). In either case, tidy 1054 * up and return. 1055 */ 1056 1057 nfs4_end_open_seqid_sync(oop); 1058 open_owner_rele(oop); 1059 nfs4args_copen_free(open_args); 1060 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, FALSE); 1061 if (ncr != NULL) 1062 crfree(ncr); 1063 kmem_free(argop, argoplist_size); 1064 return (e.error); 1065 } 1066 } 1067 1068 bcopy(&oop->oo_name, open_args->owner.owner_val, 1069 open_args->owner.owner_len); 1070 1071 seqid = nfs4_get_open_seqid(oop) + 1; 1072 open_args->seqid = seqid; 1073 open_args->share_access = 0; 1074 if (open_flag & FREAD) 1075 open_args->share_access |= OPEN4_SHARE_ACCESS_READ; 1076 if (open_flag & FWRITE) 1077 open_args->share_access |= OPEN4_SHARE_ACCESS_WRITE; 1078 open_args->share_deny = OPEN4_SHARE_DENY_NONE; 1079 1080 1081 1082 /* 1083 * getfh w/sanity check for idx_open/idx_fattr 1084 */ 1085 ASSERT((idx_open + 1) == (idx_fattr - 1)); 1086 argop[idx_open + 1].argop = OP_GETFH; 1087 1088 /* getattr */ 1089 argop[idx_fattr].argop = OP_GETATTR; 1090 argop[idx_fattr].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1091 argop[idx_fattr].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 1092 1093 if (setgid_flag) { 1094 vattr_t _v; 1095 servinfo4_t *svp; 1096 bitmap4 supp_attrs; 1097 1098 svp = drp->r_server; 1099 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 1100 supp_attrs = svp->sv_supp_attrs; 1101 nfs_rw_exit(&svp->sv_lock); 1102 1103 /* 1104 * For setgid case, we need to: 1105 * 4:savefh(new) 5:putfh(dir) 6:getattr(dir) 7:restorefh(new) 1106 */ 1107 argop[4].argop = OP_SAVEFH; 1108 1109 argop[5].argop = OP_CPUTFH; 1110 argop[5].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 1111 1112 argop[6].argop = OP_GETATTR; 1113 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1114 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 1115 1116 argop[7].argop = OP_RESTOREFH; 1117 1118 /* 1119 * nverify 1120 */ 1121 _v.va_mask = AT_GID; 1122 _v.va_gid = in_va->va_gid; 1123 if (!(e.error = nfs4args_verify(&argop[8], &_v, OP_NVERIFY, 1124 supp_attrs))) { 1125 1126 /* 1127 * setattr 1128 * 1129 * We _know_ we're not messing with AT_SIZE or 1130 * AT_XTIME, so no need for stateid or flags. 1131 * Also we specify NULL rp since we're only 1132 * interested in setting owner_group attributes. 1133 */ 1134 nfs4args_setattr(&argop[9], &_v, NULL, 0, NULL, cr, 1135 supp_attrs, &e.error, 0); 1136 if (e.error) 1137 nfs4args_verify_free(&argop[8]); 1138 } 1139 1140 if (e.error) { 1141 /* 1142 * XXX - Revisit the last argument to nfs4_end_op() 1143 * once 5020486 is fixed. 1144 */ 1145 nfs4_end_open_seqid_sync(oop); 1146 open_owner_rele(oop); 1147 nfs4args_copen_free(open_args); 1148 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, TRUE); 1149 if (ncr != NULL) 1150 crfree(ncr); 1151 kmem_free(argop, argoplist_size); 1152 return (e.error); 1153 } 1154 } else if (create_flag) { 1155 argop[1].argop = OP_SAVEFH; 1156 1157 argop[5].argop = OP_RESTOREFH; 1158 1159 argop[6].argop = OP_GETATTR; 1160 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1161 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 1162 } 1163 1164 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 1165 "nfs4open_otw: %s call, nm %s, rp %s", 1166 needrecov ? "recov" : "first", file_name, 1167 rnode4info(VTOR4(dvp)))); 1168 1169 t = gethrtime(); 1170 1171 rfs4call(VTOMI4(dvp), &args, &res, cred_otw, &doqueue, 0, &e); 1172 1173 if (!e.error && nfs4_need_to_bump_seqid(&res)) 1174 nfs4_set_open_seqid(seqid, oop, args.ctag); 1175 1176 needrecov = nfs4_needs_recovery(&e, TRUE, dvp->v_vfsp); 1177 1178 if (e.error || needrecov) { 1179 bool_t abort = FALSE; 1180 1181 if (needrecov) { 1182 nfs4_bseqid_entry_t *bsep = NULL; 1183 1184 nfs4open_save_lost_rqst(e.error, &lost_rqst, oop, 1185 cred_otw, vpi, dvp, open_args); 1186 1187 if (!e.error && res.status == NFS4ERR_BAD_SEQID) { 1188 bsep = nfs4_create_bseqid_entry(oop, NULL, 1189 vpi, 0, args.ctag, open_args->seqid); 1190 num_bseqid_retry--; 1191 } 1192 1193 abort = nfs4_start_recovery(&e, VTOMI4(dvp), dvp, vpi, 1194 NULL, lost_rqst.lr_op == OP_OPEN ? 1195 &lost_rqst : NULL, OP_OPEN, bsep, NULL, NULL); 1196 1197 if (bsep) 1198 kmem_free(bsep, sizeof (*bsep)); 1199 /* give up if we keep getting BAD_SEQID */ 1200 if (num_bseqid_retry == 0) 1201 abort = TRUE; 1202 if (abort == TRUE && e.error == 0) 1203 e.error = geterrno4(res.status); 1204 } 1205 nfs4_end_open_seqid_sync(oop); 1206 open_owner_rele(oop); 1207 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1208 nfs4args_copen_free(open_args); 1209 if (setgid_flag) { 1210 nfs4args_verify_free(&argop[8]); 1211 nfs4args_setattr_free(&argop[9]); 1212 } 1213 if (!e.error) 1214 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1215 if (ncr != NULL) { 1216 crfree(ncr); 1217 ncr = NULL; 1218 } 1219 if (!needrecov || abort == TRUE || e.error == EINTR || 1220 NFS4_FRC_UNMT_ERR(e.error, dvp->v_vfsp)) { 1221 kmem_free(argop, argoplist_size); 1222 return (e.error); 1223 } 1224 goto recov_retry; 1225 } 1226 1227 /* 1228 * Will check and update lease after checking the rflag for 1229 * OPEN_CONFIRM in the successful OPEN call. 1230 */ 1231 if (res.status != NFS4_OK && res.array_len <= idx_fattr + 1) { 1232 1233 /* 1234 * XXX what if we're crossing mount points from server1:/drp 1235 * to server2:/drp/rp. 1236 */ 1237 1238 /* Signal our end of use of the open seqid */ 1239 nfs4_end_open_seqid_sync(oop); 1240 1241 /* 1242 * This will destroy the open owner if it was just created, 1243 * and no one else has put a reference on it. 1244 */ 1245 open_owner_rele(oop); 1246 if (create_flag && (createmode != EXCLUSIVE4) && 1247 res.status == NFS4ERR_BADOWNER) 1248 nfs4_log_badowner(VTOMI4(dvp), OP_OPEN); 1249 1250 e.error = geterrno4(res.status); 1251 nfs4args_copen_free(open_args); 1252 if (setgid_flag) { 1253 nfs4args_verify_free(&argop[8]); 1254 nfs4args_setattr_free(&argop[9]); 1255 } 1256 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1257 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1258 /* 1259 * If the reply is NFS4ERR_ACCESS, it may be because 1260 * we are root (no root net access). If the real uid 1261 * is not root, then retry with the real uid instead. 1262 */ 1263 if (ncr != NULL) { 1264 crfree(ncr); 1265 ncr = NULL; 1266 } 1267 if (res.status == NFS4ERR_ACCESS && 1268 (ncr = crnetadjust(cred_otw)) != NULL) { 1269 cred_otw = ncr; 1270 goto recov_retry; 1271 } 1272 kmem_free(argop, argoplist_size); 1273 return (e.error); 1274 } 1275 1276 resop = &res.array[idx_open]; /* open res */ 1277 op_res = &resop->nfs_resop4_u.opopen; 1278 1279 #ifdef DEBUG 1280 /* 1281 * verify attrset bitmap 1282 */ 1283 if (create_flag && 1284 (createmode == UNCHECKED4 || createmode == GUARDED4)) { 1285 /* make sure attrset returned is what we asked for */ 1286 /* XXX Ignore this 'error' for now */ 1287 if (attr->attrmask != op_res->attrset) 1288 /* EMPTY */; 1289 } 1290 #endif 1291 1292 if (op_res->rflags & OPEN4_RESULT_LOCKTYPE_POSIX) { 1293 mutex_enter(&VTOMI4(dvp)->mi_lock); 1294 VTOMI4(dvp)->mi_flags |= MI4_POSIX_LOCK; 1295 mutex_exit(&VTOMI4(dvp)->mi_lock); 1296 } 1297 1298 resop = &res.array[idx_open + 1]; /* getfh res */ 1299 gf_res = &resop->nfs_resop4_u.opgetfh; 1300 1301 otw_sfh = sfh4_get(&gf_res->object, VTOMI4(dvp)); 1302 1303 /* 1304 * The open stateid has been updated on the server but not 1305 * on the client yet. There is a path: makenfs4node->nfs4_attr_cache-> 1306 * flush_pages->VOP_PUTPAGE->...->nfs4write where we will issue an OTW 1307 * WRITE call. That, however, will use the old stateid, so go ahead 1308 * and upate the open stateid now, before any call to makenfs4node. 1309 */ 1310 if (vpi) { 1311 nfs4_open_stream_t *tmp_osp; 1312 rnode4_t *tmp_rp = VTOR4(vpi); 1313 1314 tmp_osp = find_open_stream(oop, tmp_rp); 1315 if (tmp_osp) { 1316 tmp_osp->open_stateid = op_res->stateid; 1317 mutex_exit(&tmp_osp->os_sync_lock); 1318 open_stream_rele(tmp_osp, tmp_rp); 1319 } 1320 1321 /* 1322 * We must determine if the file handle given by the otw open 1323 * is the same as the file handle which was passed in with 1324 * *vpp. This case can be reached if the file we are trying 1325 * to open has been removed and another file has been created 1326 * having the same file name. The passed in vnode is released 1327 * later. 1328 */ 1329 orig_sfh = VTOR4(vpi)->r_fh; 1330 fh_differs = nfs4cmpfh(&orig_sfh->sfh_fh, &otw_sfh->sfh_fh); 1331 } 1332 1333 garp = &res.array[idx_fattr].nfs_resop4_u.opgetattr.ga_res; 1334 1335 if (create_flag || fh_differs) { 1336 int rnode_err = 0; 1337 1338 vp = makenfs4node(otw_sfh, garp, dvp->v_vfsp, t, cr, 1339 dvp, fn_get(VTOSV(dvp)->sv_name, file_name, otw_sfh)); 1340 1341 if (e.error) 1342 PURGE_ATTRCACHE4(vp); 1343 /* 1344 * For the newly created vp case, make sure the rnode 1345 * isn't bad before using it. 1346 */ 1347 mutex_enter(&(VTOR4(vp))->r_statelock); 1348 if (VTOR4(vp)->r_flags & R4RECOVERR) 1349 rnode_err = EIO; 1350 mutex_exit(&(VTOR4(vp))->r_statelock); 1351 1352 if (rnode_err) { 1353 nfs4_end_open_seqid_sync(oop); 1354 nfs4args_copen_free(open_args); 1355 if (setgid_flag) { 1356 nfs4args_verify_free(&argop[8]); 1357 nfs4args_setattr_free(&argop[9]); 1358 } 1359 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1360 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, 1361 needrecov); 1362 open_owner_rele(oop); 1363 VN_RELE(vp); 1364 if (ncr != NULL) 1365 crfree(ncr); 1366 sfh4_rele(&otw_sfh); 1367 kmem_free(argop, argoplist_size); 1368 return (EIO); 1369 } 1370 } else { 1371 vp = vpi; 1372 } 1373 sfh4_rele(&otw_sfh); 1374 1375 /* 1376 * It seems odd to get a full set of attrs and then not update 1377 * the object's attrcache in the non-create case. Create case uses 1378 * the attrs since makenfs4node checks to see if the attrs need to 1379 * be updated (and then updates them). The non-create case should 1380 * update attrs also. 1381 */ 1382 if (! create_flag && ! fh_differs && !e.error) { 1383 nfs4_attr_cache(vp, garp, t, cr, TRUE, NULL); 1384 } 1385 1386 nfs4_error_zinit(&e); 1387 if (op_res->rflags & OPEN4_RESULT_CONFIRM) { 1388 /* This does not do recovery for vp explicitly. */ 1389 nfs4open_confirm(vp, &seqid, &op_res->stateid, cred_otw, FALSE, 1390 &retry_open, oop, FALSE, &e, &num_bseqid_retry); 1391 1392 if (e.error || e.stat) { 1393 nfs4_end_open_seqid_sync(oop); 1394 nfs4args_copen_free(open_args); 1395 if (setgid_flag) { 1396 nfs4args_verify_free(&argop[8]); 1397 nfs4args_setattr_free(&argop[9]); 1398 } 1399 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1400 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, 1401 needrecov); 1402 open_owner_rele(oop); 1403 if (create_flag || fh_differs) { 1404 /* rele the makenfs4node */ 1405 VN_RELE(vp); 1406 } 1407 if (ncr != NULL) { 1408 crfree(ncr); 1409 ncr = NULL; 1410 } 1411 if (retry_open == TRUE) { 1412 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 1413 "nfs4open_otw: retry the open since OPEN " 1414 "CONFIRM failed with error %d stat %d", 1415 e.error, e.stat)); 1416 if (create_flag && createmode == GUARDED4) { 1417 NFS4_DEBUG(nfs4_client_recov_debug, 1418 (CE_NOTE, "nfs4open_otw: switch " 1419 "createmode from GUARDED4 to " 1420 "UNCHECKED4")); 1421 createmode = UNCHECKED4; 1422 } 1423 goto recov_retry; 1424 } 1425 if (!e.error) { 1426 if (create_flag && (createmode != EXCLUSIVE4) && 1427 e.stat == NFS4ERR_BADOWNER) 1428 nfs4_log_badowner(VTOMI4(dvp), OP_OPEN); 1429 1430 e.error = geterrno4(e.stat); 1431 } 1432 kmem_free(argop, argoplist_size); 1433 return (e.error); 1434 } 1435 } 1436 1437 rp = VTOR4(vp); 1438 1439 mutex_enter(&rp->r_statev4_lock); 1440 if (create_flag) 1441 rp->created_v4 = 1; 1442 mutex_exit(&rp->r_statev4_lock); 1443 1444 mutex_enter(&oop->oo_lock); 1445 /* Doesn't matter if 'oo_just_created' already was set as this */ 1446 oop->oo_just_created = NFS4_PERM_CREATED; 1447 if (oop->oo_cred_otw) 1448 crfree(oop->oo_cred_otw); 1449 oop->oo_cred_otw = cred_otw; 1450 crhold(oop->oo_cred_otw); 1451 mutex_exit(&oop->oo_lock); 1452 1453 /* returns with 'os_sync_lock' held */ 1454 osp = find_or_create_open_stream(oop, rp, &created_osp); 1455 if (!osp) { 1456 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, 1457 "nfs4open_otw: failed to create an open stream")); 1458 NFS4_DEBUG(nfs4_seqid_sync, (CE_NOTE, "nfs4open_otw: " 1459 "signal our end of use of the open seqid")); 1460 1461 nfs4_end_open_seqid_sync(oop); 1462 open_owner_rele(oop); 1463 nfs4args_copen_free(open_args); 1464 if (setgid_flag) { 1465 nfs4args_verify_free(&argop[8]); 1466 nfs4args_setattr_free(&argop[9]); 1467 } 1468 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1469 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1470 if (create_flag || fh_differs) 1471 VN_RELE(vp); 1472 if (ncr != NULL) 1473 crfree(ncr); 1474 1475 kmem_free(argop, argoplist_size); 1476 return (EINVAL); 1477 1478 } 1479 1480 osp->open_stateid = op_res->stateid; 1481 1482 if (open_flag & FREAD) 1483 osp->os_share_acc_read++; 1484 if (open_flag & FWRITE) 1485 osp->os_share_acc_write++; 1486 osp->os_share_deny_none++; 1487 1488 /* 1489 * Need to reset this bitfield for the possible case where we were 1490 * going to OTW CLOSE the file, got a non-recoverable error, and before 1491 * we could retry the CLOSE, OPENed the file again. 1492 */ 1493 ASSERT(osp->os_open_owner->oo_seqid_inuse); 1494 osp->os_final_close = 0; 1495 osp->os_force_close = 0; 1496 #ifdef DEBUG 1497 if (osp->os_failed_reopen) 1498 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE, "nfs4open_otw:" 1499 " clearing os_failed_reopen for osp %p, cr %p, rp %s", 1500 (void *)osp, (void *)cr, rnode4info(rp))); 1501 #endif 1502 osp->os_failed_reopen = 0; 1503 1504 mutex_exit(&osp->os_sync_lock); 1505 1506 nfs4_end_open_seqid_sync(oop); 1507 1508 if (created_osp && recov_state.rs_sp != NULL) { 1509 mutex_enter(&recov_state.rs_sp->s_lock); 1510 nfs4_inc_state_ref_count_nolock(recov_state.rs_sp, VTOMI4(dvp)); 1511 mutex_exit(&recov_state.rs_sp->s_lock); 1512 } 1513 1514 /* get rid of our reference to find oop */ 1515 open_owner_rele(oop); 1516 1517 open_stream_rele(osp, rp); 1518 1519 /* accept delegation, if any */ 1520 nfs4_delegation_accept(rp, CLAIM_NULL, op_res, garp, cred_otw); 1521 1522 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1523 1524 if (createmode == EXCLUSIVE4 && 1525 (in_va->va_mask & ~(AT_GID | AT_SIZE))) { 1526 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4open_otw:" 1527 " EXCLUSIVE4: sending a SETATTR")); 1528 /* 1529 * If doing an exclusive create, then generate 1530 * a SETATTR to set the initial attributes. 1531 * Try to set the mtime and the atime to the 1532 * server's current time. It is somewhat 1533 * expected that these fields will be used to 1534 * store the exclusive create cookie. If not, 1535 * server implementors will need to know that 1536 * a SETATTR will follow an exclusive create 1537 * and the cookie should be destroyed if 1538 * appropriate. 1539 * 1540 * The AT_GID and AT_SIZE bits are turned off 1541 * so that the SETATTR request will not attempt 1542 * to process these. The gid will be set 1543 * separately if appropriate. The size is turned 1544 * off because it is assumed that a new file will 1545 * be created empty and if the file wasn't empty, 1546 * then the exclusive create will have failed 1547 * because the file must have existed already. 1548 * Therefore, no truncate operation is needed. 1549 */ 1550 in_va->va_mask &= ~(AT_GID | AT_SIZE); 1551 in_va->va_mask |= (AT_MTIME | AT_ATIME); 1552 1553 e.error = nfs4setattr(vp, in_va, 0, cr, NULL); 1554 if (e.error) { 1555 /* 1556 * Couldn't correct the attributes of 1557 * the newly created file and the 1558 * attributes are wrong. Remove the 1559 * file and return an error to the 1560 * application. 1561 */ 1562 /* XXX will this take care of client state ? */ 1563 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, 1564 "nfs4open_otw: EXCLUSIVE4: error %d on SETATTR:" 1565 " remove file", e.error)); 1566 VN_RELE(vp); 1567 (void) nfs4_remove(dvp, file_name, cr, NULL, 0); 1568 /* 1569 * Since we've reled the vnode and removed 1570 * the file we now need to return the error. 1571 * At this point we don't want to update the 1572 * dircaches, call nfs4_waitfor_purge_complete 1573 * or set vpp to vp so we need to skip these 1574 * as well. 1575 */ 1576 goto skip_update_dircaches; 1577 } 1578 } 1579 1580 /* 1581 * If we created or found the correct vnode, due to create_flag or 1582 * fh_differs being set, then update directory cache attribute, readdir 1583 * and dnlc caches. 1584 */ 1585 if (create_flag || fh_differs) { 1586 dirattr_info_t dinfo, *dinfop; 1587 1588 /* 1589 * Make sure getattr succeeded before using results. 1590 * note: op 7 is getattr(dir) for both flavors of 1591 * open(create). 1592 */ 1593 if (create_flag && res.status == NFS4_OK) { 1594 dinfo.di_time_call = t; 1595 dinfo.di_cred = cr; 1596 dinfo.di_garp = 1597 &res.array[6].nfs_resop4_u.opgetattr.ga_res; 1598 dinfop = &dinfo; 1599 } else { 1600 dinfop = NULL; 1601 } 1602 1603 nfs4_update_dircaches(&op_res->cinfo, dvp, vp, file_name, 1604 dinfop); 1605 } 1606 1607 /* 1608 * If the page cache for this file was flushed from actions 1609 * above, it was done asynchronously and if that is true, 1610 * there is a need to wait here for it to complete. This must 1611 * be done outside of start_fop/end_fop. 1612 */ 1613 (void) nfs4_waitfor_purge_complete(vp); 1614 1615 /* 1616 * It is implicit that we are in the open case (create_flag == 0) since 1617 * fh_differs can only be set to a non-zero value in the open case. 1618 */ 1619 if (fh_differs != 0 && vpi != NULL) 1620 VN_RELE(vpi); 1621 1622 /* 1623 * Be sure to set *vpp to the correct value before returning. 1624 */ 1625 *vpp = vp; 1626 1627 skip_update_dircaches: 1628 1629 nfs4args_copen_free(open_args); 1630 if (setgid_flag) { 1631 nfs4args_verify_free(&argop[8]); 1632 nfs4args_setattr_free(&argop[9]); 1633 } 1634 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1635 1636 if (ncr) 1637 crfree(ncr); 1638 kmem_free(argop, argoplist_size); 1639 return (e.error); 1640 } 1641 1642 /* 1643 * Reopen an open instance. cf. nfs4open_otw(). 1644 * 1645 * Errors are returned by the nfs4_error_t parameter. 1646 * - ep->error contains an errno value or zero. 1647 * - if it is zero, ep->stat is set to an NFS status code, if any. 1648 * If the file could not be reopened, but the caller should continue, the 1649 * file is marked dead and no error values are returned. If the caller 1650 * should stop recovering open files and start over, either the ep->error 1651 * value or ep->stat will indicate an error (either something that requires 1652 * recovery or EAGAIN). Note that some recovery (e.g., expired volatile 1653 * filehandles) may be handled silently by this routine. 1654 * - if it is EINTR, ETIMEDOUT, or NFS4_FRC_UNMT_ERR, recovery for lost state 1655 * will be started, so the caller should not do it. 1656 * 1657 * Gotos: 1658 * - kill_file : reopen failed in such a fashion to constitute marking the 1659 * file dead and setting the open stream's 'os_failed_reopen' as 1. This 1660 * is for cases where recovery is not possible. 1661 * - failed_reopen : same as above, except that the file has already been 1662 * marked dead, so no need to do it again. 1663 * - bailout : reopen failed but we are able to recover and retry the reopen - 1664 * either within this function immediately or via the calling function. 1665 */ 1666 1667 void 1668 nfs4_reopen(vnode_t *vp, nfs4_open_stream_t *osp, nfs4_error_t *ep, 1669 open_claim_type4 claim, bool_t frc_use_claim_previous, 1670 bool_t is_recov) 1671 { 1672 COMPOUND4args_clnt args; 1673 COMPOUND4res_clnt res; 1674 nfs_argop4 argop[4]; 1675 nfs_resop4 *resop; 1676 OPEN4res *op_res = NULL; 1677 OPEN4cargs *open_args; 1678 GETFH4res *gf_res; 1679 rnode4_t *rp = VTOR4(vp); 1680 int doqueue = 1; 1681 cred_t *cr = NULL, *cred_otw = NULL; 1682 nfs4_open_owner_t *oop = NULL; 1683 seqid4 seqid; 1684 nfs4_ga_res_t *garp; 1685 char fn[MAXNAMELEN]; 1686 nfs4_recov_state_t recov = {NULL, 0}; 1687 nfs4_lost_rqst_t lost_rqst; 1688 mntinfo4_t *mi = VTOMI4(vp); 1689 bool_t abort; 1690 char *failed_msg = ""; 1691 int fh_different; 1692 hrtime_t t; 1693 nfs4_bseqid_entry_t *bsep = NULL; 1694 1695 ASSERT(nfs4_consistent_type(vp)); 1696 ASSERT(nfs_zone() == mi->mi_zone); 1697 1698 nfs4_error_zinit(ep); 1699 1700 /* this is the cred used to find the open owner */ 1701 cr = state_to_cred(osp); 1702 if (cr == NULL) { 1703 failed_msg = "Couldn't reopen: no cred"; 1704 goto kill_file; 1705 } 1706 /* use this cred for OTW operations */ 1707 cred_otw = nfs4_get_otw_cred(cr, mi, osp->os_open_owner); 1708 1709 top: 1710 nfs4_error_zinit(ep); 1711 1712 if (mi->mi_vfsp->vfs_flag & VFS_UNMOUNTED) { 1713 /* File system has been unmounted, quit */ 1714 ep->error = EIO; 1715 failed_msg = "Couldn't reopen: file system has been unmounted"; 1716 goto kill_file; 1717 } 1718 1719 oop = osp->os_open_owner; 1720 1721 ASSERT(oop != NULL); 1722 if (oop == NULL) { /* be defensive in non-DEBUG */ 1723 failed_msg = "can't reopen: no open owner"; 1724 goto kill_file; 1725 } 1726 open_owner_hold(oop); 1727 1728 ep->error = nfs4_start_open_seqid_sync(oop, mi); 1729 if (ep->error) { 1730 open_owner_rele(oop); 1731 oop = NULL; 1732 goto bailout; 1733 } 1734 1735 /* 1736 * If the rnode has a delegation and the delegation has been 1737 * recovered and the server didn't request a recall and the caller 1738 * didn't specifically ask for CLAIM_PREVIOUS (nfs4frlock during 1739 * recovery) and the rnode hasn't been marked dead, then install 1740 * the delegation stateid in the open stream. Otherwise, proceed 1741 * with a CLAIM_PREVIOUS or CLAIM_NULL OPEN. 1742 */ 1743 mutex_enter(&rp->r_statev4_lock); 1744 if (rp->r_deleg_type != OPEN_DELEGATE_NONE && 1745 !rp->r_deleg_return_pending && 1746 (rp->r_deleg_needs_recovery == OPEN_DELEGATE_NONE) && 1747 !rp->r_deleg_needs_recall && 1748 claim != CLAIM_DELEGATE_CUR && !frc_use_claim_previous && 1749 !(rp->r_flags & R4RECOVERR)) { 1750 mutex_enter(&osp->os_sync_lock); 1751 osp->os_delegation = 1; 1752 osp->open_stateid = rp->r_deleg_stateid; 1753 mutex_exit(&osp->os_sync_lock); 1754 mutex_exit(&rp->r_statev4_lock); 1755 goto bailout; 1756 } 1757 mutex_exit(&rp->r_statev4_lock); 1758 1759 /* 1760 * If the file failed recovery, just quit. This failure need not 1761 * affect other reopens, so don't return an error. 1762 */ 1763 mutex_enter(&rp->r_statelock); 1764 if (rp->r_flags & R4RECOVERR) { 1765 mutex_exit(&rp->r_statelock); 1766 ep->error = 0; 1767 goto failed_reopen; 1768 } 1769 mutex_exit(&rp->r_statelock); 1770 1771 /* 1772 * argop is empty here 1773 * 1774 * PUTFH, OPEN, GETATTR 1775 */ 1776 args.ctag = TAG_REOPEN; 1777 args.array_len = 4; 1778 args.array = argop; 1779 1780 NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE, 1781 "nfs4_reopen: file is type %d, id %s", 1782 vp->v_type, rnode4info(VTOR4(vp)))); 1783 1784 argop[0].argop = OP_CPUTFH; 1785 1786 if (claim != CLAIM_PREVIOUS) { 1787 /* 1788 * if this is a file mount then 1789 * use the mntinfo parentfh 1790 */ 1791 argop[0].nfs_argop4_u.opcputfh.sfh = 1792 (vp->v_flag & VROOT) ? mi->mi_srvparentfh : 1793 VTOSV(vp)->sv_dfh; 1794 } else { 1795 /* putfh fh to reopen */ 1796 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 1797 } 1798 1799 argop[1].argop = OP_COPEN; 1800 open_args = &argop[1].nfs_argop4_u.opcopen; 1801 open_args->claim = claim; 1802 1803 if (claim == CLAIM_NULL) { 1804 1805 if ((ep->error = vtoname(vp, fn, MAXNAMELEN)) != 0) { 1806 nfs_cmn_err(ep->error, CE_WARN, "nfs4_reopen: vtoname " 1807 "failed for vp 0x%p for CLAIM_NULL with %m", 1808 (void *)vp); 1809 failed_msg = "Couldn't reopen: vtoname failed for " 1810 "CLAIM_NULL"; 1811 /* nothing allocated yet */ 1812 goto kill_file; 1813 } 1814 1815 open_args->open_claim4_u.cfile = fn; 1816 } else if (claim == CLAIM_PREVIOUS) { 1817 1818 /* 1819 * We have two cases to deal with here: 1820 * 1) We're being called to reopen files in order to satisfy 1821 * a lock operation request which requires us to explicitly 1822 * reopen files which were opened under a delegation. If 1823 * we're in recovery, we *must* use CLAIM_PREVIOUS. In 1824 * that case, frc_use_claim_previous is TRUE and we must 1825 * use the rnode's current delegation type (r_deleg_type). 1826 * 2) We're reopening files during some form of recovery. 1827 * In this case, frc_use_claim_previous is FALSE and we 1828 * use the delegation type appropriate for recovery 1829 * (r_deleg_needs_recovery). 1830 */ 1831 mutex_enter(&rp->r_statev4_lock); 1832 open_args->open_claim4_u.delegate_type = 1833 frc_use_claim_previous ? 1834 rp->r_deleg_type : 1835 rp->r_deleg_needs_recovery; 1836 mutex_exit(&rp->r_statev4_lock); 1837 1838 } else if (claim == CLAIM_DELEGATE_CUR) { 1839 1840 if ((ep->error = vtoname(vp, fn, MAXNAMELEN)) != 0) { 1841 nfs_cmn_err(ep->error, CE_WARN, "nfs4_reopen: vtoname " 1842 "failed for vp 0x%p for CLAIM_DELEGATE_CUR " 1843 "with %m", (void *)vp); 1844 failed_msg = "Couldn't reopen: vtoname failed for " 1845 "CLAIM_DELEGATE_CUR"; 1846 /* nothing allocated yet */ 1847 goto kill_file; 1848 } 1849 1850 mutex_enter(&rp->r_statev4_lock); 1851 open_args->open_claim4_u.delegate_cur_info.delegate_stateid = 1852 rp->r_deleg_stateid; 1853 mutex_exit(&rp->r_statev4_lock); 1854 1855 open_args->open_claim4_u.delegate_cur_info.cfile = fn; 1856 } 1857 open_args->opentype = OPEN4_NOCREATE; 1858 open_args->owner.clientid = mi2clientid(mi); 1859 open_args->owner.owner_len = sizeof (oop->oo_name); 1860 open_args->owner.owner_val = 1861 kmem_alloc(open_args->owner.owner_len, KM_SLEEP); 1862 bcopy(&oop->oo_name, open_args->owner.owner_val, 1863 open_args->owner.owner_len); 1864 open_args->share_access = 0; 1865 open_args->share_deny = 0; 1866 1867 mutex_enter(&osp->os_sync_lock); 1868 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, "nfs4_reopen: osp %p rp " 1869 "%p: read acc %"PRIu64" write acc %"PRIu64": open ref count %d: " 1870 "mmap read %"PRIu64" mmap write %"PRIu64" claim %d ", 1871 (void *)osp, (void *)rp, osp->os_share_acc_read, 1872 osp->os_share_acc_write, osp->os_open_ref_count, 1873 osp->os_mmap_read, osp->os_mmap_write, claim)); 1874 1875 if (osp->os_share_acc_read || osp->os_mmap_read) 1876 open_args->share_access |= OPEN4_SHARE_ACCESS_READ; 1877 if (osp->os_share_acc_write || osp->os_mmap_write) 1878 open_args->share_access |= OPEN4_SHARE_ACCESS_WRITE; 1879 if (osp->os_share_deny_read) 1880 open_args->share_deny |= OPEN4_SHARE_DENY_READ; 1881 if (osp->os_share_deny_write) 1882 open_args->share_deny |= OPEN4_SHARE_DENY_WRITE; 1883 mutex_exit(&osp->os_sync_lock); 1884 1885 seqid = nfs4_get_open_seqid(oop) + 1; 1886 open_args->seqid = seqid; 1887 1888 /* Construct the getfh part of the compound */ 1889 argop[2].argop = OP_GETFH; 1890 1891 /* Construct the getattr part of the compound */ 1892 argop[3].argop = OP_GETATTR; 1893 argop[3].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1894 argop[3].nfs_argop4_u.opgetattr.mi = mi; 1895 1896 t = gethrtime(); 1897 1898 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, ep); 1899 1900 if (ep->error) { 1901 if (!is_recov && !frc_use_claim_previous && 1902 (ep->error == EINTR || ep->error == ETIMEDOUT || 1903 NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp))) { 1904 nfs4open_save_lost_rqst(ep->error, &lost_rqst, oop, 1905 cred_otw, vp, NULL, open_args); 1906 abort = nfs4_start_recovery(ep, 1907 VTOMI4(vp), vp, NULL, NULL, 1908 lost_rqst.lr_op == OP_OPEN ? 1909 &lost_rqst : NULL, OP_OPEN, NULL, NULL, NULL); 1910 nfs4args_copen_free(open_args); 1911 goto bailout; 1912 } 1913 1914 nfs4args_copen_free(open_args); 1915 1916 if (ep->error == EACCES && cred_otw != cr) { 1917 crfree(cred_otw); 1918 cred_otw = cr; 1919 crhold(cred_otw); 1920 nfs4_end_open_seqid_sync(oop); 1921 open_owner_rele(oop); 1922 oop = NULL; 1923 goto top; 1924 } 1925 if (ep->error == ETIMEDOUT) 1926 goto bailout; 1927 failed_msg = "Couldn't reopen: rpc error"; 1928 goto kill_file; 1929 } 1930 1931 if (nfs4_need_to_bump_seqid(&res)) 1932 nfs4_set_open_seqid(seqid, oop, args.ctag); 1933 1934 switch (res.status) { 1935 case NFS4_OK: 1936 if (recov.rs_flags & NFS4_RS_DELAY_MSG) { 1937 mutex_enter(&rp->r_statelock); 1938 rp->r_delay_interval = 0; 1939 mutex_exit(&rp->r_statelock); 1940 } 1941 break; 1942 case NFS4ERR_BAD_SEQID: 1943 bsep = nfs4_create_bseqid_entry(oop, NULL, vp, 0, 1944 args.ctag, open_args->seqid); 1945 1946 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, 1947 NULL, lost_rqst.lr_op == OP_OPEN ? &lost_rqst : 1948 NULL, OP_OPEN, bsep, NULL, NULL); 1949 1950 nfs4args_copen_free(open_args); 1951 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1952 nfs4_end_open_seqid_sync(oop); 1953 open_owner_rele(oop); 1954 oop = NULL; 1955 kmem_free(bsep, sizeof (*bsep)); 1956 1957 goto kill_file; 1958 case NFS4ERR_NO_GRACE: 1959 nfs4args_copen_free(open_args); 1960 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1961 nfs4_end_open_seqid_sync(oop); 1962 open_owner_rele(oop); 1963 oop = NULL; 1964 if (claim == CLAIM_PREVIOUS) { 1965 /* 1966 * Retry as a plain open. We don't need to worry about 1967 * checking the changeinfo: it is acceptable for a 1968 * client to re-open a file and continue processing 1969 * (in the absence of locks). 1970 */ 1971 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 1972 "nfs4_reopen: CLAIM_PREVIOUS: NFS4ERR_NO_GRACE; " 1973 "will retry as CLAIM_NULL")); 1974 claim = CLAIM_NULL; 1975 nfs4_mi_kstat_inc_no_grace(mi); 1976 goto top; 1977 } 1978 failed_msg = 1979 "Couldn't reopen: tried reclaim outside grace period. "; 1980 goto kill_file; 1981 case NFS4ERR_GRACE: 1982 nfs4_set_grace_wait(mi); 1983 nfs4args_copen_free(open_args); 1984 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1985 nfs4_end_open_seqid_sync(oop); 1986 open_owner_rele(oop); 1987 oop = NULL; 1988 ep->error = nfs4_wait_for_grace(mi, &recov); 1989 if (ep->error != 0) 1990 goto bailout; 1991 goto top; 1992 case NFS4ERR_DELAY: 1993 nfs4_set_delay_wait(vp); 1994 nfs4args_copen_free(open_args); 1995 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1996 nfs4_end_open_seqid_sync(oop); 1997 open_owner_rele(oop); 1998 oop = NULL; 1999 ep->error = nfs4_wait_for_delay(vp, &recov); 2000 nfs4_mi_kstat_inc_delay(mi); 2001 if (ep->error != 0) 2002 goto bailout; 2003 goto top; 2004 case NFS4ERR_FHEXPIRED: 2005 /* recover filehandle and retry */ 2006 abort = nfs4_start_recovery(ep, 2007 mi, vp, NULL, NULL, NULL, OP_OPEN, NULL, NULL, NULL); 2008 nfs4args_copen_free(open_args); 2009 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2010 nfs4_end_open_seqid_sync(oop); 2011 open_owner_rele(oop); 2012 oop = NULL; 2013 if (abort == FALSE) 2014 goto top; 2015 failed_msg = "Couldn't reopen: recovery aborted"; 2016 goto kill_file; 2017 case NFS4ERR_RESOURCE: 2018 case NFS4ERR_STALE_CLIENTID: 2019 case NFS4ERR_WRONGSEC: 2020 case NFS4ERR_EXPIRED: 2021 /* 2022 * Do not mark the file dead and let the calling 2023 * function initiate recovery. 2024 */ 2025 nfs4args_copen_free(open_args); 2026 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2027 nfs4_end_open_seqid_sync(oop); 2028 open_owner_rele(oop); 2029 oop = NULL; 2030 goto bailout; 2031 case NFS4ERR_ACCESS: 2032 if (cred_otw != cr) { 2033 crfree(cred_otw); 2034 cred_otw = cr; 2035 crhold(cred_otw); 2036 nfs4args_copen_free(open_args); 2037 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2038 nfs4_end_open_seqid_sync(oop); 2039 open_owner_rele(oop); 2040 oop = NULL; 2041 goto top; 2042 } 2043 /* fall through */ 2044 default: 2045 NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE, 2046 "nfs4_reopen: r_server 0x%p, mi_curr_serv 0x%p, rnode %s", 2047 (void*)VTOR4(vp)->r_server, (void*)mi->mi_curr_serv, 2048 rnode4info(VTOR4(vp)))); 2049 failed_msg = "Couldn't reopen: NFSv4 error"; 2050 nfs4args_copen_free(open_args); 2051 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2052 goto kill_file; 2053 } 2054 2055 resop = &res.array[1]; /* open res */ 2056 op_res = &resop->nfs_resop4_u.opopen; 2057 2058 garp = &res.array[3].nfs_resop4_u.opgetattr.ga_res; 2059 2060 /* 2061 * Check if the path we reopened really is the same 2062 * file. We could end up in a situation where the file 2063 * was removed and a new file created with the same name. 2064 */ 2065 resop = &res.array[2]; 2066 gf_res = &resop->nfs_resop4_u.opgetfh; 2067 (void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_READER, 0); 2068 fh_different = (nfs4cmpfh(&rp->r_fh->sfh_fh, &gf_res->object) != 0); 2069 if (fh_different) { 2070 if (mi->mi_fh_expire_type == FH4_PERSISTENT || 2071 mi->mi_fh_expire_type & FH4_NOEXPIRE_WITH_OPEN) { 2072 /* Oops, we don't have the same file */ 2073 if (mi->mi_fh_expire_type == FH4_PERSISTENT) 2074 failed_msg = "Couldn't reopen: Persistent " 2075 "file handle changed"; 2076 else 2077 failed_msg = "Couldn't reopen: Volatile " 2078 "(no expire on open) file handle changed"; 2079 2080 nfs4args_copen_free(open_args); 2081 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2082 nfs_rw_exit(&mi->mi_fh_lock); 2083 goto kill_file; 2084 2085 } else { 2086 /* 2087 * We have volatile file handles that don't compare. 2088 * If the fids are the same then we assume that the 2089 * file handle expired but the rnode still refers to 2090 * the same file object. 2091 * 2092 * First check that we have fids or not. 2093 * If we don't we have a dumb server so we will 2094 * just assume every thing is ok for now. 2095 */ 2096 if (!ep->error && garp->n4g_va.va_mask & AT_NODEID && 2097 rp->r_attr.va_mask & AT_NODEID && 2098 rp->r_attr.va_nodeid != garp->n4g_va.va_nodeid) { 2099 /* 2100 * We have fids, but they don't 2101 * compare. So kill the file. 2102 */ 2103 failed_msg = 2104 "Couldn't reopen: file handle changed" 2105 " due to mismatched fids"; 2106 nfs4args_copen_free(open_args); 2107 (void) xdr_free(xdr_COMPOUND4res_clnt, 2108 (caddr_t)&res); 2109 nfs_rw_exit(&mi->mi_fh_lock); 2110 goto kill_file; 2111 } else { 2112 /* 2113 * We have volatile file handles that refers 2114 * to the same file (at least they have the 2115 * same fid) or we don't have fids so we 2116 * can't tell. :(. We'll be a kind and accepting 2117 * client so we'll update the rnode's file 2118 * handle with the otw handle. 2119 * 2120 * We need to drop mi->mi_fh_lock since 2121 * sh4_update acquires it. Since there is 2122 * only one recovery thread there is no 2123 * race. 2124 */ 2125 nfs_rw_exit(&mi->mi_fh_lock); 2126 sfh4_update(rp->r_fh, &gf_res->object); 2127 } 2128 } 2129 } else { 2130 nfs_rw_exit(&mi->mi_fh_lock); 2131 } 2132 2133 ASSERT(nfs4_consistent_type(vp)); 2134 2135 /* 2136 * If the server wanted an OPEN_CONFIRM but that fails, just start 2137 * over. Presumably if there is a persistent error it will show up 2138 * when we resend the OPEN. 2139 */ 2140 if (op_res->rflags & OPEN4_RESULT_CONFIRM) { 2141 bool_t retry_open = FALSE; 2142 2143 nfs4open_confirm(vp, &seqid, &op_res->stateid, 2144 cred_otw, is_recov, &retry_open, 2145 oop, FALSE, ep, NULL); 2146 if (ep->error || ep->stat) { 2147 nfs4args_copen_free(open_args); 2148 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2149 nfs4_end_open_seqid_sync(oop); 2150 open_owner_rele(oop); 2151 oop = NULL; 2152 goto top; 2153 } 2154 } 2155 2156 mutex_enter(&osp->os_sync_lock); 2157 osp->open_stateid = op_res->stateid; 2158 osp->os_delegation = 0; 2159 /* 2160 * Need to reset this bitfield for the possible case where we were 2161 * going to OTW CLOSE the file, got a non-recoverable error, and before 2162 * we could retry the CLOSE, OPENed the file again. 2163 */ 2164 ASSERT(osp->os_open_owner->oo_seqid_inuse); 2165 osp->os_final_close = 0; 2166 osp->os_force_close = 0; 2167 if (claim == CLAIM_DELEGATE_CUR || claim == CLAIM_PREVIOUS) 2168 osp->os_dc_openacc = open_args->share_access; 2169 mutex_exit(&osp->os_sync_lock); 2170 2171 nfs4_end_open_seqid_sync(oop); 2172 2173 /* accept delegation, if any */ 2174 nfs4_delegation_accept(rp, claim, op_res, garp, cred_otw); 2175 2176 nfs4args_copen_free(open_args); 2177 2178 nfs4_attr_cache(vp, garp, t, cr, TRUE, NULL); 2179 2180 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2181 2182 ASSERT(nfs4_consistent_type(vp)); 2183 2184 open_owner_rele(oop); 2185 crfree(cr); 2186 crfree(cred_otw); 2187 return; 2188 2189 kill_file: 2190 nfs4_fail_recov(vp, failed_msg, ep->error, ep->stat); 2191 failed_reopen: 2192 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE, 2193 "nfs4_reopen: setting os_failed_reopen for osp %p, cr %p, rp %s", 2194 (void *)osp, (void *)cr, rnode4info(rp))); 2195 mutex_enter(&osp->os_sync_lock); 2196 osp->os_failed_reopen = 1; 2197 mutex_exit(&osp->os_sync_lock); 2198 bailout: 2199 if (oop != NULL) { 2200 nfs4_end_open_seqid_sync(oop); 2201 open_owner_rele(oop); 2202 } 2203 if (cr != NULL) 2204 crfree(cr); 2205 if (cred_otw != NULL) 2206 crfree(cred_otw); 2207 } 2208 2209 /* for . and .. OPENs */ 2210 /* ARGSUSED */ 2211 static int 2212 nfs4_open_non_reg_file(vnode_t **vpp, int flag, cred_t *cr) 2213 { 2214 rnode4_t *rp; 2215 nfs4_ga_res_t gar; 2216 2217 ASSERT(nfs_zone() == VTOMI4(*vpp)->mi_zone); 2218 2219 /* 2220 * If close-to-open consistency checking is turned off or 2221 * if there is no cached data, we can avoid 2222 * the over the wire getattr. Otherwise, force a 2223 * call to the server to get fresh attributes and to 2224 * check caches. This is required for close-to-open 2225 * consistency. 2226 */ 2227 rp = VTOR4(*vpp); 2228 if (VTOMI4(*vpp)->mi_flags & MI4_NOCTO || 2229 (rp->r_dir == NULL && !nfs4_has_pages(*vpp))) 2230 return (0); 2231 2232 gar.n4g_va.va_mask = AT_ALL; 2233 return (nfs4_getattr_otw(*vpp, &gar, cr, 0)); 2234 } 2235 2236 /* 2237 * CLOSE a file 2238 */ 2239 /* ARGSUSED */ 2240 static int 2241 nfs4_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 2242 caller_context_t *ct) 2243 { 2244 rnode4_t *rp; 2245 int error = 0; 2246 int r_error = 0; 2247 int n4error = 0; 2248 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 2249 2250 /* 2251 * Remove client state for this (lockowner, file) pair. 2252 * Issue otw v4 call to have the server do the same. 2253 */ 2254 2255 rp = VTOR4(vp); 2256 2257 /* 2258 * zone_enter(2) prevents processes from changing zones with NFS files 2259 * open; if we happen to get here from the wrong zone we can't do 2260 * anything over the wire. 2261 */ 2262 if (VTOMI4(vp)->mi_zone != nfs_zone()) { 2263 /* 2264 * We could attempt to clean up locks, except we're sure 2265 * that the current process didn't acquire any locks on 2266 * the file: any attempt to lock a file belong to another zone 2267 * will fail, and one can't lock an NFS file and then change 2268 * zones, as that fails too. 2269 * 2270 * Returning an error here is the sane thing to do. A 2271 * subsequent call to VN_RELE() which translates to a 2272 * nfs4_inactive() will clean up state: if the zone of the 2273 * vnode's origin is still alive and kicking, the inactive 2274 * thread will handle the request (from the correct zone), and 2275 * everything (minus the OTW close call) should be OK. If the 2276 * zone is going away nfs4_async_inactive() will throw away 2277 * delegations, open streams and cached pages inline. 2278 */ 2279 return (EIO); 2280 } 2281 2282 /* 2283 * If we are using local locking for this filesystem, then 2284 * release all of the SYSV style record locks. Otherwise, 2285 * we are doing network locking and we need to release all 2286 * of the network locks. All of the locks held by this 2287 * process on this file are released no matter what the 2288 * incoming reference count is. 2289 */ 2290 if (VTOMI4(vp)->mi_flags & MI4_LLOCK) { 2291 cleanlocks(vp, ttoproc(curthread)->p_pid, 0); 2292 cleanshares(vp, ttoproc(curthread)->p_pid); 2293 } else 2294 e.error = nfs4_lockrelease(vp, flag, offset, cr); 2295 2296 if (e.error) { 2297 struct lm_sysid *lmsid; 2298 lmsid = nfs4_find_sysid(VTOMI4(vp)); 2299 if (lmsid == NULL) { 2300 DTRACE_PROBE2(unknown__sysid, int, e.error, 2301 vnode_t *, vp); 2302 } else { 2303 cleanlocks(vp, ttoproc(curthread)->p_pid, 2304 (lm_sysidt(lmsid) | LM_SYSID_CLIENT)); 2305 } 2306 return (e.error); 2307 } 2308 2309 if (count > 1) 2310 return (0); 2311 2312 /* 2313 * If the file has been `unlinked', then purge the 2314 * DNLC so that this vnode will get reycled quicker 2315 * and the .nfs* file on the server will get removed. 2316 */ 2317 if (rp->r_unldvp != NULL) 2318 dnlc_purge_vp(vp); 2319 2320 /* 2321 * If the file was open for write and there are pages, 2322 * do a synchronous flush and commit of all of the 2323 * dirty and uncommitted pages. 2324 */ 2325 ASSERT(!e.error); 2326 if ((flag & FWRITE) && nfs4_has_pages(vp)) 2327 error = nfs4_putpage_commit(vp, 0, 0, cr); 2328 2329 mutex_enter(&rp->r_statelock); 2330 r_error = rp->r_error; 2331 rp->r_error = 0; 2332 mutex_exit(&rp->r_statelock); 2333 2334 /* 2335 * If this file type is one for which no explicit 'open' was 2336 * done, then bail now (ie. no need for protocol 'close'). If 2337 * there was an error w/the vm subsystem, return _that_ error, 2338 * otherwise, return any errors that may've been reported via 2339 * the rnode. 2340 */ 2341 if (vp->v_type != VREG) 2342 return (error ? error : r_error); 2343 2344 /* 2345 * The sync putpage commit may have failed above, but since 2346 * we're working w/a regular file, we need to do the protocol 2347 * 'close' (nfs4close_one will figure out if an otw close is 2348 * needed or not). Report any errors _after_ doing the protocol 2349 * 'close'. 2350 */ 2351 nfs4close_one(vp, NULL, cr, flag, NULL, &e, CLOSE_NORM, 0, 0, 0); 2352 n4error = e.error ? e.error : geterrno4(e.stat); 2353 2354 /* 2355 * Error reporting prio (Hi -> Lo) 2356 * 2357 * i) nfs4_putpage_commit (error) 2358 * ii) rnode's (r_error) 2359 * iii) nfs4close_one (n4error) 2360 */ 2361 return (error ? error : (r_error ? r_error : n4error)); 2362 } 2363 2364 /* 2365 * Initialize *lost_rqstp. 2366 */ 2367 2368 static void 2369 nfs4close_save_lost_rqst(int error, nfs4_lost_rqst_t *lost_rqstp, 2370 nfs4_open_owner_t *oop, nfs4_open_stream_t *osp, cred_t *cr, 2371 vnode_t *vp) 2372 { 2373 if (error != ETIMEDOUT && error != EINTR && 2374 !NFS4_FRC_UNMT_ERR(error, vp->v_vfsp)) { 2375 lost_rqstp->lr_op = 0; 2376 return; 2377 } 2378 2379 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 2380 "nfs4close_save_lost_rqst: error %d", error)); 2381 2382 lost_rqstp->lr_op = OP_CLOSE; 2383 /* 2384 * The vp is held and rele'd via the recovery code. 2385 * See nfs4_save_lost_rqst. 2386 */ 2387 lost_rqstp->lr_vp = vp; 2388 lost_rqstp->lr_dvp = NULL; 2389 lost_rqstp->lr_oop = oop; 2390 lost_rqstp->lr_osp = osp; 2391 ASSERT(osp != NULL); 2392 ASSERT(mutex_owned(&osp->os_sync_lock)); 2393 osp->os_pending_close = 1; 2394 lost_rqstp->lr_lop = NULL; 2395 lost_rqstp->lr_cr = cr; 2396 lost_rqstp->lr_flk = NULL; 2397 lost_rqstp->lr_putfirst = FALSE; 2398 } 2399 2400 /* 2401 * Assumes you already have the open seqid sync grabbed as well as the 2402 * 'os_sync_lock'. Note: this will release the open seqid sync and 2403 * 'os_sync_lock' if client recovery starts. Calling functions have to 2404 * be prepared to handle this. 2405 * 2406 * 'recov' is returned as 1 if the CLOSE operation detected client recovery 2407 * was needed and was started, and that the calling function should retry 2408 * this function; otherwise it is returned as 0. 2409 * 2410 * Errors are returned via the nfs4_error_t parameter. 2411 */ 2412 static void 2413 nfs4close_otw(rnode4_t *rp, cred_t *cred_otw, nfs4_open_owner_t *oop, 2414 nfs4_open_stream_t *osp, int *recov, int *did_start_seqid_syncp, 2415 nfs4_close_type_t close_type, nfs4_error_t *ep, int *have_sync_lockp) 2416 { 2417 COMPOUND4args_clnt args; 2418 COMPOUND4res_clnt res; 2419 CLOSE4args *close_args; 2420 nfs_resop4 *resop; 2421 nfs_argop4 argop[3]; 2422 int doqueue = 1; 2423 mntinfo4_t *mi; 2424 seqid4 seqid; 2425 vnode_t *vp; 2426 bool_t needrecov = FALSE; 2427 nfs4_lost_rqst_t lost_rqst; 2428 hrtime_t t; 2429 2430 ASSERT(nfs_zone() == VTOMI4(RTOV4(rp))->mi_zone); 2431 2432 ASSERT(MUTEX_HELD(&osp->os_sync_lock)); 2433 2434 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4close_otw")); 2435 2436 /* Only set this to 1 if recovery is started */ 2437 *recov = 0; 2438 2439 /* do the OTW call to close the file */ 2440 2441 if (close_type == CLOSE_RESEND) 2442 args.ctag = TAG_CLOSE_LOST; 2443 else if (close_type == CLOSE_AFTER_RESEND) 2444 args.ctag = TAG_CLOSE_UNDO; 2445 else 2446 args.ctag = TAG_CLOSE; 2447 2448 args.array_len = 3; 2449 args.array = argop; 2450 2451 vp = RTOV4(rp); 2452 2453 mi = VTOMI4(vp); 2454 2455 /* putfh target fh */ 2456 argop[0].argop = OP_CPUTFH; 2457 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 2458 2459 argop[1].argop = OP_GETATTR; 2460 argop[1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 2461 argop[1].nfs_argop4_u.opgetattr.mi = mi; 2462 2463 argop[2].argop = OP_CLOSE; 2464 close_args = &argop[2].nfs_argop4_u.opclose; 2465 2466 seqid = nfs4_get_open_seqid(oop) + 1; 2467 2468 close_args->seqid = seqid; 2469 close_args->open_stateid = osp->open_stateid; 2470 2471 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 2472 "nfs4close_otw: %s call, rp %s", needrecov ? "recov" : "first", 2473 rnode4info(rp))); 2474 2475 t = gethrtime(); 2476 2477 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, ep); 2478 2479 if (!ep->error && nfs4_need_to_bump_seqid(&res)) { 2480 nfs4_set_open_seqid(seqid, oop, args.ctag); 2481 } 2482 2483 needrecov = nfs4_needs_recovery(ep, TRUE, mi->mi_vfsp); 2484 if (ep->error && !needrecov) { 2485 /* 2486 * if there was an error and no recovery is to be done 2487 * then then set up the file to flush its cache if 2488 * needed for the next caller. 2489 */ 2490 mutex_enter(&rp->r_statelock); 2491 PURGE_ATTRCACHE4_LOCKED(rp); 2492 rp->r_flags &= ~R4WRITEMODIFIED; 2493 mutex_exit(&rp->r_statelock); 2494 return; 2495 } 2496 2497 if (needrecov) { 2498 bool_t abort; 2499 nfs4_bseqid_entry_t *bsep = NULL; 2500 2501 if (close_type != CLOSE_RESEND) 2502 nfs4close_save_lost_rqst(ep->error, &lost_rqst, oop, 2503 osp, cred_otw, vp); 2504 2505 if (!ep->error && res.status == NFS4ERR_BAD_SEQID) 2506 bsep = nfs4_create_bseqid_entry(oop, NULL, vp, 2507 0, args.ctag, close_args->seqid); 2508 2509 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 2510 "nfs4close_otw: initiating recovery. error %d " 2511 "res.status %d", ep->error, res.status)); 2512 2513 /* 2514 * Drop the 'os_sync_lock' here so we don't hit 2515 * a potential recursive mutex_enter via an 2516 * 'open_stream_hold()'. 2517 */ 2518 mutex_exit(&osp->os_sync_lock); 2519 *have_sync_lockp = 0; 2520 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, NULL, 2521 (close_type != CLOSE_RESEND && 2522 lost_rqst.lr_op == OP_CLOSE) ? &lost_rqst : NULL, 2523 OP_CLOSE, bsep, NULL, NULL); 2524 2525 /* drop open seq sync, and let the calling function regrab it */ 2526 nfs4_end_open_seqid_sync(oop); 2527 *did_start_seqid_syncp = 0; 2528 2529 if (bsep) 2530 kmem_free(bsep, sizeof (*bsep)); 2531 /* 2532 * For signals, the caller wants to quit, so don't say to 2533 * retry. For forced unmount, if it's a user thread, it 2534 * wants to quit. If it's a recovery thread, the retry 2535 * will happen higher-up on the call stack. Either way, 2536 * don't say to retry. 2537 */ 2538 if (abort == FALSE && ep->error != EINTR && 2539 !NFS4_FRC_UNMT_ERR(ep->error, mi->mi_vfsp) && 2540 close_type != CLOSE_RESEND && 2541 close_type != CLOSE_AFTER_RESEND) 2542 *recov = 1; 2543 else 2544 *recov = 0; 2545 2546 if (!ep->error) 2547 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2548 return; 2549 } 2550 2551 if (res.status) { 2552 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2553 return; 2554 } 2555 2556 mutex_enter(&rp->r_statev4_lock); 2557 rp->created_v4 = 0; 2558 mutex_exit(&rp->r_statev4_lock); 2559 2560 resop = &res.array[2]; 2561 osp->open_stateid = resop->nfs_resop4_u.opclose.open_stateid; 2562 osp->os_valid = 0; 2563 2564 /* 2565 * This removes the reference obtained at OPEN; ie, when the 2566 * open stream structure was created. 2567 * 2568 * We don't have to worry about calling 'open_stream_rele' 2569 * since we our currently holding a reference to the open 2570 * stream which means the count cannot go to 0 with this 2571 * decrement. 2572 */ 2573 ASSERT(osp->os_ref_count >= 2); 2574 osp->os_ref_count--; 2575 2576 if (!ep->error) 2577 nfs4_attr_cache(vp, 2578 &res.array[1].nfs_resop4_u.opgetattr.ga_res, 2579 t, cred_otw, TRUE, NULL); 2580 2581 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4close_otw:" 2582 " returning %d", ep->error)); 2583 2584 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2585 } 2586 2587 /* ARGSUSED */ 2588 static int 2589 nfs4_read(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 2590 caller_context_t *ct) 2591 { 2592 rnode4_t *rp; 2593 u_offset_t off; 2594 offset_t diff; 2595 uint_t on; 2596 uint_t n; 2597 caddr_t base; 2598 uint_t flags; 2599 int error; 2600 mntinfo4_t *mi; 2601 2602 rp = VTOR4(vp); 2603 2604 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 2605 2606 if (IS_SHADOW(vp, rp)) 2607 vp = RTOV4(rp); 2608 2609 if (vp->v_type != VREG) 2610 return (EISDIR); 2611 2612 mi = VTOMI4(vp); 2613 2614 if (nfs_zone() != mi->mi_zone) 2615 return (EIO); 2616 2617 if (uiop->uio_resid == 0) 2618 return (0); 2619 2620 if (uiop->uio_loffset < 0 || uiop->uio_loffset + uiop->uio_resid < 0) 2621 return (EINVAL); 2622 2623 mutex_enter(&rp->r_statelock); 2624 if (rp->r_flags & R4RECOVERRP) 2625 error = (rp->r_error ? rp->r_error : EIO); 2626 else 2627 error = 0; 2628 mutex_exit(&rp->r_statelock); 2629 if (error) 2630 return (error); 2631 2632 /* 2633 * Bypass VM if caching has been disabled (e.g., locking) or if 2634 * using client-side direct I/O and the file is not mmap'd and 2635 * there are no cached pages. 2636 */ 2637 if ((vp->v_flag & VNOCACHE) || 2638 (((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) && 2639 rp->r_mapcnt == 0 && rp->r_inmap == 0 && !nfs4_has_pages(vp))) { 2640 size_t resid = 0; 2641 2642 return (nfs4read(vp, NULL, uiop->uio_loffset, 2643 uiop->uio_resid, &resid, cr, FALSE, uiop)); 2644 } 2645 2646 error = 0; 2647 2648 do { 2649 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 2650 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 2651 n = MIN(MAXBSIZE - on, uiop->uio_resid); 2652 2653 if (error = nfs4_validate_caches(vp, cr)) 2654 break; 2655 2656 mutex_enter(&rp->r_statelock); 2657 while (rp->r_flags & R4INCACHEPURGE) { 2658 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) { 2659 mutex_exit(&rp->r_statelock); 2660 return (EINTR); 2661 } 2662 } 2663 diff = rp->r_size - uiop->uio_loffset; 2664 mutex_exit(&rp->r_statelock); 2665 if (diff <= 0) 2666 break; 2667 if (diff < n) 2668 n = (uint_t)diff; 2669 2670 if (vpm_enable) { 2671 /* 2672 * Copy data. 2673 */ 2674 error = vpm_data_copy(vp, off + on, n, uiop, 2675 1, NULL, 0, S_READ); 2676 } else { 2677 base = segmap_getmapflt(segkmap, vp, off + on, n, 1, 2678 S_READ); 2679 2680 error = uiomove(base + on, n, UIO_READ, uiop); 2681 } 2682 2683 if (!error) { 2684 /* 2685 * If read a whole block or read to eof, 2686 * won't need this buffer again soon. 2687 */ 2688 mutex_enter(&rp->r_statelock); 2689 if (n + on == MAXBSIZE || 2690 uiop->uio_loffset == rp->r_size) 2691 flags = SM_DONTNEED; 2692 else 2693 flags = 0; 2694 mutex_exit(&rp->r_statelock); 2695 if (vpm_enable) { 2696 error = vpm_sync_pages(vp, off, n, flags); 2697 } else { 2698 error = segmap_release(segkmap, base, flags); 2699 } 2700 } else { 2701 if (vpm_enable) { 2702 (void) vpm_sync_pages(vp, off, n, 0); 2703 } else { 2704 (void) segmap_release(segkmap, base, 0); 2705 } 2706 } 2707 } while (!error && uiop->uio_resid > 0); 2708 2709 return (error); 2710 } 2711 2712 /* ARGSUSED */ 2713 static int 2714 nfs4_write(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 2715 caller_context_t *ct) 2716 { 2717 rlim64_t limit = uiop->uio_llimit; 2718 rnode4_t *rp; 2719 u_offset_t off; 2720 caddr_t base; 2721 uint_t flags; 2722 int remainder; 2723 size_t n; 2724 int on; 2725 int error; 2726 int resid; 2727 u_offset_t offset; 2728 mntinfo4_t *mi; 2729 uint_t bsize; 2730 2731 rp = VTOR4(vp); 2732 2733 if (IS_SHADOW(vp, rp)) 2734 vp = RTOV4(rp); 2735 2736 if (vp->v_type != VREG) 2737 return (EISDIR); 2738 2739 mi = VTOMI4(vp); 2740 2741 if (nfs_zone() != mi->mi_zone) 2742 return (EIO); 2743 2744 if (uiop->uio_resid == 0) 2745 return (0); 2746 2747 mutex_enter(&rp->r_statelock); 2748 if (rp->r_flags & R4RECOVERRP) 2749 error = (rp->r_error ? rp->r_error : EIO); 2750 else 2751 error = 0; 2752 mutex_exit(&rp->r_statelock); 2753 if (error) 2754 return (error); 2755 2756 if (ioflag & FAPPEND) { 2757 struct vattr va; 2758 2759 /* 2760 * Must serialize if appending. 2761 */ 2762 if (nfs_rw_lock_held(&rp->r_rwlock, RW_READER)) { 2763 nfs_rw_exit(&rp->r_rwlock); 2764 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, 2765 INTR4(vp))) 2766 return (EINTR); 2767 } 2768 2769 va.va_mask = AT_SIZE; 2770 error = nfs4getattr(vp, &va, cr); 2771 if (error) 2772 return (error); 2773 uiop->uio_loffset = va.va_size; 2774 } 2775 2776 offset = uiop->uio_loffset + uiop->uio_resid; 2777 2778 if (uiop->uio_loffset < (offset_t)0 || offset < 0) 2779 return (EINVAL); 2780 2781 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 2782 limit = MAXOFFSET_T; 2783 2784 /* 2785 * Check to make sure that the process will not exceed 2786 * its limit on file size. It is okay to write up to 2787 * the limit, but not beyond. Thus, the write which 2788 * reaches the limit will be short and the next write 2789 * will return an error. 2790 */ 2791 remainder = 0; 2792 if (offset > uiop->uio_llimit) { 2793 remainder = offset - uiop->uio_llimit; 2794 uiop->uio_resid = uiop->uio_llimit - uiop->uio_loffset; 2795 if (uiop->uio_resid <= 0) { 2796 proc_t *p = ttoproc(curthread); 2797 2798 uiop->uio_resid += remainder; 2799 mutex_enter(&p->p_lock); 2800 (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE], 2801 p->p_rctls, p, RCA_UNSAFE_SIGINFO); 2802 mutex_exit(&p->p_lock); 2803 return (EFBIG); 2804 } 2805 } 2806 2807 /* update the change attribute, if we have a write delegation */ 2808 2809 mutex_enter(&rp->r_statev4_lock); 2810 if (rp->r_deleg_type == OPEN_DELEGATE_WRITE) 2811 rp->r_deleg_change++; 2812 2813 mutex_exit(&rp->r_statev4_lock); 2814 2815 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR4(vp))) 2816 return (EINTR); 2817 2818 /* 2819 * Bypass VM if caching has been disabled (e.g., locking) or if 2820 * using client-side direct I/O and the file is not mmap'd and 2821 * there are no cached pages. 2822 */ 2823 if ((vp->v_flag & VNOCACHE) || 2824 (((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) && 2825 rp->r_mapcnt == 0 && rp->r_inmap == 0 && !nfs4_has_pages(vp))) { 2826 size_t bufsize; 2827 int count; 2828 u_offset_t org_offset; 2829 stable_how4 stab_comm; 2830 nfs4_fwrite: 2831 if (rp->r_flags & R4STALE) { 2832 resid = uiop->uio_resid; 2833 offset = uiop->uio_loffset; 2834 error = rp->r_error; 2835 /* 2836 * A close may have cleared r_error, if so, 2837 * propagate ESTALE error return properly 2838 */ 2839 if (error == 0) 2840 error = ESTALE; 2841 goto bottom; 2842 } 2843 2844 bufsize = MIN(uiop->uio_resid, mi->mi_stsize); 2845 base = kmem_alloc(bufsize, KM_SLEEP); 2846 do { 2847 if (ioflag & FDSYNC) 2848 stab_comm = DATA_SYNC4; 2849 else 2850 stab_comm = FILE_SYNC4; 2851 resid = uiop->uio_resid; 2852 offset = uiop->uio_loffset; 2853 count = MIN(uiop->uio_resid, bufsize); 2854 org_offset = uiop->uio_loffset; 2855 error = uiomove(base, count, UIO_WRITE, uiop); 2856 if (!error) { 2857 error = nfs4write(vp, base, org_offset, 2858 count, cr, &stab_comm); 2859 if (!error) { 2860 mutex_enter(&rp->r_statelock); 2861 if (rp->r_size < uiop->uio_loffset) 2862 rp->r_size = uiop->uio_loffset; 2863 mutex_exit(&rp->r_statelock); 2864 } 2865 } 2866 } while (!error && uiop->uio_resid > 0); 2867 kmem_free(base, bufsize); 2868 goto bottom; 2869 } 2870 2871 bsize = vp->v_vfsp->vfs_bsize; 2872 2873 do { 2874 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 2875 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 2876 n = MIN(MAXBSIZE - on, uiop->uio_resid); 2877 2878 resid = uiop->uio_resid; 2879 offset = uiop->uio_loffset; 2880 2881 if (rp->r_flags & R4STALE) { 2882 error = rp->r_error; 2883 /* 2884 * A close may have cleared r_error, if so, 2885 * propagate ESTALE error return properly 2886 */ 2887 if (error == 0) 2888 error = ESTALE; 2889 break; 2890 } 2891 2892 /* 2893 * Don't create dirty pages faster than they 2894 * can be cleaned so that the system doesn't 2895 * get imbalanced. If the async queue is 2896 * maxed out, then wait for it to drain before 2897 * creating more dirty pages. Also, wait for 2898 * any threads doing pagewalks in the vop_getattr 2899 * entry points so that they don't block for 2900 * long periods. 2901 */ 2902 mutex_enter(&rp->r_statelock); 2903 while ((mi->mi_max_threads != 0 && 2904 rp->r_awcount > 2 * mi->mi_max_threads) || 2905 rp->r_gcount > 0) { 2906 if (INTR4(vp)) { 2907 klwp_t *lwp = ttolwp(curthread); 2908 2909 if (lwp != NULL) 2910 lwp->lwp_nostop++; 2911 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) { 2912 mutex_exit(&rp->r_statelock); 2913 if (lwp != NULL) 2914 lwp->lwp_nostop--; 2915 error = EINTR; 2916 goto bottom; 2917 } 2918 if (lwp != NULL) 2919 lwp->lwp_nostop--; 2920 } else 2921 cv_wait(&rp->r_cv, &rp->r_statelock); 2922 } 2923 mutex_exit(&rp->r_statelock); 2924 2925 /* 2926 * Touch the page and fault it in if it is not in core 2927 * before segmap_getmapflt or vpm_data_copy can lock it. 2928 * This is to avoid the deadlock if the buffer is mapped 2929 * to the same file through mmap which we want to write. 2930 */ 2931 uio_prefaultpages((long)n, uiop); 2932 2933 if (vpm_enable) { 2934 /* 2935 * It will use kpm mappings, so no need to 2936 * pass an address. 2937 */ 2938 error = writerp4(rp, NULL, n, uiop, 0); 2939 } else { 2940 if (segmap_kpm) { 2941 int pon = uiop->uio_loffset & PAGEOFFSET; 2942 size_t pn = MIN(PAGESIZE - pon, 2943 uiop->uio_resid); 2944 int pagecreate; 2945 2946 mutex_enter(&rp->r_statelock); 2947 pagecreate = (pon == 0) && (pn == PAGESIZE || 2948 uiop->uio_loffset + pn >= rp->r_size); 2949 mutex_exit(&rp->r_statelock); 2950 2951 base = segmap_getmapflt(segkmap, vp, off + on, 2952 pn, !pagecreate, S_WRITE); 2953 2954 error = writerp4(rp, base + pon, n, uiop, 2955 pagecreate); 2956 2957 } else { 2958 base = segmap_getmapflt(segkmap, vp, off + on, 2959 n, 0, S_READ); 2960 error = writerp4(rp, base + on, n, uiop, 0); 2961 } 2962 } 2963 2964 if (!error) { 2965 if (mi->mi_flags & MI4_NOAC) 2966 flags = SM_WRITE; 2967 else if ((uiop->uio_loffset % bsize) == 0 || 2968 IS_SWAPVP(vp)) { 2969 /* 2970 * Have written a whole block. 2971 * Start an asynchronous write 2972 * and mark the buffer to 2973 * indicate that it won't be 2974 * needed again soon. 2975 */ 2976 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED; 2977 } else 2978 flags = 0; 2979 if ((ioflag & (FSYNC|FDSYNC)) || 2980 (rp->r_flags & R4OUTOFSPACE)) { 2981 flags &= ~SM_ASYNC; 2982 flags |= SM_WRITE; 2983 } 2984 if (vpm_enable) { 2985 error = vpm_sync_pages(vp, off, n, flags); 2986 } else { 2987 error = segmap_release(segkmap, base, flags); 2988 } 2989 } else { 2990 if (vpm_enable) { 2991 (void) vpm_sync_pages(vp, off, n, 0); 2992 } else { 2993 (void) segmap_release(segkmap, base, 0); 2994 } 2995 /* 2996 * In the event that we got an access error while 2997 * faulting in a page for a write-only file just 2998 * force a write. 2999 */ 3000 if (error == EACCES) 3001 goto nfs4_fwrite; 3002 } 3003 } while (!error && uiop->uio_resid > 0); 3004 3005 bottom: 3006 if (error) { 3007 uiop->uio_resid = resid + remainder; 3008 uiop->uio_loffset = offset; 3009 } else { 3010 uiop->uio_resid += remainder; 3011 3012 mutex_enter(&rp->r_statev4_lock); 3013 if (rp->r_deleg_type == OPEN_DELEGATE_WRITE) { 3014 gethrestime(&rp->r_attr.va_mtime); 3015 rp->r_attr.va_ctime = rp->r_attr.va_mtime; 3016 } 3017 mutex_exit(&rp->r_statev4_lock); 3018 } 3019 3020 nfs_rw_exit(&rp->r_lkserlock); 3021 3022 return (error); 3023 } 3024 3025 /* 3026 * Flags are composed of {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED} 3027 */ 3028 static int 3029 nfs4_rdwrlbn(vnode_t *vp, page_t *pp, u_offset_t off, size_t len, 3030 int flags, cred_t *cr) 3031 { 3032 struct buf *bp; 3033 int error; 3034 page_t *savepp; 3035 uchar_t fsdata; 3036 stable_how4 stab_comm; 3037 3038 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 3039 bp = pageio_setup(pp, len, vp, flags); 3040 ASSERT(bp != NULL); 3041 3042 /* 3043 * pageio_setup should have set b_addr to 0. This 3044 * is correct since we want to do I/O on a page 3045 * boundary. bp_mapin will use this addr to calculate 3046 * an offset, and then set b_addr to the kernel virtual 3047 * address it allocated for us. 3048 */ 3049 ASSERT(bp->b_un.b_addr == 0); 3050 3051 bp->b_edev = 0; 3052 bp->b_dev = 0; 3053 bp->b_lblkno = lbtodb(off); 3054 bp->b_file = vp; 3055 bp->b_offset = (offset_t)off; 3056 bp_mapin(bp); 3057 3058 if ((flags & (B_WRITE|B_ASYNC)) == (B_WRITE|B_ASYNC) && 3059 freemem > desfree) 3060 stab_comm = UNSTABLE4; 3061 else 3062 stab_comm = FILE_SYNC4; 3063 3064 error = nfs4_bio(bp, &stab_comm, cr, FALSE); 3065 3066 bp_mapout(bp); 3067 pageio_done(bp); 3068 3069 if (stab_comm == UNSTABLE4) 3070 fsdata = C_DELAYCOMMIT; 3071 else 3072 fsdata = C_NOCOMMIT; 3073 3074 savepp = pp; 3075 do { 3076 pp->p_fsdata = fsdata; 3077 } while ((pp = pp->p_next) != savepp); 3078 3079 return (error); 3080 } 3081 3082 /* 3083 */ 3084 static int 3085 nfs4rdwr_check_osid(vnode_t *vp, nfs4_error_t *ep, cred_t *cr) 3086 { 3087 nfs4_open_owner_t *oop; 3088 nfs4_open_stream_t *osp; 3089 rnode4_t *rp = VTOR4(vp); 3090 mntinfo4_t *mi = VTOMI4(vp); 3091 int reopen_needed; 3092 3093 ASSERT(nfs_zone() == mi->mi_zone); 3094 3095 3096 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 3097 if (!oop) 3098 return (EIO); 3099 3100 /* returns with 'os_sync_lock' held */ 3101 osp = find_open_stream(oop, rp); 3102 if (!osp) { 3103 open_owner_rele(oop); 3104 return (EIO); 3105 } 3106 3107 if (osp->os_failed_reopen) { 3108 mutex_exit(&osp->os_sync_lock); 3109 open_stream_rele(osp, rp); 3110 open_owner_rele(oop); 3111 return (EIO); 3112 } 3113 3114 /* 3115 * Determine whether a reopen is needed. If this 3116 * is a delegation open stream, then the os_delegation bit 3117 * should be set. 3118 */ 3119 3120 reopen_needed = osp->os_delegation; 3121 3122 mutex_exit(&osp->os_sync_lock); 3123 open_owner_rele(oop); 3124 3125 if (reopen_needed) { 3126 nfs4_error_zinit(ep); 3127 nfs4_reopen(vp, osp, ep, CLAIM_NULL, FALSE, FALSE); 3128 mutex_enter(&osp->os_sync_lock); 3129 if (ep->error || ep->stat || osp->os_failed_reopen) { 3130 mutex_exit(&osp->os_sync_lock); 3131 open_stream_rele(osp, rp); 3132 return (EIO); 3133 } 3134 mutex_exit(&osp->os_sync_lock); 3135 } 3136 open_stream_rele(osp, rp); 3137 3138 return (0); 3139 } 3140 3141 /* 3142 * Write to file. Writes to remote server in largest size 3143 * chunks that the server can handle. Write is synchronous. 3144 */ 3145 static int 3146 nfs4write(vnode_t *vp, caddr_t base, u_offset_t offset, int count, cred_t *cr, 3147 stable_how4 *stab_comm) 3148 { 3149 mntinfo4_t *mi; 3150 COMPOUND4args_clnt args; 3151 COMPOUND4res_clnt res; 3152 WRITE4args *wargs; 3153 WRITE4res *wres; 3154 nfs_argop4 argop[2]; 3155 nfs_resop4 *resop; 3156 int tsize; 3157 stable_how4 stable; 3158 rnode4_t *rp; 3159 int doqueue = 1; 3160 bool_t needrecov; 3161 nfs4_recov_state_t recov_state; 3162 nfs4_stateid_types_t sid_types; 3163 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 3164 int recov; 3165 3166 rp = VTOR4(vp); 3167 mi = VTOMI4(vp); 3168 3169 ASSERT(nfs_zone() == mi->mi_zone); 3170 3171 stable = *stab_comm; 3172 *stab_comm = FILE_SYNC4; 3173 3174 needrecov = FALSE; 3175 recov_state.rs_flags = 0; 3176 recov_state.rs_num_retry_despite_err = 0; 3177 nfs4_init_stateid_types(&sid_types); 3178 3179 /* Is curthread the recovery thread? */ 3180 mutex_enter(&mi->mi_lock); 3181 recov = (mi->mi_recovthread == curthread); 3182 mutex_exit(&mi->mi_lock); 3183 3184 recov_retry: 3185 args.ctag = TAG_WRITE; 3186 args.array_len = 2; 3187 args.array = argop; 3188 3189 if (!recov) { 3190 e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3191 &recov_state, NULL); 3192 if (e.error) 3193 return (e.error); 3194 } 3195 3196 /* 0. putfh target fh */ 3197 argop[0].argop = OP_CPUTFH; 3198 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 3199 3200 /* 1. write */ 3201 nfs4args_write(&argop[1], stable, rp, cr, &wargs, &sid_types); 3202 3203 do { 3204 3205 wargs->offset = (offset4)offset; 3206 wargs->data_val = base; 3207 3208 if (mi->mi_io_kstats) { 3209 mutex_enter(&mi->mi_lock); 3210 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 3211 mutex_exit(&mi->mi_lock); 3212 } 3213 3214 if ((vp->v_flag & VNOCACHE) || 3215 (rp->r_flags & R4DIRECTIO) || 3216 (mi->mi_flags & MI4_DIRECTIO)) 3217 tsize = MIN(mi->mi_stsize, count); 3218 else 3219 tsize = MIN(mi->mi_curwrite, count); 3220 wargs->data_len = (uint_t)tsize; 3221 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 3222 3223 if (mi->mi_io_kstats) { 3224 mutex_enter(&mi->mi_lock); 3225 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 3226 mutex_exit(&mi->mi_lock); 3227 } 3228 3229 if (!recov) { 3230 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 3231 if (e.error && !needrecov) { 3232 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3233 &recov_state, needrecov); 3234 return (e.error); 3235 } 3236 } else { 3237 if (e.error) 3238 return (e.error); 3239 } 3240 3241 /* 3242 * Do handling of OLD_STATEID outside 3243 * of the normal recovery framework. 3244 * 3245 * If write receives a BAD stateid error while using a 3246 * delegation stateid, retry using the open stateid (if it 3247 * exists). If it doesn't have an open stateid, reopen the 3248 * file first, then retry. 3249 */ 3250 if (!e.error && res.status == NFS4ERR_OLD_STATEID && 3251 sid_types.cur_sid_type != SPEC_SID) { 3252 nfs4_save_stateid(&wargs->stateid, &sid_types); 3253 if (!recov) 3254 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3255 &recov_state, needrecov); 3256 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3257 goto recov_retry; 3258 } else if (e.error == 0 && res.status == NFS4ERR_BAD_STATEID && 3259 sid_types.cur_sid_type == DEL_SID) { 3260 nfs4_save_stateid(&wargs->stateid, &sid_types); 3261 mutex_enter(&rp->r_statev4_lock); 3262 rp->r_deleg_return_pending = TRUE; 3263 mutex_exit(&rp->r_statev4_lock); 3264 if (nfs4rdwr_check_osid(vp, &e, cr)) { 3265 if (!recov) 3266 nfs4_end_fop(mi, vp, NULL, OH_WRITE, 3267 &recov_state, needrecov); 3268 (void) xdr_free(xdr_COMPOUND4res_clnt, 3269 (caddr_t)&res); 3270 return (EIO); 3271 } 3272 if (!recov) 3273 nfs4_end_fop(mi, vp, NULL, OH_WRITE, 3274 &recov_state, needrecov); 3275 /* hold needed for nfs4delegreturn_thread */ 3276 VN_HOLD(vp); 3277 nfs4delegreturn_async(rp, (NFS4_DR_PUSH|NFS4_DR_REOPEN| 3278 NFS4_DR_DISCARD), FALSE); 3279 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3280 goto recov_retry; 3281 } 3282 3283 if (needrecov) { 3284 bool_t abort; 3285 3286 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 3287 "nfs4write: client got error %d, res.status %d" 3288 ", so start recovery", e.error, res.status)); 3289 3290 abort = nfs4_start_recovery(&e, 3291 VTOMI4(vp), vp, NULL, &wargs->stateid, 3292 NULL, OP_WRITE, NULL, NULL, NULL); 3293 if (!e.error) { 3294 e.error = geterrno4(res.status); 3295 (void) xdr_free(xdr_COMPOUND4res_clnt, 3296 (caddr_t)&res); 3297 } 3298 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3299 &recov_state, needrecov); 3300 if (abort == FALSE) 3301 goto recov_retry; 3302 return (e.error); 3303 } 3304 3305 if (res.status) { 3306 e.error = geterrno4(res.status); 3307 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3308 if (!recov) 3309 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3310 &recov_state, needrecov); 3311 return (e.error); 3312 } 3313 3314 resop = &res.array[1]; /* write res */ 3315 wres = &resop->nfs_resop4_u.opwrite; 3316 3317 if ((int)wres->count > tsize) { 3318 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3319 3320 zcmn_err(getzoneid(), CE_WARN, 3321 "nfs4write: server wrote %u, requested was %u", 3322 (int)wres->count, tsize); 3323 if (!recov) 3324 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3325 &recov_state, needrecov); 3326 return (EIO); 3327 } 3328 if (wres->committed == UNSTABLE4) { 3329 *stab_comm = UNSTABLE4; 3330 if (wargs->stable == DATA_SYNC4 || 3331 wargs->stable == FILE_SYNC4) { 3332 (void) xdr_free(xdr_COMPOUND4res_clnt, 3333 (caddr_t)&res); 3334 zcmn_err(getzoneid(), CE_WARN, 3335 "nfs4write: server %s did not commit " 3336 "to stable storage", 3337 rp->r_server->sv_hostname); 3338 if (!recov) 3339 nfs4_end_fop(VTOMI4(vp), vp, NULL, 3340 OH_WRITE, &recov_state, needrecov); 3341 return (EIO); 3342 } 3343 } 3344 3345 tsize = (int)wres->count; 3346 count -= tsize; 3347 base += tsize; 3348 offset += tsize; 3349 if (mi->mi_io_kstats) { 3350 mutex_enter(&mi->mi_lock); 3351 KSTAT_IO_PTR(mi->mi_io_kstats)->writes++; 3352 KSTAT_IO_PTR(mi->mi_io_kstats)->nwritten += 3353 tsize; 3354 mutex_exit(&mi->mi_lock); 3355 } 3356 lwp_stat_update(LWP_STAT_OUBLK, 1); 3357 mutex_enter(&rp->r_statelock); 3358 if (rp->r_flags & R4HAVEVERF) { 3359 if (rp->r_writeverf != wres->writeverf) { 3360 nfs4_set_mod(vp); 3361 rp->r_writeverf = wres->writeverf; 3362 } 3363 } else { 3364 rp->r_writeverf = wres->writeverf; 3365 rp->r_flags |= R4HAVEVERF; 3366 } 3367 PURGE_ATTRCACHE4_LOCKED(rp); 3368 rp->r_flags |= R4WRITEMODIFIED; 3369 gethrestime(&rp->r_attr.va_mtime); 3370 rp->r_attr.va_ctime = rp->r_attr.va_mtime; 3371 mutex_exit(&rp->r_statelock); 3372 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3373 } while (count); 3374 3375 if (!recov) 3376 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, &recov_state, 3377 needrecov); 3378 3379 return (e.error); 3380 } 3381 3382 /* 3383 * Read from a file. Reads data in largest chunks our interface can handle. 3384 */ 3385 static int 3386 nfs4read(vnode_t *vp, caddr_t base, offset_t offset, int count, 3387 size_t *residp, cred_t *cr, bool_t async, struct uio *uiop) 3388 { 3389 mntinfo4_t *mi; 3390 COMPOUND4args_clnt args; 3391 COMPOUND4res_clnt res; 3392 READ4args *rargs; 3393 nfs_argop4 argop[2]; 3394 int tsize; 3395 int doqueue; 3396 rnode4_t *rp; 3397 int data_len; 3398 bool_t is_eof; 3399 bool_t needrecov = FALSE; 3400 nfs4_recov_state_t recov_state; 3401 nfs4_stateid_types_t sid_types; 3402 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 3403 3404 rp = VTOR4(vp); 3405 mi = VTOMI4(vp); 3406 doqueue = 1; 3407 3408 ASSERT(nfs_zone() == mi->mi_zone); 3409 3410 args.ctag = async ? TAG_READAHEAD : TAG_READ; 3411 3412 args.array_len = 2; 3413 args.array = argop; 3414 3415 nfs4_init_stateid_types(&sid_types); 3416 3417 recov_state.rs_flags = 0; 3418 recov_state.rs_num_retry_despite_err = 0; 3419 3420 recov_retry: 3421 e.error = nfs4_start_fop(mi, vp, NULL, OH_READ, 3422 &recov_state, NULL); 3423 if (e.error) 3424 return (e.error); 3425 3426 /* putfh target fh */ 3427 argop[0].argop = OP_CPUTFH; 3428 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 3429 3430 /* read */ 3431 argop[1].argop = OP_READ; 3432 rargs = &argop[1].nfs_argop4_u.opread; 3433 rargs->stateid = nfs4_get_stateid(cr, rp, curproc->p_pidp->pid_id, mi, 3434 OP_READ, &sid_types, async); 3435 3436 do { 3437 if (mi->mi_io_kstats) { 3438 mutex_enter(&mi->mi_lock); 3439 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 3440 mutex_exit(&mi->mi_lock); 3441 } 3442 3443 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 3444 "nfs4read: %s call, rp %s", 3445 needrecov ? "recov" : "first", 3446 rnode4info(rp))); 3447 3448 if ((vp->v_flag & VNOCACHE) || 3449 (rp->r_flags & R4DIRECTIO) || 3450 (mi->mi_flags & MI4_DIRECTIO)) 3451 tsize = MIN(mi->mi_tsize, count); 3452 else 3453 tsize = MIN(mi->mi_curread, count); 3454 3455 rargs->offset = (offset4)offset; 3456 rargs->count = (count4)tsize; 3457 rargs->res_data_val_alt = NULL; 3458 rargs->res_mblk = NULL; 3459 rargs->res_uiop = NULL; 3460 rargs->res_maxsize = 0; 3461 rargs->wlist = NULL; 3462 3463 if (uiop) 3464 rargs->res_uiop = uiop; 3465 else 3466 rargs->res_data_val_alt = base; 3467 rargs->res_maxsize = tsize; 3468 3469 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 3470 #ifdef DEBUG 3471 if (nfs4read_error_inject) { 3472 res.status = nfs4read_error_inject; 3473 nfs4read_error_inject = 0; 3474 } 3475 #endif 3476 3477 if (mi->mi_io_kstats) { 3478 mutex_enter(&mi->mi_lock); 3479 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 3480 mutex_exit(&mi->mi_lock); 3481 } 3482 3483 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 3484 if (e.error != 0 && !needrecov) { 3485 nfs4_end_fop(mi, vp, NULL, OH_READ, 3486 &recov_state, needrecov); 3487 return (e.error); 3488 } 3489 3490 /* 3491 * Do proper retry for OLD and BAD stateid errors outside 3492 * of the normal recovery framework. There are two differences 3493 * between async and sync reads. The first is that we allow 3494 * retry on BAD_STATEID for async reads, but not sync reads. 3495 * The second is that we mark the file dead for a failed 3496 * attempt with a special stateid for sync reads, but just 3497 * return EIO for async reads. 3498 * 3499 * If a sync read receives a BAD stateid error while using a 3500 * delegation stateid, retry using the open stateid (if it 3501 * exists). If it doesn't have an open stateid, reopen the 3502 * file first, then retry. 3503 */ 3504 if (e.error == 0 && (res.status == NFS4ERR_OLD_STATEID || 3505 res.status == NFS4ERR_BAD_STATEID) && async) { 3506 nfs4_end_fop(mi, vp, NULL, OH_READ, 3507 &recov_state, needrecov); 3508 if (sid_types.cur_sid_type == SPEC_SID) { 3509 (void) xdr_free(xdr_COMPOUND4res_clnt, 3510 (caddr_t)&res); 3511 return (EIO); 3512 } 3513 nfs4_save_stateid(&rargs->stateid, &sid_types); 3514 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3515 goto recov_retry; 3516 } else if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 3517 !async && sid_types.cur_sid_type != SPEC_SID) { 3518 nfs4_save_stateid(&rargs->stateid, &sid_types); 3519 nfs4_end_fop(mi, vp, NULL, OH_READ, 3520 &recov_state, needrecov); 3521 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3522 goto recov_retry; 3523 } else if (e.error == 0 && res.status == NFS4ERR_BAD_STATEID && 3524 sid_types.cur_sid_type == DEL_SID) { 3525 nfs4_save_stateid(&rargs->stateid, &sid_types); 3526 mutex_enter(&rp->r_statev4_lock); 3527 rp->r_deleg_return_pending = TRUE; 3528 mutex_exit(&rp->r_statev4_lock); 3529 if (nfs4rdwr_check_osid(vp, &e, cr)) { 3530 nfs4_end_fop(mi, vp, NULL, OH_READ, 3531 &recov_state, needrecov); 3532 (void) xdr_free(xdr_COMPOUND4res_clnt, 3533 (caddr_t)&res); 3534 return (EIO); 3535 } 3536 nfs4_end_fop(mi, vp, NULL, OH_READ, 3537 &recov_state, needrecov); 3538 /* hold needed for nfs4delegreturn_thread */ 3539 VN_HOLD(vp); 3540 nfs4delegreturn_async(rp, (NFS4_DR_PUSH|NFS4_DR_REOPEN| 3541 NFS4_DR_DISCARD), FALSE); 3542 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3543 goto recov_retry; 3544 } 3545 if (needrecov) { 3546 bool_t abort; 3547 3548 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 3549 "nfs4read: initiating recovery\n")); 3550 abort = nfs4_start_recovery(&e, 3551 mi, vp, NULL, &rargs->stateid, 3552 NULL, OP_READ, NULL, NULL, NULL); 3553 nfs4_end_fop(mi, vp, NULL, OH_READ, 3554 &recov_state, needrecov); 3555 /* 3556 * Do not retry if we got OLD_STATEID using a special 3557 * stateid. This avoids looping with a broken server. 3558 */ 3559 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 3560 sid_types.cur_sid_type == SPEC_SID) 3561 abort = TRUE; 3562 3563 if (abort == FALSE) { 3564 /* 3565 * Need to retry all possible stateids in 3566 * case the recovery error wasn't stateid 3567 * related or the stateids have become 3568 * stale (server reboot). 3569 */ 3570 nfs4_init_stateid_types(&sid_types); 3571 (void) xdr_free(xdr_COMPOUND4res_clnt, 3572 (caddr_t)&res); 3573 goto recov_retry; 3574 } 3575 3576 if (!e.error) { 3577 e.error = geterrno4(res.status); 3578 (void) xdr_free(xdr_COMPOUND4res_clnt, 3579 (caddr_t)&res); 3580 } 3581 return (e.error); 3582 } 3583 3584 if (res.status) { 3585 e.error = geterrno4(res.status); 3586 nfs4_end_fop(mi, vp, NULL, OH_READ, 3587 &recov_state, needrecov); 3588 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3589 return (e.error); 3590 } 3591 3592 data_len = res.array[1].nfs_resop4_u.opread.data_len; 3593 count -= data_len; 3594 if (base) 3595 base += data_len; 3596 offset += data_len; 3597 if (mi->mi_io_kstats) { 3598 mutex_enter(&mi->mi_lock); 3599 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 3600 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += data_len; 3601 mutex_exit(&mi->mi_lock); 3602 } 3603 lwp_stat_update(LWP_STAT_INBLK, 1); 3604 is_eof = res.array[1].nfs_resop4_u.opread.eof; 3605 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3606 3607 } while (count && !is_eof); 3608 3609 *residp = count; 3610 3611 nfs4_end_fop(mi, vp, NULL, OH_READ, &recov_state, needrecov); 3612 3613 return (e.error); 3614 } 3615 3616 /* ARGSUSED */ 3617 static int 3618 nfs4_ioctl(vnode_t *vp, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp, 3619 caller_context_t *ct) 3620 { 3621 if (nfs_zone() != VTOMI4(vp)->mi_zone) 3622 return (EIO); 3623 switch (cmd) { 3624 case _FIODIRECTIO: 3625 return (nfs4_directio(vp, (int)arg, cr)); 3626 default: 3627 return (ENOTTY); 3628 } 3629 } 3630 3631 /* ARGSUSED */ 3632 int 3633 nfs4_getattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 3634 caller_context_t *ct) 3635 { 3636 int error; 3637 rnode4_t *rp = VTOR4(vp); 3638 3639 if (nfs_zone() != VTOMI4(vp)->mi_zone) 3640 return (EIO); 3641 /* 3642 * If it has been specified that the return value will 3643 * just be used as a hint, and we are only being asked 3644 * for size, fsid or rdevid, then return the client's 3645 * notion of these values without checking to make sure 3646 * that the attribute cache is up to date. 3647 * The whole point is to avoid an over the wire GETATTR 3648 * call. 3649 */ 3650 if (flags & ATTR_HINT) { 3651 if (!(vap->va_mask & ~(AT_SIZE | AT_FSID | AT_RDEV))) { 3652 mutex_enter(&rp->r_statelock); 3653 if (vap->va_mask & AT_SIZE) 3654 vap->va_size = rp->r_size; 3655 if (vap->va_mask & AT_FSID) 3656 vap->va_fsid = rp->r_attr.va_fsid; 3657 if (vap->va_mask & AT_RDEV) 3658 vap->va_rdev = rp->r_attr.va_rdev; 3659 mutex_exit(&rp->r_statelock); 3660 return (0); 3661 } 3662 } 3663 3664 /* 3665 * Only need to flush pages if asking for the mtime 3666 * and if there any dirty pages or any outstanding 3667 * asynchronous (write) requests for this file. 3668 */ 3669 if (vap->va_mask & AT_MTIME) { 3670 rp = VTOR4(vp); 3671 if (nfs4_has_pages(vp)) { 3672 mutex_enter(&rp->r_statev4_lock); 3673 if (rp->r_deleg_type != OPEN_DELEGATE_WRITE) { 3674 mutex_exit(&rp->r_statev4_lock); 3675 if (rp->r_flags & R4DIRTY || 3676 rp->r_awcount > 0) { 3677 mutex_enter(&rp->r_statelock); 3678 rp->r_gcount++; 3679 mutex_exit(&rp->r_statelock); 3680 error = 3681 nfs4_putpage(vp, (u_offset_t)0, 3682 0, 0, cr, NULL); 3683 mutex_enter(&rp->r_statelock); 3684 if (error && (error == ENOSPC || 3685 error == EDQUOT)) { 3686 if (!rp->r_error) 3687 rp->r_error = error; 3688 } 3689 if (--rp->r_gcount == 0) 3690 cv_broadcast(&rp->r_cv); 3691 mutex_exit(&rp->r_statelock); 3692 } 3693 } else { 3694 mutex_exit(&rp->r_statev4_lock); 3695 } 3696 } 3697 } 3698 return (nfs4getattr(vp, vap, cr)); 3699 } 3700 3701 int 3702 nfs4_compare_modes(mode_t from_server, mode_t on_client) 3703 { 3704 /* 3705 * If these are the only two bits cleared 3706 * on the server then return 0 (OK) else 3707 * return 1 (BAD). 3708 */ 3709 on_client &= ~(S_ISUID|S_ISGID); 3710 if (on_client == from_server) 3711 return (0); 3712 else 3713 return (1); 3714 } 3715 3716 /*ARGSUSED4*/ 3717 static int 3718 nfs4_setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 3719 caller_context_t *ct) 3720 { 3721 int error; 3722 3723 if (vap->va_mask & AT_NOSET) 3724 return (EINVAL); 3725 3726 if (nfs_zone() != VTOMI4(vp)->mi_zone) 3727 return (EIO); 3728 3729 /* 3730 * Don't call secpolicy_vnode_setattr, the client cannot 3731 * use its cached attributes to make security decisions 3732 * as the server may be faking mode bits or mapping uid/gid. 3733 * Always just let the server to the checking. 3734 * If we provide the ability to remove basic priviledges 3735 * to setattr (e.g. basic without chmod) then we will 3736 * need to add a check here before calling the server. 3737 */ 3738 error = nfs4setattr(vp, vap, flags, cr, NULL); 3739 3740 if (error == 0 && (vap->va_mask & AT_SIZE) && vap->va_size == 0) 3741 vnevent_truncate(vp, ct); 3742 3743 return (error); 3744 } 3745 3746 /* 3747 * To replace the "guarded" version 3 setattr, we use two types of compound 3748 * setattr requests: 3749 * 1. The "normal" setattr, used when the size of the file isn't being 3750 * changed - { Putfh <fh>; Setattr; Getattr }/ 3751 * 2. If the size is changed, precede Setattr with: Getattr; Verify 3752 * with only ctime as the argument. If the server ctime differs from 3753 * what is cached on the client, the verify will fail, but we would 3754 * already have the ctime from the preceding getattr, so just set it 3755 * and retry. Thus the compound here is - { Putfh <fh>; Getattr; Verify; 3756 * Setattr; Getattr }. 3757 * 3758 * The vsecattr_t * input parameter will be non-NULL if ACLs are being set in 3759 * this setattr and NULL if they are not. 3760 */ 3761 static int 3762 nfs4setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 3763 vsecattr_t *vsap) 3764 { 3765 COMPOUND4args_clnt args; 3766 COMPOUND4res_clnt res, *resp = NULL; 3767 nfs4_ga_res_t *garp = NULL; 3768 int numops = 3; /* { Putfh; Setattr; Getattr } */ 3769 nfs_argop4 argop[5]; 3770 int verify_argop = -1; 3771 int setattr_argop = 1; 3772 nfs_resop4 *resop; 3773 vattr_t va; 3774 rnode4_t *rp; 3775 int doqueue = 1; 3776 uint_t mask = vap->va_mask; 3777 mode_t omode; 3778 vsecattr_t *vsp; 3779 timestruc_t ctime; 3780 bool_t needrecov = FALSE; 3781 nfs4_recov_state_t recov_state; 3782 nfs4_stateid_types_t sid_types; 3783 stateid4 stateid; 3784 hrtime_t t; 3785 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 3786 servinfo4_t *svp; 3787 bitmap4 supp_attrs; 3788 3789 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 3790 rp = VTOR4(vp); 3791 nfs4_init_stateid_types(&sid_types); 3792 3793 /* 3794 * Only need to flush pages if there are any pages and 3795 * if the file is marked as dirty in some fashion. The 3796 * file must be flushed so that we can accurately 3797 * determine the size of the file and the cached data 3798 * after the SETATTR returns. A file is considered to 3799 * be dirty if it is either marked with R4DIRTY, has 3800 * outstanding i/o's active, or is mmap'd. In this 3801 * last case, we can't tell whether there are dirty 3802 * pages, so we flush just to be sure. 3803 */ 3804 if (nfs4_has_pages(vp) && 3805 ((rp->r_flags & R4DIRTY) || 3806 rp->r_count > 0 || 3807 rp->r_mapcnt > 0)) { 3808 ASSERT(vp->v_type != VCHR); 3809 e.error = nfs4_putpage(vp, (offset_t)0, 0, 0, cr, NULL); 3810 if (e.error && (e.error == ENOSPC || e.error == EDQUOT)) { 3811 mutex_enter(&rp->r_statelock); 3812 if (!rp->r_error) 3813 rp->r_error = e.error; 3814 mutex_exit(&rp->r_statelock); 3815 } 3816 } 3817 3818 if (mask & AT_SIZE) { 3819 /* 3820 * Verification setattr compound for non-deleg AT_SIZE: 3821 * { Putfh; Getattr; Verify; Setattr; Getattr } 3822 * Set ctime local here (outside the do_again label) 3823 * so that subsequent retries (after failed VERIFY) 3824 * will use ctime from GETATTR results (from failed 3825 * verify compound) as VERIFY arg. 3826 * If file has delegation, then VERIFY(time_metadata) 3827 * is of little added value, so don't bother. 3828 */ 3829 mutex_enter(&rp->r_statev4_lock); 3830 if (rp->r_deleg_type == OPEN_DELEGATE_NONE || 3831 rp->r_deleg_return_pending) { 3832 numops = 5; 3833 ctime = rp->r_attr.va_ctime; 3834 } 3835 mutex_exit(&rp->r_statev4_lock); 3836 } 3837 3838 recov_state.rs_flags = 0; 3839 recov_state.rs_num_retry_despite_err = 0; 3840 3841 args.ctag = TAG_SETATTR; 3842 do_again: 3843 recov_retry: 3844 setattr_argop = numops - 2; 3845 3846 args.array = argop; 3847 args.array_len = numops; 3848 3849 e.error = nfs4_start_op(VTOMI4(vp), vp, NULL, &recov_state); 3850 if (e.error) 3851 return (e.error); 3852 3853 3854 /* putfh target fh */ 3855 argop[0].argop = OP_CPUTFH; 3856 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 3857 3858 if (numops == 5) { 3859 /* 3860 * We only care about the ctime, but need to get mtime 3861 * and size for proper cache update. 3862 */ 3863 /* getattr */ 3864 argop[1].argop = OP_GETATTR; 3865 argop[1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 3866 argop[1].nfs_argop4_u.opgetattr.mi = VTOMI4(vp); 3867 3868 /* verify - set later in loop */ 3869 verify_argop = 2; 3870 } 3871 3872 /* setattr */ 3873 svp = rp->r_server; 3874 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 3875 supp_attrs = svp->sv_supp_attrs; 3876 nfs_rw_exit(&svp->sv_lock); 3877 3878 nfs4args_setattr(&argop[setattr_argop], vap, vsap, flags, rp, cr, 3879 supp_attrs, &e.error, &sid_types); 3880 stateid = argop[setattr_argop].nfs_argop4_u.opsetattr.stateid; 3881 if (e.error) { 3882 /* req time field(s) overflow - return immediately */ 3883 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov); 3884 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 3885 opsetattr.obj_attributes); 3886 return (e.error); 3887 } 3888 omode = rp->r_attr.va_mode; 3889 3890 /* getattr */ 3891 argop[numops-1].argop = OP_GETATTR; 3892 argop[numops-1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 3893 /* 3894 * If we are setting the ACL (indicated only by vsap != NULL), request 3895 * the ACL in this getattr. The ACL returned from this getattr will be 3896 * used in updating the ACL cache. 3897 */ 3898 if (vsap != NULL) 3899 argop[numops-1].nfs_argop4_u.opgetattr.attr_request |= 3900 FATTR4_ACL_MASK; 3901 argop[numops-1].nfs_argop4_u.opgetattr.mi = VTOMI4(vp); 3902 3903 /* 3904 * setattr iterates if the object size is set and the cached ctime 3905 * does not match the file ctime. In that case, verify the ctime first. 3906 */ 3907 3908 do { 3909 if (verify_argop != -1) { 3910 /* 3911 * Verify that the ctime match before doing setattr. 3912 */ 3913 va.va_mask = AT_CTIME; 3914 va.va_ctime = ctime; 3915 svp = rp->r_server; 3916 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 3917 supp_attrs = svp->sv_supp_attrs; 3918 nfs_rw_exit(&svp->sv_lock); 3919 e.error = nfs4args_verify(&argop[verify_argop], &va, 3920 OP_VERIFY, supp_attrs); 3921 if (e.error) { 3922 /* req time field(s) overflow - return */ 3923 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3924 needrecov); 3925 break; 3926 } 3927 } 3928 3929 doqueue = 1; 3930 3931 t = gethrtime(); 3932 3933 rfs4call(VTOMI4(vp), &args, &res, cr, &doqueue, 0, &e); 3934 3935 /* 3936 * Purge the access cache and ACL cache if changing either the 3937 * owner of the file, the group owner, or the mode. These may 3938 * change the access permissions of the file, so purge old 3939 * information and start over again. 3940 */ 3941 if (mask & (AT_UID | AT_GID | AT_MODE)) { 3942 (void) nfs4_access_purge_rp(rp); 3943 if (rp->r_secattr != NULL) { 3944 mutex_enter(&rp->r_statelock); 3945 vsp = rp->r_secattr; 3946 rp->r_secattr = NULL; 3947 mutex_exit(&rp->r_statelock); 3948 if (vsp != NULL) 3949 nfs4_acl_free_cache(vsp); 3950 } 3951 } 3952 3953 /* 3954 * If res.array_len == numops, then everything succeeded, 3955 * except for possibly the final getattr. If only the 3956 * last getattr failed, give up, and don't try recovery. 3957 */ 3958 if (res.array_len == numops) { 3959 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3960 needrecov); 3961 if (! e.error) 3962 resp = &res; 3963 break; 3964 } 3965 3966 /* 3967 * if either rpc call failed or completely succeeded - done 3968 */ 3969 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp); 3970 if (e.error) { 3971 PURGE_ATTRCACHE4(vp); 3972 if (!needrecov) { 3973 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3974 needrecov); 3975 break; 3976 } 3977 } 3978 3979 /* 3980 * Do proper retry for OLD_STATEID outside of the normal 3981 * recovery framework. 3982 */ 3983 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 3984 sid_types.cur_sid_type != SPEC_SID && 3985 sid_types.cur_sid_type != NO_SID) { 3986 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3987 needrecov); 3988 nfs4_save_stateid(&stateid, &sid_types); 3989 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 3990 opsetattr.obj_attributes); 3991 if (verify_argop != -1) { 3992 nfs4args_verify_free(&argop[verify_argop]); 3993 verify_argop = -1; 3994 } 3995 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3996 goto recov_retry; 3997 } 3998 3999 if (needrecov) { 4000 bool_t abort; 4001 4002 abort = nfs4_start_recovery(&e, 4003 VTOMI4(vp), vp, NULL, NULL, NULL, 4004 OP_SETATTR, NULL, NULL, NULL); 4005 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 4006 needrecov); 4007 /* 4008 * Do not retry if we failed with OLD_STATEID using 4009 * a special stateid. This is done to avoid looping 4010 * with a broken server. 4011 */ 4012 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 4013 (sid_types.cur_sid_type == SPEC_SID || 4014 sid_types.cur_sid_type == NO_SID)) 4015 abort = TRUE; 4016 if (!e.error) { 4017 if (res.status == NFS4ERR_BADOWNER) 4018 nfs4_log_badowner(VTOMI4(vp), 4019 OP_SETATTR); 4020 4021 e.error = geterrno4(res.status); 4022 (void) xdr_free(xdr_COMPOUND4res_clnt, 4023 (caddr_t)&res); 4024 } 4025 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 4026 opsetattr.obj_attributes); 4027 if (verify_argop != -1) { 4028 nfs4args_verify_free(&argop[verify_argop]); 4029 verify_argop = -1; 4030 } 4031 if (abort == FALSE) { 4032 /* 4033 * Need to retry all possible stateids in 4034 * case the recovery error wasn't stateid 4035 * related or the stateids have become 4036 * stale (server reboot). 4037 */ 4038 nfs4_init_stateid_types(&sid_types); 4039 goto recov_retry; 4040 } 4041 return (e.error); 4042 } 4043 4044 /* 4045 * Need to call nfs4_end_op before nfs4getattr to 4046 * avoid potential nfs4_start_op deadlock. See RFE 4047 * 4777612. Calls to nfs4_invalidate_pages() and 4048 * nfs4_purge_stale_fh() might also generate over the 4049 * wire calls which my cause nfs4_start_op() deadlock. 4050 */ 4051 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov); 4052 4053 /* 4054 * Check to update lease. 4055 */ 4056 resp = &res; 4057 if (res.status == NFS4_OK) { 4058 break; 4059 } 4060 4061 /* 4062 * Check if verify failed to see if try again 4063 */ 4064 if ((verify_argop == -1) || (res.array_len != 3)) { 4065 /* 4066 * can't continue... 4067 */ 4068 if (res.status == NFS4ERR_BADOWNER) 4069 nfs4_log_badowner(VTOMI4(vp), OP_SETATTR); 4070 4071 e.error = geterrno4(res.status); 4072 } else { 4073 /* 4074 * When the verify request fails, the client ctime is 4075 * not in sync with the server. This is the same as 4076 * the version 3 "not synchronized" error, and we 4077 * handle it in a similar manner (XXX do we need to???). 4078 * Use the ctime returned in the first getattr for 4079 * the input to the next verify. 4080 * If we couldn't get the attributes, then we give up 4081 * because we can't complete the operation as required. 4082 */ 4083 garp = &res.array[1].nfs_resop4_u.opgetattr.ga_res; 4084 } 4085 if (e.error) { 4086 PURGE_ATTRCACHE4(vp); 4087 nfs4_purge_stale_fh(e.error, vp, cr); 4088 } else { 4089 /* 4090 * retry with a new verify value 4091 */ 4092 ctime = garp->n4g_va.va_ctime; 4093 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4094 resp = NULL; 4095 } 4096 if (!e.error) { 4097 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 4098 opsetattr.obj_attributes); 4099 if (verify_argop != -1) { 4100 nfs4args_verify_free(&argop[verify_argop]); 4101 verify_argop = -1; 4102 } 4103 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4104 goto do_again; 4105 } 4106 } while (!e.error); 4107 4108 if (e.error) { 4109 /* 4110 * If we are here, rfs4call has an irrecoverable error - return 4111 */ 4112 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 4113 opsetattr.obj_attributes); 4114 if (verify_argop != -1) { 4115 nfs4args_verify_free(&argop[verify_argop]); 4116 verify_argop = -1; 4117 } 4118 if (resp) 4119 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 4120 return (e.error); 4121 } 4122 4123 4124 4125 /* 4126 * If changing the size of the file, invalidate 4127 * any local cached data which is no longer part 4128 * of the file. We also possibly invalidate the 4129 * last page in the file. We could use 4130 * pvn_vpzero(), but this would mark the page as 4131 * modified and require it to be written back to 4132 * the server for no particularly good reason. 4133 * This way, if we access it, then we bring it 4134 * back in. A read should be cheaper than a 4135 * write. 4136 */ 4137 if (mask & AT_SIZE) { 4138 nfs4_invalidate_pages(vp, (vap->va_size & PAGEMASK), cr); 4139 } 4140 4141 /* either no error or one of the postop getattr failed */ 4142 4143 /* 4144 * XXX Perform a simplified version of wcc checking. Instead of 4145 * have another getattr to get pre-op, just purge cache if 4146 * any of the ops prior to and including the getattr failed. 4147 * If the getattr succeeded then update the attrcache accordingly. 4148 */ 4149 4150 garp = NULL; 4151 if (res.status == NFS4_OK) { 4152 /* 4153 * Last getattr 4154 */ 4155 resop = &res.array[numops - 1]; 4156 garp = &resop->nfs_resop4_u.opgetattr.ga_res; 4157 } 4158 /* 4159 * In certain cases, nfs4_update_attrcache() will purge the attrcache, 4160 * rather than filling it. See the function itself for details. 4161 */ 4162 e.error = nfs4_update_attrcache(res.status, garp, t, vp, cr); 4163 if (garp != NULL) { 4164 if (garp->n4g_resbmap & FATTR4_ACL_MASK) { 4165 nfs4_acl_fill_cache(rp, &garp->n4g_vsa); 4166 vs_ace4_destroy(&garp->n4g_vsa); 4167 } else { 4168 if (vsap != NULL) { 4169 /* 4170 * The ACL was supposed to be set and to be 4171 * returned in the last getattr of this 4172 * compound, but for some reason the getattr 4173 * result doesn't contain the ACL. In this 4174 * case, purge the ACL cache. 4175 */ 4176 if (rp->r_secattr != NULL) { 4177 mutex_enter(&rp->r_statelock); 4178 vsp = rp->r_secattr; 4179 rp->r_secattr = NULL; 4180 mutex_exit(&rp->r_statelock); 4181 if (vsp != NULL) 4182 nfs4_acl_free_cache(vsp); 4183 } 4184 } 4185 } 4186 } 4187 4188 if (res.status == NFS4_OK && (mask & AT_SIZE)) { 4189 /* 4190 * Set the size, rather than relying on getting it updated 4191 * via a GETATTR. With delegations the client tries to 4192 * suppress GETATTR calls. 4193 */ 4194 mutex_enter(&rp->r_statelock); 4195 rp->r_size = vap->va_size; 4196 mutex_exit(&rp->r_statelock); 4197 } 4198 4199 /* 4200 * Can free up request args and res 4201 */ 4202 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 4203 opsetattr.obj_attributes); 4204 if (verify_argop != -1) { 4205 nfs4args_verify_free(&argop[verify_argop]); 4206 verify_argop = -1; 4207 } 4208 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4209 4210 /* 4211 * Some servers will change the mode to clear the setuid 4212 * and setgid bits when changing the uid or gid. The 4213 * client needs to compensate appropriately. 4214 */ 4215 if (mask & (AT_UID | AT_GID)) { 4216 int terror, do_setattr; 4217 4218 do_setattr = 0; 4219 va.va_mask = AT_MODE; 4220 terror = nfs4getattr(vp, &va, cr); 4221 if (!terror && 4222 (((mask & AT_MODE) && va.va_mode != vap->va_mode) || 4223 (!(mask & AT_MODE) && va.va_mode != omode))) { 4224 va.va_mask = AT_MODE; 4225 if (mask & AT_MODE) { 4226 /* 4227 * We asked the mode to be changed and what 4228 * we just got from the server in getattr is 4229 * not what we wanted it to be, so set it now. 4230 */ 4231 va.va_mode = vap->va_mode; 4232 do_setattr = 1; 4233 } else { 4234 /* 4235 * We did not ask the mode to be changed, 4236 * Check to see that the server just cleared 4237 * I_SUID and I_GUID from it. If not then 4238 * set mode to omode with UID/GID cleared. 4239 */ 4240 if (nfs4_compare_modes(va.va_mode, omode)) { 4241 omode &= ~(S_ISUID|S_ISGID); 4242 va.va_mode = omode; 4243 do_setattr = 1; 4244 } 4245 } 4246 4247 if (do_setattr) 4248 (void) nfs4setattr(vp, &va, 0, cr, NULL); 4249 } 4250 } 4251 4252 return (e.error); 4253 } 4254 4255 /* ARGSUSED */ 4256 static int 4257 nfs4_access(vnode_t *vp, int mode, int flags, cred_t *cr, caller_context_t *ct) 4258 { 4259 COMPOUND4args_clnt args; 4260 COMPOUND4res_clnt res; 4261 int doqueue; 4262 uint32_t acc, resacc, argacc; 4263 rnode4_t *rp; 4264 cred_t *cred, *ncr, *ncrfree = NULL; 4265 nfs4_access_type_t cacc; 4266 int num_ops; 4267 nfs_argop4 argop[3]; 4268 nfs_resop4 *resop; 4269 bool_t needrecov = FALSE, do_getattr; 4270 nfs4_recov_state_t recov_state; 4271 int rpc_error; 4272 hrtime_t t; 4273 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 4274 mntinfo4_t *mi = VTOMI4(vp); 4275 4276 if (nfs_zone() != mi->mi_zone) 4277 return (EIO); 4278 4279 acc = 0; 4280 if (mode & VREAD) 4281 acc |= ACCESS4_READ; 4282 if (mode & VWRITE) { 4283 if ((vp->v_vfsp->vfs_flag & VFS_RDONLY) && !ISVDEV(vp->v_type)) 4284 return (EROFS); 4285 if (vp->v_type == VDIR) 4286 acc |= ACCESS4_DELETE; 4287 acc |= ACCESS4_MODIFY | ACCESS4_EXTEND; 4288 } 4289 if (mode & VEXEC) { 4290 if (vp->v_type == VDIR) 4291 acc |= ACCESS4_LOOKUP; 4292 else 4293 acc |= ACCESS4_EXECUTE; 4294 } 4295 4296 if (VTOR4(vp)->r_acache != NULL) { 4297 e.error = nfs4_validate_caches(vp, cr); 4298 if (e.error) 4299 return (e.error); 4300 } 4301 4302 rp = VTOR4(vp); 4303 if (vp->v_type == VDIR) 4304 argacc = ACCESS4_READ | ACCESS4_DELETE | ACCESS4_MODIFY | 4305 ACCESS4_EXTEND | ACCESS4_LOOKUP; 4306 else 4307 argacc = ACCESS4_READ | ACCESS4_MODIFY | ACCESS4_EXTEND | 4308 ACCESS4_EXECUTE; 4309 recov_state.rs_flags = 0; 4310 recov_state.rs_num_retry_despite_err = 0; 4311 4312 cred = cr; 4313 /* 4314 * ncr and ncrfree both initially 4315 * point to the memory area returned 4316 * by crnetadjust(); 4317 * ncrfree not NULL when exiting means 4318 * that we need to release it 4319 */ 4320 ncr = crnetadjust(cred); 4321 ncrfree = ncr; 4322 4323 tryagain: 4324 cacc = nfs4_access_check(rp, acc, cred); 4325 if (cacc == NFS4_ACCESS_ALLOWED) { 4326 if (ncrfree != NULL) 4327 crfree(ncrfree); 4328 return (0); 4329 } 4330 if (cacc == NFS4_ACCESS_DENIED) { 4331 /* 4332 * If the cred can be adjusted, try again 4333 * with the new cred. 4334 */ 4335 if (ncr != NULL) { 4336 cred = ncr; 4337 ncr = NULL; 4338 goto tryagain; 4339 } 4340 if (ncrfree != NULL) 4341 crfree(ncrfree); 4342 return (EACCES); 4343 } 4344 4345 recov_retry: 4346 /* 4347 * Don't take with r_statev4_lock here. r_deleg_type could 4348 * change as soon as lock is released. Since it is an int, 4349 * there is no atomicity issue. 4350 */ 4351 do_getattr = (rp->r_deleg_type == OPEN_DELEGATE_NONE); 4352 num_ops = do_getattr ? 3 : 2; 4353 4354 args.ctag = TAG_ACCESS; 4355 4356 args.array_len = num_ops; 4357 args.array = argop; 4358 4359 if (e.error = nfs4_start_fop(mi, vp, NULL, OH_ACCESS, 4360 &recov_state, NULL)) { 4361 if (ncrfree != NULL) 4362 crfree(ncrfree); 4363 return (e.error); 4364 } 4365 4366 /* putfh target fh */ 4367 argop[0].argop = OP_CPUTFH; 4368 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh; 4369 4370 /* access */ 4371 argop[1].argop = OP_ACCESS; 4372 argop[1].nfs_argop4_u.opaccess.access = argacc; 4373 4374 /* getattr */ 4375 if (do_getattr) { 4376 argop[2].argop = OP_GETATTR; 4377 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 4378 argop[2].nfs_argop4_u.opgetattr.mi = mi; 4379 } 4380 4381 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 4382 "nfs4_access: %s call, rp %s", needrecov ? "recov" : "first", 4383 rnode4info(VTOR4(vp)))); 4384 4385 doqueue = 1; 4386 t = gethrtime(); 4387 rfs4call(VTOMI4(vp), &args, &res, cred, &doqueue, 0, &e); 4388 rpc_error = e.error; 4389 4390 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp); 4391 if (needrecov) { 4392 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 4393 "nfs4_access: initiating recovery\n")); 4394 4395 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 4396 NULL, OP_ACCESS, NULL, NULL, NULL) == FALSE) { 4397 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_ACCESS, 4398 &recov_state, needrecov); 4399 if (!e.error) 4400 (void) xdr_free(xdr_COMPOUND4res_clnt, 4401 (caddr_t)&res); 4402 goto recov_retry; 4403 } 4404 } 4405 nfs4_end_fop(mi, vp, NULL, OH_ACCESS, &recov_state, needrecov); 4406 4407 if (e.error) 4408 goto out; 4409 4410 if (res.status) { 4411 e.error = geterrno4(res.status); 4412 /* 4413 * This might generate over the wire calls throught 4414 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op() 4415 * here to avoid a deadlock. 4416 */ 4417 nfs4_purge_stale_fh(e.error, vp, cr); 4418 goto out; 4419 } 4420 resop = &res.array[1]; /* access res */ 4421 4422 resacc = resop->nfs_resop4_u.opaccess.access; 4423 4424 if (do_getattr) { 4425 resop++; /* getattr res */ 4426 nfs4_attr_cache(vp, &resop->nfs_resop4_u.opgetattr.ga_res, 4427 t, cr, FALSE, NULL); 4428 } 4429 4430 if (!e.error) { 4431 nfs4_access_cache(rp, argacc, resacc, cred); 4432 /* 4433 * we just cached results with cred; if cred is the 4434 * adjusted credentials from crnetadjust, we do not want 4435 * to release them before exiting: hence setting ncrfree 4436 * to NULL 4437 */ 4438 if (cred != cr) 4439 ncrfree = NULL; 4440 /* XXX check the supported bits too? */ 4441 if ((acc & resacc) != acc) { 4442 /* 4443 * The following code implements the semantic 4444 * that a setuid root program has *at least* the 4445 * permissions of the user that is running the 4446 * program. See rfs3call() for more portions 4447 * of the implementation of this functionality. 4448 */ 4449 /* XXX-LP */ 4450 if (ncr != NULL) { 4451 (void) xdr_free(xdr_COMPOUND4res_clnt, 4452 (caddr_t)&res); 4453 cred = ncr; 4454 ncr = NULL; 4455 goto tryagain; 4456 } 4457 e.error = EACCES; 4458 } 4459 } 4460 4461 out: 4462 if (!rpc_error) 4463 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4464 4465 if (ncrfree != NULL) 4466 crfree(ncrfree); 4467 4468 return (e.error); 4469 } 4470 4471 /* ARGSUSED */ 4472 static int 4473 nfs4_readlink(vnode_t *vp, struct uio *uiop, cred_t *cr, caller_context_t *ct) 4474 { 4475 COMPOUND4args_clnt args; 4476 COMPOUND4res_clnt res; 4477 int doqueue; 4478 rnode4_t *rp; 4479 nfs_argop4 argop[3]; 4480 nfs_resop4 *resop; 4481 READLINK4res *lr_res; 4482 nfs4_ga_res_t *garp; 4483 uint_t len; 4484 char *linkdata; 4485 bool_t needrecov = FALSE; 4486 nfs4_recov_state_t recov_state; 4487 hrtime_t t; 4488 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 4489 4490 if (nfs_zone() != VTOMI4(vp)->mi_zone) 4491 return (EIO); 4492 /* 4493 * Can't readlink anything other than a symbolic link. 4494 */ 4495 if (vp->v_type != VLNK) 4496 return (EINVAL); 4497 4498 rp = VTOR4(vp); 4499 if (nfs4_do_symlink_cache && rp->r_symlink.contents != NULL) { 4500 e.error = nfs4_validate_caches(vp, cr); 4501 if (e.error) 4502 return (e.error); 4503 mutex_enter(&rp->r_statelock); 4504 if (rp->r_symlink.contents != NULL) { 4505 e.error = uiomove(rp->r_symlink.contents, 4506 rp->r_symlink.len, UIO_READ, uiop); 4507 mutex_exit(&rp->r_statelock); 4508 return (e.error); 4509 } 4510 mutex_exit(&rp->r_statelock); 4511 } 4512 recov_state.rs_flags = 0; 4513 recov_state.rs_num_retry_despite_err = 0; 4514 4515 recov_retry: 4516 args.array_len = 3; 4517 args.array = argop; 4518 args.ctag = TAG_READLINK; 4519 4520 e.error = nfs4_start_op(VTOMI4(vp), vp, NULL, &recov_state); 4521 if (e.error) { 4522 return (e.error); 4523 } 4524 4525 /* 0. putfh symlink fh */ 4526 argop[0].argop = OP_CPUTFH; 4527 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh; 4528 4529 /* 1. readlink */ 4530 argop[1].argop = OP_READLINK; 4531 4532 /* 2. getattr */ 4533 argop[2].argop = OP_GETATTR; 4534 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 4535 argop[2].nfs_argop4_u.opgetattr.mi = VTOMI4(vp); 4536 4537 doqueue = 1; 4538 4539 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 4540 "nfs4_readlink: %s call, rp %s", needrecov ? "recov" : "first", 4541 rnode4info(VTOR4(vp)))); 4542 4543 t = gethrtime(); 4544 4545 rfs4call(VTOMI4(vp), &args, &res, cr, &doqueue, 0, &e); 4546 4547 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp); 4548 if (needrecov) { 4549 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 4550 "nfs4_readlink: initiating recovery\n")); 4551 4552 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 4553 NULL, OP_READLINK, NULL, NULL, NULL) == FALSE) { 4554 if (!e.error) 4555 (void) xdr_free(xdr_COMPOUND4res_clnt, 4556 (caddr_t)&res); 4557 4558 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 4559 needrecov); 4560 goto recov_retry; 4561 } 4562 } 4563 4564 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov); 4565 4566 if (e.error) 4567 return (e.error); 4568 4569 /* 4570 * There is an path in the code below which calls 4571 * nfs4_purge_stale_fh(), which may generate otw calls through 4572 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op() 4573 * here to avoid nfs4_start_op() deadlock. 4574 */ 4575 4576 if (res.status && (res.array_len < args.array_len)) { 4577 /* 4578 * either Putfh or Link failed 4579 */ 4580 e.error = geterrno4(res.status); 4581 nfs4_purge_stale_fh(e.error, vp, cr); 4582 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4583 return (e.error); 4584 } 4585 4586 resop = &res.array[1]; /* readlink res */ 4587 lr_res = &resop->nfs_resop4_u.opreadlink; 4588 4589 /* 4590 * treat symlink names as data 4591 */ 4592 linkdata = utf8_to_str((utf8string *)&lr_res->link, &len, NULL); 4593 if (linkdata != NULL) { 4594 int uio_len = len - 1; 4595 /* len includes null byte, which we won't uiomove */ 4596 e.error = uiomove(linkdata, uio_len, UIO_READ, uiop); 4597 if (nfs4_do_symlink_cache && rp->r_symlink.contents == NULL) { 4598 mutex_enter(&rp->r_statelock); 4599 if (rp->r_symlink.contents == NULL) { 4600 rp->r_symlink.contents = linkdata; 4601 rp->r_symlink.len = uio_len; 4602 rp->r_symlink.size = len; 4603 mutex_exit(&rp->r_statelock); 4604 } else { 4605 mutex_exit(&rp->r_statelock); 4606 kmem_free(linkdata, len); 4607 } 4608 } else { 4609 kmem_free(linkdata, len); 4610 } 4611 } 4612 if (res.status == NFS4_OK) { 4613 resop++; /* getattr res */ 4614 garp = &resop->nfs_resop4_u.opgetattr.ga_res; 4615 } 4616 e.error = nfs4_update_attrcache(res.status, garp, t, vp, cr); 4617 4618 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4619 4620 /* 4621 * The over the wire error for attempting to readlink something 4622 * other than a symbolic link is ENXIO. However, we need to 4623 * return EINVAL instead of ENXIO, so we map it here. 4624 */ 4625 return (e.error == ENXIO ? EINVAL : e.error); 4626 } 4627 4628 /* 4629 * Flush local dirty pages to stable storage on the server. 4630 * 4631 * If FNODSYNC is specified, then there is nothing to do because 4632 * metadata changes are not cached on the client before being 4633 * sent to the server. 4634 */ 4635 /* ARGSUSED */ 4636 static int 4637 nfs4_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 4638 { 4639 int error; 4640 4641 if ((syncflag & FNODSYNC) || IS_SWAPVP(vp)) 4642 return (0); 4643 if (nfs_zone() != VTOMI4(vp)->mi_zone) 4644 return (EIO); 4645 error = nfs4_putpage_commit(vp, (offset_t)0, 0, cr); 4646 if (!error) 4647 error = VTOR4(vp)->r_error; 4648 return (error); 4649 } 4650 4651 /* 4652 * Weirdness: if the file was removed or the target of a rename 4653 * operation while it was open, it got renamed instead. Here we 4654 * remove the renamed file. 4655 */ 4656 /* ARGSUSED */ 4657 void 4658 nfs4_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 4659 { 4660 rnode4_t *rp; 4661 4662 ASSERT(vp != DNLC_NO_VNODE); 4663 4664 rp = VTOR4(vp); 4665 4666 if (IS_SHADOW(vp, rp)) { 4667 sv_inactive(vp); 4668 return; 4669 } 4670 4671 /* 4672 * If this is coming from the wrong zone, we let someone in the right 4673 * zone take care of it asynchronously. We can get here due to 4674 * VN_RELE() being called from pageout() or fsflush(). This call may 4675 * potentially turn into an expensive no-op if, for instance, v_count 4676 * gets incremented in the meantime, but it's still correct. 4677 */ 4678 if (nfs_zone() != VTOMI4(vp)->mi_zone) { 4679 nfs4_async_inactive(vp, cr); 4680 return; 4681 } 4682 4683 /* 4684 * Some of the cleanup steps might require over-the-wire 4685 * operations. Since VOP_INACTIVE can get called as a result of 4686 * other over-the-wire operations (e.g., an attribute cache update 4687 * can lead to a DNLC purge), doing those steps now would lead to a 4688 * nested call to the recovery framework, which can deadlock. So 4689 * do any over-the-wire cleanups asynchronously, in a separate 4690 * thread. 4691 */ 4692 4693 mutex_enter(&rp->r_os_lock); 4694 mutex_enter(&rp->r_statelock); 4695 mutex_enter(&rp->r_statev4_lock); 4696 4697 if (vp->v_type == VREG && list_head(&rp->r_open_streams) != NULL) { 4698 mutex_exit(&rp->r_statev4_lock); 4699 mutex_exit(&rp->r_statelock); 4700 mutex_exit(&rp->r_os_lock); 4701 nfs4_async_inactive(vp, cr); 4702 return; 4703 } 4704 4705 if (rp->r_deleg_type == OPEN_DELEGATE_READ || 4706 rp->r_deleg_type == OPEN_DELEGATE_WRITE) { 4707 mutex_exit(&rp->r_statev4_lock); 4708 mutex_exit(&rp->r_statelock); 4709 mutex_exit(&rp->r_os_lock); 4710 nfs4_async_inactive(vp, cr); 4711 return; 4712 } 4713 4714 if (rp->r_unldvp != NULL) { 4715 mutex_exit(&rp->r_statev4_lock); 4716 mutex_exit(&rp->r_statelock); 4717 mutex_exit(&rp->r_os_lock); 4718 nfs4_async_inactive(vp, cr); 4719 return; 4720 } 4721 mutex_exit(&rp->r_statev4_lock); 4722 mutex_exit(&rp->r_statelock); 4723 mutex_exit(&rp->r_os_lock); 4724 4725 rp4_addfree(rp, cr); 4726 } 4727 4728 /* 4729 * nfs4_inactive_otw - nfs4_inactive, plus over-the-wire calls to free up 4730 * various bits of state. The caller must not refer to vp after this call. 4731 */ 4732 4733 void 4734 nfs4_inactive_otw(vnode_t *vp, cred_t *cr) 4735 { 4736 rnode4_t *rp = VTOR4(vp); 4737 nfs4_recov_state_t recov_state; 4738 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 4739 vnode_t *unldvp; 4740 char *unlname; 4741 cred_t *unlcred; 4742 COMPOUND4args_clnt args; 4743 COMPOUND4res_clnt res, *resp; 4744 nfs_argop4 argop[2]; 4745 int doqueue; 4746 #ifdef DEBUG 4747 char *name; 4748 #endif 4749 4750 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 4751 ASSERT(!IS_SHADOW(vp, rp)); 4752 4753 #ifdef DEBUG 4754 name = fn_name(VTOSV(vp)->sv_name); 4755 NFS4_DEBUG(nfs4_client_inactive_debug, (CE_NOTE, "nfs4_inactive_otw: " 4756 "release vnode %s", name)); 4757 kmem_free(name, MAXNAMELEN); 4758 #endif 4759 4760 if (vp->v_type == VREG) { 4761 bool_t recov_failed = FALSE; 4762 4763 e.error = nfs4close_all(vp, cr); 4764 if (e.error) { 4765 /* Check to see if recovery failed */ 4766 mutex_enter(&(VTOMI4(vp)->mi_lock)); 4767 if (VTOMI4(vp)->mi_flags & MI4_RECOV_FAIL) 4768 recov_failed = TRUE; 4769 mutex_exit(&(VTOMI4(vp)->mi_lock)); 4770 if (!recov_failed) { 4771 mutex_enter(&rp->r_statelock); 4772 if (rp->r_flags & R4RECOVERR) 4773 recov_failed = TRUE; 4774 mutex_exit(&rp->r_statelock); 4775 } 4776 if (recov_failed) { 4777 NFS4_DEBUG(nfs4_client_recov_debug, 4778 (CE_NOTE, "nfs4_inactive_otw: " 4779 "close failed (recovery failure)")); 4780 } 4781 } 4782 } 4783 4784 redo: 4785 if (rp->r_unldvp == NULL) { 4786 rp4_addfree(rp, cr); 4787 return; 4788 } 4789 4790 /* 4791 * Save the vnode pointer for the directory where the 4792 * unlinked-open file got renamed, then set it to NULL 4793 * to prevent another thread from getting here before 4794 * we're done with the remove. While we have the 4795 * statelock, make local copies of the pertinent rnode 4796 * fields. If we weren't to do this in an atomic way, the 4797 * the unl* fields could become inconsistent with respect 4798 * to each other due to a race condition between this 4799 * code and nfs_remove(). See bug report 1034328. 4800 */ 4801 mutex_enter(&rp->r_statelock); 4802 if (rp->r_unldvp == NULL) { 4803 mutex_exit(&rp->r_statelock); 4804 rp4_addfree(rp, cr); 4805 return; 4806 } 4807 4808 unldvp = rp->r_unldvp; 4809 rp->r_unldvp = NULL; 4810 unlname = rp->r_unlname; 4811 rp->r_unlname = NULL; 4812 unlcred = rp->r_unlcred; 4813 rp->r_unlcred = NULL; 4814 mutex_exit(&rp->r_statelock); 4815 4816 /* 4817 * If there are any dirty pages left, then flush 4818 * them. This is unfortunate because they just 4819 * may get thrown away during the remove operation, 4820 * but we have to do this for correctness. 4821 */ 4822 if (nfs4_has_pages(vp) && 4823 ((rp->r_flags & R4DIRTY) || rp->r_count > 0)) { 4824 ASSERT(vp->v_type != VCHR); 4825 e.error = nfs4_putpage(vp, (u_offset_t)0, 0, 0, cr, NULL); 4826 if (e.error) { 4827 mutex_enter(&rp->r_statelock); 4828 if (!rp->r_error) 4829 rp->r_error = e.error; 4830 mutex_exit(&rp->r_statelock); 4831 } 4832 } 4833 4834 recov_state.rs_flags = 0; 4835 recov_state.rs_num_retry_despite_err = 0; 4836 recov_retry_remove: 4837 /* 4838 * Do the remove operation on the renamed file 4839 */ 4840 args.ctag = TAG_INACTIVE; 4841 4842 /* 4843 * Remove ops: putfh dir; remove 4844 */ 4845 args.array_len = 2; 4846 args.array = argop; 4847 4848 e.error = nfs4_start_op(VTOMI4(unldvp), unldvp, NULL, &recov_state); 4849 if (e.error) { 4850 kmem_free(unlname, MAXNAMELEN); 4851 crfree(unlcred); 4852 VN_RELE(unldvp); 4853 /* 4854 * Try again; this time around r_unldvp will be NULL, so we'll 4855 * just call rp4_addfree() and return. 4856 */ 4857 goto redo; 4858 } 4859 4860 /* putfh directory */ 4861 argop[0].argop = OP_CPUTFH; 4862 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(unldvp)->r_fh; 4863 4864 /* remove */ 4865 argop[1].argop = OP_CREMOVE; 4866 argop[1].nfs_argop4_u.opcremove.ctarget = unlname; 4867 4868 doqueue = 1; 4869 resp = &res; 4870 4871 #if 0 /* notyet */ 4872 /* 4873 * Can't do this yet. We may be being called from 4874 * dnlc_purge_XXX while that routine is holding a 4875 * mutex lock to the nc_rele list. The calls to 4876 * nfs3_cache_wcc_data may result in calls to 4877 * dnlc_purge_XXX. This will result in a deadlock. 4878 */ 4879 rfs4call(VTOMI4(unldvp), &args, &res, unlcred, &doqueue, 0, &e); 4880 if (e.error) { 4881 PURGE_ATTRCACHE4(unldvp); 4882 resp = NULL; 4883 } else if (res.status) { 4884 e.error = geterrno4(res.status); 4885 PURGE_ATTRCACHE4(unldvp); 4886 /* 4887 * This code is inactive right now 4888 * but if made active there should 4889 * be a nfs4_end_op() call before 4890 * nfs4_purge_stale_fh to avoid start_op() 4891 * deadlock. See BugId: 4948726 4892 */ 4893 nfs4_purge_stale_fh(error, unldvp, cr); 4894 } else { 4895 nfs_resop4 *resop; 4896 REMOVE4res *rm_res; 4897 4898 resop = &res.array[1]; 4899 rm_res = &resop->nfs_resop4_u.opremove; 4900 /* 4901 * Update directory cache attribute, 4902 * readdir and dnlc caches. 4903 */ 4904 nfs4_update_dircaches(&rm_res->cinfo, unldvp, NULL, NULL, NULL); 4905 } 4906 #else 4907 rfs4call(VTOMI4(unldvp), &args, &res, unlcred, &doqueue, 0, &e); 4908 4909 PURGE_ATTRCACHE4(unldvp); 4910 #endif 4911 4912 if (nfs4_needs_recovery(&e, FALSE, unldvp->v_vfsp)) { 4913 if (nfs4_start_recovery(&e, VTOMI4(unldvp), unldvp, NULL, 4914 NULL, NULL, OP_REMOVE, NULL, NULL, NULL) == FALSE) { 4915 if (!e.error) 4916 (void) xdr_free(xdr_COMPOUND4res_clnt, 4917 (caddr_t)&res); 4918 nfs4_end_op(VTOMI4(unldvp), unldvp, NULL, 4919 &recov_state, TRUE); 4920 goto recov_retry_remove; 4921 } 4922 } 4923 nfs4_end_op(VTOMI4(unldvp), unldvp, NULL, &recov_state, FALSE); 4924 4925 /* 4926 * Release stuff held for the remove 4927 */ 4928 VN_RELE(unldvp); 4929 if (!e.error && resp) 4930 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 4931 4932 kmem_free(unlname, MAXNAMELEN); 4933 crfree(unlcred); 4934 goto redo; 4935 } 4936 4937 /* 4938 * Remote file system operations having to do with directory manipulation. 4939 */ 4940 /* ARGSUSED3 */ 4941 int 4942 nfs4_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 4943 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 4944 int *direntflags, pathname_t *realpnp) 4945 { 4946 int error; 4947 vnode_t *vp, *avp = NULL; 4948 rnode4_t *drp; 4949 4950 *vpp = NULL; 4951 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 4952 return (EPERM); 4953 /* 4954 * if LOOKUP_XATTR, must replace dvp (object) with 4955 * object's attrdir before continuing with lookup 4956 */ 4957 if (flags & LOOKUP_XATTR) { 4958 error = nfs4lookup_xattr(dvp, nm, &avp, flags, cr); 4959 if (error) 4960 return (error); 4961 4962 dvp = avp; 4963 4964 /* 4965 * If lookup is for "", just return dvp now. The attrdir 4966 * has already been activated (from nfs4lookup_xattr), and 4967 * the caller will RELE the original dvp -- not 4968 * the attrdir. So, set vpp and return. 4969 * Currently, when the LOOKUP_XATTR flag is 4970 * passed to VOP_LOOKUP, the name is always empty, and 4971 * shortcircuiting here avoids 3 unneeded lock/unlock 4972 * pairs. 4973 * 4974 * If a non-empty name was provided, then it is the 4975 * attribute name, and it will be looked up below. 4976 */ 4977 if (*nm == '\0') { 4978 *vpp = dvp; 4979 return (0); 4980 } 4981 4982 /* 4983 * The vfs layer never sends a name when asking for the 4984 * attrdir, so we should never get here (unless of course 4985 * name is passed at some time in future -- at which time 4986 * we'll blow up here). 4987 */ 4988 ASSERT(0); 4989 } 4990 4991 drp = VTOR4(dvp); 4992 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) 4993 return (EINTR); 4994 4995 error = nfs4lookup(dvp, nm, vpp, cr, 0); 4996 nfs_rw_exit(&drp->r_rwlock); 4997 4998 /* 4999 * If vnode is a device, create special vnode. 5000 */ 5001 if (!error && ISVDEV((*vpp)->v_type)) { 5002 vp = *vpp; 5003 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 5004 VN_RELE(vp); 5005 } 5006 5007 return (error); 5008 } 5009 5010 /* ARGSUSED */ 5011 static int 5012 nfs4lookup_xattr(vnode_t *dvp, char *nm, vnode_t **vpp, int flags, cred_t *cr) 5013 { 5014 int error; 5015 rnode4_t *drp; 5016 int cflag = ((flags & CREATE_XATTR_DIR) != 0); 5017 mntinfo4_t *mi; 5018 5019 mi = VTOMI4(dvp); 5020 if (!(mi->mi_vfsp->vfs_flag & VFS_XATTR) && 5021 !vfs_has_feature(mi->mi_vfsp, VFSFT_SYSATTR_VIEWS)) 5022 return (EINVAL); 5023 5024 drp = VTOR4(dvp); 5025 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) 5026 return (EINTR); 5027 5028 mutex_enter(&drp->r_statelock); 5029 /* 5030 * If the server doesn't support xattrs just return EINVAL 5031 */ 5032 if (drp->r_xattr_dir == NFS4_XATTR_DIR_NOTSUPP) { 5033 mutex_exit(&drp->r_statelock); 5034 nfs_rw_exit(&drp->r_rwlock); 5035 return (EINVAL); 5036 } 5037 5038 /* 5039 * If there is a cached xattr directory entry, 5040 * use it as long as the attributes are valid. If the 5041 * attributes are not valid, take the simple approach and 5042 * free the cached value and re-fetch a new value. 5043 * 5044 * We don't negative entry cache for now, if we did we 5045 * would need to check if the file has changed on every 5046 * lookup. But xattrs don't exist very often and failing 5047 * an openattr is not much more expensive than and NVERIFY or GETATTR 5048 * so do an openattr over the wire for now. 5049 */ 5050 if (drp->r_xattr_dir != NULL) { 5051 if (ATTRCACHE4_VALID(dvp)) { 5052 VN_HOLD(drp->r_xattr_dir); 5053 *vpp = drp->r_xattr_dir; 5054 mutex_exit(&drp->r_statelock); 5055 nfs_rw_exit(&drp->r_rwlock); 5056 return (0); 5057 } 5058 VN_RELE(drp->r_xattr_dir); 5059 drp->r_xattr_dir = NULL; 5060 } 5061 mutex_exit(&drp->r_statelock); 5062 5063 error = nfs4openattr(dvp, vpp, cflag, cr); 5064 5065 nfs_rw_exit(&drp->r_rwlock); 5066 5067 return (error); 5068 } 5069 5070 static int 5071 nfs4lookup(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr, int skipdnlc) 5072 { 5073 int error; 5074 rnode4_t *drp; 5075 5076 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 5077 5078 /* 5079 * If lookup is for "", just return dvp. Don't need 5080 * to send it over the wire, look it up in the dnlc, 5081 * or perform any access checks. 5082 */ 5083 if (*nm == '\0') { 5084 VN_HOLD(dvp); 5085 *vpp = dvp; 5086 return (0); 5087 } 5088 5089 /* 5090 * Can't do lookups in non-directories. 5091 */ 5092 if (dvp->v_type != VDIR) 5093 return (ENOTDIR); 5094 5095 /* 5096 * If lookup is for ".", just return dvp. Don't need 5097 * to send it over the wire or look it up in the dnlc, 5098 * just need to check access. 5099 */ 5100 if (nm[0] == '.' && nm[1] == '\0') { 5101 error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5102 if (error) 5103 return (error); 5104 VN_HOLD(dvp); 5105 *vpp = dvp; 5106 return (0); 5107 } 5108 5109 drp = VTOR4(dvp); 5110 if (!(drp->r_flags & R4LOOKUP)) { 5111 mutex_enter(&drp->r_statelock); 5112 drp->r_flags |= R4LOOKUP; 5113 mutex_exit(&drp->r_statelock); 5114 } 5115 5116 *vpp = NULL; 5117 /* 5118 * Lookup this name in the DNLC. If there is no entry 5119 * lookup over the wire. 5120 */ 5121 if (!skipdnlc) 5122 *vpp = dnlc_lookup(dvp, nm); 5123 if (*vpp == NULL) { 5124 /* 5125 * We need to go over the wire to lookup the name. 5126 */ 5127 return (nfs4lookupnew_otw(dvp, nm, vpp, cr)); 5128 } 5129 5130 /* 5131 * We hit on the dnlc 5132 */ 5133 if (*vpp != DNLC_NO_VNODE || 5134 (dvp->v_vfsp->vfs_flag & VFS_RDONLY)) { 5135 /* 5136 * But our attrs may not be valid. 5137 */ 5138 if (ATTRCACHE4_VALID(dvp)) { 5139 error = nfs4_waitfor_purge_complete(dvp); 5140 if (error) { 5141 VN_RELE(*vpp); 5142 *vpp = NULL; 5143 return (error); 5144 } 5145 5146 /* 5147 * If after the purge completes, check to make sure 5148 * our attrs are still valid. 5149 */ 5150 if (ATTRCACHE4_VALID(dvp)) { 5151 /* 5152 * If we waited for a purge we may have 5153 * lost our vnode so look it up again. 5154 */ 5155 VN_RELE(*vpp); 5156 *vpp = dnlc_lookup(dvp, nm); 5157 if (*vpp == NULL) 5158 return (nfs4lookupnew_otw(dvp, 5159 nm, vpp, cr)); 5160 5161 /* 5162 * The access cache should almost always hit 5163 */ 5164 error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5165 5166 if (error) { 5167 VN_RELE(*vpp); 5168 *vpp = NULL; 5169 return (error); 5170 } 5171 if (*vpp == DNLC_NO_VNODE) { 5172 VN_RELE(*vpp); 5173 *vpp = NULL; 5174 return (ENOENT); 5175 } 5176 return (0); 5177 } 5178 } 5179 } 5180 5181 ASSERT(*vpp != NULL); 5182 5183 /* 5184 * We may have gotten here we have one of the following cases: 5185 * 1) vpp != DNLC_NO_VNODE, our attrs have timed out so we 5186 * need to validate them. 5187 * 2) vpp == DNLC_NO_VNODE, a negative entry that we always 5188 * must validate. 5189 * 5190 * Go to the server and check if the directory has changed, if 5191 * it hasn't we are done and can use the dnlc entry. 5192 */ 5193 return (nfs4lookupvalidate_otw(dvp, nm, vpp, cr)); 5194 } 5195 5196 /* 5197 * Go to the server and check if the directory has changed, if 5198 * it hasn't we are done and can use the dnlc entry. If it 5199 * has changed we get a new copy of its attributes and check 5200 * the access for VEXEC, then relookup the filename and 5201 * get its filehandle and attributes. 5202 * 5203 * PUTFH dfh NVERIFY GETATTR ACCESS LOOKUP GETFH GETATTR 5204 * if the NVERIFY failed we must 5205 * purge the caches 5206 * cache new attributes (will set r_time_attr_inval) 5207 * cache new access 5208 * recheck VEXEC access 5209 * add name to dnlc, possibly negative 5210 * if LOOKUP succeeded 5211 * cache new attributes 5212 * else 5213 * set a new r_time_attr_inval for dvp 5214 * check to make sure we have access 5215 * 5216 * The vpp returned is the vnode passed in if the directory is valid, 5217 * a new vnode if successful lookup, or NULL on error. 5218 */ 5219 static int 5220 nfs4lookupvalidate_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr) 5221 { 5222 COMPOUND4args_clnt args; 5223 COMPOUND4res_clnt res; 5224 fattr4 *ver_fattr; 5225 fattr4_change dchange; 5226 int32_t *ptr; 5227 int argoplist_size = 7 * sizeof (nfs_argop4); 5228 nfs_argop4 *argop; 5229 int doqueue; 5230 mntinfo4_t *mi; 5231 nfs4_recov_state_t recov_state; 5232 hrtime_t t; 5233 int isdotdot; 5234 vnode_t *nvp; 5235 nfs_fh4 *fhp; 5236 nfs4_sharedfh_t *sfhp; 5237 nfs4_access_type_t cacc; 5238 rnode4_t *nrp; 5239 rnode4_t *drp = VTOR4(dvp); 5240 nfs4_ga_res_t *garp = NULL; 5241 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 5242 5243 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 5244 ASSERT(nm != NULL); 5245 ASSERT(nm[0] != '\0'); 5246 ASSERT(dvp->v_type == VDIR); 5247 ASSERT(nm[0] != '.' || nm[1] != '\0'); 5248 ASSERT(*vpp != NULL); 5249 5250 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') { 5251 isdotdot = 1; 5252 args.ctag = TAG_LOOKUP_VPARENT; 5253 } else { 5254 /* 5255 * If dvp were a stub, it should have triggered and caused 5256 * a mount for us to get this far. 5257 */ 5258 ASSERT(!RP_ISSTUB(VTOR4(dvp))); 5259 5260 isdotdot = 0; 5261 args.ctag = TAG_LOOKUP_VALID; 5262 } 5263 5264 mi = VTOMI4(dvp); 5265 recov_state.rs_flags = 0; 5266 recov_state.rs_num_retry_despite_err = 0; 5267 5268 nvp = NULL; 5269 5270 /* Save the original mount point security information */ 5271 (void) save_mnt_secinfo(mi->mi_curr_serv); 5272 5273 recov_retry: 5274 e.error = nfs4_start_fop(mi, dvp, NULL, OH_LOOKUP, 5275 &recov_state, NULL); 5276 if (e.error) { 5277 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5278 VN_RELE(*vpp); 5279 *vpp = NULL; 5280 return (e.error); 5281 } 5282 5283 argop = kmem_alloc(argoplist_size, KM_SLEEP); 5284 5285 /* PUTFH dfh NVERIFY GETATTR ACCESS LOOKUP GETFH GETATTR */ 5286 args.array_len = 7; 5287 args.array = argop; 5288 5289 /* 0. putfh file */ 5290 argop[0].argop = OP_CPUTFH; 5291 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(dvp)->r_fh; 5292 5293 /* 1. nverify the change info */ 5294 argop[1].argop = OP_NVERIFY; 5295 ver_fattr = &argop[1].nfs_argop4_u.opnverify.obj_attributes; 5296 ver_fattr->attrmask = FATTR4_CHANGE_MASK; 5297 ver_fattr->attrlist4 = (char *)&dchange; 5298 ptr = (int32_t *)&dchange; 5299 IXDR_PUT_HYPER(ptr, VTOR4(dvp)->r_change); 5300 ver_fattr->attrlist4_len = sizeof (fattr4_change); 5301 5302 /* 2. getattr directory */ 5303 argop[2].argop = OP_GETATTR; 5304 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5305 argop[2].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5306 5307 /* 3. access directory */ 5308 argop[3].argop = OP_ACCESS; 5309 argop[3].nfs_argop4_u.opaccess.access = ACCESS4_READ | ACCESS4_DELETE | 5310 ACCESS4_MODIFY | ACCESS4_EXTEND | ACCESS4_LOOKUP; 5311 5312 /* 4. lookup name */ 5313 if (isdotdot) { 5314 argop[4].argop = OP_LOOKUPP; 5315 } else { 5316 argop[4].argop = OP_CLOOKUP; 5317 argop[4].nfs_argop4_u.opclookup.cname = nm; 5318 } 5319 5320 /* 5. resulting file handle */ 5321 argop[5].argop = OP_GETFH; 5322 5323 /* 6. resulting file attributes */ 5324 argop[6].argop = OP_GETATTR; 5325 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5326 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5327 5328 doqueue = 1; 5329 t = gethrtime(); 5330 5331 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e); 5332 5333 if (!isdotdot && res.status == NFS4ERR_MOVED) { 5334 e.error = nfs4_setup_referral(dvp, nm, vpp, cr); 5335 if (e.error != 0 && *vpp != NULL) 5336 VN_RELE(*vpp); 5337 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5338 &recov_state, FALSE); 5339 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5340 kmem_free(argop, argoplist_size); 5341 return (e.error); 5342 } 5343 5344 if (nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp)) { 5345 /* 5346 * For WRONGSEC of a non-dotdot case, send secinfo directly 5347 * from this thread, do not go thru the recovery thread since 5348 * we need the nm information. 5349 * 5350 * Not doing dotdot case because there is no specification 5351 * for (PUTFH, SECINFO "..") yet. 5352 */ 5353 if (!isdotdot && res.status == NFS4ERR_WRONGSEC) { 5354 if ((e.error = nfs4_secinfo_vnode_otw(dvp, nm, cr))) 5355 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5356 &recov_state, FALSE); 5357 else 5358 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5359 &recov_state, TRUE); 5360 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5361 kmem_free(argop, argoplist_size); 5362 if (!e.error) 5363 goto recov_retry; 5364 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5365 VN_RELE(*vpp); 5366 *vpp = NULL; 5367 return (e.error); 5368 } 5369 5370 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL, 5371 OP_LOOKUP, NULL, NULL, NULL) == FALSE) { 5372 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5373 &recov_state, TRUE); 5374 5375 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5376 kmem_free(argop, argoplist_size); 5377 goto recov_retry; 5378 } 5379 } 5380 5381 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, &recov_state, FALSE); 5382 5383 if (e.error || res.array_len == 0) { 5384 /* 5385 * If e.error isn't set, then reply has no ops (or we couldn't 5386 * be here). The only legal way to reply without an op array 5387 * is via NFS4ERR_MINOR_VERS_MISMATCH. An ops array should 5388 * be in the reply for all other status values. 5389 * 5390 * For valid replies without an ops array, return ENOTSUP 5391 * (geterrno4 xlation of VERS_MISMATCH). For illegal replies, 5392 * return EIO -- don't trust status. 5393 */ 5394 if (e.error == 0) 5395 e.error = (res.status == NFS4ERR_MINOR_VERS_MISMATCH) ? 5396 ENOTSUP : EIO; 5397 VN_RELE(*vpp); 5398 *vpp = NULL; 5399 kmem_free(argop, argoplist_size); 5400 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5401 return (e.error); 5402 } 5403 5404 if (res.status != NFS4ERR_SAME) { 5405 e.error = geterrno4(res.status); 5406 5407 /* 5408 * The NVERIFY "failed" so the directory has changed 5409 * First make sure PUTFH succeeded and NVERIFY "failed" 5410 * cleanly. 5411 */ 5412 if ((res.array[0].nfs_resop4_u.opputfh.status != NFS4_OK) || 5413 (res.array[1].nfs_resop4_u.opnverify.status != NFS4_OK)) { 5414 nfs4_purge_stale_fh(e.error, dvp, cr); 5415 VN_RELE(*vpp); 5416 *vpp = NULL; 5417 goto exit; 5418 } 5419 5420 /* 5421 * We know the NVERIFY "failed" so we must: 5422 * purge the caches (access and indirectly dnlc if needed) 5423 */ 5424 nfs4_purge_caches(dvp, NFS4_NOPURGE_DNLC, cr, TRUE); 5425 5426 if (res.array[2].nfs_resop4_u.opgetattr.status != NFS4_OK) { 5427 nfs4_purge_stale_fh(e.error, dvp, cr); 5428 VN_RELE(*vpp); 5429 *vpp = NULL; 5430 goto exit; 5431 } 5432 5433 /* 5434 * Install new cached attributes for the directory 5435 */ 5436 nfs4_attr_cache(dvp, 5437 &res.array[2].nfs_resop4_u.opgetattr.ga_res, 5438 t, cr, FALSE, NULL); 5439 5440 if (res.array[3].nfs_resop4_u.opaccess.status != NFS4_OK) { 5441 nfs4_purge_stale_fh(e.error, dvp, cr); 5442 VN_RELE(*vpp); 5443 *vpp = NULL; 5444 e.error = geterrno4(res.status); 5445 goto exit; 5446 } 5447 5448 /* 5449 * Now we know the directory is valid, 5450 * cache new directory access 5451 */ 5452 nfs4_access_cache(drp, 5453 args.array[3].nfs_argop4_u.opaccess.access, 5454 res.array[3].nfs_resop4_u.opaccess.access, cr); 5455 5456 /* 5457 * recheck VEXEC access 5458 */ 5459 cacc = nfs4_access_check(drp, ACCESS4_LOOKUP, cr); 5460 if (cacc != NFS4_ACCESS_ALLOWED) { 5461 /* 5462 * Directory permissions might have been revoked 5463 */ 5464 if (cacc == NFS4_ACCESS_DENIED) { 5465 e.error = EACCES; 5466 VN_RELE(*vpp); 5467 *vpp = NULL; 5468 goto exit; 5469 } 5470 5471 /* 5472 * Somehow we must not have asked for enough 5473 * so try a singleton ACCESS, should never happen. 5474 */ 5475 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5476 if (e.error) { 5477 VN_RELE(*vpp); 5478 *vpp = NULL; 5479 goto exit; 5480 } 5481 } 5482 5483 e.error = geterrno4(res.status); 5484 if (res.array[4].nfs_resop4_u.oplookup.status != NFS4_OK) { 5485 /* 5486 * The lookup failed, probably no entry 5487 */ 5488 if (e.error == ENOENT && nfs4_lookup_neg_cache) { 5489 dnlc_update(dvp, nm, DNLC_NO_VNODE); 5490 } else { 5491 /* 5492 * Might be some other error, so remove 5493 * the dnlc entry to make sure we start all 5494 * over again, next time. 5495 */ 5496 dnlc_remove(dvp, nm); 5497 } 5498 VN_RELE(*vpp); 5499 *vpp = NULL; 5500 goto exit; 5501 } 5502 5503 if (res.array[5].nfs_resop4_u.opgetfh.status != NFS4_OK) { 5504 /* 5505 * The file exists but we can't get its fh for 5506 * some unknown reason. Remove it from the dnlc 5507 * and error out to be safe. 5508 */ 5509 dnlc_remove(dvp, nm); 5510 VN_RELE(*vpp); 5511 *vpp = NULL; 5512 goto exit; 5513 } 5514 fhp = &res.array[5].nfs_resop4_u.opgetfh.object; 5515 if (fhp->nfs_fh4_len == 0) { 5516 /* 5517 * The file exists but a bogus fh 5518 * some unknown reason. Remove it from the dnlc 5519 * and error out to be safe. 5520 */ 5521 e.error = ENOENT; 5522 dnlc_remove(dvp, nm); 5523 VN_RELE(*vpp); 5524 *vpp = NULL; 5525 goto exit; 5526 } 5527 sfhp = sfh4_get(fhp, mi); 5528 5529 if (res.array[6].nfs_resop4_u.opgetattr.status == NFS4_OK) 5530 garp = &res.array[6].nfs_resop4_u.opgetattr.ga_res; 5531 5532 /* 5533 * Make the new rnode 5534 */ 5535 if (isdotdot) { 5536 e.error = nfs4_make_dotdot(sfhp, t, dvp, cr, &nvp, 1); 5537 if (e.error) { 5538 sfh4_rele(&sfhp); 5539 VN_RELE(*vpp); 5540 *vpp = NULL; 5541 goto exit; 5542 } 5543 /* 5544 * XXX if nfs4_make_dotdot uses an existing rnode 5545 * XXX it doesn't update the attributes. 5546 * XXX for now just save them again to save an OTW 5547 */ 5548 nfs4_attr_cache(nvp, garp, t, cr, FALSE, NULL); 5549 } else { 5550 nvp = makenfs4node(sfhp, garp, dvp->v_vfsp, t, cr, 5551 dvp, fn_get(VTOSV(dvp)->sv_name, nm, sfhp)); 5552 /* 5553 * If v_type == VNON, then garp was NULL because 5554 * the last op in the compound failed and makenfs4node 5555 * could not find the vnode for sfhp. It created 5556 * a new vnode, so we have nothing to purge here. 5557 */ 5558 if (nvp->v_type == VNON) { 5559 vattr_t vattr; 5560 5561 vattr.va_mask = AT_TYPE; 5562 /* 5563 * N.B. We've already called nfs4_end_fop above. 5564 */ 5565 e.error = nfs4getattr(nvp, &vattr, cr); 5566 if (e.error) { 5567 sfh4_rele(&sfhp); 5568 VN_RELE(*vpp); 5569 *vpp = NULL; 5570 VN_RELE(nvp); 5571 goto exit; 5572 } 5573 nvp->v_type = vattr.va_type; 5574 } 5575 } 5576 sfh4_rele(&sfhp); 5577 5578 nrp = VTOR4(nvp); 5579 mutex_enter(&nrp->r_statev4_lock); 5580 if (!nrp->created_v4) { 5581 mutex_exit(&nrp->r_statev4_lock); 5582 dnlc_update(dvp, nm, nvp); 5583 } else 5584 mutex_exit(&nrp->r_statev4_lock); 5585 5586 VN_RELE(*vpp); 5587 *vpp = nvp; 5588 } else { 5589 hrtime_t now; 5590 hrtime_t delta = 0; 5591 5592 e.error = 0; 5593 5594 /* 5595 * Because the NVERIFY "succeeded" we know that the 5596 * directory attributes are still valid 5597 * so update r_time_attr_inval 5598 */ 5599 now = gethrtime(); 5600 mutex_enter(&drp->r_statelock); 5601 if (!(mi->mi_flags & MI4_NOAC) && !(dvp->v_flag & VNOCACHE)) { 5602 delta = now - drp->r_time_attr_saved; 5603 if (delta < mi->mi_acdirmin) 5604 delta = mi->mi_acdirmin; 5605 else if (delta > mi->mi_acdirmax) 5606 delta = mi->mi_acdirmax; 5607 } 5608 drp->r_time_attr_inval = now + delta; 5609 mutex_exit(&drp->r_statelock); 5610 dnlc_update(dvp, nm, *vpp); 5611 5612 /* 5613 * Even though we have a valid directory attr cache 5614 * and dnlc entry, we may not have access. 5615 * This should almost always hit the cache. 5616 */ 5617 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5618 if (e.error) { 5619 VN_RELE(*vpp); 5620 *vpp = NULL; 5621 } 5622 5623 if (*vpp == DNLC_NO_VNODE) { 5624 VN_RELE(*vpp); 5625 *vpp = NULL; 5626 e.error = ENOENT; 5627 } 5628 } 5629 5630 exit: 5631 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5632 kmem_free(argop, argoplist_size); 5633 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5634 return (e.error); 5635 } 5636 5637 /* 5638 * We need to go over the wire to lookup the name, but 5639 * while we are there verify the directory has not 5640 * changed but if it has, get new attributes and check access 5641 * 5642 * PUTFH dfh SAVEFH LOOKUP nm GETFH GETATTR RESTOREFH 5643 * NVERIFY GETATTR ACCESS 5644 * 5645 * With the results: 5646 * if the NVERIFY failed we must purge the caches, add new attributes, 5647 * and cache new access. 5648 * set a new r_time_attr_inval 5649 * add name to dnlc, possibly negative 5650 * if LOOKUP succeeded 5651 * cache new attributes 5652 */ 5653 static int 5654 nfs4lookupnew_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr) 5655 { 5656 COMPOUND4args_clnt args; 5657 COMPOUND4res_clnt res; 5658 fattr4 *ver_fattr; 5659 fattr4_change dchange; 5660 int32_t *ptr; 5661 nfs4_ga_res_t *garp = NULL; 5662 int argoplist_size = 9 * sizeof (nfs_argop4); 5663 nfs_argop4 *argop; 5664 int doqueue; 5665 mntinfo4_t *mi; 5666 nfs4_recov_state_t recov_state; 5667 hrtime_t t; 5668 int isdotdot; 5669 vnode_t *nvp; 5670 nfs_fh4 *fhp; 5671 nfs4_sharedfh_t *sfhp; 5672 nfs4_access_type_t cacc; 5673 rnode4_t *nrp; 5674 rnode4_t *drp = VTOR4(dvp); 5675 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 5676 5677 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 5678 ASSERT(nm != NULL); 5679 ASSERT(nm[0] != '\0'); 5680 ASSERT(dvp->v_type == VDIR); 5681 ASSERT(nm[0] != '.' || nm[1] != '\0'); 5682 ASSERT(*vpp == NULL); 5683 5684 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') { 5685 isdotdot = 1; 5686 args.ctag = TAG_LOOKUP_PARENT; 5687 } else { 5688 /* 5689 * If dvp were a stub, it should have triggered and caused 5690 * a mount for us to get this far. 5691 */ 5692 ASSERT(!RP_ISSTUB(VTOR4(dvp))); 5693 5694 isdotdot = 0; 5695 args.ctag = TAG_LOOKUP; 5696 } 5697 5698 mi = VTOMI4(dvp); 5699 recov_state.rs_flags = 0; 5700 recov_state.rs_num_retry_despite_err = 0; 5701 5702 nvp = NULL; 5703 5704 /* Save the original mount point security information */ 5705 (void) save_mnt_secinfo(mi->mi_curr_serv); 5706 5707 recov_retry: 5708 e.error = nfs4_start_fop(mi, dvp, NULL, OH_LOOKUP, 5709 &recov_state, NULL); 5710 if (e.error) { 5711 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5712 return (e.error); 5713 } 5714 5715 argop = kmem_alloc(argoplist_size, KM_SLEEP); 5716 5717 /* PUTFH SAVEFH LOOKUP GETFH GETATTR RESTOREFH NVERIFY GETATTR ACCESS */ 5718 args.array_len = 9; 5719 args.array = argop; 5720 5721 /* 0. putfh file */ 5722 argop[0].argop = OP_CPUTFH; 5723 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(dvp)->r_fh; 5724 5725 /* 1. savefh for the nverify */ 5726 argop[1].argop = OP_SAVEFH; 5727 5728 /* 2. lookup name */ 5729 if (isdotdot) { 5730 argop[2].argop = OP_LOOKUPP; 5731 } else { 5732 argop[2].argop = OP_CLOOKUP; 5733 argop[2].nfs_argop4_u.opclookup.cname = nm; 5734 } 5735 5736 /* 3. resulting file handle */ 5737 argop[3].argop = OP_GETFH; 5738 5739 /* 4. resulting file attributes */ 5740 argop[4].argop = OP_GETATTR; 5741 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5742 argop[4].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5743 5744 /* 5. restorefh back the directory for the nverify */ 5745 argop[5].argop = OP_RESTOREFH; 5746 5747 /* 6. nverify the change info */ 5748 argop[6].argop = OP_NVERIFY; 5749 ver_fattr = &argop[6].nfs_argop4_u.opnverify.obj_attributes; 5750 ver_fattr->attrmask = FATTR4_CHANGE_MASK; 5751 ver_fattr->attrlist4 = (char *)&dchange; 5752 ptr = (int32_t *)&dchange; 5753 IXDR_PUT_HYPER(ptr, VTOR4(dvp)->r_change); 5754 ver_fattr->attrlist4_len = sizeof (fattr4_change); 5755 5756 /* 7. getattr directory */ 5757 argop[7].argop = OP_GETATTR; 5758 argop[7].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5759 argop[7].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5760 5761 /* 8. access directory */ 5762 argop[8].argop = OP_ACCESS; 5763 argop[8].nfs_argop4_u.opaccess.access = ACCESS4_READ | ACCESS4_DELETE | 5764 ACCESS4_MODIFY | ACCESS4_EXTEND | ACCESS4_LOOKUP; 5765 5766 doqueue = 1; 5767 t = gethrtime(); 5768 5769 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e); 5770 5771 if (!isdotdot && res.status == NFS4ERR_MOVED) { 5772 e.error = nfs4_setup_referral(dvp, nm, vpp, cr); 5773 if (e.error != 0 && *vpp != NULL) 5774 VN_RELE(*vpp); 5775 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5776 &recov_state, FALSE); 5777 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5778 kmem_free(argop, argoplist_size); 5779 return (e.error); 5780 } 5781 5782 if (nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp)) { 5783 /* 5784 * For WRONGSEC of a non-dotdot case, send secinfo directly 5785 * from this thread, do not go thru the recovery thread since 5786 * we need the nm information. 5787 * 5788 * Not doing dotdot case because there is no specification 5789 * for (PUTFH, SECINFO "..") yet. 5790 */ 5791 if (!isdotdot && res.status == NFS4ERR_WRONGSEC) { 5792 if ((e.error = nfs4_secinfo_vnode_otw(dvp, nm, cr))) 5793 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5794 &recov_state, FALSE); 5795 else 5796 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5797 &recov_state, TRUE); 5798 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5799 kmem_free(argop, argoplist_size); 5800 if (!e.error) 5801 goto recov_retry; 5802 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5803 return (e.error); 5804 } 5805 5806 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL, 5807 OP_LOOKUP, NULL, NULL, NULL) == FALSE) { 5808 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5809 &recov_state, TRUE); 5810 5811 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5812 kmem_free(argop, argoplist_size); 5813 goto recov_retry; 5814 } 5815 } 5816 5817 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, &recov_state, FALSE); 5818 5819 if (e.error || res.array_len == 0) { 5820 /* 5821 * If e.error isn't set, then reply has no ops (or we couldn't 5822 * be here). The only legal way to reply without an op array 5823 * is via NFS4ERR_MINOR_VERS_MISMATCH. An ops array should 5824 * be in the reply for all other status values. 5825 * 5826 * For valid replies without an ops array, return ENOTSUP 5827 * (geterrno4 xlation of VERS_MISMATCH). For illegal replies, 5828 * return EIO -- don't trust status. 5829 */ 5830 if (e.error == 0) 5831 e.error = (res.status == NFS4ERR_MINOR_VERS_MISMATCH) ? 5832 ENOTSUP : EIO; 5833 5834 kmem_free(argop, argoplist_size); 5835 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5836 return (e.error); 5837 } 5838 5839 e.error = geterrno4(res.status); 5840 5841 /* 5842 * The PUTFH and SAVEFH may have failed. 5843 */ 5844 if ((res.array[0].nfs_resop4_u.opputfh.status != NFS4_OK) || 5845 (res.array[1].nfs_resop4_u.opsavefh.status != NFS4_OK)) { 5846 nfs4_purge_stale_fh(e.error, dvp, cr); 5847 goto exit; 5848 } 5849 5850 /* 5851 * Check if the file exists, if it does delay entering 5852 * into the dnlc until after we update the directory 5853 * attributes so we don't cause it to get purged immediately. 5854 */ 5855 if (res.array[2].nfs_resop4_u.oplookup.status != NFS4_OK) { 5856 /* 5857 * The lookup failed, probably no entry 5858 */ 5859 if (e.error == ENOENT && nfs4_lookup_neg_cache) 5860 dnlc_update(dvp, nm, DNLC_NO_VNODE); 5861 goto exit; 5862 } 5863 5864 if (res.array[3].nfs_resop4_u.opgetfh.status != NFS4_OK) { 5865 /* 5866 * The file exists but we can't get its fh for 5867 * some unknown reason. Error out to be safe. 5868 */ 5869 goto exit; 5870 } 5871 5872 fhp = &res.array[3].nfs_resop4_u.opgetfh.object; 5873 if (fhp->nfs_fh4_len == 0) { 5874 /* 5875 * The file exists but a bogus fh 5876 * some unknown reason. Error out to be safe. 5877 */ 5878 e.error = EIO; 5879 goto exit; 5880 } 5881 sfhp = sfh4_get(fhp, mi); 5882 5883 if (res.array[4].nfs_resop4_u.opgetattr.status != NFS4_OK) { 5884 sfh4_rele(&sfhp); 5885 goto exit; 5886 } 5887 garp = &res.array[4].nfs_resop4_u.opgetattr.ga_res; 5888 5889 /* 5890 * The RESTOREFH may have failed 5891 */ 5892 if (res.array[5].nfs_resop4_u.oprestorefh.status != NFS4_OK) { 5893 sfh4_rele(&sfhp); 5894 e.error = EIO; 5895 goto exit; 5896 } 5897 5898 if (res.array[6].nfs_resop4_u.opnverify.status != NFS4ERR_SAME) { 5899 /* 5900 * First make sure the NVERIFY failed as we expected, 5901 * if it didn't then be conservative and error out 5902 * as we can't trust the directory. 5903 */ 5904 if (res.array[6].nfs_resop4_u.opnverify.status != NFS4_OK) { 5905 sfh4_rele(&sfhp); 5906 e.error = EIO; 5907 goto exit; 5908 } 5909 5910 /* 5911 * We know the NVERIFY "failed" so the directory has changed, 5912 * so we must: 5913 * purge the caches (access and indirectly dnlc if needed) 5914 */ 5915 nfs4_purge_caches(dvp, NFS4_NOPURGE_DNLC, cr, TRUE); 5916 5917 if (res.array[7].nfs_resop4_u.opgetattr.status != NFS4_OK) { 5918 sfh4_rele(&sfhp); 5919 goto exit; 5920 } 5921 nfs4_attr_cache(dvp, 5922 &res.array[7].nfs_resop4_u.opgetattr.ga_res, 5923 t, cr, FALSE, NULL); 5924 5925 if (res.array[8].nfs_resop4_u.opaccess.status != NFS4_OK) { 5926 nfs4_purge_stale_fh(e.error, dvp, cr); 5927 sfh4_rele(&sfhp); 5928 e.error = geterrno4(res.status); 5929 goto exit; 5930 } 5931 5932 /* 5933 * Now we know the directory is valid, 5934 * cache new directory access 5935 */ 5936 nfs4_access_cache(drp, 5937 args.array[8].nfs_argop4_u.opaccess.access, 5938 res.array[8].nfs_resop4_u.opaccess.access, cr); 5939 5940 /* 5941 * recheck VEXEC access 5942 */ 5943 cacc = nfs4_access_check(drp, ACCESS4_LOOKUP, cr); 5944 if (cacc != NFS4_ACCESS_ALLOWED) { 5945 /* 5946 * Directory permissions might have been revoked 5947 */ 5948 if (cacc == NFS4_ACCESS_DENIED) { 5949 sfh4_rele(&sfhp); 5950 e.error = EACCES; 5951 goto exit; 5952 } 5953 5954 /* 5955 * Somehow we must not have asked for enough 5956 * so try a singleton ACCESS should never happen 5957 */ 5958 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5959 if (e.error) { 5960 sfh4_rele(&sfhp); 5961 goto exit; 5962 } 5963 } 5964 5965 e.error = geterrno4(res.status); 5966 } else { 5967 hrtime_t now; 5968 hrtime_t delta = 0; 5969 5970 e.error = 0; 5971 5972 /* 5973 * Because the NVERIFY "succeeded" we know that the 5974 * directory attributes are still valid 5975 * so update r_time_attr_inval 5976 */ 5977 now = gethrtime(); 5978 mutex_enter(&drp->r_statelock); 5979 if (!(mi->mi_flags & MI4_NOAC) && !(dvp->v_flag & VNOCACHE)) { 5980 delta = now - drp->r_time_attr_saved; 5981 if (delta < mi->mi_acdirmin) 5982 delta = mi->mi_acdirmin; 5983 else if (delta > mi->mi_acdirmax) 5984 delta = mi->mi_acdirmax; 5985 } 5986 drp->r_time_attr_inval = now + delta; 5987 mutex_exit(&drp->r_statelock); 5988 5989 /* 5990 * Even though we have a valid directory attr cache, 5991 * we may not have access. 5992 * This should almost always hit the cache. 5993 */ 5994 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5995 if (e.error) { 5996 sfh4_rele(&sfhp); 5997 goto exit; 5998 } 5999 } 6000 6001 /* 6002 * Now we have successfully completed the lookup, if the 6003 * directory has changed we now have the valid attributes. 6004 * We also know we have directory access. 6005 * Create the new rnode and insert it in the dnlc. 6006 */ 6007 if (isdotdot) { 6008 e.error = nfs4_make_dotdot(sfhp, t, dvp, cr, &nvp, 1); 6009 if (e.error) { 6010 sfh4_rele(&sfhp); 6011 goto exit; 6012 } 6013 /* 6014 * XXX if nfs4_make_dotdot uses an existing rnode 6015 * XXX it doesn't update the attributes. 6016 * XXX for now just save them again to save an OTW 6017 */ 6018 nfs4_attr_cache(nvp, garp, t, cr, FALSE, NULL); 6019 } else { 6020 nvp = makenfs4node(sfhp, garp, dvp->v_vfsp, t, cr, 6021 dvp, fn_get(VTOSV(dvp)->sv_name, nm, sfhp)); 6022 } 6023 sfh4_rele(&sfhp); 6024 6025 nrp = VTOR4(nvp); 6026 mutex_enter(&nrp->r_statev4_lock); 6027 if (!nrp->created_v4) { 6028 mutex_exit(&nrp->r_statev4_lock); 6029 dnlc_update(dvp, nm, nvp); 6030 } else 6031 mutex_exit(&nrp->r_statev4_lock); 6032 6033 *vpp = nvp; 6034 6035 exit: 6036 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6037 kmem_free(argop, argoplist_size); 6038 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 6039 return (e.error); 6040 } 6041 6042 #ifdef DEBUG 6043 void 6044 nfs4lookup_dump_compound(char *where, nfs_argop4 *argbase, int argcnt) 6045 { 6046 uint_t i, len; 6047 zoneid_t zoneid = getzoneid(); 6048 char *s; 6049 6050 zcmn_err(zoneid, CE_NOTE, "%s: dumping cmpd", where); 6051 for (i = 0; i < argcnt; i++) { 6052 nfs_argop4 *op = &argbase[i]; 6053 switch (op->argop) { 6054 case OP_CPUTFH: 6055 case OP_PUTFH: 6056 zcmn_err(zoneid, CE_NOTE, "\t op %d, putfh", i); 6057 break; 6058 case OP_PUTROOTFH: 6059 zcmn_err(zoneid, CE_NOTE, "\t op %d, putrootfh", i); 6060 break; 6061 case OP_CLOOKUP: 6062 s = op->nfs_argop4_u.opclookup.cname; 6063 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookup %s", i, s); 6064 break; 6065 case OP_LOOKUP: 6066 s = utf8_to_str(&op->nfs_argop4_u.oplookup.objname, 6067 &len, NULL); 6068 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookup %s", i, s); 6069 kmem_free(s, len); 6070 break; 6071 case OP_LOOKUPP: 6072 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookupp ..", i); 6073 break; 6074 case OP_GETFH: 6075 zcmn_err(zoneid, CE_NOTE, "\t op %d, getfh", i); 6076 break; 6077 case OP_GETATTR: 6078 zcmn_err(zoneid, CE_NOTE, "\t op %d, getattr", i); 6079 break; 6080 case OP_OPENATTR: 6081 zcmn_err(zoneid, CE_NOTE, "\t op %d, openattr", i); 6082 break; 6083 default: 6084 zcmn_err(zoneid, CE_NOTE, "\t op %d, opcode %d", i, 6085 op->argop); 6086 break; 6087 } 6088 } 6089 } 6090 #endif 6091 6092 /* 6093 * nfs4lookup_setup - constructs a multi-lookup compound request. 6094 * 6095 * Given the path "nm1/nm2/.../nmn", the following compound requests 6096 * may be created: 6097 * 6098 * Note: Getfh is not be needed because filehandle attr is mandatory, but it 6099 * is faster, for now. 6100 * 6101 * l4_getattrs indicates the type of compound requested. 6102 * 6103 * LKP4_NO_ATTRIBUTE - no attributes (used by secinfo): 6104 * 6105 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Lookup {nmn} } 6106 * 6107 * total number of ops is n + 1. 6108 * 6109 * LKP4_LAST_NAMED_ATTR - multi-component path for a named 6110 * attribute: create lookups plus one OPENATTR/GETFH/GETATTR 6111 * before the last component, and only get attributes 6112 * for the last component. Note that the second-to-last 6113 * pathname component is XATTR_RPATH, which does NOT go 6114 * over-the-wire as a lookup. 6115 * 6116 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Lookup {nmn-2}; 6117 * Openattr; Getfh; Getattr; Lookup {nmn}; Getfh; Getattr } 6118 * 6119 * and total number of ops is n + 5. 6120 * 6121 * LKP4_LAST_ATTRDIR - multi-component path for the hidden named 6122 * attribute directory: create lookups plus an OPENATTR 6123 * replacing the last lookup. Note that the last pathname 6124 * component is XATTR_RPATH, which does NOT go over-the-wire 6125 * as a lookup. 6126 * 6127 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Getfh; Getattr; 6128 * Openattr; Getfh; Getattr } 6129 * 6130 * and total number of ops is n + 5. 6131 * 6132 * LKP4_ALL_ATTRIBUTES - create lookups and get attributes for intermediate 6133 * nodes too. 6134 * 6135 * compound { Put*fh; Lookup {nm1}; Getfh; Getattr; 6136 * Lookup {nm2}; ... Lookup {nmn}; Getfh; Getattr } 6137 * 6138 * and total number of ops is 3*n + 1. 6139 * 6140 * All cases: returns the index in the arg array of the final LOOKUP op, or 6141 * -1 if no LOOKUPs were used. 6142 */ 6143 int 6144 nfs4lookup_setup(char *nm, lookup4_param_t *lookupargp, int needgetfh) 6145 { 6146 enum lkp4_attr_setup l4_getattrs = lookupargp->l4_getattrs; 6147 nfs_argop4 *argbase, *argop; 6148 int arglen, argcnt; 6149 int n = 1; /* number of components */ 6150 int nga = 1; /* number of Getattr's in request */ 6151 char c = '\0', *s, *p; 6152 int lookup_idx = -1; 6153 int argoplist_size; 6154 6155 /* set lookuparg response result to 0 */ 6156 lookupargp->resp->status = NFS4_OK; 6157 6158 /* skip leading "/" or "." e.g. ".//./" if there is */ 6159 for (; ; nm++) { 6160 if (*nm != '/' && *nm != '.') 6161 break; 6162 6163 /* ".." is counted as 1 component */ 6164 if (*nm == '.' && *(nm + 1) != '/') 6165 break; 6166 } 6167 6168 /* 6169 * Find n = number of components - nm must be null terminated 6170 * Skip "." components. 6171 */ 6172 if (*nm != '\0') 6173 for (n = 1, s = nm; *s != '\0'; s++) { 6174 if ((*s == '/') && (*(s + 1) != '/') && 6175 (*(s + 1) != '\0') && 6176 !(*(s + 1) == '.' && (*(s + 2) == '/' || 6177 *(s + 2) == '\0'))) 6178 n++; 6179 } 6180 else 6181 n = 0; 6182 6183 /* 6184 * nga is number of components that need Getfh+Getattr 6185 */ 6186 switch (l4_getattrs) { 6187 case LKP4_NO_ATTRIBUTES: 6188 nga = 0; 6189 break; 6190 case LKP4_ALL_ATTRIBUTES: 6191 nga = n; 6192 /* 6193 * Always have at least 1 getfh, getattr pair 6194 */ 6195 if (nga == 0) 6196 nga++; 6197 break; 6198 case LKP4_LAST_ATTRDIR: 6199 case LKP4_LAST_NAMED_ATTR: 6200 nga = n+1; 6201 break; 6202 } 6203 6204 /* 6205 * If change to use the filehandle attr instead of getfh 6206 * the following line can be deleted. 6207 */ 6208 nga *= 2; 6209 6210 /* 6211 * calculate number of ops in request as 6212 * header + trailer + lookups + getattrs 6213 */ 6214 arglen = lookupargp->header_len + lookupargp->trailer_len + n + nga; 6215 6216 argoplist_size = arglen * sizeof (nfs_argop4); 6217 argop = argbase = kmem_alloc(argoplist_size, KM_SLEEP); 6218 lookupargp->argsp->array = argop; 6219 6220 argcnt = lookupargp->header_len; 6221 argop += argcnt; 6222 6223 /* 6224 * loop and create a lookup op and possibly getattr/getfh for 6225 * each component. Skip "." components. 6226 */ 6227 for (s = nm; *s != '\0'; s = p) { 6228 /* 6229 * Set up a pathname struct for each component if needed 6230 */ 6231 while (*s == '/') 6232 s++; 6233 if (*s == '\0') 6234 break; 6235 6236 for (p = s; (*p != '/') && (*p != '\0'); p++) 6237 ; 6238 c = *p; 6239 *p = '\0'; 6240 6241 if (s[0] == '.' && s[1] == '\0') { 6242 *p = c; 6243 continue; 6244 } 6245 if (l4_getattrs == LKP4_LAST_ATTRDIR && 6246 strcmp(s, XATTR_RPATH) == 0) { 6247 /* getfh XXX may not be needed in future */ 6248 argop->argop = OP_GETFH; 6249 argop++; 6250 argcnt++; 6251 6252 /* getattr */ 6253 argop->argop = OP_GETATTR; 6254 argop->nfs_argop4_u.opgetattr.attr_request = 6255 lookupargp->ga_bits; 6256 argop->nfs_argop4_u.opgetattr.mi = 6257 lookupargp->mi; 6258 argop++; 6259 argcnt++; 6260 6261 /* openattr */ 6262 argop->argop = OP_OPENATTR; 6263 } else if (l4_getattrs == LKP4_LAST_NAMED_ATTR && 6264 strcmp(s, XATTR_RPATH) == 0) { 6265 /* openattr */ 6266 argop->argop = OP_OPENATTR; 6267 argop++; 6268 argcnt++; 6269 6270 /* getfh XXX may not be needed in future */ 6271 argop->argop = OP_GETFH; 6272 argop++; 6273 argcnt++; 6274 6275 /* getattr */ 6276 argop->argop = OP_GETATTR; 6277 argop->nfs_argop4_u.opgetattr.attr_request = 6278 lookupargp->ga_bits; 6279 argop->nfs_argop4_u.opgetattr.mi = 6280 lookupargp->mi; 6281 argop++; 6282 argcnt++; 6283 *p = c; 6284 continue; 6285 } else if (s[0] == '.' && s[1] == '.' && s[2] == '\0') { 6286 /* lookupp */ 6287 argop->argop = OP_LOOKUPP; 6288 } else { 6289 /* lookup */ 6290 argop->argop = OP_LOOKUP; 6291 (void) str_to_utf8(s, 6292 &argop->nfs_argop4_u.oplookup.objname); 6293 } 6294 lookup_idx = argcnt; 6295 argop++; 6296 argcnt++; 6297 6298 *p = c; 6299 6300 if (l4_getattrs == LKP4_ALL_ATTRIBUTES) { 6301 /* getfh XXX may not be needed in future */ 6302 argop->argop = OP_GETFH; 6303 argop++; 6304 argcnt++; 6305 6306 /* getattr */ 6307 argop->argop = OP_GETATTR; 6308 argop->nfs_argop4_u.opgetattr.attr_request = 6309 lookupargp->ga_bits; 6310 argop->nfs_argop4_u.opgetattr.mi = 6311 lookupargp->mi; 6312 argop++; 6313 argcnt++; 6314 } 6315 } 6316 6317 if ((l4_getattrs != LKP4_NO_ATTRIBUTES) && 6318 ((l4_getattrs != LKP4_ALL_ATTRIBUTES) || (lookup_idx < 0))) { 6319 if (needgetfh) { 6320 /* stick in a post-lookup getfh */ 6321 argop->argop = OP_GETFH; 6322 argcnt++; 6323 argop++; 6324 } 6325 /* post-lookup getattr */ 6326 argop->argop = OP_GETATTR; 6327 argop->nfs_argop4_u.opgetattr.attr_request = 6328 lookupargp->ga_bits; 6329 argop->nfs_argop4_u.opgetattr.mi = lookupargp->mi; 6330 argcnt++; 6331 } 6332 argcnt += lookupargp->trailer_len; /* actual op count */ 6333 lookupargp->argsp->array_len = argcnt; 6334 lookupargp->arglen = arglen; 6335 6336 #ifdef DEBUG 6337 if (nfs4_client_lookup_debug) 6338 nfs4lookup_dump_compound("nfs4lookup_setup", argbase, argcnt); 6339 #endif 6340 6341 return (lookup_idx); 6342 } 6343 6344 static int 6345 nfs4openattr(vnode_t *dvp, vnode_t **avp, int cflag, cred_t *cr) 6346 { 6347 COMPOUND4args_clnt args; 6348 COMPOUND4res_clnt res; 6349 GETFH4res *gf_res = NULL; 6350 nfs_argop4 argop[4]; 6351 nfs_resop4 *resop = NULL; 6352 nfs4_sharedfh_t *sfhp; 6353 hrtime_t t; 6354 nfs4_error_t e; 6355 6356 rnode4_t *drp; 6357 int doqueue = 1; 6358 vnode_t *vp; 6359 int needrecov = 0; 6360 nfs4_recov_state_t recov_state; 6361 6362 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 6363 6364 *avp = NULL; 6365 recov_state.rs_flags = 0; 6366 recov_state.rs_num_retry_despite_err = 0; 6367 6368 recov_retry: 6369 /* COMPOUND: putfh, openattr, getfh, getattr */ 6370 args.array_len = 4; 6371 args.array = argop; 6372 args.ctag = TAG_OPENATTR; 6373 6374 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state); 6375 if (e.error) 6376 return (e.error); 6377 6378 drp = VTOR4(dvp); 6379 6380 /* putfh */ 6381 argop[0].argop = OP_CPUTFH; 6382 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 6383 6384 /* openattr */ 6385 argop[1].argop = OP_OPENATTR; 6386 argop[1].nfs_argop4_u.opopenattr.createdir = (cflag ? TRUE : FALSE); 6387 6388 /* getfh */ 6389 argop[2].argop = OP_GETFH; 6390 6391 /* getattr */ 6392 argop[3].argop = OP_GETATTR; 6393 argop[3].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6394 argop[3].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 6395 6396 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 6397 "nfs4openattr: %s call, drp %s", needrecov ? "recov" : "first", 6398 rnode4info(drp))); 6399 6400 t = gethrtime(); 6401 6402 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e); 6403 6404 needrecov = nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp); 6405 if (needrecov) { 6406 bool_t abort; 6407 6408 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 6409 "nfs4openattr: initiating recovery\n")); 6410 6411 abort = nfs4_start_recovery(&e, 6412 VTOMI4(dvp), dvp, NULL, NULL, NULL, 6413 OP_OPENATTR, NULL, NULL, NULL); 6414 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6415 if (!e.error) { 6416 e.error = geterrno4(res.status); 6417 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6418 } 6419 if (abort == FALSE) 6420 goto recov_retry; 6421 return (e.error); 6422 } 6423 6424 if (e.error) { 6425 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6426 return (e.error); 6427 } 6428 6429 if (res.status) { 6430 /* 6431 * If OTW errro is NOTSUPP, then it should be 6432 * translated to EINVAL. All Solaris file system 6433 * implementations return EINVAL to the syscall layer 6434 * when the attrdir cannot be created due to an 6435 * implementation restriction or noxattr mount option. 6436 */ 6437 if (res.status == NFS4ERR_NOTSUPP) { 6438 mutex_enter(&drp->r_statelock); 6439 if (drp->r_xattr_dir) 6440 VN_RELE(drp->r_xattr_dir); 6441 VN_HOLD(NFS4_XATTR_DIR_NOTSUPP); 6442 drp->r_xattr_dir = NFS4_XATTR_DIR_NOTSUPP; 6443 mutex_exit(&drp->r_statelock); 6444 6445 e.error = EINVAL; 6446 } else { 6447 e.error = geterrno4(res.status); 6448 } 6449 6450 if (e.error) { 6451 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6452 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, 6453 needrecov); 6454 return (e.error); 6455 } 6456 } 6457 6458 resop = &res.array[0]; /* putfh res */ 6459 ASSERT(resop->nfs_resop4_u.opgetfh.status == NFS4_OK); 6460 6461 resop = &res.array[1]; /* openattr res */ 6462 ASSERT(resop->nfs_resop4_u.opopenattr.status == NFS4_OK); 6463 6464 resop = &res.array[2]; /* getfh res */ 6465 gf_res = &resop->nfs_resop4_u.opgetfh; 6466 if (gf_res->object.nfs_fh4_len == 0) { 6467 *avp = NULL; 6468 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6469 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6470 return (ENOENT); 6471 } 6472 6473 sfhp = sfh4_get(&gf_res->object, VTOMI4(dvp)); 6474 vp = makenfs4node(sfhp, &res.array[3].nfs_resop4_u.opgetattr.ga_res, 6475 dvp->v_vfsp, t, cr, dvp, 6476 fn_get(VTOSV(dvp)->sv_name, XATTR_RPATH, sfhp)); 6477 sfh4_rele(&sfhp); 6478 6479 if (e.error) 6480 PURGE_ATTRCACHE4(vp); 6481 6482 mutex_enter(&vp->v_lock); 6483 vp->v_flag |= V_XATTRDIR; 6484 mutex_exit(&vp->v_lock); 6485 6486 *avp = vp; 6487 6488 mutex_enter(&drp->r_statelock); 6489 if (drp->r_xattr_dir) 6490 VN_RELE(drp->r_xattr_dir); 6491 VN_HOLD(vp); 6492 drp->r_xattr_dir = vp; 6493 6494 /* 6495 * Invalidate pathconf4 cache because r_xattr_dir is no longer 6496 * NULL. xattrs could be created at any time, and we have no 6497 * way to update pc4_xattr_exists in the base object if/when 6498 * it happens. 6499 */ 6500 drp->r_pathconf.pc4_xattr_valid = 0; 6501 6502 mutex_exit(&drp->r_statelock); 6503 6504 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6505 6506 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6507 6508 return (0); 6509 } 6510 6511 /* ARGSUSED */ 6512 static int 6513 nfs4_create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 6514 int mode, vnode_t **vpp, cred_t *cr, int flags, caller_context_t *ct, 6515 vsecattr_t *vsecp) 6516 { 6517 int error; 6518 vnode_t *vp = NULL; 6519 rnode4_t *rp; 6520 struct vattr vattr; 6521 rnode4_t *drp; 6522 vnode_t *tempvp; 6523 enum createmode4 createmode; 6524 bool_t must_trunc = FALSE; 6525 int truncating = 0; 6526 6527 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 6528 return (EPERM); 6529 if (exclusive == EXCL && (dvp->v_flag & V_XATTRDIR)) { 6530 return (EINVAL); 6531 } 6532 6533 /* . and .. have special meaning in the protocol, reject them. */ 6534 6535 if (nm[0] == '.' && (nm[1] == '\0' || (nm[1] == '.' && nm[2] == '\0'))) 6536 return (EISDIR); 6537 6538 drp = VTOR4(dvp); 6539 6540 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) 6541 return (EINTR); 6542 6543 top: 6544 /* 6545 * We make a copy of the attributes because the caller does not 6546 * expect us to change what va points to. 6547 */ 6548 vattr = *va; 6549 6550 /* 6551 * If the pathname is "", then dvp is the root vnode of 6552 * a remote file mounted over a local directory. 6553 * All that needs to be done is access 6554 * checking and truncation. Note that we avoid doing 6555 * open w/ create because the parent directory might 6556 * be in pseudo-fs and the open would fail. 6557 */ 6558 if (*nm == '\0') { 6559 error = 0; 6560 VN_HOLD(dvp); 6561 vp = dvp; 6562 must_trunc = TRUE; 6563 } else { 6564 /* 6565 * We need to go over the wire, just to be sure whether the 6566 * file exists or not. Using the DNLC can be dangerous in 6567 * this case when making a decision regarding existence. 6568 */ 6569 error = nfs4lookup(dvp, nm, &vp, cr, 1); 6570 } 6571 6572 if (exclusive) 6573 createmode = EXCLUSIVE4; 6574 else 6575 createmode = GUARDED4; 6576 6577 /* 6578 * error would be set if the file does not exist on the 6579 * server, so lets go create it. 6580 */ 6581 if (error) { 6582 goto create_otw; 6583 } 6584 6585 /* 6586 * File does exist on the server 6587 */ 6588 if (exclusive == EXCL) 6589 error = EEXIST; 6590 else if (vp->v_type == VDIR && (mode & VWRITE)) 6591 error = EISDIR; 6592 else { 6593 /* 6594 * If vnode is a device, create special vnode. 6595 */ 6596 if (ISVDEV(vp->v_type)) { 6597 tempvp = vp; 6598 vp = specvp(vp, vp->v_rdev, vp->v_type, cr); 6599 VN_RELE(tempvp); 6600 } 6601 if (!(error = VOP_ACCESS(vp, mode, 0, cr, ct))) { 6602 if ((vattr.va_mask & AT_SIZE) && 6603 vp->v_type == VREG) { 6604 rp = VTOR4(vp); 6605 /* 6606 * Check here for large file handled 6607 * by LF-unaware process (as 6608 * ufs_create() does) 6609 */ 6610 if (!(flags & FOFFMAX)) { 6611 mutex_enter(&rp->r_statelock); 6612 if (rp->r_size > MAXOFF32_T) 6613 error = EOVERFLOW; 6614 mutex_exit(&rp->r_statelock); 6615 } 6616 6617 /* if error is set then we need to return */ 6618 if (error) { 6619 nfs_rw_exit(&drp->r_rwlock); 6620 VN_RELE(vp); 6621 return (error); 6622 } 6623 6624 if (must_trunc) { 6625 vattr.va_mask = AT_SIZE; 6626 error = nfs4setattr(vp, &vattr, 0, cr, 6627 NULL); 6628 } else { 6629 /* 6630 * we know we have a regular file that already 6631 * exists and we may end up truncating the file 6632 * as a result of the open_otw, so flush out 6633 * any dirty pages for this file first. 6634 */ 6635 if (nfs4_has_pages(vp) && 6636 ((rp->r_flags & R4DIRTY) || 6637 rp->r_count > 0 || 6638 rp->r_mapcnt > 0)) { 6639 error = nfs4_putpage(vp, 6640 (offset_t)0, 0, 0, cr, ct); 6641 if (error && (error == ENOSPC || 6642 error == EDQUOT)) { 6643 mutex_enter( 6644 &rp->r_statelock); 6645 if (!rp->r_error) 6646 rp->r_error = 6647 error; 6648 mutex_exit( 6649 &rp->r_statelock); 6650 } 6651 } 6652 vattr.va_mask = (AT_SIZE | 6653 AT_TYPE | AT_MODE); 6654 vattr.va_type = VREG; 6655 createmode = UNCHECKED4; 6656 truncating = 1; 6657 goto create_otw; 6658 } 6659 } 6660 } 6661 } 6662 nfs_rw_exit(&drp->r_rwlock); 6663 if (error) { 6664 VN_RELE(vp); 6665 } else { 6666 vnode_t *tvp; 6667 rnode4_t *trp; 6668 tvp = vp; 6669 if (vp->v_type == VREG) { 6670 trp = VTOR4(vp); 6671 if (IS_SHADOW(vp, trp)) 6672 tvp = RTOV4(trp); 6673 } 6674 6675 if (must_trunc) { 6676 /* 6677 * existing file got truncated, notify. 6678 */ 6679 vnevent_create(tvp, ct); 6680 } 6681 6682 *vpp = vp; 6683 } 6684 return (error); 6685 6686 create_otw: 6687 dnlc_remove(dvp, nm); 6688 6689 ASSERT(vattr.va_mask & AT_TYPE); 6690 6691 /* 6692 * If not a regular file let nfs4mknod() handle it. 6693 */ 6694 if (vattr.va_type != VREG) { 6695 error = nfs4mknod(dvp, nm, &vattr, exclusive, mode, vpp, cr); 6696 nfs_rw_exit(&drp->r_rwlock); 6697 return (error); 6698 } 6699 6700 /* 6701 * It _is_ a regular file. 6702 */ 6703 ASSERT(vattr.va_mask & AT_MODE); 6704 if (MANDMODE(vattr.va_mode)) { 6705 nfs_rw_exit(&drp->r_rwlock); 6706 return (EACCES); 6707 } 6708 6709 /* 6710 * If this happens to be a mknod of a regular file, then flags will 6711 * have neither FREAD or FWRITE. However, we must set at least one 6712 * for the call to nfs4open_otw. If it's open(O_CREAT) driving 6713 * nfs4_create, then either FREAD, FWRITE, or FRDWR has already been 6714 * set (based on openmode specified by app). 6715 */ 6716 if ((flags & (FREAD|FWRITE)) == 0) 6717 flags |= (FREAD|FWRITE); 6718 6719 error = nfs4open_otw(dvp, nm, &vattr, vpp, cr, 1, flags, createmode, 0); 6720 6721 if (vp != NULL) { 6722 /* if create was successful, throw away the file's pages */ 6723 if (!error && (vattr.va_mask & AT_SIZE)) 6724 nfs4_invalidate_pages(vp, (vattr.va_size & PAGEMASK), 6725 cr); 6726 /* release the lookup hold */ 6727 VN_RELE(vp); 6728 vp = NULL; 6729 } 6730 6731 /* 6732 * validate that we opened a regular file. This handles a misbehaving 6733 * server that returns an incorrect FH. 6734 */ 6735 if ((error == 0) && *vpp && (*vpp)->v_type != VREG) { 6736 error = EISDIR; 6737 VN_RELE(*vpp); 6738 } 6739 6740 /* 6741 * If this is not an exclusive create, then the CREATE 6742 * request will be made with the GUARDED mode set. This 6743 * means that the server will return EEXIST if the file 6744 * exists. The file could exist because of a retransmitted 6745 * request. In this case, we recover by starting over and 6746 * checking to see whether the file exists. This second 6747 * time through it should and a CREATE request will not be 6748 * sent. 6749 * 6750 * This handles the problem of a dangling CREATE request 6751 * which contains attributes which indicate that the file 6752 * should be truncated. This retransmitted request could 6753 * possibly truncate valid data in the file if not caught 6754 * by the duplicate request mechanism on the server or if 6755 * not caught by other means. The scenario is: 6756 * 6757 * Client transmits CREATE request with size = 0 6758 * Client times out, retransmits request. 6759 * Response to the first request arrives from the server 6760 * and the client proceeds on. 6761 * Client writes data to the file. 6762 * The server now processes retransmitted CREATE request 6763 * and truncates file. 6764 * 6765 * The use of the GUARDED CREATE request prevents this from 6766 * happening because the retransmitted CREATE would fail 6767 * with EEXIST and would not truncate the file. 6768 */ 6769 if (error == EEXIST && exclusive == NONEXCL) { 6770 #ifdef DEBUG 6771 nfs4_create_misses++; 6772 #endif 6773 goto top; 6774 } 6775 nfs_rw_exit(&drp->r_rwlock); 6776 if (truncating && !error && *vpp) { 6777 vnode_t *tvp; 6778 rnode4_t *trp; 6779 /* 6780 * existing file got truncated, notify. 6781 */ 6782 tvp = *vpp; 6783 trp = VTOR4(tvp); 6784 if (IS_SHADOW(tvp, trp)) 6785 tvp = RTOV4(trp); 6786 vnevent_create(tvp, ct); 6787 } 6788 return (error); 6789 } 6790 6791 /* 6792 * Create compound (for mkdir, mknod, symlink): 6793 * { Putfh <dfh>; Create; Getfh; Getattr } 6794 * It's okay if setattr failed to set gid - this is not considered 6795 * an error, but purge attrs in that case. 6796 */ 6797 static int 6798 call_nfs4_create_req(vnode_t *dvp, char *nm, void *data, struct vattr *va, 6799 vnode_t **vpp, cred_t *cr, nfs_ftype4 type) 6800 { 6801 int need_end_op = FALSE; 6802 COMPOUND4args_clnt args; 6803 COMPOUND4res_clnt res, *resp = NULL; 6804 nfs_argop4 *argop; 6805 nfs_resop4 *resop; 6806 int doqueue; 6807 mntinfo4_t *mi; 6808 rnode4_t *drp = VTOR4(dvp); 6809 change_info4 *cinfo; 6810 GETFH4res *gf_res; 6811 struct vattr vattr; 6812 vnode_t *vp; 6813 fattr4 *crattr; 6814 bool_t needrecov = FALSE; 6815 nfs4_recov_state_t recov_state; 6816 nfs4_sharedfh_t *sfhp = NULL; 6817 hrtime_t t; 6818 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 6819 int numops, argoplist_size, setgid_flag, idx_create, idx_fattr; 6820 dirattr_info_t dinfo, *dinfop; 6821 servinfo4_t *svp; 6822 bitmap4 supp_attrs; 6823 6824 ASSERT(type == NF4DIR || type == NF4LNK || type == NF4BLK || 6825 type == NF4CHR || type == NF4SOCK || type == NF4FIFO); 6826 6827 mi = VTOMI4(dvp); 6828 6829 /* 6830 * Make sure we properly deal with setting the right gid 6831 * on a new directory to reflect the parent's setgid bit 6832 */ 6833 setgid_flag = 0; 6834 if (type == NF4DIR) { 6835 struct vattr dva; 6836 6837 va->va_mode &= ~VSGID; 6838 dva.va_mask = AT_MODE | AT_GID; 6839 if (VOP_GETATTR(dvp, &dva, 0, cr, NULL) == 0) { 6840 6841 /* 6842 * If the parent's directory has the setgid bit set 6843 * _and_ the client was able to get a valid mapping 6844 * for the parent dir's owner_group, we want to 6845 * append NVERIFY(owner_group == dva.va_gid) and 6846 * SETTATTR to the CREATE compound. 6847 */ 6848 if (mi->mi_flags & MI4_GRPID || dva.va_mode & VSGID) { 6849 setgid_flag = 1; 6850 va->va_mode |= VSGID; 6851 if (dva.va_gid != GID_NOBODY) { 6852 va->va_mask |= AT_GID; 6853 va->va_gid = dva.va_gid; 6854 } 6855 } 6856 } 6857 } 6858 6859 /* 6860 * Create ops: 6861 * 0:putfh(dir) 1:savefh(dir) 2:create 3:getfh(new) 4:getattr(new) 6862 * 5:restorefh(dir) 6:getattr(dir) 6863 * 6864 * if (setgid) 6865 * 0:putfh(dir) 1:create 2:getfh(new) 3:getattr(new) 6866 * 4:savefh(new) 5:putfh(dir) 6:getattr(dir) 7:restorefh(new) 6867 * 8:nverify 9:setattr 6868 */ 6869 if (setgid_flag) { 6870 numops = 10; 6871 idx_create = 1; 6872 idx_fattr = 3; 6873 } else { 6874 numops = 7; 6875 idx_create = 2; 6876 idx_fattr = 4; 6877 } 6878 6879 ASSERT(nfs_zone() == mi->mi_zone); 6880 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) { 6881 return (EINTR); 6882 } 6883 recov_state.rs_flags = 0; 6884 recov_state.rs_num_retry_despite_err = 0; 6885 6886 argoplist_size = numops * sizeof (nfs_argop4); 6887 argop = kmem_alloc(argoplist_size, KM_SLEEP); 6888 6889 recov_retry: 6890 if (type == NF4LNK) 6891 args.ctag = TAG_SYMLINK; 6892 else if (type == NF4DIR) 6893 args.ctag = TAG_MKDIR; 6894 else 6895 args.ctag = TAG_MKNOD; 6896 6897 args.array_len = numops; 6898 args.array = argop; 6899 6900 if (e.error = nfs4_start_op(mi, dvp, NULL, &recov_state)) { 6901 nfs_rw_exit(&drp->r_rwlock); 6902 kmem_free(argop, argoplist_size); 6903 return (e.error); 6904 } 6905 need_end_op = TRUE; 6906 6907 6908 /* 0: putfh directory */ 6909 argop[0].argop = OP_CPUTFH; 6910 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 6911 6912 /* 1/2: Create object */ 6913 argop[idx_create].argop = OP_CCREATE; 6914 argop[idx_create].nfs_argop4_u.opccreate.cname = nm; 6915 argop[idx_create].nfs_argop4_u.opccreate.type = type; 6916 if (type == NF4LNK) { 6917 /* 6918 * symlink, treat name as data 6919 */ 6920 ASSERT(data != NULL); 6921 argop[idx_create].nfs_argop4_u.opccreate.ftype4_u.clinkdata = 6922 (char *)data; 6923 } 6924 if (type == NF4BLK || type == NF4CHR) { 6925 ASSERT(data != NULL); 6926 argop[idx_create].nfs_argop4_u.opccreate.ftype4_u.devdata = 6927 *((specdata4 *)data); 6928 } 6929 6930 crattr = &argop[idx_create].nfs_argop4_u.opccreate.createattrs; 6931 6932 svp = drp->r_server; 6933 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 6934 supp_attrs = svp->sv_supp_attrs; 6935 nfs_rw_exit(&svp->sv_lock); 6936 6937 if (vattr_to_fattr4(va, NULL, crattr, 0, OP_CREATE, supp_attrs)) { 6938 nfs_rw_exit(&drp->r_rwlock); 6939 nfs4_end_op(mi, dvp, NULL, &recov_state, needrecov); 6940 e.error = EINVAL; 6941 kmem_free(argop, argoplist_size); 6942 return (e.error); 6943 } 6944 6945 /* 2/3: getfh fh of created object */ 6946 ASSERT(idx_create + 1 == idx_fattr - 1); 6947 argop[idx_create + 1].argop = OP_GETFH; 6948 6949 /* 3/4: getattr of new object */ 6950 argop[idx_fattr].argop = OP_GETATTR; 6951 argop[idx_fattr].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6952 argop[idx_fattr].nfs_argop4_u.opgetattr.mi = mi; 6953 6954 if (setgid_flag) { 6955 vattr_t _v; 6956 6957 argop[4].argop = OP_SAVEFH; 6958 6959 argop[5].argop = OP_CPUTFH; 6960 argop[5].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 6961 6962 argop[6].argop = OP_GETATTR; 6963 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6964 argop[6].nfs_argop4_u.opgetattr.mi = mi; 6965 6966 argop[7].argop = OP_RESTOREFH; 6967 6968 /* 6969 * nverify 6970 * 6971 * XXX - Revisit the last argument to nfs4_end_op() 6972 * once 5020486 is fixed. 6973 */ 6974 _v.va_mask = AT_GID; 6975 _v.va_gid = va->va_gid; 6976 if (e.error = nfs4args_verify(&argop[8], &_v, OP_NVERIFY, 6977 supp_attrs)) { 6978 nfs4_end_op(mi, dvp, *vpp, &recov_state, TRUE); 6979 nfs_rw_exit(&drp->r_rwlock); 6980 nfs4_fattr4_free(crattr); 6981 kmem_free(argop, argoplist_size); 6982 return (e.error); 6983 } 6984 6985 /* 6986 * setattr 6987 * 6988 * We _know_ we're not messing with AT_SIZE or AT_XTIME, 6989 * so no need for stateid or flags. Also we specify NULL 6990 * rp since we're only interested in setting owner_group 6991 * attributes. 6992 */ 6993 nfs4args_setattr(&argop[9], &_v, NULL, 0, NULL, cr, supp_attrs, 6994 &e.error, 0); 6995 6996 if (e.error) { 6997 nfs4_end_op(mi, dvp, *vpp, &recov_state, TRUE); 6998 nfs_rw_exit(&drp->r_rwlock); 6999 nfs4_fattr4_free(crattr); 7000 nfs4args_verify_free(&argop[8]); 7001 kmem_free(argop, argoplist_size); 7002 return (e.error); 7003 } 7004 } else { 7005 argop[1].argop = OP_SAVEFH; 7006 7007 argop[5].argop = OP_RESTOREFH; 7008 7009 argop[6].argop = OP_GETATTR; 7010 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7011 argop[6].nfs_argop4_u.opgetattr.mi = mi; 7012 } 7013 7014 dnlc_remove(dvp, nm); 7015 7016 doqueue = 1; 7017 t = gethrtime(); 7018 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 7019 7020 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 7021 if (e.error) { 7022 PURGE_ATTRCACHE4(dvp); 7023 if (!needrecov) 7024 goto out; 7025 } 7026 7027 if (needrecov) { 7028 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL, 7029 OP_CREATE, NULL, NULL, NULL) == FALSE) { 7030 nfs4_end_op(mi, dvp, NULL, &recov_state, 7031 needrecov); 7032 need_end_op = FALSE; 7033 nfs4_fattr4_free(crattr); 7034 if (setgid_flag) { 7035 nfs4args_verify_free(&argop[8]); 7036 nfs4args_setattr_free(&argop[9]); 7037 } 7038 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 7039 goto recov_retry; 7040 } 7041 } 7042 7043 resp = &res; 7044 7045 if (res.status != NFS4_OK && res.array_len <= idx_fattr + 1) { 7046 7047 if (res.status == NFS4ERR_BADOWNER) 7048 nfs4_log_badowner(mi, OP_CREATE); 7049 7050 e.error = geterrno4(res.status); 7051 7052 /* 7053 * This check is left over from when create was implemented 7054 * using a setattr op (instead of createattrs). If the 7055 * putfh/create/getfh failed, the error was returned. If 7056 * setattr/getattr failed, we keep going. 7057 * 7058 * It might be better to get rid of the GETFH also, and just 7059 * do PUTFH/CREATE/GETATTR since the FH attr is mandatory. 7060 * Then if any of the operations failed, we could return the 7061 * error now, and remove much of the error code below. 7062 */ 7063 if (res.array_len <= idx_fattr) { 7064 /* 7065 * Either Putfh, Create or Getfh failed. 7066 */ 7067 PURGE_ATTRCACHE4(dvp); 7068 /* 7069 * nfs4_purge_stale_fh() may generate otw calls through 7070 * nfs4_invalidate_pages. Hence the need to call 7071 * nfs4_end_op() here to avoid nfs4_start_op() deadlock. 7072 */ 7073 nfs4_end_op(mi, dvp, NULL, &recov_state, 7074 needrecov); 7075 need_end_op = FALSE; 7076 nfs4_purge_stale_fh(e.error, dvp, cr); 7077 goto out; 7078 } 7079 } 7080 7081 resop = &res.array[idx_create]; /* create res */ 7082 cinfo = &resop->nfs_resop4_u.opcreate.cinfo; 7083 7084 resop = &res.array[idx_create + 1]; /* getfh res */ 7085 gf_res = &resop->nfs_resop4_u.opgetfh; 7086 7087 sfhp = sfh4_get(&gf_res->object, mi); 7088 if (e.error) { 7089 *vpp = vp = makenfs4node(sfhp, NULL, dvp->v_vfsp, t, cr, dvp, 7090 fn_get(VTOSV(dvp)->sv_name, nm, sfhp)); 7091 if (vp->v_type == VNON) { 7092 vattr.va_mask = AT_TYPE; 7093 /* 7094 * Need to call nfs4_end_op before nfs4getattr to avoid 7095 * potential nfs4_start_op deadlock. See RFE 4777612. 7096 */ 7097 nfs4_end_op(mi, dvp, NULL, &recov_state, 7098 needrecov); 7099 need_end_op = FALSE; 7100 e.error = nfs4getattr(vp, &vattr, cr); 7101 if (e.error) { 7102 VN_RELE(vp); 7103 *vpp = NULL; 7104 goto out; 7105 } 7106 vp->v_type = vattr.va_type; 7107 } 7108 e.error = 0; 7109 } else { 7110 *vpp = vp = makenfs4node(sfhp, 7111 &res.array[idx_fattr].nfs_resop4_u.opgetattr.ga_res, 7112 dvp->v_vfsp, t, cr, 7113 dvp, fn_get(VTOSV(dvp)->sv_name, nm, sfhp)); 7114 } 7115 7116 /* 7117 * If compound succeeded, then update dir attrs 7118 */ 7119 if (res.status == NFS4_OK) { 7120 dinfo.di_garp = &res.array[6].nfs_resop4_u.opgetattr.ga_res; 7121 dinfo.di_cred = cr; 7122 dinfo.di_time_call = t; 7123 dinfop = &dinfo; 7124 } else 7125 dinfop = NULL; 7126 7127 /* Update directory cache attribute, readdir and dnlc caches */ 7128 nfs4_update_dircaches(cinfo, dvp, vp, nm, dinfop); 7129 7130 out: 7131 if (sfhp != NULL) 7132 sfh4_rele(&sfhp); 7133 nfs_rw_exit(&drp->r_rwlock); 7134 nfs4_fattr4_free(crattr); 7135 if (setgid_flag) { 7136 nfs4args_verify_free(&argop[8]); 7137 nfs4args_setattr_free(&argop[9]); 7138 } 7139 if (resp) 7140 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 7141 if (need_end_op) 7142 nfs4_end_op(mi, dvp, NULL, &recov_state, needrecov); 7143 7144 kmem_free(argop, argoplist_size); 7145 return (e.error); 7146 } 7147 7148 /* ARGSUSED */ 7149 static int 7150 nfs4mknod(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 7151 int mode, vnode_t **vpp, cred_t *cr) 7152 { 7153 int error; 7154 vnode_t *vp; 7155 nfs_ftype4 type; 7156 specdata4 spec, *specp = NULL; 7157 7158 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 7159 7160 switch (va->va_type) { 7161 case VCHR: 7162 case VBLK: 7163 type = (va->va_type == VCHR) ? NF4CHR : NF4BLK; 7164 spec.specdata1 = getmajor(va->va_rdev); 7165 spec.specdata2 = getminor(va->va_rdev); 7166 specp = &spec; 7167 break; 7168 7169 case VFIFO: 7170 type = NF4FIFO; 7171 break; 7172 case VSOCK: 7173 type = NF4SOCK; 7174 break; 7175 7176 default: 7177 return (EINVAL); 7178 } 7179 7180 error = call_nfs4_create_req(dvp, nm, specp, va, &vp, cr, type); 7181 if (error) { 7182 return (error); 7183 } 7184 7185 /* 7186 * This might not be needed any more; special case to deal 7187 * with problematic v2/v3 servers. Since create was unable 7188 * to set group correctly, not sure what hope setattr has. 7189 */ 7190 if (va->va_gid != VTOR4(vp)->r_attr.va_gid) { 7191 va->va_mask = AT_GID; 7192 (void) nfs4setattr(vp, va, 0, cr, NULL); 7193 } 7194 7195 /* 7196 * If vnode is a device create special vnode 7197 */ 7198 if (ISVDEV(vp->v_type)) { 7199 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 7200 VN_RELE(vp); 7201 } else { 7202 *vpp = vp; 7203 } 7204 return (error); 7205 } 7206 7207 /* 7208 * Remove requires that the current fh be the target directory. 7209 * After the operation, the current fh is unchanged. 7210 * The compound op structure is: 7211 * PUTFH(targetdir), REMOVE 7212 * 7213 * Weirdness: if the vnode to be removed is open 7214 * we rename it instead of removing it and nfs_inactive 7215 * will remove the new name. 7216 */ 7217 /* ARGSUSED */ 7218 static int 7219 nfs4_remove(vnode_t *dvp, char *nm, cred_t *cr, caller_context_t *ct, int flags) 7220 { 7221 COMPOUND4args_clnt args; 7222 COMPOUND4res_clnt res, *resp = NULL; 7223 REMOVE4res *rm_res; 7224 nfs_argop4 argop[3]; 7225 nfs_resop4 *resop; 7226 vnode_t *vp; 7227 char *tmpname; 7228 int doqueue; 7229 mntinfo4_t *mi; 7230 rnode4_t *rp; 7231 rnode4_t *drp; 7232 int needrecov = 0; 7233 nfs4_recov_state_t recov_state; 7234 int isopen; 7235 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 7236 dirattr_info_t dinfo; 7237 7238 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 7239 return (EPERM); 7240 drp = VTOR4(dvp); 7241 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) 7242 return (EINTR); 7243 7244 e.error = nfs4lookup(dvp, nm, &vp, cr, 0); 7245 if (e.error) { 7246 nfs_rw_exit(&drp->r_rwlock); 7247 return (e.error); 7248 } 7249 7250 if (vp->v_type == VDIR) { 7251 VN_RELE(vp); 7252 nfs_rw_exit(&drp->r_rwlock); 7253 return (EISDIR); 7254 } 7255 7256 /* 7257 * First just remove the entry from the name cache, as it 7258 * is most likely the only entry for this vp. 7259 */ 7260 dnlc_remove(dvp, nm); 7261 7262 rp = VTOR4(vp); 7263 7264 /* 7265 * For regular file types, check to see if the file is open by looking 7266 * at the open streams. 7267 * For all other types, check the reference count on the vnode. Since 7268 * they are not opened OTW they never have an open stream. 7269 * 7270 * If the file is open, rename it to .nfsXXXX. 7271 */ 7272 if (vp->v_type != VREG) { 7273 /* 7274 * If the file has a v_count > 1 then there may be more than one 7275 * entry in the name cache due multiple links or an open file, 7276 * but we don't have the real reference count so flush all 7277 * possible entries. 7278 */ 7279 if (vp->v_count > 1) 7280 dnlc_purge_vp(vp); 7281 7282 /* 7283 * Now we have the real reference count. 7284 */ 7285 isopen = vp->v_count > 1; 7286 } else { 7287 mutex_enter(&rp->r_os_lock); 7288 isopen = list_head(&rp->r_open_streams) != NULL; 7289 mutex_exit(&rp->r_os_lock); 7290 } 7291 7292 mutex_enter(&rp->r_statelock); 7293 if (isopen && 7294 (rp->r_unldvp == NULL || strcmp(nm, rp->r_unlname) == 0)) { 7295 mutex_exit(&rp->r_statelock); 7296 tmpname = newname(); 7297 e.error = nfs4rename(dvp, nm, dvp, tmpname, cr, ct); 7298 if (e.error) 7299 kmem_free(tmpname, MAXNAMELEN); 7300 else { 7301 mutex_enter(&rp->r_statelock); 7302 if (rp->r_unldvp == NULL) { 7303 VN_HOLD(dvp); 7304 rp->r_unldvp = dvp; 7305 if (rp->r_unlcred != NULL) 7306 crfree(rp->r_unlcred); 7307 crhold(cr); 7308 rp->r_unlcred = cr; 7309 rp->r_unlname = tmpname; 7310 } else { 7311 kmem_free(rp->r_unlname, MAXNAMELEN); 7312 rp->r_unlname = tmpname; 7313 } 7314 mutex_exit(&rp->r_statelock); 7315 } 7316 VN_RELE(vp); 7317 nfs_rw_exit(&drp->r_rwlock); 7318 return (e.error); 7319 } 7320 /* 7321 * Actually remove the file/dir 7322 */ 7323 mutex_exit(&rp->r_statelock); 7324 7325 /* 7326 * We need to flush any dirty pages which happen to 7327 * be hanging around before removing the file. 7328 * This shouldn't happen very often since in NFSv4 7329 * we should be close to open consistent. 7330 */ 7331 if (nfs4_has_pages(vp) && 7332 ((rp->r_flags & R4DIRTY) || rp->r_count > 0)) { 7333 e.error = nfs4_putpage(vp, (u_offset_t)0, 0, 0, cr, ct); 7334 if (e.error && (e.error == ENOSPC || e.error == EDQUOT)) { 7335 mutex_enter(&rp->r_statelock); 7336 if (!rp->r_error) 7337 rp->r_error = e.error; 7338 mutex_exit(&rp->r_statelock); 7339 } 7340 } 7341 7342 mi = VTOMI4(dvp); 7343 7344 (void) nfs4delegreturn(rp, NFS4_DR_REOPEN); 7345 recov_state.rs_flags = 0; 7346 recov_state.rs_num_retry_despite_err = 0; 7347 7348 recov_retry: 7349 /* 7350 * Remove ops: putfh dir; remove 7351 */ 7352 args.ctag = TAG_REMOVE; 7353 args.array_len = 3; 7354 args.array = argop; 7355 7356 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state); 7357 if (e.error) { 7358 nfs_rw_exit(&drp->r_rwlock); 7359 VN_RELE(vp); 7360 return (e.error); 7361 } 7362 7363 /* putfh directory */ 7364 argop[0].argop = OP_CPUTFH; 7365 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 7366 7367 /* remove */ 7368 argop[1].argop = OP_CREMOVE; 7369 argop[1].nfs_argop4_u.opcremove.ctarget = nm; 7370 7371 /* getattr dir */ 7372 argop[2].argop = OP_GETATTR; 7373 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7374 argop[2].nfs_argop4_u.opgetattr.mi = mi; 7375 7376 doqueue = 1; 7377 dinfo.di_time_call = gethrtime(); 7378 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 7379 7380 PURGE_ATTRCACHE4(vp); 7381 7382 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 7383 if (e.error) 7384 PURGE_ATTRCACHE4(dvp); 7385 7386 if (needrecov) { 7387 if (nfs4_start_recovery(&e, VTOMI4(dvp), dvp, 7388 NULL, NULL, NULL, OP_REMOVE, NULL, NULL, NULL) == FALSE) { 7389 if (!e.error) 7390 (void) xdr_free(xdr_COMPOUND4res_clnt, 7391 (caddr_t)&res); 7392 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, 7393 needrecov); 7394 goto recov_retry; 7395 } 7396 } 7397 7398 /* 7399 * Matching nfs4_end_op() for start_op() above. 7400 * There is a path in the code below which calls 7401 * nfs4_purge_stale_fh(), which may generate otw calls through 7402 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op() 7403 * here to avoid nfs4_start_op() deadlock. 7404 */ 7405 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 7406 7407 if (!e.error) { 7408 resp = &res; 7409 7410 if (res.status) { 7411 e.error = geterrno4(res.status); 7412 PURGE_ATTRCACHE4(dvp); 7413 nfs4_purge_stale_fh(e.error, dvp, cr); 7414 } else { 7415 resop = &res.array[1]; /* remove res */ 7416 rm_res = &resop->nfs_resop4_u.opremove; 7417 7418 dinfo.di_garp = 7419 &res.array[2].nfs_resop4_u.opgetattr.ga_res; 7420 dinfo.di_cred = cr; 7421 7422 /* Update directory attr, readdir and dnlc caches */ 7423 nfs4_update_dircaches(&rm_res->cinfo, dvp, NULL, NULL, 7424 &dinfo); 7425 } 7426 } 7427 nfs_rw_exit(&drp->r_rwlock); 7428 if (resp) 7429 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 7430 7431 if (e.error == 0) { 7432 vnode_t *tvp; 7433 rnode4_t *trp; 7434 trp = VTOR4(vp); 7435 tvp = vp; 7436 if (IS_SHADOW(vp, trp)) 7437 tvp = RTOV4(trp); 7438 vnevent_remove(tvp, dvp, nm, ct); 7439 } 7440 VN_RELE(vp); 7441 return (e.error); 7442 } 7443 7444 /* 7445 * Link requires that the current fh be the target directory and the 7446 * saved fh be the source fh. After the operation, the current fh is unchanged. 7447 * Thus the compound op structure is: 7448 * PUTFH(file), SAVEFH, PUTFH(targetdir), LINK, RESTOREFH, 7449 * GETATTR(file) 7450 */ 7451 /* ARGSUSED */ 7452 static int 7453 nfs4_link(vnode_t *tdvp, vnode_t *svp, char *tnm, cred_t *cr, 7454 caller_context_t *ct, int flags) 7455 { 7456 COMPOUND4args_clnt args; 7457 COMPOUND4res_clnt res, *resp = NULL; 7458 LINK4res *ln_res; 7459 int argoplist_size = 7 * sizeof (nfs_argop4); 7460 nfs_argop4 *argop; 7461 nfs_resop4 *resop; 7462 vnode_t *realvp, *nvp; 7463 int doqueue; 7464 mntinfo4_t *mi; 7465 rnode4_t *tdrp; 7466 bool_t needrecov = FALSE; 7467 nfs4_recov_state_t recov_state; 7468 hrtime_t t; 7469 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 7470 dirattr_info_t dinfo; 7471 7472 ASSERT(*tnm != '\0'); 7473 ASSERT(tdvp->v_type == VDIR); 7474 ASSERT(nfs4_consistent_type(tdvp)); 7475 ASSERT(nfs4_consistent_type(svp)); 7476 7477 if (nfs_zone() != VTOMI4(tdvp)->mi_zone) 7478 return (EPERM); 7479 if (VOP_REALVP(svp, &realvp, ct) == 0) { 7480 svp = realvp; 7481 ASSERT(nfs4_consistent_type(svp)); 7482 } 7483 7484 tdrp = VTOR4(tdvp); 7485 mi = VTOMI4(svp); 7486 7487 if (!(mi->mi_flags & MI4_LINK)) { 7488 return (EOPNOTSUPP); 7489 } 7490 recov_state.rs_flags = 0; 7491 recov_state.rs_num_retry_despite_err = 0; 7492 7493 if (nfs_rw_enter_sig(&tdrp->r_rwlock, RW_WRITER, INTR4(tdvp))) 7494 return (EINTR); 7495 7496 recov_retry: 7497 argop = kmem_alloc(argoplist_size, KM_SLEEP); 7498 7499 args.ctag = TAG_LINK; 7500 7501 /* 7502 * Link ops: putfh fl; savefh; putfh tdir; link; getattr(dir); 7503 * restorefh; getattr(fl) 7504 */ 7505 args.array_len = 7; 7506 args.array = argop; 7507 7508 e.error = nfs4_start_op(VTOMI4(svp), svp, tdvp, &recov_state); 7509 if (e.error) { 7510 kmem_free(argop, argoplist_size); 7511 nfs_rw_exit(&tdrp->r_rwlock); 7512 return (e.error); 7513 } 7514 7515 /* 0. putfh file */ 7516 argop[0].argop = OP_CPUTFH; 7517 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(svp)->r_fh; 7518 7519 /* 1. save current fh to free up the space for the dir */ 7520 argop[1].argop = OP_SAVEFH; 7521 7522 /* 2. putfh targetdir */ 7523 argop[2].argop = OP_CPUTFH; 7524 argop[2].nfs_argop4_u.opcputfh.sfh = tdrp->r_fh; 7525 7526 /* 3. link: current_fh is targetdir, saved_fh is source */ 7527 argop[3].argop = OP_CLINK; 7528 argop[3].nfs_argop4_u.opclink.cnewname = tnm; 7529 7530 /* 4. Get attributes of dir */ 7531 argop[4].argop = OP_GETATTR; 7532 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7533 argop[4].nfs_argop4_u.opgetattr.mi = mi; 7534 7535 /* 5. If link was successful, restore current vp to file */ 7536 argop[5].argop = OP_RESTOREFH; 7537 7538 /* 6. Get attributes of linked object */ 7539 argop[6].argop = OP_GETATTR; 7540 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7541 argop[6].nfs_argop4_u.opgetattr.mi = mi; 7542 7543 dnlc_remove(tdvp, tnm); 7544 7545 doqueue = 1; 7546 t = gethrtime(); 7547 7548 rfs4call(VTOMI4(svp), &args, &res, cr, &doqueue, 0, &e); 7549 7550 needrecov = nfs4_needs_recovery(&e, FALSE, svp->v_vfsp); 7551 if (e.error != 0 && !needrecov) { 7552 PURGE_ATTRCACHE4(tdvp); 7553 PURGE_ATTRCACHE4(svp); 7554 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, needrecov); 7555 goto out; 7556 } 7557 7558 if (needrecov) { 7559 bool_t abort; 7560 7561 abort = nfs4_start_recovery(&e, VTOMI4(svp), svp, tdvp, 7562 NULL, NULL, OP_LINK, NULL, NULL, NULL); 7563 if (abort == FALSE) { 7564 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, 7565 needrecov); 7566 kmem_free(argop, argoplist_size); 7567 if (!e.error) 7568 (void) xdr_free(xdr_COMPOUND4res_clnt, 7569 (caddr_t)&res); 7570 goto recov_retry; 7571 } else { 7572 if (e.error != 0) { 7573 PURGE_ATTRCACHE4(tdvp); 7574 PURGE_ATTRCACHE4(svp); 7575 nfs4_end_op(VTOMI4(svp), svp, tdvp, 7576 &recov_state, needrecov); 7577 goto out; 7578 } 7579 /* fall through for res.status case */ 7580 } 7581 } 7582 7583 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, needrecov); 7584 7585 resp = &res; 7586 if (res.status) { 7587 /* If link succeeded, then don't return error */ 7588 e.error = geterrno4(res.status); 7589 if (res.array_len <= 4) { 7590 /* 7591 * Either Putfh, Savefh, Putfh dir, or Link failed 7592 */ 7593 PURGE_ATTRCACHE4(svp); 7594 PURGE_ATTRCACHE4(tdvp); 7595 if (e.error == EOPNOTSUPP) { 7596 mutex_enter(&mi->mi_lock); 7597 mi->mi_flags &= ~MI4_LINK; 7598 mutex_exit(&mi->mi_lock); 7599 } 7600 /* Remap EISDIR to EPERM for non-root user for SVVS */ 7601 /* XXX-LP */ 7602 if (e.error == EISDIR && crgetuid(cr) != 0) 7603 e.error = EPERM; 7604 goto out; 7605 } 7606 } 7607 7608 /* either no error or one of the postop getattr failed */ 7609 7610 /* 7611 * XXX - if LINK succeeded, but no attrs were returned for link 7612 * file, purge its cache. 7613 * 7614 * XXX Perform a simplified version of wcc checking. Instead of 7615 * have another getattr to get pre-op, just purge cache if 7616 * any of the ops prior to and including the getattr failed. 7617 * If the getattr succeeded then update the attrcache accordingly. 7618 */ 7619 7620 /* 7621 * update cache with link file postattrs. 7622 * Note: at this point resop points to link res. 7623 */ 7624 resop = &res.array[3]; /* link res */ 7625 ln_res = &resop->nfs_resop4_u.oplink; 7626 if (res.status == NFS4_OK) 7627 e.error = nfs4_update_attrcache(res.status, 7628 &res.array[6].nfs_resop4_u.opgetattr.ga_res, 7629 t, svp, cr); 7630 7631 /* 7632 * Call makenfs4node to create the new shadow vp for tnm. 7633 * We pass NULL attrs because we just cached attrs for 7634 * the src object. All we're trying to accomplish is to 7635 * to create the new shadow vnode. 7636 */ 7637 nvp = makenfs4node(VTOR4(svp)->r_fh, NULL, tdvp->v_vfsp, t, cr, 7638 tdvp, fn_get(VTOSV(tdvp)->sv_name, tnm, VTOR4(svp)->r_fh)); 7639 7640 /* Update target cache attribute, readdir and dnlc caches */ 7641 dinfo.di_garp = &res.array[4].nfs_resop4_u.opgetattr.ga_res; 7642 dinfo.di_time_call = t; 7643 dinfo.di_cred = cr; 7644 7645 nfs4_update_dircaches(&ln_res->cinfo, tdvp, nvp, tnm, &dinfo); 7646 ASSERT(nfs4_consistent_type(tdvp)); 7647 ASSERT(nfs4_consistent_type(svp)); 7648 ASSERT(nfs4_consistent_type(nvp)); 7649 VN_RELE(nvp); 7650 7651 if (!e.error) { 7652 vnode_t *tvp; 7653 rnode4_t *trp; 7654 /* 7655 * Notify the source file of this link operation. 7656 */ 7657 trp = VTOR4(svp); 7658 tvp = svp; 7659 if (IS_SHADOW(svp, trp)) 7660 tvp = RTOV4(trp); 7661 vnevent_link(tvp, ct); 7662 } 7663 out: 7664 kmem_free(argop, argoplist_size); 7665 if (resp) 7666 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 7667 7668 nfs_rw_exit(&tdrp->r_rwlock); 7669 7670 return (e.error); 7671 } 7672 7673 /* ARGSUSED */ 7674 static int 7675 nfs4_rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr, 7676 caller_context_t *ct, int flags) 7677 { 7678 vnode_t *realvp; 7679 7680 if (nfs_zone() != VTOMI4(odvp)->mi_zone) 7681 return (EPERM); 7682 if (VOP_REALVP(ndvp, &realvp, ct) == 0) 7683 ndvp = realvp; 7684 7685 return (nfs4rename(odvp, onm, ndvp, nnm, cr, ct)); 7686 } 7687 7688 /* 7689 * nfs4rename does the real work of renaming in NFS Version 4. 7690 * 7691 * A file handle is considered volatile for renaming purposes if either 7692 * of the volatile bits are turned on. However, the compound may differ 7693 * based on the likelihood of the filehandle to change during rename. 7694 */ 7695 static int 7696 nfs4rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr, 7697 caller_context_t *ct) 7698 { 7699 int error; 7700 mntinfo4_t *mi; 7701 vnode_t *nvp = NULL; 7702 vnode_t *ovp = NULL; 7703 char *tmpname = NULL; 7704 rnode4_t *rp; 7705 rnode4_t *odrp; 7706 rnode4_t *ndrp; 7707 int did_link = 0; 7708 int do_link = 1; 7709 nfsstat4 stat = NFS4_OK; 7710 7711 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone); 7712 ASSERT(nfs4_consistent_type(odvp)); 7713 ASSERT(nfs4_consistent_type(ndvp)); 7714 7715 if (onm[0] == '.' && (onm[1] == '\0' || 7716 (onm[1] == '.' && onm[2] == '\0'))) 7717 return (EINVAL); 7718 7719 if (nnm[0] == '.' && (nnm[1] == '\0' || 7720 (nnm[1] == '.' && nnm[2] == '\0'))) 7721 return (EINVAL); 7722 7723 odrp = VTOR4(odvp); 7724 ndrp = VTOR4(ndvp); 7725 if ((intptr_t)odrp < (intptr_t)ndrp) { 7726 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR4(odvp))) 7727 return (EINTR); 7728 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR4(ndvp))) { 7729 nfs_rw_exit(&odrp->r_rwlock); 7730 return (EINTR); 7731 } 7732 } else { 7733 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR4(ndvp))) 7734 return (EINTR); 7735 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR4(odvp))) { 7736 nfs_rw_exit(&ndrp->r_rwlock); 7737 return (EINTR); 7738 } 7739 } 7740 7741 /* 7742 * Lookup the target file. If it exists, it needs to be 7743 * checked to see whether it is a mount point and whether 7744 * it is active (open). 7745 */ 7746 error = nfs4lookup(ndvp, nnm, &nvp, cr, 0); 7747 if (!error) { 7748 int isactive; 7749 7750 ASSERT(nfs4_consistent_type(nvp)); 7751 /* 7752 * If this file has been mounted on, then just 7753 * return busy because renaming to it would remove 7754 * the mounted file system from the name space. 7755 */ 7756 if (vn_ismntpt(nvp)) { 7757 VN_RELE(nvp); 7758 nfs_rw_exit(&odrp->r_rwlock); 7759 nfs_rw_exit(&ndrp->r_rwlock); 7760 return (EBUSY); 7761 } 7762 7763 /* 7764 * First just remove the entry from the name cache, as it 7765 * is most likely the only entry for this vp. 7766 */ 7767 dnlc_remove(ndvp, nnm); 7768 7769 rp = VTOR4(nvp); 7770 7771 if (nvp->v_type != VREG) { 7772 /* 7773 * Purge the name cache of all references to this vnode 7774 * so that we can check the reference count to infer 7775 * whether it is active or not. 7776 */ 7777 if (nvp->v_count > 1) 7778 dnlc_purge_vp(nvp); 7779 7780 isactive = nvp->v_count > 1; 7781 } else { 7782 mutex_enter(&rp->r_os_lock); 7783 isactive = list_head(&rp->r_open_streams) != NULL; 7784 mutex_exit(&rp->r_os_lock); 7785 } 7786 7787 /* 7788 * If the vnode is active and is not a directory, 7789 * arrange to rename it to a 7790 * temporary file so that it will continue to be 7791 * accessible. This implements the "unlink-open-file" 7792 * semantics for the target of a rename operation. 7793 * Before doing this though, make sure that the 7794 * source and target files are not already the same. 7795 */ 7796 if (isactive && nvp->v_type != VDIR) { 7797 /* 7798 * Lookup the source name. 7799 */ 7800 error = nfs4lookup(odvp, onm, &ovp, cr, 0); 7801 7802 /* 7803 * The source name *should* already exist. 7804 */ 7805 if (error) { 7806 VN_RELE(nvp); 7807 nfs_rw_exit(&odrp->r_rwlock); 7808 nfs_rw_exit(&ndrp->r_rwlock); 7809 return (error); 7810 } 7811 7812 ASSERT(nfs4_consistent_type(ovp)); 7813 7814 /* 7815 * Compare the two vnodes. If they are the same, 7816 * just release all held vnodes and return success. 7817 */ 7818 if (VN_CMP(ovp, nvp)) { 7819 VN_RELE(ovp); 7820 VN_RELE(nvp); 7821 nfs_rw_exit(&odrp->r_rwlock); 7822 nfs_rw_exit(&ndrp->r_rwlock); 7823 return (0); 7824 } 7825 7826 /* 7827 * Can't mix and match directories and non- 7828 * directories in rename operations. We already 7829 * know that the target is not a directory. If 7830 * the source is a directory, return an error. 7831 */ 7832 if (ovp->v_type == VDIR) { 7833 VN_RELE(ovp); 7834 VN_RELE(nvp); 7835 nfs_rw_exit(&odrp->r_rwlock); 7836 nfs_rw_exit(&ndrp->r_rwlock); 7837 return (ENOTDIR); 7838 } 7839 link_call: 7840 /* 7841 * The target file exists, is not the same as 7842 * the source file, and is active. We first 7843 * try to Link it to a temporary filename to 7844 * avoid having the server removing the file 7845 * completely (which could cause data loss to 7846 * the user's POV in the event the Rename fails 7847 * -- see bug 1165874). 7848 */ 7849 /* 7850 * The do_link and did_link booleans are 7851 * introduced in the event we get NFS4ERR_FILE_OPEN 7852 * returned for the Rename. Some servers can 7853 * not Rename over an Open file, so they return 7854 * this error. The client needs to Remove the 7855 * newly created Link and do two Renames, just 7856 * as if the server didn't support LINK. 7857 */ 7858 tmpname = newname(); 7859 error = 0; 7860 7861 if (do_link) { 7862 error = nfs4_link(ndvp, nvp, tmpname, cr, 7863 NULL, 0); 7864 } 7865 if (error == EOPNOTSUPP || !do_link) { 7866 error = nfs4_rename(ndvp, nnm, ndvp, tmpname, 7867 cr, NULL, 0); 7868 did_link = 0; 7869 } else { 7870 did_link = 1; 7871 } 7872 if (error) { 7873 kmem_free(tmpname, MAXNAMELEN); 7874 VN_RELE(ovp); 7875 VN_RELE(nvp); 7876 nfs_rw_exit(&odrp->r_rwlock); 7877 nfs_rw_exit(&ndrp->r_rwlock); 7878 return (error); 7879 } 7880 7881 mutex_enter(&rp->r_statelock); 7882 if (rp->r_unldvp == NULL) { 7883 VN_HOLD(ndvp); 7884 rp->r_unldvp = ndvp; 7885 if (rp->r_unlcred != NULL) 7886 crfree(rp->r_unlcred); 7887 crhold(cr); 7888 rp->r_unlcred = cr; 7889 rp->r_unlname = tmpname; 7890 } else { 7891 if (rp->r_unlname) 7892 kmem_free(rp->r_unlname, MAXNAMELEN); 7893 rp->r_unlname = tmpname; 7894 } 7895 mutex_exit(&rp->r_statelock); 7896 } 7897 7898 (void) nfs4delegreturn(VTOR4(nvp), NFS4_DR_PUSH|NFS4_DR_REOPEN); 7899 7900 ASSERT(nfs4_consistent_type(nvp)); 7901 } 7902 7903 if (ovp == NULL) { 7904 /* 7905 * When renaming directories to be a subdirectory of a 7906 * different parent, the dnlc entry for ".." will no 7907 * longer be valid, so it must be removed. 7908 * 7909 * We do a lookup here to determine whether we are renaming 7910 * a directory and we need to check if we are renaming 7911 * an unlinked file. This might have already been done 7912 * in previous code, so we check ovp == NULL to avoid 7913 * doing it twice. 7914 */ 7915 error = nfs4lookup(odvp, onm, &ovp, cr, 0); 7916 /* 7917 * The source name *should* already exist. 7918 */ 7919 if (error) { 7920 nfs_rw_exit(&odrp->r_rwlock); 7921 nfs_rw_exit(&ndrp->r_rwlock); 7922 if (nvp) { 7923 VN_RELE(nvp); 7924 } 7925 return (error); 7926 } 7927 ASSERT(ovp != NULL); 7928 ASSERT(nfs4_consistent_type(ovp)); 7929 } 7930 7931 /* 7932 * Is the object being renamed a dir, and if so, is 7933 * it being renamed to a child of itself? The underlying 7934 * fs should ultimately return EINVAL for this case; 7935 * however, buggy beta non-Solaris NFSv4 servers at 7936 * interop testing events have allowed this behavior, 7937 * and it caused our client to panic due to a recursive 7938 * mutex_enter in fn_move. 7939 * 7940 * The tedious locking in fn_move could be changed to 7941 * deal with this case, and the client could avoid the 7942 * panic; however, the client would just confuse itself 7943 * later and misbehave. A better way to handle the broken 7944 * server is to detect this condition and return EINVAL 7945 * without ever sending the the bogus rename to the server. 7946 * We know the rename is invalid -- just fail it now. 7947 */ 7948 if (ovp->v_type == VDIR && VN_CMP(ndvp, ovp)) { 7949 VN_RELE(ovp); 7950 nfs_rw_exit(&odrp->r_rwlock); 7951 nfs_rw_exit(&ndrp->r_rwlock); 7952 if (nvp) { 7953 VN_RELE(nvp); 7954 } 7955 return (EINVAL); 7956 } 7957 7958 (void) nfs4delegreturn(VTOR4(ovp), NFS4_DR_PUSH|NFS4_DR_REOPEN); 7959 7960 /* 7961 * If FH4_VOL_RENAME or FH4_VOLATILE_ANY bits are set, it is 7962 * possible for the filehandle to change due to the rename. 7963 * If neither of these bits is set, but FH4_VOL_MIGRATION is set, 7964 * the fh will not change because of the rename, but we still need 7965 * to update its rnode entry with the new name for 7966 * an eventual fh change due to migration. The FH4_NOEXPIRE_ON_OPEN 7967 * has no effect on these for now, but for future improvements, 7968 * we might want to use it too to simplify handling of files 7969 * that are open with that flag on. (XXX) 7970 */ 7971 mi = VTOMI4(odvp); 7972 if (NFS4_VOLATILE_FH(mi)) 7973 error = nfs4rename_volatile_fh(odvp, onm, ovp, ndvp, nnm, cr, 7974 &stat); 7975 else 7976 error = nfs4rename_persistent_fh(odvp, onm, ovp, ndvp, nnm, cr, 7977 &stat); 7978 7979 ASSERT(nfs4_consistent_type(odvp)); 7980 ASSERT(nfs4_consistent_type(ndvp)); 7981 ASSERT(nfs4_consistent_type(ovp)); 7982 7983 if (stat == NFS4ERR_FILE_OPEN && did_link) { 7984 do_link = 0; 7985 /* 7986 * Before the 'link_call' code, we did a nfs4_lookup 7987 * that puts a VN_HOLD on nvp. After the nfs4_link 7988 * call we call VN_RELE to match that hold. We need 7989 * to place an additional VN_HOLD here since we will 7990 * be hitting that VN_RELE again. 7991 */ 7992 VN_HOLD(nvp); 7993 7994 (void) nfs4_remove(ndvp, tmpname, cr, NULL, 0); 7995 7996 /* Undo the unlinked file naming stuff we just did */ 7997 mutex_enter(&rp->r_statelock); 7998 if (rp->r_unldvp) { 7999 VN_RELE(ndvp); 8000 rp->r_unldvp = NULL; 8001 if (rp->r_unlcred != NULL) 8002 crfree(rp->r_unlcred); 8003 rp->r_unlcred = NULL; 8004 /* rp->r_unlanme points to tmpname */ 8005 if (rp->r_unlname) 8006 kmem_free(rp->r_unlname, MAXNAMELEN); 8007 rp->r_unlname = NULL; 8008 } 8009 mutex_exit(&rp->r_statelock); 8010 8011 if (nvp) { 8012 VN_RELE(nvp); 8013 } 8014 goto link_call; 8015 } 8016 8017 if (error) { 8018 VN_RELE(ovp); 8019 nfs_rw_exit(&odrp->r_rwlock); 8020 nfs_rw_exit(&ndrp->r_rwlock); 8021 if (nvp) { 8022 VN_RELE(nvp); 8023 } 8024 return (error); 8025 } 8026 8027 /* 8028 * when renaming directories to be a subdirectory of a 8029 * different parent, the dnlc entry for ".." will no 8030 * longer be valid, so it must be removed 8031 */ 8032 rp = VTOR4(ovp); 8033 if (ndvp != odvp) { 8034 if (ovp->v_type == VDIR) { 8035 dnlc_remove(ovp, ".."); 8036 if (rp->r_dir != NULL) 8037 nfs4_purge_rddir_cache(ovp); 8038 } 8039 } 8040 8041 /* 8042 * If we are renaming the unlinked file, update the 8043 * r_unldvp and r_unlname as needed. 8044 */ 8045 mutex_enter(&rp->r_statelock); 8046 if (rp->r_unldvp != NULL) { 8047 if (strcmp(rp->r_unlname, onm) == 0) { 8048 (void) strncpy(rp->r_unlname, nnm, MAXNAMELEN); 8049 rp->r_unlname[MAXNAMELEN - 1] = '\0'; 8050 if (ndvp != rp->r_unldvp) { 8051 VN_RELE(rp->r_unldvp); 8052 rp->r_unldvp = ndvp; 8053 VN_HOLD(ndvp); 8054 } 8055 } 8056 } 8057 mutex_exit(&rp->r_statelock); 8058 8059 /* 8060 * Notify the rename vnevents to source vnode, and to the target 8061 * vnode if it already existed. 8062 */ 8063 if (error == 0) { 8064 vnode_t *tvp; 8065 rnode4_t *trp; 8066 /* 8067 * Notify the vnode. Each links is represented by 8068 * a different vnode, in nfsv4. 8069 */ 8070 if (nvp) { 8071 trp = VTOR4(nvp); 8072 tvp = nvp; 8073 if (IS_SHADOW(nvp, trp)) 8074 tvp = RTOV4(trp); 8075 vnevent_rename_dest(tvp, ndvp, nnm, ct); 8076 } 8077 8078 /* 8079 * if the source and destination directory are not the 8080 * same notify the destination directory. 8081 */ 8082 if (VTOR4(odvp) != VTOR4(ndvp)) { 8083 trp = VTOR4(ndvp); 8084 tvp = ndvp; 8085 if (IS_SHADOW(ndvp, trp)) 8086 tvp = RTOV4(trp); 8087 vnevent_rename_dest_dir(tvp, ct); 8088 } 8089 8090 trp = VTOR4(ovp); 8091 tvp = ovp; 8092 if (IS_SHADOW(ovp, trp)) 8093 tvp = RTOV4(trp); 8094 vnevent_rename_src(tvp, odvp, onm, ct); 8095 } 8096 8097 if (nvp) { 8098 VN_RELE(nvp); 8099 } 8100 VN_RELE(ovp); 8101 8102 nfs_rw_exit(&odrp->r_rwlock); 8103 nfs_rw_exit(&ndrp->r_rwlock); 8104 8105 return (error); 8106 } 8107 8108 /* 8109 * When the parent directory has changed, sv_dfh must be updated 8110 */ 8111 static void 8112 update_parentdir_sfh(vnode_t *vp, vnode_t *ndvp) 8113 { 8114 svnode_t *sv = VTOSV(vp); 8115 nfs4_sharedfh_t *old_dfh = sv->sv_dfh; 8116 nfs4_sharedfh_t *new_dfh = VTOR4(ndvp)->r_fh; 8117 8118 sfh4_hold(new_dfh); 8119 sv->sv_dfh = new_dfh; 8120 sfh4_rele(&old_dfh); 8121 } 8122 8123 /* 8124 * nfs4rename_persistent does the otw portion of renaming in NFS Version 4, 8125 * when it is known that the filehandle is persistent through rename. 8126 * 8127 * Rename requires that the current fh be the target directory and the 8128 * saved fh be the source directory. After the operation, the current fh 8129 * is unchanged. 8130 * The compound op structure for persistent fh rename is: 8131 * PUTFH(sourcdir), SAVEFH, PUTFH(targetdir), RENAME 8132 * Rather than bother with the directory postop args, we'll simply 8133 * update that a change occurred in the cache, so no post-op getattrs. 8134 */ 8135 static int 8136 nfs4rename_persistent_fh(vnode_t *odvp, char *onm, vnode_t *renvp, 8137 vnode_t *ndvp, char *nnm, cred_t *cr, nfsstat4 *statp) 8138 { 8139 COMPOUND4args_clnt args; 8140 COMPOUND4res_clnt res, *resp = NULL; 8141 nfs_argop4 *argop; 8142 nfs_resop4 *resop; 8143 int doqueue, argoplist_size; 8144 mntinfo4_t *mi; 8145 rnode4_t *odrp = VTOR4(odvp); 8146 rnode4_t *ndrp = VTOR4(ndvp); 8147 RENAME4res *rn_res; 8148 bool_t needrecov; 8149 nfs4_recov_state_t recov_state; 8150 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 8151 dirattr_info_t dinfo, *dinfop; 8152 8153 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone); 8154 8155 recov_state.rs_flags = 0; 8156 recov_state.rs_num_retry_despite_err = 0; 8157 8158 /* 8159 * Rename ops: putfh sdir; savefh; putfh tdir; rename; getattr tdir 8160 * 8161 * If source/target are different dirs, then append putfh(src); getattr 8162 */ 8163 args.array_len = (odvp == ndvp) ? 5 : 7; 8164 argoplist_size = args.array_len * sizeof (nfs_argop4); 8165 args.array = argop = kmem_alloc(argoplist_size, KM_SLEEP); 8166 8167 recov_retry: 8168 *statp = NFS4_OK; 8169 8170 /* No need to Lookup the file, persistent fh */ 8171 args.ctag = TAG_RENAME; 8172 8173 mi = VTOMI4(odvp); 8174 e.error = nfs4_start_op(mi, odvp, ndvp, &recov_state); 8175 if (e.error) { 8176 kmem_free(argop, argoplist_size); 8177 return (e.error); 8178 } 8179 8180 /* 0: putfh source directory */ 8181 argop[0].argop = OP_CPUTFH; 8182 argop[0].nfs_argop4_u.opcputfh.sfh = odrp->r_fh; 8183 8184 /* 1: Save source fh to free up current for target */ 8185 argop[1].argop = OP_SAVEFH; 8186 8187 /* 2: putfh targetdir */ 8188 argop[2].argop = OP_CPUTFH; 8189 argop[2].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8190 8191 /* 3: current_fh is targetdir, saved_fh is sourcedir */ 8192 argop[3].argop = OP_CRENAME; 8193 argop[3].nfs_argop4_u.opcrename.coldname = onm; 8194 argop[3].nfs_argop4_u.opcrename.cnewname = nnm; 8195 8196 /* 4: getattr (targetdir) */ 8197 argop[4].argop = OP_GETATTR; 8198 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8199 argop[4].nfs_argop4_u.opgetattr.mi = mi; 8200 8201 if (ndvp != odvp) { 8202 8203 /* 5: putfh (sourcedir) */ 8204 argop[5].argop = OP_CPUTFH; 8205 argop[5].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8206 8207 /* 6: getattr (sourcedir) */ 8208 argop[6].argop = OP_GETATTR; 8209 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8210 argop[6].nfs_argop4_u.opgetattr.mi = mi; 8211 } 8212 8213 dnlc_remove(odvp, onm); 8214 dnlc_remove(ndvp, nnm); 8215 8216 doqueue = 1; 8217 dinfo.di_time_call = gethrtime(); 8218 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 8219 8220 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 8221 if (e.error) { 8222 PURGE_ATTRCACHE4(odvp); 8223 PURGE_ATTRCACHE4(ndvp); 8224 } else { 8225 *statp = res.status; 8226 } 8227 8228 if (needrecov) { 8229 if (nfs4_start_recovery(&e, mi, odvp, ndvp, NULL, NULL, 8230 OP_RENAME, NULL, NULL, NULL) == FALSE) { 8231 nfs4_end_op(mi, odvp, ndvp, &recov_state, needrecov); 8232 if (!e.error) 8233 (void) xdr_free(xdr_COMPOUND4res_clnt, 8234 (caddr_t)&res); 8235 goto recov_retry; 8236 } 8237 } 8238 8239 if (!e.error) { 8240 resp = &res; 8241 /* 8242 * as long as OP_RENAME 8243 */ 8244 if (res.status != NFS4_OK && res.array_len <= 4) { 8245 e.error = geterrno4(res.status); 8246 PURGE_ATTRCACHE4(odvp); 8247 PURGE_ATTRCACHE4(ndvp); 8248 /* 8249 * System V defines rename to return EEXIST, not 8250 * ENOTEMPTY if the target directory is not empty. 8251 * Over the wire, the error is NFSERR_ENOTEMPTY 8252 * which geterrno4 maps to ENOTEMPTY. 8253 */ 8254 if (e.error == ENOTEMPTY) 8255 e.error = EEXIST; 8256 } else { 8257 8258 resop = &res.array[3]; /* rename res */ 8259 rn_res = &resop->nfs_resop4_u.oprename; 8260 8261 if (res.status == NFS4_OK) { 8262 /* 8263 * Update target attribute, readdir and dnlc 8264 * caches. 8265 */ 8266 dinfo.di_garp = 8267 &res.array[4].nfs_resop4_u.opgetattr.ga_res; 8268 dinfo.di_cred = cr; 8269 dinfop = &dinfo; 8270 } else 8271 dinfop = NULL; 8272 8273 nfs4_update_dircaches(&rn_res->target_cinfo, 8274 ndvp, NULL, NULL, dinfop); 8275 8276 /* 8277 * Update source attribute, readdir and dnlc caches 8278 * 8279 */ 8280 if (ndvp != odvp) { 8281 update_parentdir_sfh(renvp, ndvp); 8282 8283 if (dinfop) 8284 dinfo.di_garp = 8285 &(res.array[6].nfs_resop4_u. 8286 opgetattr.ga_res); 8287 8288 nfs4_update_dircaches(&rn_res->source_cinfo, 8289 odvp, NULL, NULL, dinfop); 8290 } 8291 8292 fn_move(VTOSV(renvp)->sv_name, VTOSV(ndvp)->sv_name, 8293 nnm); 8294 } 8295 } 8296 8297 if (resp) 8298 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 8299 nfs4_end_op(mi, odvp, ndvp, &recov_state, needrecov); 8300 kmem_free(argop, argoplist_size); 8301 8302 return (e.error); 8303 } 8304 8305 /* 8306 * nfs4rename_volatile_fh does the otw part of renaming in NFS Version 4, when 8307 * it is possible for the filehandle to change due to the rename. 8308 * 8309 * The compound req in this case includes a post-rename lookup and getattr 8310 * to ensure that we have the correct fh and attributes for the object. 8311 * 8312 * Rename requires that the current fh be the target directory and the 8313 * saved fh be the source directory. After the operation, the current fh 8314 * is unchanged. 8315 * 8316 * We need the new filehandle (hence a LOOKUP and GETFH) so that we can 8317 * update the filehandle for the renamed object. We also get the old 8318 * filehandle for historical reasons; this should be taken out sometime. 8319 * This results in a rather cumbersome compound... 8320 * 8321 * PUTFH(sourcdir), SAVEFH, LOOKUP(src), GETFH(old), 8322 * PUTFH(targetdir), RENAME, LOOKUP(trgt), GETFH(new), GETATTR 8323 * 8324 */ 8325 static int 8326 nfs4rename_volatile_fh(vnode_t *odvp, char *onm, vnode_t *ovp, 8327 vnode_t *ndvp, char *nnm, cred_t *cr, nfsstat4 *statp) 8328 { 8329 COMPOUND4args_clnt args; 8330 COMPOUND4res_clnt res, *resp = NULL; 8331 int argoplist_size; 8332 nfs_argop4 *argop; 8333 nfs_resop4 *resop; 8334 int doqueue; 8335 mntinfo4_t *mi; 8336 rnode4_t *odrp = VTOR4(odvp); /* old directory */ 8337 rnode4_t *ndrp = VTOR4(ndvp); /* new directory */ 8338 rnode4_t *orp = VTOR4(ovp); /* object being renamed */ 8339 RENAME4res *rn_res; 8340 GETFH4res *ngf_res; 8341 bool_t needrecov; 8342 nfs4_recov_state_t recov_state; 8343 hrtime_t t; 8344 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 8345 dirattr_info_t dinfo, *dinfop = &dinfo; 8346 8347 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone); 8348 8349 recov_state.rs_flags = 0; 8350 recov_state.rs_num_retry_despite_err = 0; 8351 8352 recov_retry: 8353 *statp = NFS4_OK; 8354 8355 /* 8356 * There is a window between the RPC and updating the path and 8357 * filehandle stored in the rnode. Lock out the FHEXPIRED recovery 8358 * code, so that it doesn't try to use the old path during that 8359 * window. 8360 */ 8361 mutex_enter(&orp->r_statelock); 8362 while (orp->r_flags & R4RECEXPFH) { 8363 klwp_t *lwp = ttolwp(curthread); 8364 8365 if (lwp != NULL) 8366 lwp->lwp_nostop++; 8367 if (cv_wait_sig(&orp->r_cv, &orp->r_statelock) == 0) { 8368 mutex_exit(&orp->r_statelock); 8369 if (lwp != NULL) 8370 lwp->lwp_nostop--; 8371 return (EINTR); 8372 } 8373 if (lwp != NULL) 8374 lwp->lwp_nostop--; 8375 } 8376 orp->r_flags |= R4RECEXPFH; 8377 mutex_exit(&orp->r_statelock); 8378 8379 mi = VTOMI4(odvp); 8380 8381 args.ctag = TAG_RENAME_VFH; 8382 args.array_len = (odvp == ndvp) ? 10 : 12; 8383 argoplist_size = args.array_len * sizeof (nfs_argop4); 8384 argop = kmem_alloc(argoplist_size, KM_SLEEP); 8385 8386 /* 8387 * Rename ops: 8388 * PUTFH(sourcdir), SAVEFH, LOOKUP(src), GETFH(old), 8389 * PUTFH(targetdir), RENAME, GETATTR(targetdir) 8390 * LOOKUP(trgt), GETFH(new), GETATTR, 8391 * 8392 * if (odvp != ndvp) 8393 * add putfh(sourcedir), getattr(sourcedir) } 8394 */ 8395 args.array = argop; 8396 8397 e.error = nfs4_start_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8398 &recov_state, NULL); 8399 if (e.error) { 8400 kmem_free(argop, argoplist_size); 8401 mutex_enter(&orp->r_statelock); 8402 orp->r_flags &= ~R4RECEXPFH; 8403 cv_broadcast(&orp->r_cv); 8404 mutex_exit(&orp->r_statelock); 8405 return (e.error); 8406 } 8407 8408 /* 0: putfh source directory */ 8409 argop[0].argop = OP_CPUTFH; 8410 argop[0].nfs_argop4_u.opcputfh.sfh = odrp->r_fh; 8411 8412 /* 1: Save source fh to free up current for target */ 8413 argop[1].argop = OP_SAVEFH; 8414 8415 /* 2: Lookup pre-rename fh of renamed object */ 8416 argop[2].argop = OP_CLOOKUP; 8417 argop[2].nfs_argop4_u.opclookup.cname = onm; 8418 8419 /* 3: getfh fh of renamed object (before rename) */ 8420 argop[3].argop = OP_GETFH; 8421 8422 /* 4: putfh targetdir */ 8423 argop[4].argop = OP_CPUTFH; 8424 argop[4].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8425 8426 /* 5: current_fh is targetdir, saved_fh is sourcedir */ 8427 argop[5].argop = OP_CRENAME; 8428 argop[5].nfs_argop4_u.opcrename.coldname = onm; 8429 argop[5].nfs_argop4_u.opcrename.cnewname = nnm; 8430 8431 /* 6: getattr of target dir (post op attrs) */ 8432 argop[6].argop = OP_GETATTR; 8433 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8434 argop[6].nfs_argop4_u.opgetattr.mi = mi; 8435 8436 /* 7: Lookup post-rename fh of renamed object */ 8437 argop[7].argop = OP_CLOOKUP; 8438 argop[7].nfs_argop4_u.opclookup.cname = nnm; 8439 8440 /* 8: getfh fh of renamed object (after rename) */ 8441 argop[8].argop = OP_GETFH; 8442 8443 /* 9: getattr of renamed object */ 8444 argop[9].argop = OP_GETATTR; 8445 argop[9].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8446 argop[9].nfs_argop4_u.opgetattr.mi = mi; 8447 8448 /* 8449 * If source/target dirs are different, then get new post-op 8450 * attrs for source dir also. 8451 */ 8452 if (ndvp != odvp) { 8453 /* 10: putfh (sourcedir) */ 8454 argop[10].argop = OP_CPUTFH; 8455 argop[10].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8456 8457 /* 11: getattr (sourcedir) */ 8458 argop[11].argop = OP_GETATTR; 8459 argop[11].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8460 argop[11].nfs_argop4_u.opgetattr.mi = mi; 8461 } 8462 8463 dnlc_remove(odvp, onm); 8464 dnlc_remove(ndvp, nnm); 8465 8466 doqueue = 1; 8467 t = gethrtime(); 8468 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 8469 8470 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 8471 if (e.error) { 8472 PURGE_ATTRCACHE4(odvp); 8473 PURGE_ATTRCACHE4(ndvp); 8474 if (!needrecov) { 8475 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8476 &recov_state, needrecov); 8477 goto out; 8478 } 8479 } else { 8480 *statp = res.status; 8481 } 8482 8483 if (needrecov) { 8484 bool_t abort; 8485 8486 abort = nfs4_start_recovery(&e, mi, odvp, ndvp, NULL, NULL, 8487 OP_RENAME, NULL, NULL, NULL); 8488 if (abort == FALSE) { 8489 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8490 &recov_state, needrecov); 8491 kmem_free(argop, argoplist_size); 8492 if (!e.error) 8493 (void) xdr_free(xdr_COMPOUND4res_clnt, 8494 (caddr_t)&res); 8495 mutex_enter(&orp->r_statelock); 8496 orp->r_flags &= ~R4RECEXPFH; 8497 cv_broadcast(&orp->r_cv); 8498 mutex_exit(&orp->r_statelock); 8499 goto recov_retry; 8500 } else { 8501 if (e.error != 0) { 8502 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8503 &recov_state, needrecov); 8504 goto out; 8505 } 8506 /* fall through for res.status case */ 8507 } 8508 } 8509 8510 resp = &res; 8511 /* 8512 * If OP_RENAME (or any prev op) failed, then return an error. 8513 * OP_RENAME is index 5, so if array len <= 6 we return an error. 8514 */ 8515 if ((res.status != NFS4_OK) && (res.array_len <= 6)) { 8516 /* 8517 * Error in an op other than last Getattr 8518 */ 8519 e.error = geterrno4(res.status); 8520 PURGE_ATTRCACHE4(odvp); 8521 PURGE_ATTRCACHE4(ndvp); 8522 /* 8523 * System V defines rename to return EEXIST, not 8524 * ENOTEMPTY if the target directory is not empty. 8525 * Over the wire, the error is NFSERR_ENOTEMPTY 8526 * which geterrno4 maps to ENOTEMPTY. 8527 */ 8528 if (e.error == ENOTEMPTY) 8529 e.error = EEXIST; 8530 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, &recov_state, 8531 needrecov); 8532 goto out; 8533 } 8534 8535 /* rename results */ 8536 rn_res = &res.array[5].nfs_resop4_u.oprename; 8537 8538 if (res.status == NFS4_OK) { 8539 /* Update target attribute, readdir and dnlc caches */ 8540 dinfo.di_garp = 8541 &res.array[6].nfs_resop4_u.opgetattr.ga_res; 8542 dinfo.di_cred = cr; 8543 dinfo.di_time_call = t; 8544 } else 8545 dinfop = NULL; 8546 8547 /* Update source cache attribute, readdir and dnlc caches */ 8548 nfs4_update_dircaches(&rn_res->target_cinfo, ndvp, NULL, NULL, dinfop); 8549 8550 /* Update source cache attribute, readdir and dnlc caches */ 8551 if (ndvp != odvp) { 8552 update_parentdir_sfh(ovp, ndvp); 8553 8554 /* 8555 * If dinfop is non-NULL, then compound succeded, so 8556 * set di_garp to attrs for source dir. dinfop is only 8557 * set to NULL when compound fails. 8558 */ 8559 if (dinfop) 8560 dinfo.di_garp = 8561 &res.array[11].nfs_resop4_u.opgetattr.ga_res; 8562 nfs4_update_dircaches(&rn_res->source_cinfo, odvp, NULL, NULL, 8563 dinfop); 8564 } 8565 8566 /* 8567 * Update the rnode with the new component name and args, 8568 * and if the file handle changed, also update it with the new fh. 8569 * This is only necessary if the target object has an rnode 8570 * entry and there is no need to create one for it. 8571 */ 8572 resop = &res.array[8]; /* getfh new res */ 8573 ngf_res = &resop->nfs_resop4_u.opgetfh; 8574 8575 /* 8576 * Update the path and filehandle for the renamed object. 8577 */ 8578 nfs4rename_update(ovp, ndvp, &ngf_res->object, nnm); 8579 8580 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, &recov_state, needrecov); 8581 8582 if (res.status == NFS4_OK) { 8583 resop++; /* getattr res */ 8584 e.error = nfs4_update_attrcache(res.status, 8585 &resop->nfs_resop4_u.opgetattr.ga_res, 8586 t, ovp, cr); 8587 } 8588 8589 out: 8590 kmem_free(argop, argoplist_size); 8591 if (resp) 8592 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 8593 mutex_enter(&orp->r_statelock); 8594 orp->r_flags &= ~R4RECEXPFH; 8595 cv_broadcast(&orp->r_cv); 8596 mutex_exit(&orp->r_statelock); 8597 8598 return (e.error); 8599 } 8600 8601 /* ARGSUSED */ 8602 static int 8603 nfs4_mkdir(vnode_t *dvp, char *nm, struct vattr *va, vnode_t **vpp, cred_t *cr, 8604 caller_context_t *ct, int flags, vsecattr_t *vsecp) 8605 { 8606 int error; 8607 vnode_t *vp; 8608 8609 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 8610 return (EPERM); 8611 /* 8612 * As ".." has special meaning and rather than send a mkdir 8613 * over the wire to just let the server freak out, we just 8614 * short circuit it here and return EEXIST 8615 */ 8616 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') 8617 return (EEXIST); 8618 8619 /* 8620 * Decision to get the right gid and setgid bit of the 8621 * new directory is now made in call_nfs4_create_req. 8622 */ 8623 va->va_mask |= AT_MODE; 8624 error = call_nfs4_create_req(dvp, nm, NULL, va, &vp, cr, NF4DIR); 8625 if (error) 8626 return (error); 8627 8628 *vpp = vp; 8629 return (0); 8630 } 8631 8632 8633 /* 8634 * rmdir is using the same remove v4 op as does remove. 8635 * Remove requires that the current fh be the target directory. 8636 * After the operation, the current fh is unchanged. 8637 * The compound op structure is: 8638 * PUTFH(targetdir), REMOVE 8639 */ 8640 /*ARGSUSED4*/ 8641 static int 8642 nfs4_rmdir(vnode_t *dvp, char *nm, vnode_t *cdir, cred_t *cr, 8643 caller_context_t *ct, int flags) 8644 { 8645 int need_end_op = FALSE; 8646 COMPOUND4args_clnt args; 8647 COMPOUND4res_clnt res, *resp = NULL; 8648 REMOVE4res *rm_res; 8649 nfs_argop4 argop[3]; 8650 nfs_resop4 *resop; 8651 vnode_t *vp; 8652 int doqueue; 8653 mntinfo4_t *mi; 8654 rnode4_t *drp; 8655 bool_t needrecov = FALSE; 8656 nfs4_recov_state_t recov_state; 8657 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 8658 dirattr_info_t dinfo, *dinfop; 8659 8660 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 8661 return (EPERM); 8662 /* 8663 * As ".." has special meaning and rather than send a rmdir 8664 * over the wire to just let the server freak out, we just 8665 * short circuit it here and return EEXIST 8666 */ 8667 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') 8668 return (EEXIST); 8669 8670 drp = VTOR4(dvp); 8671 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) 8672 return (EINTR); 8673 8674 /* 8675 * Attempt to prevent a rmdir(".") from succeeding. 8676 */ 8677 e.error = nfs4lookup(dvp, nm, &vp, cr, 0); 8678 if (e.error) { 8679 nfs_rw_exit(&drp->r_rwlock); 8680 return (e.error); 8681 } 8682 if (vp == cdir) { 8683 VN_RELE(vp); 8684 nfs_rw_exit(&drp->r_rwlock); 8685 return (EINVAL); 8686 } 8687 8688 /* 8689 * Since nfsv4 remove op works on both files and directories, 8690 * check that the removed object is indeed a directory. 8691 */ 8692 if (vp->v_type != VDIR) { 8693 VN_RELE(vp); 8694 nfs_rw_exit(&drp->r_rwlock); 8695 return (ENOTDIR); 8696 } 8697 8698 /* 8699 * First just remove the entry from the name cache, as it 8700 * is most likely an entry for this vp. 8701 */ 8702 dnlc_remove(dvp, nm); 8703 8704 /* 8705 * If there vnode reference count is greater than one, then 8706 * there may be additional references in the DNLC which will 8707 * need to be purged. First, trying removing the entry for 8708 * the parent directory and see if that removes the additional 8709 * reference(s). If that doesn't do it, then use dnlc_purge_vp 8710 * to completely remove any references to the directory which 8711 * might still exist in the DNLC. 8712 */ 8713 if (vp->v_count > 1) { 8714 dnlc_remove(vp, ".."); 8715 if (vp->v_count > 1) 8716 dnlc_purge_vp(vp); 8717 } 8718 8719 mi = VTOMI4(dvp); 8720 recov_state.rs_flags = 0; 8721 recov_state.rs_num_retry_despite_err = 0; 8722 8723 recov_retry: 8724 args.ctag = TAG_RMDIR; 8725 8726 /* 8727 * Rmdir ops: putfh dir; remove 8728 */ 8729 args.array_len = 3; 8730 args.array = argop; 8731 8732 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state); 8733 if (e.error) { 8734 nfs_rw_exit(&drp->r_rwlock); 8735 return (e.error); 8736 } 8737 need_end_op = TRUE; 8738 8739 /* putfh directory */ 8740 argop[0].argop = OP_CPUTFH; 8741 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 8742 8743 /* remove */ 8744 argop[1].argop = OP_CREMOVE; 8745 argop[1].nfs_argop4_u.opcremove.ctarget = nm; 8746 8747 /* getattr (postop attrs for dir that contained removed dir) */ 8748 argop[2].argop = OP_GETATTR; 8749 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8750 argop[2].nfs_argop4_u.opgetattr.mi = mi; 8751 8752 dinfo.di_time_call = gethrtime(); 8753 doqueue = 1; 8754 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 8755 8756 PURGE_ATTRCACHE4(vp); 8757 8758 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 8759 if (e.error) { 8760 PURGE_ATTRCACHE4(dvp); 8761 } 8762 8763 if (needrecov) { 8764 if (nfs4_start_recovery(&e, VTOMI4(dvp), dvp, NULL, NULL, 8765 NULL, OP_REMOVE, NULL, NULL, NULL) == FALSE) { 8766 if (!e.error) 8767 (void) xdr_free(xdr_COMPOUND4res_clnt, 8768 (caddr_t)&res); 8769 8770 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, 8771 needrecov); 8772 need_end_op = FALSE; 8773 goto recov_retry; 8774 } 8775 } 8776 8777 if (!e.error) { 8778 resp = &res; 8779 8780 /* 8781 * Only return error if first 2 ops (OP_REMOVE or earlier) 8782 * failed. 8783 */ 8784 if (res.status != NFS4_OK && res.array_len <= 2) { 8785 e.error = geterrno4(res.status); 8786 PURGE_ATTRCACHE4(dvp); 8787 nfs4_end_op(VTOMI4(dvp), dvp, NULL, 8788 &recov_state, needrecov); 8789 need_end_op = FALSE; 8790 nfs4_purge_stale_fh(e.error, dvp, cr); 8791 /* 8792 * System V defines rmdir to return EEXIST, not 8793 * ENOTEMPTY if the directory is not empty. Over 8794 * the wire, the error is NFSERR_ENOTEMPTY which 8795 * geterrno4 maps to ENOTEMPTY. 8796 */ 8797 if (e.error == ENOTEMPTY) 8798 e.error = EEXIST; 8799 } else { 8800 resop = &res.array[1]; /* remove res */ 8801 rm_res = &resop->nfs_resop4_u.opremove; 8802 8803 if (res.status == NFS4_OK) { 8804 resop = &res.array[2]; /* dir attrs */ 8805 dinfo.di_garp = 8806 &resop->nfs_resop4_u.opgetattr.ga_res; 8807 dinfo.di_cred = cr; 8808 dinfop = &dinfo; 8809 } else 8810 dinfop = NULL; 8811 8812 /* Update dir attribute, readdir and dnlc caches */ 8813 nfs4_update_dircaches(&rm_res->cinfo, dvp, NULL, NULL, 8814 dinfop); 8815 8816 /* destroy rddir cache for dir that was removed */ 8817 if (VTOR4(vp)->r_dir != NULL) 8818 nfs4_purge_rddir_cache(vp); 8819 } 8820 } 8821 8822 if (need_end_op) 8823 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 8824 8825 nfs_rw_exit(&drp->r_rwlock); 8826 8827 if (resp) 8828 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 8829 8830 if (e.error == 0) { 8831 vnode_t *tvp; 8832 rnode4_t *trp; 8833 trp = VTOR4(vp); 8834 tvp = vp; 8835 if (IS_SHADOW(vp, trp)) 8836 tvp = RTOV4(trp); 8837 vnevent_rmdir(tvp, dvp, nm, ct); 8838 } 8839 8840 VN_RELE(vp); 8841 8842 return (e.error); 8843 } 8844 8845 /* ARGSUSED */ 8846 static int 8847 nfs4_symlink(vnode_t *dvp, char *lnm, struct vattr *tva, char *tnm, cred_t *cr, 8848 caller_context_t *ct, int flags) 8849 { 8850 int error; 8851 vnode_t *vp; 8852 rnode4_t *rp; 8853 char *contents; 8854 mntinfo4_t *mi = VTOMI4(dvp); 8855 8856 if (nfs_zone() != mi->mi_zone) 8857 return (EPERM); 8858 if (!(mi->mi_flags & MI4_SYMLINK)) 8859 return (EOPNOTSUPP); 8860 8861 error = call_nfs4_create_req(dvp, lnm, tnm, tva, &vp, cr, NF4LNK); 8862 if (error) 8863 return (error); 8864 8865 ASSERT(nfs4_consistent_type(vp)); 8866 rp = VTOR4(vp); 8867 if (nfs4_do_symlink_cache && rp->r_symlink.contents == NULL) { 8868 8869 contents = kmem_alloc(MAXPATHLEN, KM_SLEEP); 8870 8871 if (contents != NULL) { 8872 mutex_enter(&rp->r_statelock); 8873 if (rp->r_symlink.contents == NULL) { 8874 rp->r_symlink.len = strlen(tnm); 8875 bcopy(tnm, contents, rp->r_symlink.len); 8876 rp->r_symlink.contents = contents; 8877 rp->r_symlink.size = MAXPATHLEN; 8878 mutex_exit(&rp->r_statelock); 8879 } else { 8880 mutex_exit(&rp->r_statelock); 8881 kmem_free((void *)contents, MAXPATHLEN); 8882 } 8883 } 8884 } 8885 VN_RELE(vp); 8886 8887 return (error); 8888 } 8889 8890 8891 /* 8892 * Read directory entries. 8893 * There are some weird things to look out for here. The uio_loffset 8894 * field is either 0 or it is the offset returned from a previous 8895 * readdir. It is an opaque value used by the server to find the 8896 * correct directory block to read. The count field is the number 8897 * of blocks to read on the server. This is advisory only, the server 8898 * may return only one block's worth of entries. Entries may be compressed 8899 * on the server. 8900 */ 8901 /* ARGSUSED */ 8902 static int 8903 nfs4_readdir(vnode_t *vp, struct uio *uiop, cred_t *cr, int *eofp, 8904 caller_context_t *ct, int flags) 8905 { 8906 int error; 8907 uint_t count; 8908 rnode4_t *rp; 8909 rddir4_cache *rdc; 8910 rddir4_cache *rrdc; 8911 8912 if (nfs_zone() != VTOMI4(vp)->mi_zone) 8913 return (EIO); 8914 rp = VTOR4(vp); 8915 8916 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 8917 8918 /* 8919 * Make sure that the directory cache is valid. 8920 */ 8921 if (rp->r_dir != NULL) { 8922 if (nfs_disable_rddir_cache != 0) { 8923 /* 8924 * Setting nfs_disable_rddir_cache in /etc/system 8925 * allows interoperability with servers that do not 8926 * properly update the attributes of directories. 8927 * Any cached information gets purged before an 8928 * access is made to it. 8929 */ 8930 nfs4_purge_rddir_cache(vp); 8931 } 8932 8933 error = nfs4_validate_caches(vp, cr); 8934 if (error) 8935 return (error); 8936 } 8937 8938 count = MIN(uiop->uio_iov->iov_len, MAXBSIZE); 8939 8940 /* 8941 * Short circuit last readdir which always returns 0 bytes. 8942 * This can be done after the directory has been read through 8943 * completely at least once. This will set r_direof which 8944 * can be used to find the value of the last cookie. 8945 */ 8946 mutex_enter(&rp->r_statelock); 8947 if (rp->r_direof != NULL && 8948 uiop->uio_loffset == rp->r_direof->nfs4_ncookie) { 8949 mutex_exit(&rp->r_statelock); 8950 #ifdef DEBUG 8951 nfs4_readdir_cache_shorts++; 8952 #endif 8953 if (eofp) 8954 *eofp = 1; 8955 return (0); 8956 } 8957 8958 /* 8959 * Look for a cache entry. Cache entries are identified 8960 * by the NFS cookie value and the byte count requested. 8961 */ 8962 rdc = rddir4_cache_lookup(rp, uiop->uio_loffset, count); 8963 8964 /* 8965 * If rdc is NULL then the lookup resulted in an unrecoverable error. 8966 */ 8967 if (rdc == NULL) { 8968 mutex_exit(&rp->r_statelock); 8969 return (EINTR); 8970 } 8971 8972 /* 8973 * Check to see if we need to fill this entry in. 8974 */ 8975 if (rdc->flags & RDDIRREQ) { 8976 rdc->flags &= ~RDDIRREQ; 8977 rdc->flags |= RDDIR; 8978 mutex_exit(&rp->r_statelock); 8979 8980 /* 8981 * Do the readdir. 8982 */ 8983 nfs4readdir(vp, rdc, cr); 8984 8985 /* 8986 * Reacquire the lock, so that we can continue 8987 */ 8988 mutex_enter(&rp->r_statelock); 8989 /* 8990 * The entry is now complete 8991 */ 8992 rdc->flags &= ~RDDIR; 8993 } 8994 8995 ASSERT(!(rdc->flags & RDDIR)); 8996 8997 /* 8998 * If an error occurred while attempting 8999 * to fill the cache entry, mark the entry invalid and 9000 * just return the error. 9001 */ 9002 if (rdc->error) { 9003 error = rdc->error; 9004 rdc->flags |= RDDIRREQ; 9005 rddir4_cache_rele(rp, rdc); 9006 mutex_exit(&rp->r_statelock); 9007 return (error); 9008 } 9009 9010 /* 9011 * The cache entry is complete and good, 9012 * copyout the dirent structs to the calling 9013 * thread. 9014 */ 9015 error = uiomove(rdc->entries, rdc->actlen, UIO_READ, uiop); 9016 9017 /* 9018 * If no error occurred during the copyout, 9019 * update the offset in the uio struct to 9020 * contain the value of the next NFS 4 cookie 9021 * and set the eof value appropriately. 9022 */ 9023 if (!error) { 9024 uiop->uio_loffset = rdc->nfs4_ncookie; 9025 if (eofp) 9026 *eofp = rdc->eof; 9027 } 9028 9029 /* 9030 * Decide whether to do readahead. Don't if we 9031 * have already read to the end of directory. 9032 */ 9033 if (rdc->eof) { 9034 /* 9035 * Make the entry the direof only if it is cached 9036 */ 9037 if (rdc->flags & RDDIRCACHED) 9038 rp->r_direof = rdc; 9039 rddir4_cache_rele(rp, rdc); 9040 mutex_exit(&rp->r_statelock); 9041 return (error); 9042 } 9043 9044 /* Determine if a readdir readahead should be done */ 9045 if (!(rp->r_flags & R4LOOKUP)) { 9046 rddir4_cache_rele(rp, rdc); 9047 mutex_exit(&rp->r_statelock); 9048 return (error); 9049 } 9050 9051 /* 9052 * Now look for a readahead entry. 9053 * 9054 * Check to see whether we found an entry for the readahead. 9055 * If so, we don't need to do anything further, so free the new 9056 * entry if one was allocated. Otherwise, allocate a new entry, add 9057 * it to the cache, and then initiate an asynchronous readdir 9058 * operation to fill it. 9059 */ 9060 rrdc = rddir4_cache_lookup(rp, rdc->nfs4_ncookie, count); 9061 9062 /* 9063 * A readdir cache entry could not be obtained for the readahead. In 9064 * this case we skip the readahead and return. 9065 */ 9066 if (rrdc == NULL) { 9067 rddir4_cache_rele(rp, rdc); 9068 mutex_exit(&rp->r_statelock); 9069 return (error); 9070 } 9071 9072 /* 9073 * Check to see if we need to fill this entry in. 9074 */ 9075 if (rrdc->flags & RDDIRREQ) { 9076 rrdc->flags &= ~RDDIRREQ; 9077 rrdc->flags |= RDDIR; 9078 rddir4_cache_rele(rp, rdc); 9079 mutex_exit(&rp->r_statelock); 9080 #ifdef DEBUG 9081 nfs4_readdir_readahead++; 9082 #endif 9083 /* 9084 * Do the readdir. 9085 */ 9086 nfs4_async_readdir(vp, rrdc, cr, do_nfs4readdir); 9087 return (error); 9088 } 9089 9090 rddir4_cache_rele(rp, rrdc); 9091 rddir4_cache_rele(rp, rdc); 9092 mutex_exit(&rp->r_statelock); 9093 return (error); 9094 } 9095 9096 static int 9097 do_nfs4readdir(vnode_t *vp, rddir4_cache *rdc, cred_t *cr) 9098 { 9099 int error; 9100 rnode4_t *rp; 9101 9102 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 9103 9104 rp = VTOR4(vp); 9105 9106 /* 9107 * Obtain the readdir results for the caller. 9108 */ 9109 nfs4readdir(vp, rdc, cr); 9110 9111 mutex_enter(&rp->r_statelock); 9112 /* 9113 * The entry is now complete 9114 */ 9115 rdc->flags &= ~RDDIR; 9116 9117 error = rdc->error; 9118 if (error) 9119 rdc->flags |= RDDIRREQ; 9120 rddir4_cache_rele(rp, rdc); 9121 mutex_exit(&rp->r_statelock); 9122 9123 return (error); 9124 } 9125 9126 /* 9127 * Read directory entries. 9128 * There are some weird things to look out for here. The uio_loffset 9129 * field is either 0 or it is the offset returned from a previous 9130 * readdir. It is an opaque value used by the server to find the 9131 * correct directory block to read. The count field is the number 9132 * of blocks to read on the server. This is advisory only, the server 9133 * may return only one block's worth of entries. Entries may be compressed 9134 * on the server. 9135 * 9136 * Generates the following compound request: 9137 * 1. If readdir offset is zero and no dnlc entry for parent exists, 9138 * must include a Lookupp as well. In this case, send: 9139 * { Putfh <fh>; Readdir; Lookupp; Getfh; Getattr } 9140 * 2. Otherwise just do: { Putfh <fh>; Readdir } 9141 * 9142 * Get complete attributes and filehandles for entries if this is the 9143 * first read of the directory. Otherwise, just get fileid's. 9144 */ 9145 static void 9146 nfs4readdir(vnode_t *vp, rddir4_cache *rdc, cred_t *cr) 9147 { 9148 COMPOUND4args_clnt args; 9149 COMPOUND4res_clnt res; 9150 READDIR4args *rargs; 9151 READDIR4res_clnt *rd_res; 9152 bitmap4 rd_bitsval; 9153 nfs_argop4 argop[5]; 9154 nfs_resop4 *resop; 9155 rnode4_t *rp = VTOR4(vp); 9156 mntinfo4_t *mi = VTOMI4(vp); 9157 int doqueue; 9158 u_longlong_t nodeid, pnodeid; /* id's of dir and its parents */ 9159 vnode_t *dvp; 9160 nfs_cookie4 cookie = (nfs_cookie4)rdc->nfs4_cookie; 9161 int num_ops, res_opcnt; 9162 bool_t needrecov = FALSE; 9163 nfs4_recov_state_t recov_state; 9164 hrtime_t t; 9165 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 9166 9167 ASSERT(nfs_zone() == mi->mi_zone); 9168 ASSERT(rdc->flags & RDDIR); 9169 ASSERT(rdc->entries == NULL); 9170 9171 /* 9172 * If rp were a stub, it should have triggered and caused 9173 * a mount for us to get this far. 9174 */ 9175 ASSERT(!RP_ISSTUB(rp)); 9176 9177 num_ops = 2; 9178 if (cookie == (nfs_cookie4)0 || cookie == (nfs_cookie4)1) { 9179 /* 9180 * Since nfsv4 readdir may not return entries for "." and "..", 9181 * the client must recreate them: 9182 * To find the correct nodeid, do the following: 9183 * For current node, get nodeid from dnlc. 9184 * - if current node is rootvp, set pnodeid to nodeid. 9185 * - else if parent is in the dnlc, get its nodeid from there. 9186 * - else add LOOKUPP+GETATTR to compound. 9187 */ 9188 nodeid = rp->r_attr.va_nodeid; 9189 if (vp->v_flag & VROOT) { 9190 pnodeid = nodeid; /* root of mount point */ 9191 } else { 9192 dvp = dnlc_lookup(vp, ".."); 9193 if (dvp != NULL && dvp != DNLC_NO_VNODE) { 9194 /* parent in dnlc cache - no need for otw */ 9195 pnodeid = VTOR4(dvp)->r_attr.va_nodeid; 9196 } else { 9197 /* 9198 * parent not in dnlc cache, 9199 * do lookupp to get its id 9200 */ 9201 num_ops = 5; 9202 pnodeid = 0; /* set later by getattr parent */ 9203 } 9204 if (dvp) 9205 VN_RELE(dvp); 9206 } 9207 } 9208 recov_state.rs_flags = 0; 9209 recov_state.rs_num_retry_despite_err = 0; 9210 9211 /* Save the original mount point security flavor */ 9212 (void) save_mnt_secinfo(mi->mi_curr_serv); 9213 9214 recov_retry: 9215 args.ctag = TAG_READDIR; 9216 9217 args.array = argop; 9218 args.array_len = num_ops; 9219 9220 if (e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_READDIR, 9221 &recov_state, NULL)) { 9222 /* 9223 * If readdir a node that is a stub for a crossed mount point, 9224 * keep the original secinfo flavor for the current file 9225 * system, not the crossed one. 9226 */ 9227 (void) check_mnt_secinfo(mi->mi_curr_serv, vp); 9228 rdc->error = e.error; 9229 return; 9230 } 9231 9232 /* 9233 * Determine which attrs to request for dirents. This code 9234 * must be protected by nfs4_start/end_fop because of r_server 9235 * (which will change during failover recovery). 9236 * 9237 */ 9238 if (rp->r_flags & (R4LOOKUP | R4READDIRWATTR)) { 9239 /* 9240 * Get all vattr attrs plus filehandle and rdattr_error 9241 */ 9242 rd_bitsval = NFS4_VATTR_MASK | 9243 FATTR4_RDATTR_ERROR_MASK | 9244 FATTR4_FILEHANDLE_MASK; 9245 9246 if (rp->r_flags & R4READDIRWATTR) { 9247 mutex_enter(&rp->r_statelock); 9248 rp->r_flags &= ~R4READDIRWATTR; 9249 mutex_exit(&rp->r_statelock); 9250 } 9251 } else { 9252 servinfo4_t *svp = rp->r_server; 9253 9254 /* 9255 * Already read directory. Use readdir with 9256 * no attrs (except for mounted_on_fileid) for updates. 9257 */ 9258 rd_bitsval = FATTR4_RDATTR_ERROR_MASK; 9259 9260 /* 9261 * request mounted on fileid if supported, else request 9262 * fileid. maybe we should verify that fileid is supported 9263 * and request something else if not. 9264 */ 9265 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 9266 if (svp->sv_supp_attrs & FATTR4_MOUNTED_ON_FILEID_MASK) 9267 rd_bitsval |= FATTR4_MOUNTED_ON_FILEID_MASK; 9268 nfs_rw_exit(&svp->sv_lock); 9269 } 9270 9271 /* putfh directory fh */ 9272 argop[0].argop = OP_CPUTFH; 9273 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 9274 9275 argop[1].argop = OP_READDIR; 9276 rargs = &argop[1].nfs_argop4_u.opreaddir; 9277 /* 9278 * 1 and 2 are reserved for client "." and ".." entry offset. 9279 * cookie 0 should be used over-the-wire to start reading at 9280 * the beginning of the directory excluding "." and "..". 9281 */ 9282 if (rdc->nfs4_cookie == 0 || 9283 rdc->nfs4_cookie == 1 || 9284 rdc->nfs4_cookie == 2) { 9285 rargs->cookie = (nfs_cookie4)0; 9286 rargs->cookieverf = 0; 9287 } else { 9288 rargs->cookie = (nfs_cookie4)rdc->nfs4_cookie; 9289 mutex_enter(&rp->r_statelock); 9290 rargs->cookieverf = rp->r_cookieverf4; 9291 mutex_exit(&rp->r_statelock); 9292 } 9293 rargs->dircount = MIN(rdc->buflen, mi->mi_tsize); 9294 rargs->maxcount = mi->mi_tsize; 9295 rargs->attr_request = rd_bitsval; 9296 rargs->rdc = rdc; 9297 rargs->dvp = vp; 9298 rargs->mi = mi; 9299 rargs->cr = cr; 9300 9301 9302 /* 9303 * If count < than the minimum required, we return no entries 9304 * and fail with EINVAL 9305 */ 9306 if (rargs->dircount < (DIRENT64_RECLEN(1) + DIRENT64_RECLEN(2))) { 9307 rdc->error = EINVAL; 9308 goto out; 9309 } 9310 9311 if (args.array_len == 5) { 9312 /* 9313 * Add lookupp and getattr for parent nodeid. 9314 */ 9315 argop[2].argop = OP_LOOKUPP; 9316 9317 argop[3].argop = OP_GETFH; 9318 9319 /* getattr parent */ 9320 argop[4].argop = OP_GETATTR; 9321 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 9322 argop[4].nfs_argop4_u.opgetattr.mi = mi; 9323 } 9324 9325 doqueue = 1; 9326 9327 if (mi->mi_io_kstats) { 9328 mutex_enter(&mi->mi_lock); 9329 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 9330 mutex_exit(&mi->mi_lock); 9331 } 9332 9333 /* capture the time of this call */ 9334 rargs->t = t = gethrtime(); 9335 9336 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 9337 9338 if (mi->mi_io_kstats) { 9339 mutex_enter(&mi->mi_lock); 9340 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 9341 mutex_exit(&mi->mi_lock); 9342 } 9343 9344 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 9345 9346 /* 9347 * If RPC error occurred and it isn't an error that 9348 * triggers recovery, then go ahead and fail now. 9349 */ 9350 if (e.error != 0 && !needrecov) { 9351 rdc->error = e.error; 9352 goto out; 9353 } 9354 9355 if (needrecov) { 9356 bool_t abort; 9357 9358 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 9359 "nfs4readdir: initiating recovery.\n")); 9360 9361 abort = nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 9362 NULL, OP_READDIR, NULL, NULL, NULL); 9363 if (abort == FALSE) { 9364 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_READDIR, 9365 &recov_state, needrecov); 9366 if (!e.error) 9367 (void) xdr_free(xdr_COMPOUND4res_clnt, 9368 (caddr_t)&res); 9369 if (rdc->entries != NULL) { 9370 kmem_free(rdc->entries, rdc->entlen); 9371 rdc->entries = NULL; 9372 } 9373 goto recov_retry; 9374 } 9375 9376 if (e.error != 0) { 9377 rdc->error = e.error; 9378 goto out; 9379 } 9380 9381 /* fall through for res.status case */ 9382 } 9383 9384 res_opcnt = res.array_len; 9385 9386 /* 9387 * If compound failed first 2 ops (PUTFH+READDIR), then return 9388 * failure here. Subsequent ops are for filling out dot-dot 9389 * dirent, and if they fail, we still want to give the caller 9390 * the dirents returned by (the successful) READDIR op, so we need 9391 * to silently ignore failure for subsequent ops (LOOKUPP+GETATTR). 9392 * 9393 * One example where PUTFH+READDIR ops would succeed but 9394 * LOOKUPP+GETATTR would fail would be a dir that has r perm 9395 * but lacks x. In this case, a POSIX server's VOP_READDIR 9396 * would succeed; however, VOP_LOOKUP(..) would fail since no 9397 * x perm. We need to come up with a non-vendor-specific way 9398 * for a POSIX server to return d_ino from dotdot's dirent if 9399 * client only requests mounted_on_fileid, and just say the 9400 * LOOKUPP succeeded and fill out the GETATTR. However, if 9401 * client requested any mandatory attrs, server would be required 9402 * to fail the GETATTR op because it can't call VOP_LOOKUP+VOP_GETATTR 9403 * for dotdot. 9404 */ 9405 9406 if (res.status) { 9407 if (res_opcnt <= 2) { 9408 e.error = geterrno4(res.status); 9409 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_READDIR, 9410 &recov_state, needrecov); 9411 nfs4_purge_stale_fh(e.error, vp, cr); 9412 rdc->error = e.error; 9413 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 9414 if (rdc->entries != NULL) { 9415 kmem_free(rdc->entries, rdc->entlen); 9416 rdc->entries = NULL; 9417 } 9418 /* 9419 * If readdir a node that is a stub for a 9420 * crossed mount point, keep the original 9421 * secinfo flavor for the current file system, 9422 * not the crossed one. 9423 */ 9424 (void) check_mnt_secinfo(mi->mi_curr_serv, vp); 9425 return; 9426 } 9427 } 9428 9429 resop = &res.array[1]; /* readdir res */ 9430 rd_res = &resop->nfs_resop4_u.opreaddirclnt; 9431 9432 mutex_enter(&rp->r_statelock); 9433 rp->r_cookieverf4 = rd_res->cookieverf; 9434 mutex_exit(&rp->r_statelock); 9435 9436 /* 9437 * For "." and ".." entries 9438 * e.g. 9439 * seek(cookie=0) -> "." entry with d_off = 1 9440 * seek(cookie=1) -> ".." entry with d_off = 2 9441 */ 9442 if (cookie == (nfs_cookie4) 0) { 9443 if (rd_res->dotp) 9444 rd_res->dotp->d_ino = nodeid; 9445 if (rd_res->dotdotp) 9446 rd_res->dotdotp->d_ino = pnodeid; 9447 } 9448 if (cookie == (nfs_cookie4) 1) { 9449 if (rd_res->dotdotp) 9450 rd_res->dotdotp->d_ino = pnodeid; 9451 } 9452 9453 9454 /* LOOKUPP+GETATTR attemped */ 9455 if (args.array_len == 5 && rd_res->dotdotp) { 9456 if (res.status == NFS4_OK && res_opcnt == 5) { 9457 nfs_fh4 *fhp; 9458 nfs4_sharedfh_t *sfhp; 9459 vnode_t *pvp; 9460 nfs4_ga_res_t *garp; 9461 9462 resop++; /* lookupp */ 9463 resop++; /* getfh */ 9464 fhp = &resop->nfs_resop4_u.opgetfh.object; 9465 9466 resop++; /* getattr of parent */ 9467 9468 /* 9469 * First, take care of finishing the 9470 * readdir results. 9471 */ 9472 garp = &resop->nfs_resop4_u.opgetattr.ga_res; 9473 /* 9474 * The d_ino of .. must be the inode number 9475 * of the mounted filesystem. 9476 */ 9477 if (garp->n4g_va.va_mask & AT_NODEID) 9478 rd_res->dotdotp->d_ino = 9479 garp->n4g_va.va_nodeid; 9480 9481 9482 /* 9483 * Next, create the ".." dnlc entry 9484 */ 9485 sfhp = sfh4_get(fhp, mi); 9486 if (!nfs4_make_dotdot(sfhp, t, vp, cr, &pvp, 0)) { 9487 dnlc_update(vp, "..", pvp); 9488 VN_RELE(pvp); 9489 } 9490 sfh4_rele(&sfhp); 9491 } 9492 } 9493 9494 if (mi->mi_io_kstats) { 9495 mutex_enter(&mi->mi_lock); 9496 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 9497 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += rdc->actlen; 9498 mutex_exit(&mi->mi_lock); 9499 } 9500 9501 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 9502 9503 out: 9504 /* 9505 * If readdir a node that is a stub for a crossed mount point, 9506 * keep the original secinfo flavor for the current file system, 9507 * not the crossed one. 9508 */ 9509 (void) check_mnt_secinfo(mi->mi_curr_serv, vp); 9510 9511 nfs4_end_fop(mi, vp, NULL, OH_READDIR, &recov_state, needrecov); 9512 } 9513 9514 9515 static int 9516 nfs4_bio(struct buf *bp, stable_how4 *stab_comm, cred_t *cr, bool_t readahead) 9517 { 9518 rnode4_t *rp = VTOR4(bp->b_vp); 9519 int count; 9520 int error; 9521 cred_t *cred_otw = NULL; 9522 offset_t offset; 9523 nfs4_open_stream_t *osp = NULL; 9524 bool_t first_time = TRUE; /* first time getting otw cred */ 9525 bool_t last_time = FALSE; /* last time getting otw cred */ 9526 9527 ASSERT(nfs_zone() == VTOMI4(bp->b_vp)->mi_zone); 9528 9529 DTRACE_IO1(start, struct buf *, bp); 9530 offset = ldbtob(bp->b_lblkno); 9531 9532 if (bp->b_flags & B_READ) { 9533 read_again: 9534 /* 9535 * Releases the osp, if it is provided. 9536 * Puts a hold on the cred_otw and the new osp (if found). 9537 */ 9538 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp, 9539 &first_time, &last_time); 9540 error = bp->b_error = nfs4read(bp->b_vp, bp->b_un.b_addr, 9541 offset, bp->b_bcount, &bp->b_resid, cred_otw, 9542 readahead, NULL); 9543 crfree(cred_otw); 9544 if (!error) { 9545 if (bp->b_resid) { 9546 /* 9547 * Didn't get it all because we hit EOF, 9548 * zero all the memory beyond the EOF. 9549 */ 9550 /* bzero(rdaddr + */ 9551 bzero(bp->b_un.b_addr + 9552 bp->b_bcount - bp->b_resid, bp->b_resid); 9553 } 9554 mutex_enter(&rp->r_statelock); 9555 if (bp->b_resid == bp->b_bcount && 9556 offset >= rp->r_size) { 9557 /* 9558 * We didn't read anything at all as we are 9559 * past EOF. Return an error indicator back 9560 * but don't destroy the pages (yet). 9561 */ 9562 error = NFS_EOF; 9563 } 9564 mutex_exit(&rp->r_statelock); 9565 } else if (error == EACCES && last_time == FALSE) { 9566 goto read_again; 9567 } 9568 } else { 9569 if (!(rp->r_flags & R4STALE)) { 9570 write_again: 9571 /* 9572 * Releases the osp, if it is provided. 9573 * Puts a hold on the cred_otw and the new 9574 * osp (if found). 9575 */ 9576 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp, 9577 &first_time, &last_time); 9578 mutex_enter(&rp->r_statelock); 9579 count = MIN(bp->b_bcount, rp->r_size - offset); 9580 mutex_exit(&rp->r_statelock); 9581 if (count < 0) 9582 cmn_err(CE_PANIC, "nfs4_bio: write count < 0"); 9583 #ifdef DEBUG 9584 if (count == 0) { 9585 zoneid_t zoneid = getzoneid(); 9586 9587 zcmn_err(zoneid, CE_WARN, 9588 "nfs4_bio: zero length write at %lld", 9589 offset); 9590 zcmn_err(zoneid, CE_CONT, "flags=0x%x, " 9591 "b_bcount=%ld, file size=%lld", 9592 rp->r_flags, (long)bp->b_bcount, 9593 rp->r_size); 9594 sfh4_printfhandle(VTOR4(bp->b_vp)->r_fh); 9595 if (nfs4_bio_do_stop) 9596 debug_enter("nfs4_bio"); 9597 } 9598 #endif 9599 error = nfs4write(bp->b_vp, bp->b_un.b_addr, offset, 9600 count, cred_otw, stab_comm); 9601 if (error == EACCES && last_time == FALSE) { 9602 crfree(cred_otw); 9603 goto write_again; 9604 } 9605 bp->b_error = error; 9606 if (error && error != EINTR && 9607 !(bp->b_vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)) { 9608 /* 9609 * Don't print EDQUOT errors on the console. 9610 * Don't print asynchronous EACCES errors. 9611 * Don't print EFBIG errors. 9612 * Print all other write errors. 9613 */ 9614 if (error != EDQUOT && error != EFBIG && 9615 (error != EACCES || 9616 !(bp->b_flags & B_ASYNC))) 9617 nfs4_write_error(bp->b_vp, 9618 error, cred_otw); 9619 /* 9620 * Update r_error and r_flags as appropriate. 9621 * If the error was ESTALE, then mark the 9622 * rnode as not being writeable and save 9623 * the error status. Otherwise, save any 9624 * errors which occur from asynchronous 9625 * page invalidations. Any errors occurring 9626 * from other operations should be saved 9627 * by the caller. 9628 */ 9629 mutex_enter(&rp->r_statelock); 9630 if (error == ESTALE) { 9631 rp->r_flags |= R4STALE; 9632 if (!rp->r_error) 9633 rp->r_error = error; 9634 } else if (!rp->r_error && 9635 (bp->b_flags & 9636 (B_INVAL|B_FORCE|B_ASYNC)) == 9637 (B_INVAL|B_FORCE|B_ASYNC)) { 9638 rp->r_error = error; 9639 } 9640 mutex_exit(&rp->r_statelock); 9641 } 9642 crfree(cred_otw); 9643 } else { 9644 error = rp->r_error; 9645 /* 9646 * A close may have cleared r_error, if so, 9647 * propagate ESTALE error return properly 9648 */ 9649 if (error == 0) 9650 error = ESTALE; 9651 } 9652 } 9653 9654 if (error != 0 && error != NFS_EOF) 9655 bp->b_flags |= B_ERROR; 9656 9657 if (osp) 9658 open_stream_rele(osp, rp); 9659 9660 DTRACE_IO1(done, struct buf *, bp); 9661 9662 return (error); 9663 } 9664 9665 /* ARGSUSED */ 9666 int 9667 nfs4_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 9668 { 9669 return (EREMOTE); 9670 } 9671 9672 /* ARGSUSED2 */ 9673 int 9674 nfs4_rwlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 9675 { 9676 rnode4_t *rp = VTOR4(vp); 9677 9678 if (!write_lock) { 9679 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 9680 return (V_WRITELOCK_FALSE); 9681 } 9682 9683 if ((rp->r_flags & R4DIRECTIO) || 9684 (VTOMI4(vp)->mi_flags & MI4_DIRECTIO)) { 9685 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 9686 if (rp->r_mapcnt == 0 && !nfs4_has_pages(vp)) 9687 return (V_WRITELOCK_FALSE); 9688 nfs_rw_exit(&rp->r_rwlock); 9689 } 9690 9691 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, FALSE); 9692 return (V_WRITELOCK_TRUE); 9693 } 9694 9695 /* ARGSUSED */ 9696 void 9697 nfs4_rwunlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 9698 { 9699 rnode4_t *rp = VTOR4(vp); 9700 9701 nfs_rw_exit(&rp->r_rwlock); 9702 } 9703 9704 /* ARGSUSED */ 9705 static int 9706 nfs4_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, caller_context_t *ct) 9707 { 9708 if (nfs_zone() != VTOMI4(vp)->mi_zone) 9709 return (EIO); 9710 9711 /* 9712 * Because we stuff the readdir cookie into the offset field 9713 * someone may attempt to do an lseek with the cookie which 9714 * we want to succeed. 9715 */ 9716 if (vp->v_type == VDIR) 9717 return (0); 9718 if (*noffp < 0) 9719 return (EINVAL); 9720 return (0); 9721 } 9722 9723 9724 /* 9725 * Return all the pages from [off..off+len) in file 9726 */ 9727 /* ARGSUSED */ 9728 static int 9729 nfs4_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 9730 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 9731 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 9732 { 9733 rnode4_t *rp; 9734 int error; 9735 mntinfo4_t *mi; 9736 9737 if (nfs_zone() != VTOMI4(vp)->mi_zone) 9738 return (EIO); 9739 rp = VTOR4(vp); 9740 if (IS_SHADOW(vp, rp)) 9741 vp = RTOV4(rp); 9742 9743 if (vp->v_flag & VNOMAP) 9744 return (ENOSYS); 9745 9746 if (protp != NULL) 9747 *protp = PROT_ALL; 9748 9749 /* 9750 * Now validate that the caches are up to date. 9751 */ 9752 if (error = nfs4_validate_caches(vp, cr)) 9753 return (error); 9754 9755 mi = VTOMI4(vp); 9756 retry: 9757 mutex_enter(&rp->r_statelock); 9758 9759 /* 9760 * Don't create dirty pages faster than they 9761 * can be cleaned so that the system doesn't 9762 * get imbalanced. If the async queue is 9763 * maxed out, then wait for it to drain before 9764 * creating more dirty pages. Also, wait for 9765 * any threads doing pagewalks in the vop_getattr 9766 * entry points so that they don't block for 9767 * long periods. 9768 */ 9769 if (rw == S_CREATE) { 9770 while ((mi->mi_max_threads != 0 && 9771 rp->r_awcount > 2 * mi->mi_max_threads) || 9772 rp->r_gcount > 0) 9773 cv_wait(&rp->r_cv, &rp->r_statelock); 9774 } 9775 9776 /* 9777 * If we are getting called as a side effect of an nfs_write() 9778 * operation the local file size might not be extended yet. 9779 * In this case we want to be able to return pages of zeroes. 9780 */ 9781 if (off + len > rp->r_size + PAGEOFFSET && seg != segkmap) { 9782 NFS4_DEBUG(nfs4_pageio_debug, 9783 (CE_NOTE, "getpage beyond EOF: off=%lld, " 9784 "len=%llu, size=%llu, attrsize =%llu", off, 9785 (u_longlong_t)len, rp->r_size, rp->r_attr.va_size)); 9786 mutex_exit(&rp->r_statelock); 9787 return (EFAULT); /* beyond EOF */ 9788 } 9789 9790 mutex_exit(&rp->r_statelock); 9791 9792 error = pvn_getpages(nfs4_getapage, vp, off, len, protp, 9793 pl, plsz, seg, addr, rw, cr); 9794 NFS4_DEBUG(nfs4_pageio_debug && error, 9795 (CE_NOTE, "getpages error %d; off=%lld, len=%lld", 9796 error, off, (u_longlong_t)len)); 9797 9798 switch (error) { 9799 case NFS_EOF: 9800 nfs4_purge_caches(vp, NFS4_NOPURGE_DNLC, cr, FALSE); 9801 goto retry; 9802 case ESTALE: 9803 nfs4_purge_stale_fh(error, vp, cr); 9804 } 9805 9806 return (error); 9807 } 9808 9809 /* 9810 * Called from pvn_getpages to get a particular page. 9811 */ 9812 /* ARGSUSED */ 9813 static int 9814 nfs4_getapage(vnode_t *vp, u_offset_t off, size_t len, uint_t *protp, 9815 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 9816 enum seg_rw rw, cred_t *cr) 9817 { 9818 rnode4_t *rp; 9819 uint_t bsize; 9820 struct buf *bp; 9821 page_t *pp; 9822 u_offset_t lbn; 9823 u_offset_t io_off; 9824 u_offset_t blkoff; 9825 u_offset_t rablkoff; 9826 size_t io_len; 9827 uint_t blksize; 9828 int error; 9829 int readahead; 9830 int readahead_issued = 0; 9831 int ra_window; /* readahead window */ 9832 page_t *pagefound; 9833 page_t *savepp; 9834 9835 if (nfs_zone() != VTOMI4(vp)->mi_zone) 9836 return (EIO); 9837 9838 rp = VTOR4(vp); 9839 ASSERT(!IS_SHADOW(vp, rp)); 9840 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 9841 9842 reread: 9843 bp = NULL; 9844 pp = NULL; 9845 pagefound = NULL; 9846 9847 if (pl != NULL) 9848 pl[0] = NULL; 9849 9850 error = 0; 9851 lbn = off / bsize; 9852 blkoff = lbn * bsize; 9853 9854 /* 9855 * Queueing up the readahead before doing the synchronous read 9856 * results in a significant increase in read throughput because 9857 * of the increased parallelism between the async threads and 9858 * the process context. 9859 */ 9860 if ((off & ((vp->v_vfsp->vfs_bsize) - 1)) == 0 && 9861 rw != S_CREATE && 9862 !(vp->v_flag & VNOCACHE)) { 9863 mutex_enter(&rp->r_statelock); 9864 9865 /* 9866 * Calculate the number of readaheads to do. 9867 * a) No readaheads at offset = 0. 9868 * b) Do maximum(nfs4_nra) readaheads when the readahead 9869 * window is closed. 9870 * c) Do readaheads between 1 to (nfs4_nra - 1) depending 9871 * upon how far the readahead window is open or close. 9872 * d) No readaheads if rp->r_nextr is not within the scope 9873 * of the readahead window (random i/o). 9874 */ 9875 9876 if (off == 0) 9877 readahead = 0; 9878 else if (blkoff == rp->r_nextr) 9879 readahead = nfs4_nra; 9880 else if (rp->r_nextr > blkoff && 9881 ((ra_window = (rp->r_nextr - blkoff) / bsize) 9882 <= (nfs4_nra - 1))) 9883 readahead = nfs4_nra - ra_window; 9884 else 9885 readahead = 0; 9886 9887 rablkoff = rp->r_nextr; 9888 while (readahead > 0 && rablkoff + bsize < rp->r_size) { 9889 mutex_exit(&rp->r_statelock); 9890 if (nfs4_async_readahead(vp, rablkoff + bsize, 9891 addr + (rablkoff + bsize - off), 9892 seg, cr, nfs4_readahead) < 0) { 9893 mutex_enter(&rp->r_statelock); 9894 break; 9895 } 9896 readahead--; 9897 rablkoff += bsize; 9898 /* 9899 * Indicate that we did a readahead so 9900 * readahead offset is not updated 9901 * by the synchronous read below. 9902 */ 9903 readahead_issued = 1; 9904 mutex_enter(&rp->r_statelock); 9905 /* 9906 * set readahead offset to 9907 * offset of last async readahead 9908 * request. 9909 */ 9910 rp->r_nextr = rablkoff; 9911 } 9912 mutex_exit(&rp->r_statelock); 9913 } 9914 9915 again: 9916 if ((pagefound = page_exists(vp, off)) == NULL) { 9917 if (pl == NULL) { 9918 (void) nfs4_async_readahead(vp, blkoff, addr, seg, cr, 9919 nfs4_readahead); 9920 } else if (rw == S_CREATE) { 9921 /* 9922 * Block for this page is not allocated, or the offset 9923 * is beyond the current allocation size, or we're 9924 * allocating a swap slot and the page was not found, 9925 * so allocate it and return a zero page. 9926 */ 9927 if ((pp = page_create_va(vp, off, 9928 PAGESIZE, PG_WAIT, seg, addr)) == NULL) 9929 cmn_err(CE_PANIC, "nfs4_getapage: page_create"); 9930 io_len = PAGESIZE; 9931 mutex_enter(&rp->r_statelock); 9932 rp->r_nextr = off + PAGESIZE; 9933 mutex_exit(&rp->r_statelock); 9934 } else { 9935 /* 9936 * Need to go to server to get a block 9937 */ 9938 mutex_enter(&rp->r_statelock); 9939 if (blkoff < rp->r_size && 9940 blkoff + bsize > rp->r_size) { 9941 /* 9942 * If less than a block left in 9943 * file read less than a block. 9944 */ 9945 if (rp->r_size <= off) { 9946 /* 9947 * Trying to access beyond EOF, 9948 * set up to get at least one page. 9949 */ 9950 blksize = off + PAGESIZE - blkoff; 9951 } else 9952 blksize = rp->r_size - blkoff; 9953 } else if ((off == 0) || 9954 (off != rp->r_nextr && !readahead_issued)) { 9955 blksize = PAGESIZE; 9956 blkoff = off; /* block = page here */ 9957 } else 9958 blksize = bsize; 9959 mutex_exit(&rp->r_statelock); 9960 9961 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 9962 &io_len, blkoff, blksize, 0); 9963 9964 /* 9965 * Some other thread has entered the page, 9966 * so just use it. 9967 */ 9968 if (pp == NULL) 9969 goto again; 9970 9971 /* 9972 * Now round the request size up to page boundaries. 9973 * This ensures that the entire page will be 9974 * initialized to zeroes if EOF is encountered. 9975 */ 9976 io_len = ptob(btopr(io_len)); 9977 9978 bp = pageio_setup(pp, io_len, vp, B_READ); 9979 ASSERT(bp != NULL); 9980 9981 /* 9982 * pageio_setup should have set b_addr to 0. This 9983 * is correct since we want to do I/O on a page 9984 * boundary. bp_mapin will use this addr to calculate 9985 * an offset, and then set b_addr to the kernel virtual 9986 * address it allocated for us. 9987 */ 9988 ASSERT(bp->b_un.b_addr == 0); 9989 9990 bp->b_edev = 0; 9991 bp->b_dev = 0; 9992 bp->b_lblkno = lbtodb(io_off); 9993 bp->b_file = vp; 9994 bp->b_offset = (offset_t)off; 9995 bp_mapin(bp); 9996 9997 /* 9998 * If doing a write beyond what we believe is EOF, 9999 * don't bother trying to read the pages from the 10000 * server, we'll just zero the pages here. We 10001 * don't check that the rw flag is S_WRITE here 10002 * because some implementations may attempt a 10003 * read access to the buffer before copying data. 10004 */ 10005 mutex_enter(&rp->r_statelock); 10006 if (io_off >= rp->r_size && seg == segkmap) { 10007 mutex_exit(&rp->r_statelock); 10008 bzero(bp->b_un.b_addr, io_len); 10009 } else { 10010 mutex_exit(&rp->r_statelock); 10011 error = nfs4_bio(bp, NULL, cr, FALSE); 10012 } 10013 10014 /* 10015 * Unmap the buffer before freeing it. 10016 */ 10017 bp_mapout(bp); 10018 pageio_done(bp); 10019 10020 savepp = pp; 10021 do { 10022 pp->p_fsdata = C_NOCOMMIT; 10023 } while ((pp = pp->p_next) != savepp); 10024 10025 if (error == NFS_EOF) { 10026 /* 10027 * If doing a write system call just return 10028 * zeroed pages, else user tried to get pages 10029 * beyond EOF, return error. We don't check 10030 * that the rw flag is S_WRITE here because 10031 * some implementations may attempt a read 10032 * access to the buffer before copying data. 10033 */ 10034 if (seg == segkmap) 10035 error = 0; 10036 else 10037 error = EFAULT; 10038 } 10039 10040 if (!readahead_issued && !error) { 10041 mutex_enter(&rp->r_statelock); 10042 rp->r_nextr = io_off + io_len; 10043 mutex_exit(&rp->r_statelock); 10044 } 10045 } 10046 } 10047 10048 out: 10049 if (pl == NULL) 10050 return (error); 10051 10052 if (error) { 10053 if (pp != NULL) 10054 pvn_read_done(pp, B_ERROR); 10055 return (error); 10056 } 10057 10058 if (pagefound) { 10059 se_t se = (rw == S_CREATE ? SE_EXCL : SE_SHARED); 10060 10061 /* 10062 * Page exists in the cache, acquire the appropriate lock. 10063 * If this fails, start all over again. 10064 */ 10065 if ((pp = page_lookup(vp, off, se)) == NULL) { 10066 #ifdef DEBUG 10067 nfs4_lostpage++; 10068 #endif 10069 goto reread; 10070 } 10071 pl[0] = pp; 10072 pl[1] = NULL; 10073 return (0); 10074 } 10075 10076 if (pp != NULL) 10077 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 10078 10079 return (error); 10080 } 10081 10082 static void 10083 nfs4_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr, struct seg *seg, 10084 cred_t *cr) 10085 { 10086 int error; 10087 page_t *pp; 10088 u_offset_t io_off; 10089 size_t io_len; 10090 struct buf *bp; 10091 uint_t bsize, blksize; 10092 rnode4_t *rp = VTOR4(vp); 10093 page_t *savepp; 10094 10095 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 10096 10097 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 10098 10099 mutex_enter(&rp->r_statelock); 10100 if (blkoff < rp->r_size && blkoff + bsize > rp->r_size) { 10101 /* 10102 * If less than a block left in file read less 10103 * than a block. 10104 */ 10105 blksize = rp->r_size - blkoff; 10106 } else 10107 blksize = bsize; 10108 mutex_exit(&rp->r_statelock); 10109 10110 pp = pvn_read_kluster(vp, blkoff, segkmap, addr, 10111 &io_off, &io_len, blkoff, blksize, 1); 10112 /* 10113 * The isra flag passed to the kluster function is 1, we may have 10114 * gotten a return value of NULL for a variety of reasons (# of free 10115 * pages < minfree, someone entered the page on the vnode etc). In all 10116 * cases, we want to punt on the readahead. 10117 */ 10118 if (pp == NULL) 10119 return; 10120 10121 /* 10122 * Now round the request size up to page boundaries. 10123 * This ensures that the entire page will be 10124 * initialized to zeroes if EOF is encountered. 10125 */ 10126 io_len = ptob(btopr(io_len)); 10127 10128 bp = pageio_setup(pp, io_len, vp, B_READ); 10129 ASSERT(bp != NULL); 10130 10131 /* 10132 * pageio_setup should have set b_addr to 0. This is correct since 10133 * we want to do I/O on a page boundary. bp_mapin() will use this addr 10134 * to calculate an offset, and then set b_addr to the kernel virtual 10135 * address it allocated for us. 10136 */ 10137 ASSERT(bp->b_un.b_addr == 0); 10138 10139 bp->b_edev = 0; 10140 bp->b_dev = 0; 10141 bp->b_lblkno = lbtodb(io_off); 10142 bp->b_file = vp; 10143 bp->b_offset = (offset_t)blkoff; 10144 bp_mapin(bp); 10145 10146 /* 10147 * If doing a write beyond what we believe is EOF, don't bother trying 10148 * to read the pages from the server, we'll just zero the pages here. 10149 * We don't check that the rw flag is S_WRITE here because some 10150 * implementations may attempt a read access to the buffer before 10151 * copying data. 10152 */ 10153 mutex_enter(&rp->r_statelock); 10154 if (io_off >= rp->r_size && seg == segkmap) { 10155 mutex_exit(&rp->r_statelock); 10156 bzero(bp->b_un.b_addr, io_len); 10157 error = 0; 10158 } else { 10159 mutex_exit(&rp->r_statelock); 10160 error = nfs4_bio(bp, NULL, cr, TRUE); 10161 if (error == NFS_EOF) 10162 error = 0; 10163 } 10164 10165 /* 10166 * Unmap the buffer before freeing it. 10167 */ 10168 bp_mapout(bp); 10169 pageio_done(bp); 10170 10171 savepp = pp; 10172 do { 10173 pp->p_fsdata = C_NOCOMMIT; 10174 } while ((pp = pp->p_next) != savepp); 10175 10176 pvn_read_done(pp, error ? B_READ | B_ERROR : B_READ); 10177 10178 /* 10179 * In case of error set readahead offset 10180 * to the lowest offset. 10181 * pvn_read_done() calls VN_DISPOSE to destroy the pages 10182 */ 10183 if (error && rp->r_nextr > io_off) { 10184 mutex_enter(&rp->r_statelock); 10185 if (rp->r_nextr > io_off) 10186 rp->r_nextr = io_off; 10187 mutex_exit(&rp->r_statelock); 10188 } 10189 } 10190 10191 /* 10192 * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE} 10193 * If len == 0, do from off to EOF. 10194 * 10195 * The normal cases should be len == 0 && off == 0 (entire vp list) or 10196 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE 10197 * (from pageout). 10198 */ 10199 /* ARGSUSED */ 10200 static int 10201 nfs4_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 10202 caller_context_t *ct) 10203 { 10204 int error; 10205 rnode4_t *rp; 10206 10207 ASSERT(cr != NULL); 10208 10209 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI4(vp)->mi_zone) 10210 return (EIO); 10211 10212 rp = VTOR4(vp); 10213 if (IS_SHADOW(vp, rp)) 10214 vp = RTOV4(rp); 10215 10216 /* 10217 * XXX - Why should this check be made here? 10218 */ 10219 if (vp->v_flag & VNOMAP) 10220 return (ENOSYS); 10221 10222 if (len == 0 && !(flags & B_INVAL) && 10223 (vp->v_vfsp->vfs_flag & VFS_RDONLY)) 10224 return (0); 10225 10226 mutex_enter(&rp->r_statelock); 10227 rp->r_count++; 10228 mutex_exit(&rp->r_statelock); 10229 error = nfs4_putpages(vp, off, len, flags, cr); 10230 mutex_enter(&rp->r_statelock); 10231 rp->r_count--; 10232 cv_broadcast(&rp->r_cv); 10233 mutex_exit(&rp->r_statelock); 10234 10235 return (error); 10236 } 10237 10238 /* 10239 * Write out a single page, possibly klustering adjacent dirty pages. 10240 */ 10241 int 10242 nfs4_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 10243 int flags, cred_t *cr) 10244 { 10245 u_offset_t io_off; 10246 u_offset_t lbn_off; 10247 u_offset_t lbn; 10248 size_t io_len; 10249 uint_t bsize; 10250 int error; 10251 rnode4_t *rp; 10252 10253 ASSERT(!(vp->v_vfsp->vfs_flag & VFS_RDONLY)); 10254 ASSERT(pp != NULL); 10255 ASSERT(cr != NULL); 10256 ASSERT((flags & B_ASYNC) || nfs_zone() == VTOMI4(vp)->mi_zone); 10257 10258 rp = VTOR4(vp); 10259 ASSERT(rp->r_count > 0); 10260 ASSERT(!IS_SHADOW(vp, rp)); 10261 10262 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 10263 lbn = pp->p_offset / bsize; 10264 lbn_off = lbn * bsize; 10265 10266 /* 10267 * Find a kluster that fits in one block, or in 10268 * one page if pages are bigger than blocks. If 10269 * there is less file space allocated than a whole 10270 * page, we'll shorten the i/o request below. 10271 */ 10272 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, lbn_off, 10273 roundup(bsize, PAGESIZE), flags); 10274 10275 /* 10276 * pvn_write_kluster shouldn't have returned a page with offset 10277 * behind the original page we were given. Verify that. 10278 */ 10279 ASSERT((pp->p_offset / bsize) >= lbn); 10280 10281 /* 10282 * Now pp will have the list of kept dirty pages marked for 10283 * write back. It will also handle invalidation and freeing 10284 * of pages that are not dirty. Check for page length rounding 10285 * problems. 10286 */ 10287 if (io_off + io_len > lbn_off + bsize) { 10288 ASSERT((io_off + io_len) - (lbn_off + bsize) < PAGESIZE); 10289 io_len = lbn_off + bsize - io_off; 10290 } 10291 /* 10292 * The R4MODINPROGRESS flag makes sure that nfs4_bio() sees a 10293 * consistent value of r_size. R4MODINPROGRESS is set in writerp4(). 10294 * When R4MODINPROGRESS is set it indicates that a uiomove() is in 10295 * progress and the r_size has not been made consistent with the 10296 * new size of the file. When the uiomove() completes the r_size is 10297 * updated and the R4MODINPROGRESS flag is cleared. 10298 * 10299 * The R4MODINPROGRESS flag makes sure that nfs4_bio() sees a 10300 * consistent value of r_size. Without this handshaking, it is 10301 * possible that nfs4_bio() picks up the old value of r_size 10302 * before the uiomove() in writerp4() completes. This will result 10303 * in the write through nfs4_bio() being dropped. 10304 * 10305 * More precisely, there is a window between the time the uiomove() 10306 * completes and the time the r_size is updated. If a VOP_PUTPAGE() 10307 * operation intervenes in this window, the page will be picked up, 10308 * because it is dirty (it will be unlocked, unless it was 10309 * pagecreate'd). When the page is picked up as dirty, the dirty 10310 * bit is reset (pvn_getdirty()). In nfs4write(), r_size is 10311 * checked. This will still be the old size. Therefore the page will 10312 * not be written out. When segmap_release() calls VOP_PUTPAGE(), 10313 * the page will be found to be clean and the write will be dropped. 10314 */ 10315 if (rp->r_flags & R4MODINPROGRESS) { 10316 mutex_enter(&rp->r_statelock); 10317 if ((rp->r_flags & R4MODINPROGRESS) && 10318 rp->r_modaddr + MAXBSIZE > io_off && 10319 rp->r_modaddr < io_off + io_len) { 10320 page_t *plist; 10321 /* 10322 * A write is in progress for this region of the file. 10323 * If we did not detect R4MODINPROGRESS here then this 10324 * path through nfs_putapage() would eventually go to 10325 * nfs4_bio() and may not write out all of the data 10326 * in the pages. We end up losing data. So we decide 10327 * to set the modified bit on each page in the page 10328 * list and mark the rnode with R4DIRTY. This write 10329 * will be restarted at some later time. 10330 */ 10331 plist = pp; 10332 while (plist != NULL) { 10333 pp = plist; 10334 page_sub(&plist, pp); 10335 hat_setmod(pp); 10336 page_io_unlock(pp); 10337 page_unlock(pp); 10338 } 10339 rp->r_flags |= R4DIRTY; 10340 mutex_exit(&rp->r_statelock); 10341 if (offp) 10342 *offp = io_off; 10343 if (lenp) 10344 *lenp = io_len; 10345 return (0); 10346 } 10347 mutex_exit(&rp->r_statelock); 10348 } 10349 10350 if (flags & B_ASYNC) { 10351 error = nfs4_async_putapage(vp, pp, io_off, io_len, flags, cr, 10352 nfs4_sync_putapage); 10353 } else 10354 error = nfs4_sync_putapage(vp, pp, io_off, io_len, flags, cr); 10355 10356 if (offp) 10357 *offp = io_off; 10358 if (lenp) 10359 *lenp = io_len; 10360 return (error); 10361 } 10362 10363 static int 10364 nfs4_sync_putapage(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 10365 int flags, cred_t *cr) 10366 { 10367 int error; 10368 rnode4_t *rp; 10369 10370 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 10371 10372 flags |= B_WRITE; 10373 10374 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 10375 10376 rp = VTOR4(vp); 10377 10378 if ((error == ENOSPC || error == EDQUOT || error == EFBIG || 10379 error == EACCES) && 10380 (flags & (B_INVAL|B_FORCE)) != (B_INVAL|B_FORCE)) { 10381 if (!(rp->r_flags & R4OUTOFSPACE)) { 10382 mutex_enter(&rp->r_statelock); 10383 rp->r_flags |= R4OUTOFSPACE; 10384 mutex_exit(&rp->r_statelock); 10385 } 10386 flags |= B_ERROR; 10387 pvn_write_done(pp, flags); 10388 /* 10389 * If this was not an async thread, then try again to 10390 * write out the pages, but this time, also destroy 10391 * them whether or not the write is successful. This 10392 * will prevent memory from filling up with these 10393 * pages and destroying them is the only alternative 10394 * if they can't be written out. 10395 * 10396 * Don't do this if this is an async thread because 10397 * when the pages are unlocked in pvn_write_done, 10398 * some other thread could have come along, locked 10399 * them, and queued for an async thread. It would be 10400 * possible for all of the async threads to be tied 10401 * up waiting to lock the pages again and they would 10402 * all already be locked and waiting for an async 10403 * thread to handle them. Deadlock. 10404 */ 10405 if (!(flags & B_ASYNC)) { 10406 error = nfs4_putpage(vp, io_off, io_len, 10407 B_INVAL | B_FORCE, cr, NULL); 10408 } 10409 } else { 10410 if (error) 10411 flags |= B_ERROR; 10412 else if (rp->r_flags & R4OUTOFSPACE) { 10413 mutex_enter(&rp->r_statelock); 10414 rp->r_flags &= ~R4OUTOFSPACE; 10415 mutex_exit(&rp->r_statelock); 10416 } 10417 pvn_write_done(pp, flags); 10418 if (freemem < desfree) 10419 (void) nfs4_commit_vp(vp, (u_offset_t)0, 0, cr, 10420 NFS4_WRITE_NOWAIT); 10421 } 10422 10423 return (error); 10424 } 10425 10426 #ifdef DEBUG 10427 int nfs4_force_open_before_mmap = 0; 10428 #endif 10429 10430 /* ARGSUSED */ 10431 static int 10432 nfs4_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 10433 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 10434 caller_context_t *ct) 10435 { 10436 struct segvn_crargs vn_a; 10437 int error = 0; 10438 rnode4_t *rp = VTOR4(vp); 10439 mntinfo4_t *mi = VTOMI4(vp); 10440 10441 if (nfs_zone() != VTOMI4(vp)->mi_zone) 10442 return (EIO); 10443 10444 if (vp->v_flag & VNOMAP) 10445 return (ENOSYS); 10446 10447 if (off < 0 || (off + len) < 0) 10448 return (ENXIO); 10449 10450 if (vp->v_type != VREG) 10451 return (ENODEV); 10452 10453 /* 10454 * If the file is delegated to the client don't do anything. 10455 * If the file is not delegated, then validate the data cache. 10456 */ 10457 mutex_enter(&rp->r_statev4_lock); 10458 if (rp->r_deleg_type == OPEN_DELEGATE_NONE) { 10459 mutex_exit(&rp->r_statev4_lock); 10460 error = nfs4_validate_caches(vp, cr); 10461 if (error) 10462 return (error); 10463 } else { 10464 mutex_exit(&rp->r_statev4_lock); 10465 } 10466 10467 /* 10468 * Check to see if the vnode is currently marked as not cachable. 10469 * This means portions of the file are locked (through VOP_FRLOCK). 10470 * In this case the map request must be refused. We use 10471 * rp->r_lkserlock to avoid a race with concurrent lock requests. 10472 * 10473 * Atomically increment r_inmap after acquiring r_rwlock. The 10474 * idea here is to acquire r_rwlock to block read/write and 10475 * not to protect r_inmap. r_inmap will inform nfs4_read/write() 10476 * that we are in nfs4_map(). Now, r_rwlock is acquired in order 10477 * and we can prevent the deadlock that would have occurred 10478 * when nfs4_addmap() would have acquired it out of order. 10479 * 10480 * Since we are not protecting r_inmap by any lock, we do not 10481 * hold any lock when we decrement it. We atomically decrement 10482 * r_inmap after we release r_lkserlock. 10483 */ 10484 10485 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, INTR4(vp))) 10486 return (EINTR); 10487 atomic_inc_uint(&rp->r_inmap); 10488 nfs_rw_exit(&rp->r_rwlock); 10489 10490 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR4(vp))) { 10491 atomic_dec_uint(&rp->r_inmap); 10492 return (EINTR); 10493 } 10494 10495 10496 if (vp->v_flag & VNOCACHE) { 10497 error = EAGAIN; 10498 goto done; 10499 } 10500 10501 /* 10502 * Don't allow concurrent locks and mapping if mandatory locking is 10503 * enabled. 10504 */ 10505 if (flk_has_remote_locks(vp)) { 10506 struct vattr va; 10507 va.va_mask = AT_MODE; 10508 error = nfs4getattr(vp, &va, cr); 10509 if (error != 0) 10510 goto done; 10511 if (MANDLOCK(vp, va.va_mode)) { 10512 error = EAGAIN; 10513 goto done; 10514 } 10515 } 10516 10517 /* 10518 * It is possible that the rnode has a lost lock request that we 10519 * are still trying to recover, and that the request conflicts with 10520 * this map request. 10521 * 10522 * An alternative approach would be for nfs4_safemap() to consider 10523 * queued lock requests when deciding whether to set or clear 10524 * VNOCACHE. This would require the frlock code path to call 10525 * nfs4_safemap() after enqueing a lost request. 10526 */ 10527 if (nfs4_map_lost_lock_conflict(vp)) { 10528 error = EAGAIN; 10529 goto done; 10530 } 10531 10532 as_rangelock(as); 10533 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 10534 if (error != 0) { 10535 as_rangeunlock(as); 10536 goto done; 10537 } 10538 10539 if (vp->v_type == VREG) { 10540 /* 10541 * We need to retrieve the open stream 10542 */ 10543 nfs4_open_stream_t *osp = NULL; 10544 nfs4_open_owner_t *oop = NULL; 10545 10546 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 10547 if (oop != NULL) { 10548 /* returns with 'os_sync_lock' held */ 10549 osp = find_open_stream(oop, rp); 10550 open_owner_rele(oop); 10551 } 10552 if (osp == NULL) { 10553 #ifdef DEBUG 10554 if (nfs4_force_open_before_mmap) { 10555 error = EIO; 10556 goto done; 10557 } 10558 #endif 10559 /* returns with 'os_sync_lock' held */ 10560 error = open_and_get_osp(vp, cr, &osp); 10561 if (osp == NULL) { 10562 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, 10563 "nfs4_map: we tried to OPEN the file " 10564 "but again no osp, so fail with EIO")); 10565 goto done; 10566 } 10567 } 10568 10569 if (osp->os_failed_reopen) { 10570 mutex_exit(&osp->os_sync_lock); 10571 open_stream_rele(osp, rp); 10572 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE, 10573 "nfs4_map: os_failed_reopen set on " 10574 "osp %p, cr %p, rp %s", (void *)osp, 10575 (void *)cr, rnode4info(rp))); 10576 error = EIO; 10577 goto done; 10578 } 10579 mutex_exit(&osp->os_sync_lock); 10580 open_stream_rele(osp, rp); 10581 } 10582 10583 vn_a.vp = vp; 10584 vn_a.offset = off; 10585 vn_a.type = (flags & MAP_TYPE); 10586 vn_a.prot = (uchar_t)prot; 10587 vn_a.maxprot = (uchar_t)maxprot; 10588 vn_a.flags = (flags & ~MAP_TYPE); 10589 vn_a.cred = cr; 10590 vn_a.amp = NULL; 10591 vn_a.szc = 0; 10592 vn_a.lgrp_mem_policy_flags = 0; 10593 10594 error = as_map(as, *addrp, len, segvn_create, &vn_a); 10595 as_rangeunlock(as); 10596 10597 done: 10598 nfs_rw_exit(&rp->r_lkserlock); 10599 atomic_dec_uint(&rp->r_inmap); 10600 return (error); 10601 } 10602 10603 /* 10604 * We're most likely dealing with a kernel module that likes to READ 10605 * and mmap without OPENing the file (ie: lookup/read/mmap), so lets 10606 * officially OPEN the file to create the necessary client state 10607 * for bookkeeping of os_mmap_read/write counts. 10608 * 10609 * Since VOP_MAP only passes in a pointer to the vnode rather than 10610 * a double pointer, we can't handle the case where nfs4open_otw() 10611 * returns a different vnode than the one passed into VOP_MAP (since 10612 * VOP_DELMAP will not see the vnode nfs4open_otw used). In this case, 10613 * we return NULL and let nfs4_map() fail. Note: the only case where 10614 * this should happen is if the file got removed and replaced with the 10615 * same name on the server (in addition to the fact that we're trying 10616 * to VOP_MAP withouth VOP_OPENing the file in the first place). 10617 */ 10618 static int 10619 open_and_get_osp(vnode_t *map_vp, cred_t *cr, nfs4_open_stream_t **ospp) 10620 { 10621 rnode4_t *rp, *drp; 10622 vnode_t *dvp, *open_vp; 10623 char file_name[MAXNAMELEN]; 10624 int just_created; 10625 nfs4_open_stream_t *osp; 10626 nfs4_open_owner_t *oop; 10627 int error; 10628 10629 *ospp = NULL; 10630 open_vp = map_vp; 10631 10632 rp = VTOR4(open_vp); 10633 if ((error = vtodv(open_vp, &dvp, cr, TRUE)) != 0) 10634 return (error); 10635 drp = VTOR4(dvp); 10636 10637 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) { 10638 VN_RELE(dvp); 10639 return (EINTR); 10640 } 10641 10642 if ((error = vtoname(open_vp, file_name, MAXNAMELEN)) != 0) { 10643 nfs_rw_exit(&drp->r_rwlock); 10644 VN_RELE(dvp); 10645 return (error); 10646 } 10647 10648 mutex_enter(&rp->r_statev4_lock); 10649 if (rp->created_v4) { 10650 rp->created_v4 = 0; 10651 mutex_exit(&rp->r_statev4_lock); 10652 10653 dnlc_update(dvp, file_name, open_vp); 10654 /* This is needed so we don't bump the open ref count */ 10655 just_created = 1; 10656 } else { 10657 mutex_exit(&rp->r_statev4_lock); 10658 just_created = 0; 10659 } 10660 10661 VN_HOLD(map_vp); 10662 10663 error = nfs4open_otw(dvp, file_name, NULL, &open_vp, cr, 0, FREAD, 0, 10664 just_created); 10665 if (error) { 10666 nfs_rw_exit(&drp->r_rwlock); 10667 VN_RELE(dvp); 10668 VN_RELE(map_vp); 10669 return (error); 10670 } 10671 10672 nfs_rw_exit(&drp->r_rwlock); 10673 VN_RELE(dvp); 10674 10675 /* 10676 * If nfs4open_otw() returned a different vnode then "undo" 10677 * the open and return failure to the caller. 10678 */ 10679 if (!VN_CMP(open_vp, map_vp)) { 10680 nfs4_error_t e; 10681 10682 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "open_and_get_osp: " 10683 "open returned a different vnode")); 10684 /* 10685 * If there's an error, ignore it, 10686 * and let VOP_INACTIVE handle it. 10687 */ 10688 (void) nfs4close_one(open_vp, NULL, cr, FREAD, NULL, &e, 10689 CLOSE_NORM, 0, 0, 0); 10690 VN_RELE(map_vp); 10691 return (EIO); 10692 } 10693 10694 VN_RELE(map_vp); 10695 10696 oop = find_open_owner(cr, NFS4_PERM_CREATED, VTOMI4(open_vp)); 10697 if (!oop) { 10698 nfs4_error_t e; 10699 10700 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "open_and_get_osp: " 10701 "no open owner")); 10702 /* 10703 * If there's an error, ignore it, 10704 * and let VOP_INACTIVE handle it. 10705 */ 10706 (void) nfs4close_one(open_vp, NULL, cr, FREAD, NULL, &e, 10707 CLOSE_NORM, 0, 0, 0); 10708 return (EIO); 10709 } 10710 osp = find_open_stream(oop, rp); 10711 open_owner_rele(oop); 10712 *ospp = osp; 10713 return (0); 10714 } 10715 10716 /* 10717 * Please be aware that when this function is called, the address space write 10718 * a_lock is held. Do not put over the wire calls in this function. 10719 */ 10720 /* ARGSUSED */ 10721 static int 10722 nfs4_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 10723 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 10724 caller_context_t *ct) 10725 { 10726 rnode4_t *rp; 10727 int error = 0; 10728 mntinfo4_t *mi; 10729 10730 mi = VTOMI4(vp); 10731 rp = VTOR4(vp); 10732 10733 if (nfs_zone() != mi->mi_zone) 10734 return (EIO); 10735 if (vp->v_flag & VNOMAP) 10736 return (ENOSYS); 10737 10738 /* 10739 * Don't need to update the open stream first, since this 10740 * mmap can't add any additional share access that isn't 10741 * already contained in the open stream (for the case where we 10742 * open/mmap/only update rp->r_mapcnt/server reboots/reopen doesn't 10743 * take into account os_mmap_read[write] counts). 10744 */ 10745 atomic_add_long((ulong_t *)&rp->r_mapcnt, btopr(len)); 10746 10747 if (vp->v_type == VREG) { 10748 /* 10749 * We need to retrieve the open stream and update the counts. 10750 * If there is no open stream here, something is wrong. 10751 */ 10752 nfs4_open_stream_t *osp = NULL; 10753 nfs4_open_owner_t *oop = NULL; 10754 10755 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 10756 if (oop != NULL) { 10757 /* returns with 'os_sync_lock' held */ 10758 osp = find_open_stream(oop, rp); 10759 open_owner_rele(oop); 10760 } 10761 if (osp == NULL) { 10762 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, 10763 "nfs4_addmap: we should have an osp" 10764 "but we don't, so fail with EIO")); 10765 error = EIO; 10766 goto out; 10767 } 10768 10769 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "nfs4_addmap: osp %p," 10770 " pages %ld, prot 0x%x", (void *)osp, btopr(len), prot)); 10771 10772 /* 10773 * Update the map count in the open stream. 10774 * This is necessary in the case where we 10775 * open/mmap/close/, then the server reboots, and we 10776 * attempt to reopen. If the mmap doesn't add share 10777 * access then we send an invalid reopen with 10778 * access = NONE. 10779 * 10780 * We need to specifically check each PROT_* so a mmap 10781 * call of (PROT_WRITE | PROT_EXEC) will ensure us both 10782 * read and write access. A simple comparison of prot 10783 * to ~PROT_WRITE to determine read access is insufficient 10784 * since prot can be |= with PROT_USER, etc. 10785 */ 10786 10787 /* 10788 * Unless we're MAP_SHARED, no sense in adding os_mmap_write 10789 */ 10790 if ((flags & MAP_SHARED) && (maxprot & PROT_WRITE)) 10791 osp->os_mmap_write += btopr(len); 10792 if (maxprot & PROT_READ) 10793 osp->os_mmap_read += btopr(len); 10794 if (maxprot & PROT_EXEC) 10795 osp->os_mmap_read += btopr(len); 10796 /* 10797 * Ensure that os_mmap_read gets incremented, even if 10798 * maxprot were to look like PROT_NONE. 10799 */ 10800 if (!(maxprot & PROT_READ) && !(maxprot & PROT_WRITE) && 10801 !(maxprot & PROT_EXEC)) 10802 osp->os_mmap_read += btopr(len); 10803 osp->os_mapcnt += btopr(len); 10804 mutex_exit(&osp->os_sync_lock); 10805 open_stream_rele(osp, rp); 10806 } 10807 10808 out: 10809 /* 10810 * If we got an error, then undo our 10811 * incrementing of 'r_mapcnt'. 10812 */ 10813 10814 if (error) { 10815 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(len)); 10816 ASSERT(rp->r_mapcnt >= 0); 10817 } 10818 return (error); 10819 } 10820 10821 /* ARGSUSED */ 10822 static int 10823 nfs4_cmp(vnode_t *vp1, vnode_t *vp2, caller_context_t *ct) 10824 { 10825 10826 return (VTOR4(vp1) == VTOR4(vp2)); 10827 } 10828 10829 /* ARGSUSED */ 10830 static int 10831 nfs4_frlock(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 10832 offset_t offset, struct flk_callback *flk_cbp, cred_t *cr, 10833 caller_context_t *ct) 10834 { 10835 int rc; 10836 u_offset_t start, end; 10837 rnode4_t *rp; 10838 int error = 0, intr = INTR4(vp); 10839 nfs4_error_t e; 10840 10841 if (nfs_zone() != VTOMI4(vp)->mi_zone) 10842 return (EIO); 10843 10844 /* check for valid cmd parameter */ 10845 if (cmd != F_GETLK && cmd != F_SETLK && cmd != F_SETLKW) 10846 return (EINVAL); 10847 10848 /* Verify l_type. */ 10849 switch (bfp->l_type) { 10850 case F_RDLCK: 10851 if (cmd != F_GETLK && !(flag & FREAD)) 10852 return (EBADF); 10853 break; 10854 case F_WRLCK: 10855 if (cmd != F_GETLK && !(flag & FWRITE)) 10856 return (EBADF); 10857 break; 10858 case F_UNLCK: 10859 intr = 0; 10860 break; 10861 10862 default: 10863 return (EINVAL); 10864 } 10865 10866 /* check the validity of the lock range */ 10867 if (rc = flk_convert_lock_data(vp, bfp, &start, &end, offset)) 10868 return (rc); 10869 if (rc = flk_check_lock_data(start, end, MAXEND)) 10870 return (rc); 10871 10872 /* 10873 * If the filesystem is mounted using local locking, pass the 10874 * request off to the local locking code. 10875 */ 10876 if (VTOMI4(vp)->mi_flags & MI4_LLOCK || vp->v_type != VREG) { 10877 if (cmd == F_SETLK || cmd == F_SETLKW) { 10878 /* 10879 * For complete safety, we should be holding 10880 * r_lkserlock. However, we can't call 10881 * nfs4_safelock and then fs_frlock while 10882 * holding r_lkserlock, so just invoke 10883 * nfs4_safelock and expect that this will 10884 * catch enough of the cases. 10885 */ 10886 if (!nfs4_safelock(vp, bfp, cr)) 10887 return (EAGAIN); 10888 } 10889 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 10890 } 10891 10892 rp = VTOR4(vp); 10893 10894 /* 10895 * Check whether the given lock request can proceed, given the 10896 * current file mappings. 10897 */ 10898 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER, intr)) 10899 return (EINTR); 10900 if (cmd == F_SETLK || cmd == F_SETLKW) { 10901 if (!nfs4_safelock(vp, bfp, cr)) { 10902 rc = EAGAIN; 10903 goto done; 10904 } 10905 } 10906 10907 /* 10908 * Flush the cache after waiting for async I/O to finish. For new 10909 * locks, this is so that the process gets the latest bits from the 10910 * server. For unlocks, this is so that other clients see the 10911 * latest bits once the file has been unlocked. If currently dirty 10912 * pages can't be flushed, then don't allow a lock to be set. But 10913 * allow unlocks to succeed, to avoid having orphan locks on the 10914 * server. 10915 */ 10916 if (cmd != F_GETLK) { 10917 mutex_enter(&rp->r_statelock); 10918 while (rp->r_count > 0) { 10919 if (intr) { 10920 klwp_t *lwp = ttolwp(curthread); 10921 10922 if (lwp != NULL) 10923 lwp->lwp_nostop++; 10924 if (cv_wait_sig(&rp->r_cv, 10925 &rp->r_statelock) == 0) { 10926 if (lwp != NULL) 10927 lwp->lwp_nostop--; 10928 rc = EINTR; 10929 break; 10930 } 10931 if (lwp != NULL) 10932 lwp->lwp_nostop--; 10933 } else 10934 cv_wait(&rp->r_cv, &rp->r_statelock); 10935 } 10936 mutex_exit(&rp->r_statelock); 10937 if (rc != 0) 10938 goto done; 10939 error = nfs4_putpage(vp, (offset_t)0, 0, B_INVAL, cr, ct); 10940 if (error) { 10941 if (error == ENOSPC || error == EDQUOT) { 10942 mutex_enter(&rp->r_statelock); 10943 if (!rp->r_error) 10944 rp->r_error = error; 10945 mutex_exit(&rp->r_statelock); 10946 } 10947 if (bfp->l_type != F_UNLCK) { 10948 rc = ENOLCK; 10949 goto done; 10950 } 10951 } 10952 } 10953 10954 /* 10955 * Call the lock manager to do the real work of contacting 10956 * the server and obtaining the lock. 10957 */ 10958 nfs4frlock(NFS4_LCK_CTYPE_NORM, vp, cmd, bfp, flag, offset, 10959 cr, &e, NULL, NULL); 10960 rc = e.error; 10961 10962 if (rc == 0) 10963 nfs4_lockcompletion(vp, cmd); 10964 10965 done: 10966 nfs_rw_exit(&rp->r_lkserlock); 10967 10968 return (rc); 10969 } 10970 10971 /* 10972 * Free storage space associated with the specified vnode. The portion 10973 * to be freed is specified by bfp->l_start and bfp->l_len (already 10974 * normalized to a "whence" of 0). 10975 * 10976 * This is an experimental facility whose continued existence is not 10977 * guaranteed. Currently, we only support the special case 10978 * of l_len == 0, meaning free to end of file. 10979 */ 10980 /* ARGSUSED */ 10981 static int 10982 nfs4_space(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 10983 offset_t offset, cred_t *cr, caller_context_t *ct) 10984 { 10985 int error; 10986 10987 if (nfs_zone() != VTOMI4(vp)->mi_zone) 10988 return (EIO); 10989 ASSERT(vp->v_type == VREG); 10990 if (cmd != F_FREESP) 10991 return (EINVAL); 10992 10993 error = convoff(vp, bfp, 0, offset); 10994 if (!error) { 10995 ASSERT(bfp->l_start >= 0); 10996 if (bfp->l_len == 0) { 10997 struct vattr va; 10998 10999 va.va_mask = AT_SIZE; 11000 va.va_size = bfp->l_start; 11001 error = nfs4setattr(vp, &va, 0, cr, NULL); 11002 11003 if (error == 0 && bfp->l_start == 0) 11004 vnevent_truncate(vp, ct); 11005 } else 11006 error = EINVAL; 11007 } 11008 11009 return (error); 11010 } 11011 11012 /* ARGSUSED */ 11013 int 11014 nfs4_realvp(vnode_t *vp, vnode_t **vpp, caller_context_t *ct) 11015 { 11016 rnode4_t *rp; 11017 rp = VTOR4(vp); 11018 11019 if (vp->v_type == VREG && IS_SHADOW(vp, rp)) { 11020 vp = RTOV4(rp); 11021 } 11022 *vpp = vp; 11023 return (0); 11024 } 11025 11026 /* 11027 * Setup and add an address space callback to do the work of the delmap call. 11028 * The callback will (and must be) deleted in the actual callback function. 11029 * 11030 * This is done in order to take care of the problem that we have with holding 11031 * the address space's a_lock for a long period of time (e.g. if the NFS server 11032 * is down). Callbacks will be executed in the address space code while the 11033 * a_lock is not held. Holding the address space's a_lock causes things such 11034 * as ps and fork to hang because they are trying to acquire this lock as well. 11035 */ 11036 /* ARGSUSED */ 11037 static int 11038 nfs4_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 11039 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr, 11040 caller_context_t *ct) 11041 { 11042 int caller_found; 11043 int error; 11044 rnode4_t *rp; 11045 nfs4_delmap_args_t *dmapp; 11046 nfs4_delmapcall_t *delmap_call; 11047 11048 if (vp->v_flag & VNOMAP) 11049 return (ENOSYS); 11050 11051 /* 11052 * A process may not change zones if it has NFS pages mmap'ed 11053 * in, so we can't legitimately get here from the wrong zone. 11054 */ 11055 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11056 11057 rp = VTOR4(vp); 11058 11059 /* 11060 * The way that the address space of this process deletes its mapping 11061 * of this file is via the following call chains: 11062 * - as_free()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs4_delmap() 11063 * - as_unmap()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs4_delmap() 11064 * 11065 * With the use of address space callbacks we are allowed to drop the 11066 * address space lock, a_lock, while executing the NFS operations that 11067 * need to go over the wire. Returning EAGAIN to the caller of this 11068 * function is what drives the execution of the callback that we add 11069 * below. The callback will be executed by the address space code 11070 * after dropping the a_lock. When the callback is finished, since 11071 * we dropped the a_lock, it must be re-acquired and segvn_unmap() 11072 * is called again on the same segment to finish the rest of the work 11073 * that needs to happen during unmapping. 11074 * 11075 * This action of calling back into the segment driver causes 11076 * nfs4_delmap() to get called again, but since the callback was 11077 * already executed at this point, it already did the work and there 11078 * is nothing left for us to do. 11079 * 11080 * To Summarize: 11081 * - The first time nfs4_delmap is called by the current thread is when 11082 * we add the caller associated with this delmap to the delmap caller 11083 * list, add the callback, and return EAGAIN. 11084 * - The second time in this call chain when nfs4_delmap is called we 11085 * will find this caller in the delmap caller list and realize there 11086 * is no more work to do thus removing this caller from the list and 11087 * returning the error that was set in the callback execution. 11088 */ 11089 caller_found = nfs4_find_and_delete_delmapcall(rp, &error); 11090 if (caller_found) { 11091 /* 11092 * 'error' is from the actual delmap operations. To avoid 11093 * hangs, we need to handle the return of EAGAIN differently 11094 * since this is what drives the callback execution. 11095 * In this case, we don't want to return EAGAIN and do the 11096 * callback execution because there are none to execute. 11097 */ 11098 if (error == EAGAIN) 11099 return (0); 11100 else 11101 return (error); 11102 } 11103 11104 /* current caller was not in the list */ 11105 delmap_call = nfs4_init_delmapcall(); 11106 11107 mutex_enter(&rp->r_statelock); 11108 list_insert_tail(&rp->r_indelmap, delmap_call); 11109 mutex_exit(&rp->r_statelock); 11110 11111 dmapp = kmem_alloc(sizeof (nfs4_delmap_args_t), KM_SLEEP); 11112 11113 dmapp->vp = vp; 11114 dmapp->off = off; 11115 dmapp->addr = addr; 11116 dmapp->len = len; 11117 dmapp->prot = prot; 11118 dmapp->maxprot = maxprot; 11119 dmapp->flags = flags; 11120 dmapp->cr = cr; 11121 dmapp->caller = delmap_call; 11122 11123 error = as_add_callback(as, nfs4_delmap_callback, dmapp, 11124 AS_UNMAP_EVENT, addr, len, KM_SLEEP); 11125 11126 return (error ? error : EAGAIN); 11127 } 11128 11129 static nfs4_delmapcall_t * 11130 nfs4_init_delmapcall() 11131 { 11132 nfs4_delmapcall_t *delmap_call; 11133 11134 delmap_call = kmem_alloc(sizeof (nfs4_delmapcall_t), KM_SLEEP); 11135 delmap_call->call_id = curthread; 11136 delmap_call->error = 0; 11137 11138 return (delmap_call); 11139 } 11140 11141 static void 11142 nfs4_free_delmapcall(nfs4_delmapcall_t *delmap_call) 11143 { 11144 kmem_free(delmap_call, sizeof (nfs4_delmapcall_t)); 11145 } 11146 11147 /* 11148 * Searches for the current delmap caller (based on curthread) in the list of 11149 * callers. If it is found, we remove it and free the delmap caller. 11150 * Returns: 11151 * 0 if the caller wasn't found 11152 * 1 if the caller was found, removed and freed. *errp will be set 11153 * to what the result of the delmap was. 11154 */ 11155 static int 11156 nfs4_find_and_delete_delmapcall(rnode4_t *rp, int *errp) 11157 { 11158 nfs4_delmapcall_t *delmap_call; 11159 11160 /* 11161 * If the list doesn't exist yet, we create it and return 11162 * that the caller wasn't found. No list = no callers. 11163 */ 11164 mutex_enter(&rp->r_statelock); 11165 if (!(rp->r_flags & R4DELMAPLIST)) { 11166 /* The list does not exist */ 11167 list_create(&rp->r_indelmap, sizeof (nfs4_delmapcall_t), 11168 offsetof(nfs4_delmapcall_t, call_node)); 11169 rp->r_flags |= R4DELMAPLIST; 11170 mutex_exit(&rp->r_statelock); 11171 return (0); 11172 } else { 11173 /* The list exists so search it */ 11174 for (delmap_call = list_head(&rp->r_indelmap); 11175 delmap_call != NULL; 11176 delmap_call = list_next(&rp->r_indelmap, delmap_call)) { 11177 if (delmap_call->call_id == curthread) { 11178 /* current caller is in the list */ 11179 *errp = delmap_call->error; 11180 list_remove(&rp->r_indelmap, delmap_call); 11181 mutex_exit(&rp->r_statelock); 11182 nfs4_free_delmapcall(delmap_call); 11183 return (1); 11184 } 11185 } 11186 } 11187 mutex_exit(&rp->r_statelock); 11188 return (0); 11189 } 11190 11191 /* 11192 * Remove some pages from an mmap'd vnode. Just update the 11193 * count of pages. If doing close-to-open, then flush and 11194 * commit all of the pages associated with this file. 11195 * Otherwise, start an asynchronous page flush to write out 11196 * any dirty pages. This will also associate a credential 11197 * with the rnode which can be used to write the pages. 11198 */ 11199 /* ARGSUSED */ 11200 static void 11201 nfs4_delmap_callback(struct as *as, void *arg, uint_t event) 11202 { 11203 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 11204 rnode4_t *rp; 11205 mntinfo4_t *mi; 11206 nfs4_delmap_args_t *dmapp = (nfs4_delmap_args_t *)arg; 11207 11208 rp = VTOR4(dmapp->vp); 11209 mi = VTOMI4(dmapp->vp); 11210 11211 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(dmapp->len)); 11212 ASSERT(rp->r_mapcnt >= 0); 11213 11214 /* 11215 * Initiate a page flush and potential commit if there are 11216 * pages, the file system was not mounted readonly, the segment 11217 * was mapped shared, and the pages themselves were writeable. 11218 */ 11219 if (nfs4_has_pages(dmapp->vp) && 11220 !(dmapp->vp->v_vfsp->vfs_flag & VFS_RDONLY) && 11221 dmapp->flags == MAP_SHARED && (dmapp->maxprot & PROT_WRITE)) { 11222 mutex_enter(&rp->r_statelock); 11223 rp->r_flags |= R4DIRTY; 11224 mutex_exit(&rp->r_statelock); 11225 e.error = nfs4_putpage_commit(dmapp->vp, dmapp->off, 11226 dmapp->len, dmapp->cr); 11227 if (!e.error) { 11228 mutex_enter(&rp->r_statelock); 11229 e.error = rp->r_error; 11230 rp->r_error = 0; 11231 mutex_exit(&rp->r_statelock); 11232 } 11233 } else 11234 e.error = 0; 11235 11236 if ((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) 11237 (void) nfs4_putpage(dmapp->vp, dmapp->off, dmapp->len, 11238 B_INVAL, dmapp->cr, NULL); 11239 11240 if (e.error) { 11241 e.stat = puterrno4(e.error); 11242 nfs4_queue_fact(RF_DELMAP_CB_ERR, mi, e.stat, 0, 11243 OP_COMMIT, FALSE, NULL, 0, dmapp->vp); 11244 dmapp->caller->error = e.error; 11245 } 11246 11247 /* Check to see if we need to close the file */ 11248 11249 if (dmapp->vp->v_type == VREG) { 11250 nfs4close_one(dmapp->vp, NULL, dmapp->cr, 0, NULL, &e, 11251 CLOSE_DELMAP, dmapp->len, dmapp->maxprot, dmapp->flags); 11252 11253 if (e.error != 0 || e.stat != NFS4_OK) { 11254 /* 11255 * Since it is possible that e.error == 0 and 11256 * e.stat != NFS4_OK (and vice versa), 11257 * we do the proper checking in order to get both 11258 * e.error and e.stat reporting the correct info. 11259 */ 11260 if (e.stat == NFS4_OK) 11261 e.stat = puterrno4(e.error); 11262 if (e.error == 0) 11263 e.error = geterrno4(e.stat); 11264 11265 nfs4_queue_fact(RF_DELMAP_CB_ERR, mi, e.stat, 0, 11266 OP_CLOSE, FALSE, NULL, 0, dmapp->vp); 11267 dmapp->caller->error = e.error; 11268 } 11269 } 11270 11271 (void) as_delete_callback(as, arg); 11272 kmem_free(dmapp, sizeof (nfs4_delmap_args_t)); 11273 } 11274 11275 11276 static uint_t 11277 fattr4_maxfilesize_to_bits(uint64_t ll) 11278 { 11279 uint_t l = 1; 11280 11281 if (ll == 0) { 11282 return (0); 11283 } 11284 11285 if (ll & 0xffffffff00000000) { 11286 l += 32; ll >>= 32; 11287 } 11288 if (ll & 0xffff0000) { 11289 l += 16; ll >>= 16; 11290 } 11291 if (ll & 0xff00) { 11292 l += 8; ll >>= 8; 11293 } 11294 if (ll & 0xf0) { 11295 l += 4; ll >>= 4; 11296 } 11297 if (ll & 0xc) { 11298 l += 2; ll >>= 2; 11299 } 11300 if (ll & 0x2) { 11301 l += 1; 11302 } 11303 return (l); 11304 } 11305 11306 static int 11307 nfs4_have_xattrs(vnode_t *vp, ulong_t *valp, cred_t *cr) 11308 { 11309 vnode_t *avp = NULL; 11310 int error; 11311 11312 if ((error = nfs4lookup_xattr(vp, "", &avp, 11313 LOOKUP_XATTR, cr)) == 0) 11314 error = do_xattr_exists_check(avp, valp, cr); 11315 if (avp) 11316 VN_RELE(avp); 11317 11318 return (error); 11319 } 11320 11321 /* ARGSUSED */ 11322 int 11323 nfs4_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 11324 caller_context_t *ct) 11325 { 11326 int error; 11327 hrtime_t t; 11328 rnode4_t *rp; 11329 nfs4_ga_res_t gar; 11330 nfs4_ga_ext_res_t ger; 11331 11332 gar.n4g_ext_res = &ger; 11333 11334 if (nfs_zone() != VTOMI4(vp)->mi_zone) 11335 return (EIO); 11336 if (cmd == _PC_PATH_MAX || cmd == _PC_SYMLINK_MAX) { 11337 *valp = MAXPATHLEN; 11338 return (0); 11339 } 11340 if (cmd == _PC_ACL_ENABLED) { 11341 *valp = _ACL_ACE_ENABLED; 11342 return (0); 11343 } 11344 11345 rp = VTOR4(vp); 11346 if (cmd == _PC_XATTR_EXISTS) { 11347 /* 11348 * The existence of the xattr directory is not sufficient 11349 * for determining whether generic user attributes exists. 11350 * The attribute directory could only be a transient directory 11351 * used for Solaris sysattr support. Do a small readdir 11352 * to verify if the only entries are sysattrs or not. 11353 * 11354 * pc4_xattr_valid can be only be trusted when r_xattr_dir 11355 * is NULL. Once the xadir vp exists, we can create xattrs, 11356 * and we don't have any way to update the "base" object's 11357 * pc4_xattr_exists from the xattr or xadir. Maybe FEM 11358 * could help out. 11359 */ 11360 if (ATTRCACHE4_VALID(vp) && rp->r_pathconf.pc4_xattr_valid && 11361 rp->r_xattr_dir == NULL) { 11362 return (nfs4_have_xattrs(vp, valp, cr)); 11363 } 11364 } else { /* OLD CODE */ 11365 if (ATTRCACHE4_VALID(vp)) { 11366 mutex_enter(&rp->r_statelock); 11367 if (rp->r_pathconf.pc4_cache_valid) { 11368 error = 0; 11369 switch (cmd) { 11370 case _PC_FILESIZEBITS: 11371 *valp = 11372 rp->r_pathconf.pc4_filesizebits; 11373 break; 11374 case _PC_LINK_MAX: 11375 *valp = 11376 rp->r_pathconf.pc4_link_max; 11377 break; 11378 case _PC_NAME_MAX: 11379 *valp = 11380 rp->r_pathconf.pc4_name_max; 11381 break; 11382 case _PC_CHOWN_RESTRICTED: 11383 *valp = 11384 rp->r_pathconf.pc4_chown_restricted; 11385 break; 11386 case _PC_NO_TRUNC: 11387 *valp = 11388 rp->r_pathconf.pc4_no_trunc; 11389 break; 11390 default: 11391 error = EINVAL; 11392 break; 11393 } 11394 mutex_exit(&rp->r_statelock); 11395 #ifdef DEBUG 11396 nfs4_pathconf_cache_hits++; 11397 #endif 11398 return (error); 11399 } 11400 mutex_exit(&rp->r_statelock); 11401 } 11402 } 11403 #ifdef DEBUG 11404 nfs4_pathconf_cache_misses++; 11405 #endif 11406 11407 t = gethrtime(); 11408 11409 error = nfs4_attr_otw(vp, TAG_PATHCONF, &gar, NFS4_PATHCONF_MASK, cr); 11410 11411 if (error) { 11412 mutex_enter(&rp->r_statelock); 11413 rp->r_pathconf.pc4_cache_valid = FALSE; 11414 rp->r_pathconf.pc4_xattr_valid = FALSE; 11415 mutex_exit(&rp->r_statelock); 11416 return (error); 11417 } 11418 11419 /* interpret the max filesize */ 11420 gar.n4g_ext_res->n4g_pc4.pc4_filesizebits = 11421 fattr4_maxfilesize_to_bits(gar.n4g_ext_res->n4g_maxfilesize); 11422 11423 /* Store the attributes we just received */ 11424 nfs4_attr_cache(vp, &gar, t, cr, TRUE, NULL); 11425 11426 switch (cmd) { 11427 case _PC_FILESIZEBITS: 11428 *valp = gar.n4g_ext_res->n4g_pc4.pc4_filesizebits; 11429 break; 11430 case _PC_LINK_MAX: 11431 *valp = gar.n4g_ext_res->n4g_pc4.pc4_link_max; 11432 break; 11433 case _PC_NAME_MAX: 11434 *valp = gar.n4g_ext_res->n4g_pc4.pc4_name_max; 11435 break; 11436 case _PC_CHOWN_RESTRICTED: 11437 *valp = gar.n4g_ext_res->n4g_pc4.pc4_chown_restricted; 11438 break; 11439 case _PC_NO_TRUNC: 11440 *valp = gar.n4g_ext_res->n4g_pc4.pc4_no_trunc; 11441 break; 11442 case _PC_XATTR_EXISTS: 11443 if (gar.n4g_ext_res->n4g_pc4.pc4_xattr_exists) { 11444 if (error = nfs4_have_xattrs(vp, valp, cr)) 11445 return (error); 11446 } 11447 break; 11448 default: 11449 return (EINVAL); 11450 } 11451 11452 return (0); 11453 } 11454 11455 /* 11456 * Called by async thread to do synchronous pageio. Do the i/o, wait 11457 * for it to complete, and cleanup the page list when done. 11458 */ 11459 static int 11460 nfs4_sync_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 11461 int flags, cred_t *cr) 11462 { 11463 int error; 11464 11465 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11466 11467 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 11468 if (flags & B_READ) 11469 pvn_read_done(pp, (error ? B_ERROR : 0) | flags); 11470 else 11471 pvn_write_done(pp, (error ? B_ERROR : 0) | flags); 11472 return (error); 11473 } 11474 11475 /* ARGSUSED */ 11476 static int 11477 nfs4_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 11478 int flags, cred_t *cr, caller_context_t *ct) 11479 { 11480 int error; 11481 rnode4_t *rp; 11482 11483 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI4(vp)->mi_zone) 11484 return (EIO); 11485 11486 if (pp == NULL) 11487 return (EINVAL); 11488 11489 rp = VTOR4(vp); 11490 mutex_enter(&rp->r_statelock); 11491 rp->r_count++; 11492 mutex_exit(&rp->r_statelock); 11493 11494 if (flags & B_ASYNC) { 11495 error = nfs4_async_pageio(vp, pp, io_off, io_len, flags, cr, 11496 nfs4_sync_pageio); 11497 } else 11498 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 11499 mutex_enter(&rp->r_statelock); 11500 rp->r_count--; 11501 cv_broadcast(&rp->r_cv); 11502 mutex_exit(&rp->r_statelock); 11503 return (error); 11504 } 11505 11506 /* ARGSUSED */ 11507 static void 11508 nfs4_dispose(vnode_t *vp, page_t *pp, int fl, int dn, cred_t *cr, 11509 caller_context_t *ct) 11510 { 11511 int error; 11512 rnode4_t *rp; 11513 page_t *plist; 11514 page_t *pptr; 11515 offset3 offset; 11516 count3 len; 11517 k_sigset_t smask; 11518 11519 /* 11520 * We should get called with fl equal to either B_FREE or 11521 * B_INVAL. Any other value is illegal. 11522 * 11523 * The page that we are either supposed to free or destroy 11524 * should be exclusive locked and its io lock should not 11525 * be held. 11526 */ 11527 ASSERT(fl == B_FREE || fl == B_INVAL); 11528 ASSERT((PAGE_EXCL(pp) && !page_iolock_assert(pp)) || panicstr); 11529 11530 rp = VTOR4(vp); 11531 11532 /* 11533 * If the page doesn't need to be committed or we shouldn't 11534 * even bother attempting to commit it, then just make sure 11535 * that the p_fsdata byte is clear and then either free or 11536 * destroy the page as appropriate. 11537 */ 11538 if (pp->p_fsdata == C_NOCOMMIT || (rp->r_flags & R4STALE)) { 11539 pp->p_fsdata = C_NOCOMMIT; 11540 if (fl == B_FREE) 11541 page_free(pp, dn); 11542 else 11543 page_destroy(pp, dn); 11544 return; 11545 } 11546 11547 /* 11548 * If there is a page invalidation operation going on, then 11549 * if this is one of the pages being destroyed, then just 11550 * clear the p_fsdata byte and then either free or destroy 11551 * the page as appropriate. 11552 */ 11553 mutex_enter(&rp->r_statelock); 11554 if ((rp->r_flags & R4TRUNCATE) && pp->p_offset >= rp->r_truncaddr) { 11555 mutex_exit(&rp->r_statelock); 11556 pp->p_fsdata = C_NOCOMMIT; 11557 if (fl == B_FREE) 11558 page_free(pp, dn); 11559 else 11560 page_destroy(pp, dn); 11561 return; 11562 } 11563 11564 /* 11565 * If we are freeing this page and someone else is already 11566 * waiting to do a commit, then just unlock the page and 11567 * return. That other thread will take care of commiting 11568 * this page. The page can be freed sometime after the 11569 * commit has finished. Otherwise, if the page is marked 11570 * as delay commit, then we may be getting called from 11571 * pvn_write_done, one page at a time. This could result 11572 * in one commit per page, so we end up doing lots of small 11573 * commits instead of fewer larger commits. This is bad, 11574 * we want do as few commits as possible. 11575 */ 11576 if (fl == B_FREE) { 11577 if (rp->r_flags & R4COMMITWAIT) { 11578 page_unlock(pp); 11579 mutex_exit(&rp->r_statelock); 11580 return; 11581 } 11582 if (pp->p_fsdata == C_DELAYCOMMIT) { 11583 pp->p_fsdata = C_COMMIT; 11584 page_unlock(pp); 11585 mutex_exit(&rp->r_statelock); 11586 return; 11587 } 11588 } 11589 11590 /* 11591 * Check to see if there is a signal which would prevent an 11592 * attempt to commit the pages from being successful. If so, 11593 * then don't bother with all of the work to gather pages and 11594 * generate the unsuccessful RPC. Just return from here and 11595 * let the page be committed at some later time. 11596 */ 11597 sigintr(&smask, VTOMI4(vp)->mi_flags & MI4_INT); 11598 if (ttolwp(curthread) != NULL && ISSIG(curthread, JUSTLOOKING)) { 11599 sigunintr(&smask); 11600 page_unlock(pp); 11601 mutex_exit(&rp->r_statelock); 11602 return; 11603 } 11604 sigunintr(&smask); 11605 11606 /* 11607 * We are starting to need to commit pages, so let's try 11608 * to commit as many as possible at once to reduce the 11609 * overhead. 11610 * 11611 * Set the `commit inprogress' state bit. We must 11612 * first wait until any current one finishes. Then 11613 * we initialize the c_pages list with this page. 11614 */ 11615 while (rp->r_flags & R4COMMIT) { 11616 rp->r_flags |= R4COMMITWAIT; 11617 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock); 11618 rp->r_flags &= ~R4COMMITWAIT; 11619 } 11620 rp->r_flags |= R4COMMIT; 11621 mutex_exit(&rp->r_statelock); 11622 ASSERT(rp->r_commit.c_pages == NULL); 11623 rp->r_commit.c_pages = pp; 11624 rp->r_commit.c_commbase = (offset3)pp->p_offset; 11625 rp->r_commit.c_commlen = PAGESIZE; 11626 11627 /* 11628 * Gather together all other pages which can be committed. 11629 * They will all be chained off r_commit.c_pages. 11630 */ 11631 nfs4_get_commit(vp); 11632 11633 /* 11634 * Clear the `commit inprogress' status and disconnect 11635 * the list of pages to be committed from the rnode. 11636 * At this same time, we also save the starting offset 11637 * and length of data to be committed on the server. 11638 */ 11639 plist = rp->r_commit.c_pages; 11640 rp->r_commit.c_pages = NULL; 11641 offset = rp->r_commit.c_commbase; 11642 len = rp->r_commit.c_commlen; 11643 mutex_enter(&rp->r_statelock); 11644 rp->r_flags &= ~R4COMMIT; 11645 cv_broadcast(&rp->r_commit.c_cv); 11646 mutex_exit(&rp->r_statelock); 11647 11648 if (curproc == proc_pageout || curproc == proc_fsflush || 11649 nfs_zone() != VTOMI4(vp)->mi_zone) { 11650 nfs4_async_commit(vp, plist, offset, len, 11651 cr, do_nfs4_async_commit); 11652 return; 11653 } 11654 11655 /* 11656 * Actually generate the COMMIT op over the wire operation. 11657 */ 11658 error = nfs4_commit(vp, (offset4)offset, (count4)len, cr); 11659 11660 /* 11661 * If we got an error during the commit, just unlock all 11662 * of the pages. The pages will get retransmitted to the 11663 * server during a putpage operation. 11664 */ 11665 if (error) { 11666 while (plist != NULL) { 11667 pptr = plist; 11668 page_sub(&plist, pptr); 11669 page_unlock(pptr); 11670 } 11671 return; 11672 } 11673 11674 /* 11675 * We've tried as hard as we can to commit the data to stable 11676 * storage on the server. We just unlock the rest of the pages 11677 * and clear the commit required state. They will be put 11678 * onto the tail of the cachelist if they are nolonger 11679 * mapped. 11680 */ 11681 while (plist != pp) { 11682 pptr = plist; 11683 page_sub(&plist, pptr); 11684 pptr->p_fsdata = C_NOCOMMIT; 11685 page_unlock(pptr); 11686 } 11687 11688 /* 11689 * It is possible that nfs4_commit didn't return error but 11690 * some other thread has modified the page we are going 11691 * to free/destroy. 11692 * In this case we need to rewrite the page. Do an explicit check 11693 * before attempting to free/destroy the page. If modified, needs to 11694 * be rewritten so unlock the page and return. 11695 */ 11696 if (hat_ismod(pp)) { 11697 pp->p_fsdata = C_NOCOMMIT; 11698 page_unlock(pp); 11699 return; 11700 } 11701 11702 /* 11703 * Now, as appropriate, either free or destroy the page 11704 * that we were called with. 11705 */ 11706 pp->p_fsdata = C_NOCOMMIT; 11707 if (fl == B_FREE) 11708 page_free(pp, dn); 11709 else 11710 page_destroy(pp, dn); 11711 } 11712 11713 /* 11714 * Commit requires that the current fh be the file written to. 11715 * The compound op structure is: 11716 * PUTFH(file), COMMIT 11717 */ 11718 static int 11719 nfs4_commit(vnode_t *vp, offset4 offset, count4 count, cred_t *cr) 11720 { 11721 COMPOUND4args_clnt args; 11722 COMPOUND4res_clnt res; 11723 COMMIT4res *cm_res; 11724 nfs_argop4 argop[2]; 11725 nfs_resop4 *resop; 11726 int doqueue; 11727 mntinfo4_t *mi; 11728 rnode4_t *rp; 11729 cred_t *cred_otw = NULL; 11730 bool_t needrecov = FALSE; 11731 nfs4_recov_state_t recov_state; 11732 nfs4_open_stream_t *osp = NULL; 11733 bool_t first_time = TRUE; /* first time getting OTW cred */ 11734 bool_t last_time = FALSE; /* last time getting OTW cred */ 11735 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 11736 11737 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11738 11739 rp = VTOR4(vp); 11740 11741 mi = VTOMI4(vp); 11742 recov_state.rs_flags = 0; 11743 recov_state.rs_num_retry_despite_err = 0; 11744 get_commit_cred: 11745 /* 11746 * Releases the osp, if a valid open stream is provided. 11747 * Puts a hold on the cred_otw and the new osp (if found). 11748 */ 11749 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp, 11750 &first_time, &last_time); 11751 args.ctag = TAG_COMMIT; 11752 recov_retry: 11753 /* 11754 * Commit ops: putfh file; commit 11755 */ 11756 args.array_len = 2; 11757 args.array = argop; 11758 11759 e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11760 &recov_state, NULL); 11761 if (e.error) { 11762 crfree(cred_otw); 11763 if (osp != NULL) 11764 open_stream_rele(osp, rp); 11765 return (e.error); 11766 } 11767 11768 /* putfh directory */ 11769 argop[0].argop = OP_CPUTFH; 11770 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 11771 11772 /* commit */ 11773 argop[1].argop = OP_COMMIT; 11774 argop[1].nfs_argop4_u.opcommit.offset = offset; 11775 argop[1].nfs_argop4_u.opcommit.count = count; 11776 11777 doqueue = 1; 11778 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, &e); 11779 11780 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 11781 if (!needrecov && e.error) { 11782 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, &recov_state, 11783 needrecov); 11784 crfree(cred_otw); 11785 if (e.error == EACCES && last_time == FALSE) 11786 goto get_commit_cred; 11787 if (osp != NULL) 11788 open_stream_rele(osp, rp); 11789 return (e.error); 11790 } 11791 11792 if (needrecov) { 11793 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 11794 NULL, OP_COMMIT, NULL, NULL, NULL) == FALSE) { 11795 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11796 &recov_state, needrecov); 11797 if (!e.error) 11798 (void) xdr_free(xdr_COMPOUND4res_clnt, 11799 (caddr_t)&res); 11800 goto recov_retry; 11801 } 11802 if (e.error) { 11803 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11804 &recov_state, needrecov); 11805 crfree(cred_otw); 11806 if (osp != NULL) 11807 open_stream_rele(osp, rp); 11808 return (e.error); 11809 } 11810 /* fall through for res.status case */ 11811 } 11812 11813 if (res.status) { 11814 e.error = geterrno4(res.status); 11815 if (e.error == EACCES && last_time == FALSE) { 11816 crfree(cred_otw); 11817 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11818 &recov_state, needrecov); 11819 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 11820 goto get_commit_cred; 11821 } 11822 /* 11823 * Can't do a nfs4_purge_stale_fh here because this 11824 * can cause a deadlock. nfs4_commit can 11825 * be called from nfs4_dispose which can be called 11826 * indirectly via pvn_vplist_dirty. nfs4_purge_stale_fh 11827 * can call back to pvn_vplist_dirty. 11828 */ 11829 if (e.error == ESTALE) { 11830 mutex_enter(&rp->r_statelock); 11831 rp->r_flags |= R4STALE; 11832 if (!rp->r_error) 11833 rp->r_error = e.error; 11834 mutex_exit(&rp->r_statelock); 11835 PURGE_ATTRCACHE4(vp); 11836 } else { 11837 mutex_enter(&rp->r_statelock); 11838 if (!rp->r_error) 11839 rp->r_error = e.error; 11840 mutex_exit(&rp->r_statelock); 11841 } 11842 } else { 11843 ASSERT(rp->r_flags & R4HAVEVERF); 11844 resop = &res.array[1]; /* commit res */ 11845 cm_res = &resop->nfs_resop4_u.opcommit; 11846 mutex_enter(&rp->r_statelock); 11847 if (cm_res->writeverf == rp->r_writeverf) { 11848 mutex_exit(&rp->r_statelock); 11849 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 11850 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11851 &recov_state, needrecov); 11852 crfree(cred_otw); 11853 if (osp != NULL) 11854 open_stream_rele(osp, rp); 11855 return (0); 11856 } 11857 nfs4_set_mod(vp); 11858 rp->r_writeverf = cm_res->writeverf; 11859 mutex_exit(&rp->r_statelock); 11860 e.error = NFS_VERF_MISMATCH; 11861 } 11862 11863 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 11864 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, &recov_state, needrecov); 11865 crfree(cred_otw); 11866 if (osp != NULL) 11867 open_stream_rele(osp, rp); 11868 11869 return (e.error); 11870 } 11871 11872 static void 11873 nfs4_set_mod(vnode_t *vp) 11874 { 11875 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11876 11877 /* make sure we're looking at the master vnode, not a shadow */ 11878 pvn_vplist_setdirty(RTOV4(VTOR4(vp)), nfs_setmod_check); 11879 } 11880 11881 /* 11882 * This function is used to gather a page list of the pages which 11883 * can be committed on the server. 11884 * 11885 * The calling thread must have set R4COMMIT. This bit is used to 11886 * serialize access to the commit structure in the rnode. As long 11887 * as the thread has set R4COMMIT, then it can manipulate the commit 11888 * structure without requiring any other locks. 11889 * 11890 * When this function is called from nfs4_dispose() the page passed 11891 * into nfs4_dispose() will be SE_EXCL locked, and so this function 11892 * will skip it. This is not a problem since we initially add the 11893 * page to the r_commit page list. 11894 * 11895 */ 11896 static void 11897 nfs4_get_commit(vnode_t *vp) 11898 { 11899 rnode4_t *rp; 11900 page_t *pp; 11901 kmutex_t *vphm; 11902 11903 rp = VTOR4(vp); 11904 11905 ASSERT(rp->r_flags & R4COMMIT); 11906 11907 /* make sure we're looking at the master vnode, not a shadow */ 11908 11909 if (IS_SHADOW(vp, rp)) 11910 vp = RTOV4(rp); 11911 11912 vphm = page_vnode_mutex(vp); 11913 mutex_enter(vphm); 11914 11915 /* 11916 * If there are no pages associated with this vnode, then 11917 * just return. 11918 */ 11919 if ((pp = vp->v_pages) == NULL) { 11920 mutex_exit(vphm); 11921 return; 11922 } 11923 11924 /* 11925 * Step through all of the pages associated with this vnode 11926 * looking for pages which need to be committed. 11927 */ 11928 do { 11929 /* Skip marker pages. */ 11930 if (pp->p_hash == PVN_VPLIST_HASH_TAG) 11931 continue; 11932 11933 /* 11934 * First short-cut everything (without the page_lock) 11935 * and see if this page does not need to be committed 11936 * or is modified if so then we'll just skip it. 11937 */ 11938 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) 11939 continue; 11940 11941 /* 11942 * Attempt to lock the page. If we can't, then 11943 * someone else is messing with it or we have been 11944 * called from nfs4_dispose and this is the page that 11945 * nfs4_dispose was called with.. anyway just skip it. 11946 */ 11947 if (!page_trylock(pp, SE_EXCL)) 11948 continue; 11949 11950 /* 11951 * Lets check again now that we have the page lock. 11952 */ 11953 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) { 11954 page_unlock(pp); 11955 continue; 11956 } 11957 11958 /* this had better not be a free page */ 11959 ASSERT(PP_ISFREE(pp) == 0); 11960 11961 /* 11962 * The page needs to be committed and we locked it. 11963 * Update the base and length parameters and add it 11964 * to r_pages. 11965 */ 11966 if (rp->r_commit.c_pages == NULL) { 11967 rp->r_commit.c_commbase = (offset3)pp->p_offset; 11968 rp->r_commit.c_commlen = PAGESIZE; 11969 } else if (pp->p_offset < rp->r_commit.c_commbase) { 11970 rp->r_commit.c_commlen = rp->r_commit.c_commbase - 11971 (offset3)pp->p_offset + rp->r_commit.c_commlen; 11972 rp->r_commit.c_commbase = (offset3)pp->p_offset; 11973 } else if ((rp->r_commit.c_commbase + rp->r_commit.c_commlen) 11974 <= pp->p_offset) { 11975 rp->r_commit.c_commlen = (offset3)pp->p_offset - 11976 rp->r_commit.c_commbase + PAGESIZE; 11977 } 11978 page_add(&rp->r_commit.c_pages, pp); 11979 } while ((pp = pp->p_vpnext) != vp->v_pages); 11980 11981 mutex_exit(vphm); 11982 } 11983 11984 /* 11985 * This routine is used to gather together a page list of the pages 11986 * which are to be committed on the server. This routine must not 11987 * be called if the calling thread holds any locked pages. 11988 * 11989 * The calling thread must have set R4COMMIT. This bit is used to 11990 * serialize access to the commit structure in the rnode. As long 11991 * as the thread has set R4COMMIT, then it can manipulate the commit 11992 * structure without requiring any other locks. 11993 */ 11994 static void 11995 nfs4_get_commit_range(vnode_t *vp, u_offset_t soff, size_t len) 11996 { 11997 11998 rnode4_t *rp; 11999 page_t *pp; 12000 u_offset_t end; 12001 u_offset_t off; 12002 ASSERT(len != 0); 12003 rp = VTOR4(vp); 12004 ASSERT(rp->r_flags & R4COMMIT); 12005 12006 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12007 12008 /* make sure we're looking at the master vnode, not a shadow */ 12009 12010 if (IS_SHADOW(vp, rp)) 12011 vp = RTOV4(rp); 12012 12013 /* 12014 * If there are no pages associated with this vnode, then 12015 * just return. 12016 */ 12017 if ((pp = vp->v_pages) == NULL) 12018 return; 12019 /* 12020 * Calculate the ending offset. 12021 */ 12022 end = soff + len; 12023 for (off = soff; off < end; off += PAGESIZE) { 12024 /* 12025 * Lookup each page by vp, offset. 12026 */ 12027 if ((pp = page_lookup_nowait(vp, off, SE_EXCL)) == NULL) 12028 continue; 12029 /* 12030 * If this page does not need to be committed or is 12031 * modified, then just skip it. 12032 */ 12033 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) { 12034 page_unlock(pp); 12035 continue; 12036 } 12037 12038 ASSERT(PP_ISFREE(pp) == 0); 12039 /* 12040 * The page needs to be committed and we locked it. 12041 * Update the base and length parameters and add it 12042 * to r_pages. 12043 */ 12044 if (rp->r_commit.c_pages == NULL) { 12045 rp->r_commit.c_commbase = (offset3)pp->p_offset; 12046 rp->r_commit.c_commlen = PAGESIZE; 12047 } else { 12048 rp->r_commit.c_commlen = (offset3)pp->p_offset - 12049 rp->r_commit.c_commbase + PAGESIZE; 12050 } 12051 page_add(&rp->r_commit.c_pages, pp); 12052 } 12053 } 12054 12055 /* 12056 * Called from nfs4_close(), nfs4_fsync() and nfs4_delmap(). 12057 * Flushes and commits data to the server. 12058 */ 12059 static int 12060 nfs4_putpage_commit(vnode_t *vp, offset_t poff, size_t plen, cred_t *cr) 12061 { 12062 int error; 12063 verifier4 write_verf; 12064 rnode4_t *rp = VTOR4(vp); 12065 12066 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12067 12068 /* 12069 * Flush the data portion of the file and then commit any 12070 * portions which need to be committed. This may need to 12071 * be done twice if the server has changed state since 12072 * data was last written. The data will need to be 12073 * rewritten to the server and then a new commit done. 12074 * 12075 * In fact, this may need to be done several times if the 12076 * server is having problems and crashing while we are 12077 * attempting to do this. 12078 */ 12079 12080 top: 12081 /* 12082 * Do a flush based on the poff and plen arguments. This 12083 * will synchronously write out any modified pages in the 12084 * range specified by (poff, plen). This starts all of the 12085 * i/o operations which will be waited for in the next 12086 * call to nfs4_putpage 12087 */ 12088 12089 mutex_enter(&rp->r_statelock); 12090 write_verf = rp->r_writeverf; 12091 mutex_exit(&rp->r_statelock); 12092 12093 error = nfs4_putpage(vp, poff, plen, B_ASYNC, cr, NULL); 12094 if (error == EAGAIN) 12095 error = 0; 12096 12097 /* 12098 * Do a flush based on the poff and plen arguments. This 12099 * will synchronously write out any modified pages in the 12100 * range specified by (poff, plen) and wait until all of 12101 * the asynchronous i/o's in that range are done as well. 12102 */ 12103 if (!error) 12104 error = nfs4_putpage(vp, poff, plen, 0, cr, NULL); 12105 12106 if (error) 12107 return (error); 12108 12109 mutex_enter(&rp->r_statelock); 12110 if (rp->r_writeverf != write_verf) { 12111 mutex_exit(&rp->r_statelock); 12112 goto top; 12113 } 12114 mutex_exit(&rp->r_statelock); 12115 12116 /* 12117 * Now commit any pages which might need to be committed. 12118 * If the error, NFS_VERF_MISMATCH, is returned, then 12119 * start over with the flush operation. 12120 */ 12121 error = nfs4_commit_vp(vp, poff, plen, cr, NFS4_WRITE_WAIT); 12122 12123 if (error == NFS_VERF_MISMATCH) 12124 goto top; 12125 12126 return (error); 12127 } 12128 12129 /* 12130 * nfs4_commit_vp() will wait for other pending commits and 12131 * will either commit the whole file or a range, plen dictates 12132 * if we commit whole file. a value of zero indicates the whole 12133 * file. Called from nfs4_putpage_commit() or nfs4_sync_putapage() 12134 */ 12135 static int 12136 nfs4_commit_vp(vnode_t *vp, u_offset_t poff, size_t plen, 12137 cred_t *cr, int wait_on_writes) 12138 { 12139 rnode4_t *rp; 12140 page_t *plist; 12141 offset3 offset; 12142 count3 len; 12143 12144 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12145 12146 rp = VTOR4(vp); 12147 12148 /* 12149 * before we gather commitable pages make 12150 * sure there are no outstanding async writes 12151 */ 12152 if (rp->r_count && wait_on_writes == NFS4_WRITE_WAIT) { 12153 mutex_enter(&rp->r_statelock); 12154 while (rp->r_count > 0) { 12155 cv_wait(&rp->r_cv, &rp->r_statelock); 12156 } 12157 mutex_exit(&rp->r_statelock); 12158 } 12159 12160 /* 12161 * Set the `commit inprogress' state bit. We must 12162 * first wait until any current one finishes. 12163 */ 12164 mutex_enter(&rp->r_statelock); 12165 while (rp->r_flags & R4COMMIT) { 12166 rp->r_flags |= R4COMMITWAIT; 12167 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock); 12168 rp->r_flags &= ~R4COMMITWAIT; 12169 } 12170 rp->r_flags |= R4COMMIT; 12171 mutex_exit(&rp->r_statelock); 12172 12173 /* 12174 * Gather all of the pages which need to be 12175 * committed. 12176 */ 12177 if (plen == 0) 12178 nfs4_get_commit(vp); 12179 else 12180 nfs4_get_commit_range(vp, poff, plen); 12181 12182 /* 12183 * Clear the `commit inprogress' bit and disconnect the 12184 * page list which was gathered by nfs4_get_commit. 12185 */ 12186 plist = rp->r_commit.c_pages; 12187 rp->r_commit.c_pages = NULL; 12188 offset = rp->r_commit.c_commbase; 12189 len = rp->r_commit.c_commlen; 12190 mutex_enter(&rp->r_statelock); 12191 rp->r_flags &= ~R4COMMIT; 12192 cv_broadcast(&rp->r_commit.c_cv); 12193 mutex_exit(&rp->r_statelock); 12194 12195 /* 12196 * If any pages need to be committed, commit them and 12197 * then unlock them so that they can be freed some 12198 * time later. 12199 */ 12200 if (plist == NULL) 12201 return (0); 12202 12203 /* 12204 * No error occurred during the flush portion 12205 * of this operation, so now attempt to commit 12206 * the data to stable storage on the server. 12207 * 12208 * This will unlock all of the pages on the list. 12209 */ 12210 return (nfs4_sync_commit(vp, plist, offset, len, cr)); 12211 } 12212 12213 static int 12214 nfs4_sync_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count, 12215 cred_t *cr) 12216 { 12217 int error; 12218 page_t *pp; 12219 12220 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12221 12222 error = nfs4_commit(vp, (offset4)offset, (count3)count, cr); 12223 12224 /* 12225 * If we got an error, then just unlock all of the pages 12226 * on the list. 12227 */ 12228 if (error) { 12229 while (plist != NULL) { 12230 pp = plist; 12231 page_sub(&plist, pp); 12232 page_unlock(pp); 12233 } 12234 return (error); 12235 } 12236 /* 12237 * We've tried as hard as we can to commit the data to stable 12238 * storage on the server. We just unlock the pages and clear 12239 * the commit required state. They will get freed later. 12240 */ 12241 while (plist != NULL) { 12242 pp = plist; 12243 page_sub(&plist, pp); 12244 pp->p_fsdata = C_NOCOMMIT; 12245 page_unlock(pp); 12246 } 12247 12248 return (error); 12249 } 12250 12251 static void 12252 do_nfs4_async_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count, 12253 cred_t *cr) 12254 { 12255 12256 (void) nfs4_sync_commit(vp, plist, offset, count, cr); 12257 } 12258 12259 /*ARGSUSED*/ 12260 static int 12261 nfs4_setsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr, 12262 caller_context_t *ct) 12263 { 12264 int error = 0; 12265 mntinfo4_t *mi; 12266 vattr_t va; 12267 vsecattr_t nfsace4_vsap; 12268 12269 mi = VTOMI4(vp); 12270 if (nfs_zone() != mi->mi_zone) 12271 return (EIO); 12272 if (mi->mi_flags & MI4_ACL) { 12273 /* if we have a delegation, return it */ 12274 if (VTOR4(vp)->r_deleg_type != OPEN_DELEGATE_NONE) 12275 (void) nfs4delegreturn(VTOR4(vp), 12276 NFS4_DR_REOPEN|NFS4_DR_PUSH); 12277 12278 error = nfs4_is_acl_mask_valid(vsecattr->vsa_mask, 12279 NFS4_ACL_SET); 12280 if (error) /* EINVAL */ 12281 return (error); 12282 12283 if (vsecattr->vsa_mask & (VSA_ACL | VSA_DFACL)) { 12284 /* 12285 * These are aclent_t type entries. 12286 */ 12287 error = vs_aent_to_ace4(vsecattr, &nfsace4_vsap, 12288 vp->v_type == VDIR, FALSE); 12289 if (error) 12290 return (error); 12291 } else { 12292 /* 12293 * These are ace_t type entries. 12294 */ 12295 error = vs_acet_to_ace4(vsecattr, &nfsace4_vsap, 12296 FALSE); 12297 if (error) 12298 return (error); 12299 } 12300 bzero(&va, sizeof (va)); 12301 error = nfs4setattr(vp, &va, flag, cr, &nfsace4_vsap); 12302 vs_ace4_destroy(&nfsace4_vsap); 12303 return (error); 12304 } 12305 return (ENOSYS); 12306 } 12307 12308 /* ARGSUSED */ 12309 int 12310 nfs4_getsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr, 12311 caller_context_t *ct) 12312 { 12313 int error; 12314 mntinfo4_t *mi; 12315 nfs4_ga_res_t gar; 12316 rnode4_t *rp = VTOR4(vp); 12317 12318 mi = VTOMI4(vp); 12319 if (nfs_zone() != mi->mi_zone) 12320 return (EIO); 12321 12322 bzero(&gar, sizeof (gar)); 12323 gar.n4g_vsa.vsa_mask = vsecattr->vsa_mask; 12324 12325 /* 12326 * vsecattr->vsa_mask holds the original acl request mask. 12327 * This is needed when determining what to return. 12328 * (See: nfs4_create_getsecattr_return()) 12329 */ 12330 error = nfs4_is_acl_mask_valid(vsecattr->vsa_mask, NFS4_ACL_GET); 12331 if (error) /* EINVAL */ 12332 return (error); 12333 12334 /* 12335 * If this is a referral stub, don't try to go OTW for an ACL 12336 */ 12337 if (RP_ISSTUB_REFERRAL(VTOR4(vp))) 12338 return (fs_fab_acl(vp, vsecattr, flag, cr, ct)); 12339 12340 if (mi->mi_flags & MI4_ACL) { 12341 /* 12342 * Check if the data is cached and the cache is valid. If it 12343 * is we don't go over the wire. 12344 */ 12345 if (rp->r_secattr != NULL && ATTRCACHE4_VALID(vp)) { 12346 mutex_enter(&rp->r_statelock); 12347 if (rp->r_secattr != NULL) { 12348 error = nfs4_create_getsecattr_return( 12349 rp->r_secattr, vsecattr, rp->r_attr.va_uid, 12350 rp->r_attr.va_gid, 12351 vp->v_type == VDIR); 12352 if (!error) { /* error == 0 - Success! */ 12353 mutex_exit(&rp->r_statelock); 12354 return (error); 12355 } 12356 } 12357 mutex_exit(&rp->r_statelock); 12358 } 12359 12360 /* 12361 * The getattr otw call will always get both the acl, in 12362 * the form of a list of nfsace4's, and the number of acl 12363 * entries; independent of the value of gar.n4g_vsa.vsa_mask. 12364 */ 12365 gar.n4g_va.va_mask = AT_ALL; 12366 error = nfs4_getattr_otw(vp, &gar, cr, 1); 12367 if (error) { 12368 vs_ace4_destroy(&gar.n4g_vsa); 12369 if (error == ENOTSUP || error == EOPNOTSUPP) 12370 error = fs_fab_acl(vp, vsecattr, flag, cr, ct); 12371 return (error); 12372 } 12373 12374 if (!(gar.n4g_resbmap & FATTR4_ACL_MASK)) { 12375 /* 12376 * No error was returned, but according to the response 12377 * bitmap, neither was an acl. 12378 */ 12379 vs_ace4_destroy(&gar.n4g_vsa); 12380 error = fs_fab_acl(vp, vsecattr, flag, cr, ct); 12381 return (error); 12382 } 12383 12384 /* 12385 * Update the cache with the ACL. 12386 */ 12387 nfs4_acl_fill_cache(rp, &gar.n4g_vsa); 12388 12389 error = nfs4_create_getsecattr_return(&gar.n4g_vsa, 12390 vsecattr, gar.n4g_va.va_uid, gar.n4g_va.va_gid, 12391 vp->v_type == VDIR); 12392 vs_ace4_destroy(&gar.n4g_vsa); 12393 if ((error) && (vsecattr->vsa_mask & 12394 (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) && 12395 (error != EACCES)) { 12396 error = fs_fab_acl(vp, vsecattr, flag, cr, ct); 12397 } 12398 return (error); 12399 } 12400 error = fs_fab_acl(vp, vsecattr, flag, cr, ct); 12401 return (error); 12402 } 12403 12404 /* 12405 * The function returns: 12406 * - 0 (zero) if the passed in "acl_mask" is a valid request. 12407 * - EINVAL if the passed in "acl_mask" is an invalid request. 12408 * 12409 * In the case of getting an acl (op == NFS4_ACL_GET) the mask is invalid if: 12410 * - We have a mixture of ACE and ACL requests (e.g. VSA_ACL | VSA_ACE) 12411 * 12412 * In the case of setting an acl (op == NFS4_ACL_SET) the mask is invalid if: 12413 * - We have a mixture of ACE and ACL requests (e.g. VSA_ACL | VSA_ACE) 12414 * - We have a count field set without the corresponding acl field set. (e.g. - 12415 * VSA_ACECNT is set, but VSA_ACE is not) 12416 */ 12417 static int 12418 nfs4_is_acl_mask_valid(uint_t acl_mask, nfs4_acl_op_t op) 12419 { 12420 /* Shortcut the masks that are always valid. */ 12421 if (acl_mask == (VSA_ACE | VSA_ACECNT)) 12422 return (0); 12423 if (acl_mask == (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) 12424 return (0); 12425 12426 if (acl_mask & (VSA_ACE | VSA_ACECNT)) { 12427 /* 12428 * We can't have any VSA_ACL type stuff in the mask now. 12429 */ 12430 if (acl_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | 12431 VSA_DFACLCNT)) 12432 return (EINVAL); 12433 12434 if (op == NFS4_ACL_SET) { 12435 if ((acl_mask & VSA_ACECNT) && !(acl_mask & VSA_ACE)) 12436 return (EINVAL); 12437 } 12438 } 12439 12440 if (acl_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) { 12441 /* 12442 * We can't have any VSA_ACE type stuff in the mask now. 12443 */ 12444 if (acl_mask & (VSA_ACE | VSA_ACECNT)) 12445 return (EINVAL); 12446 12447 if (op == NFS4_ACL_SET) { 12448 if ((acl_mask & VSA_ACLCNT) && !(acl_mask & VSA_ACL)) 12449 return (EINVAL); 12450 12451 if ((acl_mask & VSA_DFACLCNT) && 12452 !(acl_mask & VSA_DFACL)) 12453 return (EINVAL); 12454 } 12455 } 12456 return (0); 12457 } 12458 12459 /* 12460 * The theory behind creating the correct getsecattr return is simply this: 12461 * "Don't return anything that the caller is not expecting to have to free." 12462 */ 12463 static int 12464 nfs4_create_getsecattr_return(vsecattr_t *filled_vsap, vsecattr_t *vsap, 12465 uid_t uid, gid_t gid, int isdir) 12466 { 12467 int error = 0; 12468 /* Save the mask since the translators modify it. */ 12469 uint_t orig_mask = vsap->vsa_mask; 12470 12471 if (orig_mask & (VSA_ACE | VSA_ACECNT)) { 12472 error = vs_ace4_to_acet(filled_vsap, vsap, uid, gid, FALSE); 12473 12474 if (error) 12475 return (error); 12476 12477 /* 12478 * If the caller only asked for the ace count (VSA_ACECNT) 12479 * don't give them the full acl (VSA_ACE), free it. 12480 */ 12481 if (!orig_mask & VSA_ACE) { 12482 if (vsap->vsa_aclentp != NULL) { 12483 kmem_free(vsap->vsa_aclentp, 12484 vsap->vsa_aclcnt * sizeof (ace_t)); 12485 vsap->vsa_aclentp = NULL; 12486 } 12487 } 12488 vsap->vsa_mask = orig_mask; 12489 12490 } else if (orig_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | 12491 VSA_DFACLCNT)) { 12492 error = vs_ace4_to_aent(filled_vsap, vsap, uid, gid, 12493 isdir, FALSE); 12494 12495 if (error) 12496 return (error); 12497 12498 /* 12499 * If the caller only asked for the acl count (VSA_ACLCNT) 12500 * and/or the default acl count (VSA_DFACLCNT) don't give them 12501 * the acl (VSA_ACL) or default acl (VSA_DFACL), free it. 12502 */ 12503 if (!orig_mask & VSA_ACL) { 12504 if (vsap->vsa_aclentp != NULL) { 12505 kmem_free(vsap->vsa_aclentp, 12506 vsap->vsa_aclcnt * sizeof (aclent_t)); 12507 vsap->vsa_aclentp = NULL; 12508 } 12509 } 12510 12511 if (!orig_mask & VSA_DFACL) { 12512 if (vsap->vsa_dfaclentp != NULL) { 12513 kmem_free(vsap->vsa_dfaclentp, 12514 vsap->vsa_dfaclcnt * sizeof (aclent_t)); 12515 vsap->vsa_dfaclentp = NULL; 12516 } 12517 } 12518 vsap->vsa_mask = orig_mask; 12519 } 12520 return (0); 12521 } 12522 12523 /* ARGSUSED */ 12524 int 12525 nfs4_shrlock(vnode_t *vp, int cmd, struct shrlock *shr, int flag, cred_t *cr, 12526 caller_context_t *ct) 12527 { 12528 int error; 12529 12530 if (nfs_zone() != VTOMI4(vp)->mi_zone) 12531 return (EIO); 12532 /* 12533 * check for valid cmd parameter 12534 */ 12535 if (cmd != F_SHARE && cmd != F_UNSHARE && cmd != F_HASREMOTELOCKS) 12536 return (EINVAL); 12537 12538 /* 12539 * Check access permissions 12540 */ 12541 if ((cmd & F_SHARE) && 12542 (((shr->s_access & F_RDACC) && (flag & FREAD) == 0) || 12543 (shr->s_access == F_WRACC && (flag & FWRITE) == 0))) 12544 return (EBADF); 12545 12546 /* 12547 * If the filesystem is mounted using local locking, pass the 12548 * request off to the local share code. 12549 */ 12550 if (VTOMI4(vp)->mi_flags & MI4_LLOCK) 12551 return (fs_shrlock(vp, cmd, shr, flag, cr, ct)); 12552 12553 switch (cmd) { 12554 case F_SHARE: 12555 case F_UNSHARE: 12556 /* 12557 * This will be properly implemented later, 12558 * see RFE: 4823948 . 12559 */ 12560 error = EAGAIN; 12561 break; 12562 12563 case F_HASREMOTELOCKS: 12564 /* 12565 * NFS client can't store remote locks itself 12566 */ 12567 shr->s_access = 0; 12568 error = 0; 12569 break; 12570 12571 default: 12572 error = EINVAL; 12573 break; 12574 } 12575 12576 return (error); 12577 } 12578 12579 /* 12580 * Common code called by directory ops to update the attrcache 12581 */ 12582 static int 12583 nfs4_update_attrcache(nfsstat4 status, nfs4_ga_res_t *garp, 12584 hrtime_t t, vnode_t *vp, cred_t *cr) 12585 { 12586 int error = 0; 12587 12588 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12589 12590 if (status != NFS4_OK) { 12591 /* getattr not done or failed */ 12592 PURGE_ATTRCACHE4(vp); 12593 return (error); 12594 } 12595 12596 if (garp) { 12597 nfs4_attr_cache(vp, garp, t, cr, FALSE, NULL); 12598 } else { 12599 PURGE_ATTRCACHE4(vp); 12600 } 12601 return (error); 12602 } 12603 12604 /* 12605 * Update directory caches for directory modification ops (link, rename, etc.) 12606 * When dinfo is NULL, manage dircaches in the old way. 12607 */ 12608 static void 12609 nfs4_update_dircaches(change_info4 *cinfo, vnode_t *dvp, vnode_t *vp, char *nm, 12610 dirattr_info_t *dinfo) 12611 { 12612 rnode4_t *drp = VTOR4(dvp); 12613 12614 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 12615 12616 /* Purge rddir cache for dir since it changed */ 12617 if (drp->r_dir != NULL) 12618 nfs4_purge_rddir_cache(dvp); 12619 12620 /* 12621 * If caller provided dinfo, then use it to manage dir caches. 12622 */ 12623 if (dinfo != NULL) { 12624 if (vp != NULL) { 12625 mutex_enter(&VTOR4(vp)->r_statev4_lock); 12626 if (!VTOR4(vp)->created_v4) { 12627 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12628 dnlc_update(dvp, nm, vp); 12629 } else { 12630 /* 12631 * XXX don't update if the created_v4 flag is 12632 * set 12633 */ 12634 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12635 NFS4_DEBUG(nfs4_client_state_debug, 12636 (CE_NOTE, "nfs4_update_dircaches: " 12637 "don't update dnlc: created_v4 flag")); 12638 } 12639 } 12640 12641 nfs4_attr_cache(dvp, dinfo->di_garp, dinfo->di_time_call, 12642 dinfo->di_cred, FALSE, cinfo); 12643 12644 return; 12645 } 12646 12647 /* 12648 * Caller didn't provide dinfo, then check change_info4 to update DNLC. 12649 * Since caller modified dir but didn't receive post-dirmod-op dir 12650 * attrs, the dir's attrs must be purged. 12651 * 12652 * XXX this check and dnlc update/purge should really be atomic, 12653 * XXX but can't use rnode statelock because it'll deadlock in 12654 * XXX dnlc_purge_vp, however, the risk is minimal even if a race 12655 * XXX does occur. 12656 * 12657 * XXX We also may want to check that atomic is true in the 12658 * XXX change_info struct. If it is not, the change_info may 12659 * XXX reflect changes by more than one clients which means that 12660 * XXX our cache may not be valid. 12661 */ 12662 PURGE_ATTRCACHE4(dvp); 12663 if (drp->r_change == cinfo->before) { 12664 /* no changes took place in the directory prior to our link */ 12665 if (vp != NULL) { 12666 mutex_enter(&VTOR4(vp)->r_statev4_lock); 12667 if (!VTOR4(vp)->created_v4) { 12668 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12669 dnlc_update(dvp, nm, vp); 12670 } else { 12671 /* 12672 * XXX dont' update if the created_v4 flag 12673 * is set 12674 */ 12675 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12676 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, 12677 "nfs4_update_dircaches: don't" 12678 " update dnlc: created_v4 flag")); 12679 } 12680 } 12681 } else { 12682 /* Another client modified directory - purge its dnlc cache */ 12683 dnlc_purge_vp(dvp); 12684 } 12685 } 12686 12687 /* 12688 * The OPEN_CONFIRM operation confirms the sequence number used in OPENing a 12689 * file. 12690 * 12691 * The 'reopening_file' boolean should be set to TRUE if we are reopening this 12692 * file (ie: client recovery) and otherwise set to FALSE. 12693 * 12694 * 'nfs4_start/end_op' should have been called by the proper (ie: not recovery 12695 * initiated) calling functions. 12696 * 12697 * 'resend' is set to TRUE if this is a OPEN_CONFIRM issued as a result 12698 * of resending a 'lost' open request. 12699 * 12700 * 'num_bseqid_retryp' makes sure we don't loop forever on a broken 12701 * server that hands out BAD_SEQID on open confirm. 12702 * 12703 * Errors are returned via the nfs4_error_t parameter. 12704 */ 12705 void 12706 nfs4open_confirm(vnode_t *vp, seqid4 *seqid, stateid4 *stateid, cred_t *cr, 12707 bool_t reopening_file, bool_t *retry_open, nfs4_open_owner_t *oop, 12708 bool_t resend, nfs4_error_t *ep, int *num_bseqid_retryp) 12709 { 12710 COMPOUND4args_clnt args; 12711 COMPOUND4res_clnt res; 12712 nfs_argop4 argop[2]; 12713 nfs_resop4 *resop; 12714 int doqueue = 1; 12715 mntinfo4_t *mi; 12716 OPEN_CONFIRM4args *open_confirm_args; 12717 int needrecov; 12718 12719 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12720 #if DEBUG 12721 mutex_enter(&oop->oo_lock); 12722 ASSERT(oop->oo_seqid_inuse); 12723 mutex_exit(&oop->oo_lock); 12724 #endif 12725 12726 recov_retry_confirm: 12727 nfs4_error_zinit(ep); 12728 *retry_open = FALSE; 12729 12730 if (resend) 12731 args.ctag = TAG_OPEN_CONFIRM_LOST; 12732 else 12733 args.ctag = TAG_OPEN_CONFIRM; 12734 12735 args.array_len = 2; 12736 args.array = argop; 12737 12738 /* putfh target fh */ 12739 argop[0].argop = OP_CPUTFH; 12740 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh; 12741 12742 argop[1].argop = OP_OPEN_CONFIRM; 12743 open_confirm_args = &argop[1].nfs_argop4_u.opopen_confirm; 12744 12745 (*seqid) += 1; 12746 open_confirm_args->seqid = *seqid; 12747 open_confirm_args->open_stateid = *stateid; 12748 12749 mi = VTOMI4(vp); 12750 12751 rfs4call(mi, &args, &res, cr, &doqueue, 0, ep); 12752 12753 if (!ep->error && nfs4_need_to_bump_seqid(&res)) { 12754 nfs4_set_open_seqid((*seqid), oop, args.ctag); 12755 } 12756 12757 needrecov = nfs4_needs_recovery(ep, FALSE, mi->mi_vfsp); 12758 if (!needrecov && ep->error) 12759 return; 12760 12761 if (needrecov) { 12762 bool_t abort = FALSE; 12763 12764 if (reopening_file == FALSE) { 12765 nfs4_bseqid_entry_t *bsep = NULL; 12766 12767 if (!ep->error && res.status == NFS4ERR_BAD_SEQID) 12768 bsep = nfs4_create_bseqid_entry(oop, NULL, 12769 vp, 0, args.ctag, 12770 open_confirm_args->seqid); 12771 12772 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, 12773 NULL, NULL, OP_OPEN_CONFIRM, bsep, NULL, NULL); 12774 if (bsep) { 12775 kmem_free(bsep, sizeof (*bsep)); 12776 if (num_bseqid_retryp && 12777 --(*num_bseqid_retryp) == 0) 12778 abort = TRUE; 12779 } 12780 } 12781 if ((ep->error == ETIMEDOUT || 12782 res.status == NFS4ERR_RESOURCE) && 12783 abort == FALSE && resend == FALSE) { 12784 if (!ep->error) 12785 (void) xdr_free(xdr_COMPOUND4res_clnt, 12786 (caddr_t)&res); 12787 12788 delay(SEC_TO_TICK(confirm_retry_sec)); 12789 goto recov_retry_confirm; 12790 } 12791 /* State may have changed so retry the entire OPEN op */ 12792 if (abort == FALSE) 12793 *retry_open = TRUE; 12794 else 12795 *retry_open = FALSE; 12796 if (!ep->error) 12797 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 12798 return; 12799 } 12800 12801 if (res.status) { 12802 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 12803 return; 12804 } 12805 12806 resop = &res.array[1]; /* open confirm res */ 12807 bcopy(&resop->nfs_resop4_u.opopen_confirm.open_stateid, 12808 stateid, sizeof (*stateid)); 12809 12810 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 12811 } 12812 12813 /* 12814 * Return the credentials associated with a client state object. The 12815 * caller is responsible for freeing the credentials. 12816 */ 12817 12818 static cred_t * 12819 state_to_cred(nfs4_open_stream_t *osp) 12820 { 12821 cred_t *cr; 12822 12823 /* 12824 * It's ok to not lock the open stream and open owner to get 12825 * the oo_cred since this is only written once (upon creation) 12826 * and will not change. 12827 */ 12828 cr = osp->os_open_owner->oo_cred; 12829 crhold(cr); 12830 12831 return (cr); 12832 } 12833 12834 /* 12835 * nfs4_find_sysid 12836 * 12837 * Find the sysid for the knetconfig associated with the given mi. 12838 */ 12839 static struct lm_sysid * 12840 nfs4_find_sysid(mntinfo4_t *mi) 12841 { 12842 ASSERT(nfs_zone() == mi->mi_zone); 12843 12844 /* 12845 * Switch from RDMA knconf to original mount knconf 12846 */ 12847 return (lm_get_sysid(ORIG_KNCONF(mi), &mi->mi_curr_serv->sv_addr, 12848 mi->mi_curr_serv->sv_hostname, NULL)); 12849 } 12850 12851 #ifdef DEBUG 12852 /* 12853 * Return a string version of the call type for easy reading. 12854 */ 12855 static char * 12856 nfs4frlock_get_call_type(nfs4_lock_call_type_t ctype) 12857 { 12858 switch (ctype) { 12859 case NFS4_LCK_CTYPE_NORM: 12860 return ("NORMAL"); 12861 case NFS4_LCK_CTYPE_RECLAIM: 12862 return ("RECLAIM"); 12863 case NFS4_LCK_CTYPE_RESEND: 12864 return ("RESEND"); 12865 case NFS4_LCK_CTYPE_REINSTATE: 12866 return ("REINSTATE"); 12867 default: 12868 cmn_err(CE_PANIC, "nfs4frlock_get_call_type: got illegal " 12869 "type %d", ctype); 12870 return (""); 12871 } 12872 } 12873 #endif 12874 12875 /* 12876 * Map the frlock cmd and lock type to the NFSv4 over-the-wire lock type 12877 * Unlock requests don't have an over-the-wire locktype, so we just return 12878 * something non-threatening. 12879 */ 12880 12881 static nfs_lock_type4 12882 flk_to_locktype(int cmd, int l_type) 12883 { 12884 ASSERT(l_type == F_RDLCK || l_type == F_WRLCK || l_type == F_UNLCK); 12885 12886 switch (l_type) { 12887 case F_UNLCK: 12888 return (READ_LT); 12889 case F_RDLCK: 12890 if (cmd == F_SETLK) 12891 return (READ_LT); 12892 else 12893 return (READW_LT); 12894 case F_WRLCK: 12895 if (cmd == F_SETLK) 12896 return (WRITE_LT); 12897 else 12898 return (WRITEW_LT); 12899 } 12900 panic("flk_to_locktype"); 12901 /*NOTREACHED*/ 12902 } 12903 12904 /* 12905 * Do some preliminary checks for nfs4frlock. 12906 */ 12907 static int 12908 nfs4frlock_validate_args(int cmd, flock64_t *flk, int flag, vnode_t *vp, 12909 u_offset_t offset) 12910 { 12911 int error = 0; 12912 12913 /* 12914 * If we are setting a lock, check that the file is opened 12915 * with the correct mode. 12916 */ 12917 if (cmd == F_SETLK || cmd == F_SETLKW) { 12918 if ((flk->l_type == F_RDLCK && (flag & FREAD) == 0) || 12919 (flk->l_type == F_WRLCK && (flag & FWRITE) == 0)) { 12920 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 12921 "nfs4frlock_validate_args: file was opened with " 12922 "incorrect mode")); 12923 return (EBADF); 12924 } 12925 } 12926 12927 /* Convert the offset. It may need to be restored before returning. */ 12928 if (error = convoff(vp, flk, 0, offset)) { 12929 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 12930 "nfs4frlock_validate_args: convoff => error= %d\n", 12931 error)); 12932 return (error); 12933 } 12934 12935 return (error); 12936 } 12937 12938 /* 12939 * Set the flock64's lm_sysid for nfs4frlock. 12940 */ 12941 static int 12942 nfs4frlock_get_sysid(struct lm_sysid **lspp, vnode_t *vp, flock64_t *flk) 12943 { 12944 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12945 12946 /* Find the lm_sysid */ 12947 *lspp = nfs4_find_sysid(VTOMI4(vp)); 12948 12949 if (*lspp == NULL) { 12950 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 12951 "nfs4frlock_get_sysid: no sysid, return ENOLCK")); 12952 return (ENOLCK); 12953 } 12954 12955 flk->l_sysid = lm_sysidt(*lspp); 12956 12957 return (0); 12958 } 12959 12960 /* 12961 * Do the remaining preliminary setup for nfs4frlock. 12962 */ 12963 static void 12964 nfs4frlock_pre_setup(clock_t *tick_delayp, nfs4_recov_state_t *recov_statep, 12965 flock64_t *flk, short *whencep, vnode_t *vp, cred_t *search_cr, 12966 cred_t **cred_otw) 12967 { 12968 /* 12969 * set tick_delay to the base delay time. 12970 * (NFS4_BASE_WAIT_TIME is in secs) 12971 */ 12972 12973 *tick_delayp = drv_usectohz(NFS4_BASE_WAIT_TIME * 1000 * 1000); 12974 12975 /* 12976 * If lock is relative to EOF, we need the newest length of the 12977 * file. Therefore invalidate the ATTR_CACHE. 12978 */ 12979 12980 *whencep = flk->l_whence; 12981 12982 if (*whencep == 2) /* SEEK_END */ 12983 PURGE_ATTRCACHE4(vp); 12984 12985 recov_statep->rs_flags = 0; 12986 recov_statep->rs_num_retry_despite_err = 0; 12987 *cred_otw = nfs4_get_otw_cred(search_cr, VTOMI4(vp), NULL); 12988 } 12989 12990 /* 12991 * Initialize and allocate the data structures necessary for 12992 * the nfs4frlock call. 12993 * Allocates argsp's op array, frees up the saved_rqstpp if there is one. 12994 */ 12995 static void 12996 nfs4frlock_call_init(COMPOUND4args_clnt *argsp, COMPOUND4args_clnt **argspp, 12997 nfs_argop4 **argopp, nfs4_op_hint_t *op_hintp, flock64_t *flk, int cmd, 12998 bool_t *retry, bool_t *did_start_fop, COMPOUND4res_clnt **respp, 12999 bool_t *skip_get_err, nfs4_lost_rqst_t *lost_rqstp) 13000 { 13001 int argoplist_size; 13002 int num_ops = 2; 13003 13004 *retry = FALSE; 13005 *did_start_fop = FALSE; 13006 *skip_get_err = FALSE; 13007 lost_rqstp->lr_op = 0; 13008 argoplist_size = num_ops * sizeof (nfs_argop4); 13009 /* fill array with zero */ 13010 *argopp = kmem_zalloc(argoplist_size, KM_SLEEP); 13011 13012 *argspp = argsp; 13013 *respp = NULL; 13014 13015 argsp->array_len = num_ops; 13016 argsp->array = *argopp; 13017 13018 /* initialize in case of error; will get real value down below */ 13019 argsp->ctag = TAG_NONE; 13020 13021 if ((cmd == F_SETLK || cmd == F_SETLKW) && flk->l_type == F_UNLCK) 13022 *op_hintp = OH_LOCKU; 13023 else 13024 *op_hintp = OH_OTHER; 13025 } 13026 13027 /* 13028 * Call the nfs4_start_fop() for nfs4frlock, if necessary. Assign 13029 * the proper nfs4_server_t for this instance of nfs4frlock. 13030 * Returns 0 (success) or an errno value. 13031 */ 13032 static int 13033 nfs4frlock_start_call(nfs4_lock_call_type_t ctype, vnode_t *vp, 13034 nfs4_op_hint_t op_hint, nfs4_recov_state_t *recov_statep, 13035 bool_t *did_start_fop, bool_t *startrecovp) 13036 { 13037 int error = 0; 13038 rnode4_t *rp; 13039 13040 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13041 13042 if (ctype == NFS4_LCK_CTYPE_NORM) { 13043 error = nfs4_start_fop(VTOMI4(vp), vp, NULL, op_hint, 13044 recov_statep, startrecovp); 13045 if (error) 13046 return (error); 13047 *did_start_fop = TRUE; 13048 } else { 13049 *did_start_fop = FALSE; 13050 *startrecovp = FALSE; 13051 } 13052 13053 if (!error) { 13054 rp = VTOR4(vp); 13055 13056 /* If the file failed recovery, just quit. */ 13057 mutex_enter(&rp->r_statelock); 13058 if (rp->r_flags & R4RECOVERR) { 13059 error = EIO; 13060 } 13061 mutex_exit(&rp->r_statelock); 13062 } 13063 13064 return (error); 13065 } 13066 13067 /* 13068 * Setup the LOCK4/LOCKU4 arguments for resending a lost lock request. A 13069 * resend nfs4frlock call is initiated by the recovery framework. 13070 * Acquires the lop and oop seqid synchronization. 13071 */ 13072 static void 13073 nfs4frlock_setup_resend_lock_args(nfs4_lost_rqst_t *resend_rqstp, 13074 COMPOUND4args_clnt *argsp, nfs_argop4 *argop, nfs4_lock_owner_t **lopp, 13075 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp, 13076 LOCK4args **lock_argsp, LOCKU4args **locku_argsp) 13077 { 13078 mntinfo4_t *mi = VTOMI4(resend_rqstp->lr_vp); 13079 int error; 13080 13081 NFS4_DEBUG((nfs4_lost_rqst_debug || nfs4_client_lock_debug), 13082 (CE_NOTE, 13083 "nfs4frlock_setup_resend_lock_args: have lost lock to resend")); 13084 ASSERT(resend_rqstp != NULL); 13085 ASSERT(resend_rqstp->lr_op == OP_LOCK || 13086 resend_rqstp->lr_op == OP_LOCKU); 13087 13088 *oopp = resend_rqstp->lr_oop; 13089 if (resend_rqstp->lr_oop) { 13090 open_owner_hold(resend_rqstp->lr_oop); 13091 error = nfs4_start_open_seqid_sync(resend_rqstp->lr_oop, mi); 13092 ASSERT(error == 0); /* recov thread always succeeds */ 13093 } 13094 13095 /* Must resend this lost lock/locku request. */ 13096 ASSERT(resend_rqstp->lr_lop != NULL); 13097 *lopp = resend_rqstp->lr_lop; 13098 lock_owner_hold(resend_rqstp->lr_lop); 13099 error = nfs4_start_lock_seqid_sync(resend_rqstp->lr_lop, mi); 13100 ASSERT(error == 0); /* recov thread always succeeds */ 13101 13102 *ospp = resend_rqstp->lr_osp; 13103 if (*ospp) 13104 open_stream_hold(resend_rqstp->lr_osp); 13105 13106 if (resend_rqstp->lr_op == OP_LOCK) { 13107 LOCK4args *lock_args; 13108 13109 argop->argop = OP_LOCK; 13110 *lock_argsp = lock_args = &argop->nfs_argop4_u.oplock; 13111 lock_args->locktype = resend_rqstp->lr_locktype; 13112 lock_args->reclaim = 13113 (resend_rqstp->lr_ctype == NFS4_LCK_CTYPE_RECLAIM); 13114 lock_args->offset = resend_rqstp->lr_flk->l_start; 13115 lock_args->length = resend_rqstp->lr_flk->l_len; 13116 if (lock_args->length == 0) 13117 lock_args->length = ~lock_args->length; 13118 nfs4_setup_lock_args(*lopp, *oopp, *ospp, 13119 mi2clientid(mi), &lock_args->locker); 13120 13121 switch (resend_rqstp->lr_ctype) { 13122 case NFS4_LCK_CTYPE_RESEND: 13123 argsp->ctag = TAG_LOCK_RESEND; 13124 break; 13125 case NFS4_LCK_CTYPE_REINSTATE: 13126 argsp->ctag = TAG_LOCK_REINSTATE; 13127 break; 13128 case NFS4_LCK_CTYPE_RECLAIM: 13129 argsp->ctag = TAG_LOCK_RECLAIM; 13130 break; 13131 default: 13132 argsp->ctag = TAG_LOCK_UNKNOWN; 13133 break; 13134 } 13135 } else { 13136 LOCKU4args *locku_args; 13137 nfs4_lock_owner_t *lop = resend_rqstp->lr_lop; 13138 13139 argop->argop = OP_LOCKU; 13140 *locku_argsp = locku_args = &argop->nfs_argop4_u.oplocku; 13141 locku_args->locktype = READ_LT; 13142 locku_args->seqid = lop->lock_seqid + 1; 13143 mutex_enter(&lop->lo_lock); 13144 locku_args->lock_stateid = lop->lock_stateid; 13145 mutex_exit(&lop->lo_lock); 13146 locku_args->offset = resend_rqstp->lr_flk->l_start; 13147 locku_args->length = resend_rqstp->lr_flk->l_len; 13148 if (locku_args->length == 0) 13149 locku_args->length = ~locku_args->length; 13150 13151 switch (resend_rqstp->lr_ctype) { 13152 case NFS4_LCK_CTYPE_RESEND: 13153 argsp->ctag = TAG_LOCKU_RESEND; 13154 break; 13155 case NFS4_LCK_CTYPE_REINSTATE: 13156 argsp->ctag = TAG_LOCKU_REINSTATE; 13157 break; 13158 default: 13159 argsp->ctag = TAG_LOCK_UNKNOWN; 13160 break; 13161 } 13162 } 13163 } 13164 13165 /* 13166 * Setup the LOCKT4 arguments. 13167 */ 13168 static void 13169 nfs4frlock_setup_lockt_args(nfs4_lock_call_type_t ctype, nfs_argop4 *argop, 13170 LOCKT4args **lockt_argsp, COMPOUND4args_clnt *argsp, flock64_t *flk, 13171 rnode4_t *rp) 13172 { 13173 LOCKT4args *lockt_args; 13174 13175 ASSERT(nfs_zone() == VTOMI4(RTOV4(rp))->mi_zone); 13176 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 13177 argop->argop = OP_LOCKT; 13178 argsp->ctag = TAG_LOCKT; 13179 lockt_args = &argop->nfs_argop4_u.oplockt; 13180 13181 /* 13182 * The locktype will be READ_LT unless it's 13183 * a write lock. We do this because the Solaris 13184 * system call allows the combination of 13185 * F_UNLCK and F_GETLK* and so in that case the 13186 * unlock is mapped to a read. 13187 */ 13188 if (flk->l_type == F_WRLCK) 13189 lockt_args->locktype = WRITE_LT; 13190 else 13191 lockt_args->locktype = READ_LT; 13192 13193 lockt_args->owner.clientid = mi2clientid(VTOMI4(RTOV4(rp))); 13194 /* set the lock owner4 args */ 13195 nfs4_setlockowner_args(&lockt_args->owner, rp, 13196 ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pidp->pid_id : 13197 flk->l_pid); 13198 lockt_args->offset = flk->l_start; 13199 lockt_args->length = flk->l_len; 13200 if (flk->l_len == 0) 13201 lockt_args->length = ~lockt_args->length; 13202 13203 *lockt_argsp = lockt_args; 13204 } 13205 13206 /* 13207 * If the client is holding a delegation, and the open stream to be used 13208 * with this lock request is a delegation open stream, then re-open the stream. 13209 * Sets the nfs4_error_t to all zeros unless the open stream has already 13210 * failed a reopen or we couldn't find the open stream. NFS4ERR_DELAY 13211 * means the caller should retry (like a recovery retry). 13212 */ 13213 static void 13214 nfs4frlock_check_deleg(vnode_t *vp, nfs4_error_t *ep, cred_t *cr, int lt) 13215 { 13216 open_delegation_type4 dt; 13217 bool_t reopen_needed, force; 13218 nfs4_open_stream_t *osp; 13219 open_claim_type4 oclaim; 13220 rnode4_t *rp = VTOR4(vp); 13221 mntinfo4_t *mi = VTOMI4(vp); 13222 13223 ASSERT(nfs_zone() == mi->mi_zone); 13224 13225 nfs4_error_zinit(ep); 13226 13227 mutex_enter(&rp->r_statev4_lock); 13228 dt = rp->r_deleg_type; 13229 mutex_exit(&rp->r_statev4_lock); 13230 13231 if (dt != OPEN_DELEGATE_NONE) { 13232 nfs4_open_owner_t *oop; 13233 13234 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 13235 if (!oop) { 13236 ep->stat = NFS4ERR_IO; 13237 return; 13238 } 13239 /* returns with 'os_sync_lock' held */ 13240 osp = find_open_stream(oop, rp); 13241 if (!osp) { 13242 open_owner_rele(oop); 13243 ep->stat = NFS4ERR_IO; 13244 return; 13245 } 13246 13247 if (osp->os_failed_reopen) { 13248 NFS4_DEBUG((nfs4_open_stream_debug || 13249 nfs4_client_lock_debug), (CE_NOTE, 13250 "nfs4frlock_check_deleg: os_failed_reopen set " 13251 "for osp %p, cr %p, rp %s", (void *)osp, 13252 (void *)cr, rnode4info(rp))); 13253 mutex_exit(&osp->os_sync_lock); 13254 open_stream_rele(osp, rp); 13255 open_owner_rele(oop); 13256 ep->stat = NFS4ERR_IO; 13257 return; 13258 } 13259 13260 /* 13261 * Determine whether a reopen is needed. If this 13262 * is a delegation open stream, then send the open 13263 * to the server to give visibility to the open owner. 13264 * Even if it isn't a delegation open stream, we need 13265 * to check if the previous open CLAIM_DELEGATE_CUR 13266 * was sufficient. 13267 */ 13268 13269 reopen_needed = osp->os_delegation || 13270 ((lt == F_RDLCK && 13271 !(osp->os_dc_openacc & OPEN4_SHARE_ACCESS_READ)) || 13272 (lt == F_WRLCK && 13273 !(osp->os_dc_openacc & OPEN4_SHARE_ACCESS_WRITE))); 13274 13275 mutex_exit(&osp->os_sync_lock); 13276 open_owner_rele(oop); 13277 13278 if (reopen_needed) { 13279 /* 13280 * Always use CLAIM_PREVIOUS after server reboot. 13281 * The server will reject CLAIM_DELEGATE_CUR if 13282 * it is used during the grace period. 13283 */ 13284 mutex_enter(&mi->mi_lock); 13285 if (mi->mi_recovflags & MI4R_SRV_REBOOT) { 13286 oclaim = CLAIM_PREVIOUS; 13287 force = TRUE; 13288 } else { 13289 oclaim = CLAIM_DELEGATE_CUR; 13290 force = FALSE; 13291 } 13292 mutex_exit(&mi->mi_lock); 13293 13294 nfs4_reopen(vp, osp, ep, oclaim, force, FALSE); 13295 if (ep->error == EAGAIN) { 13296 nfs4_error_zinit(ep); 13297 ep->stat = NFS4ERR_DELAY; 13298 } 13299 } 13300 open_stream_rele(osp, rp); 13301 osp = NULL; 13302 } 13303 } 13304 13305 /* 13306 * Setup the LOCKU4 arguments. 13307 * Returns errors via the nfs4_error_t. 13308 * NFS4_OK no problems. *go_otwp is TRUE if call should go 13309 * over-the-wire. The caller must release the 13310 * reference on *lopp. 13311 * NFS4ERR_DELAY caller should retry (like recovery retry) 13312 * (other) unrecoverable error. 13313 */ 13314 static void 13315 nfs4frlock_setup_locku_args(nfs4_lock_call_type_t ctype, nfs_argop4 *argop, 13316 LOCKU4args **locku_argsp, flock64_t *flk, 13317 nfs4_lock_owner_t **lopp, nfs4_error_t *ep, COMPOUND4args_clnt *argsp, 13318 vnode_t *vp, int flag, u_offset_t offset, cred_t *cr, 13319 bool_t *skip_get_err, bool_t *go_otwp) 13320 { 13321 nfs4_lock_owner_t *lop = NULL; 13322 LOCKU4args *locku_args; 13323 pid_t pid; 13324 bool_t is_spec = FALSE; 13325 rnode4_t *rp = VTOR4(vp); 13326 13327 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13328 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 13329 13330 nfs4frlock_check_deleg(vp, ep, cr, F_UNLCK); 13331 if (ep->error || ep->stat) 13332 return; 13333 13334 argop->argop = OP_LOCKU; 13335 if (ctype == NFS4_LCK_CTYPE_REINSTATE) 13336 argsp->ctag = TAG_LOCKU_REINSTATE; 13337 else 13338 argsp->ctag = TAG_LOCKU; 13339 locku_args = &argop->nfs_argop4_u.oplocku; 13340 *locku_argsp = locku_args; 13341 13342 /* 13343 * XXX what should locku_args->locktype be? 13344 * setting to ALWAYS be READ_LT so at least 13345 * it is a valid locktype. 13346 */ 13347 13348 locku_args->locktype = READ_LT; 13349 13350 pid = ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pidp->pid_id : 13351 flk->l_pid; 13352 13353 /* 13354 * Get the lock owner stateid. If no lock owner 13355 * exists, return success. 13356 */ 13357 lop = find_lock_owner(rp, pid, LOWN_ANY); 13358 *lopp = lop; 13359 if (lop && CLNT_ISSPECIAL(&lop->lock_stateid)) 13360 is_spec = TRUE; 13361 if (!lop || is_spec) { 13362 /* 13363 * No lock owner so no locks to unlock. 13364 * Return success. If there was a failed 13365 * reclaim earlier, the lock might still be 13366 * registered with the local locking code, 13367 * so notify it of the unlock. 13368 * 13369 * If the lockowner is using a special stateid, 13370 * then the original lock request (that created 13371 * this lockowner) was never successful, so we 13372 * have no lock to undo OTW. 13373 */ 13374 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 13375 "nfs4frlock_setup_locku_args: LOCKU: no lock owner " 13376 "(%ld) so return success", (long)pid)); 13377 13378 if (ctype == NFS4_LCK_CTYPE_NORM) 13379 flk->l_pid = curproc->p_pid; 13380 nfs4_register_lock_locally(vp, flk, flag, offset); 13381 /* 13382 * Release our hold and NULL out so final_cleanup 13383 * doesn't try to end a lock seqid sync we 13384 * never started. 13385 */ 13386 if (is_spec) { 13387 lock_owner_rele(lop); 13388 *lopp = NULL; 13389 } 13390 *skip_get_err = TRUE; 13391 *go_otwp = FALSE; 13392 return; 13393 } 13394 13395 ep->error = nfs4_start_lock_seqid_sync(lop, VTOMI4(vp)); 13396 if (ep->error == EAGAIN) { 13397 lock_owner_rele(lop); 13398 *lopp = NULL; 13399 return; 13400 } 13401 13402 mutex_enter(&lop->lo_lock); 13403 locku_args->lock_stateid = lop->lock_stateid; 13404 mutex_exit(&lop->lo_lock); 13405 locku_args->seqid = lop->lock_seqid + 1; 13406 13407 /* leave the ref count on lop, rele after RPC call */ 13408 13409 locku_args->offset = flk->l_start; 13410 locku_args->length = flk->l_len; 13411 if (flk->l_len == 0) 13412 locku_args->length = ~locku_args->length; 13413 13414 *go_otwp = TRUE; 13415 } 13416 13417 /* 13418 * Setup the LOCK4 arguments. 13419 * 13420 * Returns errors via the nfs4_error_t. 13421 * NFS4_OK no problems 13422 * NFS4ERR_DELAY caller should retry (like recovery retry) 13423 * (other) unrecoverable error 13424 */ 13425 static void 13426 nfs4frlock_setup_lock_args(nfs4_lock_call_type_t ctype, LOCK4args **lock_argsp, 13427 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp, 13428 nfs4_lock_owner_t **lopp, nfs_argop4 *argop, COMPOUND4args_clnt *argsp, 13429 flock64_t *flk, int cmd, vnode_t *vp, cred_t *cr, nfs4_error_t *ep) 13430 { 13431 LOCK4args *lock_args; 13432 nfs4_open_owner_t *oop = NULL; 13433 nfs4_open_stream_t *osp = NULL; 13434 nfs4_lock_owner_t *lop = NULL; 13435 pid_t pid; 13436 rnode4_t *rp = VTOR4(vp); 13437 13438 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13439 13440 nfs4frlock_check_deleg(vp, ep, cr, flk->l_type); 13441 if (ep->error || ep->stat != NFS4_OK) 13442 return; 13443 13444 argop->argop = OP_LOCK; 13445 if (ctype == NFS4_LCK_CTYPE_NORM) 13446 argsp->ctag = TAG_LOCK; 13447 else if (ctype == NFS4_LCK_CTYPE_RECLAIM) 13448 argsp->ctag = TAG_RELOCK; 13449 else 13450 argsp->ctag = TAG_LOCK_REINSTATE; 13451 lock_args = &argop->nfs_argop4_u.oplock; 13452 lock_args->locktype = flk_to_locktype(cmd, flk->l_type); 13453 lock_args->reclaim = ctype == NFS4_LCK_CTYPE_RECLAIM ? 1 : 0; 13454 /* 13455 * Get the lock owner. If no lock owner exists, 13456 * create a 'temporary' one and grab the open seqid 13457 * synchronization (which puts a hold on the open 13458 * owner and open stream). 13459 * This also grabs the lock seqid synchronization. 13460 */ 13461 pid = ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pid : flk->l_pid; 13462 ep->stat = 13463 nfs4_find_or_create_lock_owner(pid, rp, cr, &oop, &osp, &lop); 13464 13465 if (ep->stat != NFS4_OK) 13466 goto out; 13467 13468 nfs4_setup_lock_args(lop, oop, osp, mi2clientid(VTOMI4(vp)), 13469 &lock_args->locker); 13470 13471 lock_args->offset = flk->l_start; 13472 lock_args->length = flk->l_len; 13473 if (flk->l_len == 0) 13474 lock_args->length = ~lock_args->length; 13475 *lock_argsp = lock_args; 13476 out: 13477 *oopp = oop; 13478 *ospp = osp; 13479 *lopp = lop; 13480 } 13481 13482 /* 13483 * After we get the reply from the server, record the proper information 13484 * for possible resend lock requests. 13485 * 13486 * Allocates memory for the saved_rqstp if we have a lost lock to save. 13487 */ 13488 static void 13489 nfs4frlock_save_lost_rqst(nfs4_lock_call_type_t ctype, int error, 13490 nfs_lock_type4 locktype, nfs4_open_owner_t *oop, 13491 nfs4_open_stream_t *osp, nfs4_lock_owner_t *lop, flock64_t *flk, 13492 nfs4_lost_rqst_t *lost_rqstp, cred_t *cr, vnode_t *vp) 13493 { 13494 bool_t unlock = (flk->l_type == F_UNLCK); 13495 13496 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13497 ASSERT(ctype == NFS4_LCK_CTYPE_NORM || 13498 ctype == NFS4_LCK_CTYPE_REINSTATE); 13499 13500 if (error != 0 && !unlock) { 13501 NFS4_DEBUG((nfs4_lost_rqst_debug || 13502 nfs4_client_lock_debug), (CE_NOTE, 13503 "nfs4frlock_save_lost_rqst: set lo_pending_rqsts to 1 " 13504 " for lop %p", (void *)lop)); 13505 ASSERT(lop != NULL); 13506 mutex_enter(&lop->lo_lock); 13507 lop->lo_pending_rqsts = 1; 13508 mutex_exit(&lop->lo_lock); 13509 } 13510 13511 lost_rqstp->lr_putfirst = FALSE; 13512 lost_rqstp->lr_op = 0; 13513 13514 /* 13515 * For lock/locku requests, we treat EINTR as ETIMEDOUT for 13516 * recovery purposes so that the lock request that was sent 13517 * can be saved and re-issued later. Ditto for EIO from a forced 13518 * unmount. This is done to have the client's local locking state 13519 * match the v4 server's state; that is, the request was 13520 * potentially received and accepted by the server but the client 13521 * thinks it was not. 13522 */ 13523 if (error == ETIMEDOUT || error == EINTR || 13524 NFS4_FRC_UNMT_ERR(error, vp->v_vfsp)) { 13525 NFS4_DEBUG((nfs4_lost_rqst_debug || 13526 nfs4_client_lock_debug), (CE_NOTE, 13527 "nfs4frlock_save_lost_rqst: got a lost %s lock for " 13528 "lop %p oop %p osp %p", unlock ? "LOCKU" : "LOCK", 13529 (void *)lop, (void *)oop, (void *)osp)); 13530 if (unlock) 13531 lost_rqstp->lr_op = OP_LOCKU; 13532 else { 13533 lost_rqstp->lr_op = OP_LOCK; 13534 lost_rqstp->lr_locktype = locktype; 13535 } 13536 /* 13537 * Objects are held and rele'd via the recovery code. 13538 * See nfs4_save_lost_rqst. 13539 */ 13540 lost_rqstp->lr_vp = vp; 13541 lost_rqstp->lr_dvp = NULL; 13542 lost_rqstp->lr_oop = oop; 13543 lost_rqstp->lr_osp = osp; 13544 lost_rqstp->lr_lop = lop; 13545 lost_rqstp->lr_cr = cr; 13546 switch (ctype) { 13547 case NFS4_LCK_CTYPE_NORM: 13548 flk->l_pid = ttoproc(curthread)->p_pid; 13549 lost_rqstp->lr_ctype = NFS4_LCK_CTYPE_RESEND; 13550 break; 13551 case NFS4_LCK_CTYPE_REINSTATE: 13552 lost_rqstp->lr_putfirst = TRUE; 13553 lost_rqstp->lr_ctype = ctype; 13554 break; 13555 default: 13556 break; 13557 } 13558 lost_rqstp->lr_flk = flk; 13559 } 13560 } 13561 13562 /* 13563 * Update lop's seqid. Also update the seqid stored in a resend request, 13564 * if any. (Some recovery errors increment the seqid, and we may have to 13565 * send the resend request again.) 13566 */ 13567 13568 static void 13569 nfs4frlock_bump_seqid(LOCK4args *lock_args, LOCKU4args *locku_args, 13570 nfs4_open_owner_t *oop, nfs4_lock_owner_t *lop, nfs4_tag_type_t tag_type) 13571 { 13572 if (lock_args) { 13573 if (lock_args->locker.new_lock_owner == TRUE) 13574 nfs4_get_and_set_next_open_seqid(oop, tag_type); 13575 else { 13576 ASSERT(lop->lo_flags & NFS4_LOCK_SEQID_INUSE); 13577 nfs4_set_lock_seqid(lop->lock_seqid + 1, lop); 13578 } 13579 } else if (locku_args) { 13580 ASSERT(lop->lo_flags & NFS4_LOCK_SEQID_INUSE); 13581 nfs4_set_lock_seqid(lop->lock_seqid +1, lop); 13582 } 13583 } 13584 13585 /* 13586 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13587 * COMPOUND4 args/res for calls that need to retry. 13588 * Switches the *cred_otwp to base_cr. 13589 */ 13590 static void 13591 nfs4frlock_check_access(vnode_t *vp, nfs4_op_hint_t op_hint, 13592 nfs4_recov_state_t *recov_statep, int needrecov, bool_t *did_start_fop, 13593 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp, int error, 13594 nfs4_lock_owner_t **lopp, nfs4_open_owner_t **oopp, 13595 nfs4_open_stream_t **ospp, cred_t *base_cr, cred_t **cred_otwp) 13596 { 13597 nfs4_open_owner_t *oop = *oopp; 13598 nfs4_open_stream_t *osp = *ospp; 13599 nfs4_lock_owner_t *lop = *lopp; 13600 nfs_argop4 *argop = (*argspp)->array; 13601 13602 if (*did_start_fop) { 13603 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, recov_statep, 13604 needrecov); 13605 *did_start_fop = FALSE; 13606 } 13607 ASSERT((*argspp)->array_len == 2); 13608 if (argop[1].argop == OP_LOCK) 13609 nfs4args_lock_free(&argop[1]); 13610 else if (argop[1].argop == OP_LOCKT) 13611 nfs4args_lockt_free(&argop[1]); 13612 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13613 if (!error) 13614 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)*respp); 13615 *argspp = NULL; 13616 *respp = NULL; 13617 13618 if (lop) { 13619 nfs4_end_lock_seqid_sync(lop); 13620 lock_owner_rele(lop); 13621 *lopp = NULL; 13622 } 13623 13624 /* need to free up the reference on osp for lock args */ 13625 if (osp != NULL) { 13626 open_stream_rele(osp, VTOR4(vp)); 13627 *ospp = NULL; 13628 } 13629 13630 /* need to free up the reference on oop for lock args */ 13631 if (oop != NULL) { 13632 nfs4_end_open_seqid_sync(oop); 13633 open_owner_rele(oop); 13634 *oopp = NULL; 13635 } 13636 13637 crfree(*cred_otwp); 13638 *cred_otwp = base_cr; 13639 crhold(*cred_otwp); 13640 } 13641 13642 /* 13643 * Function to process the client's recovery for nfs4frlock. 13644 * Returns TRUE if we should retry the lock request; FALSE otherwise. 13645 * 13646 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13647 * COMPOUND4 args/res for calls that need to retry. 13648 * 13649 * Note: the rp's r_lkserlock is *not* dropped during this path. 13650 */ 13651 static bool_t 13652 nfs4frlock_recovery(int needrecov, nfs4_error_t *ep, 13653 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp, 13654 LOCK4args *lock_args, LOCKU4args *locku_args, 13655 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp, 13656 nfs4_lock_owner_t **lopp, rnode4_t *rp, vnode_t *vp, 13657 nfs4_recov_state_t *recov_statep, nfs4_op_hint_t op_hint, 13658 bool_t *did_start_fop, nfs4_lost_rqst_t *lost_rqstp, flock64_t *flk) 13659 { 13660 nfs4_open_owner_t *oop = *oopp; 13661 nfs4_open_stream_t *osp = *ospp; 13662 nfs4_lock_owner_t *lop = *lopp; 13663 13664 bool_t abort, retry; 13665 13666 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13667 ASSERT((*argspp) != NULL); 13668 ASSERT((*respp) != NULL); 13669 if (lock_args || locku_args) 13670 ASSERT(lop != NULL); 13671 13672 NFS4_DEBUG((nfs4_client_lock_debug || nfs4_client_recov_debug), 13673 (CE_NOTE, "nfs4frlock_recovery: initiating recovery\n")); 13674 13675 retry = TRUE; 13676 abort = FALSE; 13677 if (needrecov) { 13678 nfs4_bseqid_entry_t *bsep = NULL; 13679 nfs_opnum4 op; 13680 13681 op = lock_args ? OP_LOCK : locku_args ? OP_LOCKU : OP_LOCKT; 13682 13683 if (!ep->error && ep->stat == NFS4ERR_BAD_SEQID) { 13684 seqid4 seqid; 13685 13686 if (lock_args) { 13687 if (lock_args->locker.new_lock_owner == TRUE) 13688 seqid = lock_args->locker.locker4_u. 13689 open_owner.open_seqid; 13690 else 13691 seqid = lock_args->locker.locker4_u. 13692 lock_owner.lock_seqid; 13693 } else if (locku_args) { 13694 seqid = locku_args->seqid; 13695 } else { 13696 seqid = 0; 13697 } 13698 13699 bsep = nfs4_create_bseqid_entry(oop, lop, vp, 13700 flk->l_pid, (*argspp)->ctag, seqid); 13701 } 13702 13703 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, NULL, 13704 (lost_rqstp && (lost_rqstp->lr_op == OP_LOCK || 13705 lost_rqstp->lr_op == OP_LOCKU)) ? lost_rqstp : 13706 NULL, op, bsep, NULL, NULL); 13707 13708 if (bsep) 13709 kmem_free(bsep, sizeof (*bsep)); 13710 } 13711 13712 /* 13713 * Return that we do not want to retry the request for 3 cases: 13714 * 1. If we received EINTR or are bailing out because of a forced 13715 * unmount, we came into this code path just for the sake of 13716 * initiating recovery, we now need to return the error. 13717 * 2. If we have aborted recovery. 13718 * 3. We received NFS4ERR_BAD_SEQID. 13719 */ 13720 if (ep->error == EINTR || NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp) || 13721 abort == TRUE || (ep->error == 0 && ep->stat == NFS4ERR_BAD_SEQID)) 13722 retry = FALSE; 13723 13724 if (*did_start_fop == TRUE) { 13725 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, recov_statep, 13726 needrecov); 13727 *did_start_fop = FALSE; 13728 } 13729 13730 if (retry == TRUE) { 13731 nfs_argop4 *argop; 13732 13733 argop = (*argspp)->array; 13734 ASSERT((*argspp)->array_len == 2); 13735 13736 if (argop[1].argop == OP_LOCK) 13737 nfs4args_lock_free(&argop[1]); 13738 else if (argop[1].argop == OP_LOCKT) 13739 nfs4args_lockt_free(&argop[1]); 13740 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13741 if (!ep->error) 13742 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)*respp); 13743 *respp = NULL; 13744 *argspp = NULL; 13745 } 13746 13747 if (lop != NULL) { 13748 nfs4_end_lock_seqid_sync(lop); 13749 lock_owner_rele(lop); 13750 } 13751 13752 *lopp = NULL; 13753 13754 /* need to free up the reference on osp for lock args */ 13755 if (osp != NULL) { 13756 open_stream_rele(osp, rp); 13757 *ospp = NULL; 13758 } 13759 13760 /* need to free up the reference on oop for lock args */ 13761 if (oop != NULL) { 13762 nfs4_end_open_seqid_sync(oop); 13763 open_owner_rele(oop); 13764 *oopp = NULL; 13765 } 13766 13767 return (retry); 13768 } 13769 13770 /* 13771 * Handles the successful reply from the server for nfs4frlock. 13772 */ 13773 static void 13774 nfs4frlock_results_ok(nfs4_lock_call_type_t ctype, int cmd, flock64_t *flk, 13775 vnode_t *vp, int flag, u_offset_t offset, 13776 nfs4_lost_rqst_t *resend_rqstp) 13777 { 13778 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13779 if ((cmd == F_SETLK || cmd == F_SETLKW) && 13780 (flk->l_type == F_RDLCK || flk->l_type == F_WRLCK)) { 13781 if (ctype == NFS4_LCK_CTYPE_NORM) { 13782 flk->l_pid = ttoproc(curthread)->p_pid; 13783 /* 13784 * We do not register lost locks locally in 13785 * the 'resend' case since the user/application 13786 * doesn't think we have the lock. 13787 */ 13788 ASSERT(!resend_rqstp); 13789 nfs4_register_lock_locally(vp, flk, flag, offset); 13790 } 13791 } 13792 } 13793 13794 /* 13795 * Handle the DENIED reply from the server for nfs4frlock. 13796 * Returns TRUE if we should retry the request; FALSE otherwise. 13797 * 13798 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13799 * COMPOUND4 args/res for calls that need to retry. Can also 13800 * drop and regrab the r_lkserlock. 13801 */ 13802 static bool_t 13803 nfs4frlock_results_denied(nfs4_lock_call_type_t ctype, LOCK4args *lock_args, 13804 LOCKT4args *lockt_args, nfs4_open_owner_t **oopp, 13805 nfs4_open_stream_t **ospp, nfs4_lock_owner_t **lopp, int cmd, 13806 vnode_t *vp, flock64_t *flk, nfs4_op_hint_t op_hint, 13807 nfs4_recov_state_t *recov_statep, int needrecov, 13808 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp, 13809 clock_t *tick_delayp, short *whencep, int *errorp, 13810 nfs_resop4 *resop, cred_t *cr, bool_t *did_start_fop, 13811 bool_t *skip_get_err) 13812 { 13813 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13814 13815 if (lock_args) { 13816 nfs4_open_owner_t *oop = *oopp; 13817 nfs4_open_stream_t *osp = *ospp; 13818 nfs4_lock_owner_t *lop = *lopp; 13819 int intr; 13820 13821 /* 13822 * Blocking lock needs to sleep and retry from the request. 13823 * 13824 * Do not block and wait for 'resend' or 'reinstate' 13825 * lock requests, just return the error. 13826 * 13827 * Note: reclaim requests have cmd == F_SETLK, not F_SETLKW. 13828 */ 13829 if (cmd == F_SETLKW) { 13830 rnode4_t *rp = VTOR4(vp); 13831 nfs_argop4 *argop = (*argspp)->array; 13832 13833 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 13834 13835 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, 13836 recov_statep, needrecov); 13837 *did_start_fop = FALSE; 13838 ASSERT((*argspp)->array_len == 2); 13839 if (argop[1].argop == OP_LOCK) 13840 nfs4args_lock_free(&argop[1]); 13841 else if (argop[1].argop == OP_LOCKT) 13842 nfs4args_lockt_free(&argop[1]); 13843 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13844 if (*respp) 13845 (void) xdr_free(xdr_COMPOUND4res_clnt, 13846 (caddr_t)*respp); 13847 *argspp = NULL; 13848 *respp = NULL; 13849 nfs4_end_lock_seqid_sync(lop); 13850 lock_owner_rele(lop); 13851 *lopp = NULL; 13852 if (osp != NULL) { 13853 open_stream_rele(osp, rp); 13854 *ospp = NULL; 13855 } 13856 if (oop != NULL) { 13857 nfs4_end_open_seqid_sync(oop); 13858 open_owner_rele(oop); 13859 *oopp = NULL; 13860 } 13861 13862 nfs_rw_exit(&rp->r_lkserlock); 13863 13864 intr = nfs4_block_and_wait(tick_delayp, rp); 13865 13866 if (intr) { 13867 (void) nfs_rw_enter_sig(&rp->r_lkserlock, 13868 RW_WRITER, FALSE); 13869 *errorp = EINTR; 13870 return (FALSE); 13871 } 13872 13873 (void) nfs_rw_enter_sig(&rp->r_lkserlock, 13874 RW_WRITER, FALSE); 13875 13876 /* 13877 * Make sure we are still safe to lock with 13878 * regards to mmapping. 13879 */ 13880 if (!nfs4_safelock(vp, flk, cr)) { 13881 *errorp = EAGAIN; 13882 return (FALSE); 13883 } 13884 13885 return (TRUE); 13886 } 13887 if (ctype == NFS4_LCK_CTYPE_NORM) 13888 *errorp = EAGAIN; 13889 *skip_get_err = TRUE; 13890 flk->l_whence = 0; 13891 *whencep = 0; 13892 return (FALSE); 13893 } else if (lockt_args) { 13894 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 13895 "nfs4frlock_results_denied: OP_LOCKT DENIED")); 13896 13897 denied_to_flk(&resop->nfs_resop4_u.oplockt.denied, 13898 flk, lockt_args); 13899 13900 /* according to NLM code */ 13901 *errorp = 0; 13902 *whencep = 0; 13903 *skip_get_err = TRUE; 13904 return (FALSE); 13905 } 13906 return (FALSE); 13907 } 13908 13909 /* 13910 * Handles all NFS4 errors besides NFS4_OK and NFS4ERR_DENIED for nfs4frlock. 13911 */ 13912 static void 13913 nfs4frlock_results_default(COMPOUND4res_clnt *resp, int *errorp) 13914 { 13915 switch (resp->status) { 13916 case NFS4ERR_ACCESS: 13917 case NFS4ERR_ADMIN_REVOKED: 13918 case NFS4ERR_BADHANDLE: 13919 case NFS4ERR_BAD_RANGE: 13920 case NFS4ERR_BAD_SEQID: 13921 case NFS4ERR_BAD_STATEID: 13922 case NFS4ERR_BADXDR: 13923 case NFS4ERR_DEADLOCK: 13924 case NFS4ERR_DELAY: 13925 case NFS4ERR_EXPIRED: 13926 case NFS4ERR_FHEXPIRED: 13927 case NFS4ERR_GRACE: 13928 case NFS4ERR_INVAL: 13929 case NFS4ERR_ISDIR: 13930 case NFS4ERR_LEASE_MOVED: 13931 case NFS4ERR_LOCK_NOTSUPP: 13932 case NFS4ERR_LOCK_RANGE: 13933 case NFS4ERR_MOVED: 13934 case NFS4ERR_NOFILEHANDLE: 13935 case NFS4ERR_NO_GRACE: 13936 case NFS4ERR_OLD_STATEID: 13937 case NFS4ERR_OPENMODE: 13938 case NFS4ERR_RECLAIM_BAD: 13939 case NFS4ERR_RECLAIM_CONFLICT: 13940 case NFS4ERR_RESOURCE: 13941 case NFS4ERR_SERVERFAULT: 13942 case NFS4ERR_STALE: 13943 case NFS4ERR_STALE_CLIENTID: 13944 case NFS4ERR_STALE_STATEID: 13945 return; 13946 default: 13947 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 13948 "nfs4frlock_results_default: got unrecognizable " 13949 "res.status %d", resp->status)); 13950 *errorp = NFS4ERR_INVAL; 13951 } 13952 } 13953 13954 /* 13955 * The lock request was successful, so update the client's state. 13956 */ 13957 static void 13958 nfs4frlock_update_state(LOCK4args *lock_args, LOCKU4args *locku_args, 13959 LOCKT4args *lockt_args, nfs_resop4 *resop, nfs4_lock_owner_t *lop, 13960 vnode_t *vp, flock64_t *flk, cred_t *cr, 13961 nfs4_lost_rqst_t *resend_rqstp) 13962 { 13963 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13964 13965 if (lock_args) { 13966 LOCK4res *lock_res; 13967 13968 lock_res = &resop->nfs_resop4_u.oplock; 13969 /* update the stateid with server's response */ 13970 13971 if (lock_args->locker.new_lock_owner == TRUE) { 13972 mutex_enter(&lop->lo_lock); 13973 lop->lo_just_created = NFS4_PERM_CREATED; 13974 mutex_exit(&lop->lo_lock); 13975 } 13976 13977 nfs4_set_lock_stateid(lop, lock_res->LOCK4res_u.lock_stateid); 13978 13979 /* 13980 * If the lock was the result of a resending a lost 13981 * request, we've synched up the stateid and seqid 13982 * with the server, but now the server might be out of sync 13983 * with what the application thinks it has for locks. 13984 * Clean that up here. It's unclear whether we should do 13985 * this even if the filesystem has been forcibly unmounted. 13986 * For most servers, it's probably wasted effort, but 13987 * RFC3530 lets servers require that unlocks exactly match 13988 * the locks that are held. 13989 */ 13990 if (resend_rqstp != NULL && 13991 resend_rqstp->lr_ctype != NFS4_LCK_CTYPE_REINSTATE) { 13992 nfs4_reinstitute_local_lock_state(vp, flk, cr, lop); 13993 } else { 13994 flk->l_whence = 0; 13995 } 13996 } else if (locku_args) { 13997 LOCKU4res *locku_res; 13998 13999 locku_res = &resop->nfs_resop4_u.oplocku; 14000 14001 /* Update the stateid with the server's response */ 14002 nfs4_set_lock_stateid(lop, locku_res->lock_stateid); 14003 } else if (lockt_args) { 14004 /* Switch the lock type to express success, see fcntl */ 14005 flk->l_type = F_UNLCK; 14006 flk->l_whence = 0; 14007 } 14008 } 14009 14010 /* 14011 * Do final cleanup before exiting nfs4frlock. 14012 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 14013 * COMPOUND4 args/res for calls that haven't already. 14014 */ 14015 static void 14016 nfs4frlock_final_cleanup(nfs4_lock_call_type_t ctype, COMPOUND4args_clnt *argsp, 14017 COMPOUND4res_clnt *resp, vnode_t *vp, nfs4_op_hint_t op_hint, 14018 nfs4_recov_state_t *recov_statep, int needrecov, nfs4_open_owner_t *oop, 14019 nfs4_open_stream_t *osp, nfs4_lock_owner_t *lop, flock64_t *flk, 14020 short whence, u_offset_t offset, struct lm_sysid *ls, 14021 int *errorp, LOCK4args *lock_args, LOCKU4args *locku_args, 14022 bool_t did_start_fop, bool_t skip_get_err, 14023 cred_t *cred_otw, cred_t *cred) 14024 { 14025 mntinfo4_t *mi = VTOMI4(vp); 14026 rnode4_t *rp = VTOR4(vp); 14027 int error = *errorp; 14028 nfs_argop4 *argop; 14029 int do_flush_pages = 0; 14030 14031 ASSERT(nfs_zone() == mi->mi_zone); 14032 /* 14033 * The client recovery code wants the raw status information, 14034 * so don't map the NFS status code to an errno value for 14035 * non-normal call types. 14036 */ 14037 if (ctype == NFS4_LCK_CTYPE_NORM) { 14038 if (*errorp == 0 && resp != NULL && skip_get_err == FALSE) 14039 *errorp = geterrno4(resp->status); 14040 if (did_start_fop == TRUE) 14041 nfs4_end_fop(mi, vp, NULL, op_hint, recov_statep, 14042 needrecov); 14043 14044 /* 14045 * We've established a new lock on the server, so invalidate 14046 * the pages associated with the vnode to get the most up to 14047 * date pages from the server after acquiring the lock. We 14048 * want to be sure that the read operation gets the newest data. 14049 * N.B. 14050 * We used to do this in nfs4frlock_results_ok but that doesn't 14051 * work since VOP_PUTPAGE can call nfs4_commit which calls 14052 * nfs4_start_fop. We flush the pages below after calling 14053 * nfs4_end_fop above 14054 * The flush of the page cache must be done after 14055 * nfs4_end_open_seqid_sync() to avoid a 4-way hang. 14056 */ 14057 if (!error && resp && resp->status == NFS4_OK) 14058 do_flush_pages = 1; 14059 } 14060 if (argsp) { 14061 ASSERT(argsp->array_len == 2); 14062 argop = argsp->array; 14063 if (argop[1].argop == OP_LOCK) 14064 nfs4args_lock_free(&argop[1]); 14065 else if (argop[1].argop == OP_LOCKT) 14066 nfs4args_lockt_free(&argop[1]); 14067 kmem_free(argop, 2 * sizeof (nfs_argop4)); 14068 if (resp) 14069 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 14070 } 14071 14072 /* free the reference on the lock owner */ 14073 if (lop != NULL) { 14074 nfs4_end_lock_seqid_sync(lop); 14075 lock_owner_rele(lop); 14076 } 14077 14078 /* need to free up the reference on osp for lock args */ 14079 if (osp != NULL) 14080 open_stream_rele(osp, rp); 14081 14082 /* need to free up the reference on oop for lock args */ 14083 if (oop != NULL) { 14084 nfs4_end_open_seqid_sync(oop); 14085 open_owner_rele(oop); 14086 } 14087 14088 if (do_flush_pages) 14089 nfs4_flush_pages(vp, cred); 14090 14091 (void) convoff(vp, flk, whence, offset); 14092 14093 lm_rel_sysid(ls); 14094 14095 /* 14096 * Record debug information in the event we get EINVAL. 14097 */ 14098 mutex_enter(&mi->mi_lock); 14099 if (*errorp == EINVAL && (lock_args || locku_args) && 14100 (!(mi->mi_flags & MI4_POSIX_LOCK))) { 14101 if (!(mi->mi_flags & MI4_LOCK_DEBUG)) { 14102 zcmn_err(getzoneid(), CE_NOTE, 14103 "%s operation failed with " 14104 "EINVAL probably since the server, %s," 14105 " doesn't support POSIX style locking", 14106 lock_args ? "LOCK" : "LOCKU", 14107 mi->mi_curr_serv->sv_hostname); 14108 mi->mi_flags |= MI4_LOCK_DEBUG; 14109 } 14110 } 14111 mutex_exit(&mi->mi_lock); 14112 14113 if (cred_otw) 14114 crfree(cred_otw); 14115 } 14116 14117 /* 14118 * This calls the server and the local locking code. 14119 * 14120 * Client locks are registerred locally by oring the sysid with 14121 * LM_SYSID_CLIENT. The server registers locks locally using just the sysid. 14122 * We need to distinguish between the two to avoid collision in case one 14123 * machine is used as both client and server. 14124 * 14125 * Blocking lock requests will continually retry to acquire the lock 14126 * forever. 14127 * 14128 * The ctype is defined as follows: 14129 * NFS4_LCK_CTYPE_NORM: normal lock request. 14130 * 14131 * NFS4_LCK_CTYPE_RECLAIM: bypass the usual calls for synchronizing with client 14132 * recovery, get the pid from flk instead of curproc, and don't reregister 14133 * the lock locally. 14134 * 14135 * NFS4_LCK_CTYPE_RESEND: same as NFS4_LCK_CTYPE_RECLAIM, with the addition 14136 * that we will use the information passed in via resend_rqstp to setup the 14137 * lock/locku request. This resend is the exact same request as the 'lost 14138 * lock', and is initiated by the recovery framework. A successful resend 14139 * request can initiate one or more reinstate requests. 14140 * 14141 * NFS4_LCK_CTYPE_REINSTATE: same as NFS4_LCK_CTYPE_RESEND, except that it 14142 * does not trigger additional reinstate requests. This lock call type is 14143 * set for setting the v4 server's locking state back to match what the 14144 * client's local locking state is in the event of a received 'lost lock'. 14145 * 14146 * Errors are returned via the nfs4_error_t parameter. 14147 */ 14148 void 14149 nfs4frlock(nfs4_lock_call_type_t ctype, vnode_t *vp, int cmd, flock64_t *flk, 14150 int flag, u_offset_t offset, cred_t *cr, nfs4_error_t *ep, 14151 nfs4_lost_rqst_t *resend_rqstp, int *did_reclaimp) 14152 { 14153 COMPOUND4args_clnt args, *argsp = NULL; 14154 COMPOUND4res_clnt res, *resp = NULL; 14155 nfs_argop4 *argop; 14156 nfs_resop4 *resop; 14157 rnode4_t *rp; 14158 int doqueue = 1; 14159 clock_t tick_delay; /* delay in clock ticks */ 14160 struct lm_sysid *ls; 14161 LOCK4args *lock_args = NULL; 14162 LOCKU4args *locku_args = NULL; 14163 LOCKT4args *lockt_args = NULL; 14164 nfs4_open_owner_t *oop = NULL; 14165 nfs4_open_stream_t *osp = NULL; 14166 nfs4_lock_owner_t *lop = NULL; 14167 bool_t needrecov = FALSE; 14168 nfs4_recov_state_t recov_state; 14169 short whence; 14170 nfs4_op_hint_t op_hint; 14171 nfs4_lost_rqst_t lost_rqst; 14172 bool_t retry = FALSE; 14173 bool_t did_start_fop = FALSE; 14174 bool_t skip_get_err = FALSE; 14175 cred_t *cred_otw = NULL; 14176 bool_t recovonly; /* just queue request */ 14177 int frc_no_reclaim = 0; 14178 #ifdef DEBUG 14179 char *name; 14180 #endif 14181 14182 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14183 14184 #ifdef DEBUG 14185 name = fn_name(VTOSV(vp)->sv_name); 14186 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4frlock: " 14187 "%s: cmd %d, type %d, offset %llu, start %"PRIx64", " 14188 "length %"PRIu64", pid %d, sysid %d, call type %s, " 14189 "resend request %s", name, cmd, flk->l_type, offset, flk->l_start, 14190 flk->l_len, ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pid : 14191 flk->l_pid, flk->l_sysid, nfs4frlock_get_call_type(ctype), 14192 resend_rqstp ? "TRUE" : "FALSE")); 14193 kmem_free(name, MAXNAMELEN); 14194 #endif 14195 14196 nfs4_error_zinit(ep); 14197 ep->error = nfs4frlock_validate_args(cmd, flk, flag, vp, offset); 14198 if (ep->error) 14199 return; 14200 ep->error = nfs4frlock_get_sysid(&ls, vp, flk); 14201 if (ep->error) 14202 return; 14203 nfs4frlock_pre_setup(&tick_delay, &recov_state, flk, &whence, 14204 vp, cr, &cred_otw); 14205 14206 recov_retry: 14207 nfs4frlock_call_init(&args, &argsp, &argop, &op_hint, flk, cmd, 14208 &retry, &did_start_fop, &resp, &skip_get_err, &lost_rqst); 14209 rp = VTOR4(vp); 14210 14211 ep->error = nfs4frlock_start_call(ctype, vp, op_hint, &recov_state, 14212 &did_start_fop, &recovonly); 14213 14214 if (ep->error) 14215 goto out; 14216 14217 if (recovonly) { 14218 /* 14219 * Leave the request for the recovery system to deal with. 14220 */ 14221 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 14222 ASSERT(cmd != F_GETLK); 14223 ASSERT(flk->l_type == F_UNLCK); 14224 14225 nfs4_error_init(ep, EINTR); 14226 needrecov = TRUE; 14227 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY); 14228 if (lop != NULL) { 14229 nfs4frlock_save_lost_rqst(ctype, ep->error, READ_LT, 14230 NULL, NULL, lop, flk, &lost_rqst, cr, vp); 14231 (void) nfs4_start_recovery(ep, 14232 VTOMI4(vp), vp, NULL, NULL, 14233 (lost_rqst.lr_op == OP_LOCK || 14234 lost_rqst.lr_op == OP_LOCKU) ? 14235 &lost_rqst : NULL, OP_LOCKU, NULL, NULL, NULL); 14236 lock_owner_rele(lop); 14237 lop = NULL; 14238 } 14239 flk->l_pid = curproc->p_pid; 14240 nfs4_register_lock_locally(vp, flk, flag, offset); 14241 goto out; 14242 } 14243 14244 /* putfh directory fh */ 14245 argop[0].argop = OP_CPUTFH; 14246 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 14247 14248 /* 14249 * Set up the over-the-wire arguments and get references to the 14250 * open owner, etc. 14251 */ 14252 14253 if (ctype == NFS4_LCK_CTYPE_RESEND || 14254 ctype == NFS4_LCK_CTYPE_REINSTATE) { 14255 nfs4frlock_setup_resend_lock_args(resend_rqstp, argsp, 14256 &argop[1], &lop, &oop, &osp, &lock_args, &locku_args); 14257 } else { 14258 bool_t go_otw = TRUE; 14259 14260 ASSERT(resend_rqstp == NULL); 14261 14262 switch (cmd) { 14263 case F_GETLK: 14264 case F_O_GETLK: 14265 nfs4frlock_setup_lockt_args(ctype, &argop[1], 14266 &lockt_args, argsp, flk, rp); 14267 break; 14268 case F_SETLKW: 14269 case F_SETLK: 14270 if (flk->l_type == F_UNLCK) 14271 nfs4frlock_setup_locku_args(ctype, 14272 &argop[1], &locku_args, flk, 14273 &lop, ep, argsp, 14274 vp, flag, offset, cr, 14275 &skip_get_err, &go_otw); 14276 else 14277 nfs4frlock_setup_lock_args(ctype, 14278 &lock_args, &oop, &osp, &lop, &argop[1], 14279 argsp, flk, cmd, vp, cr, ep); 14280 14281 if (ep->error) 14282 goto out; 14283 14284 switch (ep->stat) { 14285 case NFS4_OK: 14286 break; 14287 case NFS4ERR_DELAY: 14288 /* recov thread never gets this error */ 14289 ASSERT(resend_rqstp == NULL); 14290 ASSERT(did_start_fop); 14291 14292 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, 14293 &recov_state, TRUE); 14294 did_start_fop = FALSE; 14295 if (argop[1].argop == OP_LOCK) 14296 nfs4args_lock_free(&argop[1]); 14297 else if (argop[1].argop == OP_LOCKT) 14298 nfs4args_lockt_free(&argop[1]); 14299 kmem_free(argop, 2 * sizeof (nfs_argop4)); 14300 argsp = NULL; 14301 goto recov_retry; 14302 default: 14303 ep->error = EIO; 14304 goto out; 14305 } 14306 break; 14307 default: 14308 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14309 "nfs4_frlock: invalid cmd %d", cmd)); 14310 ep->error = EINVAL; 14311 goto out; 14312 } 14313 14314 if (!go_otw) 14315 goto out; 14316 } 14317 14318 /* XXX should we use the local reclock as a cache ? */ 14319 /* 14320 * Unregister the lock with the local locking code before 14321 * contacting the server. This avoids a potential race where 14322 * another process gets notified that it has been granted a lock 14323 * before we can unregister ourselves locally. 14324 */ 14325 if ((cmd == F_SETLK || cmd == F_SETLKW) && flk->l_type == F_UNLCK) { 14326 if (ctype == NFS4_LCK_CTYPE_NORM) 14327 flk->l_pid = ttoproc(curthread)->p_pid; 14328 nfs4_register_lock_locally(vp, flk, flag, offset); 14329 } 14330 14331 /* 14332 * Send the server the lock request. Continually loop with a delay 14333 * if get error NFS4ERR_DENIED (for blocking locks) or NFS4ERR_GRACE. 14334 */ 14335 resp = &res; 14336 14337 NFS4_DEBUG((nfs4_client_call_debug || nfs4_client_lock_debug), 14338 (CE_NOTE, 14339 "nfs4frlock: %s call, rp %s", needrecov ? "recov" : "first", 14340 rnode4info(rp))); 14341 14342 if (lock_args && frc_no_reclaim) { 14343 ASSERT(ctype == NFS4_LCK_CTYPE_RECLAIM); 14344 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14345 "nfs4frlock: frc_no_reclaim: clearing reclaim")); 14346 lock_args->reclaim = FALSE; 14347 if (did_reclaimp) 14348 *did_reclaimp = 0; 14349 } 14350 14351 /* 14352 * Do the OTW call. 14353 */ 14354 rfs4call(VTOMI4(vp), argsp, resp, cred_otw, &doqueue, 0, ep); 14355 14356 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14357 "nfs4frlock: error %d, status %d", ep->error, resp->status)); 14358 14359 needrecov = nfs4_needs_recovery(ep, TRUE, vp->v_vfsp); 14360 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14361 "nfs4frlock: needrecov %d", needrecov)); 14362 14363 if (ep->error == 0 && nfs4_need_to_bump_seqid(resp)) 14364 nfs4frlock_bump_seqid(lock_args, locku_args, oop, lop, 14365 args.ctag); 14366 14367 /* 14368 * Check if one of these mutually exclusive error cases has 14369 * happened: 14370 * need to swap credentials due to access error 14371 * recovery is needed 14372 * different error (only known case is missing Kerberos ticket) 14373 */ 14374 14375 if ((ep->error == EACCES || 14376 (ep->error == 0 && resp->status == NFS4ERR_ACCESS)) && 14377 cred_otw != cr) { 14378 nfs4frlock_check_access(vp, op_hint, &recov_state, needrecov, 14379 &did_start_fop, &argsp, &resp, ep->error, &lop, &oop, &osp, 14380 cr, &cred_otw); 14381 goto recov_retry; 14382 } 14383 14384 if (needrecov) { 14385 /* 14386 * LOCKT requests don't need to recover from lost 14387 * requests since they don't create/modify state. 14388 */ 14389 if ((ep->error == EINTR || 14390 NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp)) && 14391 lockt_args) 14392 goto out; 14393 /* 14394 * Do not attempt recovery for requests initiated by 14395 * the recovery framework. Let the framework redrive them. 14396 */ 14397 if (ctype != NFS4_LCK_CTYPE_NORM) 14398 goto out; 14399 else { 14400 ASSERT(resend_rqstp == NULL); 14401 } 14402 14403 nfs4frlock_save_lost_rqst(ctype, ep->error, 14404 flk_to_locktype(cmd, flk->l_type), 14405 oop, osp, lop, flk, &lost_rqst, cred_otw, vp); 14406 14407 retry = nfs4frlock_recovery(needrecov, ep, &argsp, 14408 &resp, lock_args, locku_args, &oop, &osp, &lop, 14409 rp, vp, &recov_state, op_hint, &did_start_fop, 14410 cmd != F_GETLK ? &lost_rqst : NULL, flk); 14411 14412 if (retry) { 14413 ASSERT(oop == NULL); 14414 ASSERT(osp == NULL); 14415 ASSERT(lop == NULL); 14416 goto recov_retry; 14417 } 14418 goto out; 14419 } 14420 14421 /* 14422 * Bail out if have reached this point with ep->error set. Can 14423 * happen if (ep->error == EACCES && !needrecov && cred_otw == cr). 14424 * This happens if Kerberos ticket has expired or has been 14425 * destroyed. 14426 */ 14427 if (ep->error != 0) 14428 goto out; 14429 14430 /* 14431 * Process the reply. 14432 */ 14433 switch (resp->status) { 14434 case NFS4_OK: 14435 resop = &resp->array[1]; 14436 nfs4frlock_results_ok(ctype, cmd, flk, vp, flag, offset, 14437 resend_rqstp); 14438 /* 14439 * Have a successful lock operation, now update state. 14440 */ 14441 nfs4frlock_update_state(lock_args, locku_args, lockt_args, 14442 resop, lop, vp, flk, cr, resend_rqstp); 14443 break; 14444 14445 case NFS4ERR_DENIED: 14446 resop = &resp->array[1]; 14447 retry = nfs4frlock_results_denied(ctype, lock_args, lockt_args, 14448 &oop, &osp, &lop, cmd, vp, flk, op_hint, 14449 &recov_state, needrecov, &argsp, &resp, 14450 &tick_delay, &whence, &ep->error, resop, cr, 14451 &did_start_fop, &skip_get_err); 14452 14453 if (retry) { 14454 ASSERT(oop == NULL); 14455 ASSERT(osp == NULL); 14456 ASSERT(lop == NULL); 14457 goto recov_retry; 14458 } 14459 break; 14460 /* 14461 * If the server won't let us reclaim, fall-back to trying to lock 14462 * the file from scratch. Code elsewhere will check the changeinfo 14463 * to ensure the file hasn't been changed. 14464 */ 14465 case NFS4ERR_NO_GRACE: 14466 if (lock_args && lock_args->reclaim == TRUE) { 14467 ASSERT(ctype == NFS4_LCK_CTYPE_RECLAIM); 14468 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14469 "nfs4frlock: reclaim: NFS4ERR_NO_GRACE")); 14470 frc_no_reclaim = 1; 14471 /* clean up before retrying */ 14472 needrecov = 0; 14473 (void) nfs4frlock_recovery(needrecov, ep, &argsp, &resp, 14474 lock_args, locku_args, &oop, &osp, &lop, rp, vp, 14475 &recov_state, op_hint, &did_start_fop, NULL, flk); 14476 goto recov_retry; 14477 } 14478 /* FALLTHROUGH */ 14479 14480 default: 14481 nfs4frlock_results_default(resp, &ep->error); 14482 break; 14483 } 14484 out: 14485 /* 14486 * Process and cleanup from error. Make interrupted unlock 14487 * requests look successful, since they will be handled by the 14488 * client recovery code. 14489 */ 14490 nfs4frlock_final_cleanup(ctype, argsp, resp, vp, op_hint, &recov_state, 14491 needrecov, oop, osp, lop, flk, whence, offset, ls, &ep->error, 14492 lock_args, locku_args, did_start_fop, 14493 skip_get_err, cred_otw, cr); 14494 14495 if (ep->error == EINTR && flk->l_type == F_UNLCK && 14496 (cmd == F_SETLK || cmd == F_SETLKW)) 14497 ep->error = 0; 14498 } 14499 14500 /* 14501 * nfs4_safelock: 14502 * 14503 * Return non-zero if the given lock request can be handled without 14504 * violating the constraints on concurrent mapping and locking. 14505 */ 14506 14507 static int 14508 nfs4_safelock(vnode_t *vp, const struct flock64 *bfp, cred_t *cr) 14509 { 14510 rnode4_t *rp = VTOR4(vp); 14511 struct vattr va; 14512 int error; 14513 14514 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14515 ASSERT(rp->r_mapcnt >= 0); 14516 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock %s: " 14517 "(%"PRIx64", %"PRIx64"); mapcnt = %ld", bfp->l_type == F_WRLCK ? 14518 "write" : bfp->l_type == F_RDLCK ? "read" : "unlock", 14519 bfp->l_start, bfp->l_len, rp->r_mapcnt)); 14520 14521 if (rp->r_mapcnt == 0) 14522 return (1); /* always safe if not mapped */ 14523 14524 /* 14525 * If the file is already mapped and there are locks, then they 14526 * should be all safe locks. So adding or removing a lock is safe 14527 * as long as the new request is safe (i.e., whole-file, meaning 14528 * length and starting offset are both zero). 14529 */ 14530 14531 if (bfp->l_start != 0 || bfp->l_len != 0) { 14532 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: " 14533 "cannot lock a memory mapped file unless locking the " 14534 "entire file: start %"PRIx64", len %"PRIx64, 14535 bfp->l_start, bfp->l_len)); 14536 return (0); 14537 } 14538 14539 /* mandatory locking and mapping don't mix */ 14540 va.va_mask = AT_MODE; 14541 error = VOP_GETATTR(vp, &va, 0, cr, NULL); 14542 if (error != 0) { 14543 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: " 14544 "getattr error %d", error)); 14545 return (0); /* treat errors conservatively */ 14546 } 14547 if (MANDLOCK(vp, va.va_mode)) { 14548 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: " 14549 "cannot mandatory lock and mmap a file")); 14550 return (0); 14551 } 14552 14553 return (1); 14554 } 14555 14556 14557 /* 14558 * Register the lock locally within Solaris. 14559 * As the client, we "or" the sysid with LM_SYSID_CLIENT when 14560 * recording locks locally. 14561 * 14562 * This should handle conflicts/cooperation with NFS v2/v3 since all locks 14563 * are registered locally. 14564 */ 14565 void 14566 nfs4_register_lock_locally(vnode_t *vp, struct flock64 *flk, int flag, 14567 u_offset_t offset) 14568 { 14569 int oldsysid; 14570 int error; 14571 #ifdef DEBUG 14572 char *name; 14573 #endif 14574 14575 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14576 14577 #ifdef DEBUG 14578 name = fn_name(VTOSV(vp)->sv_name); 14579 NFS4_DEBUG(nfs4_client_lock_debug, 14580 (CE_NOTE, "nfs4_register_lock_locally: %s: type %d, " 14581 "start %"PRIx64", length %"PRIx64", pid %ld, sysid %d", 14582 name, flk->l_type, flk->l_start, flk->l_len, (long)flk->l_pid, 14583 flk->l_sysid)); 14584 kmem_free(name, MAXNAMELEN); 14585 #endif 14586 14587 /* register the lock with local locking */ 14588 oldsysid = flk->l_sysid; 14589 flk->l_sysid |= LM_SYSID_CLIENT; 14590 error = reclock(vp, flk, SETFLCK, flag, offset, NULL); 14591 #ifdef DEBUG 14592 if (error != 0) { 14593 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14594 "nfs4_register_lock_locally: could not register with" 14595 " local locking")); 14596 NFS4_DEBUG(nfs4_client_lock_debug, (CE_CONT, 14597 "error %d, vp 0x%p, pid %d, sysid 0x%x", 14598 error, (void *)vp, flk->l_pid, flk->l_sysid)); 14599 NFS4_DEBUG(nfs4_client_lock_debug, (CE_CONT, 14600 "type %d off 0x%" PRIx64 " len 0x%" PRIx64, 14601 flk->l_type, flk->l_start, flk->l_len)); 14602 (void) reclock(vp, flk, 0, flag, offset, NULL); 14603 NFS4_DEBUG(nfs4_client_lock_debug, (CE_CONT, 14604 "blocked by pid %d sysid 0x%x type %d " 14605 "off 0x%" PRIx64 " len 0x%" PRIx64, 14606 flk->l_pid, flk->l_sysid, flk->l_type, flk->l_start, 14607 flk->l_len)); 14608 } 14609 #endif 14610 flk->l_sysid = oldsysid; 14611 } 14612 14613 /* 14614 * nfs4_lockrelease: 14615 * 14616 * Release any locks on the given vnode that are held by the current 14617 * process. Also removes the lock owner (if one exists) from the rnode's 14618 * list. 14619 */ 14620 static int 14621 nfs4_lockrelease(vnode_t *vp, int flag, offset_t offset, cred_t *cr) 14622 { 14623 flock64_t ld; 14624 int ret, error; 14625 rnode4_t *rp; 14626 nfs4_lock_owner_t *lop; 14627 nfs4_recov_state_t recov_state; 14628 mntinfo4_t *mi; 14629 bool_t possible_orphan = FALSE; 14630 bool_t recovonly; 14631 14632 ASSERT((uintptr_t)vp > KERNELBASE); 14633 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14634 14635 rp = VTOR4(vp); 14636 mi = VTOMI4(vp); 14637 14638 /* 14639 * If we have not locked anything then we can 14640 * just return since we have no work to do. 14641 */ 14642 if (rp->r_lo_head.lo_next_rnode == &rp->r_lo_head) { 14643 return (0); 14644 } 14645 14646 /* 14647 * We need to comprehend that another thread may 14648 * kick off recovery and the lock_owner we have stashed 14649 * in lop might be invalid so we should NOT cache it 14650 * locally! 14651 */ 14652 recov_state.rs_flags = 0; 14653 recov_state.rs_num_retry_despite_err = 0; 14654 error = nfs4_start_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 14655 &recovonly); 14656 if (error) { 14657 mutex_enter(&rp->r_statelock); 14658 rp->r_flags |= R4LODANGLERS; 14659 mutex_exit(&rp->r_statelock); 14660 return (error); 14661 } 14662 14663 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY); 14664 14665 /* 14666 * Check if the lock owner might have a lock (request was sent but 14667 * no response was received). Also check if there are any remote 14668 * locks on the file. (In theory we shouldn't have to make this 14669 * second check if there's no lock owner, but for now we'll be 14670 * conservative and do it anyway.) If either condition is true, 14671 * send an unlock for the entire file to the server. 14672 * 14673 * Note that no explicit synchronization is needed here. At worst, 14674 * flk_has_remote_locks() will return a false positive, in which case 14675 * the unlock call wastes time but doesn't harm correctness. 14676 */ 14677 14678 if (lop) { 14679 mutex_enter(&lop->lo_lock); 14680 possible_orphan = lop->lo_pending_rqsts; 14681 mutex_exit(&lop->lo_lock); 14682 lock_owner_rele(lop); 14683 } 14684 14685 nfs4_end_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 0); 14686 14687 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14688 "nfs4_lockrelease: possible orphan %d, remote locks %d, for " 14689 "lop %p.", possible_orphan, flk_has_remote_locks(vp), 14690 (void *)lop)); 14691 14692 if (possible_orphan || flk_has_remote_locks(vp)) { 14693 ld.l_type = F_UNLCK; /* set to unlock entire file */ 14694 ld.l_whence = 0; /* unlock from start of file */ 14695 ld.l_start = 0; 14696 ld.l_len = 0; /* do entire file */ 14697 14698 ret = VOP_FRLOCK(vp, F_SETLK, &ld, flag, offset, NULL, 14699 cr, NULL); 14700 14701 if (ret != 0) { 14702 /* 14703 * If VOP_FRLOCK fails, make sure we unregister 14704 * local locks before we continue. 14705 */ 14706 ld.l_pid = ttoproc(curthread)->p_pid; 14707 nfs4_register_lock_locally(vp, &ld, flag, offset); 14708 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14709 "nfs4_lockrelease: lock release error on vp" 14710 " %p: error %d.\n", (void *)vp, ret)); 14711 } 14712 } 14713 14714 recov_state.rs_flags = 0; 14715 recov_state.rs_num_retry_despite_err = 0; 14716 error = nfs4_start_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 14717 &recovonly); 14718 if (error) { 14719 mutex_enter(&rp->r_statelock); 14720 rp->r_flags |= R4LODANGLERS; 14721 mutex_exit(&rp->r_statelock); 14722 return (error); 14723 } 14724 14725 /* 14726 * So, here we're going to need to retrieve the lock-owner 14727 * again (in case recovery has done a switch-a-roo) and 14728 * remove it because we can. 14729 */ 14730 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY); 14731 14732 if (lop) { 14733 nfs4_rnode_remove_lock_owner(rp, lop); 14734 lock_owner_rele(lop); 14735 } 14736 14737 nfs4_end_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 0); 14738 return (0); 14739 } 14740 14741 /* 14742 * Wait for 'tick_delay' clock ticks. 14743 * Implement exponential backoff until hit the lease_time of this nfs4_server. 14744 * NOTE: lock_lease_time is in seconds. 14745 * 14746 * XXX For future improvements, should implement a waiting queue scheme. 14747 */ 14748 static int 14749 nfs4_block_and_wait(clock_t *tick_delay, rnode4_t *rp) 14750 { 14751 long milliseconds_delay; 14752 time_t lock_lease_time; 14753 14754 /* wait tick_delay clock ticks or siginteruptus */ 14755 if (delay_sig(*tick_delay)) { 14756 return (EINTR); 14757 } 14758 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_block_and_wait: " 14759 "reissue the lock request: blocked for %ld clock ticks: %ld " 14760 "milliseconds", *tick_delay, drv_hztousec(*tick_delay) / 1000)); 14761 14762 /* get the lease time */ 14763 lock_lease_time = r2lease_time(rp); 14764 14765 /* drv_hztousec converts ticks to microseconds */ 14766 milliseconds_delay = drv_hztousec(*tick_delay) / 1000; 14767 if (milliseconds_delay < lock_lease_time * 1000) { 14768 *tick_delay = 2 * *tick_delay; 14769 if (drv_hztousec(*tick_delay) > lock_lease_time * 1000 * 1000) 14770 *tick_delay = drv_usectohz(lock_lease_time*1000*1000); 14771 } 14772 return (0); 14773 } 14774 14775 14776 void 14777 nfs4_vnops_init(void) 14778 { 14779 } 14780 14781 void 14782 nfs4_vnops_fini(void) 14783 { 14784 } 14785 14786 /* 14787 * Return a reference to the directory (parent) vnode for a given vnode, 14788 * using the saved pathname information and the directory file handle. The 14789 * caller is responsible for disposing of the reference. 14790 * Returns zero or an errno value. 14791 * 14792 * Caller should set need_start_op to FALSE if it is the recovery 14793 * thread, or if a start_fop has already been done. Otherwise, TRUE. 14794 */ 14795 int 14796 vtodv(vnode_t *vp, vnode_t **dvpp, cred_t *cr, bool_t need_start_op) 14797 { 14798 svnode_t *svnp; 14799 vnode_t *dvp = NULL; 14800 servinfo4_t *svp; 14801 nfs4_fname_t *mfname; 14802 int error; 14803 14804 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14805 14806 if (vp->v_flag & VROOT) { 14807 nfs4_sharedfh_t *sfh; 14808 nfs_fh4 fh; 14809 mntinfo4_t *mi; 14810 14811 ASSERT(vp->v_type == VREG); 14812 14813 mi = VTOMI4(vp); 14814 svp = mi->mi_curr_serv; 14815 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 14816 fh.nfs_fh4_len = svp->sv_pfhandle.fh_len; 14817 fh.nfs_fh4_val = svp->sv_pfhandle.fh_buf; 14818 sfh = sfh4_get(&fh, VTOMI4(vp)); 14819 nfs_rw_exit(&svp->sv_lock); 14820 mfname = mi->mi_fname; 14821 fn_hold(mfname); 14822 dvp = makenfs4node_by_fh(sfh, NULL, &mfname, NULL, mi, cr, 0); 14823 sfh4_rele(&sfh); 14824 14825 if (dvp->v_type == VNON) 14826 dvp->v_type = VDIR; 14827 *dvpp = dvp; 14828 return (0); 14829 } 14830 14831 svnp = VTOSV(vp); 14832 14833 if (svnp == NULL) { 14834 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14835 "shadow node is NULL")); 14836 return (EINVAL); 14837 } 14838 14839 if (svnp->sv_name == NULL || svnp->sv_dfh == NULL) { 14840 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14841 "shadow node name or dfh val == NULL")); 14842 return (EINVAL); 14843 } 14844 14845 error = nfs4_make_dotdot(svnp->sv_dfh, 0, vp, cr, &dvp, 14846 (int)need_start_op); 14847 if (error != 0) { 14848 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14849 "nfs4_make_dotdot returned %d", error)); 14850 return (error); 14851 } 14852 if (!dvp) { 14853 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14854 "nfs4_make_dotdot returned a NULL dvp")); 14855 return (EIO); 14856 } 14857 if (dvp->v_type == VNON) 14858 dvp->v_type = VDIR; 14859 ASSERT(dvp->v_type == VDIR); 14860 if (VTOR4(vp)->r_flags & R4ISXATTR) { 14861 mutex_enter(&dvp->v_lock); 14862 dvp->v_flag |= V_XATTRDIR; 14863 mutex_exit(&dvp->v_lock); 14864 } 14865 *dvpp = dvp; 14866 return (0); 14867 } 14868 14869 /* 14870 * Copy the (final) component name of vp to fnamep. maxlen is the maximum 14871 * length that fnamep can accept, including the trailing null. 14872 * Returns 0 if okay, returns an errno value if there was a problem. 14873 */ 14874 14875 int 14876 vtoname(vnode_t *vp, char *fnamep, ssize_t maxlen) 14877 { 14878 char *fn; 14879 int err = 0; 14880 servinfo4_t *svp; 14881 svnode_t *shvp; 14882 14883 /* 14884 * If the file being opened has VROOT set, then this is 14885 * a "file" mount. sv_name will not be interesting, so 14886 * go back to the servinfo4 to get the original mount 14887 * path and strip off all but the final edge. Otherwise 14888 * just return the name from the shadow vnode. 14889 */ 14890 14891 if (vp->v_flag & VROOT) { 14892 14893 svp = VTOMI4(vp)->mi_curr_serv; 14894 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 14895 14896 fn = strrchr(svp->sv_path, '/'); 14897 if (fn == NULL) 14898 err = EINVAL; 14899 else 14900 fn++; 14901 } else { 14902 shvp = VTOSV(vp); 14903 fn = fn_name(shvp->sv_name); 14904 } 14905 14906 if (err == 0) 14907 if (strlen(fn) < maxlen) 14908 (void) strcpy(fnamep, fn); 14909 else 14910 err = ENAMETOOLONG; 14911 14912 if (vp->v_flag & VROOT) 14913 nfs_rw_exit(&svp->sv_lock); 14914 else 14915 kmem_free(fn, MAXNAMELEN); 14916 14917 return (err); 14918 } 14919 14920 /* 14921 * Bookkeeping for a close that doesn't need to go over the wire. 14922 * *have_lockp is set to 0 if 'os_sync_lock' is released; otherwise 14923 * it is left at 1. 14924 */ 14925 void 14926 nfs4close_notw(vnode_t *vp, nfs4_open_stream_t *osp, int *have_lockp) 14927 { 14928 rnode4_t *rp; 14929 mntinfo4_t *mi; 14930 14931 mi = VTOMI4(vp); 14932 rp = VTOR4(vp); 14933 14934 NFS4_DEBUG(nfs4close_notw_debug, (CE_NOTE, "nfs4close_notw: " 14935 "rp=%p osp=%p", (void *)rp, (void *)osp)); 14936 ASSERT(nfs_zone() == mi->mi_zone); 14937 ASSERT(mutex_owned(&osp->os_sync_lock)); 14938 ASSERT(*have_lockp); 14939 14940 if (!osp->os_valid || 14941 osp->os_open_ref_count > 0 || osp->os_mapcnt > 0) { 14942 return; 14943 } 14944 14945 /* 14946 * This removes the reference obtained at OPEN; ie, 14947 * when the open stream structure was created. 14948 * 14949 * We don't have to worry about calling 'open_stream_rele' 14950 * since we our currently holding a reference to this 14951 * open stream which means the count can not go to 0 with 14952 * this decrement. 14953 */ 14954 ASSERT(osp->os_ref_count >= 2); 14955 osp->os_ref_count--; 14956 osp->os_valid = 0; 14957 mutex_exit(&osp->os_sync_lock); 14958 *have_lockp = 0; 14959 14960 nfs4_dec_state_ref_count(mi); 14961 } 14962 14963 /* 14964 * Close all remaining open streams on the rnode. These open streams 14965 * could be here because: 14966 * - The close attempted at either close or delmap failed 14967 * - Some kernel entity did VOP_OPEN but never did VOP_CLOSE 14968 * - Someone did mknod on a regular file but never opened it 14969 */ 14970 int 14971 nfs4close_all(vnode_t *vp, cred_t *cr) 14972 { 14973 nfs4_open_stream_t *osp; 14974 int error; 14975 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 14976 rnode4_t *rp; 14977 14978 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14979 14980 error = 0; 14981 rp = VTOR4(vp); 14982 14983 /* 14984 * At this point, all we know is that the last time 14985 * someone called vn_rele, the count was 1. Since then, 14986 * the vnode could have been re-activated. We want to 14987 * loop through the open streams and close each one, but 14988 * we have to be careful since once we release the rnode 14989 * hash bucket lock, someone else is free to come in and 14990 * re-activate the rnode and add new open streams. The 14991 * strategy is take the rnode hash bucket lock, verify that 14992 * the count is still 1, grab the open stream off the 14993 * head of the list and mark it invalid, then release the 14994 * rnode hash bucket lock and proceed with that open stream. 14995 * This is ok because nfs4close_one() will acquire the proper 14996 * open/create to close/destroy synchronization for open 14997 * streams, and will ensure that if someone has reopened 14998 * the open stream after we've dropped the hash bucket lock 14999 * then we'll just simply return without destroying the 15000 * open stream. 15001 * Repeat until the list is empty. 15002 */ 15003 15004 for (;;) { 15005 15006 /* make sure vnode hasn't been reactivated */ 15007 rw_enter(&rp->r_hashq->r_lock, RW_READER); 15008 mutex_enter(&vp->v_lock); 15009 if (vp->v_count > 1) { 15010 mutex_exit(&vp->v_lock); 15011 rw_exit(&rp->r_hashq->r_lock); 15012 break; 15013 } 15014 /* 15015 * Grabbing r_os_lock before releasing v_lock prevents 15016 * a window where the rnode/open stream could get 15017 * reactivated (and os_force_close set to 0) before we 15018 * had a chance to set os_force_close to 1. 15019 */ 15020 mutex_enter(&rp->r_os_lock); 15021 mutex_exit(&vp->v_lock); 15022 15023 osp = list_head(&rp->r_open_streams); 15024 if (!osp) { 15025 /* nothing left to CLOSE OTW, so return */ 15026 mutex_exit(&rp->r_os_lock); 15027 rw_exit(&rp->r_hashq->r_lock); 15028 break; 15029 } 15030 15031 mutex_enter(&rp->r_statev4_lock); 15032 /* the file can't still be mem mapped */ 15033 ASSERT(rp->r_mapcnt == 0); 15034 if (rp->created_v4) 15035 rp->created_v4 = 0; 15036 mutex_exit(&rp->r_statev4_lock); 15037 15038 /* 15039 * Grab a ref on this open stream; nfs4close_one 15040 * will mark it as invalid 15041 */ 15042 mutex_enter(&osp->os_sync_lock); 15043 osp->os_ref_count++; 15044 osp->os_force_close = 1; 15045 mutex_exit(&osp->os_sync_lock); 15046 mutex_exit(&rp->r_os_lock); 15047 rw_exit(&rp->r_hashq->r_lock); 15048 15049 nfs4close_one(vp, osp, cr, 0, NULL, &e, CLOSE_FORCE, 0, 0, 0); 15050 15051 /* Update error if it isn't already non-zero */ 15052 if (error == 0) { 15053 if (e.error) 15054 error = e.error; 15055 else if (e.stat) 15056 error = geterrno4(e.stat); 15057 } 15058 15059 #ifdef DEBUG 15060 nfs4close_all_cnt++; 15061 #endif 15062 /* Release the ref on osp acquired above. */ 15063 open_stream_rele(osp, rp); 15064 15065 /* Proceed to the next open stream, if any */ 15066 } 15067 return (error); 15068 } 15069 15070 /* 15071 * nfs4close_one - close one open stream for a file if needed. 15072 * 15073 * "close_type" indicates which close path this is: 15074 * CLOSE_NORM: close initiated via VOP_CLOSE. 15075 * CLOSE_DELMAP: close initiated via VOP_DELMAP. 15076 * CLOSE_FORCE: close initiated via VOP_INACTIVE. This path forces 15077 * the close and release of client state for this open stream 15078 * (unless someone else has the open stream open). 15079 * CLOSE_RESEND: indicates the request is a replay of an earlier request 15080 * (e.g., due to abort because of a signal). 15081 * CLOSE_AFTER_RESEND: close initiated to "undo" a successful resent OPEN. 15082 * 15083 * CLOSE_RESEND and CLOSE_AFTER_RESEND will not attempt to retry after client 15084 * recovery. Instead, the caller is expected to deal with retries. 15085 * 15086 * The caller can either pass in the osp ('provided_osp') or not. 15087 * 15088 * 'access_bits' represents the access we are closing/downgrading. 15089 * 15090 * 'len', 'prot', and 'mmap_flags' are used for CLOSE_DELMAP. 'len' is the 15091 * number of bytes we are unmapping, 'maxprot' is the mmap protection, and 15092 * 'mmap_flags' tells us the type of sharing (MAP_PRIVATE or MAP_SHARED). 15093 * 15094 * Errors are returned via the nfs4_error_t. 15095 */ 15096 void 15097 nfs4close_one(vnode_t *vp, nfs4_open_stream_t *provided_osp, cred_t *cr, 15098 int access_bits, nfs4_lost_rqst_t *lrp, nfs4_error_t *ep, 15099 nfs4_close_type_t close_type, size_t len, uint_t maxprot, 15100 uint_t mmap_flags) 15101 { 15102 nfs4_open_owner_t *oop; 15103 nfs4_open_stream_t *osp = NULL; 15104 int retry = 0; 15105 int num_retries = NFS4_NUM_RECOV_RETRIES; 15106 rnode4_t *rp; 15107 mntinfo4_t *mi; 15108 nfs4_recov_state_t recov_state; 15109 cred_t *cred_otw = NULL; 15110 bool_t recovonly = FALSE; 15111 int isrecov; 15112 int force_close; 15113 int close_failed = 0; 15114 int did_dec_count = 0; 15115 int did_start_op = 0; 15116 int did_force_recovlock = 0; 15117 int did_start_seqid_sync = 0; 15118 int have_sync_lock = 0; 15119 15120 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 15121 15122 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE, "closing vp %p osp %p, " 15123 "lrp %p, close type %d len %ld prot %x mmap flags %x bits %x", 15124 (void *)vp, (void *)provided_osp, (void *)lrp, close_type, 15125 len, maxprot, mmap_flags, access_bits)); 15126 15127 nfs4_error_zinit(ep); 15128 rp = VTOR4(vp); 15129 mi = VTOMI4(vp); 15130 isrecov = (close_type == CLOSE_RESEND || 15131 close_type == CLOSE_AFTER_RESEND); 15132 15133 /* 15134 * First get the open owner. 15135 */ 15136 if (!provided_osp) { 15137 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 15138 } else { 15139 oop = provided_osp->os_open_owner; 15140 ASSERT(oop != NULL); 15141 open_owner_hold(oop); 15142 } 15143 15144 if (!oop) { 15145 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 15146 "nfs4close_one: no oop, rp %p, mi %p, cr %p, osp %p, " 15147 "close type %d", (void *)rp, (void *)mi, (void *)cr, 15148 (void *)provided_osp, close_type)); 15149 ep->error = EIO; 15150 goto out; 15151 } 15152 15153 cred_otw = nfs4_get_otw_cred(cr, mi, oop); 15154 recov_retry: 15155 osp = NULL; 15156 close_failed = 0; 15157 force_close = (close_type == CLOSE_FORCE); 15158 retry = 0; 15159 did_start_op = 0; 15160 did_force_recovlock = 0; 15161 did_start_seqid_sync = 0; 15162 have_sync_lock = 0; 15163 recovonly = FALSE; 15164 recov_state.rs_flags = 0; 15165 recov_state.rs_num_retry_despite_err = 0; 15166 15167 /* 15168 * Second synchronize with recovery. 15169 */ 15170 if (!isrecov) { 15171 ep->error = nfs4_start_fop(mi, vp, NULL, OH_CLOSE, 15172 &recov_state, &recovonly); 15173 if (!ep->error) { 15174 did_start_op = 1; 15175 } else { 15176 close_failed = 1; 15177 /* 15178 * If we couldn't get start_fop, but have to 15179 * cleanup state, then at least acquire the 15180 * mi_recovlock so we can synchronize with 15181 * recovery. 15182 */ 15183 if (close_type == CLOSE_FORCE) { 15184 (void) nfs_rw_enter_sig(&mi->mi_recovlock, 15185 RW_READER, FALSE); 15186 did_force_recovlock = 1; 15187 } else 15188 goto out; 15189 } 15190 } 15191 15192 /* 15193 * We cannot attempt to get the open seqid sync if nfs4_start_fop 15194 * set 'recovonly' to TRUE since most likely this is due to 15195 * reovery being active (MI4_RECOV_ACTIV). If recovery is active, 15196 * nfs4_start_open_seqid_sync() will fail with EAGAIN asking us 15197 * to retry, causing us to loop until recovery finishes. Plus we 15198 * don't need protection over the open seqid since we're not going 15199 * OTW, hence don't need to use the seqid. 15200 */ 15201 if (recovonly == FALSE) { 15202 /* need to grab the open owner sync before 'os_sync_lock' */ 15203 ep->error = nfs4_start_open_seqid_sync(oop, mi); 15204 if (ep->error == EAGAIN) { 15205 ASSERT(!isrecov); 15206 if (did_start_op) 15207 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, 15208 &recov_state, TRUE); 15209 if (did_force_recovlock) 15210 nfs_rw_exit(&mi->mi_recovlock); 15211 goto recov_retry; 15212 } 15213 did_start_seqid_sync = 1; 15214 } 15215 15216 /* 15217 * Third get an open stream and acquire 'os_sync_lock' to 15218 * sychronize the opening/creating of an open stream with the 15219 * closing/destroying of an open stream. 15220 */ 15221 if (!provided_osp) { 15222 /* returns with 'os_sync_lock' held */ 15223 osp = find_open_stream(oop, rp); 15224 if (!osp) { 15225 ep->error = EIO; 15226 goto out; 15227 } 15228 } else { 15229 osp = provided_osp; 15230 open_stream_hold(osp); 15231 mutex_enter(&osp->os_sync_lock); 15232 } 15233 have_sync_lock = 1; 15234 15235 ASSERT(oop == osp->os_open_owner); 15236 15237 /* 15238 * Fourth, do any special pre-OTW CLOSE processing 15239 * based on the specific close type. 15240 */ 15241 if ((close_type == CLOSE_NORM || close_type == CLOSE_AFTER_RESEND) && 15242 !did_dec_count) { 15243 ASSERT(osp->os_open_ref_count > 0); 15244 osp->os_open_ref_count--; 15245 did_dec_count = 1; 15246 if (osp->os_open_ref_count == 0) 15247 osp->os_final_close = 1; 15248 } 15249 15250 if (close_type == CLOSE_FORCE) { 15251 /* see if somebody reopened the open stream. */ 15252 if (!osp->os_force_close) { 15253 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE, 15254 "nfs4close_one: skip CLOSE_FORCE as osp %p " 15255 "was reopened, vp %p", (void *)osp, (void *)vp)); 15256 ep->error = 0; 15257 ep->stat = NFS4_OK; 15258 goto out; 15259 } 15260 15261 if (!osp->os_final_close && !did_dec_count) { 15262 osp->os_open_ref_count--; 15263 did_dec_count = 1; 15264 } 15265 15266 /* 15267 * We can't depend on os_open_ref_count being 0 due to the 15268 * way executables are opened (VN_RELE to match a VOP_OPEN). 15269 */ 15270 #ifdef NOTYET 15271 ASSERT(osp->os_open_ref_count == 0); 15272 #endif 15273 if (osp->os_open_ref_count != 0) { 15274 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE, 15275 "nfs4close_one: should panic here on an " 15276 "ASSERT(osp->os_open_ref_count == 0). Ignoring " 15277 "since this is probably the exec problem.")); 15278 15279 osp->os_open_ref_count = 0; 15280 } 15281 15282 /* 15283 * There is the possibility that nfs4close_one() 15284 * for close_type == CLOSE_DELMAP couldn't find the 15285 * open stream, thus couldn't decrement its os_mapcnt; 15286 * therefore we can't use this ASSERT yet. 15287 */ 15288 #ifdef NOTYET 15289 ASSERT(osp->os_mapcnt == 0); 15290 #endif 15291 osp->os_mapcnt = 0; 15292 } 15293 15294 if (close_type == CLOSE_DELMAP && !did_dec_count) { 15295 ASSERT(osp->os_mapcnt >= btopr(len)); 15296 15297 if ((mmap_flags & MAP_SHARED) && (maxprot & PROT_WRITE)) 15298 osp->os_mmap_write -= btopr(len); 15299 if (maxprot & PROT_READ) 15300 osp->os_mmap_read -= btopr(len); 15301 if (maxprot & PROT_EXEC) 15302 osp->os_mmap_read -= btopr(len); 15303 /* mirror the PROT_NONE check in nfs4_addmap() */ 15304 if (!(maxprot & PROT_READ) && !(maxprot & PROT_WRITE) && 15305 !(maxprot & PROT_EXEC)) 15306 osp->os_mmap_read -= btopr(len); 15307 osp->os_mapcnt -= btopr(len); 15308 did_dec_count = 1; 15309 } 15310 15311 if (recovonly) { 15312 nfs4_lost_rqst_t lost_rqst; 15313 15314 /* request should not already be in recovery queue */ 15315 ASSERT(lrp == NULL); 15316 nfs4_error_init(ep, EINTR); 15317 nfs4close_save_lost_rqst(ep->error, &lost_rqst, oop, 15318 osp, cred_otw, vp); 15319 mutex_exit(&osp->os_sync_lock); 15320 have_sync_lock = 0; 15321 (void) nfs4_start_recovery(ep, mi, vp, NULL, NULL, 15322 lost_rqst.lr_op == OP_CLOSE ? 15323 &lost_rqst : NULL, OP_CLOSE, NULL, NULL, NULL); 15324 close_failed = 1; 15325 force_close = 0; 15326 goto close_cleanup; 15327 } 15328 15329 /* 15330 * If a previous OTW call got NFS4ERR_BAD_SEQID, then 15331 * we stopped operating on the open owner's <old oo_name, old seqid> 15332 * space, which means we stopped operating on the open stream 15333 * too. So don't go OTW (as the seqid is likely bad, and the 15334 * stateid could be stale, potentially triggering a false 15335 * setclientid), and just clean up the client's internal state. 15336 */ 15337 if (osp->os_orig_oo_name != oop->oo_name) { 15338 NFS4_DEBUG(nfs4close_one_debug || nfs4_client_recov_debug, 15339 (CE_NOTE, "nfs4close_one: skip OTW close for osp %p " 15340 "oop %p due to bad seqid (orig oo_name %" PRIx64 " current " 15341 "oo_name %" PRIx64")", 15342 (void *)osp, (void *)oop, osp->os_orig_oo_name, 15343 oop->oo_name)); 15344 close_failed = 1; 15345 } 15346 15347 /* If the file failed recovery, just quit. */ 15348 mutex_enter(&rp->r_statelock); 15349 if (rp->r_flags & R4RECOVERR) { 15350 close_failed = 1; 15351 } 15352 mutex_exit(&rp->r_statelock); 15353 15354 /* 15355 * If the force close path failed to obtain start_fop 15356 * then skip the OTW close and just remove the state. 15357 */ 15358 if (close_failed) 15359 goto close_cleanup; 15360 15361 /* 15362 * Fifth, check to see if there are still mapped pages or other 15363 * opens using this open stream. If there are then we can't 15364 * close yet but we can see if an OPEN_DOWNGRADE is necessary. 15365 */ 15366 if (osp->os_open_ref_count > 0 || osp->os_mapcnt > 0) { 15367 nfs4_lost_rqst_t new_lost_rqst; 15368 bool_t needrecov = FALSE; 15369 cred_t *odg_cred_otw = NULL; 15370 seqid4 open_dg_seqid = 0; 15371 15372 if (osp->os_delegation) { 15373 /* 15374 * If this open stream was never OPENed OTW then we 15375 * surely can't DOWNGRADE it (especially since the 15376 * osp->open_stateid is really a delegation stateid 15377 * when os_delegation is 1). 15378 */ 15379 if (access_bits & FREAD) 15380 osp->os_share_acc_read--; 15381 if (access_bits & FWRITE) 15382 osp->os_share_acc_write--; 15383 osp->os_share_deny_none--; 15384 nfs4_error_zinit(ep); 15385 goto out; 15386 } 15387 nfs4_open_downgrade(access_bits, 0, oop, osp, vp, cr, 15388 lrp, ep, &odg_cred_otw, &open_dg_seqid); 15389 needrecov = nfs4_needs_recovery(ep, TRUE, mi->mi_vfsp); 15390 if (needrecov && !isrecov) { 15391 bool_t abort; 15392 nfs4_bseqid_entry_t *bsep = NULL; 15393 15394 if (!ep->error && ep->stat == NFS4ERR_BAD_SEQID) 15395 bsep = nfs4_create_bseqid_entry(oop, NULL, 15396 vp, 0, 15397 lrp ? TAG_OPEN_DG_LOST : TAG_OPEN_DG, 15398 open_dg_seqid); 15399 15400 nfs4open_dg_save_lost_rqst(ep->error, &new_lost_rqst, 15401 oop, osp, odg_cred_otw, vp, access_bits, 0); 15402 mutex_exit(&osp->os_sync_lock); 15403 have_sync_lock = 0; 15404 abort = nfs4_start_recovery(ep, mi, vp, NULL, NULL, 15405 new_lost_rqst.lr_op == OP_OPEN_DOWNGRADE ? 15406 &new_lost_rqst : NULL, OP_OPEN_DOWNGRADE, 15407 bsep, NULL, NULL); 15408 if (odg_cred_otw) 15409 crfree(odg_cred_otw); 15410 if (bsep) 15411 kmem_free(bsep, sizeof (*bsep)); 15412 15413 if (abort == TRUE) 15414 goto out; 15415 15416 if (did_start_seqid_sync) { 15417 nfs4_end_open_seqid_sync(oop); 15418 did_start_seqid_sync = 0; 15419 } 15420 open_stream_rele(osp, rp); 15421 15422 if (did_start_op) 15423 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, 15424 &recov_state, FALSE); 15425 if (did_force_recovlock) 15426 nfs_rw_exit(&mi->mi_recovlock); 15427 15428 goto recov_retry; 15429 } else { 15430 if (odg_cred_otw) 15431 crfree(odg_cred_otw); 15432 } 15433 goto out; 15434 } 15435 15436 /* 15437 * If this open stream was created as the results of an open 15438 * while holding a delegation, then just release it; no need 15439 * to do an OTW close. Otherwise do a "normal" OTW close. 15440 */ 15441 if (osp->os_delegation) { 15442 nfs4close_notw(vp, osp, &have_sync_lock); 15443 nfs4_error_zinit(ep); 15444 goto out; 15445 } 15446 15447 /* 15448 * If this stream is not valid, we're done. 15449 */ 15450 if (!osp->os_valid) { 15451 nfs4_error_zinit(ep); 15452 goto out; 15453 } 15454 15455 /* 15456 * Last open or mmap ref has vanished, need to do an OTW close. 15457 * First check to see if a close is still necessary. 15458 */ 15459 if (osp->os_failed_reopen) { 15460 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 15461 "don't close OTW osp %p since reopen failed.", 15462 (void *)osp)); 15463 /* 15464 * Reopen of the open stream failed, hence the 15465 * stateid of the open stream is invalid/stale, and 15466 * sending this OTW would incorrectly cause another 15467 * round of recovery. In this case, we need to set 15468 * the 'os_valid' bit to 0 so another thread doesn't 15469 * come in and re-open this open stream before 15470 * this "closing" thread cleans up state (decrementing 15471 * the nfs4_server_t's state_ref_count and decrementing 15472 * the os_ref_count). 15473 */ 15474 osp->os_valid = 0; 15475 /* 15476 * This removes the reference obtained at OPEN; ie, 15477 * when the open stream structure was created. 15478 * 15479 * We don't have to worry about calling 'open_stream_rele' 15480 * since we our currently holding a reference to this 15481 * open stream which means the count can not go to 0 with 15482 * this decrement. 15483 */ 15484 ASSERT(osp->os_ref_count >= 2); 15485 osp->os_ref_count--; 15486 nfs4_error_zinit(ep); 15487 close_failed = 0; 15488 goto close_cleanup; 15489 } 15490 15491 ASSERT(osp->os_ref_count > 1); 15492 15493 /* 15494 * Sixth, try the CLOSE OTW. 15495 */ 15496 nfs4close_otw(rp, cred_otw, oop, osp, &retry, &did_start_seqid_sync, 15497 close_type, ep, &have_sync_lock); 15498 15499 if (ep->error == EINTR || NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp)) { 15500 /* 15501 * Let the recovery thread be responsible for 15502 * removing the state for CLOSE. 15503 */ 15504 close_failed = 1; 15505 force_close = 0; 15506 retry = 0; 15507 } 15508 15509 /* See if we need to retry with a different cred */ 15510 if ((ep->error == EACCES || 15511 (ep->error == 0 && ep->stat == NFS4ERR_ACCESS)) && 15512 cred_otw != cr) { 15513 crfree(cred_otw); 15514 cred_otw = cr; 15515 crhold(cred_otw); 15516 retry = 1; 15517 } 15518 15519 if (ep->error || ep->stat) 15520 close_failed = 1; 15521 15522 if (retry && !isrecov && num_retries-- > 0) { 15523 if (have_sync_lock) { 15524 mutex_exit(&osp->os_sync_lock); 15525 have_sync_lock = 0; 15526 } 15527 if (did_start_seqid_sync) { 15528 nfs4_end_open_seqid_sync(oop); 15529 did_start_seqid_sync = 0; 15530 } 15531 open_stream_rele(osp, rp); 15532 15533 if (did_start_op) 15534 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, 15535 &recov_state, FALSE); 15536 if (did_force_recovlock) 15537 nfs_rw_exit(&mi->mi_recovlock); 15538 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 15539 "nfs4close_one: need to retry the close " 15540 "operation")); 15541 goto recov_retry; 15542 } 15543 close_cleanup: 15544 /* 15545 * Seventh and lastly, process our results. 15546 */ 15547 if (close_failed && force_close) { 15548 /* 15549 * It's ok to drop and regrab the 'os_sync_lock' since 15550 * nfs4close_notw() will recheck to make sure the 15551 * "close"/removal of state should happen. 15552 */ 15553 if (!have_sync_lock) { 15554 mutex_enter(&osp->os_sync_lock); 15555 have_sync_lock = 1; 15556 } 15557 /* 15558 * This is last call, remove the ref on the open 15559 * stream created by open and clean everything up. 15560 */ 15561 osp->os_pending_close = 0; 15562 nfs4close_notw(vp, osp, &have_sync_lock); 15563 nfs4_error_zinit(ep); 15564 } 15565 15566 if (!close_failed) { 15567 if (have_sync_lock) { 15568 osp->os_pending_close = 0; 15569 mutex_exit(&osp->os_sync_lock); 15570 have_sync_lock = 0; 15571 } else { 15572 mutex_enter(&osp->os_sync_lock); 15573 osp->os_pending_close = 0; 15574 mutex_exit(&osp->os_sync_lock); 15575 } 15576 if (did_start_op && recov_state.rs_sp != NULL) { 15577 mutex_enter(&recov_state.rs_sp->s_lock); 15578 nfs4_dec_state_ref_count_nolock(recov_state.rs_sp, mi); 15579 mutex_exit(&recov_state.rs_sp->s_lock); 15580 } else { 15581 nfs4_dec_state_ref_count(mi); 15582 } 15583 nfs4_error_zinit(ep); 15584 } 15585 15586 out: 15587 if (have_sync_lock) 15588 mutex_exit(&osp->os_sync_lock); 15589 if (did_start_op) 15590 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, &recov_state, 15591 recovonly ? TRUE : FALSE); 15592 if (did_force_recovlock) 15593 nfs_rw_exit(&mi->mi_recovlock); 15594 if (cred_otw) 15595 crfree(cred_otw); 15596 if (osp) 15597 open_stream_rele(osp, rp); 15598 if (oop) { 15599 if (did_start_seqid_sync) 15600 nfs4_end_open_seqid_sync(oop); 15601 open_owner_rele(oop); 15602 } 15603 } 15604 15605 /* 15606 * Convert information returned by the server in the LOCK4denied 15607 * structure to the form required by fcntl. 15608 */ 15609 static void 15610 denied_to_flk(LOCK4denied *lockt_denied, flock64_t *flk, LOCKT4args *lockt_args) 15611 { 15612 nfs4_lo_name_t *lo; 15613 15614 #ifdef DEBUG 15615 if (denied_to_flk_debug) { 15616 lockt_denied_debug = lockt_denied; 15617 debug_enter("lockt_denied"); 15618 } 15619 #endif 15620 15621 flk->l_type = lockt_denied->locktype == READ_LT ? F_RDLCK : F_WRLCK; 15622 flk->l_whence = 0; /* aka SEEK_SET */ 15623 flk->l_start = lockt_denied->offset; 15624 flk->l_len = lockt_denied->length; 15625 15626 /* 15627 * If the blocking clientid matches our client id, then we can 15628 * interpret the lockowner (since we built it). If not, then 15629 * fabricate a sysid and pid. Note that the l_sysid field 15630 * in *flk already has the local sysid. 15631 */ 15632 15633 if (lockt_denied->owner.clientid == lockt_args->owner.clientid) { 15634 15635 if (lockt_denied->owner.owner_len == sizeof (*lo)) { 15636 lo = (nfs4_lo_name_t *) 15637 lockt_denied->owner.owner_val; 15638 15639 flk->l_pid = lo->ln_pid; 15640 } else { 15641 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 15642 "denied_to_flk: bad lock owner length\n")); 15643 15644 flk->l_pid = lo_to_pid(&lockt_denied->owner); 15645 } 15646 } else { 15647 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 15648 "denied_to_flk: foreign clientid\n")); 15649 15650 /* 15651 * Construct a new sysid which should be different from 15652 * sysids of other systems. 15653 */ 15654 15655 flk->l_sysid++; 15656 flk->l_pid = lo_to_pid(&lockt_denied->owner); 15657 } 15658 } 15659 15660 static pid_t 15661 lo_to_pid(lock_owner4 *lop) 15662 { 15663 pid_t pid = 0; 15664 uchar_t *cp; 15665 int i; 15666 15667 cp = (uchar_t *)&lop->clientid; 15668 15669 for (i = 0; i < sizeof (lop->clientid); i++) 15670 pid += (pid_t)*cp++; 15671 15672 cp = (uchar_t *)lop->owner_val; 15673 15674 for (i = 0; i < lop->owner_len; i++) 15675 pid += (pid_t)*cp++; 15676 15677 return (pid); 15678 } 15679 15680 /* 15681 * Given a lock pointer, returns the length of that lock. 15682 * "end" is the last locked offset the "l_len" covers from 15683 * the start of the lock. 15684 */ 15685 static off64_t 15686 lock_to_end(flock64_t *lock) 15687 { 15688 off64_t lock_end; 15689 15690 if (lock->l_len == 0) 15691 lock_end = (off64_t)MAXEND; 15692 else 15693 lock_end = lock->l_start + lock->l_len - 1; 15694 15695 return (lock_end); 15696 } 15697 15698 /* 15699 * Given the end of a lock, it will return you the length "l_len" for that lock. 15700 */ 15701 static off64_t 15702 end_to_len(off64_t start, off64_t end) 15703 { 15704 off64_t lock_len; 15705 15706 ASSERT(end >= start); 15707 if (end == MAXEND) 15708 lock_len = 0; 15709 else 15710 lock_len = end - start + 1; 15711 15712 return (lock_len); 15713 } 15714 15715 /* 15716 * On given end for a lock it determines if it is the last locked offset 15717 * or not, if so keeps it as is, else adds one to return the length for 15718 * valid start. 15719 */ 15720 static off64_t 15721 start_check(off64_t x) 15722 { 15723 if (x == MAXEND) 15724 return (x); 15725 else 15726 return (x + 1); 15727 } 15728 15729 /* 15730 * See if these two locks overlap, and if so return 1; 15731 * otherwise, return 0. 15732 */ 15733 static int 15734 locks_intersect(flock64_t *llfp, flock64_t *curfp) 15735 { 15736 off64_t llfp_end, curfp_end; 15737 15738 llfp_end = lock_to_end(llfp); 15739 curfp_end = lock_to_end(curfp); 15740 15741 if (((llfp_end >= curfp->l_start) && 15742 (llfp->l_start <= curfp->l_start)) || 15743 ((curfp->l_start <= llfp->l_start) && (curfp_end >= llfp->l_start))) 15744 return (1); 15745 return (0); 15746 } 15747 15748 /* 15749 * Determine what the intersecting lock region is, and add that to the 15750 * 'nl_llpp' locklist in increasing order (by l_start). 15751 */ 15752 static void 15753 nfs4_add_lock_range(flock64_t *lost_flp, flock64_t *local_flp, 15754 locklist_t **nl_llpp, vnode_t *vp) 15755 { 15756 locklist_t *intersect_llp, *tmp_fllp, *cur_fllp; 15757 off64_t lost_flp_end, local_flp_end, len, start; 15758 15759 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range:")); 15760 15761 if (!locks_intersect(lost_flp, local_flp)) 15762 return; 15763 15764 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range: " 15765 "locks intersect")); 15766 15767 lost_flp_end = lock_to_end(lost_flp); 15768 local_flp_end = lock_to_end(local_flp); 15769 15770 /* Find the starting point of the intersecting region */ 15771 if (local_flp->l_start > lost_flp->l_start) 15772 start = local_flp->l_start; 15773 else 15774 start = lost_flp->l_start; 15775 15776 /* Find the lenght of the intersecting region */ 15777 if (lost_flp_end < local_flp_end) 15778 len = end_to_len(start, lost_flp_end); 15779 else 15780 len = end_to_len(start, local_flp_end); 15781 15782 /* 15783 * Prepare the flock structure for the intersection found and insert 15784 * it into the new list in increasing l_start order. This list contains 15785 * intersections of locks registered by the client with the local host 15786 * and the lost lock. 15787 * The lock type of this lock is the same as that of the local_flp. 15788 */ 15789 intersect_llp = (locklist_t *)kmem_alloc(sizeof (locklist_t), KM_SLEEP); 15790 intersect_llp->ll_flock.l_start = start; 15791 intersect_llp->ll_flock.l_len = len; 15792 intersect_llp->ll_flock.l_type = local_flp->l_type; 15793 intersect_llp->ll_flock.l_pid = local_flp->l_pid; 15794 intersect_llp->ll_flock.l_sysid = local_flp->l_sysid; 15795 intersect_llp->ll_flock.l_whence = 0; /* aka SEEK_SET */ 15796 intersect_llp->ll_vp = vp; 15797 15798 tmp_fllp = *nl_llpp; 15799 cur_fllp = NULL; 15800 while (tmp_fllp != NULL && tmp_fllp->ll_flock.l_start < 15801 intersect_llp->ll_flock.l_start) { 15802 cur_fllp = tmp_fllp; 15803 tmp_fllp = tmp_fllp->ll_next; 15804 } 15805 if (cur_fllp == NULL) { 15806 /* first on the list */ 15807 intersect_llp->ll_next = *nl_llpp; 15808 *nl_llpp = intersect_llp; 15809 } else { 15810 intersect_llp->ll_next = cur_fllp->ll_next; 15811 cur_fllp->ll_next = intersect_llp; 15812 } 15813 15814 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range: " 15815 "created lock region: start %"PRIx64" end %"PRIx64" : %s\n", 15816 intersect_llp->ll_flock.l_start, 15817 intersect_llp->ll_flock.l_start + intersect_llp->ll_flock.l_len, 15818 intersect_llp->ll_flock.l_type == F_RDLCK ? "READ" : "WRITE")); 15819 } 15820 15821 /* 15822 * Our local locking current state is potentially different than 15823 * what the NFSv4 server thinks we have due to a lost lock that was 15824 * resent and then received. We need to reset our "NFSv4" locking 15825 * state to match the current local locking state for this pid since 15826 * that is what the user/application sees as what the world is. 15827 * 15828 * We cannot afford to drop the open/lock seqid sync since then we can 15829 * get confused about what the current local locking state "is" versus 15830 * "was". 15831 * 15832 * If we are unable to fix up the locks, we send SIGLOST to the affected 15833 * process. This is not done if the filesystem has been forcibly 15834 * unmounted, in case the process has already exited and a new process 15835 * exists with the same pid. 15836 */ 15837 static void 15838 nfs4_reinstitute_local_lock_state(vnode_t *vp, flock64_t *lost_flp, cred_t *cr, 15839 nfs4_lock_owner_t *lop) 15840 { 15841 locklist_t *locks, *llp, *ri_llp, *tmp_llp; 15842 mntinfo4_t *mi = VTOMI4(vp); 15843 const int cmd = F_SETLK; 15844 off64_t cur_start, llp_ll_flock_end, lost_flp_end; 15845 flock64_t ul_fl; 15846 15847 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15848 "nfs4_reinstitute_local_lock_state")); 15849 15850 /* 15851 * Find active locks for this vp from the local locking code. 15852 * Scan through this list and find out the locks that intersect with 15853 * the lost lock. Once we find the lock that intersects, add the 15854 * intersection area as a new lock to a new list "ri_llp". The lock 15855 * type of the intersection region lock added to ri_llp is the same 15856 * as that found in the active lock list, "list". The intersecting 15857 * region locks are added to ri_llp in increasing l_start order. 15858 */ 15859 ASSERT(nfs_zone() == mi->mi_zone); 15860 15861 locks = flk_active_locks_for_vp(vp); 15862 ri_llp = NULL; 15863 15864 for (llp = locks; llp != NULL; llp = llp->ll_next) { 15865 ASSERT(llp->ll_vp == vp); 15866 /* 15867 * Pick locks that belong to this pid/lockowner 15868 */ 15869 if (llp->ll_flock.l_pid != lost_flp->l_pid) 15870 continue; 15871 15872 nfs4_add_lock_range(lost_flp, &llp->ll_flock, &ri_llp, vp); 15873 } 15874 15875 /* 15876 * Now we have the list of intersections with the lost lock. These are 15877 * the locks that were/are active before the server replied to the 15878 * last/lost lock. Issue these locks to the server here. Playing these 15879 * locks to the server will re-establish aur current local locking state 15880 * with the v4 server. 15881 * If we get an error, send SIGLOST to the application for that lock. 15882 */ 15883 15884 for (llp = ri_llp; llp != NULL; llp = llp->ll_next) { 15885 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15886 "nfs4_reinstitute_local_lock_state: need to issue " 15887 "flock: [%"PRIx64" - %"PRIx64"] : %s", 15888 llp->ll_flock.l_start, 15889 llp->ll_flock.l_start + llp->ll_flock.l_len, 15890 llp->ll_flock.l_type == F_RDLCK ? "READ" : 15891 llp->ll_flock.l_type == F_WRLCK ? "WRITE" : "INVALID")); 15892 /* 15893 * No need to relock what we already have 15894 */ 15895 if (llp->ll_flock.l_type == lost_flp->l_type) 15896 continue; 15897 15898 push_reinstate(vp, cmd, &llp->ll_flock, cr, lop); 15899 } 15900 15901 /* 15902 * Now keeping the start of the lost lock as our reference parse the 15903 * newly created ri_llp locklist to find the ranges that we have locked 15904 * with the v4 server but not in the current local locking. We need 15905 * to unlock these ranges. 15906 * These ranges can also be reffered to as those ranges, where the lost 15907 * lock does not overlap with the locks in the ri_llp but are locked 15908 * since the server replied to the lost lock. 15909 */ 15910 cur_start = lost_flp->l_start; 15911 lost_flp_end = lock_to_end(lost_flp); 15912 15913 ul_fl.l_type = F_UNLCK; 15914 ul_fl.l_whence = 0; /* aka SEEK_SET */ 15915 ul_fl.l_sysid = lost_flp->l_sysid; 15916 ul_fl.l_pid = lost_flp->l_pid; 15917 15918 for (llp = ri_llp; llp != NULL; llp = llp->ll_next) { 15919 llp_ll_flock_end = lock_to_end(&llp->ll_flock); 15920 15921 if (llp->ll_flock.l_start <= cur_start) { 15922 cur_start = start_check(llp_ll_flock_end); 15923 continue; 15924 } 15925 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15926 "nfs4_reinstitute_local_lock_state: " 15927 "UNLOCK [%"PRIx64" - %"PRIx64"]", 15928 cur_start, llp->ll_flock.l_start)); 15929 15930 ul_fl.l_start = cur_start; 15931 ul_fl.l_len = end_to_len(cur_start, 15932 (llp->ll_flock.l_start - 1)); 15933 15934 push_reinstate(vp, cmd, &ul_fl, cr, lop); 15935 cur_start = start_check(llp_ll_flock_end); 15936 } 15937 15938 /* 15939 * In the case where the lost lock ends after all intersecting locks, 15940 * unlock the last part of the lost lock range. 15941 */ 15942 if (cur_start != start_check(lost_flp_end)) { 15943 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15944 "nfs4_reinstitute_local_lock_state: UNLOCK end of the " 15945 "lost lock region [%"PRIx64" - %"PRIx64"]", 15946 cur_start, lost_flp->l_start + lost_flp->l_len)); 15947 15948 ul_fl.l_start = cur_start; 15949 /* 15950 * Is it an to-EOF lock? if so unlock till the end 15951 */ 15952 if (lost_flp->l_len == 0) 15953 ul_fl.l_len = 0; 15954 else 15955 ul_fl.l_len = start_check(lost_flp_end) - cur_start; 15956 15957 push_reinstate(vp, cmd, &ul_fl, cr, lop); 15958 } 15959 15960 if (locks != NULL) 15961 flk_free_locklist(locks); 15962 15963 /* Free up our newly created locklist */ 15964 for (llp = ri_llp; llp != NULL; ) { 15965 tmp_llp = llp->ll_next; 15966 kmem_free(llp, sizeof (locklist_t)); 15967 llp = tmp_llp; 15968 } 15969 15970 /* 15971 * Now return back to the original calling nfs4frlock() 15972 * and let us naturally drop our seqid syncs. 15973 */ 15974 } 15975 15976 /* 15977 * Create a lost state record for the given lock reinstantiation request 15978 * and push it onto the lost state queue. 15979 */ 15980 static void 15981 push_reinstate(vnode_t *vp, int cmd, flock64_t *flk, cred_t *cr, 15982 nfs4_lock_owner_t *lop) 15983 { 15984 nfs4_lost_rqst_t req; 15985 nfs_lock_type4 locktype; 15986 nfs4_error_t e = { EINTR, NFS4_OK, RPC_SUCCESS }; 15987 15988 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 15989 15990 locktype = flk_to_locktype(cmd, flk->l_type); 15991 nfs4frlock_save_lost_rqst(NFS4_LCK_CTYPE_REINSTATE, EINTR, locktype, 15992 NULL, NULL, lop, flk, &req, cr, vp); 15993 (void) nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 15994 (req.lr_op == OP_LOCK || req.lr_op == OP_LOCKU) ? 15995 &req : NULL, flk->l_type == F_UNLCK ? OP_LOCKU : OP_LOCK, 15996 NULL, NULL, NULL); 15997 }