1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
24 */
25
26 /*
27 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
28 * Use is subject to license terms.
29 */
30
31 /*
32 * Copyright 1983,1984,1985,1986,1987,1988,1989 AT&T.
33 * All Rights Reserved
34 */
35
36 /*
37 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
38 */
39
40 #include <sys/param.h>
41 #include <sys/types.h>
42 #include <sys/systm.h>
43 #include <sys/cred.h>
44 #include <sys/time.h>
45 #include <sys/vnode.h>
46 #include <sys/vfs.h>
47 #include <sys/vfs_opreg.h>
48 #include <sys/file.h>
49 #include <sys/filio.h>
50 #include <sys/uio.h>
51 #include <sys/buf.h>
52 #include <sys/mman.h>
53 #include <sys/pathname.h>
54 #include <sys/dirent.h>
55 #include <sys/debug.h>
56 #include <sys/vmsystm.h>
57 #include <sys/fcntl.h>
58 #include <sys/flock.h>
59 #include <sys/swap.h>
60 #include <sys/errno.h>
61 #include <sys/strsubr.h>
62 #include <sys/sysmacros.h>
63 #include <sys/kmem.h>
64 #include <sys/cmn_err.h>
65 #include <sys/pathconf.h>
66 #include <sys/utsname.h>
67 #include <sys/dnlc.h>
68 #include <sys/acl.h>
69 #include <sys/systeminfo.h>
70 #include <sys/policy.h>
71 #include <sys/sdt.h>
72 #include <sys/list.h>
73 #include <sys/stat.h>
74 #include <sys/zone.h>
75
76 #include <rpc/types.h>
77 #include <rpc/auth.h>
78 #include <rpc/clnt.h>
79
80 #include <nfs/nfs.h>
81 #include <nfs/nfs_clnt.h>
82 #include <nfs/nfs_acl.h>
83 #include <nfs/lm.h>
84 #include <nfs/nfs4.h>
85 #include <nfs/nfs4_kprot.h>
86 #include <nfs/rnode4.h>
87 #include <nfs/nfs4_clnt.h>
88
89 #include <vm/hat.h>
90 #include <vm/as.h>
91 #include <vm/page.h>
92 #include <vm/pvn.h>
93 #include <vm/seg.h>
94 #include <vm/seg_map.h>
95 #include <vm/seg_kpm.h>
96 #include <vm/seg_vn.h>
97
98 #include <fs/fs_subr.h>
99
100 #include <sys/ddi.h>
101 #include <sys/int_fmtio.h>
102 #include <sys/fs/autofs.h>
103
104 typedef struct {
105 nfs4_ga_res_t *di_garp;
106 cred_t *di_cred;
107 hrtime_t di_time_call;
108 } dirattr_info_t;
109
110 typedef enum nfs4_acl_op {
111 NFS4_ACL_GET,
112 NFS4_ACL_SET
113 } nfs4_acl_op_t;
114
115 static struct lm_sysid *nfs4_find_sysid(mntinfo4_t *mi);
116
117 static void nfs4_update_dircaches(change_info4 *, vnode_t *, vnode_t *,
118 char *, dirattr_info_t *);
119
120 static void nfs4close_otw(rnode4_t *, cred_t *, nfs4_open_owner_t *,
121 nfs4_open_stream_t *, int *, int *, nfs4_close_type_t,
122 nfs4_error_t *, int *);
123 static int nfs4_rdwrlbn(vnode_t *, page_t *, u_offset_t, size_t, int,
124 cred_t *);
125 static int nfs4write(vnode_t *, caddr_t, u_offset_t, int, cred_t *,
126 stable_how4 *);
127 static int nfs4read(vnode_t *, caddr_t, offset_t, int, size_t *,
128 cred_t *, bool_t, struct uio *);
129 static int nfs4setattr(vnode_t *, struct vattr *, int, cred_t *,
130 vsecattr_t *);
131 static int nfs4openattr(vnode_t *, vnode_t **, int, cred_t *);
132 static int nfs4lookup(vnode_t *, char *, vnode_t **, cred_t *, int);
133 static int nfs4lookup_xattr(vnode_t *, char *, vnode_t **, int, cred_t *);
134 static int nfs4lookupvalidate_otw(vnode_t *, char *, vnode_t **, cred_t *);
135 static int nfs4lookupnew_otw(vnode_t *, char *, vnode_t **, cred_t *);
136 static int nfs4mknod(vnode_t *, char *, struct vattr *, enum vcexcl,
137 int, vnode_t **, cred_t *);
138 static int nfs4open_otw(vnode_t *, char *, struct vattr *, vnode_t **,
139 cred_t *, int, int, enum createmode4, int);
140 static int nfs4rename(vnode_t *, char *, vnode_t *, char *, cred_t *,
141 caller_context_t *);
142 static int nfs4rename_persistent_fh(vnode_t *, char *, vnode_t *,
143 vnode_t *, char *, cred_t *, nfsstat4 *);
144 static int nfs4rename_volatile_fh(vnode_t *, char *, vnode_t *,
145 vnode_t *, char *, cred_t *, nfsstat4 *);
146 static int do_nfs4readdir(vnode_t *, rddir4_cache *, cred_t *);
147 static void nfs4readdir(vnode_t *, rddir4_cache *, cred_t *);
148 static int nfs4_bio(struct buf *, stable_how4 *, cred_t *, bool_t);
149 static int nfs4_getapage(vnode_t *, u_offset_t, size_t, uint_t *,
150 page_t *[], size_t, struct seg *, caddr_t,
151 enum seg_rw, cred_t *);
152 static void nfs4_readahead(vnode_t *, u_offset_t, caddr_t, struct seg *,
153 cred_t *);
154 static int nfs4_sync_putapage(vnode_t *, page_t *, u_offset_t, size_t,
155 int, cred_t *);
156 static int nfs4_sync_pageio(vnode_t *, page_t *, u_offset_t, size_t,
157 int, cred_t *);
158 static int nfs4_commit(vnode_t *, offset4, count4, cred_t *);
159 static void nfs4_set_mod(vnode_t *);
160 static void nfs4_get_commit(vnode_t *);
161 static void nfs4_get_commit_range(vnode_t *, u_offset_t, size_t);
162 static int nfs4_putpage_commit(vnode_t *, offset_t, size_t, cred_t *);
163 static int nfs4_commit_vp(vnode_t *, u_offset_t, size_t, cred_t *, int);
164 static int nfs4_sync_commit(vnode_t *, page_t *, offset3, count3,
165 cred_t *);
166 static void do_nfs4_async_commit(vnode_t *, page_t *, offset3, count3,
167 cred_t *);
168 static int nfs4_update_attrcache(nfsstat4, nfs4_ga_res_t *,
169 hrtime_t, vnode_t *, cred_t *);
170 static int nfs4_open_non_reg_file(vnode_t **, int, cred_t *);
171 static int nfs4_safelock(vnode_t *, const struct flock64 *, cred_t *);
172 static void nfs4_register_lock_locally(vnode_t *, struct flock64 *, int,
173 u_offset_t);
174 static int nfs4_lockrelease(vnode_t *, int, offset_t, cred_t *);
175 static int nfs4_block_and_wait(clock_t *, rnode4_t *);
176 static cred_t *state_to_cred(nfs4_open_stream_t *);
177 static void denied_to_flk(LOCK4denied *, flock64_t *, LOCKT4args *);
178 static pid_t lo_to_pid(lock_owner4 *);
179 static void nfs4_reinstitute_local_lock_state(vnode_t *, flock64_t *,
180 cred_t *, nfs4_lock_owner_t *);
181 static void push_reinstate(vnode_t *, int, flock64_t *, cred_t *,
182 nfs4_lock_owner_t *);
183 static int open_and_get_osp(vnode_t *, cred_t *, nfs4_open_stream_t **);
184 static void nfs4_delmap_callback(struct as *, void *, uint_t);
185 static void nfs4_free_delmapcall(nfs4_delmapcall_t *);
186 static nfs4_delmapcall_t *nfs4_init_delmapcall();
187 static int nfs4_find_and_delete_delmapcall(rnode4_t *, int *);
188 static int nfs4_is_acl_mask_valid(uint_t, nfs4_acl_op_t);
189 static int nfs4_create_getsecattr_return(vsecattr_t *, vsecattr_t *,
190 uid_t, gid_t, int);
191
192 /*
193 * Routines that implement the setting of v4 args for the misc. ops
194 */
195 static void nfs4args_lock_free(nfs_argop4 *);
196 static void nfs4args_lockt_free(nfs_argop4 *);
197 static void nfs4args_setattr(nfs_argop4 *, vattr_t *, vsecattr_t *,
198 int, rnode4_t *, cred_t *, bitmap4, int *,
199 nfs4_stateid_types_t *);
200 static void nfs4args_setattr_free(nfs_argop4 *);
201 static int nfs4args_verify(nfs_argop4 *, vattr_t *, enum nfs_opnum4,
202 bitmap4);
203 static void nfs4args_verify_free(nfs_argop4 *);
204 static void nfs4args_write(nfs_argop4 *, stable_how4, rnode4_t *, cred_t *,
205 WRITE4args **, nfs4_stateid_types_t *);
206
207 /*
208 * These are the vnode ops functions that implement the vnode interface to
209 * the networked file system. See more comments below at nfs4_vnodeops.
210 */
211 static int nfs4_open(vnode_t **, int, cred_t *, caller_context_t *);
212 static int nfs4_close(vnode_t *, int, int, offset_t, cred_t *,
213 caller_context_t *);
214 static int nfs4_read(vnode_t *, struct uio *, int, cred_t *,
215 caller_context_t *);
216 static int nfs4_write(vnode_t *, struct uio *, int, cred_t *,
217 caller_context_t *);
218 static int nfs4_ioctl(vnode_t *, int, intptr_t, int, cred_t *, int *,
219 caller_context_t *);
220 static int nfs4_setattr(vnode_t *, struct vattr *, int, cred_t *,
221 caller_context_t *);
222 static int nfs4_access(vnode_t *, int, int, cred_t *, caller_context_t *);
223 static int nfs4_readlink(vnode_t *, struct uio *, cred_t *,
224 caller_context_t *);
225 static int nfs4_fsync(vnode_t *, int, cred_t *, caller_context_t *);
226 static int nfs4_create(vnode_t *, char *, struct vattr *, enum vcexcl,
227 int, vnode_t **, cred_t *, int, caller_context_t *,
228 vsecattr_t *);
229 static int nfs4_remove(vnode_t *, char *, cred_t *, caller_context_t *,
230 int);
231 static int nfs4_link(vnode_t *, vnode_t *, char *, cred_t *,
232 caller_context_t *, int);
233 static int nfs4_rename(vnode_t *, char *, vnode_t *, char *, cred_t *,
234 caller_context_t *, int);
235 static int nfs4_mkdir(vnode_t *, char *, struct vattr *, vnode_t **,
236 cred_t *, caller_context_t *, int, vsecattr_t *);
237 static int nfs4_rmdir(vnode_t *, char *, vnode_t *, cred_t *,
238 caller_context_t *, int);
239 static int nfs4_symlink(vnode_t *, char *, struct vattr *, char *,
240 cred_t *, caller_context_t *, int);
241 static int nfs4_readdir(vnode_t *, struct uio *, cred_t *, int *,
242 caller_context_t *, int);
243 static int nfs4_seek(vnode_t *, offset_t, offset_t *, caller_context_t *);
244 static int nfs4_getpage(vnode_t *, offset_t, size_t, uint_t *,
245 page_t *[], size_t, struct seg *, caddr_t,
246 enum seg_rw, cred_t *, caller_context_t *);
247 static int nfs4_putpage(vnode_t *, offset_t, size_t, int, cred_t *,
248 caller_context_t *);
249 static int nfs4_map(vnode_t *, offset_t, struct as *, caddr_t *, size_t,
250 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *);
251 static int nfs4_addmap(vnode_t *, offset_t, struct as *, caddr_t, size_t,
252 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *);
253 static int nfs4_cmp(vnode_t *, vnode_t *, caller_context_t *);
254 static int nfs4_frlock(vnode_t *, int, struct flock64 *, int, offset_t,
255 struct flk_callback *, cred_t *, caller_context_t *);
256 static int nfs4_space(vnode_t *, int, struct flock64 *, int, offset_t,
257 cred_t *, caller_context_t *);
258 static int nfs4_delmap(vnode_t *, offset_t, struct as *, caddr_t, size_t,
259 uint_t, uint_t, uint_t, cred_t *, caller_context_t *);
260 static int nfs4_pageio(vnode_t *, page_t *, u_offset_t, size_t, int,
261 cred_t *, caller_context_t *);
262 static void nfs4_dispose(vnode_t *, page_t *, int, int, cred_t *,
263 caller_context_t *);
264 static int nfs4_setsecattr(vnode_t *, vsecattr_t *, int, cred_t *,
265 caller_context_t *);
266 /*
267 * These vnode ops are required to be called from outside this source file,
268 * e.g. by ephemeral mount stub vnode ops, and so may not be declared
269 * as static.
270 */
271 int nfs4_getattr(vnode_t *, struct vattr *, int, cred_t *,
272 caller_context_t *);
273 void nfs4_inactive(vnode_t *, cred_t *, caller_context_t *);
274 int nfs4_lookup(vnode_t *, char *, vnode_t **,
275 struct pathname *, int, vnode_t *, cred_t *,
276 caller_context_t *, int *, pathname_t *);
277 int nfs4_fid(vnode_t *, fid_t *, caller_context_t *);
278 int nfs4_rwlock(vnode_t *, int, caller_context_t *);
279 void nfs4_rwunlock(vnode_t *, int, caller_context_t *);
280 int nfs4_realvp(vnode_t *, vnode_t **, caller_context_t *);
281 int nfs4_pathconf(vnode_t *, int, ulong_t *, cred_t *,
282 caller_context_t *);
283 int nfs4_getsecattr(vnode_t *, vsecattr_t *, int, cred_t *,
284 caller_context_t *);
285 int nfs4_shrlock(vnode_t *, int, struct shrlock *, int, cred_t *,
286 caller_context_t *);
287
288 /*
289 * Used for nfs4_commit_vp() to indicate if we should
290 * wait on pending writes.
291 */
292 #define NFS4_WRITE_NOWAIT 0
293 #define NFS4_WRITE_WAIT 1
294
295 #define NFS4_BASE_WAIT_TIME 1 /* 1 second */
296
297 /*
298 * Error flags used to pass information about certain special errors
299 * which need to be handled specially.
300 */
301 #define NFS_EOF -98
302 #define NFS_VERF_MISMATCH -97
303
304 /*
305 * Flags used to differentiate between which operation drove the
306 * potential CLOSE OTW. (see nfs4_close_otw_if_necessary)
307 */
308 #define NFS4_CLOSE_OP 0x1
309 #define NFS4_DELMAP_OP 0x2
310 #define NFS4_INACTIVE_OP 0x3
311
312 #define ISVDEV(t) ((t == VBLK) || (t == VCHR) || (t == VFIFO))
313
314 /* ALIGN64 aligns the given buffer and adjust buffer size to 64 bit */
315 #define ALIGN64(x, ptr, sz) \
316 x = ((uintptr_t)(ptr)) & (sizeof (uint64_t) - 1); \
317 if (x) { \
318 x = sizeof (uint64_t) - (x); \
319 sz -= (x); \
320 ptr += (x); \
321 }
322
323 #ifdef DEBUG
324 int nfs4_client_attr_debug = 0;
325 int nfs4_client_state_debug = 0;
326 int nfs4_client_shadow_debug = 0;
327 int nfs4_client_lock_debug = 0;
328 int nfs4_seqid_sync = 0;
329 int nfs4_client_map_debug = 0;
330 static int nfs4_pageio_debug = 0;
331 int nfs4_client_inactive_debug = 0;
332 int nfs4_client_recov_debug = 0;
333 int nfs4_client_failover_debug = 0;
334 int nfs4_client_call_debug = 0;
335 int nfs4_client_lookup_debug = 0;
336 int nfs4_client_zone_debug = 0;
337 int nfs4_lost_rqst_debug = 0;
338 int nfs4_rdattrerr_debug = 0;
339 int nfs4_open_stream_debug = 0;
340
341 int nfs4read_error_inject;
342
343 static int nfs4_create_misses = 0;
344
345 static int nfs4_readdir_cache_shorts = 0;
346 static int nfs4_readdir_readahead = 0;
347
348 static int nfs4_bio_do_stop = 0;
349
350 static int nfs4_lostpage = 0; /* number of times we lost original page */
351
352 int nfs4_mmap_debug = 0;
353
354 static int nfs4_pathconf_cache_hits = 0;
355 static int nfs4_pathconf_cache_misses = 0;
356
357 int nfs4close_all_cnt;
358 int nfs4close_one_debug = 0;
359 int nfs4close_notw_debug = 0;
360
361 int denied_to_flk_debug = 0;
362 void *lockt_denied_debug;
363
364 #endif
365
366 /*
367 * How long to wait before trying again if OPEN_CONFIRM gets ETIMEDOUT
368 * or NFS4ERR_RESOURCE.
369 */
370 static int confirm_retry_sec = 30;
371
372 static int nfs4_lookup_neg_cache = 1;
373
374 /*
375 * number of pages to read ahead
376 * optimized for 100 base-T.
377 */
378 static int nfs4_nra = 4;
379
380 static int nfs4_do_symlink_cache = 1;
381
382 static int nfs4_pathconf_disable_cache = 0;
383
384 /*
385 * These are the vnode ops routines which implement the vnode interface to
386 * the networked file system. These routines just take their parameters,
387 * make them look networkish by putting the right info into interface structs,
388 * and then calling the appropriate remote routine(s) to do the work.
389 *
390 * Note on directory name lookup cacheing: If we detect a stale fhandle,
391 * we purge the directory cache relative to that vnode. This way, the
392 * user won't get burned by the cache repeatedly. See <nfs/rnode4.h> for
393 * more details on rnode locking.
394 */
395
396 struct vnodeops *nfs4_vnodeops;
397
398 const fs_operation_def_t nfs4_vnodeops_template[] = {
399 VOPNAME_OPEN, { .vop_open = nfs4_open },
400 VOPNAME_CLOSE, { .vop_close = nfs4_close },
401 VOPNAME_READ, { .vop_read = nfs4_read },
402 VOPNAME_WRITE, { .vop_write = nfs4_write },
403 VOPNAME_IOCTL, { .vop_ioctl = nfs4_ioctl },
404 VOPNAME_GETATTR, { .vop_getattr = nfs4_getattr },
405 VOPNAME_SETATTR, { .vop_setattr = nfs4_setattr },
406 VOPNAME_ACCESS, { .vop_access = nfs4_access },
407 VOPNAME_LOOKUP, { .vop_lookup = nfs4_lookup },
408 VOPNAME_CREATE, { .vop_create = nfs4_create },
409 VOPNAME_REMOVE, { .vop_remove = nfs4_remove },
410 VOPNAME_LINK, { .vop_link = nfs4_link },
411 VOPNAME_RENAME, { .vop_rename = nfs4_rename },
412 VOPNAME_MKDIR, { .vop_mkdir = nfs4_mkdir },
413 VOPNAME_RMDIR, { .vop_rmdir = nfs4_rmdir },
414 VOPNAME_READDIR, { .vop_readdir = nfs4_readdir },
415 VOPNAME_SYMLINK, { .vop_symlink = nfs4_symlink },
416 VOPNAME_READLINK, { .vop_readlink = nfs4_readlink },
417 VOPNAME_FSYNC, { .vop_fsync = nfs4_fsync },
418 VOPNAME_INACTIVE, { .vop_inactive = nfs4_inactive },
419 VOPNAME_FID, { .vop_fid = nfs4_fid },
420 VOPNAME_RWLOCK, { .vop_rwlock = nfs4_rwlock },
421 VOPNAME_RWUNLOCK, { .vop_rwunlock = nfs4_rwunlock },
422 VOPNAME_SEEK, { .vop_seek = nfs4_seek },
423 VOPNAME_FRLOCK, { .vop_frlock = nfs4_frlock },
424 VOPNAME_SPACE, { .vop_space = nfs4_space },
425 VOPNAME_REALVP, { .vop_realvp = nfs4_realvp },
426 VOPNAME_GETPAGE, { .vop_getpage = nfs4_getpage },
427 VOPNAME_PUTPAGE, { .vop_putpage = nfs4_putpage },
428 VOPNAME_MAP, { .vop_map = nfs4_map },
429 VOPNAME_ADDMAP, { .vop_addmap = nfs4_addmap },
430 VOPNAME_DELMAP, { .vop_delmap = nfs4_delmap },
431 /* no separate nfs4_dump */
432 VOPNAME_DUMP, { .vop_dump = nfs_dump },
433 VOPNAME_PATHCONF, { .vop_pathconf = nfs4_pathconf },
434 VOPNAME_PAGEIO, { .vop_pageio = nfs4_pageio },
435 VOPNAME_DISPOSE, { .vop_dispose = nfs4_dispose },
436 VOPNAME_SETSECATTR, { .vop_setsecattr = nfs4_setsecattr },
437 VOPNAME_GETSECATTR, { .vop_getsecattr = nfs4_getsecattr },
438 VOPNAME_SHRLOCK, { .vop_shrlock = nfs4_shrlock },
439 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
440 NULL, NULL
441 };
442
443 /*
444 * The following are subroutines and definitions to set args or get res
445 * for the different nfsv4 ops
446 */
447
448 void
449 nfs4args_lookup_free(nfs_argop4 *argop, int arglen)
450 {
451 int i;
452
453 for (i = 0; i < arglen; i++) {
454 if (argop[i].argop == OP_LOOKUP) {
455 kmem_free(
456 argop[i].nfs_argop4_u.oplookup.
457 objname.utf8string_val,
458 argop[i].nfs_argop4_u.oplookup.
459 objname.utf8string_len);
460 }
461 }
462 }
463
464 static void
465 nfs4args_lock_free(nfs_argop4 *argop)
466 {
467 locker4 *locker = &argop->nfs_argop4_u.oplock.locker;
468
469 if (locker->new_lock_owner == TRUE) {
470 open_to_lock_owner4 *open_owner;
471
472 open_owner = &locker->locker4_u.open_owner;
473 if (open_owner->lock_owner.owner_val != NULL) {
474 kmem_free(open_owner->lock_owner.owner_val,
475 open_owner->lock_owner.owner_len);
476 }
477 }
478 }
479
480 static void
481 nfs4args_lockt_free(nfs_argop4 *argop)
482 {
483 lock_owner4 *lowner = &argop->nfs_argop4_u.oplockt.owner;
484
485 if (lowner->owner_val != NULL) {
486 kmem_free(lowner->owner_val, lowner->owner_len);
487 }
488 }
489
490 static void
491 nfs4args_setattr(nfs_argop4 *argop, vattr_t *vap, vsecattr_t *vsap, int flags,
492 rnode4_t *rp, cred_t *cr, bitmap4 supp, int *error,
493 nfs4_stateid_types_t *sid_types)
494 {
495 fattr4 *attr = &argop->nfs_argop4_u.opsetattr.obj_attributes;
496 mntinfo4_t *mi;
497
498 argop->argop = OP_SETATTR;
499 /*
500 * The stateid is set to 0 if client is not modifying the size
501 * and otherwise to whatever nfs4_get_stateid() returns.
502 *
503 * XXX Note: nfs4_get_stateid() returns 0 if no lockowner and/or no
504 * state struct could be found for the process/file pair. We may
505 * want to change this in the future (by OPENing the file). See
506 * bug # 4474852.
507 */
508 if (vap->va_mask & AT_SIZE) {
509
510 ASSERT(rp != NULL);
511 mi = VTOMI4(RTOV4(rp));
512
513 argop->nfs_argop4_u.opsetattr.stateid =
514 nfs4_get_stateid(cr, rp, curproc->p_pidp->pid_id, mi,
515 OP_SETATTR, sid_types, FALSE);
516 } else {
517 bzero(&argop->nfs_argop4_u.opsetattr.stateid,
518 sizeof (stateid4));
519 }
520
521 *error = vattr_to_fattr4(vap, vsap, attr, flags, OP_SETATTR, supp);
522 if (*error)
523 bzero(attr, sizeof (*attr));
524 }
525
526 static void
527 nfs4args_setattr_free(nfs_argop4 *argop)
528 {
529 nfs4_fattr4_free(&argop->nfs_argop4_u.opsetattr.obj_attributes);
530 }
531
532 static int
533 nfs4args_verify(nfs_argop4 *argop, vattr_t *vap, enum nfs_opnum4 op,
534 bitmap4 supp)
535 {
536 fattr4 *attr;
537 int error = 0;
538
539 argop->argop = op;
540 switch (op) {
541 case OP_VERIFY:
542 attr = &argop->nfs_argop4_u.opverify.obj_attributes;
543 break;
544 case OP_NVERIFY:
545 attr = &argop->nfs_argop4_u.opnverify.obj_attributes;
546 break;
547 default:
548 return (EINVAL);
549 }
550 if (!error)
551 error = vattr_to_fattr4(vap, NULL, attr, 0, op, supp);
552 if (error)
553 bzero(attr, sizeof (*attr));
554 return (error);
555 }
556
557 static void
558 nfs4args_verify_free(nfs_argop4 *argop)
559 {
560 switch (argop->argop) {
561 case OP_VERIFY:
562 nfs4_fattr4_free(&argop->nfs_argop4_u.opverify.obj_attributes);
563 break;
564 case OP_NVERIFY:
565 nfs4_fattr4_free(&argop->nfs_argop4_u.opnverify.obj_attributes);
566 break;
567 default:
568 break;
569 }
570 }
571
572 static void
573 nfs4args_write(nfs_argop4 *argop, stable_how4 stable, rnode4_t *rp, cred_t *cr,
574 WRITE4args **wargs_pp, nfs4_stateid_types_t *sid_tp)
575 {
576 WRITE4args *wargs = &argop->nfs_argop4_u.opwrite;
577 mntinfo4_t *mi = VTOMI4(RTOV4(rp));
578
579 argop->argop = OP_WRITE;
580 wargs->stable = stable;
581 wargs->stateid = nfs4_get_w_stateid(cr, rp, curproc->p_pidp->pid_id,
582 mi, OP_WRITE, sid_tp);
583 wargs->mblk = NULL;
584 *wargs_pp = wargs;
585 }
586
587 void
588 nfs4args_copen_free(OPEN4cargs *open_args)
589 {
590 if (open_args->owner.owner_val) {
591 kmem_free(open_args->owner.owner_val,
592 open_args->owner.owner_len);
593 }
594 if ((open_args->opentype == OPEN4_CREATE) &&
595 (open_args->mode != EXCLUSIVE4)) {
596 nfs4_fattr4_free(&open_args->createhow4_u.createattrs);
597 }
598 }
599
600 /*
601 * XXX: This is referenced in modstubs.s
602 */
603 struct vnodeops *
604 nfs4_getvnodeops(void)
605 {
606 return (nfs4_vnodeops);
607 }
608
609 /*
610 * The OPEN operation opens a regular file.
611 */
612 /*ARGSUSED3*/
613 static int
614 nfs4_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
615 {
616 vnode_t *dvp = NULL;
617 rnode4_t *rp, *drp;
618 int error;
619 int just_been_created;
620 char fn[MAXNAMELEN];
621
622 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4_open: "));
623 if (nfs_zone() != VTOMI4(*vpp)->mi_zone)
624 return (EIO);
625 rp = VTOR4(*vpp);
626
627 /*
628 * Check to see if opening something besides a regular file;
629 * if so skip the OTW call
630 */
631 if ((*vpp)->v_type != VREG) {
632 error = nfs4_open_non_reg_file(vpp, flag, cr);
633 return (error);
634 }
635
636 /*
637 * XXX - would like a check right here to know if the file is
638 * executable or not, so as to skip OTW
639 */
640
641 if ((error = vtodv(*vpp, &dvp, cr, TRUE)) != 0)
642 return (error);
643
644 drp = VTOR4(dvp);
645 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp)))
646 return (EINTR);
647
648 if ((error = vtoname(*vpp, fn, MAXNAMELEN)) != 0) {
649 nfs_rw_exit(&drp->r_rwlock);
650 return (error);
651 }
652
653 /*
654 * See if this file has just been CREATEd.
655 * If so, clear the flag and update the dnlc, which was previously
656 * skipped in nfs4_create.
657 * XXX need better serilization on this.
658 * XXX move this into the nf4open_otw call, after we have
659 * XXX acquired the open owner seqid sync.
660 */
661 mutex_enter(&rp->r_statev4_lock);
662 if (rp->created_v4) {
663 rp->created_v4 = 0;
664 mutex_exit(&rp->r_statev4_lock);
665
666 dnlc_update(dvp, fn, *vpp);
667 /* This is needed so we don't bump the open ref count */
668 just_been_created = 1;
669 } else {
670 mutex_exit(&rp->r_statev4_lock);
671 just_been_created = 0;
672 }
673
674 /*
675 * If caller specified O_TRUNC/FTRUNC, then be sure to set
676 * FWRITE (to drive successful setattr(size=0) after open)
677 */
678 if (flag & FTRUNC)
679 flag |= FWRITE;
680
681 error = nfs4open_otw(dvp, fn, NULL, vpp, cr, 0, flag, 0,
682 just_been_created);
683
684 if (!error && !((*vpp)->v_flag & VROOT))
685 dnlc_update(dvp, fn, *vpp);
686
687 nfs_rw_exit(&drp->r_rwlock);
688
689 /* release the hold from vtodv */
690 VN_RELE(dvp);
691
692 /* exchange the shadow for the master vnode, if needed */
693
694 if (error == 0 && IS_SHADOW(*vpp, rp))
695 sv_exchange(vpp);
696
697 return (error);
698 }
699
700 /*
701 * See if there's a "lost open" request to be saved and recovered.
702 */
703 static void
704 nfs4open_save_lost_rqst(int error, nfs4_lost_rqst_t *lost_rqstp,
705 nfs4_open_owner_t *oop, cred_t *cr, vnode_t *vp,
706 vnode_t *dvp, OPEN4cargs *open_args)
707 {
708 vfs_t *vfsp;
709 char *srccfp;
710
711 vfsp = (dvp ? dvp->v_vfsp : vp->v_vfsp);
712
713 if (error != ETIMEDOUT && error != EINTR &&
714 !NFS4_FRC_UNMT_ERR(error, vfsp)) {
715 lost_rqstp->lr_op = 0;
716 return;
717 }
718
719 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE,
720 "nfs4open_save_lost_rqst: error %d", error));
721
722 lost_rqstp->lr_op = OP_OPEN;
723
724 /*
725 * The vp (if it is not NULL) and dvp are held and rele'd via
726 * the recovery code. See nfs4_save_lost_rqst.
727 */
728 lost_rqstp->lr_vp = vp;
729 lost_rqstp->lr_dvp = dvp;
730 lost_rqstp->lr_oop = oop;
731 lost_rqstp->lr_osp = NULL;
732 lost_rqstp->lr_lop = NULL;
733 lost_rqstp->lr_cr = cr;
734 lost_rqstp->lr_flk = NULL;
735 lost_rqstp->lr_oacc = open_args->share_access;
736 lost_rqstp->lr_odeny = open_args->share_deny;
737 lost_rqstp->lr_oclaim = open_args->claim;
738 if (open_args->claim == CLAIM_DELEGATE_CUR) {
739 lost_rqstp->lr_ostateid =
740 open_args->open_claim4_u.delegate_cur_info.delegate_stateid;
741 srccfp = open_args->open_claim4_u.delegate_cur_info.cfile;
742 } else {
743 srccfp = open_args->open_claim4_u.cfile;
744 }
745 lost_rqstp->lr_ofile.utf8string_len = 0;
746 lost_rqstp->lr_ofile.utf8string_val = NULL;
747 (void) str_to_utf8(srccfp, &lost_rqstp->lr_ofile);
748 lost_rqstp->lr_putfirst = FALSE;
749 }
750
751 struct nfs4_excl_time {
752 uint32 seconds;
753 uint32 nseconds;
754 };
755
756 /*
757 * The OPEN operation creates and/or opens a regular file
758 *
759 * ARGSUSED
760 */
761 static int
762 nfs4open_otw(vnode_t *dvp, char *file_name, struct vattr *in_va,
763 vnode_t **vpp, cred_t *cr, int create_flag, int open_flag,
764 enum createmode4 createmode, int file_just_been_created)
765 {
766 rnode4_t *rp;
767 rnode4_t *drp = VTOR4(dvp);
768 vnode_t *vp = NULL;
769 vnode_t *vpi = *vpp;
770 bool_t needrecov = FALSE;
771
772 int doqueue = 1;
773
774 COMPOUND4args_clnt args;
775 COMPOUND4res_clnt res;
776 nfs_argop4 *argop;
777 nfs_resop4 *resop;
778 int argoplist_size;
779 int idx_open, idx_fattr;
780
781 GETFH4res *gf_res = NULL;
782 OPEN4res *op_res = NULL;
783 nfs4_ga_res_t *garp;
784 fattr4 *attr = NULL;
785 struct nfs4_excl_time verf;
786 bool_t did_excl_setup = FALSE;
787 int created_osp;
788
789 OPEN4cargs *open_args;
790 nfs4_open_owner_t *oop = NULL;
791 nfs4_open_stream_t *osp = NULL;
792 seqid4 seqid = 0;
793 bool_t retry_open = FALSE;
794 nfs4_recov_state_t recov_state;
795 nfs4_lost_rqst_t lost_rqst;
796 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
797 hrtime_t t;
798 int acc = 0;
799 cred_t *cred_otw = NULL; /* cred used to do the RPC call */
800 cred_t *ncr = NULL;
801
802 nfs4_sharedfh_t *otw_sfh;
803 nfs4_sharedfh_t *orig_sfh;
804 int fh_differs = 0;
805 int numops, setgid_flag;
806 int num_bseqid_retry = NFS4_NUM_RETRY_BAD_SEQID + 1;
807
808 /*
809 * Make sure we properly deal with setting the right gid on
810 * a newly created file to reflect the parent's setgid bit
811 */
812 setgid_flag = 0;
813 if (create_flag && in_va) {
814
815 /*
816 * If there is grpid mount flag used or
817 * the parent's directory has the setgid bit set
818 * _and_ the client was able to get a valid mapping
819 * for the parent dir's owner_group, we want to
820 * append NVERIFY(owner_group == dva.va_gid) and
821 * SETATTR to the CREATE compound.
822 */
823 mutex_enter(&drp->r_statelock);
824 if ((VTOMI4(dvp)->mi_flags & MI4_GRPID ||
825 drp->r_attr.va_mode & VSGID) &&
826 drp->r_attr.va_gid != GID_NOBODY) {
827 in_va->va_mask |= AT_GID;
828 in_va->va_gid = drp->r_attr.va_gid;
829 setgid_flag = 1;
830 }
831 mutex_exit(&drp->r_statelock);
832 }
833
834 /*
835 * Normal/non-create compound:
836 * PUTFH(dfh) + OPEN(create) + GETFH + GETATTR(new)
837 *
838 * Open(create) compound no setgid:
839 * PUTFH(dfh) + SAVEFH + OPEN(create) + GETFH + GETATTR(new) +
840 * RESTOREFH + GETATTR
841 *
842 * Open(create) setgid:
843 * PUTFH(dfh) + OPEN(create) + GETFH + GETATTR(new) +
844 * SAVEFH + PUTFH(dfh) + GETATTR(dvp) + RESTOREFH +
845 * NVERIFY(grp) + SETATTR
846 */
847 if (setgid_flag) {
848 numops = 10;
849 idx_open = 1;
850 idx_fattr = 3;
851 } else if (create_flag) {
852 numops = 7;
853 idx_open = 2;
854 idx_fattr = 4;
855 } else {
856 numops = 4;
857 idx_open = 1;
858 idx_fattr = 3;
859 }
860
861 args.array_len = numops;
862 argoplist_size = numops * sizeof (nfs_argop4);
863 argop = kmem_alloc(argoplist_size, KM_SLEEP);
864
865 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4open_otw: "
866 "open %s open flag 0x%x cred %p", file_name, open_flag,
867 (void *)cr));
868
869 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone);
870 if (create_flag) {
871 /*
872 * We are to create a file. Initialize the passed in vnode
873 * pointer.
874 */
875 vpi = NULL;
876 } else {
877 /*
878 * Check to see if the client owns a read delegation and is
879 * trying to open for write. If so, then return the delegation
880 * to avoid the server doing a cb_recall and returning DELAY.
881 * NB - we don't use the statev4_lock here because we'd have
882 * to drop the lock anyway and the result would be stale.
883 */
884 if ((open_flag & FWRITE) &&
885 VTOR4(vpi)->r_deleg_type == OPEN_DELEGATE_READ)
886 (void) nfs4delegreturn(VTOR4(vpi), NFS4_DR_REOPEN);
887
888 /*
889 * If the file has a delegation, then do an access check up
890 * front. This avoids having to an access check later after
891 * we've already done start_op, which could deadlock.
892 */
893 if (VTOR4(vpi)->r_deleg_type != OPEN_DELEGATE_NONE) {
894 if (open_flag & FREAD &&
895 nfs4_access(vpi, VREAD, 0, cr, NULL) == 0)
896 acc |= VREAD;
897 if (open_flag & FWRITE &&
898 nfs4_access(vpi, VWRITE, 0, cr, NULL) == 0)
899 acc |= VWRITE;
900 }
901 }
902
903 drp = VTOR4(dvp);
904
905 recov_state.rs_flags = 0;
906 recov_state.rs_num_retry_despite_err = 0;
907 cred_otw = cr;
908
909 recov_retry:
910 fh_differs = 0;
911 nfs4_error_zinit(&e);
912
913 e.error = nfs4_start_op(VTOMI4(dvp), dvp, vpi, &recov_state);
914 if (e.error) {
915 if (ncr != NULL)
916 crfree(ncr);
917 kmem_free(argop, argoplist_size);
918 return (e.error);
919 }
920
921 args.ctag = TAG_OPEN;
922 args.array_len = numops;
923 args.array = argop;
924
925 /* putfh directory fh */
926 argop[0].argop = OP_CPUTFH;
927 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh;
928
929 /* OPEN: either op 1 or op 2 depending upon create/setgid flags */
930 argop[idx_open].argop = OP_COPEN;
931 open_args = &argop[idx_open].nfs_argop4_u.opcopen;
932 open_args->claim = CLAIM_NULL;
933
934 /* name of file */
935 open_args->open_claim4_u.cfile = file_name;
936 open_args->owner.owner_len = 0;
937 open_args->owner.owner_val = NULL;
938
939 if (create_flag) {
940 /* CREATE a file */
941 open_args->opentype = OPEN4_CREATE;
942 open_args->mode = createmode;
943 if (createmode == EXCLUSIVE4) {
944 if (did_excl_setup == FALSE) {
945 verf.seconds = zone_get_hostid(NULL);
946 if (verf.seconds != 0)
947 verf.nseconds = newnum();
948 else {
949 timestruc_t now;
950
951 gethrestime(&now);
952 verf.seconds = now.tv_sec;
953 verf.nseconds = now.tv_nsec;
954 }
955 /*
956 * Since the server will use this value for the
957 * mtime, make sure that it can't overflow. Zero
958 * out the MSB. The actual value does not matter
959 * here, only its uniqeness.
960 */
961 verf.seconds &= INT32_MAX;
962 did_excl_setup = TRUE;
963 }
964
965 /* Now copy over verifier to OPEN4args. */
966 open_args->createhow4_u.createverf = *(uint64_t *)&verf;
967 } else {
968 int v_error;
969 bitmap4 supp_attrs;
970 servinfo4_t *svp;
971
972 attr = &open_args->createhow4_u.createattrs;
973
974 svp = drp->r_server;
975 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
976 supp_attrs = svp->sv_supp_attrs;
977 nfs_rw_exit(&svp->sv_lock);
978
979 /* GUARDED4 or UNCHECKED4 */
980 v_error = vattr_to_fattr4(in_va, NULL, attr, 0, OP_OPEN,
981 supp_attrs);
982 if (v_error) {
983 bzero(attr, sizeof (*attr));
984 nfs4args_copen_free(open_args);
985 nfs4_end_op(VTOMI4(dvp), dvp, vpi,
986 &recov_state, FALSE);
987 if (ncr != NULL)
988 crfree(ncr);
989 kmem_free(argop, argoplist_size);
990 return (v_error);
991 }
992 }
993 } else {
994 /* NO CREATE */
995 open_args->opentype = OPEN4_NOCREATE;
996 }
997
998 if (recov_state.rs_sp != NULL) {
999 mutex_enter(&recov_state.rs_sp->s_lock);
1000 open_args->owner.clientid = recov_state.rs_sp->clientid;
1001 mutex_exit(&recov_state.rs_sp->s_lock);
1002 } else {
1003 /* XXX should we just fail here? */
1004 open_args->owner.clientid = 0;
1005 }
1006
1007 /*
1008 * This increments oop's ref count or creates a temporary 'just_created'
1009 * open owner that will become valid when this OPEN/OPEN_CONFIRM call
1010 * completes.
1011 */
1012 mutex_enter(&VTOMI4(dvp)->mi_lock);
1013
1014 /* See if a permanent or just created open owner exists */
1015 oop = find_open_owner_nolock(cr, NFS4_JUST_CREATED, VTOMI4(dvp));
1016 if (!oop) {
1017 /*
1018 * This open owner does not exist so create a temporary
1019 * just created one.
1020 */
1021 oop = create_open_owner(cr, VTOMI4(dvp));
1022 ASSERT(oop != NULL);
1023 }
1024 mutex_exit(&VTOMI4(dvp)->mi_lock);
1025
1026 /* this length never changes, do alloc before seqid sync */
1027 open_args->owner.owner_len = sizeof (oop->oo_name);
1028 open_args->owner.owner_val =
1029 kmem_alloc(open_args->owner.owner_len, KM_SLEEP);
1030
1031 e.error = nfs4_start_open_seqid_sync(oop, VTOMI4(dvp));
1032 if (e.error == EAGAIN) {
1033 open_owner_rele(oop);
1034 nfs4args_copen_free(open_args);
1035 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, TRUE);
1036 if (ncr != NULL) {
1037 crfree(ncr);
1038 ncr = NULL;
1039 }
1040 goto recov_retry;
1041 }
1042
1043 /* Check to see if we need to do the OTW call */
1044 if (!create_flag) {
1045 if (!nfs4_is_otw_open_necessary(oop, open_flag, vpi,
1046 file_just_been_created, &e.error, acc, &recov_state)) {
1047
1048 /*
1049 * The OTW open is not necessary. Either
1050 * the open can succeed without it (eg.
1051 * delegation, error == 0) or the open
1052 * must fail due to an access failure
1053 * (error != 0). In either case, tidy
1054 * up and return.
1055 */
1056
1057 nfs4_end_open_seqid_sync(oop);
1058 open_owner_rele(oop);
1059 nfs4args_copen_free(open_args);
1060 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, FALSE);
1061 if (ncr != NULL)
1062 crfree(ncr);
1063 kmem_free(argop, argoplist_size);
1064 return (e.error);
1065 }
1066 }
1067
1068 bcopy(&oop->oo_name, open_args->owner.owner_val,
1069 open_args->owner.owner_len);
1070
1071 seqid = nfs4_get_open_seqid(oop) + 1;
1072 open_args->seqid = seqid;
1073 open_args->share_access = 0;
1074 if (open_flag & FREAD)
1075 open_args->share_access |= OPEN4_SHARE_ACCESS_READ;
1076 if (open_flag & FWRITE)
1077 open_args->share_access |= OPEN4_SHARE_ACCESS_WRITE;
1078 open_args->share_deny = OPEN4_SHARE_DENY_NONE;
1079
1080
1081
1082 /*
1083 * getfh w/sanity check for idx_open/idx_fattr
1084 */
1085 ASSERT((idx_open + 1) == (idx_fattr - 1));
1086 argop[idx_open + 1].argop = OP_GETFH;
1087
1088 /* getattr */
1089 argop[idx_fattr].argop = OP_GETATTR;
1090 argop[idx_fattr].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
1091 argop[idx_fattr].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp);
1092
1093 if (setgid_flag) {
1094 vattr_t _v;
1095 servinfo4_t *svp;
1096 bitmap4 supp_attrs;
1097
1098 svp = drp->r_server;
1099 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
1100 supp_attrs = svp->sv_supp_attrs;
1101 nfs_rw_exit(&svp->sv_lock);
1102
1103 /*
1104 * For setgid case, we need to:
1105 * 4:savefh(new) 5:putfh(dir) 6:getattr(dir) 7:restorefh(new)
1106 */
1107 argop[4].argop = OP_SAVEFH;
1108
1109 argop[5].argop = OP_CPUTFH;
1110 argop[5].nfs_argop4_u.opcputfh.sfh = drp->r_fh;
1111
1112 argop[6].argop = OP_GETATTR;
1113 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
1114 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp);
1115
1116 argop[7].argop = OP_RESTOREFH;
1117
1118 /*
1119 * nverify
1120 */
1121 _v.va_mask = AT_GID;
1122 _v.va_gid = in_va->va_gid;
1123 if (!(e.error = nfs4args_verify(&argop[8], &_v, OP_NVERIFY,
1124 supp_attrs))) {
1125
1126 /*
1127 * setattr
1128 *
1129 * We _know_ we're not messing with AT_SIZE or
1130 * AT_XTIME, so no need for stateid or flags.
1131 * Also we specify NULL rp since we're only
1132 * interested in setting owner_group attributes.
1133 */
1134 nfs4args_setattr(&argop[9], &_v, NULL, 0, NULL, cr,
1135 supp_attrs, &e.error, 0);
1136 if (e.error)
1137 nfs4args_verify_free(&argop[8]);
1138 }
1139
1140 if (e.error) {
1141 /*
1142 * XXX - Revisit the last argument to nfs4_end_op()
1143 * once 5020486 is fixed.
1144 */
1145 nfs4_end_open_seqid_sync(oop);
1146 open_owner_rele(oop);
1147 nfs4args_copen_free(open_args);
1148 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, TRUE);
1149 if (ncr != NULL)
1150 crfree(ncr);
1151 kmem_free(argop, argoplist_size);
1152 return (e.error);
1153 }
1154 } else if (create_flag) {
1155 argop[1].argop = OP_SAVEFH;
1156
1157 argop[5].argop = OP_RESTOREFH;
1158
1159 argop[6].argop = OP_GETATTR;
1160 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
1161 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp);
1162 }
1163
1164 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE,
1165 "nfs4open_otw: %s call, nm %s, rp %s",
1166 needrecov ? "recov" : "first", file_name,
1167 rnode4info(VTOR4(dvp))));
1168
1169 t = gethrtime();
1170
1171 rfs4call(VTOMI4(dvp), &args, &res, cred_otw, &doqueue, 0, &e);
1172
1173 if (!e.error && nfs4_need_to_bump_seqid(&res))
1174 nfs4_set_open_seqid(seqid, oop, args.ctag);
1175
1176 needrecov = nfs4_needs_recovery(&e, TRUE, dvp->v_vfsp);
1177
1178 if (e.error || needrecov) {
1179 bool_t abort = FALSE;
1180
1181 if (needrecov) {
1182 nfs4_bseqid_entry_t *bsep = NULL;
1183
1184 nfs4open_save_lost_rqst(e.error, &lost_rqst, oop,
1185 cred_otw, vpi, dvp, open_args);
1186
1187 if (!e.error && res.status == NFS4ERR_BAD_SEQID) {
1188 bsep = nfs4_create_bseqid_entry(oop, NULL,
1189 vpi, 0, args.ctag, open_args->seqid);
1190 num_bseqid_retry--;
1191 }
1192
1193 abort = nfs4_start_recovery(&e, VTOMI4(dvp), dvp, vpi,
1194 NULL, lost_rqst.lr_op == OP_OPEN ?
1195 &lost_rqst : NULL, OP_OPEN, bsep, NULL, NULL);
1196
1197 if (bsep)
1198 kmem_free(bsep, sizeof (*bsep));
1199 /* give up if we keep getting BAD_SEQID */
1200 if (num_bseqid_retry == 0)
1201 abort = TRUE;
1202 if (abort == TRUE && e.error == 0)
1203 e.error = geterrno4(res.status);
1204 }
1205 nfs4_end_open_seqid_sync(oop);
1206 open_owner_rele(oop);
1207 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov);
1208 nfs4args_copen_free(open_args);
1209 if (setgid_flag) {
1210 nfs4args_verify_free(&argop[8]);
1211 nfs4args_setattr_free(&argop[9]);
1212 }
1213 if (!e.error)
1214 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1215 if (ncr != NULL) {
1216 crfree(ncr);
1217 ncr = NULL;
1218 }
1219 if (!needrecov || abort == TRUE || e.error == EINTR ||
1220 NFS4_FRC_UNMT_ERR(e.error, dvp->v_vfsp)) {
1221 kmem_free(argop, argoplist_size);
1222 return (e.error);
1223 }
1224 goto recov_retry;
1225 }
1226
1227 /*
1228 * Will check and update lease after checking the rflag for
1229 * OPEN_CONFIRM in the successful OPEN call.
1230 */
1231 if (res.status != NFS4_OK && res.array_len <= idx_fattr + 1) {
1232
1233 /*
1234 * XXX what if we're crossing mount points from server1:/drp
1235 * to server2:/drp/rp.
1236 */
1237
1238 /* Signal our end of use of the open seqid */
1239 nfs4_end_open_seqid_sync(oop);
1240
1241 /*
1242 * This will destroy the open owner if it was just created,
1243 * and no one else has put a reference on it.
1244 */
1245 open_owner_rele(oop);
1246 if (create_flag && (createmode != EXCLUSIVE4) &&
1247 res.status == NFS4ERR_BADOWNER)
1248 nfs4_log_badowner(VTOMI4(dvp), OP_OPEN);
1249
1250 e.error = geterrno4(res.status);
1251 nfs4args_copen_free(open_args);
1252 if (setgid_flag) {
1253 nfs4args_verify_free(&argop[8]);
1254 nfs4args_setattr_free(&argop[9]);
1255 }
1256 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1257 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov);
1258 /*
1259 * If the reply is NFS4ERR_ACCESS, it may be because
1260 * we are root (no root net access). If the real uid
1261 * is not root, then retry with the real uid instead.
1262 */
1263 if (ncr != NULL) {
1264 crfree(ncr);
1265 ncr = NULL;
1266 }
1267 if (res.status == NFS4ERR_ACCESS &&
1268 (ncr = crnetadjust(cred_otw)) != NULL) {
1269 cred_otw = ncr;
1270 goto recov_retry;
1271 }
1272 kmem_free(argop, argoplist_size);
1273 return (e.error);
1274 }
1275
1276 resop = &res.array[idx_open]; /* open res */
1277 op_res = &resop->nfs_resop4_u.opopen;
1278
1279 #ifdef DEBUG
1280 /*
1281 * verify attrset bitmap
1282 */
1283 if (create_flag &&
1284 (createmode == UNCHECKED4 || createmode == GUARDED4)) {
1285 /* make sure attrset returned is what we asked for */
1286 /* XXX Ignore this 'error' for now */
1287 if (attr->attrmask != op_res->attrset)
1288 /* EMPTY */;
1289 }
1290 #endif
1291
1292 if (op_res->rflags & OPEN4_RESULT_LOCKTYPE_POSIX) {
1293 mutex_enter(&VTOMI4(dvp)->mi_lock);
1294 VTOMI4(dvp)->mi_flags |= MI4_POSIX_LOCK;
1295 mutex_exit(&VTOMI4(dvp)->mi_lock);
1296 }
1297
1298 resop = &res.array[idx_open + 1]; /* getfh res */
1299 gf_res = &resop->nfs_resop4_u.opgetfh;
1300
1301 otw_sfh = sfh4_get(&gf_res->object, VTOMI4(dvp));
1302
1303 /*
1304 * The open stateid has been updated on the server but not
1305 * on the client yet. There is a path: makenfs4node->nfs4_attr_cache->
1306 * flush_pages->VOP_PUTPAGE->...->nfs4write where we will issue an OTW
1307 * WRITE call. That, however, will use the old stateid, so go ahead
1308 * and upate the open stateid now, before any call to makenfs4node.
1309 */
1310 if (vpi) {
1311 nfs4_open_stream_t *tmp_osp;
1312 rnode4_t *tmp_rp = VTOR4(vpi);
1313
1314 tmp_osp = find_open_stream(oop, tmp_rp);
1315 if (tmp_osp) {
1316 tmp_osp->open_stateid = op_res->stateid;
1317 mutex_exit(&tmp_osp->os_sync_lock);
1318 open_stream_rele(tmp_osp, tmp_rp);
1319 }
1320
1321 /*
1322 * We must determine if the file handle given by the otw open
1323 * is the same as the file handle which was passed in with
1324 * *vpp. This case can be reached if the file we are trying
1325 * to open has been removed and another file has been created
1326 * having the same file name. The passed in vnode is released
1327 * later.
1328 */
1329 orig_sfh = VTOR4(vpi)->r_fh;
1330 fh_differs = nfs4cmpfh(&orig_sfh->sfh_fh, &otw_sfh->sfh_fh);
1331 }
1332
1333 garp = &res.array[idx_fattr].nfs_resop4_u.opgetattr.ga_res;
1334
1335 if (create_flag || fh_differs) {
1336 int rnode_err = 0;
1337
1338 vp = makenfs4node(otw_sfh, garp, dvp->v_vfsp, t, cr,
1339 dvp, fn_get(VTOSV(dvp)->sv_name, file_name, otw_sfh));
1340
1341 if (e.error)
1342 PURGE_ATTRCACHE4(vp);
1343 /*
1344 * For the newly created vp case, make sure the rnode
1345 * isn't bad before using it.
1346 */
1347 mutex_enter(&(VTOR4(vp))->r_statelock);
1348 if (VTOR4(vp)->r_flags & R4RECOVERR)
1349 rnode_err = EIO;
1350 mutex_exit(&(VTOR4(vp))->r_statelock);
1351
1352 if (rnode_err) {
1353 nfs4_end_open_seqid_sync(oop);
1354 nfs4args_copen_free(open_args);
1355 if (setgid_flag) {
1356 nfs4args_verify_free(&argop[8]);
1357 nfs4args_setattr_free(&argop[9]);
1358 }
1359 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1360 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state,
1361 needrecov);
1362 open_owner_rele(oop);
1363 VN_RELE(vp);
1364 if (ncr != NULL)
1365 crfree(ncr);
1366 sfh4_rele(&otw_sfh);
1367 kmem_free(argop, argoplist_size);
1368 return (EIO);
1369 }
1370 } else {
1371 vp = vpi;
1372 }
1373 sfh4_rele(&otw_sfh);
1374
1375 /*
1376 * It seems odd to get a full set of attrs and then not update
1377 * the object's attrcache in the non-create case. Create case uses
1378 * the attrs since makenfs4node checks to see if the attrs need to
1379 * be updated (and then updates them). The non-create case should
1380 * update attrs also.
1381 */
1382 if (! create_flag && ! fh_differs && !e.error) {
1383 nfs4_attr_cache(vp, garp, t, cr, TRUE, NULL);
1384 }
1385
1386 nfs4_error_zinit(&e);
1387 if (op_res->rflags & OPEN4_RESULT_CONFIRM) {
1388 /* This does not do recovery for vp explicitly. */
1389 nfs4open_confirm(vp, &seqid, &op_res->stateid, cred_otw, FALSE,
1390 &retry_open, oop, FALSE, &e, &num_bseqid_retry);
1391
1392 if (e.error || e.stat) {
1393 nfs4_end_open_seqid_sync(oop);
1394 nfs4args_copen_free(open_args);
1395 if (setgid_flag) {
1396 nfs4args_verify_free(&argop[8]);
1397 nfs4args_setattr_free(&argop[9]);
1398 }
1399 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1400 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state,
1401 needrecov);
1402 open_owner_rele(oop);
1403 if (create_flag || fh_differs) {
1404 /* rele the makenfs4node */
1405 VN_RELE(vp);
1406 }
1407 if (ncr != NULL) {
1408 crfree(ncr);
1409 ncr = NULL;
1410 }
1411 if (retry_open == TRUE) {
1412 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
1413 "nfs4open_otw: retry the open since OPEN "
1414 "CONFIRM failed with error %d stat %d",
1415 e.error, e.stat));
1416 if (create_flag && createmode == GUARDED4) {
1417 NFS4_DEBUG(nfs4_client_recov_debug,
1418 (CE_NOTE, "nfs4open_otw: switch "
1419 "createmode from GUARDED4 to "
1420 "UNCHECKED4"));
1421 createmode = UNCHECKED4;
1422 }
1423 goto recov_retry;
1424 }
1425 if (!e.error) {
1426 if (create_flag && (createmode != EXCLUSIVE4) &&
1427 e.stat == NFS4ERR_BADOWNER)
1428 nfs4_log_badowner(VTOMI4(dvp), OP_OPEN);
1429
1430 e.error = geterrno4(e.stat);
1431 }
1432 kmem_free(argop, argoplist_size);
1433 return (e.error);
1434 }
1435 }
1436
1437 rp = VTOR4(vp);
1438
1439 mutex_enter(&rp->r_statev4_lock);
1440 if (create_flag)
1441 rp->created_v4 = 1;
1442 mutex_exit(&rp->r_statev4_lock);
1443
1444 mutex_enter(&oop->oo_lock);
1445 /* Doesn't matter if 'oo_just_created' already was set as this */
1446 oop->oo_just_created = NFS4_PERM_CREATED;
1447 if (oop->oo_cred_otw)
1448 crfree(oop->oo_cred_otw);
1449 oop->oo_cred_otw = cred_otw;
1450 crhold(oop->oo_cred_otw);
1451 mutex_exit(&oop->oo_lock);
1452
1453 /* returns with 'os_sync_lock' held */
1454 osp = find_or_create_open_stream(oop, rp, &created_osp);
1455 if (!osp) {
1456 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE,
1457 "nfs4open_otw: failed to create an open stream"));
1458 NFS4_DEBUG(nfs4_seqid_sync, (CE_NOTE, "nfs4open_otw: "
1459 "signal our end of use of the open seqid"));
1460
1461 nfs4_end_open_seqid_sync(oop);
1462 open_owner_rele(oop);
1463 nfs4args_copen_free(open_args);
1464 if (setgid_flag) {
1465 nfs4args_verify_free(&argop[8]);
1466 nfs4args_setattr_free(&argop[9]);
1467 }
1468 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1469 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov);
1470 if (create_flag || fh_differs)
1471 VN_RELE(vp);
1472 if (ncr != NULL)
1473 crfree(ncr);
1474
1475 kmem_free(argop, argoplist_size);
1476 return (EINVAL);
1477
1478 }
1479
1480 osp->open_stateid = op_res->stateid;
1481
1482 if (open_flag & FREAD)
1483 osp->os_share_acc_read++;
1484 if (open_flag & FWRITE)
1485 osp->os_share_acc_write++;
1486 osp->os_share_deny_none++;
1487
1488 /*
1489 * Need to reset this bitfield for the possible case where we were
1490 * going to OTW CLOSE the file, got a non-recoverable error, and before
1491 * we could retry the CLOSE, OPENed the file again.
1492 */
1493 ASSERT(osp->os_open_owner->oo_seqid_inuse);
1494 osp->os_final_close = 0;
1495 osp->os_force_close = 0;
1496 #ifdef DEBUG
1497 if (osp->os_failed_reopen)
1498 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE, "nfs4open_otw:"
1499 " clearing os_failed_reopen for osp %p, cr %p, rp %s",
1500 (void *)osp, (void *)cr, rnode4info(rp)));
1501 #endif
1502 osp->os_failed_reopen = 0;
1503
1504 mutex_exit(&osp->os_sync_lock);
1505
1506 nfs4_end_open_seqid_sync(oop);
1507
1508 if (created_osp && recov_state.rs_sp != NULL) {
1509 mutex_enter(&recov_state.rs_sp->s_lock);
1510 nfs4_inc_state_ref_count_nolock(recov_state.rs_sp, VTOMI4(dvp));
1511 mutex_exit(&recov_state.rs_sp->s_lock);
1512 }
1513
1514 /* get rid of our reference to find oop */
1515 open_owner_rele(oop);
1516
1517 open_stream_rele(osp, rp);
1518
1519 /* accept delegation, if any */
1520 nfs4_delegation_accept(rp, CLAIM_NULL, op_res, garp, cred_otw);
1521
1522 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov);
1523
1524 if (createmode == EXCLUSIVE4 &&
1525 (in_va->va_mask & ~(AT_GID | AT_SIZE))) {
1526 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4open_otw:"
1527 " EXCLUSIVE4: sending a SETATTR"));
1528 /*
1529 * If doing an exclusive create, then generate
1530 * a SETATTR to set the initial attributes.
1531 * Try to set the mtime and the atime to the
1532 * server's current time. It is somewhat
1533 * expected that these fields will be used to
1534 * store the exclusive create cookie. If not,
1535 * server implementors will need to know that
1536 * a SETATTR will follow an exclusive create
1537 * and the cookie should be destroyed if
1538 * appropriate.
1539 *
1540 * The AT_GID and AT_SIZE bits are turned off
1541 * so that the SETATTR request will not attempt
1542 * to process these. The gid will be set
1543 * separately if appropriate. The size is turned
1544 * off because it is assumed that a new file will
1545 * be created empty and if the file wasn't empty,
1546 * then the exclusive create will have failed
1547 * because the file must have existed already.
1548 * Therefore, no truncate operation is needed.
1549 */
1550 in_va->va_mask &= ~(AT_GID | AT_SIZE);
1551 in_va->va_mask |= (AT_MTIME | AT_ATIME);
1552
1553 e.error = nfs4setattr(vp, in_va, 0, cr, NULL);
1554 if (e.error) {
1555 /*
1556 * Couldn't correct the attributes of
1557 * the newly created file and the
1558 * attributes are wrong. Remove the
1559 * file and return an error to the
1560 * application.
1561 */
1562 /* XXX will this take care of client state ? */
1563 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE,
1564 "nfs4open_otw: EXCLUSIVE4: error %d on SETATTR:"
1565 " remove file", e.error));
1566 VN_RELE(vp);
1567 (void) nfs4_remove(dvp, file_name, cr, NULL, 0);
1568 /*
1569 * Since we've reled the vnode and removed
1570 * the file we now need to return the error.
1571 * At this point we don't want to update the
1572 * dircaches, call nfs4_waitfor_purge_complete
1573 * or set vpp to vp so we need to skip these
1574 * as well.
1575 */
1576 goto skip_update_dircaches;
1577 }
1578 }
1579
1580 /*
1581 * If we created or found the correct vnode, due to create_flag or
1582 * fh_differs being set, then update directory cache attribute, readdir
1583 * and dnlc caches.
1584 */
1585 if (create_flag || fh_differs) {
1586 dirattr_info_t dinfo, *dinfop;
1587
1588 /*
1589 * Make sure getattr succeeded before using results.
1590 * note: op 7 is getattr(dir) for both flavors of
1591 * open(create).
1592 */
1593 if (create_flag && res.status == NFS4_OK) {
1594 dinfo.di_time_call = t;
1595 dinfo.di_cred = cr;
1596 dinfo.di_garp =
1597 &res.array[6].nfs_resop4_u.opgetattr.ga_res;
1598 dinfop = &dinfo;
1599 } else {
1600 dinfop = NULL;
1601 }
1602
1603 nfs4_update_dircaches(&op_res->cinfo, dvp, vp, file_name,
1604 dinfop);
1605 }
1606
1607 /*
1608 * If the page cache for this file was flushed from actions
1609 * above, it was done asynchronously and if that is true,
1610 * there is a need to wait here for it to complete. This must
1611 * be done outside of start_fop/end_fop.
1612 */
1613 (void) nfs4_waitfor_purge_complete(vp);
1614
1615 /*
1616 * It is implicit that we are in the open case (create_flag == 0) since
1617 * fh_differs can only be set to a non-zero value in the open case.
1618 */
1619 if (fh_differs != 0 && vpi != NULL)
1620 VN_RELE(vpi);
1621
1622 /*
1623 * Be sure to set *vpp to the correct value before returning.
1624 */
1625 *vpp = vp;
1626
1627 skip_update_dircaches:
1628
1629 nfs4args_copen_free(open_args);
1630 if (setgid_flag) {
1631 nfs4args_verify_free(&argop[8]);
1632 nfs4args_setattr_free(&argop[9]);
1633 }
1634 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1635
1636 if (ncr)
1637 crfree(ncr);
1638 kmem_free(argop, argoplist_size);
1639 return (e.error);
1640 }
1641
1642 /*
1643 * Reopen an open instance. cf. nfs4open_otw().
1644 *
1645 * Errors are returned by the nfs4_error_t parameter.
1646 * - ep->error contains an errno value or zero.
1647 * - if it is zero, ep->stat is set to an NFS status code, if any.
1648 * If the file could not be reopened, but the caller should continue, the
1649 * file is marked dead and no error values are returned. If the caller
1650 * should stop recovering open files and start over, either the ep->error
1651 * value or ep->stat will indicate an error (either something that requires
1652 * recovery or EAGAIN). Note that some recovery (e.g., expired volatile
1653 * filehandles) may be handled silently by this routine.
1654 * - if it is EINTR, ETIMEDOUT, or NFS4_FRC_UNMT_ERR, recovery for lost state
1655 * will be started, so the caller should not do it.
1656 *
1657 * Gotos:
1658 * - kill_file : reopen failed in such a fashion to constitute marking the
1659 * file dead and setting the open stream's 'os_failed_reopen' as 1. This
1660 * is for cases where recovery is not possible.
1661 * - failed_reopen : same as above, except that the file has already been
1662 * marked dead, so no need to do it again.
1663 * - bailout : reopen failed but we are able to recover and retry the reopen -
1664 * either within this function immediately or via the calling function.
1665 */
1666
1667 void
1668 nfs4_reopen(vnode_t *vp, nfs4_open_stream_t *osp, nfs4_error_t *ep,
1669 open_claim_type4 claim, bool_t frc_use_claim_previous,
1670 bool_t is_recov)
1671 {
1672 COMPOUND4args_clnt args;
1673 COMPOUND4res_clnt res;
1674 nfs_argop4 argop[4];
1675 nfs_resop4 *resop;
1676 OPEN4res *op_res = NULL;
1677 OPEN4cargs *open_args;
1678 GETFH4res *gf_res;
1679 rnode4_t *rp = VTOR4(vp);
1680 int doqueue = 1;
1681 cred_t *cr = NULL, *cred_otw = NULL;
1682 nfs4_open_owner_t *oop = NULL;
1683 seqid4 seqid;
1684 nfs4_ga_res_t *garp;
1685 char fn[MAXNAMELEN];
1686 nfs4_recov_state_t recov = {NULL, 0};
1687 nfs4_lost_rqst_t lost_rqst;
1688 mntinfo4_t *mi = VTOMI4(vp);
1689 bool_t abort;
1690 char *failed_msg = "";
1691 int fh_different;
1692 hrtime_t t;
1693 nfs4_bseqid_entry_t *bsep = NULL;
1694
1695 ASSERT(nfs4_consistent_type(vp));
1696 ASSERT(nfs_zone() == mi->mi_zone);
1697
1698 nfs4_error_zinit(ep);
1699
1700 /* this is the cred used to find the open owner */
1701 cr = state_to_cred(osp);
1702 if (cr == NULL) {
1703 failed_msg = "Couldn't reopen: no cred";
1704 goto kill_file;
1705 }
1706 /* use this cred for OTW operations */
1707 cred_otw = nfs4_get_otw_cred(cr, mi, osp->os_open_owner);
1708
1709 top:
1710 nfs4_error_zinit(ep);
1711
1712 if (mi->mi_vfsp->vfs_flag & VFS_UNMOUNTED) {
1713 /* File system has been unmounted, quit */
1714 ep->error = EIO;
1715 failed_msg = "Couldn't reopen: file system has been unmounted";
1716 goto kill_file;
1717 }
1718
1719 oop = osp->os_open_owner;
1720
1721 ASSERT(oop != NULL);
1722 if (oop == NULL) { /* be defensive in non-DEBUG */
1723 failed_msg = "can't reopen: no open owner";
1724 goto kill_file;
1725 }
1726 open_owner_hold(oop);
1727
1728 ep->error = nfs4_start_open_seqid_sync(oop, mi);
1729 if (ep->error) {
1730 open_owner_rele(oop);
1731 oop = NULL;
1732 goto bailout;
1733 }
1734
1735 /*
1736 * If the rnode has a delegation and the delegation has been
1737 * recovered and the server didn't request a recall and the caller
1738 * didn't specifically ask for CLAIM_PREVIOUS (nfs4frlock during
1739 * recovery) and the rnode hasn't been marked dead, then install
1740 * the delegation stateid in the open stream. Otherwise, proceed
1741 * with a CLAIM_PREVIOUS or CLAIM_NULL OPEN.
1742 */
1743 mutex_enter(&rp->r_statev4_lock);
1744 if (rp->r_deleg_type != OPEN_DELEGATE_NONE &&
1745 !rp->r_deleg_return_pending &&
1746 (rp->r_deleg_needs_recovery == OPEN_DELEGATE_NONE) &&
1747 !rp->r_deleg_needs_recall &&
1748 claim != CLAIM_DELEGATE_CUR && !frc_use_claim_previous &&
1749 !(rp->r_flags & R4RECOVERR)) {
1750 mutex_enter(&osp->os_sync_lock);
1751 osp->os_delegation = 1;
1752 osp->open_stateid = rp->r_deleg_stateid;
1753 mutex_exit(&osp->os_sync_lock);
1754 mutex_exit(&rp->r_statev4_lock);
1755 goto bailout;
1756 }
1757 mutex_exit(&rp->r_statev4_lock);
1758
1759 /*
1760 * If the file failed recovery, just quit. This failure need not
1761 * affect other reopens, so don't return an error.
1762 */
1763 mutex_enter(&rp->r_statelock);
1764 if (rp->r_flags & R4RECOVERR) {
1765 mutex_exit(&rp->r_statelock);
1766 ep->error = 0;
1767 goto failed_reopen;
1768 }
1769 mutex_exit(&rp->r_statelock);
1770
1771 /*
1772 * argop is empty here
1773 *
1774 * PUTFH, OPEN, GETATTR
1775 */
1776 args.ctag = TAG_REOPEN;
1777 args.array_len = 4;
1778 args.array = argop;
1779
1780 NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE,
1781 "nfs4_reopen: file is type %d, id %s",
1782 vp->v_type, rnode4info(VTOR4(vp))));
1783
1784 argop[0].argop = OP_CPUTFH;
1785
1786 if (claim != CLAIM_PREVIOUS) {
1787 /*
1788 * if this is a file mount then
1789 * use the mntinfo parentfh
1790 */
1791 argop[0].nfs_argop4_u.opcputfh.sfh =
1792 (vp->v_flag & VROOT) ? mi->mi_srvparentfh :
1793 VTOSV(vp)->sv_dfh;
1794 } else {
1795 /* putfh fh to reopen */
1796 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh;
1797 }
1798
1799 argop[1].argop = OP_COPEN;
1800 open_args = &argop[1].nfs_argop4_u.opcopen;
1801 open_args->claim = claim;
1802
1803 if (claim == CLAIM_NULL) {
1804
1805 if ((ep->error = vtoname(vp, fn, MAXNAMELEN)) != 0) {
1806 nfs_cmn_err(ep->error, CE_WARN, "nfs4_reopen: vtoname "
1807 "failed for vp 0x%p for CLAIM_NULL with %m",
1808 (void *)vp);
1809 failed_msg = "Couldn't reopen: vtoname failed for "
1810 "CLAIM_NULL";
1811 /* nothing allocated yet */
1812 goto kill_file;
1813 }
1814
1815 open_args->open_claim4_u.cfile = fn;
1816 } else if (claim == CLAIM_PREVIOUS) {
1817
1818 /*
1819 * We have two cases to deal with here:
1820 * 1) We're being called to reopen files in order to satisfy
1821 * a lock operation request which requires us to explicitly
1822 * reopen files which were opened under a delegation. If
1823 * we're in recovery, we *must* use CLAIM_PREVIOUS. In
1824 * that case, frc_use_claim_previous is TRUE and we must
1825 * use the rnode's current delegation type (r_deleg_type).
1826 * 2) We're reopening files during some form of recovery.
1827 * In this case, frc_use_claim_previous is FALSE and we
1828 * use the delegation type appropriate for recovery
1829 * (r_deleg_needs_recovery).
1830 */
1831 mutex_enter(&rp->r_statev4_lock);
1832 open_args->open_claim4_u.delegate_type =
1833 frc_use_claim_previous ?
1834 rp->r_deleg_type :
1835 rp->r_deleg_needs_recovery;
1836 mutex_exit(&rp->r_statev4_lock);
1837
1838 } else if (claim == CLAIM_DELEGATE_CUR) {
1839
1840 if ((ep->error = vtoname(vp, fn, MAXNAMELEN)) != 0) {
1841 nfs_cmn_err(ep->error, CE_WARN, "nfs4_reopen: vtoname "
1842 "failed for vp 0x%p for CLAIM_DELEGATE_CUR "
1843 "with %m", (void *)vp);
1844 failed_msg = "Couldn't reopen: vtoname failed for "
1845 "CLAIM_DELEGATE_CUR";
1846 /* nothing allocated yet */
1847 goto kill_file;
1848 }
1849
1850 mutex_enter(&rp->r_statev4_lock);
1851 open_args->open_claim4_u.delegate_cur_info.delegate_stateid =
1852 rp->r_deleg_stateid;
1853 mutex_exit(&rp->r_statev4_lock);
1854
1855 open_args->open_claim4_u.delegate_cur_info.cfile = fn;
1856 }
1857 open_args->opentype = OPEN4_NOCREATE;
1858 open_args->owner.clientid = mi2clientid(mi);
1859 open_args->owner.owner_len = sizeof (oop->oo_name);
1860 open_args->owner.owner_val =
1861 kmem_alloc(open_args->owner.owner_len, KM_SLEEP);
1862 bcopy(&oop->oo_name, open_args->owner.owner_val,
1863 open_args->owner.owner_len);
1864 open_args->share_access = 0;
1865 open_args->share_deny = 0;
1866
1867 mutex_enter(&osp->os_sync_lock);
1868 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, "nfs4_reopen: osp %p rp "
1869 "%p: read acc %"PRIu64" write acc %"PRIu64": open ref count %d: "
1870 "mmap read %"PRIu64" mmap write %"PRIu64" claim %d ",
1871 (void *)osp, (void *)rp, osp->os_share_acc_read,
1872 osp->os_share_acc_write, osp->os_open_ref_count,
1873 osp->os_mmap_read, osp->os_mmap_write, claim));
1874
1875 if (osp->os_share_acc_read || osp->os_mmap_read)
1876 open_args->share_access |= OPEN4_SHARE_ACCESS_READ;
1877 if (osp->os_share_acc_write || osp->os_mmap_write)
1878 open_args->share_access |= OPEN4_SHARE_ACCESS_WRITE;
1879 if (osp->os_share_deny_read)
1880 open_args->share_deny |= OPEN4_SHARE_DENY_READ;
1881 if (osp->os_share_deny_write)
1882 open_args->share_deny |= OPEN4_SHARE_DENY_WRITE;
1883 mutex_exit(&osp->os_sync_lock);
1884
1885 seqid = nfs4_get_open_seqid(oop) + 1;
1886 open_args->seqid = seqid;
1887
1888 /* Construct the getfh part of the compound */
1889 argop[2].argop = OP_GETFH;
1890
1891 /* Construct the getattr part of the compound */
1892 argop[3].argop = OP_GETATTR;
1893 argop[3].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
1894 argop[3].nfs_argop4_u.opgetattr.mi = mi;
1895
1896 t = gethrtime();
1897
1898 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, ep);
1899
1900 if (ep->error) {
1901 if (!is_recov && !frc_use_claim_previous &&
1902 (ep->error == EINTR || ep->error == ETIMEDOUT ||
1903 NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp))) {
1904 nfs4open_save_lost_rqst(ep->error, &lost_rqst, oop,
1905 cred_otw, vp, NULL, open_args);
1906 abort = nfs4_start_recovery(ep,
1907 VTOMI4(vp), vp, NULL, NULL,
1908 lost_rqst.lr_op == OP_OPEN ?
1909 &lost_rqst : NULL, OP_OPEN, NULL, NULL, NULL);
1910 nfs4args_copen_free(open_args);
1911 goto bailout;
1912 }
1913
1914 nfs4args_copen_free(open_args);
1915
1916 if (ep->error == EACCES && cred_otw != cr) {
1917 crfree(cred_otw);
1918 cred_otw = cr;
1919 crhold(cred_otw);
1920 nfs4_end_open_seqid_sync(oop);
1921 open_owner_rele(oop);
1922 oop = NULL;
1923 goto top;
1924 }
1925 if (ep->error == ETIMEDOUT)
1926 goto bailout;
1927 failed_msg = "Couldn't reopen: rpc error";
1928 goto kill_file;
1929 }
1930
1931 if (nfs4_need_to_bump_seqid(&res))
1932 nfs4_set_open_seqid(seqid, oop, args.ctag);
1933
1934 switch (res.status) {
1935 case NFS4_OK:
1936 if (recov.rs_flags & NFS4_RS_DELAY_MSG) {
1937 mutex_enter(&rp->r_statelock);
1938 rp->r_delay_interval = 0;
1939 mutex_exit(&rp->r_statelock);
1940 }
1941 break;
1942 case NFS4ERR_BAD_SEQID:
1943 bsep = nfs4_create_bseqid_entry(oop, NULL, vp, 0,
1944 args.ctag, open_args->seqid);
1945
1946 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL,
1947 NULL, lost_rqst.lr_op == OP_OPEN ? &lost_rqst :
1948 NULL, OP_OPEN, bsep, NULL, NULL);
1949
1950 nfs4args_copen_free(open_args);
1951 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1952 nfs4_end_open_seqid_sync(oop);
1953 open_owner_rele(oop);
1954 oop = NULL;
1955 kmem_free(bsep, sizeof (*bsep));
1956
1957 goto kill_file;
1958 case NFS4ERR_NO_GRACE:
1959 nfs4args_copen_free(open_args);
1960 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1961 nfs4_end_open_seqid_sync(oop);
1962 open_owner_rele(oop);
1963 oop = NULL;
1964 if (claim == CLAIM_PREVIOUS) {
1965 /*
1966 * Retry as a plain open. We don't need to worry about
1967 * checking the changeinfo: it is acceptable for a
1968 * client to re-open a file and continue processing
1969 * (in the absence of locks).
1970 */
1971 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
1972 "nfs4_reopen: CLAIM_PREVIOUS: NFS4ERR_NO_GRACE; "
1973 "will retry as CLAIM_NULL"));
1974 claim = CLAIM_NULL;
1975 nfs4_mi_kstat_inc_no_grace(mi);
1976 goto top;
1977 }
1978 failed_msg =
1979 "Couldn't reopen: tried reclaim outside grace period. ";
1980 goto kill_file;
1981 case NFS4ERR_GRACE:
1982 nfs4_set_grace_wait(mi);
1983 nfs4args_copen_free(open_args);
1984 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1985 nfs4_end_open_seqid_sync(oop);
1986 open_owner_rele(oop);
1987 oop = NULL;
1988 ep->error = nfs4_wait_for_grace(mi, &recov);
1989 if (ep->error != 0)
1990 goto bailout;
1991 goto top;
1992 case NFS4ERR_DELAY:
1993 nfs4_set_delay_wait(vp);
1994 nfs4args_copen_free(open_args);
1995 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1996 nfs4_end_open_seqid_sync(oop);
1997 open_owner_rele(oop);
1998 oop = NULL;
1999 ep->error = nfs4_wait_for_delay(vp, &recov);
2000 nfs4_mi_kstat_inc_delay(mi);
2001 if (ep->error != 0)
2002 goto bailout;
2003 goto top;
2004 case NFS4ERR_FHEXPIRED:
2005 /* recover filehandle and retry */
2006 abort = nfs4_start_recovery(ep,
2007 mi, vp, NULL, NULL, NULL, OP_OPEN, NULL, NULL, NULL);
2008 nfs4args_copen_free(open_args);
2009 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2010 nfs4_end_open_seqid_sync(oop);
2011 open_owner_rele(oop);
2012 oop = NULL;
2013 if (abort == FALSE)
2014 goto top;
2015 failed_msg = "Couldn't reopen: recovery aborted";
2016 goto kill_file;
2017 case NFS4ERR_RESOURCE:
2018 case NFS4ERR_STALE_CLIENTID:
2019 case NFS4ERR_WRONGSEC:
2020 case NFS4ERR_EXPIRED:
2021 /*
2022 * Do not mark the file dead and let the calling
2023 * function initiate recovery.
2024 */
2025 nfs4args_copen_free(open_args);
2026 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2027 nfs4_end_open_seqid_sync(oop);
2028 open_owner_rele(oop);
2029 oop = NULL;
2030 goto bailout;
2031 case NFS4ERR_ACCESS:
2032 if (cred_otw != cr) {
2033 crfree(cred_otw);
2034 cred_otw = cr;
2035 crhold(cred_otw);
2036 nfs4args_copen_free(open_args);
2037 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2038 nfs4_end_open_seqid_sync(oop);
2039 open_owner_rele(oop);
2040 oop = NULL;
2041 goto top;
2042 }
2043 /* fall through */
2044 default:
2045 NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE,
2046 "nfs4_reopen: r_server 0x%p, mi_curr_serv 0x%p, rnode %s",
2047 (void*)VTOR4(vp)->r_server, (void*)mi->mi_curr_serv,
2048 rnode4info(VTOR4(vp))));
2049 failed_msg = "Couldn't reopen: NFSv4 error";
2050 nfs4args_copen_free(open_args);
2051 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2052 goto kill_file;
2053 }
2054
2055 resop = &res.array[1]; /* open res */
2056 op_res = &resop->nfs_resop4_u.opopen;
2057
2058 garp = &res.array[3].nfs_resop4_u.opgetattr.ga_res;
2059
2060 /*
2061 * Check if the path we reopened really is the same
2062 * file. We could end up in a situation where the file
2063 * was removed and a new file created with the same name.
2064 */
2065 resop = &res.array[2];
2066 gf_res = &resop->nfs_resop4_u.opgetfh;
2067 (void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_READER, 0);
2068 fh_different = (nfs4cmpfh(&rp->r_fh->sfh_fh, &gf_res->object) != 0);
2069 if (fh_different) {
2070 if (mi->mi_fh_expire_type == FH4_PERSISTENT ||
2071 mi->mi_fh_expire_type & FH4_NOEXPIRE_WITH_OPEN) {
2072 /* Oops, we don't have the same file */
2073 if (mi->mi_fh_expire_type == FH4_PERSISTENT)
2074 failed_msg = "Couldn't reopen: Persistent "
2075 "file handle changed";
2076 else
2077 failed_msg = "Couldn't reopen: Volatile "
2078 "(no expire on open) file handle changed";
2079
2080 nfs4args_copen_free(open_args);
2081 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2082 nfs_rw_exit(&mi->mi_fh_lock);
2083 goto kill_file;
2084
2085 } else {
2086 /*
2087 * We have volatile file handles that don't compare.
2088 * If the fids are the same then we assume that the
2089 * file handle expired but the rnode still refers to
2090 * the same file object.
2091 *
2092 * First check that we have fids or not.
2093 * If we don't we have a dumb server so we will
2094 * just assume every thing is ok for now.
2095 */
2096 if (!ep->error && garp->n4g_va.va_mask & AT_NODEID &&
2097 rp->r_attr.va_mask & AT_NODEID &&
2098 rp->r_attr.va_nodeid != garp->n4g_va.va_nodeid) {
2099 /*
2100 * We have fids, but they don't
2101 * compare. So kill the file.
2102 */
2103 failed_msg =
2104 "Couldn't reopen: file handle changed"
2105 " due to mismatched fids";
2106 nfs4args_copen_free(open_args);
2107 (void) xdr_free(xdr_COMPOUND4res_clnt,
2108 (caddr_t)&res);
2109 nfs_rw_exit(&mi->mi_fh_lock);
2110 goto kill_file;
2111 } else {
2112 /*
2113 * We have volatile file handles that refers
2114 * to the same file (at least they have the
2115 * same fid) or we don't have fids so we
2116 * can't tell. :(. We'll be a kind and accepting
2117 * client so we'll update the rnode's file
2118 * handle with the otw handle.
2119 *
2120 * We need to drop mi->mi_fh_lock since
2121 * sh4_update acquires it. Since there is
2122 * only one recovery thread there is no
2123 * race.
2124 */
2125 nfs_rw_exit(&mi->mi_fh_lock);
2126 sfh4_update(rp->r_fh, &gf_res->object);
2127 }
2128 }
2129 } else {
2130 nfs_rw_exit(&mi->mi_fh_lock);
2131 }
2132
2133 ASSERT(nfs4_consistent_type(vp));
2134
2135 /*
2136 * If the server wanted an OPEN_CONFIRM but that fails, just start
2137 * over. Presumably if there is a persistent error it will show up
2138 * when we resend the OPEN.
2139 */
2140 if (op_res->rflags & OPEN4_RESULT_CONFIRM) {
2141 bool_t retry_open = FALSE;
2142
2143 nfs4open_confirm(vp, &seqid, &op_res->stateid,
2144 cred_otw, is_recov, &retry_open,
2145 oop, FALSE, ep, NULL);
2146 if (ep->error || ep->stat) {
2147 nfs4args_copen_free(open_args);
2148 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2149 nfs4_end_open_seqid_sync(oop);
2150 open_owner_rele(oop);
2151 oop = NULL;
2152 goto top;
2153 }
2154 }
2155
2156 mutex_enter(&osp->os_sync_lock);
2157 osp->open_stateid = op_res->stateid;
2158 osp->os_delegation = 0;
2159 /*
2160 * Need to reset this bitfield for the possible case where we were
2161 * going to OTW CLOSE the file, got a non-recoverable error, and before
2162 * we could retry the CLOSE, OPENed the file again.
2163 */
2164 ASSERT(osp->os_open_owner->oo_seqid_inuse);
2165 osp->os_final_close = 0;
2166 osp->os_force_close = 0;
2167 if (claim == CLAIM_DELEGATE_CUR || claim == CLAIM_PREVIOUS)
2168 osp->os_dc_openacc = open_args->share_access;
2169 mutex_exit(&osp->os_sync_lock);
2170
2171 nfs4_end_open_seqid_sync(oop);
2172
2173 /* accept delegation, if any */
2174 nfs4_delegation_accept(rp, claim, op_res, garp, cred_otw);
2175
2176 nfs4args_copen_free(open_args);
2177
2178 nfs4_attr_cache(vp, garp, t, cr, TRUE, NULL);
2179
2180 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2181
2182 ASSERT(nfs4_consistent_type(vp));
2183
2184 open_owner_rele(oop);
2185 crfree(cr);
2186 crfree(cred_otw);
2187 return;
2188
2189 kill_file:
2190 nfs4_fail_recov(vp, failed_msg, ep->error, ep->stat);
2191 failed_reopen:
2192 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE,
2193 "nfs4_reopen: setting os_failed_reopen for osp %p, cr %p, rp %s",
2194 (void *)osp, (void *)cr, rnode4info(rp)));
2195 mutex_enter(&osp->os_sync_lock);
2196 osp->os_failed_reopen = 1;
2197 mutex_exit(&osp->os_sync_lock);
2198 bailout:
2199 if (oop != NULL) {
2200 nfs4_end_open_seqid_sync(oop);
2201 open_owner_rele(oop);
2202 }
2203 if (cr != NULL)
2204 crfree(cr);
2205 if (cred_otw != NULL)
2206 crfree(cred_otw);
2207 }
2208
2209 /* for . and .. OPENs */
2210 /* ARGSUSED */
2211 static int
2212 nfs4_open_non_reg_file(vnode_t **vpp, int flag, cred_t *cr)
2213 {
2214 rnode4_t *rp;
2215 nfs4_ga_res_t gar;
2216
2217 ASSERT(nfs_zone() == VTOMI4(*vpp)->mi_zone);
2218
2219 /*
2220 * If close-to-open consistency checking is turned off or
2221 * if there is no cached data, we can avoid
2222 * the over the wire getattr. Otherwise, force a
2223 * call to the server to get fresh attributes and to
2224 * check caches. This is required for close-to-open
2225 * consistency.
2226 */
2227 rp = VTOR4(*vpp);
2228 if (VTOMI4(*vpp)->mi_flags & MI4_NOCTO ||
2229 (rp->r_dir == NULL && !nfs4_has_pages(*vpp)))
2230 return (0);
2231
2232 gar.n4g_va.va_mask = AT_ALL;
2233 return (nfs4_getattr_otw(*vpp, &gar, cr, 0));
2234 }
2235
2236 /*
2237 * CLOSE a file
2238 */
2239 /* ARGSUSED */
2240 static int
2241 nfs4_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
2242 caller_context_t *ct)
2243 {
2244 rnode4_t *rp;
2245 int error = 0;
2246 int r_error = 0;
2247 int n4error = 0;
2248 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
2249
2250 /*
2251 * Remove client state for this (lockowner, file) pair.
2252 * Issue otw v4 call to have the server do the same.
2253 */
2254
2255 rp = VTOR4(vp);
2256
2257 /*
2258 * zone_enter(2) prevents processes from changing zones with NFS files
2259 * open; if we happen to get here from the wrong zone we can't do
2260 * anything over the wire.
2261 */
2262 if (VTOMI4(vp)->mi_zone != nfs_zone()) {
2263 /*
2264 * We could attempt to clean up locks, except we're sure
2265 * that the current process didn't acquire any locks on
2266 * the file: any attempt to lock a file belong to another zone
2267 * will fail, and one can't lock an NFS file and then change
2268 * zones, as that fails too.
2269 *
2270 * Returning an error here is the sane thing to do. A
2271 * subsequent call to VN_RELE() which translates to a
2272 * nfs4_inactive() will clean up state: if the zone of the
2273 * vnode's origin is still alive and kicking, the inactive
2274 * thread will handle the request (from the correct zone), and
2275 * everything (minus the OTW close call) should be OK. If the
2276 * zone is going away nfs4_async_inactive() will throw away
2277 * delegations, open streams and cached pages inline.
2278 */
2279 return (EIO);
2280 }
2281
2282 /*
2283 * If we are using local locking for this filesystem, then
2284 * release all of the SYSV style record locks. Otherwise,
2285 * we are doing network locking and we need to release all
2286 * of the network locks. All of the locks held by this
2287 * process on this file are released no matter what the
2288 * incoming reference count is.
2289 */
2290 if (VTOMI4(vp)->mi_flags & MI4_LLOCK) {
2291 cleanlocks(vp, ttoproc(curthread)->p_pid, 0);
2292 cleanshares(vp, ttoproc(curthread)->p_pid);
2293 } else
2294 e.error = nfs4_lockrelease(vp, flag, offset, cr);
2295
2296 if (e.error) {
2297 struct lm_sysid *lmsid;
2298 lmsid = nfs4_find_sysid(VTOMI4(vp));
2299 if (lmsid == NULL) {
2300 DTRACE_PROBE2(unknown__sysid, int, e.error,
2301 vnode_t *, vp);
2302 } else {
2303 cleanlocks(vp, ttoproc(curthread)->p_pid,
2304 (lm_sysidt(lmsid) | LM_SYSID_CLIENT));
2305 }
2306 return (e.error);
2307 }
2308
2309 if (count > 1)
2310 return (0);
2311
2312 /*
2313 * If the file has been `unlinked', then purge the
2314 * DNLC so that this vnode will get reycled quicker
2315 * and the .nfs* file on the server will get removed.
2316 */
2317 if (rp->r_unldvp != NULL)
2318 dnlc_purge_vp(vp);
2319
2320 /*
2321 * If the file was open for write and there are pages,
2322 * do a synchronous flush and commit of all of the
2323 * dirty and uncommitted pages.
2324 */
2325 ASSERT(!e.error);
2326 if ((flag & FWRITE) && nfs4_has_pages(vp))
2327 error = nfs4_putpage_commit(vp, 0, 0, cr);
2328
2329 mutex_enter(&rp->r_statelock);
2330 r_error = rp->r_error;
2331 rp->r_error = 0;
2332 mutex_exit(&rp->r_statelock);
2333
2334 /*
2335 * If this file type is one for which no explicit 'open' was
2336 * done, then bail now (ie. no need for protocol 'close'). If
2337 * there was an error w/the vm subsystem, return _that_ error,
2338 * otherwise, return any errors that may've been reported via
2339 * the rnode.
2340 */
2341 if (vp->v_type != VREG)
2342 return (error ? error : r_error);
2343
2344 /*
2345 * The sync putpage commit may have failed above, but since
2346 * we're working w/a regular file, we need to do the protocol
2347 * 'close' (nfs4close_one will figure out if an otw close is
2348 * needed or not). Report any errors _after_ doing the protocol
2349 * 'close'.
2350 */
2351 nfs4close_one(vp, NULL, cr, flag, NULL, &e, CLOSE_NORM, 0, 0, 0);
2352 n4error = e.error ? e.error : geterrno4(e.stat);
2353
2354 /*
2355 * Error reporting prio (Hi -> Lo)
2356 *
2357 * i) nfs4_putpage_commit (error)
2358 * ii) rnode's (r_error)
2359 * iii) nfs4close_one (n4error)
2360 */
2361 return (error ? error : (r_error ? r_error : n4error));
2362 }
2363
2364 /*
2365 * Initialize *lost_rqstp.
2366 */
2367
2368 static void
2369 nfs4close_save_lost_rqst(int error, nfs4_lost_rqst_t *lost_rqstp,
2370 nfs4_open_owner_t *oop, nfs4_open_stream_t *osp, cred_t *cr,
2371 vnode_t *vp)
2372 {
2373 if (error != ETIMEDOUT && error != EINTR &&
2374 !NFS4_FRC_UNMT_ERR(error, vp->v_vfsp)) {
2375 lost_rqstp->lr_op = 0;
2376 return;
2377 }
2378
2379 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE,
2380 "nfs4close_save_lost_rqst: error %d", error));
2381
2382 lost_rqstp->lr_op = OP_CLOSE;
2383 /*
2384 * The vp is held and rele'd via the recovery code.
2385 * See nfs4_save_lost_rqst.
2386 */
2387 lost_rqstp->lr_vp = vp;
2388 lost_rqstp->lr_dvp = NULL;
2389 lost_rqstp->lr_oop = oop;
2390 lost_rqstp->lr_osp = osp;
2391 ASSERT(osp != NULL);
2392 ASSERT(mutex_owned(&osp->os_sync_lock));
2393 osp->os_pending_close = 1;
2394 lost_rqstp->lr_lop = NULL;
2395 lost_rqstp->lr_cr = cr;
2396 lost_rqstp->lr_flk = NULL;
2397 lost_rqstp->lr_putfirst = FALSE;
2398 }
2399
2400 /*
2401 * Assumes you already have the open seqid sync grabbed as well as the
2402 * 'os_sync_lock'. Note: this will release the open seqid sync and
2403 * 'os_sync_lock' if client recovery starts. Calling functions have to
2404 * be prepared to handle this.
2405 *
2406 * 'recov' is returned as 1 if the CLOSE operation detected client recovery
2407 * was needed and was started, and that the calling function should retry
2408 * this function; otherwise it is returned as 0.
2409 *
2410 * Errors are returned via the nfs4_error_t parameter.
2411 */
2412 static void
2413 nfs4close_otw(rnode4_t *rp, cred_t *cred_otw, nfs4_open_owner_t *oop,
2414 nfs4_open_stream_t *osp, int *recov, int *did_start_seqid_syncp,
2415 nfs4_close_type_t close_type, nfs4_error_t *ep, int *have_sync_lockp)
2416 {
2417 COMPOUND4args_clnt args;
2418 COMPOUND4res_clnt res;
2419 CLOSE4args *close_args;
2420 nfs_resop4 *resop;
2421 nfs_argop4 argop[3];
2422 int doqueue = 1;
2423 mntinfo4_t *mi;
2424 seqid4 seqid;
2425 vnode_t *vp;
2426 bool_t needrecov = FALSE;
2427 nfs4_lost_rqst_t lost_rqst;
2428 hrtime_t t;
2429
2430 ASSERT(nfs_zone() == VTOMI4(RTOV4(rp))->mi_zone);
2431
2432 ASSERT(MUTEX_HELD(&osp->os_sync_lock));
2433
2434 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4close_otw"));
2435
2436 /* Only set this to 1 if recovery is started */
2437 *recov = 0;
2438
2439 /* do the OTW call to close the file */
2440
2441 if (close_type == CLOSE_RESEND)
2442 args.ctag = TAG_CLOSE_LOST;
2443 else if (close_type == CLOSE_AFTER_RESEND)
2444 args.ctag = TAG_CLOSE_UNDO;
2445 else
2446 args.ctag = TAG_CLOSE;
2447
2448 args.array_len = 3;
2449 args.array = argop;
2450
2451 vp = RTOV4(rp);
2452
2453 mi = VTOMI4(vp);
2454
2455 /* putfh target fh */
2456 argop[0].argop = OP_CPUTFH;
2457 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh;
2458
2459 argop[1].argop = OP_GETATTR;
2460 argop[1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
2461 argop[1].nfs_argop4_u.opgetattr.mi = mi;
2462
2463 argop[2].argop = OP_CLOSE;
2464 close_args = &argop[2].nfs_argop4_u.opclose;
2465
2466 seqid = nfs4_get_open_seqid(oop) + 1;
2467
2468 close_args->seqid = seqid;
2469 close_args->open_stateid = osp->open_stateid;
2470
2471 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE,
2472 "nfs4close_otw: %s call, rp %s", needrecov ? "recov" : "first",
2473 rnode4info(rp)));
2474
2475 t = gethrtime();
2476
2477 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, ep);
2478
2479 if (!ep->error && nfs4_need_to_bump_seqid(&res)) {
2480 nfs4_set_open_seqid(seqid, oop, args.ctag);
2481 }
2482
2483 needrecov = nfs4_needs_recovery(ep, TRUE, mi->mi_vfsp);
2484 if (ep->error && !needrecov) {
2485 /*
2486 * if there was an error and no recovery is to be done
2487 * then then set up the file to flush its cache if
2488 * needed for the next caller.
2489 */
2490 mutex_enter(&rp->r_statelock);
2491 PURGE_ATTRCACHE4_LOCKED(rp);
2492 rp->r_flags &= ~R4WRITEMODIFIED;
2493 mutex_exit(&rp->r_statelock);
2494 return;
2495 }
2496
2497 if (needrecov) {
2498 bool_t abort;
2499 nfs4_bseqid_entry_t *bsep = NULL;
2500
2501 if (close_type != CLOSE_RESEND)
2502 nfs4close_save_lost_rqst(ep->error, &lost_rqst, oop,
2503 osp, cred_otw, vp);
2504
2505 if (!ep->error && res.status == NFS4ERR_BAD_SEQID)
2506 bsep = nfs4_create_bseqid_entry(oop, NULL, vp,
2507 0, args.ctag, close_args->seqid);
2508
2509 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
2510 "nfs4close_otw: initiating recovery. error %d "
2511 "res.status %d", ep->error, res.status));
2512
2513 /*
2514 * Drop the 'os_sync_lock' here so we don't hit
2515 * a potential recursive mutex_enter via an
2516 * 'open_stream_hold()'.
2517 */
2518 mutex_exit(&osp->os_sync_lock);
2519 *have_sync_lockp = 0;
2520 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, NULL,
2521 (close_type != CLOSE_RESEND &&
2522 lost_rqst.lr_op == OP_CLOSE) ? &lost_rqst : NULL,
2523 OP_CLOSE, bsep, NULL, NULL);
2524
2525 /* drop open seq sync, and let the calling function regrab it */
2526 nfs4_end_open_seqid_sync(oop);
2527 *did_start_seqid_syncp = 0;
2528
2529 if (bsep)
2530 kmem_free(bsep, sizeof (*bsep));
2531 /*
2532 * For signals, the caller wants to quit, so don't say to
2533 * retry. For forced unmount, if it's a user thread, it
2534 * wants to quit. If it's a recovery thread, the retry
2535 * will happen higher-up on the call stack. Either way,
2536 * don't say to retry.
2537 */
2538 if (abort == FALSE && ep->error != EINTR &&
2539 !NFS4_FRC_UNMT_ERR(ep->error, mi->mi_vfsp) &&
2540 close_type != CLOSE_RESEND &&
2541 close_type != CLOSE_AFTER_RESEND)
2542 *recov = 1;
2543 else
2544 *recov = 0;
2545
2546 if (!ep->error)
2547 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2548 return;
2549 }
2550
2551 if (res.status) {
2552 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2553 return;
2554 }
2555
2556 mutex_enter(&rp->r_statev4_lock);
2557 rp->created_v4 = 0;
2558 mutex_exit(&rp->r_statev4_lock);
2559
2560 resop = &res.array[2];
2561 osp->open_stateid = resop->nfs_resop4_u.opclose.open_stateid;
2562 osp->os_valid = 0;
2563
2564 /*
2565 * This removes the reference obtained at OPEN; ie, when the
2566 * open stream structure was created.
2567 *
2568 * We don't have to worry about calling 'open_stream_rele'
2569 * since we our currently holding a reference to the open
2570 * stream which means the count cannot go to 0 with this
2571 * decrement.
2572 */
2573 ASSERT(osp->os_ref_count >= 2);
2574 osp->os_ref_count--;
2575
2576 if (!ep->error)
2577 nfs4_attr_cache(vp,
2578 &res.array[1].nfs_resop4_u.opgetattr.ga_res,
2579 t, cred_otw, TRUE, NULL);
2580
2581 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4close_otw:"
2582 " returning %d", ep->error));
2583
2584 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2585 }
2586
2587 /* ARGSUSED */
2588 static int
2589 nfs4_read(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr,
2590 caller_context_t *ct)
2591 {
2592 rnode4_t *rp;
2593 u_offset_t off;
2594 offset_t diff;
2595 uint_t on;
2596 uint_t n;
2597 caddr_t base;
2598 uint_t flags;
2599 int error;
2600 mntinfo4_t *mi;
2601
2602 rp = VTOR4(vp);
2603
2604 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER));
2605
2606 if (IS_SHADOW(vp, rp))
2607 vp = RTOV4(rp);
2608
2609 if (vp->v_type != VREG)
2610 return (EISDIR);
2611
2612 mi = VTOMI4(vp);
2613
2614 if (nfs_zone() != mi->mi_zone)
2615 return (EIO);
2616
2617 if (uiop->uio_resid == 0)
2618 return (0);
2619
2620 if (uiop->uio_loffset < 0 || uiop->uio_loffset + uiop->uio_resid < 0)
2621 return (EINVAL);
2622
2623 mutex_enter(&rp->r_statelock);
2624 if (rp->r_flags & R4RECOVERRP)
2625 error = (rp->r_error ? rp->r_error : EIO);
2626 else
2627 error = 0;
2628 mutex_exit(&rp->r_statelock);
2629 if (error)
2630 return (error);
2631
2632 /*
2633 * Bypass VM if caching has been disabled (e.g., locking) or if
2634 * using client-side direct I/O and the file is not mmap'd and
2635 * there are no cached pages.
2636 */
2637 if ((vp->v_flag & VNOCACHE) ||
2638 (((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) &&
2639 rp->r_mapcnt == 0 && rp->r_inmap == 0 && !nfs4_has_pages(vp))) {
2640 size_t resid = 0;
2641
2642 return (nfs4read(vp, NULL, uiop->uio_loffset,
2643 uiop->uio_resid, &resid, cr, FALSE, uiop));
2644 }
2645
2646 error = 0;
2647
2648 do {
2649 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */
2650 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */
2651 n = MIN(MAXBSIZE - on, uiop->uio_resid);
2652
2653 if (error = nfs4_validate_caches(vp, cr))
2654 break;
2655
2656 mutex_enter(&rp->r_statelock);
2657 while (rp->r_flags & R4INCACHEPURGE) {
2658 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) {
2659 mutex_exit(&rp->r_statelock);
2660 return (EINTR);
2661 }
2662 }
2663 diff = rp->r_size - uiop->uio_loffset;
2664 mutex_exit(&rp->r_statelock);
2665 if (diff <= 0)
2666 break;
2667 if (diff < n)
2668 n = (uint_t)diff;
2669
2670 if (vpm_enable) {
2671 /*
2672 * Copy data.
2673 */
2674 error = vpm_data_copy(vp, off + on, n, uiop,
2675 1, NULL, 0, S_READ);
2676 } else {
2677 base = segmap_getmapflt(segkmap, vp, off + on, n, 1,
2678 S_READ);
2679
2680 error = uiomove(base + on, n, UIO_READ, uiop);
2681 }
2682
2683 if (!error) {
2684 /*
2685 * If read a whole block or read to eof,
2686 * won't need this buffer again soon.
2687 */
2688 mutex_enter(&rp->r_statelock);
2689 if (n + on == MAXBSIZE ||
2690 uiop->uio_loffset == rp->r_size)
2691 flags = SM_DONTNEED;
2692 else
2693 flags = 0;
2694 mutex_exit(&rp->r_statelock);
2695 if (vpm_enable) {
2696 error = vpm_sync_pages(vp, off, n, flags);
2697 } else {
2698 error = segmap_release(segkmap, base, flags);
2699 }
2700 } else {
2701 if (vpm_enable) {
2702 (void) vpm_sync_pages(vp, off, n, 0);
2703 } else {
2704 (void) segmap_release(segkmap, base, 0);
2705 }
2706 }
2707 } while (!error && uiop->uio_resid > 0);
2708
2709 return (error);
2710 }
2711
2712 /* ARGSUSED */
2713 static int
2714 nfs4_write(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr,
2715 caller_context_t *ct)
2716 {
2717 rlim64_t limit = uiop->uio_llimit;
2718 rnode4_t *rp;
2719 u_offset_t off;
2720 caddr_t base;
2721 uint_t flags;
2722 int remainder;
2723 size_t n;
2724 int on;
2725 int error;
2726 int resid;
2727 u_offset_t offset;
2728 mntinfo4_t *mi;
2729 uint_t bsize;
2730
2731 rp = VTOR4(vp);
2732
2733 if (IS_SHADOW(vp, rp))
2734 vp = RTOV4(rp);
2735
2736 if (vp->v_type != VREG)
2737 return (EISDIR);
2738
2739 mi = VTOMI4(vp);
2740
2741 if (nfs_zone() != mi->mi_zone)
2742 return (EIO);
2743
2744 if (uiop->uio_resid == 0)
2745 return (0);
2746
2747 mutex_enter(&rp->r_statelock);
2748 if (rp->r_flags & R4RECOVERRP)
2749 error = (rp->r_error ? rp->r_error : EIO);
2750 else
2751 error = 0;
2752 mutex_exit(&rp->r_statelock);
2753 if (error)
2754 return (error);
2755
2756 if (ioflag & FAPPEND) {
2757 struct vattr va;
2758
2759 /*
2760 * Must serialize if appending.
2761 */
2762 if (nfs_rw_lock_held(&rp->r_rwlock, RW_READER)) {
2763 nfs_rw_exit(&rp->r_rwlock);
2764 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER,
2765 INTR4(vp)))
2766 return (EINTR);
2767 }
2768
2769 va.va_mask = AT_SIZE;
2770 error = nfs4getattr(vp, &va, cr);
2771 if (error)
2772 return (error);
2773 uiop->uio_loffset = va.va_size;
2774 }
2775
2776 offset = uiop->uio_loffset + uiop->uio_resid;
2777
2778 if (uiop->uio_loffset < (offset_t)0 || offset < 0)
2779 return (EINVAL);
2780
2781 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
2782 limit = MAXOFFSET_T;
2783
2784 /*
2785 * Check to make sure that the process will not exceed
2786 * its limit on file size. It is okay to write up to
2787 * the limit, but not beyond. Thus, the write which
2788 * reaches the limit will be short and the next write
2789 * will return an error.
2790 */
2791 remainder = 0;
2792 if (offset > uiop->uio_llimit) {
2793 remainder = offset - uiop->uio_llimit;
2794 uiop->uio_resid = uiop->uio_llimit - uiop->uio_loffset;
2795 if (uiop->uio_resid <= 0) {
2796 proc_t *p = ttoproc(curthread);
2797
2798 uiop->uio_resid += remainder;
2799 mutex_enter(&p->p_lock);
2800 (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE],
2801 p->p_rctls, p, RCA_UNSAFE_SIGINFO);
2802 mutex_exit(&p->p_lock);
2803 return (EFBIG);
2804 }
2805 }
2806
2807 /* update the change attribute, if we have a write delegation */
2808
2809 mutex_enter(&rp->r_statev4_lock);
2810 if (rp->r_deleg_type == OPEN_DELEGATE_WRITE)
2811 rp->r_deleg_change++;
2812
2813 mutex_exit(&rp->r_statev4_lock);
2814
2815 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR4(vp)))
2816 return (EINTR);
2817
2818 /*
2819 * Bypass VM if caching has been disabled (e.g., locking) or if
2820 * using client-side direct I/O and the file is not mmap'd and
2821 * there are no cached pages.
2822 */
2823 if ((vp->v_flag & VNOCACHE) ||
2824 (((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) &&
2825 rp->r_mapcnt == 0 && rp->r_inmap == 0 && !nfs4_has_pages(vp))) {
2826 size_t bufsize;
2827 int count;
2828 u_offset_t org_offset;
2829 stable_how4 stab_comm;
2830 nfs4_fwrite:
2831 if (rp->r_flags & R4STALE) {
2832 resid = uiop->uio_resid;
2833 offset = uiop->uio_loffset;
2834 error = rp->r_error;
2835 /*
2836 * A close may have cleared r_error, if so,
2837 * propagate ESTALE error return properly
2838 */
2839 if (error == 0)
2840 error = ESTALE;
2841 goto bottom;
2842 }
2843
2844 bufsize = MIN(uiop->uio_resid, mi->mi_stsize);
2845 base = kmem_alloc(bufsize, KM_SLEEP);
2846 do {
2847 if (ioflag & FDSYNC)
2848 stab_comm = DATA_SYNC4;
2849 else
2850 stab_comm = FILE_SYNC4;
2851 resid = uiop->uio_resid;
2852 offset = uiop->uio_loffset;
2853 count = MIN(uiop->uio_resid, bufsize);
2854 org_offset = uiop->uio_loffset;
2855 error = uiomove(base, count, UIO_WRITE, uiop);
2856 if (!error) {
2857 error = nfs4write(vp, base, org_offset,
2858 count, cr, &stab_comm);
2859 if (!error) {
2860 mutex_enter(&rp->r_statelock);
2861 if (rp->r_size < uiop->uio_loffset)
2862 rp->r_size = uiop->uio_loffset;
2863 mutex_exit(&rp->r_statelock);
2864 }
2865 }
2866 } while (!error && uiop->uio_resid > 0);
2867 kmem_free(base, bufsize);
2868 goto bottom;
2869 }
2870
2871 bsize = vp->v_vfsp->vfs_bsize;
2872
2873 do {
2874 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */
2875 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */
2876 n = MIN(MAXBSIZE - on, uiop->uio_resid);
2877
2878 resid = uiop->uio_resid;
2879 offset = uiop->uio_loffset;
2880
2881 if (rp->r_flags & R4STALE) {
2882 error = rp->r_error;
2883 /*
2884 * A close may have cleared r_error, if so,
2885 * propagate ESTALE error return properly
2886 */
2887 if (error == 0)
2888 error = ESTALE;
2889 break;
2890 }
2891
2892 /*
2893 * Don't create dirty pages faster than they
2894 * can be cleaned so that the system doesn't
2895 * get imbalanced. If the async queue is
2896 * maxed out, then wait for it to drain before
2897 * creating more dirty pages. Also, wait for
2898 * any threads doing pagewalks in the vop_getattr
2899 * entry points so that they don't block for
2900 * long periods.
2901 */
2902 mutex_enter(&rp->r_statelock);
2903 while ((mi->mi_max_threads != 0 &&
2904 rp->r_awcount > 2 * mi->mi_max_threads) ||
2905 rp->r_gcount > 0) {
2906 if (INTR4(vp)) {
2907 klwp_t *lwp = ttolwp(curthread);
2908
2909 if (lwp != NULL)
2910 lwp->lwp_nostop++;
2911 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) {
2912 mutex_exit(&rp->r_statelock);
2913 if (lwp != NULL)
2914 lwp->lwp_nostop--;
2915 error = EINTR;
2916 goto bottom;
2917 }
2918 if (lwp != NULL)
2919 lwp->lwp_nostop--;
2920 } else
2921 cv_wait(&rp->r_cv, &rp->r_statelock);
2922 }
2923 mutex_exit(&rp->r_statelock);
2924
2925 /*
2926 * Touch the page and fault it in if it is not in core
2927 * before segmap_getmapflt or vpm_data_copy can lock it.
2928 * This is to avoid the deadlock if the buffer is mapped
2929 * to the same file through mmap which we want to write.
2930 */
2931 uio_prefaultpages((long)n, uiop);
2932
2933 if (vpm_enable) {
2934 /*
2935 * It will use kpm mappings, so no need to
2936 * pass an address.
2937 */
2938 error = writerp4(rp, NULL, n, uiop, 0);
2939 } else {
2940 if (segmap_kpm) {
2941 int pon = uiop->uio_loffset & PAGEOFFSET;
2942 size_t pn = MIN(PAGESIZE - pon,
2943 uiop->uio_resid);
2944 int pagecreate;
2945
2946 mutex_enter(&rp->r_statelock);
2947 pagecreate = (pon == 0) && (pn == PAGESIZE ||
2948 uiop->uio_loffset + pn >= rp->r_size);
2949 mutex_exit(&rp->r_statelock);
2950
2951 base = segmap_getmapflt(segkmap, vp, off + on,
2952 pn, !pagecreate, S_WRITE);
2953
2954 error = writerp4(rp, base + pon, n, uiop,
2955 pagecreate);
2956
2957 } else {
2958 base = segmap_getmapflt(segkmap, vp, off + on,
2959 n, 0, S_READ);
2960 error = writerp4(rp, base + on, n, uiop, 0);
2961 }
2962 }
2963
2964 if (!error) {
2965 if (mi->mi_flags & MI4_NOAC)
2966 flags = SM_WRITE;
2967 else if ((uiop->uio_loffset % bsize) == 0 ||
2968 IS_SWAPVP(vp)) {
2969 /*
2970 * Have written a whole block.
2971 * Start an asynchronous write
2972 * and mark the buffer to
2973 * indicate that it won't be
2974 * needed again soon.
2975 */
2976 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED;
2977 } else
2978 flags = 0;
2979 if ((ioflag & (FSYNC|FDSYNC)) ||
2980 (rp->r_flags & R4OUTOFSPACE)) {
2981 flags &= ~SM_ASYNC;
2982 flags |= SM_WRITE;
2983 }
2984 if (vpm_enable) {
2985 error = vpm_sync_pages(vp, off, n, flags);
2986 } else {
2987 error = segmap_release(segkmap, base, flags);
2988 }
2989 } else {
2990 if (vpm_enable) {
2991 (void) vpm_sync_pages(vp, off, n, 0);
2992 } else {
2993 (void) segmap_release(segkmap, base, 0);
2994 }
2995 /*
2996 * In the event that we got an access error while
2997 * faulting in a page for a write-only file just
2998 * force a write.
2999 */
3000 if (error == EACCES)
3001 goto nfs4_fwrite;
3002 }
3003 } while (!error && uiop->uio_resid > 0);
3004
3005 bottom:
3006 if (error) {
3007 uiop->uio_resid = resid + remainder;
3008 uiop->uio_loffset = offset;
3009 } else {
3010 uiop->uio_resid += remainder;
3011
3012 mutex_enter(&rp->r_statev4_lock);
3013 if (rp->r_deleg_type == OPEN_DELEGATE_WRITE) {
3014 gethrestime(&rp->r_attr.va_mtime);
3015 rp->r_attr.va_ctime = rp->r_attr.va_mtime;
3016 }
3017 mutex_exit(&rp->r_statev4_lock);
3018 }
3019
3020 nfs_rw_exit(&rp->r_lkserlock);
3021
3022 return (error);
3023 }
3024
3025 /*
3026 * Flags are composed of {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED}
3027 */
3028 static int
3029 nfs4_rdwrlbn(vnode_t *vp, page_t *pp, u_offset_t off, size_t len,
3030 int flags, cred_t *cr)
3031 {
3032 struct buf *bp;
3033 int error;
3034 page_t *savepp;
3035 uchar_t fsdata;
3036 stable_how4 stab_comm;
3037
3038 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
3039 bp = pageio_setup(pp, len, vp, flags);
3040 ASSERT(bp != NULL);
3041
3042 /*
3043 * pageio_setup should have set b_addr to 0. This
3044 * is correct since we want to do I/O on a page
3045 * boundary. bp_mapin will use this addr to calculate
3046 * an offset, and then set b_addr to the kernel virtual
3047 * address it allocated for us.
3048 */
3049 ASSERT(bp->b_un.b_addr == 0);
3050
3051 bp->b_edev = 0;
3052 bp->b_dev = 0;
3053 bp->b_lblkno = lbtodb(off);
3054 bp->b_file = vp;
3055 bp->b_offset = (offset_t)off;
3056 bp_mapin(bp);
3057
3058 if ((flags & (B_WRITE|B_ASYNC)) == (B_WRITE|B_ASYNC) &&
3059 freemem > desfree)
3060 stab_comm = UNSTABLE4;
3061 else
3062 stab_comm = FILE_SYNC4;
3063
3064 error = nfs4_bio(bp, &stab_comm, cr, FALSE);
3065
3066 bp_mapout(bp);
3067 pageio_done(bp);
3068
3069 if (stab_comm == UNSTABLE4)
3070 fsdata = C_DELAYCOMMIT;
3071 else
3072 fsdata = C_NOCOMMIT;
3073
3074 savepp = pp;
3075 do {
3076 pp->p_fsdata = fsdata;
3077 } while ((pp = pp->p_next) != savepp);
3078
3079 return (error);
3080 }
3081
3082 /*
3083 */
3084 static int
3085 nfs4rdwr_check_osid(vnode_t *vp, nfs4_error_t *ep, cred_t *cr)
3086 {
3087 nfs4_open_owner_t *oop;
3088 nfs4_open_stream_t *osp;
3089 rnode4_t *rp = VTOR4(vp);
3090 mntinfo4_t *mi = VTOMI4(vp);
3091 int reopen_needed;
3092
3093 ASSERT(nfs_zone() == mi->mi_zone);
3094
3095
3096 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi);
3097 if (!oop)
3098 return (EIO);
3099
3100 /* returns with 'os_sync_lock' held */
3101 osp = find_open_stream(oop, rp);
3102 if (!osp) {
3103 open_owner_rele(oop);
3104 return (EIO);
3105 }
3106
3107 if (osp->os_failed_reopen) {
3108 mutex_exit(&osp->os_sync_lock);
3109 open_stream_rele(osp, rp);
3110 open_owner_rele(oop);
3111 return (EIO);
3112 }
3113
3114 /*
3115 * Determine whether a reopen is needed. If this
3116 * is a delegation open stream, then the os_delegation bit
3117 * should be set.
3118 */
3119
3120 reopen_needed = osp->os_delegation;
3121
3122 mutex_exit(&osp->os_sync_lock);
3123 open_owner_rele(oop);
3124
3125 if (reopen_needed) {
3126 nfs4_error_zinit(ep);
3127 nfs4_reopen(vp, osp, ep, CLAIM_NULL, FALSE, FALSE);
3128 mutex_enter(&osp->os_sync_lock);
3129 if (ep->error || ep->stat || osp->os_failed_reopen) {
3130 mutex_exit(&osp->os_sync_lock);
3131 open_stream_rele(osp, rp);
3132 return (EIO);
3133 }
3134 mutex_exit(&osp->os_sync_lock);
3135 }
3136 open_stream_rele(osp, rp);
3137
3138 return (0);
3139 }
3140
3141 /*
3142 * Write to file. Writes to remote server in largest size
3143 * chunks that the server can handle. Write is synchronous.
3144 */
3145 static int
3146 nfs4write(vnode_t *vp, caddr_t base, u_offset_t offset, int count, cred_t *cr,
3147 stable_how4 *stab_comm)
3148 {
3149 mntinfo4_t *mi;
3150 COMPOUND4args_clnt args;
3151 COMPOUND4res_clnt res;
3152 WRITE4args *wargs;
3153 WRITE4res *wres;
3154 nfs_argop4 argop[2];
3155 nfs_resop4 *resop;
3156 int tsize;
3157 stable_how4 stable;
3158 rnode4_t *rp;
3159 int doqueue = 1;
3160 bool_t needrecov;
3161 nfs4_recov_state_t recov_state;
3162 nfs4_stateid_types_t sid_types;
3163 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
3164 int recov;
3165
3166 rp = VTOR4(vp);
3167 mi = VTOMI4(vp);
3168
3169 ASSERT(nfs_zone() == mi->mi_zone);
3170
3171 stable = *stab_comm;
3172 *stab_comm = FILE_SYNC4;
3173
3174 needrecov = FALSE;
3175 recov_state.rs_flags = 0;
3176 recov_state.rs_num_retry_despite_err = 0;
3177 nfs4_init_stateid_types(&sid_types);
3178
3179 /* Is curthread the recovery thread? */
3180 mutex_enter(&mi->mi_lock);
3181 recov = (mi->mi_recovthread == curthread);
3182 mutex_exit(&mi->mi_lock);
3183
3184 recov_retry:
3185 args.ctag = TAG_WRITE;
3186 args.array_len = 2;
3187 args.array = argop;
3188
3189 if (!recov) {
3190 e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_WRITE,
3191 &recov_state, NULL);
3192 if (e.error)
3193 return (e.error);
3194 }
3195
3196 /* 0. putfh target fh */
3197 argop[0].argop = OP_CPUTFH;
3198 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh;
3199
3200 /* 1. write */
3201 nfs4args_write(&argop[1], stable, rp, cr, &wargs, &sid_types);
3202
3203 do {
3204
3205 wargs->offset = (offset4)offset;
3206 wargs->data_val = base;
3207
3208 if (mi->mi_io_kstats) {
3209 mutex_enter(&mi->mi_lock);
3210 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
3211 mutex_exit(&mi->mi_lock);
3212 }
3213
3214 if ((vp->v_flag & VNOCACHE) ||
3215 (rp->r_flags & R4DIRECTIO) ||
3216 (mi->mi_flags & MI4_DIRECTIO))
3217 tsize = MIN(mi->mi_stsize, count);
3218 else
3219 tsize = MIN(mi->mi_curwrite, count);
3220 wargs->data_len = (uint_t)tsize;
3221 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);
3222
3223 if (mi->mi_io_kstats) {
3224 mutex_enter(&mi->mi_lock);
3225 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
3226 mutex_exit(&mi->mi_lock);
3227 }
3228
3229 if (!recov) {
3230 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
3231 if (e.error && !needrecov) {
3232 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE,
3233 &recov_state, needrecov);
3234 return (e.error);
3235 }
3236 } else {
3237 if (e.error)
3238 return (e.error);
3239 }
3240
3241 /*
3242 * Do handling of OLD_STATEID outside
3243 * of the normal recovery framework.
3244 *
3245 * If write receives a BAD stateid error while using a
3246 * delegation stateid, retry using the open stateid (if it
3247 * exists). If it doesn't have an open stateid, reopen the
3248 * file first, then retry.
3249 */
3250 if (!e.error && res.status == NFS4ERR_OLD_STATEID &&
3251 sid_types.cur_sid_type != SPEC_SID) {
3252 nfs4_save_stateid(&wargs->stateid, &sid_types);
3253 if (!recov)
3254 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE,
3255 &recov_state, needrecov);
3256 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3257 goto recov_retry;
3258 } else if (e.error == 0 && res.status == NFS4ERR_BAD_STATEID &&
3259 sid_types.cur_sid_type == DEL_SID) {
3260 nfs4_save_stateid(&wargs->stateid, &sid_types);
3261 mutex_enter(&rp->r_statev4_lock);
3262 rp->r_deleg_return_pending = TRUE;
3263 mutex_exit(&rp->r_statev4_lock);
3264 if (nfs4rdwr_check_osid(vp, &e, cr)) {
3265 if (!recov)
3266 nfs4_end_fop(mi, vp, NULL, OH_WRITE,
3267 &recov_state, needrecov);
3268 (void) xdr_free(xdr_COMPOUND4res_clnt,
3269 (caddr_t)&res);
3270 return (EIO);
3271 }
3272 if (!recov)
3273 nfs4_end_fop(mi, vp, NULL, OH_WRITE,
3274 &recov_state, needrecov);
3275 /* hold needed for nfs4delegreturn_thread */
3276 VN_HOLD(vp);
3277 nfs4delegreturn_async(rp, (NFS4_DR_PUSH|NFS4_DR_REOPEN|
3278 NFS4_DR_DISCARD), FALSE);
3279 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3280 goto recov_retry;
3281 }
3282
3283 if (needrecov) {
3284 bool_t abort;
3285
3286 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
3287 "nfs4write: client got error %d, res.status %d"
3288 ", so start recovery", e.error, res.status));
3289
3290 abort = nfs4_start_recovery(&e,
3291 VTOMI4(vp), vp, NULL, &wargs->stateid,
3292 NULL, OP_WRITE, NULL, NULL, NULL);
3293 if (!e.error) {
3294 e.error = geterrno4(res.status);
3295 (void) xdr_free(xdr_COMPOUND4res_clnt,
3296 (caddr_t)&res);
3297 }
3298 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE,
3299 &recov_state, needrecov);
3300 if (abort == FALSE)
3301 goto recov_retry;
3302 return (e.error);
3303 }
3304
3305 if (res.status) {
3306 e.error = geterrno4(res.status);
3307 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3308 if (!recov)
3309 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE,
3310 &recov_state, needrecov);
3311 return (e.error);
3312 }
3313
3314 resop = &res.array[1]; /* write res */
3315 wres = &resop->nfs_resop4_u.opwrite;
3316
3317 if ((int)wres->count > tsize) {
3318 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3319
3320 zcmn_err(getzoneid(), CE_WARN,
3321 "nfs4write: server wrote %u, requested was %u",
3322 (int)wres->count, tsize);
3323 if (!recov)
3324 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE,
3325 &recov_state, needrecov);
3326 return (EIO);
3327 }
3328 if (wres->committed == UNSTABLE4) {
3329 *stab_comm = UNSTABLE4;
3330 if (wargs->stable == DATA_SYNC4 ||
3331 wargs->stable == FILE_SYNC4) {
3332 (void) xdr_free(xdr_COMPOUND4res_clnt,
3333 (caddr_t)&res);
3334 zcmn_err(getzoneid(), CE_WARN,
3335 "nfs4write: server %s did not commit "
3336 "to stable storage",
3337 rp->r_server->sv_hostname);
3338 if (!recov)
3339 nfs4_end_fop(VTOMI4(vp), vp, NULL,
3340 OH_WRITE, &recov_state, needrecov);
3341 return (EIO);
3342 }
3343 }
3344
3345 tsize = (int)wres->count;
3346 count -= tsize;
3347 base += tsize;
3348 offset += tsize;
3349 if (mi->mi_io_kstats) {
3350 mutex_enter(&mi->mi_lock);
3351 KSTAT_IO_PTR(mi->mi_io_kstats)->writes++;
3352 KSTAT_IO_PTR(mi->mi_io_kstats)->nwritten +=
3353 tsize;
3354 mutex_exit(&mi->mi_lock);
3355 }
3356 lwp_stat_update(LWP_STAT_OUBLK, 1);
3357 mutex_enter(&rp->r_statelock);
3358 if (rp->r_flags & R4HAVEVERF) {
3359 if (rp->r_writeverf != wres->writeverf) {
3360 nfs4_set_mod(vp);
3361 rp->r_writeverf = wres->writeverf;
3362 }
3363 } else {
3364 rp->r_writeverf = wres->writeverf;
3365 rp->r_flags |= R4HAVEVERF;
3366 }
3367 PURGE_ATTRCACHE4_LOCKED(rp);
3368 rp->r_flags |= R4WRITEMODIFIED;
3369 gethrestime(&rp->r_attr.va_mtime);
3370 rp->r_attr.va_ctime = rp->r_attr.va_mtime;
3371 mutex_exit(&rp->r_statelock);
3372 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3373 } while (count);
3374
3375 if (!recov)
3376 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, &recov_state,
3377 needrecov);
3378
3379 return (e.error);
3380 }
3381
3382 /*
3383 * Read from a file. Reads data in largest chunks our interface can handle.
3384 */
3385 static int
3386 nfs4read(vnode_t *vp, caddr_t base, offset_t offset, int count,
3387 size_t *residp, cred_t *cr, bool_t async, struct uio *uiop)
3388 {
3389 mntinfo4_t *mi;
3390 COMPOUND4args_clnt args;
3391 COMPOUND4res_clnt res;
3392 READ4args *rargs;
3393 nfs_argop4 argop[2];
3394 int tsize;
3395 int doqueue;
3396 rnode4_t *rp;
3397 int data_len;
3398 bool_t is_eof;
3399 bool_t needrecov = FALSE;
3400 nfs4_recov_state_t recov_state;
3401 nfs4_stateid_types_t sid_types;
3402 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
3403
3404 rp = VTOR4(vp);
3405 mi = VTOMI4(vp);
3406 doqueue = 1;
3407
3408 ASSERT(nfs_zone() == mi->mi_zone);
3409
3410 args.ctag = async ? TAG_READAHEAD : TAG_READ;
3411
3412 args.array_len = 2;
3413 args.array = argop;
3414
3415 nfs4_init_stateid_types(&sid_types);
3416
3417 recov_state.rs_flags = 0;
3418 recov_state.rs_num_retry_despite_err = 0;
3419
3420 recov_retry:
3421 e.error = nfs4_start_fop(mi, vp, NULL, OH_READ,
3422 &recov_state, NULL);
3423 if (e.error)
3424 return (e.error);
3425
3426 /* putfh target fh */
3427 argop[0].argop = OP_CPUTFH;
3428 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh;
3429
3430 /* read */
3431 argop[1].argop = OP_READ;
3432 rargs = &argop[1].nfs_argop4_u.opread;
3433 rargs->stateid = nfs4_get_stateid(cr, rp, curproc->p_pidp->pid_id, mi,
3434 OP_READ, &sid_types, async);
3435
3436 do {
3437 if (mi->mi_io_kstats) {
3438 mutex_enter(&mi->mi_lock);
3439 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
3440 mutex_exit(&mi->mi_lock);
3441 }
3442
3443 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE,
3444 "nfs4read: %s call, rp %s",
3445 needrecov ? "recov" : "first",
3446 rnode4info(rp)));
3447
3448 if ((vp->v_flag & VNOCACHE) ||
3449 (rp->r_flags & R4DIRECTIO) ||
3450 (mi->mi_flags & MI4_DIRECTIO))
3451 tsize = MIN(mi->mi_tsize, count);
3452 else
3453 tsize = MIN(mi->mi_curread, count);
3454
3455 rargs->offset = (offset4)offset;
3456 rargs->count = (count4)tsize;
3457 rargs->res_data_val_alt = NULL;
3458 rargs->res_mblk = NULL;
3459 rargs->res_uiop = NULL;
3460 rargs->res_maxsize = 0;
3461 rargs->wlist = NULL;
3462
3463 if (uiop)
3464 rargs->res_uiop = uiop;
3465 else
3466 rargs->res_data_val_alt = base;
3467 rargs->res_maxsize = tsize;
3468
3469 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);
3470 #ifdef DEBUG
3471 if (nfs4read_error_inject) {
3472 res.status = nfs4read_error_inject;
3473 nfs4read_error_inject = 0;
3474 }
3475 #endif
3476
3477 if (mi->mi_io_kstats) {
3478 mutex_enter(&mi->mi_lock);
3479 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
3480 mutex_exit(&mi->mi_lock);
3481 }
3482
3483 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
3484 if (e.error != 0 && !needrecov) {
3485 nfs4_end_fop(mi, vp, NULL, OH_READ,
3486 &recov_state, needrecov);
3487 return (e.error);
3488 }
3489
3490 /*
3491 * Do proper retry for OLD and BAD stateid errors outside
3492 * of the normal recovery framework. There are two differences
3493 * between async and sync reads. The first is that we allow
3494 * retry on BAD_STATEID for async reads, but not sync reads.
3495 * The second is that we mark the file dead for a failed
3496 * attempt with a special stateid for sync reads, but just
3497 * return EIO for async reads.
3498 *
3499 * If a sync read receives a BAD stateid error while using a
3500 * delegation stateid, retry using the open stateid (if it
3501 * exists). If it doesn't have an open stateid, reopen the
3502 * file first, then retry.
3503 */
3504 if (e.error == 0 && (res.status == NFS4ERR_OLD_STATEID ||
3505 res.status == NFS4ERR_BAD_STATEID) && async) {
3506 nfs4_end_fop(mi, vp, NULL, OH_READ,
3507 &recov_state, needrecov);
3508 if (sid_types.cur_sid_type == SPEC_SID) {
3509 (void) xdr_free(xdr_COMPOUND4res_clnt,
3510 (caddr_t)&res);
3511 return (EIO);
3512 }
3513 nfs4_save_stateid(&rargs->stateid, &sid_types);
3514 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3515 goto recov_retry;
3516 } else if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID &&
3517 !async && sid_types.cur_sid_type != SPEC_SID) {
3518 nfs4_save_stateid(&rargs->stateid, &sid_types);
3519 nfs4_end_fop(mi, vp, NULL, OH_READ,
3520 &recov_state, needrecov);
3521 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3522 goto recov_retry;
3523 } else if (e.error == 0 && res.status == NFS4ERR_BAD_STATEID &&
3524 sid_types.cur_sid_type == DEL_SID) {
3525 nfs4_save_stateid(&rargs->stateid, &sid_types);
3526 mutex_enter(&rp->r_statev4_lock);
3527 rp->r_deleg_return_pending = TRUE;
3528 mutex_exit(&rp->r_statev4_lock);
3529 if (nfs4rdwr_check_osid(vp, &e, cr)) {
3530 nfs4_end_fop(mi, vp, NULL, OH_READ,
3531 &recov_state, needrecov);
3532 (void) xdr_free(xdr_COMPOUND4res_clnt,
3533 (caddr_t)&res);
3534 return (EIO);
3535 }
3536 nfs4_end_fop(mi, vp, NULL, OH_READ,
3537 &recov_state, needrecov);
3538 /* hold needed for nfs4delegreturn_thread */
3539 VN_HOLD(vp);
3540 nfs4delegreturn_async(rp, (NFS4_DR_PUSH|NFS4_DR_REOPEN|
3541 NFS4_DR_DISCARD), FALSE);
3542 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3543 goto recov_retry;
3544 }
3545 if (needrecov) {
3546 bool_t abort;
3547
3548 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
3549 "nfs4read: initiating recovery\n"));
3550 abort = nfs4_start_recovery(&e,
3551 mi, vp, NULL, &rargs->stateid,
3552 NULL, OP_READ, NULL, NULL, NULL);
3553 nfs4_end_fop(mi, vp, NULL, OH_READ,
3554 &recov_state, needrecov);
3555 /*
3556 * Do not retry if we got OLD_STATEID using a special
3557 * stateid. This avoids looping with a broken server.
3558 */
3559 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID &&
3560 sid_types.cur_sid_type == SPEC_SID)
3561 abort = TRUE;
3562
3563 if (abort == FALSE) {
3564 /*
3565 * Need to retry all possible stateids in
3566 * case the recovery error wasn't stateid
3567 * related or the stateids have become
3568 * stale (server reboot).
3569 */
3570 nfs4_init_stateid_types(&sid_types);
3571 (void) xdr_free(xdr_COMPOUND4res_clnt,
3572 (caddr_t)&res);
3573 goto recov_retry;
3574 }
3575
3576 if (!e.error) {
3577 e.error = geterrno4(res.status);
3578 (void) xdr_free(xdr_COMPOUND4res_clnt,
3579 (caddr_t)&res);
3580 }
3581 return (e.error);
3582 }
3583
3584 if (res.status) {
3585 e.error = geterrno4(res.status);
3586 nfs4_end_fop(mi, vp, NULL, OH_READ,
3587 &recov_state, needrecov);
3588 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3589 return (e.error);
3590 }
3591
3592 data_len = res.array[1].nfs_resop4_u.opread.data_len;
3593 count -= data_len;
3594 if (base)
3595 base += data_len;
3596 offset += data_len;
3597 if (mi->mi_io_kstats) {
3598 mutex_enter(&mi->mi_lock);
3599 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++;
3600 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += data_len;
3601 mutex_exit(&mi->mi_lock);
3602 }
3603 lwp_stat_update(LWP_STAT_INBLK, 1);
3604 is_eof = res.array[1].nfs_resop4_u.opread.eof;
3605 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3606
3607 } while (count && !is_eof);
3608
3609 *residp = count;
3610
3611 nfs4_end_fop(mi, vp, NULL, OH_READ, &recov_state, needrecov);
3612
3613 return (e.error);
3614 }
3615
3616 /* ARGSUSED */
3617 static int
3618 nfs4_ioctl(vnode_t *vp, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp,
3619 caller_context_t *ct)
3620 {
3621 if (nfs_zone() != VTOMI4(vp)->mi_zone)
3622 return (EIO);
3623 switch (cmd) {
3624 case _FIODIRECTIO:
3625 return (nfs4_directio(vp, (int)arg, cr));
3626 default:
3627 return (ENOTTY);
3628 }
3629 }
3630
3631 /* ARGSUSED */
3632 int
3633 nfs4_getattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr,
3634 caller_context_t *ct)
3635 {
3636 int error;
3637 rnode4_t *rp = VTOR4(vp);
3638
3639 if (nfs_zone() != VTOMI4(vp)->mi_zone)
3640 return (EIO);
3641 /*
3642 * If it has been specified that the return value will
3643 * just be used as a hint, and we are only being asked
3644 * for size, fsid or rdevid, then return the client's
3645 * notion of these values without checking to make sure
3646 * that the attribute cache is up to date.
3647 * The whole point is to avoid an over the wire GETATTR
3648 * call.
3649 */
3650 if (flags & ATTR_HINT) {
3651 if (!(vap->va_mask & ~(AT_SIZE | AT_FSID | AT_RDEV))) {
3652 mutex_enter(&rp->r_statelock);
3653 if (vap->va_mask & AT_SIZE)
3654 vap->va_size = rp->r_size;
3655 if (vap->va_mask & AT_FSID)
3656 vap->va_fsid = rp->r_attr.va_fsid;
3657 if (vap->va_mask & AT_RDEV)
3658 vap->va_rdev = rp->r_attr.va_rdev;
3659 mutex_exit(&rp->r_statelock);
3660 return (0);
3661 }
3662 }
3663
3664 /*
3665 * Only need to flush pages if asking for the mtime
3666 * and if there any dirty pages or any outstanding
3667 * asynchronous (write) requests for this file.
3668 */
3669 if (vap->va_mask & AT_MTIME) {
3670 rp = VTOR4(vp);
3671 if (nfs4_has_pages(vp)) {
3672 mutex_enter(&rp->r_statev4_lock);
3673 if (rp->r_deleg_type != OPEN_DELEGATE_WRITE) {
3674 mutex_exit(&rp->r_statev4_lock);
3675 if (rp->r_flags & R4DIRTY ||
3676 rp->r_awcount > 0) {
3677 mutex_enter(&rp->r_statelock);
3678 rp->r_gcount++;
3679 mutex_exit(&rp->r_statelock);
3680 error =
3681 nfs4_putpage(vp, (u_offset_t)0,
3682 0, 0, cr, NULL);
3683 mutex_enter(&rp->r_statelock);
3684 if (error && (error == ENOSPC ||
3685 error == EDQUOT)) {
3686 if (!rp->r_error)
3687 rp->r_error = error;
3688 }
3689 if (--rp->r_gcount == 0)
3690 cv_broadcast(&rp->r_cv);
3691 mutex_exit(&rp->r_statelock);
3692 }
3693 } else {
3694 mutex_exit(&rp->r_statev4_lock);
3695 }
3696 }
3697 }
3698 return (nfs4getattr(vp, vap, cr));
3699 }
3700
3701 int
3702 nfs4_compare_modes(mode_t from_server, mode_t on_client)
3703 {
3704 /*
3705 * If these are the only two bits cleared
3706 * on the server then return 0 (OK) else
3707 * return 1 (BAD).
3708 */
3709 on_client &= ~(S_ISUID|S_ISGID);
3710 if (on_client == from_server)
3711 return (0);
3712 else
3713 return (1);
3714 }
3715
3716 /*ARGSUSED4*/
3717 static int
3718 nfs4_setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr,
3719 caller_context_t *ct)
3720 {
3721 int error;
3722
3723 if (vap->va_mask & AT_NOSET)
3724 return (EINVAL);
3725
3726 if (nfs_zone() != VTOMI4(vp)->mi_zone)
3727 return (EIO);
3728
3729 /*
3730 * Don't call secpolicy_vnode_setattr, the client cannot
3731 * use its cached attributes to make security decisions
3732 * as the server may be faking mode bits or mapping uid/gid.
3733 * Always just let the server to the checking.
3734 * If we provide the ability to remove basic priviledges
3735 * to setattr (e.g. basic without chmod) then we will
3736 * need to add a check here before calling the server.
3737 */
3738 error = nfs4setattr(vp, vap, flags, cr, NULL);
3739
3740 if (error == 0 && (vap->va_mask & AT_SIZE) && vap->va_size == 0)
3741 vnevent_truncate(vp, ct);
3742
3743 return (error);
3744 }
3745
3746 /*
3747 * To replace the "guarded" version 3 setattr, we use two types of compound
3748 * setattr requests:
3749 * 1. The "normal" setattr, used when the size of the file isn't being
3750 * changed - { Putfh <fh>; Setattr; Getattr }/
3751 * 2. If the size is changed, precede Setattr with: Getattr; Verify
3752 * with only ctime as the argument. If the server ctime differs from
3753 * what is cached on the client, the verify will fail, but we would
3754 * already have the ctime from the preceding getattr, so just set it
3755 * and retry. Thus the compound here is - { Putfh <fh>; Getattr; Verify;
3756 * Setattr; Getattr }.
3757 *
3758 * The vsecattr_t * input parameter will be non-NULL if ACLs are being set in
3759 * this setattr and NULL if they are not.
3760 */
3761 static int
3762 nfs4setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr,
3763 vsecattr_t *vsap)
3764 {
3765 COMPOUND4args_clnt args;
3766 COMPOUND4res_clnt res, *resp = NULL;
3767 nfs4_ga_res_t *garp = NULL;
3768 int numops = 3; /* { Putfh; Setattr; Getattr } */
3769 nfs_argop4 argop[5];
3770 int verify_argop = -1;
3771 int setattr_argop = 1;
3772 nfs_resop4 *resop;
3773 vattr_t va;
3774 rnode4_t *rp;
3775 int doqueue = 1;
3776 uint_t mask = vap->va_mask;
3777 mode_t omode;
3778 vsecattr_t *vsp;
3779 timestruc_t ctime;
3780 bool_t needrecov = FALSE;
3781 nfs4_recov_state_t recov_state;
3782 nfs4_stateid_types_t sid_types;
3783 stateid4 stateid;
3784 hrtime_t t;
3785 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
3786 servinfo4_t *svp;
3787 bitmap4 supp_attrs;
3788
3789 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
3790 rp = VTOR4(vp);
3791 nfs4_init_stateid_types(&sid_types);
3792
3793 /*
3794 * Only need to flush pages if there are any pages and
3795 * if the file is marked as dirty in some fashion. The
3796 * file must be flushed so that we can accurately
3797 * determine the size of the file and the cached data
3798 * after the SETATTR returns. A file is considered to
3799 * be dirty if it is either marked with R4DIRTY, has
3800 * outstanding i/o's active, or is mmap'd. In this
3801 * last case, we can't tell whether there are dirty
3802 * pages, so we flush just to be sure.
3803 */
3804 if (nfs4_has_pages(vp) &&
3805 ((rp->r_flags & R4DIRTY) ||
3806 rp->r_count > 0 ||
3807 rp->r_mapcnt > 0)) {
3808 ASSERT(vp->v_type != VCHR);
3809 e.error = nfs4_putpage(vp, (offset_t)0, 0, 0, cr, NULL);
3810 if (e.error && (e.error == ENOSPC || e.error == EDQUOT)) {
3811 mutex_enter(&rp->r_statelock);
3812 if (!rp->r_error)
3813 rp->r_error = e.error;
3814 mutex_exit(&rp->r_statelock);
3815 }
3816 }
3817
3818 if (mask & AT_SIZE) {
3819 /*
3820 * Verification setattr compound for non-deleg AT_SIZE:
3821 * { Putfh; Getattr; Verify; Setattr; Getattr }
3822 * Set ctime local here (outside the do_again label)
3823 * so that subsequent retries (after failed VERIFY)
3824 * will use ctime from GETATTR results (from failed
3825 * verify compound) as VERIFY arg.
3826 * If file has delegation, then VERIFY(time_metadata)
3827 * is of little added value, so don't bother.
3828 */
3829 mutex_enter(&rp->r_statev4_lock);
3830 if (rp->r_deleg_type == OPEN_DELEGATE_NONE ||
3831 rp->r_deleg_return_pending) {
3832 numops = 5;
3833 ctime = rp->r_attr.va_ctime;
3834 }
3835 mutex_exit(&rp->r_statev4_lock);
3836 }
3837
3838 recov_state.rs_flags = 0;
3839 recov_state.rs_num_retry_despite_err = 0;
3840
3841 args.ctag = TAG_SETATTR;
3842 do_again:
3843 recov_retry:
3844 setattr_argop = numops - 2;
3845
3846 args.array = argop;
3847 args.array_len = numops;
3848
3849 e.error = nfs4_start_op(VTOMI4(vp), vp, NULL, &recov_state);
3850 if (e.error)
3851 return (e.error);
3852
3853
3854 /* putfh target fh */
3855 argop[0].argop = OP_CPUTFH;
3856 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh;
3857
3858 if (numops == 5) {
3859 /*
3860 * We only care about the ctime, but need to get mtime
3861 * and size for proper cache update.
3862 */
3863 /* getattr */
3864 argop[1].argop = OP_GETATTR;
3865 argop[1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
3866 argop[1].nfs_argop4_u.opgetattr.mi = VTOMI4(vp);
3867
3868 /* verify - set later in loop */
3869 verify_argop = 2;
3870 }
3871
3872 /* setattr */
3873 svp = rp->r_server;
3874 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
3875 supp_attrs = svp->sv_supp_attrs;
3876 nfs_rw_exit(&svp->sv_lock);
3877
3878 nfs4args_setattr(&argop[setattr_argop], vap, vsap, flags, rp, cr,
3879 supp_attrs, &e.error, &sid_types);
3880 stateid = argop[setattr_argop].nfs_argop4_u.opsetattr.stateid;
3881 if (e.error) {
3882 /* req time field(s) overflow - return immediately */
3883 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov);
3884 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u.
3885 opsetattr.obj_attributes);
3886 return (e.error);
3887 }
3888 omode = rp->r_attr.va_mode;
3889
3890 /* getattr */
3891 argop[numops-1].argop = OP_GETATTR;
3892 argop[numops-1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
3893 /*
3894 * If we are setting the ACL (indicated only by vsap != NULL), request
3895 * the ACL in this getattr. The ACL returned from this getattr will be
3896 * used in updating the ACL cache.
3897 */
3898 if (vsap != NULL)
3899 argop[numops-1].nfs_argop4_u.opgetattr.attr_request |=
3900 FATTR4_ACL_MASK;
3901 argop[numops-1].nfs_argop4_u.opgetattr.mi = VTOMI4(vp);
3902
3903 /*
3904 * setattr iterates if the object size is set and the cached ctime
3905 * does not match the file ctime. In that case, verify the ctime first.
3906 */
3907
3908 do {
3909 if (verify_argop != -1) {
3910 /*
3911 * Verify that the ctime match before doing setattr.
3912 */
3913 va.va_mask = AT_CTIME;
3914 va.va_ctime = ctime;
3915 svp = rp->r_server;
3916 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
3917 supp_attrs = svp->sv_supp_attrs;
3918 nfs_rw_exit(&svp->sv_lock);
3919 e.error = nfs4args_verify(&argop[verify_argop], &va,
3920 OP_VERIFY, supp_attrs);
3921 if (e.error) {
3922 /* req time field(s) overflow - return */
3923 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state,
3924 needrecov);
3925 break;
3926 }
3927 }
3928
3929 doqueue = 1;
3930
3931 t = gethrtime();
3932
3933 rfs4call(VTOMI4(vp), &args, &res, cr, &doqueue, 0, &e);
3934
3935 /*
3936 * Purge the access cache and ACL cache if changing either the
3937 * owner of the file, the group owner, or the mode. These may
3938 * change the access permissions of the file, so purge old
3939 * information and start over again.
3940 */
3941 if (mask & (AT_UID | AT_GID | AT_MODE)) {
3942 (void) nfs4_access_purge_rp(rp);
3943 if (rp->r_secattr != NULL) {
3944 mutex_enter(&rp->r_statelock);
3945 vsp = rp->r_secattr;
3946 rp->r_secattr = NULL;
3947 mutex_exit(&rp->r_statelock);
3948 if (vsp != NULL)
3949 nfs4_acl_free_cache(vsp);
3950 }
3951 }
3952
3953 /*
3954 * If res.array_len == numops, then everything succeeded,
3955 * except for possibly the final getattr. If only the
3956 * last getattr failed, give up, and don't try recovery.
3957 */
3958 if (res.array_len == numops) {
3959 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state,
3960 needrecov);
3961 if (! e.error)
3962 resp = &res;
3963 break;
3964 }
3965
3966 /*
3967 * if either rpc call failed or completely succeeded - done
3968 */
3969 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp);
3970 if (e.error) {
3971 PURGE_ATTRCACHE4(vp);
3972 if (!needrecov) {
3973 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state,
3974 needrecov);
3975 break;
3976 }
3977 }
3978
3979 /*
3980 * Do proper retry for OLD_STATEID outside of the normal
3981 * recovery framework.
3982 */
3983 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID &&
3984 sid_types.cur_sid_type != SPEC_SID &&
3985 sid_types.cur_sid_type != NO_SID) {
3986 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state,
3987 needrecov);
3988 nfs4_save_stateid(&stateid, &sid_types);
3989 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u.
3990 opsetattr.obj_attributes);
3991 if (verify_argop != -1) {
3992 nfs4args_verify_free(&argop[verify_argop]);
3993 verify_argop = -1;
3994 }
3995 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3996 goto recov_retry;
3997 }
3998
3999 if (needrecov) {
4000 bool_t abort;
4001
4002 abort = nfs4_start_recovery(&e,
4003 VTOMI4(vp), vp, NULL, NULL, NULL,
4004 OP_SETATTR, NULL, NULL, NULL);
4005 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state,
4006 needrecov);
4007 /*
4008 * Do not retry if we failed with OLD_STATEID using
4009 * a special stateid. This is done to avoid looping
4010 * with a broken server.
4011 */
4012 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID &&
4013 (sid_types.cur_sid_type == SPEC_SID ||
4014 sid_types.cur_sid_type == NO_SID))
4015 abort = TRUE;
4016 if (!e.error) {
4017 if (res.status == NFS4ERR_BADOWNER)
4018 nfs4_log_badowner(VTOMI4(vp),
4019 OP_SETATTR);
4020
4021 e.error = geterrno4(res.status);
4022 (void) xdr_free(xdr_COMPOUND4res_clnt,
4023 (caddr_t)&res);
4024 }
4025 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u.
4026 opsetattr.obj_attributes);
4027 if (verify_argop != -1) {
4028 nfs4args_verify_free(&argop[verify_argop]);
4029 verify_argop = -1;
4030 }
4031 if (abort == FALSE) {
4032 /*
4033 * Need to retry all possible stateids in
4034 * case the recovery error wasn't stateid
4035 * related or the stateids have become
4036 * stale (server reboot).
4037 */
4038 nfs4_init_stateid_types(&sid_types);
4039 goto recov_retry;
4040 }
4041 return (e.error);
4042 }
4043
4044 /*
4045 * Need to call nfs4_end_op before nfs4getattr to
4046 * avoid potential nfs4_start_op deadlock. See RFE
4047 * 4777612. Calls to nfs4_invalidate_pages() and
4048 * nfs4_purge_stale_fh() might also generate over the
4049 * wire calls which my cause nfs4_start_op() deadlock.
4050 */
4051 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov);
4052
4053 /*
4054 * Check to update lease.
4055 */
4056 resp = &res;
4057 if (res.status == NFS4_OK) {
4058 break;
4059 }
4060
4061 /*
4062 * Check if verify failed to see if try again
4063 */
4064 if ((verify_argop == -1) || (res.array_len != 3)) {
4065 /*
4066 * can't continue...
4067 */
4068 if (res.status == NFS4ERR_BADOWNER)
4069 nfs4_log_badowner(VTOMI4(vp), OP_SETATTR);
4070
4071 e.error = geterrno4(res.status);
4072 } else {
4073 /*
4074 * When the verify request fails, the client ctime is
4075 * not in sync with the server. This is the same as
4076 * the version 3 "not synchronized" error, and we
4077 * handle it in a similar manner (XXX do we need to???).
4078 * Use the ctime returned in the first getattr for
4079 * the input to the next verify.
4080 * If we couldn't get the attributes, then we give up
4081 * because we can't complete the operation as required.
4082 */
4083 garp = &res.array[1].nfs_resop4_u.opgetattr.ga_res;
4084 }
4085 if (e.error) {
4086 PURGE_ATTRCACHE4(vp);
4087 nfs4_purge_stale_fh(e.error, vp, cr);
4088 } else {
4089 /*
4090 * retry with a new verify value
4091 */
4092 ctime = garp->n4g_va.va_ctime;
4093 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
4094 resp = NULL;
4095 }
4096 if (!e.error) {
4097 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u.
4098 opsetattr.obj_attributes);
4099 if (verify_argop != -1) {
4100 nfs4args_verify_free(&argop[verify_argop]);
4101 verify_argop = -1;
4102 }
4103 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
4104 goto do_again;
4105 }
4106 } while (!e.error);
4107
4108 if (e.error) {
4109 /*
4110 * If we are here, rfs4call has an irrecoverable error - return
4111 */
4112 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u.
4113 opsetattr.obj_attributes);
4114 if (verify_argop != -1) {
4115 nfs4args_verify_free(&argop[verify_argop]);
4116 verify_argop = -1;
4117 }
4118 if (resp)
4119 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp);
4120 return (e.error);
4121 }
4122
4123
4124
4125 /*
4126 * If changing the size of the file, invalidate
4127 * any local cached data which is no longer part
4128 * of the file. We also possibly invalidate the
4129 * last page in the file. We could use
4130 * pvn_vpzero(), but this would mark the page as
4131 * modified and require it to be written back to
4132 * the server for no particularly good reason.
4133 * This way, if we access it, then we bring it
4134 * back in. A read should be cheaper than a
4135 * write.
4136 */
4137 if (mask & AT_SIZE) {
4138 nfs4_invalidate_pages(vp, (vap->va_size & PAGEMASK), cr);
4139 }
4140
4141 /* either no error or one of the postop getattr failed */
4142
4143 /*
4144 * XXX Perform a simplified version of wcc checking. Instead of
4145 * have another getattr to get pre-op, just purge cache if
4146 * any of the ops prior to and including the getattr failed.
4147 * If the getattr succeeded then update the attrcache accordingly.
4148 */
4149
4150 garp = NULL;
4151 if (res.status == NFS4_OK) {
4152 /*
4153 * Last getattr
4154 */
4155 resop = &res.array[numops - 1];
4156 garp = &resop->nfs_resop4_u.opgetattr.ga_res;
4157 }
4158 /*
4159 * In certain cases, nfs4_update_attrcache() will purge the attrcache,
4160 * rather than filling it. See the function itself for details.
4161 */
4162 e.error = nfs4_update_attrcache(res.status, garp, t, vp, cr);
4163 if (garp != NULL) {
4164 if (garp->n4g_resbmap & FATTR4_ACL_MASK) {
4165 nfs4_acl_fill_cache(rp, &garp->n4g_vsa);
4166 vs_ace4_destroy(&garp->n4g_vsa);
4167 } else {
4168 if (vsap != NULL) {
4169 /*
4170 * The ACL was supposed to be set and to be
4171 * returned in the last getattr of this
4172 * compound, but for some reason the getattr
4173 * result doesn't contain the ACL. In this
4174 * case, purge the ACL cache.
4175 */
4176 if (rp->r_secattr != NULL) {
4177 mutex_enter(&rp->r_statelock);
4178 vsp = rp->r_secattr;
4179 rp->r_secattr = NULL;
4180 mutex_exit(&rp->r_statelock);
4181 if (vsp != NULL)
4182 nfs4_acl_free_cache(vsp);
4183 }
4184 }
4185 }
4186 }
4187
4188 if (res.status == NFS4_OK && (mask & AT_SIZE)) {
4189 /*
4190 * Set the size, rather than relying on getting it updated
4191 * via a GETATTR. With delegations the client tries to
4192 * suppress GETATTR calls.
4193 */
4194 mutex_enter(&rp->r_statelock);
4195 rp->r_size = vap->va_size;
4196 mutex_exit(&rp->r_statelock);
4197 }
4198
4199 /*
4200 * Can free up request args and res
4201 */
4202 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u.
4203 opsetattr.obj_attributes);
4204 if (verify_argop != -1) {
4205 nfs4args_verify_free(&argop[verify_argop]);
4206 verify_argop = -1;
4207 }
4208 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
4209
4210 /*
4211 * Some servers will change the mode to clear the setuid
4212 * and setgid bits when changing the uid or gid. The
4213 * client needs to compensate appropriately.
4214 */
4215 if (mask & (AT_UID | AT_GID)) {
4216 int terror, do_setattr;
4217
4218 do_setattr = 0;
4219 va.va_mask = AT_MODE;
4220 terror = nfs4getattr(vp, &va, cr);
4221 if (!terror &&
4222 (((mask & AT_MODE) && va.va_mode != vap->va_mode) ||
4223 (!(mask & AT_MODE) && va.va_mode != omode))) {
4224 va.va_mask = AT_MODE;
4225 if (mask & AT_MODE) {
4226 /*
4227 * We asked the mode to be changed and what
4228 * we just got from the server in getattr is
4229 * not what we wanted it to be, so set it now.
4230 */
4231 va.va_mode = vap->va_mode;
4232 do_setattr = 1;
4233 } else {
4234 /*
4235 * We did not ask the mode to be changed,
4236 * Check to see that the server just cleared
4237 * I_SUID and I_GUID from it. If not then
4238 * set mode to omode with UID/GID cleared.
4239 */
4240 if (nfs4_compare_modes(va.va_mode, omode)) {
4241 omode &= ~(S_ISUID|S_ISGID);
4242 va.va_mode = omode;
4243 do_setattr = 1;
4244 }
4245 }
4246
4247 if (do_setattr)
4248 (void) nfs4setattr(vp, &va, 0, cr, NULL);
4249 }
4250 }
4251
4252 return (e.error);
4253 }
4254
4255 /* ARGSUSED */
4256 static int
4257 nfs4_access(vnode_t *vp, int mode, int flags, cred_t *cr, caller_context_t *ct)
4258 {
4259 COMPOUND4args_clnt args;
4260 COMPOUND4res_clnt res;
4261 int doqueue;
4262 uint32_t acc, resacc, argacc;
4263 rnode4_t *rp;
4264 cred_t *cred, *ncr, *ncrfree = NULL;
4265 nfs4_access_type_t cacc;
4266 int num_ops;
4267 nfs_argop4 argop[3];
4268 nfs_resop4 *resop;
4269 bool_t needrecov = FALSE, do_getattr;
4270 nfs4_recov_state_t recov_state;
4271 int rpc_error;
4272 hrtime_t t;
4273 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
4274 mntinfo4_t *mi = VTOMI4(vp);
4275
4276 if (nfs_zone() != mi->mi_zone)
4277 return (EIO);
4278
4279 acc = 0;
4280 if (mode & VREAD)
4281 acc |= ACCESS4_READ;
4282 if (mode & VWRITE) {
4283 if ((vp->v_vfsp->vfs_flag & VFS_RDONLY) && !ISVDEV(vp->v_type))
4284 return (EROFS);
4285 if (vp->v_type == VDIR)
4286 acc |= ACCESS4_DELETE;
4287 acc |= ACCESS4_MODIFY | ACCESS4_EXTEND;
4288 }
4289 if (mode & VEXEC) {
4290 if (vp->v_type == VDIR)
4291 acc |= ACCESS4_LOOKUP;
4292 else
4293 acc |= ACCESS4_EXECUTE;
4294 }
4295
4296 if (VTOR4(vp)->r_acache != NULL) {
4297 e.error = nfs4_validate_caches(vp, cr);
4298 if (e.error)
4299 return (e.error);
4300 }
4301
4302 rp = VTOR4(vp);
4303 if (vp->v_type == VDIR)
4304 argacc = ACCESS4_READ | ACCESS4_DELETE | ACCESS4_MODIFY |
4305 ACCESS4_EXTEND | ACCESS4_LOOKUP;
4306 else
4307 argacc = ACCESS4_READ | ACCESS4_MODIFY | ACCESS4_EXTEND |
4308 ACCESS4_EXECUTE;
4309 recov_state.rs_flags = 0;
4310 recov_state.rs_num_retry_despite_err = 0;
4311
4312 cred = cr;
4313 /*
4314 * ncr and ncrfree both initially
4315 * point to the memory area returned
4316 * by crnetadjust();
4317 * ncrfree not NULL when exiting means
4318 * that we need to release it
4319 */
4320 ncr = crnetadjust(cred);
4321 ncrfree = ncr;
4322
4323 tryagain:
4324 cacc = nfs4_access_check(rp, acc, cred);
4325 if (cacc == NFS4_ACCESS_ALLOWED) {
4326 if (ncrfree != NULL)
4327 crfree(ncrfree);
4328 return (0);
4329 }
4330 if (cacc == NFS4_ACCESS_DENIED) {
4331 /*
4332 * If the cred can be adjusted, try again
4333 * with the new cred.
4334 */
4335 if (ncr != NULL) {
4336 cred = ncr;
4337 ncr = NULL;
4338 goto tryagain;
4339 }
4340 if (ncrfree != NULL)
4341 crfree(ncrfree);
4342 return (EACCES);
4343 }
4344
4345 recov_retry:
4346 /*
4347 * Don't take with r_statev4_lock here. r_deleg_type could
4348 * change as soon as lock is released. Since it is an int,
4349 * there is no atomicity issue.
4350 */
4351 do_getattr = (rp->r_deleg_type == OPEN_DELEGATE_NONE);
4352 num_ops = do_getattr ? 3 : 2;
4353
4354 args.ctag = TAG_ACCESS;
4355
4356 args.array_len = num_ops;
4357 args.array = argop;
4358
4359 if (e.error = nfs4_start_fop(mi, vp, NULL, OH_ACCESS,
4360 &recov_state, NULL)) {
4361 if (ncrfree != NULL)
4362 crfree(ncrfree);
4363 return (e.error);
4364 }
4365
4366 /* putfh target fh */
4367 argop[0].argop = OP_CPUTFH;
4368 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh;
4369
4370 /* access */
4371 argop[1].argop = OP_ACCESS;
4372 argop[1].nfs_argop4_u.opaccess.access = argacc;
4373
4374 /* getattr */
4375 if (do_getattr) {
4376 argop[2].argop = OP_GETATTR;
4377 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
4378 argop[2].nfs_argop4_u.opgetattr.mi = mi;
4379 }
4380
4381 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE,
4382 "nfs4_access: %s call, rp %s", needrecov ? "recov" : "first",
4383 rnode4info(VTOR4(vp))));
4384
4385 doqueue = 1;
4386 t = gethrtime();
4387 rfs4call(VTOMI4(vp), &args, &res, cred, &doqueue, 0, &e);
4388 rpc_error = e.error;
4389
4390 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp);
4391 if (needrecov) {
4392 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
4393 "nfs4_access: initiating recovery\n"));
4394
4395 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL,
4396 NULL, OP_ACCESS, NULL, NULL, NULL) == FALSE) {
4397 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_ACCESS,
4398 &recov_state, needrecov);
4399 if (!e.error)
4400 (void) xdr_free(xdr_COMPOUND4res_clnt,
4401 (caddr_t)&res);
4402 goto recov_retry;
4403 }
4404 }
4405 nfs4_end_fop(mi, vp, NULL, OH_ACCESS, &recov_state, needrecov);
4406
4407 if (e.error)
4408 goto out;
4409
4410 if (res.status) {
4411 e.error = geterrno4(res.status);
4412 /*
4413 * This might generate over the wire calls throught
4414 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op()
4415 * here to avoid a deadlock.
4416 */
4417 nfs4_purge_stale_fh(e.error, vp, cr);
4418 goto out;
4419 }
4420 resop = &res.array[1]; /* access res */
4421
4422 resacc = resop->nfs_resop4_u.opaccess.access;
4423
4424 if (do_getattr) {
4425 resop++; /* getattr res */
4426 nfs4_attr_cache(vp, &resop->nfs_resop4_u.opgetattr.ga_res,
4427 t, cr, FALSE, NULL);
4428 }
4429
4430 if (!e.error) {
4431 nfs4_access_cache(rp, argacc, resacc, cred);
4432 /*
4433 * we just cached results with cred; if cred is the
4434 * adjusted credentials from crnetadjust, we do not want
4435 * to release them before exiting: hence setting ncrfree
4436 * to NULL
4437 */
4438 if (cred != cr)
4439 ncrfree = NULL;
4440 /* XXX check the supported bits too? */
4441 if ((acc & resacc) != acc) {
4442 /*
4443 * The following code implements the semantic
4444 * that a setuid root program has *at least* the
4445 * permissions of the user that is running the
4446 * program. See rfs3call() for more portions
4447 * of the implementation of this functionality.
4448 */
4449 /* XXX-LP */
4450 if (ncr != NULL) {
4451 (void) xdr_free(xdr_COMPOUND4res_clnt,
4452 (caddr_t)&res);
4453 cred = ncr;
4454 ncr = NULL;
4455 goto tryagain;
4456 }
4457 e.error = EACCES;
4458 }
4459 }
4460
4461 out:
4462 if (!rpc_error)
4463 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
4464
4465 if (ncrfree != NULL)
4466 crfree(ncrfree);
4467
4468 return (e.error);
4469 }
4470
4471 /* ARGSUSED */
4472 static int
4473 nfs4_readlink(vnode_t *vp, struct uio *uiop, cred_t *cr, caller_context_t *ct)
4474 {
4475 COMPOUND4args_clnt args;
4476 COMPOUND4res_clnt res;
4477 int doqueue;
4478 rnode4_t *rp;
4479 nfs_argop4 argop[3];
4480 nfs_resop4 *resop;
4481 READLINK4res *lr_res;
4482 nfs4_ga_res_t *garp;
4483 uint_t len;
4484 char *linkdata;
4485 bool_t needrecov = FALSE;
4486 nfs4_recov_state_t recov_state;
4487 hrtime_t t;
4488 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
4489
4490 if (nfs_zone() != VTOMI4(vp)->mi_zone)
4491 return (EIO);
4492 /*
4493 * Can't readlink anything other than a symbolic link.
4494 */
4495 if (vp->v_type != VLNK)
4496 return (EINVAL);
4497
4498 rp = VTOR4(vp);
4499 if (nfs4_do_symlink_cache && rp->r_symlink.contents != NULL) {
4500 e.error = nfs4_validate_caches(vp, cr);
4501 if (e.error)
4502 return (e.error);
4503 mutex_enter(&rp->r_statelock);
4504 if (rp->r_symlink.contents != NULL) {
4505 e.error = uiomove(rp->r_symlink.contents,
4506 rp->r_symlink.len, UIO_READ, uiop);
4507 mutex_exit(&rp->r_statelock);
4508 return (e.error);
4509 }
4510 mutex_exit(&rp->r_statelock);
4511 }
4512 recov_state.rs_flags = 0;
4513 recov_state.rs_num_retry_despite_err = 0;
4514
4515 recov_retry:
4516 args.array_len = 3;
4517 args.array = argop;
4518 args.ctag = TAG_READLINK;
4519
4520 e.error = nfs4_start_op(VTOMI4(vp), vp, NULL, &recov_state);
4521 if (e.error) {
4522 return (e.error);
4523 }
4524
4525 /* 0. putfh symlink fh */
4526 argop[0].argop = OP_CPUTFH;
4527 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh;
4528
4529 /* 1. readlink */
4530 argop[1].argop = OP_READLINK;
4531
4532 /* 2. getattr */
4533 argop[2].argop = OP_GETATTR;
4534 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
4535 argop[2].nfs_argop4_u.opgetattr.mi = VTOMI4(vp);
4536
4537 doqueue = 1;
4538
4539 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE,
4540 "nfs4_readlink: %s call, rp %s", needrecov ? "recov" : "first",
4541 rnode4info(VTOR4(vp))));
4542
4543 t = gethrtime();
4544
4545 rfs4call(VTOMI4(vp), &args, &res, cr, &doqueue, 0, &e);
4546
4547 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp);
4548 if (needrecov) {
4549 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
4550 "nfs4_readlink: initiating recovery\n"));
4551
4552 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL,
4553 NULL, OP_READLINK, NULL, NULL, NULL) == FALSE) {
4554 if (!e.error)
4555 (void) xdr_free(xdr_COMPOUND4res_clnt,
4556 (caddr_t)&res);
4557
4558 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state,
4559 needrecov);
4560 goto recov_retry;
4561 }
4562 }
4563
4564 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov);
4565
4566 if (e.error)
4567 return (e.error);
4568
4569 /*
4570 * There is an path in the code below which calls
4571 * nfs4_purge_stale_fh(), which may generate otw calls through
4572 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op()
4573 * here to avoid nfs4_start_op() deadlock.
4574 */
4575
4576 if (res.status && (res.array_len < args.array_len)) {
4577 /*
4578 * either Putfh or Link failed
4579 */
4580 e.error = geterrno4(res.status);
4581 nfs4_purge_stale_fh(e.error, vp, cr);
4582 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
4583 return (e.error);
4584 }
4585
4586 resop = &res.array[1]; /* readlink res */
4587 lr_res = &resop->nfs_resop4_u.opreadlink;
4588
4589 /*
4590 * treat symlink names as data
4591 */
4592 linkdata = utf8_to_str((utf8string *)&lr_res->link, &len, NULL);
4593 if (linkdata != NULL) {
4594 int uio_len = len - 1;
4595 /* len includes null byte, which we won't uiomove */
4596 e.error = uiomove(linkdata, uio_len, UIO_READ, uiop);
4597 if (nfs4_do_symlink_cache && rp->r_symlink.contents == NULL) {
4598 mutex_enter(&rp->r_statelock);
4599 if (rp->r_symlink.contents == NULL) {
4600 rp->r_symlink.contents = linkdata;
4601 rp->r_symlink.len = uio_len;
4602 rp->r_symlink.size = len;
4603 mutex_exit(&rp->r_statelock);
4604 } else {
4605 mutex_exit(&rp->r_statelock);
4606 kmem_free(linkdata, len);
4607 }
4608 } else {
4609 kmem_free(linkdata, len);
4610 }
4611 }
4612 if (res.status == NFS4_OK) {
4613 resop++; /* getattr res */
4614 garp = &resop->nfs_resop4_u.opgetattr.ga_res;
4615 }
4616 e.error = nfs4_update_attrcache(res.status, garp, t, vp, cr);
4617
4618 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
4619
4620 /*
4621 * The over the wire error for attempting to readlink something
4622 * other than a symbolic link is ENXIO. However, we need to
4623 * return EINVAL instead of ENXIO, so we map it here.
4624 */
4625 return (e.error == ENXIO ? EINVAL : e.error);
4626 }
4627
4628 /*
4629 * Flush local dirty pages to stable storage on the server.
4630 *
4631 * If FNODSYNC is specified, then there is nothing to do because
4632 * metadata changes are not cached on the client before being
4633 * sent to the server.
4634 */
4635 /* ARGSUSED */
4636 static int
4637 nfs4_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
4638 {
4639 int error;
4640
4641 if ((syncflag & FNODSYNC) || IS_SWAPVP(vp))
4642 return (0);
4643 if (nfs_zone() != VTOMI4(vp)->mi_zone)
4644 return (EIO);
4645 error = nfs4_putpage_commit(vp, (offset_t)0, 0, cr);
4646 if (!error)
4647 error = VTOR4(vp)->r_error;
4648 return (error);
4649 }
4650
4651 /*
4652 * Weirdness: if the file was removed or the target of a rename
4653 * operation while it was open, it got renamed instead. Here we
4654 * remove the renamed file.
4655 */
4656 /* ARGSUSED */
4657 void
4658 nfs4_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
4659 {
4660 rnode4_t *rp;
4661
4662 ASSERT(vp != DNLC_NO_VNODE);
4663
4664 rp = VTOR4(vp);
4665
4666 if (IS_SHADOW(vp, rp)) {
4667 sv_inactive(vp);
4668 return;
4669 }
4670
4671 /*
4672 * If this is coming from the wrong zone, we let someone in the right
4673 * zone take care of it asynchronously. We can get here due to
4674 * VN_RELE() being called from pageout() or fsflush(). This call may
4675 * potentially turn into an expensive no-op if, for instance, v_count
4676 * gets incremented in the meantime, but it's still correct.
4677 */
4678 if (nfs_zone() != VTOMI4(vp)->mi_zone) {
4679 nfs4_async_inactive(vp, cr);
4680 return;
4681 }
4682
4683 /*
4684 * Some of the cleanup steps might require over-the-wire
4685 * operations. Since VOP_INACTIVE can get called as a result of
4686 * other over-the-wire operations (e.g., an attribute cache update
4687 * can lead to a DNLC purge), doing those steps now would lead to a
4688 * nested call to the recovery framework, which can deadlock. So
4689 * do any over-the-wire cleanups asynchronously, in a separate
4690 * thread.
4691 */
4692
4693 mutex_enter(&rp->r_os_lock);
4694 mutex_enter(&rp->r_statelock);
4695 mutex_enter(&rp->r_statev4_lock);
4696
4697 if (vp->v_type == VREG && list_head(&rp->r_open_streams) != NULL) {
4698 mutex_exit(&rp->r_statev4_lock);
4699 mutex_exit(&rp->r_statelock);
4700 mutex_exit(&rp->r_os_lock);
4701 nfs4_async_inactive(vp, cr);
4702 return;
4703 }
4704
4705 if (rp->r_deleg_type == OPEN_DELEGATE_READ ||
4706 rp->r_deleg_type == OPEN_DELEGATE_WRITE) {
4707 mutex_exit(&rp->r_statev4_lock);
4708 mutex_exit(&rp->r_statelock);
4709 mutex_exit(&rp->r_os_lock);
4710 nfs4_async_inactive(vp, cr);
4711 return;
4712 }
4713
4714 if (rp->r_unldvp != NULL) {
4715 mutex_exit(&rp->r_statev4_lock);
4716 mutex_exit(&rp->r_statelock);
4717 mutex_exit(&rp->r_os_lock);
4718 nfs4_async_inactive(vp, cr);
4719 return;
4720 }
4721 mutex_exit(&rp->r_statev4_lock);
4722 mutex_exit(&rp->r_statelock);
4723 mutex_exit(&rp->r_os_lock);
4724
4725 rp4_addfree(rp, cr);
4726 }
4727
4728 /*
4729 * nfs4_inactive_otw - nfs4_inactive, plus over-the-wire calls to free up
4730 * various bits of state. The caller must not refer to vp after this call.
4731 */
4732
4733 void
4734 nfs4_inactive_otw(vnode_t *vp, cred_t *cr)
4735 {
4736 rnode4_t *rp = VTOR4(vp);
4737 nfs4_recov_state_t recov_state;
4738 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
4739 vnode_t *unldvp;
4740 char *unlname;
4741 cred_t *unlcred;
4742 COMPOUND4args_clnt args;
4743 COMPOUND4res_clnt res, *resp;
4744 nfs_argop4 argop[2];
4745 int doqueue;
4746 #ifdef DEBUG
4747 char *name;
4748 #endif
4749
4750 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
4751 ASSERT(!IS_SHADOW(vp, rp));
4752
4753 #ifdef DEBUG
4754 name = fn_name(VTOSV(vp)->sv_name);
4755 NFS4_DEBUG(nfs4_client_inactive_debug, (CE_NOTE, "nfs4_inactive_otw: "
4756 "release vnode %s", name));
4757 kmem_free(name, MAXNAMELEN);
4758 #endif
4759
4760 if (vp->v_type == VREG) {
4761 bool_t recov_failed = FALSE;
4762
4763 e.error = nfs4close_all(vp, cr);
4764 if (e.error) {
4765 /* Check to see if recovery failed */
4766 mutex_enter(&(VTOMI4(vp)->mi_lock));
4767 if (VTOMI4(vp)->mi_flags & MI4_RECOV_FAIL)
4768 recov_failed = TRUE;
4769 mutex_exit(&(VTOMI4(vp)->mi_lock));
4770 if (!recov_failed) {
4771 mutex_enter(&rp->r_statelock);
4772 if (rp->r_flags & R4RECOVERR)
4773 recov_failed = TRUE;
4774 mutex_exit(&rp->r_statelock);
4775 }
4776 if (recov_failed) {
4777 NFS4_DEBUG(nfs4_client_recov_debug,
4778 (CE_NOTE, "nfs4_inactive_otw: "
4779 "close failed (recovery failure)"));
4780 }
4781 }
4782 }
4783
4784 redo:
4785 if (rp->r_unldvp == NULL) {
4786 rp4_addfree(rp, cr);
4787 return;
4788 }
4789
4790 /*
4791 * Save the vnode pointer for the directory where the
4792 * unlinked-open file got renamed, then set it to NULL
4793 * to prevent another thread from getting here before
4794 * we're done with the remove. While we have the
4795 * statelock, make local copies of the pertinent rnode
4796 * fields. If we weren't to do this in an atomic way, the
4797 * the unl* fields could become inconsistent with respect
4798 * to each other due to a race condition between this
4799 * code and nfs_remove(). See bug report 1034328.
4800 */
4801 mutex_enter(&rp->r_statelock);
4802 if (rp->r_unldvp == NULL) {
4803 mutex_exit(&rp->r_statelock);
4804 rp4_addfree(rp, cr);
4805 return;
4806 }
4807
4808 unldvp = rp->r_unldvp;
4809 rp->r_unldvp = NULL;
4810 unlname = rp->r_unlname;
4811 rp->r_unlname = NULL;
4812 unlcred = rp->r_unlcred;
4813 rp->r_unlcred = NULL;
4814 mutex_exit(&rp->r_statelock);
4815
4816 /*
4817 * If there are any dirty pages left, then flush
4818 * them. This is unfortunate because they just
4819 * may get thrown away during the remove operation,
4820 * but we have to do this for correctness.
4821 */
4822 if (nfs4_has_pages(vp) &&
4823 ((rp->r_flags & R4DIRTY) || rp->r_count > 0)) {
4824 ASSERT(vp->v_type != VCHR);
4825 e.error = nfs4_putpage(vp, (u_offset_t)0, 0, 0, cr, NULL);
4826 if (e.error) {
4827 mutex_enter(&rp->r_statelock);
4828 if (!rp->r_error)
4829 rp->r_error = e.error;
4830 mutex_exit(&rp->r_statelock);
4831 }
4832 }
4833
4834 recov_state.rs_flags = 0;
4835 recov_state.rs_num_retry_despite_err = 0;
4836 recov_retry_remove:
4837 /*
4838 * Do the remove operation on the renamed file
4839 */
4840 args.ctag = TAG_INACTIVE;
4841
4842 /*
4843 * Remove ops: putfh dir; remove
4844 */
4845 args.array_len = 2;
4846 args.array = argop;
4847
4848 e.error = nfs4_start_op(VTOMI4(unldvp), unldvp, NULL, &recov_state);
4849 if (e.error) {
4850 kmem_free(unlname, MAXNAMELEN);
4851 crfree(unlcred);
4852 VN_RELE(unldvp);
4853 /*
4854 * Try again; this time around r_unldvp will be NULL, so we'll
4855 * just call rp4_addfree() and return.
4856 */
4857 goto redo;
4858 }
4859
4860 /* putfh directory */
4861 argop[0].argop = OP_CPUTFH;
4862 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(unldvp)->r_fh;
4863
4864 /* remove */
4865 argop[1].argop = OP_CREMOVE;
4866 argop[1].nfs_argop4_u.opcremove.ctarget = unlname;
4867
4868 doqueue = 1;
4869 resp = &res;
4870
4871 #if 0 /* notyet */
4872 /*
4873 * Can't do this yet. We may be being called from
4874 * dnlc_purge_XXX while that routine is holding a
4875 * mutex lock to the nc_rele list. The calls to
4876 * nfs3_cache_wcc_data may result in calls to
4877 * dnlc_purge_XXX. This will result in a deadlock.
4878 */
4879 rfs4call(VTOMI4(unldvp), &args, &res, unlcred, &doqueue, 0, &e);
4880 if (e.error) {
4881 PURGE_ATTRCACHE4(unldvp);
4882 resp = NULL;
4883 } else if (res.status) {
4884 e.error = geterrno4(res.status);
4885 PURGE_ATTRCACHE4(unldvp);
4886 /*
4887 * This code is inactive right now
4888 * but if made active there should
4889 * be a nfs4_end_op() call before
4890 * nfs4_purge_stale_fh to avoid start_op()
4891 * deadlock. See BugId: 4948726
4892 */
4893 nfs4_purge_stale_fh(error, unldvp, cr);
4894 } else {
4895 nfs_resop4 *resop;
4896 REMOVE4res *rm_res;
4897
4898 resop = &res.array[1];
4899 rm_res = &resop->nfs_resop4_u.opremove;
4900 /*
4901 * Update directory cache attribute,
4902 * readdir and dnlc caches.
4903 */
4904 nfs4_update_dircaches(&rm_res->cinfo, unldvp, NULL, NULL, NULL);
4905 }
4906 #else
4907 rfs4call(VTOMI4(unldvp), &args, &res, unlcred, &doqueue, 0, &e);
4908
4909 PURGE_ATTRCACHE4(unldvp);
4910 #endif
4911
4912 if (nfs4_needs_recovery(&e, FALSE, unldvp->v_vfsp)) {
4913 if (nfs4_start_recovery(&e, VTOMI4(unldvp), unldvp, NULL,
4914 NULL, NULL, OP_REMOVE, NULL, NULL, NULL) == FALSE) {
4915 if (!e.error)
4916 (void) xdr_free(xdr_COMPOUND4res_clnt,
4917 (caddr_t)&res);
4918 nfs4_end_op(VTOMI4(unldvp), unldvp, NULL,
4919 &recov_state, TRUE);
4920 goto recov_retry_remove;
4921 }
4922 }
4923 nfs4_end_op(VTOMI4(unldvp), unldvp, NULL, &recov_state, FALSE);
4924
4925 /*
4926 * Release stuff held for the remove
4927 */
4928 VN_RELE(unldvp);
4929 if (!e.error && resp)
4930 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp);
4931
4932 kmem_free(unlname, MAXNAMELEN);
4933 crfree(unlcred);
4934 goto redo;
4935 }
4936
4937 /*
4938 * Remote file system operations having to do with directory manipulation.
4939 */
4940 /* ARGSUSED3 */
4941 int
4942 nfs4_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
4943 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct,
4944 int *direntflags, pathname_t *realpnp)
4945 {
4946 int error;
4947 vnode_t *vp, *avp = NULL;
4948 rnode4_t *drp;
4949
4950 *vpp = NULL;
4951 if (nfs_zone() != VTOMI4(dvp)->mi_zone)
4952 return (EPERM);
4953 /*
4954 * if LOOKUP_XATTR, must replace dvp (object) with
4955 * object's attrdir before continuing with lookup
4956 */
4957 if (flags & LOOKUP_XATTR) {
4958 error = nfs4lookup_xattr(dvp, nm, &avp, flags, cr);
4959 if (error)
4960 return (error);
4961
4962 dvp = avp;
4963
4964 /*
4965 * If lookup is for "", just return dvp now. The attrdir
4966 * has already been activated (from nfs4lookup_xattr), and
4967 * the caller will RELE the original dvp -- not
4968 * the attrdir. So, set vpp and return.
4969 * Currently, when the LOOKUP_XATTR flag is
4970 * passed to VOP_LOOKUP, the name is always empty, and
4971 * shortcircuiting here avoids 3 unneeded lock/unlock
4972 * pairs.
4973 *
4974 * If a non-empty name was provided, then it is the
4975 * attribute name, and it will be looked up below.
4976 */
4977 if (*nm == '\0') {
4978 *vpp = dvp;
4979 return (0);
4980 }
4981
4982 /*
4983 * The vfs layer never sends a name when asking for the
4984 * attrdir, so we should never get here (unless of course
4985 * name is passed at some time in future -- at which time
4986 * we'll blow up here).
4987 */
4988 ASSERT(0);
4989 }
4990
4991 drp = VTOR4(dvp);
4992 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp)))
4993 return (EINTR);
4994
4995 error = nfs4lookup(dvp, nm, vpp, cr, 0);
4996 nfs_rw_exit(&drp->r_rwlock);
4997
4998 /*
4999 * If vnode is a device, create special vnode.
5000 */
5001 if (!error && ISVDEV((*vpp)->v_type)) {
5002 vp = *vpp;
5003 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr);
5004 VN_RELE(vp);
5005 }
5006
5007 return (error);
5008 }
5009
5010 /* ARGSUSED */
5011 static int
5012 nfs4lookup_xattr(vnode_t *dvp, char *nm, vnode_t **vpp, int flags, cred_t *cr)
5013 {
5014 int error;
5015 rnode4_t *drp;
5016 int cflag = ((flags & CREATE_XATTR_DIR) != 0);
5017 mntinfo4_t *mi;
5018
5019 mi = VTOMI4(dvp);
5020 if (!(mi->mi_vfsp->vfs_flag & VFS_XATTR) &&
5021 !vfs_has_feature(mi->mi_vfsp, VFSFT_SYSATTR_VIEWS))
5022 return (EINVAL);
5023
5024 drp = VTOR4(dvp);
5025 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp)))
5026 return (EINTR);
5027
5028 mutex_enter(&drp->r_statelock);
5029 /*
5030 * If the server doesn't support xattrs just return EINVAL
5031 */
5032 if (drp->r_xattr_dir == NFS4_XATTR_DIR_NOTSUPP) {
5033 mutex_exit(&drp->r_statelock);
5034 nfs_rw_exit(&drp->r_rwlock);
5035 return (EINVAL);
5036 }
5037
5038 /*
5039 * If there is a cached xattr directory entry,
5040 * use it as long as the attributes are valid. If the
5041 * attributes are not valid, take the simple approach and
5042 * free the cached value and re-fetch a new value.
5043 *
5044 * We don't negative entry cache for now, if we did we
5045 * would need to check if the file has changed on every
5046 * lookup. But xattrs don't exist very often and failing
5047 * an openattr is not much more expensive than and NVERIFY or GETATTR
5048 * so do an openattr over the wire for now.
5049 */
5050 if (drp->r_xattr_dir != NULL) {
5051 if (ATTRCACHE4_VALID(dvp)) {
5052 VN_HOLD(drp->r_xattr_dir);
5053 *vpp = drp->r_xattr_dir;
5054 mutex_exit(&drp->r_statelock);
5055 nfs_rw_exit(&drp->r_rwlock);
5056 return (0);
5057 }
5058 VN_RELE(drp->r_xattr_dir);
5059 drp->r_xattr_dir = NULL;
5060 }
5061 mutex_exit(&drp->r_statelock);
5062
5063 error = nfs4openattr(dvp, vpp, cflag, cr);
5064
5065 nfs_rw_exit(&drp->r_rwlock);
5066
5067 return (error);
5068 }
5069
5070 static int
5071 nfs4lookup(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr, int skipdnlc)
5072 {
5073 int error;
5074 rnode4_t *drp;
5075
5076 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone);
5077
5078 /*
5079 * If lookup is for "", just return dvp. Don't need
5080 * to send it over the wire, look it up in the dnlc,
5081 * or perform any access checks.
5082 */
5083 if (*nm == '\0') {
5084 VN_HOLD(dvp);
5085 *vpp = dvp;
5086 return (0);
5087 }
5088
5089 /*
5090 * Can't do lookups in non-directories.
5091 */
5092 if (dvp->v_type != VDIR)
5093 return (ENOTDIR);
5094
5095 /*
5096 * If lookup is for ".", just return dvp. Don't need
5097 * to send it over the wire or look it up in the dnlc,
5098 * just need to check access.
5099 */
5100 if (nm[0] == '.' && nm[1] == '\0') {
5101 error = nfs4_access(dvp, VEXEC, 0, cr, NULL);
5102 if (error)
5103 return (error);
5104 VN_HOLD(dvp);
5105 *vpp = dvp;
5106 return (0);
5107 }
5108
5109 drp = VTOR4(dvp);
5110 if (!(drp->r_flags & R4LOOKUP)) {
5111 mutex_enter(&drp->r_statelock);
5112 drp->r_flags |= R4LOOKUP;
5113 mutex_exit(&drp->r_statelock);
5114 }
5115
5116 *vpp = NULL;
5117 /*
5118 * Lookup this name in the DNLC. If there is no entry
5119 * lookup over the wire.
5120 */
5121 if (!skipdnlc)
5122 *vpp = dnlc_lookup(dvp, nm);
5123 if (*vpp == NULL) {
5124 /*
5125 * We need to go over the wire to lookup the name.
5126 */
5127 return (nfs4lookupnew_otw(dvp, nm, vpp, cr));
5128 }
5129
5130 /*
5131 * We hit on the dnlc
5132 */
5133 if (*vpp != DNLC_NO_VNODE ||
5134 (dvp->v_vfsp->vfs_flag & VFS_RDONLY)) {
5135 /*
5136 * But our attrs may not be valid.
5137 */
5138 if (ATTRCACHE4_VALID(dvp)) {
5139 error = nfs4_waitfor_purge_complete(dvp);
5140 if (error) {
5141 VN_RELE(*vpp);
5142 *vpp = NULL;
5143 return (error);
5144 }
5145
5146 /*
5147 * If after the purge completes, check to make sure
5148 * our attrs are still valid.
5149 */
5150 if (ATTRCACHE4_VALID(dvp)) {
5151 /*
5152 * If we waited for a purge we may have
5153 * lost our vnode so look it up again.
5154 */
5155 VN_RELE(*vpp);
5156 *vpp = dnlc_lookup(dvp, nm);
5157 if (*vpp == NULL)
5158 return (nfs4lookupnew_otw(dvp,
5159 nm, vpp, cr));
5160
5161 /*
5162 * The access cache should almost always hit
5163 */
5164 error = nfs4_access(dvp, VEXEC, 0, cr, NULL);
5165
5166 if (error) {
5167 VN_RELE(*vpp);
5168 *vpp = NULL;
5169 return (error);
5170 }
5171 if (*vpp == DNLC_NO_VNODE) {
5172 VN_RELE(*vpp);
5173 *vpp = NULL;
5174 return (ENOENT);
5175 }
5176 return (0);
5177 }
5178 }
5179 }
5180
5181 ASSERT(*vpp != NULL);
5182
5183 /*
5184 * We may have gotten here we have one of the following cases:
5185 * 1) vpp != DNLC_NO_VNODE, our attrs have timed out so we
5186 * need to validate them.
5187 * 2) vpp == DNLC_NO_VNODE, a negative entry that we always
5188 * must validate.
5189 *
5190 * Go to the server and check if the directory has changed, if
5191 * it hasn't we are done and can use the dnlc entry.
5192 */
5193 return (nfs4lookupvalidate_otw(dvp, nm, vpp, cr));
5194 }
5195
5196 /*
5197 * Go to the server and check if the directory has changed, if
5198 * it hasn't we are done and can use the dnlc entry. If it
5199 * has changed we get a new copy of its attributes and check
5200 * the access for VEXEC, then relookup the filename and
5201 * get its filehandle and attributes.
5202 *
5203 * PUTFH dfh NVERIFY GETATTR ACCESS LOOKUP GETFH GETATTR
5204 * if the NVERIFY failed we must
5205 * purge the caches
5206 * cache new attributes (will set r_time_attr_inval)
5207 * cache new access
5208 * recheck VEXEC access
5209 * add name to dnlc, possibly negative
5210 * if LOOKUP succeeded
5211 * cache new attributes
5212 * else
5213 * set a new r_time_attr_inval for dvp
5214 * check to make sure we have access
5215 *
5216 * The vpp returned is the vnode passed in if the directory is valid,
5217 * a new vnode if successful lookup, or NULL on error.
5218 */
5219 static int
5220 nfs4lookupvalidate_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr)
5221 {
5222 COMPOUND4args_clnt args;
5223 COMPOUND4res_clnt res;
5224 fattr4 *ver_fattr;
5225 fattr4_change dchange;
5226 int32_t *ptr;
5227 int argoplist_size = 7 * sizeof (nfs_argop4);
5228 nfs_argop4 *argop;
5229 int doqueue;
5230 mntinfo4_t *mi;
5231 nfs4_recov_state_t recov_state;
5232 hrtime_t t;
5233 int isdotdot;
5234 vnode_t *nvp;
5235 nfs_fh4 *fhp;
5236 nfs4_sharedfh_t *sfhp;
5237 nfs4_access_type_t cacc;
5238 rnode4_t *nrp;
5239 rnode4_t *drp = VTOR4(dvp);
5240 nfs4_ga_res_t *garp = NULL;
5241 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
5242
5243 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone);
5244 ASSERT(nm != NULL);
5245 ASSERT(nm[0] != '\0');
5246 ASSERT(dvp->v_type == VDIR);
5247 ASSERT(nm[0] != '.' || nm[1] != '\0');
5248 ASSERT(*vpp != NULL);
5249
5250 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') {
5251 isdotdot = 1;
5252 args.ctag = TAG_LOOKUP_VPARENT;
5253 } else {
5254 /*
5255 * If dvp were a stub, it should have triggered and caused
5256 * a mount for us to get this far.
5257 */
5258 ASSERT(!RP_ISSTUB(VTOR4(dvp)));
5259
5260 isdotdot = 0;
5261 args.ctag = TAG_LOOKUP_VALID;
5262 }
5263
5264 mi = VTOMI4(dvp);
5265 recov_state.rs_flags = 0;
5266 recov_state.rs_num_retry_despite_err = 0;
5267
5268 nvp = NULL;
5269
5270 /* Save the original mount point security information */
5271 (void) save_mnt_secinfo(mi->mi_curr_serv);
5272
5273 recov_retry:
5274 e.error = nfs4_start_fop(mi, dvp, NULL, OH_LOOKUP,
5275 &recov_state, NULL);
5276 if (e.error) {
5277 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp);
5278 VN_RELE(*vpp);
5279 *vpp = NULL;
5280 return (e.error);
5281 }
5282
5283 argop = kmem_alloc(argoplist_size, KM_SLEEP);
5284
5285 /* PUTFH dfh NVERIFY GETATTR ACCESS LOOKUP GETFH GETATTR */
5286 args.array_len = 7;
5287 args.array = argop;
5288
5289 /* 0. putfh file */
5290 argop[0].argop = OP_CPUTFH;
5291 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(dvp)->r_fh;
5292
5293 /* 1. nverify the change info */
5294 argop[1].argop = OP_NVERIFY;
5295 ver_fattr = &argop[1].nfs_argop4_u.opnverify.obj_attributes;
5296 ver_fattr->attrmask = FATTR4_CHANGE_MASK;
5297 ver_fattr->attrlist4 = (char *)&dchange;
5298 ptr = (int32_t *)&dchange;
5299 IXDR_PUT_HYPER(ptr, VTOR4(dvp)->r_change);
5300 ver_fattr->attrlist4_len = sizeof (fattr4_change);
5301
5302 /* 2. getattr directory */
5303 argop[2].argop = OP_GETATTR;
5304 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
5305 argop[2].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp);
5306
5307 /* 3. access directory */
5308 argop[3].argop = OP_ACCESS;
5309 argop[3].nfs_argop4_u.opaccess.access = ACCESS4_READ | ACCESS4_DELETE |
5310 ACCESS4_MODIFY | ACCESS4_EXTEND | ACCESS4_LOOKUP;
5311
5312 /* 4. lookup name */
5313 if (isdotdot) {
5314 argop[4].argop = OP_LOOKUPP;
5315 } else {
5316 argop[4].argop = OP_CLOOKUP;
5317 argop[4].nfs_argop4_u.opclookup.cname = nm;
5318 }
5319
5320 /* 5. resulting file handle */
5321 argop[5].argop = OP_GETFH;
5322
5323 /* 6. resulting file attributes */
5324 argop[6].argop = OP_GETATTR;
5325 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
5326 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp);
5327
5328 doqueue = 1;
5329 t = gethrtime();
5330
5331 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e);
5332
5333 if (!isdotdot && res.status == NFS4ERR_MOVED) {
5334 e.error = nfs4_setup_referral(dvp, nm, vpp, cr);
5335 if (e.error != 0 && *vpp != NULL)
5336 VN_RELE(*vpp);
5337 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP,
5338 &recov_state, FALSE);
5339 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
5340 kmem_free(argop, argoplist_size);
5341 return (e.error);
5342 }
5343
5344 if (nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp)) {
5345 /*
5346 * For WRONGSEC of a non-dotdot case, send secinfo directly
5347 * from this thread, do not go thru the recovery thread since
5348 * we need the nm information.
5349 *
5350 * Not doing dotdot case because there is no specification
5351 * for (PUTFH, SECINFO "..") yet.
5352 */
5353 if (!isdotdot && res.status == NFS4ERR_WRONGSEC) {
5354 if ((e.error = nfs4_secinfo_vnode_otw(dvp, nm, cr)))
5355 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP,
5356 &recov_state, FALSE);
5357 else
5358 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP,
5359 &recov_state, TRUE);
5360 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
5361 kmem_free(argop, argoplist_size);
5362 if (!e.error)
5363 goto recov_retry;
5364 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp);
5365 VN_RELE(*vpp);
5366 *vpp = NULL;
5367 return (e.error);
5368 }
5369
5370 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL,
5371 OP_LOOKUP, NULL, NULL, NULL) == FALSE) {
5372 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP,
5373 &recov_state, TRUE);
5374
5375 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
5376 kmem_free(argop, argoplist_size);
5377 goto recov_retry;
5378 }
5379 }
5380
5381 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, &recov_state, FALSE);
5382
5383 if (e.error || res.array_len == 0) {
5384 /*
5385 * If e.error isn't set, then reply has no ops (or we couldn't
5386 * be here). The only legal way to reply without an op array
5387 * is via NFS4ERR_MINOR_VERS_MISMATCH. An ops array should
5388 * be in the reply for all other status values.
5389 *
5390 * For valid replies without an ops array, return ENOTSUP
5391 * (geterrno4 xlation of VERS_MISMATCH). For illegal replies,
5392 * return EIO -- don't trust status.
5393 */
5394 if (e.error == 0)
5395 e.error = (res.status == NFS4ERR_MINOR_VERS_MISMATCH) ?
5396 ENOTSUP : EIO;
5397 VN_RELE(*vpp);
5398 *vpp = NULL;
5399 kmem_free(argop, argoplist_size);
5400 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp);
5401 return (e.error);
5402 }
5403
5404 if (res.status != NFS4ERR_SAME) {
5405 e.error = geterrno4(res.status);
5406
5407 /*
5408 * The NVERIFY "failed" so the directory has changed
5409 * First make sure PUTFH succeeded and NVERIFY "failed"
5410 * cleanly.
5411 */
5412 if ((res.array[0].nfs_resop4_u.opputfh.status != NFS4_OK) ||
5413 (res.array[1].nfs_resop4_u.opnverify.status != NFS4_OK)) {
5414 nfs4_purge_stale_fh(e.error, dvp, cr);
5415 VN_RELE(*vpp);
5416 *vpp = NULL;
5417 goto exit;
5418 }
5419
5420 /*
5421 * We know the NVERIFY "failed" so we must:
5422 * purge the caches (access and indirectly dnlc if needed)
5423 */
5424 nfs4_purge_caches(dvp, NFS4_NOPURGE_DNLC, cr, TRUE);
5425
5426 if (res.array[2].nfs_resop4_u.opgetattr.status != NFS4_OK) {
5427 nfs4_purge_stale_fh(e.error, dvp, cr);
5428 VN_RELE(*vpp);
5429 *vpp = NULL;
5430 goto exit;
5431 }
5432
5433 /*
5434 * Install new cached attributes for the directory
5435 */
5436 nfs4_attr_cache(dvp,
5437 &res.array[2].nfs_resop4_u.opgetattr.ga_res,
5438 t, cr, FALSE, NULL);
5439
5440 if (res.array[3].nfs_resop4_u.opaccess.status != NFS4_OK) {
5441 nfs4_purge_stale_fh(e.error, dvp, cr);
5442 VN_RELE(*vpp);
5443 *vpp = NULL;
5444 e.error = geterrno4(res.status);
5445 goto exit;
5446 }
5447
5448 /*
5449 * Now we know the directory is valid,
5450 * cache new directory access
5451 */
5452 nfs4_access_cache(drp,
5453 args.array[3].nfs_argop4_u.opaccess.access,
5454 res.array[3].nfs_resop4_u.opaccess.access, cr);
5455
5456 /*
5457 * recheck VEXEC access
5458 */
5459 cacc = nfs4_access_check(drp, ACCESS4_LOOKUP, cr);
5460 if (cacc != NFS4_ACCESS_ALLOWED) {
5461 /*
5462 * Directory permissions might have been revoked
5463 */
5464 if (cacc == NFS4_ACCESS_DENIED) {
5465 e.error = EACCES;
5466 VN_RELE(*vpp);
5467 *vpp = NULL;
5468 goto exit;
5469 }
5470
5471 /*
5472 * Somehow we must not have asked for enough
5473 * so try a singleton ACCESS, should never happen.
5474 */
5475 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL);
5476 if (e.error) {
5477 VN_RELE(*vpp);
5478 *vpp = NULL;
5479 goto exit;
5480 }
5481 }
5482
5483 e.error = geterrno4(res.status);
5484 if (res.array[4].nfs_resop4_u.oplookup.status != NFS4_OK) {
5485 /*
5486 * The lookup failed, probably no entry
5487 */
5488 if (e.error == ENOENT && nfs4_lookup_neg_cache) {
5489 dnlc_update(dvp, nm, DNLC_NO_VNODE);
5490 } else {
5491 /*
5492 * Might be some other error, so remove
5493 * the dnlc entry to make sure we start all
5494 * over again, next time.
5495 */
5496 dnlc_remove(dvp, nm);
5497 }
5498 VN_RELE(*vpp);
5499 *vpp = NULL;
5500 goto exit;
5501 }
5502
5503 if (res.array[5].nfs_resop4_u.opgetfh.status != NFS4_OK) {
5504 /*
5505 * The file exists but we can't get its fh for
5506 * some unknown reason. Remove it from the dnlc
5507 * and error out to be safe.
5508 */
5509 dnlc_remove(dvp, nm);
5510 VN_RELE(*vpp);
5511 *vpp = NULL;
5512 goto exit;
5513 }
5514 fhp = &res.array[5].nfs_resop4_u.opgetfh.object;
5515 if (fhp->nfs_fh4_len == 0) {
5516 /*
5517 * The file exists but a bogus fh
5518 * some unknown reason. Remove it from the dnlc
5519 * and error out to be safe.
5520 */
5521 e.error = ENOENT;
5522 dnlc_remove(dvp, nm);
5523 VN_RELE(*vpp);
5524 *vpp = NULL;
5525 goto exit;
5526 }
5527 sfhp = sfh4_get(fhp, mi);
5528
5529 if (res.array[6].nfs_resop4_u.opgetattr.status == NFS4_OK)
5530 garp = &res.array[6].nfs_resop4_u.opgetattr.ga_res;
5531
5532 /*
5533 * Make the new rnode
5534 */
5535 if (isdotdot) {
5536 e.error = nfs4_make_dotdot(sfhp, t, dvp, cr, &nvp, 1);
5537 if (e.error) {
5538 sfh4_rele(&sfhp);
5539 VN_RELE(*vpp);
5540 *vpp = NULL;
5541 goto exit;
5542 }
5543 /*
5544 * XXX if nfs4_make_dotdot uses an existing rnode
5545 * XXX it doesn't update the attributes.
5546 * XXX for now just save them again to save an OTW
5547 */
5548 nfs4_attr_cache(nvp, garp, t, cr, FALSE, NULL);
5549 } else {
5550 nvp = makenfs4node(sfhp, garp, dvp->v_vfsp, t, cr,
5551 dvp, fn_get(VTOSV(dvp)->sv_name, nm, sfhp));
5552 /*
5553 * If v_type == VNON, then garp was NULL because
5554 * the last op in the compound failed and makenfs4node
5555 * could not find the vnode for sfhp. It created
5556 * a new vnode, so we have nothing to purge here.
5557 */
5558 if (nvp->v_type == VNON) {
5559 vattr_t vattr;
5560
5561 vattr.va_mask = AT_TYPE;
5562 /*
5563 * N.B. We've already called nfs4_end_fop above.
5564 */
5565 e.error = nfs4getattr(nvp, &vattr, cr);
5566 if (e.error) {
5567 sfh4_rele(&sfhp);
5568 VN_RELE(*vpp);
5569 *vpp = NULL;
5570 VN_RELE(nvp);
5571 goto exit;
5572 }
5573 nvp->v_type = vattr.va_type;
5574 }
5575 }
5576 sfh4_rele(&sfhp);
5577
5578 nrp = VTOR4(nvp);
5579 mutex_enter(&nrp->r_statev4_lock);
5580 if (!nrp->created_v4) {
5581 mutex_exit(&nrp->r_statev4_lock);
5582 dnlc_update(dvp, nm, nvp);
5583 } else
5584 mutex_exit(&nrp->r_statev4_lock);
5585
5586 VN_RELE(*vpp);
5587 *vpp = nvp;
5588 } else {
5589 hrtime_t now;
5590 hrtime_t delta = 0;
5591
5592 e.error = 0;
5593
5594 /*
5595 * Because the NVERIFY "succeeded" we know that the
5596 * directory attributes are still valid
5597 * so update r_time_attr_inval
5598 */
5599 now = gethrtime();
5600 mutex_enter(&drp->r_statelock);
5601 if (!(mi->mi_flags & MI4_NOAC) && !(dvp->v_flag & VNOCACHE)) {
5602 delta = now - drp->r_time_attr_saved;
5603 if (delta < mi->mi_acdirmin)
5604 delta = mi->mi_acdirmin;
5605 else if (delta > mi->mi_acdirmax)
5606 delta = mi->mi_acdirmax;
5607 }
5608 drp->r_time_attr_inval = now + delta;
5609 mutex_exit(&drp->r_statelock);
5610 dnlc_update(dvp, nm, *vpp);
5611
5612 /*
5613 * Even though we have a valid directory attr cache
5614 * and dnlc entry, we may not have access.
5615 * This should almost always hit the cache.
5616 */
5617 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL);
5618 if (e.error) {
5619 VN_RELE(*vpp);
5620 *vpp = NULL;
5621 }
5622
5623 if (*vpp == DNLC_NO_VNODE) {
5624 VN_RELE(*vpp);
5625 *vpp = NULL;
5626 e.error = ENOENT;
5627 }
5628 }
5629
5630 exit:
5631 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
5632 kmem_free(argop, argoplist_size);
5633 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp);
5634 return (e.error);
5635 }
5636
5637 /*
5638 * We need to go over the wire to lookup the name, but
5639 * while we are there verify the directory has not
5640 * changed but if it has, get new attributes and check access
5641 *
5642 * PUTFH dfh SAVEFH LOOKUP nm GETFH GETATTR RESTOREFH
5643 * NVERIFY GETATTR ACCESS
5644 *
5645 * With the results:
5646 * if the NVERIFY failed we must purge the caches, add new attributes,
5647 * and cache new access.
5648 * set a new r_time_attr_inval
5649 * add name to dnlc, possibly negative
5650 * if LOOKUP succeeded
5651 * cache new attributes
5652 */
5653 static int
5654 nfs4lookupnew_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr)
5655 {
5656 COMPOUND4args_clnt args;
5657 COMPOUND4res_clnt res;
5658 fattr4 *ver_fattr;
5659 fattr4_change dchange;
5660 int32_t *ptr;
5661 nfs4_ga_res_t *garp = NULL;
5662 int argoplist_size = 9 * sizeof (nfs_argop4);
5663 nfs_argop4 *argop;
5664 int doqueue;
5665 mntinfo4_t *mi;
5666 nfs4_recov_state_t recov_state;
5667 hrtime_t t;
5668 int isdotdot;
5669 vnode_t *nvp;
5670 nfs_fh4 *fhp;
5671 nfs4_sharedfh_t *sfhp;
5672 nfs4_access_type_t cacc;
5673 rnode4_t *nrp;
5674 rnode4_t *drp = VTOR4(dvp);
5675 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
5676
5677 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone);
5678 ASSERT(nm != NULL);
5679 ASSERT(nm[0] != '\0');
5680 ASSERT(dvp->v_type == VDIR);
5681 ASSERT(nm[0] != '.' || nm[1] != '\0');
5682 ASSERT(*vpp == NULL);
5683
5684 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') {
5685 isdotdot = 1;
5686 args.ctag = TAG_LOOKUP_PARENT;
5687 } else {
5688 /*
5689 * If dvp were a stub, it should have triggered and caused
5690 * a mount for us to get this far.
5691 */
5692 ASSERT(!RP_ISSTUB(VTOR4(dvp)));
5693
5694 isdotdot = 0;
5695 args.ctag = TAG_LOOKUP;
5696 }
5697
5698 mi = VTOMI4(dvp);
5699 recov_state.rs_flags = 0;
5700 recov_state.rs_num_retry_despite_err = 0;
5701
5702 nvp = NULL;
5703
5704 /* Save the original mount point security information */
5705 (void) save_mnt_secinfo(mi->mi_curr_serv);
5706
5707 recov_retry:
5708 e.error = nfs4_start_fop(mi, dvp, NULL, OH_LOOKUP,
5709 &recov_state, NULL);
5710 if (e.error) {
5711 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp);
5712 return (e.error);
5713 }
5714
5715 argop = kmem_alloc(argoplist_size, KM_SLEEP);
5716
5717 /* PUTFH SAVEFH LOOKUP GETFH GETATTR RESTOREFH NVERIFY GETATTR ACCESS */
5718 args.array_len = 9;
5719 args.array = argop;
5720
5721 /* 0. putfh file */
5722 argop[0].argop = OP_CPUTFH;
5723 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(dvp)->r_fh;
5724
5725 /* 1. savefh for the nverify */
5726 argop[1].argop = OP_SAVEFH;
5727
5728 /* 2. lookup name */
5729 if (isdotdot) {
5730 argop[2].argop = OP_LOOKUPP;
5731 } else {
5732 argop[2].argop = OP_CLOOKUP;
5733 argop[2].nfs_argop4_u.opclookup.cname = nm;
5734 }
5735
5736 /* 3. resulting file handle */
5737 argop[3].argop = OP_GETFH;
5738
5739 /* 4. resulting file attributes */
5740 argop[4].argop = OP_GETATTR;
5741 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
5742 argop[4].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp);
5743
5744 /* 5. restorefh back the directory for the nverify */
5745 argop[5].argop = OP_RESTOREFH;
5746
5747 /* 6. nverify the change info */
5748 argop[6].argop = OP_NVERIFY;
5749 ver_fattr = &argop[6].nfs_argop4_u.opnverify.obj_attributes;
5750 ver_fattr->attrmask = FATTR4_CHANGE_MASK;
5751 ver_fattr->attrlist4 = (char *)&dchange;
5752 ptr = (int32_t *)&dchange;
5753 IXDR_PUT_HYPER(ptr, VTOR4(dvp)->r_change);
5754 ver_fattr->attrlist4_len = sizeof (fattr4_change);
5755
5756 /* 7. getattr directory */
5757 argop[7].argop = OP_GETATTR;
5758 argop[7].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
5759 argop[7].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp);
5760
5761 /* 8. access directory */
5762 argop[8].argop = OP_ACCESS;
5763 argop[8].nfs_argop4_u.opaccess.access = ACCESS4_READ | ACCESS4_DELETE |
5764 ACCESS4_MODIFY | ACCESS4_EXTEND | ACCESS4_LOOKUP;
5765
5766 doqueue = 1;
5767 t = gethrtime();
5768
5769 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e);
5770
5771 if (!isdotdot && res.status == NFS4ERR_MOVED) {
5772 e.error = nfs4_setup_referral(dvp, nm, vpp, cr);
5773 if (e.error != 0 && *vpp != NULL)
5774 VN_RELE(*vpp);
5775 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP,
5776 &recov_state, FALSE);
5777 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
5778 kmem_free(argop, argoplist_size);
5779 return (e.error);
5780 }
5781
5782 if (nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp)) {
5783 /*
5784 * For WRONGSEC of a non-dotdot case, send secinfo directly
5785 * from this thread, do not go thru the recovery thread since
5786 * we need the nm information.
5787 *
5788 * Not doing dotdot case because there is no specification
5789 * for (PUTFH, SECINFO "..") yet.
5790 */
5791 if (!isdotdot && res.status == NFS4ERR_WRONGSEC) {
5792 if ((e.error = nfs4_secinfo_vnode_otw(dvp, nm, cr)))
5793 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP,
5794 &recov_state, FALSE);
5795 else
5796 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP,
5797 &recov_state, TRUE);
5798 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
5799 kmem_free(argop, argoplist_size);
5800 if (!e.error)
5801 goto recov_retry;
5802 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp);
5803 return (e.error);
5804 }
5805
5806 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL,
5807 OP_LOOKUP, NULL, NULL, NULL) == FALSE) {
5808 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP,
5809 &recov_state, TRUE);
5810
5811 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
5812 kmem_free(argop, argoplist_size);
5813 goto recov_retry;
5814 }
5815 }
5816
5817 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, &recov_state, FALSE);
5818
5819 if (e.error || res.array_len == 0) {
5820 /*
5821 * If e.error isn't set, then reply has no ops (or we couldn't
5822 * be here). The only legal way to reply without an op array
5823 * is via NFS4ERR_MINOR_VERS_MISMATCH. An ops array should
5824 * be in the reply for all other status values.
5825 *
5826 * For valid replies without an ops array, return ENOTSUP
5827 * (geterrno4 xlation of VERS_MISMATCH). For illegal replies,
5828 * return EIO -- don't trust status.
5829 */
5830 if (e.error == 0)
5831 e.error = (res.status == NFS4ERR_MINOR_VERS_MISMATCH) ?
5832 ENOTSUP : EIO;
5833
5834 kmem_free(argop, argoplist_size);
5835 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp);
5836 return (e.error);
5837 }
5838
5839 e.error = geterrno4(res.status);
5840
5841 /*
5842 * The PUTFH and SAVEFH may have failed.
5843 */
5844 if ((res.array[0].nfs_resop4_u.opputfh.status != NFS4_OK) ||
5845 (res.array[1].nfs_resop4_u.opsavefh.status != NFS4_OK)) {
5846 nfs4_purge_stale_fh(e.error, dvp, cr);
5847 goto exit;
5848 }
5849
5850 /*
5851 * Check if the file exists, if it does delay entering
5852 * into the dnlc until after we update the directory
5853 * attributes so we don't cause it to get purged immediately.
5854 */
5855 if (res.array[2].nfs_resop4_u.oplookup.status != NFS4_OK) {
5856 /*
5857 * The lookup failed, probably no entry
5858 */
5859 if (e.error == ENOENT && nfs4_lookup_neg_cache)
5860 dnlc_update(dvp, nm, DNLC_NO_VNODE);
5861 goto exit;
5862 }
5863
5864 if (res.array[3].nfs_resop4_u.opgetfh.status != NFS4_OK) {
5865 /*
5866 * The file exists but we can't get its fh for
5867 * some unknown reason. Error out to be safe.
5868 */
5869 goto exit;
5870 }
5871
5872 fhp = &res.array[3].nfs_resop4_u.opgetfh.object;
5873 if (fhp->nfs_fh4_len == 0) {
5874 /*
5875 * The file exists but a bogus fh
5876 * some unknown reason. Error out to be safe.
5877 */
5878 e.error = EIO;
5879 goto exit;
5880 }
5881 sfhp = sfh4_get(fhp, mi);
5882
5883 if (res.array[4].nfs_resop4_u.opgetattr.status != NFS4_OK) {
5884 sfh4_rele(&sfhp);
5885 goto exit;
5886 }
5887 garp = &res.array[4].nfs_resop4_u.opgetattr.ga_res;
5888
5889 /*
5890 * The RESTOREFH may have failed
5891 */
5892 if (res.array[5].nfs_resop4_u.oprestorefh.status != NFS4_OK) {
5893 sfh4_rele(&sfhp);
5894 e.error = EIO;
5895 goto exit;
5896 }
5897
5898 if (res.array[6].nfs_resop4_u.opnverify.status != NFS4ERR_SAME) {
5899 /*
5900 * First make sure the NVERIFY failed as we expected,
5901 * if it didn't then be conservative and error out
5902 * as we can't trust the directory.
5903 */
5904 if (res.array[6].nfs_resop4_u.opnverify.status != NFS4_OK) {
5905 sfh4_rele(&sfhp);
5906 e.error = EIO;
5907 goto exit;
5908 }
5909
5910 /*
5911 * We know the NVERIFY "failed" so the directory has changed,
5912 * so we must:
5913 * purge the caches (access and indirectly dnlc if needed)
5914 */
5915 nfs4_purge_caches(dvp, NFS4_NOPURGE_DNLC, cr, TRUE);
5916
5917 if (res.array[7].nfs_resop4_u.opgetattr.status != NFS4_OK) {
5918 sfh4_rele(&sfhp);
5919 goto exit;
5920 }
5921 nfs4_attr_cache(dvp,
5922 &res.array[7].nfs_resop4_u.opgetattr.ga_res,
5923 t, cr, FALSE, NULL);
5924
5925 if (res.array[8].nfs_resop4_u.opaccess.status != NFS4_OK) {
5926 nfs4_purge_stale_fh(e.error, dvp, cr);
5927 sfh4_rele(&sfhp);
5928 e.error = geterrno4(res.status);
5929 goto exit;
5930 }
5931
5932 /*
5933 * Now we know the directory is valid,
5934 * cache new directory access
5935 */
5936 nfs4_access_cache(drp,
5937 args.array[8].nfs_argop4_u.opaccess.access,
5938 res.array[8].nfs_resop4_u.opaccess.access, cr);
5939
5940 /*
5941 * recheck VEXEC access
5942 */
5943 cacc = nfs4_access_check(drp, ACCESS4_LOOKUP, cr);
5944 if (cacc != NFS4_ACCESS_ALLOWED) {
5945 /*
5946 * Directory permissions might have been revoked
5947 */
5948 if (cacc == NFS4_ACCESS_DENIED) {
5949 sfh4_rele(&sfhp);
5950 e.error = EACCES;
5951 goto exit;
5952 }
5953
5954 /*
5955 * Somehow we must not have asked for enough
5956 * so try a singleton ACCESS should never happen
5957 */
5958 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL);
5959 if (e.error) {
5960 sfh4_rele(&sfhp);
5961 goto exit;
5962 }
5963 }
5964
5965 e.error = geterrno4(res.status);
5966 } else {
5967 hrtime_t now;
5968 hrtime_t delta = 0;
5969
5970 e.error = 0;
5971
5972 /*
5973 * Because the NVERIFY "succeeded" we know that the
5974 * directory attributes are still valid
5975 * so update r_time_attr_inval
5976 */
5977 now = gethrtime();
5978 mutex_enter(&drp->r_statelock);
5979 if (!(mi->mi_flags & MI4_NOAC) && !(dvp->v_flag & VNOCACHE)) {
5980 delta = now - drp->r_time_attr_saved;
5981 if (delta < mi->mi_acdirmin)
5982 delta = mi->mi_acdirmin;
5983 else if (delta > mi->mi_acdirmax)
5984 delta = mi->mi_acdirmax;
5985 }
5986 drp->r_time_attr_inval = now + delta;
5987 mutex_exit(&drp->r_statelock);
5988
5989 /*
5990 * Even though we have a valid directory attr cache,
5991 * we may not have access.
5992 * This should almost always hit the cache.
5993 */
5994 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL);
5995 if (e.error) {
5996 sfh4_rele(&sfhp);
5997 goto exit;
5998 }
5999 }
6000
6001 /*
6002 * Now we have successfully completed the lookup, if the
6003 * directory has changed we now have the valid attributes.
6004 * We also know we have directory access.
6005 * Create the new rnode and insert it in the dnlc.
6006 */
6007 if (isdotdot) {
6008 e.error = nfs4_make_dotdot(sfhp, t, dvp, cr, &nvp, 1);
6009 if (e.error) {
6010 sfh4_rele(&sfhp);
6011 goto exit;
6012 }
6013 /*
6014 * XXX if nfs4_make_dotdot uses an existing rnode
6015 * XXX it doesn't update the attributes.
6016 * XXX for now just save them again to save an OTW
6017 */
6018 nfs4_attr_cache(nvp, garp, t, cr, FALSE, NULL);
6019 } else {
6020 nvp = makenfs4node(sfhp, garp, dvp->v_vfsp, t, cr,
6021 dvp, fn_get(VTOSV(dvp)->sv_name, nm, sfhp));
6022 }
6023 sfh4_rele(&sfhp);
6024
6025 nrp = VTOR4(nvp);
6026 mutex_enter(&nrp->r_statev4_lock);
6027 if (!nrp->created_v4) {
6028 mutex_exit(&nrp->r_statev4_lock);
6029 dnlc_update(dvp, nm, nvp);
6030 } else
6031 mutex_exit(&nrp->r_statev4_lock);
6032
6033 *vpp = nvp;
6034
6035 exit:
6036 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
6037 kmem_free(argop, argoplist_size);
6038 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp);
6039 return (e.error);
6040 }
6041
6042 #ifdef DEBUG
6043 void
6044 nfs4lookup_dump_compound(char *where, nfs_argop4 *argbase, int argcnt)
6045 {
6046 uint_t i, len;
6047 zoneid_t zoneid = getzoneid();
6048 char *s;
6049
6050 zcmn_err(zoneid, CE_NOTE, "%s: dumping cmpd", where);
6051 for (i = 0; i < argcnt; i++) {
6052 nfs_argop4 *op = &argbase[i];
6053 switch (op->argop) {
6054 case OP_CPUTFH:
6055 case OP_PUTFH:
6056 zcmn_err(zoneid, CE_NOTE, "\t op %d, putfh", i);
6057 break;
6058 case OP_PUTROOTFH:
6059 zcmn_err(zoneid, CE_NOTE, "\t op %d, putrootfh", i);
6060 break;
6061 case OP_CLOOKUP:
6062 s = op->nfs_argop4_u.opclookup.cname;
6063 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookup %s", i, s);
6064 break;
6065 case OP_LOOKUP:
6066 s = utf8_to_str(&op->nfs_argop4_u.oplookup.objname,
6067 &len, NULL);
6068 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookup %s", i, s);
6069 kmem_free(s, len);
6070 break;
6071 case OP_LOOKUPP:
6072 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookupp ..", i);
6073 break;
6074 case OP_GETFH:
6075 zcmn_err(zoneid, CE_NOTE, "\t op %d, getfh", i);
6076 break;
6077 case OP_GETATTR:
6078 zcmn_err(zoneid, CE_NOTE, "\t op %d, getattr", i);
6079 break;
6080 case OP_OPENATTR:
6081 zcmn_err(zoneid, CE_NOTE, "\t op %d, openattr", i);
6082 break;
6083 default:
6084 zcmn_err(zoneid, CE_NOTE, "\t op %d, opcode %d", i,
6085 op->argop);
6086 break;
6087 }
6088 }
6089 }
6090 #endif
6091
6092 /*
6093 * nfs4lookup_setup - constructs a multi-lookup compound request.
6094 *
6095 * Given the path "nm1/nm2/.../nmn", the following compound requests
6096 * may be created:
6097 *
6098 * Note: Getfh is not be needed because filehandle attr is mandatory, but it
6099 * is faster, for now.
6100 *
6101 * l4_getattrs indicates the type of compound requested.
6102 *
6103 * LKP4_NO_ATTRIBUTE - no attributes (used by secinfo):
6104 *
6105 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Lookup {nmn} }
6106 *
6107 * total number of ops is n + 1.
6108 *
6109 * LKP4_LAST_NAMED_ATTR - multi-component path for a named
6110 * attribute: create lookups plus one OPENATTR/GETFH/GETATTR
6111 * before the last component, and only get attributes
6112 * for the last component. Note that the second-to-last
6113 * pathname component is XATTR_RPATH, which does NOT go
6114 * over-the-wire as a lookup.
6115 *
6116 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Lookup {nmn-2};
6117 * Openattr; Getfh; Getattr; Lookup {nmn}; Getfh; Getattr }
6118 *
6119 * and total number of ops is n + 5.
6120 *
6121 * LKP4_LAST_ATTRDIR - multi-component path for the hidden named
6122 * attribute directory: create lookups plus an OPENATTR
6123 * replacing the last lookup. Note that the last pathname
6124 * component is XATTR_RPATH, which does NOT go over-the-wire
6125 * as a lookup.
6126 *
6127 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Getfh; Getattr;
6128 * Openattr; Getfh; Getattr }
6129 *
6130 * and total number of ops is n + 5.
6131 *
6132 * LKP4_ALL_ATTRIBUTES - create lookups and get attributes for intermediate
6133 * nodes too.
6134 *
6135 * compound { Put*fh; Lookup {nm1}; Getfh; Getattr;
6136 * Lookup {nm2}; ... Lookup {nmn}; Getfh; Getattr }
6137 *
6138 * and total number of ops is 3*n + 1.
6139 *
6140 * All cases: returns the index in the arg array of the final LOOKUP op, or
6141 * -1 if no LOOKUPs were used.
6142 */
6143 int
6144 nfs4lookup_setup(char *nm, lookup4_param_t *lookupargp, int needgetfh)
6145 {
6146 enum lkp4_attr_setup l4_getattrs = lookupargp->l4_getattrs;
6147 nfs_argop4 *argbase, *argop;
6148 int arglen, argcnt;
6149 int n = 1; /* number of components */
6150 int nga = 1; /* number of Getattr's in request */
6151 char c = '\0', *s, *p;
6152 int lookup_idx = -1;
6153 int argoplist_size;
6154
6155 /* set lookuparg response result to 0 */
6156 lookupargp->resp->status = NFS4_OK;
6157
6158 /* skip leading "/" or "." e.g. ".//./" if there is */
6159 for (; ; nm++) {
6160 if (*nm != '/' && *nm != '.')
6161 break;
6162
6163 /* ".." is counted as 1 component */
6164 if (*nm == '.' && *(nm + 1) != '/')
6165 break;
6166 }
6167
6168 /*
6169 * Find n = number of components - nm must be null terminated
6170 * Skip "." components.
6171 */
6172 if (*nm != '\0')
6173 for (n = 1, s = nm; *s != '\0'; s++) {
6174 if ((*s == '/') && (*(s + 1) != '/') &&
6175 (*(s + 1) != '\0') &&
6176 !(*(s + 1) == '.' && (*(s + 2) == '/' ||
6177 *(s + 2) == '\0')))
6178 n++;
6179 }
6180 else
6181 n = 0;
6182
6183 /*
6184 * nga is number of components that need Getfh+Getattr
6185 */
6186 switch (l4_getattrs) {
6187 case LKP4_NO_ATTRIBUTES:
6188 nga = 0;
6189 break;
6190 case LKP4_ALL_ATTRIBUTES:
6191 nga = n;
6192 /*
6193 * Always have at least 1 getfh, getattr pair
6194 */
6195 if (nga == 0)
6196 nga++;
6197 break;
6198 case LKP4_LAST_ATTRDIR:
6199 case LKP4_LAST_NAMED_ATTR:
6200 nga = n+1;
6201 break;
6202 }
6203
6204 /*
6205 * If change to use the filehandle attr instead of getfh
6206 * the following line can be deleted.
6207 */
6208 nga *= 2;
6209
6210 /*
6211 * calculate number of ops in request as
6212 * header + trailer + lookups + getattrs
6213 */
6214 arglen = lookupargp->header_len + lookupargp->trailer_len + n + nga;
6215
6216 argoplist_size = arglen * sizeof (nfs_argop4);
6217 argop = argbase = kmem_alloc(argoplist_size, KM_SLEEP);
6218 lookupargp->argsp->array = argop;
6219
6220 argcnt = lookupargp->header_len;
6221 argop += argcnt;
6222
6223 /*
6224 * loop and create a lookup op and possibly getattr/getfh for
6225 * each component. Skip "." components.
6226 */
6227 for (s = nm; *s != '\0'; s = p) {
6228 /*
6229 * Set up a pathname struct for each component if needed
6230 */
6231 while (*s == '/')
6232 s++;
6233 if (*s == '\0')
6234 break;
6235
6236 for (p = s; (*p != '/') && (*p != '\0'); p++)
6237 ;
6238 c = *p;
6239 *p = '\0';
6240
6241 if (s[0] == '.' && s[1] == '\0') {
6242 *p = c;
6243 continue;
6244 }
6245 if (l4_getattrs == LKP4_LAST_ATTRDIR &&
6246 strcmp(s, XATTR_RPATH) == 0) {
6247 /* getfh XXX may not be needed in future */
6248 argop->argop = OP_GETFH;
6249 argop++;
6250 argcnt++;
6251
6252 /* getattr */
6253 argop->argop = OP_GETATTR;
6254 argop->nfs_argop4_u.opgetattr.attr_request =
6255 lookupargp->ga_bits;
6256 argop->nfs_argop4_u.opgetattr.mi =
6257 lookupargp->mi;
6258 argop++;
6259 argcnt++;
6260
6261 /* openattr */
6262 argop->argop = OP_OPENATTR;
6263 } else if (l4_getattrs == LKP4_LAST_NAMED_ATTR &&
6264 strcmp(s, XATTR_RPATH) == 0) {
6265 /* openattr */
6266 argop->argop = OP_OPENATTR;
6267 argop++;
6268 argcnt++;
6269
6270 /* getfh XXX may not be needed in future */
6271 argop->argop = OP_GETFH;
6272 argop++;
6273 argcnt++;
6274
6275 /* getattr */
6276 argop->argop = OP_GETATTR;
6277 argop->nfs_argop4_u.opgetattr.attr_request =
6278 lookupargp->ga_bits;
6279 argop->nfs_argop4_u.opgetattr.mi =
6280 lookupargp->mi;
6281 argop++;
6282 argcnt++;
6283 *p = c;
6284 continue;
6285 } else if (s[0] == '.' && s[1] == '.' && s[2] == '\0') {
6286 /* lookupp */
6287 argop->argop = OP_LOOKUPP;
6288 } else {
6289 /* lookup */
6290 argop->argop = OP_LOOKUP;
6291 (void) str_to_utf8(s,
6292 &argop->nfs_argop4_u.oplookup.objname);
6293 }
6294 lookup_idx = argcnt;
6295 argop++;
6296 argcnt++;
6297
6298 *p = c;
6299
6300 if (l4_getattrs == LKP4_ALL_ATTRIBUTES) {
6301 /* getfh XXX may not be needed in future */
6302 argop->argop = OP_GETFH;
6303 argop++;
6304 argcnt++;
6305
6306 /* getattr */
6307 argop->argop = OP_GETATTR;
6308 argop->nfs_argop4_u.opgetattr.attr_request =
6309 lookupargp->ga_bits;
6310 argop->nfs_argop4_u.opgetattr.mi =
6311 lookupargp->mi;
6312 argop++;
6313 argcnt++;
6314 }
6315 }
6316
6317 if ((l4_getattrs != LKP4_NO_ATTRIBUTES) &&
6318 ((l4_getattrs != LKP4_ALL_ATTRIBUTES) || (lookup_idx < 0))) {
6319 if (needgetfh) {
6320 /* stick in a post-lookup getfh */
6321 argop->argop = OP_GETFH;
6322 argcnt++;
6323 argop++;
6324 }
6325 /* post-lookup getattr */
6326 argop->argop = OP_GETATTR;
6327 argop->nfs_argop4_u.opgetattr.attr_request =
6328 lookupargp->ga_bits;
6329 argop->nfs_argop4_u.opgetattr.mi = lookupargp->mi;
6330 argcnt++;
6331 }
6332 argcnt += lookupargp->trailer_len; /* actual op count */
6333 lookupargp->argsp->array_len = argcnt;
6334 lookupargp->arglen = arglen;
6335
6336 #ifdef DEBUG
6337 if (nfs4_client_lookup_debug)
6338 nfs4lookup_dump_compound("nfs4lookup_setup", argbase, argcnt);
6339 #endif
6340
6341 return (lookup_idx);
6342 }
6343
6344 static int
6345 nfs4openattr(vnode_t *dvp, vnode_t **avp, int cflag, cred_t *cr)
6346 {
6347 COMPOUND4args_clnt args;
6348 COMPOUND4res_clnt res;
6349 GETFH4res *gf_res = NULL;
6350 nfs_argop4 argop[4];
6351 nfs_resop4 *resop = NULL;
6352 nfs4_sharedfh_t *sfhp;
6353 hrtime_t t;
6354 nfs4_error_t e;
6355
6356 rnode4_t *drp;
6357 int doqueue = 1;
6358 vnode_t *vp;
6359 int needrecov = 0;
6360 nfs4_recov_state_t recov_state;
6361
6362 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone);
6363
6364 *avp = NULL;
6365 recov_state.rs_flags = 0;
6366 recov_state.rs_num_retry_despite_err = 0;
6367
6368 recov_retry:
6369 /* COMPOUND: putfh, openattr, getfh, getattr */
6370 args.array_len = 4;
6371 args.array = argop;
6372 args.ctag = TAG_OPENATTR;
6373
6374 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state);
6375 if (e.error)
6376 return (e.error);
6377
6378 drp = VTOR4(dvp);
6379
6380 /* putfh */
6381 argop[0].argop = OP_CPUTFH;
6382 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh;
6383
6384 /* openattr */
6385 argop[1].argop = OP_OPENATTR;
6386 argop[1].nfs_argop4_u.opopenattr.createdir = (cflag ? TRUE : FALSE);
6387
6388 /* getfh */
6389 argop[2].argop = OP_GETFH;
6390
6391 /* getattr */
6392 argop[3].argop = OP_GETATTR;
6393 argop[3].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
6394 argop[3].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp);
6395
6396 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE,
6397 "nfs4openattr: %s call, drp %s", needrecov ? "recov" : "first",
6398 rnode4info(drp)));
6399
6400 t = gethrtime();
6401
6402 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e);
6403
6404 needrecov = nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp);
6405 if (needrecov) {
6406 bool_t abort;
6407
6408 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
6409 "nfs4openattr: initiating recovery\n"));
6410
6411 abort = nfs4_start_recovery(&e,
6412 VTOMI4(dvp), dvp, NULL, NULL, NULL,
6413 OP_OPENATTR, NULL, NULL, NULL);
6414 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov);
6415 if (!e.error) {
6416 e.error = geterrno4(res.status);
6417 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
6418 }
6419 if (abort == FALSE)
6420 goto recov_retry;
6421 return (e.error);
6422 }
6423
6424 if (e.error) {
6425 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov);
6426 return (e.error);
6427 }
6428
6429 if (res.status) {
6430 /*
6431 * If OTW errro is NOTSUPP, then it should be
6432 * translated to EINVAL. All Solaris file system
6433 * implementations return EINVAL to the syscall layer
6434 * when the attrdir cannot be created due to an
6435 * implementation restriction or noxattr mount option.
6436 */
6437 if (res.status == NFS4ERR_NOTSUPP) {
6438 mutex_enter(&drp->r_statelock);
6439 if (drp->r_xattr_dir)
6440 VN_RELE(drp->r_xattr_dir);
6441 VN_HOLD(NFS4_XATTR_DIR_NOTSUPP);
6442 drp->r_xattr_dir = NFS4_XATTR_DIR_NOTSUPP;
6443 mutex_exit(&drp->r_statelock);
6444
6445 e.error = EINVAL;
6446 } else {
6447 e.error = geterrno4(res.status);
6448 }
6449
6450 if (e.error) {
6451 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
6452 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state,
6453 needrecov);
6454 return (e.error);
6455 }
6456 }
6457
6458 resop = &res.array[0]; /* putfh res */
6459 ASSERT(resop->nfs_resop4_u.opgetfh.status == NFS4_OK);
6460
6461 resop = &res.array[1]; /* openattr res */
6462 ASSERT(resop->nfs_resop4_u.opopenattr.status == NFS4_OK);
6463
6464 resop = &res.array[2]; /* getfh res */
6465 gf_res = &resop->nfs_resop4_u.opgetfh;
6466 if (gf_res->object.nfs_fh4_len == 0) {
6467 *avp = NULL;
6468 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
6469 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov);
6470 return (ENOENT);
6471 }
6472
6473 sfhp = sfh4_get(&gf_res->object, VTOMI4(dvp));
6474 vp = makenfs4node(sfhp, &res.array[3].nfs_resop4_u.opgetattr.ga_res,
6475 dvp->v_vfsp, t, cr, dvp,
6476 fn_get(VTOSV(dvp)->sv_name, XATTR_RPATH, sfhp));
6477 sfh4_rele(&sfhp);
6478
6479 if (e.error)
6480 PURGE_ATTRCACHE4(vp);
6481
6482 mutex_enter(&vp->v_lock);
6483 vp->v_flag |= V_XATTRDIR;
6484 mutex_exit(&vp->v_lock);
6485
6486 *avp = vp;
6487
6488 mutex_enter(&drp->r_statelock);
6489 if (drp->r_xattr_dir)
6490 VN_RELE(drp->r_xattr_dir);
6491 VN_HOLD(vp);
6492 drp->r_xattr_dir = vp;
6493
6494 /*
6495 * Invalidate pathconf4 cache because r_xattr_dir is no longer
6496 * NULL. xattrs could be created at any time, and we have no
6497 * way to update pc4_xattr_exists in the base object if/when
6498 * it happens.
6499 */
6500 drp->r_pathconf.pc4_xattr_valid = 0;
6501
6502 mutex_exit(&drp->r_statelock);
6503
6504 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov);
6505
6506 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
6507
6508 return (0);
6509 }
6510
6511 /* ARGSUSED */
6512 static int
6513 nfs4_create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive,
6514 int mode, vnode_t **vpp, cred_t *cr, int flags, caller_context_t *ct,
6515 vsecattr_t *vsecp)
6516 {
6517 int error;
6518 vnode_t *vp = NULL;
6519 rnode4_t *rp;
6520 struct vattr vattr;
6521 rnode4_t *drp;
6522 vnode_t *tempvp;
6523 enum createmode4 createmode;
6524 bool_t must_trunc = FALSE;
6525 int truncating = 0;
6526
6527 if (nfs_zone() != VTOMI4(dvp)->mi_zone)
6528 return (EPERM);
6529 if (exclusive == EXCL && (dvp->v_flag & V_XATTRDIR)) {
6530 return (EINVAL);
6531 }
6532
6533 /* . and .. have special meaning in the protocol, reject them. */
6534
6535 if (nm[0] == '.' && (nm[1] == '\0' || (nm[1] == '.' && nm[2] == '\0')))
6536 return (EISDIR);
6537
6538 drp = VTOR4(dvp);
6539
6540 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp)))
6541 return (EINTR);
6542
6543 top:
6544 /*
6545 * We make a copy of the attributes because the caller does not
6546 * expect us to change what va points to.
6547 */
6548 vattr = *va;
6549
6550 /*
6551 * If the pathname is "", then dvp is the root vnode of
6552 * a remote file mounted over a local directory.
6553 * All that needs to be done is access
6554 * checking and truncation. Note that we avoid doing
6555 * open w/ create because the parent directory might
6556 * be in pseudo-fs and the open would fail.
6557 */
6558 if (*nm == '\0') {
6559 error = 0;
6560 VN_HOLD(dvp);
6561 vp = dvp;
6562 must_trunc = TRUE;
6563 } else {
6564 /*
6565 * We need to go over the wire, just to be sure whether the
6566 * file exists or not. Using the DNLC can be dangerous in
6567 * this case when making a decision regarding existence.
6568 */
6569 error = nfs4lookup(dvp, nm, &vp, cr, 1);
6570 }
6571
6572 if (exclusive)
6573 createmode = EXCLUSIVE4;
6574 else
6575 createmode = GUARDED4;
6576
6577 /*
6578 * error would be set if the file does not exist on the
6579 * server, so lets go create it.
6580 */
6581 if (error) {
6582 goto create_otw;
6583 }
6584
6585 /*
6586 * File does exist on the server
6587 */
6588 if (exclusive == EXCL)
6589 error = EEXIST;
6590 else if (vp->v_type == VDIR && (mode & VWRITE))
6591 error = EISDIR;
6592 else {
6593 /*
6594 * If vnode is a device, create special vnode.
6595 */
6596 if (ISVDEV(vp->v_type)) {
6597 tempvp = vp;
6598 vp = specvp(vp, vp->v_rdev, vp->v_type, cr);
6599 VN_RELE(tempvp);
6600 }
6601 if (!(error = VOP_ACCESS(vp, mode, 0, cr, ct))) {
6602 if ((vattr.va_mask & AT_SIZE) &&
6603 vp->v_type == VREG) {
6604 rp = VTOR4(vp);
6605 /*
6606 * Check here for large file handled
6607 * by LF-unaware process (as
6608 * ufs_create() does)
6609 */
6610 if (!(flags & FOFFMAX)) {
6611 mutex_enter(&rp->r_statelock);
6612 if (rp->r_size > MAXOFF32_T)
6613 error = EOVERFLOW;
6614 mutex_exit(&rp->r_statelock);
6615 }
6616
6617 /* if error is set then we need to return */
6618 if (error) {
6619 nfs_rw_exit(&drp->r_rwlock);
6620 VN_RELE(vp);
6621 return (error);
6622 }
6623
6624 if (must_trunc) {
6625 vattr.va_mask = AT_SIZE;
6626 error = nfs4setattr(vp, &vattr, 0, cr,
6627 NULL);
6628 } else {
6629 /*
6630 * we know we have a regular file that already
6631 * exists and we may end up truncating the file
6632 * as a result of the open_otw, so flush out
6633 * any dirty pages for this file first.
6634 */
6635 if (nfs4_has_pages(vp) &&
6636 ((rp->r_flags & R4DIRTY) ||
6637 rp->r_count > 0 ||
6638 rp->r_mapcnt > 0)) {
6639 error = nfs4_putpage(vp,
6640 (offset_t)0, 0, 0, cr, ct);
6641 if (error && (error == ENOSPC ||
6642 error == EDQUOT)) {
6643 mutex_enter(
6644 &rp->r_statelock);
6645 if (!rp->r_error)
6646 rp->r_error =
6647 error;
6648 mutex_exit(
6649 &rp->r_statelock);
6650 }
6651 }
6652 vattr.va_mask = (AT_SIZE |
6653 AT_TYPE | AT_MODE);
6654 vattr.va_type = VREG;
6655 createmode = UNCHECKED4;
6656 truncating = 1;
6657 goto create_otw;
6658 }
6659 }
6660 }
6661 }
6662 nfs_rw_exit(&drp->r_rwlock);
6663 if (error) {
6664 VN_RELE(vp);
6665 } else {
6666 vnode_t *tvp;
6667 rnode4_t *trp;
6668 tvp = vp;
6669 if (vp->v_type == VREG) {
6670 trp = VTOR4(vp);
6671 if (IS_SHADOW(vp, trp))
6672 tvp = RTOV4(trp);
6673 }
6674
6675 if (must_trunc) {
6676 /*
6677 * existing file got truncated, notify.
6678 */
6679 vnevent_create(tvp, ct);
6680 }
6681
6682 *vpp = vp;
6683 }
6684 return (error);
6685
6686 create_otw:
6687 dnlc_remove(dvp, nm);
6688
6689 ASSERT(vattr.va_mask & AT_TYPE);
6690
6691 /*
6692 * If not a regular file let nfs4mknod() handle it.
6693 */
6694 if (vattr.va_type != VREG) {
6695 error = nfs4mknod(dvp, nm, &vattr, exclusive, mode, vpp, cr);
6696 nfs_rw_exit(&drp->r_rwlock);
6697 return (error);
6698 }
6699
6700 /*
6701 * It _is_ a regular file.
6702 */
6703 ASSERT(vattr.va_mask & AT_MODE);
6704 if (MANDMODE(vattr.va_mode)) {
6705 nfs_rw_exit(&drp->r_rwlock);
6706 return (EACCES);
6707 }
6708
6709 /*
6710 * If this happens to be a mknod of a regular file, then flags will
6711 * have neither FREAD or FWRITE. However, we must set at least one
6712 * for the call to nfs4open_otw. If it's open(O_CREAT) driving
6713 * nfs4_create, then either FREAD, FWRITE, or FRDWR has already been
6714 * set (based on openmode specified by app).
6715 */
6716 if ((flags & (FREAD|FWRITE)) == 0)
6717 flags |= (FREAD|FWRITE);
6718
6719 error = nfs4open_otw(dvp, nm, &vattr, vpp, cr, 1, flags, createmode, 0);
6720
6721 if (vp != NULL) {
6722 /* if create was successful, throw away the file's pages */
6723 if (!error && (vattr.va_mask & AT_SIZE))
6724 nfs4_invalidate_pages(vp, (vattr.va_size & PAGEMASK),
6725 cr);
6726 /* release the lookup hold */
6727 VN_RELE(vp);
6728 vp = NULL;
6729 }
6730
6731 /*
6732 * validate that we opened a regular file. This handles a misbehaving
6733 * server that returns an incorrect FH.
6734 */
6735 if ((error == 0) && *vpp && (*vpp)->v_type != VREG) {
6736 error = EISDIR;
6737 VN_RELE(*vpp);
6738 }
6739
6740 /*
6741 * If this is not an exclusive create, then the CREATE
6742 * request will be made with the GUARDED mode set. This
6743 * means that the server will return EEXIST if the file
6744 * exists. The file could exist because of a retransmitted
6745 * request. In this case, we recover by starting over and
6746 * checking to see whether the file exists. This second
6747 * time through it should and a CREATE request will not be
6748 * sent.
6749 *
6750 * This handles the problem of a dangling CREATE request
6751 * which contains attributes which indicate that the file
6752 * should be truncated. This retransmitted request could
6753 * possibly truncate valid data in the file if not caught
6754 * by the duplicate request mechanism on the server or if
6755 * not caught by other means. The scenario is:
6756 *
6757 * Client transmits CREATE request with size = 0
6758 * Client times out, retransmits request.
6759 * Response to the first request arrives from the server
6760 * and the client proceeds on.
6761 * Client writes data to the file.
6762 * The server now processes retransmitted CREATE request
6763 * and truncates file.
6764 *
6765 * The use of the GUARDED CREATE request prevents this from
6766 * happening because the retransmitted CREATE would fail
6767 * with EEXIST and would not truncate the file.
6768 */
6769 if (error == EEXIST && exclusive == NONEXCL) {
6770 #ifdef DEBUG
6771 nfs4_create_misses++;
6772 #endif
6773 goto top;
6774 }
6775 nfs_rw_exit(&drp->r_rwlock);
6776 if (truncating && !error && *vpp) {
6777 vnode_t *tvp;
6778 rnode4_t *trp;
6779 /*
6780 * existing file got truncated, notify.
6781 */
6782 tvp = *vpp;
6783 trp = VTOR4(tvp);
6784 if (IS_SHADOW(tvp, trp))
6785 tvp = RTOV4(trp);
6786 vnevent_create(tvp, ct);
6787 }
6788 return (error);
6789 }
6790
6791 /*
6792 * Create compound (for mkdir, mknod, symlink):
6793 * { Putfh <dfh>; Create; Getfh; Getattr }
6794 * It's okay if setattr failed to set gid - this is not considered
6795 * an error, but purge attrs in that case.
6796 */
6797 static int
6798 call_nfs4_create_req(vnode_t *dvp, char *nm, void *data, struct vattr *va,
6799 vnode_t **vpp, cred_t *cr, nfs_ftype4 type)
6800 {
6801 int need_end_op = FALSE;
6802 COMPOUND4args_clnt args;
6803 COMPOUND4res_clnt res, *resp = NULL;
6804 nfs_argop4 *argop;
6805 nfs_resop4 *resop;
6806 int doqueue;
6807 mntinfo4_t *mi;
6808 rnode4_t *drp = VTOR4(dvp);
6809 change_info4 *cinfo;
6810 GETFH4res *gf_res;
6811 struct vattr vattr;
6812 vnode_t *vp;
6813 fattr4 *crattr;
6814 bool_t needrecov = FALSE;
6815 nfs4_recov_state_t recov_state;
6816 nfs4_sharedfh_t *sfhp = NULL;
6817 hrtime_t t;
6818 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
6819 int numops, argoplist_size, setgid_flag, idx_create, idx_fattr;
6820 dirattr_info_t dinfo, *dinfop;
6821 servinfo4_t *svp;
6822 bitmap4 supp_attrs;
6823
6824 ASSERT(type == NF4DIR || type == NF4LNK || type == NF4BLK ||
6825 type == NF4CHR || type == NF4SOCK || type == NF4FIFO);
6826
6827 mi = VTOMI4(dvp);
6828
6829 /*
6830 * Make sure we properly deal with setting the right gid
6831 * on a new directory to reflect the parent's setgid bit
6832 */
6833 setgid_flag = 0;
6834 if (type == NF4DIR) {
6835 struct vattr dva;
6836
6837 va->va_mode &= ~VSGID;
6838 dva.va_mask = AT_MODE | AT_GID;
6839 if (VOP_GETATTR(dvp, &dva, 0, cr, NULL) == 0) {
6840
6841 /*
6842 * If the parent's directory has the setgid bit set
6843 * _and_ the client was able to get a valid mapping
6844 * for the parent dir's owner_group, we want to
6845 * append NVERIFY(owner_group == dva.va_gid) and
6846 * SETTATTR to the CREATE compound.
6847 */
6848 if (mi->mi_flags & MI4_GRPID || dva.va_mode & VSGID) {
6849 setgid_flag = 1;
6850 va->va_mode |= VSGID;
6851 if (dva.va_gid != GID_NOBODY) {
6852 va->va_mask |= AT_GID;
6853 va->va_gid = dva.va_gid;
6854 }
6855 }
6856 }
6857 }
6858
6859 /*
6860 * Create ops:
6861 * 0:putfh(dir) 1:savefh(dir) 2:create 3:getfh(new) 4:getattr(new)
6862 * 5:restorefh(dir) 6:getattr(dir)
6863 *
6864 * if (setgid)
6865 * 0:putfh(dir) 1:create 2:getfh(new) 3:getattr(new)
6866 * 4:savefh(new) 5:putfh(dir) 6:getattr(dir) 7:restorefh(new)
6867 * 8:nverify 9:setattr
6868 */
6869 if (setgid_flag) {
6870 numops = 10;
6871 idx_create = 1;
6872 idx_fattr = 3;
6873 } else {
6874 numops = 7;
6875 idx_create = 2;
6876 idx_fattr = 4;
6877 }
6878
6879 ASSERT(nfs_zone() == mi->mi_zone);
6880 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) {
6881 return (EINTR);
6882 }
6883 recov_state.rs_flags = 0;
6884 recov_state.rs_num_retry_despite_err = 0;
6885
6886 argoplist_size = numops * sizeof (nfs_argop4);
6887 argop = kmem_alloc(argoplist_size, KM_SLEEP);
6888
6889 recov_retry:
6890 if (type == NF4LNK)
6891 args.ctag = TAG_SYMLINK;
6892 else if (type == NF4DIR)
6893 args.ctag = TAG_MKDIR;
6894 else
6895 args.ctag = TAG_MKNOD;
6896
6897 args.array_len = numops;
6898 args.array = argop;
6899
6900 if (e.error = nfs4_start_op(mi, dvp, NULL, &recov_state)) {
6901 nfs_rw_exit(&drp->r_rwlock);
6902 kmem_free(argop, argoplist_size);
6903 return (e.error);
6904 }
6905 need_end_op = TRUE;
6906
6907
6908 /* 0: putfh directory */
6909 argop[0].argop = OP_CPUTFH;
6910 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh;
6911
6912 /* 1/2: Create object */
6913 argop[idx_create].argop = OP_CCREATE;
6914 argop[idx_create].nfs_argop4_u.opccreate.cname = nm;
6915 argop[idx_create].nfs_argop4_u.opccreate.type = type;
6916 if (type == NF4LNK) {
6917 /*
6918 * symlink, treat name as data
6919 */
6920 ASSERT(data != NULL);
6921 argop[idx_create].nfs_argop4_u.opccreate.ftype4_u.clinkdata =
6922 (char *)data;
6923 }
6924 if (type == NF4BLK || type == NF4CHR) {
6925 ASSERT(data != NULL);
6926 argop[idx_create].nfs_argop4_u.opccreate.ftype4_u.devdata =
6927 *((specdata4 *)data);
6928 }
6929
6930 crattr = &argop[idx_create].nfs_argop4_u.opccreate.createattrs;
6931
6932 svp = drp->r_server;
6933 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
6934 supp_attrs = svp->sv_supp_attrs;
6935 nfs_rw_exit(&svp->sv_lock);
6936
6937 if (vattr_to_fattr4(va, NULL, crattr, 0, OP_CREATE, supp_attrs)) {
6938 nfs_rw_exit(&drp->r_rwlock);
6939 nfs4_end_op(mi, dvp, NULL, &recov_state, needrecov);
6940 e.error = EINVAL;
6941 kmem_free(argop, argoplist_size);
6942 return (e.error);
6943 }
6944
6945 /* 2/3: getfh fh of created object */
6946 ASSERT(idx_create + 1 == idx_fattr - 1);
6947 argop[idx_create + 1].argop = OP_GETFH;
6948
6949 /* 3/4: getattr of new object */
6950 argop[idx_fattr].argop = OP_GETATTR;
6951 argop[idx_fattr].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
6952 argop[idx_fattr].nfs_argop4_u.opgetattr.mi = mi;
6953
6954 if (setgid_flag) {
6955 vattr_t _v;
6956
6957 argop[4].argop = OP_SAVEFH;
6958
6959 argop[5].argop = OP_CPUTFH;
6960 argop[5].nfs_argop4_u.opcputfh.sfh = drp->r_fh;
6961
6962 argop[6].argop = OP_GETATTR;
6963 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
6964 argop[6].nfs_argop4_u.opgetattr.mi = mi;
6965
6966 argop[7].argop = OP_RESTOREFH;
6967
6968 /*
6969 * nverify
6970 *
6971 * XXX - Revisit the last argument to nfs4_end_op()
6972 * once 5020486 is fixed.
6973 */
6974 _v.va_mask = AT_GID;
6975 _v.va_gid = va->va_gid;
6976 if (e.error = nfs4args_verify(&argop[8], &_v, OP_NVERIFY,
6977 supp_attrs)) {
6978 nfs4_end_op(mi, dvp, *vpp, &recov_state, TRUE);
6979 nfs_rw_exit(&drp->r_rwlock);
6980 nfs4_fattr4_free(crattr);
6981 kmem_free(argop, argoplist_size);
6982 return (e.error);
6983 }
6984
6985 /*
6986 * setattr
6987 *
6988 * We _know_ we're not messing with AT_SIZE or AT_XTIME,
6989 * so no need for stateid or flags. Also we specify NULL
6990 * rp since we're only interested in setting owner_group
6991 * attributes.
6992 */
6993 nfs4args_setattr(&argop[9], &_v, NULL, 0, NULL, cr, supp_attrs,
6994 &e.error, 0);
6995
6996 if (e.error) {
6997 nfs4_end_op(mi, dvp, *vpp, &recov_state, TRUE);
6998 nfs_rw_exit(&drp->r_rwlock);
6999 nfs4_fattr4_free(crattr);
7000 nfs4args_verify_free(&argop[8]);
7001 kmem_free(argop, argoplist_size);
7002 return (e.error);
7003 }
7004 } else {
7005 argop[1].argop = OP_SAVEFH;
7006
7007 argop[5].argop = OP_RESTOREFH;
7008
7009 argop[6].argop = OP_GETATTR;
7010 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
7011 argop[6].nfs_argop4_u.opgetattr.mi = mi;
7012 }
7013
7014 dnlc_remove(dvp, nm);
7015
7016 doqueue = 1;
7017 t = gethrtime();
7018 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);
7019
7020 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
7021 if (e.error) {
7022 PURGE_ATTRCACHE4(dvp);
7023 if (!needrecov)
7024 goto out;
7025 }
7026
7027 if (needrecov) {
7028 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL,
7029 OP_CREATE, NULL, NULL, NULL) == FALSE) {
7030 nfs4_end_op(mi, dvp, NULL, &recov_state,
7031 needrecov);
7032 need_end_op = FALSE;
7033 nfs4_fattr4_free(crattr);
7034 if (setgid_flag) {
7035 nfs4args_verify_free(&argop[8]);
7036 nfs4args_setattr_free(&argop[9]);
7037 }
7038 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
7039 goto recov_retry;
7040 }
7041 }
7042
7043 resp = &res;
7044
7045 if (res.status != NFS4_OK && res.array_len <= idx_fattr + 1) {
7046
7047 if (res.status == NFS4ERR_BADOWNER)
7048 nfs4_log_badowner(mi, OP_CREATE);
7049
7050 e.error = geterrno4(res.status);
7051
7052 /*
7053 * This check is left over from when create was implemented
7054 * using a setattr op (instead of createattrs). If the
7055 * putfh/create/getfh failed, the error was returned. If
7056 * setattr/getattr failed, we keep going.
7057 *
7058 * It might be better to get rid of the GETFH also, and just
7059 * do PUTFH/CREATE/GETATTR since the FH attr is mandatory.
7060 * Then if any of the operations failed, we could return the
7061 * error now, and remove much of the error code below.
7062 */
7063 if (res.array_len <= idx_fattr) {
7064 /*
7065 * Either Putfh, Create or Getfh failed.
7066 */
7067 PURGE_ATTRCACHE4(dvp);
7068 /*
7069 * nfs4_purge_stale_fh() may generate otw calls through
7070 * nfs4_invalidate_pages. Hence the need to call
7071 * nfs4_end_op() here to avoid nfs4_start_op() deadlock.
7072 */
7073 nfs4_end_op(mi, dvp, NULL, &recov_state,
7074 needrecov);
7075 need_end_op = FALSE;
7076 nfs4_purge_stale_fh(e.error, dvp, cr);
7077 goto out;
7078 }
7079 }
7080
7081 resop = &res.array[idx_create]; /* create res */
7082 cinfo = &resop->nfs_resop4_u.opcreate.cinfo;
7083
7084 resop = &res.array[idx_create + 1]; /* getfh res */
7085 gf_res = &resop->nfs_resop4_u.opgetfh;
7086
7087 sfhp = sfh4_get(&gf_res->object, mi);
7088 if (e.error) {
7089 *vpp = vp = makenfs4node(sfhp, NULL, dvp->v_vfsp, t, cr, dvp,
7090 fn_get(VTOSV(dvp)->sv_name, nm, sfhp));
7091 if (vp->v_type == VNON) {
7092 vattr.va_mask = AT_TYPE;
7093 /*
7094 * Need to call nfs4_end_op before nfs4getattr to avoid
7095 * potential nfs4_start_op deadlock. See RFE 4777612.
7096 */
7097 nfs4_end_op(mi, dvp, NULL, &recov_state,
7098 needrecov);
7099 need_end_op = FALSE;
7100 e.error = nfs4getattr(vp, &vattr, cr);
7101 if (e.error) {
7102 VN_RELE(vp);
7103 *vpp = NULL;
7104 goto out;
7105 }
7106 vp->v_type = vattr.va_type;
7107 }
7108 e.error = 0;
7109 } else {
7110 *vpp = vp = makenfs4node(sfhp,
7111 &res.array[idx_fattr].nfs_resop4_u.opgetattr.ga_res,
7112 dvp->v_vfsp, t, cr,
7113 dvp, fn_get(VTOSV(dvp)->sv_name, nm, sfhp));
7114 }
7115
7116 /*
7117 * If compound succeeded, then update dir attrs
7118 */
7119 if (res.status == NFS4_OK) {
7120 dinfo.di_garp = &res.array[6].nfs_resop4_u.opgetattr.ga_res;
7121 dinfo.di_cred = cr;
7122 dinfo.di_time_call = t;
7123 dinfop = &dinfo;
7124 } else
7125 dinfop = NULL;
7126
7127 /* Update directory cache attribute, readdir and dnlc caches */
7128 nfs4_update_dircaches(cinfo, dvp, vp, nm, dinfop);
7129
7130 out:
7131 if (sfhp != NULL)
7132 sfh4_rele(&sfhp);
7133 nfs_rw_exit(&drp->r_rwlock);
7134 nfs4_fattr4_free(crattr);
7135 if (setgid_flag) {
7136 nfs4args_verify_free(&argop[8]);
7137 nfs4args_setattr_free(&argop[9]);
7138 }
7139 if (resp)
7140 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp);
7141 if (need_end_op)
7142 nfs4_end_op(mi, dvp, NULL, &recov_state, needrecov);
7143
7144 kmem_free(argop, argoplist_size);
7145 return (e.error);
7146 }
7147
7148 /* ARGSUSED */
7149 static int
7150 nfs4mknod(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive,
7151 int mode, vnode_t **vpp, cred_t *cr)
7152 {
7153 int error;
7154 vnode_t *vp;
7155 nfs_ftype4 type;
7156 specdata4 spec, *specp = NULL;
7157
7158 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone);
7159
7160 switch (va->va_type) {
7161 case VCHR:
7162 case VBLK:
7163 type = (va->va_type == VCHR) ? NF4CHR : NF4BLK;
7164 spec.specdata1 = getmajor(va->va_rdev);
7165 spec.specdata2 = getminor(va->va_rdev);
7166 specp = &spec;
7167 break;
7168
7169 case VFIFO:
7170 type = NF4FIFO;
7171 break;
7172 case VSOCK:
7173 type = NF4SOCK;
7174 break;
7175
7176 default:
7177 return (EINVAL);
7178 }
7179
7180 error = call_nfs4_create_req(dvp, nm, specp, va, &vp, cr, type);
7181 if (error) {
7182 return (error);
7183 }
7184
7185 /*
7186 * This might not be needed any more; special case to deal
7187 * with problematic v2/v3 servers. Since create was unable
7188 * to set group correctly, not sure what hope setattr has.
7189 */
7190 if (va->va_gid != VTOR4(vp)->r_attr.va_gid) {
7191 va->va_mask = AT_GID;
7192 (void) nfs4setattr(vp, va, 0, cr, NULL);
7193 }
7194
7195 /*
7196 * If vnode is a device create special vnode
7197 */
7198 if (ISVDEV(vp->v_type)) {
7199 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr);
7200 VN_RELE(vp);
7201 } else {
7202 *vpp = vp;
7203 }
7204 return (error);
7205 }
7206
7207 /*
7208 * Remove requires that the current fh be the target directory.
7209 * After the operation, the current fh is unchanged.
7210 * The compound op structure is:
7211 * PUTFH(targetdir), REMOVE
7212 *
7213 * Weirdness: if the vnode to be removed is open
7214 * we rename it instead of removing it and nfs_inactive
7215 * will remove the new name.
7216 */
7217 /* ARGSUSED */
7218 static int
7219 nfs4_remove(vnode_t *dvp, char *nm, cred_t *cr, caller_context_t *ct, int flags)
7220 {
7221 COMPOUND4args_clnt args;
7222 COMPOUND4res_clnt res, *resp = NULL;
7223 REMOVE4res *rm_res;
7224 nfs_argop4 argop[3];
7225 nfs_resop4 *resop;
7226 vnode_t *vp;
7227 char *tmpname;
7228 int doqueue;
7229 mntinfo4_t *mi;
7230 rnode4_t *rp;
7231 rnode4_t *drp;
7232 int needrecov = 0;
7233 nfs4_recov_state_t recov_state;
7234 int isopen;
7235 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
7236 dirattr_info_t dinfo;
7237
7238 if (nfs_zone() != VTOMI4(dvp)->mi_zone)
7239 return (EPERM);
7240 drp = VTOR4(dvp);
7241 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp)))
7242 return (EINTR);
7243
7244 e.error = nfs4lookup(dvp, nm, &vp, cr, 0);
7245 if (e.error) {
7246 nfs_rw_exit(&drp->r_rwlock);
7247 return (e.error);
7248 }
7249
7250 if (vp->v_type == VDIR) {
7251 VN_RELE(vp);
7252 nfs_rw_exit(&drp->r_rwlock);
7253 return (EISDIR);
7254 }
7255
7256 /*
7257 * First just remove the entry from the name cache, as it
7258 * is most likely the only entry for this vp.
7259 */
7260 dnlc_remove(dvp, nm);
7261
7262 rp = VTOR4(vp);
7263
7264 /*
7265 * For regular file types, check to see if the file is open by looking
7266 * at the open streams.
7267 * For all other types, check the reference count on the vnode. Since
7268 * they are not opened OTW they never have an open stream.
7269 *
7270 * If the file is open, rename it to .nfsXXXX.
7271 */
7272 if (vp->v_type != VREG) {
7273 /*
7274 * If the file has a v_count > 1 then there may be more than one
7275 * entry in the name cache due multiple links or an open file,
7276 * but we don't have the real reference count so flush all
7277 * possible entries.
7278 */
7279 if (vp->v_count > 1)
7280 dnlc_purge_vp(vp);
7281
7282 /*
7283 * Now we have the real reference count.
7284 */
7285 isopen = vp->v_count > 1;
7286 } else {
7287 mutex_enter(&rp->r_os_lock);
7288 isopen = list_head(&rp->r_open_streams) != NULL;
7289 mutex_exit(&rp->r_os_lock);
7290 }
7291
7292 mutex_enter(&rp->r_statelock);
7293 if (isopen &&
7294 (rp->r_unldvp == NULL || strcmp(nm, rp->r_unlname) == 0)) {
7295 mutex_exit(&rp->r_statelock);
7296 tmpname = newname();
7297 e.error = nfs4rename(dvp, nm, dvp, tmpname, cr, ct);
7298 if (e.error)
7299 kmem_free(tmpname, MAXNAMELEN);
7300 else {
7301 mutex_enter(&rp->r_statelock);
7302 if (rp->r_unldvp == NULL) {
7303 VN_HOLD(dvp);
7304 rp->r_unldvp = dvp;
7305 if (rp->r_unlcred != NULL)
7306 crfree(rp->r_unlcred);
7307 crhold(cr);
7308 rp->r_unlcred = cr;
7309 rp->r_unlname = tmpname;
7310 } else {
7311 kmem_free(rp->r_unlname, MAXNAMELEN);
7312 rp->r_unlname = tmpname;
7313 }
7314 mutex_exit(&rp->r_statelock);
7315 }
7316 VN_RELE(vp);
7317 nfs_rw_exit(&drp->r_rwlock);
7318 return (e.error);
7319 }
7320 /*
7321 * Actually remove the file/dir
7322 */
7323 mutex_exit(&rp->r_statelock);
7324
7325 /*
7326 * We need to flush any dirty pages which happen to
7327 * be hanging around before removing the file.
7328 * This shouldn't happen very often since in NFSv4
7329 * we should be close to open consistent.
7330 */
7331 if (nfs4_has_pages(vp) &&
7332 ((rp->r_flags & R4DIRTY) || rp->r_count > 0)) {
7333 e.error = nfs4_putpage(vp, (u_offset_t)0, 0, 0, cr, ct);
7334 if (e.error && (e.error == ENOSPC || e.error == EDQUOT)) {
7335 mutex_enter(&rp->r_statelock);
7336 if (!rp->r_error)
7337 rp->r_error = e.error;
7338 mutex_exit(&rp->r_statelock);
7339 }
7340 }
7341
7342 mi = VTOMI4(dvp);
7343
7344 (void) nfs4delegreturn(rp, NFS4_DR_REOPEN);
7345 recov_state.rs_flags = 0;
7346 recov_state.rs_num_retry_despite_err = 0;
7347
7348 recov_retry:
7349 /*
7350 * Remove ops: putfh dir; remove
7351 */
7352 args.ctag = TAG_REMOVE;
7353 args.array_len = 3;
7354 args.array = argop;
7355
7356 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state);
7357 if (e.error) {
7358 nfs_rw_exit(&drp->r_rwlock);
7359 VN_RELE(vp);
7360 return (e.error);
7361 }
7362
7363 /* putfh directory */
7364 argop[0].argop = OP_CPUTFH;
7365 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh;
7366
7367 /* remove */
7368 argop[1].argop = OP_CREMOVE;
7369 argop[1].nfs_argop4_u.opcremove.ctarget = nm;
7370
7371 /* getattr dir */
7372 argop[2].argop = OP_GETATTR;
7373 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
7374 argop[2].nfs_argop4_u.opgetattr.mi = mi;
7375
7376 doqueue = 1;
7377 dinfo.di_time_call = gethrtime();
7378 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);
7379
7380 PURGE_ATTRCACHE4(vp);
7381
7382 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
7383 if (e.error)
7384 PURGE_ATTRCACHE4(dvp);
7385
7386 if (needrecov) {
7387 if (nfs4_start_recovery(&e, VTOMI4(dvp), dvp,
7388 NULL, NULL, NULL, OP_REMOVE, NULL, NULL, NULL) == FALSE) {
7389 if (!e.error)
7390 (void) xdr_free(xdr_COMPOUND4res_clnt,
7391 (caddr_t)&res);
7392 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state,
7393 needrecov);
7394 goto recov_retry;
7395 }
7396 }
7397
7398 /*
7399 * Matching nfs4_end_op() for start_op() above.
7400 * There is a path in the code below which calls
7401 * nfs4_purge_stale_fh(), which may generate otw calls through
7402 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op()
7403 * here to avoid nfs4_start_op() deadlock.
7404 */
7405 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov);
7406
7407 if (!e.error) {
7408 resp = &res;
7409
7410 if (res.status) {
7411 e.error = geterrno4(res.status);
7412 PURGE_ATTRCACHE4(dvp);
7413 nfs4_purge_stale_fh(e.error, dvp, cr);
7414 } else {
7415 resop = &res.array[1]; /* remove res */
7416 rm_res = &resop->nfs_resop4_u.opremove;
7417
7418 dinfo.di_garp =
7419 &res.array[2].nfs_resop4_u.opgetattr.ga_res;
7420 dinfo.di_cred = cr;
7421
7422 /* Update directory attr, readdir and dnlc caches */
7423 nfs4_update_dircaches(&rm_res->cinfo, dvp, NULL, NULL,
7424 &dinfo);
7425 }
7426 }
7427 nfs_rw_exit(&drp->r_rwlock);
7428 if (resp)
7429 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp);
7430
7431 if (e.error == 0) {
7432 vnode_t *tvp;
7433 rnode4_t *trp;
7434 trp = VTOR4(vp);
7435 tvp = vp;
7436 if (IS_SHADOW(vp, trp))
7437 tvp = RTOV4(trp);
7438 vnevent_remove(tvp, dvp, nm, ct);
7439 }
7440 VN_RELE(vp);
7441 return (e.error);
7442 }
7443
7444 /*
7445 * Link requires that the current fh be the target directory and the
7446 * saved fh be the source fh. After the operation, the current fh is unchanged.
7447 * Thus the compound op structure is:
7448 * PUTFH(file), SAVEFH, PUTFH(targetdir), LINK, RESTOREFH,
7449 * GETATTR(file)
7450 */
7451 /* ARGSUSED */
7452 static int
7453 nfs4_link(vnode_t *tdvp, vnode_t *svp, char *tnm, cred_t *cr,
7454 caller_context_t *ct, int flags)
7455 {
7456 COMPOUND4args_clnt args;
7457 COMPOUND4res_clnt res, *resp = NULL;
7458 LINK4res *ln_res;
7459 int argoplist_size = 7 * sizeof (nfs_argop4);
7460 nfs_argop4 *argop;
7461 nfs_resop4 *resop;
7462 vnode_t *realvp, *nvp;
7463 int doqueue;
7464 mntinfo4_t *mi;
7465 rnode4_t *tdrp;
7466 bool_t needrecov = FALSE;
7467 nfs4_recov_state_t recov_state;
7468 hrtime_t t;
7469 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
7470 dirattr_info_t dinfo;
7471
7472 ASSERT(*tnm != '\0');
7473 ASSERT(tdvp->v_type == VDIR);
7474 ASSERT(nfs4_consistent_type(tdvp));
7475 ASSERT(nfs4_consistent_type(svp));
7476
7477 if (nfs_zone() != VTOMI4(tdvp)->mi_zone)
7478 return (EPERM);
7479 if (VOP_REALVP(svp, &realvp, ct) == 0) {
7480 svp = realvp;
7481 ASSERT(nfs4_consistent_type(svp));
7482 }
7483
7484 tdrp = VTOR4(tdvp);
7485 mi = VTOMI4(svp);
7486
7487 if (!(mi->mi_flags & MI4_LINK)) {
7488 return (EOPNOTSUPP);
7489 }
7490 recov_state.rs_flags = 0;
7491 recov_state.rs_num_retry_despite_err = 0;
7492
7493 if (nfs_rw_enter_sig(&tdrp->r_rwlock, RW_WRITER, INTR4(tdvp)))
7494 return (EINTR);
7495
7496 recov_retry:
7497 argop = kmem_alloc(argoplist_size, KM_SLEEP);
7498
7499 args.ctag = TAG_LINK;
7500
7501 /*
7502 * Link ops: putfh fl; savefh; putfh tdir; link; getattr(dir);
7503 * restorefh; getattr(fl)
7504 */
7505 args.array_len = 7;
7506 args.array = argop;
7507
7508 e.error = nfs4_start_op(VTOMI4(svp), svp, tdvp, &recov_state);
7509 if (e.error) {
7510 kmem_free(argop, argoplist_size);
7511 nfs_rw_exit(&tdrp->r_rwlock);
7512 return (e.error);
7513 }
7514
7515 /* 0. putfh file */
7516 argop[0].argop = OP_CPUTFH;
7517 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(svp)->r_fh;
7518
7519 /* 1. save current fh to free up the space for the dir */
7520 argop[1].argop = OP_SAVEFH;
7521
7522 /* 2. putfh targetdir */
7523 argop[2].argop = OP_CPUTFH;
7524 argop[2].nfs_argop4_u.opcputfh.sfh = tdrp->r_fh;
7525
7526 /* 3. link: current_fh is targetdir, saved_fh is source */
7527 argop[3].argop = OP_CLINK;
7528 argop[3].nfs_argop4_u.opclink.cnewname = tnm;
7529
7530 /* 4. Get attributes of dir */
7531 argop[4].argop = OP_GETATTR;
7532 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
7533 argop[4].nfs_argop4_u.opgetattr.mi = mi;
7534
7535 /* 5. If link was successful, restore current vp to file */
7536 argop[5].argop = OP_RESTOREFH;
7537
7538 /* 6. Get attributes of linked object */
7539 argop[6].argop = OP_GETATTR;
7540 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
7541 argop[6].nfs_argop4_u.opgetattr.mi = mi;
7542
7543 dnlc_remove(tdvp, tnm);
7544
7545 doqueue = 1;
7546 t = gethrtime();
7547
7548 rfs4call(VTOMI4(svp), &args, &res, cr, &doqueue, 0, &e);
7549
7550 needrecov = nfs4_needs_recovery(&e, FALSE, svp->v_vfsp);
7551 if (e.error != 0 && !needrecov) {
7552 PURGE_ATTRCACHE4(tdvp);
7553 PURGE_ATTRCACHE4(svp);
7554 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, needrecov);
7555 goto out;
7556 }
7557
7558 if (needrecov) {
7559 bool_t abort;
7560
7561 abort = nfs4_start_recovery(&e, VTOMI4(svp), svp, tdvp,
7562 NULL, NULL, OP_LINK, NULL, NULL, NULL);
7563 if (abort == FALSE) {
7564 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state,
7565 needrecov);
7566 kmem_free(argop, argoplist_size);
7567 if (!e.error)
7568 (void) xdr_free(xdr_COMPOUND4res_clnt,
7569 (caddr_t)&res);
7570 goto recov_retry;
7571 } else {
7572 if (e.error != 0) {
7573 PURGE_ATTRCACHE4(tdvp);
7574 PURGE_ATTRCACHE4(svp);
7575 nfs4_end_op(VTOMI4(svp), svp, tdvp,
7576 &recov_state, needrecov);
7577 goto out;
7578 }
7579 /* fall through for res.status case */
7580 }
7581 }
7582
7583 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, needrecov);
7584
7585 resp = &res;
7586 if (res.status) {
7587 /* If link succeeded, then don't return error */
7588 e.error = geterrno4(res.status);
7589 if (res.array_len <= 4) {
7590 /*
7591 * Either Putfh, Savefh, Putfh dir, or Link failed
7592 */
7593 PURGE_ATTRCACHE4(svp);
7594 PURGE_ATTRCACHE4(tdvp);
7595 if (e.error == EOPNOTSUPP) {
7596 mutex_enter(&mi->mi_lock);
7597 mi->mi_flags &= ~MI4_LINK;
7598 mutex_exit(&mi->mi_lock);
7599 }
7600 /* Remap EISDIR to EPERM for non-root user for SVVS */
7601 /* XXX-LP */
7602 if (e.error == EISDIR && crgetuid(cr) != 0)
7603 e.error = EPERM;
7604 goto out;
7605 }
7606 }
7607
7608 /* either no error or one of the postop getattr failed */
7609
7610 /*
7611 * XXX - if LINK succeeded, but no attrs were returned for link
7612 * file, purge its cache.
7613 *
7614 * XXX Perform a simplified version of wcc checking. Instead of
7615 * have another getattr to get pre-op, just purge cache if
7616 * any of the ops prior to and including the getattr failed.
7617 * If the getattr succeeded then update the attrcache accordingly.
7618 */
7619
7620 /*
7621 * update cache with link file postattrs.
7622 * Note: at this point resop points to link res.
7623 */
7624 resop = &res.array[3]; /* link res */
7625 ln_res = &resop->nfs_resop4_u.oplink;
7626 if (res.status == NFS4_OK)
7627 e.error = nfs4_update_attrcache(res.status,
7628 &res.array[6].nfs_resop4_u.opgetattr.ga_res,
7629 t, svp, cr);
7630
7631 /*
7632 * Call makenfs4node to create the new shadow vp for tnm.
7633 * We pass NULL attrs because we just cached attrs for
7634 * the src object. All we're trying to accomplish is to
7635 * to create the new shadow vnode.
7636 */
7637 nvp = makenfs4node(VTOR4(svp)->r_fh, NULL, tdvp->v_vfsp, t, cr,
7638 tdvp, fn_get(VTOSV(tdvp)->sv_name, tnm, VTOR4(svp)->r_fh));
7639
7640 /* Update target cache attribute, readdir and dnlc caches */
7641 dinfo.di_garp = &res.array[4].nfs_resop4_u.opgetattr.ga_res;
7642 dinfo.di_time_call = t;
7643 dinfo.di_cred = cr;
7644
7645 nfs4_update_dircaches(&ln_res->cinfo, tdvp, nvp, tnm, &dinfo);
7646 ASSERT(nfs4_consistent_type(tdvp));
7647 ASSERT(nfs4_consistent_type(svp));
7648 ASSERT(nfs4_consistent_type(nvp));
7649 VN_RELE(nvp);
7650
7651 if (!e.error) {
7652 vnode_t *tvp;
7653 rnode4_t *trp;
7654 /*
7655 * Notify the source file of this link operation.
7656 */
7657 trp = VTOR4(svp);
7658 tvp = svp;
7659 if (IS_SHADOW(svp, trp))
7660 tvp = RTOV4(trp);
7661 vnevent_link(tvp, ct);
7662 }
7663 out:
7664 kmem_free(argop, argoplist_size);
7665 if (resp)
7666 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp);
7667
7668 nfs_rw_exit(&tdrp->r_rwlock);
7669
7670 return (e.error);
7671 }
7672
7673 /* ARGSUSED */
7674 static int
7675 nfs4_rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr,
7676 caller_context_t *ct, int flags)
7677 {
7678 vnode_t *realvp;
7679
7680 if (nfs_zone() != VTOMI4(odvp)->mi_zone)
7681 return (EPERM);
7682 if (VOP_REALVP(ndvp, &realvp, ct) == 0)
7683 ndvp = realvp;
7684
7685 return (nfs4rename(odvp, onm, ndvp, nnm, cr, ct));
7686 }
7687
7688 /*
7689 * nfs4rename does the real work of renaming in NFS Version 4.
7690 *
7691 * A file handle is considered volatile for renaming purposes if either
7692 * of the volatile bits are turned on. However, the compound may differ
7693 * based on the likelihood of the filehandle to change during rename.
7694 */
7695 static int
7696 nfs4rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr,
7697 caller_context_t *ct)
7698 {
7699 int error;
7700 mntinfo4_t *mi;
7701 vnode_t *nvp = NULL;
7702 vnode_t *ovp = NULL;
7703 char *tmpname = NULL;
7704 rnode4_t *rp;
7705 rnode4_t *odrp;
7706 rnode4_t *ndrp;
7707 int did_link = 0;
7708 int do_link = 1;
7709 nfsstat4 stat = NFS4_OK;
7710
7711 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone);
7712 ASSERT(nfs4_consistent_type(odvp));
7713 ASSERT(nfs4_consistent_type(ndvp));
7714
7715 if (onm[0] == '.' && (onm[1] == '\0' ||
7716 (onm[1] == '.' && onm[2] == '\0')))
7717 return (EINVAL);
7718
7719 if (nnm[0] == '.' && (nnm[1] == '\0' ||
7720 (nnm[1] == '.' && nnm[2] == '\0')))
7721 return (EINVAL);
7722
7723 odrp = VTOR4(odvp);
7724 ndrp = VTOR4(ndvp);
7725 if ((intptr_t)odrp < (intptr_t)ndrp) {
7726 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR4(odvp)))
7727 return (EINTR);
7728 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR4(ndvp))) {
7729 nfs_rw_exit(&odrp->r_rwlock);
7730 return (EINTR);
7731 }
7732 } else {
7733 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR4(ndvp)))
7734 return (EINTR);
7735 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR4(odvp))) {
7736 nfs_rw_exit(&ndrp->r_rwlock);
7737 return (EINTR);
7738 }
7739 }
7740
7741 /*
7742 * Lookup the target file. If it exists, it needs to be
7743 * checked to see whether it is a mount point and whether
7744 * it is active (open).
7745 */
7746 error = nfs4lookup(ndvp, nnm, &nvp, cr, 0);
7747 if (!error) {
7748 int isactive;
7749
7750 ASSERT(nfs4_consistent_type(nvp));
7751 /*
7752 * If this file has been mounted on, then just
7753 * return busy because renaming to it would remove
7754 * the mounted file system from the name space.
7755 */
7756 if (vn_ismntpt(nvp)) {
7757 VN_RELE(nvp);
7758 nfs_rw_exit(&odrp->r_rwlock);
7759 nfs_rw_exit(&ndrp->r_rwlock);
7760 return (EBUSY);
7761 }
7762
7763 /*
7764 * First just remove the entry from the name cache, as it
7765 * is most likely the only entry for this vp.
7766 */
7767 dnlc_remove(ndvp, nnm);
7768
7769 rp = VTOR4(nvp);
7770
7771 if (nvp->v_type != VREG) {
7772 /*
7773 * Purge the name cache of all references to this vnode
7774 * so that we can check the reference count to infer
7775 * whether it is active or not.
7776 */
7777 if (nvp->v_count > 1)
7778 dnlc_purge_vp(nvp);
7779
7780 isactive = nvp->v_count > 1;
7781 } else {
7782 mutex_enter(&rp->r_os_lock);
7783 isactive = list_head(&rp->r_open_streams) != NULL;
7784 mutex_exit(&rp->r_os_lock);
7785 }
7786
7787 /*
7788 * If the vnode is active and is not a directory,
7789 * arrange to rename it to a
7790 * temporary file so that it will continue to be
7791 * accessible. This implements the "unlink-open-file"
7792 * semantics for the target of a rename operation.
7793 * Before doing this though, make sure that the
7794 * source and target files are not already the same.
7795 */
7796 if (isactive && nvp->v_type != VDIR) {
7797 /*
7798 * Lookup the source name.
7799 */
7800 error = nfs4lookup(odvp, onm, &ovp, cr, 0);
7801
7802 /*
7803 * The source name *should* already exist.
7804 */
7805 if (error) {
7806 VN_RELE(nvp);
7807 nfs_rw_exit(&odrp->r_rwlock);
7808 nfs_rw_exit(&ndrp->r_rwlock);
7809 return (error);
7810 }
7811
7812 ASSERT(nfs4_consistent_type(ovp));
7813
7814 /*
7815 * Compare the two vnodes. If they are the same,
7816 * just release all held vnodes and return success.
7817 */
7818 if (VN_CMP(ovp, nvp)) {
7819 VN_RELE(ovp);
7820 VN_RELE(nvp);
7821 nfs_rw_exit(&odrp->r_rwlock);
7822 nfs_rw_exit(&ndrp->r_rwlock);
7823 return (0);
7824 }
7825
7826 /*
7827 * Can't mix and match directories and non-
7828 * directories in rename operations. We already
7829 * know that the target is not a directory. If
7830 * the source is a directory, return an error.
7831 */
7832 if (ovp->v_type == VDIR) {
7833 VN_RELE(ovp);
7834 VN_RELE(nvp);
7835 nfs_rw_exit(&odrp->r_rwlock);
7836 nfs_rw_exit(&ndrp->r_rwlock);
7837 return (ENOTDIR);
7838 }
7839 link_call:
7840 /*
7841 * The target file exists, is not the same as
7842 * the source file, and is active. We first
7843 * try to Link it to a temporary filename to
7844 * avoid having the server removing the file
7845 * completely (which could cause data loss to
7846 * the user's POV in the event the Rename fails
7847 * -- see bug 1165874).
7848 */
7849 /*
7850 * The do_link and did_link booleans are
7851 * introduced in the event we get NFS4ERR_FILE_OPEN
7852 * returned for the Rename. Some servers can
7853 * not Rename over an Open file, so they return
7854 * this error. The client needs to Remove the
7855 * newly created Link and do two Renames, just
7856 * as if the server didn't support LINK.
7857 */
7858 tmpname = newname();
7859 error = 0;
7860
7861 if (do_link) {
7862 error = nfs4_link(ndvp, nvp, tmpname, cr,
7863 NULL, 0);
7864 }
7865 if (error == EOPNOTSUPP || !do_link) {
7866 error = nfs4_rename(ndvp, nnm, ndvp, tmpname,
7867 cr, NULL, 0);
7868 did_link = 0;
7869 } else {
7870 did_link = 1;
7871 }
7872 if (error) {
7873 kmem_free(tmpname, MAXNAMELEN);
7874 VN_RELE(ovp);
7875 VN_RELE(nvp);
7876 nfs_rw_exit(&odrp->r_rwlock);
7877 nfs_rw_exit(&ndrp->r_rwlock);
7878 return (error);
7879 }
7880
7881 mutex_enter(&rp->r_statelock);
7882 if (rp->r_unldvp == NULL) {
7883 VN_HOLD(ndvp);
7884 rp->r_unldvp = ndvp;
7885 if (rp->r_unlcred != NULL)
7886 crfree(rp->r_unlcred);
7887 crhold(cr);
7888 rp->r_unlcred = cr;
7889 rp->r_unlname = tmpname;
7890 } else {
7891 if (rp->r_unlname)
7892 kmem_free(rp->r_unlname, MAXNAMELEN);
7893 rp->r_unlname = tmpname;
7894 }
7895 mutex_exit(&rp->r_statelock);
7896 }
7897
7898 (void) nfs4delegreturn(VTOR4(nvp), NFS4_DR_PUSH|NFS4_DR_REOPEN);
7899
7900 ASSERT(nfs4_consistent_type(nvp));
7901 }
7902
7903 if (ovp == NULL) {
7904 /*
7905 * When renaming directories to be a subdirectory of a
7906 * different parent, the dnlc entry for ".." will no
7907 * longer be valid, so it must be removed.
7908 *
7909 * We do a lookup here to determine whether we are renaming
7910 * a directory and we need to check if we are renaming
7911 * an unlinked file. This might have already been done
7912 * in previous code, so we check ovp == NULL to avoid
7913 * doing it twice.
7914 */
7915 error = nfs4lookup(odvp, onm, &ovp, cr, 0);
7916 /*
7917 * The source name *should* already exist.
7918 */
7919 if (error) {
7920 nfs_rw_exit(&odrp->r_rwlock);
7921 nfs_rw_exit(&ndrp->r_rwlock);
7922 if (nvp) {
7923 VN_RELE(nvp);
7924 }
7925 return (error);
7926 }
7927 ASSERT(ovp != NULL);
7928 ASSERT(nfs4_consistent_type(ovp));
7929 }
7930
7931 /*
7932 * Is the object being renamed a dir, and if so, is
7933 * it being renamed to a child of itself? The underlying
7934 * fs should ultimately return EINVAL for this case;
7935 * however, buggy beta non-Solaris NFSv4 servers at
7936 * interop testing events have allowed this behavior,
7937 * and it caused our client to panic due to a recursive
7938 * mutex_enter in fn_move.
7939 *
7940 * The tedious locking in fn_move could be changed to
7941 * deal with this case, and the client could avoid the
7942 * panic; however, the client would just confuse itself
7943 * later and misbehave. A better way to handle the broken
7944 * server is to detect this condition and return EINVAL
7945 * without ever sending the the bogus rename to the server.
7946 * We know the rename is invalid -- just fail it now.
7947 */
7948 if (ovp->v_type == VDIR && VN_CMP(ndvp, ovp)) {
7949 VN_RELE(ovp);
7950 nfs_rw_exit(&odrp->r_rwlock);
7951 nfs_rw_exit(&ndrp->r_rwlock);
7952 if (nvp) {
7953 VN_RELE(nvp);
7954 }
7955 return (EINVAL);
7956 }
7957
7958 (void) nfs4delegreturn(VTOR4(ovp), NFS4_DR_PUSH|NFS4_DR_REOPEN);
7959
7960 /*
7961 * If FH4_VOL_RENAME or FH4_VOLATILE_ANY bits are set, it is
7962 * possible for the filehandle to change due to the rename.
7963 * If neither of these bits is set, but FH4_VOL_MIGRATION is set,
7964 * the fh will not change because of the rename, but we still need
7965 * to update its rnode entry with the new name for
7966 * an eventual fh change due to migration. The FH4_NOEXPIRE_ON_OPEN
7967 * has no effect on these for now, but for future improvements,
7968 * we might want to use it too to simplify handling of files
7969 * that are open with that flag on. (XXX)
7970 */
7971 mi = VTOMI4(odvp);
7972 if (NFS4_VOLATILE_FH(mi))
7973 error = nfs4rename_volatile_fh(odvp, onm, ovp, ndvp, nnm, cr,
7974 &stat);
7975 else
7976 error = nfs4rename_persistent_fh(odvp, onm, ovp, ndvp, nnm, cr,
7977 &stat);
7978
7979 ASSERT(nfs4_consistent_type(odvp));
7980 ASSERT(nfs4_consistent_type(ndvp));
7981 ASSERT(nfs4_consistent_type(ovp));
7982
7983 if (stat == NFS4ERR_FILE_OPEN && did_link) {
7984 do_link = 0;
7985 /*
7986 * Before the 'link_call' code, we did a nfs4_lookup
7987 * that puts a VN_HOLD on nvp. After the nfs4_link
7988 * call we call VN_RELE to match that hold. We need
7989 * to place an additional VN_HOLD here since we will
7990 * be hitting that VN_RELE again.
7991 */
7992 VN_HOLD(nvp);
7993
7994 (void) nfs4_remove(ndvp, tmpname, cr, NULL, 0);
7995
7996 /* Undo the unlinked file naming stuff we just did */
7997 mutex_enter(&rp->r_statelock);
7998 if (rp->r_unldvp) {
7999 VN_RELE(ndvp);
8000 rp->r_unldvp = NULL;
8001 if (rp->r_unlcred != NULL)
8002 crfree(rp->r_unlcred);
8003 rp->r_unlcred = NULL;
8004 /* rp->r_unlanme points to tmpname */
8005 if (rp->r_unlname)
8006 kmem_free(rp->r_unlname, MAXNAMELEN);
8007 rp->r_unlname = NULL;
8008 }
8009 mutex_exit(&rp->r_statelock);
8010
8011 if (nvp) {
8012 VN_RELE(nvp);
8013 }
8014 goto link_call;
8015 }
8016
8017 if (error) {
8018 VN_RELE(ovp);
8019 nfs_rw_exit(&odrp->r_rwlock);
8020 nfs_rw_exit(&ndrp->r_rwlock);
8021 if (nvp) {
8022 VN_RELE(nvp);
8023 }
8024 return (error);
8025 }
8026
8027 /*
8028 * when renaming directories to be a subdirectory of a
8029 * different parent, the dnlc entry for ".." will no
8030 * longer be valid, so it must be removed
8031 */
8032 rp = VTOR4(ovp);
8033 if (ndvp != odvp) {
8034 if (ovp->v_type == VDIR) {
8035 dnlc_remove(ovp, "..");
8036 if (rp->r_dir != NULL)
8037 nfs4_purge_rddir_cache(ovp);
8038 }
8039 }
8040
8041 /*
8042 * If we are renaming the unlinked file, update the
8043 * r_unldvp and r_unlname as needed.
8044 */
8045 mutex_enter(&rp->r_statelock);
8046 if (rp->r_unldvp != NULL) {
8047 if (strcmp(rp->r_unlname, onm) == 0) {
8048 (void) strncpy(rp->r_unlname, nnm, MAXNAMELEN);
8049 rp->r_unlname[MAXNAMELEN - 1] = '\0';
8050 if (ndvp != rp->r_unldvp) {
8051 VN_RELE(rp->r_unldvp);
8052 rp->r_unldvp = ndvp;
8053 VN_HOLD(ndvp);
8054 }
8055 }
8056 }
8057 mutex_exit(&rp->r_statelock);
8058
8059 /*
8060 * Notify the rename vnevents to source vnode, and to the target
8061 * vnode if it already existed.
8062 */
8063 if (error == 0) {
8064 vnode_t *tvp;
8065 rnode4_t *trp;
8066 /*
8067 * Notify the vnode. Each links is represented by
8068 * a different vnode, in nfsv4.
8069 */
8070 if (nvp) {
8071 trp = VTOR4(nvp);
8072 tvp = nvp;
8073 if (IS_SHADOW(nvp, trp))
8074 tvp = RTOV4(trp);
8075 vnevent_rename_dest(tvp, ndvp, nnm, ct);
8076 }
8077
8078 /*
8079 * if the source and destination directory are not the
8080 * same notify the destination directory.
8081 */
8082 if (VTOR4(odvp) != VTOR4(ndvp)) {
8083 trp = VTOR4(ndvp);
8084 tvp = ndvp;
8085 if (IS_SHADOW(ndvp, trp))
8086 tvp = RTOV4(trp);
8087 vnevent_rename_dest_dir(tvp, ct);
8088 }
8089
8090 trp = VTOR4(ovp);
8091 tvp = ovp;
8092 if (IS_SHADOW(ovp, trp))
8093 tvp = RTOV4(trp);
8094 vnevent_rename_src(tvp, odvp, onm, ct);
8095 }
8096
8097 if (nvp) {
8098 VN_RELE(nvp);
8099 }
8100 VN_RELE(ovp);
8101
8102 nfs_rw_exit(&odrp->r_rwlock);
8103 nfs_rw_exit(&ndrp->r_rwlock);
8104
8105 return (error);
8106 }
8107
8108 /*
8109 * When the parent directory has changed, sv_dfh must be updated
8110 */
8111 static void
8112 update_parentdir_sfh(vnode_t *vp, vnode_t *ndvp)
8113 {
8114 svnode_t *sv = VTOSV(vp);
8115 nfs4_sharedfh_t *old_dfh = sv->sv_dfh;
8116 nfs4_sharedfh_t *new_dfh = VTOR4(ndvp)->r_fh;
8117
8118 sfh4_hold(new_dfh);
8119 sv->sv_dfh = new_dfh;
8120 sfh4_rele(&old_dfh);
8121 }
8122
8123 /*
8124 * nfs4rename_persistent does the otw portion of renaming in NFS Version 4,
8125 * when it is known that the filehandle is persistent through rename.
8126 *
8127 * Rename requires that the current fh be the target directory and the
8128 * saved fh be the source directory. After the operation, the current fh
8129 * is unchanged.
8130 * The compound op structure for persistent fh rename is:
8131 * PUTFH(sourcdir), SAVEFH, PUTFH(targetdir), RENAME
8132 * Rather than bother with the directory postop args, we'll simply
8133 * update that a change occurred in the cache, so no post-op getattrs.
8134 */
8135 static int
8136 nfs4rename_persistent_fh(vnode_t *odvp, char *onm, vnode_t *renvp,
8137 vnode_t *ndvp, char *nnm, cred_t *cr, nfsstat4 *statp)
8138 {
8139 COMPOUND4args_clnt args;
8140 COMPOUND4res_clnt res, *resp = NULL;
8141 nfs_argop4 *argop;
8142 nfs_resop4 *resop;
8143 int doqueue, argoplist_size;
8144 mntinfo4_t *mi;
8145 rnode4_t *odrp = VTOR4(odvp);
8146 rnode4_t *ndrp = VTOR4(ndvp);
8147 RENAME4res *rn_res;
8148 bool_t needrecov;
8149 nfs4_recov_state_t recov_state;
8150 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
8151 dirattr_info_t dinfo, *dinfop;
8152
8153 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone);
8154
8155 recov_state.rs_flags = 0;
8156 recov_state.rs_num_retry_despite_err = 0;
8157
8158 /*
8159 * Rename ops: putfh sdir; savefh; putfh tdir; rename; getattr tdir
8160 *
8161 * If source/target are different dirs, then append putfh(src); getattr
8162 */
8163 args.array_len = (odvp == ndvp) ? 5 : 7;
8164 argoplist_size = args.array_len * sizeof (nfs_argop4);
8165 args.array = argop = kmem_alloc(argoplist_size, KM_SLEEP);
8166
8167 recov_retry:
8168 *statp = NFS4_OK;
8169
8170 /* No need to Lookup the file, persistent fh */
8171 args.ctag = TAG_RENAME;
8172
8173 mi = VTOMI4(odvp);
8174 e.error = nfs4_start_op(mi, odvp, ndvp, &recov_state);
8175 if (e.error) {
8176 kmem_free(argop, argoplist_size);
8177 return (e.error);
8178 }
8179
8180 /* 0: putfh source directory */
8181 argop[0].argop = OP_CPUTFH;
8182 argop[0].nfs_argop4_u.opcputfh.sfh = odrp->r_fh;
8183
8184 /* 1: Save source fh to free up current for target */
8185 argop[1].argop = OP_SAVEFH;
8186
8187 /* 2: putfh targetdir */
8188 argop[2].argop = OP_CPUTFH;
8189 argop[2].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh;
8190
8191 /* 3: current_fh is targetdir, saved_fh is sourcedir */
8192 argop[3].argop = OP_CRENAME;
8193 argop[3].nfs_argop4_u.opcrename.coldname = onm;
8194 argop[3].nfs_argop4_u.opcrename.cnewname = nnm;
8195
8196 /* 4: getattr (targetdir) */
8197 argop[4].argop = OP_GETATTR;
8198 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
8199 argop[4].nfs_argop4_u.opgetattr.mi = mi;
8200
8201 if (ndvp != odvp) {
8202
8203 /* 5: putfh (sourcedir) */
8204 argop[5].argop = OP_CPUTFH;
8205 argop[5].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh;
8206
8207 /* 6: getattr (sourcedir) */
8208 argop[6].argop = OP_GETATTR;
8209 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
8210 argop[6].nfs_argop4_u.opgetattr.mi = mi;
8211 }
8212
8213 dnlc_remove(odvp, onm);
8214 dnlc_remove(ndvp, nnm);
8215
8216 doqueue = 1;
8217 dinfo.di_time_call = gethrtime();
8218 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);
8219
8220 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
8221 if (e.error) {
8222 PURGE_ATTRCACHE4(odvp);
8223 PURGE_ATTRCACHE4(ndvp);
8224 } else {
8225 *statp = res.status;
8226 }
8227
8228 if (needrecov) {
8229 if (nfs4_start_recovery(&e, mi, odvp, ndvp, NULL, NULL,
8230 OP_RENAME, NULL, NULL, NULL) == FALSE) {
8231 nfs4_end_op(mi, odvp, ndvp, &recov_state, needrecov);
8232 if (!e.error)
8233 (void) xdr_free(xdr_COMPOUND4res_clnt,
8234 (caddr_t)&res);
8235 goto recov_retry;
8236 }
8237 }
8238
8239 if (!e.error) {
8240 resp = &res;
8241 /*
8242 * as long as OP_RENAME
8243 */
8244 if (res.status != NFS4_OK && res.array_len <= 4) {
8245 e.error = geterrno4(res.status);
8246 PURGE_ATTRCACHE4(odvp);
8247 PURGE_ATTRCACHE4(ndvp);
8248 /*
8249 * System V defines rename to return EEXIST, not
8250 * ENOTEMPTY if the target directory is not empty.
8251 * Over the wire, the error is NFSERR_ENOTEMPTY
8252 * which geterrno4 maps to ENOTEMPTY.
8253 */
8254 if (e.error == ENOTEMPTY)
8255 e.error = EEXIST;
8256 } else {
8257
8258 resop = &res.array[3]; /* rename res */
8259 rn_res = &resop->nfs_resop4_u.oprename;
8260
8261 if (res.status == NFS4_OK) {
8262 /*
8263 * Update target attribute, readdir and dnlc
8264 * caches.
8265 */
8266 dinfo.di_garp =
8267 &res.array[4].nfs_resop4_u.opgetattr.ga_res;
8268 dinfo.di_cred = cr;
8269 dinfop = &dinfo;
8270 } else
8271 dinfop = NULL;
8272
8273 nfs4_update_dircaches(&rn_res->target_cinfo,
8274 ndvp, NULL, NULL, dinfop);
8275
8276 /*
8277 * Update source attribute, readdir and dnlc caches
8278 *
8279 */
8280 if (ndvp != odvp) {
8281 update_parentdir_sfh(renvp, ndvp);
8282
8283 if (dinfop)
8284 dinfo.di_garp =
8285 &(res.array[6].nfs_resop4_u.
8286 opgetattr.ga_res);
8287
8288 nfs4_update_dircaches(&rn_res->source_cinfo,
8289 odvp, NULL, NULL, dinfop);
8290 }
8291
8292 fn_move(VTOSV(renvp)->sv_name, VTOSV(ndvp)->sv_name,
8293 nnm);
8294 }
8295 }
8296
8297 if (resp)
8298 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp);
8299 nfs4_end_op(mi, odvp, ndvp, &recov_state, needrecov);
8300 kmem_free(argop, argoplist_size);
8301
8302 return (e.error);
8303 }
8304
8305 /*
8306 * nfs4rename_volatile_fh does the otw part of renaming in NFS Version 4, when
8307 * it is possible for the filehandle to change due to the rename.
8308 *
8309 * The compound req in this case includes a post-rename lookup and getattr
8310 * to ensure that we have the correct fh and attributes for the object.
8311 *
8312 * Rename requires that the current fh be the target directory and the
8313 * saved fh be the source directory. After the operation, the current fh
8314 * is unchanged.
8315 *
8316 * We need the new filehandle (hence a LOOKUP and GETFH) so that we can
8317 * update the filehandle for the renamed object. We also get the old
8318 * filehandle for historical reasons; this should be taken out sometime.
8319 * This results in a rather cumbersome compound...
8320 *
8321 * PUTFH(sourcdir), SAVEFH, LOOKUP(src), GETFH(old),
8322 * PUTFH(targetdir), RENAME, LOOKUP(trgt), GETFH(new), GETATTR
8323 *
8324 */
8325 static int
8326 nfs4rename_volatile_fh(vnode_t *odvp, char *onm, vnode_t *ovp,
8327 vnode_t *ndvp, char *nnm, cred_t *cr, nfsstat4 *statp)
8328 {
8329 COMPOUND4args_clnt args;
8330 COMPOUND4res_clnt res, *resp = NULL;
8331 int argoplist_size;
8332 nfs_argop4 *argop;
8333 nfs_resop4 *resop;
8334 int doqueue;
8335 mntinfo4_t *mi;
8336 rnode4_t *odrp = VTOR4(odvp); /* old directory */
8337 rnode4_t *ndrp = VTOR4(ndvp); /* new directory */
8338 rnode4_t *orp = VTOR4(ovp); /* object being renamed */
8339 RENAME4res *rn_res;
8340 GETFH4res *ngf_res;
8341 bool_t needrecov;
8342 nfs4_recov_state_t recov_state;
8343 hrtime_t t;
8344 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
8345 dirattr_info_t dinfo, *dinfop = &dinfo;
8346
8347 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone);
8348
8349 recov_state.rs_flags = 0;
8350 recov_state.rs_num_retry_despite_err = 0;
8351
8352 recov_retry:
8353 *statp = NFS4_OK;
8354
8355 /*
8356 * There is a window between the RPC and updating the path and
8357 * filehandle stored in the rnode. Lock out the FHEXPIRED recovery
8358 * code, so that it doesn't try to use the old path during that
8359 * window.
8360 */
8361 mutex_enter(&orp->r_statelock);
8362 while (orp->r_flags & R4RECEXPFH) {
8363 klwp_t *lwp = ttolwp(curthread);
8364
8365 if (lwp != NULL)
8366 lwp->lwp_nostop++;
8367 if (cv_wait_sig(&orp->r_cv, &orp->r_statelock) == 0) {
8368 mutex_exit(&orp->r_statelock);
8369 if (lwp != NULL)
8370 lwp->lwp_nostop--;
8371 return (EINTR);
8372 }
8373 if (lwp != NULL)
8374 lwp->lwp_nostop--;
8375 }
8376 orp->r_flags |= R4RECEXPFH;
8377 mutex_exit(&orp->r_statelock);
8378
8379 mi = VTOMI4(odvp);
8380
8381 args.ctag = TAG_RENAME_VFH;
8382 args.array_len = (odvp == ndvp) ? 10 : 12;
8383 argoplist_size = args.array_len * sizeof (nfs_argop4);
8384 argop = kmem_alloc(argoplist_size, KM_SLEEP);
8385
8386 /*
8387 * Rename ops:
8388 * PUTFH(sourcdir), SAVEFH, LOOKUP(src), GETFH(old),
8389 * PUTFH(targetdir), RENAME, GETATTR(targetdir)
8390 * LOOKUP(trgt), GETFH(new), GETATTR,
8391 *
8392 * if (odvp != ndvp)
8393 * add putfh(sourcedir), getattr(sourcedir) }
8394 */
8395 args.array = argop;
8396
8397 e.error = nfs4_start_fop(mi, odvp, ndvp, OH_VFH_RENAME,
8398 &recov_state, NULL);
8399 if (e.error) {
8400 kmem_free(argop, argoplist_size);
8401 mutex_enter(&orp->r_statelock);
8402 orp->r_flags &= ~R4RECEXPFH;
8403 cv_broadcast(&orp->r_cv);
8404 mutex_exit(&orp->r_statelock);
8405 return (e.error);
8406 }
8407
8408 /* 0: putfh source directory */
8409 argop[0].argop = OP_CPUTFH;
8410 argop[0].nfs_argop4_u.opcputfh.sfh = odrp->r_fh;
8411
8412 /* 1: Save source fh to free up current for target */
8413 argop[1].argop = OP_SAVEFH;
8414
8415 /* 2: Lookup pre-rename fh of renamed object */
8416 argop[2].argop = OP_CLOOKUP;
8417 argop[2].nfs_argop4_u.opclookup.cname = onm;
8418
8419 /* 3: getfh fh of renamed object (before rename) */
8420 argop[3].argop = OP_GETFH;
8421
8422 /* 4: putfh targetdir */
8423 argop[4].argop = OP_CPUTFH;
8424 argop[4].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh;
8425
8426 /* 5: current_fh is targetdir, saved_fh is sourcedir */
8427 argop[5].argop = OP_CRENAME;
8428 argop[5].nfs_argop4_u.opcrename.coldname = onm;
8429 argop[5].nfs_argop4_u.opcrename.cnewname = nnm;
8430
8431 /* 6: getattr of target dir (post op attrs) */
8432 argop[6].argop = OP_GETATTR;
8433 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
8434 argop[6].nfs_argop4_u.opgetattr.mi = mi;
8435
8436 /* 7: Lookup post-rename fh of renamed object */
8437 argop[7].argop = OP_CLOOKUP;
8438 argop[7].nfs_argop4_u.opclookup.cname = nnm;
8439
8440 /* 8: getfh fh of renamed object (after rename) */
8441 argop[8].argop = OP_GETFH;
8442
8443 /* 9: getattr of renamed object */
8444 argop[9].argop = OP_GETATTR;
8445 argop[9].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
8446 argop[9].nfs_argop4_u.opgetattr.mi = mi;
8447
8448 /*
8449 * If source/target dirs are different, then get new post-op
8450 * attrs for source dir also.
8451 */
8452 if (ndvp != odvp) {
8453 /* 10: putfh (sourcedir) */
8454 argop[10].argop = OP_CPUTFH;
8455 argop[10].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh;
8456
8457 /* 11: getattr (sourcedir) */
8458 argop[11].argop = OP_GETATTR;
8459 argop[11].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
8460 argop[11].nfs_argop4_u.opgetattr.mi = mi;
8461 }
8462
8463 dnlc_remove(odvp, onm);
8464 dnlc_remove(ndvp, nnm);
8465
8466 doqueue = 1;
8467 t = gethrtime();
8468 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);
8469
8470 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
8471 if (e.error) {
8472 PURGE_ATTRCACHE4(odvp);
8473 PURGE_ATTRCACHE4(ndvp);
8474 if (!needrecov) {
8475 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME,
8476 &recov_state, needrecov);
8477 goto out;
8478 }
8479 } else {
8480 *statp = res.status;
8481 }
8482
8483 if (needrecov) {
8484 bool_t abort;
8485
8486 abort = nfs4_start_recovery(&e, mi, odvp, ndvp, NULL, NULL,
8487 OP_RENAME, NULL, NULL, NULL);
8488 if (abort == FALSE) {
8489 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME,
8490 &recov_state, needrecov);
8491 kmem_free(argop, argoplist_size);
8492 if (!e.error)
8493 (void) xdr_free(xdr_COMPOUND4res_clnt,
8494 (caddr_t)&res);
8495 mutex_enter(&orp->r_statelock);
8496 orp->r_flags &= ~R4RECEXPFH;
8497 cv_broadcast(&orp->r_cv);
8498 mutex_exit(&orp->r_statelock);
8499 goto recov_retry;
8500 } else {
8501 if (e.error != 0) {
8502 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME,
8503 &recov_state, needrecov);
8504 goto out;
8505 }
8506 /* fall through for res.status case */
8507 }
8508 }
8509
8510 resp = &res;
8511 /*
8512 * If OP_RENAME (or any prev op) failed, then return an error.
8513 * OP_RENAME is index 5, so if array len <= 6 we return an error.
8514 */
8515 if ((res.status != NFS4_OK) && (res.array_len <= 6)) {
8516 /*
8517 * Error in an op other than last Getattr
8518 */
8519 e.error = geterrno4(res.status);
8520 PURGE_ATTRCACHE4(odvp);
8521 PURGE_ATTRCACHE4(ndvp);
8522 /*
8523 * System V defines rename to return EEXIST, not
8524 * ENOTEMPTY if the target directory is not empty.
8525 * Over the wire, the error is NFSERR_ENOTEMPTY
8526 * which geterrno4 maps to ENOTEMPTY.
8527 */
8528 if (e.error == ENOTEMPTY)
8529 e.error = EEXIST;
8530 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, &recov_state,
8531 needrecov);
8532 goto out;
8533 }
8534
8535 /* rename results */
8536 rn_res = &res.array[5].nfs_resop4_u.oprename;
8537
8538 if (res.status == NFS4_OK) {
8539 /* Update target attribute, readdir and dnlc caches */
8540 dinfo.di_garp =
8541 &res.array[6].nfs_resop4_u.opgetattr.ga_res;
8542 dinfo.di_cred = cr;
8543 dinfo.di_time_call = t;
8544 } else
8545 dinfop = NULL;
8546
8547 /* Update source cache attribute, readdir and dnlc caches */
8548 nfs4_update_dircaches(&rn_res->target_cinfo, ndvp, NULL, NULL, dinfop);
8549
8550 /* Update source cache attribute, readdir and dnlc caches */
8551 if (ndvp != odvp) {
8552 update_parentdir_sfh(ovp, ndvp);
8553
8554 /*
8555 * If dinfop is non-NULL, then compound succeded, so
8556 * set di_garp to attrs for source dir. dinfop is only
8557 * set to NULL when compound fails.
8558 */
8559 if (dinfop)
8560 dinfo.di_garp =
8561 &res.array[11].nfs_resop4_u.opgetattr.ga_res;
8562 nfs4_update_dircaches(&rn_res->source_cinfo, odvp, NULL, NULL,
8563 dinfop);
8564 }
8565
8566 /*
8567 * Update the rnode with the new component name and args,
8568 * and if the file handle changed, also update it with the new fh.
8569 * This is only necessary if the target object has an rnode
8570 * entry and there is no need to create one for it.
8571 */
8572 resop = &res.array[8]; /* getfh new res */
8573 ngf_res = &resop->nfs_resop4_u.opgetfh;
8574
8575 /*
8576 * Update the path and filehandle for the renamed object.
8577 */
8578 nfs4rename_update(ovp, ndvp, &ngf_res->object, nnm);
8579
8580 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, &recov_state, needrecov);
8581
8582 if (res.status == NFS4_OK) {
8583 resop++; /* getattr res */
8584 e.error = nfs4_update_attrcache(res.status,
8585 &resop->nfs_resop4_u.opgetattr.ga_res,
8586 t, ovp, cr);
8587 }
8588
8589 out:
8590 kmem_free(argop, argoplist_size);
8591 if (resp)
8592 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp);
8593 mutex_enter(&orp->r_statelock);
8594 orp->r_flags &= ~R4RECEXPFH;
8595 cv_broadcast(&orp->r_cv);
8596 mutex_exit(&orp->r_statelock);
8597
8598 return (e.error);
8599 }
8600
8601 /* ARGSUSED */
8602 static int
8603 nfs4_mkdir(vnode_t *dvp, char *nm, struct vattr *va, vnode_t **vpp, cred_t *cr,
8604 caller_context_t *ct, int flags, vsecattr_t *vsecp)
8605 {
8606 int error;
8607 vnode_t *vp;
8608
8609 if (nfs_zone() != VTOMI4(dvp)->mi_zone)
8610 return (EPERM);
8611 /*
8612 * As ".." has special meaning and rather than send a mkdir
8613 * over the wire to just let the server freak out, we just
8614 * short circuit it here and return EEXIST
8615 */
8616 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0')
8617 return (EEXIST);
8618
8619 /*
8620 * Decision to get the right gid and setgid bit of the
8621 * new directory is now made in call_nfs4_create_req.
8622 */
8623 va->va_mask |= AT_MODE;
8624 error = call_nfs4_create_req(dvp, nm, NULL, va, &vp, cr, NF4DIR);
8625 if (error)
8626 return (error);
8627
8628 *vpp = vp;
8629 return (0);
8630 }
8631
8632
8633 /*
8634 * rmdir is using the same remove v4 op as does remove.
8635 * Remove requires that the current fh be the target directory.
8636 * After the operation, the current fh is unchanged.
8637 * The compound op structure is:
8638 * PUTFH(targetdir), REMOVE
8639 */
8640 /*ARGSUSED4*/
8641 static int
8642 nfs4_rmdir(vnode_t *dvp, char *nm, vnode_t *cdir, cred_t *cr,
8643 caller_context_t *ct, int flags)
8644 {
8645 int need_end_op = FALSE;
8646 COMPOUND4args_clnt args;
8647 COMPOUND4res_clnt res, *resp = NULL;
8648 REMOVE4res *rm_res;
8649 nfs_argop4 argop[3];
8650 nfs_resop4 *resop;
8651 vnode_t *vp;
8652 int doqueue;
8653 mntinfo4_t *mi;
8654 rnode4_t *drp;
8655 bool_t needrecov = FALSE;
8656 nfs4_recov_state_t recov_state;
8657 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
8658 dirattr_info_t dinfo, *dinfop;
8659
8660 if (nfs_zone() != VTOMI4(dvp)->mi_zone)
8661 return (EPERM);
8662 /*
8663 * As ".." has special meaning and rather than send a rmdir
8664 * over the wire to just let the server freak out, we just
8665 * short circuit it here and return EEXIST
8666 */
8667 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0')
8668 return (EEXIST);
8669
8670 drp = VTOR4(dvp);
8671 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp)))
8672 return (EINTR);
8673
8674 /*
8675 * Attempt to prevent a rmdir(".") from succeeding.
8676 */
8677 e.error = nfs4lookup(dvp, nm, &vp, cr, 0);
8678 if (e.error) {
8679 nfs_rw_exit(&drp->r_rwlock);
8680 return (e.error);
8681 }
8682 if (vp == cdir) {
8683 VN_RELE(vp);
8684 nfs_rw_exit(&drp->r_rwlock);
8685 return (EINVAL);
8686 }
8687
8688 /*
8689 * Since nfsv4 remove op works on both files and directories,
8690 * check that the removed object is indeed a directory.
8691 */
8692 if (vp->v_type != VDIR) {
8693 VN_RELE(vp);
8694 nfs_rw_exit(&drp->r_rwlock);
8695 return (ENOTDIR);
8696 }
8697
8698 /*
8699 * First just remove the entry from the name cache, as it
8700 * is most likely an entry for this vp.
8701 */
8702 dnlc_remove(dvp, nm);
8703
8704 /*
8705 * If there vnode reference count is greater than one, then
8706 * there may be additional references in the DNLC which will
8707 * need to be purged. First, trying removing the entry for
8708 * the parent directory and see if that removes the additional
8709 * reference(s). If that doesn't do it, then use dnlc_purge_vp
8710 * to completely remove any references to the directory which
8711 * might still exist in the DNLC.
8712 */
8713 if (vp->v_count > 1) {
8714 dnlc_remove(vp, "..");
8715 if (vp->v_count > 1)
8716 dnlc_purge_vp(vp);
8717 }
8718
8719 mi = VTOMI4(dvp);
8720 recov_state.rs_flags = 0;
8721 recov_state.rs_num_retry_despite_err = 0;
8722
8723 recov_retry:
8724 args.ctag = TAG_RMDIR;
8725
8726 /*
8727 * Rmdir ops: putfh dir; remove
8728 */
8729 args.array_len = 3;
8730 args.array = argop;
8731
8732 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state);
8733 if (e.error) {
8734 nfs_rw_exit(&drp->r_rwlock);
8735 return (e.error);
8736 }
8737 need_end_op = TRUE;
8738
8739 /* putfh directory */
8740 argop[0].argop = OP_CPUTFH;
8741 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh;
8742
8743 /* remove */
8744 argop[1].argop = OP_CREMOVE;
8745 argop[1].nfs_argop4_u.opcremove.ctarget = nm;
8746
8747 /* getattr (postop attrs for dir that contained removed dir) */
8748 argop[2].argop = OP_GETATTR;
8749 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
8750 argop[2].nfs_argop4_u.opgetattr.mi = mi;
8751
8752 dinfo.di_time_call = gethrtime();
8753 doqueue = 1;
8754 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);
8755
8756 PURGE_ATTRCACHE4(vp);
8757
8758 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
8759 if (e.error) {
8760 PURGE_ATTRCACHE4(dvp);
8761 }
8762
8763 if (needrecov) {
8764 if (nfs4_start_recovery(&e, VTOMI4(dvp), dvp, NULL, NULL,
8765 NULL, OP_REMOVE, NULL, NULL, NULL) == FALSE) {
8766 if (!e.error)
8767 (void) xdr_free(xdr_COMPOUND4res_clnt,
8768 (caddr_t)&res);
8769
8770 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state,
8771 needrecov);
8772 need_end_op = FALSE;
8773 goto recov_retry;
8774 }
8775 }
8776
8777 if (!e.error) {
8778 resp = &res;
8779
8780 /*
8781 * Only return error if first 2 ops (OP_REMOVE or earlier)
8782 * failed.
8783 */
8784 if (res.status != NFS4_OK && res.array_len <= 2) {
8785 e.error = geterrno4(res.status);
8786 PURGE_ATTRCACHE4(dvp);
8787 nfs4_end_op(VTOMI4(dvp), dvp, NULL,
8788 &recov_state, needrecov);
8789 need_end_op = FALSE;
8790 nfs4_purge_stale_fh(e.error, dvp, cr);
8791 /*
8792 * System V defines rmdir to return EEXIST, not
8793 * ENOTEMPTY if the directory is not empty. Over
8794 * the wire, the error is NFSERR_ENOTEMPTY which
8795 * geterrno4 maps to ENOTEMPTY.
8796 */
8797 if (e.error == ENOTEMPTY)
8798 e.error = EEXIST;
8799 } else {
8800 resop = &res.array[1]; /* remove res */
8801 rm_res = &resop->nfs_resop4_u.opremove;
8802
8803 if (res.status == NFS4_OK) {
8804 resop = &res.array[2]; /* dir attrs */
8805 dinfo.di_garp =
8806 &resop->nfs_resop4_u.opgetattr.ga_res;
8807 dinfo.di_cred = cr;
8808 dinfop = &dinfo;
8809 } else
8810 dinfop = NULL;
8811
8812 /* Update dir attribute, readdir and dnlc caches */
8813 nfs4_update_dircaches(&rm_res->cinfo, dvp, NULL, NULL,
8814 dinfop);
8815
8816 /* destroy rddir cache for dir that was removed */
8817 if (VTOR4(vp)->r_dir != NULL)
8818 nfs4_purge_rddir_cache(vp);
8819 }
8820 }
8821
8822 if (need_end_op)
8823 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov);
8824
8825 nfs_rw_exit(&drp->r_rwlock);
8826
8827 if (resp)
8828 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp);
8829
8830 if (e.error == 0) {
8831 vnode_t *tvp;
8832 rnode4_t *trp;
8833 trp = VTOR4(vp);
8834 tvp = vp;
8835 if (IS_SHADOW(vp, trp))
8836 tvp = RTOV4(trp);
8837 vnevent_rmdir(tvp, dvp, nm, ct);
8838 }
8839
8840 VN_RELE(vp);
8841
8842 return (e.error);
8843 }
8844
8845 /* ARGSUSED */
8846 static int
8847 nfs4_symlink(vnode_t *dvp, char *lnm, struct vattr *tva, char *tnm, cred_t *cr,
8848 caller_context_t *ct, int flags)
8849 {
8850 int error;
8851 vnode_t *vp;
8852 rnode4_t *rp;
8853 char *contents;
8854 mntinfo4_t *mi = VTOMI4(dvp);
8855
8856 if (nfs_zone() != mi->mi_zone)
8857 return (EPERM);
8858 if (!(mi->mi_flags & MI4_SYMLINK))
8859 return (EOPNOTSUPP);
8860
8861 error = call_nfs4_create_req(dvp, lnm, tnm, tva, &vp, cr, NF4LNK);
8862 if (error)
8863 return (error);
8864
8865 ASSERT(nfs4_consistent_type(vp));
8866 rp = VTOR4(vp);
8867 if (nfs4_do_symlink_cache && rp->r_symlink.contents == NULL) {
8868
8869 contents = kmem_alloc(MAXPATHLEN, KM_SLEEP);
8870
8871 if (contents != NULL) {
8872 mutex_enter(&rp->r_statelock);
8873 if (rp->r_symlink.contents == NULL) {
8874 rp->r_symlink.len = strlen(tnm);
8875 bcopy(tnm, contents, rp->r_symlink.len);
8876 rp->r_symlink.contents = contents;
8877 rp->r_symlink.size = MAXPATHLEN;
8878 mutex_exit(&rp->r_statelock);
8879 } else {
8880 mutex_exit(&rp->r_statelock);
8881 kmem_free((void *)contents, MAXPATHLEN);
8882 }
8883 }
8884 }
8885 VN_RELE(vp);
8886
8887 return (error);
8888 }
8889
8890
8891 /*
8892 * Read directory entries.
8893 * There are some weird things to look out for here. The uio_loffset
8894 * field is either 0 or it is the offset returned from a previous
8895 * readdir. It is an opaque value used by the server to find the
8896 * correct directory block to read. The count field is the number
8897 * of blocks to read on the server. This is advisory only, the server
8898 * may return only one block's worth of entries. Entries may be compressed
8899 * on the server.
8900 */
8901 /* ARGSUSED */
8902 static int
8903 nfs4_readdir(vnode_t *vp, struct uio *uiop, cred_t *cr, int *eofp,
8904 caller_context_t *ct, int flags)
8905 {
8906 int error;
8907 uint_t count;
8908 rnode4_t *rp;
8909 rddir4_cache *rdc;
8910 rddir4_cache *rrdc;
8911
8912 if (nfs_zone() != VTOMI4(vp)->mi_zone)
8913 return (EIO);
8914 rp = VTOR4(vp);
8915
8916 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER));
8917
8918 /*
8919 * Make sure that the directory cache is valid.
8920 */
8921 if (rp->r_dir != NULL) {
8922 if (nfs_disable_rddir_cache != 0) {
8923 /*
8924 * Setting nfs_disable_rddir_cache in /etc/system
8925 * allows interoperability with servers that do not
8926 * properly update the attributes of directories.
8927 * Any cached information gets purged before an
8928 * access is made to it.
8929 */
8930 nfs4_purge_rddir_cache(vp);
8931 }
8932
8933 error = nfs4_validate_caches(vp, cr);
8934 if (error)
8935 return (error);
8936 }
8937
8938 count = MIN(uiop->uio_iov->iov_len, MAXBSIZE);
8939
8940 /*
8941 * Short circuit last readdir which always returns 0 bytes.
8942 * This can be done after the directory has been read through
8943 * completely at least once. This will set r_direof which
8944 * can be used to find the value of the last cookie.
8945 */
8946 mutex_enter(&rp->r_statelock);
8947 if (rp->r_direof != NULL &&
8948 uiop->uio_loffset == rp->r_direof->nfs4_ncookie) {
8949 mutex_exit(&rp->r_statelock);
8950 #ifdef DEBUG
8951 nfs4_readdir_cache_shorts++;
8952 #endif
8953 if (eofp)
8954 *eofp = 1;
8955 return (0);
8956 }
8957
8958 /*
8959 * Look for a cache entry. Cache entries are identified
8960 * by the NFS cookie value and the byte count requested.
8961 */
8962 rdc = rddir4_cache_lookup(rp, uiop->uio_loffset, count);
8963
8964 /*
8965 * If rdc is NULL then the lookup resulted in an unrecoverable error.
8966 */
8967 if (rdc == NULL) {
8968 mutex_exit(&rp->r_statelock);
8969 return (EINTR);
8970 }
8971
8972 /*
8973 * Check to see if we need to fill this entry in.
8974 */
8975 if (rdc->flags & RDDIRREQ) {
8976 rdc->flags &= ~RDDIRREQ;
8977 rdc->flags |= RDDIR;
8978 mutex_exit(&rp->r_statelock);
8979
8980 /*
8981 * Do the readdir.
8982 */
8983 nfs4readdir(vp, rdc, cr);
8984
8985 /*
8986 * Reacquire the lock, so that we can continue
8987 */
8988 mutex_enter(&rp->r_statelock);
8989 /*
8990 * The entry is now complete
8991 */
8992 rdc->flags &= ~RDDIR;
8993 }
8994
8995 ASSERT(!(rdc->flags & RDDIR));
8996
8997 /*
8998 * If an error occurred while attempting
8999 * to fill the cache entry, mark the entry invalid and
9000 * just return the error.
9001 */
9002 if (rdc->error) {
9003 error = rdc->error;
9004 rdc->flags |= RDDIRREQ;
9005 rddir4_cache_rele(rp, rdc);
9006 mutex_exit(&rp->r_statelock);
9007 return (error);
9008 }
9009
9010 /*
9011 * The cache entry is complete and good,
9012 * copyout the dirent structs to the calling
9013 * thread.
9014 */
9015 error = uiomove(rdc->entries, rdc->actlen, UIO_READ, uiop);
9016
9017 /*
9018 * If no error occurred during the copyout,
9019 * update the offset in the uio struct to
9020 * contain the value of the next NFS 4 cookie
9021 * and set the eof value appropriately.
9022 */
9023 if (!error) {
9024 uiop->uio_loffset = rdc->nfs4_ncookie;
9025 if (eofp)
9026 *eofp = rdc->eof;
9027 }
9028
9029 /*
9030 * Decide whether to do readahead. Don't if we
9031 * have already read to the end of directory.
9032 */
9033 if (rdc->eof) {
9034 /*
9035 * Make the entry the direof only if it is cached
9036 */
9037 if (rdc->flags & RDDIRCACHED)
9038 rp->r_direof = rdc;
9039 rddir4_cache_rele(rp, rdc);
9040 mutex_exit(&rp->r_statelock);
9041 return (error);
9042 }
9043
9044 /* Determine if a readdir readahead should be done */
9045 if (!(rp->r_flags & R4LOOKUP)) {
9046 rddir4_cache_rele(rp, rdc);
9047 mutex_exit(&rp->r_statelock);
9048 return (error);
9049 }
9050
9051 /*
9052 * Now look for a readahead entry.
9053 *
9054 * Check to see whether we found an entry for the readahead.
9055 * If so, we don't need to do anything further, so free the new
9056 * entry if one was allocated. Otherwise, allocate a new entry, add
9057 * it to the cache, and then initiate an asynchronous readdir
9058 * operation to fill it.
9059 */
9060 rrdc = rddir4_cache_lookup(rp, rdc->nfs4_ncookie, count);
9061
9062 /*
9063 * A readdir cache entry could not be obtained for the readahead. In
9064 * this case we skip the readahead and return.
9065 */
9066 if (rrdc == NULL) {
9067 rddir4_cache_rele(rp, rdc);
9068 mutex_exit(&rp->r_statelock);
9069 return (error);
9070 }
9071
9072 /*
9073 * Check to see if we need to fill this entry in.
9074 */
9075 if (rrdc->flags & RDDIRREQ) {
9076 rrdc->flags &= ~RDDIRREQ;
9077 rrdc->flags |= RDDIR;
9078 rddir4_cache_rele(rp, rdc);
9079 mutex_exit(&rp->r_statelock);
9080 #ifdef DEBUG
9081 nfs4_readdir_readahead++;
9082 #endif
9083 /*
9084 * Do the readdir.
9085 */
9086 nfs4_async_readdir(vp, rrdc, cr, do_nfs4readdir);
9087 return (error);
9088 }
9089
9090 rddir4_cache_rele(rp, rrdc);
9091 rddir4_cache_rele(rp, rdc);
9092 mutex_exit(&rp->r_statelock);
9093 return (error);
9094 }
9095
9096 static int
9097 do_nfs4readdir(vnode_t *vp, rddir4_cache *rdc, cred_t *cr)
9098 {
9099 int error;
9100 rnode4_t *rp;
9101
9102 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
9103
9104 rp = VTOR4(vp);
9105
9106 /*
9107 * Obtain the readdir results for the caller.
9108 */
9109 nfs4readdir(vp, rdc, cr);
9110
9111 mutex_enter(&rp->r_statelock);
9112 /*
9113 * The entry is now complete
9114 */
9115 rdc->flags &= ~RDDIR;
9116
9117 error = rdc->error;
9118 if (error)
9119 rdc->flags |= RDDIRREQ;
9120 rddir4_cache_rele(rp, rdc);
9121 mutex_exit(&rp->r_statelock);
9122
9123 return (error);
9124 }
9125
9126 /*
9127 * Read directory entries.
9128 * There are some weird things to look out for here. The uio_loffset
9129 * field is either 0 or it is the offset returned from a previous
9130 * readdir. It is an opaque value used by the server to find the
9131 * correct directory block to read. The count field is the number
9132 * of blocks to read on the server. This is advisory only, the server
9133 * may return only one block's worth of entries. Entries may be compressed
9134 * on the server.
9135 *
9136 * Generates the following compound request:
9137 * 1. If readdir offset is zero and no dnlc entry for parent exists,
9138 * must include a Lookupp as well. In this case, send:
9139 * { Putfh <fh>; Readdir; Lookupp; Getfh; Getattr }
9140 * 2. Otherwise just do: { Putfh <fh>; Readdir }
9141 *
9142 * Get complete attributes and filehandles for entries if this is the
9143 * first read of the directory. Otherwise, just get fileid's.
9144 */
9145 static void
9146 nfs4readdir(vnode_t *vp, rddir4_cache *rdc, cred_t *cr)
9147 {
9148 COMPOUND4args_clnt args;
9149 COMPOUND4res_clnt res;
9150 READDIR4args *rargs;
9151 READDIR4res_clnt *rd_res;
9152 bitmap4 rd_bitsval;
9153 nfs_argop4 argop[5];
9154 nfs_resop4 *resop;
9155 rnode4_t *rp = VTOR4(vp);
9156 mntinfo4_t *mi = VTOMI4(vp);
9157 int doqueue;
9158 u_longlong_t nodeid, pnodeid; /* id's of dir and its parents */
9159 vnode_t *dvp;
9160 nfs_cookie4 cookie = (nfs_cookie4)rdc->nfs4_cookie;
9161 int num_ops, res_opcnt;
9162 bool_t needrecov = FALSE;
9163 nfs4_recov_state_t recov_state;
9164 hrtime_t t;
9165 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
9166
9167 ASSERT(nfs_zone() == mi->mi_zone);
9168 ASSERT(rdc->flags & RDDIR);
9169 ASSERT(rdc->entries == NULL);
9170
9171 /*
9172 * If rp were a stub, it should have triggered and caused
9173 * a mount for us to get this far.
9174 */
9175 ASSERT(!RP_ISSTUB(rp));
9176
9177 num_ops = 2;
9178 if (cookie == (nfs_cookie4)0 || cookie == (nfs_cookie4)1) {
9179 /*
9180 * Since nfsv4 readdir may not return entries for "." and "..",
9181 * the client must recreate them:
9182 * To find the correct nodeid, do the following:
9183 * For current node, get nodeid from dnlc.
9184 * - if current node is rootvp, set pnodeid to nodeid.
9185 * - else if parent is in the dnlc, get its nodeid from there.
9186 * - else add LOOKUPP+GETATTR to compound.
9187 */
9188 nodeid = rp->r_attr.va_nodeid;
9189 if (vp->v_flag & VROOT) {
9190 pnodeid = nodeid; /* root of mount point */
9191 } else {
9192 dvp = dnlc_lookup(vp, "..");
9193 if (dvp != NULL && dvp != DNLC_NO_VNODE) {
9194 /* parent in dnlc cache - no need for otw */
9195 pnodeid = VTOR4(dvp)->r_attr.va_nodeid;
9196 } else {
9197 /*
9198 * parent not in dnlc cache,
9199 * do lookupp to get its id
9200 */
9201 num_ops = 5;
9202 pnodeid = 0; /* set later by getattr parent */
9203 }
9204 if (dvp)
9205 VN_RELE(dvp);
9206 }
9207 }
9208 recov_state.rs_flags = 0;
9209 recov_state.rs_num_retry_despite_err = 0;
9210
9211 /* Save the original mount point security flavor */
9212 (void) save_mnt_secinfo(mi->mi_curr_serv);
9213
9214 recov_retry:
9215 args.ctag = TAG_READDIR;
9216
9217 args.array = argop;
9218 args.array_len = num_ops;
9219
9220 if (e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_READDIR,
9221 &recov_state, NULL)) {
9222 /*
9223 * If readdir a node that is a stub for a crossed mount point,
9224 * keep the original secinfo flavor for the current file
9225 * system, not the crossed one.
9226 */
9227 (void) check_mnt_secinfo(mi->mi_curr_serv, vp);
9228 rdc->error = e.error;
9229 return;
9230 }
9231
9232 /*
9233 * Determine which attrs to request for dirents. This code
9234 * must be protected by nfs4_start/end_fop because of r_server
9235 * (which will change during failover recovery).
9236 *
9237 */
9238 if (rp->r_flags & (R4LOOKUP | R4READDIRWATTR)) {
9239 /*
9240 * Get all vattr attrs plus filehandle and rdattr_error
9241 */
9242 rd_bitsval = NFS4_VATTR_MASK |
9243 FATTR4_RDATTR_ERROR_MASK |
9244 FATTR4_FILEHANDLE_MASK;
9245
9246 if (rp->r_flags & R4READDIRWATTR) {
9247 mutex_enter(&rp->r_statelock);
9248 rp->r_flags &= ~R4READDIRWATTR;
9249 mutex_exit(&rp->r_statelock);
9250 }
9251 } else {
9252 servinfo4_t *svp = rp->r_server;
9253
9254 /*
9255 * Already read directory. Use readdir with
9256 * no attrs (except for mounted_on_fileid) for updates.
9257 */
9258 rd_bitsval = FATTR4_RDATTR_ERROR_MASK;
9259
9260 /*
9261 * request mounted on fileid if supported, else request
9262 * fileid. maybe we should verify that fileid is supported
9263 * and request something else if not.
9264 */
9265 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
9266 if (svp->sv_supp_attrs & FATTR4_MOUNTED_ON_FILEID_MASK)
9267 rd_bitsval |= FATTR4_MOUNTED_ON_FILEID_MASK;
9268 nfs_rw_exit(&svp->sv_lock);
9269 }
9270
9271 /* putfh directory fh */
9272 argop[0].argop = OP_CPUTFH;
9273 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh;
9274
9275 argop[1].argop = OP_READDIR;
9276 rargs = &argop[1].nfs_argop4_u.opreaddir;
9277 /*
9278 * 1 and 2 are reserved for client "." and ".." entry offset.
9279 * cookie 0 should be used over-the-wire to start reading at
9280 * the beginning of the directory excluding "." and "..".
9281 */
9282 if (rdc->nfs4_cookie == 0 ||
9283 rdc->nfs4_cookie == 1 ||
9284 rdc->nfs4_cookie == 2) {
9285 rargs->cookie = (nfs_cookie4)0;
9286 rargs->cookieverf = 0;
9287 } else {
9288 rargs->cookie = (nfs_cookie4)rdc->nfs4_cookie;
9289 mutex_enter(&rp->r_statelock);
9290 rargs->cookieverf = rp->r_cookieverf4;
9291 mutex_exit(&rp->r_statelock);
9292 }
9293 rargs->dircount = MIN(rdc->buflen, mi->mi_tsize);
9294 rargs->maxcount = mi->mi_tsize;
9295 rargs->attr_request = rd_bitsval;
9296 rargs->rdc = rdc;
9297 rargs->dvp = vp;
9298 rargs->mi = mi;
9299 rargs->cr = cr;
9300
9301
9302 /*
9303 * If count < than the minimum required, we return no entries
9304 * and fail with EINVAL
9305 */
9306 if (rargs->dircount < (DIRENT64_RECLEN(1) + DIRENT64_RECLEN(2))) {
9307 rdc->error = EINVAL;
9308 goto out;
9309 }
9310
9311 if (args.array_len == 5) {
9312 /*
9313 * Add lookupp and getattr for parent nodeid.
9314 */
9315 argop[2].argop = OP_LOOKUPP;
9316
9317 argop[3].argop = OP_GETFH;
9318
9319 /* getattr parent */
9320 argop[4].argop = OP_GETATTR;
9321 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
9322 argop[4].nfs_argop4_u.opgetattr.mi = mi;
9323 }
9324
9325 doqueue = 1;
9326
9327 if (mi->mi_io_kstats) {
9328 mutex_enter(&mi->mi_lock);
9329 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
9330 mutex_exit(&mi->mi_lock);
9331 }
9332
9333 /* capture the time of this call */
9334 rargs->t = t = gethrtime();
9335
9336 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);
9337
9338 if (mi->mi_io_kstats) {
9339 mutex_enter(&mi->mi_lock);
9340 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
9341 mutex_exit(&mi->mi_lock);
9342 }
9343
9344 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
9345
9346 /*
9347 * If RPC error occurred and it isn't an error that
9348 * triggers recovery, then go ahead and fail now.
9349 */
9350 if (e.error != 0 && !needrecov) {
9351 rdc->error = e.error;
9352 goto out;
9353 }
9354
9355 if (needrecov) {
9356 bool_t abort;
9357
9358 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
9359 "nfs4readdir: initiating recovery.\n"));
9360
9361 abort = nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL,
9362 NULL, OP_READDIR, NULL, NULL, NULL);
9363 if (abort == FALSE) {
9364 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_READDIR,
9365 &recov_state, needrecov);
9366 if (!e.error)
9367 (void) xdr_free(xdr_COMPOUND4res_clnt,
9368 (caddr_t)&res);
9369 if (rdc->entries != NULL) {
9370 kmem_free(rdc->entries, rdc->entlen);
9371 rdc->entries = NULL;
9372 }
9373 goto recov_retry;
9374 }
9375
9376 if (e.error != 0) {
9377 rdc->error = e.error;
9378 goto out;
9379 }
9380
9381 /* fall through for res.status case */
9382 }
9383
9384 res_opcnt = res.array_len;
9385
9386 /*
9387 * If compound failed first 2 ops (PUTFH+READDIR), then return
9388 * failure here. Subsequent ops are for filling out dot-dot
9389 * dirent, and if they fail, we still want to give the caller
9390 * the dirents returned by (the successful) READDIR op, so we need
9391 * to silently ignore failure for subsequent ops (LOOKUPP+GETATTR).
9392 *
9393 * One example where PUTFH+READDIR ops would succeed but
9394 * LOOKUPP+GETATTR would fail would be a dir that has r perm
9395 * but lacks x. In this case, a POSIX server's VOP_READDIR
9396 * would succeed; however, VOP_LOOKUP(..) would fail since no
9397 * x perm. We need to come up with a non-vendor-specific way
9398 * for a POSIX server to return d_ino from dotdot's dirent if
9399 * client only requests mounted_on_fileid, and just say the
9400 * LOOKUPP succeeded and fill out the GETATTR. However, if
9401 * client requested any mandatory attrs, server would be required
9402 * to fail the GETATTR op because it can't call VOP_LOOKUP+VOP_GETATTR
9403 * for dotdot.
9404 */
9405
9406 if (res.status) {
9407 if (res_opcnt <= 2) {
9408 e.error = geterrno4(res.status);
9409 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_READDIR,
9410 &recov_state, needrecov);
9411 nfs4_purge_stale_fh(e.error, vp, cr);
9412 rdc->error = e.error;
9413 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
9414 if (rdc->entries != NULL) {
9415 kmem_free(rdc->entries, rdc->entlen);
9416 rdc->entries = NULL;
9417 }
9418 /*
9419 * If readdir a node that is a stub for a
9420 * crossed mount point, keep the original
9421 * secinfo flavor for the current file system,
9422 * not the crossed one.
9423 */
9424 (void) check_mnt_secinfo(mi->mi_curr_serv, vp);
9425 return;
9426 }
9427 }
9428
9429 resop = &res.array[1]; /* readdir res */
9430 rd_res = &resop->nfs_resop4_u.opreaddirclnt;
9431
9432 mutex_enter(&rp->r_statelock);
9433 rp->r_cookieverf4 = rd_res->cookieverf;
9434 mutex_exit(&rp->r_statelock);
9435
9436 /*
9437 * For "." and ".." entries
9438 * e.g.
9439 * seek(cookie=0) -> "." entry with d_off = 1
9440 * seek(cookie=1) -> ".." entry with d_off = 2
9441 */
9442 if (cookie == (nfs_cookie4) 0) {
9443 if (rd_res->dotp)
9444 rd_res->dotp->d_ino = nodeid;
9445 if (rd_res->dotdotp)
9446 rd_res->dotdotp->d_ino = pnodeid;
9447 }
9448 if (cookie == (nfs_cookie4) 1) {
9449 if (rd_res->dotdotp)
9450 rd_res->dotdotp->d_ino = pnodeid;
9451 }
9452
9453
9454 /* LOOKUPP+GETATTR attemped */
9455 if (args.array_len == 5 && rd_res->dotdotp) {
9456 if (res.status == NFS4_OK && res_opcnt == 5) {
9457 nfs_fh4 *fhp;
9458 nfs4_sharedfh_t *sfhp;
9459 vnode_t *pvp;
9460 nfs4_ga_res_t *garp;
9461
9462 resop++; /* lookupp */
9463 resop++; /* getfh */
9464 fhp = &resop->nfs_resop4_u.opgetfh.object;
9465
9466 resop++; /* getattr of parent */
9467
9468 /*
9469 * First, take care of finishing the
9470 * readdir results.
9471 */
9472 garp = &resop->nfs_resop4_u.opgetattr.ga_res;
9473 /*
9474 * The d_ino of .. must be the inode number
9475 * of the mounted filesystem.
9476 */
9477 if (garp->n4g_va.va_mask & AT_NODEID)
9478 rd_res->dotdotp->d_ino =
9479 garp->n4g_va.va_nodeid;
9480
9481
9482 /*
9483 * Next, create the ".." dnlc entry
9484 */
9485 sfhp = sfh4_get(fhp, mi);
9486 if (!nfs4_make_dotdot(sfhp, t, vp, cr, &pvp, 0)) {
9487 dnlc_update(vp, "..", pvp);
9488 VN_RELE(pvp);
9489 }
9490 sfh4_rele(&sfhp);
9491 }
9492 }
9493
9494 if (mi->mi_io_kstats) {
9495 mutex_enter(&mi->mi_lock);
9496 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++;
9497 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += rdc->actlen;
9498 mutex_exit(&mi->mi_lock);
9499 }
9500
9501 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
9502
9503 out:
9504 /*
9505 * If readdir a node that is a stub for a crossed mount point,
9506 * keep the original secinfo flavor for the current file system,
9507 * not the crossed one.
9508 */
9509 (void) check_mnt_secinfo(mi->mi_curr_serv, vp);
9510
9511 nfs4_end_fop(mi, vp, NULL, OH_READDIR, &recov_state, needrecov);
9512 }
9513
9514
9515 static int
9516 nfs4_bio(struct buf *bp, stable_how4 *stab_comm, cred_t *cr, bool_t readahead)
9517 {
9518 rnode4_t *rp = VTOR4(bp->b_vp);
9519 int count;
9520 int error;
9521 cred_t *cred_otw = NULL;
9522 offset_t offset;
9523 nfs4_open_stream_t *osp = NULL;
9524 bool_t first_time = TRUE; /* first time getting otw cred */
9525 bool_t last_time = FALSE; /* last time getting otw cred */
9526
9527 ASSERT(nfs_zone() == VTOMI4(bp->b_vp)->mi_zone);
9528
9529 DTRACE_IO1(start, struct buf *, bp);
9530 offset = ldbtob(bp->b_lblkno);
9531
9532 if (bp->b_flags & B_READ) {
9533 read_again:
9534 /*
9535 * Releases the osp, if it is provided.
9536 * Puts a hold on the cred_otw and the new osp (if found).
9537 */
9538 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp,
9539 &first_time, &last_time);
9540 error = bp->b_error = nfs4read(bp->b_vp, bp->b_un.b_addr,
9541 offset, bp->b_bcount, &bp->b_resid, cred_otw,
9542 readahead, NULL);
9543 crfree(cred_otw);
9544 if (!error) {
9545 if (bp->b_resid) {
9546 /*
9547 * Didn't get it all because we hit EOF,
9548 * zero all the memory beyond the EOF.
9549 */
9550 /* bzero(rdaddr + */
9551 bzero(bp->b_un.b_addr +
9552 bp->b_bcount - bp->b_resid, bp->b_resid);
9553 }
9554 mutex_enter(&rp->r_statelock);
9555 if (bp->b_resid == bp->b_bcount &&
9556 offset >= rp->r_size) {
9557 /*
9558 * We didn't read anything at all as we are
9559 * past EOF. Return an error indicator back
9560 * but don't destroy the pages (yet).
9561 */
9562 error = NFS_EOF;
9563 }
9564 mutex_exit(&rp->r_statelock);
9565 } else if (error == EACCES && last_time == FALSE) {
9566 goto read_again;
9567 }
9568 } else {
9569 if (!(rp->r_flags & R4STALE)) {
9570 write_again:
9571 /*
9572 * Releases the osp, if it is provided.
9573 * Puts a hold on the cred_otw and the new
9574 * osp (if found).
9575 */
9576 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp,
9577 &first_time, &last_time);
9578 mutex_enter(&rp->r_statelock);
9579 count = MIN(bp->b_bcount, rp->r_size - offset);
9580 mutex_exit(&rp->r_statelock);
9581 if (count < 0)
9582 cmn_err(CE_PANIC, "nfs4_bio: write count < 0");
9583 #ifdef DEBUG
9584 if (count == 0) {
9585 zoneid_t zoneid = getzoneid();
9586
9587 zcmn_err(zoneid, CE_WARN,
9588 "nfs4_bio: zero length write at %lld",
9589 offset);
9590 zcmn_err(zoneid, CE_CONT, "flags=0x%x, "
9591 "b_bcount=%ld, file size=%lld",
9592 rp->r_flags, (long)bp->b_bcount,
9593 rp->r_size);
9594 sfh4_printfhandle(VTOR4(bp->b_vp)->r_fh);
9595 if (nfs4_bio_do_stop)
9596 debug_enter("nfs4_bio");
9597 }
9598 #endif
9599 error = nfs4write(bp->b_vp, bp->b_un.b_addr, offset,
9600 count, cred_otw, stab_comm);
9601 if (error == EACCES && last_time == FALSE) {
9602 crfree(cred_otw);
9603 goto write_again;
9604 }
9605 bp->b_error = error;
9606 if (error && error != EINTR &&
9607 !(bp->b_vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)) {
9608 /*
9609 * Don't print EDQUOT errors on the console.
9610 * Don't print asynchronous EACCES errors.
9611 * Don't print EFBIG errors.
9612 * Print all other write errors.
9613 */
9614 if (error != EDQUOT && error != EFBIG &&
9615 (error != EACCES ||
9616 !(bp->b_flags & B_ASYNC)))
9617 nfs4_write_error(bp->b_vp,
9618 error, cred_otw);
9619 /*
9620 * Update r_error and r_flags as appropriate.
9621 * If the error was ESTALE, then mark the
9622 * rnode as not being writeable and save
9623 * the error status. Otherwise, save any
9624 * errors which occur from asynchronous
9625 * page invalidations. Any errors occurring
9626 * from other operations should be saved
9627 * by the caller.
9628 */
9629 mutex_enter(&rp->r_statelock);
9630 if (error == ESTALE) {
9631 rp->r_flags |= R4STALE;
9632 if (!rp->r_error)
9633 rp->r_error = error;
9634 } else if (!rp->r_error &&
9635 (bp->b_flags &
9636 (B_INVAL|B_FORCE|B_ASYNC)) ==
9637 (B_INVAL|B_FORCE|B_ASYNC)) {
9638 rp->r_error = error;
9639 }
9640 mutex_exit(&rp->r_statelock);
9641 }
9642 crfree(cred_otw);
9643 } else {
9644 error = rp->r_error;
9645 /*
9646 * A close may have cleared r_error, if so,
9647 * propagate ESTALE error return properly
9648 */
9649 if (error == 0)
9650 error = ESTALE;
9651 }
9652 }
9653
9654 if (error != 0 && error != NFS_EOF)
9655 bp->b_flags |= B_ERROR;
9656
9657 if (osp)
9658 open_stream_rele(osp, rp);
9659
9660 DTRACE_IO1(done, struct buf *, bp);
9661
9662 return (error);
9663 }
9664
9665 /* ARGSUSED */
9666 int
9667 nfs4_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
9668 {
9669 return (EREMOTE);
9670 }
9671
9672 /* ARGSUSED2 */
9673 int
9674 nfs4_rwlock(vnode_t *vp, int write_lock, caller_context_t *ctp)
9675 {
9676 rnode4_t *rp = VTOR4(vp);
9677
9678 if (!write_lock) {
9679 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE);
9680 return (V_WRITELOCK_FALSE);
9681 }
9682
9683 if ((rp->r_flags & R4DIRECTIO) ||
9684 (VTOMI4(vp)->mi_flags & MI4_DIRECTIO)) {
9685 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE);
9686 if (rp->r_mapcnt == 0 && !nfs4_has_pages(vp))
9687 return (V_WRITELOCK_FALSE);
9688 nfs_rw_exit(&rp->r_rwlock);
9689 }
9690
9691 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, FALSE);
9692 return (V_WRITELOCK_TRUE);
9693 }
9694
9695 /* ARGSUSED */
9696 void
9697 nfs4_rwunlock(vnode_t *vp, int write_lock, caller_context_t *ctp)
9698 {
9699 rnode4_t *rp = VTOR4(vp);
9700
9701 nfs_rw_exit(&rp->r_rwlock);
9702 }
9703
9704 /* ARGSUSED */
9705 static int
9706 nfs4_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, caller_context_t *ct)
9707 {
9708 if (nfs_zone() != VTOMI4(vp)->mi_zone)
9709 return (EIO);
9710
9711 /*
9712 * Because we stuff the readdir cookie into the offset field
9713 * someone may attempt to do an lseek with the cookie which
9714 * we want to succeed.
9715 */
9716 if (vp->v_type == VDIR)
9717 return (0);
9718 if (*noffp < 0)
9719 return (EINVAL);
9720 return (0);
9721 }
9722
9723
9724 /*
9725 * Return all the pages from [off..off+len) in file
9726 */
9727 /* ARGSUSED */
9728 static int
9729 nfs4_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
9730 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
9731 enum seg_rw rw, cred_t *cr, caller_context_t *ct)
9732 {
9733 rnode4_t *rp;
9734 int error;
9735 mntinfo4_t *mi;
9736
9737 if (nfs_zone() != VTOMI4(vp)->mi_zone)
9738 return (EIO);
9739 rp = VTOR4(vp);
9740 if (IS_SHADOW(vp, rp))
9741 vp = RTOV4(rp);
9742
9743 if (vp->v_flag & VNOMAP)
9744 return (ENOSYS);
9745
9746 if (protp != NULL)
9747 *protp = PROT_ALL;
9748
9749 /*
9750 * Now validate that the caches are up to date.
9751 */
9752 if (error = nfs4_validate_caches(vp, cr))
9753 return (error);
9754
9755 mi = VTOMI4(vp);
9756 retry:
9757 mutex_enter(&rp->r_statelock);
9758
9759 /*
9760 * Don't create dirty pages faster than they
9761 * can be cleaned so that the system doesn't
9762 * get imbalanced. If the async queue is
9763 * maxed out, then wait for it to drain before
9764 * creating more dirty pages. Also, wait for
9765 * any threads doing pagewalks in the vop_getattr
9766 * entry points so that they don't block for
9767 * long periods.
9768 */
9769 if (rw == S_CREATE) {
9770 while ((mi->mi_max_threads != 0 &&
9771 rp->r_awcount > 2 * mi->mi_max_threads) ||
9772 rp->r_gcount > 0)
9773 cv_wait(&rp->r_cv, &rp->r_statelock);
9774 }
9775
9776 /*
9777 * If we are getting called as a side effect of an nfs_write()
9778 * operation the local file size might not be extended yet.
9779 * In this case we want to be able to return pages of zeroes.
9780 */
9781 if (off + len > rp->r_size + PAGEOFFSET && seg != segkmap) {
9782 NFS4_DEBUG(nfs4_pageio_debug,
9783 (CE_NOTE, "getpage beyond EOF: off=%lld, "
9784 "len=%llu, size=%llu, attrsize =%llu", off,
9785 (u_longlong_t)len, rp->r_size, rp->r_attr.va_size));
9786 mutex_exit(&rp->r_statelock);
9787 return (EFAULT); /* beyond EOF */
9788 }
9789
9790 mutex_exit(&rp->r_statelock);
9791
9792 error = pvn_getpages(nfs4_getapage, vp, off, len, protp,
9793 pl, plsz, seg, addr, rw, cr);
9794 NFS4_DEBUG(nfs4_pageio_debug && error,
9795 (CE_NOTE, "getpages error %d; off=%lld, len=%lld",
9796 error, off, (u_longlong_t)len));
9797
9798 switch (error) {
9799 case NFS_EOF:
9800 nfs4_purge_caches(vp, NFS4_NOPURGE_DNLC, cr, FALSE);
9801 goto retry;
9802 case ESTALE:
9803 nfs4_purge_stale_fh(error, vp, cr);
9804 }
9805
9806 return (error);
9807 }
9808
9809 /*
9810 * Called from pvn_getpages to get a particular page.
9811 */
9812 /* ARGSUSED */
9813 static int
9814 nfs4_getapage(vnode_t *vp, u_offset_t off, size_t len, uint_t *protp,
9815 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
9816 enum seg_rw rw, cred_t *cr)
9817 {
9818 rnode4_t *rp;
9819 uint_t bsize;
9820 struct buf *bp;
9821 page_t *pp;
9822 u_offset_t lbn;
9823 u_offset_t io_off;
9824 u_offset_t blkoff;
9825 u_offset_t rablkoff;
9826 size_t io_len;
9827 uint_t blksize;
9828 int error;
9829 int readahead;
9830 int readahead_issued = 0;
9831 int ra_window; /* readahead window */
9832 page_t *pagefound;
9833 page_t *savepp;
9834
9835 if (nfs_zone() != VTOMI4(vp)->mi_zone)
9836 return (EIO);
9837
9838 rp = VTOR4(vp);
9839 ASSERT(!IS_SHADOW(vp, rp));
9840 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE);
9841
9842 reread:
9843 bp = NULL;
9844 pp = NULL;
9845 pagefound = NULL;
9846
9847 if (pl != NULL)
9848 pl[0] = NULL;
9849
9850 error = 0;
9851 lbn = off / bsize;
9852 blkoff = lbn * bsize;
9853
9854 /*
9855 * Queueing up the readahead before doing the synchronous read
9856 * results in a significant increase in read throughput because
9857 * of the increased parallelism between the async threads and
9858 * the process context.
9859 */
9860 if ((off & ((vp->v_vfsp->vfs_bsize) - 1)) == 0 &&
9861 rw != S_CREATE &&
9862 !(vp->v_flag & VNOCACHE)) {
9863 mutex_enter(&rp->r_statelock);
9864
9865 /*
9866 * Calculate the number of readaheads to do.
9867 * a) No readaheads at offset = 0.
9868 * b) Do maximum(nfs4_nra) readaheads when the readahead
9869 * window is closed.
9870 * c) Do readaheads between 1 to (nfs4_nra - 1) depending
9871 * upon how far the readahead window is open or close.
9872 * d) No readaheads if rp->r_nextr is not within the scope
9873 * of the readahead window (random i/o).
9874 */
9875
9876 if (off == 0)
9877 readahead = 0;
9878 else if (blkoff == rp->r_nextr)
9879 readahead = nfs4_nra;
9880 else if (rp->r_nextr > blkoff &&
9881 ((ra_window = (rp->r_nextr - blkoff) / bsize)
9882 <= (nfs4_nra - 1)))
9883 readahead = nfs4_nra - ra_window;
9884 else
9885 readahead = 0;
9886
9887 rablkoff = rp->r_nextr;
9888 while (readahead > 0 && rablkoff + bsize < rp->r_size) {
9889 mutex_exit(&rp->r_statelock);
9890 if (nfs4_async_readahead(vp, rablkoff + bsize,
9891 addr + (rablkoff + bsize - off),
9892 seg, cr, nfs4_readahead) < 0) {
9893 mutex_enter(&rp->r_statelock);
9894 break;
9895 }
9896 readahead--;
9897 rablkoff += bsize;
9898 /*
9899 * Indicate that we did a readahead so
9900 * readahead offset is not updated
9901 * by the synchronous read below.
9902 */
9903 readahead_issued = 1;
9904 mutex_enter(&rp->r_statelock);
9905 /*
9906 * set readahead offset to
9907 * offset of last async readahead
9908 * request.
9909 */
9910 rp->r_nextr = rablkoff;
9911 }
9912 mutex_exit(&rp->r_statelock);
9913 }
9914
9915 again:
9916 if ((pagefound = page_exists(vp, off)) == NULL) {
9917 if (pl == NULL) {
9918 (void) nfs4_async_readahead(vp, blkoff, addr, seg, cr,
9919 nfs4_readahead);
9920 } else if (rw == S_CREATE) {
9921 /*
9922 * Block for this page is not allocated, or the offset
9923 * is beyond the current allocation size, or we're
9924 * allocating a swap slot and the page was not found,
9925 * so allocate it and return a zero page.
9926 */
9927 if ((pp = page_create_va(vp, off,
9928 PAGESIZE, PG_WAIT, seg, addr)) == NULL)
9929 cmn_err(CE_PANIC, "nfs4_getapage: page_create");
9930 io_len = PAGESIZE;
9931 mutex_enter(&rp->r_statelock);
9932 rp->r_nextr = off + PAGESIZE;
9933 mutex_exit(&rp->r_statelock);
9934 } else {
9935 /*
9936 * Need to go to server to get a block
9937 */
9938 mutex_enter(&rp->r_statelock);
9939 if (blkoff < rp->r_size &&
9940 blkoff + bsize > rp->r_size) {
9941 /*
9942 * If less than a block left in
9943 * file read less than a block.
9944 */
9945 if (rp->r_size <= off) {
9946 /*
9947 * Trying to access beyond EOF,
9948 * set up to get at least one page.
9949 */
9950 blksize = off + PAGESIZE - blkoff;
9951 } else
9952 blksize = rp->r_size - blkoff;
9953 } else if ((off == 0) ||
9954 (off != rp->r_nextr && !readahead_issued)) {
9955 blksize = PAGESIZE;
9956 blkoff = off; /* block = page here */
9957 } else
9958 blksize = bsize;
9959 mutex_exit(&rp->r_statelock);
9960
9961 pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
9962 &io_len, blkoff, blksize, 0);
9963
9964 /*
9965 * Some other thread has entered the page,
9966 * so just use it.
9967 */
9968 if (pp == NULL)
9969 goto again;
9970
9971 /*
9972 * Now round the request size up to page boundaries.
9973 * This ensures that the entire page will be
9974 * initialized to zeroes if EOF is encountered.
9975 */
9976 io_len = ptob(btopr(io_len));
9977
9978 bp = pageio_setup(pp, io_len, vp, B_READ);
9979 ASSERT(bp != NULL);
9980
9981 /*
9982 * pageio_setup should have set b_addr to 0. This
9983 * is correct since we want to do I/O on a page
9984 * boundary. bp_mapin will use this addr to calculate
9985 * an offset, and then set b_addr to the kernel virtual
9986 * address it allocated for us.
9987 */
9988 ASSERT(bp->b_un.b_addr == 0);
9989
9990 bp->b_edev = 0;
9991 bp->b_dev = 0;
9992 bp->b_lblkno = lbtodb(io_off);
9993 bp->b_file = vp;
9994 bp->b_offset = (offset_t)off;
9995 bp_mapin(bp);
9996
9997 /*
9998 * If doing a write beyond what we believe is EOF,
9999 * don't bother trying to read the pages from the
10000 * server, we'll just zero the pages here. We
10001 * don't check that the rw flag is S_WRITE here
10002 * because some implementations may attempt a
10003 * read access to the buffer before copying data.
10004 */
10005 mutex_enter(&rp->r_statelock);
10006 if (io_off >= rp->r_size && seg == segkmap) {
10007 mutex_exit(&rp->r_statelock);
10008 bzero(bp->b_un.b_addr, io_len);
10009 } else {
10010 mutex_exit(&rp->r_statelock);
10011 error = nfs4_bio(bp, NULL, cr, FALSE);
10012 }
10013
10014 /*
10015 * Unmap the buffer before freeing it.
10016 */
10017 bp_mapout(bp);
10018 pageio_done(bp);
10019
10020 savepp = pp;
10021 do {
10022 pp->p_fsdata = C_NOCOMMIT;
10023 } while ((pp = pp->p_next) != savepp);
10024
10025 if (error == NFS_EOF) {
10026 /*
10027 * If doing a write system call just return
10028 * zeroed pages, else user tried to get pages
10029 * beyond EOF, return error. We don't check
10030 * that the rw flag is S_WRITE here because
10031 * some implementations may attempt a read
10032 * access to the buffer before copying data.
10033 */
10034 if (seg == segkmap)
10035 error = 0;
10036 else
10037 error = EFAULT;
10038 }
10039
10040 if (!readahead_issued && !error) {
10041 mutex_enter(&rp->r_statelock);
10042 rp->r_nextr = io_off + io_len;
10043 mutex_exit(&rp->r_statelock);
10044 }
10045 }
10046 }
10047
10048 out:
10049 if (pl == NULL)
10050 return (error);
10051
10052 if (error) {
10053 if (pp != NULL)
10054 pvn_read_done(pp, B_ERROR);
10055 return (error);
10056 }
10057
10058 if (pagefound) {
10059 se_t se = (rw == S_CREATE ? SE_EXCL : SE_SHARED);
10060
10061 /*
10062 * Page exists in the cache, acquire the appropriate lock.
10063 * If this fails, start all over again.
10064 */
10065 if ((pp = page_lookup(vp, off, se)) == NULL) {
10066 #ifdef DEBUG
10067 nfs4_lostpage++;
10068 #endif
10069 goto reread;
10070 }
10071 pl[0] = pp;
10072 pl[1] = NULL;
10073 return (0);
10074 }
10075
10076 if (pp != NULL)
10077 pvn_plist_init(pp, pl, plsz, off, io_len, rw);
10078
10079 return (error);
10080 }
10081
10082 static void
10083 nfs4_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr, struct seg *seg,
10084 cred_t *cr)
10085 {
10086 int error;
10087 page_t *pp;
10088 u_offset_t io_off;
10089 size_t io_len;
10090 struct buf *bp;
10091 uint_t bsize, blksize;
10092 rnode4_t *rp = VTOR4(vp);
10093 page_t *savepp;
10094
10095 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
10096
10097 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE);
10098
10099 mutex_enter(&rp->r_statelock);
10100 if (blkoff < rp->r_size && blkoff + bsize > rp->r_size) {
10101 /*
10102 * If less than a block left in file read less
10103 * than a block.
10104 */
10105 blksize = rp->r_size - blkoff;
10106 } else
10107 blksize = bsize;
10108 mutex_exit(&rp->r_statelock);
10109
10110 pp = pvn_read_kluster(vp, blkoff, segkmap, addr,
10111 &io_off, &io_len, blkoff, blksize, 1);
10112 /*
10113 * The isra flag passed to the kluster function is 1, we may have
10114 * gotten a return value of NULL for a variety of reasons (# of free
10115 * pages < minfree, someone entered the page on the vnode etc). In all
10116 * cases, we want to punt on the readahead.
10117 */
10118 if (pp == NULL)
10119 return;
10120
10121 /*
10122 * Now round the request size up to page boundaries.
10123 * This ensures that the entire page will be
10124 * initialized to zeroes if EOF is encountered.
10125 */
10126 io_len = ptob(btopr(io_len));
10127
10128 bp = pageio_setup(pp, io_len, vp, B_READ);
10129 ASSERT(bp != NULL);
10130
10131 /*
10132 * pageio_setup should have set b_addr to 0. This is correct since
10133 * we want to do I/O on a page boundary. bp_mapin() will use this addr
10134 * to calculate an offset, and then set b_addr to the kernel virtual
10135 * address it allocated for us.
10136 */
10137 ASSERT(bp->b_un.b_addr == 0);
10138
10139 bp->b_edev = 0;
10140 bp->b_dev = 0;
10141 bp->b_lblkno = lbtodb(io_off);
10142 bp->b_file = vp;
10143 bp->b_offset = (offset_t)blkoff;
10144 bp_mapin(bp);
10145
10146 /*
10147 * If doing a write beyond what we believe is EOF, don't bother trying
10148 * to read the pages from the server, we'll just zero the pages here.
10149 * We don't check that the rw flag is S_WRITE here because some
10150 * implementations may attempt a read access to the buffer before
10151 * copying data.
10152 */
10153 mutex_enter(&rp->r_statelock);
10154 if (io_off >= rp->r_size && seg == segkmap) {
10155 mutex_exit(&rp->r_statelock);
10156 bzero(bp->b_un.b_addr, io_len);
10157 error = 0;
10158 } else {
10159 mutex_exit(&rp->r_statelock);
10160 error = nfs4_bio(bp, NULL, cr, TRUE);
10161 if (error == NFS_EOF)
10162 error = 0;
10163 }
10164
10165 /*
10166 * Unmap the buffer before freeing it.
10167 */
10168 bp_mapout(bp);
10169 pageio_done(bp);
10170
10171 savepp = pp;
10172 do {
10173 pp->p_fsdata = C_NOCOMMIT;
10174 } while ((pp = pp->p_next) != savepp);
10175
10176 pvn_read_done(pp, error ? B_READ | B_ERROR : B_READ);
10177
10178 /*
10179 * In case of error set readahead offset
10180 * to the lowest offset.
10181 * pvn_read_done() calls VN_DISPOSE to destroy the pages
10182 */
10183 if (error && rp->r_nextr > io_off) {
10184 mutex_enter(&rp->r_statelock);
10185 if (rp->r_nextr > io_off)
10186 rp->r_nextr = io_off;
10187 mutex_exit(&rp->r_statelock);
10188 }
10189 }
10190
10191 /*
10192 * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE}
10193 * If len == 0, do from off to EOF.
10194 *
10195 * The normal cases should be len == 0 && off == 0 (entire vp list) or
10196 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE
10197 * (from pageout).
10198 */
10199 /* ARGSUSED */
10200 static int
10201 nfs4_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
10202 caller_context_t *ct)
10203 {
10204 int error;
10205 rnode4_t *rp;
10206
10207 ASSERT(cr != NULL);
10208
10209 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI4(vp)->mi_zone)
10210 return (EIO);
10211
10212 rp = VTOR4(vp);
10213 if (IS_SHADOW(vp, rp))
10214 vp = RTOV4(rp);
10215
10216 /*
10217 * XXX - Why should this check be made here?
10218 */
10219 if (vp->v_flag & VNOMAP)
10220 return (ENOSYS);
10221
10222 if (len == 0 && !(flags & B_INVAL) &&
10223 (vp->v_vfsp->vfs_flag & VFS_RDONLY))
10224 return (0);
10225
10226 mutex_enter(&rp->r_statelock);
10227 rp->r_count++;
10228 mutex_exit(&rp->r_statelock);
10229 error = nfs4_putpages(vp, off, len, flags, cr);
10230 mutex_enter(&rp->r_statelock);
10231 rp->r_count--;
10232 cv_broadcast(&rp->r_cv);
10233 mutex_exit(&rp->r_statelock);
10234
10235 return (error);
10236 }
10237
10238 /*
10239 * Write out a single page, possibly klustering adjacent dirty pages.
10240 */
10241 int
10242 nfs4_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp,
10243 int flags, cred_t *cr)
10244 {
10245 u_offset_t io_off;
10246 u_offset_t lbn_off;
10247 u_offset_t lbn;
10248 size_t io_len;
10249 uint_t bsize;
10250 int error;
10251 rnode4_t *rp;
10252
10253 ASSERT(!(vp->v_vfsp->vfs_flag & VFS_RDONLY));
10254 ASSERT(pp != NULL);
10255 ASSERT(cr != NULL);
10256 ASSERT((flags & B_ASYNC) || nfs_zone() == VTOMI4(vp)->mi_zone);
10257
10258 rp = VTOR4(vp);
10259 ASSERT(rp->r_count > 0);
10260 ASSERT(!IS_SHADOW(vp, rp));
10261
10262 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE);
10263 lbn = pp->p_offset / bsize;
10264 lbn_off = lbn * bsize;
10265
10266 /*
10267 * Find a kluster that fits in one block, or in
10268 * one page if pages are bigger than blocks. If
10269 * there is less file space allocated than a whole
10270 * page, we'll shorten the i/o request below.
10271 */
10272 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, lbn_off,
10273 roundup(bsize, PAGESIZE), flags);
10274
10275 /*
10276 * pvn_write_kluster shouldn't have returned a page with offset
10277 * behind the original page we were given. Verify that.
10278 */
10279 ASSERT((pp->p_offset / bsize) >= lbn);
10280
10281 /*
10282 * Now pp will have the list of kept dirty pages marked for
10283 * write back. It will also handle invalidation and freeing
10284 * of pages that are not dirty. Check for page length rounding
10285 * problems.
10286 */
10287 if (io_off + io_len > lbn_off + bsize) {
10288 ASSERT((io_off + io_len) - (lbn_off + bsize) < PAGESIZE);
10289 io_len = lbn_off + bsize - io_off;
10290 }
10291 /*
10292 * The R4MODINPROGRESS flag makes sure that nfs4_bio() sees a
10293 * consistent value of r_size. R4MODINPROGRESS is set in writerp4().
10294 * When R4MODINPROGRESS is set it indicates that a uiomove() is in
10295 * progress and the r_size has not been made consistent with the
10296 * new size of the file. When the uiomove() completes the r_size is
10297 * updated and the R4MODINPROGRESS flag is cleared.
10298 *
10299 * The R4MODINPROGRESS flag makes sure that nfs4_bio() sees a
10300 * consistent value of r_size. Without this handshaking, it is
10301 * possible that nfs4_bio() picks up the old value of r_size
10302 * before the uiomove() in writerp4() completes. This will result
10303 * in the write through nfs4_bio() being dropped.
10304 *
10305 * More precisely, there is a window between the time the uiomove()
10306 * completes and the time the r_size is updated. If a VOP_PUTPAGE()
10307 * operation intervenes in this window, the page will be picked up,
10308 * because it is dirty (it will be unlocked, unless it was
10309 * pagecreate'd). When the page is picked up as dirty, the dirty
10310 * bit is reset (pvn_getdirty()). In nfs4write(), r_size is
10311 * checked. This will still be the old size. Therefore the page will
10312 * not be written out. When segmap_release() calls VOP_PUTPAGE(),
10313 * the page will be found to be clean and the write will be dropped.
10314 */
10315 if (rp->r_flags & R4MODINPROGRESS) {
10316 mutex_enter(&rp->r_statelock);
10317 if ((rp->r_flags & R4MODINPROGRESS) &&
10318 rp->r_modaddr + MAXBSIZE > io_off &&
10319 rp->r_modaddr < io_off + io_len) {
10320 page_t *plist;
10321 /*
10322 * A write is in progress for this region of the file.
10323 * If we did not detect R4MODINPROGRESS here then this
10324 * path through nfs_putapage() would eventually go to
10325 * nfs4_bio() and may not write out all of the data
10326 * in the pages. We end up losing data. So we decide
10327 * to set the modified bit on each page in the page
10328 * list and mark the rnode with R4DIRTY. This write
10329 * will be restarted at some later time.
10330 */
10331 plist = pp;
10332 while (plist != NULL) {
10333 pp = plist;
10334 page_sub(&plist, pp);
10335 hat_setmod(pp);
10336 page_io_unlock(pp);
10337 page_unlock(pp);
10338 }
10339 rp->r_flags |= R4DIRTY;
10340 mutex_exit(&rp->r_statelock);
10341 if (offp)
10342 *offp = io_off;
10343 if (lenp)
10344 *lenp = io_len;
10345 return (0);
10346 }
10347 mutex_exit(&rp->r_statelock);
10348 }
10349
10350 if (flags & B_ASYNC) {
10351 error = nfs4_async_putapage(vp, pp, io_off, io_len, flags, cr,
10352 nfs4_sync_putapage);
10353 } else
10354 error = nfs4_sync_putapage(vp, pp, io_off, io_len, flags, cr);
10355
10356 if (offp)
10357 *offp = io_off;
10358 if (lenp)
10359 *lenp = io_len;
10360 return (error);
10361 }
10362
10363 static int
10364 nfs4_sync_putapage(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len,
10365 int flags, cred_t *cr)
10366 {
10367 int error;
10368 rnode4_t *rp;
10369
10370 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
10371
10372 flags |= B_WRITE;
10373
10374 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr);
10375
10376 rp = VTOR4(vp);
10377
10378 if ((error == ENOSPC || error == EDQUOT || error == EFBIG ||
10379 error == EACCES) &&
10380 (flags & (B_INVAL|B_FORCE)) != (B_INVAL|B_FORCE)) {
10381 if (!(rp->r_flags & R4OUTOFSPACE)) {
10382 mutex_enter(&rp->r_statelock);
10383 rp->r_flags |= R4OUTOFSPACE;
10384 mutex_exit(&rp->r_statelock);
10385 }
10386 flags |= B_ERROR;
10387 pvn_write_done(pp, flags);
10388 /*
10389 * If this was not an async thread, then try again to
10390 * write out the pages, but this time, also destroy
10391 * them whether or not the write is successful. This
10392 * will prevent memory from filling up with these
10393 * pages and destroying them is the only alternative
10394 * if they can't be written out.
10395 *
10396 * Don't do this if this is an async thread because
10397 * when the pages are unlocked in pvn_write_done,
10398 * some other thread could have come along, locked
10399 * them, and queued for an async thread. It would be
10400 * possible for all of the async threads to be tied
10401 * up waiting to lock the pages again and they would
10402 * all already be locked and waiting for an async
10403 * thread to handle them. Deadlock.
10404 */
10405 if (!(flags & B_ASYNC)) {
10406 error = nfs4_putpage(vp, io_off, io_len,
10407 B_INVAL | B_FORCE, cr, NULL);
10408 }
10409 } else {
10410 if (error)
10411 flags |= B_ERROR;
10412 else if (rp->r_flags & R4OUTOFSPACE) {
10413 mutex_enter(&rp->r_statelock);
10414 rp->r_flags &= ~R4OUTOFSPACE;
10415 mutex_exit(&rp->r_statelock);
10416 }
10417 pvn_write_done(pp, flags);
10418 if (freemem < desfree)
10419 (void) nfs4_commit_vp(vp, (u_offset_t)0, 0, cr,
10420 NFS4_WRITE_NOWAIT);
10421 }
10422
10423 return (error);
10424 }
10425
10426 #ifdef DEBUG
10427 int nfs4_force_open_before_mmap = 0;
10428 #endif
10429
10430 /* ARGSUSED */
10431 static int
10432 nfs4_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
10433 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
10434 caller_context_t *ct)
10435 {
10436 struct segvn_crargs vn_a;
10437 int error = 0;
10438 rnode4_t *rp = VTOR4(vp);
10439 mntinfo4_t *mi = VTOMI4(vp);
10440
10441 if (nfs_zone() != VTOMI4(vp)->mi_zone)
10442 return (EIO);
10443
10444 if (vp->v_flag & VNOMAP)
10445 return (ENOSYS);
10446
10447 if (off < 0 || (off + len) < 0)
10448 return (ENXIO);
10449
10450 if (vp->v_type != VREG)
10451 return (ENODEV);
10452
10453 /*
10454 * If the file is delegated to the client don't do anything.
10455 * If the file is not delegated, then validate the data cache.
10456 */
10457 mutex_enter(&rp->r_statev4_lock);
10458 if (rp->r_deleg_type == OPEN_DELEGATE_NONE) {
10459 mutex_exit(&rp->r_statev4_lock);
10460 error = nfs4_validate_caches(vp, cr);
10461 if (error)
10462 return (error);
10463 } else {
10464 mutex_exit(&rp->r_statev4_lock);
10465 }
10466
10467 /*
10468 * Check to see if the vnode is currently marked as not cachable.
10469 * This means portions of the file are locked (through VOP_FRLOCK).
10470 * In this case the map request must be refused. We use
10471 * rp->r_lkserlock to avoid a race with concurrent lock requests.
10472 *
10473 * Atomically increment r_inmap after acquiring r_rwlock. The
10474 * idea here is to acquire r_rwlock to block read/write and
10475 * not to protect r_inmap. r_inmap will inform nfs4_read/write()
10476 * that we are in nfs4_map(). Now, r_rwlock is acquired in order
10477 * and we can prevent the deadlock that would have occurred
10478 * when nfs4_addmap() would have acquired it out of order.
10479 *
10480 * Since we are not protecting r_inmap by any lock, we do not
10481 * hold any lock when we decrement it. We atomically decrement
10482 * r_inmap after we release r_lkserlock.
10483 */
10484
10485 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, INTR4(vp)))
10486 return (EINTR);
10487 atomic_inc_uint(&rp->r_inmap);
10488 nfs_rw_exit(&rp->r_rwlock);
10489
10490 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR4(vp))) {
10491 atomic_dec_uint(&rp->r_inmap);
10492 return (EINTR);
10493 }
10494
10495
10496 if (vp->v_flag & VNOCACHE) {
10497 error = EAGAIN;
10498 goto done;
10499 }
10500
10501 /*
10502 * Don't allow concurrent locks and mapping if mandatory locking is
10503 * enabled.
10504 */
10505 if (flk_has_remote_locks(vp)) {
10506 struct vattr va;
10507 va.va_mask = AT_MODE;
10508 error = nfs4getattr(vp, &va, cr);
10509 if (error != 0)
10510 goto done;
10511 if (MANDLOCK(vp, va.va_mode)) {
10512 error = EAGAIN;
10513 goto done;
10514 }
10515 }
10516
10517 /*
10518 * It is possible that the rnode has a lost lock request that we
10519 * are still trying to recover, and that the request conflicts with
10520 * this map request.
10521 *
10522 * An alternative approach would be for nfs4_safemap() to consider
10523 * queued lock requests when deciding whether to set or clear
10524 * VNOCACHE. This would require the frlock code path to call
10525 * nfs4_safemap() after enqueing a lost request.
10526 */
10527 if (nfs4_map_lost_lock_conflict(vp)) {
10528 error = EAGAIN;
10529 goto done;
10530 }
10531
10532 as_rangelock(as);
10533 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
10534 if (error != 0) {
10535 as_rangeunlock(as);
10536 goto done;
10537 }
10538
10539 if (vp->v_type == VREG) {
10540 /*
10541 * We need to retrieve the open stream
10542 */
10543 nfs4_open_stream_t *osp = NULL;
10544 nfs4_open_owner_t *oop = NULL;
10545
10546 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi);
10547 if (oop != NULL) {
10548 /* returns with 'os_sync_lock' held */
10549 osp = find_open_stream(oop, rp);
10550 open_owner_rele(oop);
10551 }
10552 if (osp == NULL) {
10553 #ifdef DEBUG
10554 if (nfs4_force_open_before_mmap) {
10555 error = EIO;
10556 goto done;
10557 }
10558 #endif
10559 /* returns with 'os_sync_lock' held */
10560 error = open_and_get_osp(vp, cr, &osp);
10561 if (osp == NULL) {
10562 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE,
10563 "nfs4_map: we tried to OPEN the file "
10564 "but again no osp, so fail with EIO"));
10565 goto done;
10566 }
10567 }
10568
10569 if (osp->os_failed_reopen) {
10570 mutex_exit(&osp->os_sync_lock);
10571 open_stream_rele(osp, rp);
10572 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE,
10573 "nfs4_map: os_failed_reopen set on "
10574 "osp %p, cr %p, rp %s", (void *)osp,
10575 (void *)cr, rnode4info(rp)));
10576 error = EIO;
10577 goto done;
10578 }
10579 mutex_exit(&osp->os_sync_lock);
10580 open_stream_rele(osp, rp);
10581 }
10582
10583 vn_a.vp = vp;
10584 vn_a.offset = off;
10585 vn_a.type = (flags & MAP_TYPE);
10586 vn_a.prot = (uchar_t)prot;
10587 vn_a.maxprot = (uchar_t)maxprot;
10588 vn_a.flags = (flags & ~MAP_TYPE);
10589 vn_a.cred = cr;
10590 vn_a.amp = NULL;
10591 vn_a.szc = 0;
10592 vn_a.lgrp_mem_policy_flags = 0;
10593
10594 error = as_map(as, *addrp, len, segvn_create, &vn_a);
10595 as_rangeunlock(as);
10596
10597 done:
10598 nfs_rw_exit(&rp->r_lkserlock);
10599 atomic_dec_uint(&rp->r_inmap);
10600 return (error);
10601 }
10602
10603 /*
10604 * We're most likely dealing with a kernel module that likes to READ
10605 * and mmap without OPENing the file (ie: lookup/read/mmap), so lets
10606 * officially OPEN the file to create the necessary client state
10607 * for bookkeeping of os_mmap_read/write counts.
10608 *
10609 * Since VOP_MAP only passes in a pointer to the vnode rather than
10610 * a double pointer, we can't handle the case where nfs4open_otw()
10611 * returns a different vnode than the one passed into VOP_MAP (since
10612 * VOP_DELMAP will not see the vnode nfs4open_otw used). In this case,
10613 * we return NULL and let nfs4_map() fail. Note: the only case where
10614 * this should happen is if the file got removed and replaced with the
10615 * same name on the server (in addition to the fact that we're trying
10616 * to VOP_MAP withouth VOP_OPENing the file in the first place).
10617 */
10618 static int
10619 open_and_get_osp(vnode_t *map_vp, cred_t *cr, nfs4_open_stream_t **ospp)
10620 {
10621 rnode4_t *rp, *drp;
10622 vnode_t *dvp, *open_vp;
10623 char file_name[MAXNAMELEN];
10624 int just_created;
10625 nfs4_open_stream_t *osp;
10626 nfs4_open_owner_t *oop;
10627 int error;
10628
10629 *ospp = NULL;
10630 open_vp = map_vp;
10631
10632 rp = VTOR4(open_vp);
10633 if ((error = vtodv(open_vp, &dvp, cr, TRUE)) != 0)
10634 return (error);
10635 drp = VTOR4(dvp);
10636
10637 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) {
10638 VN_RELE(dvp);
10639 return (EINTR);
10640 }
10641
10642 if ((error = vtoname(open_vp, file_name, MAXNAMELEN)) != 0) {
10643 nfs_rw_exit(&drp->r_rwlock);
10644 VN_RELE(dvp);
10645 return (error);
10646 }
10647
10648 mutex_enter(&rp->r_statev4_lock);
10649 if (rp->created_v4) {
10650 rp->created_v4 = 0;
10651 mutex_exit(&rp->r_statev4_lock);
10652
10653 dnlc_update(dvp, file_name, open_vp);
10654 /* This is needed so we don't bump the open ref count */
10655 just_created = 1;
10656 } else {
10657 mutex_exit(&rp->r_statev4_lock);
10658 just_created = 0;
10659 }
10660
10661 VN_HOLD(map_vp);
10662
10663 error = nfs4open_otw(dvp, file_name, NULL, &open_vp, cr, 0, FREAD, 0,
10664 just_created);
10665 if (error) {
10666 nfs_rw_exit(&drp->r_rwlock);
10667 VN_RELE(dvp);
10668 VN_RELE(map_vp);
10669 return (error);
10670 }
10671
10672 nfs_rw_exit(&drp->r_rwlock);
10673 VN_RELE(dvp);
10674
10675 /*
10676 * If nfs4open_otw() returned a different vnode then "undo"
10677 * the open and return failure to the caller.
10678 */
10679 if (!VN_CMP(open_vp, map_vp)) {
10680 nfs4_error_t e;
10681
10682 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "open_and_get_osp: "
10683 "open returned a different vnode"));
10684 /*
10685 * If there's an error, ignore it,
10686 * and let VOP_INACTIVE handle it.
10687 */
10688 (void) nfs4close_one(open_vp, NULL, cr, FREAD, NULL, &e,
10689 CLOSE_NORM, 0, 0, 0);
10690 VN_RELE(map_vp);
10691 return (EIO);
10692 }
10693
10694 VN_RELE(map_vp);
10695
10696 oop = find_open_owner(cr, NFS4_PERM_CREATED, VTOMI4(open_vp));
10697 if (!oop) {
10698 nfs4_error_t e;
10699
10700 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "open_and_get_osp: "
10701 "no open owner"));
10702 /*
10703 * If there's an error, ignore it,
10704 * and let VOP_INACTIVE handle it.
10705 */
10706 (void) nfs4close_one(open_vp, NULL, cr, FREAD, NULL, &e,
10707 CLOSE_NORM, 0, 0, 0);
10708 return (EIO);
10709 }
10710 osp = find_open_stream(oop, rp);
10711 open_owner_rele(oop);
10712 *ospp = osp;
10713 return (0);
10714 }
10715
10716 /*
10717 * Please be aware that when this function is called, the address space write
10718 * a_lock is held. Do not put over the wire calls in this function.
10719 */
10720 /* ARGSUSED */
10721 static int
10722 nfs4_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
10723 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
10724 caller_context_t *ct)
10725 {
10726 rnode4_t *rp;
10727 int error = 0;
10728 mntinfo4_t *mi;
10729
10730 mi = VTOMI4(vp);
10731 rp = VTOR4(vp);
10732
10733 if (nfs_zone() != mi->mi_zone)
10734 return (EIO);
10735 if (vp->v_flag & VNOMAP)
10736 return (ENOSYS);
10737
10738 /*
10739 * Don't need to update the open stream first, since this
10740 * mmap can't add any additional share access that isn't
10741 * already contained in the open stream (for the case where we
10742 * open/mmap/only update rp->r_mapcnt/server reboots/reopen doesn't
10743 * take into account os_mmap_read[write] counts).
10744 */
10745 atomic_add_long((ulong_t *)&rp->r_mapcnt, btopr(len));
10746
10747 if (vp->v_type == VREG) {
10748 /*
10749 * We need to retrieve the open stream and update the counts.
10750 * If there is no open stream here, something is wrong.
10751 */
10752 nfs4_open_stream_t *osp = NULL;
10753 nfs4_open_owner_t *oop = NULL;
10754
10755 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi);
10756 if (oop != NULL) {
10757 /* returns with 'os_sync_lock' held */
10758 osp = find_open_stream(oop, rp);
10759 open_owner_rele(oop);
10760 }
10761 if (osp == NULL) {
10762 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE,
10763 "nfs4_addmap: we should have an osp"
10764 "but we don't, so fail with EIO"));
10765 error = EIO;
10766 goto out;
10767 }
10768
10769 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "nfs4_addmap: osp %p,"
10770 " pages %ld, prot 0x%x", (void *)osp, btopr(len), prot));
10771
10772 /*
10773 * Update the map count in the open stream.
10774 * This is necessary in the case where we
10775 * open/mmap/close/, then the server reboots, and we
10776 * attempt to reopen. If the mmap doesn't add share
10777 * access then we send an invalid reopen with
10778 * access = NONE.
10779 *
10780 * We need to specifically check each PROT_* so a mmap
10781 * call of (PROT_WRITE | PROT_EXEC) will ensure us both
10782 * read and write access. A simple comparison of prot
10783 * to ~PROT_WRITE to determine read access is insufficient
10784 * since prot can be |= with PROT_USER, etc.
10785 */
10786
10787 /*
10788 * Unless we're MAP_SHARED, no sense in adding os_mmap_write
10789 */
10790 if ((flags & MAP_SHARED) && (maxprot & PROT_WRITE))
10791 osp->os_mmap_write += btopr(len);
10792 if (maxprot & PROT_READ)
10793 osp->os_mmap_read += btopr(len);
10794 if (maxprot & PROT_EXEC)
10795 osp->os_mmap_read += btopr(len);
10796 /*
10797 * Ensure that os_mmap_read gets incremented, even if
10798 * maxprot were to look like PROT_NONE.
10799 */
10800 if (!(maxprot & PROT_READ) && !(maxprot & PROT_WRITE) &&
10801 !(maxprot & PROT_EXEC))
10802 osp->os_mmap_read += btopr(len);
10803 osp->os_mapcnt += btopr(len);
10804 mutex_exit(&osp->os_sync_lock);
10805 open_stream_rele(osp, rp);
10806 }
10807
10808 out:
10809 /*
10810 * If we got an error, then undo our
10811 * incrementing of 'r_mapcnt'.
10812 */
10813
10814 if (error) {
10815 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(len));
10816 ASSERT(rp->r_mapcnt >= 0);
10817 }
10818 return (error);
10819 }
10820
10821 /* ARGSUSED */
10822 static int
10823 nfs4_cmp(vnode_t *vp1, vnode_t *vp2, caller_context_t *ct)
10824 {
10825
10826 return (VTOR4(vp1) == VTOR4(vp2));
10827 }
10828
10829 /* ARGSUSED */
10830 static int
10831 nfs4_frlock(vnode_t *vp, int cmd, struct flock64 *bfp, int flag,
10832 offset_t offset, struct flk_callback *flk_cbp, cred_t *cr,
10833 caller_context_t *ct)
10834 {
10835 int rc;
10836 u_offset_t start, end;
10837 rnode4_t *rp;
10838 int error = 0, intr = INTR4(vp);
10839 nfs4_error_t e;
10840
10841 if (nfs_zone() != VTOMI4(vp)->mi_zone)
10842 return (EIO);
10843
10844 /* check for valid cmd parameter */
10845 if (cmd != F_GETLK && cmd != F_SETLK && cmd != F_SETLKW)
10846 return (EINVAL);
10847
10848 /* Verify l_type. */
10849 switch (bfp->l_type) {
10850 case F_RDLCK:
10851 if (cmd != F_GETLK && !(flag & FREAD))
10852 return (EBADF);
10853 break;
10854 case F_WRLCK:
10855 if (cmd != F_GETLK && !(flag & FWRITE))
10856 return (EBADF);
10857 break;
10858 case F_UNLCK:
10859 intr = 0;
10860 break;
10861
10862 default:
10863 return (EINVAL);
10864 }
10865
10866 /* check the validity of the lock range */
10867 if (rc = flk_convert_lock_data(vp, bfp, &start, &end, offset))
10868 return (rc);
10869 if (rc = flk_check_lock_data(start, end, MAXEND))
10870 return (rc);
10871
10872 /*
10873 * If the filesystem is mounted using local locking, pass the
10874 * request off to the local locking code.
10875 */
10876 if (VTOMI4(vp)->mi_flags & MI4_LLOCK || vp->v_type != VREG) {
10877 if (cmd == F_SETLK || cmd == F_SETLKW) {
10878 /*
10879 * For complete safety, we should be holding
10880 * r_lkserlock. However, we can't call
10881 * nfs4_safelock and then fs_frlock while
10882 * holding r_lkserlock, so just invoke
10883 * nfs4_safelock and expect that this will
10884 * catch enough of the cases.
10885 */
10886 if (!nfs4_safelock(vp, bfp, cr))
10887 return (EAGAIN);
10888 }
10889 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
10890 }
10891
10892 rp = VTOR4(vp);
10893
10894 /*
10895 * Check whether the given lock request can proceed, given the
10896 * current file mappings.
10897 */
10898 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER, intr))
10899 return (EINTR);
10900 if (cmd == F_SETLK || cmd == F_SETLKW) {
10901 if (!nfs4_safelock(vp, bfp, cr)) {
10902 rc = EAGAIN;
10903 goto done;
10904 }
10905 }
10906
10907 /*
10908 * Flush the cache after waiting for async I/O to finish. For new
10909 * locks, this is so that the process gets the latest bits from the
10910 * server. For unlocks, this is so that other clients see the
10911 * latest bits once the file has been unlocked. If currently dirty
10912 * pages can't be flushed, then don't allow a lock to be set. But
10913 * allow unlocks to succeed, to avoid having orphan locks on the
10914 * server.
10915 */
10916 if (cmd != F_GETLK) {
10917 mutex_enter(&rp->r_statelock);
10918 while (rp->r_count > 0) {
10919 if (intr) {
10920 klwp_t *lwp = ttolwp(curthread);
10921
10922 if (lwp != NULL)
10923 lwp->lwp_nostop++;
10924 if (cv_wait_sig(&rp->r_cv,
10925 &rp->r_statelock) == 0) {
10926 if (lwp != NULL)
10927 lwp->lwp_nostop--;
10928 rc = EINTR;
10929 break;
10930 }
10931 if (lwp != NULL)
10932 lwp->lwp_nostop--;
10933 } else
10934 cv_wait(&rp->r_cv, &rp->r_statelock);
10935 }
10936 mutex_exit(&rp->r_statelock);
10937 if (rc != 0)
10938 goto done;
10939 error = nfs4_putpage(vp, (offset_t)0, 0, B_INVAL, cr, ct);
10940 if (error) {
10941 if (error == ENOSPC || error == EDQUOT) {
10942 mutex_enter(&rp->r_statelock);
10943 if (!rp->r_error)
10944 rp->r_error = error;
10945 mutex_exit(&rp->r_statelock);
10946 }
10947 if (bfp->l_type != F_UNLCK) {
10948 rc = ENOLCK;
10949 goto done;
10950 }
10951 }
10952 }
10953
10954 /*
10955 * Call the lock manager to do the real work of contacting
10956 * the server and obtaining the lock.
10957 */
10958 nfs4frlock(NFS4_LCK_CTYPE_NORM, vp, cmd, bfp, flag, offset,
10959 cr, &e, NULL, NULL);
10960 rc = e.error;
10961
10962 if (rc == 0)
10963 nfs4_lockcompletion(vp, cmd);
10964
10965 done:
10966 nfs_rw_exit(&rp->r_lkserlock);
10967
10968 return (rc);
10969 }
10970
10971 /*
10972 * Free storage space associated with the specified vnode. The portion
10973 * to be freed is specified by bfp->l_start and bfp->l_len (already
10974 * normalized to a "whence" of 0).
10975 *
10976 * This is an experimental facility whose continued existence is not
10977 * guaranteed. Currently, we only support the special case
10978 * of l_len == 0, meaning free to end of file.
10979 */
10980 /* ARGSUSED */
10981 static int
10982 nfs4_space(vnode_t *vp, int cmd, struct flock64 *bfp, int flag,
10983 offset_t offset, cred_t *cr, caller_context_t *ct)
10984 {
10985 int error;
10986
10987 if (nfs_zone() != VTOMI4(vp)->mi_zone)
10988 return (EIO);
10989 ASSERT(vp->v_type == VREG);
10990 if (cmd != F_FREESP)
10991 return (EINVAL);
10992
10993 error = convoff(vp, bfp, 0, offset);
10994 if (!error) {
10995 ASSERT(bfp->l_start >= 0);
10996 if (bfp->l_len == 0) {
10997 struct vattr va;
10998
10999 va.va_mask = AT_SIZE;
11000 va.va_size = bfp->l_start;
11001 error = nfs4setattr(vp, &va, 0, cr, NULL);
11002
11003 if (error == 0 && bfp->l_start == 0)
11004 vnevent_truncate(vp, ct);
11005 } else
11006 error = EINVAL;
11007 }
11008
11009 return (error);
11010 }
11011
11012 /* ARGSUSED */
11013 int
11014 nfs4_realvp(vnode_t *vp, vnode_t **vpp, caller_context_t *ct)
11015 {
11016 rnode4_t *rp;
11017 rp = VTOR4(vp);
11018
11019 if (vp->v_type == VREG && IS_SHADOW(vp, rp)) {
11020 vp = RTOV4(rp);
11021 }
11022 *vpp = vp;
11023 return (0);
11024 }
11025
11026 /*
11027 * Setup and add an address space callback to do the work of the delmap call.
11028 * The callback will (and must be) deleted in the actual callback function.
11029 *
11030 * This is done in order to take care of the problem that we have with holding
11031 * the address space's a_lock for a long period of time (e.g. if the NFS server
11032 * is down). Callbacks will be executed in the address space code while the
11033 * a_lock is not held. Holding the address space's a_lock causes things such
11034 * as ps and fork to hang because they are trying to acquire this lock as well.
11035 */
11036 /* ARGSUSED */
11037 static int
11038 nfs4_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
11039 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
11040 caller_context_t *ct)
11041 {
11042 int caller_found;
11043 int error;
11044 rnode4_t *rp;
11045 nfs4_delmap_args_t *dmapp;
11046 nfs4_delmapcall_t *delmap_call;
11047
11048 if (vp->v_flag & VNOMAP)
11049 return (ENOSYS);
11050
11051 /*
11052 * A process may not change zones if it has NFS pages mmap'ed
11053 * in, so we can't legitimately get here from the wrong zone.
11054 */
11055 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
11056
11057 rp = VTOR4(vp);
11058
11059 /*
11060 * The way that the address space of this process deletes its mapping
11061 * of this file is via the following call chains:
11062 * - as_free()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs4_delmap()
11063 * - as_unmap()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs4_delmap()
11064 *
11065 * With the use of address space callbacks we are allowed to drop the
11066 * address space lock, a_lock, while executing the NFS operations that
11067 * need to go over the wire. Returning EAGAIN to the caller of this
11068 * function is what drives the execution of the callback that we add
11069 * below. The callback will be executed by the address space code
11070 * after dropping the a_lock. When the callback is finished, since
11071 * we dropped the a_lock, it must be re-acquired and segvn_unmap()
11072 * is called again on the same segment to finish the rest of the work
11073 * that needs to happen during unmapping.
11074 *
11075 * This action of calling back into the segment driver causes
11076 * nfs4_delmap() to get called again, but since the callback was
11077 * already executed at this point, it already did the work and there
11078 * is nothing left for us to do.
11079 *
11080 * To Summarize:
11081 * - The first time nfs4_delmap is called by the current thread is when
11082 * we add the caller associated with this delmap to the delmap caller
11083 * list, add the callback, and return EAGAIN.
11084 * - The second time in this call chain when nfs4_delmap is called we
11085 * will find this caller in the delmap caller list and realize there
11086 * is no more work to do thus removing this caller from the list and
11087 * returning the error that was set in the callback execution.
11088 */
11089 caller_found = nfs4_find_and_delete_delmapcall(rp, &error);
11090 if (caller_found) {
11091 /*
11092 * 'error' is from the actual delmap operations. To avoid
11093 * hangs, we need to handle the return of EAGAIN differently
11094 * since this is what drives the callback execution.
11095 * In this case, we don't want to return EAGAIN and do the
11096 * callback execution because there are none to execute.
11097 */
11098 if (error == EAGAIN)
11099 return (0);
11100 else
11101 return (error);
11102 }
11103
11104 /* current caller was not in the list */
11105 delmap_call = nfs4_init_delmapcall();
11106
11107 mutex_enter(&rp->r_statelock);
11108 list_insert_tail(&rp->r_indelmap, delmap_call);
11109 mutex_exit(&rp->r_statelock);
11110
11111 dmapp = kmem_alloc(sizeof (nfs4_delmap_args_t), KM_SLEEP);
11112
11113 dmapp->vp = vp;
11114 dmapp->off = off;
11115 dmapp->addr = addr;
11116 dmapp->len = len;
11117 dmapp->prot = prot;
11118 dmapp->maxprot = maxprot;
11119 dmapp->flags = flags;
11120 dmapp->cr = cr;
11121 dmapp->caller = delmap_call;
11122
11123 error = as_add_callback(as, nfs4_delmap_callback, dmapp,
11124 AS_UNMAP_EVENT, addr, len, KM_SLEEP);
11125
11126 return (error ? error : EAGAIN);
11127 }
11128
11129 static nfs4_delmapcall_t *
11130 nfs4_init_delmapcall()
11131 {
11132 nfs4_delmapcall_t *delmap_call;
11133
11134 delmap_call = kmem_alloc(sizeof (nfs4_delmapcall_t), KM_SLEEP);
11135 delmap_call->call_id = curthread;
11136 delmap_call->error = 0;
11137
11138 return (delmap_call);
11139 }
11140
11141 static void
11142 nfs4_free_delmapcall(nfs4_delmapcall_t *delmap_call)
11143 {
11144 kmem_free(delmap_call, sizeof (nfs4_delmapcall_t));
11145 }
11146
11147 /*
11148 * Searches for the current delmap caller (based on curthread) in the list of
11149 * callers. If it is found, we remove it and free the delmap caller.
11150 * Returns:
11151 * 0 if the caller wasn't found
11152 * 1 if the caller was found, removed and freed. *errp will be set
11153 * to what the result of the delmap was.
11154 */
11155 static int
11156 nfs4_find_and_delete_delmapcall(rnode4_t *rp, int *errp)
11157 {
11158 nfs4_delmapcall_t *delmap_call;
11159
11160 /*
11161 * If the list doesn't exist yet, we create it and return
11162 * that the caller wasn't found. No list = no callers.
11163 */
11164 mutex_enter(&rp->r_statelock);
11165 if (!(rp->r_flags & R4DELMAPLIST)) {
11166 /* The list does not exist */
11167 list_create(&rp->r_indelmap, sizeof (nfs4_delmapcall_t),
11168 offsetof(nfs4_delmapcall_t, call_node));
11169 rp->r_flags |= R4DELMAPLIST;
11170 mutex_exit(&rp->r_statelock);
11171 return (0);
11172 } else {
11173 /* The list exists so search it */
11174 for (delmap_call = list_head(&rp->r_indelmap);
11175 delmap_call != NULL;
11176 delmap_call = list_next(&rp->r_indelmap, delmap_call)) {
11177 if (delmap_call->call_id == curthread) {
11178 /* current caller is in the list */
11179 *errp = delmap_call->error;
11180 list_remove(&rp->r_indelmap, delmap_call);
11181 mutex_exit(&rp->r_statelock);
11182 nfs4_free_delmapcall(delmap_call);
11183 return (1);
11184 }
11185 }
11186 }
11187 mutex_exit(&rp->r_statelock);
11188 return (0);
11189 }
11190
11191 /*
11192 * Remove some pages from an mmap'd vnode. Just update the
11193 * count of pages. If doing close-to-open, then flush and
11194 * commit all of the pages associated with this file.
11195 * Otherwise, start an asynchronous page flush to write out
11196 * any dirty pages. This will also associate a credential
11197 * with the rnode which can be used to write the pages.
11198 */
11199 /* ARGSUSED */
11200 static void
11201 nfs4_delmap_callback(struct as *as, void *arg, uint_t event)
11202 {
11203 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
11204 rnode4_t *rp;
11205 mntinfo4_t *mi;
11206 nfs4_delmap_args_t *dmapp = (nfs4_delmap_args_t *)arg;
11207
11208 rp = VTOR4(dmapp->vp);
11209 mi = VTOMI4(dmapp->vp);
11210
11211 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(dmapp->len));
11212 ASSERT(rp->r_mapcnt >= 0);
11213
11214 /*
11215 * Initiate a page flush and potential commit if there are
11216 * pages, the file system was not mounted readonly, the segment
11217 * was mapped shared, and the pages themselves were writeable.
11218 */
11219 if (nfs4_has_pages(dmapp->vp) &&
11220 !(dmapp->vp->v_vfsp->vfs_flag & VFS_RDONLY) &&
11221 dmapp->flags == MAP_SHARED && (dmapp->maxprot & PROT_WRITE)) {
11222 mutex_enter(&rp->r_statelock);
11223 rp->r_flags |= R4DIRTY;
11224 mutex_exit(&rp->r_statelock);
11225 e.error = nfs4_putpage_commit(dmapp->vp, dmapp->off,
11226 dmapp->len, dmapp->cr);
11227 if (!e.error) {
11228 mutex_enter(&rp->r_statelock);
11229 e.error = rp->r_error;
11230 rp->r_error = 0;
11231 mutex_exit(&rp->r_statelock);
11232 }
11233 } else
11234 e.error = 0;
11235
11236 if ((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO))
11237 (void) nfs4_putpage(dmapp->vp, dmapp->off, dmapp->len,
11238 B_INVAL, dmapp->cr, NULL);
11239
11240 if (e.error) {
11241 e.stat = puterrno4(e.error);
11242 nfs4_queue_fact(RF_DELMAP_CB_ERR, mi, e.stat, 0,
11243 OP_COMMIT, FALSE, NULL, 0, dmapp->vp);
11244 dmapp->caller->error = e.error;
11245 }
11246
11247 /* Check to see if we need to close the file */
11248
11249 if (dmapp->vp->v_type == VREG) {
11250 nfs4close_one(dmapp->vp, NULL, dmapp->cr, 0, NULL, &e,
11251 CLOSE_DELMAP, dmapp->len, dmapp->maxprot, dmapp->flags);
11252
11253 if (e.error != 0 || e.stat != NFS4_OK) {
11254 /*
11255 * Since it is possible that e.error == 0 and
11256 * e.stat != NFS4_OK (and vice versa),
11257 * we do the proper checking in order to get both
11258 * e.error and e.stat reporting the correct info.
11259 */
11260 if (e.stat == NFS4_OK)
11261 e.stat = puterrno4(e.error);
11262 if (e.error == 0)
11263 e.error = geterrno4(e.stat);
11264
11265 nfs4_queue_fact(RF_DELMAP_CB_ERR, mi, e.stat, 0,
11266 OP_CLOSE, FALSE, NULL, 0, dmapp->vp);
11267 dmapp->caller->error = e.error;
11268 }
11269 }
11270
11271 (void) as_delete_callback(as, arg);
11272 kmem_free(dmapp, sizeof (nfs4_delmap_args_t));
11273 }
11274
11275
11276 static uint_t
11277 fattr4_maxfilesize_to_bits(uint64_t ll)
11278 {
11279 uint_t l = 1;
11280
11281 if (ll == 0) {
11282 return (0);
11283 }
11284
11285 if (ll & 0xffffffff00000000) {
11286 l += 32; ll >>= 32;
11287 }
11288 if (ll & 0xffff0000) {
11289 l += 16; ll >>= 16;
11290 }
11291 if (ll & 0xff00) {
11292 l += 8; ll >>= 8;
11293 }
11294 if (ll & 0xf0) {
11295 l += 4; ll >>= 4;
11296 }
11297 if (ll & 0xc) {
11298 l += 2; ll >>= 2;
11299 }
11300 if (ll & 0x2) {
11301 l += 1;
11302 }
11303 return (l);
11304 }
11305
11306 static int
11307 nfs4_have_xattrs(vnode_t *vp, ulong_t *valp, cred_t *cr)
11308 {
11309 vnode_t *avp = NULL;
11310 int error;
11311
11312 if ((error = nfs4lookup_xattr(vp, "", &avp,
11313 LOOKUP_XATTR, cr)) == 0)
11314 error = do_xattr_exists_check(avp, valp, cr);
11315 if (avp)
11316 VN_RELE(avp);
11317
11318 return (error);
11319 }
11320
11321 /* ARGSUSED */
11322 int
11323 nfs4_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
11324 caller_context_t *ct)
11325 {
11326 int error;
11327 hrtime_t t;
11328 rnode4_t *rp;
11329 nfs4_ga_res_t gar;
11330 nfs4_ga_ext_res_t ger;
11331
11332 gar.n4g_ext_res = &ger;
11333
11334 if (nfs_zone() != VTOMI4(vp)->mi_zone)
11335 return (EIO);
11336 if (cmd == _PC_PATH_MAX || cmd == _PC_SYMLINK_MAX) {
11337 *valp = MAXPATHLEN;
11338 return (0);
11339 }
11340 if (cmd == _PC_ACL_ENABLED) {
11341 *valp = _ACL_ACE_ENABLED;
11342 return (0);
11343 }
11344
11345 rp = VTOR4(vp);
11346 if (cmd == _PC_XATTR_EXISTS) {
11347 /*
11348 * The existence of the xattr directory is not sufficient
11349 * for determining whether generic user attributes exists.
11350 * The attribute directory could only be a transient directory
11351 * used for Solaris sysattr support. Do a small readdir
11352 * to verify if the only entries are sysattrs or not.
11353 *
11354 * pc4_xattr_valid can be only be trusted when r_xattr_dir
11355 * is NULL. Once the xadir vp exists, we can create xattrs,
11356 * and we don't have any way to update the "base" object's
11357 * pc4_xattr_exists from the xattr or xadir. Maybe FEM
11358 * could help out.
11359 */
11360 if (ATTRCACHE4_VALID(vp) && rp->r_pathconf.pc4_xattr_valid &&
11361 rp->r_xattr_dir == NULL) {
11362 return (nfs4_have_xattrs(vp, valp, cr));
11363 }
11364 } else { /* OLD CODE */
11365 if (ATTRCACHE4_VALID(vp)) {
11366 mutex_enter(&rp->r_statelock);
11367 if (rp->r_pathconf.pc4_cache_valid) {
11368 error = 0;
11369 switch (cmd) {
11370 case _PC_FILESIZEBITS:
11371 *valp =
11372 rp->r_pathconf.pc4_filesizebits;
11373 break;
11374 case _PC_LINK_MAX:
11375 *valp =
11376 rp->r_pathconf.pc4_link_max;
11377 break;
11378 case _PC_NAME_MAX:
11379 *valp =
11380 rp->r_pathconf.pc4_name_max;
11381 break;
11382 case _PC_CHOWN_RESTRICTED:
11383 *valp =
11384 rp->r_pathconf.pc4_chown_restricted;
11385 break;
11386 case _PC_NO_TRUNC:
11387 *valp =
11388 rp->r_pathconf.pc4_no_trunc;
11389 break;
11390 default:
11391 error = EINVAL;
11392 break;
11393 }
11394 mutex_exit(&rp->r_statelock);
11395 #ifdef DEBUG
11396 nfs4_pathconf_cache_hits++;
11397 #endif
11398 return (error);
11399 }
11400 mutex_exit(&rp->r_statelock);
11401 }
11402 }
11403 #ifdef DEBUG
11404 nfs4_pathconf_cache_misses++;
11405 #endif
11406
11407 t = gethrtime();
11408
11409 error = nfs4_attr_otw(vp, TAG_PATHCONF, &gar, NFS4_PATHCONF_MASK, cr);
11410
11411 if (error) {
11412 mutex_enter(&rp->r_statelock);
11413 rp->r_pathconf.pc4_cache_valid = FALSE;
11414 rp->r_pathconf.pc4_xattr_valid = FALSE;
11415 mutex_exit(&rp->r_statelock);
11416 return (error);
11417 }
11418
11419 /* interpret the max filesize */
11420 gar.n4g_ext_res->n4g_pc4.pc4_filesizebits =
11421 fattr4_maxfilesize_to_bits(gar.n4g_ext_res->n4g_maxfilesize);
11422
11423 /* Store the attributes we just received */
11424 nfs4_attr_cache(vp, &gar, t, cr, TRUE, NULL);
11425
11426 switch (cmd) {
11427 case _PC_FILESIZEBITS:
11428 *valp = gar.n4g_ext_res->n4g_pc4.pc4_filesizebits;
11429 break;
11430 case _PC_LINK_MAX:
11431 *valp = gar.n4g_ext_res->n4g_pc4.pc4_link_max;
11432 break;
11433 case _PC_NAME_MAX:
11434 *valp = gar.n4g_ext_res->n4g_pc4.pc4_name_max;
11435 break;
11436 case _PC_CHOWN_RESTRICTED:
11437 *valp = gar.n4g_ext_res->n4g_pc4.pc4_chown_restricted;
11438 break;
11439 case _PC_NO_TRUNC:
11440 *valp = gar.n4g_ext_res->n4g_pc4.pc4_no_trunc;
11441 break;
11442 case _PC_XATTR_EXISTS:
11443 if (gar.n4g_ext_res->n4g_pc4.pc4_xattr_exists) {
11444 if (error = nfs4_have_xattrs(vp, valp, cr))
11445 return (error);
11446 }
11447 break;
11448 default:
11449 return (EINVAL);
11450 }
11451
11452 return (0);
11453 }
11454
11455 /*
11456 * Called by async thread to do synchronous pageio. Do the i/o, wait
11457 * for it to complete, and cleanup the page list when done.
11458 */
11459 static int
11460 nfs4_sync_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len,
11461 int flags, cred_t *cr)
11462 {
11463 int error;
11464
11465 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
11466
11467 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr);
11468 if (flags & B_READ)
11469 pvn_read_done(pp, (error ? B_ERROR : 0) | flags);
11470 else
11471 pvn_write_done(pp, (error ? B_ERROR : 0) | flags);
11472 return (error);
11473 }
11474
11475 /* ARGSUSED */
11476 static int
11477 nfs4_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len,
11478 int flags, cred_t *cr, caller_context_t *ct)
11479 {
11480 int error;
11481 rnode4_t *rp;
11482
11483 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI4(vp)->mi_zone)
11484 return (EIO);
11485
11486 if (pp == NULL)
11487 return (EINVAL);
11488
11489 rp = VTOR4(vp);
11490 mutex_enter(&rp->r_statelock);
11491 rp->r_count++;
11492 mutex_exit(&rp->r_statelock);
11493
11494 if (flags & B_ASYNC) {
11495 error = nfs4_async_pageio(vp, pp, io_off, io_len, flags, cr,
11496 nfs4_sync_pageio);
11497 } else
11498 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr);
11499 mutex_enter(&rp->r_statelock);
11500 rp->r_count--;
11501 cv_broadcast(&rp->r_cv);
11502 mutex_exit(&rp->r_statelock);
11503 return (error);
11504 }
11505
11506 /* ARGSUSED */
11507 static void
11508 nfs4_dispose(vnode_t *vp, page_t *pp, int fl, int dn, cred_t *cr,
11509 caller_context_t *ct)
11510 {
11511 int error;
11512 rnode4_t *rp;
11513 page_t *plist;
11514 page_t *pptr;
11515 offset3 offset;
11516 count3 len;
11517 k_sigset_t smask;
11518
11519 /*
11520 * We should get called with fl equal to either B_FREE or
11521 * B_INVAL. Any other value is illegal.
11522 *
11523 * The page that we are either supposed to free or destroy
11524 * should be exclusive locked and its io lock should not
11525 * be held.
11526 */
11527 ASSERT(fl == B_FREE || fl == B_INVAL);
11528 ASSERT((PAGE_EXCL(pp) && !page_iolock_assert(pp)) || panicstr);
11529
11530 rp = VTOR4(vp);
11531
11532 /*
11533 * If the page doesn't need to be committed or we shouldn't
11534 * even bother attempting to commit it, then just make sure
11535 * that the p_fsdata byte is clear and then either free or
11536 * destroy the page as appropriate.
11537 */
11538 if (pp->p_fsdata == C_NOCOMMIT || (rp->r_flags & R4STALE)) {
11539 pp->p_fsdata = C_NOCOMMIT;
11540 if (fl == B_FREE)
11541 page_free(pp, dn);
11542 else
11543 page_destroy(pp, dn);
11544 return;
11545 }
11546
11547 /*
11548 * If there is a page invalidation operation going on, then
11549 * if this is one of the pages being destroyed, then just
11550 * clear the p_fsdata byte and then either free or destroy
11551 * the page as appropriate.
11552 */
11553 mutex_enter(&rp->r_statelock);
11554 if ((rp->r_flags & R4TRUNCATE) && pp->p_offset >= rp->r_truncaddr) {
11555 mutex_exit(&rp->r_statelock);
11556 pp->p_fsdata = C_NOCOMMIT;
11557 if (fl == B_FREE)
11558 page_free(pp, dn);
11559 else
11560 page_destroy(pp, dn);
11561 return;
11562 }
11563
11564 /*
11565 * If we are freeing this page and someone else is already
11566 * waiting to do a commit, then just unlock the page and
11567 * return. That other thread will take care of commiting
11568 * this page. The page can be freed sometime after the
11569 * commit has finished. Otherwise, if the page is marked
11570 * as delay commit, then we may be getting called from
11571 * pvn_write_done, one page at a time. This could result
11572 * in one commit per page, so we end up doing lots of small
11573 * commits instead of fewer larger commits. This is bad,
11574 * we want do as few commits as possible.
11575 */
11576 if (fl == B_FREE) {
11577 if (rp->r_flags & R4COMMITWAIT) {
11578 page_unlock(pp);
11579 mutex_exit(&rp->r_statelock);
11580 return;
11581 }
11582 if (pp->p_fsdata == C_DELAYCOMMIT) {
11583 pp->p_fsdata = C_COMMIT;
11584 page_unlock(pp);
11585 mutex_exit(&rp->r_statelock);
11586 return;
11587 }
11588 }
11589
11590 /*
11591 * Check to see if there is a signal which would prevent an
11592 * attempt to commit the pages from being successful. If so,
11593 * then don't bother with all of the work to gather pages and
11594 * generate the unsuccessful RPC. Just return from here and
11595 * let the page be committed at some later time.
11596 */
11597 sigintr(&smask, VTOMI4(vp)->mi_flags & MI4_INT);
11598 if (ttolwp(curthread) != NULL && ISSIG(curthread, JUSTLOOKING)) {
11599 sigunintr(&smask);
11600 page_unlock(pp);
11601 mutex_exit(&rp->r_statelock);
11602 return;
11603 }
11604 sigunintr(&smask);
11605
11606 /*
11607 * We are starting to need to commit pages, so let's try
11608 * to commit as many as possible at once to reduce the
11609 * overhead.
11610 *
11611 * Set the `commit inprogress' state bit. We must
11612 * first wait until any current one finishes. Then
11613 * we initialize the c_pages list with this page.
11614 */
11615 while (rp->r_flags & R4COMMIT) {
11616 rp->r_flags |= R4COMMITWAIT;
11617 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock);
11618 rp->r_flags &= ~R4COMMITWAIT;
11619 }
11620 rp->r_flags |= R4COMMIT;
11621 mutex_exit(&rp->r_statelock);
11622 ASSERT(rp->r_commit.c_pages == NULL);
11623 rp->r_commit.c_pages = pp;
11624 rp->r_commit.c_commbase = (offset3)pp->p_offset;
11625 rp->r_commit.c_commlen = PAGESIZE;
11626
11627 /*
11628 * Gather together all other pages which can be committed.
11629 * They will all be chained off r_commit.c_pages.
11630 */
11631 nfs4_get_commit(vp);
11632
11633 /*
11634 * Clear the `commit inprogress' status and disconnect
11635 * the list of pages to be committed from the rnode.
11636 * At this same time, we also save the starting offset
11637 * and length of data to be committed on the server.
11638 */
11639 plist = rp->r_commit.c_pages;
11640 rp->r_commit.c_pages = NULL;
11641 offset = rp->r_commit.c_commbase;
11642 len = rp->r_commit.c_commlen;
11643 mutex_enter(&rp->r_statelock);
11644 rp->r_flags &= ~R4COMMIT;
11645 cv_broadcast(&rp->r_commit.c_cv);
11646 mutex_exit(&rp->r_statelock);
11647
11648 if (curproc == proc_pageout || curproc == proc_fsflush ||
11649 nfs_zone() != VTOMI4(vp)->mi_zone) {
11650 nfs4_async_commit(vp, plist, offset, len,
11651 cr, do_nfs4_async_commit);
11652 return;
11653 }
11654
11655 /*
11656 * Actually generate the COMMIT op over the wire operation.
11657 */
11658 error = nfs4_commit(vp, (offset4)offset, (count4)len, cr);
11659
11660 /*
11661 * If we got an error during the commit, just unlock all
11662 * of the pages. The pages will get retransmitted to the
11663 * server during a putpage operation.
11664 */
11665 if (error) {
11666 while (plist != NULL) {
11667 pptr = plist;
11668 page_sub(&plist, pptr);
11669 page_unlock(pptr);
11670 }
11671 return;
11672 }
11673
11674 /*
11675 * We've tried as hard as we can to commit the data to stable
11676 * storage on the server. We just unlock the rest of the pages
11677 * and clear the commit required state. They will be put
11678 * onto the tail of the cachelist if they are nolonger
11679 * mapped.
11680 */
11681 while (plist != pp) {
11682 pptr = plist;
11683 page_sub(&plist, pptr);
11684 pptr->p_fsdata = C_NOCOMMIT;
11685 page_unlock(pptr);
11686 }
11687
11688 /*
11689 * It is possible that nfs4_commit didn't return error but
11690 * some other thread has modified the page we are going
11691 * to free/destroy.
11692 * In this case we need to rewrite the page. Do an explicit check
11693 * before attempting to free/destroy the page. If modified, needs to
11694 * be rewritten so unlock the page and return.
11695 */
11696 if (hat_ismod(pp)) {
11697 pp->p_fsdata = C_NOCOMMIT;
11698 page_unlock(pp);
11699 return;
11700 }
11701
11702 /*
11703 * Now, as appropriate, either free or destroy the page
11704 * that we were called with.
11705 */
11706 pp->p_fsdata = C_NOCOMMIT;
11707 if (fl == B_FREE)
11708 page_free(pp, dn);
11709 else
11710 page_destroy(pp, dn);
11711 }
11712
11713 /*
11714 * Commit requires that the current fh be the file written to.
11715 * The compound op structure is:
11716 * PUTFH(file), COMMIT
11717 */
11718 static int
11719 nfs4_commit(vnode_t *vp, offset4 offset, count4 count, cred_t *cr)
11720 {
11721 COMPOUND4args_clnt args;
11722 COMPOUND4res_clnt res;
11723 COMMIT4res *cm_res;
11724 nfs_argop4 argop[2];
11725 nfs_resop4 *resop;
11726 int doqueue;
11727 mntinfo4_t *mi;
11728 rnode4_t *rp;
11729 cred_t *cred_otw = NULL;
11730 bool_t needrecov = FALSE;
11731 nfs4_recov_state_t recov_state;
11732 nfs4_open_stream_t *osp = NULL;
11733 bool_t first_time = TRUE; /* first time getting OTW cred */
11734 bool_t last_time = FALSE; /* last time getting OTW cred */
11735 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
11736
11737 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
11738
11739 rp = VTOR4(vp);
11740
11741 mi = VTOMI4(vp);
11742 recov_state.rs_flags = 0;
11743 recov_state.rs_num_retry_despite_err = 0;
11744 get_commit_cred:
11745 /*
11746 * Releases the osp, if a valid open stream is provided.
11747 * Puts a hold on the cred_otw and the new osp (if found).
11748 */
11749 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp,
11750 &first_time, &last_time);
11751 args.ctag = TAG_COMMIT;
11752 recov_retry:
11753 /*
11754 * Commit ops: putfh file; commit
11755 */
11756 args.array_len = 2;
11757 args.array = argop;
11758
11759 e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_COMMIT,
11760 &recov_state, NULL);
11761 if (e.error) {
11762 crfree(cred_otw);
11763 if (osp != NULL)
11764 open_stream_rele(osp, rp);
11765 return (e.error);
11766 }
11767
11768 /* putfh directory */
11769 argop[0].argop = OP_CPUTFH;
11770 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh;
11771
11772 /* commit */
11773 argop[1].argop = OP_COMMIT;
11774 argop[1].nfs_argop4_u.opcommit.offset = offset;
11775 argop[1].nfs_argop4_u.opcommit.count = count;
11776
11777 doqueue = 1;
11778 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, &e);
11779
11780 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
11781 if (!needrecov && e.error) {
11782 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, &recov_state,
11783 needrecov);
11784 crfree(cred_otw);
11785 if (e.error == EACCES && last_time == FALSE)
11786 goto get_commit_cred;
11787 if (osp != NULL)
11788 open_stream_rele(osp, rp);
11789 return (e.error);
11790 }
11791
11792 if (needrecov) {
11793 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL,
11794 NULL, OP_COMMIT, NULL, NULL, NULL) == FALSE) {
11795 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT,
11796 &recov_state, needrecov);
11797 if (!e.error)
11798 (void) xdr_free(xdr_COMPOUND4res_clnt,
11799 (caddr_t)&res);
11800 goto recov_retry;
11801 }
11802 if (e.error) {
11803 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT,
11804 &recov_state, needrecov);
11805 crfree(cred_otw);
11806 if (osp != NULL)
11807 open_stream_rele(osp, rp);
11808 return (e.error);
11809 }
11810 /* fall through for res.status case */
11811 }
11812
11813 if (res.status) {
11814 e.error = geterrno4(res.status);
11815 if (e.error == EACCES && last_time == FALSE) {
11816 crfree(cred_otw);
11817 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT,
11818 &recov_state, needrecov);
11819 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
11820 goto get_commit_cred;
11821 }
11822 /*
11823 * Can't do a nfs4_purge_stale_fh here because this
11824 * can cause a deadlock. nfs4_commit can
11825 * be called from nfs4_dispose which can be called
11826 * indirectly via pvn_vplist_dirty. nfs4_purge_stale_fh
11827 * can call back to pvn_vplist_dirty.
11828 */
11829 if (e.error == ESTALE) {
11830 mutex_enter(&rp->r_statelock);
11831 rp->r_flags |= R4STALE;
11832 if (!rp->r_error)
11833 rp->r_error = e.error;
11834 mutex_exit(&rp->r_statelock);
11835 PURGE_ATTRCACHE4(vp);
11836 } else {
11837 mutex_enter(&rp->r_statelock);
11838 if (!rp->r_error)
11839 rp->r_error = e.error;
11840 mutex_exit(&rp->r_statelock);
11841 }
11842 } else {
11843 ASSERT(rp->r_flags & R4HAVEVERF);
11844 resop = &res.array[1]; /* commit res */
11845 cm_res = &resop->nfs_resop4_u.opcommit;
11846 mutex_enter(&rp->r_statelock);
11847 if (cm_res->writeverf == rp->r_writeverf) {
11848 mutex_exit(&rp->r_statelock);
11849 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
11850 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT,
11851 &recov_state, needrecov);
11852 crfree(cred_otw);
11853 if (osp != NULL)
11854 open_stream_rele(osp, rp);
11855 return (0);
11856 }
11857 nfs4_set_mod(vp);
11858 rp->r_writeverf = cm_res->writeverf;
11859 mutex_exit(&rp->r_statelock);
11860 e.error = NFS_VERF_MISMATCH;
11861 }
11862
11863 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
11864 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, &recov_state, needrecov);
11865 crfree(cred_otw);
11866 if (osp != NULL)
11867 open_stream_rele(osp, rp);
11868
11869 return (e.error);
11870 }
11871
11872 static void
11873 nfs4_set_mod(vnode_t *vp)
11874 {
11875 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
11876
11877 /* make sure we're looking at the master vnode, not a shadow */
11878 pvn_vplist_setdirty(RTOV4(VTOR4(vp)), nfs_setmod_check);
11879 }
11880
11881 /*
11882 * This function is used to gather a page list of the pages which
11883 * can be committed on the server.
11884 *
11885 * The calling thread must have set R4COMMIT. This bit is used to
11886 * serialize access to the commit structure in the rnode. As long
11887 * as the thread has set R4COMMIT, then it can manipulate the commit
11888 * structure without requiring any other locks.
11889 *
11890 * When this function is called from nfs4_dispose() the page passed
11891 * into nfs4_dispose() will be SE_EXCL locked, and so this function
11892 * will skip it. This is not a problem since we initially add the
11893 * page to the r_commit page list.
11894 *
11895 */
11896 static void
11897 nfs4_get_commit(vnode_t *vp)
11898 {
11899 rnode4_t *rp;
11900 page_t *pp;
11901 kmutex_t *vphm;
11902
11903 rp = VTOR4(vp);
11904
11905 ASSERT(rp->r_flags & R4COMMIT);
11906
11907 /* make sure we're looking at the master vnode, not a shadow */
11908
11909 if (IS_SHADOW(vp, rp))
11910 vp = RTOV4(rp);
11911
11912 vphm = page_vnode_mutex(vp);
11913 mutex_enter(vphm);
11914
11915 /*
11916 * If there are no pages associated with this vnode, then
11917 * just return.
11918 */
11919 if ((pp = vp->v_pages) == NULL) {
11920 mutex_exit(vphm);
11921 return;
11922 }
11923
11924 /*
11925 * Step through all of the pages associated with this vnode
11926 * looking for pages which need to be committed.
11927 */
11928 do {
11929 /* Skip marker pages. */
11930 if (pp->p_hash == PVN_VPLIST_HASH_TAG)
11931 continue;
11932
11933 /*
11934 * First short-cut everything (without the page_lock)
11935 * and see if this page does not need to be committed
11936 * or is modified if so then we'll just skip it.
11937 */
11938 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp))
11939 continue;
11940
11941 /*
11942 * Attempt to lock the page. If we can't, then
11943 * someone else is messing with it or we have been
11944 * called from nfs4_dispose and this is the page that
11945 * nfs4_dispose was called with.. anyway just skip it.
11946 */
11947 if (!page_trylock(pp, SE_EXCL))
11948 continue;
11949
11950 /*
11951 * Lets check again now that we have the page lock.
11952 */
11953 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) {
11954 page_unlock(pp);
11955 continue;
11956 }
11957
11958 /* this had better not be a free page */
11959 ASSERT(PP_ISFREE(pp) == 0);
11960
11961 /*
11962 * The page needs to be committed and we locked it.
11963 * Update the base and length parameters and add it
11964 * to r_pages.
11965 */
11966 if (rp->r_commit.c_pages == NULL) {
11967 rp->r_commit.c_commbase = (offset3)pp->p_offset;
11968 rp->r_commit.c_commlen = PAGESIZE;
11969 } else if (pp->p_offset < rp->r_commit.c_commbase) {
11970 rp->r_commit.c_commlen = rp->r_commit.c_commbase -
11971 (offset3)pp->p_offset + rp->r_commit.c_commlen;
11972 rp->r_commit.c_commbase = (offset3)pp->p_offset;
11973 } else if ((rp->r_commit.c_commbase + rp->r_commit.c_commlen)
11974 <= pp->p_offset) {
11975 rp->r_commit.c_commlen = (offset3)pp->p_offset -
11976 rp->r_commit.c_commbase + PAGESIZE;
11977 }
11978 page_add(&rp->r_commit.c_pages, pp);
11979 } while ((pp = pp->p_vpnext) != vp->v_pages);
11980
11981 mutex_exit(vphm);
11982 }
11983
11984 /*
11985 * This routine is used to gather together a page list of the pages
11986 * which are to be committed on the server. This routine must not
11987 * be called if the calling thread holds any locked pages.
11988 *
11989 * The calling thread must have set R4COMMIT. This bit is used to
11990 * serialize access to the commit structure in the rnode. As long
11991 * as the thread has set R4COMMIT, then it can manipulate the commit
11992 * structure without requiring any other locks.
11993 */
11994 static void
11995 nfs4_get_commit_range(vnode_t *vp, u_offset_t soff, size_t len)
11996 {
11997
11998 rnode4_t *rp;
11999 page_t *pp;
12000 u_offset_t end;
12001 u_offset_t off;
12002 ASSERT(len != 0);
12003 rp = VTOR4(vp);
12004 ASSERT(rp->r_flags & R4COMMIT);
12005
12006 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
12007
12008 /* make sure we're looking at the master vnode, not a shadow */
12009
12010 if (IS_SHADOW(vp, rp))
12011 vp = RTOV4(rp);
12012
12013 /*
12014 * If there are no pages associated with this vnode, then
12015 * just return.
12016 */
12017 if ((pp = vp->v_pages) == NULL)
12018 return;
12019 /*
12020 * Calculate the ending offset.
12021 */
12022 end = soff + len;
12023 for (off = soff; off < end; off += PAGESIZE) {
12024 /*
12025 * Lookup each page by vp, offset.
12026 */
12027 if ((pp = page_lookup_nowait(vp, off, SE_EXCL)) == NULL)
12028 continue;
12029 /*
12030 * If this page does not need to be committed or is
12031 * modified, then just skip it.
12032 */
12033 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) {
12034 page_unlock(pp);
12035 continue;
12036 }
12037
12038 ASSERT(PP_ISFREE(pp) == 0);
12039 /*
12040 * The page needs to be committed and we locked it.
12041 * Update the base and length parameters and add it
12042 * to r_pages.
12043 */
12044 if (rp->r_commit.c_pages == NULL) {
12045 rp->r_commit.c_commbase = (offset3)pp->p_offset;
12046 rp->r_commit.c_commlen = PAGESIZE;
12047 } else {
12048 rp->r_commit.c_commlen = (offset3)pp->p_offset -
12049 rp->r_commit.c_commbase + PAGESIZE;
12050 }
12051 page_add(&rp->r_commit.c_pages, pp);
12052 }
12053 }
12054
12055 /*
12056 * Called from nfs4_close(), nfs4_fsync() and nfs4_delmap().
12057 * Flushes and commits data to the server.
12058 */
12059 static int
12060 nfs4_putpage_commit(vnode_t *vp, offset_t poff, size_t plen, cred_t *cr)
12061 {
12062 int error;
12063 verifier4 write_verf;
12064 rnode4_t *rp = VTOR4(vp);
12065
12066 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
12067
12068 /*
12069 * Flush the data portion of the file and then commit any
12070 * portions which need to be committed. This may need to
12071 * be done twice if the server has changed state since
12072 * data was last written. The data will need to be
12073 * rewritten to the server and then a new commit done.
12074 *
12075 * In fact, this may need to be done several times if the
12076 * server is having problems and crashing while we are
12077 * attempting to do this.
12078 */
12079
12080 top:
12081 /*
12082 * Do a flush based on the poff and plen arguments. This
12083 * will synchronously write out any modified pages in the
12084 * range specified by (poff, plen). This starts all of the
12085 * i/o operations which will be waited for in the next
12086 * call to nfs4_putpage
12087 */
12088
12089 mutex_enter(&rp->r_statelock);
12090 write_verf = rp->r_writeverf;
12091 mutex_exit(&rp->r_statelock);
12092
12093 error = nfs4_putpage(vp, poff, plen, B_ASYNC, cr, NULL);
12094 if (error == EAGAIN)
12095 error = 0;
12096
12097 /*
12098 * Do a flush based on the poff and plen arguments. This
12099 * will synchronously write out any modified pages in the
12100 * range specified by (poff, plen) and wait until all of
12101 * the asynchronous i/o's in that range are done as well.
12102 */
12103 if (!error)
12104 error = nfs4_putpage(vp, poff, plen, 0, cr, NULL);
12105
12106 if (error)
12107 return (error);
12108
12109 mutex_enter(&rp->r_statelock);
12110 if (rp->r_writeverf != write_verf) {
12111 mutex_exit(&rp->r_statelock);
12112 goto top;
12113 }
12114 mutex_exit(&rp->r_statelock);
12115
12116 /*
12117 * Now commit any pages which might need to be committed.
12118 * If the error, NFS_VERF_MISMATCH, is returned, then
12119 * start over with the flush operation.
12120 */
12121 error = nfs4_commit_vp(vp, poff, plen, cr, NFS4_WRITE_WAIT);
12122
12123 if (error == NFS_VERF_MISMATCH)
12124 goto top;
12125
12126 return (error);
12127 }
12128
12129 /*
12130 * nfs4_commit_vp() will wait for other pending commits and
12131 * will either commit the whole file or a range, plen dictates
12132 * if we commit whole file. a value of zero indicates the whole
12133 * file. Called from nfs4_putpage_commit() or nfs4_sync_putapage()
12134 */
12135 static int
12136 nfs4_commit_vp(vnode_t *vp, u_offset_t poff, size_t plen,
12137 cred_t *cr, int wait_on_writes)
12138 {
12139 rnode4_t *rp;
12140 page_t *plist;
12141 offset3 offset;
12142 count3 len;
12143
12144 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
12145
12146 rp = VTOR4(vp);
12147
12148 /*
12149 * before we gather commitable pages make
12150 * sure there are no outstanding async writes
12151 */
12152 if (rp->r_count && wait_on_writes == NFS4_WRITE_WAIT) {
12153 mutex_enter(&rp->r_statelock);
12154 while (rp->r_count > 0) {
12155 cv_wait(&rp->r_cv, &rp->r_statelock);
12156 }
12157 mutex_exit(&rp->r_statelock);
12158 }
12159
12160 /*
12161 * Set the `commit inprogress' state bit. We must
12162 * first wait until any current one finishes.
12163 */
12164 mutex_enter(&rp->r_statelock);
12165 while (rp->r_flags & R4COMMIT) {
12166 rp->r_flags |= R4COMMITWAIT;
12167 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock);
12168 rp->r_flags &= ~R4COMMITWAIT;
12169 }
12170 rp->r_flags |= R4COMMIT;
12171 mutex_exit(&rp->r_statelock);
12172
12173 /*
12174 * Gather all of the pages which need to be
12175 * committed.
12176 */
12177 if (plen == 0)
12178 nfs4_get_commit(vp);
12179 else
12180 nfs4_get_commit_range(vp, poff, plen);
12181
12182 /*
12183 * Clear the `commit inprogress' bit and disconnect the
12184 * page list which was gathered by nfs4_get_commit.
12185 */
12186 plist = rp->r_commit.c_pages;
12187 rp->r_commit.c_pages = NULL;
12188 offset = rp->r_commit.c_commbase;
12189 len = rp->r_commit.c_commlen;
12190 mutex_enter(&rp->r_statelock);
12191 rp->r_flags &= ~R4COMMIT;
12192 cv_broadcast(&rp->r_commit.c_cv);
12193 mutex_exit(&rp->r_statelock);
12194
12195 /*
12196 * If any pages need to be committed, commit them and
12197 * then unlock them so that they can be freed some
12198 * time later.
12199 */
12200 if (plist == NULL)
12201 return (0);
12202
12203 /*
12204 * No error occurred during the flush portion
12205 * of this operation, so now attempt to commit
12206 * the data to stable storage on the server.
12207 *
12208 * This will unlock all of the pages on the list.
12209 */
12210 return (nfs4_sync_commit(vp, plist, offset, len, cr));
12211 }
12212
12213 static int
12214 nfs4_sync_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count,
12215 cred_t *cr)
12216 {
12217 int error;
12218 page_t *pp;
12219
12220 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
12221
12222 error = nfs4_commit(vp, (offset4)offset, (count3)count, cr);
12223
12224 /*
12225 * If we got an error, then just unlock all of the pages
12226 * on the list.
12227 */
12228 if (error) {
12229 while (plist != NULL) {
12230 pp = plist;
12231 page_sub(&plist, pp);
12232 page_unlock(pp);
12233 }
12234 return (error);
12235 }
12236 /*
12237 * We've tried as hard as we can to commit the data to stable
12238 * storage on the server. We just unlock the pages and clear
12239 * the commit required state. They will get freed later.
12240 */
12241 while (plist != NULL) {
12242 pp = plist;
12243 page_sub(&plist, pp);
12244 pp->p_fsdata = C_NOCOMMIT;
12245 page_unlock(pp);
12246 }
12247
12248 return (error);
12249 }
12250
12251 static void
12252 do_nfs4_async_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count,
12253 cred_t *cr)
12254 {
12255
12256 (void) nfs4_sync_commit(vp, plist, offset, count, cr);
12257 }
12258
12259 /*ARGSUSED*/
12260 static int
12261 nfs4_setsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr,
12262 caller_context_t *ct)
12263 {
12264 int error = 0;
12265 mntinfo4_t *mi;
12266 vattr_t va;
12267 vsecattr_t nfsace4_vsap;
12268
12269 mi = VTOMI4(vp);
12270 if (nfs_zone() != mi->mi_zone)
12271 return (EIO);
12272 if (mi->mi_flags & MI4_ACL) {
12273 /* if we have a delegation, return it */
12274 if (VTOR4(vp)->r_deleg_type != OPEN_DELEGATE_NONE)
12275 (void) nfs4delegreturn(VTOR4(vp),
12276 NFS4_DR_REOPEN|NFS4_DR_PUSH);
12277
12278 error = nfs4_is_acl_mask_valid(vsecattr->vsa_mask,
12279 NFS4_ACL_SET);
12280 if (error) /* EINVAL */
12281 return (error);
12282
12283 if (vsecattr->vsa_mask & (VSA_ACL | VSA_DFACL)) {
12284 /*
12285 * These are aclent_t type entries.
12286 */
12287 error = vs_aent_to_ace4(vsecattr, &nfsace4_vsap,
12288 vp->v_type == VDIR, FALSE);
12289 if (error)
12290 return (error);
12291 } else {
12292 /*
12293 * These are ace_t type entries.
12294 */
12295 error = vs_acet_to_ace4(vsecattr, &nfsace4_vsap,
12296 FALSE);
12297 if (error)
12298 return (error);
12299 }
12300 bzero(&va, sizeof (va));
12301 error = nfs4setattr(vp, &va, flag, cr, &nfsace4_vsap);
12302 vs_ace4_destroy(&nfsace4_vsap);
12303 return (error);
12304 }
12305 return (ENOSYS);
12306 }
12307
12308 /* ARGSUSED */
12309 int
12310 nfs4_getsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr,
12311 caller_context_t *ct)
12312 {
12313 int error;
12314 mntinfo4_t *mi;
12315 nfs4_ga_res_t gar;
12316 rnode4_t *rp = VTOR4(vp);
12317
12318 mi = VTOMI4(vp);
12319 if (nfs_zone() != mi->mi_zone)
12320 return (EIO);
12321
12322 bzero(&gar, sizeof (gar));
12323 gar.n4g_vsa.vsa_mask = vsecattr->vsa_mask;
12324
12325 /*
12326 * vsecattr->vsa_mask holds the original acl request mask.
12327 * This is needed when determining what to return.
12328 * (See: nfs4_create_getsecattr_return())
12329 */
12330 error = nfs4_is_acl_mask_valid(vsecattr->vsa_mask, NFS4_ACL_GET);
12331 if (error) /* EINVAL */
12332 return (error);
12333
12334 /*
12335 * If this is a referral stub, don't try to go OTW for an ACL
12336 */
12337 if (RP_ISSTUB_REFERRAL(VTOR4(vp)))
12338 return (fs_fab_acl(vp, vsecattr, flag, cr, ct));
12339
12340 if (mi->mi_flags & MI4_ACL) {
12341 /*
12342 * Check if the data is cached and the cache is valid. If it
12343 * is we don't go over the wire.
12344 */
12345 if (rp->r_secattr != NULL && ATTRCACHE4_VALID(vp)) {
12346 mutex_enter(&rp->r_statelock);
12347 if (rp->r_secattr != NULL) {
12348 error = nfs4_create_getsecattr_return(
12349 rp->r_secattr, vsecattr, rp->r_attr.va_uid,
12350 rp->r_attr.va_gid,
12351 vp->v_type == VDIR);
12352 if (!error) { /* error == 0 - Success! */
12353 mutex_exit(&rp->r_statelock);
12354 return (error);
12355 }
12356 }
12357 mutex_exit(&rp->r_statelock);
12358 }
12359
12360 /*
12361 * The getattr otw call will always get both the acl, in
12362 * the form of a list of nfsace4's, and the number of acl
12363 * entries; independent of the value of gar.n4g_vsa.vsa_mask.
12364 */
12365 gar.n4g_va.va_mask = AT_ALL;
12366 error = nfs4_getattr_otw(vp, &gar, cr, 1);
12367 if (error) {
12368 vs_ace4_destroy(&gar.n4g_vsa);
12369 if (error == ENOTSUP || error == EOPNOTSUPP)
12370 error = fs_fab_acl(vp, vsecattr, flag, cr, ct);
12371 return (error);
12372 }
12373
12374 if (!(gar.n4g_resbmap & FATTR4_ACL_MASK)) {
12375 /*
12376 * No error was returned, but according to the response
12377 * bitmap, neither was an acl.
12378 */
12379 vs_ace4_destroy(&gar.n4g_vsa);
12380 error = fs_fab_acl(vp, vsecattr, flag, cr, ct);
12381 return (error);
12382 }
12383
12384 /*
12385 * Update the cache with the ACL.
12386 */
12387 nfs4_acl_fill_cache(rp, &gar.n4g_vsa);
12388
12389 error = nfs4_create_getsecattr_return(&gar.n4g_vsa,
12390 vsecattr, gar.n4g_va.va_uid, gar.n4g_va.va_gid,
12391 vp->v_type == VDIR);
12392 vs_ace4_destroy(&gar.n4g_vsa);
12393 if ((error) && (vsecattr->vsa_mask &
12394 (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) &&
12395 (error != EACCES)) {
12396 error = fs_fab_acl(vp, vsecattr, flag, cr, ct);
12397 }
12398 return (error);
12399 }
12400 error = fs_fab_acl(vp, vsecattr, flag, cr, ct);
12401 return (error);
12402 }
12403
12404 /*
12405 * The function returns:
12406 * - 0 (zero) if the passed in "acl_mask" is a valid request.
12407 * - EINVAL if the passed in "acl_mask" is an invalid request.
12408 *
12409 * In the case of getting an acl (op == NFS4_ACL_GET) the mask is invalid if:
12410 * - We have a mixture of ACE and ACL requests (e.g. VSA_ACL | VSA_ACE)
12411 *
12412 * In the case of setting an acl (op == NFS4_ACL_SET) the mask is invalid if:
12413 * - We have a mixture of ACE and ACL requests (e.g. VSA_ACL | VSA_ACE)
12414 * - We have a count field set without the corresponding acl field set. (e.g. -
12415 * VSA_ACECNT is set, but VSA_ACE is not)
12416 */
12417 static int
12418 nfs4_is_acl_mask_valid(uint_t acl_mask, nfs4_acl_op_t op)
12419 {
12420 /* Shortcut the masks that are always valid. */
12421 if (acl_mask == (VSA_ACE | VSA_ACECNT))
12422 return (0);
12423 if (acl_mask == (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT))
12424 return (0);
12425
12426 if (acl_mask & (VSA_ACE | VSA_ACECNT)) {
12427 /*
12428 * We can't have any VSA_ACL type stuff in the mask now.
12429 */
12430 if (acl_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL |
12431 VSA_DFACLCNT))
12432 return (EINVAL);
12433
12434 if (op == NFS4_ACL_SET) {
12435 if ((acl_mask & VSA_ACECNT) && !(acl_mask & VSA_ACE))
12436 return (EINVAL);
12437 }
12438 }
12439
12440 if (acl_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) {
12441 /*
12442 * We can't have any VSA_ACE type stuff in the mask now.
12443 */
12444 if (acl_mask & (VSA_ACE | VSA_ACECNT))
12445 return (EINVAL);
12446
12447 if (op == NFS4_ACL_SET) {
12448 if ((acl_mask & VSA_ACLCNT) && !(acl_mask & VSA_ACL))
12449 return (EINVAL);
12450
12451 if ((acl_mask & VSA_DFACLCNT) &&
12452 !(acl_mask & VSA_DFACL))
12453 return (EINVAL);
12454 }
12455 }
12456 return (0);
12457 }
12458
12459 /*
12460 * The theory behind creating the correct getsecattr return is simply this:
12461 * "Don't return anything that the caller is not expecting to have to free."
12462 */
12463 static int
12464 nfs4_create_getsecattr_return(vsecattr_t *filled_vsap, vsecattr_t *vsap,
12465 uid_t uid, gid_t gid, int isdir)
12466 {
12467 int error = 0;
12468 /* Save the mask since the translators modify it. */
12469 uint_t orig_mask = vsap->vsa_mask;
12470
12471 if (orig_mask & (VSA_ACE | VSA_ACECNT)) {
12472 error = vs_ace4_to_acet(filled_vsap, vsap, uid, gid, FALSE);
12473
12474 if (error)
12475 return (error);
12476
12477 /*
12478 * If the caller only asked for the ace count (VSA_ACECNT)
12479 * don't give them the full acl (VSA_ACE), free it.
12480 */
12481 if (!orig_mask & VSA_ACE) {
12482 if (vsap->vsa_aclentp != NULL) {
12483 kmem_free(vsap->vsa_aclentp,
12484 vsap->vsa_aclcnt * sizeof (ace_t));
12485 vsap->vsa_aclentp = NULL;
12486 }
12487 }
12488 vsap->vsa_mask = orig_mask;
12489
12490 } else if (orig_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL |
12491 VSA_DFACLCNT)) {
12492 error = vs_ace4_to_aent(filled_vsap, vsap, uid, gid,
12493 isdir, FALSE);
12494
12495 if (error)
12496 return (error);
12497
12498 /*
12499 * If the caller only asked for the acl count (VSA_ACLCNT)
12500 * and/or the default acl count (VSA_DFACLCNT) don't give them
12501 * the acl (VSA_ACL) or default acl (VSA_DFACL), free it.
12502 */
12503 if (!orig_mask & VSA_ACL) {
12504 if (vsap->vsa_aclentp != NULL) {
12505 kmem_free(vsap->vsa_aclentp,
12506 vsap->vsa_aclcnt * sizeof (aclent_t));
12507 vsap->vsa_aclentp = NULL;
12508 }
12509 }
12510
12511 if (!orig_mask & VSA_DFACL) {
12512 if (vsap->vsa_dfaclentp != NULL) {
12513 kmem_free(vsap->vsa_dfaclentp,
12514 vsap->vsa_dfaclcnt * sizeof (aclent_t));
12515 vsap->vsa_dfaclentp = NULL;
12516 }
12517 }
12518 vsap->vsa_mask = orig_mask;
12519 }
12520 return (0);
12521 }
12522
12523 /* ARGSUSED */
12524 int
12525 nfs4_shrlock(vnode_t *vp, int cmd, struct shrlock *shr, int flag, cred_t *cr,
12526 caller_context_t *ct)
12527 {
12528 int error;
12529
12530 if (nfs_zone() != VTOMI4(vp)->mi_zone)
12531 return (EIO);
12532 /*
12533 * check for valid cmd parameter
12534 */
12535 if (cmd != F_SHARE && cmd != F_UNSHARE && cmd != F_HASREMOTELOCKS)
12536 return (EINVAL);
12537
12538 /*
12539 * Check access permissions
12540 */
12541 if ((cmd & F_SHARE) &&
12542 (((shr->s_access & F_RDACC) && (flag & FREAD) == 0) ||
12543 (shr->s_access == F_WRACC && (flag & FWRITE) == 0)))
12544 return (EBADF);
12545
12546 /*
12547 * If the filesystem is mounted using local locking, pass the
12548 * request off to the local share code.
12549 */
12550 if (VTOMI4(vp)->mi_flags & MI4_LLOCK)
12551 return (fs_shrlock(vp, cmd, shr, flag, cr, ct));
12552
12553 switch (cmd) {
12554 case F_SHARE:
12555 case F_UNSHARE:
12556 /*
12557 * This will be properly implemented later,
12558 * see RFE: 4823948 .
12559 */
12560 error = EAGAIN;
12561 break;
12562
12563 case F_HASREMOTELOCKS:
12564 /*
12565 * NFS client can't store remote locks itself
12566 */
12567 shr->s_access = 0;
12568 error = 0;
12569 break;
12570
12571 default:
12572 error = EINVAL;
12573 break;
12574 }
12575
12576 return (error);
12577 }
12578
12579 /*
12580 * Common code called by directory ops to update the attrcache
12581 */
12582 static int
12583 nfs4_update_attrcache(nfsstat4 status, nfs4_ga_res_t *garp,
12584 hrtime_t t, vnode_t *vp, cred_t *cr)
12585 {
12586 int error = 0;
12587
12588 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
12589
12590 if (status != NFS4_OK) {
12591 /* getattr not done or failed */
12592 PURGE_ATTRCACHE4(vp);
12593 return (error);
12594 }
12595
12596 if (garp) {
12597 nfs4_attr_cache(vp, garp, t, cr, FALSE, NULL);
12598 } else {
12599 PURGE_ATTRCACHE4(vp);
12600 }
12601 return (error);
12602 }
12603
12604 /*
12605 * Update directory caches for directory modification ops (link, rename, etc.)
12606 * When dinfo is NULL, manage dircaches in the old way.
12607 */
12608 static void
12609 nfs4_update_dircaches(change_info4 *cinfo, vnode_t *dvp, vnode_t *vp, char *nm,
12610 dirattr_info_t *dinfo)
12611 {
12612 rnode4_t *drp = VTOR4(dvp);
12613
12614 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone);
12615
12616 /* Purge rddir cache for dir since it changed */
12617 if (drp->r_dir != NULL)
12618 nfs4_purge_rddir_cache(dvp);
12619
12620 /*
12621 * If caller provided dinfo, then use it to manage dir caches.
12622 */
12623 if (dinfo != NULL) {
12624 if (vp != NULL) {
12625 mutex_enter(&VTOR4(vp)->r_statev4_lock);
12626 if (!VTOR4(vp)->created_v4) {
12627 mutex_exit(&VTOR4(vp)->r_statev4_lock);
12628 dnlc_update(dvp, nm, vp);
12629 } else {
12630 /*
12631 * XXX don't update if the created_v4 flag is
12632 * set
12633 */
12634 mutex_exit(&VTOR4(vp)->r_statev4_lock);
12635 NFS4_DEBUG(nfs4_client_state_debug,
12636 (CE_NOTE, "nfs4_update_dircaches: "
12637 "don't update dnlc: created_v4 flag"));
12638 }
12639 }
12640
12641 nfs4_attr_cache(dvp, dinfo->di_garp, dinfo->di_time_call,
12642 dinfo->di_cred, FALSE, cinfo);
12643
12644 return;
12645 }
12646
12647 /*
12648 * Caller didn't provide dinfo, then check change_info4 to update DNLC.
12649 * Since caller modified dir but didn't receive post-dirmod-op dir
12650 * attrs, the dir's attrs must be purged.
12651 *
12652 * XXX this check and dnlc update/purge should really be atomic,
12653 * XXX but can't use rnode statelock because it'll deadlock in
12654 * XXX dnlc_purge_vp, however, the risk is minimal even if a race
12655 * XXX does occur.
12656 *
12657 * XXX We also may want to check that atomic is true in the
12658 * XXX change_info struct. If it is not, the change_info may
12659 * XXX reflect changes by more than one clients which means that
12660 * XXX our cache may not be valid.
12661 */
12662 PURGE_ATTRCACHE4(dvp);
12663 if (drp->r_change == cinfo->before) {
12664 /* no changes took place in the directory prior to our link */
12665 if (vp != NULL) {
12666 mutex_enter(&VTOR4(vp)->r_statev4_lock);
12667 if (!VTOR4(vp)->created_v4) {
12668 mutex_exit(&VTOR4(vp)->r_statev4_lock);
12669 dnlc_update(dvp, nm, vp);
12670 } else {
12671 /*
12672 * XXX dont' update if the created_v4 flag
12673 * is set
12674 */
12675 mutex_exit(&VTOR4(vp)->r_statev4_lock);
12676 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE,
12677 "nfs4_update_dircaches: don't"
12678 " update dnlc: created_v4 flag"));
12679 }
12680 }
12681 } else {
12682 /* Another client modified directory - purge its dnlc cache */
12683 dnlc_purge_vp(dvp);
12684 }
12685 }
12686
12687 /*
12688 * The OPEN_CONFIRM operation confirms the sequence number used in OPENing a
12689 * file.
12690 *
12691 * The 'reopening_file' boolean should be set to TRUE if we are reopening this
12692 * file (ie: client recovery) and otherwise set to FALSE.
12693 *
12694 * 'nfs4_start/end_op' should have been called by the proper (ie: not recovery
12695 * initiated) calling functions.
12696 *
12697 * 'resend' is set to TRUE if this is a OPEN_CONFIRM issued as a result
12698 * of resending a 'lost' open request.
12699 *
12700 * 'num_bseqid_retryp' makes sure we don't loop forever on a broken
12701 * server that hands out BAD_SEQID on open confirm.
12702 *
12703 * Errors are returned via the nfs4_error_t parameter.
12704 */
12705 void
12706 nfs4open_confirm(vnode_t *vp, seqid4 *seqid, stateid4 *stateid, cred_t *cr,
12707 bool_t reopening_file, bool_t *retry_open, nfs4_open_owner_t *oop,
12708 bool_t resend, nfs4_error_t *ep, int *num_bseqid_retryp)
12709 {
12710 COMPOUND4args_clnt args;
12711 COMPOUND4res_clnt res;
12712 nfs_argop4 argop[2];
12713 nfs_resop4 *resop;
12714 int doqueue = 1;
12715 mntinfo4_t *mi;
12716 OPEN_CONFIRM4args *open_confirm_args;
12717 int needrecov;
12718
12719 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
12720 #if DEBUG
12721 mutex_enter(&oop->oo_lock);
12722 ASSERT(oop->oo_seqid_inuse);
12723 mutex_exit(&oop->oo_lock);
12724 #endif
12725
12726 recov_retry_confirm:
12727 nfs4_error_zinit(ep);
12728 *retry_open = FALSE;
12729
12730 if (resend)
12731 args.ctag = TAG_OPEN_CONFIRM_LOST;
12732 else
12733 args.ctag = TAG_OPEN_CONFIRM;
12734
12735 args.array_len = 2;
12736 args.array = argop;
12737
12738 /* putfh target fh */
12739 argop[0].argop = OP_CPUTFH;
12740 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh;
12741
12742 argop[1].argop = OP_OPEN_CONFIRM;
12743 open_confirm_args = &argop[1].nfs_argop4_u.opopen_confirm;
12744
12745 (*seqid) += 1;
12746 open_confirm_args->seqid = *seqid;
12747 open_confirm_args->open_stateid = *stateid;
12748
12749 mi = VTOMI4(vp);
12750
12751 rfs4call(mi, &args, &res, cr, &doqueue, 0, ep);
12752
12753 if (!ep->error && nfs4_need_to_bump_seqid(&res)) {
12754 nfs4_set_open_seqid((*seqid), oop, args.ctag);
12755 }
12756
12757 needrecov = nfs4_needs_recovery(ep, FALSE, mi->mi_vfsp);
12758 if (!needrecov && ep->error)
12759 return;
12760
12761 if (needrecov) {
12762 bool_t abort = FALSE;
12763
12764 if (reopening_file == FALSE) {
12765 nfs4_bseqid_entry_t *bsep = NULL;
12766
12767 if (!ep->error && res.status == NFS4ERR_BAD_SEQID)
12768 bsep = nfs4_create_bseqid_entry(oop, NULL,
12769 vp, 0, args.ctag,
12770 open_confirm_args->seqid);
12771
12772 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL,
12773 NULL, NULL, OP_OPEN_CONFIRM, bsep, NULL, NULL);
12774 if (bsep) {
12775 kmem_free(bsep, sizeof (*bsep));
12776 if (num_bseqid_retryp &&
12777 --(*num_bseqid_retryp) == 0)
12778 abort = TRUE;
12779 }
12780 }
12781 if ((ep->error == ETIMEDOUT ||
12782 res.status == NFS4ERR_RESOURCE) &&
12783 abort == FALSE && resend == FALSE) {
12784 if (!ep->error)
12785 (void) xdr_free(xdr_COMPOUND4res_clnt,
12786 (caddr_t)&res);
12787
12788 delay(SEC_TO_TICK(confirm_retry_sec));
12789 goto recov_retry_confirm;
12790 }
12791 /* State may have changed so retry the entire OPEN op */
12792 if (abort == FALSE)
12793 *retry_open = TRUE;
12794 else
12795 *retry_open = FALSE;
12796 if (!ep->error)
12797 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
12798 return;
12799 }
12800
12801 if (res.status) {
12802 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
12803 return;
12804 }
12805
12806 resop = &res.array[1]; /* open confirm res */
12807 bcopy(&resop->nfs_resop4_u.opopen_confirm.open_stateid,
12808 stateid, sizeof (*stateid));
12809
12810 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
12811 }
12812
12813 /*
12814 * Return the credentials associated with a client state object. The
12815 * caller is responsible for freeing the credentials.
12816 */
12817
12818 static cred_t *
12819 state_to_cred(nfs4_open_stream_t *osp)
12820 {
12821 cred_t *cr;
12822
12823 /*
12824 * It's ok to not lock the open stream and open owner to get
12825 * the oo_cred since this is only written once (upon creation)
12826 * and will not change.
12827 */
12828 cr = osp->os_open_owner->oo_cred;
12829 crhold(cr);
12830
12831 return (cr);
12832 }
12833
12834 /*
12835 * nfs4_find_sysid
12836 *
12837 * Find the sysid for the knetconfig associated with the given mi.
12838 */
12839 static struct lm_sysid *
12840 nfs4_find_sysid(mntinfo4_t *mi)
12841 {
12842 ASSERT(nfs_zone() == mi->mi_zone);
12843
12844 /*
12845 * Switch from RDMA knconf to original mount knconf
12846 */
12847 return (lm_get_sysid(ORIG_KNCONF(mi), &mi->mi_curr_serv->sv_addr,
12848 mi->mi_curr_serv->sv_hostname, NULL));
12849 }
12850
12851 #ifdef DEBUG
12852 /*
12853 * Return a string version of the call type for easy reading.
12854 */
12855 static char *
12856 nfs4frlock_get_call_type(nfs4_lock_call_type_t ctype)
12857 {
12858 switch (ctype) {
12859 case NFS4_LCK_CTYPE_NORM:
12860 return ("NORMAL");
12861 case NFS4_LCK_CTYPE_RECLAIM:
12862 return ("RECLAIM");
12863 case NFS4_LCK_CTYPE_RESEND:
12864 return ("RESEND");
12865 case NFS4_LCK_CTYPE_REINSTATE:
12866 return ("REINSTATE");
12867 default:
12868 cmn_err(CE_PANIC, "nfs4frlock_get_call_type: got illegal "
12869 "type %d", ctype);
12870 return ("");
12871 }
12872 }
12873 #endif
12874
12875 /*
12876 * Map the frlock cmd and lock type to the NFSv4 over-the-wire lock type
12877 * Unlock requests don't have an over-the-wire locktype, so we just return
12878 * something non-threatening.
12879 */
12880
12881 static nfs_lock_type4
12882 flk_to_locktype(int cmd, int l_type)
12883 {
12884 ASSERT(l_type == F_RDLCK || l_type == F_WRLCK || l_type == F_UNLCK);
12885
12886 switch (l_type) {
12887 case F_UNLCK:
12888 return (READ_LT);
12889 case F_RDLCK:
12890 if (cmd == F_SETLK)
12891 return (READ_LT);
12892 else
12893 return (READW_LT);
12894 case F_WRLCK:
12895 if (cmd == F_SETLK)
12896 return (WRITE_LT);
12897 else
12898 return (WRITEW_LT);
12899 }
12900 panic("flk_to_locktype");
12901 /*NOTREACHED*/
12902 }
12903
12904 /*
12905 * Do some preliminary checks for nfs4frlock.
12906 */
12907 static int
12908 nfs4frlock_validate_args(int cmd, flock64_t *flk, int flag, vnode_t *vp,
12909 u_offset_t offset)
12910 {
12911 int error = 0;
12912
12913 /*
12914 * If we are setting a lock, check that the file is opened
12915 * with the correct mode.
12916 */
12917 if (cmd == F_SETLK || cmd == F_SETLKW) {
12918 if ((flk->l_type == F_RDLCK && (flag & FREAD) == 0) ||
12919 (flk->l_type == F_WRLCK && (flag & FWRITE) == 0)) {
12920 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
12921 "nfs4frlock_validate_args: file was opened with "
12922 "incorrect mode"));
12923 return (EBADF);
12924 }
12925 }
12926
12927 /* Convert the offset. It may need to be restored before returning. */
12928 if (error = convoff(vp, flk, 0, offset)) {
12929 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
12930 "nfs4frlock_validate_args: convoff => error= %d\n",
12931 error));
12932 return (error);
12933 }
12934
12935 return (error);
12936 }
12937
12938 /*
12939 * Set the flock64's lm_sysid for nfs4frlock.
12940 */
12941 static int
12942 nfs4frlock_get_sysid(struct lm_sysid **lspp, vnode_t *vp, flock64_t *flk)
12943 {
12944 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
12945
12946 /* Find the lm_sysid */
12947 *lspp = nfs4_find_sysid(VTOMI4(vp));
12948
12949 if (*lspp == NULL) {
12950 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
12951 "nfs4frlock_get_sysid: no sysid, return ENOLCK"));
12952 return (ENOLCK);
12953 }
12954
12955 flk->l_sysid = lm_sysidt(*lspp);
12956
12957 return (0);
12958 }
12959
12960 /*
12961 * Do the remaining preliminary setup for nfs4frlock.
12962 */
12963 static void
12964 nfs4frlock_pre_setup(clock_t *tick_delayp, nfs4_recov_state_t *recov_statep,
12965 flock64_t *flk, short *whencep, vnode_t *vp, cred_t *search_cr,
12966 cred_t **cred_otw)
12967 {
12968 /*
12969 * set tick_delay to the base delay time.
12970 * (NFS4_BASE_WAIT_TIME is in secs)
12971 */
12972
12973 *tick_delayp = drv_usectohz(NFS4_BASE_WAIT_TIME * 1000 * 1000);
12974
12975 /*
12976 * If lock is relative to EOF, we need the newest length of the
12977 * file. Therefore invalidate the ATTR_CACHE.
12978 */
12979
12980 *whencep = flk->l_whence;
12981
12982 if (*whencep == 2) /* SEEK_END */
12983 PURGE_ATTRCACHE4(vp);
12984
12985 recov_statep->rs_flags = 0;
12986 recov_statep->rs_num_retry_despite_err = 0;
12987 *cred_otw = nfs4_get_otw_cred(search_cr, VTOMI4(vp), NULL);
12988 }
12989
12990 /*
12991 * Initialize and allocate the data structures necessary for
12992 * the nfs4frlock call.
12993 * Allocates argsp's op array, frees up the saved_rqstpp if there is one.
12994 */
12995 static void
12996 nfs4frlock_call_init(COMPOUND4args_clnt *argsp, COMPOUND4args_clnt **argspp,
12997 nfs_argop4 **argopp, nfs4_op_hint_t *op_hintp, flock64_t *flk, int cmd,
12998 bool_t *retry, bool_t *did_start_fop, COMPOUND4res_clnt **respp,
12999 bool_t *skip_get_err, nfs4_lost_rqst_t *lost_rqstp)
13000 {
13001 int argoplist_size;
13002 int num_ops = 2;
13003
13004 *retry = FALSE;
13005 *did_start_fop = FALSE;
13006 *skip_get_err = FALSE;
13007 lost_rqstp->lr_op = 0;
13008 argoplist_size = num_ops * sizeof (nfs_argop4);
13009 /* fill array with zero */
13010 *argopp = kmem_zalloc(argoplist_size, KM_SLEEP);
13011
13012 *argspp = argsp;
13013 *respp = NULL;
13014
13015 argsp->array_len = num_ops;
13016 argsp->array = *argopp;
13017
13018 /* initialize in case of error; will get real value down below */
13019 argsp->ctag = TAG_NONE;
13020
13021 if ((cmd == F_SETLK || cmd == F_SETLKW) && flk->l_type == F_UNLCK)
13022 *op_hintp = OH_LOCKU;
13023 else
13024 *op_hintp = OH_OTHER;
13025 }
13026
13027 /*
13028 * Call the nfs4_start_fop() for nfs4frlock, if necessary. Assign
13029 * the proper nfs4_server_t for this instance of nfs4frlock.
13030 * Returns 0 (success) or an errno value.
13031 */
13032 static int
13033 nfs4frlock_start_call(nfs4_lock_call_type_t ctype, vnode_t *vp,
13034 nfs4_op_hint_t op_hint, nfs4_recov_state_t *recov_statep,
13035 bool_t *did_start_fop, bool_t *startrecovp)
13036 {
13037 int error = 0;
13038 rnode4_t *rp;
13039
13040 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
13041
13042 if (ctype == NFS4_LCK_CTYPE_NORM) {
13043 error = nfs4_start_fop(VTOMI4(vp), vp, NULL, op_hint,
13044 recov_statep, startrecovp);
13045 if (error)
13046 return (error);
13047 *did_start_fop = TRUE;
13048 } else {
13049 *did_start_fop = FALSE;
13050 *startrecovp = FALSE;
13051 }
13052
13053 if (!error) {
13054 rp = VTOR4(vp);
13055
13056 /* If the file failed recovery, just quit. */
13057 mutex_enter(&rp->r_statelock);
13058 if (rp->r_flags & R4RECOVERR) {
13059 error = EIO;
13060 }
13061 mutex_exit(&rp->r_statelock);
13062 }
13063
13064 return (error);
13065 }
13066
13067 /*
13068 * Setup the LOCK4/LOCKU4 arguments for resending a lost lock request. A
13069 * resend nfs4frlock call is initiated by the recovery framework.
13070 * Acquires the lop and oop seqid synchronization.
13071 */
13072 static void
13073 nfs4frlock_setup_resend_lock_args(nfs4_lost_rqst_t *resend_rqstp,
13074 COMPOUND4args_clnt *argsp, nfs_argop4 *argop, nfs4_lock_owner_t **lopp,
13075 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp,
13076 LOCK4args **lock_argsp, LOCKU4args **locku_argsp)
13077 {
13078 mntinfo4_t *mi = VTOMI4(resend_rqstp->lr_vp);
13079 int error;
13080
13081 NFS4_DEBUG((nfs4_lost_rqst_debug || nfs4_client_lock_debug),
13082 (CE_NOTE,
13083 "nfs4frlock_setup_resend_lock_args: have lost lock to resend"));
13084 ASSERT(resend_rqstp != NULL);
13085 ASSERT(resend_rqstp->lr_op == OP_LOCK ||
13086 resend_rqstp->lr_op == OP_LOCKU);
13087
13088 *oopp = resend_rqstp->lr_oop;
13089 if (resend_rqstp->lr_oop) {
13090 open_owner_hold(resend_rqstp->lr_oop);
13091 error = nfs4_start_open_seqid_sync(resend_rqstp->lr_oop, mi);
13092 ASSERT(error == 0); /* recov thread always succeeds */
13093 }
13094
13095 /* Must resend this lost lock/locku request. */
13096 ASSERT(resend_rqstp->lr_lop != NULL);
13097 *lopp = resend_rqstp->lr_lop;
13098 lock_owner_hold(resend_rqstp->lr_lop);
13099 error = nfs4_start_lock_seqid_sync(resend_rqstp->lr_lop, mi);
13100 ASSERT(error == 0); /* recov thread always succeeds */
13101
13102 *ospp = resend_rqstp->lr_osp;
13103 if (*ospp)
13104 open_stream_hold(resend_rqstp->lr_osp);
13105
13106 if (resend_rqstp->lr_op == OP_LOCK) {
13107 LOCK4args *lock_args;
13108
13109 argop->argop = OP_LOCK;
13110 *lock_argsp = lock_args = &argop->nfs_argop4_u.oplock;
13111 lock_args->locktype = resend_rqstp->lr_locktype;
13112 lock_args->reclaim =
13113 (resend_rqstp->lr_ctype == NFS4_LCK_CTYPE_RECLAIM);
13114 lock_args->offset = resend_rqstp->lr_flk->l_start;
13115 lock_args->length = resend_rqstp->lr_flk->l_len;
13116 if (lock_args->length == 0)
13117 lock_args->length = ~lock_args->length;
13118 nfs4_setup_lock_args(*lopp, *oopp, *ospp,
13119 mi2clientid(mi), &lock_args->locker);
13120
13121 switch (resend_rqstp->lr_ctype) {
13122 case NFS4_LCK_CTYPE_RESEND:
13123 argsp->ctag = TAG_LOCK_RESEND;
13124 break;
13125 case NFS4_LCK_CTYPE_REINSTATE:
13126 argsp->ctag = TAG_LOCK_REINSTATE;
13127 break;
13128 case NFS4_LCK_CTYPE_RECLAIM:
13129 argsp->ctag = TAG_LOCK_RECLAIM;
13130 break;
13131 default:
13132 argsp->ctag = TAG_LOCK_UNKNOWN;
13133 break;
13134 }
13135 } else {
13136 LOCKU4args *locku_args;
13137 nfs4_lock_owner_t *lop = resend_rqstp->lr_lop;
13138
13139 argop->argop = OP_LOCKU;
13140 *locku_argsp = locku_args = &argop->nfs_argop4_u.oplocku;
13141 locku_args->locktype = READ_LT;
13142 locku_args->seqid = lop->lock_seqid + 1;
13143 mutex_enter(&lop->lo_lock);
13144 locku_args->lock_stateid = lop->lock_stateid;
13145 mutex_exit(&lop->lo_lock);
13146 locku_args->offset = resend_rqstp->lr_flk->l_start;
13147 locku_args->length = resend_rqstp->lr_flk->l_len;
13148 if (locku_args->length == 0)
13149 locku_args->length = ~locku_args->length;
13150
13151 switch (resend_rqstp->lr_ctype) {
13152 case NFS4_LCK_CTYPE_RESEND:
13153 argsp->ctag = TAG_LOCKU_RESEND;
13154 break;
13155 case NFS4_LCK_CTYPE_REINSTATE:
13156 argsp->ctag = TAG_LOCKU_REINSTATE;
13157 break;
13158 default:
13159 argsp->ctag = TAG_LOCK_UNKNOWN;
13160 break;
13161 }
13162 }
13163 }
13164
13165 /*
13166 * Setup the LOCKT4 arguments.
13167 */
13168 static void
13169 nfs4frlock_setup_lockt_args(nfs4_lock_call_type_t ctype, nfs_argop4 *argop,
13170 LOCKT4args **lockt_argsp, COMPOUND4args_clnt *argsp, flock64_t *flk,
13171 rnode4_t *rp)
13172 {
13173 LOCKT4args *lockt_args;
13174
13175 ASSERT(nfs_zone() == VTOMI4(RTOV4(rp))->mi_zone);
13176 ASSERT(ctype == NFS4_LCK_CTYPE_NORM);
13177 argop->argop = OP_LOCKT;
13178 argsp->ctag = TAG_LOCKT;
13179 lockt_args = &argop->nfs_argop4_u.oplockt;
13180
13181 /*
13182 * The locktype will be READ_LT unless it's
13183 * a write lock. We do this because the Solaris
13184 * system call allows the combination of
13185 * F_UNLCK and F_GETLK* and so in that case the
13186 * unlock is mapped to a read.
13187 */
13188 if (flk->l_type == F_WRLCK)
13189 lockt_args->locktype = WRITE_LT;
13190 else
13191 lockt_args->locktype = READ_LT;
13192
13193 lockt_args->owner.clientid = mi2clientid(VTOMI4(RTOV4(rp)));
13194 /* set the lock owner4 args */
13195 nfs4_setlockowner_args(&lockt_args->owner, rp,
13196 ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pidp->pid_id :
13197 flk->l_pid);
13198 lockt_args->offset = flk->l_start;
13199 lockt_args->length = flk->l_len;
13200 if (flk->l_len == 0)
13201 lockt_args->length = ~lockt_args->length;
13202
13203 *lockt_argsp = lockt_args;
13204 }
13205
13206 /*
13207 * If the client is holding a delegation, and the open stream to be used
13208 * with this lock request is a delegation open stream, then re-open the stream.
13209 * Sets the nfs4_error_t to all zeros unless the open stream has already
13210 * failed a reopen or we couldn't find the open stream. NFS4ERR_DELAY
13211 * means the caller should retry (like a recovery retry).
13212 */
13213 static void
13214 nfs4frlock_check_deleg(vnode_t *vp, nfs4_error_t *ep, cred_t *cr, int lt)
13215 {
13216 open_delegation_type4 dt;
13217 bool_t reopen_needed, force;
13218 nfs4_open_stream_t *osp;
13219 open_claim_type4 oclaim;
13220 rnode4_t *rp = VTOR4(vp);
13221 mntinfo4_t *mi = VTOMI4(vp);
13222
13223 ASSERT(nfs_zone() == mi->mi_zone);
13224
13225 nfs4_error_zinit(ep);
13226
13227 mutex_enter(&rp->r_statev4_lock);
13228 dt = rp->r_deleg_type;
13229 mutex_exit(&rp->r_statev4_lock);
13230
13231 if (dt != OPEN_DELEGATE_NONE) {
13232 nfs4_open_owner_t *oop;
13233
13234 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi);
13235 if (!oop) {
13236 ep->stat = NFS4ERR_IO;
13237 return;
13238 }
13239 /* returns with 'os_sync_lock' held */
13240 osp = find_open_stream(oop, rp);
13241 if (!osp) {
13242 open_owner_rele(oop);
13243 ep->stat = NFS4ERR_IO;
13244 return;
13245 }
13246
13247 if (osp->os_failed_reopen) {
13248 NFS4_DEBUG((nfs4_open_stream_debug ||
13249 nfs4_client_lock_debug), (CE_NOTE,
13250 "nfs4frlock_check_deleg: os_failed_reopen set "
13251 "for osp %p, cr %p, rp %s", (void *)osp,
13252 (void *)cr, rnode4info(rp)));
13253 mutex_exit(&osp->os_sync_lock);
13254 open_stream_rele(osp, rp);
13255 open_owner_rele(oop);
13256 ep->stat = NFS4ERR_IO;
13257 return;
13258 }
13259
13260 /*
13261 * Determine whether a reopen is needed. If this
13262 * is a delegation open stream, then send the open
13263 * to the server to give visibility to the open owner.
13264 * Even if it isn't a delegation open stream, we need
13265 * to check if the previous open CLAIM_DELEGATE_CUR
13266 * was sufficient.
13267 */
13268
13269 reopen_needed = osp->os_delegation ||
13270 ((lt == F_RDLCK &&
13271 !(osp->os_dc_openacc & OPEN4_SHARE_ACCESS_READ)) ||
13272 (lt == F_WRLCK &&
13273 !(osp->os_dc_openacc & OPEN4_SHARE_ACCESS_WRITE)));
13274
13275 mutex_exit(&osp->os_sync_lock);
13276 open_owner_rele(oop);
13277
13278 if (reopen_needed) {
13279 /*
13280 * Always use CLAIM_PREVIOUS after server reboot.
13281 * The server will reject CLAIM_DELEGATE_CUR if
13282 * it is used during the grace period.
13283 */
13284 mutex_enter(&mi->mi_lock);
13285 if (mi->mi_recovflags & MI4R_SRV_REBOOT) {
13286 oclaim = CLAIM_PREVIOUS;
13287 force = TRUE;
13288 } else {
13289 oclaim = CLAIM_DELEGATE_CUR;
13290 force = FALSE;
13291 }
13292 mutex_exit(&mi->mi_lock);
13293
13294 nfs4_reopen(vp, osp, ep, oclaim, force, FALSE);
13295 if (ep->error == EAGAIN) {
13296 nfs4_error_zinit(ep);
13297 ep->stat = NFS4ERR_DELAY;
13298 }
13299 }
13300 open_stream_rele(osp, rp);
13301 osp = NULL;
13302 }
13303 }
13304
13305 /*
13306 * Setup the LOCKU4 arguments.
13307 * Returns errors via the nfs4_error_t.
13308 * NFS4_OK no problems. *go_otwp is TRUE if call should go
13309 * over-the-wire. The caller must release the
13310 * reference on *lopp.
13311 * NFS4ERR_DELAY caller should retry (like recovery retry)
13312 * (other) unrecoverable error.
13313 */
13314 static void
13315 nfs4frlock_setup_locku_args(nfs4_lock_call_type_t ctype, nfs_argop4 *argop,
13316 LOCKU4args **locku_argsp, flock64_t *flk,
13317 nfs4_lock_owner_t **lopp, nfs4_error_t *ep, COMPOUND4args_clnt *argsp,
13318 vnode_t *vp, int flag, u_offset_t offset, cred_t *cr,
13319 bool_t *skip_get_err, bool_t *go_otwp)
13320 {
13321 nfs4_lock_owner_t *lop = NULL;
13322 LOCKU4args *locku_args;
13323 pid_t pid;
13324 bool_t is_spec = FALSE;
13325 rnode4_t *rp = VTOR4(vp);
13326
13327 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
13328 ASSERT(ctype == NFS4_LCK_CTYPE_NORM);
13329
13330 nfs4frlock_check_deleg(vp, ep, cr, F_UNLCK);
13331 if (ep->error || ep->stat)
13332 return;
13333
13334 argop->argop = OP_LOCKU;
13335 if (ctype == NFS4_LCK_CTYPE_REINSTATE)
13336 argsp->ctag = TAG_LOCKU_REINSTATE;
13337 else
13338 argsp->ctag = TAG_LOCKU;
13339 locku_args = &argop->nfs_argop4_u.oplocku;
13340 *locku_argsp = locku_args;
13341
13342 /*
13343 * XXX what should locku_args->locktype be?
13344 * setting to ALWAYS be READ_LT so at least
13345 * it is a valid locktype.
13346 */
13347
13348 locku_args->locktype = READ_LT;
13349
13350 pid = ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pidp->pid_id :
13351 flk->l_pid;
13352
13353 /*
13354 * Get the lock owner stateid. If no lock owner
13355 * exists, return success.
13356 */
13357 lop = find_lock_owner(rp, pid, LOWN_ANY);
13358 *lopp = lop;
13359 if (lop && CLNT_ISSPECIAL(&lop->lock_stateid))
13360 is_spec = TRUE;
13361 if (!lop || is_spec) {
13362 /*
13363 * No lock owner so no locks to unlock.
13364 * Return success. If there was a failed
13365 * reclaim earlier, the lock might still be
13366 * registered with the local locking code,
13367 * so notify it of the unlock.
13368 *
13369 * If the lockowner is using a special stateid,
13370 * then the original lock request (that created
13371 * this lockowner) was never successful, so we
13372 * have no lock to undo OTW.
13373 */
13374 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
13375 "nfs4frlock_setup_locku_args: LOCKU: no lock owner "
13376 "(%ld) so return success", (long)pid));
13377
13378 if (ctype == NFS4_LCK_CTYPE_NORM)
13379 flk->l_pid = curproc->p_pid;
13380 nfs4_register_lock_locally(vp, flk, flag, offset);
13381 /*
13382 * Release our hold and NULL out so final_cleanup
13383 * doesn't try to end a lock seqid sync we
13384 * never started.
13385 */
13386 if (is_spec) {
13387 lock_owner_rele(lop);
13388 *lopp = NULL;
13389 }
13390 *skip_get_err = TRUE;
13391 *go_otwp = FALSE;
13392 return;
13393 }
13394
13395 ep->error = nfs4_start_lock_seqid_sync(lop, VTOMI4(vp));
13396 if (ep->error == EAGAIN) {
13397 lock_owner_rele(lop);
13398 *lopp = NULL;
13399 return;
13400 }
13401
13402 mutex_enter(&lop->lo_lock);
13403 locku_args->lock_stateid = lop->lock_stateid;
13404 mutex_exit(&lop->lo_lock);
13405 locku_args->seqid = lop->lock_seqid + 1;
13406
13407 /* leave the ref count on lop, rele after RPC call */
13408
13409 locku_args->offset = flk->l_start;
13410 locku_args->length = flk->l_len;
13411 if (flk->l_len == 0)
13412 locku_args->length = ~locku_args->length;
13413
13414 *go_otwp = TRUE;
13415 }
13416
13417 /*
13418 * Setup the LOCK4 arguments.
13419 *
13420 * Returns errors via the nfs4_error_t.
13421 * NFS4_OK no problems
13422 * NFS4ERR_DELAY caller should retry (like recovery retry)
13423 * (other) unrecoverable error
13424 */
13425 static void
13426 nfs4frlock_setup_lock_args(nfs4_lock_call_type_t ctype, LOCK4args **lock_argsp,
13427 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp,
13428 nfs4_lock_owner_t **lopp, nfs_argop4 *argop, COMPOUND4args_clnt *argsp,
13429 flock64_t *flk, int cmd, vnode_t *vp, cred_t *cr, nfs4_error_t *ep)
13430 {
13431 LOCK4args *lock_args;
13432 nfs4_open_owner_t *oop = NULL;
13433 nfs4_open_stream_t *osp = NULL;
13434 nfs4_lock_owner_t *lop = NULL;
13435 pid_t pid;
13436 rnode4_t *rp = VTOR4(vp);
13437
13438 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
13439
13440 nfs4frlock_check_deleg(vp, ep, cr, flk->l_type);
13441 if (ep->error || ep->stat != NFS4_OK)
13442 return;
13443
13444 argop->argop = OP_LOCK;
13445 if (ctype == NFS4_LCK_CTYPE_NORM)
13446 argsp->ctag = TAG_LOCK;
13447 else if (ctype == NFS4_LCK_CTYPE_RECLAIM)
13448 argsp->ctag = TAG_RELOCK;
13449 else
13450 argsp->ctag = TAG_LOCK_REINSTATE;
13451 lock_args = &argop->nfs_argop4_u.oplock;
13452 lock_args->locktype = flk_to_locktype(cmd, flk->l_type);
13453 lock_args->reclaim = ctype == NFS4_LCK_CTYPE_RECLAIM ? 1 : 0;
13454 /*
13455 * Get the lock owner. If no lock owner exists,
13456 * create a 'temporary' one and grab the open seqid
13457 * synchronization (which puts a hold on the open
13458 * owner and open stream).
13459 * This also grabs the lock seqid synchronization.
13460 */
13461 pid = ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pid : flk->l_pid;
13462 ep->stat =
13463 nfs4_find_or_create_lock_owner(pid, rp, cr, &oop, &osp, &lop);
13464
13465 if (ep->stat != NFS4_OK)
13466 goto out;
13467
13468 nfs4_setup_lock_args(lop, oop, osp, mi2clientid(VTOMI4(vp)),
13469 &lock_args->locker);
13470
13471 lock_args->offset = flk->l_start;
13472 lock_args->length = flk->l_len;
13473 if (flk->l_len == 0)
13474 lock_args->length = ~lock_args->length;
13475 *lock_argsp = lock_args;
13476 out:
13477 *oopp = oop;
13478 *ospp = osp;
13479 *lopp = lop;
13480 }
13481
13482 /*
13483 * After we get the reply from the server, record the proper information
13484 * for possible resend lock requests.
13485 *
13486 * Allocates memory for the saved_rqstp if we have a lost lock to save.
13487 */
13488 static void
13489 nfs4frlock_save_lost_rqst(nfs4_lock_call_type_t ctype, int error,
13490 nfs_lock_type4 locktype, nfs4_open_owner_t *oop,
13491 nfs4_open_stream_t *osp, nfs4_lock_owner_t *lop, flock64_t *flk,
13492 nfs4_lost_rqst_t *lost_rqstp, cred_t *cr, vnode_t *vp)
13493 {
13494 bool_t unlock = (flk->l_type == F_UNLCK);
13495
13496 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
13497 ASSERT(ctype == NFS4_LCK_CTYPE_NORM ||
13498 ctype == NFS4_LCK_CTYPE_REINSTATE);
13499
13500 if (error != 0 && !unlock) {
13501 NFS4_DEBUG((nfs4_lost_rqst_debug ||
13502 nfs4_client_lock_debug), (CE_NOTE,
13503 "nfs4frlock_save_lost_rqst: set lo_pending_rqsts to 1 "
13504 " for lop %p", (void *)lop));
13505 ASSERT(lop != NULL);
13506 mutex_enter(&lop->lo_lock);
13507 lop->lo_pending_rqsts = 1;
13508 mutex_exit(&lop->lo_lock);
13509 }
13510
13511 lost_rqstp->lr_putfirst = FALSE;
13512 lost_rqstp->lr_op = 0;
13513
13514 /*
13515 * For lock/locku requests, we treat EINTR as ETIMEDOUT for
13516 * recovery purposes so that the lock request that was sent
13517 * can be saved and re-issued later. Ditto for EIO from a forced
13518 * unmount. This is done to have the client's local locking state
13519 * match the v4 server's state; that is, the request was
13520 * potentially received and accepted by the server but the client
13521 * thinks it was not.
13522 */
13523 if (error == ETIMEDOUT || error == EINTR ||
13524 NFS4_FRC_UNMT_ERR(error, vp->v_vfsp)) {
13525 NFS4_DEBUG((nfs4_lost_rqst_debug ||
13526 nfs4_client_lock_debug), (CE_NOTE,
13527 "nfs4frlock_save_lost_rqst: got a lost %s lock for "
13528 "lop %p oop %p osp %p", unlock ? "LOCKU" : "LOCK",
13529 (void *)lop, (void *)oop, (void *)osp));
13530 if (unlock)
13531 lost_rqstp->lr_op = OP_LOCKU;
13532 else {
13533 lost_rqstp->lr_op = OP_LOCK;
13534 lost_rqstp->lr_locktype = locktype;
13535 }
13536 /*
13537 * Objects are held and rele'd via the recovery code.
13538 * See nfs4_save_lost_rqst.
13539 */
13540 lost_rqstp->lr_vp = vp;
13541 lost_rqstp->lr_dvp = NULL;
13542 lost_rqstp->lr_oop = oop;
13543 lost_rqstp->lr_osp = osp;
13544 lost_rqstp->lr_lop = lop;
13545 lost_rqstp->lr_cr = cr;
13546 switch (ctype) {
13547 case NFS4_LCK_CTYPE_NORM:
13548 flk->l_pid = ttoproc(curthread)->p_pid;
13549 lost_rqstp->lr_ctype = NFS4_LCK_CTYPE_RESEND;
13550 break;
13551 case NFS4_LCK_CTYPE_REINSTATE:
13552 lost_rqstp->lr_putfirst = TRUE;
13553 lost_rqstp->lr_ctype = ctype;
13554 break;
13555 default:
13556 break;
13557 }
13558 lost_rqstp->lr_flk = flk;
13559 }
13560 }
13561
13562 /*
13563 * Update lop's seqid. Also update the seqid stored in a resend request,
13564 * if any. (Some recovery errors increment the seqid, and we may have to
13565 * send the resend request again.)
13566 */
13567
13568 static void
13569 nfs4frlock_bump_seqid(LOCK4args *lock_args, LOCKU4args *locku_args,
13570 nfs4_open_owner_t *oop, nfs4_lock_owner_t *lop, nfs4_tag_type_t tag_type)
13571 {
13572 if (lock_args) {
13573 if (lock_args->locker.new_lock_owner == TRUE)
13574 nfs4_get_and_set_next_open_seqid(oop, tag_type);
13575 else {
13576 ASSERT(lop->lo_flags & NFS4_LOCK_SEQID_INUSE);
13577 nfs4_set_lock_seqid(lop->lock_seqid + 1, lop);
13578 }
13579 } else if (locku_args) {
13580 ASSERT(lop->lo_flags & NFS4_LOCK_SEQID_INUSE);
13581 nfs4_set_lock_seqid(lop->lock_seqid +1, lop);
13582 }
13583 }
13584
13585 /*
13586 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the
13587 * COMPOUND4 args/res for calls that need to retry.
13588 * Switches the *cred_otwp to base_cr.
13589 */
13590 static void
13591 nfs4frlock_check_access(vnode_t *vp, nfs4_op_hint_t op_hint,
13592 nfs4_recov_state_t *recov_statep, int needrecov, bool_t *did_start_fop,
13593 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp, int error,
13594 nfs4_lock_owner_t **lopp, nfs4_open_owner_t **oopp,
13595 nfs4_open_stream_t **ospp, cred_t *base_cr, cred_t **cred_otwp)
13596 {
13597 nfs4_open_owner_t *oop = *oopp;
13598 nfs4_open_stream_t *osp = *ospp;
13599 nfs4_lock_owner_t *lop = *lopp;
13600 nfs_argop4 *argop = (*argspp)->array;
13601
13602 if (*did_start_fop) {
13603 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, recov_statep,
13604 needrecov);
13605 *did_start_fop = FALSE;
13606 }
13607 ASSERT((*argspp)->array_len == 2);
13608 if (argop[1].argop == OP_LOCK)
13609 nfs4args_lock_free(&argop[1]);
13610 else if (argop[1].argop == OP_LOCKT)
13611 nfs4args_lockt_free(&argop[1]);
13612 kmem_free(argop, 2 * sizeof (nfs_argop4));
13613 if (!error)
13614 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)*respp);
13615 *argspp = NULL;
13616 *respp = NULL;
13617
13618 if (lop) {
13619 nfs4_end_lock_seqid_sync(lop);
13620 lock_owner_rele(lop);
13621 *lopp = NULL;
13622 }
13623
13624 /* need to free up the reference on osp for lock args */
13625 if (osp != NULL) {
13626 open_stream_rele(osp, VTOR4(vp));
13627 *ospp = NULL;
13628 }
13629
13630 /* need to free up the reference on oop for lock args */
13631 if (oop != NULL) {
13632 nfs4_end_open_seqid_sync(oop);
13633 open_owner_rele(oop);
13634 *oopp = NULL;
13635 }
13636
13637 crfree(*cred_otwp);
13638 *cred_otwp = base_cr;
13639 crhold(*cred_otwp);
13640 }
13641
13642 /*
13643 * Function to process the client's recovery for nfs4frlock.
13644 * Returns TRUE if we should retry the lock request; FALSE otherwise.
13645 *
13646 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the
13647 * COMPOUND4 args/res for calls that need to retry.
13648 *
13649 * Note: the rp's r_lkserlock is *not* dropped during this path.
13650 */
13651 static bool_t
13652 nfs4frlock_recovery(int needrecov, nfs4_error_t *ep,
13653 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp,
13654 LOCK4args *lock_args, LOCKU4args *locku_args,
13655 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp,
13656 nfs4_lock_owner_t **lopp, rnode4_t *rp, vnode_t *vp,
13657 nfs4_recov_state_t *recov_statep, nfs4_op_hint_t op_hint,
13658 bool_t *did_start_fop, nfs4_lost_rqst_t *lost_rqstp, flock64_t *flk)
13659 {
13660 nfs4_open_owner_t *oop = *oopp;
13661 nfs4_open_stream_t *osp = *ospp;
13662 nfs4_lock_owner_t *lop = *lopp;
13663
13664 bool_t abort, retry;
13665
13666 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
13667 ASSERT((*argspp) != NULL);
13668 ASSERT((*respp) != NULL);
13669 if (lock_args || locku_args)
13670 ASSERT(lop != NULL);
13671
13672 NFS4_DEBUG((nfs4_client_lock_debug || nfs4_client_recov_debug),
13673 (CE_NOTE, "nfs4frlock_recovery: initiating recovery\n"));
13674
13675 retry = TRUE;
13676 abort = FALSE;
13677 if (needrecov) {
13678 nfs4_bseqid_entry_t *bsep = NULL;
13679 nfs_opnum4 op;
13680
13681 op = lock_args ? OP_LOCK : locku_args ? OP_LOCKU : OP_LOCKT;
13682
13683 if (!ep->error && ep->stat == NFS4ERR_BAD_SEQID) {
13684 seqid4 seqid;
13685
13686 if (lock_args) {
13687 if (lock_args->locker.new_lock_owner == TRUE)
13688 seqid = lock_args->locker.locker4_u.
13689 open_owner.open_seqid;
13690 else
13691 seqid = lock_args->locker.locker4_u.
13692 lock_owner.lock_seqid;
13693 } else if (locku_args) {
13694 seqid = locku_args->seqid;
13695 } else {
13696 seqid = 0;
13697 }
13698
13699 bsep = nfs4_create_bseqid_entry(oop, lop, vp,
13700 flk->l_pid, (*argspp)->ctag, seqid);
13701 }
13702
13703 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, NULL,
13704 (lost_rqstp && (lost_rqstp->lr_op == OP_LOCK ||
13705 lost_rqstp->lr_op == OP_LOCKU)) ? lost_rqstp :
13706 NULL, op, bsep, NULL, NULL);
13707
13708 if (bsep)
13709 kmem_free(bsep, sizeof (*bsep));
13710 }
13711
13712 /*
13713 * Return that we do not want to retry the request for 3 cases:
13714 * 1. If we received EINTR or are bailing out because of a forced
13715 * unmount, we came into this code path just for the sake of
13716 * initiating recovery, we now need to return the error.
13717 * 2. If we have aborted recovery.
13718 * 3. We received NFS4ERR_BAD_SEQID.
13719 */
13720 if (ep->error == EINTR || NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp) ||
13721 abort == TRUE || (ep->error == 0 && ep->stat == NFS4ERR_BAD_SEQID))
13722 retry = FALSE;
13723
13724 if (*did_start_fop == TRUE) {
13725 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, recov_statep,
13726 needrecov);
13727 *did_start_fop = FALSE;
13728 }
13729
13730 if (retry == TRUE) {
13731 nfs_argop4 *argop;
13732
13733 argop = (*argspp)->array;
13734 ASSERT((*argspp)->array_len == 2);
13735
13736 if (argop[1].argop == OP_LOCK)
13737 nfs4args_lock_free(&argop[1]);
13738 else if (argop[1].argop == OP_LOCKT)
13739 nfs4args_lockt_free(&argop[1]);
13740 kmem_free(argop, 2 * sizeof (nfs_argop4));
13741 if (!ep->error)
13742 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)*respp);
13743 *respp = NULL;
13744 *argspp = NULL;
13745 }
13746
13747 if (lop != NULL) {
13748 nfs4_end_lock_seqid_sync(lop);
13749 lock_owner_rele(lop);
13750 }
13751
13752 *lopp = NULL;
13753
13754 /* need to free up the reference on osp for lock args */
13755 if (osp != NULL) {
13756 open_stream_rele(osp, rp);
13757 *ospp = NULL;
13758 }
13759
13760 /* need to free up the reference on oop for lock args */
13761 if (oop != NULL) {
13762 nfs4_end_open_seqid_sync(oop);
13763 open_owner_rele(oop);
13764 *oopp = NULL;
13765 }
13766
13767 return (retry);
13768 }
13769
13770 /*
13771 * Handles the successful reply from the server for nfs4frlock.
13772 */
13773 static void
13774 nfs4frlock_results_ok(nfs4_lock_call_type_t ctype, int cmd, flock64_t *flk,
13775 vnode_t *vp, int flag, u_offset_t offset,
13776 nfs4_lost_rqst_t *resend_rqstp)
13777 {
13778 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
13779 if ((cmd == F_SETLK || cmd == F_SETLKW) &&
13780 (flk->l_type == F_RDLCK || flk->l_type == F_WRLCK)) {
13781 if (ctype == NFS4_LCK_CTYPE_NORM) {
13782 flk->l_pid = ttoproc(curthread)->p_pid;
13783 /*
13784 * We do not register lost locks locally in
13785 * the 'resend' case since the user/application
13786 * doesn't think we have the lock.
13787 */
13788 ASSERT(!resend_rqstp);
13789 nfs4_register_lock_locally(vp, flk, flag, offset);
13790 }
13791 }
13792 }
13793
13794 /*
13795 * Handle the DENIED reply from the server for nfs4frlock.
13796 * Returns TRUE if we should retry the request; FALSE otherwise.
13797 *
13798 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the
13799 * COMPOUND4 args/res for calls that need to retry. Can also
13800 * drop and regrab the r_lkserlock.
13801 */
13802 static bool_t
13803 nfs4frlock_results_denied(nfs4_lock_call_type_t ctype, LOCK4args *lock_args,
13804 LOCKT4args *lockt_args, nfs4_open_owner_t **oopp,
13805 nfs4_open_stream_t **ospp, nfs4_lock_owner_t **lopp, int cmd,
13806 vnode_t *vp, flock64_t *flk, nfs4_op_hint_t op_hint,
13807 nfs4_recov_state_t *recov_statep, int needrecov,
13808 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp,
13809 clock_t *tick_delayp, short *whencep, int *errorp,
13810 nfs_resop4 *resop, cred_t *cr, bool_t *did_start_fop,
13811 bool_t *skip_get_err)
13812 {
13813 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
13814
13815 if (lock_args) {
13816 nfs4_open_owner_t *oop = *oopp;
13817 nfs4_open_stream_t *osp = *ospp;
13818 nfs4_lock_owner_t *lop = *lopp;
13819 int intr;
13820
13821 /*
13822 * Blocking lock needs to sleep and retry from the request.
13823 *
13824 * Do not block and wait for 'resend' or 'reinstate'
13825 * lock requests, just return the error.
13826 *
13827 * Note: reclaim requests have cmd == F_SETLK, not F_SETLKW.
13828 */
13829 if (cmd == F_SETLKW) {
13830 rnode4_t *rp = VTOR4(vp);
13831 nfs_argop4 *argop = (*argspp)->array;
13832
13833 ASSERT(ctype == NFS4_LCK_CTYPE_NORM);
13834
13835 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint,
13836 recov_statep, needrecov);
13837 *did_start_fop = FALSE;
13838 ASSERT((*argspp)->array_len == 2);
13839 if (argop[1].argop == OP_LOCK)
13840 nfs4args_lock_free(&argop[1]);
13841 else if (argop[1].argop == OP_LOCKT)
13842 nfs4args_lockt_free(&argop[1]);
13843 kmem_free(argop, 2 * sizeof (nfs_argop4));
13844 if (*respp)
13845 (void) xdr_free(xdr_COMPOUND4res_clnt,
13846 (caddr_t)*respp);
13847 *argspp = NULL;
13848 *respp = NULL;
13849 nfs4_end_lock_seqid_sync(lop);
13850 lock_owner_rele(lop);
13851 *lopp = NULL;
13852 if (osp != NULL) {
13853 open_stream_rele(osp, rp);
13854 *ospp = NULL;
13855 }
13856 if (oop != NULL) {
13857 nfs4_end_open_seqid_sync(oop);
13858 open_owner_rele(oop);
13859 *oopp = NULL;
13860 }
13861
13862 nfs_rw_exit(&rp->r_lkserlock);
13863
13864 intr = nfs4_block_and_wait(tick_delayp, rp);
13865
13866 if (intr) {
13867 (void) nfs_rw_enter_sig(&rp->r_lkserlock,
13868 RW_WRITER, FALSE);
13869 *errorp = EINTR;
13870 return (FALSE);
13871 }
13872
13873 (void) nfs_rw_enter_sig(&rp->r_lkserlock,
13874 RW_WRITER, FALSE);
13875
13876 /*
13877 * Make sure we are still safe to lock with
13878 * regards to mmapping.
13879 */
13880 if (!nfs4_safelock(vp, flk, cr)) {
13881 *errorp = EAGAIN;
13882 return (FALSE);
13883 }
13884
13885 return (TRUE);
13886 }
13887 if (ctype == NFS4_LCK_CTYPE_NORM)
13888 *errorp = EAGAIN;
13889 *skip_get_err = TRUE;
13890 flk->l_whence = 0;
13891 *whencep = 0;
13892 return (FALSE);
13893 } else if (lockt_args) {
13894 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
13895 "nfs4frlock_results_denied: OP_LOCKT DENIED"));
13896
13897 denied_to_flk(&resop->nfs_resop4_u.oplockt.denied,
13898 flk, lockt_args);
13899
13900 /* according to NLM code */
13901 *errorp = 0;
13902 *whencep = 0;
13903 *skip_get_err = TRUE;
13904 return (FALSE);
13905 }
13906 return (FALSE);
13907 }
13908
13909 /*
13910 * Handles all NFS4 errors besides NFS4_OK and NFS4ERR_DENIED for nfs4frlock.
13911 */
13912 static void
13913 nfs4frlock_results_default(COMPOUND4res_clnt *resp, int *errorp)
13914 {
13915 switch (resp->status) {
13916 case NFS4ERR_ACCESS:
13917 case NFS4ERR_ADMIN_REVOKED:
13918 case NFS4ERR_BADHANDLE:
13919 case NFS4ERR_BAD_RANGE:
13920 case NFS4ERR_BAD_SEQID:
13921 case NFS4ERR_BAD_STATEID:
13922 case NFS4ERR_BADXDR:
13923 case NFS4ERR_DEADLOCK:
13924 case NFS4ERR_DELAY:
13925 case NFS4ERR_EXPIRED:
13926 case NFS4ERR_FHEXPIRED:
13927 case NFS4ERR_GRACE:
13928 case NFS4ERR_INVAL:
13929 case NFS4ERR_ISDIR:
13930 case NFS4ERR_LEASE_MOVED:
13931 case NFS4ERR_LOCK_NOTSUPP:
13932 case NFS4ERR_LOCK_RANGE:
13933 case NFS4ERR_MOVED:
13934 case NFS4ERR_NOFILEHANDLE:
13935 case NFS4ERR_NO_GRACE:
13936 case NFS4ERR_OLD_STATEID:
13937 case NFS4ERR_OPENMODE:
13938 case NFS4ERR_RECLAIM_BAD:
13939 case NFS4ERR_RECLAIM_CONFLICT:
13940 case NFS4ERR_RESOURCE:
13941 case NFS4ERR_SERVERFAULT:
13942 case NFS4ERR_STALE:
13943 case NFS4ERR_STALE_CLIENTID:
13944 case NFS4ERR_STALE_STATEID:
13945 return;
13946 default:
13947 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
13948 "nfs4frlock_results_default: got unrecognizable "
13949 "res.status %d", resp->status));
13950 *errorp = NFS4ERR_INVAL;
13951 }
13952 }
13953
13954 /*
13955 * The lock request was successful, so update the client's state.
13956 */
13957 static void
13958 nfs4frlock_update_state(LOCK4args *lock_args, LOCKU4args *locku_args,
13959 LOCKT4args *lockt_args, nfs_resop4 *resop, nfs4_lock_owner_t *lop,
13960 vnode_t *vp, flock64_t *flk, cred_t *cr,
13961 nfs4_lost_rqst_t *resend_rqstp)
13962 {
13963 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
13964
13965 if (lock_args) {
13966 LOCK4res *lock_res;
13967
13968 lock_res = &resop->nfs_resop4_u.oplock;
13969 /* update the stateid with server's response */
13970
13971 if (lock_args->locker.new_lock_owner == TRUE) {
13972 mutex_enter(&lop->lo_lock);
13973 lop->lo_just_created = NFS4_PERM_CREATED;
13974 mutex_exit(&lop->lo_lock);
13975 }
13976
13977 nfs4_set_lock_stateid(lop, lock_res->LOCK4res_u.lock_stateid);
13978
13979 /*
13980 * If the lock was the result of a resending a lost
13981 * request, we've synched up the stateid and seqid
13982 * with the server, but now the server might be out of sync
13983 * with what the application thinks it has for locks.
13984 * Clean that up here. It's unclear whether we should do
13985 * this even if the filesystem has been forcibly unmounted.
13986 * For most servers, it's probably wasted effort, but
13987 * RFC3530 lets servers require that unlocks exactly match
13988 * the locks that are held.
13989 */
13990 if (resend_rqstp != NULL &&
13991 resend_rqstp->lr_ctype != NFS4_LCK_CTYPE_REINSTATE) {
13992 nfs4_reinstitute_local_lock_state(vp, flk, cr, lop);
13993 } else {
13994 flk->l_whence = 0;
13995 }
13996 } else if (locku_args) {
13997 LOCKU4res *locku_res;
13998
13999 locku_res = &resop->nfs_resop4_u.oplocku;
14000
14001 /* Update the stateid with the server's response */
14002 nfs4_set_lock_stateid(lop, locku_res->lock_stateid);
14003 } else if (lockt_args) {
14004 /* Switch the lock type to express success, see fcntl */
14005 flk->l_type = F_UNLCK;
14006 flk->l_whence = 0;
14007 }
14008 }
14009
14010 /*
14011 * Do final cleanup before exiting nfs4frlock.
14012 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the
14013 * COMPOUND4 args/res for calls that haven't already.
14014 */
14015 static void
14016 nfs4frlock_final_cleanup(nfs4_lock_call_type_t ctype, COMPOUND4args_clnt *argsp,
14017 COMPOUND4res_clnt *resp, vnode_t *vp, nfs4_op_hint_t op_hint,
14018 nfs4_recov_state_t *recov_statep, int needrecov, nfs4_open_owner_t *oop,
14019 nfs4_open_stream_t *osp, nfs4_lock_owner_t *lop, flock64_t *flk,
14020 short whence, u_offset_t offset, struct lm_sysid *ls,
14021 int *errorp, LOCK4args *lock_args, LOCKU4args *locku_args,
14022 bool_t did_start_fop, bool_t skip_get_err,
14023 cred_t *cred_otw, cred_t *cred)
14024 {
14025 mntinfo4_t *mi = VTOMI4(vp);
14026 rnode4_t *rp = VTOR4(vp);
14027 int error = *errorp;
14028 nfs_argop4 *argop;
14029 int do_flush_pages = 0;
14030
14031 ASSERT(nfs_zone() == mi->mi_zone);
14032 /*
14033 * The client recovery code wants the raw status information,
14034 * so don't map the NFS status code to an errno value for
14035 * non-normal call types.
14036 */
14037 if (ctype == NFS4_LCK_CTYPE_NORM) {
14038 if (*errorp == 0 && resp != NULL && skip_get_err == FALSE)
14039 *errorp = geterrno4(resp->status);
14040 if (did_start_fop == TRUE)
14041 nfs4_end_fop(mi, vp, NULL, op_hint, recov_statep,
14042 needrecov);
14043
14044 /*
14045 * We've established a new lock on the server, so invalidate
14046 * the pages associated with the vnode to get the most up to
14047 * date pages from the server after acquiring the lock. We
14048 * want to be sure that the read operation gets the newest data.
14049 * N.B.
14050 * We used to do this in nfs4frlock_results_ok but that doesn't
14051 * work since VOP_PUTPAGE can call nfs4_commit which calls
14052 * nfs4_start_fop. We flush the pages below after calling
14053 * nfs4_end_fop above
14054 * The flush of the page cache must be done after
14055 * nfs4_end_open_seqid_sync() to avoid a 4-way hang.
14056 */
14057 if (!error && resp && resp->status == NFS4_OK)
14058 do_flush_pages = 1;
14059 }
14060 if (argsp) {
14061 ASSERT(argsp->array_len == 2);
14062 argop = argsp->array;
14063 if (argop[1].argop == OP_LOCK)
14064 nfs4args_lock_free(&argop[1]);
14065 else if (argop[1].argop == OP_LOCKT)
14066 nfs4args_lockt_free(&argop[1]);
14067 kmem_free(argop, 2 * sizeof (nfs_argop4));
14068 if (resp)
14069 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp);
14070 }
14071
14072 /* free the reference on the lock owner */
14073 if (lop != NULL) {
14074 nfs4_end_lock_seqid_sync(lop);
14075 lock_owner_rele(lop);
14076 }
14077
14078 /* need to free up the reference on osp for lock args */
14079 if (osp != NULL)
14080 open_stream_rele(osp, rp);
14081
14082 /* need to free up the reference on oop for lock args */
14083 if (oop != NULL) {
14084 nfs4_end_open_seqid_sync(oop);
14085 open_owner_rele(oop);
14086 }
14087
14088 if (do_flush_pages)
14089 nfs4_flush_pages(vp, cred);
14090
14091 (void) convoff(vp, flk, whence, offset);
14092
14093 lm_rel_sysid(ls);
14094
14095 /*
14096 * Record debug information in the event we get EINVAL.
14097 */
14098 mutex_enter(&mi->mi_lock);
14099 if (*errorp == EINVAL && (lock_args || locku_args) &&
14100 (!(mi->mi_flags & MI4_POSIX_LOCK))) {
14101 if (!(mi->mi_flags & MI4_LOCK_DEBUG)) {
14102 zcmn_err(getzoneid(), CE_NOTE,
14103 "%s operation failed with "
14104 "EINVAL probably since the server, %s,"
14105 " doesn't support POSIX style locking",
14106 lock_args ? "LOCK" : "LOCKU",
14107 mi->mi_curr_serv->sv_hostname);
14108 mi->mi_flags |= MI4_LOCK_DEBUG;
14109 }
14110 }
14111 mutex_exit(&mi->mi_lock);
14112
14113 if (cred_otw)
14114 crfree(cred_otw);
14115 }
14116
14117 /*
14118 * This calls the server and the local locking code.
14119 *
14120 * Client locks are registerred locally by oring the sysid with
14121 * LM_SYSID_CLIENT. The server registers locks locally using just the sysid.
14122 * We need to distinguish between the two to avoid collision in case one
14123 * machine is used as both client and server.
14124 *
14125 * Blocking lock requests will continually retry to acquire the lock
14126 * forever.
14127 *
14128 * The ctype is defined as follows:
14129 * NFS4_LCK_CTYPE_NORM: normal lock request.
14130 *
14131 * NFS4_LCK_CTYPE_RECLAIM: bypass the usual calls for synchronizing with client
14132 * recovery, get the pid from flk instead of curproc, and don't reregister
14133 * the lock locally.
14134 *
14135 * NFS4_LCK_CTYPE_RESEND: same as NFS4_LCK_CTYPE_RECLAIM, with the addition
14136 * that we will use the information passed in via resend_rqstp to setup the
14137 * lock/locku request. This resend is the exact same request as the 'lost
14138 * lock', and is initiated by the recovery framework. A successful resend
14139 * request can initiate one or more reinstate requests.
14140 *
14141 * NFS4_LCK_CTYPE_REINSTATE: same as NFS4_LCK_CTYPE_RESEND, except that it
14142 * does not trigger additional reinstate requests. This lock call type is
14143 * set for setting the v4 server's locking state back to match what the
14144 * client's local locking state is in the event of a received 'lost lock'.
14145 *
14146 * Errors are returned via the nfs4_error_t parameter.
14147 */
14148 void
14149 nfs4frlock(nfs4_lock_call_type_t ctype, vnode_t *vp, int cmd, flock64_t *flk,
14150 int flag, u_offset_t offset, cred_t *cr, nfs4_error_t *ep,
14151 nfs4_lost_rqst_t *resend_rqstp, int *did_reclaimp)
14152 {
14153 COMPOUND4args_clnt args, *argsp = NULL;
14154 COMPOUND4res_clnt res, *resp = NULL;
14155 nfs_argop4 *argop;
14156 nfs_resop4 *resop;
14157 rnode4_t *rp;
14158 int doqueue = 1;
14159 clock_t tick_delay; /* delay in clock ticks */
14160 struct lm_sysid *ls;
14161 LOCK4args *lock_args = NULL;
14162 LOCKU4args *locku_args = NULL;
14163 LOCKT4args *lockt_args = NULL;
14164 nfs4_open_owner_t *oop = NULL;
14165 nfs4_open_stream_t *osp = NULL;
14166 nfs4_lock_owner_t *lop = NULL;
14167 bool_t needrecov = FALSE;
14168 nfs4_recov_state_t recov_state;
14169 short whence;
14170 nfs4_op_hint_t op_hint;
14171 nfs4_lost_rqst_t lost_rqst;
14172 bool_t retry = FALSE;
14173 bool_t did_start_fop = FALSE;
14174 bool_t skip_get_err = FALSE;
14175 cred_t *cred_otw = NULL;
14176 bool_t recovonly; /* just queue request */
14177 int frc_no_reclaim = 0;
14178 #ifdef DEBUG
14179 char *name;
14180 #endif
14181
14182 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
14183
14184 #ifdef DEBUG
14185 name = fn_name(VTOSV(vp)->sv_name);
14186 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4frlock: "
14187 "%s: cmd %d, type %d, offset %llu, start %"PRIx64", "
14188 "length %"PRIu64", pid %d, sysid %d, call type %s, "
14189 "resend request %s", name, cmd, flk->l_type, offset, flk->l_start,
14190 flk->l_len, ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pid :
14191 flk->l_pid, flk->l_sysid, nfs4frlock_get_call_type(ctype),
14192 resend_rqstp ? "TRUE" : "FALSE"));
14193 kmem_free(name, MAXNAMELEN);
14194 #endif
14195
14196 nfs4_error_zinit(ep);
14197 ep->error = nfs4frlock_validate_args(cmd, flk, flag, vp, offset);
14198 if (ep->error)
14199 return;
14200 ep->error = nfs4frlock_get_sysid(&ls, vp, flk);
14201 if (ep->error)
14202 return;
14203 nfs4frlock_pre_setup(&tick_delay, &recov_state, flk, &whence,
14204 vp, cr, &cred_otw);
14205
14206 recov_retry:
14207 nfs4frlock_call_init(&args, &argsp, &argop, &op_hint, flk, cmd,
14208 &retry, &did_start_fop, &resp, &skip_get_err, &lost_rqst);
14209 rp = VTOR4(vp);
14210
14211 ep->error = nfs4frlock_start_call(ctype, vp, op_hint, &recov_state,
14212 &did_start_fop, &recovonly);
14213
14214 if (ep->error)
14215 goto out;
14216
14217 if (recovonly) {
14218 /*
14219 * Leave the request for the recovery system to deal with.
14220 */
14221 ASSERT(ctype == NFS4_LCK_CTYPE_NORM);
14222 ASSERT(cmd != F_GETLK);
14223 ASSERT(flk->l_type == F_UNLCK);
14224
14225 nfs4_error_init(ep, EINTR);
14226 needrecov = TRUE;
14227 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY);
14228 if (lop != NULL) {
14229 nfs4frlock_save_lost_rqst(ctype, ep->error, READ_LT,
14230 NULL, NULL, lop, flk, &lost_rqst, cr, vp);
14231 (void) nfs4_start_recovery(ep,
14232 VTOMI4(vp), vp, NULL, NULL,
14233 (lost_rqst.lr_op == OP_LOCK ||
14234 lost_rqst.lr_op == OP_LOCKU) ?
14235 &lost_rqst : NULL, OP_LOCKU, NULL, NULL, NULL);
14236 lock_owner_rele(lop);
14237 lop = NULL;
14238 }
14239 flk->l_pid = curproc->p_pid;
14240 nfs4_register_lock_locally(vp, flk, flag, offset);
14241 goto out;
14242 }
14243
14244 /* putfh directory fh */
14245 argop[0].argop = OP_CPUTFH;
14246 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh;
14247
14248 /*
14249 * Set up the over-the-wire arguments and get references to the
14250 * open owner, etc.
14251 */
14252
14253 if (ctype == NFS4_LCK_CTYPE_RESEND ||
14254 ctype == NFS4_LCK_CTYPE_REINSTATE) {
14255 nfs4frlock_setup_resend_lock_args(resend_rqstp, argsp,
14256 &argop[1], &lop, &oop, &osp, &lock_args, &locku_args);
14257 } else {
14258 bool_t go_otw = TRUE;
14259
14260 ASSERT(resend_rqstp == NULL);
14261
14262 switch (cmd) {
14263 case F_GETLK:
14264 case F_O_GETLK:
14265 nfs4frlock_setup_lockt_args(ctype, &argop[1],
14266 &lockt_args, argsp, flk, rp);
14267 break;
14268 case F_SETLKW:
14269 case F_SETLK:
14270 if (flk->l_type == F_UNLCK)
14271 nfs4frlock_setup_locku_args(ctype,
14272 &argop[1], &locku_args, flk,
14273 &lop, ep, argsp,
14274 vp, flag, offset, cr,
14275 &skip_get_err, &go_otw);
14276 else
14277 nfs4frlock_setup_lock_args(ctype,
14278 &lock_args, &oop, &osp, &lop, &argop[1],
14279 argsp, flk, cmd, vp, cr, ep);
14280
14281 if (ep->error)
14282 goto out;
14283
14284 switch (ep->stat) {
14285 case NFS4_OK:
14286 break;
14287 case NFS4ERR_DELAY:
14288 /* recov thread never gets this error */
14289 ASSERT(resend_rqstp == NULL);
14290 ASSERT(did_start_fop);
14291
14292 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint,
14293 &recov_state, TRUE);
14294 did_start_fop = FALSE;
14295 if (argop[1].argop == OP_LOCK)
14296 nfs4args_lock_free(&argop[1]);
14297 else if (argop[1].argop == OP_LOCKT)
14298 nfs4args_lockt_free(&argop[1]);
14299 kmem_free(argop, 2 * sizeof (nfs_argop4));
14300 argsp = NULL;
14301 goto recov_retry;
14302 default:
14303 ep->error = EIO;
14304 goto out;
14305 }
14306 break;
14307 default:
14308 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
14309 "nfs4_frlock: invalid cmd %d", cmd));
14310 ep->error = EINVAL;
14311 goto out;
14312 }
14313
14314 if (!go_otw)
14315 goto out;
14316 }
14317
14318 /* XXX should we use the local reclock as a cache ? */
14319 /*
14320 * Unregister the lock with the local locking code before
14321 * contacting the server. This avoids a potential race where
14322 * another process gets notified that it has been granted a lock
14323 * before we can unregister ourselves locally.
14324 */
14325 if ((cmd == F_SETLK || cmd == F_SETLKW) && flk->l_type == F_UNLCK) {
14326 if (ctype == NFS4_LCK_CTYPE_NORM)
14327 flk->l_pid = ttoproc(curthread)->p_pid;
14328 nfs4_register_lock_locally(vp, flk, flag, offset);
14329 }
14330
14331 /*
14332 * Send the server the lock request. Continually loop with a delay
14333 * if get error NFS4ERR_DENIED (for blocking locks) or NFS4ERR_GRACE.
14334 */
14335 resp = &res;
14336
14337 NFS4_DEBUG((nfs4_client_call_debug || nfs4_client_lock_debug),
14338 (CE_NOTE,
14339 "nfs4frlock: %s call, rp %s", needrecov ? "recov" : "first",
14340 rnode4info(rp)));
14341
14342 if (lock_args && frc_no_reclaim) {
14343 ASSERT(ctype == NFS4_LCK_CTYPE_RECLAIM);
14344 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
14345 "nfs4frlock: frc_no_reclaim: clearing reclaim"));
14346 lock_args->reclaim = FALSE;
14347 if (did_reclaimp)
14348 *did_reclaimp = 0;
14349 }
14350
14351 /*
14352 * Do the OTW call.
14353 */
14354 rfs4call(VTOMI4(vp), argsp, resp, cred_otw, &doqueue, 0, ep);
14355
14356 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
14357 "nfs4frlock: error %d, status %d", ep->error, resp->status));
14358
14359 needrecov = nfs4_needs_recovery(ep, TRUE, vp->v_vfsp);
14360 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
14361 "nfs4frlock: needrecov %d", needrecov));
14362
14363 if (ep->error == 0 && nfs4_need_to_bump_seqid(resp))
14364 nfs4frlock_bump_seqid(lock_args, locku_args, oop, lop,
14365 args.ctag);
14366
14367 /*
14368 * Check if one of these mutually exclusive error cases has
14369 * happened:
14370 * need to swap credentials due to access error
14371 * recovery is needed
14372 * different error (only known case is missing Kerberos ticket)
14373 */
14374
14375 if ((ep->error == EACCES ||
14376 (ep->error == 0 && resp->status == NFS4ERR_ACCESS)) &&
14377 cred_otw != cr) {
14378 nfs4frlock_check_access(vp, op_hint, &recov_state, needrecov,
14379 &did_start_fop, &argsp, &resp, ep->error, &lop, &oop, &osp,
14380 cr, &cred_otw);
14381 goto recov_retry;
14382 }
14383
14384 if (needrecov) {
14385 /*
14386 * LOCKT requests don't need to recover from lost
14387 * requests since they don't create/modify state.
14388 */
14389 if ((ep->error == EINTR ||
14390 NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp)) &&
14391 lockt_args)
14392 goto out;
14393 /*
14394 * Do not attempt recovery for requests initiated by
14395 * the recovery framework. Let the framework redrive them.
14396 */
14397 if (ctype != NFS4_LCK_CTYPE_NORM)
14398 goto out;
14399 else {
14400 ASSERT(resend_rqstp == NULL);
14401 }
14402
14403 nfs4frlock_save_lost_rqst(ctype, ep->error,
14404 flk_to_locktype(cmd, flk->l_type),
14405 oop, osp, lop, flk, &lost_rqst, cred_otw, vp);
14406
14407 retry = nfs4frlock_recovery(needrecov, ep, &argsp,
14408 &resp, lock_args, locku_args, &oop, &osp, &lop,
14409 rp, vp, &recov_state, op_hint, &did_start_fop,
14410 cmd != F_GETLK ? &lost_rqst : NULL, flk);
14411
14412 if (retry) {
14413 ASSERT(oop == NULL);
14414 ASSERT(osp == NULL);
14415 ASSERT(lop == NULL);
14416 goto recov_retry;
14417 }
14418 goto out;
14419 }
14420
14421 /*
14422 * Bail out if have reached this point with ep->error set. Can
14423 * happen if (ep->error == EACCES && !needrecov && cred_otw == cr).
14424 * This happens if Kerberos ticket has expired or has been
14425 * destroyed.
14426 */
14427 if (ep->error != 0)
14428 goto out;
14429
14430 /*
14431 * Process the reply.
14432 */
14433 switch (resp->status) {
14434 case NFS4_OK:
14435 resop = &resp->array[1];
14436 nfs4frlock_results_ok(ctype, cmd, flk, vp, flag, offset,
14437 resend_rqstp);
14438 /*
14439 * Have a successful lock operation, now update state.
14440 */
14441 nfs4frlock_update_state(lock_args, locku_args, lockt_args,
14442 resop, lop, vp, flk, cr, resend_rqstp);
14443 break;
14444
14445 case NFS4ERR_DENIED:
14446 resop = &resp->array[1];
14447 retry = nfs4frlock_results_denied(ctype, lock_args, lockt_args,
14448 &oop, &osp, &lop, cmd, vp, flk, op_hint,
14449 &recov_state, needrecov, &argsp, &resp,
14450 &tick_delay, &whence, &ep->error, resop, cr,
14451 &did_start_fop, &skip_get_err);
14452
14453 if (retry) {
14454 ASSERT(oop == NULL);
14455 ASSERT(osp == NULL);
14456 ASSERT(lop == NULL);
14457 goto recov_retry;
14458 }
14459 break;
14460 /*
14461 * If the server won't let us reclaim, fall-back to trying to lock
14462 * the file from scratch. Code elsewhere will check the changeinfo
14463 * to ensure the file hasn't been changed.
14464 */
14465 case NFS4ERR_NO_GRACE:
14466 if (lock_args && lock_args->reclaim == TRUE) {
14467 ASSERT(ctype == NFS4_LCK_CTYPE_RECLAIM);
14468 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
14469 "nfs4frlock: reclaim: NFS4ERR_NO_GRACE"));
14470 frc_no_reclaim = 1;
14471 /* clean up before retrying */
14472 needrecov = 0;
14473 (void) nfs4frlock_recovery(needrecov, ep, &argsp, &resp,
14474 lock_args, locku_args, &oop, &osp, &lop, rp, vp,
14475 &recov_state, op_hint, &did_start_fop, NULL, flk);
14476 goto recov_retry;
14477 }
14478 /* FALLTHROUGH */
14479
14480 default:
14481 nfs4frlock_results_default(resp, &ep->error);
14482 break;
14483 }
14484 out:
14485 /*
14486 * Process and cleanup from error. Make interrupted unlock
14487 * requests look successful, since they will be handled by the
14488 * client recovery code.
14489 */
14490 nfs4frlock_final_cleanup(ctype, argsp, resp, vp, op_hint, &recov_state,
14491 needrecov, oop, osp, lop, flk, whence, offset, ls, &ep->error,
14492 lock_args, locku_args, did_start_fop,
14493 skip_get_err, cred_otw, cr);
14494
14495 if (ep->error == EINTR && flk->l_type == F_UNLCK &&
14496 (cmd == F_SETLK || cmd == F_SETLKW))
14497 ep->error = 0;
14498 }
14499
14500 /*
14501 * nfs4_safelock:
14502 *
14503 * Return non-zero if the given lock request can be handled without
14504 * violating the constraints on concurrent mapping and locking.
14505 */
14506
14507 static int
14508 nfs4_safelock(vnode_t *vp, const struct flock64 *bfp, cred_t *cr)
14509 {
14510 rnode4_t *rp = VTOR4(vp);
14511 struct vattr va;
14512 int error;
14513
14514 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
14515 ASSERT(rp->r_mapcnt >= 0);
14516 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock %s: "
14517 "(%"PRIx64", %"PRIx64"); mapcnt = %ld", bfp->l_type == F_WRLCK ?
14518 "write" : bfp->l_type == F_RDLCK ? "read" : "unlock",
14519 bfp->l_start, bfp->l_len, rp->r_mapcnt));
14520
14521 if (rp->r_mapcnt == 0)
14522 return (1); /* always safe if not mapped */
14523
14524 /*
14525 * If the file is already mapped and there are locks, then they
14526 * should be all safe locks. So adding or removing a lock is safe
14527 * as long as the new request is safe (i.e., whole-file, meaning
14528 * length and starting offset are both zero).
14529 */
14530
14531 if (bfp->l_start != 0 || bfp->l_len != 0) {
14532 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: "
14533 "cannot lock a memory mapped file unless locking the "
14534 "entire file: start %"PRIx64", len %"PRIx64,
14535 bfp->l_start, bfp->l_len));
14536 return (0);
14537 }
14538
14539 /* mandatory locking and mapping don't mix */
14540 va.va_mask = AT_MODE;
14541 error = VOP_GETATTR(vp, &va, 0, cr, NULL);
14542 if (error != 0) {
14543 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: "
14544 "getattr error %d", error));
14545 return (0); /* treat errors conservatively */
14546 }
14547 if (MANDLOCK(vp, va.va_mode)) {
14548 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: "
14549 "cannot mandatory lock and mmap a file"));
14550 return (0);
14551 }
14552
14553 return (1);
14554 }
14555
14556
14557 /*
14558 * Register the lock locally within Solaris.
14559 * As the client, we "or" the sysid with LM_SYSID_CLIENT when
14560 * recording locks locally.
14561 *
14562 * This should handle conflicts/cooperation with NFS v2/v3 since all locks
14563 * are registered locally.
14564 */
14565 void
14566 nfs4_register_lock_locally(vnode_t *vp, struct flock64 *flk, int flag,
14567 u_offset_t offset)
14568 {
14569 int oldsysid;
14570 int error;
14571 #ifdef DEBUG
14572 char *name;
14573 #endif
14574
14575 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
14576
14577 #ifdef DEBUG
14578 name = fn_name(VTOSV(vp)->sv_name);
14579 NFS4_DEBUG(nfs4_client_lock_debug,
14580 (CE_NOTE, "nfs4_register_lock_locally: %s: type %d, "
14581 "start %"PRIx64", length %"PRIx64", pid %ld, sysid %d",
14582 name, flk->l_type, flk->l_start, flk->l_len, (long)flk->l_pid,
14583 flk->l_sysid));
14584 kmem_free(name, MAXNAMELEN);
14585 #endif
14586
14587 /* register the lock with local locking */
14588 oldsysid = flk->l_sysid;
14589 flk->l_sysid |= LM_SYSID_CLIENT;
14590 error = reclock(vp, flk, SETFLCK, flag, offset, NULL);
14591 #ifdef DEBUG
14592 if (error != 0) {
14593 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
14594 "nfs4_register_lock_locally: could not register with"
14595 " local locking"));
14596 NFS4_DEBUG(nfs4_client_lock_debug, (CE_CONT,
14597 "error %d, vp 0x%p, pid %d, sysid 0x%x",
14598 error, (void *)vp, flk->l_pid, flk->l_sysid));
14599 NFS4_DEBUG(nfs4_client_lock_debug, (CE_CONT,
14600 "type %d off 0x%" PRIx64 " len 0x%" PRIx64,
14601 flk->l_type, flk->l_start, flk->l_len));
14602 (void) reclock(vp, flk, 0, flag, offset, NULL);
14603 NFS4_DEBUG(nfs4_client_lock_debug, (CE_CONT,
14604 "blocked by pid %d sysid 0x%x type %d "
14605 "off 0x%" PRIx64 " len 0x%" PRIx64,
14606 flk->l_pid, flk->l_sysid, flk->l_type, flk->l_start,
14607 flk->l_len));
14608 }
14609 #endif
14610 flk->l_sysid = oldsysid;
14611 }
14612
14613 /*
14614 * nfs4_lockrelease:
14615 *
14616 * Release any locks on the given vnode that are held by the current
14617 * process. Also removes the lock owner (if one exists) from the rnode's
14618 * list.
14619 */
14620 static int
14621 nfs4_lockrelease(vnode_t *vp, int flag, offset_t offset, cred_t *cr)
14622 {
14623 flock64_t ld;
14624 int ret, error;
14625 rnode4_t *rp;
14626 nfs4_lock_owner_t *lop;
14627 nfs4_recov_state_t recov_state;
14628 mntinfo4_t *mi;
14629 bool_t possible_orphan = FALSE;
14630 bool_t recovonly;
14631
14632 ASSERT((uintptr_t)vp > KERNELBASE);
14633 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
14634
14635 rp = VTOR4(vp);
14636 mi = VTOMI4(vp);
14637
14638 /*
14639 * If we have not locked anything then we can
14640 * just return since we have no work to do.
14641 */
14642 if (rp->r_lo_head.lo_next_rnode == &rp->r_lo_head) {
14643 return (0);
14644 }
14645
14646 /*
14647 * We need to comprehend that another thread may
14648 * kick off recovery and the lock_owner we have stashed
14649 * in lop might be invalid so we should NOT cache it
14650 * locally!
14651 */
14652 recov_state.rs_flags = 0;
14653 recov_state.rs_num_retry_despite_err = 0;
14654 error = nfs4_start_fop(mi, vp, NULL, OH_LOCKU, &recov_state,
14655 &recovonly);
14656 if (error) {
14657 mutex_enter(&rp->r_statelock);
14658 rp->r_flags |= R4LODANGLERS;
14659 mutex_exit(&rp->r_statelock);
14660 return (error);
14661 }
14662
14663 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY);
14664
14665 /*
14666 * Check if the lock owner might have a lock (request was sent but
14667 * no response was received). Also check if there are any remote
14668 * locks on the file. (In theory we shouldn't have to make this
14669 * second check if there's no lock owner, but for now we'll be
14670 * conservative and do it anyway.) If either condition is true,
14671 * send an unlock for the entire file to the server.
14672 *
14673 * Note that no explicit synchronization is needed here. At worst,
14674 * flk_has_remote_locks() will return a false positive, in which case
14675 * the unlock call wastes time but doesn't harm correctness.
14676 */
14677
14678 if (lop) {
14679 mutex_enter(&lop->lo_lock);
14680 possible_orphan = lop->lo_pending_rqsts;
14681 mutex_exit(&lop->lo_lock);
14682 lock_owner_rele(lop);
14683 }
14684
14685 nfs4_end_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 0);
14686
14687 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
14688 "nfs4_lockrelease: possible orphan %d, remote locks %d, for "
14689 "lop %p.", possible_orphan, flk_has_remote_locks(vp),
14690 (void *)lop));
14691
14692 if (possible_orphan || flk_has_remote_locks(vp)) {
14693 ld.l_type = F_UNLCK; /* set to unlock entire file */
14694 ld.l_whence = 0; /* unlock from start of file */
14695 ld.l_start = 0;
14696 ld.l_len = 0; /* do entire file */
14697
14698 ret = VOP_FRLOCK(vp, F_SETLK, &ld, flag, offset, NULL,
14699 cr, NULL);
14700
14701 if (ret != 0) {
14702 /*
14703 * If VOP_FRLOCK fails, make sure we unregister
14704 * local locks before we continue.
14705 */
14706 ld.l_pid = ttoproc(curthread)->p_pid;
14707 nfs4_register_lock_locally(vp, &ld, flag, offset);
14708 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
14709 "nfs4_lockrelease: lock release error on vp"
14710 " %p: error %d.\n", (void *)vp, ret));
14711 }
14712 }
14713
14714 recov_state.rs_flags = 0;
14715 recov_state.rs_num_retry_despite_err = 0;
14716 error = nfs4_start_fop(mi, vp, NULL, OH_LOCKU, &recov_state,
14717 &recovonly);
14718 if (error) {
14719 mutex_enter(&rp->r_statelock);
14720 rp->r_flags |= R4LODANGLERS;
14721 mutex_exit(&rp->r_statelock);
14722 return (error);
14723 }
14724
14725 /*
14726 * So, here we're going to need to retrieve the lock-owner
14727 * again (in case recovery has done a switch-a-roo) and
14728 * remove it because we can.
14729 */
14730 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY);
14731
14732 if (lop) {
14733 nfs4_rnode_remove_lock_owner(rp, lop);
14734 lock_owner_rele(lop);
14735 }
14736
14737 nfs4_end_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 0);
14738 return (0);
14739 }
14740
14741 /*
14742 * Wait for 'tick_delay' clock ticks.
14743 * Implement exponential backoff until hit the lease_time of this nfs4_server.
14744 * NOTE: lock_lease_time is in seconds.
14745 *
14746 * XXX For future improvements, should implement a waiting queue scheme.
14747 */
14748 static int
14749 nfs4_block_and_wait(clock_t *tick_delay, rnode4_t *rp)
14750 {
14751 long milliseconds_delay;
14752 time_t lock_lease_time;
14753
14754 /* wait tick_delay clock ticks or siginteruptus */
14755 if (delay_sig(*tick_delay)) {
14756 return (EINTR);
14757 }
14758 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_block_and_wait: "
14759 "reissue the lock request: blocked for %ld clock ticks: %ld "
14760 "milliseconds", *tick_delay, drv_hztousec(*tick_delay) / 1000));
14761
14762 /* get the lease time */
14763 lock_lease_time = r2lease_time(rp);
14764
14765 /* drv_hztousec converts ticks to microseconds */
14766 milliseconds_delay = drv_hztousec(*tick_delay) / 1000;
14767 if (milliseconds_delay < lock_lease_time * 1000) {
14768 *tick_delay = 2 * *tick_delay;
14769 if (drv_hztousec(*tick_delay) > lock_lease_time * 1000 * 1000)
14770 *tick_delay = drv_usectohz(lock_lease_time*1000*1000);
14771 }
14772 return (0);
14773 }
14774
14775
14776 void
14777 nfs4_vnops_init(void)
14778 {
14779 }
14780
14781 void
14782 nfs4_vnops_fini(void)
14783 {
14784 }
14785
14786 /*
14787 * Return a reference to the directory (parent) vnode for a given vnode,
14788 * using the saved pathname information and the directory file handle. The
14789 * caller is responsible for disposing of the reference.
14790 * Returns zero or an errno value.
14791 *
14792 * Caller should set need_start_op to FALSE if it is the recovery
14793 * thread, or if a start_fop has already been done. Otherwise, TRUE.
14794 */
14795 int
14796 vtodv(vnode_t *vp, vnode_t **dvpp, cred_t *cr, bool_t need_start_op)
14797 {
14798 svnode_t *svnp;
14799 vnode_t *dvp = NULL;
14800 servinfo4_t *svp;
14801 nfs4_fname_t *mfname;
14802 int error;
14803
14804 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
14805
14806 if (vp->v_flag & VROOT) {
14807 nfs4_sharedfh_t *sfh;
14808 nfs_fh4 fh;
14809 mntinfo4_t *mi;
14810
14811 ASSERT(vp->v_type == VREG);
14812
14813 mi = VTOMI4(vp);
14814 svp = mi->mi_curr_serv;
14815 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
14816 fh.nfs_fh4_len = svp->sv_pfhandle.fh_len;
14817 fh.nfs_fh4_val = svp->sv_pfhandle.fh_buf;
14818 sfh = sfh4_get(&fh, VTOMI4(vp));
14819 nfs_rw_exit(&svp->sv_lock);
14820 mfname = mi->mi_fname;
14821 fn_hold(mfname);
14822 dvp = makenfs4node_by_fh(sfh, NULL, &mfname, NULL, mi, cr, 0);
14823 sfh4_rele(&sfh);
14824
14825 if (dvp->v_type == VNON)
14826 dvp->v_type = VDIR;
14827 *dvpp = dvp;
14828 return (0);
14829 }
14830
14831 svnp = VTOSV(vp);
14832
14833 if (svnp == NULL) {
14834 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: "
14835 "shadow node is NULL"));
14836 return (EINVAL);
14837 }
14838
14839 if (svnp->sv_name == NULL || svnp->sv_dfh == NULL) {
14840 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: "
14841 "shadow node name or dfh val == NULL"));
14842 return (EINVAL);
14843 }
14844
14845 error = nfs4_make_dotdot(svnp->sv_dfh, 0, vp, cr, &dvp,
14846 (int)need_start_op);
14847 if (error != 0) {
14848 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: "
14849 "nfs4_make_dotdot returned %d", error));
14850 return (error);
14851 }
14852 if (!dvp) {
14853 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: "
14854 "nfs4_make_dotdot returned a NULL dvp"));
14855 return (EIO);
14856 }
14857 if (dvp->v_type == VNON)
14858 dvp->v_type = VDIR;
14859 ASSERT(dvp->v_type == VDIR);
14860 if (VTOR4(vp)->r_flags & R4ISXATTR) {
14861 mutex_enter(&dvp->v_lock);
14862 dvp->v_flag |= V_XATTRDIR;
14863 mutex_exit(&dvp->v_lock);
14864 }
14865 *dvpp = dvp;
14866 return (0);
14867 }
14868
14869 /*
14870 * Copy the (final) component name of vp to fnamep. maxlen is the maximum
14871 * length that fnamep can accept, including the trailing null.
14872 * Returns 0 if okay, returns an errno value if there was a problem.
14873 */
14874
14875 int
14876 vtoname(vnode_t *vp, char *fnamep, ssize_t maxlen)
14877 {
14878 char *fn;
14879 int err = 0;
14880 servinfo4_t *svp;
14881 svnode_t *shvp;
14882
14883 /*
14884 * If the file being opened has VROOT set, then this is
14885 * a "file" mount. sv_name will not be interesting, so
14886 * go back to the servinfo4 to get the original mount
14887 * path and strip off all but the final edge. Otherwise
14888 * just return the name from the shadow vnode.
14889 */
14890
14891 if (vp->v_flag & VROOT) {
14892
14893 svp = VTOMI4(vp)->mi_curr_serv;
14894 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
14895
14896 fn = strrchr(svp->sv_path, '/');
14897 if (fn == NULL)
14898 err = EINVAL;
14899 else
14900 fn++;
14901 } else {
14902 shvp = VTOSV(vp);
14903 fn = fn_name(shvp->sv_name);
14904 }
14905
14906 if (err == 0)
14907 if (strlen(fn) < maxlen)
14908 (void) strcpy(fnamep, fn);
14909 else
14910 err = ENAMETOOLONG;
14911
14912 if (vp->v_flag & VROOT)
14913 nfs_rw_exit(&svp->sv_lock);
14914 else
14915 kmem_free(fn, MAXNAMELEN);
14916
14917 return (err);
14918 }
14919
14920 /*
14921 * Bookkeeping for a close that doesn't need to go over the wire.
14922 * *have_lockp is set to 0 if 'os_sync_lock' is released; otherwise
14923 * it is left at 1.
14924 */
14925 void
14926 nfs4close_notw(vnode_t *vp, nfs4_open_stream_t *osp, int *have_lockp)
14927 {
14928 rnode4_t *rp;
14929 mntinfo4_t *mi;
14930
14931 mi = VTOMI4(vp);
14932 rp = VTOR4(vp);
14933
14934 NFS4_DEBUG(nfs4close_notw_debug, (CE_NOTE, "nfs4close_notw: "
14935 "rp=%p osp=%p", (void *)rp, (void *)osp));
14936 ASSERT(nfs_zone() == mi->mi_zone);
14937 ASSERT(mutex_owned(&osp->os_sync_lock));
14938 ASSERT(*have_lockp);
14939
14940 if (!osp->os_valid ||
14941 osp->os_open_ref_count > 0 || osp->os_mapcnt > 0) {
14942 return;
14943 }
14944
14945 /*
14946 * This removes the reference obtained at OPEN; ie,
14947 * when the open stream structure was created.
14948 *
14949 * We don't have to worry about calling 'open_stream_rele'
14950 * since we our currently holding a reference to this
14951 * open stream which means the count can not go to 0 with
14952 * this decrement.
14953 */
14954 ASSERT(osp->os_ref_count >= 2);
14955 osp->os_ref_count--;
14956 osp->os_valid = 0;
14957 mutex_exit(&osp->os_sync_lock);
14958 *have_lockp = 0;
14959
14960 nfs4_dec_state_ref_count(mi);
14961 }
14962
14963 /*
14964 * Close all remaining open streams on the rnode. These open streams
14965 * could be here because:
14966 * - The close attempted at either close or delmap failed
14967 * - Some kernel entity did VOP_OPEN but never did VOP_CLOSE
14968 * - Someone did mknod on a regular file but never opened it
14969 */
14970 int
14971 nfs4close_all(vnode_t *vp, cred_t *cr)
14972 {
14973 nfs4_open_stream_t *osp;
14974 int error;
14975 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
14976 rnode4_t *rp;
14977
14978 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
14979
14980 error = 0;
14981 rp = VTOR4(vp);
14982
14983 /*
14984 * At this point, all we know is that the last time
14985 * someone called vn_rele, the count was 1. Since then,
14986 * the vnode could have been re-activated. We want to
14987 * loop through the open streams and close each one, but
14988 * we have to be careful since once we release the rnode
14989 * hash bucket lock, someone else is free to come in and
14990 * re-activate the rnode and add new open streams. The
14991 * strategy is take the rnode hash bucket lock, verify that
14992 * the count is still 1, grab the open stream off the
14993 * head of the list and mark it invalid, then release the
14994 * rnode hash bucket lock and proceed with that open stream.
14995 * This is ok because nfs4close_one() will acquire the proper
14996 * open/create to close/destroy synchronization for open
14997 * streams, and will ensure that if someone has reopened
14998 * the open stream after we've dropped the hash bucket lock
14999 * then we'll just simply return without destroying the
15000 * open stream.
15001 * Repeat until the list is empty.
15002 */
15003
15004 for (;;) {
15005
15006 /* make sure vnode hasn't been reactivated */
15007 rw_enter(&rp->r_hashq->r_lock, RW_READER);
15008 mutex_enter(&vp->v_lock);
15009 if (vp->v_count > 1) {
15010 mutex_exit(&vp->v_lock);
15011 rw_exit(&rp->r_hashq->r_lock);
15012 break;
15013 }
15014 /*
15015 * Grabbing r_os_lock before releasing v_lock prevents
15016 * a window where the rnode/open stream could get
15017 * reactivated (and os_force_close set to 0) before we
15018 * had a chance to set os_force_close to 1.
15019 */
15020 mutex_enter(&rp->r_os_lock);
15021 mutex_exit(&vp->v_lock);
15022
15023 osp = list_head(&rp->r_open_streams);
15024 if (!osp) {
15025 /* nothing left to CLOSE OTW, so return */
15026 mutex_exit(&rp->r_os_lock);
15027 rw_exit(&rp->r_hashq->r_lock);
15028 break;
15029 }
15030
15031 mutex_enter(&rp->r_statev4_lock);
15032 /* the file can't still be mem mapped */
15033 ASSERT(rp->r_mapcnt == 0);
15034 if (rp->created_v4)
15035 rp->created_v4 = 0;
15036 mutex_exit(&rp->r_statev4_lock);
15037
15038 /*
15039 * Grab a ref on this open stream; nfs4close_one
15040 * will mark it as invalid
15041 */
15042 mutex_enter(&osp->os_sync_lock);
15043 osp->os_ref_count++;
15044 osp->os_force_close = 1;
15045 mutex_exit(&osp->os_sync_lock);
15046 mutex_exit(&rp->r_os_lock);
15047 rw_exit(&rp->r_hashq->r_lock);
15048
15049 nfs4close_one(vp, osp, cr, 0, NULL, &e, CLOSE_FORCE, 0, 0, 0);
15050
15051 /* Update error if it isn't already non-zero */
15052 if (error == 0) {
15053 if (e.error)
15054 error = e.error;
15055 else if (e.stat)
15056 error = geterrno4(e.stat);
15057 }
15058
15059 #ifdef DEBUG
15060 nfs4close_all_cnt++;
15061 #endif
15062 /* Release the ref on osp acquired above. */
15063 open_stream_rele(osp, rp);
15064
15065 /* Proceed to the next open stream, if any */
15066 }
15067 return (error);
15068 }
15069
15070 /*
15071 * nfs4close_one - close one open stream for a file if needed.
15072 *
15073 * "close_type" indicates which close path this is:
15074 * CLOSE_NORM: close initiated via VOP_CLOSE.
15075 * CLOSE_DELMAP: close initiated via VOP_DELMAP.
15076 * CLOSE_FORCE: close initiated via VOP_INACTIVE. This path forces
15077 * the close and release of client state for this open stream
15078 * (unless someone else has the open stream open).
15079 * CLOSE_RESEND: indicates the request is a replay of an earlier request
15080 * (e.g., due to abort because of a signal).
15081 * CLOSE_AFTER_RESEND: close initiated to "undo" a successful resent OPEN.
15082 *
15083 * CLOSE_RESEND and CLOSE_AFTER_RESEND will not attempt to retry after client
15084 * recovery. Instead, the caller is expected to deal with retries.
15085 *
15086 * The caller can either pass in the osp ('provided_osp') or not.
15087 *
15088 * 'access_bits' represents the access we are closing/downgrading.
15089 *
15090 * 'len', 'prot', and 'mmap_flags' are used for CLOSE_DELMAP. 'len' is the
15091 * number of bytes we are unmapping, 'maxprot' is the mmap protection, and
15092 * 'mmap_flags' tells us the type of sharing (MAP_PRIVATE or MAP_SHARED).
15093 *
15094 * Errors are returned via the nfs4_error_t.
15095 */
15096 void
15097 nfs4close_one(vnode_t *vp, nfs4_open_stream_t *provided_osp, cred_t *cr,
15098 int access_bits, nfs4_lost_rqst_t *lrp, nfs4_error_t *ep,
15099 nfs4_close_type_t close_type, size_t len, uint_t maxprot,
15100 uint_t mmap_flags)
15101 {
15102 nfs4_open_owner_t *oop;
15103 nfs4_open_stream_t *osp = NULL;
15104 int retry = 0;
15105 int num_retries = NFS4_NUM_RECOV_RETRIES;
15106 rnode4_t *rp;
15107 mntinfo4_t *mi;
15108 nfs4_recov_state_t recov_state;
15109 cred_t *cred_otw = NULL;
15110 bool_t recovonly = FALSE;
15111 int isrecov;
15112 int force_close;
15113 int close_failed = 0;
15114 int did_dec_count = 0;
15115 int did_start_op = 0;
15116 int did_force_recovlock = 0;
15117 int did_start_seqid_sync = 0;
15118 int have_sync_lock = 0;
15119
15120 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
15121
15122 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE, "closing vp %p osp %p, "
15123 "lrp %p, close type %d len %ld prot %x mmap flags %x bits %x",
15124 (void *)vp, (void *)provided_osp, (void *)lrp, close_type,
15125 len, maxprot, mmap_flags, access_bits));
15126
15127 nfs4_error_zinit(ep);
15128 rp = VTOR4(vp);
15129 mi = VTOMI4(vp);
15130 isrecov = (close_type == CLOSE_RESEND ||
15131 close_type == CLOSE_AFTER_RESEND);
15132
15133 /*
15134 * First get the open owner.
15135 */
15136 if (!provided_osp) {
15137 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi);
15138 } else {
15139 oop = provided_osp->os_open_owner;
15140 ASSERT(oop != NULL);
15141 open_owner_hold(oop);
15142 }
15143
15144 if (!oop) {
15145 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
15146 "nfs4close_one: no oop, rp %p, mi %p, cr %p, osp %p, "
15147 "close type %d", (void *)rp, (void *)mi, (void *)cr,
15148 (void *)provided_osp, close_type));
15149 ep->error = EIO;
15150 goto out;
15151 }
15152
15153 cred_otw = nfs4_get_otw_cred(cr, mi, oop);
15154 recov_retry:
15155 osp = NULL;
15156 close_failed = 0;
15157 force_close = (close_type == CLOSE_FORCE);
15158 retry = 0;
15159 did_start_op = 0;
15160 did_force_recovlock = 0;
15161 did_start_seqid_sync = 0;
15162 have_sync_lock = 0;
15163 recovonly = FALSE;
15164 recov_state.rs_flags = 0;
15165 recov_state.rs_num_retry_despite_err = 0;
15166
15167 /*
15168 * Second synchronize with recovery.
15169 */
15170 if (!isrecov) {
15171 ep->error = nfs4_start_fop(mi, vp, NULL, OH_CLOSE,
15172 &recov_state, &recovonly);
15173 if (!ep->error) {
15174 did_start_op = 1;
15175 } else {
15176 close_failed = 1;
15177 /*
15178 * If we couldn't get start_fop, but have to
15179 * cleanup state, then at least acquire the
15180 * mi_recovlock so we can synchronize with
15181 * recovery.
15182 */
15183 if (close_type == CLOSE_FORCE) {
15184 (void) nfs_rw_enter_sig(&mi->mi_recovlock,
15185 RW_READER, FALSE);
15186 did_force_recovlock = 1;
15187 } else
15188 goto out;
15189 }
15190 }
15191
15192 /*
15193 * We cannot attempt to get the open seqid sync if nfs4_start_fop
15194 * set 'recovonly' to TRUE since most likely this is due to
15195 * reovery being active (MI4_RECOV_ACTIV). If recovery is active,
15196 * nfs4_start_open_seqid_sync() will fail with EAGAIN asking us
15197 * to retry, causing us to loop until recovery finishes. Plus we
15198 * don't need protection over the open seqid since we're not going
15199 * OTW, hence don't need to use the seqid.
15200 */
15201 if (recovonly == FALSE) {
15202 /* need to grab the open owner sync before 'os_sync_lock' */
15203 ep->error = nfs4_start_open_seqid_sync(oop, mi);
15204 if (ep->error == EAGAIN) {
15205 ASSERT(!isrecov);
15206 if (did_start_op)
15207 nfs4_end_fop(mi, vp, NULL, OH_CLOSE,
15208 &recov_state, TRUE);
15209 if (did_force_recovlock)
15210 nfs_rw_exit(&mi->mi_recovlock);
15211 goto recov_retry;
15212 }
15213 did_start_seqid_sync = 1;
15214 }
15215
15216 /*
15217 * Third get an open stream and acquire 'os_sync_lock' to
15218 * sychronize the opening/creating of an open stream with the
15219 * closing/destroying of an open stream.
15220 */
15221 if (!provided_osp) {
15222 /* returns with 'os_sync_lock' held */
15223 osp = find_open_stream(oop, rp);
15224 if (!osp) {
15225 ep->error = EIO;
15226 goto out;
15227 }
15228 } else {
15229 osp = provided_osp;
15230 open_stream_hold(osp);
15231 mutex_enter(&osp->os_sync_lock);
15232 }
15233 have_sync_lock = 1;
15234
15235 ASSERT(oop == osp->os_open_owner);
15236
15237 /*
15238 * Fourth, do any special pre-OTW CLOSE processing
15239 * based on the specific close type.
15240 */
15241 if ((close_type == CLOSE_NORM || close_type == CLOSE_AFTER_RESEND) &&
15242 !did_dec_count) {
15243 ASSERT(osp->os_open_ref_count > 0);
15244 osp->os_open_ref_count--;
15245 did_dec_count = 1;
15246 if (osp->os_open_ref_count == 0)
15247 osp->os_final_close = 1;
15248 }
15249
15250 if (close_type == CLOSE_FORCE) {
15251 /* see if somebody reopened the open stream. */
15252 if (!osp->os_force_close) {
15253 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE,
15254 "nfs4close_one: skip CLOSE_FORCE as osp %p "
15255 "was reopened, vp %p", (void *)osp, (void *)vp));
15256 ep->error = 0;
15257 ep->stat = NFS4_OK;
15258 goto out;
15259 }
15260
15261 if (!osp->os_final_close && !did_dec_count) {
15262 osp->os_open_ref_count--;
15263 did_dec_count = 1;
15264 }
15265
15266 /*
15267 * We can't depend on os_open_ref_count being 0 due to the
15268 * way executables are opened (VN_RELE to match a VOP_OPEN).
15269 */
15270 #ifdef NOTYET
15271 ASSERT(osp->os_open_ref_count == 0);
15272 #endif
15273 if (osp->os_open_ref_count != 0) {
15274 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE,
15275 "nfs4close_one: should panic here on an "
15276 "ASSERT(osp->os_open_ref_count == 0). Ignoring "
15277 "since this is probably the exec problem."));
15278
15279 osp->os_open_ref_count = 0;
15280 }
15281
15282 /*
15283 * There is the possibility that nfs4close_one()
15284 * for close_type == CLOSE_DELMAP couldn't find the
15285 * open stream, thus couldn't decrement its os_mapcnt;
15286 * therefore we can't use this ASSERT yet.
15287 */
15288 #ifdef NOTYET
15289 ASSERT(osp->os_mapcnt == 0);
15290 #endif
15291 osp->os_mapcnt = 0;
15292 }
15293
15294 if (close_type == CLOSE_DELMAP && !did_dec_count) {
15295 ASSERT(osp->os_mapcnt >= btopr(len));
15296
15297 if ((mmap_flags & MAP_SHARED) && (maxprot & PROT_WRITE))
15298 osp->os_mmap_write -= btopr(len);
15299 if (maxprot & PROT_READ)
15300 osp->os_mmap_read -= btopr(len);
15301 if (maxprot & PROT_EXEC)
15302 osp->os_mmap_read -= btopr(len);
15303 /* mirror the PROT_NONE check in nfs4_addmap() */
15304 if (!(maxprot & PROT_READ) && !(maxprot & PROT_WRITE) &&
15305 !(maxprot & PROT_EXEC))
15306 osp->os_mmap_read -= btopr(len);
15307 osp->os_mapcnt -= btopr(len);
15308 did_dec_count = 1;
15309 }
15310
15311 if (recovonly) {
15312 nfs4_lost_rqst_t lost_rqst;
15313
15314 /* request should not already be in recovery queue */
15315 ASSERT(lrp == NULL);
15316 nfs4_error_init(ep, EINTR);
15317 nfs4close_save_lost_rqst(ep->error, &lost_rqst, oop,
15318 osp, cred_otw, vp);
15319 mutex_exit(&osp->os_sync_lock);
15320 have_sync_lock = 0;
15321 (void) nfs4_start_recovery(ep, mi, vp, NULL, NULL,
15322 lost_rqst.lr_op == OP_CLOSE ?
15323 &lost_rqst : NULL, OP_CLOSE, NULL, NULL, NULL);
15324 close_failed = 1;
15325 force_close = 0;
15326 goto close_cleanup;
15327 }
15328
15329 /*
15330 * If a previous OTW call got NFS4ERR_BAD_SEQID, then
15331 * we stopped operating on the open owner's <old oo_name, old seqid>
15332 * space, which means we stopped operating on the open stream
15333 * too. So don't go OTW (as the seqid is likely bad, and the
15334 * stateid could be stale, potentially triggering a false
15335 * setclientid), and just clean up the client's internal state.
15336 */
15337 if (osp->os_orig_oo_name != oop->oo_name) {
15338 NFS4_DEBUG(nfs4close_one_debug || nfs4_client_recov_debug,
15339 (CE_NOTE, "nfs4close_one: skip OTW close for osp %p "
15340 "oop %p due to bad seqid (orig oo_name %" PRIx64 " current "
15341 "oo_name %" PRIx64")",
15342 (void *)osp, (void *)oop, osp->os_orig_oo_name,
15343 oop->oo_name));
15344 close_failed = 1;
15345 }
15346
15347 /* If the file failed recovery, just quit. */
15348 mutex_enter(&rp->r_statelock);
15349 if (rp->r_flags & R4RECOVERR) {
15350 close_failed = 1;
15351 }
15352 mutex_exit(&rp->r_statelock);
15353
15354 /*
15355 * If the force close path failed to obtain start_fop
15356 * then skip the OTW close and just remove the state.
15357 */
15358 if (close_failed)
15359 goto close_cleanup;
15360
15361 /*
15362 * Fifth, check to see if there are still mapped pages or other
15363 * opens using this open stream. If there are then we can't
15364 * close yet but we can see if an OPEN_DOWNGRADE is necessary.
15365 */
15366 if (osp->os_open_ref_count > 0 || osp->os_mapcnt > 0) {
15367 nfs4_lost_rqst_t new_lost_rqst;
15368 bool_t needrecov = FALSE;
15369 cred_t *odg_cred_otw = NULL;
15370 seqid4 open_dg_seqid = 0;
15371
15372 if (osp->os_delegation) {
15373 /*
15374 * If this open stream was never OPENed OTW then we
15375 * surely can't DOWNGRADE it (especially since the
15376 * osp->open_stateid is really a delegation stateid
15377 * when os_delegation is 1).
15378 */
15379 if (access_bits & FREAD)
15380 osp->os_share_acc_read--;
15381 if (access_bits & FWRITE)
15382 osp->os_share_acc_write--;
15383 osp->os_share_deny_none--;
15384 nfs4_error_zinit(ep);
15385 goto out;
15386 }
15387 nfs4_open_downgrade(access_bits, 0, oop, osp, vp, cr,
15388 lrp, ep, &odg_cred_otw, &open_dg_seqid);
15389 needrecov = nfs4_needs_recovery(ep, TRUE, mi->mi_vfsp);
15390 if (needrecov && !isrecov) {
15391 bool_t abort;
15392 nfs4_bseqid_entry_t *bsep = NULL;
15393
15394 if (!ep->error && ep->stat == NFS4ERR_BAD_SEQID)
15395 bsep = nfs4_create_bseqid_entry(oop, NULL,
15396 vp, 0,
15397 lrp ? TAG_OPEN_DG_LOST : TAG_OPEN_DG,
15398 open_dg_seqid);
15399
15400 nfs4open_dg_save_lost_rqst(ep->error, &new_lost_rqst,
15401 oop, osp, odg_cred_otw, vp, access_bits, 0);
15402 mutex_exit(&osp->os_sync_lock);
15403 have_sync_lock = 0;
15404 abort = nfs4_start_recovery(ep, mi, vp, NULL, NULL,
15405 new_lost_rqst.lr_op == OP_OPEN_DOWNGRADE ?
15406 &new_lost_rqst : NULL, OP_OPEN_DOWNGRADE,
15407 bsep, NULL, NULL);
15408 if (odg_cred_otw)
15409 crfree(odg_cred_otw);
15410 if (bsep)
15411 kmem_free(bsep, sizeof (*bsep));
15412
15413 if (abort == TRUE)
15414 goto out;
15415
15416 if (did_start_seqid_sync) {
15417 nfs4_end_open_seqid_sync(oop);
15418 did_start_seqid_sync = 0;
15419 }
15420 open_stream_rele(osp, rp);
15421
15422 if (did_start_op)
15423 nfs4_end_fop(mi, vp, NULL, OH_CLOSE,
15424 &recov_state, FALSE);
15425 if (did_force_recovlock)
15426 nfs_rw_exit(&mi->mi_recovlock);
15427
15428 goto recov_retry;
15429 } else {
15430 if (odg_cred_otw)
15431 crfree(odg_cred_otw);
15432 }
15433 goto out;
15434 }
15435
15436 /*
15437 * If this open stream was created as the results of an open
15438 * while holding a delegation, then just release it; no need
15439 * to do an OTW close. Otherwise do a "normal" OTW close.
15440 */
15441 if (osp->os_delegation) {
15442 nfs4close_notw(vp, osp, &have_sync_lock);
15443 nfs4_error_zinit(ep);
15444 goto out;
15445 }
15446
15447 /*
15448 * If this stream is not valid, we're done.
15449 */
15450 if (!osp->os_valid) {
15451 nfs4_error_zinit(ep);
15452 goto out;
15453 }
15454
15455 /*
15456 * Last open or mmap ref has vanished, need to do an OTW close.
15457 * First check to see if a close is still necessary.
15458 */
15459 if (osp->os_failed_reopen) {
15460 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
15461 "don't close OTW osp %p since reopen failed.",
15462 (void *)osp));
15463 /*
15464 * Reopen of the open stream failed, hence the
15465 * stateid of the open stream is invalid/stale, and
15466 * sending this OTW would incorrectly cause another
15467 * round of recovery. In this case, we need to set
15468 * the 'os_valid' bit to 0 so another thread doesn't
15469 * come in and re-open this open stream before
15470 * this "closing" thread cleans up state (decrementing
15471 * the nfs4_server_t's state_ref_count and decrementing
15472 * the os_ref_count).
15473 */
15474 osp->os_valid = 0;
15475 /*
15476 * This removes the reference obtained at OPEN; ie,
15477 * when the open stream structure was created.
15478 *
15479 * We don't have to worry about calling 'open_stream_rele'
15480 * since we our currently holding a reference to this
15481 * open stream which means the count can not go to 0 with
15482 * this decrement.
15483 */
15484 ASSERT(osp->os_ref_count >= 2);
15485 osp->os_ref_count--;
15486 nfs4_error_zinit(ep);
15487 close_failed = 0;
15488 goto close_cleanup;
15489 }
15490
15491 ASSERT(osp->os_ref_count > 1);
15492
15493 /*
15494 * Sixth, try the CLOSE OTW.
15495 */
15496 nfs4close_otw(rp, cred_otw, oop, osp, &retry, &did_start_seqid_sync,
15497 close_type, ep, &have_sync_lock);
15498
15499 if (ep->error == EINTR || NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp)) {
15500 /*
15501 * Let the recovery thread be responsible for
15502 * removing the state for CLOSE.
15503 */
15504 close_failed = 1;
15505 force_close = 0;
15506 retry = 0;
15507 }
15508
15509 /* See if we need to retry with a different cred */
15510 if ((ep->error == EACCES ||
15511 (ep->error == 0 && ep->stat == NFS4ERR_ACCESS)) &&
15512 cred_otw != cr) {
15513 crfree(cred_otw);
15514 cred_otw = cr;
15515 crhold(cred_otw);
15516 retry = 1;
15517 }
15518
15519 if (ep->error || ep->stat)
15520 close_failed = 1;
15521
15522 if (retry && !isrecov && num_retries-- > 0) {
15523 if (have_sync_lock) {
15524 mutex_exit(&osp->os_sync_lock);
15525 have_sync_lock = 0;
15526 }
15527 if (did_start_seqid_sync) {
15528 nfs4_end_open_seqid_sync(oop);
15529 did_start_seqid_sync = 0;
15530 }
15531 open_stream_rele(osp, rp);
15532
15533 if (did_start_op)
15534 nfs4_end_fop(mi, vp, NULL, OH_CLOSE,
15535 &recov_state, FALSE);
15536 if (did_force_recovlock)
15537 nfs_rw_exit(&mi->mi_recovlock);
15538 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
15539 "nfs4close_one: need to retry the close "
15540 "operation"));
15541 goto recov_retry;
15542 }
15543 close_cleanup:
15544 /*
15545 * Seventh and lastly, process our results.
15546 */
15547 if (close_failed && force_close) {
15548 /*
15549 * It's ok to drop and regrab the 'os_sync_lock' since
15550 * nfs4close_notw() will recheck to make sure the
15551 * "close"/removal of state should happen.
15552 */
15553 if (!have_sync_lock) {
15554 mutex_enter(&osp->os_sync_lock);
15555 have_sync_lock = 1;
15556 }
15557 /*
15558 * This is last call, remove the ref on the open
15559 * stream created by open and clean everything up.
15560 */
15561 osp->os_pending_close = 0;
15562 nfs4close_notw(vp, osp, &have_sync_lock);
15563 nfs4_error_zinit(ep);
15564 }
15565
15566 if (!close_failed) {
15567 if (have_sync_lock) {
15568 osp->os_pending_close = 0;
15569 mutex_exit(&osp->os_sync_lock);
15570 have_sync_lock = 0;
15571 } else {
15572 mutex_enter(&osp->os_sync_lock);
15573 osp->os_pending_close = 0;
15574 mutex_exit(&osp->os_sync_lock);
15575 }
15576 if (did_start_op && recov_state.rs_sp != NULL) {
15577 mutex_enter(&recov_state.rs_sp->s_lock);
15578 nfs4_dec_state_ref_count_nolock(recov_state.rs_sp, mi);
15579 mutex_exit(&recov_state.rs_sp->s_lock);
15580 } else {
15581 nfs4_dec_state_ref_count(mi);
15582 }
15583 nfs4_error_zinit(ep);
15584 }
15585
15586 out:
15587 if (have_sync_lock)
15588 mutex_exit(&osp->os_sync_lock);
15589 if (did_start_op)
15590 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, &recov_state,
15591 recovonly ? TRUE : FALSE);
15592 if (did_force_recovlock)
15593 nfs_rw_exit(&mi->mi_recovlock);
15594 if (cred_otw)
15595 crfree(cred_otw);
15596 if (osp)
15597 open_stream_rele(osp, rp);
15598 if (oop) {
15599 if (did_start_seqid_sync)
15600 nfs4_end_open_seqid_sync(oop);
15601 open_owner_rele(oop);
15602 }
15603 }
15604
15605 /*
15606 * Convert information returned by the server in the LOCK4denied
15607 * structure to the form required by fcntl.
15608 */
15609 static void
15610 denied_to_flk(LOCK4denied *lockt_denied, flock64_t *flk, LOCKT4args *lockt_args)
15611 {
15612 nfs4_lo_name_t *lo;
15613
15614 #ifdef DEBUG
15615 if (denied_to_flk_debug) {
15616 lockt_denied_debug = lockt_denied;
15617 debug_enter("lockt_denied");
15618 }
15619 #endif
15620
15621 flk->l_type = lockt_denied->locktype == READ_LT ? F_RDLCK : F_WRLCK;
15622 flk->l_whence = 0; /* aka SEEK_SET */
15623 flk->l_start = lockt_denied->offset;
15624 flk->l_len = lockt_denied->length;
15625
15626 /*
15627 * If the blocking clientid matches our client id, then we can
15628 * interpret the lockowner (since we built it). If not, then
15629 * fabricate a sysid and pid. Note that the l_sysid field
15630 * in *flk already has the local sysid.
15631 */
15632
15633 if (lockt_denied->owner.clientid == lockt_args->owner.clientid) {
15634
15635 if (lockt_denied->owner.owner_len == sizeof (*lo)) {
15636 lo = (nfs4_lo_name_t *)
15637 lockt_denied->owner.owner_val;
15638
15639 flk->l_pid = lo->ln_pid;
15640 } else {
15641 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
15642 "denied_to_flk: bad lock owner length\n"));
15643
15644 flk->l_pid = lo_to_pid(&lockt_denied->owner);
15645 }
15646 } else {
15647 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
15648 "denied_to_flk: foreign clientid\n"));
15649
15650 /*
15651 * Construct a new sysid which should be different from
15652 * sysids of other systems.
15653 */
15654
15655 flk->l_sysid++;
15656 flk->l_pid = lo_to_pid(&lockt_denied->owner);
15657 }
15658 }
15659
15660 static pid_t
15661 lo_to_pid(lock_owner4 *lop)
15662 {
15663 pid_t pid = 0;
15664 uchar_t *cp;
15665 int i;
15666
15667 cp = (uchar_t *)&lop->clientid;
15668
15669 for (i = 0; i < sizeof (lop->clientid); i++)
15670 pid += (pid_t)*cp++;
15671
15672 cp = (uchar_t *)lop->owner_val;
15673
15674 for (i = 0; i < lop->owner_len; i++)
15675 pid += (pid_t)*cp++;
15676
15677 return (pid);
15678 }
15679
15680 /*
15681 * Given a lock pointer, returns the length of that lock.
15682 * "end" is the last locked offset the "l_len" covers from
15683 * the start of the lock.
15684 */
15685 static off64_t
15686 lock_to_end(flock64_t *lock)
15687 {
15688 off64_t lock_end;
15689
15690 if (lock->l_len == 0)
15691 lock_end = (off64_t)MAXEND;
15692 else
15693 lock_end = lock->l_start + lock->l_len - 1;
15694
15695 return (lock_end);
15696 }
15697
15698 /*
15699 * Given the end of a lock, it will return you the length "l_len" for that lock.
15700 */
15701 static off64_t
15702 end_to_len(off64_t start, off64_t end)
15703 {
15704 off64_t lock_len;
15705
15706 ASSERT(end >= start);
15707 if (end == MAXEND)
15708 lock_len = 0;
15709 else
15710 lock_len = end - start + 1;
15711
15712 return (lock_len);
15713 }
15714
15715 /*
15716 * On given end for a lock it determines if it is the last locked offset
15717 * or not, if so keeps it as is, else adds one to return the length for
15718 * valid start.
15719 */
15720 static off64_t
15721 start_check(off64_t x)
15722 {
15723 if (x == MAXEND)
15724 return (x);
15725 else
15726 return (x + 1);
15727 }
15728
15729 /*
15730 * See if these two locks overlap, and if so return 1;
15731 * otherwise, return 0.
15732 */
15733 static int
15734 locks_intersect(flock64_t *llfp, flock64_t *curfp)
15735 {
15736 off64_t llfp_end, curfp_end;
15737
15738 llfp_end = lock_to_end(llfp);
15739 curfp_end = lock_to_end(curfp);
15740
15741 if (((llfp_end >= curfp->l_start) &&
15742 (llfp->l_start <= curfp->l_start)) ||
15743 ((curfp->l_start <= llfp->l_start) && (curfp_end >= llfp->l_start)))
15744 return (1);
15745 return (0);
15746 }
15747
15748 /*
15749 * Determine what the intersecting lock region is, and add that to the
15750 * 'nl_llpp' locklist in increasing order (by l_start).
15751 */
15752 static void
15753 nfs4_add_lock_range(flock64_t *lost_flp, flock64_t *local_flp,
15754 locklist_t **nl_llpp, vnode_t *vp)
15755 {
15756 locklist_t *intersect_llp, *tmp_fllp, *cur_fllp;
15757 off64_t lost_flp_end, local_flp_end, len, start;
15758
15759 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range:"));
15760
15761 if (!locks_intersect(lost_flp, local_flp))
15762 return;
15763
15764 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range: "
15765 "locks intersect"));
15766
15767 lost_flp_end = lock_to_end(lost_flp);
15768 local_flp_end = lock_to_end(local_flp);
15769
15770 /* Find the starting point of the intersecting region */
15771 if (local_flp->l_start > lost_flp->l_start)
15772 start = local_flp->l_start;
15773 else
15774 start = lost_flp->l_start;
15775
15776 /* Find the lenght of the intersecting region */
15777 if (lost_flp_end < local_flp_end)
15778 len = end_to_len(start, lost_flp_end);
15779 else
15780 len = end_to_len(start, local_flp_end);
15781
15782 /*
15783 * Prepare the flock structure for the intersection found and insert
15784 * it into the new list in increasing l_start order. This list contains
15785 * intersections of locks registered by the client with the local host
15786 * and the lost lock.
15787 * The lock type of this lock is the same as that of the local_flp.
15788 */
15789 intersect_llp = (locklist_t *)kmem_alloc(sizeof (locklist_t), KM_SLEEP);
15790 intersect_llp->ll_flock.l_start = start;
15791 intersect_llp->ll_flock.l_len = len;
15792 intersect_llp->ll_flock.l_type = local_flp->l_type;
15793 intersect_llp->ll_flock.l_pid = local_flp->l_pid;
15794 intersect_llp->ll_flock.l_sysid = local_flp->l_sysid;
15795 intersect_llp->ll_flock.l_whence = 0; /* aka SEEK_SET */
15796 intersect_llp->ll_vp = vp;
15797
15798 tmp_fllp = *nl_llpp;
15799 cur_fllp = NULL;
15800 while (tmp_fllp != NULL && tmp_fllp->ll_flock.l_start <
15801 intersect_llp->ll_flock.l_start) {
15802 cur_fllp = tmp_fllp;
15803 tmp_fllp = tmp_fllp->ll_next;
15804 }
15805 if (cur_fllp == NULL) {
15806 /* first on the list */
15807 intersect_llp->ll_next = *nl_llpp;
15808 *nl_llpp = intersect_llp;
15809 } else {
15810 intersect_llp->ll_next = cur_fllp->ll_next;
15811 cur_fllp->ll_next = intersect_llp;
15812 }
15813
15814 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range: "
15815 "created lock region: start %"PRIx64" end %"PRIx64" : %s\n",
15816 intersect_llp->ll_flock.l_start,
15817 intersect_llp->ll_flock.l_start + intersect_llp->ll_flock.l_len,
15818 intersect_llp->ll_flock.l_type == F_RDLCK ? "READ" : "WRITE"));
15819 }
15820
15821 /*
15822 * Our local locking current state is potentially different than
15823 * what the NFSv4 server thinks we have due to a lost lock that was
15824 * resent and then received. We need to reset our "NFSv4" locking
15825 * state to match the current local locking state for this pid since
15826 * that is what the user/application sees as what the world is.
15827 *
15828 * We cannot afford to drop the open/lock seqid sync since then we can
15829 * get confused about what the current local locking state "is" versus
15830 * "was".
15831 *
15832 * If we are unable to fix up the locks, we send SIGLOST to the affected
15833 * process. This is not done if the filesystem has been forcibly
15834 * unmounted, in case the process has already exited and a new process
15835 * exists with the same pid.
15836 */
15837 static void
15838 nfs4_reinstitute_local_lock_state(vnode_t *vp, flock64_t *lost_flp, cred_t *cr,
15839 nfs4_lock_owner_t *lop)
15840 {
15841 locklist_t *locks, *llp, *ri_llp, *tmp_llp;
15842 mntinfo4_t *mi = VTOMI4(vp);
15843 const int cmd = F_SETLK;
15844 off64_t cur_start, llp_ll_flock_end, lost_flp_end;
15845 flock64_t ul_fl;
15846
15847 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE,
15848 "nfs4_reinstitute_local_lock_state"));
15849
15850 /*
15851 * Find active locks for this vp from the local locking code.
15852 * Scan through this list and find out the locks that intersect with
15853 * the lost lock. Once we find the lock that intersects, add the
15854 * intersection area as a new lock to a new list "ri_llp". The lock
15855 * type of the intersection region lock added to ri_llp is the same
15856 * as that found in the active lock list, "list". The intersecting
15857 * region locks are added to ri_llp in increasing l_start order.
15858 */
15859 ASSERT(nfs_zone() == mi->mi_zone);
15860
15861 locks = flk_active_locks_for_vp(vp);
15862 ri_llp = NULL;
15863
15864 for (llp = locks; llp != NULL; llp = llp->ll_next) {
15865 ASSERT(llp->ll_vp == vp);
15866 /*
15867 * Pick locks that belong to this pid/lockowner
15868 */
15869 if (llp->ll_flock.l_pid != lost_flp->l_pid)
15870 continue;
15871
15872 nfs4_add_lock_range(lost_flp, &llp->ll_flock, &ri_llp, vp);
15873 }
15874
15875 /*
15876 * Now we have the list of intersections with the lost lock. These are
15877 * the locks that were/are active before the server replied to the
15878 * last/lost lock. Issue these locks to the server here. Playing these
15879 * locks to the server will re-establish aur current local locking state
15880 * with the v4 server.
15881 * If we get an error, send SIGLOST to the application for that lock.
15882 */
15883
15884 for (llp = ri_llp; llp != NULL; llp = llp->ll_next) {
15885 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE,
15886 "nfs4_reinstitute_local_lock_state: need to issue "
15887 "flock: [%"PRIx64" - %"PRIx64"] : %s",
15888 llp->ll_flock.l_start,
15889 llp->ll_flock.l_start + llp->ll_flock.l_len,
15890 llp->ll_flock.l_type == F_RDLCK ? "READ" :
15891 llp->ll_flock.l_type == F_WRLCK ? "WRITE" : "INVALID"));
15892 /*
15893 * No need to relock what we already have
15894 */
15895 if (llp->ll_flock.l_type == lost_flp->l_type)
15896 continue;
15897
15898 push_reinstate(vp, cmd, &llp->ll_flock, cr, lop);
15899 }
15900
15901 /*
15902 * Now keeping the start of the lost lock as our reference parse the
15903 * newly created ri_llp locklist to find the ranges that we have locked
15904 * with the v4 server but not in the current local locking. We need
15905 * to unlock these ranges.
15906 * These ranges can also be reffered to as those ranges, where the lost
15907 * lock does not overlap with the locks in the ri_llp but are locked
15908 * since the server replied to the lost lock.
15909 */
15910 cur_start = lost_flp->l_start;
15911 lost_flp_end = lock_to_end(lost_flp);
15912
15913 ul_fl.l_type = F_UNLCK;
15914 ul_fl.l_whence = 0; /* aka SEEK_SET */
15915 ul_fl.l_sysid = lost_flp->l_sysid;
15916 ul_fl.l_pid = lost_flp->l_pid;
15917
15918 for (llp = ri_llp; llp != NULL; llp = llp->ll_next) {
15919 llp_ll_flock_end = lock_to_end(&llp->ll_flock);
15920
15921 if (llp->ll_flock.l_start <= cur_start) {
15922 cur_start = start_check(llp_ll_flock_end);
15923 continue;
15924 }
15925 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE,
15926 "nfs4_reinstitute_local_lock_state: "
15927 "UNLOCK [%"PRIx64" - %"PRIx64"]",
15928 cur_start, llp->ll_flock.l_start));
15929
15930 ul_fl.l_start = cur_start;
15931 ul_fl.l_len = end_to_len(cur_start,
15932 (llp->ll_flock.l_start - 1));
15933
15934 push_reinstate(vp, cmd, &ul_fl, cr, lop);
15935 cur_start = start_check(llp_ll_flock_end);
15936 }
15937
15938 /*
15939 * In the case where the lost lock ends after all intersecting locks,
15940 * unlock the last part of the lost lock range.
15941 */
15942 if (cur_start != start_check(lost_flp_end)) {
15943 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE,
15944 "nfs4_reinstitute_local_lock_state: UNLOCK end of the "
15945 "lost lock region [%"PRIx64" - %"PRIx64"]",
15946 cur_start, lost_flp->l_start + lost_flp->l_len));
15947
15948 ul_fl.l_start = cur_start;
15949 /*
15950 * Is it an to-EOF lock? if so unlock till the end
15951 */
15952 if (lost_flp->l_len == 0)
15953 ul_fl.l_len = 0;
15954 else
15955 ul_fl.l_len = start_check(lost_flp_end) - cur_start;
15956
15957 push_reinstate(vp, cmd, &ul_fl, cr, lop);
15958 }
15959
15960 if (locks != NULL)
15961 flk_free_locklist(locks);
15962
15963 /* Free up our newly created locklist */
15964 for (llp = ri_llp; llp != NULL; ) {
15965 tmp_llp = llp->ll_next;
15966 kmem_free(llp, sizeof (locklist_t));
15967 llp = tmp_llp;
15968 }
15969
15970 /*
15971 * Now return back to the original calling nfs4frlock()
15972 * and let us naturally drop our seqid syncs.
15973 */
15974 }
15975
15976 /*
15977 * Create a lost state record for the given lock reinstantiation request
15978 * and push it onto the lost state queue.
15979 */
15980 static void
15981 push_reinstate(vnode_t *vp, int cmd, flock64_t *flk, cred_t *cr,
15982 nfs4_lock_owner_t *lop)
15983 {
15984 nfs4_lost_rqst_t req;
15985 nfs_lock_type4 locktype;
15986 nfs4_error_t e = { EINTR, NFS4_OK, RPC_SUCCESS };
15987
15988 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
15989
15990 locktype = flk_to_locktype(cmd, flk->l_type);
15991 nfs4frlock_save_lost_rqst(NFS4_LCK_CTYPE_REINSTATE, EINTR, locktype,
15992 NULL, NULL, lop, flk, &req, cr, vp);
15993 (void) nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL,
15994 (req.lr_op == OP_LOCK || req.lr_op == OP_LOCKU) ?
15995 &req : NULL, flk->l_type == F_UNLCK ? OP_LOCKU : OP_LOCK,
15996 NULL, NULL, NULL);
15997 }