1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
  24  * Copyright (c) 2016, Joyent, Inc. All rights reserved.
  25  * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
  26  */
  27 
  28 /*
  29  * DTrace - Dynamic Tracing for Solaris
  30  *
  31  * This is the implementation of the Solaris Dynamic Tracing framework
  32  * (DTrace).  The user-visible interface to DTrace is described at length in
  33  * the "Solaris Dynamic Tracing Guide".  The interfaces between the libdtrace
  34  * library, the in-kernel DTrace framework, and the DTrace providers are
  35  * described in the block comments in the <sys/dtrace.h> header file.  The
  36  * internal architecture of DTrace is described in the block comments in the
  37  * <sys/dtrace_impl.h> header file.  The comments contained within the DTrace
  38  * implementation very much assume mastery of all of these sources; if one has
  39  * an unanswered question about the implementation, one should consult them
  40  * first.
  41  *
  42  * The functions here are ordered roughly as follows:
  43  *
  44  *   - Probe context functions
  45  *   - Probe hashing functions
  46  *   - Non-probe context utility functions
  47  *   - Matching functions
  48  *   - Provider-to-Framework API functions
  49  *   - Probe management functions
  50  *   - DIF object functions
  51  *   - Format functions
  52  *   - Predicate functions
  53  *   - ECB functions
  54  *   - Buffer functions
  55  *   - Enabling functions
  56  *   - DOF functions
  57  *   - Anonymous enabling functions
  58  *   - Consumer state functions
  59  *   - Helper functions
  60  *   - Hook functions
  61  *   - Driver cookbook functions
  62  *
  63  * Each group of functions begins with a block comment labelled the "DTrace
  64  * [Group] Functions", allowing one to find each block by searching forward
  65  * on capital-f functions.
  66  */
  67 #include <sys/errno.h>
  68 #include <sys/stat.h>
  69 #include <sys/modctl.h>
  70 #include <sys/conf.h>
  71 #include <sys/systm.h>
  72 #include <sys/ddi.h>
  73 #include <sys/sunddi.h>
  74 #include <sys/cpuvar.h>
  75 #include <sys/kmem.h>
  76 #include <sys/strsubr.h>
  77 #include <sys/sysmacros.h>
  78 #include <sys/dtrace_impl.h>
  79 #include <sys/atomic.h>
  80 #include <sys/cmn_err.h>
  81 #include <sys/mutex_impl.h>
  82 #include <sys/rwlock_impl.h>
  83 #include <sys/ctf_api.h>
  84 #include <sys/panic.h>
  85 #include <sys/priv_impl.h>
  86 #include <sys/policy.h>
  87 #include <sys/cred_impl.h>
  88 #include <sys/procfs_isa.h>
  89 #include <sys/taskq.h>
  90 #include <sys/mkdev.h>
  91 #include <sys/kdi.h>
  92 #include <sys/zone.h>
  93 #include <sys/socket.h>
  94 #include <netinet/in.h>
  95 #include "strtolctype.h"
  96 
  97 /*
  98  * DTrace Tunable Variables
  99  *
 100  * The following variables may be tuned by adding a line to /etc/system that
 101  * includes both the name of the DTrace module ("dtrace") and the name of the
 102  * variable.  For example:
 103  *
 104  *   set dtrace:dtrace_destructive_disallow = 1
 105  *
 106  * In general, the only variables that one should be tuning this way are those
 107  * that affect system-wide DTrace behavior, and for which the default behavior
 108  * is undesirable.  Most of these variables are tunable on a per-consumer
 109  * basis using DTrace options, and need not be tuned on a system-wide basis.
 110  * When tuning these variables, avoid pathological values; while some attempt
 111  * is made to verify the integrity of these variables, they are not considered
 112  * part of the supported interface to DTrace, and they are therefore not
 113  * checked comprehensively.  Further, these variables should not be tuned
 114  * dynamically via "mdb -kw" or other means; they should only be tuned via
 115  * /etc/system.
 116  */
 117 int             dtrace_destructive_disallow = 0;
 118 dtrace_optval_t dtrace_nonroot_maxsize = (16 * 1024 * 1024);
 119 size_t          dtrace_difo_maxsize = (256 * 1024);
 120 dtrace_optval_t dtrace_dof_maxsize = (8 * 1024 * 1024);
 121 size_t          dtrace_statvar_maxsize = (16 * 1024);
 122 size_t          dtrace_actions_max = (16 * 1024);
 123 size_t          dtrace_retain_max = 1024;
 124 dtrace_optval_t dtrace_helper_actions_max = 1024;
 125 dtrace_optval_t dtrace_helper_providers_max = 32;
 126 dtrace_optval_t dtrace_dstate_defsize = (1 * 1024 * 1024);
 127 size_t          dtrace_strsize_default = 256;
 128 dtrace_optval_t dtrace_cleanrate_default = 9900990;             /* 101 hz */
 129 dtrace_optval_t dtrace_cleanrate_min = 200000;                  /* 5000 hz */
 130 dtrace_optval_t dtrace_cleanrate_max = (uint64_t)60 * NANOSEC;  /* 1/minute */
 131 dtrace_optval_t dtrace_aggrate_default = NANOSEC;               /* 1 hz */
 132 dtrace_optval_t dtrace_statusrate_default = NANOSEC;            /* 1 hz */
 133 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC;  /* 6/minute */
 134 dtrace_optval_t dtrace_switchrate_default = NANOSEC;            /* 1 hz */
 135 dtrace_optval_t dtrace_nspec_default = 1;
 136 dtrace_optval_t dtrace_specsize_default = 32 * 1024;
 137 dtrace_optval_t dtrace_stackframes_default = 20;
 138 dtrace_optval_t dtrace_ustackframes_default = 20;
 139 dtrace_optval_t dtrace_jstackframes_default = 50;
 140 dtrace_optval_t dtrace_jstackstrsize_default = 512;
 141 int             dtrace_msgdsize_max = 128;
 142 hrtime_t        dtrace_chill_max = MSEC2NSEC(500);              /* 500 ms */
 143 hrtime_t        dtrace_chill_interval = NANOSEC;                /* 1000 ms */
 144 int             dtrace_devdepth_max = 32;
 145 int             dtrace_err_verbose;
 146 hrtime_t        dtrace_deadman_interval = NANOSEC;
 147 hrtime_t        dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
 148 hrtime_t        dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
 149 hrtime_t        dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC;
 150 
 151 /*
 152  * DTrace External Variables
 153  *
 154  * As dtrace(7D) is a kernel module, any DTrace variables are obviously
 155  * available to DTrace consumers via the backtick (`) syntax.  One of these,
 156  * dtrace_zero, is made deliberately so:  it is provided as a source of
 157  * well-known, zero-filled memory.  While this variable is not documented,
 158  * it is used by some translators as an implementation detail.
 159  */
 160 const char      dtrace_zero[256] = { 0 };       /* zero-filled memory */
 161 
 162 /*
 163  * DTrace Internal Variables
 164  */
 165 static dev_info_t       *dtrace_devi;           /* device info */
 166 static vmem_t           *dtrace_arena;          /* probe ID arena */
 167 static vmem_t           *dtrace_minor;          /* minor number arena */
 168 static taskq_t          *dtrace_taskq;          /* task queue */
 169 static dtrace_probe_t   **dtrace_probes;        /* array of all probes */
 170 static int              dtrace_nprobes;         /* number of probes */
 171 static dtrace_provider_t *dtrace_provider;      /* provider list */
 172 static dtrace_meta_t    *dtrace_meta_pid;       /* user-land meta provider */
 173 static int              dtrace_opens;           /* number of opens */
 174 static int              dtrace_helpers;         /* number of helpers */
 175 static int              dtrace_getf;            /* number of unpriv getf()s */
 176 static void             *dtrace_softstate;      /* softstate pointer */
 177 static dtrace_hash_t    *dtrace_bymod;          /* probes hashed by module */
 178 static dtrace_hash_t    *dtrace_byfunc;         /* probes hashed by function */
 179 static dtrace_hash_t    *dtrace_byname;         /* probes hashed by name */
 180 static dtrace_toxrange_t *dtrace_toxrange;      /* toxic range array */
 181 static int              dtrace_toxranges;       /* number of toxic ranges */
 182 static int              dtrace_toxranges_max;   /* size of toxic range array */
 183 static dtrace_anon_t    dtrace_anon;            /* anonymous enabling */
 184 static kmem_cache_t     *dtrace_state_cache;    /* cache for dynamic state */
 185 static uint64_t         dtrace_vtime_references; /* number of vtimestamp refs */
 186 static kthread_t        *dtrace_panicked;       /* panicking thread */
 187 static dtrace_ecb_t     *dtrace_ecb_create_cache; /* cached created ECB */
 188 static dtrace_genid_t   dtrace_probegen;        /* current probe generation */
 189 static dtrace_helpers_t *dtrace_deferred_pid;   /* deferred helper list */
 190 static dtrace_enabling_t *dtrace_retained;      /* list of retained enablings */
 191 static dtrace_genid_t   dtrace_retained_gen;    /* current retained enab gen */
 192 static dtrace_dynvar_t  dtrace_dynhash_sink;    /* end of dynamic hash chains */
 193 static int              dtrace_dynvar_failclean; /* dynvars failed to clean */
 194 
 195 /*
 196  * DTrace Locking
 197  * DTrace is protected by three (relatively coarse-grained) locks:
 198  *
 199  * (1) dtrace_lock is required to manipulate essentially any DTrace state,
 200  *     including enabling state, probes, ECBs, consumer state, helper state,
 201  *     etc.  Importantly, dtrace_lock is _not_ required when in probe context;
 202  *     probe context is lock-free -- synchronization is handled via the
 203  *     dtrace_sync() cross call mechanism.
 204  *
 205  * (2) dtrace_provider_lock is required when manipulating provider state, or
 206  *     when provider state must be held constant.
 207  *
 208  * (3) dtrace_meta_lock is required when manipulating meta provider state, or
 209  *     when meta provider state must be held constant.
 210  *
 211  * The lock ordering between these three locks is dtrace_meta_lock before
 212  * dtrace_provider_lock before dtrace_lock.  (In particular, there are
 213  * several places where dtrace_provider_lock is held by the framework as it
 214  * calls into the providers -- which then call back into the framework,
 215  * grabbing dtrace_lock.)
 216  *
 217  * There are two other locks in the mix:  mod_lock and cpu_lock.  With respect
 218  * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
 219  * role as a coarse-grained lock; it is acquired before both of these locks.
 220  * With respect to dtrace_meta_lock, its behavior is stranger:  cpu_lock must
 221  * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
 222  * mod_lock is similar with respect to dtrace_provider_lock in that it must be
 223  * acquired _between_ dtrace_provider_lock and dtrace_lock.
 224  */
 225 static kmutex_t         dtrace_lock;            /* probe state lock */
 226 static kmutex_t         dtrace_provider_lock;   /* provider state lock */
 227 static kmutex_t         dtrace_meta_lock;       /* meta-provider state lock */
 228 
 229 /*
 230  * DTrace Provider Variables
 231  *
 232  * These are the variables relating to DTrace as a provider (that is, the
 233  * provider of the BEGIN, END, and ERROR probes).
 234  */
 235 static dtrace_pattr_t   dtrace_provider_attr = {
 236 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
 237 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
 238 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
 239 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
 240 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
 241 };
 242 
 243 static void
 244 dtrace_nullop(void)
 245 {}
 246 
 247 static int
 248 dtrace_enable_nullop(void)
 249 {
 250         return (0);
 251 }
 252 
 253 static dtrace_pops_t    dtrace_provider_ops = {
 254         (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop,
 255         (void (*)(void *, struct modctl *))dtrace_nullop,
 256         (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop,
 257         (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
 258         (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
 259         (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
 260         NULL,
 261         NULL,
 262         NULL,
 263         (void (*)(void *, dtrace_id_t, void *))dtrace_nullop
 264 };
 265 
 266 static dtrace_id_t      dtrace_probeid_begin;   /* special BEGIN probe */
 267 static dtrace_id_t      dtrace_probeid_end;     /* special END probe */
 268 dtrace_id_t             dtrace_probeid_error;   /* special ERROR probe */
 269 
 270 /*
 271  * DTrace Helper Tracing Variables
 272  *
 273  * These variables should be set dynamically to enable helper tracing.  The
 274  * only variables that should be set are dtrace_helptrace_enable (which should
 275  * be set to a non-zero value to allocate helper tracing buffers on the next
 276  * open of /dev/dtrace) and dtrace_helptrace_disable (which should be set to a
 277  * non-zero value to deallocate helper tracing buffers on the next close of
 278  * /dev/dtrace).  When (and only when) helper tracing is disabled, the
 279  * buffer size may also be set via dtrace_helptrace_bufsize.
 280  */
 281 int                     dtrace_helptrace_enable = 0;
 282 int                     dtrace_helptrace_disable = 0;
 283 int                     dtrace_helptrace_bufsize = 16 * 1024 * 1024;
 284 uint32_t                dtrace_helptrace_nlocals;
 285 static dtrace_helptrace_t *dtrace_helptrace_buffer;
 286 static uint32_t         dtrace_helptrace_next = 0;
 287 static int              dtrace_helptrace_wrapped = 0;
 288 
 289 /*
 290  * DTrace Error Hashing
 291  *
 292  * On DEBUG kernels, DTrace will track the errors that has seen in a hash
 293  * table.  This is very useful for checking coverage of tests that are
 294  * expected to induce DIF or DOF processing errors, and may be useful for
 295  * debugging problems in the DIF code generator or in DOF generation .  The
 296  * error hash may be examined with the ::dtrace_errhash MDB dcmd.
 297  */
 298 #ifdef DEBUG
 299 static dtrace_errhash_t dtrace_errhash[DTRACE_ERRHASHSZ];
 300 static const char *dtrace_errlast;
 301 static kthread_t *dtrace_errthread;
 302 static kmutex_t dtrace_errlock;
 303 #endif
 304 
 305 /*
 306  * DTrace Macros and Constants
 307  *
 308  * These are various macros that are useful in various spots in the
 309  * implementation, along with a few random constants that have no meaning
 310  * outside of the implementation.  There is no real structure to this cpp
 311  * mishmash -- but is there ever?
 312  */
 313 #define DTRACE_HASHSTR(hash, probe)     \
 314         dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
 315 
 316 #define DTRACE_HASHNEXT(hash, probe)    \
 317         (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
 318 
 319 #define DTRACE_HASHPREV(hash, probe)    \
 320         (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
 321 
 322 #define DTRACE_HASHEQ(hash, lhs, rhs)   \
 323         (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
 324             *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
 325 
 326 #define DTRACE_AGGHASHSIZE_SLEW         17
 327 
 328 #define DTRACE_V4MAPPED_OFFSET          (sizeof (uint32_t) * 3)
 329 
 330 /*
 331  * The key for a thread-local variable consists of the lower 61 bits of the
 332  * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
 333  * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
 334  * equal to a variable identifier.  This is necessary (but not sufficient) to
 335  * assure that global associative arrays never collide with thread-local
 336  * variables.  To guarantee that they cannot collide, we must also define the
 337  * order for keying dynamic variables.  That order is:
 338  *
 339  *   [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
 340  *
 341  * Because the variable-key and the tls-key are in orthogonal spaces, there is
 342  * no way for a global variable key signature to match a thread-local key
 343  * signature.
 344  */
 345 #define DTRACE_TLS_THRKEY(where) { \
 346         uint_t intr = 0; \
 347         uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
 348         for (; actv; actv >>= 1) \
 349                 intr++; \
 350         ASSERT(intr < (1 << 3)); \
 351         (where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
 352             (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
 353 }
 354 
 355 #define DT_BSWAP_8(x)   ((x) & 0xff)
 356 #define DT_BSWAP_16(x)  ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
 357 #define DT_BSWAP_32(x)  ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
 358 #define DT_BSWAP_64(x)  ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
 359 
 360 #define DT_MASK_LO 0x00000000FFFFFFFFULL
 361 
 362 #define DTRACE_STORE(type, tomax, offset, what) \
 363         *((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
 364 
 365 #ifndef __x86
 366 #define DTRACE_ALIGNCHECK(addr, size, flags)                            \
 367         if (addr & (size - 1)) {                                    \
 368                 *flags |= CPU_DTRACE_BADALIGN;                          \
 369                 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr;     \
 370                 return (0);                                             \
 371         }
 372 #else
 373 #define DTRACE_ALIGNCHECK(addr, size, flags)
 374 #endif
 375 
 376 /*
 377  * Test whether a range of memory starting at testaddr of size testsz falls
 378  * within the range of memory described by addr, sz.  We take care to avoid
 379  * problems with overflow and underflow of the unsigned quantities, and
 380  * disallow all negative sizes.  Ranges of size 0 are allowed.
 381  */
 382 #define DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
 383         ((testaddr) - (uintptr_t)(baseaddr) < (basesz) && \
 384         (testaddr) + (testsz) - (uintptr_t)(baseaddr) <= (basesz) && \
 385         (testaddr) + (testsz) >= (testaddr))
 386 
 387 #define DTRACE_RANGE_REMAIN(remp, addr, baseaddr, basesz)               \
 388 do {                                                                    \
 389         if ((remp) != NULL) {                                           \
 390                 *(remp) = (uintptr_t)(baseaddr) + (basesz) - (addr);    \
 391         }                                                               \
 392 _NOTE(CONSTCOND) } while (0)
 393 
 394 
 395 /*
 396  * Test whether alloc_sz bytes will fit in the scratch region.  We isolate
 397  * alloc_sz on the righthand side of the comparison in order to avoid overflow
 398  * or underflow in the comparison with it.  This is simpler than the INRANGE
 399  * check above, because we know that the dtms_scratch_ptr is valid in the
 400  * range.  Allocations of size zero are allowed.
 401  */
 402 #define DTRACE_INSCRATCH(mstate, alloc_sz) \
 403         ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
 404         (mstate)->dtms_scratch_ptr >= (alloc_sz))
 405 
 406 #define DTRACE_LOADFUNC(bits)                                           \
 407 /*CSTYLED*/                                                             \
 408 uint##bits##_t                                                          \
 409 dtrace_load##bits(uintptr_t addr)                                       \
 410 {                                                                       \
 411         size_t size = bits / NBBY;                                      \
 412         /*CSTYLED*/                                                     \
 413         uint##bits##_t rval;                                            \
 414         int i;                                                          \
 415         volatile uint16_t *flags = (volatile uint16_t *)                \
 416             &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;                    \
 417                                                                         \
 418         DTRACE_ALIGNCHECK(addr, size, flags);                           \
 419                                                                         \
 420         for (i = 0; i < dtrace_toxranges; i++) {                     \
 421                 if (addr >= dtrace_toxrange[i].dtt_limit)            \
 422                         continue;                                       \
 423                                                                         \
 424                 if (addr + size <= dtrace_toxrange[i].dtt_base)              \
 425                         continue;                                       \
 426                                                                         \
 427                 /*                                                      \
 428                  * This address falls within a toxic region; return 0.  \
 429                  */                                                     \
 430                 *flags |= CPU_DTRACE_BADADDR;                           \
 431                 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr;     \
 432                 return (0);                                             \
 433         }                                                               \
 434                                                                         \
 435         *flags |= CPU_DTRACE_NOFAULT;                                   \
 436         /*CSTYLED*/                                                     \
 437         rval = *((volatile uint##bits##_t *)addr);                      \
 438         *flags &= ~CPU_DTRACE_NOFAULT;                                      \
 439                                                                         \
 440         return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0);           \
 441 }
 442 
 443 #ifdef _LP64
 444 #define dtrace_loadptr  dtrace_load64
 445 #else
 446 #define dtrace_loadptr  dtrace_load32
 447 #endif
 448 
 449 #define DTRACE_DYNHASH_FREE     0
 450 #define DTRACE_DYNHASH_SINK     1
 451 #define DTRACE_DYNHASH_VALID    2
 452 
 453 #define DTRACE_MATCH_FAIL       -1
 454 #define DTRACE_MATCH_NEXT       0
 455 #define DTRACE_MATCH_DONE       1
 456 #define DTRACE_ANCHORED(probe)  ((probe)->dtpr_func[0] != '\0')
 457 #define DTRACE_STATE_ALIGN      64
 458 
 459 #define DTRACE_FLAGS2FLT(flags)                                         \
 460         (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR :               \
 461         ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP :            \
 462         ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO :                \
 463         ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV :            \
 464         ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV :            \
 465         ((flags) & CPU_DTRACE_TUPOFLOW) ?  DTRACEFLT_TUPOFLOW :             \
 466         ((flags) & CPU_DTRACE_BADALIGN) ?  DTRACEFLT_BADALIGN :             \
 467         ((flags) & CPU_DTRACE_NOSCRATCH) ?  DTRACEFLT_NOSCRATCH :   \
 468         ((flags) & CPU_DTRACE_BADSTACK) ?  DTRACEFLT_BADSTACK :             \
 469         DTRACEFLT_UNKNOWN)
 470 
 471 #define DTRACEACT_ISSTRING(act)                                         \
 472         ((act)->dta_kind == DTRACEACT_DIFEXPR &&                     \
 473         (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
 474 
 475 static size_t dtrace_strlen(const char *, size_t);
 476 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
 477 static void dtrace_enabling_provide(dtrace_provider_t *);
 478 static int dtrace_enabling_match(dtrace_enabling_t *, int *);
 479 static void dtrace_enabling_matchall(void);
 480 static void dtrace_enabling_reap(void);
 481 static dtrace_state_t *dtrace_anon_grab(void);
 482 static uint64_t dtrace_helper(int, dtrace_mstate_t *,
 483     dtrace_state_t *, uint64_t, uint64_t);
 484 static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
 485 static void dtrace_buffer_drop(dtrace_buffer_t *);
 486 static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when);
 487 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
 488     dtrace_state_t *, dtrace_mstate_t *);
 489 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
 490     dtrace_optval_t);
 491 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
 492 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *);
 493 static int dtrace_priv_proc(dtrace_state_t *, dtrace_mstate_t *);
 494 static void dtrace_getf_barrier(void);
 495 static int dtrace_canload_remains(uint64_t, size_t, size_t *,
 496     dtrace_mstate_t *, dtrace_vstate_t *);
 497 static int dtrace_canstore_remains(uint64_t, size_t, size_t *,
 498     dtrace_mstate_t *, dtrace_vstate_t *);
 499 
 500 /*
 501  * DTrace Probe Context Functions
 502  *
 503  * These functions are called from probe context.  Because probe context is
 504  * any context in which C may be called, arbitrarily locks may be held,
 505  * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
 506  * As a result, functions called from probe context may only call other DTrace
 507  * support functions -- they may not interact at all with the system at large.
 508  * (Note that the ASSERT macro is made probe-context safe by redefining it in
 509  * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
 510  * loads are to be performed from probe context, they _must_ be in terms of
 511  * the safe dtrace_load*() variants.
 512  *
 513  * Some functions in this block are not actually called from probe context;
 514  * for these functions, there will be a comment above the function reading
 515  * "Note:  not called from probe context."
 516  */
 517 void
 518 dtrace_panic(const char *format, ...)
 519 {
 520         va_list alist;
 521 
 522         va_start(alist, format);
 523         dtrace_vpanic(format, alist);
 524         va_end(alist);
 525 }
 526 
 527 int
 528 dtrace_assfail(const char *a, const char *f, int l)
 529 {
 530         dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
 531 
 532         /*
 533          * We just need something here that even the most clever compiler
 534          * cannot optimize away.
 535          */
 536         return (a[(uintptr_t)f]);
 537 }
 538 
 539 /*
 540  * Atomically increment a specified error counter from probe context.
 541  */
 542 static void
 543 dtrace_error(uint32_t *counter)
 544 {
 545         /*
 546          * Most counters stored to in probe context are per-CPU counters.
 547          * However, there are some error conditions that are sufficiently
 548          * arcane that they don't merit per-CPU storage.  If these counters
 549          * are incremented concurrently on different CPUs, scalability will be
 550          * adversely affected -- but we don't expect them to be white-hot in a
 551          * correctly constructed enabling...
 552          */
 553         uint32_t oval, nval;
 554 
 555         do {
 556                 oval = *counter;
 557 
 558                 if ((nval = oval + 1) == 0) {
 559                         /*
 560                          * If the counter would wrap, set it to 1 -- assuring
 561                          * that the counter is never zero when we have seen
 562                          * errors.  (The counter must be 32-bits because we
 563                          * aren't guaranteed a 64-bit compare&swap operation.)
 564                          * To save this code both the infamy of being fingered
 565                          * by a priggish news story and the indignity of being
 566                          * the target of a neo-puritan witch trial, we're
 567                          * carefully avoiding any colorful description of the
 568                          * likelihood of this condition -- but suffice it to
 569                          * say that it is only slightly more likely than the
 570                          * overflow of predicate cache IDs, as discussed in
 571                          * dtrace_predicate_create().
 572                          */
 573                         nval = 1;
 574                 }
 575         } while (dtrace_cas32(counter, oval, nval) != oval);
 576 }
 577 
 578 /*
 579  * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
 580  * uint8_t, a uint16_t, a uint32_t and a uint64_t.
 581  */
 582 /* BEGIN CSTYLED */
 583 DTRACE_LOADFUNC(8)
 584 DTRACE_LOADFUNC(16)
 585 DTRACE_LOADFUNC(32)
 586 DTRACE_LOADFUNC(64)
 587 /* END CSTYLED */
 588 
 589 static int
 590 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
 591 {
 592         if (dest < mstate->dtms_scratch_base)
 593                 return (0);
 594 
 595         if (dest + size < dest)
 596                 return (0);
 597 
 598         if (dest + size > mstate->dtms_scratch_ptr)
 599                 return (0);
 600 
 601         return (1);
 602 }
 603 
 604 static int
 605 dtrace_canstore_statvar(uint64_t addr, size_t sz, size_t *remain,
 606     dtrace_statvar_t **svars, int nsvars)
 607 {
 608         int i;
 609         size_t maxglobalsize, maxlocalsize;
 610 
 611         if (nsvars == 0)
 612                 return (0);
 613 
 614         maxglobalsize = dtrace_statvar_maxsize + sizeof (uint64_t);
 615         maxlocalsize = maxglobalsize * NCPU;
 616 
 617         for (i = 0; i < nsvars; i++) {
 618                 dtrace_statvar_t *svar = svars[i];
 619                 uint8_t scope;
 620                 size_t size;
 621 
 622                 if (svar == NULL || (size = svar->dtsv_size) == 0)
 623                         continue;
 624 
 625                 scope = svar->dtsv_var.dtdv_scope;
 626 
 627                 /*
 628                  * We verify that our size is valid in the spirit of providing
 629                  * defense in depth:  we want to prevent attackers from using
 630                  * DTrace to escalate an orthogonal kernel heap corruption bug
 631                  * into the ability to store to arbitrary locations in memory.
 632                  */
 633                 VERIFY((scope == DIFV_SCOPE_GLOBAL && size <= maxglobalsize) ||
 634                     (scope == DIFV_SCOPE_LOCAL && size <= maxlocalsize));
 635 
 636                 if (DTRACE_INRANGE(addr, sz, svar->dtsv_data,
 637                     svar->dtsv_size)) {
 638                         DTRACE_RANGE_REMAIN(remain, addr, svar->dtsv_data,
 639                             svar->dtsv_size);
 640                         return (1);
 641                 }
 642         }
 643 
 644         return (0);
 645 }
 646 
 647 /*
 648  * Check to see if the address is within a memory region to which a store may
 649  * be issued.  This includes the DTrace scratch areas, and any DTrace variable
 650  * region.  The caller of dtrace_canstore() is responsible for performing any
 651  * alignment checks that are needed before stores are actually executed.
 652  */
 653 static int
 654 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
 655     dtrace_vstate_t *vstate)
 656 {
 657         return (dtrace_canstore_remains(addr, sz, NULL, mstate, vstate));
 658 }
 659 
 660 /*
 661  * Implementation of dtrace_canstore which communicates the upper bound of the
 662  * allowed memory region.
 663  */
 664 static int
 665 dtrace_canstore_remains(uint64_t addr, size_t sz, size_t *remain,
 666     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
 667 {
 668         /*
 669          * First, check to see if the address is in scratch space...
 670          */
 671         if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base,
 672             mstate->dtms_scratch_size)) {
 673                 DTRACE_RANGE_REMAIN(remain, addr, mstate->dtms_scratch_base,
 674                     mstate->dtms_scratch_size);
 675                 return (1);
 676         }
 677 
 678         /*
 679          * Now check to see if it's a dynamic variable.  This check will pick
 680          * up both thread-local variables and any global dynamically-allocated
 681          * variables.
 682          */
 683         if (DTRACE_INRANGE(addr, sz, vstate->dtvs_dynvars.dtds_base,
 684             vstate->dtvs_dynvars.dtds_size)) {
 685                 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
 686                 uintptr_t base = (uintptr_t)dstate->dtds_base +
 687                     (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t));
 688                 uintptr_t chunkoffs;
 689                 dtrace_dynvar_t *dvar;
 690 
 691                 /*
 692                  * Before we assume that we can store here, we need to make
 693                  * sure that it isn't in our metadata -- storing to our
 694                  * dynamic variable metadata would corrupt our state.  For
 695                  * the range to not include any dynamic variable metadata,
 696                  * it must:
 697                  *
 698                  *      (1) Start above the hash table that is at the base of
 699                  *      the dynamic variable space
 700                  *
 701                  *      (2) Have a starting chunk offset that is beyond the
 702                  *      dtrace_dynvar_t that is at the base of every chunk
 703                  *
 704                  *      (3) Not span a chunk boundary
 705                  *
 706                  *      (4) Not be in the tuple space of a dynamic variable
 707                  *
 708                  */
 709                 if (addr < base)
 710                         return (0);
 711 
 712                 chunkoffs = (addr - base) % dstate->dtds_chunksize;
 713 
 714                 if (chunkoffs < sizeof (dtrace_dynvar_t))
 715                         return (0);
 716 
 717                 if (chunkoffs + sz > dstate->dtds_chunksize)
 718                         return (0);
 719 
 720                 dvar = (dtrace_dynvar_t *)((uintptr_t)addr - chunkoffs);
 721 
 722                 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE)
 723                         return (0);
 724 
 725                 if (chunkoffs < sizeof (dtrace_dynvar_t) +
 726                     ((dvar->dtdv_tuple.dtt_nkeys - 1) * sizeof (dtrace_key_t)))
 727                         return (0);
 728 
 729                 DTRACE_RANGE_REMAIN(remain, addr, dvar, dstate->dtds_chunksize);
 730                 return (1);
 731         }
 732 
 733         /*
 734          * Finally, check the static local and global variables.  These checks
 735          * take the longest, so we perform them last.
 736          */
 737         if (dtrace_canstore_statvar(addr, sz, remain,
 738             vstate->dtvs_locals, vstate->dtvs_nlocals))
 739                 return (1);
 740 
 741         if (dtrace_canstore_statvar(addr, sz, remain,
 742             vstate->dtvs_globals, vstate->dtvs_nglobals))
 743                 return (1);
 744 
 745         return (0);
 746 }
 747 
 748 
 749 /*
 750  * Convenience routine to check to see if the address is within a memory
 751  * region in which a load may be issued given the user's privilege level;
 752  * if not, it sets the appropriate error flags and loads 'addr' into the
 753  * illegal value slot.
 754  *
 755  * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
 756  * appropriate memory access protection.
 757  */
 758 static int
 759 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
 760     dtrace_vstate_t *vstate)
 761 {
 762         return (dtrace_canload_remains(addr, sz, NULL, mstate, vstate));
 763 }
 764 
 765 /*
 766  * Implementation of dtrace_canload which communicates the upper bound of the
 767  * allowed memory region.
 768  */
 769 static int
 770 dtrace_canload_remains(uint64_t addr, size_t sz, size_t *remain,
 771     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
 772 {
 773         volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
 774         file_t *fp;
 775 
 776         /*
 777          * If we hold the privilege to read from kernel memory, then
 778          * everything is readable.
 779          */
 780         if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) {
 781                 DTRACE_RANGE_REMAIN(remain, addr, addr, sz);
 782                 return (1);
 783         }
 784 
 785         /*
 786          * You can obviously read that which you can store.
 787          */
 788         if (dtrace_canstore_remains(addr, sz, remain, mstate, vstate))
 789                 return (1);
 790 
 791         /*
 792          * We're allowed to read from our own string table.
 793          */
 794         if (DTRACE_INRANGE(addr, sz, mstate->dtms_difo->dtdo_strtab,
 795             mstate->dtms_difo->dtdo_strlen)) {
 796                 DTRACE_RANGE_REMAIN(remain, addr,
 797                     mstate->dtms_difo->dtdo_strtab,
 798                     mstate->dtms_difo->dtdo_strlen);
 799                 return (1);
 800         }
 801 
 802         if (vstate->dtvs_state != NULL &&
 803             dtrace_priv_proc(vstate->dtvs_state, mstate)) {
 804                 proc_t *p;
 805 
 806                 /*
 807                  * When we have privileges to the current process, there are
 808                  * several context-related kernel structures that are safe to
 809                  * read, even absent the privilege to read from kernel memory.
 810                  * These reads are safe because these structures contain only
 811                  * state that (1) we're permitted to read, (2) is harmless or
 812                  * (3) contains pointers to additional kernel state that we're
 813                  * not permitted to read (and as such, do not present an
 814                  * opportunity for privilege escalation).  Finally (and
 815                  * critically), because of the nature of their relation with
 816                  * the current thread context, the memory associated with these
 817                  * structures cannot change over the duration of probe context,
 818                  * and it is therefore impossible for this memory to be
 819                  * deallocated and reallocated as something else while it's
 820                  * being operated upon.
 821                  */
 822                 if (DTRACE_INRANGE(addr, sz, curthread, sizeof (kthread_t))) {
 823                         DTRACE_RANGE_REMAIN(remain, addr, curthread,
 824                             sizeof (kthread_t));
 825                         return (1);
 826                 }
 827 
 828                 if ((p = curthread->t_procp) != NULL && DTRACE_INRANGE(addr,
 829                     sz, curthread->t_procp, sizeof (proc_t))) {
 830                         DTRACE_RANGE_REMAIN(remain, addr, curthread->t_procp,
 831                             sizeof (proc_t));
 832                         return (1);
 833                 }
 834 
 835                 if (curthread->t_cred != NULL && DTRACE_INRANGE(addr, sz,
 836                     curthread->t_cred, sizeof (cred_t))) {
 837                         DTRACE_RANGE_REMAIN(remain, addr, curthread->t_cred,
 838                             sizeof (cred_t));
 839                         return (1);
 840                 }
 841 
 842                 if (p != NULL && p->p_pidp != NULL && DTRACE_INRANGE(addr, sz,
 843                     &(p->p_pidp->pid_id), sizeof (pid_t))) {
 844                         DTRACE_RANGE_REMAIN(remain, addr, &(p->p_pidp->pid_id),
 845                             sizeof (pid_t));
 846                         return (1);
 847                 }
 848 
 849                 if (curthread->t_cpu != NULL && DTRACE_INRANGE(addr, sz,
 850                     curthread->t_cpu, offsetof(cpu_t, cpu_pause_thread))) {
 851                         DTRACE_RANGE_REMAIN(remain, addr, curthread->t_cpu,
 852                             offsetof(cpu_t, cpu_pause_thread));
 853                         return (1);
 854                 }
 855         }
 856 
 857         if ((fp = mstate->dtms_getf) != NULL) {
 858                 uintptr_t psz = sizeof (void *);
 859                 vnode_t *vp;
 860                 vnodeops_t *op;
 861 
 862                 /*
 863                  * When getf() returns a file_t, the enabling is implicitly
 864                  * granted the (transient) right to read the returned file_t
 865                  * as well as the v_path and v_op->vnop_name of the underlying
 866                  * vnode.  These accesses are allowed after a successful
 867                  * getf() because the members that they refer to cannot change
 868                  * once set -- and the barrier logic in the kernel's closef()
 869                  * path assures that the file_t and its referenced vode_t
 870                  * cannot themselves be stale (that is, it impossible for
 871                  * either dtms_getf itself or its f_vnode member to reference
 872                  * freed memory).
 873                  */
 874                 if (DTRACE_INRANGE(addr, sz, fp, sizeof (file_t))) {
 875                         DTRACE_RANGE_REMAIN(remain, addr, fp, sizeof (file_t));
 876                         return (1);
 877                 }
 878 
 879                 if ((vp = fp->f_vnode) != NULL) {
 880                         size_t slen;
 881 
 882                         if (DTRACE_INRANGE(addr, sz, &vp->v_path, psz)) {
 883                                 DTRACE_RANGE_REMAIN(remain, addr, &vp->v_path,
 884                                     psz);
 885                                 return (1);
 886                         }
 887 
 888                         slen = strlen(vp->v_path) + 1;
 889                         if (DTRACE_INRANGE(addr, sz, vp->v_path, slen)) {
 890                                 DTRACE_RANGE_REMAIN(remain, addr, vp->v_path,
 891                                     slen);
 892                                 return (1);
 893                         }
 894 
 895                         if (DTRACE_INRANGE(addr, sz, &vp->v_op, psz)) {
 896                                 DTRACE_RANGE_REMAIN(remain, addr, &vp->v_op,
 897                                     psz);
 898                                 return (1);
 899                         }
 900 
 901                         if ((op = vp->v_op) != NULL &&
 902                             DTRACE_INRANGE(addr, sz, &op->vnop_name, psz)) {
 903                                 DTRACE_RANGE_REMAIN(remain, addr,
 904                                     &op->vnop_name, psz);
 905                                 return (1);
 906                         }
 907 
 908                         if (op != NULL && op->vnop_name != NULL &&
 909                             DTRACE_INRANGE(addr, sz, op->vnop_name,
 910                             (slen = strlen(op->vnop_name) + 1))) {
 911                                 DTRACE_RANGE_REMAIN(remain, addr,
 912                                     op->vnop_name, slen);
 913                                 return (1);
 914                         }
 915                 }
 916         }
 917 
 918         DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV);
 919         *illval = addr;
 920         return (0);
 921 }
 922 
 923 /*
 924  * Convenience routine to check to see if a given string is within a memory
 925  * region in which a load may be issued given the user's privilege level;
 926  * this exists so that we don't need to issue unnecessary dtrace_strlen()
 927  * calls in the event that the user has all privileges.
 928  */
 929 static int
 930 dtrace_strcanload(uint64_t addr, size_t sz, size_t *remain,
 931     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
 932 {
 933         size_t rsize;
 934 
 935         /*
 936          * If we hold the privilege to read from kernel memory, then
 937          * everything is readable.
 938          */
 939         if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) {
 940                 DTRACE_RANGE_REMAIN(remain, addr, addr, sz);
 941                 return (1);
 942         }
 943 
 944         /*
 945          * Even if the caller is uninterested in querying the remaining valid
 946          * range, it is required to ensure that the access is allowed.
 947          */
 948         if (remain == NULL) {
 949                 remain = &rsize;
 950         }
 951         if (dtrace_canload_remains(addr, 0, remain, mstate, vstate)) {
 952                 size_t strsz;
 953                 /*
 954                  * Perform the strlen after determining the length of the
 955                  * memory region which is accessible.  This prevents timing
 956                  * information from being used to find NULs in memory which is
 957                  * not accessible to the caller.
 958                  */
 959                 strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr,
 960                     MIN(sz, *remain));
 961                 if (strsz <= *remain) {
 962                         return (1);
 963                 }
 964         }
 965 
 966         return (0);
 967 }
 968 
 969 /*
 970  * Convenience routine to check to see if a given variable is within a memory
 971  * region in which a load may be issued given the user's privilege level.
 972  */
 973 static int
 974 dtrace_vcanload(void *src, dtrace_diftype_t *type, size_t *remain,
 975     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
 976 {
 977         size_t sz;
 978         ASSERT(type->dtdt_flags & DIF_TF_BYREF);
 979 
 980         /*
 981          * Calculate the max size before performing any checks since even
 982          * DTRACE_ACCESS_KERNEL-credentialed callers expect that this function
 983          * return the max length via 'remain'.
 984          */
 985         if (type->dtdt_kind == DIF_TYPE_STRING) {
 986                 dtrace_state_t *state = vstate->dtvs_state;
 987 
 988                 if (state != NULL) {
 989                         sz = state->dts_options[DTRACEOPT_STRSIZE];
 990                 } else {
 991                         /*
 992                          * In helper context, we have a NULL state; fall back
 993                          * to using the system-wide default for the string size
 994                          * in this case.
 995                          */
 996                         sz = dtrace_strsize_default;
 997                 }
 998         } else {
 999                 sz = type->dtdt_size;
1000         }
1001 
1002         /*
1003          * If we hold the privilege to read from kernel memory, then
1004          * everything is readable.
1005          */
1006         if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) {
1007                 DTRACE_RANGE_REMAIN(remain, (uintptr_t)src, src, sz);
1008                 return (1);
1009         }
1010 
1011         if (type->dtdt_kind == DIF_TYPE_STRING) {
1012                 return (dtrace_strcanload((uintptr_t)src, sz, remain, mstate,
1013                     vstate));
1014         }
1015         return (dtrace_canload_remains((uintptr_t)src, sz, remain, mstate,
1016             vstate));
1017 }
1018 
1019 /*
1020  * Convert a string to a signed integer using safe loads.
1021  *
1022  * NOTE: This function uses various macros from strtolctype.h to manipulate
1023  * digit values, etc -- these have all been checked to ensure they make
1024  * no additional function calls.
1025  */
1026 static int64_t
1027 dtrace_strtoll(char *input, int base, size_t limit)
1028 {
1029         uintptr_t pos = (uintptr_t)input;
1030         int64_t val = 0;
1031         int x;
1032         boolean_t neg = B_FALSE;
1033         char c, cc, ccc;
1034         uintptr_t end = pos + limit;
1035 
1036         /*
1037          * Consume any whitespace preceding digits.
1038          */
1039         while ((c = dtrace_load8(pos)) == ' ' || c == '\t')
1040                 pos++;
1041 
1042         /*
1043          * Handle an explicit sign if one is present.
1044          */
1045         if (c == '-' || c == '+') {
1046                 if (c == '-')
1047                         neg = B_TRUE;
1048                 c = dtrace_load8(++pos);
1049         }
1050 
1051         /*
1052          * Check for an explicit hexadecimal prefix ("0x" or "0X") and skip it
1053          * if present.
1054          */
1055         if (base == 16 && c == '0' && ((cc = dtrace_load8(pos + 1)) == 'x' ||
1056             cc == 'X') && isxdigit(ccc = dtrace_load8(pos + 2))) {
1057                 pos += 2;
1058                 c = ccc;
1059         }
1060 
1061         /*
1062          * Read in contiguous digits until the first non-digit character.
1063          */
1064         for (; pos < end && c != '\0' && lisalnum(c) && (x = DIGIT(c)) < base;
1065             c = dtrace_load8(++pos))
1066                 val = val * base + x;
1067 
1068         return (neg ? -val : val);
1069 }
1070 
1071 /*
1072  * Compare two strings using safe loads.
1073  */
1074 static int
1075 dtrace_strncmp(char *s1, char *s2, size_t limit)
1076 {
1077         uint8_t c1, c2;
1078         volatile uint16_t *flags;
1079 
1080         if (s1 == s2 || limit == 0)
1081                 return (0);
1082 
1083         flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
1084 
1085         do {
1086                 if (s1 == NULL) {
1087                         c1 = '\0';
1088                 } else {
1089                         c1 = dtrace_load8((uintptr_t)s1++);
1090                 }
1091 
1092                 if (s2 == NULL) {
1093                         c2 = '\0';
1094                 } else {
1095                         c2 = dtrace_load8((uintptr_t)s2++);
1096                 }
1097 
1098                 if (c1 != c2)
1099                         return (c1 - c2);
1100         } while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
1101 
1102         return (0);
1103 }
1104 
1105 /*
1106  * Compute strlen(s) for a string using safe memory accesses.  The additional
1107  * len parameter is used to specify a maximum length to ensure completion.
1108  */
1109 static size_t
1110 dtrace_strlen(const char *s, size_t lim)
1111 {
1112         uint_t len;
1113 
1114         for (len = 0; len != lim; len++) {
1115                 if (dtrace_load8((uintptr_t)s++) == '\0')
1116                         break;
1117         }
1118 
1119         return (len);
1120 }
1121 
1122 /*
1123  * Check if an address falls within a toxic region.
1124  */
1125 static int
1126 dtrace_istoxic(uintptr_t kaddr, size_t size)
1127 {
1128         uintptr_t taddr, tsize;
1129         int i;
1130 
1131         for (i = 0; i < dtrace_toxranges; i++) {
1132                 taddr = dtrace_toxrange[i].dtt_base;
1133                 tsize = dtrace_toxrange[i].dtt_limit - taddr;
1134 
1135                 if (kaddr - taddr < tsize) {
1136                         DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1137                         cpu_core[CPU->cpu_id].cpuc_dtrace_illval = kaddr;
1138                         return (1);
1139                 }
1140 
1141                 if (taddr - kaddr < size) {
1142                         DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1143                         cpu_core[CPU->cpu_id].cpuc_dtrace_illval = taddr;
1144                         return (1);
1145                 }
1146         }
1147 
1148         return (0);
1149 }
1150 
1151 /*
1152  * Copy src to dst using safe memory accesses.  The src is assumed to be unsafe
1153  * memory specified by the DIF program.  The dst is assumed to be safe memory
1154  * that we can store to directly because it is managed by DTrace.  As with
1155  * standard bcopy, overlapping copies are handled properly.
1156  */
1157 static void
1158 dtrace_bcopy(const void *src, void *dst, size_t len)
1159 {
1160         if (len != 0) {
1161                 uint8_t *s1 = dst;
1162                 const uint8_t *s2 = src;
1163 
1164                 if (s1 <= s2) {
1165                         do {
1166                                 *s1++ = dtrace_load8((uintptr_t)s2++);
1167                         } while (--len != 0);
1168                 } else {
1169                         s2 += len;
1170                         s1 += len;
1171 
1172                         do {
1173                                 *--s1 = dtrace_load8((uintptr_t)--s2);
1174                         } while (--len != 0);
1175                 }
1176         }
1177 }
1178 
1179 /*
1180  * Copy src to dst using safe memory accesses, up to either the specified
1181  * length, or the point that a nul byte is encountered.  The src is assumed to
1182  * be unsafe memory specified by the DIF program.  The dst is assumed to be
1183  * safe memory that we can store to directly because it is managed by DTrace.
1184  * Unlike dtrace_bcopy(), overlapping regions are not handled.
1185  */
1186 static void
1187 dtrace_strcpy(const void *src, void *dst, size_t len)
1188 {
1189         if (len != 0) {
1190                 uint8_t *s1 = dst, c;
1191                 const uint8_t *s2 = src;
1192 
1193                 do {
1194                         *s1++ = c = dtrace_load8((uintptr_t)s2++);
1195                 } while (--len != 0 && c != '\0');
1196         }
1197 }
1198 
1199 /*
1200  * Copy src to dst, deriving the size and type from the specified (BYREF)
1201  * variable type.  The src is assumed to be unsafe memory specified by the DIF
1202  * program.  The dst is assumed to be DTrace variable memory that is of the
1203  * specified type; we assume that we can store to directly.
1204  */
1205 static void
1206 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type, size_t limit)
1207 {
1208         ASSERT(type->dtdt_flags & DIF_TF_BYREF);
1209 
1210         if (type->dtdt_kind == DIF_TYPE_STRING) {
1211                 dtrace_strcpy(src, dst, MIN(type->dtdt_size, limit));
1212         } else {
1213                 dtrace_bcopy(src, dst, MIN(type->dtdt_size, limit));
1214         }
1215 }
1216 
1217 /*
1218  * Compare s1 to s2 using safe memory accesses.  The s1 data is assumed to be
1219  * unsafe memory specified by the DIF program.  The s2 data is assumed to be
1220  * safe memory that we can access directly because it is managed by DTrace.
1221  */
1222 static int
1223 dtrace_bcmp(const void *s1, const void *s2, size_t len)
1224 {
1225         volatile uint16_t *flags;
1226 
1227         flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
1228 
1229         if (s1 == s2)
1230                 return (0);
1231 
1232         if (s1 == NULL || s2 == NULL)
1233                 return (1);
1234 
1235         if (s1 != s2 && len != 0) {
1236                 const uint8_t *ps1 = s1;
1237                 const uint8_t *ps2 = s2;
1238 
1239                 do {
1240                         if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
1241                                 return (1);
1242                 } while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
1243         }
1244         return (0);
1245 }
1246 
1247 /*
1248  * Zero the specified region using a simple byte-by-byte loop.  Note that this
1249  * is for safe DTrace-managed memory only.
1250  */
1251 static void
1252 dtrace_bzero(void *dst, size_t len)
1253 {
1254         uchar_t *cp;
1255 
1256         for (cp = dst; len != 0; len--)
1257                 *cp++ = 0;
1258 }
1259 
1260 static void
1261 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
1262 {
1263         uint64_t result[2];
1264 
1265         result[0] = addend1[0] + addend2[0];
1266         result[1] = addend1[1] + addend2[1] +
1267             (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
1268 
1269         sum[0] = result[0];
1270         sum[1] = result[1];
1271 }
1272 
1273 /*
1274  * Shift the 128-bit value in a by b. If b is positive, shift left.
1275  * If b is negative, shift right.
1276  */
1277 static void
1278 dtrace_shift_128(uint64_t *a, int b)
1279 {
1280         uint64_t mask;
1281 
1282         if (b == 0)
1283                 return;
1284 
1285         if (b < 0) {
1286                 b = -b;
1287                 if (b >= 64) {
1288                         a[0] = a[1] >> (b - 64);
1289                         a[1] = 0;
1290                 } else {
1291                         a[0] >>= b;
1292                         mask = 1LL << (64 - b);
1293                         mask -= 1;
1294                         a[0] |= ((a[1] & mask) << (64 - b));
1295                         a[1] >>= b;
1296                 }
1297         } else {
1298                 if (b >= 64) {
1299                         a[1] = a[0] << (b - 64);
1300                         a[0] = 0;
1301                 } else {
1302                         a[1] <<= b;
1303                         mask = a[0] >> (64 - b);
1304                         a[1] |= mask;
1305                         a[0] <<= b;
1306                 }
1307         }
1308 }
1309 
1310 /*
1311  * The basic idea is to break the 2 64-bit values into 4 32-bit values,
1312  * use native multiplication on those, and then re-combine into the
1313  * resulting 128-bit value.
1314  *
1315  * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
1316  *     hi1 * hi2 << 64 +
1317  *     hi1 * lo2 << 32 +
1318  *     hi2 * lo1 << 32 +
1319  *     lo1 * lo2
1320  */
1321 static void
1322 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
1323 {
1324         uint64_t hi1, hi2, lo1, lo2;
1325         uint64_t tmp[2];
1326 
1327         hi1 = factor1 >> 32;
1328         hi2 = factor2 >> 32;
1329 
1330         lo1 = factor1 & DT_MASK_LO;
1331         lo2 = factor2 & DT_MASK_LO;
1332 
1333         product[0] = lo1 * lo2;
1334         product[1] = hi1 * hi2;
1335 
1336         tmp[0] = hi1 * lo2;
1337         tmp[1] = 0;
1338         dtrace_shift_128(tmp, 32);
1339         dtrace_add_128(product, tmp, product);
1340 
1341         tmp[0] = hi2 * lo1;
1342         tmp[1] = 0;
1343         dtrace_shift_128(tmp, 32);
1344         dtrace_add_128(product, tmp, product);
1345 }
1346 
1347 /*
1348  * This privilege check should be used by actions and subroutines to
1349  * verify that the user credentials of the process that enabled the
1350  * invoking ECB match the target credentials
1351  */
1352 static int
1353 dtrace_priv_proc_common_user(dtrace_state_t *state)
1354 {
1355         cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1356 
1357         /*
1358          * We should always have a non-NULL state cred here, since if cred
1359          * is null (anonymous tracing), we fast-path bypass this routine.
1360          */
1361         ASSERT(s_cr != NULL);
1362 
1363         if ((cr = CRED()) != NULL &&
1364             s_cr->cr_uid == cr->cr_uid &&
1365             s_cr->cr_uid == cr->cr_ruid &&
1366             s_cr->cr_uid == cr->cr_suid &&
1367             s_cr->cr_gid == cr->cr_gid &&
1368             s_cr->cr_gid == cr->cr_rgid &&
1369             s_cr->cr_gid == cr->cr_sgid)
1370                 return (1);
1371 
1372         return (0);
1373 }
1374 
1375 /*
1376  * This privilege check should be used by actions and subroutines to
1377  * verify that the zone of the process that enabled the invoking ECB
1378  * matches the target credentials
1379  */
1380 static int
1381 dtrace_priv_proc_common_zone(dtrace_state_t *state)
1382 {
1383         cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1384 
1385         /*
1386          * We should always have a non-NULL state cred here, since if cred
1387          * is null (anonymous tracing), we fast-path bypass this routine.
1388          */
1389         ASSERT(s_cr != NULL);
1390 
1391         if ((cr = CRED()) != NULL && s_cr->cr_zone == cr->cr_zone)
1392                 return (1);
1393 
1394         return (0);
1395 }
1396 
1397 /*
1398  * This privilege check should be used by actions and subroutines to
1399  * verify that the process has not setuid or changed credentials.
1400  */
1401 static int
1402 dtrace_priv_proc_common_nocd()
1403 {
1404         proc_t *proc;
1405 
1406         if ((proc = ttoproc(curthread)) != NULL &&
1407             !(proc->p_flag & SNOCD))
1408                 return (1);
1409 
1410         return (0);
1411 }
1412 
1413 static int
1414 dtrace_priv_proc_destructive(dtrace_state_t *state, dtrace_mstate_t *mstate)
1415 {
1416         int action = state->dts_cred.dcr_action;
1417 
1418         if (!(mstate->dtms_access & DTRACE_ACCESS_PROC))
1419                 goto bad;
1420 
1421         if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
1422             dtrace_priv_proc_common_zone(state) == 0)
1423                 goto bad;
1424 
1425         if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
1426             dtrace_priv_proc_common_user(state) == 0)
1427                 goto bad;
1428 
1429         if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
1430             dtrace_priv_proc_common_nocd() == 0)
1431                 goto bad;
1432 
1433         return (1);
1434 
1435 bad:
1436         cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1437 
1438         return (0);
1439 }
1440 
1441 static int
1442 dtrace_priv_proc_control(dtrace_state_t *state, dtrace_mstate_t *mstate)
1443 {
1444         if (mstate->dtms_access & DTRACE_ACCESS_PROC) {
1445                 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
1446                         return (1);
1447 
1448                 if (dtrace_priv_proc_common_zone(state) &&
1449                     dtrace_priv_proc_common_user(state) &&
1450                     dtrace_priv_proc_common_nocd())
1451                         return (1);
1452         }
1453 
1454         cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1455 
1456         return (0);
1457 }
1458 
1459 static int
1460 dtrace_priv_proc(dtrace_state_t *state, dtrace_mstate_t *mstate)
1461 {
1462         if ((mstate->dtms_access & DTRACE_ACCESS_PROC) &&
1463             (state->dts_cred.dcr_action & DTRACE_CRA_PROC))
1464                 return (1);
1465 
1466         cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1467 
1468         return (0);
1469 }
1470 
1471 static int
1472 dtrace_priv_kernel(dtrace_state_t *state)
1473 {
1474         if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
1475                 return (1);
1476 
1477         cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1478 
1479         return (0);
1480 }
1481 
1482 static int
1483 dtrace_priv_kernel_destructive(dtrace_state_t *state)
1484 {
1485         if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
1486                 return (1);
1487 
1488         cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1489 
1490         return (0);
1491 }
1492 
1493 /*
1494  * Determine if the dte_cond of the specified ECB allows for processing of
1495  * the current probe to continue.  Note that this routine may allow continued
1496  * processing, but with access(es) stripped from the mstate's dtms_access
1497  * field.
1498  */
1499 static int
1500 dtrace_priv_probe(dtrace_state_t *state, dtrace_mstate_t *mstate,
1501     dtrace_ecb_t *ecb)
1502 {
1503         dtrace_probe_t *probe = ecb->dte_probe;
1504         dtrace_provider_t *prov = probe->dtpr_provider;
1505         dtrace_pops_t *pops = &prov->dtpv_pops;
1506         int mode = DTRACE_MODE_NOPRIV_DROP;
1507 
1508         ASSERT(ecb->dte_cond);
1509 
1510         if (pops->dtps_mode != NULL) {
1511                 mode = pops->dtps_mode(prov->dtpv_arg,
1512                     probe->dtpr_id, probe->dtpr_arg);
1513 
1514                 ASSERT(mode & (DTRACE_MODE_USER | DTRACE_MODE_KERNEL));
1515                 ASSERT(mode & (DTRACE_MODE_NOPRIV_RESTRICT |
1516                     DTRACE_MODE_NOPRIV_DROP));
1517         }
1518 
1519         /*
1520          * If the dte_cond bits indicate that this consumer is only allowed to
1521          * see user-mode firings of this probe, check that the probe was fired
1522          * while in a user context.  If that's not the case, use the policy
1523          * specified by the provider to determine if we drop the probe or
1524          * merely restrict operation.
1525          */
1526         if (ecb->dte_cond & DTRACE_COND_USERMODE) {
1527                 ASSERT(mode != DTRACE_MODE_NOPRIV_DROP);
1528 
1529                 if (!(mode & DTRACE_MODE_USER)) {
1530                         if (mode & DTRACE_MODE_NOPRIV_DROP)
1531                                 return (0);
1532 
1533                         mstate->dtms_access &= ~DTRACE_ACCESS_ARGS;
1534                 }
1535         }
1536 
1537         /*
1538          * This is more subtle than it looks. We have to be absolutely certain
1539          * that CRED() isn't going to change out from under us so it's only
1540          * legit to examine that structure if we're in constrained situations.
1541          * Currently, the only times we'll this check is if a non-super-user
1542          * has enabled the profile or syscall providers -- providers that
1543          * allow visibility of all processes. For the profile case, the check
1544          * above will ensure that we're examining a user context.
1545          */
1546         if (ecb->dte_cond & DTRACE_COND_OWNER) {
1547                 cred_t *cr;
1548                 cred_t *s_cr = state->dts_cred.dcr_cred;
1549                 proc_t *proc;
1550 
1551                 ASSERT(s_cr != NULL);
1552 
1553                 if ((cr = CRED()) == NULL ||
1554                     s_cr->cr_uid != cr->cr_uid ||
1555                     s_cr->cr_uid != cr->cr_ruid ||
1556                     s_cr->cr_uid != cr->cr_suid ||
1557                     s_cr->cr_gid != cr->cr_gid ||
1558                     s_cr->cr_gid != cr->cr_rgid ||
1559                     s_cr->cr_gid != cr->cr_sgid ||
1560                     (proc = ttoproc(curthread)) == NULL ||
1561                     (proc->p_flag & SNOCD)) {
1562                         if (mode & DTRACE_MODE_NOPRIV_DROP)
1563                                 return (0);
1564 
1565                         mstate->dtms_access &= ~DTRACE_ACCESS_PROC;
1566                 }
1567         }
1568 
1569         /*
1570          * If our dte_cond is set to DTRACE_COND_ZONEOWNER and we are not
1571          * in our zone, check to see if our mode policy is to restrict rather
1572          * than to drop; if to restrict, strip away both DTRACE_ACCESS_PROC
1573          * and DTRACE_ACCESS_ARGS
1574          */
1575         if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
1576                 cred_t *cr;
1577                 cred_t *s_cr = state->dts_cred.dcr_cred;
1578 
1579                 ASSERT(s_cr != NULL);
1580 
1581                 if ((cr = CRED()) == NULL ||
1582                     s_cr->cr_zone->zone_id != cr->cr_zone->zone_id) {
1583                         if (mode & DTRACE_MODE_NOPRIV_DROP)
1584                                 return (0);
1585 
1586                         mstate->dtms_access &=
1587                             ~(DTRACE_ACCESS_PROC | DTRACE_ACCESS_ARGS);
1588                 }
1589         }
1590 
1591         /*
1592          * By merits of being in this code path at all, we have limited
1593          * privileges.  If the provider has indicated that limited privileges
1594          * are to denote restricted operation, strip off the ability to access
1595          * arguments.
1596          */
1597         if (mode & DTRACE_MODE_LIMITEDPRIV_RESTRICT)
1598                 mstate->dtms_access &= ~DTRACE_ACCESS_ARGS;
1599 
1600         return (1);
1601 }
1602 
1603 /*
1604  * Note:  not called from probe context.  This function is called
1605  * asynchronously (and at a regular interval) from outside of probe context to
1606  * clean the dirty dynamic variable lists on all CPUs.  Dynamic variable
1607  * cleaning is explained in detail in <sys/dtrace_impl.h>.
1608  */
1609 void
1610 dtrace_dynvar_clean(dtrace_dstate_t *dstate)
1611 {
1612         dtrace_dynvar_t *dirty;
1613         dtrace_dstate_percpu_t *dcpu;
1614         dtrace_dynvar_t **rinsep;
1615         int i, j, work = 0;
1616 
1617         for (i = 0; i < NCPU; i++) {
1618                 dcpu = &dstate->dtds_percpu[i];
1619                 rinsep = &dcpu->dtdsc_rinsing;
1620 
1621                 /*
1622                  * If the dirty list is NULL, there is no dirty work to do.
1623                  */
1624                 if (dcpu->dtdsc_dirty == NULL)
1625                         continue;
1626 
1627                 if (dcpu->dtdsc_rinsing != NULL) {
1628                         /*
1629                          * If the rinsing list is non-NULL, then it is because
1630                          * this CPU was selected to accept another CPU's
1631                          * dirty list -- and since that time, dirty buffers
1632                          * have accumulated.  This is a highly unlikely
1633                          * condition, but we choose to ignore the dirty
1634                          * buffers -- they'll be picked up a future cleanse.
1635                          */
1636                         continue;
1637                 }
1638 
1639                 if (dcpu->dtdsc_clean != NULL) {
1640                         /*
1641                          * If the clean list is non-NULL, then we're in a
1642                          * situation where a CPU has done deallocations (we
1643                          * have a non-NULL dirty list) but no allocations (we
1644                          * also have a non-NULL clean list).  We can't simply
1645                          * move the dirty list into the clean list on this
1646                          * CPU, yet we also don't want to allow this condition
1647                          * to persist, lest a short clean list prevent a
1648                          * massive dirty list from being cleaned (which in
1649                          * turn could lead to otherwise avoidable dynamic
1650                          * drops).  To deal with this, we look for some CPU
1651                          * with a NULL clean list, NULL dirty list, and NULL
1652                          * rinsing list -- and then we borrow this CPU to
1653                          * rinse our dirty list.
1654                          */
1655                         for (j = 0; j < NCPU; j++) {
1656                                 dtrace_dstate_percpu_t *rinser;
1657 
1658                                 rinser = &dstate->dtds_percpu[j];
1659 
1660                                 if (rinser->dtdsc_rinsing != NULL)
1661                                         continue;
1662 
1663                                 if (rinser->dtdsc_dirty != NULL)
1664                                         continue;
1665 
1666                                 if (rinser->dtdsc_clean != NULL)
1667                                         continue;
1668 
1669                                 rinsep = &rinser->dtdsc_rinsing;
1670                                 break;
1671                         }
1672 
1673                         if (j == NCPU) {
1674                                 /*
1675                                  * We were unable to find another CPU that
1676                                  * could accept this dirty list -- we are
1677                                  * therefore unable to clean it now.
1678                                  */
1679                                 dtrace_dynvar_failclean++;
1680                                 continue;
1681                         }
1682                 }
1683 
1684                 work = 1;
1685 
1686                 /*
1687                  * Atomically move the dirty list aside.
1688                  */
1689                 do {
1690                         dirty = dcpu->dtdsc_dirty;
1691 
1692                         /*
1693                          * Before we zap the dirty list, set the rinsing list.
1694                          * (This allows for a potential assertion in
1695                          * dtrace_dynvar():  if a free dynamic variable appears
1696                          * on a hash chain, either the dirty list or the
1697                          * rinsing list for some CPU must be non-NULL.)
1698                          */
1699                         *rinsep = dirty;
1700                         dtrace_membar_producer();
1701                 } while (dtrace_casptr(&dcpu->dtdsc_dirty,
1702                     dirty, NULL) != dirty);
1703         }
1704 
1705         if (!work) {
1706                 /*
1707                  * We have no work to do; we can simply return.
1708                  */
1709                 return;
1710         }
1711 
1712         dtrace_sync();
1713 
1714         for (i = 0; i < NCPU; i++) {
1715                 dcpu = &dstate->dtds_percpu[i];
1716 
1717                 if (dcpu->dtdsc_rinsing == NULL)
1718                         continue;
1719 
1720                 /*
1721                  * We are now guaranteed that no hash chain contains a pointer
1722                  * into this dirty list; we can make it clean.
1723                  */
1724                 ASSERT(dcpu->dtdsc_clean == NULL);
1725                 dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
1726                 dcpu->dtdsc_rinsing = NULL;
1727         }
1728 
1729         /*
1730          * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1731          * sure that all CPUs have seen all of the dtdsc_clean pointers.
1732          * This prevents a race whereby a CPU incorrectly decides that
1733          * the state should be something other than DTRACE_DSTATE_CLEAN
1734          * after dtrace_dynvar_clean() has completed.
1735          */
1736         dtrace_sync();
1737 
1738         dstate->dtds_state = DTRACE_DSTATE_CLEAN;
1739 }
1740 
1741 /*
1742  * Depending on the value of the op parameter, this function looks-up,
1743  * allocates or deallocates an arbitrarily-keyed dynamic variable.  If an
1744  * allocation is requested, this function will return a pointer to a
1745  * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1746  * variable can be allocated.  If NULL is returned, the appropriate counter
1747  * will be incremented.
1748  */
1749 dtrace_dynvar_t *
1750 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
1751     dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,
1752     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1753 {
1754         uint64_t hashval = DTRACE_DYNHASH_VALID;
1755         dtrace_dynhash_t *hash = dstate->dtds_hash;
1756         dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
1757         processorid_t me = CPU->cpu_id, cpu = me;
1758         dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
1759         size_t bucket, ksize;
1760         size_t chunksize = dstate->dtds_chunksize;
1761         uintptr_t kdata, lock, nstate;
1762         uint_t i;
1763 
1764         ASSERT(nkeys != 0);
1765 
1766         /*
1767          * Hash the key.  As with aggregations, we use Jenkins' "One-at-a-time"
1768          * algorithm.  For the by-value portions, we perform the algorithm in
1769          * 16-bit chunks (as opposed to 8-bit chunks).  This speeds things up a
1770          * bit, and seems to have only a minute effect on distribution.  For
1771          * the by-reference data, we perform "One-at-a-time" iterating (safely)
1772          * over each referenced byte.  It's painful to do this, but it's much
1773          * better than pathological hash distribution.  The efficacy of the
1774          * hashing algorithm (and a comparison with other algorithms) may be
1775          * found by running the ::dtrace_dynstat MDB dcmd.
1776          */
1777         for (i = 0; i < nkeys; i++) {
1778                 if (key[i].dttk_size == 0) {
1779                         uint64_t val = key[i].dttk_value;
1780 
1781                         hashval += (val >> 48) & 0xffff;
1782                         hashval += (hashval << 10);
1783                         hashval ^= (hashval >> 6);
1784 
1785                         hashval += (val >> 32) & 0xffff;
1786                         hashval += (hashval << 10);
1787                         hashval ^= (hashval >> 6);
1788 
1789                         hashval += (val >> 16) & 0xffff;
1790                         hashval += (hashval << 10);
1791                         hashval ^= (hashval >> 6);
1792 
1793                         hashval += val & 0xffff;
1794                         hashval += (hashval << 10);
1795                         hashval ^= (hashval >> 6);
1796                 } else {
1797                         /*
1798                          * This is incredibly painful, but it beats the hell
1799                          * out of the alternative.
1800                          */
1801                         uint64_t j, size = key[i].dttk_size;
1802                         uintptr_t base = (uintptr_t)key[i].dttk_value;
1803 
1804                         if (!dtrace_canload(base, size, mstate, vstate))
1805                                 break;
1806 
1807                         for (j = 0; j < size; j++) {
1808                                 hashval += dtrace_load8(base + j);
1809                                 hashval += (hashval << 10);
1810                                 hashval ^= (hashval >> 6);
1811                         }
1812                 }
1813         }
1814 
1815         if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
1816                 return (NULL);
1817 
1818         hashval += (hashval << 3);
1819         hashval ^= (hashval >> 11);
1820         hashval += (hashval << 15);
1821 
1822         /*
1823          * There is a remote chance (ideally, 1 in 2^31) that our hashval
1824          * comes out to be one of our two sentinel hash values.  If this
1825          * actually happens, we set the hashval to be a value known to be a
1826          * non-sentinel value.
1827          */
1828         if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
1829                 hashval = DTRACE_DYNHASH_VALID;
1830 
1831         /*
1832          * Yes, it's painful to do a divide here.  If the cycle count becomes
1833          * important here, tricks can be pulled to reduce it.  (However, it's
1834          * critical that hash collisions be kept to an absolute minimum;
1835          * they're much more painful than a divide.)  It's better to have a
1836          * solution that generates few collisions and still keeps things
1837          * relatively simple.
1838          */
1839         bucket = hashval % dstate->dtds_hashsize;
1840 
1841         if (op == DTRACE_DYNVAR_DEALLOC) {
1842                 volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
1843 
1844                 for (;;) {
1845                         while ((lock = *lockp) & 1)
1846                                 continue;
1847 
1848                         if (dtrace_casptr((void *)lockp,
1849                             (void *)lock, (void *)(lock + 1)) == (void *)lock)
1850                                 break;
1851                 }
1852 
1853                 dtrace_membar_producer();
1854         }
1855 
1856 top:
1857         prev = NULL;
1858         lock = hash[bucket].dtdh_lock;
1859 
1860         dtrace_membar_consumer();
1861 
1862         start = hash[bucket].dtdh_chain;
1863         ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
1864             start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
1865             op != DTRACE_DYNVAR_DEALLOC));
1866 
1867         for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1868                 dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1869                 dtrace_key_t *dkey = &dtuple->dtt_key[0];
1870 
1871                 if (dvar->dtdv_hashval != hashval) {
1872                         if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
1873                                 /*
1874                                  * We've reached the sink, and therefore the
1875                                  * end of the hash chain; we can kick out of
1876                                  * the loop knowing that we have seen a valid
1877                                  * snapshot of state.
1878                                  */
1879                                 ASSERT(dvar->dtdv_next == NULL);
1880                                 ASSERT(dvar == &dtrace_dynhash_sink);
1881                                 break;
1882                         }
1883 
1884                         if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
1885                                 /*
1886                                  * We've gone off the rails:  somewhere along
1887                                  * the line, one of the members of this hash
1888                                  * chain was deleted.  Note that we could also
1889                                  * detect this by simply letting this loop run
1890                                  * to completion, as we would eventually hit
1891                                  * the end of the dirty list.  However, we
1892                                  * want to avoid running the length of the
1893                                  * dirty list unnecessarily (it might be quite
1894                                  * long), so we catch this as early as
1895                                  * possible by detecting the hash marker.  In
1896                                  * this case, we simply set dvar to NULL and
1897                                  * break; the conditional after the loop will
1898                                  * send us back to top.
1899                                  */
1900                                 dvar = NULL;
1901                                 break;
1902                         }
1903 
1904                         goto next;
1905                 }
1906 
1907                 if (dtuple->dtt_nkeys != nkeys)
1908                         goto next;
1909 
1910                 for (i = 0; i < nkeys; i++, dkey++) {
1911                         if (dkey->dttk_size != key[i].dttk_size)
1912                                 goto next; /* size or type mismatch */
1913 
1914                         if (dkey->dttk_size != 0) {
1915                                 if (dtrace_bcmp(
1916                                     (void *)(uintptr_t)key[i].dttk_value,
1917                                     (void *)(uintptr_t)dkey->dttk_value,
1918                                     dkey->dttk_size))
1919                                         goto next;
1920                         } else {
1921                                 if (dkey->dttk_value != key[i].dttk_value)
1922                                         goto next;
1923                         }
1924                 }
1925 
1926                 if (op != DTRACE_DYNVAR_DEALLOC)
1927                         return (dvar);
1928 
1929                 ASSERT(dvar->dtdv_next == NULL ||
1930                     dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);
1931 
1932                 if (prev != NULL) {
1933                         ASSERT(hash[bucket].dtdh_chain != dvar);
1934                         ASSERT(start != dvar);
1935                         ASSERT(prev->dtdv_next == dvar);
1936                         prev->dtdv_next = dvar->dtdv_next;
1937                 } else {
1938                         if (dtrace_casptr(&hash[bucket].dtdh_chain,
1939                             start, dvar->dtdv_next) != start) {
1940                                 /*
1941                                  * We have failed to atomically swing the
1942                                  * hash table head pointer, presumably because
1943                                  * of a conflicting allocation on another CPU.
1944                                  * We need to reread the hash chain and try
1945                                  * again.
1946                                  */
1947                                 goto top;
1948                         }
1949                 }
1950 
1951                 dtrace_membar_producer();
1952 
1953                 /*
1954                  * Now set the hash value to indicate that it's free.
1955                  */
1956                 ASSERT(hash[bucket].dtdh_chain != dvar);
1957                 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1958 
1959                 dtrace_membar_producer();
1960 
1961                 /*
1962                  * Set the next pointer to point at the dirty list, and
1963                  * atomically swing the dirty pointer to the newly freed dvar.
1964                  */
1965                 do {
1966                         next = dcpu->dtdsc_dirty;
1967                         dvar->dtdv_next = next;
1968                 } while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
1969 
1970                 /*
1971                  * Finally, unlock this hash bucket.
1972                  */
1973                 ASSERT(hash[bucket].dtdh_lock == lock);
1974                 ASSERT(lock & 1);
1975                 hash[bucket].dtdh_lock++;
1976 
1977                 return (NULL);
1978 next:
1979                 prev = dvar;
1980                 continue;
1981         }
1982 
1983         if (dvar == NULL) {
1984                 /*
1985                  * If dvar is NULL, it is because we went off the rails:
1986                  * one of the elements that we traversed in the hash chain
1987                  * was deleted while we were traversing it.  In this case,
1988                  * we assert that we aren't doing a dealloc (deallocs lock
1989                  * the hash bucket to prevent themselves from racing with
1990                  * one another), and retry the hash chain traversal.
1991                  */
1992                 ASSERT(op != DTRACE_DYNVAR_DEALLOC);
1993                 goto top;
1994         }
1995 
1996         if (op != DTRACE_DYNVAR_ALLOC) {
1997                 /*
1998                  * If we are not to allocate a new variable, we want to
1999                  * return NULL now.  Before we return, check that the value
2000                  * of the lock word hasn't changed.  If it has, we may have
2001                  * seen an inconsistent snapshot.
2002                  */
2003                 if (op == DTRACE_DYNVAR_NOALLOC) {
2004                         if (hash[bucket].dtdh_lock != lock)
2005                                 goto top;
2006                 } else {
2007                         ASSERT(op == DTRACE_DYNVAR_DEALLOC);
2008                         ASSERT(hash[bucket].dtdh_lock == lock);
2009                         ASSERT(lock & 1);
2010                         hash[bucket].dtdh_lock++;
2011                 }
2012 
2013                 return (NULL);
2014         }
2015 
2016         /*
2017          * We need to allocate a new dynamic variable.  The size we need is the
2018          * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
2019          * size of any auxiliary key data (rounded up to 8-byte alignment) plus
2020          * the size of any referred-to data (dsize).  We then round the final
2021          * size up to the chunksize for allocation.
2022          */
2023         for (ksize = 0, i = 0; i < nkeys; i++)
2024                 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
2025 
2026         /*
2027          * This should be pretty much impossible, but could happen if, say,
2028          * strange DIF specified the tuple.  Ideally, this should be an
2029          * assertion and not an error condition -- but that requires that the
2030          * chunksize calculation in dtrace_difo_chunksize() be absolutely
2031          * bullet-proof.  (That is, it must not be able to be fooled by
2032          * malicious DIF.)  Given the lack of backwards branches in DIF,
2033          * solving this would presumably not amount to solving the Halting
2034          * Problem -- but it still seems awfully hard.
2035          */
2036         if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
2037             ksize + dsize > chunksize) {
2038                 dcpu->dtdsc_drops++;
2039                 return (NULL);
2040         }
2041 
2042         nstate = DTRACE_DSTATE_EMPTY;
2043 
2044         do {
2045 retry:
2046                 free = dcpu->dtdsc_free;
2047 
2048                 if (free == NULL) {
2049                         dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
2050                         void *rval;
2051 
2052                         if (clean == NULL) {
2053                                 /*
2054                                  * We're out of dynamic variable space on
2055                                  * this CPU.  Unless we have tried all CPUs,
2056                                  * we'll try to allocate from a different
2057                                  * CPU.
2058                                  */
2059                                 switch (dstate->dtds_state) {
2060                                 case DTRACE_DSTATE_CLEAN: {
2061                                         void *sp = &dstate->dtds_state;
2062 
2063                                         if (++cpu >= NCPU)
2064                                                 cpu = 0;
2065 
2066                                         if (dcpu->dtdsc_dirty != NULL &&
2067                                             nstate == DTRACE_DSTATE_EMPTY)
2068                                                 nstate = DTRACE_DSTATE_DIRTY;
2069 
2070                                         if (dcpu->dtdsc_rinsing != NULL)
2071                                                 nstate = DTRACE_DSTATE_RINSING;
2072 
2073                                         dcpu = &dstate->dtds_percpu[cpu];
2074 
2075                                         if (cpu != me)
2076                                                 goto retry;
2077 
2078                                         (void) dtrace_cas32(sp,
2079                                             DTRACE_DSTATE_CLEAN, nstate);
2080 
2081                                         /*
2082                                          * To increment the correct bean
2083                                          * counter, take another lap.
2084                                          */
2085                                         goto retry;
2086                                 }
2087 
2088                                 case DTRACE_DSTATE_DIRTY:
2089                                         dcpu->dtdsc_dirty_drops++;
2090                                         break;
2091 
2092                                 case DTRACE_DSTATE_RINSING:
2093                                         dcpu->dtdsc_rinsing_drops++;
2094                                         break;
2095 
2096                                 case DTRACE_DSTATE_EMPTY:
2097                                         dcpu->dtdsc_drops++;
2098                                         break;
2099                                 }
2100 
2101                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
2102                                 return (NULL);
2103                         }
2104 
2105                         /*
2106                          * The clean list appears to be non-empty.  We want to
2107                          * move the clean list to the free list; we start by
2108                          * moving the clean pointer aside.
2109                          */
2110                         if (dtrace_casptr(&dcpu->dtdsc_clean,
2111                             clean, NULL) != clean) {
2112                                 /*
2113                                  * We are in one of two situations:
2114                                  *
2115                                  *  (a) The clean list was switched to the
2116                                  *      free list by another CPU.
2117                                  *
2118                                  *  (b) The clean list was added to by the
2119                                  *      cleansing cyclic.
2120                                  *
2121                                  * In either of these situations, we can
2122                                  * just reattempt the free list allocation.
2123                                  */
2124                                 goto retry;
2125                         }
2126 
2127                         ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);
2128 
2129                         /*
2130                          * Now we'll move the clean list to our free list.
2131                          * It's impossible for this to fail:  the only way
2132                          * the free list can be updated is through this
2133                          * code path, and only one CPU can own the clean list.
2134                          * Thus, it would only be possible for this to fail if
2135                          * this code were racing with dtrace_dynvar_clean().
2136                          * (That is, if dtrace_dynvar_clean() updated the clean
2137                          * list, and we ended up racing to update the free
2138                          * list.)  This race is prevented by the dtrace_sync()
2139                          * in dtrace_dynvar_clean() -- which flushes the
2140                          * owners of the clean lists out before resetting
2141                          * the clean lists.
2142                          */
2143                         dcpu = &dstate->dtds_percpu[me];
2144                         rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
2145                         ASSERT(rval == NULL);
2146                         goto retry;
2147                 }
2148 
2149                 dvar = free;
2150                 new_free = dvar->dtdv_next;
2151         } while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
2152 
2153         /*
2154          * We have now allocated a new chunk.  We copy the tuple keys into the
2155          * tuple array and copy any referenced key data into the data space
2156          * following the tuple array.  As we do this, we relocate dttk_value
2157          * in the final tuple to point to the key data address in the chunk.
2158          */
2159         kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
2160         dvar->dtdv_data = (void *)(kdata + ksize);
2161         dvar->dtdv_tuple.dtt_nkeys = nkeys;
2162 
2163         for (i = 0; i < nkeys; i++) {
2164                 dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
2165                 size_t kesize = key[i].dttk_size;
2166 
2167                 if (kesize != 0) {
2168                         dtrace_bcopy(
2169                             (const void *)(uintptr_t)key[i].dttk_value,
2170                             (void *)kdata, kesize);
2171                         dkey->dttk_value = kdata;
2172                         kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
2173                 } else {
2174                         dkey->dttk_value = key[i].dttk_value;
2175                 }
2176 
2177                 dkey->dttk_size = kesize;
2178         }
2179 
2180         ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
2181         dvar->dtdv_hashval = hashval;
2182         dvar->dtdv_next = start;
2183 
2184         if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
2185                 return (dvar);
2186 
2187         /*
2188          * The cas has failed.  Either another CPU is adding an element to
2189          * this hash chain, or another CPU is deleting an element from this
2190          * hash chain.  The simplest way to deal with both of these cases
2191          * (though not necessarily the most efficient) is to free our
2192          * allocated block and re-attempt it all.  Note that the free is
2193          * to the dirty list and _not_ to the free list.  This is to prevent
2194          * races with allocators, above.
2195          */
2196         dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
2197 
2198         dtrace_membar_producer();
2199 
2200         do {
2201                 free = dcpu->dtdsc_dirty;
2202                 dvar->dtdv_next = free;
2203         } while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
2204 
2205         goto top;
2206 }
2207 
2208 /*ARGSUSED*/
2209 static void
2210 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
2211 {
2212         if ((int64_t)nval < (int64_t)*oval)
2213                 *oval = nval;
2214 }
2215 
2216 /*ARGSUSED*/
2217 static void
2218 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
2219 {
2220         if ((int64_t)nval > (int64_t)*oval)
2221                 *oval = nval;
2222 }
2223 
2224 static void
2225 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
2226 {
2227         int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
2228         int64_t val = (int64_t)nval;
2229 
2230         if (val < 0) {
2231                 for (i = 0; i < zero; i++) {
2232                         if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
2233                                 quanta[i] += incr;
2234                                 return;
2235                         }
2236                 }
2237         } else {
2238                 for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
2239                         if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
2240                                 quanta[i - 1] += incr;
2241                                 return;
2242                         }
2243                 }
2244 
2245                 quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
2246                 return;
2247         }
2248 
2249         ASSERT(0);
2250 }
2251 
2252 static void
2253 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
2254 {
2255         uint64_t arg = *lquanta++;
2256         int32_t base = DTRACE_LQUANTIZE_BASE(arg);
2257         uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
2258         uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
2259         int32_t val = (int32_t)nval, level;
2260 
2261         ASSERT(step != 0);
2262         ASSERT(levels != 0);
2263 
2264         if (val < base) {
2265                 /*
2266                  * This is an underflow.
2267                  */
2268                 lquanta[0] += incr;
2269                 return;
2270         }
2271 
2272         level = (val - base) / step;
2273 
2274         if (level < levels) {
2275                 lquanta[level + 1] += incr;
2276                 return;
2277         }
2278 
2279         /*
2280          * This is an overflow.
2281          */
2282         lquanta[levels + 1] += incr;
2283 }
2284 
2285 static int
2286 dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low,
2287     uint16_t high, uint16_t nsteps, int64_t value)
2288 {
2289         int64_t this = 1, last, next;
2290         int base = 1, order;
2291 
2292         ASSERT(factor <= nsteps);
2293         ASSERT(nsteps % factor == 0);
2294 
2295         for (order = 0; order < low; order++)
2296                 this *= factor;
2297 
2298         /*
2299          * If our value is less than our factor taken to the power of the
2300          * low order of magnitude, it goes into the zeroth bucket.
2301          */
2302         if (value < (last = this))
2303                 return (0);
2304 
2305         for (this *= factor; order <= high; order++) {
2306                 int nbuckets = this > nsteps ? nsteps : this;
2307 
2308                 if ((next = this * factor) < this) {
2309                         /*
2310                          * We should not generally get log/linear quantizations
2311                          * with a high magnitude that allows 64-bits to
2312                          * overflow, but we nonetheless protect against this
2313                          * by explicitly checking for overflow, and clamping
2314                          * our value accordingly.
2315                          */
2316                         value = this - 1;
2317                 }
2318 
2319                 if (value < this) {
2320                         /*
2321                          * If our value lies within this order of magnitude,
2322                          * determine its position by taking the offset within
2323                          * the order of magnitude, dividing by the bucket
2324                          * width, and adding to our (accumulated) base.
2325                          */
2326                         return (base + (value - last) / (this / nbuckets));
2327                 }
2328 
2329                 base += nbuckets - (nbuckets / factor);
2330                 last = this;
2331                 this = next;
2332         }
2333 
2334         /*
2335          * Our value is greater than or equal to our factor taken to the
2336          * power of one plus the high magnitude -- return the top bucket.
2337          */
2338         return (base);
2339 }
2340 
2341 static void
2342 dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr)
2343 {
2344         uint64_t arg = *llquanta++;
2345         uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg);
2346         uint16_t low = DTRACE_LLQUANTIZE_LOW(arg);
2347         uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg);
2348         uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
2349 
2350         llquanta[dtrace_aggregate_llquantize_bucket(factor,
2351             low, high, nsteps, nval)] += incr;
2352 }
2353 
2354 /*ARGSUSED*/
2355 static void
2356 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
2357 {
2358         data[0]++;
2359         data[1] += nval;
2360 }
2361 
2362 /*ARGSUSED*/
2363 static void
2364 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg)
2365 {
2366         int64_t snval = (int64_t)nval;
2367         uint64_t tmp[2];
2368 
2369         data[0]++;
2370         data[1] += nval;
2371 
2372         /*
2373          * What we want to say here is:
2374          *
2375          * data[2] += nval * nval;
2376          *
2377          * But given that nval is 64-bit, we could easily overflow, so
2378          * we do this as 128-bit arithmetic.
2379          */
2380         if (snval < 0)
2381                 snval = -snval;
2382 
2383         dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp);
2384         dtrace_add_128(data + 2, tmp, data + 2);
2385 }
2386 
2387 /*ARGSUSED*/
2388 static void
2389 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
2390 {
2391         *oval = *oval + 1;
2392 }
2393 
2394 /*ARGSUSED*/
2395 static void
2396 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
2397 {
2398         *oval += nval;
2399 }
2400 
2401 /*
2402  * Aggregate given the tuple in the principal data buffer, and the aggregating
2403  * action denoted by the specified dtrace_aggregation_t.  The aggregation
2404  * buffer is specified as the buf parameter.  This routine does not return
2405  * failure; if there is no space in the aggregation buffer, the data will be
2406  * dropped, and a corresponding counter incremented.
2407  */
2408 static void
2409 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
2410     intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
2411 {
2412         dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
2413         uint32_t i, ndx, size, fsize;
2414         uint32_t align = sizeof (uint64_t) - 1;
2415         dtrace_aggbuffer_t *agb;
2416         dtrace_aggkey_t *key;
2417         uint32_t hashval = 0, limit, isstr;
2418         caddr_t tomax, data, kdata;
2419         dtrace_actkind_t action;
2420         dtrace_action_t *act;
2421         uintptr_t offs;
2422 
2423         if (buf == NULL)
2424                 return;
2425 
2426         if (!agg->dtag_hasarg) {
2427                 /*
2428                  * Currently, only quantize() and lquantize() take additional
2429                  * arguments, and they have the same semantics:  an increment
2430                  * value that defaults to 1 when not present.  If additional
2431                  * aggregating actions take arguments, the setting of the
2432                  * default argument value will presumably have to become more
2433                  * sophisticated...
2434                  */
2435                 arg = 1;
2436         }
2437 
2438         action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
2439         size = rec->dtrd_offset - agg->dtag_base;
2440         fsize = size + rec->dtrd_size;
2441 
2442         ASSERT(dbuf->dtb_tomax != NULL);
2443         data = dbuf->dtb_tomax + offset + agg->dtag_base;
2444 
2445         if ((tomax = buf->dtb_tomax) == NULL) {
2446                 dtrace_buffer_drop(buf);
2447                 return;
2448         }
2449 
2450         /*
2451          * The metastructure is always at the bottom of the buffer.
2452          */
2453         agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
2454             sizeof (dtrace_aggbuffer_t));
2455 
2456         if (buf->dtb_offset == 0) {
2457                 /*
2458                  * We just kludge up approximately 1/8th of the size to be
2459                  * buckets.  If this guess ends up being routinely
2460                  * off-the-mark, we may need to dynamically readjust this
2461                  * based on past performance.
2462                  */
2463                 uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
2464 
2465                 if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
2466                     (uintptr_t)tomax || hashsize == 0) {
2467                         /*
2468                          * We've been given a ludicrously small buffer;
2469                          * increment our drop count and leave.
2470                          */
2471                         dtrace_buffer_drop(buf);
2472                         return;
2473                 }
2474 
2475                 /*
2476                  * And now, a pathetic attempt to try to get a an odd (or
2477                  * perchance, a prime) hash size for better hash distribution.
2478                  */
2479                 if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
2480                         hashsize -= DTRACE_AGGHASHSIZE_SLEW;
2481 
2482                 agb->dtagb_hashsize = hashsize;
2483                 agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
2484                     agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
2485                 agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
2486 
2487                 for (i = 0; i < agb->dtagb_hashsize; i++)
2488                         agb->dtagb_hash[i] = NULL;
2489         }
2490 
2491         ASSERT(agg->dtag_first != NULL);
2492         ASSERT(agg->dtag_first->dta_intuple);
2493 
2494         /*
2495          * Calculate the hash value based on the key.  Note that we _don't_
2496          * include the aggid in the hashing (but we will store it as part of
2497          * the key).  The hashing algorithm is Bob Jenkins' "One-at-a-time"
2498          * algorithm: a simple, quick algorithm that has no known funnels, and
2499          * gets good distribution in practice.  The efficacy of the hashing
2500          * algorithm (and a comparison with other algorithms) may be found by
2501          * running the ::dtrace_aggstat MDB dcmd.
2502          */
2503         for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2504                 i = act->dta_rec.dtrd_offset - agg->dtag_base;
2505                 limit = i + act->dta_rec.dtrd_size;
2506                 ASSERT(limit <= size);
2507                 isstr = DTRACEACT_ISSTRING(act);
2508 
2509                 for (; i < limit; i++) {
2510                         hashval += data[i];
2511                         hashval += (hashval << 10);
2512                         hashval ^= (hashval >> 6);
2513 
2514                         if (isstr && data[i] == '\0')
2515                                 break;
2516                 }
2517         }
2518 
2519         hashval += (hashval << 3);
2520         hashval ^= (hashval >> 11);
2521         hashval += (hashval << 15);
2522 
2523         /*
2524          * Yes, the divide here is expensive -- but it's generally the least
2525          * of the performance issues given the amount of data that we iterate
2526          * over to compute hash values, compare data, etc.
2527          */
2528         ndx = hashval % agb->dtagb_hashsize;
2529 
2530         for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
2531                 ASSERT((caddr_t)key >= tomax);
2532                 ASSERT((caddr_t)key < tomax + buf->dtb_size);
2533 
2534                 if (hashval != key->dtak_hashval || key->dtak_size != size)
2535                         continue;
2536 
2537                 kdata = key->dtak_data;
2538                 ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
2539 
2540                 for (act = agg->dtag_first; act->dta_intuple;
2541                     act = act->dta_next) {
2542                         i = act->dta_rec.dtrd_offset - agg->dtag_base;
2543                         limit = i + act->dta_rec.dtrd_size;
2544                         ASSERT(limit <= size);
2545                         isstr = DTRACEACT_ISSTRING(act);
2546 
2547                         for (; i < limit; i++) {
2548                                 if (kdata[i] != data[i])
2549                                         goto next;
2550 
2551                                 if (isstr && data[i] == '\0')
2552                                         break;
2553                         }
2554                 }
2555 
2556                 if (action != key->dtak_action) {
2557                         /*
2558                          * We are aggregating on the same value in the same
2559                          * aggregation with two different aggregating actions.
2560                          * (This should have been picked up in the compiler,
2561                          * so we may be dealing with errant or devious DIF.)
2562                          * This is an error condition; we indicate as much,
2563                          * and return.
2564                          */
2565                         DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2566                         return;
2567                 }
2568 
2569                 /*
2570                  * This is a hit:  we need to apply the aggregator to
2571                  * the value at this key.
2572                  */
2573                 agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
2574                 return;
2575 next:
2576                 continue;
2577         }
2578 
2579         /*
2580          * We didn't find it.  We need to allocate some zero-filled space,
2581          * link it into the hash table appropriately, and apply the aggregator
2582          * to the (zero-filled) value.
2583          */
2584         offs = buf->dtb_offset;
2585         while (offs & (align - 1))
2586                 offs += sizeof (uint32_t);
2587 
2588         /*
2589          * If we don't have enough room to both allocate a new key _and_
2590          * its associated data, increment the drop count and return.
2591          */
2592         if ((uintptr_t)tomax + offs + fsize >
2593             agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
2594                 dtrace_buffer_drop(buf);
2595                 return;
2596         }
2597 
2598         /*CONSTCOND*/
2599         ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
2600         key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
2601         agb->dtagb_free -= sizeof (dtrace_aggkey_t);
2602 
2603         key->dtak_data = kdata = tomax + offs;
2604         buf->dtb_offset = offs + fsize;
2605 
2606         /*
2607          * Now copy the data across.
2608          */
2609         *((dtrace_aggid_t *)kdata) = agg->dtag_id;
2610 
2611         for (i = sizeof (dtrace_aggid_t); i < size; i++)
2612                 kdata[i] = data[i];
2613 
2614         /*
2615          * Because strings are not zeroed out by default, we need to iterate
2616          * looking for actions that store strings, and we need to explicitly
2617          * pad these strings out with zeroes.
2618          */
2619         for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2620                 int nul;
2621 
2622                 if (!DTRACEACT_ISSTRING(act))
2623                         continue;
2624 
2625                 i = act->dta_rec.dtrd_offset - agg->dtag_base;
2626                 limit = i + act->dta_rec.dtrd_size;
2627                 ASSERT(limit <= size);
2628 
2629                 for (nul = 0; i < limit; i++) {
2630                         if (nul) {
2631                                 kdata[i] = '\0';
2632                                 continue;
2633                         }
2634 
2635                         if (data[i] != '\0')
2636                                 continue;
2637 
2638                         nul = 1;
2639                 }
2640         }
2641 
2642         for (i = size; i < fsize; i++)
2643                 kdata[i] = 0;
2644 
2645         key->dtak_hashval = hashval;
2646         key->dtak_size = size;
2647         key->dtak_action = action;
2648         key->dtak_next = agb->dtagb_hash[ndx];
2649         agb->dtagb_hash[ndx] = key;
2650 
2651         /*
2652          * Finally, apply the aggregator.
2653          */
2654         *((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
2655         agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
2656 }
2657 
2658 /*
2659  * Given consumer state, this routine finds a speculation in the INACTIVE
2660  * state and transitions it into the ACTIVE state.  If there is no speculation
2661  * in the INACTIVE state, 0 is returned.  In this case, no error counter is
2662  * incremented -- it is up to the caller to take appropriate action.
2663  */
2664 static int
2665 dtrace_speculation(dtrace_state_t *state)
2666 {
2667         int i = 0;
2668         dtrace_speculation_state_t current;
2669         uint32_t *stat = &state->dts_speculations_unavail, count;
2670 
2671         while (i < state->dts_nspeculations) {
2672                 dtrace_speculation_t *spec = &state->dts_speculations[i];
2673 
2674                 current = spec->dtsp_state;
2675 
2676                 if (current != DTRACESPEC_INACTIVE) {
2677                         if (current == DTRACESPEC_COMMITTINGMANY ||
2678                             current == DTRACESPEC_COMMITTING ||
2679                             current == DTRACESPEC_DISCARDING)
2680                                 stat = &state->dts_speculations_busy;
2681                         i++;
2682                         continue;
2683                 }
2684 
2685                 if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2686                     current, DTRACESPEC_ACTIVE) == current)
2687                         return (i + 1);
2688         }
2689 
2690         /*
2691          * We couldn't find a speculation.  If we found as much as a single
2692          * busy speculation buffer, we'll attribute this failure as "busy"
2693          * instead of "unavail".
2694          */
2695         do {
2696                 count = *stat;
2697         } while (dtrace_cas32(stat, count, count + 1) != count);
2698 
2699         return (0);
2700 }
2701 
2702 /*
2703  * This routine commits an active speculation.  If the specified speculation
2704  * is not in a valid state to perform a commit(), this routine will silently do
2705  * nothing.  The state of the specified speculation is transitioned according
2706  * to the state transition diagram outlined in <sys/dtrace_impl.h>
2707  */
2708 static void
2709 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
2710     dtrace_specid_t which)
2711 {
2712         dtrace_speculation_t *spec;
2713         dtrace_buffer_t *src, *dest;
2714         uintptr_t daddr, saddr, dlimit, slimit;
2715         dtrace_speculation_state_t current, new;
2716         intptr_t offs;
2717         uint64_t timestamp;
2718 
2719         if (which == 0)
2720                 return;
2721 
2722         if (which > state->dts_nspeculations) {
2723                 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2724                 return;
2725         }
2726 
2727         spec = &state->dts_speculations[which - 1];
2728         src = &spec->dtsp_buffer[cpu];
2729         dest = &state->dts_buffer[cpu];
2730 
2731         do {
2732                 current = spec->dtsp_state;
2733 
2734                 if (current == DTRACESPEC_COMMITTINGMANY)
2735                         break;
2736 
2737                 switch (current) {
2738                 case DTRACESPEC_INACTIVE:
2739                 case DTRACESPEC_DISCARDING:
2740                         return;
2741 
2742                 case DTRACESPEC_COMMITTING:
2743                         /*
2744                          * This is only possible if we are (a) commit()'ing
2745                          * without having done a prior speculate() on this CPU
2746                          * and (b) racing with another commit() on a different
2747                          * CPU.  There's nothing to do -- we just assert that
2748                          * our offset is 0.
2749                          */
2750                         ASSERT(src->dtb_offset == 0);
2751                         return;
2752 
2753                 case DTRACESPEC_ACTIVE:
2754                         new = DTRACESPEC_COMMITTING;
2755                         break;
2756 
2757                 case DTRACESPEC_ACTIVEONE:
2758                         /*
2759                          * This speculation is active on one CPU.  If our
2760                          * buffer offset is non-zero, we know that the one CPU
2761                          * must be us.  Otherwise, we are committing on a
2762                          * different CPU from the speculate(), and we must
2763                          * rely on being asynchronously cleaned.
2764                          */
2765                         if (src->dtb_offset != 0) {
2766                                 new = DTRACESPEC_COMMITTING;
2767                                 break;
2768                         }
2769                         /*FALLTHROUGH*/
2770 
2771                 case DTRACESPEC_ACTIVEMANY:
2772                         new = DTRACESPEC_COMMITTINGMANY;
2773                         break;
2774 
2775                 default:
2776                         ASSERT(0);
2777                 }
2778         } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2779             current, new) != current);
2780 
2781         /*
2782          * We have set the state to indicate that we are committing this
2783          * speculation.  Now reserve the necessary space in the destination
2784          * buffer.
2785          */
2786         if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
2787             sizeof (uint64_t), state, NULL)) < 0) {
2788                 dtrace_buffer_drop(dest);
2789                 goto out;
2790         }
2791 
2792         /*
2793          * We have sufficient space to copy the speculative buffer into the
2794          * primary buffer.  First, modify the speculative buffer, filling
2795          * in the timestamp of all entries with the current time.  The data
2796          * must have the commit() time rather than the time it was traced,
2797          * so that all entries in the primary buffer are in timestamp order.
2798          */
2799         timestamp = dtrace_gethrtime();
2800         saddr = (uintptr_t)src->dtb_tomax;
2801         slimit = saddr + src->dtb_offset;
2802         while (saddr < slimit) {
2803                 size_t size;
2804                 dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr;
2805 
2806                 if (dtrh->dtrh_epid == DTRACE_EPIDNONE) {
2807                         saddr += sizeof (dtrace_epid_t);
2808                         continue;
2809                 }
2810                 ASSERT3U(dtrh->dtrh_epid, <=, state->dts_necbs);
2811                 size = state->dts_ecbs[dtrh->dtrh_epid - 1]->dte_size;
2812 
2813                 ASSERT3U(saddr + size, <=, slimit);
2814                 ASSERT3U(size, >=, sizeof (dtrace_rechdr_t));
2815                 ASSERT3U(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh), ==, UINT64_MAX);
2816 
2817                 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, timestamp);
2818 
2819                 saddr += size;
2820         }
2821 
2822         /*
2823          * Copy the buffer across.  (Note that this is a
2824          * highly subobtimal bcopy(); in the unlikely event that this becomes
2825          * a serious performance issue, a high-performance DTrace-specific
2826          * bcopy() should obviously be invented.)
2827          */
2828         daddr = (uintptr_t)dest->dtb_tomax + offs;
2829         dlimit = daddr + src->dtb_offset;
2830         saddr = (uintptr_t)src->dtb_tomax;
2831 
2832         /*
2833          * First, the aligned portion.
2834          */
2835         while (dlimit - daddr >= sizeof (uint64_t)) {
2836                 *((uint64_t *)daddr) = *((uint64_t *)saddr);
2837 
2838                 daddr += sizeof (uint64_t);
2839                 saddr += sizeof (uint64_t);
2840         }
2841 
2842         /*
2843          * Now any left-over bit...
2844          */
2845         while (dlimit - daddr)
2846                 *((uint8_t *)daddr++) = *((uint8_t *)saddr++);
2847 
2848         /*
2849          * Finally, commit the reserved space in the destination buffer.
2850          */
2851         dest->dtb_offset = offs + src->dtb_offset;
2852 
2853 out:
2854         /*
2855          * If we're lucky enough to be the only active CPU on this speculation
2856          * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2857          */
2858         if (current == DTRACESPEC_ACTIVE ||
2859             (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
2860                 uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
2861                     DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
2862 
2863                 ASSERT(rval == DTRACESPEC_COMMITTING);
2864         }
2865 
2866         src->dtb_offset = 0;
2867         src->dtb_xamot_drops += src->dtb_drops;
2868         src->dtb_drops = 0;
2869 }
2870 
2871 /*
2872  * This routine discards an active speculation.  If the specified speculation
2873  * is not in a valid state to perform a discard(), this routine will silently
2874  * do nothing.  The state of the specified speculation is transitioned
2875  * according to the state transition diagram outlined in <sys/dtrace_impl.h>
2876  */
2877 static void
2878 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
2879     dtrace_specid_t which)
2880 {
2881         dtrace_speculation_t *spec;
2882         dtrace_speculation_state_t current, new;
2883         dtrace_buffer_t *buf;
2884 
2885         if (which == 0)
2886                 return;
2887 
2888         if (which > state->dts_nspeculations) {
2889                 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2890                 return;
2891         }
2892 
2893         spec = &state->dts_speculations[which - 1];
2894         buf = &spec->dtsp_buffer[cpu];
2895 
2896         do {
2897                 current = spec->dtsp_state;
2898 
2899                 switch (current) {
2900                 case DTRACESPEC_INACTIVE:
2901                 case DTRACESPEC_COMMITTINGMANY:
2902                 case DTRACESPEC_COMMITTING:
2903                 case DTRACESPEC_DISCARDING:
2904                         return;
2905 
2906                 case DTRACESPEC_ACTIVE:
2907                 case DTRACESPEC_ACTIVEMANY:
2908                         new = DTRACESPEC_DISCARDING;
2909                         break;
2910 
2911                 case DTRACESPEC_ACTIVEONE:
2912                         if (buf->dtb_offset != 0) {
2913                                 new = DTRACESPEC_INACTIVE;
2914                         } else {
2915                                 new = DTRACESPEC_DISCARDING;
2916                         }
2917                         break;
2918 
2919                 default:
2920                         ASSERT(0);
2921                 }
2922         } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2923             current, new) != current);
2924 
2925         buf->dtb_offset = 0;
2926         buf->dtb_drops = 0;
2927 }
2928 
2929 /*
2930  * Note:  not called from probe context.  This function is called
2931  * asynchronously from cross call context to clean any speculations that are
2932  * in the COMMITTINGMANY or DISCARDING states.  These speculations may not be
2933  * transitioned back to the INACTIVE state until all CPUs have cleaned the
2934  * speculation.
2935  */
2936 static void
2937 dtrace_speculation_clean_here(dtrace_state_t *state)
2938 {
2939         dtrace_icookie_t cookie;
2940         processorid_t cpu = CPU->cpu_id;
2941         dtrace_buffer_t *dest = &state->dts_buffer[cpu];
2942         dtrace_specid_t i;
2943 
2944         cookie = dtrace_interrupt_disable();
2945 
2946         if (dest->dtb_tomax == NULL) {
2947                 dtrace_interrupt_enable(cookie);
2948                 return;
2949         }
2950 
2951         for (i = 0; i < state->dts_nspeculations; i++) {
2952                 dtrace_speculation_t *spec = &state->dts_speculations[i];
2953                 dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
2954 
2955                 if (src->dtb_tomax == NULL)
2956                         continue;
2957 
2958                 if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
2959                         src->dtb_offset = 0;
2960                         continue;
2961                 }
2962 
2963                 if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2964                         continue;
2965 
2966                 if (src->dtb_offset == 0)
2967                         continue;
2968 
2969                 dtrace_speculation_commit(state, cpu, i + 1);
2970         }
2971 
2972         dtrace_interrupt_enable(cookie);
2973 }
2974 
2975 /*
2976  * Note:  not called from probe context.  This function is called
2977  * asynchronously (and at a regular interval) to clean any speculations that
2978  * are in the COMMITTINGMANY or DISCARDING states.  If it discovers that there
2979  * is work to be done, it cross calls all CPUs to perform that work;
2980  * COMMITMANY and DISCARDING speculations may not be transitioned back to the
2981  * INACTIVE state until they have been cleaned by all CPUs.
2982  */
2983 static void
2984 dtrace_speculation_clean(dtrace_state_t *state)
2985 {
2986         int work = 0, rv;
2987         dtrace_specid_t i;
2988 
2989         for (i = 0; i < state->dts_nspeculations; i++) {
2990                 dtrace_speculation_t *spec = &state->dts_speculations[i];
2991 
2992                 ASSERT(!spec->dtsp_cleaning);
2993 
2994                 if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
2995                     spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2996                         continue;
2997 
2998                 work++;
2999                 spec->dtsp_cleaning = 1;
3000         }
3001 
3002         if (!work)
3003                 return;
3004 
3005         dtrace_xcall(DTRACE_CPUALL,
3006             (dtrace_xcall_t)dtrace_speculation_clean_here, state);
3007 
3008         /*
3009          * We now know that all CPUs have committed or discarded their
3010          * speculation buffers, as appropriate.  We can now set the state
3011          * to inactive.
3012          */
3013         for (i = 0; i < state->dts_nspeculations; i++) {
3014                 dtrace_speculation_t *spec = &state->dts_speculations[i];
3015                 dtrace_speculation_state_t current, new;
3016 
3017                 if (!spec->dtsp_cleaning)
3018                         continue;
3019 
3020                 current = spec->dtsp_state;
3021                 ASSERT(current == DTRACESPEC_DISCARDING ||
3022                     current == DTRACESPEC_COMMITTINGMANY);
3023 
3024                 new = DTRACESPEC_INACTIVE;
3025 
3026                 rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);
3027                 ASSERT(rv == current);
3028                 spec->dtsp_cleaning = 0;
3029         }
3030 }
3031 
3032 /*
3033  * Called as part of a speculate() to get the speculative buffer associated
3034  * with a given speculation.  Returns NULL if the specified speculation is not
3035  * in an ACTIVE state.  If the speculation is in the ACTIVEONE state -- and
3036  * the active CPU is not the specified CPU -- the speculation will be
3037  * atomically transitioned into the ACTIVEMANY state.
3038  */
3039 static dtrace_buffer_t *
3040 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
3041     dtrace_specid_t which)
3042 {
3043         dtrace_speculation_t *spec;
3044         dtrace_speculation_state_t current, new;
3045         dtrace_buffer_t *buf;
3046 
3047         if (which == 0)
3048                 return (NULL);
3049 
3050         if (which > state->dts_nspeculations) {
3051                 cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
3052                 return (NULL);
3053         }
3054 
3055         spec = &state->dts_speculations[which - 1];
3056         buf = &spec->dtsp_buffer[cpuid];
3057 
3058         do {
3059                 current = spec->dtsp_state;
3060 
3061                 switch (current) {
3062                 case DTRACESPEC_INACTIVE:
3063                 case DTRACESPEC_COMMITTINGMANY:
3064                 case DTRACESPEC_DISCARDING:
3065                         return (NULL);
3066 
3067                 case DTRACESPEC_COMMITTING:
3068                         ASSERT(buf->dtb_offset == 0);
3069                         return (NULL);
3070 
3071                 case DTRACESPEC_ACTIVEONE:
3072                         /*
3073                          * This speculation is currently active on one CPU.
3074                          * Check the offset in the buffer; if it's non-zero,
3075                          * that CPU must be us (and we leave the state alone).
3076                          * If it's zero, assume that we're starting on a new
3077                          * CPU -- and change the state to indicate that the
3078                          * speculation is active on more than one CPU.
3079                          */
3080                         if (buf->dtb_offset != 0)
3081                                 return (buf);
3082 
3083                         new = DTRACESPEC_ACTIVEMANY;
3084                         break;
3085 
3086                 case DTRACESPEC_ACTIVEMANY:
3087                         return (buf);
3088 
3089                 case DTRACESPEC_ACTIVE:
3090                         new = DTRACESPEC_ACTIVEONE;
3091                         break;
3092 
3093                 default:
3094                         ASSERT(0);
3095                 }
3096         } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
3097             current, new) != current);
3098 
3099         ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
3100         return (buf);
3101 }
3102 
3103 /*
3104  * Return a string.  In the event that the user lacks the privilege to access
3105  * arbitrary kernel memory, we copy the string out to scratch memory so that we
3106  * don't fail access checking.
3107  *
3108  * dtrace_dif_variable() uses this routine as a helper for various
3109  * builtin values such as 'execname' and 'probefunc.'
3110  */
3111 uintptr_t
3112 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
3113     dtrace_mstate_t *mstate)
3114 {
3115         uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3116         uintptr_t ret;
3117         size_t strsz;
3118 
3119         /*
3120          * The easy case: this probe is allowed to read all of memory, so
3121          * we can just return this as a vanilla pointer.
3122          */
3123         if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
3124                 return (addr);
3125 
3126         /*
3127          * This is the tougher case: we copy the string in question from
3128          * kernel memory into scratch memory and return it that way: this
3129          * ensures that we won't trip up when access checking tests the
3130          * BYREF return value.
3131          */
3132         strsz = dtrace_strlen((char *)addr, size) + 1;
3133 
3134         if (mstate->dtms_scratch_ptr + strsz >
3135             mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3136                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3137                 return (NULL);
3138         }
3139 
3140         dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
3141             strsz);
3142         ret = mstate->dtms_scratch_ptr;
3143         mstate->dtms_scratch_ptr += strsz;
3144         return (ret);
3145 }
3146 
3147 /*
3148  * This function implements the DIF emulator's variable lookups.  The emulator
3149  * passes a reserved variable identifier and optional built-in array index.
3150  */
3151 static uint64_t
3152 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
3153     uint64_t ndx)
3154 {
3155         /*
3156          * If we're accessing one of the uncached arguments, we'll turn this
3157          * into a reference in the args array.
3158          */
3159         if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
3160                 ndx = v - DIF_VAR_ARG0;
3161                 v = DIF_VAR_ARGS;
3162         }
3163 
3164         switch (v) {
3165         case DIF_VAR_ARGS:
3166                 if (!(mstate->dtms_access & DTRACE_ACCESS_ARGS)) {
3167                         cpu_core[CPU->cpu_id].cpuc_dtrace_flags |=
3168                             CPU_DTRACE_KPRIV;
3169                         return (0);
3170                 }
3171 
3172                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
3173                 if (ndx >= sizeof (mstate->dtms_arg) /
3174                     sizeof (mstate->dtms_arg[0])) {
3175                         int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3176                         dtrace_provider_t *pv;
3177                         uint64_t val;
3178 
3179                         pv = mstate->dtms_probe->dtpr_provider;
3180                         if (pv->dtpv_pops.dtps_getargval != NULL)
3181                                 val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
3182                                     mstate->dtms_probe->dtpr_id,
3183                                     mstate->dtms_probe->dtpr_arg, ndx, aframes);
3184                         else
3185                                 val = dtrace_getarg(ndx, aframes);
3186 
3187                         /*
3188                          * This is regrettably required to keep the compiler
3189                          * from tail-optimizing the call to dtrace_getarg().
3190                          * The condition always evaluates to true, but the
3191                          * compiler has no way of figuring that out a priori.
3192                          * (None of this would be necessary if the compiler
3193                          * could be relied upon to _always_ tail-optimize
3194                          * the call to dtrace_getarg() -- but it can't.)
3195                          */
3196                         if (mstate->dtms_probe != NULL)
3197                                 return (val);
3198 
3199                         ASSERT(0);
3200                 }
3201 
3202                 return (mstate->dtms_arg[ndx]);
3203 
3204         case DIF_VAR_UREGS: {
3205                 klwp_t *lwp;
3206 
3207                 if (!dtrace_priv_proc(state, mstate))
3208                         return (0);
3209 
3210                 if ((lwp = curthread->t_lwp) == NULL) {
3211                         DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
3212                         cpu_core[CPU->cpu_id].cpuc_dtrace_illval = NULL;
3213                         return (0);
3214                 }
3215 
3216                 return (dtrace_getreg(lwp->lwp_regs, ndx));
3217         }
3218 
3219         case DIF_VAR_VMREGS: {
3220                 uint64_t rval;
3221 
3222                 if (!dtrace_priv_kernel(state))
3223                         return (0);
3224 
3225                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3226 
3227                 rval = dtrace_getvmreg(ndx,
3228                     &cpu_core[CPU->cpu_id].cpuc_dtrace_flags);
3229 
3230                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3231 
3232                 return (rval);
3233         }
3234 
3235         case DIF_VAR_CURTHREAD:
3236                 if (!dtrace_priv_proc(state, mstate))
3237                         return (0);
3238                 return ((uint64_t)(uintptr_t)curthread);
3239 
3240         case DIF_VAR_TIMESTAMP:
3241                 if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
3242                         mstate->dtms_timestamp = dtrace_gethrtime();
3243                         mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
3244                 }
3245                 return (mstate->dtms_timestamp);
3246 
3247         case DIF_VAR_VTIMESTAMP:
3248                 ASSERT(dtrace_vtime_references != 0);
3249                 return (curthread->t_dtrace_vtime);
3250 
3251         case DIF_VAR_WALLTIMESTAMP:
3252                 if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
3253                         mstate->dtms_walltimestamp = dtrace_gethrestime();
3254                         mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
3255                 }
3256                 return (mstate->dtms_walltimestamp);
3257 
3258         case DIF_VAR_IPL:
3259                 if (!dtrace_priv_kernel(state))
3260                         return (0);
3261                 if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
3262                         mstate->dtms_ipl = dtrace_getipl();
3263                         mstate->dtms_present |= DTRACE_MSTATE_IPL;
3264                 }
3265                 return (mstate->dtms_ipl);
3266 
3267         case DIF_VAR_EPID:
3268                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
3269                 return (mstate->dtms_epid);
3270 
3271         case DIF_VAR_ID:
3272                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3273                 return (mstate->dtms_probe->dtpr_id);
3274 
3275         case DIF_VAR_STACKDEPTH:
3276                 if (!dtrace_priv_kernel(state))
3277                         return (0);
3278                 if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
3279                         int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3280 
3281                         mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
3282                         mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
3283                 }
3284                 return (mstate->dtms_stackdepth);
3285 
3286         case DIF_VAR_USTACKDEPTH:
3287                 if (!dtrace_priv_proc(state, mstate))
3288                         return (0);
3289                 if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
3290                         /*
3291                          * See comment in DIF_VAR_PID.
3292                          */
3293                         if (DTRACE_ANCHORED(mstate->dtms_probe) &&
3294                             CPU_ON_INTR(CPU)) {
3295                                 mstate->dtms_ustackdepth = 0;
3296                         } else {
3297                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3298                                 mstate->dtms_ustackdepth =
3299                                     dtrace_getustackdepth();
3300                                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3301                         }
3302                         mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
3303                 }
3304                 return (mstate->dtms_ustackdepth);
3305 
3306         case DIF_VAR_CALLER:
3307                 if (!dtrace_priv_kernel(state))
3308                         return (0);
3309                 if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
3310                         int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3311 
3312                         if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
3313                                 /*
3314                                  * If this is an unanchored probe, we are
3315                                  * required to go through the slow path:
3316                                  * dtrace_caller() only guarantees correct
3317                                  * results for anchored probes.
3318                                  */
3319                                 pc_t caller[2];
3320 
3321                                 dtrace_getpcstack(caller, 2, aframes,
3322                                     (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
3323                                 mstate->dtms_caller = caller[1];
3324                         } else if ((mstate->dtms_caller =
3325                             dtrace_caller(aframes)) == -1) {
3326                                 /*
3327                                  * We have failed to do this the quick way;
3328                                  * we must resort to the slower approach of
3329                                  * calling dtrace_getpcstack().
3330                                  */
3331                                 pc_t caller;
3332 
3333                                 dtrace_getpcstack(&caller, 1, aframes, NULL);
3334                                 mstate->dtms_caller = caller;
3335                         }
3336 
3337                         mstate->dtms_present |= DTRACE_MSTATE_CALLER;
3338                 }
3339                 return (mstate->dtms_caller);
3340 
3341         case DIF_VAR_UCALLER:
3342                 if (!dtrace_priv_proc(state, mstate))
3343                         return (0);
3344 
3345                 if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
3346                         uint64_t ustack[3];
3347 
3348                         /*
3349                          * dtrace_getupcstack() fills in the first uint64_t
3350                          * with the current PID.  The second uint64_t will
3351                          * be the program counter at user-level.  The third
3352                          * uint64_t will contain the caller, which is what
3353                          * we're after.
3354                          */
3355                         ustack[2] = NULL;
3356                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3357                         dtrace_getupcstack(ustack, 3);
3358                         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3359                         mstate->dtms_ucaller = ustack[2];
3360                         mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
3361                 }
3362 
3363                 return (mstate->dtms_ucaller);
3364 
3365         case DIF_VAR_PROBEPROV:
3366                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3367                 return (dtrace_dif_varstr(
3368                     (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name,
3369                     state, mstate));
3370 
3371         case DIF_VAR_PROBEMOD:
3372                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3373                 return (dtrace_dif_varstr(
3374                     (uintptr_t)mstate->dtms_probe->dtpr_mod,
3375                     state, mstate));
3376 
3377         case DIF_VAR_PROBEFUNC:
3378                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3379                 return (dtrace_dif_varstr(
3380                     (uintptr_t)mstate->dtms_probe->dtpr_func,
3381                     state, mstate));
3382 
3383         case DIF_VAR_PROBENAME:
3384                 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3385                 return (dtrace_dif_varstr(
3386                     (uintptr_t)mstate->dtms_probe->dtpr_name,
3387                     state, mstate));
3388 
3389         case DIF_VAR_PID:
3390                 if (!dtrace_priv_proc(state, mstate))
3391                         return (0);
3392 
3393                 /*
3394                  * Note that we are assuming that an unanchored probe is
3395                  * always due to a high-level interrupt.  (And we're assuming
3396                  * that there is only a single high level interrupt.)
3397                  */
3398                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3399                         return (pid0.pid_id);
3400 
3401                 /*
3402                  * It is always safe to dereference one's own t_procp pointer:
3403                  * it always points to a valid, allocated proc structure.
3404                  * Further, it is always safe to dereference the p_pidp member
3405                  * of one's own proc structure.  (These are truisms becuase
3406                  * threads and processes don't clean up their own state --
3407                  * they leave that task to whomever reaps them.)
3408                  */
3409                 return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
3410 
3411         case DIF_VAR_PPID:
3412                 if (!dtrace_priv_proc(state, mstate))
3413                         return (0);
3414 
3415                 /*
3416                  * See comment in DIF_VAR_PID.
3417                  */
3418                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3419                         return (pid0.pid_id);
3420 
3421                 /*
3422                  * It is always safe to dereference one's own t_procp pointer:
3423                  * it always points to a valid, allocated proc structure.
3424                  * (This is true because threads don't clean up their own
3425                  * state -- they leave that task to whomever reaps them.)
3426                  */
3427                 return ((uint64_t)curthread->t_procp->p_ppid);
3428 
3429         case DIF_VAR_TID:
3430                 /*
3431                  * See comment in DIF_VAR_PID.
3432                  */
3433                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3434                         return (0);
3435 
3436                 return ((uint64_t)curthread->t_tid);
3437 
3438         case DIF_VAR_EXECNAME:
3439                 if (!dtrace_priv_proc(state, mstate))
3440                         return (0);
3441 
3442                 /*
3443                  * See comment in DIF_VAR_PID.
3444                  */
3445                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3446                         return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
3447 
3448                 /*
3449                  * It is always safe to dereference one's own t_procp pointer:
3450                  * it always points to a valid, allocated proc structure.
3451                  * (This is true because threads don't clean up their own
3452                  * state -- they leave that task to whomever reaps them.)
3453                  */
3454                 return (dtrace_dif_varstr(
3455                     (uintptr_t)curthread->t_procp->p_user.u_comm,
3456                     state, mstate));
3457 
3458         case DIF_VAR_ZONENAME:
3459                 if (!dtrace_priv_proc(state, mstate))
3460                         return (0);
3461 
3462                 /*
3463                  * See comment in DIF_VAR_PID.
3464                  */
3465                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3466                         return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
3467 
3468                 /*
3469                  * It is always safe to dereference one's own t_procp pointer:
3470                  * it always points to a valid, allocated proc structure.
3471                  * (This is true because threads don't clean up their own
3472                  * state -- they leave that task to whomever reaps them.)
3473                  */
3474                 return (dtrace_dif_varstr(
3475                     (uintptr_t)curthread->t_procp->p_zone->zone_name,
3476                     state, mstate));
3477 
3478         case DIF_VAR_UID:
3479                 if (!dtrace_priv_proc(state, mstate))
3480                         return (0);
3481 
3482                 /*
3483                  * See comment in DIF_VAR_PID.
3484                  */
3485                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3486                         return ((uint64_t)p0.p_cred->cr_uid);
3487 
3488                 /*
3489                  * It is always safe to dereference one's own t_procp pointer:
3490                  * it always points to a valid, allocated proc structure.
3491                  * (This is true because threads don't clean up their own
3492                  * state -- they leave that task to whomever reaps them.)
3493                  *
3494                  * Additionally, it is safe to dereference one's own process
3495                  * credential, since this is never NULL after process birth.
3496                  */
3497                 return ((uint64_t)curthread->t_procp->p_cred->cr_uid);
3498 
3499         case DIF_VAR_GID:
3500                 if (!dtrace_priv_proc(state, mstate))
3501                         return (0);
3502 
3503                 /*
3504                  * See comment in DIF_VAR_PID.
3505                  */
3506                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3507                         return ((uint64_t)p0.p_cred->cr_gid);
3508 
3509                 /*
3510                  * It is always safe to dereference one's own t_procp pointer:
3511                  * it always points to a valid, allocated proc structure.
3512                  * (This is true because threads don't clean up their own
3513                  * state -- they leave that task to whomever reaps them.)
3514                  *
3515                  * Additionally, it is safe to dereference one's own process
3516                  * credential, since this is never NULL after process birth.
3517                  */
3518                 return ((uint64_t)curthread->t_procp->p_cred->cr_gid);
3519 
3520         case DIF_VAR_ERRNO: {
3521                 klwp_t *lwp;
3522                 if (!dtrace_priv_proc(state, mstate))
3523                         return (0);
3524 
3525                 /*
3526                  * See comment in DIF_VAR_PID.
3527                  */
3528                 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3529                         return (0);
3530 
3531                 /*
3532                  * It is always safe to dereference one's own t_lwp pointer in
3533                  * the event that this pointer is non-NULL.  (This is true
3534                  * because threads and lwps don't clean up their own state --
3535                  * they leave that task to whomever reaps them.)
3536                  */
3537                 if ((lwp = curthread->t_lwp) == NULL)
3538                         return (0);
3539 
3540                 return ((uint64_t)lwp->lwp_errno);
3541         }
3542         default:
3543                 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3544                 return (0);
3545         }
3546 }
3547 
3548 
3549 typedef enum dtrace_json_state {
3550         DTRACE_JSON_REST = 1,
3551         DTRACE_JSON_OBJECT,
3552         DTRACE_JSON_STRING,
3553         DTRACE_JSON_STRING_ESCAPE,
3554         DTRACE_JSON_STRING_ESCAPE_UNICODE,
3555         DTRACE_JSON_COLON,
3556         DTRACE_JSON_COMMA,
3557         DTRACE_JSON_VALUE,
3558         DTRACE_JSON_IDENTIFIER,
3559         DTRACE_JSON_NUMBER,
3560         DTRACE_JSON_NUMBER_FRAC,
3561         DTRACE_JSON_NUMBER_EXP,
3562         DTRACE_JSON_COLLECT_OBJECT
3563 } dtrace_json_state_t;
3564 
3565 /*
3566  * This function possesses just enough knowledge about JSON to extract a single
3567  * value from a JSON string and store it in the scratch buffer.  It is able
3568  * to extract nested object values, and members of arrays by index.
3569  *
3570  * elemlist is a list of JSON keys, stored as packed NUL-terminated strings, to
3571  * be looked up as we descend into the object tree.  e.g.
3572  *
3573  *    foo[0].bar.baz[32] --> "foo" NUL "0" NUL "bar" NUL "baz" NUL "32" NUL
3574  *       with nelems = 5.
3575  *
3576  * The run time of this function must be bounded above by strsize to limit the
3577  * amount of work done in probe context.  As such, it is implemented as a
3578  * simple state machine, reading one character at a time using safe loads
3579  * until we find the requested element, hit a parsing error or run off the
3580  * end of the object or string.
3581  *
3582  * As there is no way for a subroutine to return an error without interrupting
3583  * clause execution, we simply return NULL in the event of a missing key or any
3584  * other error condition.  Each NULL return in this function is commented with
3585  * the error condition it represents -- parsing or otherwise.
3586  *
3587  * The set of states for the state machine closely matches the JSON
3588  * specification (http://json.org/).  Briefly:
3589  *
3590  *   DTRACE_JSON_REST:
3591  *     Skip whitespace until we find either a top-level Object, moving
3592  *     to DTRACE_JSON_OBJECT; or an Array, moving to DTRACE_JSON_VALUE.
3593  *
3594  *   DTRACE_JSON_OBJECT:
3595  *     Locate the next key String in an Object.  Sets a flag to denote
3596  *     the next String as a key string and moves to DTRACE_JSON_STRING.
3597  *
3598  *   DTRACE_JSON_COLON:
3599  *     Skip whitespace until we find the colon that separates key Strings
3600  *     from their values.  Once found, move to DTRACE_JSON_VALUE.
3601  *
3602  *   DTRACE_JSON_VALUE:
3603  *     Detects the type of the next value (String, Number, Identifier, Object
3604  *     or Array) and routes to the states that process that type.  Here we also
3605  *     deal with the element selector list if we are requested to traverse down
3606  *     into the object tree.
3607  *
3608  *   DTRACE_JSON_COMMA:
3609  *     Skip whitespace until we find the comma that separates key-value pairs
3610  *     in Objects (returning to DTRACE_JSON_OBJECT) or values in Arrays
3611  *     (similarly DTRACE_JSON_VALUE).  All following literal value processing
3612  *     states return to this state at the end of their value, unless otherwise
3613  *     noted.
3614  *
3615  *   DTRACE_JSON_NUMBER, DTRACE_JSON_NUMBER_FRAC, DTRACE_JSON_NUMBER_EXP:
3616  *     Processes a Number literal from the JSON, including any exponent
3617  *     component that may be present.  Numbers are returned as strings, which
3618  *     may be passed to strtoll() if an integer is required.
3619  *
3620  *   DTRACE_JSON_IDENTIFIER:
3621  *     Processes a "true", "false" or "null" literal in the JSON.
3622  *
3623  *   DTRACE_JSON_STRING, DTRACE_JSON_STRING_ESCAPE,
3624  *   DTRACE_JSON_STRING_ESCAPE_UNICODE:
3625  *     Processes a String literal from the JSON, whether the String denotes
3626  *     a key, a value or part of a larger Object.  Handles all escape sequences
3627  *     present in the specification, including four-digit unicode characters,
3628  *     but merely includes the escape sequence without converting it to the
3629  *     actual escaped character.  If the String is flagged as a key, we
3630  *     move to DTRACE_JSON_COLON rather than DTRACE_JSON_COMMA.
3631  *
3632  *   DTRACE_JSON_COLLECT_OBJECT:
3633  *     This state collects an entire Object (or Array), correctly handling
3634  *     embedded strings.  If the full element selector list matches this nested
3635  *     object, we return the Object in full as a string.  If not, we use this
3636  *     state to skip to the next value at this level and continue processing.
3637  *
3638  * NOTE: This function uses various macros from strtolctype.h to manipulate
3639  * digit values, etc -- these have all been checked to ensure they make
3640  * no additional function calls.
3641  */
3642 static char *
3643 dtrace_json(uint64_t size, uintptr_t json, char *elemlist, int nelems,
3644     char *dest)
3645 {
3646         dtrace_json_state_t state = DTRACE_JSON_REST;
3647         int64_t array_elem = INT64_MIN;
3648         int64_t array_pos = 0;
3649         uint8_t escape_unicount = 0;
3650         boolean_t string_is_key = B_FALSE;
3651         boolean_t collect_object = B_FALSE;
3652         boolean_t found_key = B_FALSE;
3653         boolean_t in_array = B_FALSE;
3654         uint32_t braces = 0, brackets = 0;
3655         char *elem = elemlist;
3656         char *dd = dest;
3657         uintptr_t cur;
3658 
3659         for (cur = json; cur < json + size; cur++) {
3660                 char cc = dtrace_load8(cur);
3661                 if (cc == '\0')
3662                         return (NULL);
3663 
3664                 switch (state) {
3665                 case DTRACE_JSON_REST:
3666                         if (isspace(cc))
3667                                 break;
3668 
3669                         if (cc == '{') {
3670                                 state = DTRACE_JSON_OBJECT;
3671                                 break;
3672                         }
3673 
3674                         if (cc == '[') {
3675                                 in_array = B_TRUE;
3676                                 array_pos = 0;
3677                                 array_elem = dtrace_strtoll(elem, 10, size);
3678                                 found_key = array_elem == 0 ? B_TRUE : B_FALSE;
3679                                 state = DTRACE_JSON_VALUE;
3680                                 break;
3681                         }
3682 
3683                         /*
3684                          * ERROR: expected to find a top-level object or array.
3685                          */
3686                         return (NULL);
3687                 case DTRACE_JSON_OBJECT:
3688                         if (isspace(cc))
3689                                 break;
3690 
3691                         if (cc == '"') {
3692                                 state = DTRACE_JSON_STRING;
3693                                 string_is_key = B_TRUE;
3694                                 break;
3695                         }
3696 
3697                         /*
3698                          * ERROR: either the object did not start with a key
3699                          * string, or we've run off the end of the object
3700                          * without finding the requested key.
3701                          */
3702                         return (NULL);
3703                 case DTRACE_JSON_STRING:
3704                         if (cc == '\\') {
3705                                 *dd++ = '\\';
3706                                 state = DTRACE_JSON_STRING_ESCAPE;
3707                                 break;
3708                         }
3709 
3710                         if (cc == '"') {
3711                                 if (collect_object) {
3712                                         /*
3713                                          * We don't reset the dest here, as
3714                                          * the string is part of a larger
3715                                          * object being collected.
3716                                          */
3717                                         *dd++ = cc;
3718                                         collect_object = B_FALSE;
3719                                         state = DTRACE_JSON_COLLECT_OBJECT;
3720                                         break;
3721                                 }
3722                                 *dd = '\0';
3723                                 dd = dest; /* reset string buffer */
3724                                 if (string_is_key) {
3725                                         if (dtrace_strncmp(dest, elem,
3726                                             size) == 0)
3727                                                 found_key = B_TRUE;
3728                                 } else if (found_key) {
3729                                         if (nelems > 1) {
3730                                                 /*
3731                                                  * We expected an object, not
3732                                                  * this string.
3733                                                  */
3734                                                 return (NULL);
3735                                         }
3736                                         return (dest);
3737                                 }
3738                                 state = string_is_key ? DTRACE_JSON_COLON :
3739                                     DTRACE_JSON_COMMA;
3740                                 string_is_key = B_FALSE;
3741                                 break;
3742                         }
3743 
3744                         *dd++ = cc;
3745                         break;
3746                 case DTRACE_JSON_STRING_ESCAPE:
3747                         *dd++ = cc;
3748                         if (cc == 'u') {
3749                                 escape_unicount = 0;
3750                                 state = DTRACE_JSON_STRING_ESCAPE_UNICODE;
3751                         } else {
3752                                 state = DTRACE_JSON_STRING;
3753                         }
3754                         break;
3755                 case DTRACE_JSON_STRING_ESCAPE_UNICODE:
3756                         if (!isxdigit(cc)) {
3757                                 /*
3758                                  * ERROR: invalid unicode escape, expected
3759                                  * four valid hexidecimal digits.
3760                                  */
3761                                 return (NULL);
3762                         }
3763 
3764                         *dd++ = cc;
3765                         if (++escape_unicount == 4)
3766                                 state = DTRACE_JSON_STRING;
3767                         break;
3768                 case DTRACE_JSON_COLON:
3769                         if (isspace(cc))
3770                                 break;
3771 
3772                         if (cc == ':') {
3773                                 state = DTRACE_JSON_VALUE;
3774                                 break;
3775                         }
3776 
3777                         /*
3778                          * ERROR: expected a colon.
3779                          */
3780                         return (NULL);
3781                 case DTRACE_JSON_COMMA:
3782                         if (isspace(cc))
3783                                 break;
3784 
3785                         if (cc == ',') {
3786                                 if (in_array) {
3787                                         state = DTRACE_JSON_VALUE;
3788                                         if (++array_pos == array_elem)
3789                                                 found_key = B_TRUE;
3790                                 } else {
3791                                         state = DTRACE_JSON_OBJECT;
3792                                 }
3793                                 break;
3794                         }
3795 
3796                         /*
3797                          * ERROR: either we hit an unexpected character, or
3798                          * we reached the end of the object or array without
3799                          * finding the requested key.
3800                          */
3801                         return (NULL);
3802                 case DTRACE_JSON_IDENTIFIER:
3803                         if (islower(cc)) {
3804                                 *dd++ = cc;
3805                                 break;
3806                         }
3807 
3808                         *dd = '\0';
3809                         dd = dest; /* reset string buffer */
3810 
3811                         if (dtrace_strncmp(dest, "true", 5) == 0 ||
3812                             dtrace_strncmp(dest, "false", 6) == 0 ||
3813                             dtrace_strncmp(dest, "null", 5) == 0) {
3814                                 if (found_key) {
3815                                         if (nelems > 1) {
3816                                                 /*
3817                                                  * ERROR: We expected an object,
3818                                                  * not this identifier.
3819                                                  */
3820                                                 return (NULL);
3821                                         }
3822                                         return (dest);
3823                                 } else {
3824                                         cur--;
3825                                         state = DTRACE_JSON_COMMA;
3826                                         break;
3827                                 }
3828                         }
3829 
3830                         /*
3831                          * ERROR: we did not recognise the identifier as one
3832                          * of those in the JSON specification.
3833                          */
3834                         return (NULL);
3835                 case DTRACE_JSON_NUMBER:
3836                         if (cc == '.') {
3837                                 *dd++ = cc;
3838                                 state = DTRACE_JSON_NUMBER_FRAC;
3839                                 break;
3840                         }
3841 
3842                         if (cc == 'x' || cc == 'X') {
3843                                 /*
3844                                  * ERROR: specification explicitly excludes
3845                                  * hexidecimal or octal numbers.
3846                                  */
3847                                 return (NULL);
3848                         }
3849 
3850                         /* FALLTHRU */
3851                 case DTRACE_JSON_NUMBER_FRAC:
3852                         if (cc == 'e' || cc == 'E') {
3853                                 *dd++ = cc;
3854                                 state = DTRACE_JSON_NUMBER_EXP;
3855                                 break;
3856                         }
3857 
3858                         if (cc == '+' || cc == '-') {
3859                                 /*
3860                                  * ERROR: expect sign as part of exponent only.
3861                                  */
3862                                 return (NULL);
3863                         }
3864                         /* FALLTHRU */
3865                 case DTRACE_JSON_NUMBER_EXP:
3866                         if (isdigit(cc) || cc == '+' || cc == '-') {
3867                                 *dd++ = cc;
3868                                 break;
3869                         }
3870 
3871                         *dd = '\0';
3872                         dd = dest; /* reset string buffer */
3873                         if (found_key) {
3874                                 if (nelems > 1) {
3875                                         /*
3876                                          * ERROR: We expected an object, not
3877                                          * this number.
3878                                          */
3879                                         return (NULL);
3880                                 }
3881                                 return (dest);
3882                         }
3883 
3884                         cur--;
3885                         state = DTRACE_JSON_COMMA;
3886                         break;
3887                 case DTRACE_JSON_VALUE:
3888                         if (isspace(cc))
3889                                 break;
3890 
3891                         if (cc == '{' || cc == '[') {
3892                                 if (nelems > 1 && found_key) {
3893                                         in_array = cc == '[' ? B_TRUE : B_FALSE;
3894                                         /*
3895                                          * If our element selector directs us
3896                                          * to descend into this nested object,
3897                                          * then move to the next selector
3898                                          * element in the list and restart the
3899                                          * state machine.
3900                                          */
3901                                         while (*elem != '\0')
3902                                                 elem++;
3903                                         elem++; /* skip the inter-element NUL */
3904                                         nelems--;
3905                                         dd = dest;
3906                                         if (in_array) {
3907                                                 state = DTRACE_JSON_VALUE;
3908                                                 array_pos = 0;
3909                                                 array_elem = dtrace_strtoll(
3910                                                     elem, 10, size);
3911                                                 found_key = array_elem == 0 ?
3912                                                     B_TRUE : B_FALSE;
3913                                         } else {
3914                                                 found_key = B_FALSE;
3915                                                 state = DTRACE_JSON_OBJECT;
3916                                         }
3917                                         break;
3918                                 }
3919 
3920                                 /*
3921                                  * Otherwise, we wish to either skip this
3922                                  * nested object or return it in full.
3923                                  */
3924                                 if (cc == '[')
3925                                         brackets = 1;
3926                                 else
3927                                         braces = 1;
3928                                 *dd++ = cc;
3929                                 state = DTRACE_JSON_COLLECT_OBJECT;
3930                                 break;
3931                         }
3932 
3933                         if (cc == '"') {
3934                                 state = DTRACE_JSON_STRING;
3935                                 break;
3936                         }
3937 
3938                         if (islower(cc)) {
3939                                 /*
3940                                  * Here we deal with true, false and null.
3941                                  */
3942                                 *dd++ = cc;
3943                                 state = DTRACE_JSON_IDENTIFIER;
3944                                 break;
3945                         }
3946 
3947                         if (cc == '-' || isdigit(cc)) {
3948                                 *dd++ = cc;
3949                                 state = DTRACE_JSON_NUMBER;
3950                                 break;
3951                         }
3952 
3953                         /*
3954                          * ERROR: unexpected character at start of value.
3955                          */
3956                         return (NULL);
3957                 case DTRACE_JSON_COLLECT_OBJECT:
3958                         if (cc == '\0')
3959                                 /*
3960                                  * ERROR: unexpected end of input.
3961                                  */
3962                                 return (NULL);
3963 
3964                         *dd++ = cc;
3965                         if (cc == '"') {
3966                                 collect_object = B_TRUE;
3967                                 state = DTRACE_JSON_STRING;
3968                                 break;
3969                         }
3970 
3971                         if (cc == ']') {
3972                                 if (brackets-- == 0) {
3973                                         /*
3974                                          * ERROR: unbalanced brackets.
3975                                          */
3976                                         return (NULL);
3977                                 }
3978                         } else if (cc == '}') {
3979                                 if (braces-- == 0) {
3980                                         /*
3981                                          * ERROR: unbalanced braces.
3982                                          */
3983                                         return (NULL);
3984                                 }
3985                         } else if (cc == '{') {
3986                                 braces++;
3987                         } else if (cc == '[') {
3988                                 brackets++;
3989                         }
3990 
3991                         if (brackets == 0 && braces == 0) {
3992                                 if (found_key) {
3993                                         *dd = '\0';
3994                                         return (dest);
3995                                 }
3996                                 dd = dest; /* reset string buffer */
3997                                 state = DTRACE_JSON_COMMA;
3998                         }
3999                         break;
4000                 }
4001         }
4002         return (NULL);
4003 }
4004 
4005 /*
4006  * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
4007  * Notice that we don't bother validating the proper number of arguments or
4008  * their types in the tuple stack.  This isn't needed because all argument
4009  * interpretation is safe because of our load safety -- the worst that can
4010  * happen is that a bogus program can obtain bogus results.
4011  */
4012 static void
4013 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
4014     dtrace_key_t *tupregs, int nargs,
4015     dtrace_mstate_t *mstate, dtrace_state_t *state)
4016 {
4017         volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
4018         volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
4019         dtrace_vstate_t *vstate = &state->dts_vstate;
4020 
4021         union {
4022                 mutex_impl_t mi;
4023                 uint64_t mx;
4024         } m;
4025 
4026         union {
4027                 krwlock_t ri;
4028                 uintptr_t rw;
4029         } r;
4030 
4031         switch (subr) {
4032         case DIF_SUBR_RAND:
4033                 regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
4034                 break;
4035 
4036         case DIF_SUBR_MUTEX_OWNED:
4037                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4038                     mstate, vstate)) {
4039                         regs[rd] = NULL;
4040                         break;
4041                 }
4042 
4043                 m.mx = dtrace_load64(tupregs[0].dttk_value);
4044                 if (MUTEX_TYPE_ADAPTIVE(&m.mi))
4045                         regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
4046                 else
4047                         regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
4048                 break;
4049 
4050         case DIF_SUBR_MUTEX_OWNER:
4051                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4052                     mstate, vstate)) {
4053                         regs[rd] = NULL;
4054                         break;
4055                 }
4056 
4057                 m.mx = dtrace_load64(tupregs[0].dttk_value);
4058                 if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
4059                     MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
4060                         regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
4061                 else
4062                         regs[rd] = 0;
4063                 break;
4064 
4065         case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
4066                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4067                     mstate, vstate)) {
4068                         regs[rd] = NULL;
4069                         break;
4070                 }
4071 
4072                 m.mx = dtrace_load64(tupregs[0].dttk_value);
4073                 regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
4074                 break;
4075 
4076         case DIF_SUBR_MUTEX_TYPE_SPIN:
4077                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4078                     mstate, vstate)) {
4079                         regs[rd] = NULL;
4080                         break;
4081                 }
4082 
4083                 m.mx = dtrace_load64(tupregs[0].dttk_value);
4084                 regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
4085                 break;
4086 
4087         case DIF_SUBR_RW_READ_HELD: {
4088                 uintptr_t tmp;
4089 
4090                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4091                     mstate, vstate)) {
4092                         regs[rd] = NULL;
4093                         break;
4094                 }
4095 
4096                 r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4097                 regs[rd] = _RW_READ_HELD(&r.ri, tmp);
4098                 break;
4099         }
4100 
4101         case DIF_SUBR_RW_WRITE_HELD:
4102                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
4103                     mstate, vstate)) {
4104                         regs[rd] = NULL;
4105                         break;
4106                 }
4107 
4108                 r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4109                 regs[rd] = _RW_WRITE_HELD(&r.ri);
4110                 break;
4111 
4112         case DIF_SUBR_RW_ISWRITER:
4113                 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
4114                     mstate, vstate)) {
4115                         regs[rd] = NULL;
4116                         break;
4117                 }
4118 
4119                 r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4120                 regs[rd] = _RW_ISWRITER(&r.ri);
4121                 break;
4122 
4123         case DIF_SUBR_BCOPY: {
4124                 /*
4125                  * We need to be sure that the destination is in the scratch
4126                  * region -- no other region is allowed.
4127                  */
4128                 uintptr_t src = tupregs[0].dttk_value;
4129                 uintptr_t dest = tupregs[1].dttk_value;
4130                 size_t size = tupregs[2].dttk_value;
4131 
4132                 if (!dtrace_inscratch(dest, size, mstate)) {
4133                         *flags |= CPU_DTRACE_BADADDR;
4134                         *illval = regs[rd];
4135                         break;
4136                 }
4137 
4138                 if (!dtrace_canload(src, size, mstate, vstate)) {
4139                         regs[rd] = NULL;
4140                         break;
4141                 }
4142 
4143                 dtrace_bcopy((void *)src, (void *)dest, size);
4144                 break;
4145         }
4146 
4147         case DIF_SUBR_ALLOCA:
4148         case DIF_SUBR_COPYIN: {
4149                 uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
4150                 uint64_t size =
4151                     tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
4152                 size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
4153 
4154                 /*
4155                  * This action doesn't require any credential checks since
4156                  * probes will not activate in user contexts to which the
4157                  * enabling user does not have permissions.
4158                  */
4159 
4160                 /*
4161                  * Rounding up the user allocation size could have overflowed
4162                  * a large, bogus allocation (like -1ULL) to 0.
4163                  */
4164                 if (scratch_size < size ||
4165                     !DTRACE_INSCRATCH(mstate, scratch_size)) {
4166                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4167                         regs[rd] = NULL;
4168                         break;
4169                 }
4170 
4171                 if (subr == DIF_SUBR_COPYIN) {
4172                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4173                         dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
4174                         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4175                 }
4176 
4177                 mstate->dtms_scratch_ptr += scratch_size;
4178                 regs[rd] = dest;
4179                 break;
4180         }
4181 
4182         case DIF_SUBR_COPYINTO: {
4183                 uint64_t size = tupregs[1].dttk_value;
4184                 uintptr_t dest = tupregs[2].dttk_value;
4185 
4186                 /*
4187                  * This action doesn't require any credential checks since
4188                  * probes will not activate in user contexts to which the
4189                  * enabling user does not have permissions.
4190                  */
4191                 if (!dtrace_inscratch(dest, size, mstate)) {
4192                         *flags |= CPU_DTRACE_BADADDR;
4193                         *illval = regs[rd];
4194                         break;
4195                 }
4196 
4197                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4198                 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
4199                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4200                 break;
4201         }
4202 
4203         case DIF_SUBR_COPYINSTR: {
4204                 uintptr_t dest = mstate->dtms_scratch_ptr;
4205                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4206 
4207                 if (nargs > 1 && tupregs[1].dttk_value < size)
4208                         size = tupregs[1].dttk_value + 1;
4209 
4210                 /*
4211                  * This action doesn't require any credential checks since
4212                  * probes will not activate in user contexts to which the
4213                  * enabling user does not have permissions.
4214                  */
4215                 if (!DTRACE_INSCRATCH(mstate, size)) {
4216                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4217                         regs[rd] = NULL;
4218                         break;
4219                 }
4220 
4221                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4222                 dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags);
4223                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4224 
4225                 ((char *)dest)[size - 1] = '\0';
4226                 mstate->dtms_scratch_ptr += size;
4227                 regs[rd] = dest;
4228                 break;
4229         }
4230 
4231         case DIF_SUBR_MSGSIZE:
4232         case DIF_SUBR_MSGDSIZE: {
4233                 uintptr_t baddr = tupregs[0].dttk_value, daddr;
4234                 uintptr_t wptr, rptr;
4235                 size_t count = 0;
4236                 int cont = 0;
4237 
4238                 while (baddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4239 
4240                         if (!dtrace_canload(baddr, sizeof (mblk_t), mstate,
4241                             vstate)) {
4242                                 regs[rd] = NULL;
4243                                 break;
4244                         }
4245 
4246                         wptr = dtrace_loadptr(baddr +
4247                             offsetof(mblk_t, b_wptr));
4248 
4249                         rptr = dtrace_loadptr(baddr +
4250                             offsetof(mblk_t, b_rptr));
4251 
4252                         if (wptr < rptr) {
4253                                 *flags |= CPU_DTRACE_BADADDR;
4254                                 *illval = tupregs[0].dttk_value;
4255                                 break;
4256                         }
4257 
4258                         daddr = dtrace_loadptr(baddr +
4259                             offsetof(mblk_t, b_datap));
4260 
4261                         baddr = dtrace_loadptr(baddr +
4262                             offsetof(mblk_t, b_cont));
4263 
4264                         /*
4265                          * We want to prevent against denial-of-service here,
4266                          * so we're only going to search the list for
4267                          * dtrace_msgdsize_max mblks.
4268                          */
4269                         if (cont++ > dtrace_msgdsize_max) {
4270                                 *flags |= CPU_DTRACE_ILLOP;
4271                                 break;
4272                         }
4273 
4274                         if (subr == DIF_SUBR_MSGDSIZE) {
4275                                 if (dtrace_load8(daddr +
4276                                     offsetof(dblk_t, db_type)) != M_DATA)
4277                                         continue;
4278                         }
4279 
4280                         count += wptr - rptr;
4281                 }
4282 
4283                 if (!(*flags & CPU_DTRACE_FAULT))
4284                         regs[rd] = count;
4285 
4286                 break;
4287         }
4288 
4289         case DIF_SUBR_PROGENYOF: {
4290                 pid_t pid = tupregs[0].dttk_value;
4291                 proc_t *p;
4292                 int rval = 0;
4293 
4294                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4295 
4296                 for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
4297                         if (p->p_pidp->pid_id == pid) {
4298                                 rval = 1;
4299                                 break;
4300                         }
4301                 }
4302 
4303                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4304 
4305                 regs[rd] = rval;
4306                 break;
4307         }
4308 
4309         case DIF_SUBR_SPECULATION:
4310                 regs[rd] = dtrace_speculation(state);
4311                 break;
4312 
4313         case DIF_SUBR_COPYOUT: {
4314                 uintptr_t kaddr = tupregs[0].dttk_value;
4315                 uintptr_t uaddr = tupregs[1].dttk_value;
4316                 uint64_t size = tupregs[2].dttk_value;
4317 
4318                 if (!dtrace_destructive_disallow &&
4319                     dtrace_priv_proc_control(state, mstate) &&
4320                     !dtrace_istoxic(kaddr, size) &&
4321                     dtrace_canload(kaddr, size, mstate, vstate)) {
4322                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4323                         dtrace_copyout(kaddr, uaddr, size, flags);
4324                         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4325                 }
4326                 break;
4327         }
4328 
4329         case DIF_SUBR_COPYOUTSTR: {
4330                 uintptr_t kaddr = tupregs[0].dttk_value;
4331                 uintptr_t uaddr = tupregs[1].dttk_value;
4332                 uint64_t size = tupregs[2].dttk_value;
4333                 size_t lim;
4334 
4335                 if (!dtrace_destructive_disallow &&
4336                     dtrace_priv_proc_control(state, mstate) &&
4337                     !dtrace_istoxic(kaddr, size) &&
4338                     dtrace_strcanload(kaddr, size, &lim, mstate, vstate)) {
4339                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4340                         dtrace_copyoutstr(kaddr, uaddr, lim, flags);
4341                         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4342                 }
4343                 break;
4344         }
4345 
4346         case DIF_SUBR_STRLEN: {
4347                 size_t size = state->dts_options[DTRACEOPT_STRSIZE];
4348                 uintptr_t addr = (uintptr_t)tupregs[0].dttk_value;
4349                 size_t lim;
4350 
4351                 if (!dtrace_strcanload(addr, size, &lim, mstate, vstate)) {
4352                         regs[rd] = NULL;
4353                         break;
4354                 }
4355                 regs[rd] = dtrace_strlen((char *)addr, lim);
4356 
4357                 break;
4358         }
4359 
4360         case DIF_SUBR_STRCHR:
4361         case DIF_SUBR_STRRCHR: {
4362                 /*
4363                  * We're going to iterate over the string looking for the
4364                  * specified character.  We will iterate until we have reached
4365                  * the string length or we have found the character.  If this
4366                  * is DIF_SUBR_STRRCHR, we will look for the last occurrence
4367                  * of the specified character instead of the first.
4368                  */
4369                 uintptr_t addr = tupregs[0].dttk_value;
4370                 uintptr_t addr_limit;
4371                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4372                 size_t lim;
4373                 char c, target = (char)tupregs[1].dttk_value;
4374 
4375                 if (!dtrace_strcanload(addr, size, &lim, mstate, vstate)) {
4376                         regs[rd] = NULL;
4377                         break;
4378                 }
4379                 addr_limit = addr + lim;
4380 
4381                 for (regs[rd] = NULL; addr < addr_limit; addr++) {
4382                         if ((c = dtrace_load8(addr)) == target) {
4383                                 regs[rd] = addr;
4384 
4385                                 if (subr == DIF_SUBR_STRCHR)
4386                                         break;
4387                         }
4388                         if (c == '\0')
4389                                 break;
4390                 }
4391 
4392                 break;
4393         }
4394 
4395         case DIF_SUBR_STRSTR:
4396         case DIF_SUBR_INDEX:
4397         case DIF_SUBR_RINDEX: {
4398                 /*
4399                  * We're going to iterate over the string looking for the
4400                  * specified string.  We will iterate until we have reached
4401                  * the string length or we have found the string.  (Yes, this
4402                  * is done in the most naive way possible -- but considering
4403                  * that the string we're searching for is likely to be
4404                  * relatively short, the complexity of Rabin-Karp or similar
4405                  * hardly seems merited.)
4406                  */
4407                 char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
4408                 char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
4409                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4410                 size_t len = dtrace_strlen(addr, size);
4411                 size_t sublen = dtrace_strlen(substr, size);
4412                 char *limit = addr + len, *orig = addr;
4413                 int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
4414                 int inc = 1;
4415 
4416                 regs[rd] = notfound;
4417 
4418                 if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) {
4419                         regs[rd] = NULL;
4420                         break;
4421                 }
4422 
4423                 if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate,
4424                     vstate)) {
4425                         regs[rd] = NULL;
4426                         break;
4427                 }
4428 
4429                 /*
4430                  * strstr() and index()/rindex() have similar semantics if
4431                  * both strings are the empty string: strstr() returns a
4432                  * pointer to the (empty) string, and index() and rindex()
4433                  * both return index 0 (regardless of any position argument).
4434                  */
4435                 if (sublen == 0 && len == 0) {
4436                         if (subr == DIF_SUBR_STRSTR)
4437                                 regs[rd] = (uintptr_t)addr;
4438                         else
4439                                 regs[rd] = 0;
4440                         break;
4441                 }
4442 
4443                 if (subr != DIF_SUBR_STRSTR) {
4444                         if (subr == DIF_SUBR_RINDEX) {
4445                                 limit = orig - 1;
4446                                 addr += len;
4447                                 inc = -1;
4448                         }
4449 
4450                         /*
4451                          * Both index() and rindex() take an optional position
4452                          * argument that denotes the starting position.
4453                          */
4454                         if (nargs == 3) {
4455                                 int64_t pos = (int64_t)tupregs[2].dttk_value;
4456 
4457                                 /*
4458                                  * If the position argument to index() is
4459                                  * negative, Perl implicitly clamps it at
4460                                  * zero.  This semantic is a little surprising
4461                                  * given the special meaning of negative
4462                                  * positions to similar Perl functions like
4463                                  * substr(), but it appears to reflect a
4464                                  * notion that index() can start from a
4465                                  * negative index and increment its way up to
4466                                  * the string.  Given this notion, Perl's
4467                                  * rindex() is at least self-consistent in
4468                                  * that it implicitly clamps positions greater
4469                                  * than the string length to be the string
4470                                  * length.  Where Perl completely loses
4471                                  * coherence, however, is when the specified
4472                                  * substring is the empty string ("").  In
4473                                  * this case, even if the position is
4474                                  * negative, rindex() returns 0 -- and even if
4475                                  * the position is greater than the length,
4476                                  * index() returns the string length.  These
4477                                  * semantics violate the notion that index()
4478                                  * should never return a value less than the
4479                                  * specified position and that rindex() should
4480                                  * never return a value greater than the
4481                                  * specified position.  (One assumes that
4482                                  * these semantics are artifacts of Perl's
4483                                  * implementation and not the results of
4484                                  * deliberate design -- it beggars belief that
4485                                  * even Larry Wall could desire such oddness.)
4486                                  * While in the abstract one would wish for
4487                                  * consistent position semantics across
4488                                  * substr(), index() and rindex() -- or at the
4489                                  * very least self-consistent position
4490                                  * semantics for index() and rindex() -- we
4491                                  * instead opt to keep with the extant Perl
4492                                  * semantics, in all their broken glory.  (Do
4493                                  * we have more desire to maintain Perl's
4494                                  * semantics than Perl does?  Probably.)
4495                                  */
4496                                 if (subr == DIF_SUBR_RINDEX) {
4497                                         if (pos < 0) {
4498                                                 if (sublen == 0)
4499                                                         regs[rd] = 0;
4500                                                 break;
4501                                         }
4502 
4503                                         if (pos > len)
4504                                                 pos = len;
4505                                 } else {
4506                                         if (pos < 0)
4507                                                 pos = 0;
4508 
4509                                         if (pos >= len) {
4510                                                 if (sublen == 0)
4511                                                         regs[rd] = len;
4512                                                 break;
4513                                         }
4514                                 }
4515 
4516                                 addr = orig + pos;
4517                         }
4518                 }
4519 
4520                 for (regs[rd] = notfound; addr != limit; addr += inc) {
4521                         if (dtrace_strncmp(addr, substr, sublen) == 0) {
4522                                 if (subr != DIF_SUBR_STRSTR) {
4523                                         /*
4524                                          * As D index() and rindex() are
4525                                          * modeled on Perl (and not on awk),
4526                                          * we return a zero-based (and not a
4527                                          * one-based) index.  (For you Perl
4528                                          * weenies: no, we're not going to add
4529                                          * $[ -- and shouldn't you be at a con
4530                                          * or something?)
4531                                          */
4532                                         regs[rd] = (uintptr_t)(addr - orig);
4533                                         break;
4534                                 }
4535 
4536                                 ASSERT(subr == DIF_SUBR_STRSTR);
4537                                 regs[rd] = (uintptr_t)addr;
4538                                 break;
4539                         }
4540                 }
4541 
4542                 break;
4543         }
4544 
4545         case DIF_SUBR_STRTOK: {
4546                 uintptr_t addr = tupregs[0].dttk_value;
4547                 uintptr_t tokaddr = tupregs[1].dttk_value;
4548                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4549                 uintptr_t limit, toklimit;
4550                 size_t clim;
4551                 uint8_t c, tokmap[32];   /* 256 / 8 */
4552                 char *dest = (char *)mstate->dtms_scratch_ptr;
4553                 int i;
4554 
4555                 /*
4556                  * Check both the token buffer and (later) the input buffer,
4557                  * since both could be non-scratch addresses.
4558                  */
4559                 if (!dtrace_strcanload(tokaddr, size, &clim, mstate, vstate)) {
4560                         regs[rd] = NULL;
4561                         break;
4562                 }
4563                 toklimit = tokaddr + clim;
4564 
4565                 if (!DTRACE_INSCRATCH(mstate, size)) {
4566                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4567                         regs[rd] = NULL;
4568                         break;
4569                 }
4570 
4571                 if (addr == NULL) {
4572                         /*
4573                          * If the address specified is NULL, we use our saved
4574                          * strtok pointer from the mstate.  Note that this
4575                          * means that the saved strtok pointer is _only_
4576                          * valid within multiple enablings of the same probe --
4577                          * it behaves like an implicit clause-local variable.
4578                          */
4579                         addr = mstate->dtms_strtok;
4580                         limit = mstate->dtms_strtok_limit;
4581                 } else {
4582                         /*
4583                          * If the user-specified address is non-NULL we must
4584                          * access check it.  This is the only time we have
4585                          * a chance to do so, since this address may reside
4586                          * in the string table of this clause-- future calls
4587                          * (when we fetch addr from mstate->dtms_strtok)
4588                          * would fail this access check.
4589                          */
4590                         if (!dtrace_strcanload(addr, size, &clim, mstate,
4591                             vstate)) {
4592                                 regs[rd] = NULL;
4593                                 break;
4594                         }
4595                         limit = addr + clim;
4596                 }
4597 
4598                 /*
4599                  * First, zero the token map, and then process the token
4600                  * string -- setting a bit in the map for every character
4601                  * found in the token string.
4602                  */
4603                 for (i = 0; i < sizeof (tokmap); i++)
4604                         tokmap[i] = 0;
4605 
4606                 for (; tokaddr < toklimit; tokaddr++) {
4607                         if ((c = dtrace_load8(tokaddr)) == '\0')
4608                                 break;
4609 
4610                         ASSERT((c >> 3) < sizeof (tokmap));
4611                         tokmap[c >> 3] |= (1 << (c & 0x7));
4612                 }
4613 
4614                 for (; addr < limit; addr++) {
4615                         /*
4616                          * We're looking for a character that is _not_
4617                          * contained in the token string.
4618                          */
4619                         if ((c = dtrace_load8(addr)) == '\0')
4620                                 break;
4621 
4622                         if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
4623                                 break;
4624                 }
4625 
4626                 if (c == '\0') {
4627                         /*
4628                          * We reached the end of the string without finding
4629                          * any character that was not in the token string.
4630                          * We return NULL in this case, and we set the saved
4631                          * address to NULL as well.
4632                          */
4633                         regs[rd] = NULL;
4634                         mstate->dtms_strtok = NULL;
4635                         mstate->dtms_strtok_limit = NULL;
4636                         break;
4637                 }
4638 
4639                 /*
4640                  * From here on, we're copying into the destination string.
4641                  */
4642                 for (i = 0; addr < limit && i < size - 1; addr++) {
4643                         if ((c = dtrace_load8(addr)) == '\0')
4644                                 break;
4645 
4646                         if (tokmap[c >> 3] & (1 << (c & 0x7)))
4647                                 break;
4648 
4649                         ASSERT(i < size);
4650                         dest[i++] = c;
4651                 }
4652 
4653                 ASSERT(i < size);
4654                 dest[i] = '\0';
4655                 regs[rd] = (uintptr_t)dest;
4656                 mstate->dtms_scratch_ptr += size;
4657                 mstate->dtms_strtok = addr;
4658                 mstate->dtms_strtok_limit = limit;
4659                 break;
4660         }
4661 
4662         case DIF_SUBR_SUBSTR: {
4663                 uintptr_t s = tupregs[0].dttk_value;
4664                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4665                 char *d = (char *)mstate->dtms_scratch_ptr;
4666                 int64_t index = (int64_t)tupregs[1].dttk_value;
4667                 int64_t remaining = (int64_t)tupregs[2].dttk_value;
4668                 size_t len = dtrace_strlen((char *)s, size);
4669                 int64_t i;
4670 
4671                 if (!dtrace_canload(s, len + 1, mstate, vstate)) {
4672                         regs[rd] = NULL;
4673                         break;
4674                 }
4675 
4676                 if (!DTRACE_INSCRATCH(mstate, size)) {
4677                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4678                         regs[rd] = NULL;
4679                         break;
4680                 }
4681 
4682                 if (nargs <= 2)
4683                         remaining = (int64_t)size;
4684 
4685                 if (index < 0) {
4686                         index += len;
4687 
4688                         if (index < 0 && index + remaining > 0) {
4689                                 remaining += index;
4690                                 index = 0;
4691                         }
4692                 }
4693 
4694                 if (index >= len || index < 0) {
4695                         remaining = 0;
4696                 } else if (remaining < 0) {
4697                         remaining += len - index;
4698                 } else if (index + remaining > size) {
4699                         remaining = size - index;
4700                 }
4701 
4702                 for (i = 0; i < remaining; i++) {
4703                         if ((d[i] = dtrace_load8(s + index + i)) == '\0')
4704                                 break;
4705                 }
4706 
4707                 d[i] = '\0';
4708 
4709                 mstate->dtms_scratch_ptr += size;
4710                 regs[rd] = (uintptr_t)d;
4711                 break;
4712         }
4713 
4714         case DIF_SUBR_JSON: {
4715                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4716                 uintptr_t json = tupregs[0].dttk_value;
4717                 size_t jsonlen = dtrace_strlen((char *)json, size);
4718                 uintptr_t elem = tupregs[1].dttk_value;
4719                 size_t elemlen = dtrace_strlen((char *)elem, size);
4720 
4721                 char *dest = (char *)mstate->dtms_scratch_ptr;
4722                 char *elemlist = (char *)mstate->dtms_scratch_ptr + jsonlen + 1;
4723                 char *ee = elemlist;
4724                 int nelems = 1;
4725                 uintptr_t cur;
4726 
4727                 if (!dtrace_canload(json, jsonlen + 1, mstate, vstate) ||
4728                     !dtrace_canload(elem, elemlen + 1, mstate, vstate)) {
4729                         regs[rd] = NULL;
4730                         break;
4731                 }
4732 
4733                 if (!DTRACE_INSCRATCH(mstate, jsonlen + 1 + elemlen + 1)) {
4734                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4735                         regs[rd] = NULL;
4736                         break;
4737                 }
4738 
4739                 /*
4740                  * Read the element selector and split it up into a packed list
4741                  * of strings.
4742                  */
4743                 for (cur = elem; cur < elem + elemlen; cur++) {
4744                         char cc = dtrace_load8(cur);
4745 
4746                         if (cur == elem && cc == '[') {
4747                                 /*
4748                                  * If the first element selector key is
4749                                  * actually an array index then ignore the
4750                                  * bracket.
4751                                  */
4752                                 continue;
4753                         }
4754 
4755                         if (cc == ']')
4756                                 continue;
4757 
4758                         if (cc == '.' || cc == '[') {
4759                                 nelems++;
4760                                 cc = '\0';
4761                         }
4762 
4763                         *ee++ = cc;
4764                 }
4765                 *ee++ = '\0';
4766 
4767                 if ((regs[rd] = (uintptr_t)dtrace_json(size, json, elemlist,
4768                     nelems, dest)) != NULL)
4769                         mstate->dtms_scratch_ptr += jsonlen + 1;
4770                 break;
4771         }
4772 
4773         case DIF_SUBR_TOUPPER:
4774         case DIF_SUBR_TOLOWER: {
4775                 uintptr_t s = tupregs[0].dttk_value;
4776                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4777                 char *dest = (char *)mstate->dtms_scratch_ptr, c;
4778                 size_t len = dtrace_strlen((char *)s, size);
4779                 char lower, upper, convert;
4780                 int64_t i;
4781 
4782                 if (subr == DIF_SUBR_TOUPPER) {
4783                         lower = 'a';
4784                         upper = 'z';
4785                         convert = 'A';
4786                 } else {
4787                         lower = 'A';
4788                         upper = 'Z';
4789                         convert = 'a';
4790                 }
4791 
4792                 if (!dtrace_canload(s, len + 1, mstate, vstate)) {
4793                         regs[rd] = NULL;
4794                         break;
4795                 }
4796 
4797                 if (!DTRACE_INSCRATCH(mstate, size)) {
4798                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4799                         regs[rd] = NULL;
4800                         break;
4801                 }
4802 
4803                 for (i = 0; i < size - 1; i++) {
4804                         if ((c = dtrace_load8(s + i)) == '\0')
4805                                 break;
4806 
4807                         if (c >= lower && c <= upper)
4808                                 c = convert + (c - lower);
4809 
4810                         dest[i] = c;
4811                 }
4812 
4813                 ASSERT(i < size);
4814                 dest[i] = '\0';
4815                 regs[rd] = (uintptr_t)dest;
4816                 mstate->dtms_scratch_ptr += size;
4817                 break;
4818         }
4819 
4820 case DIF_SUBR_GETMAJOR:
4821 #ifdef _LP64
4822                 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
4823 #else
4824                 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
4825 #endif
4826                 break;
4827 
4828         case DIF_SUBR_GETMINOR:
4829 #ifdef _LP64
4830                 regs[rd] = tupregs[0].dttk_value & MAXMIN64;
4831 #else
4832                 regs[rd] = tupregs[0].dttk_value & MAXMIN;
4833 #endif
4834                 break;
4835 
4836         case DIF_SUBR_DDI_PATHNAME: {
4837                 /*
4838                  * This one is a galactic mess.  We are going to roughly
4839                  * emulate ddi_pathname(), but it's made more complicated
4840                  * by the fact that we (a) want to include the minor name and
4841                  * (b) must proceed iteratively instead of recursively.
4842                  */
4843                 uintptr_t dest = mstate->dtms_scratch_ptr;
4844                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4845                 char *start = (char *)dest, *end = start + size - 1;
4846                 uintptr_t daddr = tupregs[0].dttk_value;
4847                 int64_t minor = (int64_t)tupregs[1].dttk_value;
4848                 char *s;
4849                 int i, len, depth = 0;
4850 
4851                 /*
4852                  * Due to all the pointer jumping we do and context we must
4853                  * rely upon, we just mandate that the user must have kernel
4854                  * read privileges to use this routine.
4855                  */
4856                 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) {
4857                         *flags |= CPU_DTRACE_KPRIV;
4858                         *illval = daddr;
4859                         regs[rd] = NULL;
4860                 }
4861 
4862                 if (!DTRACE_INSCRATCH(mstate, size)) {
4863                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4864                         regs[rd] = NULL;
4865                         break;
4866                 }
4867 
4868                 *end = '\0';
4869 
4870                 /*
4871                  * We want to have a name for the minor.  In order to do this,
4872                  * we need to walk the minor list from the devinfo.  We want
4873                  * to be sure that we don't infinitely walk a circular list,
4874                  * so we check for circularity by sending a scout pointer
4875                  * ahead two elements for every element that we iterate over;
4876                  * if the list is circular, these will ultimately point to the
4877                  * same element.  You may recognize this little trick as the
4878                  * answer to a stupid interview question -- one that always
4879                  * seems to be asked by those who had to have it laboriously
4880                  * explained to them, and who can't even concisely describe
4881                  * the conditions under which one would be forced to resort to
4882                  * this technique.  Needless to say, those conditions are
4883                  * found here -- and probably only here.  Is this the only use
4884                  * of this infamous trick in shipping, production code?  If it
4885                  * isn't, it probably should be...
4886                  */
4887                 if (minor != -1) {
4888                         uintptr_t maddr = dtrace_loadptr(daddr +
4889                             offsetof(struct dev_info, devi_minor));
4890 
4891                         uintptr_t next = offsetof(struct ddi_minor_data, next);
4892                         uintptr_t name = offsetof(struct ddi_minor_data,
4893                             d_minor) + offsetof(struct ddi_minor, name);
4894                         uintptr_t dev = offsetof(struct ddi_minor_data,
4895                             d_minor) + offsetof(struct ddi_minor, dev);
4896                         uintptr_t scout;
4897 
4898                         if (maddr != NULL)
4899                                 scout = dtrace_loadptr(maddr + next);
4900 
4901                         while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4902                                 uint64_t m;
4903 #ifdef _LP64
4904                                 m = dtrace_load64(maddr + dev) & MAXMIN64;
4905 #else
4906                                 m = dtrace_load32(maddr + dev) & MAXMIN;
4907 #endif
4908                                 if (m != minor) {
4909                                         maddr = dtrace_loadptr(maddr + next);
4910 
4911                                         if (scout == NULL)
4912                                                 continue;
4913 
4914                                         scout = dtrace_loadptr(scout + next);
4915 
4916                                         if (scout == NULL)
4917                                                 continue;
4918 
4919                                         scout = dtrace_loadptr(scout + next);
4920 
4921                                         if (scout == NULL)
4922                                                 continue;
4923 
4924                                         if (scout == maddr) {
4925                                                 *flags |= CPU_DTRACE_ILLOP;
4926                                                 break;
4927                                         }
4928 
4929                                         continue;
4930                                 }
4931 
4932                                 /*
4933                                  * We have the minor data.  Now we need to
4934                                  * copy the minor's name into the end of the
4935                                  * pathname.
4936                                  */
4937                                 s = (char *)dtrace_loadptr(maddr + name);
4938                                 len = dtrace_strlen(s, size);
4939 
4940                                 if (*flags & CPU_DTRACE_FAULT)
4941                                         break;
4942 
4943                                 if (len != 0) {
4944                                         if ((end -= (len + 1)) < start)
4945                                                 break;
4946 
4947                                         *end = ':';
4948                                 }
4949 
4950                                 for (i = 1; i <= len; i++)
4951                                         end[i] = dtrace_load8((uintptr_t)s++);
4952                                 break;
4953                         }
4954                 }
4955 
4956                 while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4957                         ddi_node_state_t devi_state;
4958 
4959                         devi_state = dtrace_load32(daddr +
4960                             offsetof(struct dev_info, devi_node_state));
4961 
4962                         if (*flags & CPU_DTRACE_FAULT)
4963                                 break;
4964 
4965                         if (devi_state >= DS_INITIALIZED) {
4966                                 s = (char *)dtrace_loadptr(daddr +
4967                                     offsetof(struct dev_info, devi_addr));
4968                                 len = dtrace_strlen(s, size);
4969 
4970                                 if (*flags & CPU_DTRACE_FAULT)
4971                                         break;
4972 
4973                                 if (len != 0) {
4974                                         if ((end -= (len + 1)) < start)
4975                                                 break;
4976 
4977                                         *end = '@';
4978                                 }
4979 
4980                                 for (i = 1; i <= len; i++)
4981                                         end[i] = dtrace_load8((uintptr_t)s++);
4982                         }
4983 
4984                         /*
4985                          * Now for the node name...
4986                          */
4987                         s = (char *)dtrace_loadptr(daddr +
4988                             offsetof(struct dev_info, devi_node_name));
4989 
4990                         daddr = dtrace_loadptr(daddr +
4991                             offsetof(struct dev_info, devi_parent));
4992 
4993                         /*
4994                          * If our parent is NULL (that is, if we're the root
4995                          * node), we're going to use the special path
4996                          * "devices".
4997                          */
4998                         if (daddr == NULL)
4999                                 s = "devices";
5000 
5001                         len = dtrace_strlen(s, size);
5002                         if (*flags & CPU_DTRACE_FAULT)
5003                                 break;
5004 
5005                         if ((end -= (len + 1)) < start)
5006                                 break;
5007 
5008                         for (i = 1; i <= len; i++)
5009                                 end[i] = dtrace_load8((uintptr_t)s++);
5010                         *end = '/';
5011 
5012                         if (depth++ > dtrace_devdepth_max) {
5013                                 *flags |= CPU_DTRACE_ILLOP;
5014                                 break;
5015                         }
5016                 }
5017 
5018                 if (end < start)
5019                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5020 
5021                 if (daddr == NULL) {
5022                         regs[rd] = (uintptr_t)end;
5023                         mstate->dtms_scratch_ptr += size;
5024                 }
5025 
5026                 break;
5027         }
5028 
5029         case DIF_SUBR_STRJOIN: {
5030                 char *d = (char *)mstate->dtms_scratch_ptr;
5031                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5032                 uintptr_t s1 = tupregs[0].dttk_value;
5033                 uintptr_t s2 = tupregs[1].dttk_value;
5034                 int i = 0, j = 0;
5035                 size_t lim1, lim2;
5036                 char c;
5037 
5038                 if (!dtrace_strcanload(s1, size, &lim1, mstate, vstate) ||
5039                     !dtrace_strcanload(s2, size, &lim2, mstate, vstate)) {
5040                         regs[rd] = NULL;
5041                         break;
5042                 }
5043 
5044                 if (!DTRACE_INSCRATCH(mstate, size)) {
5045                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5046                         regs[rd] = NULL;
5047                         break;
5048                 }
5049 
5050                 for (;;) {
5051                         if (i >= size) {
5052                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5053                                 regs[rd] = NULL;
5054                                 break;
5055                         }
5056                         c = (i >= lim1) ? '\0' : dtrace_load8(s1++);
5057                         if ((d[i++] = c) == '\0') {
5058                                 i--;
5059                                 break;
5060                         }
5061                 }
5062 
5063                 for (;;) {
5064                         if (i >= size) {
5065                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5066                                 regs[rd] = NULL;
5067                                 break;
5068                         }
5069 
5070                         c = (j++ >= lim2) ? '\0' : dtrace_load8(s2++);
5071                         if ((d[i++] = c) == '\0')
5072                                 break;
5073                 }
5074 
5075                 if (i < size) {
5076                         mstate->dtms_scratch_ptr += i;
5077                         regs[rd] = (uintptr_t)d;
5078                 }
5079 
5080                 break;
5081         }
5082 
5083         case DIF_SUBR_STRTOLL: {
5084                 uintptr_t s = tupregs[0].dttk_value;
5085                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5086                 size_t lim;
5087                 int base = 10;
5088 
5089                 if (nargs > 1) {
5090                         if ((base = tupregs[1].dttk_value) <= 1 ||
5091                             base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
5092                                 *flags |= CPU_DTRACE_ILLOP;
5093                                 break;
5094                         }
5095                 }
5096 
5097                 if (!dtrace_strcanload(s, size, &lim, mstate, vstate)) {
5098                         regs[rd] = INT64_MIN;
5099                         break;
5100                 }
5101 
5102                 regs[rd] = dtrace_strtoll((char *)s, base, lim);
5103                 break;
5104         }
5105 
5106         case DIF_SUBR_LLTOSTR: {
5107                 int64_t i = (int64_t)tupregs[0].dttk_value;
5108                 uint64_t val, digit;
5109                 uint64_t size = 65;     /* enough room for 2^64 in binary */
5110                 char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
5111                 int base = 10;
5112 
5113                 if (nargs > 1) {
5114                         if ((base = tupregs[1].dttk_value) <= 1 ||
5115                             base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
5116                                 *flags |= CPU_DTRACE_ILLOP;
5117                                 break;
5118                         }
5119                 }
5120 
5121                 val = (base == 10 && i < 0) ? i * -1 : i;
5122 
5123                 if (!DTRACE_INSCRATCH(mstate, size)) {
5124                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5125                         regs[rd] = NULL;
5126                         break;
5127                 }
5128 
5129                 for (*end-- = '\0'; val; val /= base) {
5130                         if ((digit = val % base) <= '9' - '0') {
5131                                 *end-- = '0' + digit;
5132                         } else {
5133                                 *end-- = 'a' + (digit - ('9' - '0') - 1);
5134                         }
5135                 }
5136 
5137                 if (i == 0 && base == 16)
5138                         *end-- = '0';
5139 
5140                 if (base == 16)
5141                         *end-- = 'x';
5142 
5143                 if (i == 0 || base == 8 || base == 16)
5144                         *end-- = '0';
5145 
5146                 if (i < 0 && base == 10)
5147                         *end-- = '-';
5148 
5149                 regs[rd] = (uintptr_t)end + 1;
5150                 mstate->dtms_scratch_ptr += size;
5151                 break;
5152         }
5153 
5154         case DIF_SUBR_HTONS:
5155         case DIF_SUBR_NTOHS:
5156 #ifdef _BIG_ENDIAN
5157                 regs[rd] = (uint16_t)tupregs[0].dttk_value;
5158 #else
5159                 regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value);
5160 #endif
5161                 break;
5162 
5163 
5164         case DIF_SUBR_HTONL:
5165         case DIF_SUBR_NTOHL:
5166 #ifdef _BIG_ENDIAN
5167                 regs[rd] = (uint32_t)tupregs[0].dttk_value;
5168 #else
5169                 regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value);
5170 #endif
5171                 break;
5172 
5173 
5174         case DIF_SUBR_HTONLL:
5175         case DIF_SUBR_NTOHLL:
5176 #ifdef _BIG_ENDIAN
5177                 regs[rd] = (uint64_t)tupregs[0].dttk_value;
5178 #else
5179                 regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value);
5180 #endif
5181                 break;
5182 
5183 
5184         case DIF_SUBR_DIRNAME:
5185         case DIF_SUBR_BASENAME: {
5186                 char *dest = (char *)mstate->dtms_scratch_ptr;
5187                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5188                 uintptr_t src = tupregs[0].dttk_value;
5189                 int i, j, len = dtrace_strlen((char *)src, size);
5190                 int lastbase = -1, firstbase = -1, lastdir = -1;
5191                 int start, end;
5192 
5193                 if (!dtrace_canload(src, len + 1, mstate, vstate)) {
5194                         regs[rd] = NULL;
5195                         break;
5196                 }
5197 
5198                 if (!DTRACE_INSCRATCH(mstate, size)) {
5199                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5200                         regs[rd] = NULL;
5201                         break;
5202                 }
5203 
5204                 /*
5205                  * The basename and dirname for a zero-length string is
5206                  * defined to be "."
5207                  */
5208                 if (len == 0) {
5209                         len = 1;
5210                         src = (uintptr_t)".";
5211                 }
5212 
5213                 /*
5214                  * Start from the back of the string, moving back toward the
5215                  * front until we see a character that isn't a slash.  That
5216                  * character is the last character in the basename.
5217                  */
5218                 for (i = len - 1; i >= 0; i--) {
5219                         if (dtrace_load8(src + i) != '/')
5220                                 break;
5221                 }
5222 
5223                 if (i >= 0)
5224                         lastbase = i;
5225 
5226                 /*
5227                  * Starting from the last character in the basename, move
5228                  * towards the front until we find a slash.  The character
5229                  * that we processed immediately before that is the first
5230                  * character in the basename.
5231                  */
5232                 for (; i >= 0; i--) {
5233                         if (dtrace_load8(src + i) == '/')
5234                                 break;
5235                 }
5236 
5237                 if (i >= 0)
5238                         firstbase = i + 1;
5239 
5240                 /*
5241                  * Now keep going until we find a non-slash character.  That
5242                  * character is the last character in the dirname.
5243                  */
5244                 for (; i >= 0; i--) {
5245                         if (dtrace_load8(src + i) != '/')
5246                                 break;
5247                 }
5248 
5249                 if (i >= 0)
5250                         lastdir = i;
5251 
5252                 ASSERT(!(lastbase == -1 && firstbase != -1));
5253                 ASSERT(!(firstbase == -1 && lastdir != -1));
5254 
5255                 if (lastbase == -1) {
5256                         /*
5257                          * We didn't find a non-slash character.  We know that
5258                          * the length is non-zero, so the whole string must be
5259                          * slashes.  In either the dirname or the basename
5260                          * case, we return '/'.
5261                          */
5262                         ASSERT(firstbase == -1);
5263                         firstbase = lastbase = lastdir = 0;
5264                 }
5265 
5266                 if (firstbase == -1) {
5267                         /*
5268                          * The entire string consists only of a basename
5269                          * component.  If we're looking for dirname, we need
5270                          * to change our string to be just "."; if we're
5271                          * looking for a basename, we'll just set the first
5272                          * character of the basename to be 0.
5273                          */
5274                         if (subr == DIF_SUBR_DIRNAME) {
5275                                 ASSERT(lastdir == -1);
5276                                 src = (uintptr_t)".";
5277                                 lastdir = 0;
5278                         } else {
5279                                 firstbase = 0;
5280                         }
5281                 }
5282 
5283                 if (subr == DIF_SUBR_DIRNAME) {
5284                         if (lastdir == -1) {
5285                                 /*
5286                                  * We know that we have a slash in the name --
5287                                  * or lastdir would be set to 0, above.  And
5288                                  * because lastdir is -1, we know that this
5289                                  * slash must be the first character.  (That
5290                                  * is, the full string must be of the form
5291                                  * "/basename".)  In this case, the last
5292                                  * character of the directory name is 0.
5293                                  */
5294                                 lastdir = 0;
5295                         }
5296 
5297                         start = 0;
5298                         end = lastdir;
5299                 } else {
5300                         ASSERT(subr == DIF_SUBR_BASENAME);
5301                         ASSERT(firstbase != -1 && lastbase != -1);
5302                         start = firstbase;
5303                         end = lastbase;
5304                 }
5305 
5306                 for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
5307                         dest[j] = dtrace_load8(src + i);
5308 
5309                 dest[j] = '\0';
5310                 regs[rd] = (uintptr_t)dest;
5311                 mstate->dtms_scratch_ptr += size;
5312                 break;
5313         }
5314 
5315         case DIF_SUBR_GETF: {
5316                 uintptr_t fd = tupregs[0].dttk_value;
5317                 uf_info_t *finfo = &curthread->t_procp->p_user.u_finfo;
5318                 file_t *fp;
5319 
5320                 if (!dtrace_priv_proc(state, mstate)) {
5321                         regs[rd] = NULL;
5322                         break;
5323                 }
5324 
5325                 /*
5326                  * This is safe because fi_nfiles only increases, and the
5327                  * fi_list array is not freed when the array size doubles.
5328                  * (See the comment in flist_grow() for details on the
5329                  * management of the u_finfo structure.)
5330                  */
5331                 fp = fd < finfo->fi_nfiles ? finfo->fi_list[fd].uf_file : NULL;
5332 
5333                 mstate->dtms_getf = fp;
5334                 regs[rd] = (uintptr_t)fp;
5335                 break;
5336         }
5337 
5338         case DIF_SUBR_CLEANPATH: {
5339                 char *dest = (char *)mstate->dtms_scratch_ptr, c;
5340                 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5341                 uintptr_t src = tupregs[0].dttk_value;
5342                 size_t lim;
5343                 int i = 0, j = 0;
5344                 zone_t *z;
5345 
5346                 if (!dtrace_strcanload(src, size, &lim, mstate, vstate)) {
5347                         regs[rd] = NULL;
5348                         break;
5349                 }
5350 
5351                 if (!DTRACE_INSCRATCH(mstate, size)) {
5352                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5353                         regs[rd] = NULL;
5354                         break;
5355                 }
5356 
5357                 /*
5358                  * Move forward, loading each character.
5359                  */
5360                 do {
5361                         c = (i >= lim) ? '\0' : dtrace_load8(src + i++);
5362 next:
5363                         if (j + 5 >= size)   /* 5 = strlen("/..c\0") */
5364                                 break;
5365 
5366                         if (c != '/') {
5367                                 dest[j++] = c;
5368                                 continue;
5369                         }
5370 
5371                         c = (i >= lim) ? '\0' : dtrace_load8(src + i++);
5372 
5373                         if (c == '/') {
5374                                 /*
5375                                  * We have two slashes -- we can just advance
5376                                  * to the next character.
5377                                  */
5378                                 goto next;
5379                         }
5380 
5381                         if (c != '.') {
5382                                 /*
5383                                  * This is not "." and it's not ".." -- we can
5384                                  * just store the "/" and this character and
5385                                  * drive on.
5386                                  */
5387                                 dest[j++] = '/';
5388                                 dest[j++] = c;
5389                                 continue;
5390                         }
5391 
5392                         c = (i >= lim) ? '\0' : dtrace_load8(src + i++);
5393 
5394                         if (c == '/') {
5395                                 /*
5396                                  * This is a "/./" component.  We're not going
5397                                  * to store anything in the destination buffer;
5398                                  * we're just going to go to the next component.
5399                                  */
5400                                 goto next;
5401                         }
5402 
5403                         if (c != '.') {
5404                                 /*
5405                                  * This is not ".." -- we can just store the
5406                                  * "/." and this character and continue
5407                                  * processing.
5408                                  */
5409                                 dest[j++] = '/';
5410                                 dest[j++] = '.';
5411                                 dest[j++] = c;
5412                                 continue;
5413                         }
5414 
5415                         c = (i >= lim) ? '\0' : dtrace_load8(src + i++);
5416 
5417                         if (c != '/' && c != '\0') {
5418                                 /*
5419                                  * This is not ".." -- it's "..[mumble]".
5420                                  * We'll store the "/.." and this character
5421                                  * and continue processing.
5422                                  */
5423                                 dest[j++] = '/';
5424                                 dest[j++] = '.';
5425                                 dest[j++] = '.';
5426                                 dest[j++] = c;
5427                                 continue;
5428                         }
5429 
5430                         /*
5431                          * This is "/../" or "/..\0".  We need to back up
5432                          * our destination pointer until we find a "/".
5433                          */
5434                         i--;
5435                         while (j != 0 && dest[--j] != '/')
5436                                 continue;
5437 
5438                         if (c == '\0')
5439                                 dest[++j] = '/';
5440                 } while (c != '\0');
5441 
5442                 dest[j] = '\0';
5443 
5444                 if (mstate->dtms_getf != NULL &&
5445                     !(mstate->dtms_access & DTRACE_ACCESS_KERNEL) &&
5446                     (z = state->dts_cred.dcr_cred->cr_zone) != kcred->cr_zone) {
5447                         /*
5448                          * If we've done a getf() as a part of this ECB and we
5449                          * don't have kernel access (and we're not in the global
5450                          * zone), check if the path we cleaned up begins with
5451                          * the zone's root path, and trim it off if so.  Note
5452                          * that this is an output cleanliness issue, not a
5453                          * security issue: knowing one's zone root path does
5454                          * not enable privilege escalation.
5455                          */
5456                         if (strstr(dest, z->zone_rootpath) == dest)
5457                                 dest += strlen(z->zone_rootpath) - 1;
5458                 }
5459 
5460                 regs[rd] = (uintptr_t)dest;
5461                 mstate->dtms_scratch_ptr += size;
5462                 break;
5463         }
5464 
5465         case DIF_SUBR_INET_NTOA:
5466         case DIF_SUBR_INET_NTOA6:
5467         case DIF_SUBR_INET_NTOP: {
5468                 size_t size;
5469                 int af, argi, i;
5470                 char *base, *end;
5471 
5472                 if (subr == DIF_SUBR_INET_NTOP) {
5473                         af = (int)tupregs[0].dttk_value;
5474                         argi = 1;
5475                 } else {
5476                         af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6;
5477                         argi = 0;
5478                 }
5479 
5480                 if (af == AF_INET) {
5481                         ipaddr_t ip4;
5482                         uint8_t *ptr8, val;
5483 
5484                         if (!dtrace_canload(tupregs[argi].dttk_value,
5485                             sizeof (ipaddr_t), mstate, vstate)) {
5486                                 regs[rd] = NULL;
5487                                 break;
5488                         }
5489 
5490                         /*
5491                          * Safely load the IPv4 address.
5492                          */
5493                         ip4 = dtrace_load32(tupregs[argi].dttk_value);
5494 
5495                         /*
5496                          * Check an IPv4 string will fit in scratch.
5497                          */
5498                         size = INET_ADDRSTRLEN;
5499                         if (!DTRACE_INSCRATCH(mstate, size)) {
5500                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5501                                 regs[rd] = NULL;
5502                                 break;
5503                         }
5504                         base = (char *)mstate->dtms_scratch_ptr;
5505                         end = (char *)mstate->dtms_scratch_ptr + size - 1;
5506 
5507                         /*
5508                          * Stringify as a dotted decimal quad.
5509                          */
5510                         *end-- = '\0';
5511                         ptr8 = (uint8_t *)&ip4;
5512                         for (i = 3; i >= 0; i--) {
5513                                 val = ptr8[i];
5514 
5515                                 if (val == 0) {
5516                                         *end-- = '0';
5517                                 } else {
5518                                         for (; val; val /= 10) {
5519                                                 *end-- = '0' + (val % 10);
5520                                         }
5521                                 }
5522 
5523                                 if (i > 0)
5524                                         *end-- = '.';
5525                         }
5526                         ASSERT(end + 1 >= base);
5527 
5528                 } else if (af == AF_INET6) {
5529                         struct in6_addr ip6;
5530                         int firstzero, tryzero, numzero, v6end;
5531                         uint16_t val;
5532                         const char digits[] = "0123456789abcdef";
5533 
5534                         /*
5535                          * Stringify using RFC 1884 convention 2 - 16 bit
5536                          * hexadecimal values with a zero-run compression.
5537                          * Lower case hexadecimal digits are used.
5538                          *      eg, fe80::214:4fff:fe0b:76c8.
5539                          * The IPv4 embedded form is returned for inet_ntop,
5540                          * just the IPv4 string is returned for inet_ntoa6.
5541                          */
5542 
5543                         if (!dtrace_canload(tupregs[argi].dttk_value,
5544                             sizeof (struct in6_addr), mstate, vstate)) {
5545                                 regs[rd] = NULL;
5546                                 break;
5547                         }
5548 
5549                         /*
5550                          * Safely load the IPv6 address.
5551                          */
5552                         dtrace_bcopy(
5553                             (void *)(uintptr_t)tupregs[argi].dttk_value,
5554                             (void *)(uintptr_t)&ip6, sizeof (struct in6_addr));
5555 
5556                         /*
5557                          * Check an IPv6 string will fit in scratch.
5558                          */
5559                         size = INET6_ADDRSTRLEN;
5560                         if (!DTRACE_INSCRATCH(mstate, size)) {
5561                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5562                                 regs[rd] = NULL;
5563                                 break;
5564                         }
5565                         base = (char *)mstate->dtms_scratch_ptr;
5566                         end = (char *)mstate->dtms_scratch_ptr + size - 1;
5567                         *end-- = '\0';
5568 
5569                         /*
5570                          * Find the longest run of 16 bit zero values
5571                          * for the single allowed zero compression - "::".
5572                          */
5573                         firstzero = -1;
5574                         tryzero = -1;
5575                         numzero = 1;
5576                         for (i = 0; i < sizeof (struct in6_addr); i++) {
5577                                 if (ip6._S6_un._S6_u8[i] == 0 &&
5578                                     tryzero == -1 && i % 2 == 0) {
5579                                         tryzero = i;
5580                                         continue;
5581                                 }
5582 
5583                                 if (tryzero != -1 &&
5584                                     (ip6._S6_un._S6_u8[i] != 0 ||
5585                                     i == sizeof (struct in6_addr) - 1)) {
5586 
5587                                         if (i - tryzero <= numzero) {
5588                                                 tryzero = -1;
5589                                                 continue;
5590                                         }
5591 
5592                                         firstzero = tryzero;
5593                                         numzero = i - i % 2 - tryzero;
5594                                         tryzero = -1;
5595 
5596                                         if (ip6._S6_un._S6_u8[i] == 0 &&
5597                                             i == sizeof (struct in6_addr) - 1)
5598                                                 numzero += 2;
5599                                 }
5600                         }
5601                         ASSERT(firstzero + numzero <= sizeof (struct in6_addr));
5602 
5603                         /*
5604                          * Check for an IPv4 embedded address.
5605                          */
5606                         v6end = sizeof (struct in6_addr) - 2;
5607                         if (IN6_IS_ADDR_V4MAPPED(&ip6) ||
5608                             IN6_IS_ADDR_V4COMPAT(&ip6)) {
5609                                 for (i = sizeof (struct in6_addr) - 1;
5610                                     i >= DTRACE_V4MAPPED_OFFSET; i--) {
5611                                         ASSERT(end >= base);
5612 
5613                                         val = ip6._S6_un._S6_u8[i];
5614 
5615                                         if (val == 0) {
5616                                                 *end-- = '0';
5617                                         } else {
5618                                                 for (; val; val /= 10) {
5619                                                         *end-- = '0' + val % 10;
5620                                                 }
5621                                         }
5622 
5623                                         if (i > DTRACE_V4MAPPED_OFFSET)
5624                                                 *end-- = '.';
5625                                 }
5626 
5627                                 if (subr == DIF_SUBR_INET_NTOA6)
5628                                         goto inetout;
5629 
5630                                 /*
5631                                  * Set v6end to skip the IPv4 address that
5632                                  * we have already stringified.
5633                                  */
5634                                 v6end = 10;
5635                         }
5636 
5637                         /*
5638                          * Build the IPv6 string by working through the
5639                          * address in reverse.
5640                          */
5641                         for (i = v6end; i >= 0; i -= 2) {
5642                                 ASSERT(end >= base);
5643 
5644                                 if (i == firstzero + numzero - 2) {
5645                                         *end-- = ':';
5646                                         *end-- = ':';
5647                                         i -= numzero - 2;
5648                                         continue;
5649                                 }
5650 
5651                                 if (i < 14 && i != firstzero - 2)
5652                                         *end-- = ':';
5653 
5654                                 val = (ip6._S6_un._S6_u8[i] << 8) +
5655                                     ip6._S6_un._S6_u8[i + 1];
5656 
5657                                 if (val == 0) {
5658                                         *end-- = '0';
5659                                 } else {
5660                                         for (; val; val /= 16) {
5661                                                 *end-- = digits[val % 16];
5662                                         }
5663                                 }
5664                         }
5665                         ASSERT(end + 1 >= base);
5666 
5667                 } else {
5668                         /*
5669                          * The user didn't use AH_INET or AH_INET6.
5670                          */
5671                         DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
5672                         regs[rd] = NULL;
5673                         break;
5674                 }
5675 
5676 inetout:        regs[rd] = (uintptr_t)end + 1;
5677                 mstate->dtms_scratch_ptr += size;
5678                 break;
5679         }
5680 
5681         }
5682 }
5683 
5684 /*
5685  * Emulate the execution of DTrace IR instructions specified by the given
5686  * DIF object.  This function is deliberately void of assertions as all of
5687  * the necessary checks are handled by a call to dtrace_difo_validate().
5688  */
5689 static uint64_t
5690 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
5691     dtrace_vstate_t *vstate, dtrace_state_t *state)
5692 {
5693         const dif_instr_t *text = difo->dtdo_buf;
5694         const uint_t textlen = difo->dtdo_len;
5695         const char *strtab = difo->dtdo_strtab;
5696         const uint64_t *inttab = difo->dtdo_inttab;
5697 
5698         uint64_t rval = 0;
5699         dtrace_statvar_t *svar;
5700         dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
5701         dtrace_difv_t *v;
5702         volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
5703         volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
5704 
5705         dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
5706         uint64_t regs[DIF_DIR_NREGS];
5707         uint64_t *tmp;
5708 
5709         uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
5710         int64_t cc_r;
5711         uint_t pc = 0, id, opc;
5712         uint8_t ttop = 0;
5713         dif_instr_t instr;
5714         uint_t r1, r2, rd;
5715 
5716         /*
5717          * We stash the current DIF object into the machine state: we need it
5718          * for subsequent access checking.
5719          */
5720         mstate->dtms_difo = difo;
5721 
5722         regs[DIF_REG_R0] = 0;           /* %r0 is fixed at zero */
5723 
5724         while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
5725                 opc = pc;
5726 
5727                 instr = text[pc++];
5728                 r1 = DIF_INSTR_R1(instr);
5729                 r2 = DIF_INSTR_R2(instr);
5730                 rd = DIF_INSTR_RD(instr);
5731 
5732                 switch (DIF_INSTR_OP(instr)) {
5733                 case DIF_OP_OR:
5734                         regs[rd] = regs[r1] | regs[r2];
5735                         break;
5736                 case DIF_OP_XOR:
5737                         regs[rd] = regs[r1] ^ regs[r2];
5738                         break;
5739                 case DIF_OP_AND:
5740                         regs[rd] = regs[r1] & regs[r2];
5741                         break;
5742                 case DIF_OP_SLL:
5743                         regs[rd] = regs[r1] << regs[r2];
5744                         break;
5745                 case DIF_OP_SRL:
5746                         regs[rd] = regs[r1] >> regs[r2];
5747                         break;
5748                 case DIF_OP_SUB:
5749                         regs[rd] = regs[r1] - regs[r2];
5750                         break;
5751                 case DIF_OP_ADD:
5752                         regs[rd] = regs[r1] + regs[r2];
5753                         break;
5754                 case DIF_OP_MUL:
5755                         regs[rd] = regs[r1] * regs[r2];
5756                         break;
5757                 case DIF_OP_SDIV:
5758                         if (regs[r2] == 0) {
5759                                 regs[rd] = 0;
5760                                 *flags |= CPU_DTRACE_DIVZERO;
5761                         } else {
5762                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5763                                 regs[rd] = (int64_t)regs[r1] /
5764                                     (int64_t)regs[r2];
5765                                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5766                         }
5767                         break;
5768 
5769                 case DIF_OP_UDIV:
5770                         if (regs[r2] == 0) {
5771                                 regs[rd] = 0;
5772                                 *flags |= CPU_DTRACE_DIVZERO;
5773                         } else {
5774                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5775                                 regs[rd] = regs[r1] / regs[r2];
5776                                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5777                         }
5778                         break;
5779 
5780                 case DIF_OP_SREM:
5781                         if (regs[r2] == 0) {
5782                                 regs[rd] = 0;
5783                                 *flags |= CPU_DTRACE_DIVZERO;
5784                         } else {
5785                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5786                                 regs[rd] = (int64_t)regs[r1] %
5787                                     (int64_t)regs[r2];
5788                                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5789                         }
5790                         break;
5791 
5792                 case DIF_OP_UREM:
5793                         if (regs[r2] == 0) {
5794                                 regs[rd] = 0;
5795                                 *flags |= CPU_DTRACE_DIVZERO;
5796                         } else {
5797                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5798                                 regs[rd] = regs[r1] % regs[r2];
5799                                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5800                         }
5801                         break;
5802 
5803                 case DIF_OP_NOT:
5804                         regs[rd] = ~regs[r1];
5805                         break;
5806                 case DIF_OP_MOV:
5807                         regs[rd] = regs[r1];
5808                         break;
5809                 case DIF_OP_CMP:
5810                         cc_r = regs[r1] - regs[r2];
5811                         cc_n = cc_r < 0;
5812                         cc_z = cc_r == 0;
5813                         cc_v = 0;
5814                         cc_c = regs[r1] < regs[r2];
5815                         break;
5816                 case DIF_OP_TST:
5817                         cc_n = cc_v = cc_c = 0;
5818                         cc_z = regs[r1] == 0;
5819                         break;
5820                 case DIF_OP_BA:
5821                         pc = DIF_INSTR_LABEL(instr);
5822                         break;
5823                 case DIF_OP_BE:
5824                         if (cc_z)
5825                                 pc = DIF_INSTR_LABEL(instr);
5826                         break;
5827                 case DIF_OP_BNE:
5828                         if (cc_z == 0)
5829                                 pc = DIF_INSTR_LABEL(instr);
5830                         break;
5831                 case DIF_OP_BG:
5832                         if ((cc_z | (cc_n ^ cc_v)) == 0)
5833                                 pc = DIF_INSTR_LABEL(instr);
5834                         break;
5835                 case DIF_OP_BGU:
5836                         if ((cc_c | cc_z) == 0)
5837                                 pc = DIF_INSTR_LABEL(instr);
5838                         break;
5839                 case DIF_OP_BGE:
5840                         if ((cc_n ^ cc_v) == 0)
5841                                 pc = DIF_INSTR_LABEL(instr);
5842                         break;
5843                 case DIF_OP_BGEU:
5844                         if (cc_c == 0)
5845                                 pc = DIF_INSTR_LABEL(instr);
5846                         break;
5847                 case DIF_OP_BL:
5848                         if (cc_n ^ cc_v)
5849                                 pc = DIF_INSTR_LABEL(instr);
5850                         break;
5851                 case DIF_OP_BLU:
5852                         if (cc_c)
5853                                 pc = DIF_INSTR_LABEL(instr);
5854                         break;
5855                 case DIF_OP_BLE:
5856                         if (cc_z | (cc_n ^ cc_v))
5857                                 pc = DIF_INSTR_LABEL(instr);
5858                         break;
5859                 case DIF_OP_BLEU:
5860                         if (cc_c | cc_z)
5861                                 pc = DIF_INSTR_LABEL(instr);
5862                         break;
5863                 case DIF_OP_RLDSB:
5864                         if (!dtrace_canload(regs[r1], 1, mstate, vstate))
5865                                 break;
5866                         /*FALLTHROUGH*/
5867                 case DIF_OP_LDSB:
5868                         regs[rd] = (int8_t)dtrace_load8(regs[r1]);
5869                         break;
5870                 case DIF_OP_RLDSH:
5871                         if (!dtrace_canload(regs[r1], 2, mstate, vstate))
5872                                 break;
5873                         /*FALLTHROUGH*/
5874                 case DIF_OP_LDSH:
5875                         regs[rd] = (int16_t)dtrace_load16(regs[r1]);
5876                         break;
5877                 case DIF_OP_RLDSW:
5878                         if (!dtrace_canload(regs[r1], 4, mstate, vstate))
5879                                 break;
5880                         /*FALLTHROUGH*/
5881                 case DIF_OP_LDSW:
5882                         regs[rd] = (int32_t)dtrace_load32(regs[r1]);
5883                         break;
5884                 case DIF_OP_RLDUB:
5885                         if (!dtrace_canload(regs[r1], 1, mstate, vstate))
5886                                 break;
5887                         /*FALLTHROUGH*/
5888                 case DIF_OP_LDUB:
5889                         regs[rd] = dtrace_load8(regs[r1]);
5890                         break;
5891                 case DIF_OP_RLDUH:
5892                         if (!dtrace_canload(regs[r1], 2, mstate, vstate))
5893                                 break;
5894                         /*FALLTHROUGH*/
5895                 case DIF_OP_LDUH:
5896                         regs[rd] = dtrace_load16(regs[r1]);
5897                         break;
5898                 case DIF_OP_RLDUW:
5899                         if (!dtrace_canload(regs[r1], 4, mstate, vstate))
5900                                 break;
5901                         /*FALLTHROUGH*/
5902                 case DIF_OP_LDUW:
5903                         regs[rd] = dtrace_load32(regs[r1]);
5904                         break;
5905                 case DIF_OP_RLDX:
5906                         if (!dtrace_canload(regs[r1], 8, mstate, vstate))
5907                                 break;
5908                         /*FALLTHROUGH*/
5909                 case DIF_OP_LDX:
5910                         regs[rd] = dtrace_load64(regs[r1]);
5911                         break;
5912                 case DIF_OP_ULDSB:
5913                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5914                         regs[rd] = (int8_t)
5915                             dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5916                         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5917                         break;
5918                 case DIF_OP_ULDSH:
5919                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5920                         regs[rd] = (int16_t)
5921                             dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5922                         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5923                         break;
5924                 case DIF_OP_ULDSW:
5925                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5926                         regs[rd] = (int32_t)
5927                             dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5928                         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5929                         break;
5930                 case DIF_OP_ULDUB:
5931                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5932                         regs[rd] =
5933                             dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5934                         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5935                         break;
5936                 case DIF_OP_ULDUH:
5937                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5938                         regs[rd] =
5939                             dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5940                         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5941                         break;
5942                 case DIF_OP_ULDUW:
5943                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5944                         regs[rd] =
5945                             dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5946                         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5947                         break;
5948                 case DIF_OP_ULDX:
5949                         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5950                         regs[rd] =
5951                             dtrace_fuword64((void *)(uintptr_t)regs[r1]);
5952                         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5953                         break;
5954                 case DIF_OP_RET:
5955                         rval = regs[rd];
5956                         pc = textlen;
5957                         break;
5958                 case DIF_OP_NOP:
5959                         break;
5960                 case DIF_OP_SETX:
5961                         regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
5962                         break;
5963                 case DIF_OP_SETS:
5964                         regs[rd] = (uint64_t)(uintptr_t)
5965                             (strtab + DIF_INSTR_STRING(instr));
5966                         break;
5967                 case DIF_OP_SCMP: {
5968                         size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
5969                         uintptr_t s1 = regs[r1];
5970                         uintptr_t s2 = regs[r2];
5971                         size_t lim1, lim2;
5972 
5973                         if (s1 != NULL &&
5974                             !dtrace_strcanload(s1, sz, &lim1, mstate, vstate))
5975                                 break;
5976                         if (s2 != NULL &&
5977                             !dtrace_strcanload(s2, sz, &lim2, mstate, vstate))
5978                                 break;
5979 
5980                         cc_r = dtrace_strncmp((char *)s1, (char *)s2,
5981                             MIN(lim1, lim2));
5982 
5983                         cc_n = cc_r < 0;
5984                         cc_z = cc_r == 0;
5985                         cc_v = cc_c = 0;
5986                         break;
5987                 }
5988                 case DIF_OP_LDGA:
5989                         regs[rd] = dtrace_dif_variable(mstate, state,
5990                             r1, regs[r2]);
5991                         break;
5992                 case DIF_OP_LDGS:
5993                         id = DIF_INSTR_VAR(instr);
5994 
5995                         if (id >= DIF_VAR_OTHER_UBASE) {
5996                                 uintptr_t a;
5997 
5998                                 id -= DIF_VAR_OTHER_UBASE;
5999                                 svar = vstate->dtvs_globals[id];
6000                                 ASSERT(svar != NULL);
6001                                 v = &svar->dtsv_var;
6002 
6003                                 if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
6004                                         regs[rd] = svar->dtsv_data;
6005                                         break;
6006                                 }
6007 
6008                                 a = (uintptr_t)svar->dtsv_data;
6009 
6010                                 if (*(uint8_t *)a == UINT8_MAX) {
6011                                         /*
6012                                          * If the 0th byte is set to UINT8_MAX
6013                                          * then this is to be treated as a
6014                                          * reference to a NULL variable.
6015                                          */
6016                                         regs[rd] = NULL;
6017                                 } else {
6018                                         regs[rd] = a + sizeof (uint64_t);
6019                                 }
6020 
6021                                 break;
6022                         }
6023 
6024                         regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
6025                         break;
6026 
6027                 case DIF_OP_STGS:
6028                         id = DIF_INSTR_VAR(instr);
6029 
6030                         ASSERT(id >= DIF_VAR_OTHER_UBASE);
6031                         id -= DIF_VAR_OTHER_UBASE;
6032 
6033                         VERIFY(id < vstate->dtvs_nglobals);
6034                         svar = vstate->dtvs_globals[id];
6035                         ASSERT(svar != NULL);
6036                         v = &svar->dtsv_var;
6037 
6038                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6039                                 uintptr_t a = (uintptr_t)svar->dtsv_data;
6040                                 size_t lim;
6041 
6042                                 ASSERT(a != NULL);
6043                                 ASSERT(svar->dtsv_size != 0);
6044 
6045                                 if (regs[rd] == NULL) {
6046                                         *(uint8_t *)a = UINT8_MAX;
6047                                         break;
6048                                 } else {
6049                                         *(uint8_t *)a = 0;
6050                                         a += sizeof (uint64_t);
6051                                 }
6052                                 if (!dtrace_vcanload(
6053                                     (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6054                                     &lim, mstate, vstate))
6055                                         break;
6056 
6057                                 dtrace_vcopy((void *)(uintptr_t)regs[rd],
6058                                     (void *)a, &v->dtdv_type, lim);
6059                                 break;
6060                         }
6061 
6062                         svar->dtsv_data = regs[rd];
6063                         break;
6064 
6065                 case DIF_OP_LDTA:
6066                         /*
6067                          * There are no DTrace built-in thread-local arrays at
6068                          * present.  This opcode is saved for future work.
6069                          */
6070                         *flags |= CPU_DTRACE_ILLOP;
6071                         regs[rd] = 0;
6072                         break;
6073 
6074                 case DIF_OP_LDLS:
6075                         id = DIF_INSTR_VAR(instr);
6076 
6077                         if (id < DIF_VAR_OTHER_UBASE) {
6078                                 /*
6079                                  * For now, this has no meaning.
6080                                  */
6081                                 regs[rd] = 0;
6082                                 break;
6083                         }
6084 
6085                         id -= DIF_VAR_OTHER_UBASE;
6086 
6087                         ASSERT(id < vstate->dtvs_nlocals);
6088                         ASSERT(vstate->dtvs_locals != NULL);
6089 
6090                         svar = vstate->dtvs_locals[id];
6091                         ASSERT(svar != NULL);
6092                         v = &svar->dtsv_var;
6093 
6094                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6095                                 uintptr_t a = (uintptr_t)svar->dtsv_data;
6096                                 size_t sz = v->dtdv_type.dtdt_size;
6097 
6098                                 sz += sizeof (uint64_t);
6099                                 ASSERT(svar->dtsv_size == NCPU * sz);
6100                                 a += CPU->cpu_id * sz;
6101 
6102                                 if (*(uint8_t *)a == UINT8_MAX) {
6103                                         /*
6104                                          * If the 0th byte is set to UINT8_MAX
6105                                          * then this is to be treated as a
6106                                          * reference to a NULL variable.
6107                                          */
6108                                         regs[rd] = NULL;
6109                                 } else {
6110                                         regs[rd] = a + sizeof (uint64_t);
6111                                 }
6112 
6113                                 break;
6114                         }
6115 
6116                         ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
6117                         tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
6118                         regs[rd] = tmp[CPU->cpu_id];
6119                         break;
6120 
6121                 case DIF_OP_STLS:
6122                         id = DIF_INSTR_VAR(instr);
6123 
6124                         ASSERT(id >= DIF_VAR_OTHER_UBASE);
6125                         id -= DIF_VAR_OTHER_UBASE;
6126                         VERIFY(id < vstate->dtvs_nlocals);
6127 
6128                         ASSERT(vstate->dtvs_locals != NULL);
6129                         svar = vstate->dtvs_locals[id];
6130                         ASSERT(svar != NULL);
6131                         v = &svar->dtsv_var;
6132 
6133                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6134                                 uintptr_t a = (uintptr_t)svar->dtsv_data;
6135                                 size_t sz = v->dtdv_type.dtdt_size;
6136                                 size_t lim;
6137 
6138                                 sz += sizeof (uint64_t);
6139                                 ASSERT(svar->dtsv_size == NCPU * sz);
6140                                 a += CPU->cpu_id * sz;
6141 
6142                                 if (regs[rd] == NULL) {
6143                                         *(uint8_t *)a = UINT8_MAX;
6144                                         break;
6145                                 } else {
6146                                         *(uint8_t *)a = 0;
6147                                         a += sizeof (uint64_t);
6148                                 }
6149 
6150                                 if (!dtrace_vcanload(
6151                                     (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6152                                     &lim, mstate, vstate))
6153                                         break;
6154 
6155                                 dtrace_vcopy((void *)(uintptr_t)regs[rd],
6156                                     (void *)a, &v->dtdv_type, lim);
6157                                 break;
6158                         }
6159 
6160                         ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
6161                         tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
6162                         tmp[CPU->cpu_id] = regs[rd];
6163                         break;
6164 
6165                 case DIF_OP_LDTS: {
6166                         dtrace_dynvar_t *dvar;
6167                         dtrace_key_t *key;
6168 
6169                         id = DIF_INSTR_VAR(instr);
6170                         ASSERT(id >= DIF_VAR_OTHER_UBASE);
6171                         id -= DIF_VAR_OTHER_UBASE;
6172                         v = &vstate->dtvs_tlocals[id];
6173 
6174                         key = &tupregs[DIF_DTR_NREGS];
6175                         key[0].dttk_value = (uint64_t)id;
6176                         key[0].dttk_size = 0;
6177                         DTRACE_TLS_THRKEY(key[1].dttk_value);
6178                         key[1].dttk_size = 0;
6179 
6180                         dvar = dtrace_dynvar(dstate, 2, key,
6181                             sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,
6182                             mstate, vstate);
6183 
6184                         if (dvar == NULL) {
6185                                 regs[rd] = 0;
6186                                 break;
6187                         }
6188 
6189                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6190                                 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
6191                         } else {
6192                                 regs[rd] = *((uint64_t *)dvar->dtdv_data);
6193                         }
6194 
6195                         break;
6196                 }
6197 
6198                 case DIF_OP_STTS: {
6199                         dtrace_dynvar_t *dvar;
6200                         dtrace_key_t *key;
6201 
6202                         id = DIF_INSTR_VAR(instr);
6203                         ASSERT(id >= DIF_VAR_OTHER_UBASE);
6204                         id -= DIF_VAR_OTHER_UBASE;
6205                         VERIFY(id < vstate->dtvs_ntlocals);
6206 
6207                         key = &tupregs[DIF_DTR_NREGS];
6208                         key[0].dttk_value = (uint64_t)id;
6209                         key[0].dttk_size = 0;
6210                         DTRACE_TLS_THRKEY(key[1].dttk_value);
6211                         key[1].dttk_size = 0;
6212                         v = &vstate->dtvs_tlocals[id];
6213 
6214                         dvar = dtrace_dynvar(dstate, 2, key,
6215                             v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6216                             v->dtdv_type.dtdt_size : sizeof (uint64_t),
6217                             regs[rd] ? DTRACE_DYNVAR_ALLOC :
6218                             DTRACE_DYNVAR_DEALLOC, mstate, vstate);
6219 
6220                         /*
6221                          * Given that we're storing to thread-local data,
6222                          * we need to flush our predicate cache.
6223                          */
6224                         curthread->t_predcache = NULL;
6225 
6226                         if (dvar == NULL)
6227                                 break;
6228 
6229                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6230                                 size_t lim;
6231 
6232                                 if (!dtrace_vcanload(
6233                                     (void *)(uintptr_t)regs[rd],
6234                                     &v->dtdv_type, &lim, mstate, vstate))
6235                                         break;
6236 
6237                                 dtrace_vcopy((void *)(uintptr_t)regs[rd],
6238                                     dvar->dtdv_data, &v->dtdv_type, lim);
6239                         } else {
6240                                 *((uint64_t *)dvar->dtdv_data) = regs[rd];
6241                         }
6242 
6243                         break;
6244                 }
6245 
6246                 case DIF_OP_SRA:
6247                         regs[rd] = (int64_t)regs[r1] >> regs[r2];
6248                         break;
6249 
6250                 case DIF_OP_CALL:
6251                         dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
6252                             regs, tupregs, ttop, mstate, state);
6253                         break;
6254 
6255                 case DIF_OP_PUSHTR:
6256                         if (ttop == DIF_DTR_NREGS) {
6257                                 *flags |= CPU_DTRACE_TUPOFLOW;
6258                                 break;
6259                         }
6260 
6261                         if (r1 == DIF_TYPE_STRING) {
6262                                 /*
6263                                  * If this is a string type and the size is 0,
6264                                  * we'll use the system-wide default string
6265                                  * size.  Note that we are _not_ looking at
6266                                  * the value of the DTRACEOPT_STRSIZE option;
6267                                  * had this been set, we would expect to have
6268                                  * a non-zero size value in the "pushtr".
6269                                  */
6270                                 tupregs[ttop].dttk_size =
6271                                     dtrace_strlen((char *)(uintptr_t)regs[rd],
6272                                     regs[r2] ? regs[r2] :
6273                                     dtrace_strsize_default) + 1;
6274                         } else {
6275                                 if (regs[r2] > LONG_MAX) {
6276                                         *flags |= CPU_DTRACE_ILLOP;
6277                                         break;
6278                                 }
6279 
6280                                 tupregs[ttop].dttk_size = regs[r2];
6281                         }
6282 
6283                         tupregs[ttop++].dttk_value = regs[rd];
6284                         break;
6285 
6286                 case DIF_OP_PUSHTV:
6287                         if (ttop == DIF_DTR_NREGS) {
6288                                 *flags |= CPU_DTRACE_TUPOFLOW;
6289                                 break;
6290                         }
6291 
6292                         tupregs[ttop].dttk_value = regs[rd];
6293                         tupregs[ttop++].dttk_size = 0;
6294                         break;
6295 
6296                 case DIF_OP_POPTS:
6297                         if (ttop != 0)
6298                                 ttop--;
6299                         break;
6300 
6301                 case DIF_OP_FLUSHTS:
6302                         ttop = 0;
6303                         break;
6304 
6305                 case DIF_OP_LDGAA:
6306                 case DIF_OP_LDTAA: {
6307                         dtrace_dynvar_t *dvar;
6308                         dtrace_key_t *key = tupregs;
6309                         uint_t nkeys = ttop;
6310 
6311                         id = DIF_INSTR_VAR(instr);
6312                         ASSERT(id >= DIF_VAR_OTHER_UBASE);
6313                         id -= DIF_VAR_OTHER_UBASE;
6314 
6315                         key[nkeys].dttk_value = (uint64_t)id;
6316                         key[nkeys++].dttk_size = 0;
6317 
6318                         if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
6319                                 DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
6320                                 key[nkeys++].dttk_size = 0;
6321                                 VERIFY(id < vstate->dtvs_ntlocals);
6322                                 v = &vstate->dtvs_tlocals[id];
6323                         } else {
6324                                 VERIFY(id < vstate->dtvs_nglobals);
6325                                 v = &vstate->dtvs_globals[id]->dtsv_var;
6326                         }
6327 
6328                         dvar = dtrace_dynvar(dstate, nkeys, key,
6329                             v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6330                             v->dtdv_type.dtdt_size : sizeof (uint64_t),
6331                             DTRACE_DYNVAR_NOALLOC, mstate, vstate);
6332 
6333                         if (dvar == NULL) {
6334                                 regs[rd] = 0;
6335                                 break;
6336                         }
6337 
6338                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6339                                 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
6340                         } else {
6341                                 regs[rd] = *((uint64_t *)dvar->dtdv_data);
6342                         }
6343 
6344                         break;
6345                 }
6346 
6347                 case DIF_OP_STGAA:
6348                 case DIF_OP_STTAA: {
6349                         dtrace_dynvar_t *dvar;
6350                         dtrace_key_t *key = tupregs;
6351                         uint_t nkeys = ttop;
6352 
6353                         id = DIF_INSTR_VAR(instr);
6354                         ASSERT(id >= DIF_VAR_OTHER_UBASE);
6355                         id -= DIF_VAR_OTHER_UBASE;
6356 
6357                         key[nkeys].dttk_value = (uint64_t)id;
6358                         key[nkeys++].dttk_size = 0;
6359 
6360                         if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
6361                                 DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
6362                                 key[nkeys++].dttk_size = 0;
6363                                 VERIFY(id < vstate->dtvs_ntlocals);
6364                                 v = &vstate->dtvs_tlocals[id];
6365                         } else {
6366                                 VERIFY(id < vstate->dtvs_nglobals);
6367                                 v = &vstate->dtvs_globals[id]->dtsv_var;
6368                         }
6369 
6370                         dvar = dtrace_dynvar(dstate, nkeys, key,
6371                             v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6372                             v->dtdv_type.dtdt_size : sizeof (uint64_t),
6373                             regs[rd] ? DTRACE_DYNVAR_ALLOC :
6374                             DTRACE_DYNVAR_DEALLOC, mstate, vstate);
6375 
6376                         if (dvar == NULL)
6377                                 break;
6378 
6379                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6380                                 size_t lim;
6381 
6382                                 if (!dtrace_vcanload(
6383                                     (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6384                                     &lim, mstate, vstate))
6385                                         break;
6386 
6387                                 dtrace_vcopy((void *)(uintptr_t)regs[rd],
6388                                     dvar->dtdv_data, &v->dtdv_type, lim);
6389                         } else {
6390                                 *((uint64_t *)dvar->dtdv_data) = regs[rd];
6391                         }
6392 
6393                         break;
6394                 }
6395 
6396                 case DIF_OP_ALLOCS: {
6397                         uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
6398                         size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
6399 
6400                         /*
6401                          * Rounding up the user allocation size could have
6402                          * overflowed large, bogus allocations (like -1ULL) to
6403                          * 0.
6404                          */
6405                         if (size < regs[r1] ||
6406                             !DTRACE_INSCRATCH(mstate, size)) {
6407                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
6408                                 regs[rd] = NULL;
6409                                 break;
6410                         }
6411 
6412                         dtrace_bzero((void *) mstate->dtms_scratch_ptr, size);
6413                         mstate->dtms_scratch_ptr += size;
6414                         regs[rd] = ptr;
6415                         break;
6416                 }
6417 
6418                 case DIF_OP_COPYS:
6419                         if (!dtrace_canstore(regs[rd], regs[r2],
6420                             mstate, vstate)) {
6421                                 *flags |= CPU_DTRACE_BADADDR;
6422                                 *illval = regs[rd];
6423                                 break;
6424                         }
6425 
6426                         if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
6427                                 break;
6428 
6429                         dtrace_bcopy((void *)(uintptr_t)regs[r1],
6430                             (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
6431                         break;
6432 
6433                 case DIF_OP_STB:
6434                         if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
6435                                 *flags |= CPU_DTRACE_BADADDR;
6436                                 *illval = regs[rd];
6437                                 break;
6438                         }
6439                         *((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
6440                         break;
6441 
6442                 case DIF_OP_STH:
6443                         if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
6444                                 *flags |= CPU_DTRACE_BADADDR;
6445                                 *illval = regs[rd];
6446                                 break;
6447                         }
6448                         if (regs[rd] & 1) {
6449                                 *flags |= CPU_DTRACE_BADALIGN;
6450                                 *illval = regs[rd];
6451                                 break;
6452                         }
6453                         *((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
6454                         break;
6455 
6456                 case DIF_OP_STW:
6457                         if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
6458                                 *flags |= CPU_DTRACE_BADADDR;
6459                                 *illval = regs[rd];
6460                                 break;
6461                         }
6462                         if (regs[rd] & 3) {
6463                                 *flags |= CPU_DTRACE_BADALIGN;
6464                                 *illval = regs[rd];
6465                                 break;
6466                         }
6467                         *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
6468                         break;
6469 
6470                 case DIF_OP_STX:
6471                         if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
6472                                 *flags |= CPU_DTRACE_BADADDR;
6473                                 *illval = regs[rd];
6474                                 break;
6475                         }
6476                         if (regs[rd] & 7) {
6477                                 *flags |= CPU_DTRACE_BADALIGN;
6478                                 *illval = regs[rd];
6479                                 break;
6480                         }
6481                         *((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
6482                         break;
6483                 }
6484         }
6485 
6486         if (!(*flags & CPU_DTRACE_FAULT))
6487                 return (rval);
6488 
6489         mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
6490         mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
6491 
6492         return (0);
6493 }
6494 
6495 static void
6496 dtrace_action_breakpoint(dtrace_ecb_t *ecb)
6497 {
6498         dtrace_probe_t *probe = ecb->dte_probe;
6499         dtrace_provider_t *prov = probe->dtpr_provider;
6500         char c[DTRACE_FULLNAMELEN + 80], *str;
6501         char *msg = "dtrace: breakpoint action at probe ";
6502         char *ecbmsg = " (ecb ";
6503         uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
6504         uintptr_t val = (uintptr_t)ecb;
6505         int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
6506 
6507         if (dtrace_destructive_disallow)
6508                 return;
6509 
6510         /*
6511          * It's impossible to be taking action on the NULL probe.
6512          */
6513         ASSERT(probe != NULL);
6514 
6515         /*
6516          * This is a poor man's (destitute man's?) sprintf():  we want to
6517          * print the provider name, module name, function name and name of
6518          * the probe, along with the hex address of the ECB with the breakpoint
6519          * action -- all of which we must place in the character buffer by
6520          * hand.
6521          */
6522         while (*msg != '\0')
6523                 c[i++] = *msg++;
6524 
6525         for (str = prov->dtpv_name; *str != '\0'; str++)
6526                 c[i++] = *str;
6527         c[i++] = ':';
6528 
6529         for (str = probe->dtpr_mod; *str != '\0'; str++)
6530                 c[i++] = *str;
6531         c[i++] = ':';
6532 
6533         for (str = probe->dtpr_func; *str != '\0'; str++)
6534                 c[i++] = *str;
6535         c[i++] = ':';
6536 
6537         for (str = probe->dtpr_name; *str != '\0'; str++)
6538                 c[i++] = *str;
6539 
6540         while (*ecbmsg != '\0')
6541                 c[i++] = *ecbmsg++;
6542 
6543         while (shift >= 0) {
6544                 mask = (uintptr_t)0xf << shift;
6545 
6546                 if (val >= ((uintptr_t)1 << shift))
6547                         c[i++] = "0123456789abcdef"[(val & mask) >> shift];
6548                 shift -= 4;
6549         }
6550 
6551         c[i++] = ')';
6552         c[i] = '\0';
6553 
6554         debug_enter(c);
6555 }
6556 
6557 static void
6558 dtrace_action_panic(dtrace_ecb_t *ecb)
6559 {
6560         dtrace_probe_t *probe = ecb->dte_probe;
6561 
6562         /*
6563          * It's impossible to be taking action on the NULL probe.
6564          */
6565         ASSERT(probe != NULL);
6566 
6567         if (dtrace_destructive_disallow)
6568                 return;
6569 
6570         if (dtrace_panicked != NULL)
6571                 return;
6572 
6573         if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
6574                 return;
6575 
6576         /*
6577          * We won the right to panic.  (We want to be sure that only one
6578          * thread calls panic() from dtrace_probe(), and that panic() is
6579          * called exactly once.)
6580          */
6581         dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
6582             probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
6583             probe->dtpr_func, probe->dtpr_name, (void *)ecb);
6584 }
6585 
6586 static void
6587 dtrace_action_raise(uint64_t sig)
6588 {
6589         if (dtrace_destructive_disallow)
6590                 return;
6591 
6592         if (sig >= NSIG) {
6593                 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
6594                 return;
6595         }
6596 
6597         /*
6598          * raise() has a queue depth of 1 -- we ignore all subsequent
6599          * invocations of the raise() action.
6600          */
6601         if (curthread->t_dtrace_sig == 0)
6602                 curthread->t_dtrace_sig = (uint8_t)sig;
6603 
6604         curthread->t_sig_check = 1;
6605         aston(curthread);
6606 }
6607 
6608 static void
6609 dtrace_action_stop(void)
6610 {
6611         if (dtrace_destructive_disallow)
6612                 return;
6613 
6614         if (!curthread->t_dtrace_stop) {
6615                 curthread->t_dtrace_stop = 1;
6616                 curthread->t_sig_check = 1;
6617                 aston(curthread);
6618         }
6619 }
6620 
6621 static void
6622 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
6623 {
6624         hrtime_t now;
6625         volatile uint16_t *flags;
6626         cpu_t *cpu = CPU;
6627 
6628         if (dtrace_destructive_disallow)
6629                 return;
6630 
6631         flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags;
6632 
6633         now = dtrace_gethrtime();
6634 
6635         if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
6636                 /*
6637                  * We need to advance the mark to the current time.
6638                  */
6639                 cpu->cpu_dtrace_chillmark = now;
6640                 cpu->cpu_dtrace_chilled = 0;
6641         }
6642 
6643         /*
6644          * Now check to see if the requested chill time would take us over
6645          * the maximum amount of time allowed in the chill interval.  (Or
6646          * worse, if the calculation itself induces overflow.)
6647          */
6648         if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
6649             cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
6650                 *flags |= CPU_DTRACE_ILLOP;
6651                 return;
6652         }
6653 
6654         while (dtrace_gethrtime() - now < val)
6655                 continue;
6656 
6657         /*
6658          * Normally, we assure that the value of the variable "timestamp" does
6659          * not change within an ECB.  The presence of chill() represents an
6660          * exception to this rule, however.
6661          */
6662         mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
6663         cpu->cpu_dtrace_chilled += val;
6664 }
6665 
6666 static void
6667 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
6668     uint64_t *buf, uint64_t arg)
6669 {
6670         int nframes = DTRACE_USTACK_NFRAMES(arg);
6671         int strsize = DTRACE_USTACK_STRSIZE(arg);
6672         uint64_t *pcs = &buf[1], *fps;
6673         char *str = (char *)&pcs[nframes];
6674         int size, offs = 0, i, j;
6675         size_t rem;
6676         uintptr_t old = mstate->dtms_scratch_ptr, saved;
6677         uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
6678         char *sym;
6679 
6680         /*
6681          * Should be taking a faster path if string space has not been
6682          * allocated.
6683          */
6684         ASSERT(strsize != 0);
6685 
6686         /*
6687          * We will first allocate some temporary space for the frame pointers.
6688          */
6689         fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
6690         size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
6691             (nframes * sizeof (uint64_t));
6692 
6693         if (!DTRACE_INSCRATCH(mstate, size)) {
6694                 /*
6695                  * Not enough room for our frame pointers -- need to indicate
6696                  * that we ran out of scratch space.
6697                  */
6698                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
6699                 return;
6700         }
6701 
6702         mstate->dtms_scratch_ptr += size;
6703         saved = mstate->dtms_scratch_ptr;
6704 
6705         /*
6706          * Now get a stack with both program counters and frame pointers.
6707          */
6708         DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6709         dtrace_getufpstack(buf, fps, nframes + 1);
6710         DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6711 
6712         /*
6713          * If that faulted, we're cooked.
6714          */
6715         if (*flags & CPU_DTRACE_FAULT)
6716                 goto out;
6717 
6718         /*
6719          * Now we want to walk up the stack, calling the USTACK helper.  For
6720          * each iteration, we restore the scratch pointer.
6721          */
6722         for (i = 0; i < nframes; i++) {
6723                 mstate->dtms_scratch_ptr = saved;
6724 
6725                 if (offs >= strsize)
6726                         break;
6727 
6728                 sym = (char *)(uintptr_t)dtrace_helper(
6729                     DTRACE_HELPER_ACTION_USTACK,
6730                     mstate, state, pcs[i], fps[i]);
6731 
6732                 /*
6733                  * If we faulted while running the helper, we're going to
6734                  * clear the fault and null out the corresponding string.
6735                  */
6736                 if (*flags & CPU_DTRACE_FAULT) {
6737                         *flags &= ~CPU_DTRACE_FAULT;
6738                         str[offs++] = '\0';
6739                         continue;
6740                 }
6741 
6742                 if (sym == NULL) {
6743                         str[offs++] = '\0';
6744                         continue;
6745                 }
6746 
6747                 if (!dtrace_strcanload((uintptr_t)sym, strsize, &rem, mstate,
6748                     &(state->dts_vstate))) {
6749                         str[offs++] = '\0';
6750                         continue;
6751                 }
6752 
6753                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6754 
6755                 /*
6756                  * Now copy in the string that the helper returned to us.
6757                  */
6758                 for (j = 0; offs + j < strsize && j < rem; j++) {
6759                         if ((str[offs + j] = sym[j]) == '\0')
6760                                 break;
6761                 }
6762 
6763                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6764 
6765                 offs += j + 1;
6766         }
6767 
6768         if (offs >= strsize) {
6769                 /*
6770                  * If we didn't have room for all of the strings, we don't
6771                  * abort processing -- this needn't be a fatal error -- but we
6772                  * still want to increment a counter (dts_stkstroverflows) to
6773                  * allow this condition to be warned about.  (If this is from
6774                  * a jstack() action, it is easily tuned via jstackstrsize.)
6775                  */
6776                 dtrace_error(&state->dts_stkstroverflows);
6777         }
6778 
6779         while (offs < strsize)
6780                 str[offs++] = '\0';
6781 
6782 out:
6783         mstate->dtms_scratch_ptr = old;
6784 }
6785 
6786 static void
6787 dtrace_store_by_ref(dtrace_difo_t *dp, caddr_t tomax, size_t size,
6788     size_t *valoffsp, uint64_t *valp, uint64_t end, int intuple, int dtkind)
6789 {
6790         volatile uint16_t *flags;
6791         uint64_t val = *valp;
6792         size_t valoffs = *valoffsp;
6793 
6794         flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
6795         ASSERT(dtkind == DIF_TF_BYREF || dtkind == DIF_TF_BYUREF);
6796 
6797         /*
6798          * If this is a string, we're going to only load until we find the zero
6799          * byte -- after which we'll store zero bytes.
6800          */
6801         if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
6802                 char c = '\0' + 1;
6803                 size_t s;
6804 
6805                 for (s = 0; s < size; s++) {
6806                         if (c != '\0' && dtkind == DIF_TF_BYREF) {
6807                                 c = dtrace_load8(val++);
6808                         } else if (c != '\0' && dtkind == DIF_TF_BYUREF) {
6809                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6810                                 c = dtrace_fuword8((void *)(uintptr_t)val++);
6811                                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6812                                 if (*flags & CPU_DTRACE_FAULT)
6813                                         break;
6814                         }
6815 
6816                         DTRACE_STORE(uint8_t, tomax, valoffs++, c);
6817 
6818                         if (c == '\0' && intuple)
6819                                 break;
6820                 }
6821         } else {
6822                 uint8_t c;
6823                 while (valoffs < end) {
6824                         if (dtkind == DIF_TF_BYREF) {
6825                                 c = dtrace_load8(val++);
6826                         } else if (dtkind == DIF_TF_BYUREF) {
6827                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6828                                 c = dtrace_fuword8((void *)(uintptr_t)val++);
6829                                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6830                                 if (*flags & CPU_DTRACE_FAULT)
6831                                         break;
6832                         }
6833 
6834                         DTRACE_STORE(uint8_t, tomax,
6835                             valoffs++, c);
6836                 }
6837         }
6838 
6839         *valp = val;
6840         *valoffsp = valoffs;
6841 }
6842 
6843 /*
6844  * If you're looking for the epicenter of DTrace, you just found it.  This
6845  * is the function called by the provider to fire a probe -- from which all
6846  * subsequent probe-context DTrace activity emanates.
6847  */
6848 void
6849 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
6850     uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
6851 {
6852         processorid_t cpuid;
6853         dtrace_icookie_t cookie;
6854         dtrace_probe_t *probe;
6855         dtrace_mstate_t mstate;
6856         dtrace_ecb_t *ecb;
6857         dtrace_action_t *act;
6858         intptr_t offs;
6859         size_t size;
6860         int vtime, onintr;
6861         volatile uint16_t *flags;
6862         hrtime_t now, end;
6863 
6864         /*
6865          * Kick out immediately if this CPU is still being born (in which case
6866          * curthread will be set to -1) or the current thread can't allow
6867          * probes in its current context.
6868          */
6869         if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE))
6870                 return;
6871 
6872         cookie = dtrace_interrupt_disable();
6873         probe = dtrace_probes[id - 1];
6874         cpuid = CPU->cpu_id;
6875         onintr = CPU_ON_INTR(CPU);
6876 
6877         CPU->cpu_dtrace_probes++;
6878 
6879         if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
6880             probe->dtpr_predcache == curthread->t_predcache) {
6881                 /*
6882                  * We have hit in the predicate cache; we know that
6883                  * this predicate would evaluate to be false.
6884                  */
6885                 dtrace_interrupt_enable(cookie);
6886                 return;
6887         }
6888 
6889         if (panic_quiesce) {
6890                 /*
6891                  * We don't trace anything if we're panicking.
6892                  */
6893                 dtrace_interrupt_enable(cookie);
6894                 return;
6895         }
6896 
6897         now = mstate.dtms_timestamp = dtrace_gethrtime();
6898         mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP;
6899         vtime = dtrace_vtime_references != 0;
6900 
6901         if (vtime && curthread->t_dtrace_start)
6902                 curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
6903 
6904         mstate.dtms_difo = NULL;
6905         mstate.dtms_probe = probe;
6906         mstate.dtms_strtok = NULL;
6907         mstate.dtms_arg[0] = arg0;
6908         mstate.dtms_arg[1] = arg1;
6909         mstate.dtms_arg[2] = arg2;
6910         mstate.dtms_arg[3] = arg3;
6911         mstate.dtms_arg[4] = arg4;
6912 
6913         flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
6914 
6915         for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
6916                 dtrace_predicate_t *pred = ecb->dte_predicate;
6917                 dtrace_state_t *state = ecb->dte_state;
6918                 dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
6919                 dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
6920                 dtrace_vstate_t *vstate = &state->dts_vstate;
6921                 dtrace_provider_t *prov = probe->dtpr_provider;
6922                 uint64_t tracememsize = 0;
6923                 int committed = 0;
6924                 caddr_t tomax;
6925 
6926                 /*
6927                  * A little subtlety with the following (seemingly innocuous)
6928                  * declaration of the automatic 'val':  by looking at the
6929                  * code, you might think that it could be declared in the
6930                  * action processing loop, below.  (That is, it's only used in
6931                  * the action processing loop.)  However, it must be declared
6932                  * out of that scope because in the case of DIF expression
6933                  * arguments to aggregating actions, one iteration of the
6934                  * action loop will use the last iteration's value.
6935                  */
6936 #ifdef lint
6937                 uint64_t val = 0;
6938 #else
6939                 uint64_t val;
6940 #endif
6941 
6942                 mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
6943                 mstate.dtms_access = DTRACE_ACCESS_ARGS | DTRACE_ACCESS_PROC;
6944                 mstate.dtms_getf = NULL;
6945 
6946                 *flags &= ~CPU_DTRACE_ERROR;
6947 
6948                 if (prov == dtrace_provider) {
6949                         /*
6950                          * If dtrace itself is the provider of this probe,
6951                          * we're only going to continue processing the ECB if
6952                          * arg0 (the dtrace_state_t) is equal to the ECB's
6953                          * creating state.  (This prevents disjoint consumers
6954                          * from seeing one another's metaprobes.)
6955                          */
6956                         if (arg0 != (uint64_t)(uintptr_t)state)
6957                                 continue;
6958                 }
6959 
6960                 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
6961                         /*
6962                          * We're not currently active.  If our provider isn't
6963                          * the dtrace pseudo provider, we're not interested.
6964                          */
6965                         if (prov != dtrace_provider)
6966                                 continue;
6967 
6968                         /*
6969                          * Now we must further check if we are in the BEGIN
6970                          * probe.  If we are, we will only continue processing
6971                          * if we're still in WARMUP -- if one BEGIN enabling
6972                          * has invoked the exit() action, we don't want to
6973                          * evaluate subsequent BEGIN enablings.
6974                          */
6975                         if (probe->dtpr_id == dtrace_probeid_begin &&
6976                             state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
6977                                 ASSERT(state->dts_activity ==
6978                                     DTRACE_ACTIVITY_DRAINING);
6979                                 continue;
6980                         }
6981                 }
6982 
6983                 if (ecb->dte_cond && !dtrace_priv_probe(state, &mstate, ecb))
6984                         continue;
6985 
6986                 if (now - state->dts_alive > dtrace_deadman_timeout) {
6987                         /*
6988                          * We seem to be dead.  Unless we (a) have kernel
6989                          * destructive permissions (b) have explicitly enabled
6990                          * destructive actions and (c) destructive actions have
6991                          * not been disabled, we're going to transition into
6992                          * the KILLED state, from which no further processing
6993                          * on this state will be performed.
6994                          */
6995                         if (!dtrace_priv_kernel_destructive(state) ||
6996                             !state->dts_cred.dcr_destructive ||
6997                             dtrace_destructive_disallow) {
6998                                 void *activity = &state->dts_activity;
6999                                 dtrace_activity_t current;
7000 
7001                                 do {
7002                                         current = state->dts_activity;
7003                                 } while (dtrace_cas32(activity, current,
7004                                     DTRACE_ACTIVITY_KILLED) != current);
7005 
7006                                 continue;
7007                         }
7008                 }
7009 
7010                 if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
7011                     ecb->dte_alignment, state, &mstate)) < 0)
7012                         continue;
7013 
7014                 tomax = buf->dtb_tomax;
7015                 ASSERT(tomax != NULL);
7016 
7017                 if (ecb->dte_size != 0) {
7018                         dtrace_rechdr_t dtrh;
7019                         if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
7020                                 mstate.dtms_timestamp = dtrace_gethrtime();
7021                                 mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP;
7022                         }
7023                         ASSERT3U(ecb->dte_size, >=, sizeof (dtrace_rechdr_t));
7024                         dtrh.dtrh_epid = ecb->dte_epid;
7025                         DTRACE_RECORD_STORE_TIMESTAMP(&dtrh,
7026                             mstate.dtms_timestamp);
7027                         *((dtrace_rechdr_t *)(tomax + offs)) = dtrh;
7028                 }
7029 
7030                 mstate.dtms_epid = ecb->dte_epid;
7031                 mstate.dtms_present |= DTRACE_MSTATE_EPID;
7032 
7033                 if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
7034                         mstate.dtms_access |= DTRACE_ACCESS_KERNEL;
7035 
7036                 if (pred != NULL) {
7037                         dtrace_difo_t *dp = pred->dtp_difo;
7038                         int rval;
7039 
7040                         rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
7041 
7042                         if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
7043                                 dtrace_cacheid_t cid = probe->dtpr_predcache;
7044 
7045                                 if (cid != DTRACE_CACHEIDNONE && !onintr) {
7046                                         /*
7047                                          * Update the predicate cache...
7048                                          */
7049                                         ASSERT(cid == pred->dtp_cacheid);
7050                                         curthread->t_predcache = cid;
7051                                 }
7052 
7053                                 continue;
7054                         }
7055                 }
7056 
7057                 for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
7058                     act != NULL; act = act->dta_next) {
7059                         size_t valoffs;
7060                         dtrace_difo_t *dp;
7061                         dtrace_recdesc_t *rec = &act->dta_rec;
7062 
7063                         size = rec->dtrd_size;
7064                         valoffs = offs + rec->dtrd_offset;
7065 
7066                         if (DTRACEACT_ISAGG(act->dta_kind)) {
7067                                 uint64_t v = 0xbad;
7068                                 dtrace_aggregation_t *agg;
7069 
7070                                 agg = (dtrace_aggregation_t *)act;
7071 
7072                                 if ((dp = act->dta_difo) != NULL)
7073                                         v = dtrace_dif_emulate(dp,
7074                                             &mstate, vstate, state);
7075 
7076                                 if (*flags & CPU_DTRACE_ERROR)
7077                                         continue;
7078 
7079                                 /*
7080                                  * Note that we always pass the expression
7081                                  * value from the previous iteration of the
7082                                  * action loop.  This value will only be used
7083                                  * if there is an expression argument to the
7084                                  * aggregating action, denoted by the
7085                                  * dtag_hasarg field.
7086                                  */
7087                                 dtrace_aggregate(agg, buf,
7088                                     offs, aggbuf, v, val);
7089                                 continue;
7090                         }
7091 
7092                         switch (act->dta_kind) {
7093                         case DTRACEACT_STOP:
7094                                 if (dtrace_priv_proc_destructive(state,
7095                                     &mstate))
7096                                         dtrace_action_stop();
7097                                 continue;
7098 
7099                         case DTRACEACT_BREAKPOINT:
7100                                 if (dtrace_priv_kernel_destructive(state))
7101                                         dtrace_action_breakpoint(ecb);
7102                                 continue;
7103 
7104                         case DTRACEACT_PANIC:
7105                                 if (dtrace_priv_kernel_destructive(state))
7106                                         dtrace_action_panic(ecb);
7107                                 continue;
7108 
7109                         case DTRACEACT_STACK:
7110                                 if (!dtrace_priv_kernel(state))
7111                                         continue;
7112 
7113                                 dtrace_getpcstack((pc_t *)(tomax + valoffs),
7114                                     size / sizeof (pc_t), probe->dtpr_aframes,
7115                                     DTRACE_ANCHORED(probe) ? NULL :
7116                                     (uint32_t *)arg0);
7117 
7118                                 continue;
7119 
7120                         case DTRACEACT_JSTACK:
7121                         case DTRACEACT_USTACK:
7122                                 if (!dtrace_priv_proc(state, &mstate))
7123                                         continue;
7124 
7125                                 /*
7126                                  * See comment in DIF_VAR_PID.
7127                                  */
7128                                 if (DTRACE_ANCHORED(mstate.dtms_probe) &&
7129                                     CPU_ON_INTR(CPU)) {
7130                                         int depth = DTRACE_USTACK_NFRAMES(
7131                                             rec->dtrd_arg) + 1;
7132 
7133                                         dtrace_bzero((void *)(tomax + valoffs),
7134                                             DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
7135                                             + depth * sizeof (uint64_t));
7136 
7137                                         continue;
7138                                 }
7139 
7140                                 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
7141                                     curproc->p_dtrace_helpers != NULL) {
7142                                         /*
7143                                          * This is the slow path -- we have
7144                                          * allocated string space, and we're
7145                                          * getting the stack of a process that
7146                                          * has helpers.  Call into a separate
7147                                          * routine to perform this processing.
7148                                          */
7149                                         dtrace_action_ustack(&mstate, state,
7150                                             (uint64_t *)(tomax + valoffs),
7151                                             rec->dtrd_arg);
7152                                         continue;
7153                                 }
7154 
7155                                 /*
7156                                  * Clear the string space, since there's no
7157                                  * helper to do it for us.
7158                                  */
7159                                 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0) {
7160                                         int depth = DTRACE_USTACK_NFRAMES(
7161                                             rec->dtrd_arg);
7162                                         size_t strsize = DTRACE_USTACK_STRSIZE(
7163                                             rec->dtrd_arg);
7164                                         uint64_t *buf = (uint64_t *)(tomax +
7165                                             valoffs);
7166                                         void *strspace = &buf[depth + 1];
7167 
7168                                         dtrace_bzero(strspace,
7169                                             MIN(depth, strsize));
7170                                 }
7171 
7172                                 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7173                                 dtrace_getupcstack((uint64_t *)
7174                                     (tomax + valoffs),
7175                                     DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
7176                                 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7177                                 continue;
7178 
7179                         default:
7180                                 break;
7181                         }
7182 
7183                         dp = act->dta_difo;
7184                         ASSERT(dp != NULL);
7185 
7186                         val = dtrace_dif_emulate(dp, &mstate, vstate, state);
7187 
7188                         if (*flags & CPU_DTRACE_ERROR)
7189                                 continue;
7190 
7191                         switch (act->dta_kind) {
7192                         case DTRACEACT_SPECULATE: {
7193                                 dtrace_rechdr_t *dtrh;
7194 
7195                                 ASSERT(buf == &state->dts_buffer[cpuid]);
7196                                 buf = dtrace_speculation_buffer(state,
7197                                     cpuid, val);
7198 
7199                                 if (buf == NULL) {
7200                                         *flags |= CPU_DTRACE_DROP;
7201                                         continue;
7202                                 }
7203 
7204                                 offs = dtrace_buffer_reserve(buf,
7205                                     ecb->dte_needed, ecb->dte_alignment,
7206                                     state, NULL);
7207 
7208                                 if (offs < 0) {
7209                                         *flags |= CPU_DTRACE_DROP;
7210                                         continue;
7211                                 }
7212 
7213                                 tomax = buf->dtb_tomax;
7214                                 ASSERT(tomax != NULL);
7215 
7216                                 if (ecb->dte_size == 0)
7217                                         continue;
7218 
7219                                 ASSERT3U(ecb->dte_size, >=,
7220                                     sizeof (dtrace_rechdr_t));
7221                                 dtrh = ((void *)(tomax + offs));
7222                                 dtrh->dtrh_epid = ecb->dte_epid;
7223                                 /*
7224                                  * When the speculation is committed, all of
7225                                  * the records in the speculative buffer will
7226                                  * have their timestamps set to the commit
7227                                  * time.  Until then, it is set to a sentinel
7228                                  * value, for debugability.
7229                                  */
7230                                 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX);
7231                                 continue;
7232                         }
7233 
7234                         case DTRACEACT_CHILL:
7235                                 if (dtrace_priv_kernel_destructive(state))
7236                                         dtrace_action_chill(&mstate, val);
7237                                 continue;
7238 
7239                         case DTRACEACT_RAISE:
7240                                 if (dtrace_priv_proc_destructive(state,
7241                                     &mstate))
7242                                         dtrace_action_raise(val);
7243                                 continue;
7244 
7245                         case DTRACEACT_COMMIT:
7246                                 ASSERT(!committed);
7247 
7248                                 /*
7249                                  * We need to commit our buffer state.
7250                                  */
7251                                 if (ecb->dte_size)
7252                                         buf->dtb_offset = offs + ecb->dte_size;
7253                                 buf = &state->dts_buffer[cpuid];
7254                                 dtrace_speculation_commit(state, cpuid, val);
7255                                 committed = 1;
7256                                 continue;
7257 
7258                         case DTRACEACT_DISCARD:
7259                                 dtrace_speculation_discard(state, cpuid, val);
7260                                 continue;
7261 
7262                         case DTRACEACT_DIFEXPR:
7263                         case DTRACEACT_LIBACT:
7264                         case DTRACEACT_PRINTF:
7265                         case DTRACEACT_PRINTA:
7266                         case DTRACEACT_SYSTEM:
7267                         case DTRACEACT_FREOPEN:
7268                         case DTRACEACT_TRACEMEM:
7269                                 break;
7270 
7271                         case DTRACEACT_TRACEMEM_DYNSIZE:
7272                                 tracememsize = val;
7273                                 break;
7274 
7275                         case DTRACEACT_SYM:
7276                         case DTRACEACT_MOD:
7277                                 if (!dtrace_priv_kernel(state))
7278                                         continue;
7279                                 break;
7280 
7281                         case DTRACEACT_USYM:
7282                         case DTRACEACT_UMOD:
7283                         case DTRACEACT_UADDR: {
7284                                 struct pid *pid = curthread->t_procp->p_pidp;
7285 
7286                                 if (!dtrace_priv_proc(state, &mstate))
7287                                         continue;
7288 
7289                                 DTRACE_STORE(uint64_t, tomax,
7290                                     valoffs, (uint64_t)pid->pid_id);
7291                                 DTRACE_STORE(uint64_t, tomax,
7292                                     valoffs + sizeof (uint64_t), val);
7293 
7294                                 continue;
7295                         }
7296 
7297                         case DTRACEACT_EXIT: {
7298                                 /*
7299                                  * For the exit action, we are going to attempt
7300                                  * to atomically set our activity to be
7301                                  * draining.  If this fails (either because
7302                                  * another CPU has beat us to the exit action,
7303                                  * or because our current activity is something
7304                                  * other than ACTIVE or WARMUP), we will
7305                                  * continue.  This assures that the exit action
7306                                  * can be successfully recorded at most once
7307                                  * when we're in the ACTIVE state.  If we're
7308                                  * encountering the exit() action while in
7309                                  * COOLDOWN, however, we want to honor the new
7310                                  * status code.  (We know that we're the only
7311                                  * thread in COOLDOWN, so there is no race.)
7312                                  */
7313                                 void *activity = &state->dts_activity;
7314                                 dtrace_activity_t current = state->dts_activity;
7315 
7316                                 if (current == DTRACE_ACTIVITY_COOLDOWN)
7317                                         break;
7318 
7319                                 if (current != DTRACE_ACTIVITY_WARMUP)
7320                                         current = DTRACE_ACTIVITY_ACTIVE;
7321 
7322                                 if (dtrace_cas32(activity, current,
7323                                     DTRACE_ACTIVITY_DRAINING) != current) {
7324                                         *flags |= CPU_DTRACE_DROP;
7325                                         continue;
7326                                 }
7327 
7328                                 break;
7329                         }
7330 
7331                         default:
7332                                 ASSERT(0);
7333                         }
7334 
7335                         if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ||
7336                             dp->dtdo_rtype.dtdt_flags & DIF_TF_BYUREF) {
7337                                 uintptr_t end = valoffs + size;
7338 
7339                                 if (tracememsize != 0 &&
7340                                     valoffs + tracememsize < end) {
7341                                         end = valoffs + tracememsize;
7342                                         tracememsize = 0;
7343                                 }
7344 
7345                                 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF &&
7346                                     !dtrace_vcanload((void *)(uintptr_t)val,
7347                                     &dp->dtdo_rtype, NULL, &mstate, vstate))
7348                                         continue;
7349 
7350                                 dtrace_store_by_ref(dp, tomax, size, &valoffs,
7351                                     &val, end, act->dta_intuple,
7352                                     dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ?
7353                                     DIF_TF_BYREF: DIF_TF_BYUREF);
7354                                 continue;
7355                         }
7356 
7357                         switch (size) {
7358                         case 0:
7359                                 break;
7360 
7361                         case sizeof (uint8_t):
7362                                 DTRACE_STORE(uint8_t, tomax, valoffs, val);
7363                                 break;
7364                         case sizeof (uint16_t):
7365                                 DTRACE_STORE(uint16_t, tomax, valoffs, val);
7366                                 break;
7367                         case sizeof (uint32_t):
7368                                 DTRACE_STORE(uint32_t, tomax, valoffs, val);
7369                                 break;
7370                         case sizeof (uint64_t):
7371                                 DTRACE_STORE(uint64_t, tomax, valoffs, val);
7372                                 break;
7373                         default:
7374                                 /*
7375                                  * Any other size should have been returned by
7376                                  * reference, not by value.
7377                                  */
7378                                 ASSERT(0);
7379                                 break;
7380                         }
7381                 }
7382 
7383                 if (*flags & CPU_DTRACE_DROP)
7384                         continue;
7385 
7386                 if (*flags & CPU_DTRACE_FAULT) {
7387                         int ndx;
7388                         dtrace_action_t *err;
7389 
7390                         buf->dtb_errors++;
7391 
7392                         if (probe->dtpr_id == dtrace_probeid_error) {
7393                                 /*
7394                                  * There's nothing we can do -- we had an
7395                                  * error on the error probe.  We bump an
7396                                  * error counter to at least indicate that
7397                                  * this condition happened.
7398                                  */
7399                                 dtrace_error(&state->dts_dblerrors);
7400                                 continue;
7401                         }
7402 
7403                         if (vtime) {
7404                                 /*
7405                                  * Before recursing on dtrace_probe(), we
7406                                  * need to explicitly clear out our start
7407                                  * time to prevent it from being accumulated
7408                                  * into t_dtrace_vtime.
7409                                  */
7410                                 curthread->t_dtrace_start = 0;
7411                         }
7412 
7413                         /*
7414                          * Iterate over the actions to figure out which action
7415                          * we were processing when we experienced the error.
7416                          * Note that act points _past_ the faulting action; if
7417                          * act is ecb->dte_action, the fault was in the
7418                          * predicate, if it's ecb->dte_action->dta_next it's
7419                          * in action #1, and so on.
7420                          */
7421                         for (err = ecb->dte_action, ndx = 0;
7422                             err != act; err = err->dta_next, ndx++)
7423                                 continue;
7424 
7425                         dtrace_probe_error(state, ecb->dte_epid, ndx,
7426                             (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
7427                             mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
7428                             cpu_core[cpuid].cpuc_dtrace_illval);
7429 
7430                         continue;
7431                 }
7432 
7433                 if (!committed)
7434                         buf->dtb_offset = offs + ecb->dte_size;
7435         }
7436 
7437         end = dtrace_gethrtime();
7438         if (vtime)
7439                 curthread->t_dtrace_start = end;
7440 
7441         CPU->cpu_dtrace_nsec += end - now;
7442 
7443         dtrace_interrupt_enable(cookie);
7444 }
7445 
7446 /*
7447  * DTrace Probe Hashing Functions
7448  *
7449  * The functions in this section (and indeed, the functions in remaining
7450  * sections) are not _called_ from probe context.  (Any exceptions to this are
7451  * marked with a "Note:".)  Rather, they are called from elsewhere in the
7452  * DTrace framework to look-up probes in, add probes to and remove probes from
7453  * the DTrace probe hashes.  (Each probe is hashed by each element of the
7454  * probe tuple -- allowing for fast lookups, regardless of what was
7455  * specified.)
7456  */
7457 static uint_t
7458 dtrace_hash_str(char *p)
7459 {
7460         unsigned int g;
7461         uint_t hval = 0;
7462 
7463         while (*p) {
7464                 hval = (hval << 4) + *p++;
7465                 if ((g = (hval & 0xf0000000)) != 0)
7466                         hval ^= g >> 24;
7467                 hval &= ~g;
7468         }
7469         return (hval);
7470 }
7471 
7472 static dtrace_hash_t *
7473 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
7474 {
7475         dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
7476 
7477         hash->dth_stroffs = stroffs;
7478         hash->dth_nextoffs = nextoffs;
7479         hash->dth_prevoffs = prevoffs;
7480 
7481         hash->dth_size = 1;
7482         hash->dth_mask = hash->dth_size - 1;
7483 
7484         hash->dth_tab = kmem_zalloc(hash->dth_size *
7485             sizeof (dtrace_hashbucket_t *), KM_SLEEP);
7486 
7487         return (hash);
7488 }
7489 
7490 static void
7491 dtrace_hash_destroy(dtrace_hash_t *hash)
7492 {
7493 #ifdef DEBUG
7494         int i;
7495 
7496         for (i = 0; i < hash->dth_size; i++)
7497                 ASSERT(hash->dth_tab[i] == NULL);
7498 #endif
7499 
7500         kmem_free(hash->dth_tab,
7501             hash->dth_size * sizeof (dtrace_hashbucket_t *));
7502         kmem_free(hash, sizeof (dtrace_hash_t));
7503 }
7504 
7505 static void
7506 dtrace_hash_resize(dtrace_hash_t *hash)
7507 {
7508         int size = hash->dth_size, i, ndx;
7509         int new_size = hash->dth_size << 1;
7510         int new_mask = new_size - 1;
7511         dtrace_hashbucket_t **new_tab, *bucket, *next;
7512 
7513         ASSERT((new_size & new_mask) == 0);
7514 
7515         new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
7516 
7517         for (i = 0; i < size; i++) {
7518                 for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
7519                         dtrace_probe_t *probe = bucket->dthb_chain;
7520 
7521                         ASSERT(probe != NULL);
7522                         ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
7523 
7524                         next = bucket->dthb_next;
7525                         bucket->dthb_next = new_tab[ndx];
7526                         new_tab[ndx] = bucket;
7527                 }
7528         }
7529 
7530         kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
7531         hash->dth_tab = new_tab;
7532         hash->dth_size = new_size;
7533         hash->dth_mask = new_mask;
7534 }
7535 
7536 static void
7537 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
7538 {
7539         int hashval = DTRACE_HASHSTR(hash, new);
7540         int ndx = hashval & hash->dth_mask;
7541         dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
7542         dtrace_probe_t **nextp, **prevp;
7543 
7544         for (; bucket != NULL; bucket = bucket->dthb_next) {
7545                 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
7546                         goto add;
7547         }
7548 
7549         if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
7550                 dtrace_hash_resize(hash);
7551                 dtrace_hash_add(hash, new);
7552                 return;
7553         }
7554 
7555         bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
7556         bucket->dthb_next = hash->dth_tab[ndx];
7557         hash->dth_tab[ndx] = bucket;
7558         hash->dth_nbuckets++;
7559 
7560 add:
7561         nextp = DTRACE_HASHNEXT(hash, new);
7562         ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
7563         *nextp = bucket->dthb_chain;
7564 
7565         if (bucket->dthb_chain != NULL) {
7566                 prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
7567                 ASSERT(*prevp == NULL);
7568                 *prevp = new;
7569         }
7570 
7571         bucket->dthb_chain = new;
7572         bucket->dthb_len++;
7573 }
7574 
7575 static dtrace_probe_t *
7576 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
7577 {
7578         int hashval = DTRACE_HASHSTR(hash, template);
7579         int ndx = hashval & hash->dth_mask;
7580         dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
7581 
7582         for (; bucket != NULL; bucket = bucket->dthb_next) {
7583                 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
7584                         return (bucket->dthb_chain);
7585         }
7586 
7587         return (NULL);
7588 }
7589 
7590 static int
7591 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
7592 {
7593         int hashval = DTRACE_HASHSTR(hash, template);
7594         int ndx = hashval & hash->dth_mask;
7595         dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
7596 
7597         for (; bucket != NULL; bucket = bucket->dthb_next) {
7598                 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
7599                         return (bucket->dthb_len);
7600         }
7601 
7602         return (NULL);
7603 }
7604 
7605 static void
7606 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
7607 {
7608         int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
7609         dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
7610 
7611         dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
7612         dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
7613 
7614         /*
7615          * Find the bucket that we're removing this probe from.
7616          */
7617         for (; bucket != NULL; bucket = bucket->dthb_next) {
7618                 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
7619                         break;
7620         }
7621 
7622         ASSERT(bucket != NULL);
7623 
7624         if (*prevp == NULL) {
7625                 if (*nextp == NULL) {
7626                         /*
7627                          * The removed probe was the only probe on this
7628                          * bucket; we need to remove the bucket.
7629                          */
7630                         dtrace_hashbucket_t *b = hash->dth_tab[ndx];
7631 
7632                         ASSERT(bucket->dthb_chain == probe);
7633                         ASSERT(b != NULL);
7634 
7635                         if (b == bucket) {
7636                                 hash->dth_tab[ndx] = bucket->dthb_next;
7637                         } else {
7638                                 while (b->dthb_next != bucket)
7639                                         b = b->dthb_next;
7640                                 b->dthb_next = bucket->dthb_next;
7641                         }
7642 
7643                         ASSERT(hash->dth_nbuckets > 0);
7644                         hash->dth_nbuckets--;
7645                         kmem_free(bucket, sizeof (dtrace_hashbucket_t));
7646                         return;
7647                 }
7648 
7649                 bucket->dthb_chain = *nextp;
7650         } else {
7651                 *(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
7652         }
7653 
7654         if (*nextp != NULL)
7655                 *(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
7656 }
7657 
7658 /*
7659  * DTrace Utility Functions
7660  *
7661  * These are random utility functions that are _not_ called from probe context.
7662  */
7663 static int
7664 dtrace_badattr(const dtrace_attribute_t *a)
7665 {
7666         return (a->dtat_name > DTRACE_STABILITY_MAX ||
7667             a->dtat_data > DTRACE_STABILITY_MAX ||
7668             a->dtat_class > DTRACE_CLASS_MAX);
7669 }
7670 
7671 /*
7672  * Return a duplicate copy of a string.  If the specified string is NULL,
7673  * this function returns a zero-length string.
7674  */
7675 static char *
7676 dtrace_strdup(const char *str)
7677 {
7678         char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
7679 
7680         if (str != NULL)
7681                 (void) strcpy(new, str);
7682 
7683         return (new);
7684 }
7685 
7686 #define DTRACE_ISALPHA(c)       \
7687         (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
7688 
7689 static int
7690 dtrace_badname(const char *s)
7691 {
7692         char c;
7693 
7694         if (s == NULL || (c = *s++) == '\0')
7695                 return (0);
7696 
7697         if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
7698                 return (1);
7699 
7700         while ((c = *s++) != '\0') {
7701                 if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
7702                     c != '-' && c != '_' && c != '.' && c != '`')
7703                         return (1);
7704         }
7705 
7706         return (0);
7707 }
7708 
7709 static void
7710 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
7711 {
7712         uint32_t priv;
7713 
7714         if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
7715                 /*
7716                  * For DTRACE_PRIV_ALL, the uid and zoneid don't matter.
7717                  */
7718                 priv = DTRACE_PRIV_ALL;
7719         } else {
7720                 *uidp = crgetuid(cr);
7721                 *zoneidp = crgetzoneid(cr);
7722 
7723                 priv = 0;
7724                 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
7725                         priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
7726                 else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
7727                         priv |= DTRACE_PRIV_USER;
7728                 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
7729                         priv |= DTRACE_PRIV_PROC;
7730                 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
7731                         priv |= DTRACE_PRIV_OWNER;
7732                 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
7733                         priv |= DTRACE_PRIV_ZONEOWNER;
7734         }
7735 
7736         *privp = priv;
7737 }
7738 
7739 #ifdef DTRACE_ERRDEBUG
7740 static void
7741 dtrace_errdebug(const char *str)
7742 {
7743         int hval = dtrace_hash_str((char *)str) % DTRACE_ERRHASHSZ;
7744         int occupied = 0;
7745 
7746         mutex_enter(&dtrace_errlock);
7747         dtrace_errlast = str;
7748         dtrace_errthread = curthread;
7749 
7750         while (occupied++ < DTRACE_ERRHASHSZ) {
7751                 if (dtrace_errhash[hval].dter_msg == str) {
7752                         dtrace_errhash[hval].dter_count++;
7753                         goto out;
7754                 }
7755 
7756                 if (dtrace_errhash[hval].dter_msg != NULL) {
7757                         hval = (hval + 1) % DTRACE_ERRHASHSZ;
7758                         continue;
7759                 }
7760 
7761                 dtrace_errhash[hval].dter_msg = str;
7762                 dtrace_errhash[hval].dter_count = 1;
7763                 goto out;
7764         }
7765 
7766         panic("dtrace: undersized error hash");
7767 out:
7768         mutex_exit(&dtrace_errlock);
7769 }
7770 #endif
7771 
7772 /*
7773  * DTrace Matching Functions
7774  *
7775  * These functions are used to match groups of probes, given some elements of
7776  * a probe tuple, or some globbed expressions for elements of a probe tuple.
7777  */
7778 static int
7779 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
7780     zoneid_t zoneid)
7781 {
7782         if (priv != DTRACE_PRIV_ALL) {
7783                 uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
7784                 uint32_t match = priv & ppriv;
7785 
7786                 /*
7787                  * No PRIV_DTRACE_* privileges...
7788                  */
7789                 if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
7790                     DTRACE_PRIV_KERNEL)) == 0)
7791                         return (0);
7792 
7793                 /*
7794                  * No matching bits, but there were bits to match...
7795                  */
7796                 if (match == 0 && ppriv != 0)
7797                         return (0);
7798 
7799                 /*
7800                  * Need to have permissions to the process, but don't...
7801                  */
7802                 if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
7803                     uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
7804                         return (0);
7805                 }
7806 
7807                 /*
7808                  * Need to be in the same zone unless we possess the
7809                  * privilege to examine all zones.
7810                  */
7811                 if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
7812                     zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
7813                         return (0);
7814                 }
7815         }
7816 
7817         return (1);
7818 }
7819 
7820 /*
7821  * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
7822  * consists of input pattern strings and an ops-vector to evaluate them.
7823  * This function returns >0 for match, 0 for no match, and <0 for error.
7824  */
7825 static int
7826 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
7827     uint32_t priv, uid_t uid, zoneid_t zoneid)
7828 {
7829         dtrace_provider_t *pvp = prp->dtpr_provider;
7830         int rv;
7831 
7832         if (pvp->dtpv_defunct)
7833                 return (0);
7834 
7835         if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
7836                 return (rv);
7837 
7838         if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
7839                 return (rv);
7840 
7841         if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
7842                 return (rv);
7843 
7844         if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
7845                 return (rv);
7846 
7847         if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
7848                 return (0);
7849 
7850         return (rv);
7851 }
7852 
7853 /*
7854  * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
7855  * interface for matching a glob pattern 'p' to an input string 's'.  Unlike
7856  * libc's version, the kernel version only applies to 8-bit ASCII strings.
7857  * In addition, all of the recursion cases except for '*' matching have been
7858  * unwound.  For '*', we still implement recursive evaluation, but a depth
7859  * counter is maintained and matching is aborted if we recurse too deep.
7860  * The function returns 0 if no match, >0 if match, and <0 if recursion error.
7861  */
7862 static int
7863 dtrace_match_glob(const char *s, const char *p, int depth)
7864 {
7865         const char *olds;
7866         char s1, c;
7867         int gs;
7868 
7869         if (depth > DTRACE_PROBEKEY_MAXDEPTH)
7870                 return (-1);
7871 
7872         if (s == NULL)
7873                 s = ""; /* treat NULL as empty string */
7874 
7875 top:
7876         olds = s;
7877         s1 = *s++;
7878 
7879         if (p == NULL)
7880                 return (0);
7881 
7882         if ((c = *p++) == '\0')
7883                 return (s1 == '\0');
7884 
7885         switch (c) {
7886         case '[': {
7887                 int ok = 0, notflag = 0;
7888                 char lc = '\0';
7889 
7890                 if (s1 == '\0')
7891                         return (0);
7892 
7893                 if (*p == '!') {
7894                         notflag = 1;
7895                         p++;
7896                 }
7897 
7898                 if ((c = *p++) == '\0')
7899                         return (0);
7900 
7901                 do {
7902                         if (c == '-' && lc != '\0' && *p != ']') {
7903                                 if ((c = *p++) == '\0')
7904                                         return (0);
7905                                 if (c == '\\' && (c = *p++) == '\0')
7906                                         return (0);
7907 
7908                                 if (notflag) {
7909                                         if (s1 < lc || s1 > c)
7910                                                 ok++;
7911                                         else
7912                                                 return (0);
7913                                 } else if (lc <= s1 && s1 <= c)
7914                                         ok++;
7915 
7916                         } else if (c == '\\' && (c = *p++) == '\0')
7917                                 return (0);
7918 
7919                         lc = c; /* save left-hand 'c' for next iteration */
7920 
7921                         if (notflag) {
7922                                 if (s1 != c)
7923                                         ok++;
7924                                 else
7925                                         return (0);
7926                         } else if (s1 == c)
7927                                 ok++;
7928 
7929                         if ((c = *p++) == '\0')
7930                                 return (0);
7931 
7932                 } while (c != ']');
7933 
7934                 if (ok)
7935                         goto top;
7936 
7937                 return (0);
7938         }
7939 
7940         case '\\':
7941                 if ((c = *p++) == '\0')
7942                         return (0);
7943                 /*FALLTHRU*/
7944 
7945         default:
7946                 if (c != s1)
7947                         return (0);
7948                 /*FALLTHRU*/
7949 
7950         case '?':
7951                 if (s1 != '\0')
7952                         goto top;
7953                 return (0);
7954 
7955         case '*':
7956                 while (*p == '*')
7957                         p++; /* consecutive *'s are identical to a single one */
7958 
7959                 if (*p == '\0')
7960                         return (1);
7961 
7962                 for (s = olds; *s != '\0'; s++) {
7963                         if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
7964                                 return (gs);
7965                 }
7966 
7967                 return (0);
7968         }
7969 }
7970 
7971 /*ARGSUSED*/
7972 static int
7973 dtrace_match_string(const char *s, const char *p, int depth)
7974 {
7975         return (s != NULL && strcmp(s, p) == 0);
7976 }
7977 
7978 /*ARGSUSED*/
7979 static int
7980 dtrace_match_nul(const char *s, const char *p, int depth)
7981 {
7982         return (1); /* always match the empty pattern */
7983 }
7984 
7985 /*ARGSUSED*/
7986 static int
7987 dtrace_match_nonzero(const char *s, const char *p, int depth)
7988 {
7989         return (s != NULL && s[0] != '\0');
7990 }
7991 
7992 static int
7993 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
7994     zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
7995 {
7996         dtrace_probe_t template, *probe;
7997         dtrace_hash_t *hash = NULL;
7998         int len, rc, best = INT_MAX, nmatched = 0;
7999         dtrace_id_t i;
8000 
8001         ASSERT(MUTEX_HELD(&dtrace_lock));
8002 
8003         /*
8004          * If the probe ID is specified in the key, just lookup by ID and
8005          * invoke the match callback once if a matching probe is found.
8006          */
8007         if (pkp->dtpk_id != DTRACE_IDNONE) {
8008                 if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
8009                     dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
8010                         if ((*matched)(probe, arg) == DTRACE_MATCH_FAIL)
8011                                 return (DTRACE_MATCH_FAIL);
8012                         nmatched++;
8013                 }
8014                 return (nmatched);
8015         }
8016 
8017         template.dtpr_mod = (char *)pkp->dtpk_mod;
8018         template.dtpr_func = (char *)pkp->dtpk_func;
8019         template.dtpr_name = (char *)pkp->dtpk_name;
8020 
8021         /*
8022          * We want to find the most distinct of the module name, function
8023          * name, and name.  So for each one that is not a glob pattern or
8024          * empty string, we perform a lookup in the corresponding hash and
8025          * use the hash table with the fewest collisions to do our search.
8026          */
8027         if (pkp->dtpk_mmatch == &dtrace_match_string &&
8028             (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
8029                 best = len;
8030                 hash = dtrace_bymod;
8031         }
8032 
8033         if (pkp->dtpk_fmatch == &dtrace_match_string &&
8034             (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
8035                 best = len;
8036                 hash = dtrace_byfunc;
8037         }
8038 
8039         if (pkp->dtpk_nmatch == &dtrace_match_string &&
8040             (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
8041                 best = len;
8042                 hash = dtrace_byname;
8043         }
8044 
8045         /*
8046          * If we did not select a hash table, iterate over every probe and
8047          * invoke our callback for each one that matches our input probe key.
8048          */
8049         if (hash == NULL) {
8050                 for (i = 0; i < dtrace_nprobes; i++) {
8051                         if ((probe = dtrace_probes[i]) == NULL ||
8052                             dtrace_match_probe(probe, pkp, priv, uid,
8053                             zoneid) <= 0)
8054                                 continue;
8055 
8056                         nmatched++;
8057 
8058                         if ((rc = (*matched)(probe, arg)) !=
8059                             DTRACE_MATCH_NEXT) {
8060                                 if (rc == DTRACE_MATCH_FAIL)
8061                                         return (DTRACE_MATCH_FAIL);
8062                                 break;
8063                         }
8064                 }
8065 
8066                 return (nmatched);
8067         }
8068 
8069         /*
8070          * If we selected a hash table, iterate over each probe of the same key
8071          * name and invoke the callback for every probe that matches the other
8072          * attributes of our input probe key.
8073          */
8074         for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
8075             probe = *(DTRACE_HASHNEXT(hash, probe))) {
8076 
8077                 if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
8078                         continue;
8079 
8080                 nmatched++;
8081 
8082                 if ((rc = (*matched)(probe, arg)) != DTRACE_MATCH_NEXT) {
8083                         if (rc == DTRACE_MATCH_FAIL)
8084                                 return (DTRACE_MATCH_FAIL);
8085                         break;
8086                 }
8087         }
8088 
8089         return (nmatched);
8090 }
8091 
8092 /*
8093  * Return the function pointer dtrace_probecmp() should use to compare the
8094  * specified pattern with a string.  For NULL or empty patterns, we select
8095  * dtrace_match_nul().  For glob pattern strings, we use dtrace_match_glob().
8096  * For non-empty non-glob strings, we use dtrace_match_string().
8097  */
8098 static dtrace_probekey_f *
8099 dtrace_probekey_func(const char *p)
8100 {
8101         char c;
8102 
8103         if (p == NULL || *p == '\0')
8104                 return (&dtrace_match_nul);
8105 
8106         while ((c = *p++) != '\0') {
8107                 if (c == '[' || c == '?' || c == '*' || c == '\\')
8108                         return (&dtrace_match_glob);
8109         }
8110 
8111         return (&dtrace_match_string);
8112 }
8113 
8114 /*
8115  * Build a probe comparison key for use with dtrace_match_probe() from the
8116  * given probe description.  By convention, a null key only matches anchored
8117  * probes: if each field is the empty string, reset dtpk_fmatch to
8118  * dtrace_match_nonzero().
8119  */
8120 static void
8121 dtrace_probekey(const dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
8122 {
8123         pkp->dtpk_prov = pdp->dtpd_provider;
8124         pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
8125 
8126         pkp->dtpk_mod = pdp->dtpd_mod;
8127         pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
8128 
8129         pkp->dtpk_func = pdp->dtpd_func;
8130         pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
8131 
8132         pkp->dtpk_name = pdp->dtpd_name;
8133         pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
8134 
8135         pkp->dtpk_id = pdp->dtpd_id;
8136 
8137         if (pkp->dtpk_id == DTRACE_IDNONE &&
8138             pkp->dtpk_pmatch == &dtrace_match_nul &&
8139             pkp->dtpk_mmatch == &dtrace_match_nul &&
8140             pkp->dtpk_fmatch == &dtrace_match_nul &&
8141             pkp->dtpk_nmatch == &dtrace_match_nul)
8142                 pkp->dtpk_fmatch = &dtrace_match_nonzero;
8143 }
8144 
8145 /*
8146  * DTrace Provider-to-Framework API Functions
8147  *
8148  * These functions implement much of the Provider-to-Framework API, as
8149  * described in <sys/dtrace.h>.  The parts of the API not in this section are
8150  * the functions in the API for probe management (found below), and
8151  * dtrace_probe() itself (found above).
8152  */
8153 
8154 /*
8155  * Register the calling provider with the DTrace framework.  This should
8156  * generally be called by DTrace providers in their attach(9E) entry point.
8157  */
8158 int
8159 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
8160     cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
8161 {
8162         dtrace_provider_t *provider;
8163 
8164         if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
8165                 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8166                     "arguments", name ? name : "<NULL>");
8167                 return (EINVAL);
8168         }
8169 
8170         if (name[0] == '\0' || dtrace_badname(name)) {
8171                 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8172                     "provider name", name);
8173                 return (EINVAL);
8174         }
8175 
8176         if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
8177             pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
8178             pops->dtps_destroy == NULL ||
8179             ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
8180                 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8181                     "provider ops", name);
8182                 return (EINVAL);
8183         }
8184 
8185         if (dtrace_badattr(&pap->dtpa_provider) ||
8186             dtrace_badattr(&pap->dtpa_mod) ||
8187             dtrace_badattr(&pap->dtpa_func) ||
8188             dtrace_badattr(&pap->dtpa_name) ||
8189             dtrace_badattr(&pap->dtpa_args)) {
8190                 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8191                     "provider attributes", name);
8192                 return (EINVAL);
8193         }
8194 
8195         if (priv & ~DTRACE_PRIV_ALL) {
8196                 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8197                     "privilege attributes", name);
8198                 return (EINVAL);
8199         }
8200 
8201         if ((priv & DTRACE_PRIV_KERNEL) &&
8202             (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
8203             pops->dtps_mode == NULL) {
8204                 cmn_err(CE_WARN, "failed to register provider '%s': need "
8205                     "dtps_mode() op for given privilege attributes", name);
8206                 return (EINVAL);
8207         }
8208 
8209         provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
8210         provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
8211         (void) strcpy(provider->dtpv_name, name);
8212 
8213         provider->dtpv_attr = *pap;
8214         provider->dtpv_priv.dtpp_flags = priv;
8215         if (cr != NULL) {
8216                 provider->dtpv_priv.dtpp_uid = crgetuid(cr);
8217                 provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
8218         }
8219         provider->dtpv_pops = *pops;
8220 
8221         if (pops->dtps_provide == NULL) {
8222                 ASSERT(pops->dtps_provide_module != NULL);
8223                 provider->dtpv_pops.dtps_provide =
8224                     (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop;
8225         }
8226 
8227         if (pops->dtps_provide_module == NULL) {
8228                 ASSERT(pops->dtps_provide != NULL);
8229                 provider->dtpv_pops.dtps_provide_module =
8230                     (void (*)(void *, struct modctl *))dtrace_nullop;
8231         }
8232 
8233         if (pops->dtps_suspend == NULL) {
8234                 ASSERT(pops->dtps_resume == NULL);
8235                 provider->dtpv_pops.dtps_suspend =
8236                     (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
8237                 provider->dtpv_pops.dtps_resume =
8238                     (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
8239         }
8240 
8241         provider->dtpv_arg = arg;
8242         *idp = (dtrace_provider_id_t)provider;
8243 
8244         if (pops == &dtrace_provider_ops) {
8245                 ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8246                 ASSERT(MUTEX_HELD(&dtrace_lock));
8247                 ASSERT(dtrace_anon.dta_enabling == NULL);
8248 
8249                 /*
8250                  * We make sure that the DTrace provider is at the head of
8251                  * the provider chain.
8252                  */
8253                 provider->dtpv_next = dtrace_provider;
8254                 dtrace_provider = provider;
8255                 return (0);
8256         }
8257 
8258         mutex_enter(&dtrace_provider_lock);
8259         mutex_enter(&dtrace_lock);
8260 
8261         /*
8262          * If there is at least one provider registered, we'll add this
8263          * provider after the first provider.
8264          */
8265         if (dtrace_provider != NULL) {
8266                 provider->dtpv_next = dtrace_provider->dtpv_next;
8267                 dtrace_provider->dtpv_next = provider;
8268         } else {
8269                 dtrace_provider = provider;
8270         }
8271 
8272         if (dtrace_retained != NULL) {
8273                 dtrace_enabling_provide(provider);
8274 
8275                 /*
8276                  * Now we need to call dtrace_enabling_matchall() -- which
8277                  * will acquire cpu_lock and dtrace_lock.  We therefore need
8278                  * to drop all of our locks before calling into it...
8279                  */
8280                 mutex_exit(&dtrace_lock);
8281                 mutex_exit(&dtrace_provider_lock);
8282                 dtrace_enabling_matchall();
8283 
8284                 return (0);
8285         }
8286 
8287         mutex_exit(&dtrace_lock);
8288         mutex_exit(&dtrace_provider_lock);
8289 
8290         return (0);
8291 }
8292 
8293 /*
8294  * Unregister the specified provider from the DTrace framework.  This should
8295  * generally be called by DTrace providers in their detach(9E) entry point.
8296  */
8297 int
8298 dtrace_unregister(dtrace_provider_id_t id)
8299 {
8300         dtrace_provider_t *old = (dtrace_provider_t *)id;
8301         dtrace_provider_t *prev = NULL;
8302         int i, self = 0, noreap = 0;
8303         dtrace_probe_t *probe, *first = NULL;
8304 
8305         if (old->dtpv_pops.dtps_enable ==
8306             (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop) {
8307                 /*
8308                  * If DTrace itself is the provider, we're called with locks
8309                  * already held.
8310                  */
8311                 ASSERT(old == dtrace_provider);
8312                 ASSERT(dtrace_devi != NULL);
8313                 ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8314                 ASSERT(MUTEX_HELD(&dtrace_lock));
8315                 self = 1;
8316 
8317                 if (dtrace_provider->dtpv_next != NULL) {
8318                         /*
8319                          * There's another provider here; return failure.
8320                          */
8321                         return (EBUSY);
8322                 }
8323         } else {
8324                 mutex_enter(&dtrace_provider_lock);
8325                 mutex_enter(&mod_lock);
8326                 mutex_enter(&dtrace_lock);
8327         }
8328 
8329         /*
8330          * If anyone has /dev/dtrace open, or if there are anonymous enabled
8331          * probes, we refuse to let providers slither away, unless this
8332          * provider has already been explicitly invalidated.
8333          */
8334         if (!old->dtpv_defunct &&
8335             (dtrace_opens || (dtrace_anon.dta_state != NULL &&
8336             dtrace_anon.dta_state->dts_necbs > 0))) {
8337                 if (!self) {
8338                         mutex_exit(&dtrace_lock);
8339                         mutex_exit(&mod_lock);
8340                         mutex_exit(&dtrace_provider_lock);
8341                 }
8342                 return (EBUSY);
8343         }
8344 
8345         /*
8346          * Attempt to destroy the probes associated with this provider.
8347          */
8348         for (i = 0; i < dtrace_nprobes; i++) {
8349                 if ((probe = dtrace_probes[i]) == NULL)
8350                         continue;
8351 
8352                 if (probe->dtpr_provider != old)
8353                         continue;
8354 
8355                 if (probe->dtpr_ecb == NULL)
8356                         continue;
8357 
8358                 /*
8359                  * If we are trying to unregister a defunct provider, and the
8360                  * provider was made defunct within the interval dictated by
8361                  * dtrace_unregister_defunct_reap, we'll (asynchronously)
8362                  * attempt to reap our enablings.  To denote that the provider
8363                  * should reattempt to unregister itself at some point in the
8364                  * future, we will return a differentiable error code (EAGAIN
8365                  * instead of EBUSY) in this case.
8366                  */
8367                 if (dtrace_gethrtime() - old->dtpv_defunct >
8368                     dtrace_unregister_defunct_reap)
8369                         noreap = 1;
8370 
8371                 if (!self) {
8372                         mutex_exit(&dtrace_lock);
8373                         mutex_exit(&mod_lock);
8374                         mutex_exit(&dtrace_provider_lock);
8375                 }
8376 
8377                 if (noreap)
8378                         return (EBUSY);
8379 
8380                 (void) taskq_dispatch(dtrace_taskq,
8381                     (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP);
8382 
8383                 return (EAGAIN);
8384         }
8385 
8386         /*
8387          * All of the probes for this provider are disabled; we can safely
8388          * remove all of them from their hash chains and from the probe array.
8389          */
8390         for (i = 0; i < dtrace_nprobes; i++) {
8391                 if ((probe = dtrace_probes[i]) == NULL)
8392                         continue;
8393 
8394                 if (probe->dtpr_provider != old)
8395                         continue;
8396 
8397                 dtrace_probes[i] = NULL;
8398 
8399                 dtrace_hash_remove(dtrace_bymod, probe);
8400                 dtrace_hash_remove(dtrace_byfunc, probe);
8401                 dtrace_hash_remove(dtrace_byname, probe);
8402 
8403                 if (first == NULL) {
8404                         first = probe;
8405                         probe->dtpr_nextmod = NULL;
8406                 } else {
8407                         probe->dtpr_nextmod = first;
8408                         first = probe;
8409                 }
8410         }
8411 
8412         /*
8413          * The provider's probes have been removed from the hash chains and
8414          * from the probe array.  Now issue a dtrace_sync() to be sure that
8415          * everyone has cleared out from any probe array processing.
8416          */
8417         dtrace_sync();
8418 
8419         for (probe = first; probe != NULL; probe = first) {
8420                 first = probe->dtpr_nextmod;
8421 
8422                 old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
8423                     probe->dtpr_arg);
8424                 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
8425                 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
8426                 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
8427                 vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
8428                 kmem_free(probe, sizeof (dtrace_probe_t));
8429         }
8430 
8431         if ((prev = dtrace_provider) == old) {
8432                 ASSERT(self || dtrace_devi == NULL);
8433                 ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
8434                 dtrace_provider = old->dtpv_next;
8435         } else {
8436                 while (prev != NULL && prev->dtpv_next != old)
8437                         prev = prev->dtpv_next;
8438 
8439                 if (prev == NULL) {
8440                         panic("attempt to unregister non-existent "
8441                             "dtrace provider %p\n", (void *)id);
8442                 }
8443 
8444                 prev->dtpv_next = old->dtpv_next;
8445         }
8446 
8447         if (!self) {
8448                 mutex_exit(&dtrace_lock);
8449                 mutex_exit(&mod_lock);
8450                 mutex_exit(&dtrace_provider_lock);
8451         }
8452 
8453         kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
8454         kmem_free(old, sizeof (dtrace_provider_t));
8455 
8456         return (0);
8457 }
8458 
8459 /*
8460  * Invalidate the specified provider.  All subsequent probe lookups for the
8461  * specified provider will fail, but its probes will not be removed.
8462  */
8463 void
8464 dtrace_invalidate(dtrace_provider_id_t id)
8465 {
8466         dtrace_provider_t *pvp = (dtrace_provider_t *)id;
8467 
8468         ASSERT(pvp->dtpv_pops.dtps_enable !=
8469             (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop);
8470 
8471         mutex_enter(&dtrace_provider_lock);
8472         mutex_enter(&dtrace_lock);
8473 
8474         pvp->dtpv_defunct = dtrace_gethrtime();
8475 
8476         mutex_exit(&dtrace_lock);
8477         mutex_exit(&dtrace_provider_lock);
8478 }
8479 
8480 /*
8481  * Indicate whether or not DTrace has attached.
8482  */
8483 int
8484 dtrace_attached(void)
8485 {
8486         /*
8487          * dtrace_provider will be non-NULL iff the DTrace driver has
8488          * attached.  (It's non-NULL because DTrace is always itself a
8489          * provider.)
8490          */
8491         return (dtrace_provider != NULL);
8492 }
8493 
8494 /*
8495  * Remove all the unenabled probes for the given provider.  This function is
8496  * not unlike dtrace_unregister(), except that it doesn't remove the provider
8497  * -- just as many of its associated probes as it can.
8498  */
8499 int
8500 dtrace_condense(dtrace_provider_id_t id)
8501 {
8502         dtrace_provider_t *prov = (dtrace_provider_t *)id;
8503         int i;
8504         dtrace_probe_t *probe;
8505 
8506         /*
8507          * Make sure this isn't the dtrace provider itself.
8508          */
8509         ASSERT(prov->dtpv_pops.dtps_enable !=
8510             (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop);
8511 
8512         mutex_enter(&dtrace_provider_lock);
8513         mutex_enter(&dtrace_lock);
8514 
8515         /*
8516          * Attempt to destroy the probes associated with this provider.
8517          */
8518         for (i = 0; i < dtrace_nprobes; i++) {
8519                 if ((probe = dtrace_probes[i]) == NULL)
8520                         continue;
8521 
8522                 if (probe->dtpr_provider != prov)
8523                         continue;
8524 
8525                 if (probe->dtpr_ecb != NULL)
8526                         continue;
8527 
8528                 dtrace_probes[i] = NULL;
8529 
8530                 dtrace_hash_remove(dtrace_bymod, probe);
8531                 dtrace_hash_remove(dtrace_byfunc, probe);
8532                 dtrace_hash_remove(dtrace_byname, probe);
8533 
8534                 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
8535                     probe->dtpr_arg);
8536                 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
8537                 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
8538                 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
8539                 kmem_free(probe, sizeof (dtrace_probe_t));
8540                 vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
8541         }
8542 
8543         mutex_exit(&dtrace_lock);
8544         mutex_exit(&dtrace_provider_lock);
8545 
8546         return (0);
8547 }
8548 
8549 /*
8550  * DTrace Probe Management Functions
8551  *
8552  * The functions in this section perform the DTrace probe management,
8553  * including functions to create probes, look-up probes, and call into the
8554  * providers to request that probes be provided.  Some of these functions are
8555  * in the Provider-to-Framework API; these functions can be identified by the
8556  * fact that they are not declared "static".
8557  */
8558 
8559 /*
8560  * Create a probe with the specified module name, function name, and name.
8561  */
8562 dtrace_id_t
8563 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
8564     const char *func, const char *name, int aframes, void *arg)
8565 {
8566         dtrace_probe_t *probe, **probes;
8567         dtrace_provider_t *provider = (dtrace_provider_t *)prov;
8568         dtrace_id_t id;
8569 
8570         if (provider == dtrace_provider) {
8571                 ASSERT(MUTEX_HELD(&dtrace_lock));
8572         } else {
8573                 mutex_enter(&dtrace_lock);
8574         }
8575 
8576         id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
8577             VM_BESTFIT | VM_SLEEP);
8578         probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
8579 
8580         probe->dtpr_id = id;
8581         probe->dtpr_gen = dtrace_probegen++;
8582         probe->dtpr_mod = dtrace_strdup(mod);
8583         probe->dtpr_func = dtrace_strdup(func);
8584         probe->dtpr_name = dtrace_strdup(name);
8585         probe->dtpr_arg = arg;
8586         probe->dtpr_aframes = aframes;
8587         probe->dtpr_provider = provider;
8588 
8589         dtrace_hash_add(dtrace_bymod, probe);
8590         dtrace_hash_add(dtrace_byfunc, probe);
8591         dtrace_hash_add(dtrace_byname, probe);
8592 
8593         if (id - 1 >= dtrace_nprobes) {
8594                 size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
8595                 size_t nsize = osize << 1;
8596 
8597                 if (nsize == 0) {
8598                         ASSERT(osize == 0);
8599                         ASSERT(dtrace_probes == NULL);
8600                         nsize = sizeof (dtrace_probe_t *);
8601                 }
8602 
8603                 probes = kmem_zalloc(nsize, KM_SLEEP);
8604 
8605                 if (dtrace_probes == NULL) {
8606                         ASSERT(osize == 0);
8607                         dtrace_probes = probes;
8608                         dtrace_nprobes = 1;
8609                 } else {
8610                         dtrace_probe_t **oprobes = dtrace_probes;
8611 
8612                         bcopy(oprobes, probes, osize);
8613                         dtrace_membar_producer();
8614                         dtrace_probes = probes;
8615 
8616                         dtrace_sync();
8617 
8618                         /*
8619                          * All CPUs are now seeing the new probes array; we can
8620                          * safely free the old array.
8621                          */
8622                         kmem_free(oprobes, osize);
8623                         dtrace_nprobes <<= 1;
8624                 }
8625 
8626                 ASSERT(id - 1 < dtrace_nprobes);
8627         }
8628 
8629         ASSERT(dtrace_probes[id - 1] == NULL);
8630         dtrace_probes[id - 1] = probe;
8631 
8632         if (provider != dtrace_provider)
8633                 mutex_exit(&dtrace_lock);
8634 
8635         return (id);
8636 }
8637 
8638 static dtrace_probe_t *
8639 dtrace_probe_lookup_id(dtrace_id_t id)
8640 {
8641         ASSERT(MUTEX_HELD(&dtrace_lock));
8642 
8643         if (id == 0 || id > dtrace_nprobes)
8644                 return (NULL);
8645 
8646         return (dtrace_probes[id - 1]);
8647 }
8648 
8649 static int
8650 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
8651 {
8652         *((dtrace_id_t *)arg) = probe->dtpr_id;
8653 
8654         return (DTRACE_MATCH_DONE);
8655 }
8656 
8657 /*
8658  * Look up a probe based on provider and one or more of module name, function
8659  * name and probe name.
8660  */
8661 dtrace_id_t
8662 dtrace_probe_lookup(dtrace_provider_id_t prid, const char *mod,
8663     const char *func, const char *name)
8664 {
8665         dtrace_probekey_t pkey;
8666         dtrace_id_t id;
8667         int match;
8668 
8669         pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
8670         pkey.dtpk_pmatch = &dtrace_match_string;
8671         pkey.dtpk_mod = mod;
8672         pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
8673         pkey.dtpk_func = func;
8674         pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
8675         pkey.dtpk_name = name;
8676         pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
8677         pkey.dtpk_id = DTRACE_IDNONE;
8678 
8679         mutex_enter(&dtrace_lock);
8680         match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
8681             dtrace_probe_lookup_match, &id);
8682         mutex_exit(&dtrace_lock);
8683 
8684         ASSERT(match == 1 || match == 0);
8685         return (match ? id : 0);
8686 }
8687 
8688 /*
8689  * Returns the probe argument associated with the specified probe.
8690  */
8691 void *
8692 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
8693 {
8694         dtrace_probe_t *probe;
8695         void *rval = NULL;
8696 
8697         mutex_enter(&dtrace_lock);
8698 
8699         if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
8700             probe->dtpr_provider == (dtrace_provider_t *)id)
8701                 rval = probe->dtpr_arg;
8702 
8703         mutex_exit(&dtrace_lock);
8704 
8705         return (rval);
8706 }
8707 
8708 /*
8709  * Copy a probe into a probe description.
8710  */
8711 static void
8712 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
8713 {
8714         bzero(pdp, sizeof (dtrace_probedesc_t));
8715         pdp->dtpd_id = prp->dtpr_id;
8716 
8717         (void) strncpy(pdp->dtpd_provider,
8718             prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
8719 
8720         (void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
8721         (void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
8722         (void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
8723 }
8724 
8725 /*
8726  * Called to indicate that a probe -- or probes -- should be provided by a
8727  * specfied provider.  If the specified description is NULL, the provider will
8728  * be told to provide all of its probes.  (This is done whenever a new
8729  * consumer comes along, or whenever a retained enabling is to be matched.) If
8730  * the specified description is non-NULL, the provider is given the
8731  * opportunity to dynamically provide the specified probe, allowing providers
8732  * to support the creation of probes on-the-fly.  (So-called _autocreated_
8733  * probes.)  If the provider is NULL, the operations will be applied to all
8734  * providers; if the provider is non-NULL the operations will only be applied
8735  * to the specified provider.  The dtrace_provider_lock must be held, and the
8736  * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
8737  * will need to grab the dtrace_lock when it reenters the framework through
8738  * dtrace_probe_lookup(), dtrace_probe_create(), etc.
8739  */
8740 static void
8741 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
8742 {
8743         struct modctl *ctl;
8744         int all = 0;
8745 
8746         ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8747 
8748         if (prv == NULL) {
8749                 all = 1;
8750                 prv = dtrace_provider;
8751         }
8752 
8753         do {
8754                 /*
8755                  * First, call the blanket provide operation.
8756                  */
8757                 prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
8758 
8759                 /*
8760                  * Now call the per-module provide operation.  We will grab
8761                  * mod_lock to prevent the list from being modified.  Note
8762                  * that this also prevents the mod_busy bits from changing.
8763                  * (mod_busy can only be changed with mod_lock held.)
8764                  */
8765                 mutex_enter(&mod_lock);
8766 
8767                 ctl = &modules;
8768                 do {
8769                         if (ctl->mod_busy || ctl->mod_mp == NULL)
8770                                 continue;
8771 
8772                         prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
8773 
8774                 } while ((ctl = ctl->mod_next) != &modules);
8775 
8776                 mutex_exit(&mod_lock);
8777         } while (all && (prv = prv->dtpv_next) != NULL);
8778 }
8779 
8780 /*
8781  * Iterate over each probe, and call the Framework-to-Provider API function
8782  * denoted by offs.
8783  */
8784 static void
8785 dtrace_probe_foreach(uintptr_t offs)
8786 {
8787         dtrace_provider_t *prov;
8788         void (*func)(void *, dtrace_id_t, void *);
8789         dtrace_probe_t *probe;
8790         dtrace_icookie_t cookie;
8791         int i;
8792 
8793         /*
8794          * We disable interrupts to walk through the probe array.  This is
8795          * safe -- the dtrace_sync() in dtrace_unregister() assures that we
8796          * won't see stale data.
8797          */
8798         cookie = dtrace_interrupt_disable();
8799 
8800         for (i = 0; i < dtrace_nprobes; i++) {
8801                 if ((probe = dtrace_probes[i]) == NULL)
8802                         continue;
8803 
8804                 if (probe->dtpr_ecb == NULL) {
8805                         /*
8806                          * This probe isn't enabled -- don't call the function.
8807                          */
8808                         continue;
8809                 }
8810 
8811                 prov = probe->dtpr_provider;
8812                 func = *((void(**)(void *, dtrace_id_t, void *))
8813                     ((uintptr_t)&prov->dtpv_pops + offs));
8814 
8815                 func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
8816         }
8817 
8818         dtrace_interrupt_enable(cookie);
8819 }
8820 
8821 static int
8822 dtrace_probe_enable(const dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
8823 {
8824         dtrace_probekey_t pkey;
8825         uint32_t priv;
8826         uid_t uid;
8827         zoneid_t zoneid;
8828 
8829         ASSERT(MUTEX_HELD(&dtrace_lock));
8830         dtrace_ecb_create_cache = NULL;
8831 
8832         if (desc == NULL) {
8833                 /*
8834                  * If we're passed a NULL description, we're being asked to
8835                  * create an ECB with a NULL probe.
8836                  */
8837                 (void) dtrace_ecb_create_enable(NULL, enab);
8838                 return (0);
8839         }
8840 
8841         dtrace_probekey(desc, &pkey);
8842         dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred,
8843             &priv, &uid, &zoneid);
8844 
8845         return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
8846             enab));
8847 }
8848 
8849 /*
8850  * DTrace Helper Provider Functions
8851  */
8852 static void
8853 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
8854 {
8855         attr->dtat_name = DOF_ATTR_NAME(dofattr);
8856         attr->dtat_data = DOF_ATTR_DATA(dofattr);
8857         attr->dtat_class = DOF_ATTR_CLASS(dofattr);
8858 }
8859 
8860 static void
8861 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
8862     const dof_provider_t *dofprov, char *strtab)
8863 {
8864         hprov->dthpv_provname = strtab + dofprov->dofpv_name;
8865         dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
8866             dofprov->dofpv_provattr);
8867         dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
8868             dofprov->dofpv_modattr);
8869         dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
8870             dofprov->dofpv_funcattr);
8871         dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
8872             dofprov->dofpv_nameattr);
8873         dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
8874             dofprov->dofpv_argsattr);
8875 }
8876 
8877 static void
8878 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8879 {
8880         uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8881         dof_hdr_t *dof = (dof_hdr_t *)daddr;
8882         dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
8883         dof_provider_t *provider;
8884         dof_probe_t *probe;
8885         uint32_t *off, *enoff;
8886         uint8_t *arg;
8887         char *strtab;
8888         uint_t i, nprobes;
8889         dtrace_helper_provdesc_t dhpv;
8890         dtrace_helper_probedesc_t dhpb;
8891         dtrace_meta_t *meta = dtrace_meta_pid;
8892         dtrace_mops_t *mops = &meta->dtm_mops;
8893         void *parg;
8894 
8895         provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8896         str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8897             provider->dofpv_strtab * dof->dofh_secsize);
8898         prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8899             provider->dofpv_probes * dof->dofh_secsize);
8900         arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8901             provider->dofpv_prargs * dof->dofh_secsize);
8902         off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8903             provider->dofpv_proffs * dof->dofh_secsize);
8904 
8905         strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8906         off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
8907         arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
8908         enoff = NULL;
8909 
8910         /*
8911          * See dtrace_helper_provider_validate().
8912          */
8913         if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
8914             provider->dofpv_prenoffs != DOF_SECT_NONE) {
8915                 enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8916                     provider->dofpv_prenoffs * dof->dofh_secsize);
8917                 enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
8918         }
8919 
8920         nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
8921 
8922         /*
8923          * Create the provider.
8924          */
8925         dtrace_dofprov2hprov(&dhpv, provider, strtab);
8926 
8927         if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
8928                 return;
8929 
8930         meta->dtm_count++;
8931 
8932         /*
8933          * Create the probes.
8934          */
8935         for (i = 0; i < nprobes; i++) {
8936                 probe = (dof_probe_t *)(uintptr_t)(daddr +
8937                     prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
8938 
8939                 dhpb.dthpb_mod = dhp->dofhp_mod;
8940                 dhpb.dthpb_func = strtab + probe->dofpr_func;
8941                 dhpb.dthpb_name = strtab + probe->dofpr_name;
8942                 dhpb.dthpb_base = probe->dofpr_addr;
8943                 dhpb.dthpb_offs = off + probe->dofpr_offidx;
8944                 dhpb.dthpb_noffs = probe->dofpr_noffs;
8945                 if (enoff != NULL) {
8946                         dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx;
8947                         dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
8948                 } else {
8949                         dhpb.dthpb_enoffs = NULL;
8950                         dhpb.dthpb_nenoffs = 0;
8951                 }
8952                 dhpb.dthpb_args = arg + probe->dofpr_argidx;
8953                 dhpb.dthpb_nargc = probe->dofpr_nargc;
8954                 dhpb.dthpb_xargc = probe->dofpr_xargc;
8955                 dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
8956                 dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
8957 
8958                 mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
8959         }
8960 }
8961 
8962 static void
8963 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
8964 {
8965         uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8966         dof_hdr_t *dof = (dof_hdr_t *)daddr;
8967         int i;
8968 
8969         ASSERT(MUTEX_HELD(&dtrace_meta_lock));
8970 
8971         for (i = 0; i < dof->dofh_secnum; i++) {
8972                 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8973                     dof->dofh_secoff + i * dof->dofh_secsize);
8974 
8975                 if (sec->dofs_type != DOF_SECT_PROVIDER)
8976                         continue;
8977 
8978                 dtrace_helper_provide_one(dhp, sec, pid);
8979         }
8980 
8981         /*
8982          * We may have just created probes, so we must now rematch against
8983          * any retained enablings.  Note that this call will acquire both
8984          * cpu_lock and dtrace_lock; the fact that we are holding
8985          * dtrace_meta_lock now is what defines the ordering with respect to
8986          * these three locks.
8987          */
8988         dtrace_enabling_matchall();
8989 }
8990 
8991 static void
8992 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8993 {
8994         uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8995         dof_hdr_t *dof = (dof_hdr_t *)daddr;
8996         dof_sec_t *str_sec;
8997         dof_provider_t *provider;
8998         char *strtab;
8999         dtrace_helper_provdesc_t dhpv;
9000         dtrace_meta_t *meta = dtrace_meta_pid;
9001         dtrace_mops_t *mops = &meta->dtm_mops;
9002 
9003         provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
9004         str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9005             provider->dofpv_strtab * dof->dofh_secsize);
9006 
9007         strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
9008 
9009         /*
9010          * Create the provider.
9011          */
9012         dtrace_dofprov2hprov(&dhpv, provider, strtab);
9013 
9014         mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
9015 
9016         meta->dtm_count--;
9017 }
9018 
9019 static void
9020 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid)
9021 {
9022         uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9023         dof_hdr_t *dof = (dof_hdr_t *)daddr;
9024         int i;
9025 
9026         ASSERT(MUTEX_HELD(&dtrace_meta_lock));
9027 
9028         for (i = 0; i < dof->dofh_secnum; i++) {
9029                 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
9030                     dof->dofh_secoff + i * dof->dofh_secsize);
9031 
9032                 if (sec->dofs_type != DOF_SECT_PROVIDER)
9033                         continue;
9034 
9035                 dtrace_helper_provider_remove_one(dhp, sec, pid);
9036         }
9037 }
9038 
9039 /*
9040  * DTrace Meta Provider-to-Framework API Functions
9041  *
9042  * These functions implement the Meta Provider-to-Framework API, as described
9043  * in <sys/dtrace.h>.
9044  */
9045 int
9046 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
9047     dtrace_meta_provider_id_t *idp)
9048 {
9049         dtrace_meta_t *meta;
9050         dtrace_helpers_t *help, *next;
9051         int i;
9052 
9053         *idp = DTRACE_METAPROVNONE;
9054 
9055         /*
9056          * We strictly don't need the name, but we hold onto it for
9057          * debuggability. All hail error queues!
9058          */
9059         if (name == NULL) {
9060                 cmn_err(CE_WARN, "failed to register meta-provider: "
9061                     "invalid name");
9062                 return (EINVAL);
9063         }
9064 
9065         if (mops == NULL ||
9066             mops->dtms_create_probe == NULL ||
9067             mops->dtms_provide_pid == NULL ||
9068             mops->dtms_remove_pid == NULL) {
9069                 cmn_err(CE_WARN, "failed to register meta-register %s: "
9070                     "invalid ops", name);
9071                 return (EINVAL);
9072         }
9073 
9074         meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
9075         meta->dtm_mops = *mops;
9076         meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
9077         (void) strcpy(meta->dtm_name, name);
9078         meta->dtm_arg = arg;
9079 
9080         mutex_enter(&dtrace_meta_lock);
9081         mutex_enter(&dtrace_lock);
9082 
9083         if (dtrace_meta_pid != NULL) {
9084                 mutex_exit(&dtrace_lock);
9085                 mutex_exit(&dtrace_meta_lock);
9086                 cmn_err(CE_WARN, "failed to register meta-register %s: "
9087                     "user-land meta-provider exists", name);
9088                 kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
9089                 kmem_free(meta, sizeof (dtrace_meta_t));
9090                 return (EINVAL);
9091         }
9092 
9093         dtrace_meta_pid = meta;
9094         *idp = (dtrace_meta_provider_id_t)meta;
9095 
9096         /*
9097          * If there are providers and probes ready to go, pass them
9098          * off to the new meta provider now.
9099          */
9100 
9101         help = dtrace_deferred_pid;
9102         dtrace_deferred_pid = NULL;
9103 
9104         mutex_exit(&dtrace_lock);
9105 
9106         while (help != NULL) {
9107                 for (i = 0; i < help->dthps_nprovs; i++) {
9108                         dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
9109                             help->dthps_pid);
9110                 }
9111 
9112                 next = help->dthps_next;
9113                 help->dthps_next = NULL;
9114                 help->dthps_prev = NULL;
9115                 help->dthps_deferred = 0;
9116                 help = next;
9117         }
9118 
9119         mutex_exit(&dtrace_meta_lock);
9120 
9121         return (0);
9122 }
9123 
9124 int
9125 dtrace_meta_unregister(dtrace_meta_provider_id_t id)
9126 {
9127         dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
9128 
9129         mutex_enter(&dtrace_meta_lock);
9130         mutex_enter(&dtrace_lock);
9131 
9132         if (old == dtrace_meta_pid) {
9133                 pp = &dtrace_meta_pid;
9134         } else {
9135                 panic("attempt to unregister non-existent "
9136                     "dtrace meta-provider %p\n", (void *)old);
9137         }
9138 
9139         if (old->dtm_count != 0) {
9140                 mutex_exit(&dtrace_lock);
9141                 mutex_exit(&dtrace_meta_lock);
9142                 return (EBUSY);
9143         }
9144 
9145         *pp = NULL;
9146 
9147         mutex_exit(&dtrace_lock);
9148         mutex_exit(&dtrace_meta_lock);
9149 
9150         kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
9151         kmem_free(old, sizeof (dtrace_meta_t));
9152 
9153         return (0);
9154 }
9155 
9156 
9157 /*
9158  * DTrace DIF Object Functions
9159  */
9160 static int
9161 dtrace_difo_err(uint_t pc, const char *format, ...)
9162 {
9163         if (dtrace_err_verbose) {
9164                 va_list alist;
9165 
9166                 (void) uprintf("dtrace DIF object error: [%u]: ", pc);
9167                 va_start(alist, format);
9168                 (void) vuprintf(format, alist);
9169                 va_end(alist);
9170         }
9171 
9172 #ifdef DTRACE_ERRDEBUG
9173         dtrace_errdebug(format);
9174 #endif
9175         return (1);
9176 }
9177 
9178 /*
9179  * Validate a DTrace DIF object by checking the IR instructions.  The following
9180  * rules are currently enforced by dtrace_difo_validate():
9181  *
9182  * 1. Each instruction must have a valid opcode
9183  * 2. Each register, string, variable, or subroutine reference must be valid
9184  * 3. No instruction can modify register %r0 (must be zero)
9185  * 4. All instruction reserved bits must be set to zero
9186  * 5. The last instruction must be a "ret" instruction
9187  * 6. All branch targets must reference a valid instruction _after_ the branch
9188  */
9189 static int
9190 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
9191     cred_t *cr)
9192 {
9193         int err = 0, i;
9194         int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
9195         int kcheckload;
9196         uint_t pc;
9197         int maxglobal = -1, maxlocal = -1, maxtlocal = -1;
9198 
9199         kcheckload = cr == NULL ||
9200             (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;
9201 
9202         dp->dtdo_destructive = 0;
9203 
9204         for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
9205                 dif_instr_t instr = dp->dtdo_buf[pc];
9206 
9207                 uint_t r1 = DIF_INSTR_R1(instr);
9208                 uint_t r2 = DIF_INSTR_R2(instr);
9209                 uint_t rd = DIF_INSTR_RD(instr);
9210                 uint_t rs = DIF_INSTR_RS(instr);
9211                 uint_t label = DIF_INSTR_LABEL(instr);
9212                 uint_t v = DIF_INSTR_VAR(instr);
9213                 uint_t subr = DIF_INSTR_SUBR(instr);
9214                 uint_t type = DIF_INSTR_TYPE(instr);
9215                 uint_t op = DIF_INSTR_OP(instr);
9216 
9217                 switch (op) {
9218                 case DIF_OP_OR:
9219                 case DIF_OP_XOR:
9220                 case DIF_OP_AND:
9221                 case DIF_OP_SLL:
9222                 case DIF_OP_SRL:
9223                 case DIF_OP_SRA:
9224                 case DIF_OP_SUB:
9225                 case DIF_OP_ADD:
9226                 case DIF_OP_MUL:
9227                 case DIF_OP_SDIV:
9228                 case DIF_OP_UDIV:
9229                 case DIF_OP_SREM:
9230                 case DIF_OP_UREM:
9231                 case DIF_OP_COPYS:
9232                         if (r1 >= nregs)
9233                                 err += efunc(pc, "invalid register %u\n", r1);
9234                         if (r2 >= nregs)
9235                                 err += efunc(pc, "invalid register %u\n", r2);
9236                         if (rd >= nregs)
9237                                 err += efunc(pc, "invalid register %u\n", rd);
9238                         if (rd == 0)
9239                                 err += efunc(pc, "cannot write to %r0\n");
9240                         break;
9241                 case DIF_OP_NOT:
9242                 case DIF_OP_MOV:
9243                 case DIF_OP_ALLOCS:
9244                         if (r1 >= nregs)
9245                                 err += efunc(pc, "invalid register %u\n", r1);
9246                         if (r2 != 0)
9247                                 err += efunc(pc, "non-zero reserved bits\n");
9248                         if (rd >= nregs)
9249                                 err += efunc(pc, "invalid register %u\n", rd);
9250                         if (rd == 0)
9251                                 err += efunc(pc, "cannot write to %r0\n");
9252                         break;
9253                 case DIF_OP_LDSB:
9254                 case DIF_OP_LDSH:
9255                 case DIF_OP_LDSW:
9256                 case DIF_OP_LDUB:
9257                 case DIF_OP_LDUH:
9258                 case DIF_OP_LDUW:
9259                 case DIF_OP_LDX:
9260                         if (r1 >= nregs)
9261                                 err += efunc(pc, "invalid register %u\n", r1);
9262                         if (r2 != 0)
9263                                 err += efunc(pc, "non-zero reserved bits\n");
9264                         if (rd >= nregs)
9265                                 err += efunc(pc, "invalid register %u\n", rd);
9266                         if (rd == 0)
9267                                 err += efunc(pc, "cannot write to %r0\n");
9268                         if (kcheckload)
9269                                 dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
9270                                     DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
9271                         break;
9272                 case DIF_OP_RLDSB:
9273                 case DIF_OP_RLDSH:
9274                 case DIF_OP_RLDSW:
9275                 case DIF_OP_RLDUB:
9276                 case DIF_OP_RLDUH:
9277                 case DIF_OP_RLDUW:
9278                 case DIF_OP_RLDX:
9279                         if (r1 >= nregs)
9280                                 err += efunc(pc, "invalid register %u\n", r1);
9281                         if (r2 != 0)
9282                                 err += efunc(pc, "non-zero reserved bits\n");
9283                         if (rd >= nregs)
9284                                 err += efunc(pc, "invalid register %u\n", rd);
9285                         if (rd == 0)
9286                                 err += efunc(pc, "cannot write to %r0\n");
9287                         break;
9288                 case DIF_OP_ULDSB:
9289                 case DIF_OP_ULDSH:
9290                 case DIF_OP_ULDSW:
9291                 case DIF_OP_ULDUB:
9292                 case DIF_OP_ULDUH:
9293                 case DIF_OP_ULDUW:
9294                 case DIF_OP_ULDX:
9295                         if (r1 >= nregs)
9296                                 err += efunc(pc, "invalid register %u\n", r1);
9297                         if (r2 != 0)
9298                                 err += efunc(pc, "non-zero reserved bits\n");
9299                         if (rd >= nregs)
9300                                 err += efunc(pc, "invalid register %u\n", rd);
9301                         if (rd == 0)
9302                                 err += efunc(pc, "cannot write to %r0\n");
9303                         break;
9304                 case DIF_OP_STB:
9305                 case DIF_OP_STH:
9306                 case DIF_OP_STW:
9307                 case DIF_OP_STX:
9308                         if (r1 >= nregs)
9309                                 err += efunc(pc, "invalid register %u\n", r1);
9310                         if (r2 != 0)
9311                                 err += efunc(pc, "non-zero reserved bits\n");
9312                         if (rd >= nregs)
9313                                 err += efunc(pc, "invalid register %u\n", rd);
9314                         if (rd == 0)
9315                                 err += efunc(pc, "cannot write to 0 address\n");
9316                         break;
9317                 case DIF_OP_CMP:
9318                 case DIF_OP_SCMP:
9319                         if (r1 >= nregs)
9320                                 err += efunc(pc, "invalid register %u\n", r1);
9321                         if (r2 >= nregs)
9322                                 err += efunc(pc, "invalid register %u\n", r2);
9323                         if (rd != 0)
9324                                 err += efunc(pc, "non-zero reserved bits\n");
9325                         break;
9326                 case DIF_OP_TST:
9327                         if (r1 >= nregs)
9328                                 err += efunc(pc, "invalid register %u\n", r1);
9329                         if (r2 != 0 || rd != 0)
9330                                 err += efunc(pc, "non-zero reserved bits\n");
9331                         break;
9332                 case DIF_OP_BA:
9333                 case DIF_OP_BE:
9334                 case DIF_OP_BNE:
9335                 case DIF_OP_BG:
9336                 case DIF_OP_BGU:
9337                 case DIF_OP_BGE:
9338                 case DIF_OP_BGEU:
9339                 case DIF_OP_BL:
9340                 case DIF_OP_BLU:
9341                 case DIF_OP_BLE:
9342                 case DIF_OP_BLEU:
9343                         if (label >= dp->dtdo_len) {
9344                                 err += efunc(pc, "invalid branch target %u\n",
9345                                     label);
9346                         }
9347                         if (label <= pc) {
9348                                 err += efunc(pc, "backward branch to %u\n",
9349                                     label);
9350                         }
9351                         break;
9352                 case DIF_OP_RET:
9353                         if (r1 != 0 || r2 != 0)
9354                                 err += efunc(pc, "non-zero reserved bits\n");
9355                         if (rd >= nregs)
9356                                 err += efunc(pc, "invalid register %u\n", rd);
9357                         break;
9358                 case DIF_OP_NOP:
9359                 case DIF_OP_POPTS:
9360                 case DIF_OP_FLUSHTS:
9361                         if (r1 != 0 || r2 != 0 || rd != 0)
9362                                 err += efunc(pc, "non-zero reserved bits\n");
9363                         break;
9364                 case DIF_OP_SETX:
9365                         if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
9366                                 err += efunc(pc, "invalid integer ref %u\n",
9367                                     DIF_INSTR_INTEGER(instr));
9368                         }
9369                         if (rd >= nregs)
9370                                 err += efunc(pc, "invalid register %u\n", rd);
9371                         if (rd == 0)
9372                                 err += efunc(pc, "cannot write to %r0\n");
9373                         break;
9374                 case DIF_OP_SETS:
9375                         if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
9376                                 err += efunc(pc, "invalid string ref %u\n",
9377                                     DIF_INSTR_STRING(instr));
9378                         }
9379                         if (rd >= nregs)
9380                                 err += efunc(pc, "invalid register %u\n", rd);
9381                         if (rd == 0)
9382                                 err += efunc(pc, "cannot write to %r0\n");
9383                         break;
9384                 case DIF_OP_LDGA:
9385                 case DIF_OP_LDTA:
9386                         if (r1 > DIF_VAR_ARRAY_MAX)
9387                                 err += efunc(pc, "invalid array %u\n", r1);
9388                         if (r2 >= nregs)
9389                                 err += efunc(pc, "invalid register %u\n", r2);
9390                         if (rd >= nregs)
9391                                 err += efunc(pc, "invalid register %u\n", rd);
9392                         if (rd == 0)
9393                                 err += efunc(pc, "cannot write to %r0\n");
9394                         break;
9395                 case DIF_OP_LDGS:
9396                 case DIF_OP_LDTS:
9397                 case DIF_OP_LDLS:
9398                 case DIF_OP_LDGAA:
9399                 case DIF_OP_LDTAA:
9400                         if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
9401                                 err += efunc(pc, "invalid variable %u\n", v);
9402                         if (rd >= nregs)
9403                                 err += efunc(pc, "invalid register %u\n", rd);
9404                         if (rd == 0)
9405                                 err += efunc(pc, "cannot write to %r0\n");
9406                         break;
9407                 case DIF_OP_STGS:
9408                 case DIF_OP_STTS:
9409                 case DIF_OP_STLS:
9410                 case DIF_OP_STGAA:
9411                 case DIF_OP_STTAA:
9412                         if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
9413                                 err += efunc(pc, "invalid variable %u\n", v);
9414                         if (rs >= nregs)
9415                                 err += efunc(pc, "invalid register %u\n", rd);
9416                         break;
9417                 case DIF_OP_CALL:
9418                         if (subr > DIF_SUBR_MAX)
9419                                 err += efunc(pc, "invalid subr %u\n", subr);
9420                         if (rd >= nregs)
9421                                 err += efunc(pc, "invalid register %u\n", rd);
9422                         if (rd == 0)
9423                                 err += efunc(pc, "cannot write to %r0\n");
9424 
9425                         if (subr == DIF_SUBR_COPYOUT ||
9426                             subr == DIF_SUBR_COPYOUTSTR) {
9427                                 dp->dtdo_destructive = 1;
9428                         }
9429 
9430                         if (subr == DIF_SUBR_GETF) {
9431                                 /*
9432                                  * If we have a getf() we need to record that
9433                                  * in our state.  Note that our state can be
9434                                  * NULL if this is a helper -- but in that
9435                                  * case, the call to getf() is itself illegal,
9436                                  * and will be caught (slightly later) when
9437                                  * the helper is validated.
9438                                  */
9439                                 if (vstate->dtvs_state != NULL)
9440                                         vstate->dtvs_state->dts_getf++;
9441                         }
9442 
9443                         break;
9444                 case DIF_OP_PUSHTR:
9445                         if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
9446                                 err += efunc(pc, "invalid ref type %u\n", type);
9447                         if (r2 >= nregs)
9448                                 err += efunc(pc, "invalid register %u\n", r2);
9449                         if (rs >= nregs)
9450                                 err += efunc(pc, "invalid register %u\n", rs);
9451                         break;
9452                 case DIF_OP_PUSHTV:
9453                         if (type != DIF_TYPE_CTF)
9454                                 err += efunc(pc, "invalid val type %u\n", type);
9455                         if (r2 >= nregs)
9456                                 err += efunc(pc, "invalid register %u\n", r2);
9457                         if (rs >= nregs)
9458                                 err += efunc(pc, "invalid register %u\n", rs);
9459                         break;
9460                 default:
9461                         err += efunc(pc, "invalid opcode %u\n",
9462                             DIF_INSTR_OP(instr));
9463                 }
9464         }
9465 
9466         if (dp->dtdo_len != 0 &&
9467             DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
9468                 err += efunc(dp->dtdo_len - 1,
9469                     "expected 'ret' as last DIF instruction\n");
9470         }
9471 
9472         if (!(dp->dtdo_rtype.dtdt_flags & (DIF_TF_BYREF | DIF_TF_BYUREF))) {
9473                 /*
9474                  * If we're not returning by reference, the size must be either
9475                  * 0 or the size of one of the base types.
9476                  */
9477                 switch (dp->dtdo_rtype.dtdt_size) {
9478                 case 0:
9479                 case sizeof (uint8_t):
9480                 case sizeof (uint16_t):
9481                 case sizeof (uint32_t):
9482                 case sizeof (uint64_t):
9483                         break;
9484 
9485                 default:
9486                         err += efunc(dp->dtdo_len - 1, "bad return size\n");
9487                 }
9488         }
9489 
9490         for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
9491                 dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
9492                 dtrace_diftype_t *vt, *et;
9493                 uint_t id, ndx;
9494 
9495                 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
9496                     v->dtdv_scope != DIFV_SCOPE_THREAD &&
9497                     v->dtdv_scope != DIFV_SCOPE_LOCAL) {
9498                         err += efunc(i, "unrecognized variable scope %d\n",
9499                             v->dtdv_scope);
9500                         break;
9501                 }
9502 
9503                 if (v->dtdv_kind != DIFV_KIND_ARRAY &&
9504                     v->dtdv_kind != DIFV_KIND_SCALAR) {
9505                         err += efunc(i, "unrecognized variable type %d\n",
9506                             v->dtdv_kind);
9507                         break;
9508                 }
9509 
9510                 if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
9511                         err += efunc(i, "%d exceeds variable id limit\n", id);
9512                         break;
9513                 }
9514 
9515                 if (id < DIF_VAR_OTHER_UBASE)
9516                         continue;
9517 
9518                 /*
9519                  * For user-defined variables, we need to check that this
9520                  * definition is identical to any previous definition that we
9521                  * encountered.
9522                  */
9523                 ndx = id - DIF_VAR_OTHER_UBASE;
9524 
9525                 switch (v->dtdv_scope) {
9526                 case DIFV_SCOPE_GLOBAL:
9527                         if (maxglobal == -1 || ndx > maxglobal)
9528                                 maxglobal = ndx;
9529 
9530                         if (ndx < vstate->dtvs_nglobals) {
9531                                 dtrace_statvar_t *svar;
9532 
9533                                 if ((svar = vstate->dtvs_globals[ndx]) != NULL)
9534                                         existing = &svar->dtsv_var;
9535                         }
9536 
9537                         break;
9538 
9539                 case DIFV_SCOPE_THREAD:
9540                         if (maxtlocal == -1 || ndx > maxtlocal)
9541                                 maxtlocal = ndx;
9542 
9543                         if (ndx < vstate->dtvs_ntlocals)
9544                                 existing = &vstate->dtvs_tlocals[ndx];
9545                         break;
9546 
9547                 case DIFV_SCOPE_LOCAL:
9548                         if (maxlocal == -1 || ndx > maxlocal)
9549                                 maxlocal = ndx;
9550 
9551                         if (ndx < vstate->dtvs_nlocals) {
9552                                 dtrace_statvar_t *svar;
9553 
9554                                 if ((svar = vstate->dtvs_locals[ndx]) != NULL)
9555                                         existing = &svar->dtsv_var;
9556                         }
9557 
9558                         break;
9559                 }
9560 
9561                 vt = &v->dtdv_type;
9562 
9563                 if (vt->dtdt_flags & DIF_TF_BYREF) {
9564                         if (vt->dtdt_size == 0) {
9565                                 err += efunc(i, "zero-sized variable\n");
9566                                 break;
9567                         }
9568 
9569                         if ((v->dtdv_scope == DIFV_SCOPE_GLOBAL ||
9570                             v->dtdv_scope == DIFV_SCOPE_LOCAL) &&
9571                             vt->dtdt_size > dtrace_statvar_maxsize) {
9572                                 err += efunc(i, "oversized by-ref static\n");
9573                                 break;
9574                         }
9575                 }
9576 
9577                 if (existing == NULL || existing->dtdv_id == 0)
9578                         continue;
9579 
9580                 ASSERT(existing->dtdv_id == v->dtdv_id);
9581                 ASSERT(existing->dtdv_scope == v->dtdv_scope);
9582 
9583                 if (existing->dtdv_kind != v->dtdv_kind)
9584                         err += efunc(i, "%d changed variable kind\n", id);
9585 
9586                 et = &existing->dtdv_type;
9587 
9588                 if (vt->dtdt_flags != et->dtdt_flags) {
9589                         err += efunc(i, "%d changed variable type flags\n", id);
9590                         break;
9591                 }
9592 
9593                 if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
9594                         err += efunc(i, "%d changed variable type size\n", id);
9595                         break;
9596                 }
9597         }
9598 
9599         for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
9600                 dif_instr_t instr = dp->dtdo_buf[pc];
9601 
9602                 uint_t v = DIF_INSTR_VAR(instr);
9603                 uint_t op = DIF_INSTR_OP(instr);
9604 
9605                 switch (op) {
9606                 case DIF_OP_LDGS:
9607                 case DIF_OP_LDGAA:
9608                 case DIF_OP_STGS:
9609                 case DIF_OP_STGAA:
9610                         if (v > DIF_VAR_OTHER_UBASE + maxglobal)
9611                                 err += efunc(pc, "invalid variable %u\n", v);
9612                         break;
9613                 case DIF_OP_LDTS:
9614                 case DIF_OP_LDTAA:
9615                 case DIF_OP_STTS:
9616                 case DIF_OP_STTAA:
9617                         if (v > DIF_VAR_OTHER_UBASE + maxtlocal)
9618                                 err += efunc(pc, "invalid variable %u\n", v);
9619                         break;
9620                 case DIF_OP_LDLS:
9621                 case DIF_OP_STLS:
9622                         if (v > DIF_VAR_OTHER_UBASE + maxlocal)
9623                                 err += efunc(pc, "invalid variable %u\n", v);
9624                         break;
9625                 default:
9626                         break;
9627                 }
9628         }
9629 
9630         return (err);
9631 }
9632 
9633 /*
9634  * Validate a DTrace DIF object that it is to be used as a helper.  Helpers
9635  * are much more constrained than normal DIFOs.  Specifically, they may
9636  * not:
9637  *
9638  * 1. Make calls to subroutines other than copyin(), copyinstr() or
9639  *    miscellaneous string routines
9640  * 2. Access DTrace variables other than the args[] array, and the
9641  *    curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
9642  * 3. Have thread-local variables.
9643  * 4. Have dynamic variables.
9644  */
9645 static int
9646 dtrace_difo_validate_helper(dtrace_difo_t *dp)
9647 {
9648         int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
9649         int err = 0;
9650         uint_t pc;
9651 
9652         for (pc = 0; pc < dp->dtdo_len; pc++) {
9653                 dif_instr_t instr = dp->dtdo_buf[pc];
9654 
9655                 uint_t v = DIF_INSTR_VAR(instr);
9656                 uint_t subr = DIF_INSTR_SUBR(instr);
9657                 uint_t op = DIF_INSTR_OP(instr);
9658 
9659                 switch (op) {
9660                 case DIF_OP_OR:
9661                 case DIF_OP_XOR:
9662                 case DIF_OP_AND:
9663                 case DIF_OP_SLL:
9664                 case DIF_OP_SRL:
9665                 case DIF_OP_SRA:
9666                 case DIF_OP_SUB:
9667                 case DIF_OP_ADD:
9668                 case DIF_OP_MUL:
9669                 case DIF_OP_SDIV:
9670                 case DIF_OP_UDIV:
9671                 case DIF_OP_SREM:
9672                 case DIF_OP_UREM:
9673                 case DIF_OP_COPYS:
9674                 case DIF_OP_NOT:
9675                 case DIF_OP_MOV:
9676                 case DIF_OP_RLDSB:
9677                 case DIF_OP_RLDSH:
9678                 case DIF_OP_RLDSW:
9679                 case DIF_OP_RLDUB:
9680                 case DIF_OP_RLDUH:
9681                 case DIF_OP_RLDUW:
9682                 case DIF_OP_RLDX:
9683                 case DIF_OP_ULDSB:
9684                 case DIF_OP_ULDSH:
9685                 case DIF_OP_ULDSW:
9686                 case DIF_OP_ULDUB:
9687                 case DIF_OP_ULDUH:
9688                 case DIF_OP_ULDUW:
9689                 case DIF_OP_ULDX:
9690                 case DIF_OP_STB:
9691                 case DIF_OP_STH:
9692                 case DIF_OP_STW:
9693                 case DIF_OP_STX:
9694                 case DIF_OP_ALLOCS:
9695                 case DIF_OP_CMP:
9696                 case DIF_OP_SCMP:
9697                 case DIF_OP_TST:
9698                 case DIF_OP_BA:
9699                 case DIF_OP_BE:
9700                 case DIF_OP_BNE:
9701                 case DIF_OP_BG:
9702                 case DIF_OP_BGU:
9703                 case DIF_OP_BGE:
9704                 case DIF_OP_BGEU:
9705                 case DIF_OP_BL:
9706                 case DIF_OP_BLU:
9707                 case DIF_OP_BLE:
9708                 case DIF_OP_BLEU:
9709                 case DIF_OP_RET:
9710                 case DIF_OP_NOP:
9711                 case DIF_OP_POPTS:
9712                 case DIF_OP_FLUSHTS:
9713                 case DIF_OP_SETX:
9714                 case DIF_OP_SETS:
9715                 case DIF_OP_LDGA:
9716                 case DIF_OP_LDLS:
9717                 case DIF_OP_STGS:
9718                 case DIF_OP_STLS:
9719                 case DIF_OP_PUSHTR:
9720                 case DIF_OP_PUSHTV:
9721                         break;
9722 
9723                 case DIF_OP_LDGS:
9724                         if (v >= DIF_VAR_OTHER_UBASE)
9725                                 break;
9726 
9727                         if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
9728                                 break;
9729 
9730                         if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
9731                             v == DIF_VAR_PPID || v == DIF_VAR_TID ||
9732                             v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME ||
9733                             v == DIF_VAR_UID || v == DIF_VAR_GID)
9734                                 break;
9735 
9736                         err += efunc(pc, "illegal variable %u\n", v);
9737                         break;
9738 
9739                 case DIF_OP_LDTA:
9740                 case DIF_OP_LDTS:
9741                 case DIF_OP_LDGAA:
9742                 case DIF_OP_LDTAA:
9743                         err += efunc(pc, "illegal dynamic variable load\n");
9744                         break;
9745 
9746                 case DIF_OP_STTS:
9747                 case DIF_OP_STGAA:
9748                 case DIF_OP_STTAA:
9749                         err += efunc(pc, "illegal dynamic variable store\n");
9750                         break;
9751 
9752                 case DIF_OP_CALL:
9753                         if (subr == DIF_SUBR_ALLOCA ||
9754                             subr == DIF_SUBR_BCOPY ||
9755                             subr == DIF_SUBR_COPYIN ||
9756                             subr == DIF_SUBR_COPYINTO ||
9757                             subr == DIF_SUBR_COPYINSTR ||
9758                             subr == DIF_SUBR_INDEX ||
9759                             subr == DIF_SUBR_INET_NTOA ||
9760                             subr == DIF_SUBR_INET_NTOA6 ||
9761                             subr == DIF_SUBR_INET_NTOP ||
9762                             subr == DIF_SUBR_JSON ||
9763                             subr == DIF_SUBR_LLTOSTR ||
9764                             subr == DIF_SUBR_STRTOLL ||
9765                             subr == DIF_SUBR_RINDEX ||
9766                             subr == DIF_SUBR_STRCHR ||
9767                             subr == DIF_SUBR_STRJOIN ||
9768                             subr == DIF_SUBR_STRRCHR ||
9769                             subr == DIF_SUBR_STRSTR ||
9770                             subr == DIF_SUBR_HTONS ||
9771                             subr == DIF_SUBR_HTONL ||
9772                             subr == DIF_SUBR_HTONLL ||
9773                             subr == DIF_SUBR_NTOHS ||
9774                             subr == DIF_SUBR_NTOHL ||
9775                             subr == DIF_SUBR_NTOHLL)
9776                                 break;
9777 
9778                         err += efunc(pc, "invalid subr %u\n", subr);
9779                         break;
9780 
9781                 default:
9782                         err += efunc(pc, "invalid opcode %u\n",
9783                             DIF_INSTR_OP(instr));
9784                 }
9785         }
9786 
9787         return (err);
9788 }
9789 
9790 /*
9791  * Returns 1 if the expression in the DIF object can be cached on a per-thread
9792  * basis; 0 if not.
9793  */
9794 static int
9795 dtrace_difo_cacheable(dtrace_difo_t *dp)
9796 {
9797         int i;
9798 
9799         if (dp == NULL)
9800                 return (0);
9801 
9802         for (i = 0; i < dp->dtdo_varlen; i++) {
9803                 dtrace_difv_t *v = &dp->dtdo_vartab[i];
9804 
9805                 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
9806                         continue;
9807 
9808                 switch (v->dtdv_id) {
9809                 case DIF_VAR_CURTHREAD:
9810                 case DIF_VAR_PID:
9811                 case DIF_VAR_TID:
9812                 case DIF_VAR_EXECNAME:
9813                 case DIF_VAR_ZONENAME:
9814                         break;
9815 
9816                 default:
9817                         return (0);
9818                 }
9819         }
9820 
9821         /*
9822          * This DIF object may be cacheable.  Now we need to look for any
9823          * array loading instructions, any memory loading instructions, or
9824          * any stores to thread-local variables.
9825          */
9826         for (i = 0; i < dp->dtdo_len; i++) {
9827                 uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
9828 
9829                 if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
9830                     (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
9831                     (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
9832                     op == DIF_OP_LDGA || op == DIF_OP_STTS)
9833                         return (0);
9834         }
9835 
9836         return (1);
9837 }
9838 
9839 static void
9840 dtrace_difo_hold(dtrace_difo_t *dp)
9841 {
9842         int i;
9843 
9844         ASSERT(MUTEX_HELD(&dtrace_lock));
9845 
9846         dp->dtdo_refcnt++;
9847         ASSERT(dp->dtdo_refcnt != 0);
9848 
9849         /*
9850          * We need to check this DIF object for references to the variable
9851          * DIF_VAR_VTIMESTAMP.
9852          */
9853         for (i = 0; i < dp->dtdo_varlen; i++) {
9854                 dtrace_difv_t *v = &dp->dtdo_vartab[i];
9855 
9856                 if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
9857                         continue;
9858 
9859                 if (dtrace_vtime_references++ == 0)
9860                         dtrace_vtime_enable();
9861         }
9862 }
9863 
9864 /*
9865  * This routine calculates the dynamic variable chunksize for a given DIF
9866  * object.  The calculation is not fool-proof, and can probably be tricked by
9867  * malicious DIF -- but it works for all compiler-generated DIF.  Because this
9868  * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
9869  * if a dynamic variable size exceeds the chunksize.
9870  */
9871 static void
9872 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9873 {
9874         uint64_t sval;
9875         dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
9876         const dif_instr_t *text = dp->dtdo_buf;
9877         uint_t pc, srd = 0;
9878         uint_t ttop = 0;
9879         size_t size, ksize;
9880         uint_t id, i;
9881 
9882         for (pc = 0; pc < dp->dtdo_len; pc++) {
9883                 dif_instr_t instr = text[pc];
9884                 uint_t op = DIF_INSTR_OP(instr);
9885                 uint_t rd = DIF_INSTR_RD(instr);
9886                 uint_t r1 = DIF_INSTR_R1(instr);
9887                 uint_t nkeys = 0;
9888                 uchar_t scope;
9889 
9890                 dtrace_key_t *key = tupregs;
9891 
9892                 switch (op) {
9893                 case DIF_OP_SETX:
9894                         sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
9895                         srd = rd;
9896                         continue;
9897 
9898                 case DIF_OP_STTS:
9899                         key = &tupregs[DIF_DTR_NREGS];
9900                         key[0].dttk_size = 0;
9901                         key[1].dttk_size = 0;
9902                         nkeys = 2;
9903                         scope = DIFV_SCOPE_THREAD;
9904                         break;
9905 
9906                 case DIF_OP_STGAA:
9907                 case DIF_OP_STTAA:
9908                         nkeys = ttop;
9909 
9910                         if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
9911                                 key[nkeys++].dttk_size = 0;
9912 
9913                         key[nkeys++].dttk_size = 0;
9914 
9915                         if (op == DIF_OP_STTAA) {
9916                                 scope = DIFV_SCOPE_THREAD;
9917                         } else {
9918                                 scope = DIFV_SCOPE_GLOBAL;
9919                         }
9920 
9921                         break;
9922 
9923                 case DIF_OP_PUSHTR:
9924                         if (ttop == DIF_DTR_NREGS)
9925                                 return;
9926 
9927                         if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
9928                                 /*
9929                                  * If the register for the size of the "pushtr"
9930                                  * is %r0 (or the value is 0) and the type is
9931                                  * a string, we'll use the system-wide default
9932                                  * string size.
9933                                  */
9934                                 tupregs[ttop++].dttk_size =
9935                                     dtrace_strsize_default;
9936                         } else {
9937                                 if (srd == 0)
9938                                         return;
9939 
9940                                 if (sval > LONG_MAX)
9941                                         return;
9942 
9943                                 tupregs[ttop++].dttk_size = sval;
9944                         }
9945 
9946                         break;
9947 
9948                 case DIF_OP_PUSHTV:
9949                         if (ttop == DIF_DTR_NREGS)
9950                                 return;
9951 
9952                         tupregs[ttop++].dttk_size = 0;
9953                         break;
9954 
9955                 case DIF_OP_FLUSHTS:
9956                         ttop = 0;
9957                         break;
9958 
9959                 case DIF_OP_POPTS:
9960                         if (ttop != 0)
9961                                 ttop--;
9962                         break;
9963                 }
9964 
9965                 sval = 0;
9966                 srd = 0;
9967 
9968                 if (nkeys == 0)
9969                         continue;
9970 
9971                 /*
9972                  * We have a dynamic variable allocation; calculate its size.
9973                  */
9974                 for (ksize = 0, i = 0; i < nkeys; i++)
9975                         ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
9976 
9977                 size = sizeof (dtrace_dynvar_t);
9978                 size += sizeof (dtrace_key_t) * (nkeys - 1);
9979                 size += ksize;
9980 
9981                 /*
9982                  * Now we need to determine the size of the stored data.
9983                  */
9984                 id = DIF_INSTR_VAR(instr);
9985 
9986                 for (i = 0; i < dp->dtdo_varlen; i++) {
9987                         dtrace_difv_t *v = &dp->dtdo_vartab[i];
9988 
9989                         if (v->dtdv_id == id && v->dtdv_scope == scope) {
9990                                 size += v->dtdv_type.dtdt_size;
9991                                 break;
9992                         }
9993                 }
9994 
9995                 if (i == dp->dtdo_varlen)
9996                         return;
9997 
9998                 /*
9999                  * We have the size.  If this is larger than the chunk size
10000                  * for our dynamic variable state, reset the chunk size.
10001                  */
10002                 size = P2ROUNDUP(size, sizeof (uint64_t));
10003 
10004                 /*
10005                  * Before setting the chunk size, check that we're not going
10006                  * to set it to a negative value...
10007                  */
10008                 if (size > LONG_MAX)
10009                         return;
10010 
10011                 /*
10012                  * ...and make certain that we didn't badly overflow.
10013                  */
10014                 if (size < ksize || size < sizeof (dtrace_dynvar_t))
10015                         return;
10016 
10017                 if (size > vstate->dtvs_dynvars.dtds_chunksize)
10018                         vstate->dtvs_dynvars.dtds_chunksize = size;
10019         }
10020 }
10021 
10022 static void
10023 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10024 {
10025         int i, oldsvars, osz, nsz, otlocals, ntlocals;
10026         uint_t id;
10027 
10028         ASSERT(MUTEX_HELD(&dtrace_lock));
10029         ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
10030 
10031         for (i = 0; i < dp->dtdo_varlen; i++) {
10032                 dtrace_difv_t *v = &dp->dtdo_vartab[i];
10033                 dtrace_statvar_t *svar, ***svarp;
10034                 size_t dsize = 0;
10035                 uint8_t scope = v->dtdv_scope;
10036                 int *np;
10037 
10038                 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
10039                         continue;
10040 
10041                 id -= DIF_VAR_OTHER_UBASE;
10042 
10043                 switch (scope) {
10044                 case DIFV_SCOPE_THREAD:
10045                         while (id >= (otlocals = vstate->dtvs_ntlocals)) {
10046                                 dtrace_difv_t *tlocals;
10047 
10048                                 if ((ntlocals = (otlocals << 1)) == 0)
10049                                         ntlocals = 1;
10050 
10051                                 osz = otlocals * sizeof (dtrace_difv_t);
10052                                 nsz = ntlocals * sizeof (dtrace_difv_t);
10053 
10054                                 tlocals = kmem_zalloc(nsz, KM_SLEEP);
10055 
10056                                 if (osz != 0) {
10057                                         bcopy(vstate->dtvs_tlocals,
10058                                             tlocals, osz);
10059                                         kmem_free(vstate->dtvs_tlocals, osz);
10060                                 }
10061 
10062                                 vstate->dtvs_tlocals = tlocals;
10063                                 vstate->dtvs_ntlocals = ntlocals;
10064                         }
10065 
10066                         vstate->dtvs_tlocals[id] = *v;
10067                         continue;
10068 
10069                 case DIFV_SCOPE_LOCAL:
10070                         np = &vstate->dtvs_nlocals;
10071                         svarp = &vstate->dtvs_locals;
10072 
10073                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
10074                                 dsize = NCPU * (v->dtdv_type.dtdt_size +
10075                                     sizeof (uint64_t));
10076                         else
10077                                 dsize = NCPU * sizeof (uint64_t);
10078 
10079                         break;
10080 
10081                 case DIFV_SCOPE_GLOBAL:
10082                         np = &vstate->dtvs_nglobals;
10083                         svarp = &vstate->dtvs_globals;
10084 
10085                         if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
10086                                 dsize = v->dtdv_type.dtdt_size +
10087                                     sizeof (uint64_t);
10088 
10089                         break;
10090 
10091                 default:
10092                         ASSERT(0);
10093                 }
10094 
10095                 while (id >= (oldsvars = *np)) {
10096                         dtrace_statvar_t **statics;
10097                         int newsvars, oldsize, newsize;
10098 
10099                         if ((newsvars = (oldsvars << 1)) == 0)
10100                                 newsvars = 1;
10101 
10102                         oldsize = oldsvars * sizeof (dtrace_statvar_t *);
10103                         newsize = newsvars * sizeof (dtrace_statvar_t *);
10104 
10105                         statics = kmem_zalloc(newsize, KM_SLEEP);
10106 
10107                         if (oldsize != 0) {
10108                                 bcopy(*svarp, statics, oldsize);
10109                                 kmem_free(*svarp, oldsize);
10110                         }
10111 
10112                         *svarp = statics;
10113                         *np = newsvars;
10114                 }
10115 
10116                 if ((svar = (*svarp)[id]) == NULL) {
10117                         svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
10118                         svar->dtsv_var = *v;
10119 
10120                         if ((svar->dtsv_size = dsize) != 0) {
10121                                 svar->dtsv_data = (uint64_t)(uintptr_t)
10122                                     kmem_zalloc(dsize, KM_SLEEP);
10123                         }
10124 
10125                         (*svarp)[id] = svar;
10126                 }
10127 
10128                 svar->dtsv_refcnt++;
10129         }
10130 
10131         dtrace_difo_chunksize(dp, vstate);
10132         dtrace_difo_hold(dp);
10133 }
10134 
10135 static dtrace_difo_t *
10136 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10137 {
10138         dtrace_difo_t *new;
10139         size_t sz;
10140 
10141         ASSERT(dp->dtdo_buf != NULL);
10142         ASSERT(dp->dtdo_refcnt != 0);
10143 
10144         new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
10145 
10146         ASSERT(dp->dtdo_buf != NULL);
10147         sz = dp->dtdo_len * sizeof (dif_instr_t);
10148         new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
10149         bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
10150         new->dtdo_len = dp->dtdo_len;
10151 
10152         if (dp->dtdo_strtab != NULL) {
10153                 ASSERT(dp->dtdo_strlen != 0);
10154                 new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
10155                 bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
10156                 new->dtdo_strlen = dp->dtdo_strlen;
10157         }
10158 
10159         if (dp->dtdo_inttab != NULL) {
10160                 ASSERT(dp->dtdo_intlen != 0);
10161                 sz = dp->dtdo_intlen * sizeof (uint64_t);
10162                 new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
10163                 bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
10164                 new->dtdo_intlen = dp->dtdo_intlen;
10165         }
10166 
10167         if (dp->dtdo_vartab != NULL) {
10168                 ASSERT(dp->dtdo_varlen != 0);
10169                 sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
10170                 new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
10171                 bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
10172                 new->dtdo_varlen = dp->dtdo_varlen;
10173         }
10174 
10175         dtrace_difo_init(new, vstate);
10176         return (new);
10177 }
10178 
10179 static void
10180 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10181 {
10182         int i;
10183 
10184         ASSERT(dp->dtdo_refcnt == 0);
10185 
10186         for (i = 0; i < dp->dtdo_varlen; i++) {
10187                 dtrace_difv_t *v = &dp->dtdo_vartab[i];
10188                 dtrace_statvar_t *svar, **svarp;
10189                 uint_t id;
10190                 uint8_t scope = v->dtdv_scope;
10191                 int *np;
10192 
10193                 switch (scope) {
10194                 case DIFV_SCOPE_THREAD:
10195                         continue;
10196 
10197                 case DIFV_SCOPE_LOCAL:
10198                         np = &vstate->dtvs_nlocals;
10199                         svarp = vstate->dtvs_locals;
10200                         break;
10201 
10202                 case DIFV_SCOPE_GLOBAL:
10203                         np = &vstate->dtvs_nglobals;
10204                         svarp = vstate->dtvs_globals;
10205                         break;
10206 
10207                 default:
10208                         ASSERT(0);
10209                 }
10210 
10211                 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
10212                         continue;
10213 
10214                 id -= DIF_VAR_OTHER_UBASE;
10215                 ASSERT(id < *np);
10216 
10217                 svar = svarp[id];
10218                 ASSERT(svar != NULL);
10219                 ASSERT(svar->dtsv_refcnt > 0);
10220 
10221                 if (--svar->dtsv_refcnt > 0)
10222                         continue;
10223 
10224                 if (svar->dtsv_size != 0) {
10225                         ASSERT(svar->dtsv_data != NULL);
10226                         kmem_free((void *)(uintptr_t)svar->dtsv_data,
10227                             svar->dtsv_size);
10228                 }
10229 
10230                 kmem_free(svar, sizeof (dtrace_statvar_t));
10231                 svarp[id] = NULL;
10232         }
10233 
10234         kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
10235         kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
10236         kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
10237         kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
10238 
10239         kmem_free(dp, sizeof (dtrace_difo_t));
10240 }
10241 
10242 static void
10243 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10244 {
10245         int i;
10246 
10247         ASSERT(MUTEX_HELD(&dtrace_lock));
10248         ASSERT(dp->dtdo_refcnt != 0);
10249 
10250         for (i = 0; i < dp->dtdo_varlen; i++) {
10251                 dtrace_difv_t *v = &dp->dtdo_vartab[i];
10252 
10253                 if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
10254                         continue;
10255 
10256                 ASSERT(dtrace_vtime_references > 0);
10257                 if (--dtrace_vtime_references == 0)
10258                         dtrace_vtime_disable();
10259         }
10260 
10261         if (--dp->dtdo_refcnt == 0)
10262                 dtrace_difo_destroy(dp, vstate);
10263 }
10264 
10265 /*
10266  * DTrace Format Functions
10267  */
10268 static uint16_t
10269 dtrace_format_add(dtrace_state_t *state, char *str)
10270 {
10271         char *fmt, **new;
10272         uint16_t ndx, len = strlen(str) + 1;
10273 
10274         fmt = kmem_zalloc(len, KM_SLEEP);
10275         bcopy(str, fmt, len);
10276 
10277         for (ndx = 0; ndx < state->dts_nformats; ndx++) {
10278                 if (state->dts_formats[ndx] == NULL) {
10279                         state->dts_formats[ndx] = fmt;
10280                         return (ndx + 1);
10281                 }
10282         }
10283 
10284         if (state->dts_nformats == USHRT_MAX) {
10285                 /*
10286                  * This is only likely if a denial-of-service attack is being
10287                  * attempted.  As such, it's okay to fail silently here.
10288                  */
10289                 kmem_free(fmt, len);
10290                 return (0);
10291         }
10292 
10293         /*
10294          * For simplicity, we always resize the formats array to be exactly the
10295          * number of formats.
10296          */
10297         ndx = state->dts_nformats++;
10298         new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
10299 
10300         if (state->dts_formats != NULL) {
10301                 ASSERT(ndx != 0);
10302                 bcopy(state->dts_formats, new, ndx * sizeof (char *));
10303                 kmem_free(state->dts_formats, ndx * sizeof (char *));
10304         }
10305 
10306         state->dts_formats = new;
10307         state->dts_formats[ndx] = fmt;
10308 
10309         return (ndx + 1);
10310 }
10311 
10312 static void
10313 dtrace_format_remove(dtrace_state_t *state, uint16_t format)
10314 {
10315         char *fmt;
10316 
10317         ASSERT(state->dts_formats != NULL);
10318         ASSERT(format <= state->dts_nformats);
10319         ASSERT(state->dts_formats[format - 1] != NULL);
10320 
10321         fmt = state->dts_formats[format - 1];
10322         kmem_free(fmt, strlen(fmt) + 1);
10323         state->dts_formats[format - 1] = NULL;
10324 }
10325 
10326 static void
10327 dtrace_format_destroy(dtrace_state_t *state)
10328 {
10329         int i;
10330 
10331         if (state->dts_nformats == 0) {
10332                 ASSERT(state->dts_formats == NULL);
10333                 return;
10334         }
10335 
10336         ASSERT(state->dts_formats != NULL);
10337 
10338         for (i = 0; i < state->dts_nformats; i++) {
10339                 char *fmt = state->dts_formats[i];
10340 
10341                 if (fmt == NULL)
10342                         continue;
10343 
10344                 kmem_free(fmt, strlen(fmt) + 1);
10345         }
10346 
10347         kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
10348         state->dts_nformats = 0;
10349         state->dts_formats = NULL;
10350 }
10351 
10352 /*
10353  * DTrace Predicate Functions
10354  */
10355 static dtrace_predicate_t *
10356 dtrace_predicate_create(dtrace_difo_t *dp)
10357 {
10358         dtrace_predicate_t *pred;
10359 
10360         ASSERT(MUTEX_HELD(&dtrace_lock));
10361         ASSERT(dp->dtdo_refcnt != 0);
10362 
10363         pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
10364         pred->dtp_difo = dp;
10365         pred->dtp_refcnt = 1;
10366 
10367         if (!dtrace_difo_cacheable(dp))
10368                 return (pred);
10369 
10370         if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
10371                 /*
10372                  * This is only theoretically possible -- we have had 2^32
10373                  * cacheable predicates on this machine.  We cannot allow any
10374                  * more predicates to become cacheable:  as unlikely as it is,
10375                  * there may be a thread caching a (now stale) predicate cache
10376                  * ID. (N.B.: the temptation is being successfully resisted to
10377                  * have this cmn_err() "Holy shit -- we executed this code!")
10378                  */
10379                 return (pred);
10380         }
10381 
10382         pred->dtp_cacheid = dtrace_predcache_id++;
10383 
10384         return (pred);
10385 }
10386 
10387 static void
10388 dtrace_predicate_hold(dtrace_predicate_t *pred)
10389 {
10390         ASSERT(MUTEX_HELD(&dtrace_lock));
10391         ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
10392         ASSERT(pred->dtp_refcnt > 0);
10393 
10394         pred->dtp_refcnt++;
10395 }
10396 
10397 static void
10398 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
10399 {
10400         dtrace_difo_t *dp = pred->dtp_difo;
10401 
10402         ASSERT(MUTEX_HELD(&dtrace_lock));
10403         ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
10404         ASSERT(pred->dtp_refcnt > 0);
10405 
10406         if (--pred->dtp_refcnt == 0) {
10407                 dtrace_difo_release(pred->dtp_difo, vstate);
10408                 kmem_free(pred, sizeof (dtrace_predicate_t));
10409         }
10410 }
10411 
10412 /*
10413  * DTrace Action Description Functions
10414  */
10415 static dtrace_actdesc_t *
10416 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
10417     uint64_t uarg, uint64_t arg)
10418 {
10419         dtrace_actdesc_t *act;
10420 
10421         ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
10422             arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));
10423 
10424         act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
10425         act->dtad_kind = kind;
10426         act->dtad_ntuple = ntuple;
10427         act->dtad_uarg = uarg;
10428         act->dtad_arg = arg;
10429         act->dtad_refcnt = 1;
10430 
10431         return (act);
10432 }
10433 
10434 static void
10435 dtrace_actdesc_hold(dtrace_actdesc_t *act)
10436 {
10437         ASSERT(act->dtad_refcnt >= 1);
10438         act->dtad_refcnt++;
10439 }
10440 
10441 static void
10442 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
10443 {
10444         dtrace_actkind_t kind = act->dtad_kind;
10445         dtrace_difo_t *dp;
10446 
10447         ASSERT(act->dtad_refcnt >= 1);
10448 
10449         if (--act->dtad_refcnt != 0)
10450                 return;
10451 
10452         if ((dp = act->dtad_difo) != NULL)
10453                 dtrace_difo_release(dp, vstate);
10454 
10455         if (DTRACEACT_ISPRINTFLIKE(kind)) {
10456                 char *str = (char *)(uintptr_t)act->dtad_arg;
10457 
10458                 ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
10459                     (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
10460 
10461                 if (str != NULL)
10462                         kmem_free(str, strlen(str) + 1);
10463         }
10464 
10465         kmem_free(act, sizeof (dtrace_actdesc_t));
10466 }
10467 
10468 /*
10469  * DTrace ECB Functions
10470  */
10471 static dtrace_ecb_t *
10472 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
10473 {
10474         dtrace_ecb_t *ecb;
10475         dtrace_epid_t epid;
10476 
10477         ASSERT(MUTEX_HELD(&dtrace_lock));
10478 
10479         ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
10480         ecb->dte_predicate = NULL;
10481         ecb->dte_probe = probe;
10482 
10483         /*
10484          * The default size is the size of the default action: recording
10485          * the header.
10486          */
10487         ecb->dte_size = ecb->dte_needed = sizeof (dtrace_rechdr_t);
10488         ecb->dte_alignment = sizeof (dtrace_epid_t);
10489 
10490         epid = state->dts_epid++;
10491 
10492         if (epid - 1 >= state->dts_necbs) {
10493                 dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
10494                 int necbs = state->dts_necbs << 1;
10495 
10496                 ASSERT(epid == state->dts_necbs + 1);
10497 
10498                 if (necbs == 0) {
10499                         ASSERT(oecbs == NULL);
10500                         necbs = 1;
10501                 }
10502 
10503                 ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
10504 
10505                 if (oecbs != NULL)
10506                         bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
10507 
10508                 dtrace_membar_producer();
10509                 state->dts_ecbs = ecbs;
10510 
10511                 if (oecbs != NULL) {
10512                         /*
10513                          * If this state is active, we must dtrace_sync()
10514                          * before we can free the old dts_ecbs array:  we're
10515                          * coming in hot, and there may be active ring
10516                          * buffer processing (which indexes into the dts_ecbs
10517                          * array) on another CPU.
10518                          */
10519                         if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
10520                                 dtrace_sync();
10521 
10522                         kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
10523                 }
10524 
10525                 dtrace_membar_producer();
10526                 state->dts_necbs = necbs;
10527         }
10528 
10529         ecb->dte_state = state;
10530 
10531         ASSERT(state->dts_ecbs[epid - 1] == NULL);
10532         dtrace_membar_producer();
10533         state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
10534 
10535         return (ecb);
10536 }
10537 
10538 static int
10539 dtrace_ecb_enable(dtrace_ecb_t *ecb)
10540 {
10541         dtrace_probe_t *probe = ecb->dte_probe;
10542 
10543         ASSERT(MUTEX_HELD(&cpu_lock));
10544         ASSERT(MUTEX_HELD(&dtrace_lock));
10545         ASSERT(ecb->dte_next == NULL);
10546 
10547         if (probe == NULL) {
10548                 /*
10549                  * This is the NULL probe -- there's nothing to do.
10550                  */
10551                 return (0);
10552         }
10553 
10554         if (probe->dtpr_ecb == NULL) {
10555                 dtrace_provider_t *prov = probe->dtpr_provider;
10556 
10557                 /*
10558                  * We're the first ECB on this probe.
10559                  */
10560                 probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
10561 
10562                 if (ecb->dte_predicate != NULL)
10563                         probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
10564 
10565                 return (prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
10566                     probe->dtpr_id, probe->dtpr_arg));
10567         } else {
10568                 /*
10569                  * This probe is already active.  Swing the last pointer to
10570                  * point to the new ECB, and issue a dtrace_sync() to assure
10571                  * that all CPUs have seen the change.
10572                  */
10573                 ASSERT(probe->dtpr_ecb_last != NULL);
10574                 probe->dtpr_ecb_last->dte_next = ecb;
10575                 probe->dtpr_ecb_last = ecb;
10576                 probe->dtpr_predcache = 0;
10577 
10578                 dtrace_sync();
10579                 return (0);
10580         }
10581 }
10582 
10583 static int
10584 dtrace_ecb_resize(dtrace_ecb_t *ecb)
10585 {
10586         dtrace_action_t *act;
10587         uint32_t curneeded = UINT32_MAX;
10588         uint32_t aggbase = UINT32_MAX;
10589 
10590         /*
10591          * If we record anything, we always record the dtrace_rechdr_t.  (And
10592          * we always record it first.)
10593          */
10594         ecb->dte_size = sizeof (dtrace_rechdr_t);
10595         ecb->dte_alignment = sizeof (dtrace_epid_t);
10596 
10597         for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
10598                 dtrace_recdesc_t *rec = &act->dta_rec;
10599                 ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignment == 1);
10600 
10601                 ecb->dte_alignment = MAX(ecb->dte_alignment,
10602                     rec->dtrd_alignment);
10603 
10604                 if (DTRACEACT_ISAGG(act->dta_kind)) {
10605                         dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
10606 
10607                         ASSERT(rec->dtrd_size != 0);
10608                         ASSERT(agg->dtag_first != NULL);
10609                         ASSERT(act->dta_prev->dta_intuple);
10610                         ASSERT(aggbase != UINT32_MAX);
10611                         ASSERT(curneeded != UINT32_MAX);
10612 
10613                         agg->dtag_base = aggbase;
10614 
10615                         curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
10616                         rec->dtrd_offset = curneeded;
10617                         if (curneeded + rec->dtrd_size < curneeded)
10618                                 return (EINVAL);
10619                         curneeded += rec->dtrd_size;
10620                         ecb->dte_needed = MAX(ecb->dte_needed, curneeded);
10621 
10622                         aggbase = UINT32_MAX;
10623                         curneeded = UINT32_MAX;
10624                 } else if (act->dta_intuple) {
10625                         if (curneeded == UINT32_MAX) {
10626                                 /*
10627                                  * This is the first record in a tuple.  Align
10628                                  * curneeded to be at offset 4 in an 8-byte
10629                                  * aligned block.
10630                                  */
10631                                 ASSERT(act->dta_prev == NULL ||
10632                                     !act->dta_prev->dta_intuple);
10633                                 ASSERT3U(aggbase, ==, UINT32_MAX);
10634                                 curneeded = P2PHASEUP(ecb->dte_size,
10635                                     sizeof (uint64_t), sizeof (dtrace_aggid_t));
10636 
10637                                 aggbase = curneeded - sizeof (dtrace_aggid_t);
10638                                 ASSERT(IS_P2ALIGNED(aggbase,
10639                                     sizeof (uint64_t)));
10640                         }
10641                         curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
10642                         rec->dtrd_offset = curneeded;
10643                         if (curneeded + rec->dtrd_size < curneeded)
10644                                 return (EINVAL);
10645                         curneeded += rec->dtrd_size;
10646                 } else {
10647                         /* tuples must be followed by an aggregation */
10648                         ASSERT(act->dta_prev == NULL ||
10649                             !act->dta_prev->dta_intuple);
10650 
10651                         ecb->dte_size = P2ROUNDUP(ecb->dte_size,
10652                             rec->dtrd_alignment);
10653                         rec->dtrd_offset = ecb->dte_size;
10654                         if (ecb->dte_size + rec->dtrd_size < ecb->dte_size)
10655                                 return (EINVAL);
10656                         ecb->dte_size += rec->dtrd_size;
10657                         ecb->dte_needed = MAX(ecb->dte_needed, ecb->dte_size);
10658                 }
10659         }
10660 
10661         if ((act = ecb->dte_action) != NULL &&
10662             !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
10663             ecb->dte_size == sizeof (dtrace_rechdr_t)) {
10664                 /*
10665                  * If the size is still sizeof (dtrace_rechdr_t), then all
10666                  * actions store no data; set the size to 0.
10667                  */
10668                 ecb->dte_size = 0;
10669         }
10670 
10671         ecb->dte_size = P2ROUNDUP(ecb->dte_size, sizeof (dtrace_epid_t));
10672         ecb->dte_needed = P2ROUNDUP(ecb->dte_needed, (sizeof (dtrace_epid_t)));
10673         ecb->dte_state->dts_needed = MAX(ecb->dte_state->dts_needed,
10674             ecb->dte_needed);
10675         return (0);
10676 }
10677 
10678 static dtrace_action_t *
10679 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
10680 {
10681         dtrace_aggregation_t *agg;
10682         size_t size = sizeof (uint64_t);
10683         int ntuple = desc->dtad_ntuple;
10684         dtrace_action_t *act;
10685         dtrace_recdesc_t *frec;
10686         dtrace_aggid_t aggid;
10687         dtrace_state_t *state = ecb->dte_state;
10688 
10689         agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
10690         agg->dtag_ecb = ecb;
10691 
10692         ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
10693 
10694         switch (desc->dtad_kind) {
10695         case DTRACEAGG_MIN:
10696                 agg->dtag_initial = INT64_MAX;
10697                 agg->dtag_aggregate = dtrace_aggregate_min;
10698                 break;
10699 
10700         case DTRACEAGG_MAX:
10701                 agg->dtag_initial = INT64_MIN;
10702                 agg->dtag_aggregate = dtrace_aggregate_max;
10703                 break;
10704 
10705         case DTRACEAGG_COUNT:
10706                 agg->dtag_aggregate = dtrace_aggregate_count;
10707                 break;
10708 
10709         case DTRACEAGG_QUANTIZE:
10710                 agg->dtag_aggregate = dtrace_aggregate_quantize;
10711                 size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
10712                     sizeof (uint64_t);
10713                 break;
10714 
10715         case DTRACEAGG_LQUANTIZE: {
10716                 uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
10717                 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
10718 
10719                 agg->dtag_initial = desc->dtad_arg;
10720                 agg->dtag_aggregate = dtrace_aggregate_lquantize;
10721 
10722                 if (step == 0 || levels == 0)
10723                         goto err;
10724 
10725                 size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
10726                 break;
10727         }
10728 
10729         case DTRACEAGG_LLQUANTIZE: {
10730                 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg);
10731                 uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg);
10732                 uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg);
10733                 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg);
10734                 int64_t v;
10735 
10736                 agg->dtag_initial = desc->dtad_arg;
10737                 agg->dtag_aggregate = dtrace_aggregate_llquantize;
10738 
10739                 if (factor < 2 || low >= high || nsteps < factor)
10740                         goto err;
10741 
10742                 /*
10743                  * Now check that the number of steps evenly divides a power
10744                  * of the factor.  (This assures both integer bucket size and
10745                  * linearity within each magnitude.)
10746                  */
10747                 for (v = factor; v < nsteps; v *= factor)
10748                         continue;
10749 
10750                 if ((v % nsteps) || (nsteps % factor))
10751                         goto err;
10752 
10753                 size = (dtrace_aggregate_llquantize_bucket(factor,
10754                     low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t);
10755                 break;
10756         }
10757 
10758         case DTRACEAGG_AVG:
10759                 agg->dtag_aggregate = dtrace_aggregate_avg;
10760                 size = sizeof (uint64_t) * 2;
10761                 break;
10762 
10763         case DTRACEAGG_STDDEV:
10764                 agg->dtag_aggregate = dtrace_aggregate_stddev;
10765                 size = sizeof (uint64_t) * 4;
10766                 break;
10767 
10768         case DTRACEAGG_SUM:
10769                 agg->dtag_aggregate = dtrace_aggregate_sum;
10770                 break;
10771 
10772         default:
10773                 goto err;
10774         }
10775 
10776         agg->dtag_action.dta_rec.dtrd_size = size;
10777 
10778         if (ntuple == 0)
10779                 goto err;
10780 
10781         /*
10782          * We must make sure that we have enough actions for the n-tuple.
10783          */
10784         for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
10785                 if (DTRACEACT_ISAGG(act->dta_kind))
10786                         break;
10787 
10788                 if (--ntuple == 0) {
10789                         /*
10790                          * This is the action with which our n-tuple begins.
10791                          */
10792                         agg->dtag_first = act;
10793                         goto success;
10794                 }
10795         }
10796 
10797         /*
10798          * This n-tuple is short by ntuple elements.  Return failure.
10799          */
10800         ASSERT(ntuple != 0);
10801 err:
10802         kmem_free(agg, sizeof (dtrace_aggregation_t));
10803         return (NULL);
10804 
10805 success:
10806         /*
10807          * If the last action in the tuple has a size of zero, it's actually
10808          * an expression argument for the aggregating action.
10809          */
10810         ASSERT(ecb->dte_action_last != NULL);
10811         act = ecb->dte_action_last;
10812 
10813         if (act->dta_kind == DTRACEACT_DIFEXPR) {
10814                 ASSERT(act->dta_difo != NULL);
10815 
10816                 if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
10817                         agg->dtag_hasarg = 1;
10818         }
10819 
10820         /*
10821          * We need to allocate an id for this aggregation.
10822          */
10823         aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
10824             VM_BESTFIT | VM_SLEEP);
10825 
10826         if (aggid - 1 >= state->dts_naggregations) {
10827                 dtrace_aggregation_t **oaggs = state->dts_aggregations;
10828                 dtrace_aggregation_t **aggs;
10829                 int naggs = state->dts_naggregations << 1;
10830                 int onaggs = state->dts_naggregations;
10831 
10832                 ASSERT(aggid == state->dts_naggregations + 1);
10833 
10834                 if (naggs == 0) {
10835                         ASSERT(oaggs == NULL);
10836                         naggs = 1;
10837                 }
10838 
10839                 aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
10840 
10841                 if (oaggs != NULL) {
10842                         bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
10843                         kmem_free(oaggs, onaggs * sizeof (*aggs));
10844                 }
10845 
10846                 state->dts_aggregations = aggs;
10847                 state->dts_naggregations = naggs;
10848         }
10849 
10850         ASSERT(state->dts_aggregations[aggid - 1] == NULL);
10851         state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
10852 
10853         frec = &agg->dtag_first->dta_rec;
10854         if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
10855                 frec->dtrd_alignment = sizeof (dtrace_aggid_t);
10856 
10857         for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
10858                 ASSERT(!act->dta_intuple);
10859                 act->dta_intuple = 1;
10860         }
10861 
10862         return (&agg->dtag_action);
10863 }
10864 
10865 static void
10866 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
10867 {
10868         dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
10869         dtrace_state_t *state = ecb->dte_state;
10870         dtrace_aggid_t aggid = agg->dtag_id;
10871 
10872         ASSERT(DTRACEACT_ISAGG(act->dta_kind));
10873         vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
10874 
10875         ASSERT(state->dts_aggregations[aggid - 1] == agg);
10876         state->dts_aggregations[aggid - 1] = NULL;
10877 
10878         kmem_free(agg, sizeof (dtrace_aggregation_t));
10879 }
10880 
10881 static int
10882 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
10883 {
10884         dtrace_action_t *action, *last;
10885         dtrace_difo_t *dp = desc->dtad_difo;
10886         uint32_t size = 0, align = sizeof (uint8_t), mask;
10887         uint16_t format = 0;
10888         dtrace_recdesc_t *rec;
10889         dtrace_state_t *state = ecb->dte_state;
10890         dtrace_optval_t *opt = state->dts_options, nframes, strsize;
10891         uint64_t arg = desc->dtad_arg;
10892 
10893         ASSERT(MUTEX_HELD(&dtrace_lock));
10894         ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
10895 
10896         if (DTRACEACT_ISAGG(desc->dtad_kind)) {
10897                 /*
10898                  * If this is an aggregating action, there must be neither
10899                  * a speculate nor a commit on the action chain.
10900                  */
10901                 dtrace_action_t *act;
10902 
10903                 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
10904                         if (act->dta_kind == DTRACEACT_COMMIT)
10905                                 return (EINVAL);
10906 
10907                         if (act->dta_kind == DTRACEACT_SPECULATE)
10908                                 return (EINVAL);
10909                 }
10910 
10911                 action = dtrace_ecb_aggregation_create(ecb, desc);
10912 
10913                 if (action == NULL)
10914                         return (EINVAL);
10915         } else {
10916                 if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
10917                     (desc->dtad_kind == DTRACEACT_DIFEXPR &&
10918                     dp != NULL && dp->dtdo_destructive)) {
10919                         state->dts_destructive = 1;
10920                 }
10921 
10922                 switch (desc->dtad_kind) {
10923                 case DTRACEACT_PRINTF:
10924                 case DTRACEACT_PRINTA:
10925                 case DTRACEACT_SYSTEM:
10926                 case DTRACEACT_FREOPEN:
10927                 case DTRACEACT_DIFEXPR:
10928                         /*
10929                          * We know that our arg is a string -- turn it into a
10930                          * format.
10931                          */
10932                         if (arg == NULL) {
10933                                 ASSERT(desc->dtad_kind == DTRACEACT_PRINTA ||
10934                                     desc->dtad_kind == DTRACEACT_DIFEXPR);
10935                                 format = 0;
10936                         } else {
10937                                 ASSERT(arg != NULL);
10938                                 ASSERT(arg > KERNELBASE);
10939                                 format = dtrace_format_add(state,
10940                                     (char *)(uintptr_t)arg);
10941                         }
10942 
10943                         /*FALLTHROUGH*/
10944                 case DTRACEACT_LIBACT:
10945                 case DTRACEACT_TRACEMEM:
10946                 case DTRACEACT_TRACEMEM_DYNSIZE:
10947                         if (dp == NULL)
10948                                 return (EINVAL);
10949 
10950                         if ((size = dp->dtdo_rtype.dtdt_size) != 0)
10951                                 break;
10952 
10953                         if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
10954                                 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10955                                         return (EINVAL);
10956 
10957                                 size = opt[DTRACEOPT_STRSIZE];
10958                         }
10959 
10960                         break;
10961 
10962                 case DTRACEACT_STACK:
10963                         if ((nframes = arg) == 0) {
10964                                 nframes = opt[DTRACEOPT_STACKFRAMES];
10965                                 ASSERT(nframes > 0);
10966                                 arg = nframes;
10967                         }
10968 
10969                         size = nframes * sizeof (pc_t);
10970                         break;
10971 
10972                 case DTRACEACT_JSTACK:
10973                         if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
10974                                 strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
10975 
10976                         if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
10977                                 nframes = opt[DTRACEOPT_JSTACKFRAMES];
10978 
10979                         arg = DTRACE_USTACK_ARG(nframes, strsize);
10980 
10981                         /*FALLTHROUGH*/
10982                 case DTRACEACT_USTACK:
10983                         if (desc->dtad_kind != DTRACEACT_JSTACK &&
10984                             (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
10985                                 strsize = DTRACE_USTACK_STRSIZE(arg);
10986                                 nframes = opt[DTRACEOPT_USTACKFRAMES];
10987                                 ASSERT(nframes > 0);
10988                                 arg = DTRACE_USTACK_ARG(nframes, strsize);
10989                         }
10990 
10991                         /*
10992                          * Save a slot for the pid.
10993                          */
10994                         size = (nframes + 1) * sizeof (uint64_t);
10995                         size += DTRACE_USTACK_STRSIZE(arg);
10996                         size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
10997 
10998                         break;
10999 
11000                 case DTRACEACT_SYM:
11001                 case DTRACEACT_MOD:
11002                         if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
11003                             sizeof (uint64_t)) ||
11004                             (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11005                                 return (EINVAL);
11006                         break;
11007 
11008                 case DTRACEACT_USYM:
11009                 case DTRACEACT_UMOD:
11010                 case DTRACEACT_UADDR:
11011                         if (dp == NULL ||
11012                             (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
11013                             (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11014                                 return (EINVAL);
11015 
11016                         /*
11017                          * We have a slot for the pid, plus a slot for the
11018                          * argument.  To keep things simple (aligned with
11019                          * bitness-neutral sizing), we store each as a 64-bit
11020                          * quantity.
11021                          */
11022                         size = 2 * sizeof (uint64_t);
11023                         break;
11024 
11025                 case DTRACEACT_STOP:
11026                 case DTRACEACT_BREAKPOINT:
11027                 case DTRACEACT_PANIC:
11028                         break;
11029 
11030                 case DTRACEACT_CHILL:
11031                 case DTRACEACT_DISCARD:
11032                 case DTRACEACT_RAISE:
11033                         if (dp == NULL)
11034                                 return (EINVAL);
11035                         break;
11036 
11037                 case DTRACEACT_EXIT:
11038                         if (dp == NULL ||
11039                             (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
11040                             (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11041                                 return (EINVAL);
11042                         break;
11043 
11044                 case DTRACEACT_SPECULATE:
11045                         if (ecb->dte_size > sizeof (dtrace_rechdr_t))
11046                                 return (EINVAL);
11047 
11048                         if (dp == NULL)
11049                                 return (EINVAL);
11050 
11051                         state->dts_speculates = 1;
11052                         break;
11053 
11054                 case DTRACEACT_COMMIT: {
11055                         dtrace_action_t *act = ecb->dte_action;
11056 
11057                         for (; act != NULL; act = act->dta_next) {
11058                                 if (act->dta_kind == DTRACEACT_COMMIT)
11059                                         return (EINVAL);
11060                         }
11061 
11062                         if (dp == NULL)
11063                                 return (EINVAL);
11064                         break;
11065                 }
11066 
11067                 default:
11068                         return (EINVAL);
11069                 }
11070 
11071                 if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
11072                         /*
11073                          * If this is a data-storing action or a speculate,
11074                          * we must be sure that there isn't a commit on the
11075                          * action chain.
11076                          */
11077                         dtrace_action_t *act = ecb->dte_action;
11078 
11079                         for (; act != NULL; act = act->dta_next) {
11080                                 if (act->dta_kind == DTRACEACT_COMMIT)
11081                                         return (EINVAL);
11082                         }
11083                 }
11084 
11085                 action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
11086                 action->dta_rec.dtrd_size = size;
11087         }
11088 
11089         action->dta_refcnt = 1;
11090         rec = &action->dta_rec;
11091         size = rec->dtrd_size;
11092 
11093         for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
11094                 if (!(size & mask)) {
11095                         align = mask + 1;
11096                         break;
11097                 }
11098         }
11099 
11100         action->dta_kind = desc->dtad_kind;
11101 
11102         if ((action->dta_difo = dp) != NULL)
11103                 dtrace_difo_hold(dp);
11104 
11105         rec->dtrd_action = action->dta_kind;
11106         rec->dtrd_arg = arg;
11107         rec->dtrd_uarg = desc->dtad_uarg;
11108         rec->dtrd_alignment = (uint16_t)align;
11109         rec->dtrd_format = format;
11110 
11111         if ((last = ecb->dte_action_last) != NULL) {
11112                 ASSERT(ecb->dte_action != NULL);
11113                 action->dta_prev = last;
11114                 last->dta_next = action;
11115         } else {
11116                 ASSERT(ecb->dte_action == NULL);
11117                 ecb->dte_action = action;
11118         }
11119 
11120         ecb->dte_action_last = action;
11121 
11122         return (0);
11123 }
11124 
11125 static void
11126 dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
11127 {
11128         dtrace_action_t *act = ecb->dte_action, *next;
11129         dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
11130         dtrace_difo_t *dp;
11131         uint16_t format;
11132 
11133         if (act != NULL && act->dta_refcnt > 1) {
11134                 ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
11135                 act->dta_refcnt--;
11136         } else {
11137                 for (; act != NULL; act = next) {
11138                         next = act->dta_next;
11139                         ASSERT(next != NULL || act == ecb->dte_action_last);
11140                         ASSERT(act->dta_refcnt == 1);
11141 
11142                         if ((format = act->dta_rec.dtrd_format) != 0)
11143                                 dtrace_format_remove(ecb->dte_state, format);
11144 
11145                         if ((dp = act->dta_difo) != NULL)
11146                                 dtrace_difo_release(dp, vstate);
11147 
11148                         if (DTRACEACT_ISAGG(act->dta_kind)) {
11149                                 dtrace_ecb_aggregation_destroy(ecb, act);
11150                         } else {
11151                                 kmem_free(act, sizeof (dtrace_action_t));
11152                         }
11153                 }
11154         }
11155 
11156         ecb->dte_action = NULL;
11157         ecb->dte_action_last = NULL;
11158         ecb->dte_size = 0;
11159 }
11160 
11161 static void
11162 dtrace_ecb_disable(dtrace_ecb_t *ecb)
11163 {
11164         /*
11165          * We disable the ECB by removing it from its probe.
11166          */
11167         dtrace_ecb_t *pecb, *prev = NULL;
11168         dtrace_probe_t *probe = ecb->dte_probe;
11169 
11170         ASSERT(MUTEX_HELD(&dtrace_lock));
11171 
11172         if (probe == NULL) {
11173                 /*
11174                  * This is the NULL probe; there is nothing to disable.
11175                  */
11176                 return;
11177         }
11178 
11179         for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
11180                 if (pecb == ecb)
11181                         break;
11182                 prev = pecb;
11183         }
11184 
11185         ASSERT(pecb != NULL);
11186 
11187         if (prev == NULL) {
11188                 probe->dtpr_ecb = ecb->dte_next;
11189         } else {
11190                 prev->dte_next = ecb->dte_next;
11191         }
11192 
11193         if (ecb == probe->dtpr_ecb_last) {
11194                 ASSERT(ecb->dte_next == NULL);
11195                 probe->dtpr_ecb_last = prev;
11196         }
11197 
11198         /*
11199          * The ECB has been disconnected from the probe; now sync to assure
11200          * that all CPUs have seen the change before returning.
11201          */
11202         dtrace_sync();
11203 
11204         if (probe->dtpr_ecb == NULL) {
11205                 /*
11206                  * That was the last ECB on the probe; clear the predicate
11207                  * cache ID for the probe, disable it and sync one more time
11208                  * to assure that we'll never hit it again.
11209                  */
11210                 dtrace_provider_t *prov = probe->dtpr_provider;
11211 
11212                 ASSERT(ecb->dte_next == NULL);
11213                 ASSERT(probe->dtpr_ecb_last == NULL);
11214                 probe->dtpr_predcache = DTRACE_CACHEIDNONE;
11215                 prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
11216                     probe->dtpr_id, probe->dtpr_arg);
11217                 dtrace_sync();
11218         } else {
11219                 /*
11220                  * There is at least one ECB remaining on the probe.  If there
11221                  * is _exactly_ one, set the probe's predicate cache ID to be
11222                  * the predicate cache ID of the remaining ECB.
11223                  */
11224                 ASSERT(probe->dtpr_ecb_last != NULL);
11225                 ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
11226 
11227                 if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
11228                         dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
11229 
11230                         ASSERT(probe->dtpr_ecb->dte_next == NULL);
11231 
11232                         if (p != NULL)
11233                                 probe->dtpr_predcache = p->dtp_cacheid;
11234                 }
11235 
11236                 ecb->dte_next = NULL;
11237         }
11238 }
11239 
11240 static void
11241 dtrace_ecb_destroy(dtrace_ecb_t *ecb)
11242 {
11243         dtrace_state_t *state = ecb->dte_state;
11244         dtrace_vstate_t *vstate = &state->dts_vstate;
11245         dtrace_predicate_t *pred;
11246         dtrace_epid_t epid = ecb->dte_epid;
11247 
11248         ASSERT(MUTEX_HELD(&dtrace_lock));
11249         ASSERT(ecb->dte_next == NULL);
11250         ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
11251 
11252         if ((pred = ecb->dte_predicate) != NULL)
11253                 dtrace_predicate_release(pred, vstate);
11254 
11255         dtrace_ecb_action_remove(ecb);
11256 
11257         ASSERT(state->dts_ecbs[epid - 1] == ecb);
11258         state->dts_ecbs[epid - 1] = NULL;
11259 
11260         kmem_free(ecb, sizeof (dtrace_ecb_t));
11261 }
11262 
11263 static dtrace_ecb_t *
11264 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
11265     dtrace_enabling_t *enab)
11266 {
11267         dtrace_ecb_t *ecb;
11268         dtrace_predicate_t *pred;
11269         dtrace_actdesc_t *act;
11270         dtrace_provider_t *prov;
11271         dtrace_ecbdesc_t *desc = enab->dten_current;
11272 
11273         ASSERT(MUTEX_HELD(&dtrace_lock));
11274         ASSERT(state != NULL);
11275 
11276         ecb = dtrace_ecb_add(state, probe);
11277         ecb->dte_uarg = desc->dted_uarg;
11278 
11279         if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
11280                 dtrace_predicate_hold(pred);
11281                 ecb->dte_predicate = pred;
11282         }
11283 
11284         if (probe != NULL) {
11285                 /*
11286                  * If the provider shows more leg than the consumer is old
11287                  * enough to see, we need to enable the appropriate implicit
11288                  * predicate bits to prevent the ecb from activating at
11289                  * revealing times.
11290                  *
11291                  * Providers specifying DTRACE_PRIV_USER at register time
11292                  * are stating that they need the /proc-style privilege
11293                  * model to be enforced, and this is what DTRACE_COND_OWNER
11294                  * and DTRACE_COND_ZONEOWNER will then do at probe time.
11295                  */
11296                 prov = probe->dtpr_provider;
11297                 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
11298                     (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
11299                         ecb->dte_cond |= DTRACE_COND_OWNER;
11300 
11301                 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
11302                     (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
11303                         ecb->dte_cond |= DTRACE_COND_ZONEOWNER;
11304 
11305                 /*
11306                  * If the provider shows us kernel innards and the user
11307                  * is lacking sufficient privilege, enable the
11308                  * DTRACE_COND_USERMODE implicit predicate.
11309                  */
11310                 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
11311                     (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
11312                         ecb->dte_cond |= DTRACE_COND_USERMODE;
11313         }
11314 
11315         if (dtrace_ecb_create_cache != NULL) {
11316                 /*
11317                  * If we have a cached ecb, we'll use its action list instead
11318                  * of creating our own (saving both time and space).
11319                  */
11320                 dtrace_ecb_t *cached = dtrace_ecb_create_cache;
11321                 dtrace_action_t *act = cached->dte_action;
11322 
11323                 if (act != NULL) {
11324                         ASSERT(act->dta_refcnt > 0);
11325                         act->dta_refcnt++;
11326                         ecb->dte_action = act;
11327                         ecb->dte_action_last = cached->dte_action_last;
11328                         ecb->dte_needed = cached->dte_needed;
11329                         ecb->dte_size = cached->dte_size;
11330                         ecb->dte_alignment = cached->dte_alignment;
11331                 }
11332 
11333                 return (ecb);
11334         }
11335 
11336         for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
11337                 if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
11338                         dtrace_ecb_destroy(ecb);
11339                         return (NULL);
11340                 }
11341         }
11342 
11343         if ((enab->dten_error = dtrace_ecb_resize(ecb)) != 0) {
11344                 dtrace_ecb_destroy(ecb);
11345                 return (NULL);
11346         }
11347 
11348         return (dtrace_ecb_create_cache = ecb);
11349 }
11350 
11351 static int
11352 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
11353 {
11354         dtrace_ecb_t *ecb;
11355         dtrace_enabling_t *enab = arg;
11356         dtrace_state_t *state = enab->dten_vstate->dtvs_state;
11357 
11358         ASSERT(state != NULL);
11359 
11360         if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
11361                 /*
11362                  * This probe was created in a generation for which this
11363                  * enabling has previously created ECBs; we don't want to
11364                  * enable it again, so just kick out.
11365                  */
11366                 return (DTRACE_MATCH_NEXT);
11367         }
11368 
11369         if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
11370                 return (DTRACE_MATCH_DONE);
11371 
11372         if (dtrace_ecb_enable(ecb) < 0)
11373                 return (DTRACE_MATCH_FAIL);
11374 
11375         return (DTRACE_MATCH_NEXT);
11376 }
11377 
11378 static dtrace_ecb_t *
11379 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
11380 {
11381         dtrace_ecb_t *ecb;
11382 
11383         ASSERT(MUTEX_HELD(&dtrace_lock));
11384 
11385         if (id == 0 || id > state->dts_necbs)
11386                 return (NULL);
11387 
11388         ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
11389         ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
11390 
11391         return (state->dts_ecbs[id - 1]);
11392 }
11393 
11394 static dtrace_aggregation_t *
11395 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
11396 {
11397         dtrace_aggregation_t *agg;
11398 
11399         ASSERT(MUTEX_HELD(&dtrace_lock));
11400 
11401         if (id == 0 || id > state->dts_naggregations)
11402                 return (NULL);
11403 
11404         ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
11405         ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
11406             agg->dtag_id == id);
11407 
11408         return (state->dts_aggregations[id - 1]);
11409 }
11410 
11411 /*
11412  * DTrace Buffer Functions
11413  *
11414  * The following functions manipulate DTrace buffers.  Most of these functions
11415  * are called in the context of establishing or processing consumer state;
11416  * exceptions are explicitly noted.
11417  */
11418 
11419 /*
11420  * Note:  called from cross call context.  This function switches the two
11421  * buffers on a given CPU.  The atomicity of this operation is assured by
11422  * disabling interrupts while the actual switch takes place; the disabling of
11423  * interrupts serializes the execution with any execution of dtrace_probe() on
11424  * the same CPU.
11425  */
11426 static void
11427 dtrace_buffer_switch(dtrace_buffer_t *buf)
11428 {
11429         caddr_t tomax = buf->dtb_tomax;
11430         caddr_t xamot = buf->dtb_xamot;
11431         dtrace_icookie_t cookie;
11432         hrtime_t now;
11433 
11434         ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
11435         ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
11436 
11437         cookie = dtrace_interrupt_disable();
11438         now = dtrace_gethrtime();
11439         buf->dtb_tomax = xamot;
11440         buf->dtb_xamot = tomax;
11441         buf->dtb_xamot_drops = buf->dtb_drops;
11442         buf->dtb_xamot_offset = buf->dtb_offset;
11443         buf->dtb_xamot_errors = buf->dtb_errors;
11444         buf->dtb_xamot_flags = buf->dtb_flags;
11445         buf->dtb_offset = 0;
11446         buf->dtb_drops = 0;
11447         buf->dtb_errors = 0;
11448         buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
11449         buf->dtb_interval = now - buf->dtb_switched;
11450         buf->dtb_switched = now;
11451         dtrace_interrupt_enable(cookie);
11452 }
11453 
11454 /*
11455  * Note:  called from cross call context.  This function activates a buffer
11456  * on a CPU.  As with dtrace_buffer_switch(), the atomicity of the operation
11457  * is guaranteed by the disabling of interrupts.
11458  */
11459 static void
11460 dtrace_buffer_activate(dtrace_state_t *state)
11461 {
11462         dtrace_buffer_t *buf;
11463         dtrace_icookie_t cookie = dtrace_interrupt_disable();
11464 
11465         buf = &state->dts_buffer[CPU->cpu_id];
11466 
11467         if (buf->dtb_tomax != NULL) {
11468                 /*
11469                  * We might like to assert that the buffer is marked inactive,
11470                  * but this isn't necessarily true:  the buffer for the CPU
11471                  * that processes the BEGIN probe has its buffer activated
11472                  * manually.  In this case, we take the (harmless) action
11473                  * re-clearing the bit INACTIVE bit.
11474                  */
11475                 buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
11476         }
11477 
11478         dtrace_interrupt_enable(cookie);
11479 }
11480 
11481 static int
11482 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
11483     processorid_t cpu, int *factor)
11484 {
11485         cpu_t *cp;
11486         dtrace_buffer_t *buf;
11487         int allocated = 0, desired = 0;
11488 
11489         ASSERT(MUTEX_HELD(&cpu_lock));
11490         ASSERT(MUTEX_HELD(&dtrace_lock));
11491 
11492         *factor = 1;
11493 
11494         if (size > dtrace_nonroot_maxsize &&
11495             !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
11496                 return (EFBIG);
11497 
11498         cp = cpu_list;
11499 
11500         do {
11501                 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
11502                         continue;
11503 
11504                 buf = &bufs[cp->cpu_id];
11505 
11506                 /*
11507                  * If there is already a buffer allocated for this CPU, it
11508                  * is only possible that this is a DR event.  In this case,
11509                  * the buffer size must match our specified size.
11510                  */
11511                 if (buf->dtb_tomax != NULL) {
11512                         ASSERT(buf->dtb_size == size);
11513                         continue;
11514                 }
11515 
11516                 ASSERT(buf->dtb_xamot == NULL);
11517 
11518                 if ((buf->dtb_tomax = kmem_zalloc(size,
11519                     KM_NOSLEEP | KM_NORMALPRI)) == NULL)
11520                         goto err;
11521 
11522                 buf->dtb_size = size;
11523                 buf->dtb_flags = flags;
11524                 buf->dtb_offset = 0;
11525                 buf->dtb_drops = 0;
11526 
11527                 if (flags & DTRACEBUF_NOSWITCH)
11528                         continue;
11529 
11530                 if ((buf->dtb_xamot = kmem_zalloc(size,
11531                     KM_NOSLEEP | KM_NORMALPRI)) == NULL)
11532                         goto err;
11533         } while ((cp = cp->cpu_next) != cpu_list);
11534 
11535         return (0);
11536 
11537 err:
11538         cp = cpu_list;
11539 
11540         do {
11541                 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
11542                         continue;
11543 
11544                 buf = &bufs[cp->cpu_id];
11545                 desired += 2;
11546 
11547                 if (buf->dtb_xamot != NULL) {
11548                         ASSERT(buf->dtb_tomax != NULL);
11549                         ASSERT(buf->dtb_size == size);
11550                         kmem_free(buf->dtb_xamot, size);
11551                         allocated++;
11552                 }
11553 
11554                 if (buf->dtb_tomax != NULL) {
11555                         ASSERT(buf->dtb_size == size);
11556                         kmem_free(buf->dtb_tomax, size);
11557                         allocated++;
11558                 }
11559 
11560                 buf->dtb_tomax = NULL;
11561                 buf->dtb_xamot = NULL;
11562                 buf->dtb_size = 0;
11563         } while ((cp = cp->cpu_next) != cpu_list);
11564 
11565         *factor = desired / (allocated > 0 ? allocated : 1);
11566 
11567         return (ENOMEM);
11568 }
11569 
11570 /*
11571  * Note:  called from probe context.  This function just increments the drop
11572  * count on a buffer.  It has been made a function to allow for the
11573  * possibility of understanding the source of mysterious drop counts.  (A
11574  * problem for which one may be particularly disappointed that DTrace cannot
11575  * be used to understand DTrace.)
11576  */
11577 static void
11578 dtrace_buffer_drop(dtrace_buffer_t *buf)
11579 {
11580         buf->dtb_drops++;
11581 }
11582 
11583 /*
11584  * Note:  called from probe context.  This function is called to reserve space
11585  * in a buffer.  If mstate is non-NULL, sets the scratch base and size in the
11586  * mstate.  Returns the new offset in the buffer, or a negative value if an
11587  * error has occurred.
11588  */
11589 static intptr_t
11590 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
11591     dtrace_state_t *state, dtrace_mstate_t *mstate)
11592 {
11593         intptr_t offs = buf->dtb_offset, soffs;
11594         intptr_t woffs;
11595         caddr_t tomax;
11596         size_t total;
11597 
11598         if (buf->dtb_flags & DTRACEBUF_INACTIVE)
11599                 return (-1);
11600 
11601         if ((tomax = buf->dtb_tomax) == NULL) {
11602                 dtrace_buffer_drop(buf);
11603                 return (-1);
11604         }
11605 
11606         if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
11607                 while (offs & (align - 1)) {
11608                         /*
11609                          * Assert that our alignment is off by a number which
11610                          * is itself sizeof (uint32_t) aligned.
11611                          */
11612                         ASSERT(!((align - (offs & (align - 1))) &
11613                             (sizeof (uint32_t) - 1)));
11614                         DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
11615                         offs += sizeof (uint32_t);
11616                 }
11617 
11618                 if ((soffs = offs + needed) > buf->dtb_size) {
11619                         dtrace_buffer_drop(buf);
11620                         return (-1);
11621                 }
11622 
11623                 if (mstate == NULL)
11624                         return (offs);
11625 
11626                 mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
11627                 mstate->dtms_scratch_size = buf->dtb_size - soffs;
11628                 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
11629 
11630                 return (offs);
11631         }
11632 
11633         if (buf->dtb_flags & DTRACEBUF_FILL) {
11634                 if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
11635                     (buf->dtb_flags & DTRACEBUF_FULL))
11636                         return (-1);
11637                 goto out;
11638         }
11639 
11640         total = needed + (offs & (align - 1));
11641 
11642         /*
11643          * For a ring buffer, life is quite a bit more complicated.  Before
11644          * we can store any padding, we need to adjust our wrapping offset.
11645          * (If we've never before wrapped or we're not about to, no adjustment
11646          * is required.)
11647          */
11648         if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
11649             offs + total > buf->dtb_size) {
11650                 woffs = buf->dtb_xamot_offset;
11651 
11652                 if (offs + total > buf->dtb_size) {
11653                         /*
11654                          * We can't fit in the end of the buffer.  First, a
11655                          * sanity check that we can fit in the buffer at all.
11656                          */
11657                         if (total > buf->dtb_size) {
11658                                 dtrace_buffer_drop(buf);
11659                                 return (-1);
11660                         }
11661 
11662                         /*
11663                          * We're going to be storing at the top of the buffer,
11664                          * so now we need to deal with the wrapped offset.  We
11665                          * only reset our wrapped offset to 0 if it is
11666                          * currently greater than the current offset.  If it
11667                          * is less than the current offset, it is because a
11668                          * previous allocation induced a wrap -- but the
11669                          * allocation didn't subsequently take the space due
11670                          * to an error or false predicate evaluation.  In this
11671                          * case, we'll just leave the wrapped offset alone: if
11672                          * the wrapped offset hasn't been advanced far enough
11673                          * for this allocation, it will be adjusted in the
11674                          * lower loop.
11675                          */
11676                         if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
11677                                 if (woffs >= offs)
11678                                         woffs = 0;
11679                         } else {
11680                                 woffs = 0;
11681                         }
11682 
11683                         /*
11684                          * Now we know that we're going to be storing to the
11685                          * top of the buffer and that there is room for us
11686                          * there.  We need to clear the buffer from the current
11687                          * offset to the end (there may be old gunk there).
11688                          */
11689                         while (offs < buf->dtb_size)
11690                                 tomax[offs++] = 0;
11691 
11692                         /*
11693                          * We need to set our offset to zero.  And because we
11694                          * are wrapping, we need to set the bit indicating as
11695                          * much.  We can also adjust our needed space back
11696                          * down to the space required by the ECB -- we know
11697                          * that the top of the buffer is aligned.
11698                          */
11699                         offs = 0;
11700                         total = needed;
11701                         buf->dtb_flags |= DTRACEBUF_WRAPPED;
11702                 } else {
11703                         /*
11704                          * There is room for us in the buffer, so we simply
11705                          * need to check the wrapped offset.
11706                          */
11707                         if (woffs < offs) {
11708                                 /*
11709                                  * The wrapped offset is less than the offset.
11710                                  * This can happen if we allocated buffer space
11711                                  * that induced a wrap, but then we didn't
11712                                  * subsequently take the space due to an error
11713                                  * or false predicate evaluation.  This is
11714                                  * okay; we know that _this_ allocation isn't
11715                                  * going to induce a wrap.  We still can't
11716                                  * reset the wrapped offset to be zero,
11717                                  * however: the space may have been trashed in
11718                                  * the previous failed probe attempt.  But at
11719                                  * least the wrapped offset doesn't need to
11720                                  * be adjusted at all...
11721                                  */
11722                                 goto out;
11723                         }
11724                 }
11725 
11726                 while (offs + total > woffs) {
11727                         dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
11728                         size_t size;
11729 
11730                         if (epid == DTRACE_EPIDNONE) {
11731                                 size = sizeof (uint32_t);
11732                         } else {
11733                                 ASSERT3U(epid, <=, state->dts_necbs);
11734                                 ASSERT(state->dts_ecbs[epid - 1] != NULL);
11735 
11736                                 size = state->dts_ecbs[epid - 1]->dte_size;
11737                         }
11738 
11739                         ASSERT(woffs + size <= buf->dtb_size);
11740                         ASSERT(size != 0);
11741 
11742                         if (woffs + size == buf->dtb_size) {
11743                                 /*
11744                                  * We've reached the end of the buffer; we want
11745                                  * to set the wrapped offset to 0 and break
11746                                  * out.  However, if the offs is 0, then we're
11747                                  * in a strange edge-condition:  the amount of
11748                                  * space that we want to reserve plus the size
11749                                  * of the record that we're overwriting is
11750                                  * greater than the size of the buffer.  This
11751                                  * is problematic because if we reserve the
11752                                  * space but subsequently don't consume it (due
11753                                  * to a failed predicate or error) the wrapped
11754                                  * offset will be 0 -- yet the EPID at offset 0
11755                                  * will not be committed.  This situation is
11756                                  * relatively easy to deal with:  if we're in
11757                                  * this case, the buffer is indistinguishable
11758                                  * from one that hasn't wrapped; we need only
11759                                  * finish the job by clearing the wrapped bit,
11760                                  * explicitly setting the offset to be 0, and
11761                                  * zero'ing out the old data in the buffer.
11762                                  */
11763                                 if (offs == 0) {
11764                                         buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
11765                                         buf->dtb_offset = 0;
11766                                         woffs = total;
11767 
11768                                         while (woffs < buf->dtb_size)
11769                                                 tomax[woffs++] = 0;
11770                                 }
11771 
11772                                 woffs = 0;
11773                                 break;
11774                         }
11775 
11776                         woffs += size;
11777                 }
11778 
11779                 /*
11780                  * We have a wrapped offset.  It may be that the wrapped offset
11781                  * has become zero -- that's okay.
11782                  */
11783                 buf->dtb_xamot_offset = woffs;
11784         }
11785 
11786 out:
11787         /*
11788          * Now we can plow the buffer with any necessary padding.
11789          */
11790         while (offs & (align - 1)) {
11791                 /*
11792                  * Assert that our alignment is off by a number which
11793                  * is itself sizeof (uint32_t) aligned.
11794                  */
11795                 ASSERT(!((align - (offs & (align - 1))) &
11796                     (sizeof (uint32_t) - 1)));
11797                 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
11798                 offs += sizeof (uint32_t);
11799         }
11800 
11801         if (buf->dtb_flags & DTRACEBUF_FILL) {
11802                 if (offs + needed > buf->dtb_size - state->dts_reserve) {
11803                         buf->dtb_flags |= DTRACEBUF_FULL;
11804                         return (-1);
11805                 }
11806         }
11807 
11808         if (mstate == NULL)
11809                 return (offs);
11810 
11811         /*
11812          * For ring buffers and fill buffers, the scratch space is always
11813          * the inactive buffer.
11814          */
11815         mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
11816         mstate->dtms_scratch_size = buf->dtb_size;
11817         mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
11818 
11819         return (offs);
11820 }
11821 
11822 static void
11823 dtrace_buffer_polish(dtrace_buffer_t *buf)
11824 {
11825         ASSERT(buf->dtb_flags & DTRACEBUF_RING);
11826         ASSERT(MUTEX_HELD(&dtrace_lock));
11827 
11828         if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
11829                 return;
11830 
11831         /*
11832          * We need to polish the ring buffer.  There are three cases:
11833          *
11834          * - The first (and presumably most common) is that there is no gap
11835          *   between the buffer offset and the wrapped offset.  In this case,
11836          *   there is nothing in the buffer that isn't valid data; we can
11837          *   mark the buffer as polished and return.
11838          *
11839          * - The second (less common than the first but still more common
11840          *   than the third) is that there is a gap between the buffer offset
11841          *   and the wrapped offset, and the wrapped offset is larger than the
11842          *   buffer offset.  This can happen because of an alignment issue, or
11843          *   can happen because of a call to dtrace_buffer_reserve() that
11844          *   didn't subsequently consume the buffer space.  In this case,
11845          *   we need to zero the data from the buffer offset to the wrapped
11846          *   offset.
11847          *
11848          * - The third (and least common) is that there is a gap between the
11849          *   buffer offset and the wrapped offset, but the wrapped offset is
11850          *   _less_ than the buffer offset.  This can only happen because a
11851          *   call to dtrace_buffer_reserve() induced a wrap, but the space
11852          *   was not subsequently consumed.  In this case, we need to zero the
11853          *   space from the offset to the end of the buffer _and_ from the
11854          *   top of the buffer to the wrapped offset.
11855          */
11856         if (buf->dtb_offset < buf->dtb_xamot_offset) {
11857                 bzero(buf->dtb_tomax + buf->dtb_offset,
11858                     buf->dtb_xamot_offset - buf->dtb_offset);
11859         }
11860 
11861         if (buf->dtb_offset > buf->dtb_xamot_offset) {
11862                 bzero(buf->dtb_tomax + buf->dtb_offset,
11863                     buf->dtb_size - buf->dtb_offset);
11864                 bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
11865         }
11866 }
11867 
11868 /*
11869  * This routine determines if data generated at the specified time has likely
11870  * been entirely consumed at user-level.  This routine is called to determine
11871  * if an ECB on a defunct probe (but for an active enabling) can be safely
11872  * disabled and destroyed.
11873  */
11874 static int
11875 dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when)
11876 {
11877         int i;
11878 
11879         for (i = 0; i < NCPU; i++) {
11880                 dtrace_buffer_t *buf = &bufs[i];
11881 
11882                 if (buf->dtb_size == 0)
11883                         continue;
11884 
11885                 if (buf->dtb_flags & DTRACEBUF_RING)
11886                         return (0);
11887 
11888                 if (!buf->dtb_switched && buf->dtb_offset != 0)
11889                         return (0);
11890 
11891                 if (buf->dtb_switched - buf->dtb_interval < when)
11892                         return (0);
11893         }
11894 
11895         return (1);
11896 }
11897 
11898 static void
11899 dtrace_buffer_free(dtrace_buffer_t *bufs)
11900 {
11901         int i;
11902 
11903         for (i = 0; i < NCPU; i++) {
11904                 dtrace_buffer_t *buf = &bufs[i];
11905 
11906                 if (buf->dtb_tomax == NULL) {
11907                         ASSERT(buf->dtb_xamot == NULL);
11908                         ASSERT(buf->dtb_size == 0);
11909                         continue;
11910                 }
11911 
11912                 if (buf->dtb_xamot != NULL) {
11913                         ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
11914                         kmem_free(buf->dtb_xamot, buf->dtb_size);
11915                 }
11916 
11917                 kmem_free(buf->dtb_tomax, buf->dtb_size);
11918                 buf->dtb_size = 0;
11919                 buf->dtb_tomax = NULL;
11920                 buf->dtb_xamot = NULL;
11921         }
11922 }
11923 
11924 /*
11925  * DTrace Enabling Functions
11926  */
11927 static dtrace_enabling_t *
11928 dtrace_enabling_create(dtrace_vstate_t *vstate)
11929 {
11930         dtrace_enabling_t *enab;
11931 
11932         enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
11933         enab->dten_vstate = vstate;
11934 
11935         return (enab);
11936 }
11937 
11938 static void
11939 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
11940 {
11941         dtrace_ecbdesc_t **ndesc;
11942         size_t osize, nsize;
11943 
11944         /*
11945          * We can't add to enablings after we've enabled them, or after we've
11946          * retained them.
11947          */
11948         ASSERT(enab->dten_probegen == 0);
11949         ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11950 
11951         if (enab->dten_ndesc < enab->dten_maxdesc) {
11952                 enab->dten_desc[enab->dten_ndesc++] = ecb;
11953                 return;
11954         }
11955 
11956         osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11957 
11958         if (enab->dten_maxdesc == 0) {
11959                 enab->dten_maxdesc = 1;
11960         } else {
11961                 enab->dten_maxdesc <<= 1;
11962         }
11963 
11964         ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
11965 
11966         nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11967         ndesc = kmem_zalloc(nsize, KM_SLEEP);
11968         bcopy(enab->dten_desc, ndesc, osize);
11969         kmem_free(enab->dten_desc, osize);
11970 
11971         enab->dten_desc = ndesc;
11972         enab->dten_desc[enab->dten_ndesc++] = ecb;
11973 }
11974 
11975 static void
11976 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
11977     dtrace_probedesc_t *pd)
11978 {
11979         dtrace_ecbdesc_t *new;
11980         dtrace_predicate_t *pred;
11981         dtrace_actdesc_t *act;
11982 
11983         /*
11984          * We're going to create a new ECB description that matches the
11985          * specified ECB in every way, but has the specified probe description.
11986          */
11987         new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
11988 
11989         if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
11990                 dtrace_predicate_hold(pred);
11991 
11992         for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
11993                 dtrace_actdesc_hold(act);
11994 
11995         new->dted_action = ecb->dted_action;
11996         new->dted_pred = ecb->dted_pred;
11997         new->dted_probe = *pd;
11998         new->dted_uarg = ecb->dted_uarg;
11999 
12000         dtrace_enabling_add(enab, new);
12001 }
12002 
12003 static void
12004 dtrace_enabling_dump(dtrace_enabling_t *enab)
12005 {
12006         int i;
12007 
12008         for (i = 0; i < enab->dten_ndesc; i++) {
12009                 dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
12010 
12011                 cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
12012                     desc->dtpd_provider, desc->dtpd_mod,
12013                     desc->dtpd_func, desc->dtpd_name);
12014         }
12015 }
12016 
12017 static void
12018 dtrace_enabling_destroy(dtrace_enabling_t *enab)
12019 {
12020         int i;
12021         dtrace_ecbdesc_t *ep;
12022         dtrace_vstate_t *vstate = enab->dten_vstate;
12023 
12024         ASSERT(MUTEX_HELD(&dtrace_lock));
12025 
12026         for (i = 0; i < enab->dten_ndesc; i++) {
12027                 dtrace_actdesc_t *act, *next;
12028                 dtrace_predicate_t *pred;
12029 
12030                 ep = enab->dten_desc[i];
12031 
12032                 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
12033                         dtrace_predicate_release(pred, vstate);
12034 
12035                 for (act = ep->dted_action; act != NULL; act = next) {
12036                         next = act->dtad_next;
12037                         dtrace_actdesc_release(act, vstate);
12038                 }
12039 
12040                 kmem_free(ep, sizeof (dtrace_ecbdesc_t));
12041         }
12042 
12043         kmem_free(enab->dten_desc,
12044             enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
12045 
12046         /*
12047          * If this was a retained enabling, decrement the dts_nretained count
12048          * and take it off of the dtrace_retained list.
12049          */
12050         if (enab->dten_prev != NULL || enab->dten_next != NULL ||
12051             dtrace_retained == enab) {
12052                 ASSERT(enab->dten_vstate->dtvs_state != NULL);
12053                 ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
12054                 enab->dten_vstate->dtvs_state->dts_nretained--;
12055                 dtrace_retained_gen++;
12056         }
12057 
12058         if (enab->dten_prev == NULL) {
12059                 if (dtrace_retained == enab) {
12060                         dtrace_retained = enab->dten_next;
12061 
12062                         if (dtrace_retained != NULL)
12063                                 dtrace_retained->dten_prev = NULL;
12064                 }
12065         } else {
12066                 ASSERT(enab != dtrace_retained);
12067                 ASSERT(dtrace_retained != NULL);
12068                 enab->dten_prev->dten_next = enab->dten_next;
12069         }
12070 
12071         if (enab->dten_next != NULL) {
12072                 ASSERT(dtrace_retained != NULL);
12073                 enab->dten_next->dten_prev = enab->dten_prev;
12074         }
12075 
12076         kmem_free(enab, sizeof (dtrace_enabling_t));
12077 }
12078 
12079 static int
12080 dtrace_enabling_retain(dtrace_enabling_t *enab)
12081 {
12082         dtrace_state_t *state;
12083 
12084         ASSERT(MUTEX_HELD(&dtrace_lock));
12085         ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
12086         ASSERT(enab->dten_vstate != NULL);
12087 
12088         state = enab->dten_vstate->dtvs_state;
12089         ASSERT(state != NULL);
12090 
12091         /*
12092          * We only allow each state to retain dtrace_retain_max enablings.
12093          */
12094         if (state->dts_nretained >= dtrace_retain_max)
12095                 return (ENOSPC);
12096 
12097         state->dts_nretained++;
12098         dtrace_retained_gen++;
12099 
12100         if (dtrace_retained == NULL) {
12101                 dtrace_retained = enab;
12102                 return (0);
12103         }
12104 
12105         enab->dten_next = dtrace_retained;
12106         dtrace_retained->dten_prev = enab;
12107         dtrace_retained = enab;
12108 
12109         return (0);
12110 }
12111 
12112 static int
12113 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
12114     dtrace_probedesc_t *create)
12115 {
12116         dtrace_enabling_t *new, *enab;
12117         int found = 0, err = ENOENT;
12118 
12119         ASSERT(MUTEX_HELD(&dtrace_lock));
12120         ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
12121         ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
12122         ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
12123         ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
12124 
12125         new = dtrace_enabling_create(&state->dts_vstate);
12126 
12127         /*
12128          * Iterate over all retained enablings, looking for enablings that
12129          * match the specified state.
12130          */
12131         for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
12132                 int i;
12133 
12134                 /*
12135                  * dtvs_state can only be NULL for helper enablings -- and
12136                  * helper enablings can't be retained.
12137                  */
12138                 ASSERT(enab->dten_vstate->dtvs_state != NULL);
12139 
12140                 if (enab->dten_vstate->dtvs_state != state)
12141                         continue;
12142 
12143                 /*
12144                  * Now iterate over each probe description; we're looking for
12145                  * an exact match to the specified probe description.
12146                  */
12147                 for (i = 0; i < enab->dten_ndesc; i++) {
12148                         dtrace_ecbdesc_t *ep = enab->dten_desc[i];
12149                         dtrace_probedesc_t *pd = &ep->dted_probe;
12150 
12151                         if (strcmp(pd->dtpd_provider, match->dtpd_provider))
12152                                 continue;
12153 
12154                         if (strcmp(pd->dtpd_mod, match->dtpd_mod))
12155                                 continue;
12156 
12157                         if (strcmp(pd->dtpd_func, match->dtpd_func))
12158                                 continue;
12159 
12160                         if (strcmp(pd->dtpd_name, match->dtpd_name))
12161                                 continue;
12162 
12163                         /*
12164                          * We have a winning probe!  Add it to our growing
12165                          * enabling.
12166                          */
12167                         found = 1;
12168                         dtrace_enabling_addlike(new, ep, create);
12169                 }
12170         }
12171 
12172         if (!found || (err = dtrace_enabling_retain(new)) != 0) {
12173                 dtrace_enabling_destroy(new);
12174                 return (err);
12175         }
12176 
12177         return (0);
12178 }
12179 
12180 static void
12181 dtrace_enabling_retract(dtrace_state_t *state)
12182 {
12183         dtrace_enabling_t *enab, *next;
12184 
12185         ASSERT(MUTEX_HELD(&dtrace_lock));
12186 
12187         /*
12188          * Iterate over all retained enablings, destroy the enablings retained
12189          * for the specified state.
12190          */
12191         for (enab = dtrace_retained; enab != NULL; enab = next) {
12192                 next = enab->dten_next;
12193 
12194                 /*
12195                  * dtvs_state can only be NULL for helper enablings -- and
12196                  * helper enablings can't be retained.
12197                  */
12198                 ASSERT(enab->dten_vstate->dtvs_state != NULL);
12199 
12200                 if (enab->dten_vstate->dtvs_state == state) {
12201                         ASSERT(state->dts_nretained > 0);
12202                         dtrace_enabling_destroy(enab);
12203                 }
12204         }
12205 
12206         ASSERT(state->dts_nretained == 0);
12207 }
12208 
12209 static int
12210 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
12211 {
12212         int i = 0;
12213         int total_matched = 0, matched = 0;
12214 
12215         ASSERT(MUTEX_HELD(&cpu_lock));
12216         ASSERT(MUTEX_HELD(&dtrace_lock));
12217 
12218         for (i = 0; i < enab->dten_ndesc; i++) {
12219                 dtrace_ecbdesc_t *ep = enab->dten_desc[i];
12220 
12221                 enab->dten_current = ep;
12222                 enab->dten_error = 0;
12223 
12224                 /*
12225                  * If a provider failed to enable a probe then get out and
12226                  * let the consumer know we failed.
12227                  */
12228                 if ((matched = dtrace_probe_enable(&ep->dted_probe, enab)) < 0)
12229                         return (EBUSY);
12230 
12231                 total_matched += matched;
12232 
12233                 if (enab->dten_error != 0) {
12234                         /*
12235                          * If we get an error half-way through enabling the
12236                          * probes, we kick out -- perhaps with some number of
12237                          * them enabled.  Leaving enabled probes enabled may
12238                          * be slightly confusing for user-level, but we expect
12239                          * that no one will attempt to actually drive on in
12240                          * the face of such errors.  If this is an anonymous
12241                          * enabling (indicated with a NULL nmatched pointer),
12242                          * we cmn_err() a message.  We aren't expecting to
12243                          * get such an error -- such as it can exist at all,
12244                          * it would be a result of corrupted DOF in the driver
12245                          * properties.
12246                          */
12247                         if (nmatched == NULL) {
12248                                 cmn_err(CE_WARN, "dtrace_enabling_match() "
12249                                     "error on %p: %d", (void *)ep,
12250                                     enab->dten_error);
12251                         }
12252 
12253                         return (enab->dten_error);
12254                 }
12255         }
12256 
12257         enab->dten_probegen = dtrace_probegen;
12258         if (nmatched != NULL)
12259                 *nmatched = total_matched;
12260 
12261         return (0);
12262 }
12263 
12264 static void
12265 dtrace_enabling_matchall(void)
12266 {
12267         dtrace_enabling_t *enab;
12268 
12269         mutex_enter(&cpu_lock);
12270         mutex_enter(&dtrace_lock);
12271 
12272         /*
12273          * Iterate over all retained enablings to see if any probes match
12274          * against them.  We only perform this operation on enablings for which
12275          * we have sufficient permissions by virtue of being in the global zone
12276          * or in the same zone as the DTrace client.  Because we can be called
12277          * after dtrace_detach() has been called, we cannot assert that there
12278          * are retained enablings.  We can safely load from dtrace_retained,
12279          * however:  the taskq_destroy() at the end of dtrace_detach() will
12280          * block pending our completion.
12281          */
12282         for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
12283                 dtrace_cred_t *dcr = &enab->dten_vstate->dtvs_state->dts_cred;
12284                 cred_t *cr = dcr->dcr_cred;
12285                 zoneid_t zone = cr != NULL ? crgetzoneid(cr) : 0;
12286 
12287                 if ((dcr->dcr_visible & DTRACE_CRV_ALLZONE) || (cr != NULL &&
12288                     (zone == GLOBAL_ZONEID || getzoneid() == zone)))
12289                         (void) dtrace_enabling_match(enab, NULL);
12290         }
12291 
12292         mutex_exit(&dtrace_lock);
12293         mutex_exit(&cpu_lock);
12294 }
12295 
12296 /*
12297  * If an enabling is to be enabled without having matched probes (that is, if
12298  * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
12299  * enabling must be _primed_ by creating an ECB for every ECB description.
12300  * This must be done to assure that we know the number of speculations, the
12301  * number of aggregations, the minimum buffer size needed, etc. before we
12302  * transition out of DTRACE_ACTIVITY_INACTIVE.  To do this without actually
12303  * enabling any probes, we create ECBs for every ECB decription, but with a
12304  * NULL probe -- which is exactly what this function does.
12305  */
12306 static void
12307 dtrace_enabling_prime(dtrace_state_t *state)
12308 {
12309         dtrace_enabling_t *enab;
12310         int i;
12311 
12312         for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
12313                 ASSERT(enab->dten_vstate->dtvs_state != NULL);
12314 
12315                 if (enab->dten_vstate->dtvs_state != state)
12316                         continue;
12317 
12318                 /*
12319                  * We don't want to prime an enabling more than once, lest
12320                  * we allow a malicious user to induce resource exhaustion.
12321                  * (The ECBs that result from priming an enabling aren't
12322                  * leaked -- but they also aren't deallocated until the
12323                  * consumer state is destroyed.)
12324                  */
12325                 if (enab->dten_primed)
12326                         continue;
12327 
12328                 for (i = 0; i < enab->dten_ndesc; i++) {
12329                         enab->dten_current = enab->dten_desc[i];
12330                         (void) dtrace_probe_enable(NULL, enab);
12331                 }
12332 
12333                 enab->dten_primed = 1;
12334         }
12335 }
12336 
12337 /*
12338  * Called to indicate that probes should be provided due to retained
12339  * enablings.  This is implemented in terms of dtrace_probe_provide(), but it
12340  * must take an initial lap through the enabling calling the dtps_provide()
12341  * entry point explicitly to allow for autocreated probes.
12342  */
12343 static void
12344 dtrace_enabling_provide(dtrace_provider_t *prv)
12345 {
12346         int i, all = 0;
12347         dtrace_probedesc_t desc;
12348         dtrace_genid_t gen;
12349 
12350         ASSERT(MUTEX_HELD(&dtrace_lock));
12351         ASSERT(MUTEX_HELD(&dtrace_provider_lock));
12352 
12353         if (prv == NULL) {
12354                 all = 1;
12355                 prv = dtrace_provider;
12356         }
12357 
12358         do {
12359                 dtrace_enabling_t *enab;
12360                 void *parg = prv->dtpv_arg;
12361 
12362 retry:
12363                 gen = dtrace_retained_gen;
12364                 for (enab = dtrace_retained; enab != NULL;
12365                     enab = enab->dten_next) {
12366                         for (i = 0; i < enab->dten_ndesc; i++) {
12367                                 desc = enab->dten_desc[i]->dted_probe;
12368                                 mutex_exit(&dtrace_lock);
12369                                 prv->dtpv_pops.dtps_provide(parg, &desc);
12370                                 mutex_enter(&dtrace_lock);
12371                                 /*
12372                                  * Process the retained enablings again if
12373                                  * they have changed while we weren't holding
12374                                  * dtrace_lock.
12375                                  */
12376                                 if (gen != dtrace_retained_gen)
12377                                         goto retry;
12378                         }
12379                 }
12380         } while (all && (prv = prv->dtpv_next) != NULL);
12381 
12382         mutex_exit(&dtrace_lock);
12383         dtrace_probe_provide(NULL, all ? NULL : prv);
12384         mutex_enter(&dtrace_lock);
12385 }
12386 
12387 /*
12388  * Called to reap ECBs that are attached to probes from defunct providers.
12389  */
12390 static void
12391 dtrace_enabling_reap(void)
12392 {
12393         dtrace_provider_t *prov;
12394         dtrace_probe_t *probe;
12395         dtrace_ecb_t *ecb;
12396         hrtime_t when;
12397         int i;
12398 
12399         mutex_enter(&cpu_lock);
12400         mutex_enter(&dtrace_lock);
12401 
12402         for (i = 0; i < dtrace_nprobes; i++) {
12403                 if ((probe = dtrace_probes[i]) == NULL)
12404                         continue;
12405 
12406                 if (probe->dtpr_ecb == NULL)
12407                         continue;
12408 
12409                 prov = probe->dtpr_provider;
12410 
12411                 if ((when = prov->dtpv_defunct) == 0)
12412                         continue;
12413 
12414                 /*
12415                  * We have ECBs on a defunct provider:  we want to reap these
12416                  * ECBs to allow the provider to unregister.  The destruction
12417                  * of these ECBs must be done carefully:  if we destroy the ECB
12418                  * and the consumer later wishes to consume an EPID that
12419                  * corresponds to the destroyed ECB (and if the EPID metadata
12420                  * has not been previously consumed), the consumer will abort
12421                  * processing on the unknown EPID.  To reduce (but not, sadly,
12422                  * eliminate) the possibility of this, we will only destroy an
12423                  * ECB for a defunct provider if, for the state that
12424                  * corresponds to the ECB:
12425                  *
12426                  *  (a) There is no speculative tracing (which can effectively
12427                  *      cache an EPID for an arbitrary amount of time).
12428                  *
12429                  *  (b) The principal buffers have been switched twice since the
12430                  *      provider became defunct.
12431                  *
12432                  *  (c) The aggregation buffers are of zero size or have been
12433                  *      switched twice since the provider became defunct.
12434                  *
12435                  * We use dts_speculates to determine (a) and call a function
12436                  * (dtrace_buffer_consumed()) to determine (b) and (c).  Note
12437                  * that as soon as we've been unable to destroy one of the ECBs
12438                  * associated with the probe, we quit trying -- reaping is only
12439                  * fruitful in as much as we can destroy all ECBs associated
12440                  * with the defunct provider's probes.
12441                  */
12442                 while ((ecb = probe->dtpr_ecb) != NULL) {
12443                         dtrace_state_t *state = ecb->dte_state;
12444                         dtrace_buffer_t *buf = state->dts_buffer;
12445                         dtrace_buffer_t *aggbuf = state->dts_aggbuffer;
12446 
12447                         if (state->dts_speculates)
12448                                 break;
12449 
12450                         if (!dtrace_buffer_consumed(buf, when))
12451                                 break;
12452 
12453                         if (!dtrace_buffer_consumed(aggbuf, when))
12454                                 break;
12455 
12456                         dtrace_ecb_disable(ecb);
12457                         ASSERT(probe->dtpr_ecb != ecb);
12458                         dtrace_ecb_destroy(ecb);
12459                 }
12460         }
12461 
12462         mutex_exit(&dtrace_lock);
12463         mutex_exit(&cpu_lock);
12464 }
12465 
12466 /*
12467  * DTrace DOF Functions
12468  */
12469 /*ARGSUSED*/
12470 static void
12471 dtrace_dof_error(dof_hdr_t *dof, const char *str)
12472 {
12473         if (dtrace_err_verbose)
12474                 cmn_err(CE_WARN, "failed to process DOF: %s", str);
12475 
12476 #ifdef DTRACE_ERRDEBUG
12477         dtrace_errdebug(str);
12478 #endif
12479 }
12480 
12481 /*
12482  * Create DOF out of a currently enabled state.  Right now, we only create
12483  * DOF containing the run-time options -- but this could be expanded to create
12484  * complete DOF representing the enabled state.
12485  */
12486 static dof_hdr_t *
12487 dtrace_dof_create(dtrace_state_t *state)
12488 {
12489         dof_hdr_t *dof;
12490         dof_sec_t *sec;
12491         dof_optdesc_t *opt;
12492         int i, len = sizeof (dof_hdr_t) +
12493             roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
12494             sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
12495 
12496         ASSERT(MUTEX_HELD(&dtrace_lock));
12497 
12498         dof = kmem_zalloc(len, KM_SLEEP);
12499         dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
12500         dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
12501         dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
12502         dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
12503 
12504         dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
12505         dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
12506         dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
12507         dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
12508         dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
12509         dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
12510 
12511         dof->dofh_flags = 0;
12512         dof->dofh_hdrsize = sizeof (dof_hdr_t);
12513         dof->dofh_secsize = sizeof (dof_sec_t);
12514         dof->dofh_secnum = 1;        /* only DOF_SECT_OPTDESC */
12515         dof->dofh_secoff = sizeof (dof_hdr_t);
12516         dof->dofh_loadsz = len;
12517         dof->dofh_filesz = len;
12518         dof->dofh_pad = 0;
12519 
12520         /*
12521          * Fill in the option section header...
12522          */
12523         sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
12524         sec->dofs_type = DOF_SECT_OPTDESC;
12525         sec->dofs_align = sizeof (uint64_t);
12526         sec->dofs_flags = DOF_SECF_LOAD;
12527         sec->dofs_entsize = sizeof (dof_optdesc_t);
12528 
12529         opt = (dof_optdesc_t *)((uintptr_t)sec +
12530             roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
12531 
12532         sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
12533         sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
12534 
12535         for (i = 0; i < DTRACEOPT_MAX; i++) {
12536                 opt[i].dofo_option = i;
12537                 opt[i].dofo_strtab = DOF_SECIDX_NONE;
12538                 opt[i].dofo_value = state->dts_options[i];
12539         }
12540 
12541         return (dof);
12542 }
12543 
12544 static dof_hdr_t *
12545 dtrace_dof_copyin(uintptr_t uarg, int *errp)
12546 {
12547         dof_hdr_t hdr, *dof;
12548 
12549         ASSERT(!MUTEX_HELD(&dtrace_lock));
12550 
12551         /*
12552          * First, we're going to copyin() the sizeof (dof_hdr_t).
12553          */
12554         if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
12555                 dtrace_dof_error(NULL, "failed to copyin DOF header");
12556                 *errp = EFAULT;
12557                 return (NULL);
12558         }
12559 
12560         /*
12561          * Now we'll allocate the entire DOF and copy it in -- provided
12562          * that the length isn't outrageous.
12563          */
12564         if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
12565                 dtrace_dof_error(&hdr, "load size exceeds maximum");
12566                 *errp = E2BIG;
12567                 return (NULL);
12568         }
12569 
12570         if (hdr.dofh_loadsz < sizeof (hdr)) {
12571                 dtrace_dof_error(&hdr, "invalid load size");
12572                 *errp = EINVAL;
12573                 return (NULL);
12574         }
12575 
12576         dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
12577 
12578         if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 ||
12579             dof->dofh_loadsz != hdr.dofh_loadsz) {
12580                 kmem_free(dof, hdr.dofh_loadsz);
12581                 *errp = EFAULT;
12582                 return (NULL);
12583         }
12584 
12585         return (dof);
12586 }
12587 
12588 static dof_hdr_t *
12589 dtrace_dof_property(const char *name)
12590 {
12591         uchar_t *buf;
12592         uint64_t loadsz;
12593         unsigned int len, i;
12594         dof_hdr_t *dof;
12595 
12596         /*
12597          * Unfortunately, array of values in .conf files are always (and
12598          * only) interpreted to be integer arrays.  We must read our DOF
12599          * as an integer array, and then squeeze it into a byte array.
12600          */
12601         if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
12602             (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
12603                 return (NULL);
12604 
12605         for (i = 0; i < len; i++)
12606                 buf[i] = (uchar_t)(((int *)buf)[i]);
12607 
12608         if (len < sizeof (dof_hdr_t)) {
12609                 ddi_prop_free(buf);
12610                 dtrace_dof_error(NULL, "truncated header");
12611                 return (NULL);
12612         }
12613 
12614         if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
12615                 ddi_prop_free(buf);
12616                 dtrace_dof_error(NULL, "truncated DOF");
12617                 return (NULL);
12618         }
12619 
12620         if (loadsz >= dtrace_dof_maxsize) {
12621                 ddi_prop_free(buf);
12622                 dtrace_dof_error(NULL, "oversized DOF");
12623                 return (NULL);
12624         }
12625 
12626         dof = kmem_alloc(loadsz, KM_SLEEP);
12627         bcopy(buf, dof, loadsz);
12628         ddi_prop_free(buf);
12629 
12630         return (dof);
12631 }
12632 
12633 static void
12634 dtrace_dof_destroy(dof_hdr_t *dof)
12635 {
12636         kmem_free(dof, dof->dofh_loadsz);
12637 }
12638 
12639 /*
12640  * Return the dof_sec_t pointer corresponding to a given section index.  If the
12641  * index is not valid, dtrace_dof_error() is called and NULL is returned.  If
12642  * a type other than DOF_SECT_NONE is specified, the header is checked against
12643  * this type and NULL is returned if the types do not match.
12644  */
12645 static dof_sec_t *
12646 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
12647 {
12648         dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
12649             ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
12650 
12651         if (i >= dof->dofh_secnum) {
12652                 dtrace_dof_error(dof, "referenced section index is invalid");
12653                 return (NULL);
12654         }
12655 
12656         if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
12657                 dtrace_dof_error(dof, "referenced section is not loadable");
12658                 return (NULL);
12659         }
12660 
12661         if (type != DOF_SECT_NONE && type != sec->dofs_type) {
12662                 dtrace_dof_error(dof, "referenced section is the wrong type");
12663                 return (NULL);
12664         }
12665 
12666         return (sec);
12667 }
12668 
12669 static dtrace_probedesc_t *
12670 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
12671 {
12672         dof_probedesc_t *probe;
12673         dof_sec_t *strtab;
12674         uintptr_t daddr = (uintptr_t)dof;
12675         uintptr_t str;
12676         size_t size;
12677 
12678         if (sec->dofs_type != DOF_SECT_PROBEDESC) {
12679                 dtrace_dof_error(dof, "invalid probe section");
12680                 return (NULL);
12681         }
12682 
12683         if (sec->dofs_align != sizeof (dof_secidx_t)) {
12684                 dtrace_dof_error(dof, "bad alignment in probe description");
12685                 return (NULL);
12686         }
12687 
12688         if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
12689                 dtrace_dof_error(dof, "truncated probe description");
12690                 return (NULL);
12691         }
12692 
12693         probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
12694         strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
12695 
12696         if (strtab == NULL)
12697                 return (NULL);
12698 
12699         str = daddr + strtab->dofs_offset;
12700         size = strtab->dofs_size;
12701 
12702         if (probe->dofp_provider >= strtab->dofs_size) {
12703                 dtrace_dof_error(dof, "corrupt probe provider");
12704                 return (NULL);
12705         }
12706 
12707         (void) strncpy(desc->dtpd_provider,
12708             (char *)(str + probe->dofp_provider),
12709             MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
12710 
12711         if (probe->dofp_mod >= strtab->dofs_size) {
12712                 dtrace_dof_error(dof, "corrupt probe module");
12713                 return (NULL);
12714         }
12715 
12716         (void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
12717             MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
12718 
12719         if (probe->dofp_func >= strtab->dofs_size) {
12720                 dtrace_dof_error(dof, "corrupt probe function");
12721                 return (NULL);
12722         }
12723 
12724         (void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
12725             MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
12726 
12727         if (probe->dofp_name >= strtab->dofs_size) {
12728                 dtrace_dof_error(dof, "corrupt probe name");
12729                 return (NULL);
12730         }
12731 
12732         (void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
12733             MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
12734 
12735         return (desc);
12736 }
12737 
12738 static dtrace_difo_t *
12739 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12740     cred_t *cr)
12741 {
12742         dtrace_difo_t *dp;
12743         size_t ttl = 0;
12744         dof_difohdr_t *dofd;
12745         uintptr_t daddr = (uintptr_t)dof;
12746         size_t max = dtrace_difo_maxsize;
12747         int i, l, n;
12748 
12749         static const struct {
12750                 int section;
12751                 int bufoffs;
12752                 int lenoffs;
12753                 int entsize;
12754                 int align;
12755                 const char *msg;
12756         } difo[] = {
12757                 { DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
12758                 offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
12759                 sizeof (dif_instr_t), "multiple DIF sections" },
12760 
12761                 { DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
12762                 offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
12763                 sizeof (uint64_t), "multiple integer tables" },
12764 
12765                 { DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
12766                 offsetof(dtrace_difo_t, dtdo_strlen), 0,
12767                 sizeof (char), "multiple string tables" },
12768 
12769                 { DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
12770                 offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
12771                 sizeof (uint_t), "multiple variable tables" },
12772 
12773                 { DOF_SECT_NONE, 0, 0, 0, NULL }
12774         };
12775 
12776         if (sec->dofs_type != DOF_SECT_DIFOHDR) {
12777                 dtrace_dof_error(dof, "invalid DIFO header section");
12778                 return (NULL);
12779         }
12780 
12781         if (sec->dofs_align != sizeof (dof_secidx_t)) {
12782                 dtrace_dof_error(dof, "bad alignment in DIFO header");
12783                 return (NULL);
12784         }
12785 
12786         if (sec->dofs_size < sizeof (dof_difohdr_t) ||
12787             sec->dofs_size % sizeof (dof_secidx_t)) {
12788                 dtrace_dof_error(dof, "bad size in DIFO header");
12789                 return (NULL);
12790         }
12791 
12792         dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
12793         n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
12794 
12795         dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
12796         dp->dtdo_rtype = dofd->dofd_rtype;
12797 
12798         for (l = 0; l < n; l++) {
12799                 dof_sec_t *subsec;
12800                 void **bufp;
12801                 uint32_t *lenp;
12802 
12803                 if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
12804                     dofd->dofd_links[l])) == NULL)
12805                         goto err; /* invalid section link */
12806 
12807                 if (ttl + subsec->dofs_size > max) {
12808                         dtrace_dof_error(dof, "exceeds maximum size");
12809                         goto err;
12810                 }
12811 
12812                 ttl += subsec->dofs_size;
12813 
12814                 for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
12815                         if (subsec->dofs_type != difo[i].section)
12816                                 continue;
12817 
12818                         if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
12819                                 dtrace_dof_error(dof, "section not loaded");
12820                                 goto err;
12821                         }
12822 
12823                         if (subsec->dofs_align != difo[i].align) {
12824                                 dtrace_dof_error(dof, "bad alignment");
12825                                 goto err;
12826                         }
12827 
12828                         bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
12829                         lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
12830 
12831                         if (*bufp != NULL) {
12832                                 dtrace_dof_error(dof, difo[i].msg);
12833                                 goto err;
12834                         }
12835 
12836                         if (difo[i].entsize != subsec->dofs_entsize) {
12837                                 dtrace_dof_error(dof, "entry size mismatch");
12838                                 goto err;
12839                         }
12840 
12841                         if (subsec->dofs_entsize != 0 &&
12842                             (subsec->dofs_size % subsec->dofs_entsize) != 0) {
12843                                 dtrace_dof_error(dof, "corrupt entry size");
12844                                 goto err;
12845                         }
12846 
12847                         *lenp = subsec->dofs_size;
12848                         *bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
12849                         bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
12850                             *bufp, subsec->dofs_size);
12851 
12852                         if (subsec->dofs_entsize != 0)
12853                                 *lenp /= subsec->dofs_entsize;
12854 
12855                         break;
12856                 }
12857 
12858                 /*
12859                  * If we encounter a loadable DIFO sub-section that is not
12860                  * known to us, assume this is a broken program and fail.
12861                  */
12862                 if (difo[i].section == DOF_SECT_NONE &&
12863                     (subsec->dofs_flags & DOF_SECF_LOAD)) {
12864                         dtrace_dof_error(dof, "unrecognized DIFO subsection");
12865                         goto err;
12866                 }
12867         }
12868 
12869         if (dp->dtdo_buf == NULL) {
12870                 /*
12871                  * We can't have a DIF object without DIF text.
12872                  */
12873                 dtrace_dof_error(dof, "missing DIF text");
12874                 goto err;
12875         }
12876 
12877         /*
12878          * Before we validate the DIF object, run through the variable table
12879          * looking for the strings -- if any of their size are under, we'll set
12880          * their size to be the system-wide default string size.  Note that
12881          * this should _not_ happen if the "strsize" option has been set --
12882          * in this case, the compiler should have set the size to reflect the
12883          * setting of the option.
12884          */
12885         for (i = 0; i < dp->dtdo_varlen; i++) {
12886                 dtrace_difv_t *v = &dp->dtdo_vartab[i];
12887                 dtrace_diftype_t *t = &v->dtdv_type;
12888 
12889                 if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
12890                         continue;
12891 
12892                 if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
12893                         t->dtdt_size = dtrace_strsize_default;
12894         }
12895 
12896         if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
12897                 goto err;
12898 
12899         dtrace_difo_init(dp, vstate);
12900         return (dp);
12901 
12902 err:
12903         kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
12904         kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
12905         kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
12906         kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
12907 
12908         kmem_free(dp, sizeof (dtrace_difo_t));
12909         return (NULL);
12910 }
12911 
12912 static dtrace_predicate_t *
12913 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12914     cred_t *cr)
12915 {
12916         dtrace_difo_t *dp;
12917 
12918         if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
12919                 return (NULL);
12920 
12921         return (dtrace_predicate_create(dp));
12922 }
12923 
12924 static dtrace_actdesc_t *
12925 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12926     cred_t *cr)
12927 {
12928         dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
12929         dof_actdesc_t *desc;
12930         dof_sec_t *difosec;
12931         size_t offs;
12932         uintptr_t daddr = (uintptr_t)dof;
12933         uint64_t arg;
12934         dtrace_actkind_t kind;
12935 
12936         if (sec->dofs_type != DOF_SECT_ACTDESC) {
12937                 dtrace_dof_error(dof, "invalid action section");
12938                 return (NULL);
12939         }
12940 
12941         if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
12942                 dtrace_dof_error(dof, "truncated action description");
12943                 return (NULL);
12944         }
12945 
12946         if (sec->dofs_align != sizeof (uint64_t)) {
12947                 dtrace_dof_error(dof, "bad alignment in action description");
12948                 return (NULL);
12949         }
12950 
12951         if (sec->dofs_size < sec->dofs_entsize) {
12952                 dtrace_dof_error(dof, "section entry size exceeds total size");
12953                 return (NULL);
12954         }
12955 
12956         if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
12957                 dtrace_dof_error(dof, "bad entry size in action description");
12958                 return (NULL);
12959         }
12960 
12961         if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
12962                 dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
12963                 return (NULL);
12964         }
12965 
12966         for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
12967                 desc = (dof_actdesc_t *)(daddr +
12968                     (uintptr_t)sec->dofs_offset + offs);
12969                 kind = (dtrace_actkind_t)desc->dofa_kind;
12970 
12971                 if ((DTRACEACT_ISPRINTFLIKE(kind) &&
12972                     (kind != DTRACEACT_PRINTA ||
12973                     desc->dofa_strtab != DOF_SECIDX_NONE)) ||
12974                     (kind == DTRACEACT_DIFEXPR &&
12975                     desc->dofa_strtab != DOF_SECIDX_NONE)) {
12976                         dof_sec_t *strtab;
12977                         char *str, *fmt;
12978                         uint64_t i;
12979 
12980                         /*
12981                          * The argument to these actions is an index into the
12982                          * DOF string table.  For printf()-like actions, this
12983                          * is the format string.  For print(), this is the
12984                          * CTF type of the expression result.
12985                          */
12986                         if ((strtab = dtrace_dof_sect(dof,
12987                             DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
12988                                 goto err;
12989 
12990                         str = (char *)((uintptr_t)dof +
12991                             (uintptr_t)strtab->dofs_offset);
12992 
12993                         for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
12994                                 if (str[i] == '\0')
12995                                         break;
12996                         }
12997 
12998                         if (i >= strtab->dofs_size) {
12999                                 dtrace_dof_error(dof, "bogus format string");
13000                                 goto err;
13001                         }
13002 
13003                         if (i == desc->dofa_arg) {
13004                                 dtrace_dof_error(dof, "empty format string");
13005                                 goto err;
13006                         }
13007 
13008                         i -= desc->dofa_arg;
13009                         fmt = kmem_alloc(i + 1, KM_SLEEP);
13010                         bcopy(&str[desc->dofa_arg], fmt, i + 1);
13011                         arg = (uint64_t)(uintptr_t)fmt;
13012                 } else {
13013                         if (kind == DTRACEACT_PRINTA) {
13014                                 ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
13015                                 arg = 0;
13016                         } else {
13017                                 arg = desc->dofa_arg;
13018                         }
13019                 }
13020 
13021                 act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
13022                     desc->dofa_uarg, arg);
13023 
13024                 if (last != NULL) {
13025                         last->dtad_next = act;
13026                 } else {
13027                         first = act;
13028                 }
13029 
13030                 last = act;
13031 
13032                 if (desc->dofa_difo == DOF_SECIDX_NONE)
13033                         continue;
13034 
13035                 if ((difosec = dtrace_dof_sect(dof,
13036                     DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
13037                         goto err;
13038 
13039                 act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
13040 
13041                 if (act->dtad_difo == NULL)
13042                         goto err;
13043         }
13044 
13045         ASSERT(first != NULL);
13046         return (first);
13047 
13048 err:
13049         for (act = first; act != NULL; act = next) {
13050                 next = act->dtad_next;
13051                 dtrace_actdesc_release(act, vstate);
13052         }
13053 
13054         return (NULL);
13055 }
13056 
13057 static dtrace_ecbdesc_t *
13058 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13059     cred_t *cr)
13060 {
13061         dtrace_ecbdesc_t *ep;
13062         dof_ecbdesc_t *ecb;
13063         dtrace_probedesc_t *desc;
13064         dtrace_predicate_t *pred = NULL;
13065 
13066         if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
13067                 dtrace_dof_error(dof, "truncated ECB description");
13068                 return (NULL);
13069         }
13070 
13071         if (sec->dofs_align != sizeof (uint64_t)) {
13072                 dtrace_dof_error(dof, "bad alignment in ECB description");
13073                 return (NULL);
13074         }
13075 
13076         ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
13077         sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
13078 
13079         if (sec == NULL)
13080                 return (NULL);
13081 
13082         ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
13083         ep->dted_uarg = ecb->dofe_uarg;
13084         desc = &ep->dted_probe;
13085 
13086         if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
13087                 goto err;
13088 
13089         if (ecb->dofe_pred != DOF_SECIDX_NONE) {
13090                 if ((sec = dtrace_dof_sect(dof,
13091                     DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
13092                         goto err;
13093 
13094                 if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
13095                         goto err;
13096 
13097                 ep->dted_pred.dtpdd_predicate = pred;
13098         }
13099 
13100         if (ecb->dofe_actions != DOF_SECIDX_NONE) {
13101                 if ((sec = dtrace_dof_sect(dof,
13102                     DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
13103                         goto err;
13104 
13105                 ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
13106 
13107                 if (ep->dted_action == NULL)
13108                         goto err;
13109         }
13110 
13111         return (ep);
13112 
13113 err:
13114         if (pred != NULL)
13115                 dtrace_predicate_release(pred, vstate);
13116         kmem_free(ep, sizeof (dtrace_ecbdesc_t));
13117         return (NULL);
13118 }
13119 
13120 /*
13121  * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
13122  * specified DOF.  At present, this amounts to simply adding 'ubase' to the
13123  * site of any user SETX relocations to account for load object base address.
13124  * In the future, if we need other relocations, this function can be extended.
13125  */
13126 static int
13127 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase)
13128 {
13129         uintptr_t daddr = (uintptr_t)dof;
13130         dof_relohdr_t *dofr =
13131             (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
13132         dof_sec_t *ss, *rs, *ts;
13133         dof_relodesc_t *r;
13134         uint_t i, n;
13135 
13136         if (sec->dofs_size < sizeof (dof_relohdr_t) ||
13137             sec->dofs_align != sizeof (dof_secidx_t)) {
13138                 dtrace_dof_error(dof, "invalid relocation header");
13139                 return (-1);
13140         }
13141 
13142         ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
13143         rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
13144         ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
13145 
13146         if (ss == NULL || rs == NULL || ts == NULL)
13147                 return (-1); /* dtrace_dof_error() has been called already */
13148 
13149         if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
13150             rs->dofs_align != sizeof (uint64_t)) {
13151                 dtrace_dof_error(dof, "invalid relocation section");
13152                 return (-1);
13153         }
13154 
13155         r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
13156         n = rs->dofs_size / rs->dofs_entsize;
13157 
13158         for (i = 0; i < n; i++) {
13159                 uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
13160 
13161                 switch (r->dofr_type) {
13162                 case DOF_RELO_NONE:
13163                         break;
13164                 case DOF_RELO_SETX:
13165                         if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
13166                             sizeof (uint64_t) > ts->dofs_size) {
13167                                 dtrace_dof_error(dof, "bad relocation offset");
13168                                 return (-1);
13169                         }
13170 
13171                         if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
13172                                 dtrace_dof_error(dof, "misaligned setx relo");
13173                                 return (-1);
13174                         }
13175 
13176                         *(uint64_t *)taddr += ubase;
13177                         break;
13178                 default:
13179                         dtrace_dof_error(dof, "invalid relocation type");
13180                         return (-1);
13181                 }
13182 
13183                 r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
13184         }
13185 
13186         return (0);
13187 }
13188 
13189 /*
13190  * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
13191  * header:  it should be at the front of a memory region that is at least
13192  * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
13193  * size.  It need not be validated in any other way.
13194  */
13195 static int
13196 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
13197     dtrace_enabling_t **enabp, uint64_t ubase, int noprobes)
13198 {
13199         uint64_t len = dof->dofh_loadsz, seclen;
13200         uintptr_t daddr = (uintptr_t)dof;
13201         dtrace_ecbdesc_t *ep;
13202         dtrace_enabling_t *enab;
13203         uint_t i;
13204 
13205         ASSERT(MUTEX_HELD(&dtrace_lock));
13206         ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
13207 
13208         /*
13209          * Check the DOF header identification bytes.  In addition to checking
13210          * valid settings, we also verify that unused bits/bytes are zeroed so
13211          * we can use them later without fear of regressing existing binaries.
13212          */
13213         if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
13214             DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
13215                 dtrace_dof_error(dof, "DOF magic string mismatch");
13216                 return (-1);
13217         }
13218 
13219         if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
13220             dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
13221                 dtrace_dof_error(dof, "DOF has invalid data model");
13222                 return (-1);
13223         }
13224 
13225         if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
13226                 dtrace_dof_error(dof, "DOF encoding mismatch");
13227                 return (-1);
13228         }
13229 
13230         if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
13231             dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) {
13232                 dtrace_dof_error(dof, "DOF version mismatch");
13233                 return (-1);
13234         }
13235 
13236         if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
13237                 dtrace_dof_error(dof, "DOF uses unsupported instruction set");
13238                 return (-1);
13239         }
13240 
13241         if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
13242                 dtrace_dof_error(dof, "DOF uses too many integer registers");
13243                 return (-1);
13244         }
13245 
13246         if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
13247                 dtrace_dof_error(dof, "DOF uses too many tuple registers");
13248                 return (-1);
13249         }
13250 
13251         for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
13252                 if (dof->dofh_ident[i] != 0) {
13253                         dtrace_dof_error(dof, "DOF has invalid ident byte set");
13254                         return (-1);
13255                 }
13256         }
13257 
13258         if (dof->dofh_flags & ~DOF_FL_VALID) {
13259                 dtrace_dof_error(dof, "DOF has invalid flag bits set");
13260                 return (-1);
13261         }
13262 
13263         if (dof->dofh_secsize == 0) {
13264                 dtrace_dof_error(dof, "zero section header size");
13265                 return (-1);
13266         }
13267 
13268         /*
13269          * Check that the section headers don't exceed the amount of DOF
13270          * data.  Note that we cast the section size and number of sections
13271          * to uint64_t's to prevent possible overflow in the multiplication.
13272          */
13273         seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
13274 
13275         if (dof->dofh_secoff > len || seclen > len ||
13276             dof->dofh_secoff + seclen > len) {
13277                 dtrace_dof_error(dof, "truncated section headers");
13278                 return (-1);
13279         }
13280 
13281         if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
13282                 dtrace_dof_error(dof, "misaligned section headers");
13283                 return (-1);
13284         }
13285 
13286         if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
13287                 dtrace_dof_error(dof, "misaligned section size");
13288                 return (-1);
13289         }
13290 
13291         /*
13292          * Take an initial pass through the section headers to be sure that
13293          * the headers don't have stray offsets.  If the 'noprobes' flag is
13294          * set, do not permit sections relating to providers, probes, or args.
13295          */
13296         for (i = 0; i < dof->dofh_secnum; i++) {
13297                 dof_sec_t *sec = (dof_sec_t *)(daddr +
13298                     (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
13299 
13300                 if (noprobes) {
13301                         switch (sec->dofs_type) {
13302                         case DOF_SECT_PROVIDER:
13303                         case DOF_SECT_PROBES:
13304                         case DOF_SECT_PRARGS:
13305                         case DOF_SECT_PROFFS:
13306                                 dtrace_dof_error(dof, "illegal sections "
13307                                     "for enabling");
13308                                 return (-1);
13309                         }
13310                 }
13311 
13312                 if (DOF_SEC_ISLOADABLE(sec->dofs_type) &&
13313                     !(sec->dofs_flags & DOF_SECF_LOAD)) {
13314                         dtrace_dof_error(dof, "loadable section with load "
13315                             "flag unset");
13316                         return (-1);
13317                 }
13318 
13319                 if (!(sec->dofs_flags & DOF_SECF_LOAD))
13320                         continue; /* just ignore non-loadable sections */
13321 
13322                 if (!ISP2(sec->dofs_align)) {
13323                         dtrace_dof_error(dof, "bad section alignment");
13324                         return (-1);
13325                 }
13326 
13327                 if (sec->dofs_offset & (sec->dofs_align - 1)) {
13328                         dtrace_dof_error(dof, "misaligned section");
13329                         return (-1);
13330                 }
13331 
13332                 if (sec->dofs_offset > len || sec->dofs_size > len ||
13333                     sec->dofs_offset + sec->dofs_size > len) {
13334                         dtrace_dof_error(dof, "corrupt section header");
13335                         return (-1);
13336                 }
13337 
13338                 if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
13339                     sec->dofs_offset + sec->dofs_size - 1) != '\0') {
13340                         dtrace_dof_error(dof, "non-terminating string table");
13341                         return (-1);
13342                 }
13343         }
13344 
13345         /*
13346          * Take a second pass through the sections and locate and perform any
13347          * relocations that are present.  We do this after the first pass to
13348          * be sure that all sections have had their headers validated.
13349          */
13350         for (i = 0; i < dof->dofh_secnum; i++) {
13351                 dof_sec_t *sec = (dof_sec_t *)(daddr +
13352                     (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
13353 
13354                 if (!(sec->dofs_flags & DOF_SECF_LOAD))
13355                         continue; /* skip sections that are not loadable */
13356 
13357                 switch (sec->dofs_type) {
13358                 case DOF_SECT_URELHDR:
13359                         if (dtrace_dof_relocate(dof, sec, ubase) != 0)
13360                                 return (-1);
13361                         break;
13362                 }
13363         }
13364 
13365         if ((enab = *enabp) == NULL)
13366                 enab = *enabp = dtrace_enabling_create(vstate);
13367 
13368         for (i = 0; i < dof->dofh_secnum; i++) {
13369                 dof_sec_t *sec = (dof_sec_t *)(daddr +
13370                     (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
13371 
13372                 if (sec->dofs_type != DOF_SECT_ECBDESC)
13373                         continue;
13374 
13375                 if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
13376                         dtrace_enabling_destroy(enab);
13377                         *enabp = NULL;
13378                         return (-1);
13379                 }
13380 
13381                 dtrace_enabling_add(enab, ep);
13382         }
13383 
13384         return (0);
13385 }
13386 
13387 /*
13388  * Process DOF for any options.  This routine assumes that the DOF has been
13389  * at least processed by dtrace_dof_slurp().
13390  */
13391 static int
13392 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
13393 {
13394         int i, rval;
13395         uint32_t entsize;
13396         size_t offs;
13397         dof_optdesc_t *desc;
13398 
13399         for (i = 0; i < dof->dofh_secnum; i++) {
13400                 dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
13401                     (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
13402 
13403                 if (sec->dofs_type != DOF_SECT_OPTDESC)
13404                         continue;
13405 
13406                 if (sec->dofs_align != sizeof (uint64_t)) {
13407                         dtrace_dof_error(dof, "bad alignment in "
13408                             "option description");
13409                         return (EINVAL);
13410                 }
13411 
13412                 if ((entsize = sec->dofs_entsize) == 0) {
13413                         dtrace_dof_error(dof, "zeroed option entry size");
13414                         return (EINVAL);
13415                 }
13416 
13417                 if (entsize < sizeof (dof_optdesc_t)) {
13418                         dtrace_dof_error(dof, "bad option entry size");
13419                         return (EINVAL);
13420                 }
13421 
13422                 for (offs = 0; offs < sec->dofs_size; offs += entsize) {
13423                         desc = (dof_optdesc_t *)((uintptr_t)dof +
13424                             (uintptr_t)sec->dofs_offset + offs);
13425 
13426                         if (desc->dofo_strtab != DOF_SECIDX_NONE) {
13427                                 dtrace_dof_error(dof, "non-zero option string");
13428                                 return (EINVAL);
13429                         }
13430 
13431                         if (desc->dofo_value == DTRACEOPT_UNSET) {
13432                                 dtrace_dof_error(dof, "unset option");
13433                                 return (EINVAL);
13434                         }
13435 
13436                         if ((rval = dtrace_state_option(state,
13437                             desc->dofo_option, desc->dofo_value)) != 0) {
13438                                 dtrace_dof_error(dof, "rejected option");
13439                                 return (rval);
13440                         }
13441                 }
13442         }
13443 
13444         return (0);
13445 }
13446 
13447 /*
13448  * DTrace Consumer State Functions
13449  */
13450 int
13451 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
13452 {
13453         size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
13454         void *base;
13455         uintptr_t limit;
13456         dtrace_dynvar_t *dvar, *next, *start;
13457         int i;
13458 
13459         ASSERT(MUTEX_HELD(&dtrace_lock));
13460         ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
13461 
13462         bzero(dstate, sizeof (dtrace_dstate_t));
13463 
13464         if ((dstate->dtds_chunksize = chunksize) == 0)
13465                 dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
13466 
13467         VERIFY(dstate->dtds_chunksize < LONG_MAX);
13468 
13469         if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
13470                 size = min;
13471 
13472         if ((base = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL)
13473                 return (ENOMEM);
13474 
13475         dstate->dtds_size = size;
13476         dstate->dtds_base = base;
13477         dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
13478         bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));
13479 
13480         hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
13481 
13482         if (hashsize != 1 && (hashsize & 1))
13483                 hashsize--;
13484 
13485         dstate->dtds_hashsize = hashsize;
13486         dstate->dtds_hash = dstate->dtds_base;
13487 
13488         /*
13489          * Set all of our hash buckets to point to the single sink, and (if
13490          * it hasn't already been set), set the sink's hash value to be the
13491          * sink sentinel value.  The sink is needed for dynamic variable
13492          * lookups to know that they have iterated over an entire, valid hash
13493          * chain.
13494          */
13495         for (i = 0; i < hashsize; i++)
13496                 dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;
13497 
13498         if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
13499                 dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;
13500 
13501         /*
13502          * Determine number of active CPUs.  Divide free list evenly among
13503          * active CPUs.
13504          */
13505         start = (dtrace_dynvar_t *)
13506             ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
13507         limit = (uintptr_t)base + size;
13508 
13509         VERIFY((uintptr_t)start < limit);
13510         VERIFY((uintptr_t)start >= (uintptr_t)base);
13511 
13512         maxper = (limit - (uintptr_t)start) / NCPU;
13513         maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
13514 
13515         for (i = 0; i < NCPU; i++) {
13516                 dstate->dtds_percpu[i].dtdsc_free = dvar = start;
13517 
13518                 /*
13519                  * If we don't even have enough chunks to make it once through
13520                  * NCPUs, we're just going to allocate everything to the first
13521                  * CPU.  And if we're on the last CPU, we're going to allocate
13522                  * whatever is left over.  In either case, we set the limit to
13523                  * be the limit of the dynamic variable space.
13524                  */
13525                 if (maxper == 0 || i == NCPU - 1) {
13526                         limit = (uintptr_t)base + size;
13527                         start = NULL;
13528                 } else {
13529                         limit = (uintptr_t)start + maxper;
13530                         start = (dtrace_dynvar_t *)limit;
13531                 }
13532 
13533                 VERIFY(limit <= (uintptr_t)base + size);
13534 
13535                 for (;;) {
13536                         next = (dtrace_dynvar_t *)((uintptr_t)dvar +
13537                             dstate->dtds_chunksize);
13538 
13539                         if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
13540                                 break;
13541 
13542                         VERIFY((uintptr_t)dvar >= (uintptr_t)base &&
13543                             (uintptr_t)dvar <= (uintptr_t)base + size);
13544                         dvar->dtdv_next = next;
13545                         dvar = next;
13546                 }
13547 
13548                 if (maxper == 0)
13549                         break;
13550         }
13551 
13552         return (0);
13553 }
13554 
13555 void
13556 dtrace_dstate_fini(dtrace_dstate_t *dstate)
13557 {
13558         ASSERT(MUTEX_HELD(&cpu_lock));
13559 
13560         if (dstate->dtds_base == NULL)
13561                 return;
13562 
13563         kmem_free(dstate->dtds_base, dstate->dtds_size);
13564         kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
13565 }
13566 
13567 static void
13568 dtrace_vstate_fini(dtrace_vstate_t *vstate)
13569 {
13570         /*
13571          * Logical XOR, where are you?
13572          */
13573         ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
13574 
13575         if (vstate->dtvs_nglobals > 0) {
13576                 kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
13577                     sizeof (dtrace_statvar_t *));
13578         }
13579 
13580         if (vstate->dtvs_ntlocals > 0) {
13581                 kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
13582                     sizeof (dtrace_difv_t));
13583         }
13584 
13585         ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
13586 
13587         if (vstate->dtvs_nlocals > 0) {
13588                 kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
13589                     sizeof (dtrace_statvar_t *));
13590         }
13591 }
13592 
13593 static void
13594 dtrace_state_clean(dtrace_state_t *state)
13595 {
13596         if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
13597                 return;
13598 
13599         dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
13600         dtrace_speculation_clean(state);
13601 }
13602 
13603 static void
13604 dtrace_state_deadman(dtrace_state_t *state)
13605 {
13606         hrtime_t now;
13607 
13608         dtrace_sync();
13609 
13610         now = dtrace_gethrtime();
13611 
13612         if (state != dtrace_anon.dta_state &&
13613             now - state->dts_laststatus >= dtrace_deadman_user)
13614                 return;
13615 
13616         /*
13617          * We must be sure that dts_alive never appears to be less than the
13618          * value upon entry to dtrace_state_deadman(), and because we lack a
13619          * dtrace_cas64(), we cannot store to it atomically.  We thus instead
13620          * store INT64_MAX to it, followed by a memory barrier, followed by
13621          * the new value.  This assures that dts_alive never appears to be
13622          * less than its true value, regardless of the order in which the
13623          * stores to the underlying storage are issued.
13624          */
13625         state->dts_alive = INT64_MAX;
13626         dtrace_membar_producer();
13627         state->dts_alive = now;
13628 }
13629 
13630 dtrace_state_t *
13631 dtrace_state_create(dev_t *devp, cred_t *cr)
13632 {
13633         minor_t minor;
13634         major_t major;
13635         char c[30];
13636         dtrace_state_t *state;
13637         dtrace_optval_t *opt;
13638         int bufsize = NCPU * sizeof (dtrace_buffer_t), i;
13639 
13640         ASSERT(MUTEX_HELD(&dtrace_lock));
13641         ASSERT(MUTEX_HELD(&cpu_lock));
13642 
13643         minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
13644             VM_BESTFIT | VM_SLEEP);
13645 
13646         if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
13647                 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
13648                 return (NULL);
13649         }
13650 
13651         state = ddi_get_soft_state(dtrace_softstate, minor);
13652         state->dts_epid = DTRACE_EPIDNONE + 1;
13653 
13654         (void) snprintf(c, sizeof (c), "dtrace_aggid_%d", minor);
13655         state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
13656             NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
13657 
13658         if (devp != NULL) {
13659                 major = getemajor(*devp);
13660         } else {
13661                 major = ddi_driver_major(dtrace_devi);
13662         }
13663 
13664         state->dts_dev = makedevice(major, minor);
13665 
13666         if (devp != NULL)
13667                 *devp = state->dts_dev;
13668 
13669         /*
13670          * We allocate NCPU buffers.  On the one hand, this can be quite
13671          * a bit of memory per instance (nearly 36K on a Starcat).  On the
13672          * other hand, it saves an additional memory reference in the probe
13673          * path.
13674          */
13675         state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
13676         state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
13677         state->dts_cleaner = CYCLIC_NONE;
13678         state->dts_deadman = CYCLIC_NONE;
13679         state->dts_vstate.dtvs_state = state;
13680 
13681         for (i = 0; i < DTRACEOPT_MAX; i++)
13682                 state->dts_options[i] = DTRACEOPT_UNSET;
13683 
13684         /*
13685          * Set the default options.
13686          */
13687         opt = state->dts_options;
13688         opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
13689         opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
13690         opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
13691         opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
13692         opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
13693         opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
13694         opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
13695         opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
13696         opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
13697         opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
13698         opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
13699         opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
13700         opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
13701         opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
13702 
13703         state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
13704 
13705         /*
13706          * Depending on the user credentials, we set flag bits which alter probe
13707          * visibility or the amount of destructiveness allowed.  In the case of
13708          * actual anonymous tracing, or the possession of all privileges, all of
13709          * the normal checks are bypassed.
13710          */
13711         if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
13712                 state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
13713                 state->dts_cred.dcr_action = DTRACE_CRA_ALL;
13714         } else {
13715                 /*
13716                  * Set up the credentials for this instantiation.  We take a
13717                  * hold on the credential to prevent it from disappearing on
13718                  * us; this in turn prevents the zone_t referenced by this
13719                  * credential from disappearing.  This means that we can
13720                  * examine the credential and the zone from probe context.
13721                  */
13722                 crhold(cr);
13723                 state->dts_cred.dcr_cred = cr;
13724 
13725                 /*
13726                  * CRA_PROC means "we have *some* privilege for dtrace" and
13727                  * unlocks the use of variables like pid, zonename, etc.
13728                  */
13729                 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
13730                     PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
13731                         state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
13732                 }
13733 
13734                 /*
13735                  * dtrace_user allows use of syscall and profile providers.
13736                  * If the user also has proc_owner and/or proc_zone, we
13737                  * extend the scope to include additional visibility and
13738                  * destructive power.
13739                  */
13740                 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
13741                         if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
13742                                 state->dts_cred.dcr_visible |=
13743                                     DTRACE_CRV_ALLPROC;
13744 
13745                                 state->dts_cred.dcr_action |=
13746                                     DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13747                         }
13748 
13749                         if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
13750                                 state->dts_cred.dcr_visible |=
13751                                     DTRACE_CRV_ALLZONE;
13752 
13753                                 state->dts_cred.dcr_action |=
13754                                     DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13755                         }
13756 
13757                         /*
13758                          * If we have all privs in whatever zone this is,
13759                          * we can do destructive things to processes which
13760                          * have altered credentials.
13761                          */
13762                         if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
13763                             cr->cr_zone->zone_privset)) {
13764                                 state->dts_cred.dcr_action |=
13765                                     DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
13766                         }
13767                 }
13768 
13769                 /*
13770                  * Holding the dtrace_kernel privilege also implies that
13771                  * the user has the dtrace_user privilege from a visibility
13772                  * perspective.  But without further privileges, some
13773                  * destructive actions are not available.
13774                  */
13775                 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
13776                         /*
13777                          * Make all probes in all zones visible.  However,
13778                          * this doesn't mean that all actions become available
13779                          * to all zones.
13780                          */
13781                         state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
13782                             DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;
13783 
13784                         state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
13785                             DTRACE_CRA_PROC;
13786                         /*
13787                          * Holding proc_owner means that destructive actions
13788                          * for *this* zone are allowed.
13789                          */
13790                         if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
13791                                 state->dts_cred.dcr_action |=
13792                                     DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13793 
13794                         /*
13795                          * Holding proc_zone means that destructive actions
13796                          * for this user/group ID in all zones is allowed.
13797                          */
13798                         if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
13799                                 state->dts_cred.dcr_action |=
13800                                     DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13801 
13802                         /*
13803                          * If we have all privs in whatever zone this is,
13804                          * we can do destructive things to processes which
13805                          * have altered credentials.
13806                          */
13807                         if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
13808                             cr->cr_zone->zone_privset)) {
13809                                 state->dts_cred.dcr_action |=
13810                                     DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
13811                         }
13812                 }
13813 
13814                 /*
13815                  * Holding the dtrace_proc privilege gives control over fasttrap
13816                  * and pid providers.  We need to grant wider destructive
13817                  * privileges in the event that the user has proc_owner and/or
13818                  * proc_zone.
13819                  */
13820                 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
13821                         if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
13822                                 state->dts_cred.dcr_action |=
13823                                     DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13824 
13825                         if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
13826                                 state->dts_cred.dcr_action |=
13827                                     DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13828                 }
13829         }
13830 
13831         return (state);
13832 }
13833 
13834 static int
13835 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
13836 {
13837         dtrace_optval_t *opt = state->dts_options, size;
13838         processorid_t cpu;
13839         int flags = 0, rval, factor, divisor = 1;
13840 
13841         ASSERT(MUTEX_HELD(&dtrace_lock));
13842         ASSERT(MUTEX_HELD(&cpu_lock));
13843         ASSERT(which < DTRACEOPT_MAX);
13844         ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
13845             (state == dtrace_anon.dta_state &&
13846             state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
13847 
13848         if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
13849                 return (0);
13850 
13851         if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
13852                 cpu = opt[DTRACEOPT_CPU];
13853 
13854         if (which == DTRACEOPT_SPECSIZE)
13855                 flags |= DTRACEBUF_NOSWITCH;
13856 
13857         if (which == DTRACEOPT_BUFSIZE) {
13858                 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
13859                         flags |= DTRACEBUF_RING;
13860 
13861                 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
13862                         flags |= DTRACEBUF_FILL;
13863 
13864                 if (state != dtrace_anon.dta_state ||
13865                     state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
13866                         flags |= DTRACEBUF_INACTIVE;
13867         }
13868 
13869         for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) {
13870                 /*
13871                  * The size must be 8-byte aligned.  If the size is not 8-byte
13872                  * aligned, drop it down by the difference.
13873                  */
13874                 if (size & (sizeof (uint64_t) - 1))
13875                         size -= size & (sizeof (uint64_t) - 1);
13876 
13877                 if (size < state->dts_reserve) {
13878                         /*
13879                          * Buffers always must be large enough to accommodate
13880                          * their prereserved space.  We return E2BIG instead
13881                          * of ENOMEM in this case to allow for user-level
13882                          * software to differentiate the cases.
13883                          */
13884                         return (E2BIG);
13885                 }
13886 
13887                 rval = dtrace_buffer_alloc(buf, size, flags, cpu, &factor);
13888 
13889                 if (rval != ENOMEM) {
13890                         opt[which] = size;
13891                         return (rval);
13892                 }
13893 
13894                 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13895                         return (rval);
13896 
13897                 for (divisor = 2; divisor < factor; divisor <<= 1)
13898                         continue;
13899         }
13900 
13901         return (ENOMEM);
13902 }
13903 
13904 static int
13905 dtrace_state_buffers(dtrace_state_t *state)
13906 {
13907         dtrace_speculation_t *spec = state->dts_speculations;
13908         int rval, i;
13909 
13910         if ((rval = dtrace_state_buffer(state, state->dts_buffer,
13911             DTRACEOPT_BUFSIZE)) != 0)
13912                 return (rval);
13913 
13914         if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
13915             DTRACEOPT_AGGSIZE)) != 0)
13916                 return (rval);
13917 
13918         for (i = 0; i < state->dts_nspeculations; i++) {
13919                 if ((rval = dtrace_state_buffer(state,
13920                     spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
13921                         return (rval);
13922         }
13923 
13924         return (0);
13925 }
13926 
13927 static void
13928 dtrace_state_prereserve(dtrace_state_t *state)
13929 {
13930         dtrace_ecb_t *ecb;
13931         dtrace_probe_t *probe;
13932 
13933         state->dts_reserve = 0;
13934 
13935         if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
13936                 return;
13937 
13938         /*
13939          * If our buffer policy is a "fill" buffer policy, we need to set the
13940          * prereserved space to be the space required by the END probes.
13941          */
13942         probe = dtrace_probes[dtrace_probeid_end - 1];
13943         ASSERT(probe != NULL);
13944 
13945         for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
13946                 if (ecb->dte_state != state)
13947                         continue;
13948 
13949                 state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
13950         }
13951 }
13952 
13953 static int
13954 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
13955 {
13956         dtrace_optval_t *opt = state->dts_options, sz, nspec;
13957         dtrace_speculation_t *spec;
13958         dtrace_buffer_t *buf;
13959         cyc_handler_t hdlr;
13960         cyc_time_t when;
13961         int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t);
13962         dtrace_icookie_t cookie;
13963 
13964         mutex_enter(&cpu_lock);
13965         mutex_enter(&dtrace_lock);
13966 
13967         if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
13968                 rval = EBUSY;
13969                 goto out;
13970         }
13971 
13972         /*
13973          * Before we can perform any checks, we must prime all of the
13974          * retained enablings that correspond to this state.
13975          */
13976         dtrace_enabling_prime(state);
13977 
13978         if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
13979                 rval = EACCES;
13980                 goto out;
13981         }
13982 
13983         dtrace_state_prereserve(state);
13984 
13985         /*
13986          * Now we want to do is try to allocate our speculations.
13987          * We do not automatically resize the number of speculations; if
13988          * this fails, we will fail the operation.
13989          */
13990         nspec = opt[DTRACEOPT_NSPEC];
13991         ASSERT(nspec != DTRACEOPT_UNSET);
13992 
13993         if (nspec > INT_MAX) {
13994                 rval = ENOMEM;
13995                 goto out;
13996         }
13997 
13998         spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t),
13999             KM_NOSLEEP | KM_NORMALPRI);
14000 
14001         if (spec == NULL) {
14002                 rval = ENOMEM;
14003                 goto out;
14004         }
14005 
14006         state->dts_speculations = spec;
14007         state->dts_nspeculations = (int)nspec;
14008 
14009         for (i = 0; i < nspec; i++) {
14010                 if ((buf = kmem_zalloc(bufsize,
14011                     KM_NOSLEEP | KM_NORMALPRI)) == NULL) {
14012                         rval = ENOMEM;
14013                         goto err;
14014                 }
14015 
14016                 spec[i].dtsp_buffer = buf;
14017         }
14018 
14019         if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
14020                 if (dtrace_anon.dta_state == NULL) {
14021                         rval = ENOENT;
14022                         goto out;
14023                 }
14024 
14025                 if (state->dts_necbs != 0) {
14026                         rval = EALREADY;
14027                         goto out;
14028                 }
14029 
14030                 state->dts_anon = dtrace_anon_grab();
14031                 ASSERT(state->dts_anon != NULL);
14032                 state = state->dts_anon;
14033 
14034                 /*
14035                  * We want "grabanon" to be set in the grabbed state, so we'll
14036                  * copy that option value from the grabbing state into the
14037                  * grabbed state.
14038                  */
14039                 state->dts_options[DTRACEOPT_GRABANON] =
14040                     opt[DTRACEOPT_GRABANON];
14041 
14042                 *cpu = dtrace_anon.dta_beganon;
14043 
14044                 /*
14045                  * If the anonymous state is active (as it almost certainly
14046                  * is if the anonymous enabling ultimately matched anything),
14047                  * we don't allow any further option processing -- but we
14048                  * don't return failure.
14049                  */
14050                 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
14051                         goto out;
14052         }
14053 
14054         if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
14055             opt[DTRACEOPT_AGGSIZE] != 0) {
14056                 if (state->dts_aggregations == NULL) {
14057                         /*
14058                          * We're not going to create an aggregation buffer
14059                          * because we don't have any ECBs that contain
14060                          * aggregations -- set this option to 0.
14061                          */
14062                         opt[DTRACEOPT_AGGSIZE] = 0;
14063                 } else {
14064                         /*
14065                          * If we have an aggregation buffer, we must also have
14066                          * a buffer to use as scratch.
14067                          */
14068                         if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
14069                             opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
14070                                 opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
14071                         }
14072                 }
14073         }
14074 
14075         if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
14076             opt[DTRACEOPT_SPECSIZE] != 0) {
14077                 if (!state->dts_speculates) {
14078                         /*
14079                          * We're not going to create speculation buffers
14080                          * because we don't have any ECBs that actually
14081                          * speculate -- set the speculation size to 0.
14082                          */
14083                         opt[DTRACEOPT_SPECSIZE] = 0;
14084                 }
14085         }
14086 
14087         /*
14088          * The bare minimum size for any buffer that we're actually going to
14089          * do anything to is sizeof (uint64_t).
14090          */
14091         sz = sizeof (uint64_t);
14092 
14093         if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
14094             (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
14095             (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
14096                 /*
14097                  * A buffer size has been explicitly set to 0 (or to a size
14098                  * that will be adjusted to 0) and we need the space -- we
14099                  * need to return failure.  We return ENOSPC to differentiate
14100                  * it from failing to allocate a buffer due to failure to meet
14101                  * the reserve (for which we return E2BIG).
14102                  */
14103                 rval = ENOSPC;
14104                 goto out;
14105         }
14106 
14107         if ((rval = dtrace_state_buffers(state)) != 0)
14108                 goto err;
14109 
14110         if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
14111                 sz = dtrace_dstate_defsize;
14112 
14113         do {
14114                 rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
14115 
14116                 if (rval == 0)
14117                         break;
14118 
14119                 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
14120                         goto err;
14121         } while (sz >>= 1);
14122 
14123         opt[DTRACEOPT_DYNVARSIZE] = sz;
14124 
14125         if (rval != 0)
14126                 goto err;
14127 
14128         if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
14129                 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
14130 
14131         if (opt[DTRACEOPT_CLEANRATE] == 0)
14132                 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
14133 
14134         if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
14135                 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
14136 
14137         if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
14138                 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
14139 
14140         hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
14141         hdlr.cyh_arg = state;
14142         hdlr.cyh_level = CY_LOW_LEVEL;
14143 
14144         when.cyt_when = 0;
14145         when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
14146 
14147         state->dts_cleaner = cyclic_add(&hdlr, &when);
14148 
14149         hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
14150         hdlr.cyh_arg = state;
14151         hdlr.cyh_level = CY_LOW_LEVEL;
14152 
14153         when.cyt_when = 0;
14154         when.cyt_interval = dtrace_deadman_interval;
14155 
14156         state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
14157         state->dts_deadman = cyclic_add(&hdlr, &when);
14158 
14159         state->dts_activity = DTRACE_ACTIVITY_WARMUP;
14160 
14161         if (state->dts_getf != 0 &&
14162             !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) {
14163                 /*
14164                  * We don't have kernel privs but we have at least one call
14165                  * to getf(); we need to bump our zone's count, and (if
14166                  * this is the first enabling to have an unprivileged call
14167                  * to getf()) we need to hook into closef().
14168                  */
14169                 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf++;
14170 
14171                 if (dtrace_getf++ == 0) {
14172                         ASSERT(dtrace_closef == NULL);
14173                         dtrace_closef = dtrace_getf_barrier;
14174                 }
14175         }
14176 
14177         /*
14178          * Now it's time to actually fire the BEGIN probe.  We need to disable
14179          * interrupts here both to record the CPU on which we fired the BEGIN
14180          * probe (the data from this CPU will be processed first at user
14181          * level) and to manually activate the buffer for this CPU.
14182          */
14183         cookie = dtrace_interrupt_disable();
14184         *cpu = CPU->cpu_id;
14185         ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
14186         state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
14187 
14188         dtrace_probe(dtrace_probeid_begin,
14189             (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
14190         dtrace_interrupt_enable(cookie);
14191         /*
14192          * We may have had an exit action from a BEGIN probe; only change our
14193          * state to ACTIVE if we're still in WARMUP.
14194          */
14195         ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
14196             state->dts_activity == DTRACE_ACTIVITY_DRAINING);
14197 
14198         if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
14199                 state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
14200 
14201         /*
14202          * Regardless of whether or not now we're in ACTIVE or DRAINING, we
14203          * want each CPU to transition its principal buffer out of the
14204          * INACTIVE state.  Doing this assures that no CPU will suddenly begin
14205          * processing an ECB halfway down a probe's ECB chain; all CPUs will
14206          * atomically transition from processing none of a state's ECBs to
14207          * processing all of them.
14208          */
14209         dtrace_xcall(DTRACE_CPUALL,
14210             (dtrace_xcall_t)dtrace_buffer_activate, state);
14211         goto out;
14212 
14213 err:
14214         dtrace_buffer_free(state->dts_buffer);
14215         dtrace_buffer_free(state->dts_aggbuffer);
14216 
14217         if ((nspec = state->dts_nspeculations) == 0) {
14218                 ASSERT(state->dts_speculations == NULL);
14219                 goto out;
14220         }
14221 
14222         spec = state->dts_speculations;
14223         ASSERT(spec != NULL);
14224 
14225         for (i = 0; i < state->dts_nspeculations; i++) {
14226                 if ((buf = spec[i].dtsp_buffer) == NULL)
14227                         break;
14228 
14229                 dtrace_buffer_free(buf);
14230                 kmem_free(buf, bufsize);
14231         }
14232 
14233         kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
14234         state->dts_nspeculations = 0;
14235         state->dts_speculations = NULL;
14236 
14237 out:
14238         mutex_exit(&dtrace_lock);
14239         mutex_exit(&cpu_lock);
14240 
14241         return (rval);
14242 }
14243 
14244 static int
14245 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
14246 {
14247         dtrace_icookie_t cookie;
14248 
14249         ASSERT(MUTEX_HELD(&dtrace_lock));
14250 
14251         if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
14252             state->dts_activity != DTRACE_ACTIVITY_DRAINING)
14253                 return (EINVAL);
14254 
14255         /*
14256          * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
14257          * to be sure that every CPU has seen it.  See below for the details
14258          * on why this is done.
14259          */
14260         state->dts_activity = DTRACE_ACTIVITY_DRAINING;
14261         dtrace_sync();
14262 
14263         /*
14264          * By this point, it is impossible for any CPU to be still processing
14265          * with DTRACE_ACTIVITY_ACTIVE.  We can thus set our activity to
14266          * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
14267          * other CPU in dtrace_buffer_reserve().  This allows dtrace_probe()
14268          * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
14269          * iff we're in the END probe.
14270          */
14271         state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
14272         dtrace_sync();
14273         ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
14274 
14275         /*
14276          * Finally, we can release the reserve and call the END probe.  We
14277          * disable interrupts across calling the END probe to allow us to
14278          * return the CPU on which we actually called the END probe.  This
14279          * allows user-land to be sure that this CPU's principal buffer is
14280          * processed last.
14281          */
14282         state->dts_reserve = 0;
14283 
14284         cookie = dtrace_interrupt_disable();
14285         *cpu = CPU->cpu_id;
14286         dtrace_probe(dtrace_probeid_end,
14287             (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
14288         dtrace_interrupt_enable(cookie);
14289 
14290         state->dts_activity = DTRACE_ACTIVITY_STOPPED;
14291         dtrace_sync();
14292 
14293         if (state->dts_getf != 0 &&
14294             !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) {
14295                 /*
14296                  * We don't have kernel privs but we have at least one call
14297                  * to getf(); we need to lower our zone's count, and (if
14298                  * this is the last enabling to have an unprivileged call
14299                  * to getf()) we need to clear the closef() hook.
14300                  */
14301                 ASSERT(state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf > 0);
14302                 ASSERT(dtrace_closef == dtrace_getf_barrier);
14303                 ASSERT(dtrace_getf > 0);
14304 
14305                 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf--;
14306 
14307                 if (--dtrace_getf == 0)
14308                         dtrace_closef = NULL;
14309         }
14310 
14311         return (0);
14312 }
14313 
14314 static int
14315 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
14316     dtrace_optval_t val)
14317 {
14318         ASSERT(MUTEX_HELD(&dtrace_lock));
14319 
14320         if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
14321                 return (EBUSY);
14322 
14323         if (option >= DTRACEOPT_MAX)
14324                 return (EINVAL);
14325 
14326         if (option != DTRACEOPT_CPU && val < 0)
14327                 return (EINVAL);
14328 
14329         switch (option) {
14330         case DTRACEOPT_DESTRUCTIVE:
14331                 if (dtrace_destructive_disallow)
14332                         return (EACCES);
14333 
14334                 state->dts_cred.dcr_destructive = 1;
14335                 break;
14336 
14337         case DTRACEOPT_BUFSIZE:
14338         case DTRACEOPT_DYNVARSIZE:
14339         case DTRACEOPT_AGGSIZE:
14340         case DTRACEOPT_SPECSIZE:
14341         case DTRACEOPT_STRSIZE:
14342                 if (val < 0)
14343                         return (EINVAL);
14344 
14345                 if (val >= LONG_MAX) {
14346                         /*
14347                          * If this is an otherwise negative value, set it to
14348                          * the highest multiple of 128m less than LONG_MAX.
14349                          * Technically, we're adjusting the size without
14350                          * regard to the buffer resizing policy, but in fact,
14351                          * this has no effect -- if we set the buffer size to
14352                          * ~LONG_MAX and the buffer policy is ultimately set to
14353                          * be "manual", the buffer allocation is guaranteed to
14354                          * fail, if only because the allocation requires two
14355                          * buffers.  (We set the the size to the highest
14356                          * multiple of 128m because it ensures that the size
14357                          * will remain a multiple of a megabyte when
14358                          * repeatedly halved -- all the way down to 15m.)
14359                          */
14360                         val = LONG_MAX - (1 << 27) + 1;
14361                 }
14362         }
14363 
14364         state->dts_options[option] = val;
14365 
14366         return (0);
14367 }
14368 
14369 static void
14370 dtrace_state_destroy(dtrace_state_t *state)
14371 {
14372         dtrace_ecb_t *ecb;
14373         dtrace_vstate_t *vstate = &state->dts_vstate;
14374         minor_t minor = getminor(state->dts_dev);
14375         int i, bufsize = NCPU * sizeof (dtrace_buffer_t);
14376         dtrace_speculation_t *spec = state->dts_speculations;
14377         int nspec = state->dts_nspeculations;
14378         uint32_t match;
14379 
14380         ASSERT(MUTEX_HELD(&dtrace_lock));
14381         ASSERT(MUTEX_HELD(&cpu_lock));
14382 
14383         /*
14384          * First, retract any retained enablings for this state.
14385          */
14386         dtrace_enabling_retract(state);
14387         ASSERT(state->dts_nretained == 0);
14388 
14389         if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
14390             state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
14391                 /*
14392                  * We have managed to come into dtrace_state_destroy() on a
14393                  * hot enabling -- almost certainly because of a disorderly
14394                  * shutdown of a consumer.  (That is, a consumer that is
14395                  * exiting without having called dtrace_stop().) In this case,
14396                  * we're going to set our activity to be KILLED, and then
14397                  * issue a sync to be sure that everyone is out of probe
14398                  * context before we start blowing away ECBs.
14399                  */
14400                 state->dts_activity = DTRACE_ACTIVITY_KILLED;
14401                 dtrace_sync();
14402         }
14403 
14404         /*
14405          * Release the credential hold we took in dtrace_state_create().
14406          */
14407         if (state->dts_cred.dcr_cred != NULL)
14408                 crfree(state->dts_cred.dcr_cred);
14409 
14410         /*
14411          * Now we can safely disable and destroy any enabled probes.  Because
14412          * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
14413          * (especially if they're all enabled), we take two passes through the
14414          * ECBs:  in the first, we disable just DTRACE_PRIV_KERNEL probes, and
14415          * in the second we disable whatever is left over.
14416          */
14417         for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
14418                 for (i = 0; i < state->dts_necbs; i++) {
14419                         if ((ecb = state->dts_ecbs[i]) == NULL)
14420                                 continue;
14421 
14422                         if (match && ecb->dte_probe != NULL) {
14423                                 dtrace_probe_t *probe = ecb->dte_probe;
14424                                 dtrace_provider_t *prov = probe->dtpr_provider;
14425 
14426                                 if (!(prov->dtpv_priv.dtpp_flags & match))
14427                                         continue;
14428                         }
14429 
14430                         dtrace_ecb_disable(ecb);
14431                         dtrace_ecb_destroy(ecb);
14432                 }
14433 
14434                 if (!match)
14435                         break;
14436         }
14437 
14438         /*
14439          * Before we free the buffers, perform one more sync to assure that
14440          * every CPU is out of probe context.
14441          */
14442         dtrace_sync();
14443 
14444         dtrace_buffer_free(state->dts_buffer);
14445         dtrace_buffer_free(state->dts_aggbuffer);
14446 
14447         for (i = 0; i < nspec; i++)
14448                 dtrace_buffer_free(spec[i].dtsp_buffer);
14449 
14450         if (state->dts_cleaner != CYCLIC_NONE)
14451                 cyclic_remove(state->dts_cleaner);
14452 
14453         if (state->dts_deadman != CYCLIC_NONE)
14454                 cyclic_remove(state->dts_deadman);
14455 
14456         dtrace_dstate_fini(&vstate->dtvs_dynvars);
14457         dtrace_vstate_fini(vstate);
14458         kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
14459 
14460         if (state->dts_aggregations != NULL) {
14461 #ifdef DEBUG
14462                 for (i = 0; i < state->dts_naggregations; i++)
14463                         ASSERT(state->dts_aggregations[i] == NULL);
14464 #endif
14465                 ASSERT(state->dts_naggregations > 0);
14466                 kmem_free(state->dts_aggregations,
14467                     state->dts_naggregations * sizeof (dtrace_aggregation_t *));
14468         }
14469 
14470         kmem_free(state->dts_buffer, bufsize);
14471         kmem_free(state->dts_aggbuffer, bufsize);
14472 
14473         for (i = 0; i < nspec; i++)
14474                 kmem_free(spec[i].dtsp_buffer, bufsize);
14475 
14476         kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
14477 
14478         dtrace_format_destroy(state);
14479 
14480         vmem_destroy(state->dts_aggid_arena);
14481         ddi_soft_state_free(dtrace_softstate, minor);
14482         vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
14483 }
14484 
14485 /*
14486  * DTrace Anonymous Enabling Functions
14487  */
14488 static dtrace_state_t *
14489 dtrace_anon_grab(void)
14490 {
14491         dtrace_state_t *state;
14492 
14493         ASSERT(MUTEX_HELD(&dtrace_lock));
14494 
14495         if ((state = dtrace_anon.dta_state) == NULL) {
14496                 ASSERT(dtrace_anon.dta_enabling == NULL);
14497                 return (NULL);
14498         }
14499 
14500         ASSERT(dtrace_anon.dta_enabling != NULL);
14501         ASSERT(dtrace_retained != NULL);
14502 
14503         dtrace_enabling_destroy(dtrace_anon.dta_enabling);
14504         dtrace_anon.dta_enabling = NULL;
14505         dtrace_anon.dta_state = NULL;
14506 
14507         return (state);
14508 }
14509 
14510 static void
14511 dtrace_anon_property(void)
14512 {
14513         int i, rv;
14514         dtrace_state_t *state;
14515         dof_hdr_t *dof;
14516         char c[32];             /* enough for "dof-data-" + digits */
14517 
14518         ASSERT(MUTEX_HELD(&dtrace_lock));
14519         ASSERT(MUTEX_HELD(&cpu_lock));
14520 
14521         for (i = 0; ; i++) {
14522                 (void) snprintf(c, sizeof (c), "dof-data-%d", i);
14523 
14524                 dtrace_err_verbose = 1;
14525 
14526                 if ((dof = dtrace_dof_property(c)) == NULL) {
14527                         dtrace_err_verbose = 0;
14528                         break;
14529                 }
14530 
14531                 /*
14532                  * We want to create anonymous state, so we need to transition
14533                  * the kernel debugger to indicate that DTrace is active.  If
14534                  * this fails (e.g. because the debugger has modified text in
14535                  * some way), we won't continue with the processing.
14536                  */
14537                 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
14538                         cmn_err(CE_NOTE, "kernel debugger active; anonymous "
14539                             "enabling ignored.");
14540                         dtrace_dof_destroy(dof);
14541                         break;
14542                 }
14543 
14544                 /*
14545                  * If we haven't allocated an anonymous state, we'll do so now.
14546                  */
14547                 if ((state = dtrace_anon.dta_state) == NULL) {
14548                         state = dtrace_state_create(NULL, NULL);
14549                         dtrace_anon.dta_state = state;
14550 
14551                         if (state == NULL) {
14552                                 /*
14553                                  * This basically shouldn't happen:  the only
14554                                  * failure mode from dtrace_state_create() is a
14555                                  * failure of ddi_soft_state_zalloc() that
14556                                  * itself should never happen.  Still, the
14557                                  * interface allows for a failure mode, and
14558                                  * we want to fail as gracefully as possible:
14559                                  * we'll emit an error message and cease
14560                                  * processing anonymous state in this case.
14561                                  */
14562                                 cmn_err(CE_WARN, "failed to create "
14563                                     "anonymous state");
14564                                 dtrace_dof_destroy(dof);
14565                                 break;
14566                         }
14567                 }
14568 
14569                 rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
14570                     &dtrace_anon.dta_enabling, 0, B_TRUE);
14571 
14572                 if (rv == 0)
14573                         rv = dtrace_dof_options(dof, state);
14574 
14575                 dtrace_err_verbose = 0;
14576                 dtrace_dof_destroy(dof);
14577 
14578                 if (rv != 0) {
14579                         /*
14580                          * This is malformed DOF; chuck any anonymous state
14581                          * that we created.
14582                          */
14583                         ASSERT(dtrace_anon.dta_enabling == NULL);
14584                         dtrace_state_destroy(state);
14585                         dtrace_anon.dta_state = NULL;
14586                         break;
14587                 }
14588 
14589                 ASSERT(dtrace_anon.dta_enabling != NULL);
14590         }
14591 
14592         if (dtrace_anon.dta_enabling != NULL) {
14593                 int rval;
14594 
14595                 /*
14596                  * dtrace_enabling_retain() can only fail because we are
14597                  * trying to retain more enablings than are allowed -- but
14598                  * we only have one anonymous enabling, and we are guaranteed
14599                  * to be allowed at least one retained enabling; we assert
14600                  * that dtrace_enabling_retain() returns success.
14601                  */
14602                 rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
14603                 ASSERT(rval == 0);
14604 
14605                 dtrace_enabling_dump(dtrace_anon.dta_enabling);
14606         }
14607 }
14608 
14609 /*
14610  * DTrace Helper Functions
14611  */
14612 static void
14613 dtrace_helper_trace(dtrace_helper_action_t *helper,
14614     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
14615 {
14616         uint32_t size, next, nnext, i;
14617         dtrace_helptrace_t *ent, *buffer;
14618         uint16_t flags = cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
14619 
14620         if ((buffer = dtrace_helptrace_buffer) == NULL)
14621                 return;
14622 
14623         ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
14624 
14625         /*
14626          * What would a tracing framework be without its own tracing
14627          * framework?  (Well, a hell of a lot simpler, for starters...)
14628          */
14629         size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
14630             sizeof (uint64_t) - sizeof (uint64_t);
14631 
14632         /*
14633          * Iterate until we can allocate a slot in the trace buffer.
14634          */
14635         do {
14636                 next = dtrace_helptrace_next;
14637 
14638                 if (next + size < dtrace_helptrace_bufsize) {
14639                         nnext = next + size;
14640                 } else {
14641                         nnext = size;
14642                 }
14643         } while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
14644 
14645         /*
14646          * We have our slot; fill it in.
14647          */
14648         if (nnext == size) {
14649                 dtrace_helptrace_wrapped++;
14650                 next = 0;
14651         }
14652 
14653         ent = (dtrace_helptrace_t *)((uintptr_t)buffer + next);
14654         ent->dtht_helper = helper;
14655         ent->dtht_where = where;
14656         ent->dtht_nlocals = vstate->dtvs_nlocals;
14657 
14658         ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
14659             mstate->dtms_fltoffs : -1;
14660         ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
14661         ent->dtht_illval = cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
14662 
14663         for (i = 0; i < vstate->dtvs_nlocals; i++) {
14664                 dtrace_statvar_t *svar;
14665 
14666                 if ((svar = vstate->dtvs_locals[i]) == NULL)
14667                         continue;
14668 
14669                 ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t));
14670                 ent->dtht_locals[i] =
14671                     ((uint64_t *)(uintptr_t)svar->dtsv_data)[CPU->cpu_id];
14672         }
14673 }
14674 
14675 static uint64_t
14676 dtrace_helper(int which, dtrace_mstate_t *mstate,
14677     dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
14678 {
14679         uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
14680         uint64_t sarg0 = mstate->dtms_arg[0];
14681         uint64_t sarg1 = mstate->dtms_arg[1];
14682         uint64_t rval;
14683         dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
14684         dtrace_helper_action_t *helper;
14685         dtrace_vstate_t *vstate;
14686         dtrace_difo_t *pred;
14687         int i, trace = dtrace_helptrace_buffer != NULL;
14688 
14689         ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
14690 
14691         if (helpers == NULL)
14692                 return (0);
14693 
14694         if ((helper = helpers->dthps_actions[which]) == NULL)
14695                 return (0);
14696 
14697         vstate = &helpers->dthps_vstate;
14698         mstate->dtms_arg[0] = arg0;
14699         mstate->dtms_arg[1] = arg1;
14700 
14701         /*
14702          * Now iterate over each helper.  If its predicate evaluates to 'true',
14703          * we'll call the corresponding actions.  Note that the below calls
14704          * to dtrace_dif_emulate() may set faults in machine state.  This is
14705          * okay:  our caller (the outer dtrace_dif_emulate()) will simply plow
14706          * the stored DIF offset with its own (which is the desired behavior).
14707          * Also, note the calls to dtrace_dif_emulate() may allocate scratch
14708          * from machine state; this is okay, too.
14709          */
14710         for (; helper != NULL; helper = helper->dtha_next) {
14711                 if ((pred = helper->dtha_predicate) != NULL) {
14712                         if (trace)
14713                                 dtrace_helper_trace(helper, mstate, vstate, 0);
14714 
14715                         if (!dtrace_dif_emulate(pred, mstate, vstate, state))
14716                                 goto next;
14717 
14718                         if (*flags & CPU_DTRACE_FAULT)
14719                                 goto err;
14720                 }
14721 
14722                 for (i = 0; i < helper->dtha_nactions; i++) {
14723                         if (trace)
14724                                 dtrace_helper_trace(helper,
14725                                     mstate, vstate, i + 1);
14726 
14727                         rval = dtrace_dif_emulate(helper->dtha_actions[i],
14728                             mstate, vstate, state);
14729 
14730                         if (*flags & CPU_DTRACE_FAULT)
14731                                 goto err;
14732                 }
14733 
14734 next:
14735                 if (trace)
14736                         dtrace_helper_trace(helper, mstate, vstate,
14737                             DTRACE_HELPTRACE_NEXT);
14738         }
14739 
14740         if (trace)
14741                 dtrace_helper_trace(helper, mstate, vstate,
14742                     DTRACE_HELPTRACE_DONE);
14743 
14744         /*
14745          * Restore the arg0 that we saved upon entry.
14746          */
14747         mstate->dtms_arg[0] = sarg0;
14748         mstate->dtms_arg[1] = sarg1;
14749 
14750         return (rval);
14751 
14752 err:
14753         if (trace)
14754                 dtrace_helper_trace(helper, mstate, vstate,
14755                     DTRACE_HELPTRACE_ERR);
14756 
14757         /*
14758          * Restore the arg0 that we saved upon entry.
14759          */
14760         mstate->dtms_arg[0] = sarg0;
14761         mstate->dtms_arg[1] = sarg1;
14762 
14763         return (NULL);
14764 }
14765 
14766 static void
14767 dtrace_helper_action_destroy(dtrace_helper_action_t *helper,
14768     dtrace_vstate_t *vstate)
14769 {
14770         int i;
14771 
14772         if (helper->dtha_predicate != NULL)
14773                 dtrace_difo_release(helper->dtha_predicate, vstate);
14774 
14775         for (i = 0; i < helper->dtha_nactions; i++) {
14776                 ASSERT(helper->dtha_actions[i] != NULL);
14777                 dtrace_difo_release(helper->dtha_actions[i], vstate);
14778         }
14779 
14780         kmem_free(helper->dtha_actions,
14781             helper->dtha_nactions * sizeof (dtrace_difo_t *));
14782         kmem_free(helper, sizeof (dtrace_helper_action_t));
14783 }
14784 
14785 static int
14786 dtrace_helper_destroygen(int gen)
14787 {
14788         proc_t *p = curproc;
14789         dtrace_helpers_t *help = p->p_dtrace_helpers;
14790         dtrace_vstate_t *vstate;
14791         int i;
14792 
14793         ASSERT(MUTEX_HELD(&dtrace_lock));
14794 
14795         if (help == NULL || gen > help->dthps_generation)
14796                 return (EINVAL);
14797 
14798         vstate = &help->dthps_vstate;
14799 
14800         for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14801                 dtrace_helper_action_t *last = NULL, *h, *next;
14802 
14803                 for (h = help->dthps_actions[i]; h != NULL; h = next) {
14804                         next = h->dtha_next;
14805 
14806                         if (h->dtha_generation == gen) {
14807                                 if (last != NULL) {
14808                                         last->dtha_next = next;
14809                                 } else {
14810                                         help->dthps_actions[i] = next;
14811                                 }
14812 
14813                                 dtrace_helper_action_destroy(h, vstate);
14814                         } else {
14815                                 last = h;
14816                         }
14817                 }
14818         }
14819 
14820         /*
14821          * Interate until we've cleared out all helper providers with the
14822          * given generation number.
14823          */
14824         for (;;) {
14825                 dtrace_helper_provider_t *prov;
14826 
14827                 /*
14828                  * Look for a helper provider with the right generation. We
14829                  * have to start back at the beginning of the list each time
14830                  * because we drop dtrace_lock. It's unlikely that we'll make
14831                  * more than two passes.
14832                  */
14833                 for (i = 0; i < help->dthps_nprovs; i++) {
14834                         prov = help->dthps_provs[i];
14835 
14836                         if (prov->dthp_generation == gen)
14837                                 break;
14838                 }
14839 
14840                 /*
14841                  * If there were no matches, we're done.
14842                  */
14843                 if (i == help->dthps_nprovs)
14844                         break;
14845 
14846                 /*
14847                  * Move the last helper provider into this slot.
14848                  */
14849                 help->dthps_nprovs--;
14850                 help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs];
14851                 help->dthps_provs[help->dthps_nprovs] = NULL;
14852 
14853                 mutex_exit(&dtrace_lock);
14854 
14855                 /*
14856                  * If we have a meta provider, remove this helper provider.
14857                  */
14858                 mutex_enter(&dtrace_meta_lock);
14859                 if (dtrace_meta_pid != NULL) {
14860                         ASSERT(dtrace_deferred_pid == NULL);
14861                         dtrace_helper_provider_remove(&prov->dthp_prov,
14862                             p->p_pid);
14863                 }
14864                 mutex_exit(&dtrace_meta_lock);
14865 
14866                 dtrace_helper_provider_destroy(prov);
14867 
14868                 mutex_enter(&dtrace_lock);
14869         }
14870 
14871         return (0);
14872 }
14873 
14874 static int
14875 dtrace_helper_validate(dtrace_helper_action_t *helper)
14876 {
14877         int err = 0, i;
14878         dtrace_difo_t *dp;
14879 
14880         if ((dp = helper->dtha_predicate) != NULL)
14881                 err += dtrace_difo_validate_helper(dp);
14882 
14883         for (i = 0; i < helper->dtha_nactions; i++)
14884                 err += dtrace_difo_validate_helper(helper->dtha_actions[i]);
14885 
14886         return (err == 0);
14887 }
14888 
14889 static int
14890 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep)
14891 {
14892         dtrace_helpers_t *help;
14893         dtrace_helper_action_t *helper, *last;
14894         dtrace_actdesc_t *act;
14895         dtrace_vstate_t *vstate;
14896         dtrace_predicate_t *pred;
14897         int count = 0, nactions = 0, i;
14898 
14899         if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
14900                 return (EINVAL);
14901 
14902         help = curproc->p_dtrace_helpers;
14903         last = help->dthps_actions[which];
14904         vstate = &help->dthps_vstate;
14905 
14906         for (count = 0; last != NULL; last = last->dtha_next) {
14907                 count++;
14908                 if (last->dtha_next == NULL)
14909                         break;
14910         }
14911 
14912         /*
14913          * If we already have dtrace_helper_actions_max helper actions for this
14914          * helper action type, we'll refuse to add a new one.
14915          */
14916         if (count >= dtrace_helper_actions_max)
14917                 return (ENOSPC);
14918 
14919         helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
14920         helper->dtha_generation = help->dthps_generation;
14921 
14922         if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
14923                 ASSERT(pred->dtp_difo != NULL);
14924                 dtrace_difo_hold(pred->dtp_difo);
14925                 helper->dtha_predicate = pred->dtp_difo;
14926         }
14927 
14928         for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
14929                 if (act->dtad_kind != DTRACEACT_DIFEXPR)
14930                         goto err;
14931 
14932                 if (act->dtad_difo == NULL)
14933                         goto err;
14934 
14935                 nactions++;
14936         }
14937 
14938         helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
14939             (helper->dtha_nactions = nactions), KM_SLEEP);
14940 
14941         for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
14942                 dtrace_difo_hold(act->dtad_difo);
14943                 helper->dtha_actions[i++] = act->dtad_difo;
14944         }
14945 
14946         if (!dtrace_helper_validate(helper))
14947                 goto err;
14948 
14949         if (last == NULL) {
14950                 help->dthps_actions[which] = helper;
14951         } else {
14952                 last->dtha_next = helper;
14953         }
14954 
14955         if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
14956                 dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
14957                 dtrace_helptrace_next = 0;
14958         }
14959 
14960         return (0);
14961 err:
14962         dtrace_helper_action_destroy(helper, vstate);
14963         return (EINVAL);
14964 }
14965 
14966 static void
14967 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
14968     dof_helper_t *dofhp)
14969 {
14970         ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
14971 
14972         mutex_enter(&dtrace_meta_lock);
14973         mutex_enter(&dtrace_lock);
14974 
14975         if (!dtrace_attached() || dtrace_meta_pid == NULL) {
14976                 /*
14977                  * If the dtrace module is loaded but not attached, or if
14978                  * there aren't isn't a meta provider registered to deal with
14979                  * these provider descriptions, we need to postpone creating
14980                  * the actual providers until later.
14981                  */
14982 
14983                 if (help->dthps_next == NULL && help->dthps_prev == NULL &&
14984                     dtrace_deferred_pid != help) {
14985                         help->dthps_deferred = 1;
14986                         help->dthps_pid = p->p_pid;
14987                         help->dthps_next = dtrace_deferred_pid;
14988                         help->dthps_prev = NULL;
14989                         if (dtrace_deferred_pid != NULL)
14990                                 dtrace_deferred_pid->dthps_prev = help;
14991                         dtrace_deferred_pid = help;
14992                 }
14993 
14994                 mutex_exit(&dtrace_lock);
14995 
14996         } else if (dofhp != NULL) {
14997                 /*
14998                  * If the dtrace module is loaded and we have a particular
14999                  * helper provider description, pass that off to the
15000                  * meta provider.
15001                  */
15002 
15003                 mutex_exit(&dtrace_lock);
15004 
15005                 dtrace_helper_provide(dofhp, p->p_pid);
15006 
15007         } else {
15008                 /*
15009                  * Otherwise, just pass all the helper provider descriptions
15010                  * off to the meta provider.
15011                  */
15012 
15013                 int i;
15014                 mutex_exit(&dtrace_lock);
15015 
15016                 for (i = 0; i < help->dthps_nprovs; i++) {
15017                         dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
15018                             p->p_pid);
15019                 }
15020         }
15021 
15022         mutex_exit(&dtrace_meta_lock);
15023 }
15024 
15025 static int
15026 dtrace_helper_provider_add(dof_helper_t *dofhp, int gen)
15027 {
15028         dtrace_helpers_t *help;
15029         dtrace_helper_provider_t *hprov, **tmp_provs;
15030         uint_t tmp_maxprovs, i;
15031 
15032         ASSERT(MUTEX_HELD(&dtrace_lock));
15033 
15034         help = curproc->p_dtrace_helpers;
15035         ASSERT(help != NULL);
15036 
15037         /*
15038          * If we already have dtrace_helper_providers_max helper providers,
15039          * we're refuse to add a new one.
15040          */
15041         if (help->dthps_nprovs >= dtrace_helper_providers_max)
15042                 return (ENOSPC);
15043 
15044         /*
15045          * Check to make sure this isn't a duplicate.
15046          */
15047         for (i = 0; i < help->dthps_nprovs; i++) {
15048                 if (dofhp->dofhp_addr ==
15049                     help->dthps_provs[i]->dthp_prov.dofhp_addr)
15050                         return (EALREADY);
15051         }
15052 
15053         hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
15054         hprov->dthp_prov = *dofhp;
15055         hprov->dthp_ref = 1;
15056         hprov->dthp_generation = gen;
15057 
15058         /*
15059          * Allocate a bigger table for helper providers if it's already full.
15060          */
15061         if (help->dthps_maxprovs == help->dthps_nprovs) {
15062                 tmp_maxprovs = help->dthps_maxprovs;
15063                 tmp_provs = help->dthps_provs;
15064 
15065                 if (help->dthps_maxprovs == 0)
15066                         help->dthps_maxprovs = 2;
15067                 else
15068                         help->dthps_maxprovs *= 2;
15069                 if (help->dthps_maxprovs > dtrace_helper_providers_max)
15070                         help->dthps_maxprovs = dtrace_helper_providers_max;
15071 
15072                 ASSERT(tmp_maxprovs < help->dthps_maxprovs);
15073 
15074                 help->dthps_provs = kmem_zalloc(help->dthps_maxprovs *
15075                     sizeof (dtrace_helper_provider_t *), KM_SLEEP);
15076 
15077                 if (tmp_provs != NULL) {
15078                         bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs *
15079                             sizeof (dtrace_helper_provider_t *));
15080                         kmem_free(tmp_provs, tmp_maxprovs *
15081                             sizeof (dtrace_helper_provider_t *));
15082                 }
15083         }
15084 
15085         help->dthps_provs[help->dthps_nprovs] = hprov;
15086         help->dthps_nprovs++;
15087 
15088         return (0);
15089 }
15090 
15091 static void
15092 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov)
15093 {
15094         mutex_enter(&dtrace_lock);
15095 
15096         if (--hprov->dthp_ref == 0) {
15097                 dof_hdr_t *dof;
15098                 mutex_exit(&dtrace_lock);
15099                 dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
15100                 dtrace_dof_destroy(dof);
15101                 kmem_free(hprov, sizeof (dtrace_helper_provider_t));
15102         } else {
15103                 mutex_exit(&dtrace_lock);
15104         }
15105 }
15106 
15107 static int
15108 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
15109 {
15110         uintptr_t daddr = (uintptr_t)dof;
15111         dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
15112         dof_provider_t *provider;
15113         dof_probe_t *probe;
15114         uint8_t *arg;
15115         char *strtab, *typestr;
15116         dof_stridx_t typeidx;
15117         size_t typesz;
15118         uint_t nprobes, j, k;
15119 
15120         ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
15121 
15122         if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
15123                 dtrace_dof_error(dof, "misaligned section offset");
15124                 return (-1);
15125         }
15126 
15127         /*
15128          * The section needs to be large enough to contain the DOF provider
15129          * structure appropriate for the given version.
15130          */
15131         if (sec->dofs_size <
15132             ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
15133             offsetof(dof_provider_t, dofpv_prenoffs) :
15134             sizeof (dof_provider_t))) {
15135                 dtrace_dof_error(dof, "provider section too small");
15136                 return (-1);
15137         }
15138 
15139         provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
15140         str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
15141         prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
15142         arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
15143         off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
15144 
15145         if (str_sec == NULL || prb_sec == NULL ||
15146             arg_sec == NULL || off_sec == NULL)
15147                 return (-1);
15148 
15149         enoff_sec = NULL;
15150 
15151         if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
15152             provider->dofpv_prenoffs != DOF_SECT_NONE &&
15153             (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
15154             provider->dofpv_prenoffs)) == NULL)
15155                 return (-1);
15156 
15157         strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
15158 
15159         if (provider->dofpv_name >= str_sec->dofs_size ||
15160             strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
15161                 dtrace_dof_error(dof, "invalid provider name");
15162                 return (-1);
15163         }
15164 
15165         if (prb_sec->dofs_entsize == 0 ||
15166             prb_sec->dofs_entsize > prb_sec->dofs_size) {
15167                 dtrace_dof_error(dof, "invalid entry size");
15168                 return (-1);
15169         }
15170 
15171         if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
15172                 dtrace_dof_error(dof, "misaligned entry size");
15173                 return (-1);
15174         }
15175 
15176         if (off_sec->dofs_entsize != sizeof (uint32_t)) {
15177                 dtrace_dof_error(dof, "invalid entry size");
15178                 return (-1);
15179         }
15180 
15181         if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
15182                 dtrace_dof_error(dof, "misaligned section offset");
15183                 return (-1);
15184         }
15185 
15186         if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
15187                 dtrace_dof_error(dof, "invalid entry size");
15188                 return (-1);
15189         }
15190 
15191         arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
15192 
15193         nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
15194 
15195         /*
15196          * Take a pass through the probes to check for errors.
15197          */
15198         for (j = 0; j < nprobes; j++) {
15199                 probe = (dof_probe_t *)(uintptr_t)(daddr +
15200                     prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
15201 
15202                 if (probe->dofpr_func >= str_sec->dofs_size) {
15203                         dtrace_dof_error(dof, "invalid function name");
15204                         return (-1);
15205                 }
15206 
15207                 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
15208                         dtrace_dof_error(dof, "function name too long");
15209                         return (-1);
15210                 }
15211 
15212                 if (probe->dofpr_name >= str_sec->dofs_size ||
15213                     strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
15214                         dtrace_dof_error(dof, "invalid probe name");
15215                         return (-1);
15216                 }
15217 
15218                 /*
15219                  * The offset count must not wrap the index, and the offsets
15220                  * must also not overflow the section's data.
15221                  */
15222                 if (probe->dofpr_offidx + probe->dofpr_noffs <
15223                     probe->dofpr_offidx ||
15224                     (probe->dofpr_offidx + probe->dofpr_noffs) *
15225                     off_sec->dofs_entsize > off_sec->dofs_size) {
15226                         dtrace_dof_error(dof, "invalid probe offset");
15227                         return (-1);
15228                 }
15229 
15230                 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
15231                         /*
15232                          * If there's no is-enabled offset section, make sure
15233                          * there aren't any is-enabled offsets. Otherwise
15234                          * perform the same checks as for probe offsets
15235                          * (immediately above).
15236                          */
15237                         if (enoff_sec == NULL) {
15238                                 if (probe->dofpr_enoffidx != 0 ||
15239                                     probe->dofpr_nenoffs != 0) {
15240                                         dtrace_dof_error(dof, "is-enabled "
15241                                             "offsets with null section");
15242                                         return (-1);
15243                                 }
15244                         } else if (probe->dofpr_enoffidx +
15245                             probe->dofpr_nenoffs < probe->dofpr_enoffidx ||
15246                             (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
15247                             enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
15248                                 dtrace_dof_error(dof, "invalid is-enabled "
15249                                     "offset");
15250                                 return (-1);
15251                         }
15252 
15253                         if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
15254                                 dtrace_dof_error(dof, "zero probe and "
15255                                     "is-enabled offsets");
15256                                 return (-1);
15257                         }
15258                 } else if (probe->dofpr_noffs == 0) {
15259                         dtrace_dof_error(dof, "zero probe offsets");
15260                         return (-1);
15261                 }
15262 
15263                 if (probe->dofpr_argidx + probe->dofpr_xargc <
15264                     probe->dofpr_argidx ||
15265                     (probe->dofpr_argidx + probe->dofpr_xargc) *
15266                     arg_sec->dofs_entsize > arg_sec->dofs_size) {
15267                         dtrace_dof_error(dof, "invalid args");
15268                         return (-1);
15269                 }
15270 
15271                 typeidx = probe->dofpr_nargv;
15272                 typestr = strtab + probe->dofpr_nargv;
15273                 for (k = 0; k < probe->dofpr_nargc; k++) {
15274                         if (typeidx >= str_sec->dofs_size) {
15275                                 dtrace_dof_error(dof, "bad "
15276                                     "native argument type");
15277                                 return (-1);
15278                         }
15279 
15280                         typesz = strlen(typestr) + 1;
15281                         if (typesz > DTRACE_ARGTYPELEN) {
15282                                 dtrace_dof_error(dof, "native "
15283                                     "argument type too long");
15284                                 return (-1);
15285                         }
15286                         typeidx += typesz;
15287                         typestr += typesz;
15288                 }
15289 
15290                 typeidx = probe->dofpr_xargv;
15291                 typestr = strtab + probe->dofpr_xargv;
15292                 for (k = 0; k < probe->dofpr_xargc; k++) {
15293                         if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
15294                                 dtrace_dof_error(dof, "bad "
15295                                     "native argument index");
15296                                 return (-1);
15297                         }
15298 
15299                         if (typeidx >= str_sec->dofs_size) {
15300                                 dtrace_dof_error(dof, "bad "
15301                                     "translated argument type");
15302                                 return (-1);
15303                         }
15304 
15305                         typesz = strlen(typestr) + 1;
15306                         if (typesz > DTRACE_ARGTYPELEN) {
15307                                 dtrace_dof_error(dof, "translated argument "
15308                                     "type too long");
15309                                 return (-1);
15310                         }
15311 
15312                         typeidx += typesz;
15313                         typestr += typesz;
15314                 }
15315         }
15316 
15317         return (0);
15318 }
15319 
15320 static int
15321 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp)
15322 {
15323         dtrace_helpers_t *help;
15324         dtrace_vstate_t *vstate;
15325         dtrace_enabling_t *enab = NULL;
15326         int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
15327         uintptr_t daddr = (uintptr_t)dof;
15328 
15329         ASSERT(MUTEX_HELD(&dtrace_lock));
15330 
15331         if ((help = curproc->p_dtrace_helpers) == NULL)
15332                 help = dtrace_helpers_create(curproc);
15333 
15334         vstate = &help->dthps_vstate;
15335 
15336         if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab,
15337             dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) {
15338                 dtrace_dof_destroy(dof);
15339                 return (rv);
15340         }
15341 
15342         /*
15343          * Look for helper providers and validate their descriptions.
15344          */
15345         if (dhp != NULL) {
15346                 for (i = 0; i < dof->dofh_secnum; i++) {
15347                         dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
15348                             dof->dofh_secoff + i * dof->dofh_secsize);
15349 
15350                         if (sec->dofs_type != DOF_SECT_PROVIDER)
15351                                 continue;
15352 
15353                         if (dtrace_helper_provider_validate(dof, sec) != 0) {
15354                                 dtrace_enabling_destroy(enab);
15355                                 dtrace_dof_destroy(dof);
15356                                 return (-1);
15357                         }
15358 
15359                         nprovs++;
15360                 }
15361         }
15362 
15363         /*
15364          * Now we need to walk through the ECB descriptions in the enabling.
15365          */
15366         for (i = 0; i < enab->dten_ndesc; i++) {
15367                 dtrace_ecbdesc_t *ep = enab->dten_desc[i];
15368                 dtrace_probedesc_t *desc = &ep->dted_probe;
15369 
15370                 if (strcmp(desc->dtpd_provider, "dtrace") != 0)
15371                         continue;
15372 
15373                 if (strcmp(desc->dtpd_mod, "helper") != 0)
15374                         continue;
15375 
15376                 if (strcmp(desc->dtpd_func, "ustack") != 0)
15377                         continue;
15378 
15379                 if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
15380                     ep)) != 0) {
15381                         /*
15382                          * Adding this helper action failed -- we are now going
15383                          * to rip out the entire generation and return failure.
15384                          */
15385                         (void) dtrace_helper_destroygen(help->dthps_generation);
15386                         dtrace_enabling_destroy(enab);
15387                         dtrace_dof_destroy(dof);
15388                         return (-1);
15389                 }
15390 
15391                 nhelpers++;
15392         }
15393 
15394         if (nhelpers < enab->dten_ndesc)
15395                 dtrace_dof_error(dof, "unmatched helpers");
15396 
15397         gen = help->dthps_generation++;
15398         dtrace_enabling_destroy(enab);
15399 
15400         if (dhp != NULL && nprovs > 0) {
15401                 /*
15402                  * Now that this is in-kernel, we change the sense of the
15403                  * members:  dofhp_dof denotes the in-kernel copy of the DOF
15404                  * and dofhp_addr denotes the address at user-level.
15405                  */
15406                 dhp->dofhp_addr = dhp->dofhp_dof;
15407                 dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
15408 
15409                 if (dtrace_helper_provider_add(dhp, gen) == 0) {
15410                         mutex_exit(&dtrace_lock);
15411                         dtrace_helper_provider_register(curproc, help, dhp);
15412                         mutex_enter(&dtrace_lock);
15413 
15414                         destroy = 0;
15415                 }
15416         }
15417 
15418         if (destroy)
15419                 dtrace_dof_destroy(dof);
15420 
15421         return (gen);
15422 }
15423 
15424 static dtrace_helpers_t *
15425 dtrace_helpers_create(proc_t *p)
15426 {
15427         dtrace_helpers_t *help;
15428 
15429         ASSERT(MUTEX_HELD(&dtrace_lock));
15430         ASSERT(p->p_dtrace_helpers == NULL);
15431 
15432         help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
15433         help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
15434             DTRACE_NHELPER_ACTIONS, KM_SLEEP);
15435 
15436         p->p_dtrace_helpers = help;
15437         dtrace_helpers++;
15438 
15439         return (help);
15440 }
15441 
15442 static void
15443 dtrace_helpers_destroy(void)
15444 {
15445         dtrace_helpers_t *help;
15446         dtrace_vstate_t *vstate;
15447         proc_t *p = curproc;
15448         int i;
15449 
15450         mutex_enter(&dtrace_lock);
15451 
15452         ASSERT(p->p_dtrace_helpers != NULL);
15453         ASSERT(dtrace_helpers > 0);
15454 
15455         help = p->p_dtrace_helpers;
15456         vstate = &help->dthps_vstate;
15457 
15458         /*
15459          * We're now going to lose the help from this process.
15460          */
15461         p->p_dtrace_helpers = NULL;
15462         dtrace_sync();
15463 
15464         /*
15465          * Destory the helper actions.
15466          */
15467         for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
15468                 dtrace_helper_action_t *h, *next;
15469 
15470                 for (h = help->dthps_actions[i]; h != NULL; h = next) {
15471                         next = h->dtha_next;
15472                         dtrace_helper_action_destroy(h, vstate);
15473                         h = next;
15474                 }
15475         }
15476 
15477         mutex_exit(&dtrace_lock);
15478 
15479         /*
15480          * Destroy the helper providers.
15481          */
15482         if (help->dthps_maxprovs > 0) {
15483                 mutex_enter(&dtrace_meta_lock);
15484                 if (dtrace_meta_pid != NULL) {
15485                         ASSERT(dtrace_deferred_pid == NULL);
15486 
15487                         for (i = 0; i < help->dthps_nprovs; i++) {
15488                                 dtrace_helper_provider_remove(
15489                                     &help->dthps_provs[i]->dthp_prov, p->p_pid);
15490                         }
15491                 } else {
15492                         mutex_enter(&dtrace_lock);
15493                         ASSERT(help->dthps_deferred == 0 ||
15494                             help->dthps_next != NULL ||
15495                             help->dthps_prev != NULL ||
15496                             help == dtrace_deferred_pid);
15497 
15498                         /*
15499                          * Remove the helper from the deferred list.
15500                          */
15501                         if (help->dthps_next != NULL)
15502                                 help->dthps_next->dthps_prev = help->dthps_prev;
15503                         if (help->dthps_prev != NULL)
15504                                 help->dthps_prev->dthps_next = help->dthps_next;
15505                         if (dtrace_deferred_pid == help) {
15506                                 dtrace_deferred_pid = help->dthps_next;
15507                                 ASSERT(help->dthps_prev == NULL);
15508                         }
15509 
15510                         mutex_exit(&dtrace_lock);
15511                 }
15512 
15513                 mutex_exit(&dtrace_meta_lock);
15514 
15515                 for (i = 0; i < help->dthps_nprovs; i++) {
15516                         dtrace_helper_provider_destroy(help->dthps_provs[i]);
15517                 }
15518 
15519                 kmem_free(help->dthps_provs, help->dthps_maxprovs *
15520                     sizeof (dtrace_helper_provider_t *));
15521         }
15522 
15523         mutex_enter(&dtrace_lock);
15524 
15525         dtrace_vstate_fini(&help->dthps_vstate);
15526         kmem_free(help->dthps_actions,
15527             sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
15528         kmem_free(help, sizeof (dtrace_helpers_t));
15529 
15530         --dtrace_helpers;
15531         mutex_exit(&dtrace_lock);
15532 }
15533 
15534 static void
15535 dtrace_helpers_duplicate(proc_t *from, proc_t *to)
15536 {
15537         dtrace_helpers_t *help, *newhelp;
15538         dtrace_helper_action_t *helper, *new, *last;
15539         dtrace_difo_t *dp;
15540         dtrace_vstate_t *vstate;
15541         int i, j, sz, hasprovs = 0;
15542 
15543         mutex_enter(&dtrace_lock);
15544         ASSERT(from->p_dtrace_helpers != NULL);
15545         ASSERT(dtrace_helpers > 0);
15546 
15547         help = from->p_dtrace_helpers;
15548         newhelp = dtrace_helpers_create(to);
15549         ASSERT(to->p_dtrace_helpers != NULL);
15550 
15551         newhelp->dthps_generation = help->dthps_generation;
15552         vstate = &newhelp->dthps_vstate;
15553 
15554         /*
15555          * Duplicate the helper actions.
15556          */
15557         for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
15558                 if ((helper = help->dthps_actions[i]) == NULL)
15559                         continue;
15560 
15561                 for (last = NULL; helper != NULL; helper = helper->dtha_next) {
15562                         new = kmem_zalloc(sizeof (dtrace_helper_action_t),
15563                             KM_SLEEP);
15564                         new->dtha_generation = helper->dtha_generation;
15565 
15566                         if ((dp = helper->dtha_predicate) != NULL) {
15567                                 dp = dtrace_difo_duplicate(dp, vstate);
15568                                 new->dtha_predicate = dp;
15569                         }
15570 
15571                         new->dtha_nactions = helper->dtha_nactions;
15572                         sz = sizeof (dtrace_difo_t *) * new->dtha_nactions;
15573                         new->dtha_actions = kmem_alloc(sz, KM_SLEEP);
15574 
15575                         for (j = 0; j < new->dtha_nactions; j++) {
15576                                 dtrace_difo_t *dp = helper->dtha_actions[j];
15577 
15578                                 ASSERT(dp != NULL);
15579                                 dp = dtrace_difo_duplicate(dp, vstate);
15580                                 new->dtha_actions[j] = dp;
15581                         }
15582 
15583                         if (last != NULL) {
15584                                 last->dtha_next = new;
15585                         } else {
15586                                 newhelp->dthps_actions[i] = new;
15587                         }
15588 
15589                         last = new;
15590                 }
15591         }
15592 
15593         /*
15594          * Duplicate the helper providers and register them with the
15595          * DTrace framework.
15596          */
15597         if (help->dthps_nprovs > 0) {
15598                 newhelp->dthps_nprovs = help->dthps_nprovs;
15599                 newhelp->dthps_maxprovs = help->dthps_nprovs;
15600                 newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
15601                     sizeof (dtrace_helper_provider_t *), KM_SLEEP);
15602                 for (i = 0; i < newhelp->dthps_nprovs; i++) {
15603                         newhelp->dthps_provs[i] = help->dthps_provs[i];
15604                         newhelp->dthps_provs[i]->dthp_ref++;
15605                 }
15606 
15607                 hasprovs = 1;
15608         }
15609 
15610         mutex_exit(&dtrace_lock);
15611 
15612         if (hasprovs)
15613                 dtrace_helper_provider_register(to, newhelp, NULL);
15614 }
15615 
15616 /*
15617  * DTrace Hook Functions
15618  */
15619 static void
15620 dtrace_module_loaded(struct modctl *ctl)
15621 {
15622         dtrace_provider_t *prv;
15623 
15624         mutex_enter(&dtrace_provider_lock);
15625         mutex_enter(&mod_lock);
15626 
15627         ASSERT(ctl->mod_busy);
15628 
15629         /*
15630          * We're going to call each providers per-module provide operation
15631          * specifying only this module.
15632          */
15633         for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
15634                 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
15635 
15636         mutex_exit(&mod_lock);
15637         mutex_exit(&dtrace_provider_lock);
15638 
15639         /*
15640          * If we have any retained enablings, we need to match against them.
15641          * Enabling probes requires that cpu_lock be held, and we cannot hold
15642          * cpu_lock here -- it is legal for cpu_lock to be held when loading a
15643          * module.  (In particular, this happens when loading scheduling
15644          * classes.)  So if we have any retained enablings, we need to dispatch
15645          * our task queue to do the match for us.
15646          */
15647         mutex_enter(&dtrace_lock);
15648 
15649         if (dtrace_retained == NULL) {
15650                 mutex_exit(&dtrace_lock);
15651                 return;
15652         }
15653 
15654         (void) taskq_dispatch(dtrace_taskq,
15655             (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);
15656 
15657         mutex_exit(&dtrace_lock);
15658 
15659         /*
15660          * And now, for a little heuristic sleaze:  in general, we want to
15661          * match modules as soon as they load.  However, we cannot guarantee
15662          * this, because it would lead us to the lock ordering violation
15663          * outlined above.  The common case, of course, is that cpu_lock is
15664          * _not_ held -- so we delay here for a clock tick, hoping that that's
15665          * long enough for the task queue to do its work.  If it's not, it's
15666          * not a serious problem -- it just means that the module that we
15667          * just loaded may not be immediately instrumentable.
15668          */
15669         delay(1);
15670 }
15671 
15672 static void
15673 dtrace_module_unloaded(struct modctl *ctl)
15674 {
15675         dtrace_probe_t template, *probe, *first, *next;
15676         dtrace_provider_t *prov;
15677 
15678         template.dtpr_mod = ctl->mod_modname;
15679 
15680         mutex_enter(&dtrace_provider_lock);
15681         mutex_enter(&mod_lock);
15682         mutex_enter(&dtrace_lock);
15683 
15684         if (dtrace_bymod == NULL) {
15685                 /*
15686                  * The DTrace module is loaded (obviously) but not attached;
15687                  * we don't have any work to do.
15688                  */
15689                 mutex_exit(&dtrace_provider_lock);
15690                 mutex_exit(&mod_lock);
15691                 mutex_exit(&dtrace_lock);
15692                 return;
15693         }
15694 
15695         for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
15696             probe != NULL; probe = probe->dtpr_nextmod) {
15697                 if (probe->dtpr_ecb != NULL) {
15698                         mutex_exit(&dtrace_provider_lock);
15699                         mutex_exit(&mod_lock);
15700                         mutex_exit(&dtrace_lock);
15701 
15702                         /*
15703                          * This shouldn't _actually_ be possible -- we're
15704                          * unloading a module that has an enabled probe in it.
15705                          * (It's normally up to the provider to make sure that
15706                          * this can't happen.)  However, because dtps_enable()
15707                          * doesn't have a failure mode, there can be an
15708                          * enable/unload race.  Upshot:  we don't want to
15709                          * assert, but we're not going to disable the
15710                          * probe, either.
15711                          */
15712                         if (dtrace_err_verbose) {
15713                                 cmn_err(CE_WARN, "unloaded module '%s' had "
15714                                     "enabled probes", ctl->mod_modname);
15715                         }
15716 
15717                         return;
15718                 }
15719         }
15720 
15721         probe = first;
15722 
15723         for (first = NULL; probe != NULL; probe = next) {
15724                 ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
15725 
15726                 dtrace_probes[probe->dtpr_id - 1] = NULL;
15727 
15728                 next = probe->dtpr_nextmod;
15729                 dtrace_hash_remove(dtrace_bymod, probe);
15730                 dtrace_hash_remove(dtrace_byfunc, probe);
15731                 dtrace_hash_remove(dtrace_byname, probe);
15732 
15733                 if (first == NULL) {
15734                         first = probe;
15735                         probe->dtpr_nextmod = NULL;
15736                 } else {
15737                         probe->dtpr_nextmod = first;
15738                         first = probe;
15739                 }
15740         }
15741 
15742         /*
15743          * We've removed all of the module's probes from the hash chains and
15744          * from the probe array.  Now issue a dtrace_sync() to be sure that
15745          * everyone has cleared out from any probe array processing.
15746          */
15747         dtrace_sync();
15748 
15749         for (probe = first; probe != NULL; probe = first) {
15750                 first = probe->dtpr_nextmod;
15751                 prov = probe->dtpr_provider;
15752                 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
15753                     probe->dtpr_arg);
15754                 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
15755                 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
15756                 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
15757                 vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
15758                 kmem_free(probe, sizeof (dtrace_probe_t));
15759         }
15760 
15761         mutex_exit(&dtrace_lock);
15762         mutex_exit(&mod_lock);
15763         mutex_exit(&dtrace_provider_lock);
15764 }
15765 
15766 void
15767 dtrace_suspend(void)
15768 {
15769         dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
15770 }
15771 
15772 void
15773 dtrace_resume(void)
15774 {
15775         dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
15776 }
15777 
15778 static int
15779 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
15780 {
15781         ASSERT(MUTEX_HELD(&cpu_lock));
15782         mutex_enter(&dtrace_lock);
15783 
15784         switch (what) {
15785         case CPU_CONFIG: {
15786                 dtrace_state_t *state;
15787                 dtrace_optval_t *opt, rs, c;
15788 
15789                 /*
15790                  * For now, we only allocate a new buffer for anonymous state.
15791                  */
15792                 if ((state = dtrace_anon.dta_state) == NULL)
15793                         break;
15794 
15795                 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
15796                         break;
15797 
15798                 opt = state->dts_options;
15799                 c = opt[DTRACEOPT_CPU];
15800 
15801                 if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
15802                         break;
15803 
15804                 /*
15805                  * Regardless of what the actual policy is, we're going to
15806                  * temporarily set our resize policy to be manual.  We're
15807                  * also going to temporarily set our CPU option to denote
15808                  * the newly configured CPU.
15809                  */
15810                 rs = opt[DTRACEOPT_BUFRESIZE];
15811                 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
15812                 opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
15813 
15814                 (void) dtrace_state_buffers(state);
15815 
15816                 opt[DTRACEOPT_BUFRESIZE] = rs;
15817                 opt[DTRACEOPT_CPU] = c;
15818 
15819                 break;
15820         }
15821 
15822         case CPU_UNCONFIG:
15823                 /*
15824                  * We don't free the buffer in the CPU_UNCONFIG case.  (The
15825                  * buffer will be freed when the consumer exits.)
15826                  */
15827                 break;
15828 
15829         default:
15830                 break;
15831         }
15832 
15833         mutex_exit(&dtrace_lock);
15834         return (0);
15835 }
15836 
15837 static void
15838 dtrace_cpu_setup_initial(processorid_t cpu)
15839 {
15840         (void) dtrace_cpu_setup(CPU_CONFIG, cpu);
15841 }
15842 
15843 static void
15844 dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
15845 {
15846         if (dtrace_toxranges >= dtrace_toxranges_max) {
15847                 int osize, nsize;
15848                 dtrace_toxrange_t *range;
15849 
15850                 osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15851 
15852                 if (osize == 0) {
15853                         ASSERT(dtrace_toxrange == NULL);
15854                         ASSERT(dtrace_toxranges_max == 0);
15855                         dtrace_toxranges_max = 1;
15856                 } else {
15857                         dtrace_toxranges_max <<= 1;
15858                 }
15859 
15860                 nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15861                 range = kmem_zalloc(nsize, KM_SLEEP);
15862 
15863                 if (dtrace_toxrange != NULL) {
15864                         ASSERT(osize != 0);
15865                         bcopy(dtrace_toxrange, range, osize);
15866                         kmem_free(dtrace_toxrange, osize);
15867                 }
15868 
15869                 dtrace_toxrange = range;
15870         }
15871 
15872         ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == NULL);
15873         ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == NULL);
15874 
15875         dtrace_toxrange[dtrace_toxranges].dtt_base = base;
15876         dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
15877         dtrace_toxranges++;
15878 }
15879 
15880 static void
15881 dtrace_getf_barrier()
15882 {
15883         /*
15884          * When we have unprivileged (that is, non-DTRACE_CRV_KERNEL) enablings
15885          * that contain calls to getf(), this routine will be called on every
15886          * closef() before either the underlying vnode is released or the
15887          * file_t itself is freed.  By the time we are here, it is essential
15888          * that the file_t can no longer be accessed from a call to getf()
15889          * in probe context -- that assures that a dtrace_sync() can be used
15890          * to clear out any enablings referring to the old structures.
15891          */
15892         if (curthread->t_procp->p_zone->zone_dtrace_getf != 0 ||
15893             kcred->cr_zone->zone_dtrace_getf != 0)
15894                 dtrace_sync();
15895 }
15896 
15897 /*
15898  * DTrace Driver Cookbook Functions
15899  */
15900 /*ARGSUSED*/
15901 static int
15902 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
15903 {
15904         dtrace_provider_id_t id;
15905         dtrace_state_t *state = NULL;
15906         dtrace_enabling_t *enab;
15907 
15908         mutex_enter(&cpu_lock);
15909         mutex_enter(&dtrace_provider_lock);
15910         mutex_enter(&dtrace_lock);
15911 
15912         if (ddi_soft_state_init(&dtrace_softstate,
15913             sizeof (dtrace_state_t), 0) != 0) {
15914                 cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
15915                 mutex_exit(&cpu_lock);
15916                 mutex_exit(&dtrace_provider_lock);
15917                 mutex_exit(&dtrace_lock);
15918                 return (DDI_FAILURE);
15919         }
15920 
15921         if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
15922             DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
15923             ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
15924             DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
15925                 cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
15926                 ddi_remove_minor_node(devi, NULL);
15927                 ddi_soft_state_fini(&dtrace_softstate);
15928                 mutex_exit(&cpu_lock);
15929                 mutex_exit(&dtrace_provider_lock);
15930                 mutex_exit(&dtrace_lock);
15931                 return (DDI_FAILURE);
15932         }
15933 
15934         ddi_report_dev(devi);
15935         dtrace_devi = devi;
15936 
15937         dtrace_modload = dtrace_module_loaded;
15938         dtrace_modunload = dtrace_module_unloaded;
15939         dtrace_cpu_init = dtrace_cpu_setup_initial;
15940         dtrace_helpers_cleanup = dtrace_helpers_destroy;
15941         dtrace_helpers_fork = dtrace_helpers_duplicate;
15942         dtrace_cpustart_init = dtrace_suspend;
15943         dtrace_cpustart_fini = dtrace_resume;
15944         dtrace_debugger_init = dtrace_suspend;
15945         dtrace_debugger_fini = dtrace_resume;
15946 
15947         register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
15948 
15949         ASSERT(MUTEX_HELD(&cpu_lock));
15950 
15951         dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
15952             NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
15953         dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
15954             UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
15955             VM_SLEEP | VMC_IDENTIFIER);
15956         dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
15957             1, INT_MAX, 0);
15958 
15959         dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
15960             sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
15961             NULL, NULL, NULL, NULL, NULL, 0);
15962 
15963         ASSERT(MUTEX_HELD(&cpu_lock));
15964         dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
15965             offsetof(dtrace_probe_t, dtpr_nextmod),
15966             offsetof(dtrace_probe_t, dtpr_prevmod));
15967 
15968         dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
15969             offsetof(dtrace_probe_t, dtpr_nextfunc),
15970             offsetof(dtrace_probe_t, dtpr_prevfunc));
15971 
15972         dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
15973             offsetof(dtrace_probe_t, dtpr_nextname),
15974             offsetof(dtrace_probe_t, dtpr_prevname));
15975 
15976         if (dtrace_retain_max < 1) {
15977                 cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; "
15978                     "setting to 1", dtrace_retain_max);
15979                 dtrace_retain_max = 1;
15980         }
15981 
15982         /*
15983          * Now discover our toxic ranges.
15984          */
15985         dtrace_toxic_ranges(dtrace_toxrange_add);
15986 
15987         /*
15988          * Before we register ourselves as a provider to our own framework,
15989          * we would like to assert that dtrace_provider is NULL -- but that's
15990          * not true if we were loaded as a dependency of a DTrace provider.
15991          * Once we've registered, we can assert that dtrace_provider is our
15992          * pseudo provider.
15993          */
15994         (void) dtrace_register("dtrace", &dtrace_provider_attr,
15995             DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
15996 
15997         ASSERT(dtrace_provider != NULL);
15998         ASSERT((dtrace_provider_id_t)dtrace_provider == id);
15999 
16000         dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
16001             dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
16002         dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
16003             dtrace_provider, NULL, NULL, "END", 0, NULL);
16004         dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
16005             dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
16006 
16007         dtrace_anon_property();
16008         mutex_exit(&cpu_lock);
16009 
16010         /*
16011          * If there are already providers, we must ask them to provide their
16012          * probes, and then match any anonymous enabling against them.  Note
16013          * that there should be no other retained enablings at this time:
16014          * the only retained enablings at this time should be the anonymous
16015          * enabling.
16016          */
16017         if (dtrace_anon.dta_enabling != NULL) {
16018                 ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
16019 
16020                 dtrace_enabling_provide(NULL);
16021                 state = dtrace_anon.dta_state;
16022 
16023                 /*
16024                  * We couldn't hold cpu_lock across the above call to
16025                  * dtrace_enabling_provide(), but we must hold it to actually
16026                  * enable the probes.  We have to drop all of our locks, pick
16027                  * up cpu_lock, and regain our locks before matching the
16028                  * retained anonymous enabling.
16029                  */
16030                 mutex_exit(&dtrace_lock);
16031                 mutex_exit(&dtrace_provider_lock);
16032 
16033                 mutex_enter(&cpu_lock);
16034                 mutex_enter(&dtrace_provider_lock);
16035                 mutex_enter(&dtrace_lock);
16036 
16037                 if ((enab = dtrace_anon.dta_enabling) != NULL)
16038                         (void) dtrace_enabling_match(enab, NULL);
16039 
16040                 mutex_exit(&cpu_lock);
16041         }
16042 
16043         mutex_exit(&dtrace_lock);
16044         mutex_exit(&dtrace_provider_lock);
16045 
16046         if (state != NULL) {
16047                 /*
16048                  * If we created any anonymous state, set it going now.
16049                  */
16050                 (void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
16051         }
16052 
16053         return (DDI_SUCCESS);
16054 }
16055 
16056 /*ARGSUSED*/
16057 static int
16058 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
16059 {
16060         dtrace_state_t *state;
16061         uint32_t priv;
16062         uid_t uid;
16063         zoneid_t zoneid;
16064 
16065         if (getminor(*devp) == DTRACEMNRN_HELPER)
16066                 return (0);
16067 
16068         /*
16069          * If this wasn't an open with the "helper" minor, then it must be
16070          * the "dtrace" minor.
16071          */
16072         if (getminor(*devp) != DTRACEMNRN_DTRACE)
16073                 return (ENXIO);
16074 
16075         /*
16076          * If no DTRACE_PRIV_* bits are set in the credential, then the
16077          * caller lacks sufficient permission to do anything with DTrace.
16078          */
16079         dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
16080         if (priv == DTRACE_PRIV_NONE)
16081                 return (EACCES);
16082 
16083         /*
16084          * Ask all providers to provide all their probes.
16085          */
16086         mutex_enter(&dtrace_provider_lock);
16087         dtrace_probe_provide(NULL, NULL);
16088         mutex_exit(&dtrace_provider_lock);
16089 
16090         mutex_enter(&cpu_lock);
16091         mutex_enter(&dtrace_lock);
16092         dtrace_opens++;
16093         dtrace_membar_producer();
16094 
16095         /*
16096          * If the kernel debugger is active (that is, if the kernel debugger
16097          * modified text in some way), we won't allow the open.
16098          */
16099         if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
16100                 dtrace_opens--;
16101                 mutex_exit(&cpu_lock);
16102                 mutex_exit(&dtrace_lock);
16103                 return (EBUSY);
16104         }
16105 
16106         if (dtrace_helptrace_enable && dtrace_helptrace_buffer == NULL) {
16107                 /*
16108                  * If DTrace helper tracing is enabled, we need to allocate the
16109                  * trace buffer and initialize the values.
16110                  */
16111                 dtrace_helptrace_buffer =
16112                     kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
16113                 dtrace_helptrace_next = 0;
16114                 dtrace_helptrace_wrapped = 0;
16115                 dtrace_helptrace_enable = 0;
16116         }
16117 
16118         state = dtrace_state_create(devp, cred_p);
16119         mutex_exit(&cpu_lock);
16120 
16121         if (state == NULL) {
16122                 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
16123                         (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
16124                 mutex_exit(&dtrace_lock);
16125                 return (EAGAIN);
16126         }
16127 
16128         mutex_exit(&dtrace_lock);
16129 
16130         return (0);
16131 }
16132 
16133 /*ARGSUSED*/
16134 static int
16135 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
16136 {
16137         minor_t minor = getminor(dev);
16138         dtrace_state_t *state;
16139         dtrace_helptrace_t *buf = NULL;
16140 
16141         if (minor == DTRACEMNRN_HELPER)
16142                 return (0);
16143 
16144         state = ddi_get_soft_state(dtrace_softstate, minor);
16145 
16146         mutex_enter(&cpu_lock);
16147         mutex_enter(&dtrace_lock);
16148 
16149         if (state->dts_anon) {
16150                 /*
16151                  * There is anonymous state. Destroy that first.
16152                  */
16153                 ASSERT(dtrace_anon.dta_state == NULL);
16154                 dtrace_state_destroy(state->dts_anon);
16155         }
16156 
16157         if (dtrace_helptrace_disable) {
16158                 /*
16159                  * If we have been told to disable helper tracing, set the
16160                  * buffer to NULL before calling into dtrace_state_destroy();
16161                  * we take advantage of its dtrace_sync() to know that no
16162                  * CPU is in probe context with enabled helper tracing
16163                  * after it returns.
16164                  */
16165                 buf = dtrace_helptrace_buffer;
16166                 dtrace_helptrace_buffer = NULL;
16167         }
16168 
16169         dtrace_state_destroy(state);
16170         ASSERT(dtrace_opens > 0);
16171 
16172         /*
16173          * Only relinquish control of the kernel debugger interface when there
16174          * are no consumers and no anonymous enablings.
16175          */
16176         if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
16177                 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
16178 
16179         if (buf != NULL) {
16180                 kmem_free(buf, dtrace_helptrace_bufsize);
16181                 dtrace_helptrace_disable = 0;
16182         }
16183 
16184         mutex_exit(&dtrace_lock);
16185         mutex_exit(&cpu_lock);
16186 
16187         return (0);
16188 }
16189 
16190 /*ARGSUSED*/
16191 static int
16192 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
16193 {
16194         int rval;
16195         dof_helper_t help, *dhp = NULL;
16196 
16197         switch (cmd) {
16198         case DTRACEHIOC_ADDDOF:
16199                 if (copyin((void *)arg, &help, sizeof (help)) != 0) {
16200                         dtrace_dof_error(NULL, "failed to copyin DOF helper");
16201                         return (EFAULT);
16202                 }
16203 
16204                 dhp = &help;
16205                 arg = (intptr_t)help.dofhp_dof;
16206                 /*FALLTHROUGH*/
16207 
16208         case DTRACEHIOC_ADD: {
16209                 dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
16210 
16211                 if (dof == NULL)
16212                         return (rval);
16213 
16214                 mutex_enter(&dtrace_lock);
16215 
16216                 /*
16217                  * dtrace_helper_slurp() takes responsibility for the dof --
16218                  * it may free it now or it may save it and free it later.
16219                  */
16220                 if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
16221                         *rv = rval;
16222                         rval = 0;
16223                 } else {
16224                         rval = EINVAL;
16225                 }
16226 
16227                 mutex_exit(&dtrace_lock);
16228                 return (rval);
16229         }
16230 
16231         case DTRACEHIOC_REMOVE: {
16232                 mutex_enter(&dtrace_lock);
16233                 rval = dtrace_helper_destroygen(arg);
16234                 mutex_exit(&dtrace_lock);
16235 
16236                 return (rval);
16237         }
16238 
16239         default:
16240                 break;
16241         }
16242 
16243         return (ENOTTY);
16244 }
16245 
16246 /*ARGSUSED*/
16247 static int
16248 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
16249 {
16250         minor_t minor = getminor(dev);
16251         dtrace_state_t *state;
16252         int rval;
16253 
16254         if (minor == DTRACEMNRN_HELPER)
16255                 return (dtrace_ioctl_helper(cmd, arg, rv));
16256 
16257         state = ddi_get_soft_state(dtrace_softstate, minor);
16258 
16259         if (state->dts_anon) {
16260                 ASSERT(dtrace_anon.dta_state == NULL);
16261                 state = state->dts_anon;
16262         }
16263 
16264         switch (cmd) {
16265         case DTRACEIOC_PROVIDER: {
16266                 dtrace_providerdesc_t pvd;
16267                 dtrace_provider_t *pvp;
16268 
16269                 if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
16270                         return (EFAULT);
16271 
16272                 pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
16273                 mutex_enter(&dtrace_provider_lock);
16274 
16275                 for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
16276                         if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
16277                                 break;
16278                 }
16279 
16280                 mutex_exit(&dtrace_provider_lock);
16281 
16282                 if (pvp == NULL)
16283                         return (ESRCH);
16284 
16285                 bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
16286                 bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
16287                 if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
16288                         return (EFAULT);
16289 
16290                 return (0);
16291         }
16292 
16293         case DTRACEIOC_EPROBE: {
16294                 dtrace_eprobedesc_t epdesc;
16295                 dtrace_ecb_t *ecb;
16296                 dtrace_action_t *act;
16297                 void *buf;
16298                 size_t size;
16299                 uintptr_t dest;
16300                 int nrecs;
16301 
16302                 if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
16303                         return (EFAULT);
16304 
16305                 mutex_enter(&dtrace_lock);
16306 
16307                 if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
16308                         mutex_exit(&dtrace_lock);
16309                         return (EINVAL);
16310                 }
16311 
16312                 if (ecb->dte_probe == NULL) {
16313                         mutex_exit(&dtrace_lock);
16314                         return (EINVAL);
16315                 }
16316 
16317                 epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
16318                 epdesc.dtepd_uarg = ecb->dte_uarg;
16319                 epdesc.dtepd_size = ecb->dte_size;
16320 
16321                 nrecs = epdesc.dtepd_nrecs;
16322                 epdesc.dtepd_nrecs = 0;
16323                 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
16324                         if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
16325                                 continue;
16326 
16327                         epdesc.dtepd_nrecs++;
16328                 }
16329 
16330                 /*
16331                  * Now that we have the size, we need to allocate a temporary
16332                  * buffer in which to store the complete description.  We need
16333                  * the temporary buffer to be able to drop dtrace_lock()
16334                  * across the copyout(), below.
16335                  */
16336                 size = sizeof (dtrace_eprobedesc_t) +
16337                     (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
16338 
16339                 buf = kmem_alloc(size, KM_SLEEP);
16340                 dest = (uintptr_t)buf;
16341 
16342                 bcopy(&epdesc, (void *)dest, sizeof (epdesc));
16343                 dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
16344 
16345                 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
16346                         if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
16347                                 continue;
16348 
16349                         if (nrecs-- == 0)
16350                                 break;
16351 
16352                         bcopy(&act->dta_rec, (void *)dest,
16353                             sizeof (dtrace_recdesc_t));
16354                         dest += sizeof (dtrace_recdesc_t);
16355                 }
16356 
16357                 mutex_exit(&dtrace_lock);
16358 
16359                 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
16360                         kmem_free(buf, size);
16361                         return (EFAULT);
16362                 }
16363 
16364                 kmem_free(buf, size);
16365                 return (0);
16366         }
16367 
16368         case DTRACEIOC_AGGDESC: {
16369                 dtrace_aggdesc_t aggdesc;
16370                 dtrace_action_t *act;
16371                 dtrace_aggregation_t *agg;
16372                 int nrecs;
16373                 uint32_t offs;
16374                 dtrace_recdesc_t *lrec;
16375                 void *buf;
16376                 size_t size;
16377                 uintptr_t dest;
16378 
16379                 if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
16380                         return (EFAULT);
16381 
16382                 mutex_enter(&dtrace_lock);
16383 
16384                 if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
16385                         mutex_exit(&dtrace_lock);
16386                         return (EINVAL);
16387                 }
16388 
16389                 aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
16390 
16391                 nrecs = aggdesc.dtagd_nrecs;
16392                 aggdesc.dtagd_nrecs = 0;
16393 
16394                 offs = agg->dtag_base;
16395                 lrec = &agg->dtag_action.dta_rec;
16396                 aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
16397 
16398                 for (act = agg->dtag_first; ; act = act->dta_next) {
16399                         ASSERT(act->dta_intuple ||
16400                             DTRACEACT_ISAGG(act->dta_kind));
16401 
16402                         /*
16403                          * If this action has a record size of zero, it
16404                          * denotes an argument to the aggregating action.
16405                          * Because the presence of this record doesn't (or
16406                          * shouldn't) affect the way the data is interpreted,
16407                          * we don't copy it out to save user-level the
16408                          * confusion of dealing with a zero-length record.
16409                          */
16410                         if (act->dta_rec.dtrd_size == 0) {
16411                                 ASSERT(agg->dtag_hasarg);
16412                                 continue;
16413                         }
16414 
16415                         aggdesc.dtagd_nrecs++;
16416 
16417                         if (act == &agg->dtag_action)
16418                                 break;
16419                 }
16420 
16421                 /*
16422                  * Now that we have the size, we need to allocate a temporary
16423                  * buffer in which to store the complete description.  We need
16424                  * the temporary buffer to be able to drop dtrace_lock()
16425                  * across the copyout(), below.
16426                  */
16427                 size = sizeof (dtrace_aggdesc_t) +
16428                     (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
16429 
16430                 buf = kmem_alloc(size, KM_SLEEP);
16431                 dest = (uintptr_t)buf;
16432 
16433                 bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
16434                 dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
16435 
16436                 for (act = agg->dtag_first; ; act = act->dta_next) {
16437                         dtrace_recdesc_t rec = act->dta_rec;
16438 
16439                         /*
16440                          * See the comment in the above loop for why we pass
16441                          * over zero-length records.
16442                          */
16443                         if (rec.dtrd_size == 0) {
16444                                 ASSERT(agg->dtag_hasarg);
16445                                 continue;
16446                         }
16447 
16448                         if (nrecs-- == 0)
16449                                 break;
16450 
16451                         rec.dtrd_offset -= offs;
16452                         bcopy(&rec, (void *)dest, sizeof (rec));
16453                         dest += sizeof (dtrace_recdesc_t);
16454 
16455                         if (act == &agg->dtag_action)
16456                                 break;
16457                 }
16458 
16459                 mutex_exit(&dtrace_lock);
16460 
16461                 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
16462                         kmem_free(buf, size);
16463                         return (EFAULT);
16464                 }
16465 
16466                 kmem_free(buf, size);
16467                 return (0);
16468         }
16469 
16470         case DTRACEIOC_ENABLE: {
16471                 dof_hdr_t *dof;
16472                 dtrace_enabling_t *enab = NULL;
16473                 dtrace_vstate_t *vstate;
16474                 int err = 0;
16475 
16476                 *rv = 0;
16477 
16478                 /*
16479                  * If a NULL argument has been passed, we take this as our
16480                  * cue to reevaluate our enablings.
16481                  */
16482                 if (arg == NULL) {
16483                         dtrace_enabling_matchall();
16484 
16485                         return (0);
16486                 }
16487 
16488                 if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
16489                         return (rval);
16490 
16491                 mutex_enter(&cpu_lock);
16492                 mutex_enter(&dtrace_lock);
16493                 vstate = &state->dts_vstate;
16494 
16495                 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
16496                         mutex_exit(&dtrace_lock);
16497                         mutex_exit(&cpu_lock);
16498                         dtrace_dof_destroy(dof);
16499                         return (EBUSY);
16500                 }
16501 
16502                 if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
16503                         mutex_exit(&dtrace_lock);
16504                         mutex_exit(&cpu_lock);
16505                         dtrace_dof_destroy(dof);
16506                         return (EINVAL);
16507                 }
16508 
16509                 if ((rval = dtrace_dof_options(dof, state)) != 0) {
16510                         dtrace_enabling_destroy(enab);
16511                         mutex_exit(&dtrace_lock);
16512                         mutex_exit(&cpu_lock);
16513                         dtrace_dof_destroy(dof);
16514                         return (rval);
16515                 }
16516 
16517                 if ((err = dtrace_enabling_match(enab, rv)) == 0) {
16518                         err = dtrace_enabling_retain(enab);
16519                 } else {
16520                         dtrace_enabling_destroy(enab);
16521                 }
16522 
16523                 mutex_exit(&cpu_lock);
16524                 mutex_exit(&dtrace_lock);
16525                 dtrace_dof_destroy(dof);
16526 
16527                 return (err);
16528         }
16529 
16530         case DTRACEIOC_REPLICATE: {
16531                 dtrace_repldesc_t desc;
16532                 dtrace_probedesc_t *match = &desc.dtrpd_match;
16533                 dtrace_probedesc_t *create = &desc.dtrpd_create;
16534                 int err;
16535 
16536                 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16537                         return (EFAULT);
16538 
16539                 match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
16540                 match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
16541                 match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
16542                 match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
16543 
16544                 create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
16545                 create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
16546                 create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
16547                 create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
16548 
16549                 mutex_enter(&dtrace_lock);
16550                 err = dtrace_enabling_replicate(state, match, create);
16551                 mutex_exit(&dtrace_lock);
16552 
16553                 return (err);
16554         }
16555 
16556         case DTRACEIOC_PROBEMATCH:
16557         case DTRACEIOC_PROBES: {
16558                 dtrace_probe_t *probe = NULL;
16559                 dtrace_probedesc_t desc;
16560                 dtrace_probekey_t pkey;
16561                 dtrace_id_t i;
16562                 int m = 0;
16563                 uint32_t priv;
16564                 uid_t uid;
16565                 zoneid_t zoneid;
16566 
16567                 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16568                         return (EFAULT);
16569 
16570                 desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
16571                 desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
16572                 desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
16573                 desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
16574 
16575                 /*
16576                  * Before we attempt to match this probe, we want to give
16577                  * all providers the opportunity to provide it.
16578                  */
16579                 if (desc.dtpd_id == DTRACE_IDNONE) {
16580                         mutex_enter(&dtrace_provider_lock);
16581                         dtrace_probe_provide(&desc, NULL);
16582                         mutex_exit(&dtrace_provider_lock);
16583                         desc.dtpd_id++;
16584                 }
16585 
16586                 if (cmd == DTRACEIOC_PROBEMATCH)  {
16587                         dtrace_probekey(&desc, &pkey);
16588                         pkey.dtpk_id = DTRACE_IDNONE;
16589                 }
16590 
16591                 dtrace_cred2priv(cr, &priv, &uid, &zoneid);
16592 
16593                 mutex_enter(&dtrace_lock);
16594 
16595                 if (cmd == DTRACEIOC_PROBEMATCH) {
16596                         for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
16597                                 if ((probe = dtrace_probes[i - 1]) != NULL &&
16598                                     (m = dtrace_match_probe(probe, &pkey,
16599                                     priv, uid, zoneid)) != 0)
16600                                         break;
16601                         }
16602 
16603                         if (m < 0) {
16604                                 mutex_exit(&dtrace_lock);
16605                                 return (EINVAL);
16606                         }
16607 
16608                 } else {
16609                         for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
16610                                 if ((probe = dtrace_probes[i - 1]) != NULL &&
16611                                     dtrace_match_priv(probe, priv, uid, zoneid))
16612                                         break;
16613                         }
16614                 }
16615 
16616                 if (probe == NULL) {
16617                         mutex_exit(&dtrace_lock);
16618                         return (ESRCH);
16619                 }
16620 
16621                 dtrace_probe_description(probe, &desc);
16622                 mutex_exit(&dtrace_lock);
16623 
16624                 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16625                         return (EFAULT);
16626 
16627                 return (0);
16628         }
16629 
16630         case DTRACEIOC_PROBEARG: {
16631                 dtrace_argdesc_t desc;
16632                 dtrace_probe_t *probe;
16633                 dtrace_provider_t *prov;
16634 
16635                 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16636                         return (EFAULT);
16637 
16638                 if (desc.dtargd_id == DTRACE_IDNONE)
16639                         return (EINVAL);
16640 
16641                 if (desc.dtargd_ndx == DTRACE_ARGNONE)
16642                         return (EINVAL);
16643 
16644                 mutex_enter(&dtrace_provider_lock);
16645                 mutex_enter(&mod_lock);
16646                 mutex_enter(&dtrace_lock);
16647 
16648                 if (desc.dtargd_id > dtrace_nprobes) {
16649                         mutex_exit(&dtrace_lock);
16650                         mutex_exit(&mod_lock);
16651                         mutex_exit(&dtrace_provider_lock);
16652                         return (EINVAL);
16653                 }
16654 
16655                 if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
16656                         mutex_exit(&dtrace_lock);
16657                         mutex_exit(&mod_lock);
16658                         mutex_exit(&dtrace_provider_lock);
16659                         return (EINVAL);
16660                 }
16661 
16662                 mutex_exit(&dtrace_lock);
16663 
16664                 prov = probe->dtpr_provider;
16665 
16666                 if (prov->dtpv_pops.dtps_getargdesc == NULL) {
16667                         /*
16668                          * There isn't any typed information for this probe.
16669                          * Set the argument number to DTRACE_ARGNONE.
16670                          */
16671                         desc.dtargd_ndx = DTRACE_ARGNONE;
16672                 } else {
16673                         desc.dtargd_native[0] = '\0';
16674                         desc.dtargd_xlate[0] = '\0';
16675                         desc.dtargd_mapping = desc.dtargd_ndx;
16676 
16677                         prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
16678                             probe->dtpr_id, probe->dtpr_arg, &desc);
16679                 }
16680 
16681                 mutex_exit(&mod_lock);
16682                 mutex_exit(&dtrace_provider_lock);
16683 
16684                 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16685                         return (EFAULT);
16686 
16687                 return (0);
16688         }
16689 
16690         case DTRACEIOC_GO: {
16691                 processorid_t cpuid;
16692                 rval = dtrace_state_go(state, &cpuid);
16693 
16694                 if (rval != 0)
16695                         return (rval);
16696 
16697                 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
16698                         return (EFAULT);
16699 
16700                 return (0);
16701         }
16702 
16703         case DTRACEIOC_STOP: {
16704                 processorid_t cpuid;
16705 
16706                 mutex_enter(&dtrace_lock);
16707                 rval = dtrace_state_stop(state, &cpuid);
16708                 mutex_exit(&dtrace_lock);
16709 
16710                 if (rval != 0)
16711                         return (rval);
16712 
16713                 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
16714                         return (EFAULT);
16715 
16716                 return (0);
16717         }
16718 
16719         case DTRACEIOC_DOFGET: {
16720                 dof_hdr_t hdr, *dof;
16721                 uint64_t len;
16722 
16723                 if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
16724                         return (EFAULT);
16725 
16726                 mutex_enter(&dtrace_lock);
16727                 dof = dtrace_dof_create(state);
16728                 mutex_exit(&dtrace_lock);
16729 
16730                 len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
16731                 rval = copyout(dof, (void *)arg, len);
16732                 dtrace_dof_destroy(dof);
16733 
16734                 return (rval == 0 ? 0 : EFAULT);
16735         }
16736 
16737         case DTRACEIOC_AGGSNAP:
16738         case DTRACEIOC_BUFSNAP: {
16739                 dtrace_bufdesc_t desc;
16740                 caddr_t cached;
16741                 dtrace_buffer_t *buf;
16742 
16743                 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16744                         return (EFAULT);
16745 
16746                 if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
16747                         return (EINVAL);
16748 
16749                 mutex_enter(&dtrace_lock);
16750 
16751                 if (cmd == DTRACEIOC_BUFSNAP) {
16752                         buf = &state->dts_buffer[desc.dtbd_cpu];
16753                 } else {
16754                         buf = &state->dts_aggbuffer[desc.dtbd_cpu];
16755                 }
16756 
16757                 if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
16758                         size_t sz = buf->dtb_offset;
16759 
16760                         if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
16761                                 mutex_exit(&dtrace_lock);
16762                                 return (EBUSY);
16763                         }
16764 
16765                         /*
16766                          * If this buffer has already been consumed, we're
16767                          * going to indicate that there's nothing left here
16768                          * to consume.
16769                          */
16770                         if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
16771                                 mutex_exit(&dtrace_lock);
16772 
16773                                 desc.dtbd_size = 0;
16774                                 desc.dtbd_drops = 0;
16775                                 desc.dtbd_errors = 0;
16776                                 desc.dtbd_oldest = 0;
16777                                 sz = sizeof (desc);
16778 
16779                                 if (copyout(&desc, (void *)arg, sz) != 0)
16780                                         return (EFAULT);
16781 
16782                                 return (0);
16783                         }
16784 
16785                         /*
16786                          * If this is a ring buffer that has wrapped, we want
16787                          * to copy the whole thing out.
16788                          */
16789                         if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
16790                                 dtrace_buffer_polish(buf);
16791                                 sz = buf->dtb_size;
16792                         }
16793 
16794                         if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
16795                                 mutex_exit(&dtrace_lock);
16796                                 return (EFAULT);
16797                         }
16798 
16799                         desc.dtbd_size = sz;
16800                         desc.dtbd_drops = buf->dtb_drops;
16801                         desc.dtbd_errors = buf->dtb_errors;
16802                         desc.dtbd_oldest = buf->dtb_xamot_offset;
16803                         desc.dtbd_timestamp = dtrace_gethrtime();
16804 
16805                         mutex_exit(&dtrace_lock);
16806 
16807                         if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16808                                 return (EFAULT);
16809 
16810                         buf->dtb_flags |= DTRACEBUF_CONSUMED;
16811 
16812                         return (0);
16813                 }
16814 
16815                 if (buf->dtb_tomax == NULL) {
16816                         ASSERT(buf->dtb_xamot == NULL);
16817                         mutex_exit(&dtrace_lock);
16818                         return (ENOENT);
16819                 }
16820 
16821                 cached = buf->dtb_tomax;
16822                 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
16823 
16824                 dtrace_xcall(desc.dtbd_cpu,
16825                     (dtrace_xcall_t)dtrace_buffer_switch, buf);
16826 
16827                 state->dts_errors += buf->dtb_xamot_errors;
16828 
16829                 /*
16830                  * If the buffers did not actually switch, then the cross call
16831                  * did not take place -- presumably because the given CPU is
16832                  * not in the ready set.  If this is the case, we'll return
16833                  * ENOENT.
16834                  */
16835                 if (buf->dtb_tomax == cached) {
16836                         ASSERT(buf->dtb_xamot != cached);
16837                         mutex_exit(&dtrace_lock);
16838                         return (ENOENT);
16839                 }
16840 
16841                 ASSERT(cached == buf->dtb_xamot);
16842 
16843                 /*
16844                  * We have our snapshot; now copy it out.
16845                  */
16846                 if (copyout(buf->dtb_xamot, desc.dtbd_data,
16847                     buf->dtb_xamot_offset) != 0) {
16848                         mutex_exit(&dtrace_lock);
16849                         return (EFAULT);
16850                 }
16851 
16852                 desc.dtbd_size = buf->dtb_xamot_offset;
16853                 desc.dtbd_drops = buf->dtb_xamot_drops;
16854                 desc.dtbd_errors = buf->dtb_xamot_errors;
16855                 desc.dtbd_oldest = 0;
16856                 desc.dtbd_timestamp = buf->dtb_switched;
16857 
16858                 mutex_exit(&dtrace_lock);
16859 
16860                 /*
16861                  * Finally, copy out the buffer description.
16862                  */
16863                 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16864                         return (EFAULT);
16865 
16866                 return (0);
16867         }
16868 
16869         case DTRACEIOC_CONF: {
16870                 dtrace_conf_t conf;
16871 
16872                 bzero(&conf, sizeof (conf));
16873                 conf.dtc_difversion = DIF_VERSION;
16874                 conf.dtc_difintregs = DIF_DIR_NREGS;
16875                 conf.dtc_diftupregs = DIF_DTR_NREGS;
16876                 conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
16877 
16878                 if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
16879                         return (EFAULT);
16880 
16881                 return (0);
16882         }
16883 
16884         case DTRACEIOC_STATUS: {
16885                 dtrace_status_t stat;
16886                 dtrace_dstate_t *dstate;
16887                 int i, j;
16888                 uint64_t nerrs;
16889 
16890                 /*
16891                  * See the comment in dtrace_state_deadman() for the reason
16892                  * for setting dts_laststatus to INT64_MAX before setting
16893                  * it to the correct value.
16894                  */
16895                 state->dts_laststatus = INT64_MAX;
16896                 dtrace_membar_producer();
16897                 state->dts_laststatus = dtrace_gethrtime();
16898 
16899                 bzero(&stat, sizeof (stat));
16900 
16901                 mutex_enter(&dtrace_lock);
16902 
16903                 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
16904                         mutex_exit(&dtrace_lock);
16905                         return (ENOENT);
16906                 }
16907 
16908                 if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
16909                         stat.dtst_exiting = 1;
16910 
16911                 nerrs = state->dts_errors;
16912                 dstate = &state->dts_vstate.dtvs_dynvars;
16913 
16914                 for (i = 0; i < NCPU; i++) {
16915                         dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
16916 
16917                         stat.dtst_dyndrops += dcpu->dtdsc_drops;
16918                         stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
16919                         stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
16920 
16921                         if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
16922                                 stat.dtst_filled++;
16923 
16924                         nerrs += state->dts_buffer[i].dtb_errors;
16925 
16926                         for (j = 0; j < state->dts_nspeculations; j++) {
16927                                 dtrace_speculation_t *spec;
16928                                 dtrace_buffer_t *buf;
16929 
16930                                 spec = &state->dts_speculations[j];
16931                                 buf = &spec->dtsp_buffer[i];
16932                                 stat.dtst_specdrops += buf->dtb_xamot_drops;
16933                         }
16934                 }
16935 
16936                 stat.dtst_specdrops_busy = state->dts_speculations_busy;
16937                 stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
16938                 stat.dtst_stkstroverflows = state->dts_stkstroverflows;
16939                 stat.dtst_dblerrors = state->dts_dblerrors;
16940                 stat.dtst_killed =
16941                     (state->dts_activity == DTRACE_ACTIVITY_KILLED);
16942                 stat.dtst_errors = nerrs;
16943 
16944                 mutex_exit(&dtrace_lock);
16945 
16946                 if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
16947                         return (EFAULT);
16948 
16949                 return (0);
16950         }
16951 
16952         case DTRACEIOC_FORMAT: {
16953                 dtrace_fmtdesc_t fmt;
16954                 char *str;
16955                 int len;
16956 
16957                 if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
16958                         return (EFAULT);
16959 
16960                 mutex_enter(&dtrace_lock);
16961 
16962                 if (fmt.dtfd_format == 0 ||
16963                     fmt.dtfd_format > state->dts_nformats) {
16964                         mutex_exit(&dtrace_lock);
16965                         return (EINVAL);
16966                 }
16967 
16968                 /*
16969                  * Format strings are allocated contiguously and they are
16970                  * never freed; if a format index is less than the number
16971                  * of formats, we can assert that the format map is non-NULL
16972                  * and that the format for the specified index is non-NULL.
16973                  */
16974                 ASSERT(state->dts_formats != NULL);
16975                 str = state->dts_formats[fmt.dtfd_format - 1];
16976                 ASSERT(str != NULL);
16977 
16978                 len = strlen(str) + 1;
16979 
16980                 if (len > fmt.dtfd_length) {
16981                         fmt.dtfd_length = len;
16982 
16983                         if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
16984                                 mutex_exit(&dtrace_lock);
16985                                 return (EINVAL);
16986                         }
16987                 } else {
16988                         if (copyout(str, fmt.dtfd_string, len) != 0) {
16989                                 mutex_exit(&dtrace_lock);
16990                                 return (EINVAL);
16991                         }
16992                 }
16993 
16994                 mutex_exit(&dtrace_lock);
16995                 return (0);
16996         }
16997 
16998         default:
16999                 break;
17000         }
17001 
17002         return (ENOTTY);
17003 }
17004 
17005 /*ARGSUSED*/
17006 static int
17007 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
17008 {
17009         dtrace_state_t *state;
17010 
17011         switch (cmd) {
17012         case DDI_DETACH:
17013                 break;
17014 
17015         case DDI_SUSPEND:
17016                 return (DDI_SUCCESS);
17017 
17018         default:
17019                 return (DDI_FAILURE);
17020         }
17021 
17022         mutex_enter(&cpu_lock);
17023         mutex_enter(&dtrace_provider_lock);
17024         mutex_enter(&dtrace_lock);
17025 
17026         ASSERT(dtrace_opens == 0);
17027 
17028         if (dtrace_helpers > 0) {
17029                 mutex_exit(&dtrace_provider_lock);
17030                 mutex_exit(&dtrace_lock);
17031                 mutex_exit(&cpu_lock);
17032                 return (DDI_FAILURE);
17033         }
17034 
17035         if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
17036                 mutex_exit(&dtrace_provider_lock);
17037                 mutex_exit(&dtrace_lock);
17038                 mutex_exit(&cpu_lock);
17039                 return (DDI_FAILURE);
17040         }
17041 
17042         dtrace_provider = NULL;
17043 
17044         if ((state = dtrace_anon_grab()) != NULL) {
17045                 /*
17046                  * If there were ECBs on this state, the provider should
17047                  * have not been allowed to detach; assert that there is
17048                  * none.
17049                  */
17050                 ASSERT(state->dts_necbs == 0);
17051                 dtrace_state_destroy(state);
17052 
17053                 /*
17054                  * If we're being detached with anonymous state, we need to
17055                  * indicate to the kernel debugger that DTrace is now inactive.
17056                  */
17057                 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
17058         }
17059 
17060         bzero(&dtrace_anon, sizeof (dtrace_anon_t));
17061         unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
17062         dtrace_cpu_init = NULL;
17063         dtrace_helpers_cleanup = NULL;
17064         dtrace_helpers_fork = NULL;
17065         dtrace_cpustart_init = NULL;
17066         dtrace_cpustart_fini = NULL;
17067         dtrace_debugger_init = NULL;
17068         dtrace_debugger_fini = NULL;
17069         dtrace_modload = NULL;
17070         dtrace_modunload = NULL;
17071 
17072         ASSERT(dtrace_getf == 0);
17073         ASSERT(dtrace_closef == NULL);
17074 
17075         mutex_exit(&cpu_lock);
17076 
17077         kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
17078         dtrace_probes = NULL;
17079         dtrace_nprobes = 0;
17080 
17081         dtrace_hash_destroy(dtrace_bymod);
17082         dtrace_hash_destroy(dtrace_byfunc);
17083         dtrace_hash_destroy(dtrace_byname);
17084         dtrace_bymod = NULL;
17085         dtrace_byfunc = NULL;
17086         dtrace_byname = NULL;
17087 
17088         kmem_cache_destroy(dtrace_state_cache);
17089         vmem_destroy(dtrace_minor);
17090         vmem_destroy(dtrace_arena);
17091 
17092         if (dtrace_toxrange != NULL) {
17093                 kmem_free(dtrace_toxrange,
17094                     dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
17095                 dtrace_toxrange = NULL;
17096                 dtrace_toxranges = 0;
17097                 dtrace_toxranges_max = 0;
17098         }
17099 
17100         ddi_remove_minor_node(dtrace_devi, NULL);
17101         dtrace_devi = NULL;
17102 
17103         ddi_soft_state_fini(&dtrace_softstate);
17104 
17105         ASSERT(dtrace_vtime_references == 0);
17106         ASSERT(dtrace_opens == 0);
17107         ASSERT(dtrace_retained == NULL);
17108 
17109         mutex_exit(&dtrace_lock);
17110         mutex_exit(&dtrace_provider_lock);
17111 
17112         /*
17113          * We don't destroy the task queue until after we have dropped our
17114          * locks (taskq_destroy() may block on running tasks).  To prevent
17115          * attempting to do work after we have effectively detached but before
17116          * the task queue has been destroyed, all tasks dispatched via the
17117          * task queue must check that DTrace is still attached before
17118          * performing any operation.
17119          */
17120         taskq_destroy(dtrace_taskq);
17121         dtrace_taskq = NULL;
17122 
17123         return (DDI_SUCCESS);
17124 }
17125 
17126 /*ARGSUSED*/
17127 static int
17128 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
17129 {
17130         int error;
17131 
17132         switch (infocmd) {
17133         case DDI_INFO_DEVT2DEVINFO:
17134                 *result = (void *)dtrace_devi;
17135                 error = DDI_SUCCESS;
17136                 break;
17137         case DDI_INFO_DEVT2INSTANCE:
17138                 *result = (void *)0;
17139                 error = DDI_SUCCESS;
17140                 break;
17141         default:
17142                 error = DDI_FAILURE;
17143         }
17144         return (error);
17145 }
17146 
17147 static struct cb_ops dtrace_cb_ops = {
17148         dtrace_open,            /* open */
17149         dtrace_close,           /* close */
17150         nulldev,                /* strategy */
17151         nulldev,                /* print */
17152         nodev,                  /* dump */
17153         nodev,                  /* read */
17154         nodev,                  /* write */
17155         dtrace_ioctl,           /* ioctl */
17156         nodev,                  /* devmap */
17157         nodev,                  /* mmap */
17158         nodev,                  /* segmap */
17159         nochpoll,               /* poll */
17160         ddi_prop_op,            /* cb_prop_op */
17161         0,                      /* streamtab  */
17162         D_NEW | D_MP            /* Driver compatibility flag */
17163 };
17164 
17165 static struct dev_ops dtrace_ops = {
17166         DEVO_REV,               /* devo_rev */
17167         0,                      /* refcnt */
17168         dtrace_info,            /* get_dev_info */
17169         nulldev,                /* identify */
17170         nulldev,                /* probe */
17171         dtrace_attach,          /* attach */
17172         dtrace_detach,          /* detach */
17173         nodev,                  /* reset */
17174         &dtrace_cb_ops,             /* driver operations */
17175         NULL,                   /* bus operations */
17176         nodev,                  /* dev power */
17177         ddi_quiesce_not_needed,         /* quiesce */
17178 };
17179 
17180 static struct modldrv modldrv = {
17181         &mod_driverops,             /* module type (this is a pseudo driver) */
17182         "Dynamic Tracing",      /* name of module */
17183         &dtrace_ops,                /* driver ops */
17184 };
17185 
17186 static struct modlinkage modlinkage = {
17187         MODREV_1,
17188         (void *)&modldrv,
17189         NULL
17190 };
17191 
17192 int
17193 _init(void)
17194 {
17195         return (mod_install(&modlinkage));
17196 }
17197 
17198 int
17199 _info(struct modinfo *modinfop)
17200 {
17201         return (mod_info(&modlinkage, modinfop));
17202 }
17203 
17204 int
17205 _fini(void)
17206 {
17207         return (mod_remove(&modlinkage));
17208 }