Print this page
7127 remove -Wno-missing-braces from Makefile.uts
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/uts/common/disp/fx.c
+++ new/usr/src/uts/common/disp/fx.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21
22 22 /*
23 23 * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved.
24 24 * Copyright 2013, Joyent, Inc. All rights reserved.
25 25 */
26 26
27 27 #include <sys/types.h>
28 28 #include <sys/param.h>
29 29 #include <sys/sysmacros.h>
30 30 #include <sys/cred.h>
31 31 #include <sys/proc.h>
32 32 #include <sys/session.h>
33 33 #include <sys/strsubr.h>
34 34 #include <sys/user.h>
35 35 #include <sys/priocntl.h>
36 36 #include <sys/class.h>
37 37 #include <sys/disp.h>
38 38 #include <sys/procset.h>
39 39 #include <sys/debug.h>
40 40 #include <sys/kmem.h>
41 41 #include <sys/errno.h>
42 42 #include <sys/fx.h>
43 43 #include <sys/fxpriocntl.h>
44 44 #include <sys/cpuvar.h>
45 45 #include <sys/systm.h>
46 46 #include <sys/vtrace.h>
47 47 #include <sys/schedctl.h>
48 48 #include <sys/tnf_probe.h>
49 49 #include <sys/sunddi.h>
50 50 #include <sys/spl.h>
51 51 #include <sys/modctl.h>
52 52 #include <sys/policy.h>
53 53 #include <sys/sdt.h>
54 54 #include <sys/cpupart.h>
55 55 #include <sys/cpucaps.h>
56 56
57 57 static pri_t fx_init(id_t, int, classfuncs_t **);
58 58
59 59 static struct sclass csw = {
↓ open down ↓ |
59 lines elided |
↑ open up ↑ |
60 60 "FX",
61 61 fx_init,
62 62 0
63 63 };
64 64
65 65 static struct modlsched modlsched = {
66 66 &mod_schedops, "Fixed priority sched class", &csw
67 67 };
68 68
69 69 static struct modlinkage modlinkage = {
70 - MODREV_1, (void *)&modlsched, NULL
70 + MODREV_1, { (void *)&modlsched, NULL }
71 71 };
72 72
73 73
74 74 /*
75 75 * control flags (kparms->fx_cflags).
76 76 */
77 77 #define FX_DOUPRILIM 0x01 /* change user priority limit */
78 78 #define FX_DOUPRI 0x02 /* change user priority */
79 79 #define FX_DOTQ 0x04 /* change FX time quantum */
80 80
81 81
82 82 #define FXMAXUPRI 60 /* maximum user priority setting */
83 83
84 84 #define FX_MAX_UNPRIV_PRI 0 /* maximum unpriviledge priority */
85 85
86 86 /*
87 87 * The fxproc_t structures that have a registered callback vector,
88 88 * are also kept in an array of circular doubly linked lists. A hash on
89 89 * the thread id (from ddi_get_kt_did()) is used to determine which list
90 90 * each of such fxproc structures should be placed. Each list has a dummy
91 91 * "head" which is never removed, so the list is never empty.
92 92 */
93 93
94 94 #define FX_CB_LISTS 16 /* number of lists, must be power of 2 */
95 95 #define FX_CB_LIST_HASH(ktid) ((uint_t)ktid & (FX_CB_LISTS - 1))
96 96
97 97 /* Insert fxproc into callback list */
98 98 #define FX_CB_LIST_INSERT(fxpp) \
99 99 { \
100 100 int index = FX_CB_LIST_HASH(fxpp->fx_ktid); \
101 101 kmutex_t *lockp = &fx_cb_list_lock[index]; \
102 102 fxproc_t *headp = &fx_cb_plisthead[index]; \
103 103 mutex_enter(lockp); \
104 104 fxpp->fx_cb_next = headp->fx_cb_next; \
105 105 fxpp->fx_cb_prev = headp; \
106 106 headp->fx_cb_next->fx_cb_prev = fxpp; \
107 107 headp->fx_cb_next = fxpp; \
108 108 mutex_exit(lockp); \
109 109 }
110 110
111 111 /*
112 112 * Remove thread from callback list.
113 113 */
114 114 #define FX_CB_LIST_DELETE(fxpp) \
115 115 { \
116 116 int index = FX_CB_LIST_HASH(fxpp->fx_ktid); \
117 117 kmutex_t *lockp = &fx_cb_list_lock[index]; \
118 118 mutex_enter(lockp); \
119 119 fxpp->fx_cb_prev->fx_cb_next = fxpp->fx_cb_next; \
120 120 fxpp->fx_cb_next->fx_cb_prev = fxpp->fx_cb_prev; \
121 121 mutex_exit(lockp); \
122 122 }
123 123
124 124 #define FX_HAS_CB(fxpp) (fxpp->fx_callback != NULL)
125 125
126 126 /* adjust x to be between 0 and fx_maxumdpri */
127 127
128 128 #define FX_ADJUST_PRI(pri) \
129 129 { \
130 130 if (pri < 0) \
131 131 pri = 0; \
132 132 else if (pri > fx_maxumdpri) \
133 133 pri = fx_maxumdpri; \
134 134 }
135 135
136 136 #define FX_ADJUST_QUANTUM(q) \
137 137 { \
138 138 if (q > INT_MAX) \
139 139 q = INT_MAX; \
140 140 else if (q <= 0) \
141 141 q = FX_TQINF; \
142 142 }
143 143
144 144 #define FX_ISVALID(pri, quantum) \
145 145 (((pri >= 0) || (pri == FX_CB_NOCHANGE)) && \
146 146 ((quantum >= 0) || (quantum == FX_NOCHANGE) || \
147 147 (quantum == FX_TQDEF) || (quantum == FX_TQINF)))
148 148
149 149
150 150 static id_t fx_cid; /* fixed priority class ID */
151 151 static fxdpent_t *fx_dptbl; /* fixed priority disp parameter table */
152 152
153 153 static pri_t fx_maxupri = FXMAXUPRI;
154 154 static pri_t fx_maxumdpri; /* max user mode fixed priority */
155 155
156 156 static pri_t fx_maxglobpri; /* maximum global priority used by fx class */
157 157 static kmutex_t fx_dptblock; /* protects fixed priority dispatch table */
158 158
159 159
160 160 static kmutex_t fx_cb_list_lock[FX_CB_LISTS]; /* protects list of fxprocs */
161 161 /* that have callbacks */
162 162 static fxproc_t fx_cb_plisthead[FX_CB_LISTS]; /* dummy fxproc at head of */
163 163 /* list of fxprocs with */
164 164 /* callbacks */
165 165
166 166 static int fx_admin(caddr_t, cred_t *);
167 167 static int fx_getclinfo(void *);
168 168 static int fx_parmsin(void *);
169 169 static int fx_parmsout(void *, pc_vaparms_t *);
170 170 static int fx_vaparmsin(void *, pc_vaparms_t *);
171 171 static int fx_vaparmsout(void *, pc_vaparms_t *);
172 172 static int fx_getclpri(pcpri_t *);
173 173 static int fx_alloc(void **, int);
174 174 static void fx_free(void *);
175 175 static int fx_enterclass(kthread_t *, id_t, void *, cred_t *, void *);
176 176 static void fx_exitclass(void *);
177 177 static int fx_canexit(kthread_t *, cred_t *);
178 178 static int fx_fork(kthread_t *, kthread_t *, void *);
179 179 static void fx_forkret(kthread_t *, kthread_t *);
180 180 static void fx_parmsget(kthread_t *, void *);
181 181 static int fx_parmsset(kthread_t *, void *, id_t, cred_t *);
182 182 static void fx_stop(kthread_t *, int, int);
183 183 static void fx_exit(kthread_t *);
184 184 static pri_t fx_swapin(kthread_t *, int);
185 185 static pri_t fx_swapout(kthread_t *, int);
186 186 static void fx_trapret(kthread_t *);
187 187 static void fx_preempt(kthread_t *);
188 188 static void fx_setrun(kthread_t *);
189 189 static void fx_sleep(kthread_t *);
190 190 static void fx_tick(kthread_t *);
191 191 static void fx_wakeup(kthread_t *);
192 192 static int fx_donice(kthread_t *, cred_t *, int, int *);
193 193 static int fx_doprio(kthread_t *, cred_t *, int, int *);
194 194 static pri_t fx_globpri(kthread_t *);
195 195 static void fx_yield(kthread_t *);
196 196 static void fx_nullsys();
↓ open down ↓ |
116 lines elided |
↑ open up ↑ |
197 197
198 198 extern fxdpent_t *fx_getdptbl(void);
199 199
200 200 static void fx_change_priority(kthread_t *, fxproc_t *);
201 201 static fxproc_t *fx_list_lookup(kt_did_t);
202 202 static void fx_list_release(fxproc_t *);
203 203
204 204
205 205 static struct classfuncs fx_classfuncs = {
206 206 /* class functions */
207 - fx_admin,
208 - fx_getclinfo,
209 - fx_parmsin,
210 - fx_parmsout,
211 - fx_vaparmsin,
212 - fx_vaparmsout,
213 - fx_getclpri,
214 - fx_alloc,
215 - fx_free,
207 + { fx_admin,
208 + fx_getclinfo,
209 + fx_parmsin,
210 + fx_parmsout,
211 + fx_vaparmsin,
212 + fx_vaparmsout,
213 + fx_getclpri,
214 + fx_alloc,
215 + fx_free },
216 216
217 217 /* thread functions */
218 - fx_enterclass,
219 - fx_exitclass,
220 - fx_canexit,
221 - fx_fork,
222 - fx_forkret,
223 - fx_parmsget,
224 - fx_parmsset,
225 - fx_stop,
226 - fx_exit,
227 - fx_nullsys, /* active */
228 - fx_nullsys, /* inactive */
229 - fx_swapin,
230 - fx_swapout,
231 - fx_trapret,
232 - fx_preempt,
233 - fx_setrun,
234 - fx_sleep,
235 - fx_tick,
236 - fx_wakeup,
237 - fx_donice,
238 - fx_globpri,
239 - fx_nullsys, /* set_process_group */
240 - fx_yield,
241 - fx_doprio,
218 + { fx_enterclass,
219 + fx_exitclass,
220 + fx_canexit,
221 + fx_fork,
222 + fx_forkret,
223 + fx_parmsget,
224 + fx_parmsset,
225 + fx_stop,
226 + fx_exit,
227 + fx_nullsys, /* active */
228 + fx_nullsys, /* inactive */
229 + fx_swapin,
230 + fx_swapout,
231 + fx_trapret,
232 + fx_preempt,
233 + fx_setrun,
234 + fx_sleep,
235 + fx_tick,
236 + fx_wakeup,
237 + fx_donice,
238 + fx_globpri,
239 + fx_nullsys, /* set_process_group */
240 + fx_yield,
241 + fx_doprio },
242 242 };
243 243
244 244
245 245 int
246 246 _init()
247 247 {
248 248 return (mod_install(&modlinkage));
249 249 }
250 250
251 251 int
252 252 _fini()
253 253 {
254 254 return (EBUSY);
255 255 }
256 256
257 257 int
258 258 _info(struct modinfo *modinfop)
259 259 {
260 260 return (mod_info(&modlinkage, modinfop));
261 261 }
262 262
263 263 /*
264 264 * Fixed priority class initialization. Called by dispinit() at boot time.
265 265 * We can ignore the clparmsz argument since we know that the smallest
266 266 * possible parameter buffer is big enough for us.
267 267 */
268 268 /* ARGSUSED */
269 269 static pri_t
270 270 fx_init(id_t cid, int clparmsz, classfuncs_t **clfuncspp)
271 271 {
272 272 int i;
273 273 extern pri_t fx_getmaxumdpri(void);
274 274
275 275 fx_dptbl = fx_getdptbl();
276 276 fx_maxumdpri = fx_getmaxumdpri();
277 277 fx_maxglobpri = fx_dptbl[fx_maxumdpri].fx_globpri;
278 278
279 279 fx_cid = cid; /* Record our class ID */
280 280
281 281 /*
282 282 * Initialize the hash table for fxprocs with callbacks
283 283 */
284 284 for (i = 0; i < FX_CB_LISTS; i++) {
285 285 fx_cb_plisthead[i].fx_cb_next = fx_cb_plisthead[i].fx_cb_prev =
286 286 &fx_cb_plisthead[i];
287 287 }
288 288
289 289 /*
290 290 * We're required to return a pointer to our classfuncs
291 291 * structure and the highest global priority value we use.
292 292 */
293 293 *clfuncspp = &fx_classfuncs;
294 294 return (fx_maxglobpri);
295 295 }
296 296
297 297 /*
298 298 * Get or reset the fx_dptbl values per the user's request.
299 299 */
300 300 static int
301 301 fx_admin(caddr_t uaddr, cred_t *reqpcredp)
302 302 {
303 303 fxadmin_t fxadmin;
304 304 fxdpent_t *tmpdpp;
305 305 int userdpsz;
306 306 int i;
307 307 size_t fxdpsz;
308 308
309 309 if (get_udatamodel() == DATAMODEL_NATIVE) {
310 310 if (copyin(uaddr, &fxadmin, sizeof (fxadmin_t)))
311 311 return (EFAULT);
312 312 }
313 313 #ifdef _SYSCALL32_IMPL
314 314 else {
315 315 /* get fxadmin struct from ILP32 caller */
316 316 fxadmin32_t fxadmin32;
317 317 if (copyin(uaddr, &fxadmin32, sizeof (fxadmin32_t)))
318 318 return (EFAULT);
319 319 fxadmin.fx_dpents =
320 320 (struct fxdpent *)(uintptr_t)fxadmin32.fx_dpents;
321 321 fxadmin.fx_ndpents = fxadmin32.fx_ndpents;
322 322 fxadmin.fx_cmd = fxadmin32.fx_cmd;
323 323 }
324 324 #endif /* _SYSCALL32_IMPL */
325 325
326 326 fxdpsz = (fx_maxumdpri + 1) * sizeof (fxdpent_t);
327 327
328 328 switch (fxadmin.fx_cmd) {
329 329 case FX_GETDPSIZE:
330 330 fxadmin.fx_ndpents = fx_maxumdpri + 1;
331 331
332 332 if (get_udatamodel() == DATAMODEL_NATIVE) {
333 333 if (copyout(&fxadmin, uaddr, sizeof (fxadmin_t)))
334 334 return (EFAULT);
335 335 }
336 336 #ifdef _SYSCALL32_IMPL
337 337 else {
338 338 /* return fxadmin struct to ILP32 caller */
339 339 fxadmin32_t fxadmin32;
340 340 fxadmin32.fx_dpents =
341 341 (caddr32_t)(uintptr_t)fxadmin.fx_dpents;
342 342 fxadmin32.fx_ndpents = fxadmin.fx_ndpents;
343 343 fxadmin32.fx_cmd = fxadmin.fx_cmd;
344 344 if (copyout(&fxadmin32, uaddr, sizeof (fxadmin32_t)))
345 345 return (EFAULT);
346 346 }
347 347 #endif /* _SYSCALL32_IMPL */
348 348 break;
349 349
350 350 case FX_GETDPTBL:
351 351 userdpsz = MIN(fxadmin.fx_ndpents * sizeof (fxdpent_t),
352 352 fxdpsz);
353 353 if (copyout(fx_dptbl, fxadmin.fx_dpents, userdpsz))
354 354 return (EFAULT);
355 355
356 356 fxadmin.fx_ndpents = userdpsz / sizeof (fxdpent_t);
357 357
358 358 if (get_udatamodel() == DATAMODEL_NATIVE) {
359 359 if (copyout(&fxadmin, uaddr, sizeof (fxadmin_t)))
360 360 return (EFAULT);
361 361 }
362 362 #ifdef _SYSCALL32_IMPL
363 363 else {
364 364 /* return fxadmin struct to ILP32 callers */
365 365 fxadmin32_t fxadmin32;
366 366 fxadmin32.fx_dpents =
367 367 (caddr32_t)(uintptr_t)fxadmin.fx_dpents;
368 368 fxadmin32.fx_ndpents = fxadmin.fx_ndpents;
369 369 fxadmin32.fx_cmd = fxadmin.fx_cmd;
370 370 if (copyout(&fxadmin32, uaddr, sizeof (fxadmin32_t)))
371 371 return (EFAULT);
372 372 }
373 373 #endif /* _SYSCALL32_IMPL */
374 374 break;
375 375
376 376 case FX_SETDPTBL:
377 377 /*
378 378 * We require that the requesting process has sufficient
379 379 * privileges. We also require that the table supplied by
380 380 * the user exactly match the current fx_dptbl in size.
381 381 */
382 382 if (secpolicy_dispadm(reqpcredp) != 0) {
383 383 return (EPERM);
384 384 }
385 385 if (fxadmin.fx_ndpents * sizeof (fxdpent_t) != fxdpsz) {
386 386 return (EINVAL);
387 387 }
388 388
389 389 /*
390 390 * We read the user supplied table into a temporary buffer
391 391 * where it is validated before being copied over the
392 392 * fx_dptbl.
393 393 */
394 394 tmpdpp = kmem_alloc(fxdpsz, KM_SLEEP);
395 395 if (copyin(fxadmin.fx_dpents, tmpdpp, fxdpsz)) {
396 396 kmem_free(tmpdpp, fxdpsz);
397 397 return (EFAULT);
398 398 }
399 399 for (i = 0; i < fxadmin.fx_ndpents; i++) {
400 400
401 401 /*
402 402 * Validate the user supplied values. All we are doing
403 403 * here is verifying that the values are within their
404 404 * allowable ranges and will not panic the system. We
405 405 * make no attempt to ensure that the resulting
406 406 * configuration makes sense or results in reasonable
407 407 * performance.
408 408 */
409 409 if (tmpdpp[i].fx_quantum <= 0 &&
410 410 tmpdpp[i].fx_quantum != FX_TQINF) {
411 411 kmem_free(tmpdpp, fxdpsz);
412 412 return (EINVAL);
413 413 }
414 414 }
415 415
416 416 /*
417 417 * Copy the user supplied values over the current fx_dptbl
418 418 * values. The fx_globpri member is read-only so we don't
419 419 * overwrite it.
420 420 */
421 421 mutex_enter(&fx_dptblock);
422 422 for (i = 0; i < fxadmin.fx_ndpents; i++) {
423 423 fx_dptbl[i].fx_quantum = tmpdpp[i].fx_quantum;
424 424 }
425 425 mutex_exit(&fx_dptblock);
426 426 kmem_free(tmpdpp, fxdpsz);
427 427 break;
428 428
429 429 default:
430 430 return (EINVAL);
431 431 }
432 432 return (0);
433 433 }
434 434
435 435 /*
436 436 * Allocate a fixed priority class specific thread structure and
437 437 * initialize it with the parameters supplied. Also move the thread
438 438 * to specified priority.
439 439 */
440 440 static int
441 441 fx_enterclass(kthread_t *t, id_t cid, void *parmsp, cred_t *reqpcredp,
442 442 void *bufp)
443 443 {
444 444 fxkparms_t *fxkparmsp = (fxkparms_t *)parmsp;
445 445 fxproc_t *fxpp;
446 446 pri_t reqfxupri;
447 447 pri_t reqfxuprilim;
448 448
449 449 fxpp = (fxproc_t *)bufp;
450 450 ASSERT(fxpp != NULL);
451 451
452 452 /*
453 453 * Initialize the fxproc structure.
454 454 */
455 455 fxpp->fx_flags = 0;
456 456 fxpp->fx_callback = NULL;
457 457 fxpp->fx_cookie = NULL;
458 458
459 459 if (fxkparmsp == NULL) {
460 460 /*
461 461 * Use default values.
462 462 */
463 463 fxpp->fx_pri = fxpp->fx_uprilim = 0;
464 464 fxpp->fx_pquantum = fx_dptbl[fxpp->fx_pri].fx_quantum;
465 465 fxpp->fx_nice = NZERO;
466 466 } else {
467 467 /*
468 468 * Use supplied values.
469 469 */
470 470
471 471 if ((fxkparmsp->fx_cflags & FX_DOUPRILIM) == 0) {
472 472 reqfxuprilim = 0;
473 473 } else {
474 474 if (fxkparmsp->fx_uprilim > FX_MAX_UNPRIV_PRI &&
475 475 secpolicy_setpriority(reqpcredp) != 0)
476 476 return (EPERM);
477 477 reqfxuprilim = fxkparmsp->fx_uprilim;
478 478 FX_ADJUST_PRI(reqfxuprilim);
479 479 }
480 480
481 481 if ((fxkparmsp->fx_cflags & FX_DOUPRI) == 0) {
482 482 reqfxupri = reqfxuprilim;
483 483 } else {
484 484 if (fxkparmsp->fx_upri > FX_MAX_UNPRIV_PRI &&
485 485 secpolicy_setpriority(reqpcredp) != 0)
486 486 return (EPERM);
487 487 /*
488 488 * Set the user priority to the requested value
489 489 * or the upri limit, whichever is lower.
490 490 */
491 491 reqfxupri = fxkparmsp->fx_upri;
492 492 FX_ADJUST_PRI(reqfxupri);
493 493
494 494 if (reqfxupri > reqfxuprilim)
495 495 reqfxupri = reqfxuprilim;
496 496 }
497 497
498 498
499 499 fxpp->fx_uprilim = reqfxuprilim;
500 500 fxpp->fx_pri = reqfxupri;
501 501
502 502 fxpp->fx_nice = NZERO - (NZERO * reqfxupri) / fx_maxupri;
503 503
504 504 if (((fxkparmsp->fx_cflags & FX_DOTQ) == 0) ||
505 505 (fxkparmsp->fx_tqntm == FX_TQDEF)) {
506 506 fxpp->fx_pquantum = fx_dptbl[fxpp->fx_pri].fx_quantum;
507 507 } else {
508 508 if (secpolicy_setpriority(reqpcredp) != 0)
509 509 return (EPERM);
510 510
511 511 if (fxkparmsp->fx_tqntm == FX_TQINF)
512 512 fxpp->fx_pquantum = FX_TQINF;
513 513 else {
514 514 fxpp->fx_pquantum = fxkparmsp->fx_tqntm;
515 515 }
516 516 }
517 517
518 518 }
519 519
520 520 fxpp->fx_timeleft = fxpp->fx_pquantum;
521 521 cpucaps_sc_init(&fxpp->fx_caps);
522 522 fxpp->fx_tp = t;
523 523
524 524 thread_lock(t); /* get dispatcher lock on thread */
525 525 t->t_clfuncs = &(sclass[cid].cl_funcs->thread);
526 526 t->t_cid = cid;
527 527 t->t_cldata = (void *)fxpp;
528 528 t->t_schedflag &= ~TS_RUNQMATCH;
529 529 fx_change_priority(t, fxpp);
530 530 thread_unlock(t);
531 531
532 532 return (0);
533 533 }
534 534
535 535 /*
536 536 * The thread is exiting.
537 537 */
538 538 static void
539 539 fx_exit(kthread_t *t)
540 540 {
541 541 fxproc_t *fxpp;
542 542
543 543 thread_lock(t);
544 544 fxpp = (fxproc_t *)(t->t_cldata);
545 545
546 546 /*
547 547 * A thread could be exiting in between clock ticks, so we need to
548 548 * calculate how much CPU time it used since it was charged last time.
549 549 *
550 550 * CPU caps are not enforced on exiting processes - it is usually
551 551 * desirable to exit as soon as possible to free resources.
552 552 */
553 553 (void) CPUCAPS_CHARGE(t, &fxpp->fx_caps, CPUCAPS_CHARGE_ONLY);
554 554
555 555 if (FX_HAS_CB(fxpp)) {
556 556 FX_CB_EXIT(FX_CALLB(fxpp), fxpp->fx_cookie);
557 557 fxpp->fx_callback = NULL;
558 558 fxpp->fx_cookie = NULL;
559 559 thread_unlock(t);
560 560 FX_CB_LIST_DELETE(fxpp);
561 561 return;
562 562 }
563 563
564 564 thread_unlock(t);
565 565 }
566 566
567 567 /*
568 568 * Exiting the class. Free fxproc structure of thread.
569 569 */
570 570 static void
571 571 fx_exitclass(void *procp)
572 572 {
573 573 fxproc_t *fxpp = (fxproc_t *)procp;
574 574
575 575 thread_lock(fxpp->fx_tp);
576 576 if (FX_HAS_CB(fxpp)) {
577 577
578 578 FX_CB_EXIT(FX_CALLB(fxpp), fxpp->fx_cookie);
579 579
580 580 fxpp->fx_callback = NULL;
581 581 fxpp->fx_cookie = NULL;
582 582 thread_unlock(fxpp->fx_tp);
583 583 FX_CB_LIST_DELETE(fxpp);
584 584 } else
585 585 thread_unlock(fxpp->fx_tp);
586 586
587 587 kmem_free(fxpp, sizeof (fxproc_t));
588 588 }
589 589
590 590 /* ARGSUSED */
591 591 static int
592 592 fx_canexit(kthread_t *t, cred_t *cred)
593 593 {
594 594 /*
595 595 * A thread can always leave the FX class
596 596 */
597 597 return (0);
598 598 }
599 599
600 600 /*
601 601 * Initialize fixed-priority class specific proc structure for a child.
602 602 * callbacks are not inherited upon fork.
603 603 */
604 604 static int
605 605 fx_fork(kthread_t *t, kthread_t *ct, void *bufp)
606 606 {
607 607 fxproc_t *pfxpp; /* ptr to parent's fxproc structure */
608 608 fxproc_t *cfxpp; /* ptr to child's fxproc structure */
609 609
610 610 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock));
611 611
612 612 cfxpp = (fxproc_t *)bufp;
613 613 ASSERT(cfxpp != NULL);
614 614 thread_lock(t);
615 615 pfxpp = (fxproc_t *)t->t_cldata;
616 616 /*
617 617 * Initialize child's fxproc structure.
618 618 */
619 619 cfxpp->fx_timeleft = cfxpp->fx_pquantum = pfxpp->fx_pquantum;
620 620 cfxpp->fx_pri = pfxpp->fx_pri;
621 621 cfxpp->fx_uprilim = pfxpp->fx_uprilim;
622 622 cfxpp->fx_nice = pfxpp->fx_nice;
623 623 cfxpp->fx_callback = NULL;
624 624 cfxpp->fx_cookie = NULL;
625 625 cfxpp->fx_flags = pfxpp->fx_flags & ~(FXBACKQ);
626 626 cpucaps_sc_init(&cfxpp->fx_caps);
627 627
628 628 cfxpp->fx_tp = ct;
629 629 ct->t_cldata = (void *)cfxpp;
630 630 thread_unlock(t);
631 631
632 632 /*
633 633 * Link new structure into fxproc list.
634 634 */
635 635 return (0);
636 636 }
637 637
638 638
639 639 /*
640 640 * Child is placed at back of dispatcher queue and parent gives
641 641 * up processor so that the child runs first after the fork.
642 642 * This allows the child immediately execing to break the multiple
643 643 * use of copy on write pages with no disk home. The parent will
644 644 * get to steal them back rather than uselessly copying them.
645 645 */
646 646 static void
647 647 fx_forkret(kthread_t *t, kthread_t *ct)
648 648 {
649 649 proc_t *pp = ttoproc(t);
650 650 proc_t *cp = ttoproc(ct);
651 651 fxproc_t *fxpp;
652 652
653 653 ASSERT(t == curthread);
654 654 ASSERT(MUTEX_HELD(&pidlock));
655 655
656 656 /*
657 657 * Grab the child's p_lock before dropping pidlock to ensure
658 658 * the process does not disappear before we set it running.
659 659 */
660 660 mutex_enter(&cp->p_lock);
661 661 continuelwps(cp);
662 662 mutex_exit(&cp->p_lock);
663 663
664 664 mutex_enter(&pp->p_lock);
665 665 mutex_exit(&pidlock);
666 666 continuelwps(pp);
667 667
668 668 thread_lock(t);
669 669 fxpp = (fxproc_t *)(t->t_cldata);
670 670 t->t_pri = fx_dptbl[fxpp->fx_pri].fx_globpri;
671 671 ASSERT(t->t_pri >= 0 && t->t_pri <= fx_maxglobpri);
672 672 THREAD_TRANSITION(t);
673 673 fx_setrun(t);
674 674 thread_unlock(t);
675 675 /*
676 676 * Safe to drop p_lock now since it is safe to change
677 677 * the scheduling class after this point.
678 678 */
679 679 mutex_exit(&pp->p_lock);
680 680
681 681 swtch();
682 682 }
683 683
684 684
685 685 /*
686 686 * Get information about the fixed-priority class into the buffer
687 687 * pointed to by fxinfop. The maximum configured user priority
688 688 * is the only information we supply.
689 689 */
690 690 static int
691 691 fx_getclinfo(void *infop)
692 692 {
693 693 fxinfo_t *fxinfop = (fxinfo_t *)infop;
694 694 fxinfop->fx_maxupri = fx_maxupri;
695 695 return (0);
696 696 }
697 697
698 698
699 699
700 700 /*
701 701 * Return the user mode scheduling priority range.
702 702 */
703 703 static int
704 704 fx_getclpri(pcpri_t *pcprip)
705 705 {
706 706 pcprip->pc_clpmax = fx_maxupri;
707 707 pcprip->pc_clpmin = 0;
708 708 return (0);
709 709 }
710 710
711 711
712 712 static void
713 713 fx_nullsys()
714 714 {}
715 715
716 716
717 717 /*
718 718 * Get the fixed-priority parameters of the thread pointed to by
719 719 * fxprocp into the buffer pointed to by fxparmsp.
720 720 */
721 721 static void
722 722 fx_parmsget(kthread_t *t, void *parmsp)
723 723 {
724 724 fxproc_t *fxpp = (fxproc_t *)t->t_cldata;
725 725 fxkparms_t *fxkparmsp = (fxkparms_t *)parmsp;
726 726
727 727 fxkparmsp->fx_upri = fxpp->fx_pri;
728 728 fxkparmsp->fx_uprilim = fxpp->fx_uprilim;
729 729 fxkparmsp->fx_tqntm = fxpp->fx_pquantum;
730 730 }
731 731
732 732
733 733
734 734 /*
735 735 * Check the validity of the fixed-priority parameters in the buffer
736 736 * pointed to by fxparmsp.
737 737 */
738 738 static int
739 739 fx_parmsin(void *parmsp)
740 740 {
741 741 fxparms_t *fxparmsp = (fxparms_t *)parmsp;
742 742 uint_t cflags;
743 743 longlong_t ticks;
744 744 /*
745 745 * Check validity of parameters.
746 746 */
747 747
748 748 if ((fxparmsp->fx_uprilim > fx_maxupri ||
749 749 fxparmsp->fx_uprilim < 0) &&
750 750 fxparmsp->fx_uprilim != FX_NOCHANGE)
751 751 return (EINVAL);
752 752
753 753 if ((fxparmsp->fx_upri > fx_maxupri ||
754 754 fxparmsp->fx_upri < 0) &&
755 755 fxparmsp->fx_upri != FX_NOCHANGE)
756 756 return (EINVAL);
757 757
758 758 if ((fxparmsp->fx_tqsecs == 0 && fxparmsp->fx_tqnsecs == 0) ||
759 759 fxparmsp->fx_tqnsecs >= NANOSEC)
760 760 return (EINVAL);
761 761
762 762 cflags = (fxparmsp->fx_upri != FX_NOCHANGE ? FX_DOUPRI : 0);
763 763
764 764 if (fxparmsp->fx_uprilim != FX_NOCHANGE) {
765 765 cflags |= FX_DOUPRILIM;
766 766 }
767 767
768 768 if (fxparmsp->fx_tqnsecs != FX_NOCHANGE)
769 769 cflags |= FX_DOTQ;
770 770
771 771 /*
772 772 * convert the buffer to kernel format.
773 773 */
774 774
775 775 if (fxparmsp->fx_tqnsecs >= 0) {
776 776 if ((ticks = SEC_TO_TICK((longlong_t)fxparmsp->fx_tqsecs) +
777 777 NSEC_TO_TICK_ROUNDUP(fxparmsp->fx_tqnsecs)) > INT_MAX)
778 778 return (ERANGE);
779 779
780 780 ((fxkparms_t *)fxparmsp)->fx_tqntm = (int)ticks;
781 781 } else {
782 782 if ((fxparmsp->fx_tqnsecs != FX_NOCHANGE) &&
783 783 (fxparmsp->fx_tqnsecs != FX_TQINF) &&
784 784 (fxparmsp->fx_tqnsecs != FX_TQDEF))
785 785 return (EINVAL);
786 786 ((fxkparms_t *)fxparmsp)->fx_tqntm = fxparmsp->fx_tqnsecs;
787 787 }
788 788
789 789 ((fxkparms_t *)fxparmsp)->fx_cflags = cflags;
790 790
791 791 return (0);
792 792 }
793 793
794 794
795 795 /*
796 796 * Check the validity of the fixed-priority parameters in the pc_vaparms_t
797 797 * structure vaparmsp and put them in the buffer pointed to by fxprmsp.
798 798 * pc_vaparms_t contains (key, value) pairs of parameter.
799 799 */
800 800 static int
801 801 fx_vaparmsin(void *prmsp, pc_vaparms_t *vaparmsp)
802 802 {
803 803 uint_t secs = 0;
804 804 uint_t cnt;
805 805 int nsecs = 0;
806 806 int priflag, secflag, nsecflag, limflag;
807 807 longlong_t ticks;
808 808 fxkparms_t *fxprmsp = (fxkparms_t *)prmsp;
809 809 pc_vaparm_t *vpp = &vaparmsp->pc_parms[0];
810 810
811 811
812 812 /*
813 813 * First check the validity of parameters and convert them
814 814 * from the user supplied format to the internal format.
815 815 */
816 816 priflag = secflag = nsecflag = limflag = 0;
817 817
818 818 fxprmsp->fx_cflags = 0;
819 819
820 820 if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT)
821 821 return (EINVAL);
822 822
823 823 for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) {
824 824
825 825 switch (vpp->pc_key) {
826 826 case FX_KY_UPRILIM:
827 827 if (limflag++)
828 828 return (EINVAL);
829 829 fxprmsp->fx_cflags |= FX_DOUPRILIM;
830 830 fxprmsp->fx_uprilim = (pri_t)vpp->pc_parm;
831 831 if (fxprmsp->fx_uprilim > fx_maxupri ||
832 832 fxprmsp->fx_uprilim < 0)
833 833 return (EINVAL);
834 834 break;
835 835
836 836 case FX_KY_UPRI:
837 837 if (priflag++)
838 838 return (EINVAL);
839 839 fxprmsp->fx_cflags |= FX_DOUPRI;
840 840 fxprmsp->fx_upri = (pri_t)vpp->pc_parm;
841 841 if (fxprmsp->fx_upri > fx_maxupri ||
842 842 fxprmsp->fx_upri < 0)
843 843 return (EINVAL);
844 844 break;
845 845
846 846 case FX_KY_TQSECS:
847 847 if (secflag++)
848 848 return (EINVAL);
849 849 fxprmsp->fx_cflags |= FX_DOTQ;
850 850 secs = (uint_t)vpp->pc_parm;
851 851 break;
852 852
853 853 case FX_KY_TQNSECS:
854 854 if (nsecflag++)
855 855 return (EINVAL);
856 856 fxprmsp->fx_cflags |= FX_DOTQ;
857 857 nsecs = (int)vpp->pc_parm;
858 858 break;
859 859
860 860 default:
861 861 return (EINVAL);
862 862 }
863 863 }
864 864
865 865 if (vaparmsp->pc_vaparmscnt == 0) {
866 866 /*
867 867 * Use default parameters.
868 868 */
869 869 fxprmsp->fx_upri = 0;
870 870 fxprmsp->fx_uprilim = 0;
871 871 fxprmsp->fx_tqntm = FX_TQDEF;
872 872 fxprmsp->fx_cflags = FX_DOUPRI | FX_DOUPRILIM | FX_DOTQ;
873 873 } else if ((fxprmsp->fx_cflags & FX_DOTQ) != 0) {
874 874 if ((secs == 0 && nsecs == 0) || nsecs >= NANOSEC)
875 875 return (EINVAL);
876 876
877 877 if (nsecs >= 0) {
878 878 if ((ticks = SEC_TO_TICK((longlong_t)secs) +
879 879 NSEC_TO_TICK_ROUNDUP(nsecs)) > INT_MAX)
880 880 return (ERANGE);
881 881
882 882 fxprmsp->fx_tqntm = (int)ticks;
883 883 } else {
884 884 if (nsecs != FX_TQINF && nsecs != FX_TQDEF)
885 885 return (EINVAL);
886 886 fxprmsp->fx_tqntm = nsecs;
887 887 }
888 888 }
889 889
890 890 return (0);
891 891 }
892 892
893 893
894 894 /*
895 895 * Nothing to do here but return success.
896 896 */
897 897 /* ARGSUSED */
898 898 static int
899 899 fx_parmsout(void *parmsp, pc_vaparms_t *vaparmsp)
900 900 {
901 901 register fxkparms_t *fxkprmsp = (fxkparms_t *)parmsp;
902 902
903 903 if (vaparmsp != NULL)
904 904 return (0);
905 905
906 906 if (fxkprmsp->fx_tqntm < 0) {
907 907 /*
908 908 * Quantum field set to special value (e.g. FX_TQINF)
909 909 */
910 910 ((fxparms_t *)fxkprmsp)->fx_tqnsecs = fxkprmsp->fx_tqntm;
911 911 ((fxparms_t *)fxkprmsp)->fx_tqsecs = 0;
912 912
913 913 } else {
914 914 /* Convert quantum from ticks to seconds-nanoseconds */
915 915
916 916 timestruc_t ts;
917 917 TICK_TO_TIMESTRUC(fxkprmsp->fx_tqntm, &ts);
918 918 ((fxparms_t *)fxkprmsp)->fx_tqsecs = ts.tv_sec;
919 919 ((fxparms_t *)fxkprmsp)->fx_tqnsecs = ts.tv_nsec;
920 920 }
921 921
922 922 return (0);
923 923 }
924 924
925 925
926 926 /*
927 927 * Copy all selected fixed-priority class parameters to the user.
928 928 * The parameters are specified by a key.
929 929 */
930 930 static int
931 931 fx_vaparmsout(void *prmsp, pc_vaparms_t *vaparmsp)
932 932 {
933 933 fxkparms_t *fxkprmsp = (fxkparms_t *)prmsp;
934 934 timestruc_t ts;
935 935 uint_t cnt;
936 936 uint_t secs;
937 937 int nsecs;
938 938 int priflag, secflag, nsecflag, limflag;
939 939 pc_vaparm_t *vpp = &vaparmsp->pc_parms[0];
940 940
941 941 ASSERT(MUTEX_NOT_HELD(&curproc->p_lock));
942 942
943 943 priflag = secflag = nsecflag = limflag = 0;
944 944
945 945 if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT)
946 946 return (EINVAL);
947 947
948 948 if (fxkprmsp->fx_tqntm < 0) {
949 949 /*
950 950 * Quantum field set to special value (e.g. FX_TQINF).
951 951 */
952 952 secs = 0;
953 953 nsecs = fxkprmsp->fx_tqntm;
954 954 } else {
955 955 /*
956 956 * Convert quantum from ticks to seconds-nanoseconds.
957 957 */
958 958 TICK_TO_TIMESTRUC(fxkprmsp->fx_tqntm, &ts);
959 959 secs = ts.tv_sec;
960 960 nsecs = ts.tv_nsec;
961 961 }
962 962
963 963
964 964 for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) {
965 965
966 966 switch (vpp->pc_key) {
967 967 case FX_KY_UPRILIM:
968 968 if (limflag++)
969 969 return (EINVAL);
970 970 if (copyout(&fxkprmsp->fx_uprilim,
971 971 (void *)(uintptr_t)vpp->pc_parm, sizeof (pri_t)))
972 972 return (EFAULT);
973 973 break;
974 974
975 975 case FX_KY_UPRI:
976 976 if (priflag++)
977 977 return (EINVAL);
978 978 if (copyout(&fxkprmsp->fx_upri,
979 979 (void *)(uintptr_t)vpp->pc_parm, sizeof (pri_t)))
980 980 return (EFAULT);
981 981 break;
982 982
983 983 case FX_KY_TQSECS:
984 984 if (secflag++)
985 985 return (EINVAL);
986 986 if (copyout(&secs,
987 987 (void *)(uintptr_t)vpp->pc_parm, sizeof (uint_t)))
988 988 return (EFAULT);
989 989 break;
990 990
991 991 case FX_KY_TQNSECS:
992 992 if (nsecflag++)
993 993 return (EINVAL);
994 994 if (copyout(&nsecs,
995 995 (void *)(uintptr_t)vpp->pc_parm, sizeof (int)))
996 996 return (EFAULT);
997 997 break;
998 998
999 999 default:
1000 1000 return (EINVAL);
1001 1001 }
1002 1002 }
1003 1003
1004 1004 return (0);
1005 1005 }
1006 1006
1007 1007 /*
1008 1008 * Set the scheduling parameters of the thread pointed to by fxprocp
1009 1009 * to those specified in the buffer pointed to by fxparmsp.
1010 1010 */
1011 1011 /* ARGSUSED */
1012 1012 static int
1013 1013 fx_parmsset(kthread_t *tx, void *parmsp, id_t reqpcid, cred_t *reqpcredp)
1014 1014 {
1015 1015 char nice;
1016 1016 pri_t reqfxuprilim;
1017 1017 pri_t reqfxupri;
1018 1018 fxkparms_t *fxkparmsp = (fxkparms_t *)parmsp;
1019 1019 fxproc_t *fxpp;
1020 1020
1021 1021
1022 1022 ASSERT(MUTEX_HELD(&(ttoproc(tx))->p_lock));
1023 1023
1024 1024 thread_lock(tx);
1025 1025 fxpp = (fxproc_t *)tx->t_cldata;
1026 1026
1027 1027 if ((fxkparmsp->fx_cflags & FX_DOUPRILIM) == 0)
1028 1028 reqfxuprilim = fxpp->fx_uprilim;
1029 1029 else
1030 1030 reqfxuprilim = fxkparmsp->fx_uprilim;
1031 1031
1032 1032 /*
1033 1033 * Basic permissions enforced by generic kernel code
1034 1034 * for all classes require that a thread attempting
1035 1035 * to change the scheduling parameters of a target
1036 1036 * thread be privileged or have a real or effective
1037 1037 * UID matching that of the target thread. We are not
1038 1038 * called unless these basic permission checks have
1039 1039 * already passed. The fixed priority class requires in
1040 1040 * addition that the calling thread be privileged if it
1041 1041 * is attempting to raise the pri above its current
1042 1042 * value This may have been checked previously but if our
1043 1043 * caller passed us a non-NULL credential pointer we assume
1044 1044 * it hasn't and we check it here.
1045 1045 */
1046 1046
1047 1047 if ((reqpcredp != NULL) &&
1048 1048 (reqfxuprilim > fxpp->fx_uprilim ||
1049 1049 ((fxkparmsp->fx_cflags & FX_DOTQ) != 0)) &&
1050 1050 secpolicy_raisepriority(reqpcredp) != 0) {
1051 1051 thread_unlock(tx);
1052 1052 return (EPERM);
1053 1053 }
1054 1054
1055 1055 FX_ADJUST_PRI(reqfxuprilim);
1056 1056
1057 1057 if ((fxkparmsp->fx_cflags & FX_DOUPRI) == 0)
1058 1058 reqfxupri = fxpp->fx_pri;
1059 1059 else
1060 1060 reqfxupri = fxkparmsp->fx_upri;
1061 1061
1062 1062
1063 1063 /*
1064 1064 * Make sure the user priority doesn't exceed the upri limit.
1065 1065 */
1066 1066 if (reqfxupri > reqfxuprilim)
1067 1067 reqfxupri = reqfxuprilim;
1068 1068
1069 1069 /*
1070 1070 * Set fx_nice to the nice value corresponding to the user
1071 1071 * priority we are setting. Note that setting the nice field
1072 1072 * of the parameter struct won't affect upri or nice.
1073 1073 */
1074 1074
1075 1075 nice = NZERO - (reqfxupri * NZERO) / fx_maxupri;
1076 1076
1077 1077 if (nice > NZERO)
1078 1078 nice = NZERO;
1079 1079
1080 1080 fxpp->fx_uprilim = reqfxuprilim;
1081 1081 fxpp->fx_pri = reqfxupri;
1082 1082
1083 1083 if (fxkparmsp->fx_tqntm == FX_TQINF)
1084 1084 fxpp->fx_pquantum = FX_TQINF;
1085 1085 else if (fxkparmsp->fx_tqntm == FX_TQDEF)
1086 1086 fxpp->fx_pquantum = fx_dptbl[fxpp->fx_pri].fx_quantum;
1087 1087 else if ((fxkparmsp->fx_cflags & FX_DOTQ) != 0)
1088 1088 fxpp->fx_pquantum = fxkparmsp->fx_tqntm;
1089 1089
1090 1090 fxpp->fx_nice = nice;
1091 1091
1092 1092 fx_change_priority(tx, fxpp);
1093 1093 thread_unlock(tx);
1094 1094 return (0);
1095 1095 }
1096 1096
1097 1097
1098 1098 /*
1099 1099 * Return the global scheduling priority that would be assigned
1100 1100 * to a thread entering the fixed-priority class with the fx_upri.
1101 1101 */
1102 1102 static pri_t
1103 1103 fx_globpri(kthread_t *t)
1104 1104 {
1105 1105 fxproc_t *fxpp;
1106 1106
1107 1107 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock));
1108 1108
1109 1109 fxpp = (fxproc_t *)t->t_cldata;
1110 1110 return (fx_dptbl[fxpp->fx_pri].fx_globpri);
1111 1111
1112 1112 }
1113 1113
1114 1114 /*
1115 1115 * Arrange for thread to be placed in appropriate location
1116 1116 * on dispatcher queue.
1117 1117 *
1118 1118 * This is called with the current thread in TS_ONPROC and locked.
1119 1119 */
1120 1120 static void
1121 1121 fx_preempt(kthread_t *t)
1122 1122 {
1123 1123 fxproc_t *fxpp = (fxproc_t *)(t->t_cldata);
1124 1124
1125 1125 ASSERT(t == curthread);
1126 1126 ASSERT(THREAD_LOCK_HELD(curthread));
1127 1127
1128 1128 (void) CPUCAPS_CHARGE(t, &fxpp->fx_caps, CPUCAPS_CHARGE_ENFORCE);
1129 1129
1130 1130 /*
1131 1131 * Check to see if we're doing "preemption control" here. If
1132 1132 * we are, and if the user has requested that this thread not
1133 1133 * be preempted, and if preemptions haven't been put off for
1134 1134 * too long, let the preemption happen here but try to make
1135 1135 * sure the thread is rescheduled as soon as possible. We do
1136 1136 * this by putting it on the front of the highest priority run
1137 1137 * queue in the FX class. If the preemption has been put off
1138 1138 * for too long, clear the "nopreempt" bit and let the thread
1139 1139 * be preempted.
1140 1140 */
1141 1141 if (t->t_schedctl && schedctl_get_nopreempt(t)) {
1142 1142 if (fxpp->fx_pquantum == FX_TQINF ||
1143 1143 fxpp->fx_timeleft > -SC_MAX_TICKS) {
1144 1144 DTRACE_SCHED1(schedctl__nopreempt, kthread_t *, t);
1145 1145 schedctl_set_yield(t, 1);
1146 1146 setfrontdq(t);
1147 1147 return;
1148 1148 } else {
1149 1149 schedctl_set_nopreempt(t, 0);
1150 1150 DTRACE_SCHED1(schedctl__preempt, kthread_t *, t);
1151 1151 TNF_PROBE_2(schedctl_preempt, "schedctl FX fx_preempt",
1152 1152 /* CSTYLED */, tnf_pid, pid, ttoproc(t)->p_pid,
1153 1153 tnf_lwpid, lwpid, t->t_tid);
1154 1154 /*
1155 1155 * Fall through and be preempted below.
1156 1156 */
1157 1157 }
1158 1158 }
1159 1159
1160 1160 if (FX_HAS_CB(fxpp)) {
1161 1161 clock_t new_quantum = (clock_t)fxpp->fx_pquantum;
1162 1162 pri_t newpri = fxpp->fx_pri;
1163 1163 FX_CB_PREEMPT(FX_CALLB(fxpp), fxpp->fx_cookie,
1164 1164 &new_quantum, &newpri);
1165 1165 FX_ADJUST_QUANTUM(new_quantum);
1166 1166 if ((int)new_quantum != fxpp->fx_pquantum) {
1167 1167 fxpp->fx_pquantum = (int)new_quantum;
1168 1168 fxpp->fx_timeleft = fxpp->fx_pquantum;
1169 1169 }
1170 1170 FX_ADJUST_PRI(newpri);
1171 1171 fxpp->fx_pri = newpri;
1172 1172 THREAD_CHANGE_PRI(t, fx_dptbl[fxpp->fx_pri].fx_globpri);
1173 1173 }
1174 1174
1175 1175 /*
1176 1176 * This thread may be placed on wait queue by CPU Caps. In this case we
1177 1177 * do not need to do anything until it is removed from the wait queue.
1178 1178 */
1179 1179 if (CPUCAPS_ENFORCE(t)) {
1180 1180 return;
1181 1181 }
1182 1182
1183 1183 if ((fxpp->fx_flags & (FXBACKQ)) == FXBACKQ) {
1184 1184 fxpp->fx_timeleft = fxpp->fx_pquantum;
1185 1185 fxpp->fx_flags &= ~FXBACKQ;
1186 1186 setbackdq(t);
1187 1187 } else {
1188 1188 setfrontdq(t);
1189 1189 }
1190 1190 }
1191 1191
1192 1192 static void
1193 1193 fx_setrun(kthread_t *t)
1194 1194 {
1195 1195 fxproc_t *fxpp = (fxproc_t *)(t->t_cldata);
1196 1196
1197 1197 ASSERT(THREAD_LOCK_HELD(t)); /* t should be in transition */
1198 1198 fxpp->fx_flags &= ~FXBACKQ;
1199 1199
1200 1200 if (t->t_disp_time != ddi_get_lbolt())
1201 1201 setbackdq(t);
1202 1202 else
1203 1203 setfrontdq(t);
1204 1204 }
1205 1205
1206 1206
1207 1207 /*
1208 1208 * Prepare thread for sleep. We reset the thread priority so it will
1209 1209 * run at the kernel priority level when it wakes up.
1210 1210 */
1211 1211 static void
1212 1212 fx_sleep(kthread_t *t)
1213 1213 {
1214 1214 fxproc_t *fxpp = (fxproc_t *)(t->t_cldata);
1215 1215
1216 1216 ASSERT(t == curthread);
1217 1217 ASSERT(THREAD_LOCK_HELD(t));
1218 1218
1219 1219 /*
1220 1220 * Account for time spent on CPU before going to sleep.
1221 1221 */
1222 1222 (void) CPUCAPS_CHARGE(t, &fxpp->fx_caps, CPUCAPS_CHARGE_ENFORCE);
1223 1223
1224 1224 if (FX_HAS_CB(fxpp)) {
1225 1225 FX_CB_SLEEP(FX_CALLB(fxpp), fxpp->fx_cookie);
1226 1226 }
1227 1227 t->t_stime = ddi_get_lbolt(); /* time stamp for the swapper */
1228 1228 }
1229 1229
1230 1230
1231 1231 /*
1232 1232 * Return Values:
1233 1233 *
1234 1234 * -1 if the thread is loaded or is not eligible to be swapped in.
1235 1235 *
1236 1236 * FX and RT threads are designed so that they don't swapout; however,
1237 1237 * it is possible that while the thread is swapped out and in another class, it
1238 1238 * can be changed to FX or RT. Since these threads should be swapped in
1239 1239 * as soon as they're runnable, rt_swapin returns SHRT_MAX, and fx_swapin
1240 1240 * returns SHRT_MAX - 1, so that it gives deference to any swapped out
1241 1241 * RT threads.
1242 1242 */
1243 1243 /* ARGSUSED */
1244 1244 static pri_t
1245 1245 fx_swapin(kthread_t *t, int flags)
1246 1246 {
1247 1247 pri_t tpri = -1;
1248 1248
1249 1249 ASSERT(THREAD_LOCK_HELD(t));
1250 1250
1251 1251 if (t->t_state == TS_RUN && (t->t_schedflag & TS_LOAD) == 0) {
1252 1252 tpri = (pri_t)SHRT_MAX - 1;
1253 1253 }
1254 1254
1255 1255 return (tpri);
1256 1256 }
1257 1257
1258 1258 /*
1259 1259 * Return Values
1260 1260 * -1 if the thread isn't loaded or is not eligible to be swapped out.
1261 1261 */
1262 1262 /* ARGSUSED */
1263 1263 static pri_t
1264 1264 fx_swapout(kthread_t *t, int flags)
1265 1265 {
1266 1266 ASSERT(THREAD_LOCK_HELD(t));
1267 1267
1268 1268 return (-1);
1269 1269
1270 1270 }
1271 1271
1272 1272 /* ARGSUSED */
1273 1273 static void
1274 1274 fx_stop(kthread_t *t, int why, int what)
1275 1275 {
1276 1276 fxproc_t *fxpp = (fxproc_t *)(t->t_cldata);
1277 1277
1278 1278 ASSERT(THREAD_LOCK_HELD(t));
1279 1279
1280 1280 if (FX_HAS_CB(fxpp)) {
1281 1281 FX_CB_STOP(FX_CALLB(fxpp), fxpp->fx_cookie);
1282 1282 }
1283 1283 }
1284 1284
1285 1285 /*
1286 1286 * Check for time slice expiration. If time slice has expired
1287 1287 * set runrun to cause preemption.
1288 1288 */
1289 1289 static void
1290 1290 fx_tick(kthread_t *t)
1291 1291 {
1292 1292 boolean_t call_cpu_surrender = B_FALSE;
1293 1293 fxproc_t *fxpp;
1294 1294
1295 1295 ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock));
1296 1296
1297 1297 thread_lock(t);
1298 1298
1299 1299 fxpp = (fxproc_t *)(t->t_cldata);
1300 1300
1301 1301 if (FX_HAS_CB(fxpp)) {
1302 1302 clock_t new_quantum = (clock_t)fxpp->fx_pquantum;
1303 1303 pri_t newpri = fxpp->fx_pri;
1304 1304 FX_CB_TICK(FX_CALLB(fxpp), fxpp->fx_cookie,
1305 1305 &new_quantum, &newpri);
1306 1306 FX_ADJUST_QUANTUM(new_quantum);
1307 1307 if ((int)new_quantum != fxpp->fx_pquantum) {
1308 1308 fxpp->fx_pquantum = (int)new_quantum;
1309 1309 fxpp->fx_timeleft = fxpp->fx_pquantum;
1310 1310 }
1311 1311 FX_ADJUST_PRI(newpri);
1312 1312 if (newpri != fxpp->fx_pri) {
1313 1313 fxpp->fx_pri = newpri;
1314 1314 fx_change_priority(t, fxpp);
1315 1315 }
1316 1316 }
1317 1317
1318 1318 /*
1319 1319 * Keep track of thread's project CPU usage. Note that projects
1320 1320 * get charged even when threads are running in the kernel.
1321 1321 */
1322 1322 call_cpu_surrender = CPUCAPS_CHARGE(t, &fxpp->fx_caps,
1323 1323 CPUCAPS_CHARGE_ENFORCE);
1324 1324
1325 1325 if ((fxpp->fx_pquantum != FX_TQINF) &&
1326 1326 (--fxpp->fx_timeleft <= 0)) {
1327 1327 pri_t new_pri;
1328 1328
1329 1329 /*
1330 1330 * If we're doing preemption control and trying to
1331 1331 * avoid preempting this thread, just note that
1332 1332 * the thread should yield soon and let it keep
1333 1333 * running (unless it's been a while).
1334 1334 */
1335 1335 if (t->t_schedctl && schedctl_get_nopreempt(t)) {
1336 1336 if (fxpp->fx_timeleft > -SC_MAX_TICKS) {
1337 1337 DTRACE_SCHED1(schedctl__nopreempt,
1338 1338 kthread_t *, t);
1339 1339 schedctl_set_yield(t, 1);
1340 1340 thread_unlock_nopreempt(t);
1341 1341 return;
1342 1342 }
1343 1343 TNF_PROBE_2(schedctl_failsafe,
1344 1344 "schedctl FX fx_tick", /* CSTYLED */,
1345 1345 tnf_pid, pid, ttoproc(t)->p_pid,
1346 1346 tnf_lwpid, lwpid, t->t_tid);
1347 1347 }
1348 1348 new_pri = fx_dptbl[fxpp->fx_pri].fx_globpri;
1349 1349 ASSERT(new_pri >= 0 && new_pri <= fx_maxglobpri);
1350 1350 /*
1351 1351 * When the priority of a thread is changed,
1352 1352 * it may be necessary to adjust its position
1353 1353 * on a sleep queue or dispatch queue. Even
1354 1354 * when the priority is not changed, we need
1355 1355 * to preserve round robin on dispatch queue.
1356 1356 * The function thread_change_pri accomplishes
1357 1357 * this.
1358 1358 */
1359 1359 if (thread_change_pri(t, new_pri, 0)) {
1360 1360 fxpp->fx_timeleft = fxpp->fx_pquantum;
1361 1361 } else {
1362 1362 call_cpu_surrender = B_TRUE;
1363 1363 }
1364 1364 } else if (t->t_state == TS_ONPROC &&
1365 1365 t->t_pri < t->t_disp_queue->disp_maxrunpri) {
1366 1366 call_cpu_surrender = B_TRUE;
1367 1367 }
1368 1368
1369 1369 if (call_cpu_surrender) {
1370 1370 fxpp->fx_flags |= FXBACKQ;
1371 1371 cpu_surrender(t);
1372 1372 }
1373 1373 thread_unlock_nopreempt(t); /* clock thread can't be preempted */
1374 1374 }
1375 1375
1376 1376
1377 1377 static void
1378 1378 fx_trapret(kthread_t *t)
1379 1379 {
1380 1380 cpu_t *cp = CPU;
1381 1381
1382 1382 ASSERT(THREAD_LOCK_HELD(t));
1383 1383 ASSERT(t == curthread);
1384 1384 ASSERT(cp->cpu_dispthread == t);
1385 1385 ASSERT(t->t_state == TS_ONPROC);
1386 1386 }
1387 1387
1388 1388
1389 1389 /*
1390 1390 * Processes waking up go to the back of their queue.
1391 1391 */
1392 1392 static void
1393 1393 fx_wakeup(kthread_t *t)
1394 1394 {
1395 1395 fxproc_t *fxpp = (fxproc_t *)(t->t_cldata);
1396 1396
1397 1397 ASSERT(THREAD_LOCK_HELD(t));
1398 1398
1399 1399 t->t_stime = ddi_get_lbolt(); /* time stamp for the swapper */
1400 1400 if (FX_HAS_CB(fxpp)) {
1401 1401 clock_t new_quantum = (clock_t)fxpp->fx_pquantum;
1402 1402 pri_t newpri = fxpp->fx_pri;
1403 1403 FX_CB_WAKEUP(FX_CALLB(fxpp), fxpp->fx_cookie,
1404 1404 &new_quantum, &newpri);
1405 1405 FX_ADJUST_QUANTUM(new_quantum);
1406 1406 if ((int)new_quantum != fxpp->fx_pquantum) {
1407 1407 fxpp->fx_pquantum = (int)new_quantum;
1408 1408 fxpp->fx_timeleft = fxpp->fx_pquantum;
1409 1409 }
1410 1410
1411 1411 FX_ADJUST_PRI(newpri);
1412 1412 if (newpri != fxpp->fx_pri) {
1413 1413 fxpp->fx_pri = newpri;
1414 1414 THREAD_CHANGE_PRI(t, fx_dptbl[fxpp->fx_pri].fx_globpri);
1415 1415 }
1416 1416 }
1417 1417
1418 1418 fxpp->fx_flags &= ~FXBACKQ;
1419 1419
1420 1420 if (t->t_disp_time != ddi_get_lbolt())
1421 1421 setbackdq(t);
1422 1422 else
1423 1423 setfrontdq(t);
1424 1424 }
1425 1425
1426 1426
1427 1427 /*
1428 1428 * When a thread yields, put it on the back of the run queue.
1429 1429 */
1430 1430 static void
1431 1431 fx_yield(kthread_t *t)
1432 1432 {
1433 1433 fxproc_t *fxpp = (fxproc_t *)(t->t_cldata);
1434 1434
1435 1435 ASSERT(t == curthread);
1436 1436 ASSERT(THREAD_LOCK_HELD(t));
1437 1437
1438 1438 /*
1439 1439 * Collect CPU usage spent before yielding CPU.
1440 1440 */
1441 1441 (void) CPUCAPS_CHARGE(t, &fxpp->fx_caps, CPUCAPS_CHARGE_ENFORCE);
1442 1442
1443 1443 if (FX_HAS_CB(fxpp)) {
1444 1444 clock_t new_quantum = (clock_t)fxpp->fx_pquantum;
1445 1445 pri_t newpri = fxpp->fx_pri;
1446 1446 FX_CB_PREEMPT(FX_CALLB(fxpp), fxpp->fx_cookie,
1447 1447 &new_quantum, &newpri);
1448 1448 FX_ADJUST_QUANTUM(new_quantum);
1449 1449 if ((int)new_quantum != fxpp->fx_pquantum) {
1450 1450 fxpp->fx_pquantum = (int)new_quantum;
1451 1451 fxpp->fx_timeleft = fxpp->fx_pquantum;
1452 1452 }
1453 1453 FX_ADJUST_PRI(newpri);
1454 1454 fxpp->fx_pri = newpri;
1455 1455 THREAD_CHANGE_PRI(t, fx_dptbl[fxpp->fx_pri].fx_globpri);
1456 1456 }
1457 1457
1458 1458 /*
1459 1459 * Clear the preemption control "yield" bit since the user is
1460 1460 * doing a yield.
1461 1461 */
1462 1462 if (t->t_schedctl)
1463 1463 schedctl_set_yield(t, 0);
1464 1464
1465 1465 if (fxpp->fx_timeleft <= 0) {
1466 1466 /*
1467 1467 * Time slice was artificially extended to avoid
1468 1468 * preemption, so pretend we're preempting it now.
1469 1469 */
1470 1470 DTRACE_SCHED1(schedctl__yield, int, -fxpp->fx_timeleft);
1471 1471 fxpp->fx_timeleft = fxpp->fx_pquantum;
1472 1472 THREAD_CHANGE_PRI(t, fx_dptbl[fxpp->fx_pri].fx_globpri);
1473 1473 ASSERT(t->t_pri >= 0 && t->t_pri <= fx_maxglobpri);
1474 1474 }
1475 1475
1476 1476 fxpp->fx_flags &= ~FXBACKQ;
1477 1477 setbackdq(t);
1478 1478 }
1479 1479
1480 1480 /*
1481 1481 * Increment the nice value of the specified thread by incr and
1482 1482 * return the new value in *retvalp.
1483 1483 */
1484 1484 static int
1485 1485 fx_donice(kthread_t *t, cred_t *cr, int incr, int *retvalp)
1486 1486 {
1487 1487 int newnice;
1488 1488 fxproc_t *fxpp = (fxproc_t *)(t->t_cldata);
1489 1489 fxkparms_t fxkparms;
1490 1490
1491 1491 ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock));
1492 1492
1493 1493 /* If there's no change to priority, just return current setting */
1494 1494 if (incr == 0) {
1495 1495 if (retvalp) {
1496 1496 *retvalp = fxpp->fx_nice - NZERO;
1497 1497 }
1498 1498 return (0);
1499 1499 }
1500 1500
1501 1501 if ((incr < 0 || incr > 2 * NZERO) &&
1502 1502 secpolicy_raisepriority(cr) != 0)
1503 1503 return (EPERM);
1504 1504
1505 1505 /*
1506 1506 * Specifying a nice increment greater than the upper limit of
1507 1507 * 2 * NZERO - 1 will result in the thread's nice value being
1508 1508 * set to the upper limit. We check for this before computing
1509 1509 * the new value because otherwise we could get overflow
1510 1510 * if a privileged user specified some ridiculous increment.
1511 1511 */
1512 1512 if (incr > 2 * NZERO - 1)
1513 1513 incr = 2 * NZERO - 1;
1514 1514
1515 1515 newnice = fxpp->fx_nice + incr;
1516 1516 if (newnice > NZERO)
1517 1517 newnice = NZERO;
1518 1518 else if (newnice < 0)
1519 1519 newnice = 0;
1520 1520
1521 1521 fxkparms.fx_uprilim = fxkparms.fx_upri =
1522 1522 -((newnice - NZERO) * fx_maxupri) / NZERO;
1523 1523
1524 1524 fxkparms.fx_cflags = FX_DOUPRILIM | FX_DOUPRI;
1525 1525
1526 1526 fxkparms.fx_tqntm = FX_TQDEF;
1527 1527
1528 1528 /*
1529 1529 * Reset the uprilim and upri values of the thread. Adjust
1530 1530 * time quantum accordingly.
1531 1531 */
1532 1532
1533 1533 (void) fx_parmsset(t, (void *)&fxkparms, (id_t)0, (cred_t *)NULL);
1534 1534
1535 1535 /*
1536 1536 * Although fx_parmsset already reset fx_nice it may
1537 1537 * not have been set to precisely the value calculated above
1538 1538 * because fx_parmsset determines the nice value from the
1539 1539 * user priority and we may have truncated during the integer
1540 1540 * conversion from nice value to user priority and back.
1541 1541 * We reset fx_nice to the value we calculated above.
1542 1542 */
1543 1543 fxpp->fx_nice = (char)newnice;
1544 1544
1545 1545 if (retvalp)
1546 1546 *retvalp = newnice - NZERO;
1547 1547
1548 1548 return (0);
1549 1549 }
1550 1550
1551 1551 /*
1552 1552 * Increment the priority of the specified thread by incr and
1553 1553 * return the new value in *retvalp.
1554 1554 */
1555 1555 static int
1556 1556 fx_doprio(kthread_t *t, cred_t *cr, int incr, int *retvalp)
1557 1557 {
1558 1558 int newpri;
1559 1559 fxproc_t *fxpp = (fxproc_t *)(t->t_cldata);
1560 1560 fxkparms_t fxkparms;
1561 1561
1562 1562 ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock));
1563 1563
1564 1564 /* If there's no change to priority, just return current setting */
1565 1565 if (incr == 0) {
1566 1566 *retvalp = fxpp->fx_pri;
1567 1567 return (0);
1568 1568 }
1569 1569
1570 1570 newpri = fxpp->fx_pri + incr;
1571 1571 if (newpri > fx_maxupri || newpri < 0)
1572 1572 return (EINVAL);
1573 1573
1574 1574 *retvalp = newpri;
1575 1575 fxkparms.fx_uprilim = fxkparms.fx_upri = newpri;
1576 1576 fxkparms.fx_tqntm = FX_NOCHANGE;
1577 1577 fxkparms.fx_cflags = FX_DOUPRILIM | FX_DOUPRI;
1578 1578
1579 1579 /*
1580 1580 * Reset the uprilim and upri values of the thread.
1581 1581 */
1582 1582 return (fx_parmsset(t, (void *)&fxkparms, (id_t)0, cr));
1583 1583 }
1584 1584
1585 1585 static void
1586 1586 fx_change_priority(kthread_t *t, fxproc_t *fxpp)
1587 1587 {
1588 1588 pri_t new_pri;
1589 1589
1590 1590 ASSERT(THREAD_LOCK_HELD(t));
1591 1591 new_pri = fx_dptbl[fxpp->fx_pri].fx_globpri;
1592 1592 ASSERT(new_pri >= 0 && new_pri <= fx_maxglobpri);
1593 1593 t->t_cpri = fxpp->fx_pri;
1594 1594 if (t == curthread || t->t_state == TS_ONPROC) {
1595 1595 /* curthread is always onproc */
1596 1596 cpu_t *cp = t->t_disp_queue->disp_cpu;
1597 1597 THREAD_CHANGE_PRI(t, new_pri);
1598 1598 if (t == cp->cpu_dispthread)
1599 1599 cp->cpu_dispatch_pri = DISP_PRIO(t);
1600 1600 if (DISP_MUST_SURRENDER(t)) {
1601 1601 fxpp->fx_flags |= FXBACKQ;
1602 1602 cpu_surrender(t);
1603 1603 } else {
1604 1604 fxpp->fx_timeleft = fxpp->fx_pquantum;
1605 1605 }
1606 1606 } else {
1607 1607 /*
1608 1608 * When the priority of a thread is changed,
1609 1609 * it may be necessary to adjust its position
1610 1610 * on a sleep queue or dispatch queue.
1611 1611 * The function thread_change_pri accomplishes
1612 1612 * this.
1613 1613 */
1614 1614 if (thread_change_pri(t, new_pri, 0)) {
1615 1615 /*
1616 1616 * The thread was on a run queue. Reset
1617 1617 * its CPU timeleft from the quantum
1618 1618 * associated with the new priority.
1619 1619 */
1620 1620 fxpp->fx_timeleft = fxpp->fx_pquantum;
1621 1621 } else {
1622 1622 fxpp->fx_flags |= FXBACKQ;
1623 1623 }
1624 1624 }
1625 1625 }
1626 1626
1627 1627 static int
1628 1628 fx_alloc(void **p, int flag)
1629 1629 {
1630 1630 void *bufp;
1631 1631
1632 1632 bufp = kmem_alloc(sizeof (fxproc_t), flag);
1633 1633 if (bufp == NULL) {
1634 1634 return (ENOMEM);
1635 1635 } else {
1636 1636 *p = bufp;
1637 1637 return (0);
1638 1638 }
1639 1639 }
1640 1640
1641 1641 static void
1642 1642 fx_free(void *bufp)
1643 1643 {
1644 1644 if (bufp)
1645 1645 kmem_free(bufp, sizeof (fxproc_t));
1646 1646 }
1647 1647
1648 1648 /*
1649 1649 * Release the callback list mutex after successful lookup
1650 1650 */
1651 1651 void
1652 1652 fx_list_release(fxproc_t *fxpp)
1653 1653 {
1654 1654 int index = FX_CB_LIST_HASH(fxpp->fx_ktid);
1655 1655 kmutex_t *lockp = &fx_cb_list_lock[index];
1656 1656 mutex_exit(lockp);
1657 1657 }
1658 1658
1659 1659 fxproc_t *
1660 1660 fx_list_lookup(kt_did_t ktid)
1661 1661 {
1662 1662 int index = FX_CB_LIST_HASH(ktid);
1663 1663 kmutex_t *lockp = &fx_cb_list_lock[index];
1664 1664 fxproc_t *fxpp;
1665 1665
1666 1666 mutex_enter(lockp);
1667 1667
1668 1668 for (fxpp = fx_cb_plisthead[index].fx_cb_next;
1669 1669 fxpp != &fx_cb_plisthead[index]; fxpp = fxpp->fx_cb_next) {
1670 1670 if (fxpp->fx_tp->t_cid == fx_cid && fxpp->fx_ktid == ktid &&
1671 1671 fxpp->fx_callback != NULL) {
1672 1672 /*
1673 1673 * The caller is responsible for calling
1674 1674 * fx_list_release to drop the lock upon
1675 1675 * successful lookup
1676 1676 */
1677 1677 return (fxpp);
1678 1678 }
1679 1679 }
1680 1680 mutex_exit(lockp);
1681 1681 return ((fxproc_t *)NULL);
1682 1682 }
1683 1683
1684 1684
1685 1685 /*
1686 1686 * register a callback set of routines for current thread
1687 1687 * thread should already be in FX class
1688 1688 */
1689 1689 int
1690 1690 fx_register_callbacks(fx_callbacks_t *fx_callback, fx_cookie_t cookie,
1691 1691 pri_t pri, clock_t quantum)
1692 1692 {
1693 1693
1694 1694 fxproc_t *fxpp;
1695 1695
1696 1696 if (fx_callback == NULL)
1697 1697 return (EINVAL);
1698 1698
1699 1699 if (secpolicy_dispadm(CRED()) != 0)
1700 1700 return (EPERM);
1701 1701
1702 1702 if (FX_CB_VERSION(fx_callback) != FX_CALLB_REV)
1703 1703 return (EINVAL);
1704 1704
1705 1705 if (!FX_ISVALID(pri, quantum))
1706 1706 return (EINVAL);
1707 1707
1708 1708 thread_lock(curthread); /* get dispatcher lock on thread */
1709 1709
1710 1710 if (curthread->t_cid != fx_cid) {
1711 1711 thread_unlock(curthread);
1712 1712 return (EINVAL);
1713 1713 }
1714 1714
1715 1715 fxpp = (fxproc_t *)(curthread->t_cldata);
1716 1716 ASSERT(fxpp != NULL);
1717 1717 if (FX_HAS_CB(fxpp)) {
1718 1718 thread_unlock(curthread);
1719 1719 return (EINVAL);
1720 1720 }
1721 1721
1722 1722 fxpp->fx_callback = fx_callback;
1723 1723 fxpp->fx_cookie = cookie;
1724 1724
1725 1725 if (pri != FX_CB_NOCHANGE) {
1726 1726 fxpp->fx_pri = pri;
1727 1727 FX_ADJUST_PRI(fxpp->fx_pri);
1728 1728 if (quantum == FX_TQDEF) {
1729 1729 fxpp->fx_pquantum = fx_dptbl[fxpp->fx_pri].fx_quantum;
1730 1730 } else if (quantum == FX_TQINF) {
1731 1731 fxpp->fx_pquantum = FX_TQINF;
1732 1732 } else if (quantum != FX_NOCHANGE) {
1733 1733 FX_ADJUST_QUANTUM(quantum);
1734 1734 fxpp->fx_pquantum = quantum;
1735 1735 }
1736 1736 } else if (quantum != FX_NOCHANGE && quantum != FX_TQDEF) {
1737 1737 if (quantum == FX_TQINF)
1738 1738 fxpp->fx_pquantum = FX_TQINF;
1739 1739 else {
1740 1740 FX_ADJUST_QUANTUM(quantum);
1741 1741 fxpp->fx_pquantum = quantum;
1742 1742 }
1743 1743 }
1744 1744
1745 1745 fxpp->fx_ktid = ddi_get_kt_did();
1746 1746
1747 1747 fx_change_priority(curthread, fxpp);
1748 1748
1749 1749 thread_unlock(curthread);
1750 1750
1751 1751 /*
1752 1752 * Link new structure into fxproc list.
1753 1753 */
1754 1754 FX_CB_LIST_INSERT(fxpp);
1755 1755 return (0);
1756 1756 }
1757 1757
1758 1758 /* unregister a callback set of routines for current thread */
1759 1759 int
1760 1760 fx_unregister_callbacks()
1761 1761 {
1762 1762 fxproc_t *fxpp;
1763 1763
1764 1764 if ((fxpp = fx_list_lookup(ddi_get_kt_did())) == NULL) {
1765 1765 /*
1766 1766 * did not have a registered callback;
1767 1767 */
1768 1768 return (EINVAL);
1769 1769 }
1770 1770
1771 1771 thread_lock(fxpp->fx_tp);
1772 1772 fxpp->fx_callback = NULL;
1773 1773 fxpp->fx_cookie = NULL;
1774 1774 thread_unlock(fxpp->fx_tp);
1775 1775 fx_list_release(fxpp);
1776 1776
1777 1777 FX_CB_LIST_DELETE(fxpp);
1778 1778 return (0);
1779 1779 }
1780 1780
1781 1781 /*
1782 1782 * modify priority and/or quantum value of a thread with callback
1783 1783 */
1784 1784 int
1785 1785 fx_modify_priority(kt_did_t ktid, clock_t quantum, pri_t pri)
1786 1786 {
1787 1787 fxproc_t *fxpp;
1788 1788
1789 1789 if (!FX_ISVALID(pri, quantum))
1790 1790 return (EINVAL);
1791 1791
1792 1792 if ((fxpp = fx_list_lookup(ktid)) == NULL) {
1793 1793 /*
1794 1794 * either thread had exited or did not have a registered
1795 1795 * callback;
1796 1796 */
1797 1797 return (ESRCH);
1798 1798 }
1799 1799
1800 1800 thread_lock(fxpp->fx_tp);
1801 1801
1802 1802 if (pri != FX_CB_NOCHANGE) {
1803 1803 fxpp->fx_pri = pri;
1804 1804 FX_ADJUST_PRI(fxpp->fx_pri);
1805 1805 if (quantum == FX_TQDEF) {
1806 1806 fxpp->fx_pquantum = fx_dptbl[fxpp->fx_pri].fx_quantum;
1807 1807 } else if (quantum == FX_TQINF) {
1808 1808 fxpp->fx_pquantum = FX_TQINF;
1809 1809 } else if (quantum != FX_NOCHANGE) {
1810 1810 FX_ADJUST_QUANTUM(quantum);
1811 1811 fxpp->fx_pquantum = quantum;
1812 1812 }
1813 1813 } else if (quantum != FX_NOCHANGE && quantum != FX_TQDEF) {
1814 1814 if (quantum == FX_TQINF) {
1815 1815 fxpp->fx_pquantum = FX_TQINF;
1816 1816 } else {
1817 1817 FX_ADJUST_QUANTUM(quantum);
1818 1818 fxpp->fx_pquantum = quantum;
1819 1819 }
1820 1820 }
1821 1821
1822 1822 fx_change_priority(fxpp->fx_tp, fxpp);
1823 1823
1824 1824 thread_unlock(fxpp->fx_tp);
1825 1825 fx_list_release(fxpp);
1826 1826 return (0);
1827 1827 }
1828 1828
1829 1829
1830 1830 /*
1831 1831 * return an iblock cookie for mutex initialization to be used in callbacks
1832 1832 */
1833 1833 void *
1834 1834 fx_get_mutex_cookie()
1835 1835 {
1836 1836 return ((void *)(uintptr_t)__ipltospl(DISP_LEVEL));
1837 1837 }
1838 1838
1839 1839 /*
1840 1840 * return maximum relative priority
1841 1841 */
1842 1842 pri_t
1843 1843 fx_get_maxpri()
1844 1844 {
1845 1845 return (fx_maxumdpri);
1846 1846 }
↓ open down ↓ |
1595 lines elided |
↑ open up ↑ |
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX