1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Software based random number provider for the Kernel Cryptographic 28 * Framework (KCF). This provider periodically collects unpredictable input 29 * from external sources and processes it into a pool of entropy (randomness) 30 * in order to satisfy requests for random bits from kCF. It implements 31 * software-based mixing, extraction, and generation algorithms. 32 * 33 * A history note: The software-based algorithms in this file used to be 34 * part of the /dev/random driver. 35 */ 36 37 #include <sys/types.h> 38 #include <sys/errno.h> 39 #include <sys/debug.h> 40 #include <vm/seg_kmem.h> 41 #include <vm/hat.h> 42 #include <sys/systm.h> 43 #include <sys/memlist.h> 44 #include <sys/cmn_err.h> 45 #include <sys/ksynch.h> 46 #include <sys/random.h> 47 #include <sys/ddi.h> 48 #include <sys/mman.h> 49 #include <sys/sysmacros.h> 50 #include <sys/mem_config.h> 51 #include <sys/time.h> 52 #include <sys/crypto/spi.h> 53 #include <sys/sha1.h> 54 #include <sys/sunddi.h> 55 #include <sys/modctl.h> 56 #include <sys/hold_page.h> 57 #include <rng/fips_random.h> 58 59 #define RNDPOOLSIZE 1024 /* Pool size in bytes */ 60 #define HASHBUFSIZE 64 /* Buffer size used for pool mixing */ 61 #define MAXMEMBLOCKS 16384 /* Number of memory blocks to scan */ 62 #define MEMBLOCKSIZE 4096 /* Size of memory block to read */ 63 #define MINEXTRACTBITS 160 /* Min entropy level for extraction */ 64 #define TIMEOUT_INTERVAL 5 /* Periodic mixing interval in secs */ 65 66 /* Hash-algo generic definitions. For now, they are SHA1's. */ 67 #define HASHSIZE 20 68 #define HASH_CTX SHA1_CTX 69 #define HashInit(ctx) SHA1Init((ctx)) 70 #define HashUpdate(ctx, p, s) SHA1Update((ctx), (p), (s)) 71 #define HashFinal(d, ctx) SHA1Final((d), (ctx)) 72 73 /* Physical memory entropy source */ 74 typedef struct physmem_entsrc_s { 75 uint8_t *parity; /* parity bit vector */ 76 caddr_t pmbuf; /* buffer for memory block */ 77 uint32_t nblocks; /* number of memory blocks */ 78 int entperblock; /* entropy bits per block read */ 79 hrtime_t last_diff; /* previous time to process a block */ 80 hrtime_t last_delta; /* previous time delta */ 81 hrtime_t last_delta2; /* previous 2nd order time delta */ 82 } physmem_entsrc_t; 83 84 static uint32_t srndpool[RNDPOOLSIZE/4]; /* Pool of random bits */ 85 static uint32_t buffer[RNDPOOLSIZE/4]; /* entropy mixed in later */ 86 static int buffer_bytes; /* bytes written to buffer */ 87 static uint32_t entropy_bits; /* pool's current amount of entropy */ 88 static kmutex_t srndpool_lock; /* protects r/w accesses to the pool, */ 89 /* and the global variables */ 90 static kmutex_t buffer_lock; /* protects r/w accesses to buffer */ 91 static kcondvar_t srndpool_read_cv; /* serializes poll/read syscalls */ 92 static int pindex; /* Global index for adding/extracting */ 93 /* from the pool */ 94 static int bstart, bindex; /* Global vars for adding/extracting */ 95 /* from the buffer */ 96 static uint8_t leftover[HASHSIZE]; /* leftover output */ 97 static uint32_t swrand_XKEY[6]; /* one extra word for getentropy */ 98 static int leftover_bytes; /* leftover length */ 99 static uint32_t previous_bytes[HASHSIZE/BYTES_IN_WORD]; /* prev random bytes */ 100 101 static physmem_entsrc_t entsrc; /* Physical mem as an entropy source */ 102 static timeout_id_t rnd_timeout_id; 103 static int snum_waiters; 104 static crypto_kcf_provider_handle_t swrand_prov_handle = NULL; 105 swrand_stats_t swrand_stats; 106 107 static int physmem_ent_init(physmem_entsrc_t *); 108 static void physmem_ent_fini(physmem_entsrc_t *); 109 static void physmem_ent_gen(physmem_entsrc_t *); 110 static int physmem_parity_update(uint8_t *, uint32_t, int); 111 static void physmem_count_blocks(); 112 static void rnd_dr_callback_post_add(void *, pgcnt_t); 113 static int rnd_dr_callback_pre_del(void *, pgcnt_t); 114 static void rnd_dr_callback_post_del(void *, pgcnt_t, int); 115 static void rnd_handler(void *arg); 116 static void swrand_init(); 117 static void swrand_schedule_timeout(void); 118 static int swrand_get_entropy(uint8_t *ptr, size_t len, boolean_t); 119 static void swrand_add_entropy(uint8_t *ptr, size_t len, uint16_t entropy_est); 120 static void swrand_add_entropy_later(uint8_t *ptr, size_t len); 121 122 /* Dynamic Reconfiguration related declarations */ 123 kphysm_setup_vector_t rnd_dr_callback_vec = { 124 KPHYSM_SETUP_VECTOR_VERSION, 125 rnd_dr_callback_post_add, 126 rnd_dr_callback_pre_del, 127 rnd_dr_callback_post_del 128 }; 129 130 extern struct mod_ops mod_cryptoops; 131 132 /* 133 * Module linkage information for the kernel. 134 */ 135 static struct modlcrypto modlcrypto = { 136 &mod_cryptoops, 137 "Kernel Random number Provider" 138 }; 139 140 static struct modlinkage modlinkage = { 141 MODREV_1, 142 { (void *)&modlcrypto, 143 NULL } 144 }; 145 146 /* 147 * CSPI information (entry points, provider info, etc.) 148 */ 149 static void swrand_provider_status(crypto_provider_handle_t, uint_t *); 150 151 static crypto_control_ops_t swrand_control_ops = { 152 swrand_provider_status 153 }; 154 155 static int swrand_seed_random(crypto_provider_handle_t, crypto_session_id_t, 156 uchar_t *, size_t, uint_t, uint32_t, crypto_req_handle_t); 157 static int swrand_generate_random(crypto_provider_handle_t, 158 crypto_session_id_t, uchar_t *, size_t, crypto_req_handle_t); 159 160 static crypto_random_number_ops_t swrand_random_number_ops = { 161 swrand_seed_random, 162 swrand_generate_random 163 }; 164 165 static crypto_ops_t swrand_crypto_ops = { 166 .co_control_ops = &swrand_control_ops, 167 .co_random_ops = &swrand_random_number_ops 168 }; 169 170 static crypto_provider_info_t swrand_prov_info = {{{{ 171 CRYPTO_SPI_VERSION_4, 172 "Kernel Random Number Provider", 173 CRYPTO_SW_PROVIDER, 174 {&modlinkage}, 175 NULL, 176 &swrand_crypto_ops, 177 0, 178 NULL 179 }}}}; 180 181 int 182 _init(void) 183 { 184 int ret; 185 hrtime_t ts; 186 time_t now; 187 188 mutex_init(&srndpool_lock, NULL, MUTEX_DEFAULT, NULL); 189 mutex_init(&buffer_lock, NULL, MUTEX_DEFAULT, NULL); 190 cv_init(&srndpool_read_cv, NULL, CV_DEFAULT, NULL); 191 entropy_bits = 0; 192 pindex = 0; 193 bindex = 0; 194 bstart = 0; 195 snum_waiters = 0; 196 leftover_bytes = 0; 197 buffer_bytes = 0; 198 199 /* 200 * Initialize the pool using 201 * . 2 unpredictable times: high resolution time since the boot-time, 202 * and the current time-of-the day. 203 * . The initial physical memory state. 204 */ 205 ts = gethrtime(); 206 swrand_add_entropy((uint8_t *)&ts, sizeof (ts), 0); 207 208 (void) drv_getparm(TIME, &now); 209 swrand_add_entropy((uint8_t *)&now, sizeof (now), 0); 210 211 ret = kphysm_setup_func_register(&rnd_dr_callback_vec, NULL); 212 ASSERT(ret == 0); 213 214 if (physmem_ent_init(&entsrc) != 0) { 215 ret = ENOMEM; 216 goto exit1; 217 } 218 219 if ((ret = mod_install(&modlinkage)) != 0) 220 goto exit2; 221 222 /* Schedule periodic mixing of the pool. */ 223 mutex_enter(&srndpool_lock); 224 swrand_schedule_timeout(); 225 mutex_exit(&srndpool_lock); 226 (void) swrand_get_entropy((uint8_t *)swrand_XKEY, HASHSIZE, B_TRUE); 227 bcopy(swrand_XKEY, previous_bytes, HASHSIZE); 228 229 /* Register with KCF. If the registration fails, return error. */ 230 if (crypto_register_provider(&swrand_prov_info, &swrand_prov_handle)) { 231 (void) mod_remove(&modlinkage); 232 ret = EACCES; 233 goto exit2; 234 } 235 236 return (0); 237 238 exit2: 239 physmem_ent_fini(&entsrc); 240 exit1: 241 mutex_destroy(&srndpool_lock); 242 mutex_destroy(&buffer_lock); 243 cv_destroy(&srndpool_read_cv); 244 return (ret); 245 } 246 247 int 248 _info(struct modinfo *modinfop) 249 { 250 return (mod_info(&modlinkage, modinfop)); 251 } 252 253 /* 254 * Control entry points. 255 */ 256 /* ARGSUSED */ 257 static void 258 swrand_provider_status(crypto_provider_handle_t provider, uint_t *status) 259 { 260 *status = CRYPTO_PROVIDER_READY; 261 } 262 263 /* 264 * Random number entry points. 265 */ 266 /* ARGSUSED */ 267 static int 268 swrand_seed_random(crypto_provider_handle_t provider, crypto_session_id_t sid, 269 uchar_t *buf, size_t len, uint_t entropy_est, uint32_t flags, 270 crypto_req_handle_t req) 271 { 272 /* The entropy estimate is always 0 in this path */ 273 if (flags & CRYPTO_SEED_NOW) 274 swrand_add_entropy(buf, len, 0); 275 else 276 swrand_add_entropy_later(buf, len); 277 return (CRYPTO_SUCCESS); 278 } 279 280 /* ARGSUSED */ 281 static int 282 swrand_generate_random(crypto_provider_handle_t provider, 283 crypto_session_id_t sid, uchar_t *buf, size_t len, crypto_req_handle_t req) 284 { 285 if (crypto_kmflag(req) == KM_NOSLEEP) 286 (void) swrand_get_entropy(buf, len, B_TRUE); 287 else 288 (void) swrand_get_entropy(buf, len, B_FALSE); 289 290 return (CRYPTO_SUCCESS); 291 } 292 293 /* 294 * Extraction of entropy from the pool. 295 * 296 * Returns "len" random bytes in *ptr. 297 * Try to gather some more entropy by calling physmem_ent_gen() when less than 298 * MINEXTRACTBITS are present in the pool. 299 * Will block if not enough entropy was available and the call is blocking. 300 */ 301 static int 302 swrand_get_entropy(uint8_t *ptr, size_t len, boolean_t nonblock) 303 { 304 int i, bytes; 305 HASH_CTX hashctx; 306 uint8_t digest[HASHSIZE], *pool; 307 uint32_t tempout[HASHSIZE/BYTES_IN_WORD]; 308 int size; 309 310 mutex_enter(&srndpool_lock); 311 if (leftover_bytes > 0) { 312 bytes = min(len, leftover_bytes); 313 bcopy(leftover, ptr, bytes); 314 len -= bytes; 315 ptr += bytes; 316 leftover_bytes -= bytes; 317 if (leftover_bytes > 0) 318 ovbcopy(leftover+bytes, leftover, leftover_bytes); 319 } 320 321 while (len > 0) { 322 /* Check if there is enough entropy */ 323 while (entropy_bits < MINEXTRACTBITS) { 324 325 physmem_ent_gen(&entsrc); 326 327 if (entropy_bits < MINEXTRACTBITS && 328 nonblock == B_TRUE) { 329 mutex_exit(&srndpool_lock); 330 return (EAGAIN); 331 } 332 333 if (entropy_bits < MINEXTRACTBITS) { 334 ASSERT(nonblock == B_FALSE); 335 snum_waiters++; 336 if (cv_wait_sig(&srndpool_read_cv, 337 &srndpool_lock) == 0) { 338 snum_waiters--; 339 mutex_exit(&srndpool_lock); 340 return (EINTR); 341 } 342 snum_waiters--; 343 } 344 } 345 346 /* Figure out how many bytes to extract */ 347 bytes = min(HASHSIZE, len); 348 bytes = min(bytes, CRYPTO_BITS2BYTES(entropy_bits)); 349 entropy_bits -= CRYPTO_BYTES2BITS(bytes); 350 BUMP_SWRAND_STATS(ss_entOut, CRYPTO_BYTES2BITS(bytes)); 351 swrand_stats.ss_entEst = entropy_bits; 352 353 /* Extract entropy by hashing pool content */ 354 HashInit(&hashctx); 355 HashUpdate(&hashctx, (uint8_t *)srndpool, RNDPOOLSIZE); 356 HashFinal(digest, &hashctx); 357 358 /* 359 * Feed the digest back into the pool so next 360 * extraction produces different result 361 */ 362 pool = (uint8_t *)srndpool; 363 for (i = 0; i < HASHSIZE; i++) { 364 pool[pindex++] ^= digest[i]; 365 /* pindex modulo RNDPOOLSIZE */ 366 pindex &= (RNDPOOLSIZE - 1); 367 } 368 369 /* LINTED E_BAD_PTR_CAST_ALIGN */ 370 fips_random_inner(swrand_XKEY, tempout, (uint32_t *)digest); 371 372 if (len >= HASHSIZE) { 373 size = HASHSIZE; 374 } else { 375 size = min(bytes, HASHSIZE); 376 } 377 378 /* 379 * FIPS 140-2: Continuous RNG test - each generation 380 * of an n-bit block shall be compared with the previously 381 * generated block. Test shall fail if any two compared 382 * n-bit blocks are equal. 383 */ 384 for (i = 0; i < HASHSIZE/BYTES_IN_WORD; i++) { 385 if (tempout[i] != previous_bytes[i]) 386 break; 387 } 388 389 if (i == HASHSIZE/BYTES_IN_WORD) { 390 cmn_err(CE_WARN, "swrand: The value of 160-bit block " 391 "random bytes are same as the previous one.\n"); 392 /* discard random bytes and return error */ 393 return (EIO); 394 } 395 396 bcopy(tempout, previous_bytes, HASHSIZE); 397 398 bcopy(tempout, ptr, size); 399 if (len < HASHSIZE) { 400 leftover_bytes = HASHSIZE - bytes; 401 bcopy((uint8_t *)tempout + bytes, leftover, 402 leftover_bytes); 403 } 404 405 ptr += size; 406 len -= size; 407 BUMP_SWRAND_STATS(ss_bytesOut, size); 408 } 409 410 /* Zero out sensitive information */ 411 bzero(digest, HASHSIZE); 412 bzero(tempout, HASHSIZE); 413 mutex_exit(&srndpool_lock); 414 return (0); 415 } 416 417 #define SWRAND_ADD_BYTES(ptr, len, i, pool) \ 418 ASSERT((ptr) != NULL && (len) > 0); \ 419 BUMP_SWRAND_STATS(ss_bytesIn, (len)); \ 420 while ((len)--) { \ 421 (pool)[(i)++] ^= *(ptr); \ 422 (ptr)++; \ 423 (i) &= (RNDPOOLSIZE - 1); \ 424 } 425 426 /* Write some more user-provided entropy to the pool */ 427 static void 428 swrand_add_bytes(uint8_t *ptr, size_t len) 429 { 430 uint8_t *pool = (uint8_t *)srndpool; 431 432 ASSERT(MUTEX_HELD(&srndpool_lock)); 433 SWRAND_ADD_BYTES(ptr, len, pindex, pool); 434 } 435 436 /* 437 * Add bytes to buffer. Adding the buffer to the random pool 438 * is deferred until the random pool is mixed. 439 */ 440 static void 441 swrand_add_bytes_later(uint8_t *ptr, size_t len) 442 { 443 uint8_t *pool = (uint8_t *)buffer; 444 445 ASSERT(MUTEX_HELD(&buffer_lock)); 446 SWRAND_ADD_BYTES(ptr, len, bindex, pool); 447 buffer_bytes += len; 448 } 449 450 #undef SWRAND_ADD_BYTES 451 452 /* Mix the pool */ 453 static void 454 swrand_mix_pool(uint16_t entropy_est) 455 { 456 int i, j, k, start; 457 HASH_CTX hashctx; 458 uint8_t digest[HASHSIZE]; 459 uint8_t *pool = (uint8_t *)srndpool; 460 uint8_t *bp = (uint8_t *)buffer; 461 462 ASSERT(MUTEX_HELD(&srndpool_lock)); 463 464 /* add deferred bytes */ 465 mutex_enter(&buffer_lock); 466 if (buffer_bytes > 0) { 467 if (buffer_bytes >= RNDPOOLSIZE) { 468 for (i = 0; i < RNDPOOLSIZE/4; i++) { 469 srndpool[i] ^= buffer[i]; 470 buffer[i] = 0; 471 } 472 bstart = bindex = 0; 473 } else { 474 for (i = 0; i < buffer_bytes; i++) { 475 pool[pindex++] ^= bp[bstart]; 476 bp[bstart++] = 0; 477 pindex &= (RNDPOOLSIZE - 1); 478 bstart &= (RNDPOOLSIZE - 1); 479 } 480 ASSERT(bstart == bindex); 481 } 482 buffer_bytes = 0; 483 } 484 mutex_exit(&buffer_lock); 485 486 start = 0; 487 for (i = 0; i < RNDPOOLSIZE/HASHSIZE + 1; i++) { 488 HashInit(&hashctx); 489 490 /* Hash a buffer centered on a block in the pool */ 491 if (start + HASHBUFSIZE <= RNDPOOLSIZE) 492 HashUpdate(&hashctx, &pool[start], HASHBUFSIZE); 493 else { 494 HashUpdate(&hashctx, &pool[start], 495 RNDPOOLSIZE - start); 496 HashUpdate(&hashctx, pool, 497 HASHBUFSIZE - RNDPOOLSIZE + start); 498 } 499 HashFinal(digest, &hashctx); 500 501 /* XOR the hash result back into the block */ 502 k = (start + HASHSIZE) & (RNDPOOLSIZE - 1); 503 for (j = 0; j < HASHSIZE; j++) { 504 pool[k++] ^= digest[j]; 505 k &= (RNDPOOLSIZE - 1); 506 } 507 508 /* Slide the hash buffer and repeat with next block */ 509 start = (start + HASHSIZE) & (RNDPOOLSIZE - 1); 510 } 511 512 entropy_bits += entropy_est; 513 if (entropy_bits > CRYPTO_BYTES2BITS(RNDPOOLSIZE)) 514 entropy_bits = CRYPTO_BYTES2BITS(RNDPOOLSIZE); 515 516 swrand_stats.ss_entEst = entropy_bits; 517 BUMP_SWRAND_STATS(ss_entIn, entropy_est); 518 } 519 520 static void 521 swrand_add_entropy_later(uint8_t *ptr, size_t len) 522 { 523 mutex_enter(&buffer_lock); 524 swrand_add_bytes_later(ptr, len); 525 mutex_exit(&buffer_lock); 526 } 527 528 static void 529 swrand_add_entropy(uint8_t *ptr, size_t len, uint16_t entropy_est) 530 { 531 mutex_enter(&srndpool_lock); 532 swrand_add_bytes(ptr, len); 533 swrand_mix_pool(entropy_est); 534 mutex_exit(&srndpool_lock); 535 } 536 537 /* 538 * The physmem_* routines below generate entropy by reading blocks of 539 * physical memory. Entropy is gathered in a couple of ways: 540 * 541 * - By reading blocks of physical memory and detecting if changes 542 * occurred in the blocks read. 543 * 544 * - By measuring the time it takes to load and hash a block of memory 545 * and computing the differences in the measured time. 546 * 547 * The first method was used in the CryptoRand implementation. Physical 548 * memory is divided into blocks of fixed size. A block of memory is 549 * chosen from the possible blocks and hashed to produce a digest. This 550 * digest is then mixed into the pool. A single bit from the digest is 551 * used as a parity bit or "checksum" and compared against the previous 552 * "checksum" computed for the block. If the single-bit checksum has not 553 * changed, no entropy is credited to the pool. If there is a change, 554 * then the assumption is that at least one bit in the block has changed. 555 * The possible locations within the memory block of where the bit change 556 * occurred is used as a measure of entropy. For example, if a block 557 * size of 4096 bytes is used, about log_2(4096*8)=15 bits worth of 558 * entropy is available. Because the single-bit checksum will miss half 559 * of the changes, the amount of entropy credited to the pool is doubled 560 * when a change is detected. With a 4096 byte block size, a block 561 * change will add a total of 30 bits of entropy to the pool. 562 * 563 * The second method measures the amount of time it takes to read and 564 * hash a physical memory block (as described above). The time measured 565 * can vary depending on system load, scheduling and other factors. 566 * Differences between consecutive measurements are computed to come up 567 * with an entropy estimate. The first, second, and third order delta is 568 * calculated to determine the minimum delta value. The number of bits 569 * present in this minimum delta value is the entropy estimate. This 570 * entropy estimation technique using time deltas is similar to that used 571 * in /dev/random implementations from Linux/BSD. 572 */ 573 574 static int 575 physmem_ent_init(physmem_entsrc_t *entsrc) 576 { 577 uint8_t *ptr; 578 int i; 579 580 bzero(entsrc, sizeof (*entsrc)); 581 582 /* 583 * The maximum entropy amount in bits per block of memory read is 584 * log_2(MEMBLOCKSIZE * 8); 585 */ 586 i = CRYPTO_BYTES2BITS(MEMBLOCKSIZE); 587 while (i >>= 1) 588 entsrc->entperblock++; 589 590 /* Initialize entsrc->nblocks */ 591 physmem_count_blocks(); 592 593 if (entsrc->nblocks == 0) { 594 cmn_err(CE_WARN, "no memory blocks to scan!"); 595 return (-1); 596 } 597 598 /* Allocate space for the parity vector and memory page */ 599 entsrc->parity = kmem_alloc(howmany(entsrc->nblocks, 8), 600 KM_SLEEP); 601 entsrc->pmbuf = vmem_alloc(heap_arena, PAGESIZE, VM_SLEEP); 602 603 604 /* Initialize parity vector with bits from the pool */ 605 i = howmany(entsrc->nblocks, 8); 606 ptr = entsrc->parity; 607 while (i > 0) { 608 if (i > RNDPOOLSIZE) { 609 bcopy(srndpool, ptr, RNDPOOLSIZE); 610 mutex_enter(&srndpool_lock); 611 swrand_mix_pool(0); 612 mutex_exit(&srndpool_lock); 613 ptr += RNDPOOLSIZE; 614 i -= RNDPOOLSIZE; 615 } else { 616 bcopy(srndpool, ptr, i); 617 break; 618 } 619 } 620 621 /* Generate some entropy to further initialize the pool */ 622 mutex_enter(&srndpool_lock); 623 physmem_ent_gen(entsrc); 624 entropy_bits = 0; 625 mutex_exit(&srndpool_lock); 626 627 return (0); 628 } 629 630 static void 631 physmem_ent_fini(physmem_entsrc_t *entsrc) 632 { 633 if (entsrc->pmbuf != NULL) 634 vmem_free(heap_arena, entsrc->pmbuf, PAGESIZE); 635 if (entsrc->parity != NULL) 636 kmem_free(entsrc->parity, howmany(entsrc->nblocks, 8)); 637 bzero(entsrc, sizeof (*entsrc)); 638 } 639 640 static void 641 physmem_ent_gen(physmem_entsrc_t *entsrc) 642 { 643 struct memlist *pmem; 644 offset_t offset, poffset; 645 pfn_t pfn; 646 int i, nbytes, len, ent = 0; 647 uint32_t block, oblock; 648 hrtime_t ts1, ts2, diff, delta, delta2, delta3; 649 uint8_t digest[HASHSIZE]; 650 HASH_CTX ctx; 651 page_t *pp; 652 653 /* 654 * Use each 32-bit quantity in the pool to pick a memory 655 * block to read. 656 */ 657 for (i = 0; i < RNDPOOLSIZE/4; i++) { 658 659 /* If the pool is "full", stop after one block */ 660 if (entropy_bits + ent >= CRYPTO_BYTES2BITS(RNDPOOLSIZE)) { 661 if (i > 0) 662 break; 663 } 664 665 /* 666 * This lock protects reading of phys_install. 667 * Any changes to this list, by DR, are done while 668 * holding this lock. So, holding this lock is sufficient 669 * to handle DR also. 670 */ 671 memlist_read_lock(); 672 673 /* We're left with less than 4K of memory after DR */ 674 ASSERT(entsrc->nblocks > 0); 675 676 /* Pick a memory block to read */ 677 block = oblock = srndpool[i] % entsrc->nblocks; 678 679 for (pmem = phys_install; pmem != NULL; pmem = pmem->ml_next) { 680 if (block < pmem->ml_size / MEMBLOCKSIZE) 681 break; 682 block -= pmem->ml_size / MEMBLOCKSIZE; 683 } 684 685 ASSERT(pmem != NULL); 686 687 offset = pmem->ml_address + block * MEMBLOCKSIZE; 688 689 if (!address_in_memlist(phys_install, offset, MEMBLOCKSIZE)) { 690 memlist_read_unlock(); 691 continue; 692 } 693 694 /* 695 * Do an initial check to see if the address is safe 696 */ 697 if (plat_hold_page(offset >> PAGESHIFT, PLAT_HOLD_NO_LOCK, NULL) 698 == PLAT_HOLD_FAIL) { 699 memlist_read_unlock(); 700 continue; 701 } 702 703 /* 704 * Figure out which page to load to read the 705 * memory block. Load the page and compute the 706 * hash of the memory block. 707 */ 708 len = MEMBLOCKSIZE; 709 ts1 = gethrtime(); 710 HashInit(&ctx); 711 while (len) { 712 pfn = offset >> PAGESHIFT; 713 poffset = offset & PAGEOFFSET; 714 nbytes = PAGESIZE - poffset < len ? 715 PAGESIZE - poffset : len; 716 717 /* 718 * Re-check the offset, and lock the frame. If the 719 * page was given away after the above check, we'll 720 * just bail out. 721 */ 722 if (plat_hold_page(pfn, PLAT_HOLD_LOCK, &pp) == 723 PLAT_HOLD_FAIL) 724 break; 725 726 hat_devload(kas.a_hat, entsrc->pmbuf, 727 PAGESIZE, pfn, PROT_READ, 728 HAT_LOAD_NOCONSIST | HAT_LOAD_LOCK); 729 730 HashUpdate(&ctx, (uint8_t *)entsrc->pmbuf + poffset, 731 nbytes); 732 733 hat_unload(kas.a_hat, entsrc->pmbuf, PAGESIZE, 734 HAT_UNLOAD_UNLOCK); 735 736 plat_release_page(pp); 737 738 len -= nbytes; 739 offset += nbytes; 740 } 741 /* We got our pages. Let the DR roll */ 742 memlist_read_unlock(); 743 744 /* See if we had to bail out due to a page being given away */ 745 if (len) 746 continue; 747 748 HashFinal(digest, &ctx); 749 ts2 = gethrtime(); 750 751 /* 752 * Compute the time it took to load and hash the 753 * block and compare it against the previous 754 * measurement. The delta of the time values 755 * provides a small amount of entropy. The 756 * minimum of the first, second, and third order 757 * delta is used to estimate how much entropy 758 * is present. 759 */ 760 diff = ts2 - ts1; 761 delta = diff - entsrc->last_diff; 762 if (delta < 0) 763 delta = -delta; 764 delta2 = delta - entsrc->last_delta; 765 if (delta2 < 0) 766 delta2 = -delta2; 767 delta3 = delta2 - entsrc->last_delta2; 768 if (delta3 < 0) 769 delta3 = -delta3; 770 entsrc->last_diff = diff; 771 entsrc->last_delta = delta; 772 entsrc->last_delta2 = delta2; 773 774 if (delta > delta2) 775 delta = delta2; 776 if (delta > delta3) 777 delta = delta3; 778 delta2 = 0; 779 while (delta >>= 1) 780 delta2++; 781 ent += delta2; 782 783 /* 784 * If the memory block has changed, credit the pool with 785 * the entropy estimate. The entropy estimate is doubled 786 * because the single-bit checksum misses half the change 787 * on average. 788 */ 789 if (physmem_parity_update(entsrc->parity, oblock, 790 digest[0] & 1)) 791 ent += 2 * entsrc->entperblock; 792 793 /* Add the entropy bytes to the pool */ 794 swrand_add_bytes(digest, HASHSIZE); 795 swrand_add_bytes((uint8_t *)&ts1, sizeof (ts1)); 796 swrand_add_bytes((uint8_t *)&ts2, sizeof (ts2)); 797 } 798 799 swrand_mix_pool(ent); 800 } 801 802 static int 803 physmem_parity_update(uint8_t *parity_vec, uint32_t block, int parity) 804 { 805 /* Test and set the parity bit, return 1 if changed */ 806 if (parity == ((parity_vec[block >> 3] >> (block & 7)) & 1)) 807 return (0); 808 parity_vec[block >> 3] ^= 1 << (block & 7); 809 return (1); 810 } 811 812 /* Compute number of memory blocks available to scan */ 813 static void 814 physmem_count_blocks() 815 { 816 struct memlist *pmem; 817 818 memlist_read_lock(); 819 entsrc.nblocks = 0; 820 for (pmem = phys_install; pmem != NULL; pmem = pmem->ml_next) { 821 entsrc.nblocks += pmem->ml_size / MEMBLOCKSIZE; 822 if (entsrc.nblocks > MAXMEMBLOCKS) { 823 entsrc.nblocks = MAXMEMBLOCKS; 824 break; 825 } 826 } 827 memlist_read_unlock(); 828 } 829 830 /* 831 * Dynamic Reconfiguration call-back functions 832 */ 833 834 /* ARGSUSED */ 835 static void 836 rnd_dr_callback_post_add(void *arg, pgcnt_t delta) 837 { 838 /* More memory is available now, so update entsrc->nblocks. */ 839 physmem_count_blocks(); 840 } 841 842 /* Call-back routine invoked before the DR starts a memory removal. */ 843 /* ARGSUSED */ 844 static int 845 rnd_dr_callback_pre_del(void *arg, pgcnt_t delta) 846 { 847 return (0); 848 } 849 850 /* Call-back routine invoked after the DR starts a memory removal. */ 851 /* ARGSUSED */ 852 static void 853 rnd_dr_callback_post_del(void *arg, pgcnt_t delta, int cancelled) 854 { 855 /* Memory has shrunk, so update entsrc->nblocks. */ 856 physmem_count_blocks(); 857 } 858 859 /* Timeout handling to gather entropy from physmem events */ 860 static void 861 swrand_schedule_timeout(void) 862 { 863 clock_t ut; /* time in microseconds */ 864 865 ASSERT(MUTEX_HELD(&srndpool_lock)); 866 /* 867 * The new timeout value is taken from the pool of random bits. 868 * We're merely reading the first 32 bits from the pool here, not 869 * consuming any entropy. 870 * This routine is usually called right after stirring the pool, so 871 * srndpool[0] will have a *fresh* random value each time. 872 * The timeout multiplier value is a random value between 0.7 sec and 873 * 1.748575 sec (0.7 sec + 0xFFFFF microseconds). 874 * The new timeout is TIMEOUT_INTERVAL times that multiplier. 875 */ 876 ut = 700000 + (clock_t)(srndpool[0] & 0xFFFFF); 877 rnd_timeout_id = timeout(rnd_handler, NULL, 878 TIMEOUT_INTERVAL * drv_usectohz(ut)); 879 } 880 881 /*ARGSUSED*/ 882 static void 883 rnd_handler(void *arg) 884 { 885 mutex_enter(&srndpool_lock); 886 887 physmem_ent_gen(&entsrc); 888 if (snum_waiters > 0) 889 cv_broadcast(&srndpool_read_cv); 890 swrand_schedule_timeout(); 891 892 mutex_exit(&srndpool_lock); 893 }