1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
  23  * Use is subject to license terms.
  24  */
  25 
  26 /*
  27  * Software based random number provider for the Kernel Cryptographic
  28  * Framework (KCF). This provider periodically collects unpredictable input
  29  * from external sources and processes it into a pool of entropy (randomness)
  30  * in order to satisfy requests for random bits from kCF. It implements
  31  * software-based mixing, extraction, and generation algorithms.
  32  *
  33  * A history note: The software-based algorithms in this file used to be
  34  * part of the /dev/random driver.
  35  */
  36 
  37 #include <sys/types.h>
  38 #include <sys/errno.h>
  39 #include <sys/debug.h>
  40 #include <vm/seg_kmem.h>
  41 #include <vm/hat.h>
  42 #include <sys/systm.h>
  43 #include <sys/memlist.h>
  44 #include <sys/cmn_err.h>
  45 #include <sys/ksynch.h>
  46 #include <sys/random.h>
  47 #include <sys/ddi.h>
  48 #include <sys/mman.h>
  49 #include <sys/sysmacros.h>
  50 #include <sys/mem_config.h>
  51 #include <sys/time.h>
  52 #include <sys/crypto/spi.h>
  53 #include <sys/sha1.h>
  54 #include <sys/sunddi.h>
  55 #include <sys/modctl.h>
  56 #include <sys/hold_page.h>
  57 #include <rng/fips_random.h>
  58 
  59 #define RNDPOOLSIZE             1024    /* Pool size in bytes */
  60 #define HASHBUFSIZE             64      /* Buffer size used for pool mixing */
  61 #define MAXMEMBLOCKS            16384   /* Number of memory blocks to scan */
  62 #define MEMBLOCKSIZE            4096    /* Size of memory block to read */
  63 #define MINEXTRACTBITS          160     /* Min entropy level for extraction */
  64 #define TIMEOUT_INTERVAL        5       /* Periodic mixing interval in secs */
  65 
  66 /* Hash-algo generic definitions. For now, they are SHA1's. */
  67 #define HASHSIZE                20
  68 #define HASH_CTX                SHA1_CTX
  69 #define HashInit(ctx)           SHA1Init((ctx))
  70 #define HashUpdate(ctx, p, s)   SHA1Update((ctx), (p), (s))
  71 #define HashFinal(d, ctx)       SHA1Final((d), (ctx))
  72 
  73 /* Physical memory entropy source */
  74 typedef struct physmem_entsrc_s {
  75         uint8_t *parity;                /* parity bit vector */
  76         caddr_t pmbuf;                  /* buffer for memory block */
  77         uint32_t nblocks;               /* number of  memory blocks */
  78         int entperblock;                /* entropy bits per block read */
  79         hrtime_t last_diff;             /* previous time to process a block */
  80         hrtime_t last_delta;            /* previous time delta */
  81         hrtime_t last_delta2;           /* previous 2nd order time delta */
  82 } physmem_entsrc_t;
  83 
  84 static uint32_t srndpool[RNDPOOLSIZE/4];        /* Pool of random bits */
  85 static uint32_t buffer[RNDPOOLSIZE/4];  /* entropy mixed in later */
  86 static int buffer_bytes;                /* bytes written to buffer */
  87 static uint32_t entropy_bits;           /* pool's current amount of entropy */
  88 static kmutex_t srndpool_lock;          /* protects r/w accesses to the pool, */
  89                                         /* and the global variables */
  90 static kmutex_t buffer_lock;            /* protects r/w accesses to buffer */
  91 static kcondvar_t srndpool_read_cv;     /* serializes poll/read syscalls */
  92 static int pindex;                      /* Global index for adding/extracting */
  93                                         /* from the pool */
  94 static int bstart, bindex;              /* Global vars for adding/extracting */
  95                                         /* from the buffer */
  96 static uint8_t leftover[HASHSIZE];      /* leftover output */
  97 static uint32_t swrand_XKEY[6];         /* one extra word for getentropy */
  98 static int leftover_bytes;              /* leftover length */
  99 static uint32_t previous_bytes[HASHSIZE/BYTES_IN_WORD]; /* prev random bytes */
 100 
 101 static physmem_entsrc_t entsrc;         /* Physical mem as an entropy source */
 102 static timeout_id_t rnd_timeout_id;
 103 static int snum_waiters;
 104 static crypto_kcf_provider_handle_t swrand_prov_handle = NULL;
 105 swrand_stats_t swrand_stats;
 106 
 107 static int physmem_ent_init(physmem_entsrc_t *);
 108 static void physmem_ent_fini(physmem_entsrc_t *);
 109 static void physmem_ent_gen(physmem_entsrc_t *);
 110 static int physmem_parity_update(uint8_t *, uint32_t, int);
 111 static void physmem_count_blocks();
 112 static void rnd_dr_callback_post_add(void *, pgcnt_t);
 113 static int rnd_dr_callback_pre_del(void *, pgcnt_t);
 114 static void rnd_dr_callback_post_del(void *, pgcnt_t, int);
 115 static void rnd_handler(void *arg);
 116 static void swrand_init();
 117 static void swrand_schedule_timeout(void);
 118 static int swrand_get_entropy(uint8_t *ptr, size_t len, boolean_t);
 119 static void swrand_add_entropy(uint8_t *ptr, size_t len, uint16_t entropy_est);
 120 static void swrand_add_entropy_later(uint8_t *ptr, size_t len);
 121 
 122 /* Dynamic Reconfiguration related declarations */
 123 kphysm_setup_vector_t rnd_dr_callback_vec = {
 124         KPHYSM_SETUP_VECTOR_VERSION,
 125         rnd_dr_callback_post_add,
 126         rnd_dr_callback_pre_del,
 127         rnd_dr_callback_post_del
 128 };
 129 
 130 extern struct mod_ops mod_cryptoops;
 131 
 132 /*
 133  * Module linkage information for the kernel.
 134  */
 135 static struct modlcrypto modlcrypto = {
 136         &mod_cryptoops,
 137         "Kernel Random number Provider"
 138 };
 139 
 140 static struct modlinkage modlinkage = {
 141         MODREV_1,
 142         (void *)&modlcrypto,
 143         NULL
 144 };
 145 
 146 /*
 147  * CSPI information (entry points, provider info, etc.)
 148  */
 149 static void swrand_provider_status(crypto_provider_handle_t, uint_t *);
 150 
 151 static crypto_control_ops_t swrand_control_ops = {
 152         swrand_provider_status
 153 };
 154 
 155 static int swrand_seed_random(crypto_provider_handle_t, crypto_session_id_t,
 156     uchar_t *, size_t, uint_t, uint32_t, crypto_req_handle_t);
 157 static int swrand_generate_random(crypto_provider_handle_t,
 158     crypto_session_id_t, uchar_t *, size_t, crypto_req_handle_t);
 159 
 160 static crypto_random_number_ops_t swrand_random_number_ops = {
 161         swrand_seed_random,
 162         swrand_generate_random
 163 };
 164 
 165 static crypto_ops_t swrand_crypto_ops = {
 166         &swrand_control_ops,
 167         NULL,
 168         NULL,
 169         NULL,
 170         NULL,
 171         NULL,
 172         NULL,
 173         NULL,
 174         &swrand_random_number_ops,
 175         NULL,
 176         NULL,
 177         NULL,
 178         NULL,
 179         NULL,
 180         NULL,
 181         NULL,
 182         NULL,
 183 };
 184 
 185 static crypto_provider_info_t swrand_prov_info = {
 186         CRYPTO_SPI_VERSION_4,
 187         "Kernel Random Number Provider",
 188         CRYPTO_SW_PROVIDER,
 189         {&modlinkage},
 190         NULL,
 191         &swrand_crypto_ops,
 192         0,
 193         NULL
 194 };
 195 
 196 int
 197 _init(void)
 198 {
 199         int ret;
 200         hrtime_t ts;
 201         time_t now;
 202 
 203         mutex_init(&srndpool_lock, NULL, MUTEX_DEFAULT, NULL);
 204         mutex_init(&buffer_lock, NULL, MUTEX_DEFAULT, NULL);
 205         cv_init(&srndpool_read_cv, NULL, CV_DEFAULT, NULL);
 206         entropy_bits = 0;
 207         pindex = 0;
 208         bindex = 0;
 209         bstart = 0;
 210         snum_waiters = 0;
 211         leftover_bytes = 0;
 212         buffer_bytes = 0;
 213 
 214         /*
 215          * Initialize the pool using
 216          * . 2 unpredictable times: high resolution time since the boot-time,
 217          *   and the current time-of-the day.
 218          * . The initial physical memory state.
 219          */
 220         ts = gethrtime();
 221         swrand_add_entropy((uint8_t *)&ts, sizeof (ts), 0);
 222 
 223         (void) drv_getparm(TIME, &now);
 224         swrand_add_entropy((uint8_t *)&now, sizeof (now), 0);
 225 
 226         ret = kphysm_setup_func_register(&rnd_dr_callback_vec, NULL);
 227         ASSERT(ret == 0);
 228 
 229         if (physmem_ent_init(&entsrc) != 0) {
 230                 ret = ENOMEM;
 231                 goto exit1;
 232         }
 233 
 234         if ((ret = mod_install(&modlinkage)) != 0)
 235                 goto exit2;
 236 
 237         /* Schedule periodic mixing of the pool. */
 238         mutex_enter(&srndpool_lock);
 239         swrand_schedule_timeout();
 240         mutex_exit(&srndpool_lock);
 241         (void) swrand_get_entropy((uint8_t *)swrand_XKEY, HASHSIZE, B_TRUE);
 242         bcopy(swrand_XKEY, previous_bytes, HASHSIZE);
 243 
 244         /* Register with KCF. If the registration fails, return error. */
 245         if (crypto_register_provider(&swrand_prov_info, &swrand_prov_handle)) {
 246                 (void) mod_remove(&modlinkage);
 247                 ret = EACCES;
 248                 goto exit2;
 249         }
 250 
 251         return (0);
 252 
 253 exit2:
 254         physmem_ent_fini(&entsrc);
 255 exit1:
 256         mutex_destroy(&srndpool_lock);
 257         mutex_destroy(&buffer_lock);
 258         cv_destroy(&srndpool_read_cv);
 259         return (ret);
 260 }
 261 
 262 int
 263 _info(struct modinfo *modinfop)
 264 {
 265         return (mod_info(&modlinkage, modinfop));
 266 }
 267 
 268 /*
 269  * Control entry points.
 270  */
 271 /* ARGSUSED */
 272 static void
 273 swrand_provider_status(crypto_provider_handle_t provider, uint_t *status)
 274 {
 275         *status = CRYPTO_PROVIDER_READY;
 276 }
 277 
 278 /*
 279  * Random number entry points.
 280  */
 281 /* ARGSUSED */
 282 static int
 283 swrand_seed_random(crypto_provider_handle_t provider, crypto_session_id_t sid,
 284     uchar_t *buf, size_t len, uint_t entropy_est, uint32_t flags,
 285     crypto_req_handle_t req)
 286 {
 287         /* The entropy estimate is always 0 in this path */
 288         if (flags & CRYPTO_SEED_NOW)
 289                 swrand_add_entropy(buf, len, 0);
 290         else
 291                 swrand_add_entropy_later(buf, len);
 292         return (CRYPTO_SUCCESS);
 293 }
 294 
 295 /* ARGSUSED */
 296 static int
 297 swrand_generate_random(crypto_provider_handle_t provider,
 298     crypto_session_id_t sid, uchar_t *buf, size_t len, crypto_req_handle_t req)
 299 {
 300         if (crypto_kmflag(req) == KM_NOSLEEP)
 301                 (void) swrand_get_entropy(buf, len, B_TRUE);
 302         else
 303                 (void) swrand_get_entropy(buf, len, B_FALSE);
 304 
 305         return (CRYPTO_SUCCESS);
 306 }
 307 
 308 /*
 309  * Extraction of entropy from the pool.
 310  *
 311  * Returns "len" random bytes in *ptr.
 312  * Try to gather some more entropy by calling physmem_ent_gen() when less than
 313  * MINEXTRACTBITS are present in the pool.
 314  * Will block if not enough entropy was available and the call is blocking.
 315  */
 316 static int
 317 swrand_get_entropy(uint8_t *ptr, size_t len, boolean_t nonblock)
 318 {
 319         int i, bytes;
 320         HASH_CTX hashctx;
 321         uint8_t digest[HASHSIZE], *pool;
 322         uint32_t tempout[HASHSIZE/BYTES_IN_WORD];
 323         int size;
 324 
 325         mutex_enter(&srndpool_lock);
 326         if (leftover_bytes > 0) {
 327                 bytes = min(len, leftover_bytes);
 328                 bcopy(leftover, ptr, bytes);
 329                 len -= bytes;
 330                 ptr += bytes;
 331                 leftover_bytes -= bytes;
 332                 if (leftover_bytes > 0)
 333                         ovbcopy(leftover+bytes, leftover, leftover_bytes);
 334         }
 335 
 336         while (len > 0) {
 337                 /* Check if there is enough entropy */
 338                 while (entropy_bits < MINEXTRACTBITS) {
 339 
 340                         physmem_ent_gen(&entsrc);
 341 
 342                         if (entropy_bits < MINEXTRACTBITS &&
 343                             nonblock == B_TRUE) {
 344                                 mutex_exit(&srndpool_lock);
 345                                 return (EAGAIN);
 346                         }
 347 
 348                         if (entropy_bits < MINEXTRACTBITS) {
 349                                 ASSERT(nonblock == B_FALSE);
 350                                 snum_waiters++;
 351                                 if (cv_wait_sig(&srndpool_read_cv,
 352                                     &srndpool_lock) == 0) {
 353                                         snum_waiters--;
 354                                         mutex_exit(&srndpool_lock);
 355                                         return (EINTR);
 356                                 }
 357                                 snum_waiters--;
 358                         }
 359                 }
 360 
 361                 /* Figure out how many bytes to extract */
 362                 bytes = min(HASHSIZE, len);
 363                 bytes = min(bytes, CRYPTO_BITS2BYTES(entropy_bits));
 364                 entropy_bits -= CRYPTO_BYTES2BITS(bytes);
 365                 BUMP_SWRAND_STATS(ss_entOut, CRYPTO_BYTES2BITS(bytes));
 366                 swrand_stats.ss_entEst = entropy_bits;
 367 
 368                 /* Extract entropy by hashing pool content */
 369                 HashInit(&hashctx);
 370                 HashUpdate(&hashctx, (uint8_t *)srndpool, RNDPOOLSIZE);
 371                 HashFinal(digest, &hashctx);
 372 
 373                 /*
 374                  * Feed the digest back into the pool so next
 375                  * extraction produces different result
 376                  */
 377                 pool = (uint8_t *)srndpool;
 378                 for (i = 0; i < HASHSIZE; i++) {
 379                         pool[pindex++] ^= digest[i];
 380                         /* pindex modulo RNDPOOLSIZE */
 381                         pindex &= (RNDPOOLSIZE - 1);
 382                 }
 383 
 384                 /* LINTED E_BAD_PTR_CAST_ALIGN */
 385                 fips_random_inner(swrand_XKEY, tempout, (uint32_t *)digest);
 386 
 387                 if (len >= HASHSIZE) {
 388                         size = HASHSIZE;
 389                 } else {
 390                         size = min(bytes, HASHSIZE);
 391                 }
 392 
 393                 /*
 394                  * FIPS 140-2: Continuous RNG test - each generation
 395                  * of an n-bit block shall be compared with the previously
 396                  * generated block. Test shall fail if any two compared
 397                  * n-bit blocks are equal.
 398                  */
 399                 for (i = 0; i < HASHSIZE/BYTES_IN_WORD; i++) {
 400                         if (tempout[i] != previous_bytes[i])
 401                                 break;
 402                 }
 403 
 404                 if (i == HASHSIZE/BYTES_IN_WORD) {
 405                         cmn_err(CE_WARN, "swrand: The value of 160-bit block "
 406                             "random bytes are same as the previous one.\n");
 407                         /* discard random bytes and return error */
 408                         return (EIO);
 409                 }
 410 
 411                 bcopy(tempout, previous_bytes, HASHSIZE);
 412 
 413                 bcopy(tempout, ptr, size);
 414                 if (len < HASHSIZE) {
 415                         leftover_bytes = HASHSIZE - bytes;
 416                         bcopy((uint8_t *)tempout + bytes, leftover,
 417                             leftover_bytes);
 418                 }
 419 
 420                 ptr += size;
 421                 len -= size;
 422                 BUMP_SWRAND_STATS(ss_bytesOut, size);
 423         }
 424 
 425         /* Zero out sensitive information */
 426         bzero(digest, HASHSIZE);
 427         bzero(tempout, HASHSIZE);
 428         mutex_exit(&srndpool_lock);
 429         return (0);
 430 }
 431 
 432 #define SWRAND_ADD_BYTES(ptr, len, i, pool)             \
 433         ASSERT((ptr) != NULL && (len) > 0);          \
 434         BUMP_SWRAND_STATS(ss_bytesIn, (len));           \
 435         while ((len)--) {                               \
 436                 (pool)[(i)++] ^= *(ptr);                \
 437                 (ptr)++;                                \
 438                 (i) &= (RNDPOOLSIZE - 1);           \
 439         }
 440 
 441 /* Write some more user-provided entropy to the pool */
 442 static void
 443 swrand_add_bytes(uint8_t *ptr, size_t len)
 444 {
 445         uint8_t *pool = (uint8_t *)srndpool;
 446 
 447         ASSERT(MUTEX_HELD(&srndpool_lock));
 448         SWRAND_ADD_BYTES(ptr, len, pindex, pool);
 449 }
 450 
 451 /*
 452  * Add bytes to buffer. Adding the buffer to the random pool
 453  * is deferred until the random pool is mixed.
 454  */
 455 static void
 456 swrand_add_bytes_later(uint8_t *ptr, size_t len)
 457 {
 458         uint8_t *pool = (uint8_t *)buffer;
 459 
 460         ASSERT(MUTEX_HELD(&buffer_lock));
 461         SWRAND_ADD_BYTES(ptr, len, bindex, pool);
 462         buffer_bytes += len;
 463 }
 464 
 465 #undef SWRAND_ADD_BYTES
 466 
 467 /* Mix the pool */
 468 static void
 469 swrand_mix_pool(uint16_t entropy_est)
 470 {
 471         int i, j, k, start;
 472         HASH_CTX hashctx;
 473         uint8_t digest[HASHSIZE];
 474         uint8_t *pool = (uint8_t *)srndpool;
 475         uint8_t *bp = (uint8_t *)buffer;
 476 
 477         ASSERT(MUTEX_HELD(&srndpool_lock));
 478 
 479         /* add deferred bytes */
 480         mutex_enter(&buffer_lock);
 481         if (buffer_bytes > 0) {
 482                 if (buffer_bytes >= RNDPOOLSIZE) {
 483                         for (i = 0; i < RNDPOOLSIZE/4; i++) {
 484                                 srndpool[i] ^= buffer[i];
 485                                 buffer[i] = 0;
 486                         }
 487                         bstart = bindex = 0;
 488                 } else {
 489                         for (i = 0; i < buffer_bytes; i++) {
 490                                 pool[pindex++] ^= bp[bstart];
 491                                 bp[bstart++] = 0;
 492                                 pindex &= (RNDPOOLSIZE - 1);
 493                                 bstart &= (RNDPOOLSIZE - 1);
 494                         }
 495                         ASSERT(bstart == bindex);
 496                 }
 497                 buffer_bytes = 0;
 498         }
 499         mutex_exit(&buffer_lock);
 500 
 501         start = 0;
 502         for (i = 0; i < RNDPOOLSIZE/HASHSIZE + 1; i++) {
 503                 HashInit(&hashctx);
 504 
 505                 /* Hash a buffer centered on a block in the pool */
 506                 if (start + HASHBUFSIZE <= RNDPOOLSIZE)
 507                         HashUpdate(&hashctx, &pool[start], HASHBUFSIZE);
 508                 else {
 509                         HashUpdate(&hashctx, &pool[start],
 510                             RNDPOOLSIZE - start);
 511                         HashUpdate(&hashctx, pool,
 512                             HASHBUFSIZE - RNDPOOLSIZE + start);
 513                 }
 514                 HashFinal(digest, &hashctx);
 515 
 516                 /* XOR the hash result back into the block */
 517                 k = (start + HASHSIZE) & (RNDPOOLSIZE - 1);
 518                 for (j = 0; j < HASHSIZE; j++) {
 519                         pool[k++] ^= digest[j];
 520                         k &= (RNDPOOLSIZE - 1);
 521                 }
 522 
 523                 /* Slide the hash buffer and repeat with next block */
 524                 start = (start + HASHSIZE) & (RNDPOOLSIZE - 1);
 525         }
 526 
 527         entropy_bits += entropy_est;
 528         if (entropy_bits > CRYPTO_BYTES2BITS(RNDPOOLSIZE))
 529                 entropy_bits = CRYPTO_BYTES2BITS(RNDPOOLSIZE);
 530 
 531         swrand_stats.ss_entEst = entropy_bits;
 532         BUMP_SWRAND_STATS(ss_entIn, entropy_est);
 533 }
 534 
 535 static void
 536 swrand_add_entropy_later(uint8_t *ptr, size_t len)
 537 {
 538         mutex_enter(&buffer_lock);
 539         swrand_add_bytes_later(ptr, len);
 540         mutex_exit(&buffer_lock);
 541 }
 542 
 543 static void
 544 swrand_add_entropy(uint8_t *ptr, size_t len, uint16_t entropy_est)
 545 {
 546         mutex_enter(&srndpool_lock);
 547         swrand_add_bytes(ptr, len);
 548         swrand_mix_pool(entropy_est);
 549         mutex_exit(&srndpool_lock);
 550 }
 551 
 552 /*
 553  * The physmem_* routines below generate entropy by reading blocks of
 554  * physical memory.  Entropy is gathered in a couple of ways:
 555  *
 556  *  - By reading blocks of physical memory and detecting if changes
 557  *    occurred in the blocks read.
 558  *
 559  *  - By measuring the time it takes to load and hash a block of memory
 560  *    and computing the differences in the measured time.
 561  *
 562  * The first method was used in the CryptoRand implementation.  Physical
 563  * memory is divided into blocks of fixed size.  A block of memory is
 564  * chosen from the possible blocks and hashed to produce a digest.  This
 565  * digest is then mixed into the pool.  A single bit from the digest is
 566  * used as a parity bit or "checksum" and compared against the previous
 567  * "checksum" computed for the block.  If the single-bit checksum has not
 568  * changed, no entropy is credited to the pool.  If there is a change,
 569  * then the assumption is that at least one bit in the block has changed.
 570  * The possible locations within the memory block of where the bit change
 571  * occurred is used as a measure of entropy.  For example, if a block
 572  * size of 4096 bytes is used, about log_2(4096*8)=15 bits worth of
 573  * entropy is available.  Because the single-bit checksum will miss half
 574  * of the changes, the amount of entropy credited to the pool is doubled
 575  * when a change is detected.  With a 4096 byte block size, a block
 576  * change will add a total of 30 bits of entropy to the pool.
 577  *
 578  * The second method measures the amount of time it takes to read and
 579  * hash a physical memory block (as described above).  The time measured
 580  * can vary depending on system load, scheduling and other factors.
 581  * Differences between consecutive measurements are computed to come up
 582  * with an entropy estimate.  The first, second, and third order delta is
 583  * calculated to determine the minimum delta value.  The number of bits
 584  * present in this minimum delta value is the entropy estimate.  This
 585  * entropy estimation technique using time deltas is similar to that used
 586  * in /dev/random implementations from Linux/BSD.
 587  */
 588 
 589 static int
 590 physmem_ent_init(physmem_entsrc_t *entsrc)
 591 {
 592         uint8_t *ptr;
 593         int i;
 594 
 595         bzero(entsrc, sizeof (*entsrc));
 596 
 597         /*
 598          * The maximum entropy amount in bits per block of memory read is
 599          * log_2(MEMBLOCKSIZE * 8);
 600          */
 601         i = CRYPTO_BYTES2BITS(MEMBLOCKSIZE);
 602         while (i >>= 1)
 603                 entsrc->entperblock++;
 604 
 605         /* Initialize entsrc->nblocks */
 606         physmem_count_blocks();
 607 
 608         if (entsrc->nblocks == 0) {
 609                 cmn_err(CE_WARN, "no memory blocks to scan!");
 610                 return (-1);
 611         }
 612 
 613         /* Allocate space for the parity vector and memory page */
 614         entsrc->parity = kmem_alloc(howmany(entsrc->nblocks, 8),
 615             KM_SLEEP);
 616         entsrc->pmbuf = vmem_alloc(heap_arena, PAGESIZE, VM_SLEEP);
 617 
 618 
 619         /* Initialize parity vector with bits from the pool */
 620         i = howmany(entsrc->nblocks, 8);
 621         ptr = entsrc->parity;
 622         while (i > 0) {
 623                 if (i > RNDPOOLSIZE) {
 624                         bcopy(srndpool, ptr, RNDPOOLSIZE);
 625                         mutex_enter(&srndpool_lock);
 626                         swrand_mix_pool(0);
 627                         mutex_exit(&srndpool_lock);
 628                         ptr += RNDPOOLSIZE;
 629                         i -= RNDPOOLSIZE;
 630                 } else {
 631                         bcopy(srndpool, ptr, i);
 632                         break;
 633                 }
 634         }
 635 
 636         /* Generate some entropy to further initialize the pool */
 637         mutex_enter(&srndpool_lock);
 638         physmem_ent_gen(entsrc);
 639         entropy_bits = 0;
 640         mutex_exit(&srndpool_lock);
 641 
 642         return (0);
 643 }
 644 
 645 static void
 646 physmem_ent_fini(physmem_entsrc_t *entsrc)
 647 {
 648         if (entsrc->pmbuf != NULL)
 649                 vmem_free(heap_arena, entsrc->pmbuf, PAGESIZE);
 650         if (entsrc->parity != NULL)
 651                 kmem_free(entsrc->parity, howmany(entsrc->nblocks, 8));
 652         bzero(entsrc, sizeof (*entsrc));
 653 }
 654 
 655 static void
 656 physmem_ent_gen(physmem_entsrc_t *entsrc)
 657 {
 658         struct memlist *pmem;
 659         offset_t offset, poffset;
 660         pfn_t pfn;
 661         int i, nbytes, len, ent = 0;
 662         uint32_t block, oblock;
 663         hrtime_t ts1, ts2, diff, delta, delta2, delta3;
 664         uint8_t digest[HASHSIZE];
 665         HASH_CTX ctx;
 666         page_t *pp;
 667 
 668         /*
 669          * Use each 32-bit quantity in the pool to pick a memory
 670          * block to read.
 671          */
 672         for (i = 0; i < RNDPOOLSIZE/4; i++) {
 673 
 674                 /* If the pool is "full", stop after one block */
 675                 if (entropy_bits + ent >= CRYPTO_BYTES2BITS(RNDPOOLSIZE)) {
 676                         if (i > 0)
 677                                 break;
 678                 }
 679 
 680                 /*
 681                  * This lock protects reading of phys_install.
 682                  * Any changes to this list, by DR, are done while
 683                  * holding this lock. So, holding this lock is sufficient
 684                  * to handle DR also.
 685                  */
 686                 memlist_read_lock();
 687 
 688                 /* We're left with less than 4K of memory after DR */
 689                 ASSERT(entsrc->nblocks > 0);
 690 
 691                 /* Pick a memory block to read */
 692                 block = oblock = srndpool[i] % entsrc->nblocks;
 693 
 694                 for (pmem = phys_install; pmem != NULL; pmem = pmem->ml_next) {
 695                         if (block < pmem->ml_size / MEMBLOCKSIZE)
 696                                 break;
 697                         block -= pmem->ml_size / MEMBLOCKSIZE;
 698                 }
 699 
 700                 ASSERT(pmem != NULL);
 701 
 702                 offset = pmem->ml_address + block * MEMBLOCKSIZE;
 703 
 704                 if (!address_in_memlist(phys_install, offset, MEMBLOCKSIZE)) {
 705                         memlist_read_unlock();
 706                         continue;
 707                 }
 708 
 709                 /*
 710                  * Do an initial check to see if the address is safe
 711                  */
 712                 if (plat_hold_page(offset >> PAGESHIFT, PLAT_HOLD_NO_LOCK, NULL)
 713                     == PLAT_HOLD_FAIL) {
 714                         memlist_read_unlock();
 715                         continue;
 716                 }
 717 
 718                 /*
 719                  * Figure out which page to load to read the
 720                  * memory block.  Load the page and compute the
 721                  * hash of the memory block.
 722                  */
 723                 len = MEMBLOCKSIZE;
 724                 ts1 = gethrtime();
 725                 HashInit(&ctx);
 726                 while (len) {
 727                         pfn = offset >> PAGESHIFT;
 728                         poffset = offset & PAGEOFFSET;
 729                         nbytes = PAGESIZE - poffset < len ?
 730                             PAGESIZE - poffset : len;
 731 
 732                         /*
 733                          * Re-check the offset, and lock the frame.  If the
 734                          * page was given away after the above check, we'll
 735                          * just bail out.
 736                          */
 737                         if (plat_hold_page(pfn, PLAT_HOLD_LOCK, &pp) ==
 738                             PLAT_HOLD_FAIL)
 739                                 break;
 740 
 741                         hat_devload(kas.a_hat, entsrc->pmbuf,
 742                             PAGESIZE, pfn, PROT_READ,
 743                             HAT_LOAD_NOCONSIST | HAT_LOAD_LOCK);
 744 
 745                         HashUpdate(&ctx, (uint8_t *)entsrc->pmbuf + poffset,
 746                             nbytes);
 747 
 748                         hat_unload(kas.a_hat, entsrc->pmbuf, PAGESIZE,
 749                             HAT_UNLOAD_UNLOCK);
 750 
 751                         plat_release_page(pp);
 752 
 753                         len -= nbytes;
 754                         offset += nbytes;
 755                 }
 756                 /* We got our pages. Let the DR roll */
 757                 memlist_read_unlock();
 758 
 759                 /* See if we had to bail out due to a page being given away */
 760                 if (len)
 761                         continue;
 762 
 763                 HashFinal(digest, &ctx);
 764                 ts2 = gethrtime();
 765 
 766                 /*
 767                  * Compute the time it took to load and hash the
 768                  * block and compare it against the previous
 769                  * measurement. The delta of the time values
 770                  * provides a small amount of entropy.  The
 771                  * minimum of the first, second, and third order
 772                  * delta is used to estimate how much entropy
 773                  * is present.
 774                  */
 775                 diff = ts2 - ts1;
 776                 delta = diff - entsrc->last_diff;
 777                 if (delta < 0)
 778                         delta = -delta;
 779                 delta2 = delta - entsrc->last_delta;
 780                 if (delta2 < 0)
 781                         delta2 = -delta2;
 782                 delta3 = delta2 - entsrc->last_delta2;
 783                 if (delta3 < 0)
 784                         delta3 = -delta3;
 785                 entsrc->last_diff = diff;
 786                 entsrc->last_delta = delta;
 787                 entsrc->last_delta2 = delta2;
 788 
 789                 if (delta > delta2)
 790                         delta = delta2;
 791                 if (delta > delta3)
 792                         delta = delta3;
 793                 delta2 = 0;
 794                 while (delta >>= 1)
 795                         delta2++;
 796                 ent += delta2;
 797 
 798                 /*
 799                  * If the memory block has changed, credit the pool with
 800                  * the entropy estimate.  The entropy estimate is doubled
 801                  * because the single-bit checksum misses half the change
 802                  * on average.
 803                  */
 804                 if (physmem_parity_update(entsrc->parity, oblock,
 805                     digest[0] & 1))
 806                         ent += 2 * entsrc->entperblock;
 807 
 808                 /* Add the entropy bytes to the pool */
 809                 swrand_add_bytes(digest, HASHSIZE);
 810                 swrand_add_bytes((uint8_t *)&ts1, sizeof (ts1));
 811                 swrand_add_bytes((uint8_t *)&ts2, sizeof (ts2));
 812         }
 813 
 814         swrand_mix_pool(ent);
 815 }
 816 
 817 static int
 818 physmem_parity_update(uint8_t *parity_vec, uint32_t block, int parity)
 819 {
 820         /* Test and set the parity bit, return 1 if changed */
 821         if (parity == ((parity_vec[block >> 3] >> (block & 7)) & 1))
 822                 return (0);
 823         parity_vec[block >> 3] ^= 1 << (block & 7);
 824         return (1);
 825 }
 826 
 827 /* Compute number of memory blocks available to scan */
 828 static void
 829 physmem_count_blocks()
 830 {
 831         struct memlist *pmem;
 832 
 833         memlist_read_lock();
 834         entsrc.nblocks = 0;
 835         for (pmem = phys_install; pmem != NULL; pmem = pmem->ml_next) {
 836                 entsrc.nblocks += pmem->ml_size / MEMBLOCKSIZE;
 837                 if (entsrc.nblocks > MAXMEMBLOCKS) {
 838                         entsrc.nblocks = MAXMEMBLOCKS;
 839                         break;
 840                 }
 841         }
 842         memlist_read_unlock();
 843 }
 844 
 845 /*
 846  * Dynamic Reconfiguration call-back functions
 847  */
 848 
 849 /* ARGSUSED */
 850 static void
 851 rnd_dr_callback_post_add(void *arg, pgcnt_t delta)
 852 {
 853         /* More memory is available now, so update entsrc->nblocks. */
 854         physmem_count_blocks();
 855 }
 856 
 857 /* Call-back routine invoked before the DR starts a memory removal. */
 858 /* ARGSUSED */
 859 static int
 860 rnd_dr_callback_pre_del(void *arg, pgcnt_t delta)
 861 {
 862         return (0);
 863 }
 864 
 865 /* Call-back routine invoked after the DR starts a memory removal. */
 866 /* ARGSUSED */
 867 static void
 868 rnd_dr_callback_post_del(void *arg, pgcnt_t delta, int cancelled)
 869 {
 870         /* Memory has shrunk, so update entsrc->nblocks. */
 871         physmem_count_blocks();
 872 }
 873 
 874 /* Timeout handling to gather entropy from physmem events */
 875 static void
 876 swrand_schedule_timeout(void)
 877 {
 878         clock_t ut;     /* time in microseconds */
 879 
 880         ASSERT(MUTEX_HELD(&srndpool_lock));
 881         /*
 882          * The new timeout value is taken from the pool of random bits.
 883          * We're merely reading the first 32 bits from the pool here, not
 884          * consuming any entropy.
 885          * This routine is usually called right after stirring the pool, so
 886          * srndpool[0] will have a *fresh* random value each time.
 887          * The timeout multiplier value is a random value between 0.7 sec and
 888          * 1.748575 sec (0.7 sec + 0xFFFFF microseconds).
 889          * The new timeout is TIMEOUT_INTERVAL times that multiplier.
 890          */
 891         ut = 700000 + (clock_t)(srndpool[0] & 0xFFFFF);
 892         rnd_timeout_id = timeout(rnd_handler, NULL,
 893             TIMEOUT_INTERVAL * drv_usectohz(ut));
 894 }
 895 
 896 /*ARGSUSED*/
 897 static void
 898 rnd_handler(void *arg)
 899 {
 900         mutex_enter(&srndpool_lock);
 901 
 902         physmem_ent_gen(&entsrc);
 903         if (snum_waiters > 0)
 904                 cv_broadcast(&srndpool_read_cv);
 905         swrand_schedule_timeout();
 906 
 907         mutex_exit(&srndpool_lock);
 908 }