
new/usr/src/lib/libbsm/auditxml 1

**
 31091 Fri Jan 9 18:58:57 2015
new/usr/src/lib/libbsm/auditxml
5516 perl problems in libbsm/auditxml
Reviewed by: Richard Lowe <richlowe@richlowe.net>
**

1 #!/usr/perl5/bin/perl -w
2 #
3 # CDDL HEADER START
4 #
5 # The contents of this file are subject to the terms of the
6 # Common Development and Distribution License (the "License").
7 # You may not use this file except in compliance with the License.
8 #
9 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE

10 # or http://www.opensolaris.org/os/licensing.
11 # See the License for the specific language governing permissions
12 # and limitations under the License.
13 #
14 # When distributing Covered Code, include this CDDL HEADER in each
15 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 # If applicable, add the following below this CDDL HEADER, with the
17 # fields enclosed by brackets "[]" replaced with your own identifying
18 # information: Portions Copyright [yyyy] [name of copyright owner]
19 #
20 # CDDL HEADER END
21 #
22 #
23 # Copyright 2010 Sun Microsystems, Inc. All rights reserved.
24 # Use is subject to license terms.
25 #

27 # auditxml takes the audit record description (.xml file) and
28 # generates the files needed for the C audit api.

30 my $prog = $0; $prog =~ s|.*/||g;
31 my $usage = <<EOF;

33 Usage: $prog [options] <xml-input-file>
34 Options:
35 -d Enable debug output
36 -e pfx Internal event prefix (default: AUE)
37 -i pfx Interface prefix (default: adt)
38 External event prefix is uppercase version of this string.
39 -o dir Output directory (default: current dir)

41 EOF

43 use auditxml;
44 use Getopt::Std;
45 use strict;

47 our $debug = 0; # normal use is to set via the file being parsed.
48 # <debug set="on"/> or <debug set="off"/> or <debug/>
49 # if the set attribute is omitted, debug state is toggled
50 # Override with appDebug, but toggle won’t do what you
51 # want.
52 my $appDebug = 0; # used after return from "new auditxml";

54 # Process command-line options
55 our ($opt_d, $opt_e, $opt_i, $opt_o);
56 $opt_e = "";
57 $opt_i = "";
58 $opt_o = "";
59 if (!getopts(’de:i:o:’) || $#ARGV != 0) {
60 die $usage;

new/usr/src/lib/libbsm/auditxml 2

61 }
______unchanged_portion_omitted_

575 sub generateTableC {
576 my $event = shift;
577 my $eventId = shift;
578 my $eventType = shift;
579 my $eventHeader = shift;
580 my $omit = shift;

582 my %tokenType = (
583 #
584 # tokenTypes are the ones that are actually defined
585 # for use in adt.xml audit records
586 #

588 # ’acl’ => ’AUT_ACL’, # not defined
589 # ’arbitrary’ => ’AUT_ARBITRARY’, # not defined
590 # ’arg’ => ’AUT_ARG’, # not defined
591 # ’attr’ => ’AUT_ATTR’,
592 ’command’ => ’AUT_CMD’,
593 ’command_alt’ => ’ADT_CMD_ALT’, # dummy token id
594 # ’date’ => ’AUT_TEXT’, # not used
595 # ’exec_args’ => ’AUT_EXEC_ARGS’, # not defined
596 # ’exec_env’ => ’AUT_EXEC_ENV’, # not defined
597 # ’exit’ => ’AUT_EXIT’, # not defined
598 ’fmri’ => ’AUT_FMRI’,
599 # ’groups’ => ’AUT_GROUPS’, # not defined
600 # ’header’ => ’AUT_HEADER’, # not defined
601 ’in_peer’ => ’ADT_IN_PEER’, # dummy token id
602 ’in_remote’ => ’ADT_IN_REMOTE’, # dummy token id
603 # ’ipc’ => ’AUT_IPC’, # not defined
604 # ’ipc_perm’ => ’AUT_IPC_PERM’, # not defined
605 ’iport’ => ’AUT_IPORT’,
606 ’label’ => ’AUT_LABEL’,
607 ’newgroups’ => ’AUT_NEWGROUPS’,
608 # ’opaque’ => ’AUT_OPAQUE’, # not defined
609 ’path’ => ’AUT_PATH’,
610 ’path_list’ => ’-AUT_PATH’, # dummy token id
611 ’process’ => ’AUT_PROCESS’,
612 ’priv_effective’ => ’ADT_AUT_PRIV_E’, # dummy token id
613 ’priv_limit’ => ’ADT_AUT_PRIV_L’, # dummy token id
614 ’priv_inherit’ => ’ADT_AUT_PRIV_I’, # dummy token id
615 ’return’ => ’AUT_RETURN’,
616 # ’seq’ => ’AUT_SEQ’, # not defined
617 # ’socket’ => ’AUT_SOCKET’, # not defined
618 # ’socket-inet’ => ’AUT_SOCKET_INET’,
619 ’subject’ => ’AUT_SUBJECT’,
620 ’text’ => ’AUT_TEXT’,
621 ’tid’ => ’AUT_TID’,
622 # ’trailer’ => ’AUT_TRAILER’, # not defined
623 ’uauth’ => ’AUT_UAUTH’,
624 ’user’ => ’AUT_USER’,
625 ’zonename’ => ’AUT_ZONENAME’
626);

628 my @xlateEntryList = ();

630 my $external = $event->getExternal();
631 my $internal = $event->getInternal();

633 unless ($external) {
634 print STDERR "No external object captured for event $eventId\n";
635 return;
636 }
637 if ($eventType) {

new/usr/src/lib/libbsm/auditxml 3

638 $nameTranslation{$eventId} = $eventId;
639 } else {
640 $nameTranslation{$eventId} = $external->getInternalName();
641 }
642 unless ($internal) {
643 print STDERR "No internal object captured for event $eventId\n";
644 return;
645 }
646 my @entryRef = $internal->getEntries();
647 my $entryRef;
648 my @tokenOrder = ();
649 my $firstTokenIndex = 0; # djdj not used yet, djdj BUG!
650 # needs to be used by translate table

652 if ($internal->isReorder()) { # prescan the entry list to get the token orde
653 my @inputOrder;
654 foreach $entryRef (@entryRef) {
655 my ($intEntry, $entry) = @$entryRef;
656 push (@inputOrder, $intEntry->getAttr(’order’));
657 }

659 my $i; # walk down the inputOrder list once
660 my $k = 1; # discover next in line
661 my $l = 0; # who should point to next in line
662 for ($i = 0; $i <= $#inputOrder; $i++) {
663 my $j;
664 for ($j = 0; $j <= $#inputOrder; $j++) {
665 if ($k == $inputOrder[$j]) {
666 if ($k == 1) {
667 $firstTokenIndex = $j;
668 } else {
669 $tokenOrder[$l] = "&(selfReference[$j])";
670 }
671 $l = $j;
672 last;
673 }
674 }
675 $k++;
676 }
677 $tokenOrder[$l] = ’NULL’;
678 }
679 else { # default order -- input order same as output
680 my $i;
681 my $j;
682 for ($i = 0; $i < $#entryRef; $i++) {
683 my $j = $i + 1;
684 $tokenOrder[$i] = "&(selfReference[$j])";
685 }
686 $tokenOrder[$#entryRef] = ’NULL’;
687 }

689 my $sequence = 0;
690 foreach $entryRef (@entryRef) {
691 my ($intEntry, $entry) = @$entryRef;
692 my $entryId = $entry->getAttr(’id’);

694 my ($extEntry, $unusedEntry, $tokenId) =
695 $external->getEntry($entryId);
696 my $opt = $extEntry->getAttr(’opt’);

698 if ($opt eq ’none’) {
699 if (defined ($doc->getToken($tokenId))) {
700 if (defined ($tokenType{$tokenId})) {
701 $tokenId = $tokenType{$tokenId};
702 }
703 else {

new/usr/src/lib/libbsm/auditxml 4

704 print STDERR "token id $tokenId not implemented\n";
705 }
706 }
707 else {
708 print STDERR "token = $tokenId is undefined\n";
709 $tokenId = ’error’;
710 }
711 my ($xlate, $jni) =
712 formatTableEntry (’’, $tokenId, $eventId, ’’, 0, 0,
713 $tokenOrder[$sequence], ’NULL’, ’’, $omit);
710 $tokenOrder[$sequence], ’NULL’, $omit);
714 push (@xlateEntryList, $xlate);
715 }
716 else {
717 my $dataType = $extEntry->getAttr(’type’);
718 $dataType =~ s/\s+//g; # remove blanks (char * => char*)

720 my $enumGroup = ’’;
721 if ($dataType =~ /^msg/i) {
722 $enumGroup = $dataType;
723 $enumGroup =~ s/^msg\s*//i;
724 $enumGroup = "${pfx_adt}_" . $enumGroup;
725 }
726 my $required = ($opt eq ’required’) ? 1 : 0;
727 my $tsol = 0;
728 my $tokenId = $intEntry->getAttr(’token’);
729 my $token;
730 my $tokenName;
731 my $tokenFormat = $intEntry->getAttr(’format’);
732 if (defined ($tokenFormat)) {
733 $tokenFormat = "\"$tokenFormat\"";
734 }
735 else {
736 $tokenFormat = ’NULL’;
737 }
738
739 if (defined ($token = $doc->getToken($tokenId))) {
740 $tsol = (lc $token->getUsage() eq ’tsol’) ? 1 : 0;
741 if (defined ($tokenType{$tokenId})) {
742 $tokenName = $tokenType{$tokenId};
743 }
744 else {
745 print STDERR "token id $tokenId not implemented\n";
746 }
747 }
748 else {
749 print STDERR
750 "$tokenId is an unimplemented token ($entryId in $eventId)\n";
751 $tokenName = ’AUT_TEXT’;
752 }
753 my ($xlate, $jni) =
754 formatTableEntry($entryId, $tokenName, $eventId, $dataType, $required,
755 $tsol, $tokenOrder[$sequence], $tokenFormat,
756 $enumGroup, $omit);
757 push (@xlateEntryList, $xlate);
758 }
759 $sequence++;
760 }
761 $xlateEventTable{$eventId} = [\@xlateEntryList, $eventType, $firstTokenIndex
762 $eventHeader];
763 }

______unchanged_portion_omitted_

