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#! [ usr/ perl 5/ bin/perl -w
CDDL HEADER START

The contents of this file are subject to the ternms of the
Common Devel opnent and Distribution License (the "License").
You may not use this file except in conpliance with the License.

You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
or http://ww. opensol aris.org/os/licensing.

See the License for the specific |anguage governing pernissions

and limtations under the License.

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

I f applicable, add the follow ng below this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [name of copyright owner]

CDDL HEADER END

Copyri ght 2010 Sun Mcrosystens, Inc. Al rights reserved.
Use is subject to |license termns.

auditxm takes the audit record description (.xm file) and
generates the files needed for the C audit api.

HHEH HEHHHHHFHFHHFHHHFHHH T TR

ny $prog = $0; $prog =~ s|.*/|]|g;
ny $usage = <<EOCF;

Usage: $prog [options] <xm-input-file>

Options:
-d Enabl e debug out put
-e pfx |Internal event prefix (default: AUE)
-i pfx Interface prefix (default: adt)
External event prefix is uppercase version of this string.
-o dir Qutput directory (default: current dir)
EOF

use auditxm ;
use Getopt::Std;
use strict;

our $debug = 0; # normal use is to set via the file being parsed.
# <debug set="on"/> or <debug set="off"/> or <debug/>
# if the set attribute is omtted, debug state is toggled
# Override with appDebug, but toggle won't do what you
# want .
ny $appDebug = 0; # used after return from"new auditxm";

# Process command-|ine options

our ($opt_d, $opt_e, $opt_i, $opt_o);

$opt_e = "";

Sopt i nml

$opt_o = "";

if (!getopts('de:ri:o:") || $#ARGV I= 0) {
di e $usage;
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ny $event = shift;
ny $eventld = shift;
ny $event Type = shift;
ny $event Header = shift;
ny $onmit = shift;
ny % okenType = (
#
# tokenTypes are the ones that are actually defined
# for use in adt.xm audit records
#
# Tacl’ => " AUT_ACL’,
# Tarbitrary’ => ' AUT_ARBI TRARY" ,
# Targ’ => ' AUT_ARG ,
# Tattr’ => ' AUT_ATTR,
' command’ => 'AUT_CMD ,
' command_al t’ => ' ADT_CMD_ALT,
# "date’ => ' AUT_TEXT,
# " exec_args’ => ' AUT_EXEC_ARGS',
# ' exec_env’ => ' AUT_EXEC_ENV',
# Texit’ = "AUT_EXIT,
fori? => " AUT_FMRI ",
# ' groups’ => ' AUT_GROUPS' ,
# " header’ => ' AUT_HEADER ,
"in_peer’ => ' ADT_I| N_PEER,
in_renote’ => ' ADT_I| N_REMOTE’ ,
# "ipc’ => 'AUT_IPC ,
# i pc_perm => " AUT_I| PC_PERM ,
Tiport’ => " AUT_| PORT" ,
"l abel’ => " AUT_LABEL’,
' newgr oups’ => ' AUT_NEWGROUPS' ,
# ' opaque’ => ' AUT_OPAQUE' ,
" pat h’ => ' AUT_PATH ,
"path_list’ => ' - AUT_PATH ,
' process’ => ' AUT_PROCESS',
"priv_effective’ => " ADT_AUT_PRIV_FE',
Tpriv_limt’ => "ADT_AUT_PRIV_L’,
"priv_inherit’ => "ADT_AUT_PRIV_I",
‘return’ => " AUT_RETURN ,
# ' seq’ => ' AUT_SEQ ,
# " socket’ => ' AUT_SOCKET' ,
# ' socket -inet’ => ' AUT_SOCKET_I| NET' ,
' subj ect’ => ' AUT_SUBJECT ,
"text’ => ' AUT_TEXT,
tid =>"AUT_TID,
# “trailer’ => ' AUT_TRAI LER ,
"uaut h’ => ' AUT_UAUTH ,
‘user’ => ' AUT_USER ,
' zonenang’ => ' AUT_ZONENAME'

)i
ny @l ateEntryList = ();

ny $external = $event->get External ();
ny $internal = $event->getinternal ();

unl ess ($external) {

not defined
not defined
not defined

dunmmy token
not used

not defined
not defined
not defined

not defined
not defined
dummy token
dunmmy token
not defined
not defined

not defined
dunmmy token
durmmy t oken
dummy token
dunmmy token

not defined
not defined

not defined

print STDERR "No external object captured for event $eventld\n";

return;

%f ($event Type) {
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$nameTrans| ati on{ $event | d} = $event|d;
} else {
$nameTr ansl ati on{ $event | d} = $ext er nal - >get | nt er nal Nane();

}

unl ess ($internal ) {
print STDERR "No internal object captured for event $eventld\n";
return;

}
ny @ntryRef = $internal->getEntries();
nmy $entryRef;
ny @okenOder =();
ny $firstTokenlndex = 0; # djdj not used yet, djdj BUG
# needs to be used by translate table

if ($internal->isReorder()) { # prescan the entry list to get the token orde
nmy @ nput O der;
foreach $entryRef (@ntryRef) {
ny ($intEntry, $entry) = @entryRef;
push (@nputOrder, $intEntry->getAttr(’ order’));

-

; # wal k down the inputOrder |ist once

1, # discover next in line

0; # who should point to next in line
= 0; $i <= $#inputOder; $i++)

for ($j = 0; $j <= $#inputOder; $j++) {
if ($k == $inputOrder[$j]) {
if ($k == 1
$first Tokenl ndex = $j;
} else {
$t okenOr der [ $1]

} )
$I =9,
| ast;

}
$k++;

= "&(sel fReference[$j])";

}
$tokenOrder[$I] = " NULL';

}
else { # default order -- input order same as output
my $i;
my $; . )
for ($i 0; $i < $#entryRef; $i++) {
s+ 1

ny $j
$t okenOrder[$i] = "&(sel fReference[$j])";

}
$t okenOr der [ $#entryRef] = " NULL';

ny $sequence = 0;

foreach $entryRef (@ntryRef) {
ny ($intEntry, $entry) = @entryRef;
ny $entryld = $entry->getAttr(’'id);

ny ($extEntry, $unusedEntry, $tokenld) =
$external - >get Entry($entryl d);
ny $opt = $extEntry->getAttr (' opt’);

if ($opt eq 'none’) {

if (defined ($doc->get Token($tokenld))) {
if (defined ($tokenType{ $t okenl d})) {

$t okenl d = $t okenType{ $t okenl d};

el se {
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__unchanged_portion_onitted_

print STDERR "token id $tokenld not inplenmented\n";

}

el se {
print STDERR "token = $tokenld is undefined\n";
$tokenld = "error’;

}
ny ($xlate, $jni) =
f or mat Tabl eEnt ry (', $tokenld, $eventid, '', 0, O,
$t okenOr der [ $sequence], " NULL', '', S$onmit);
$t okenOr der [ $sequence], ' NULL', $onit);
push (@l ateEntryList, $xlate);

el se {
ny $dataType = $extEntry->getAttr(’type’);
$dat aType =~ s/\s+//g; # renove bl anks (char * => char*)

ny $enunGoup =
i z

($dat aType =~ /"msgll) {
$enunr oup = $dat aType;
$enunroup =~ s/*nsg\s*//i;
$enuntroup = "${pfx_adt}_" $enunG oup;
}
nmy $required = ($opt eq 'required’) ?2 1 : O;
nmy $tsol = O;
ny $tokenld = $intEntry->getAttr(’token’);
ny $token;
ny $t okenName;
ny $tokenFormat = $intEntry->getAttr(’format’);
if (defined ($tokenFormat)) {
$t okenFormat = "\ " $t okenFormat\"";
}
el se {

$t okenFormat = " NULL’;

if (defi ned ($token = $doc- >get Token($token|d))) {

$tsol = (lc $token->getUsage() eq "tsol’) ? :
if (defined ($tokenType{$tokenld})) {
$t okenName = $t okenType{ $t okenl d};

el se {
print STDERR "token id $tokenld not inplenmented\n";

el se {
print STDERR
"$tokenld is an uninplenmented token ($entryld in $eventld)\n";
$t okenNane = ' AUT_TEXT ;

ny ($xlate, $jni) =

f or mat Tabl eEnt ry($ent ryld, $tokenNanme, $eventld, $dataType, $required,

$t sol , $t okenOr der[$sequence] $t okenFor mat ,
$enurTGroup, $onit);
push (@l ateEntryList, $xlate);

}
$sequence++;

}
$x| at eEvent Tabl e{ $event1d} = [\ @l ateEntryList, $event Type, $firstTokenl ndex

$event Header ] ;



