new usr/src/lib/libbsm auditxm

R R R R

31091 Fri Jan

9 18:58:57 2015

new usr/src/lib/libbsm auditxm

5516

perl problenms in |ibbsnfauditxm

Revi ewed by: Richard Lowe <richlowe@ichl owe. net>

LR R

#! [usr/ perl 5/ bin/perl -w
CDDL HEADER START

The contents of this file are subject to the ternms of the
Common Devel opnent and Distribution License (the "License").
You may not use this file except in conpliance with the License.

You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
or http://ww. opensol aris.org/os/licensing.

See the License for the specific |anguage governing pernissions

and limtations under the License.

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

I f applicable, add the follow ng below this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [name of copyright owner]

CDDL HEADER END

Copyri ght 2010 Sun Mcrosystens, Inc. Al rights reserved.
Use is subject to |license termns.

auditxm takes the audit record description (.xm file) and
generates the files needed for the C audit api.

HHEH HEHHHHHFHFHHFHHHFHHH T TR

ny $prog = $0; $prog =~ s|.*/|]|g;
ny $usage = <<EOCF;

Usage: $prog [options] <xm-input-file>

Options:
-d Enabl e debug out put
-e pfx |Internal event prefix (default: AUE)
-i pfx Interface prefix (default: adt)
External event prefix is uppercase version of this string.
-o dir Qutput directory (default: current dir)
EOF

use auditxm ;
use Getopt::Std;
use strict;

our $debug = 0; # normal use is to set via the file being parsed.
<debug set="on"/> or <debug set="off"/> or <debug/>
if the set attribute is omtted, debug state is toggled
Override with appDebug, but toggle won't do what you
want .
ny $appDebug = 0; # used after return from"new auditxm";

Process command-|ine options

our ($opt_d, $opt_e, $opt_i, $opt_o);

$opt_e = "";

Sopt i nml

$opt_o = "";

if (!getopts('de:ri:o:") || $#ARGV I= 0) {
di e $usage;

new usr/src/lib/libbsm auditxm

61

}
__unchanged_portion_onitted_

575 sub generateTabl eC {

576
577
578
579
580

582
583
584
585
586

588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626

628

630
631

633
634
635
636
637

3+ H

HHFHHFH HHFHH

HH OHHH OH H

ny $event = shift;
ny $eventld = shift;
ny $event Type = shift;
ny $event Header = shift;
ny $onmit = shift;
ny % okenType = (
#
tokenTypes are the ones that are actually defined
for use in adt.xm audit records
#
Tacl’ => " AUT_ACL’,
Tarbitrary’ => ' AUT_ARBI TRARY" ,
Targ’ => ' AUT_ARG ,
Tattr’ => ' AUT_ATTR,
' command’ => 'AUT_CMD ,
' command_al t’ => ' ADT_CMD_ALT,
"date’ => ' AUT_TEXT,
" exec_args’ => ' AUT_EXEC_ARGS',
' exec_env’ => ' AUT_EXEC_ENV',
Texit’ = "AUT_EXIT,
fori? => " AUT_FMRI ",
' groups’ => ' AUT_GROUPS' ,
" header’ => ' AUT_HEADER ,
"in_peer’ => ' ADT_I| N_PEER,
in_renote’ => ' ADT_I| N_REMOTE’ ,
"ipc’ => 'AUT_IPC ,
i pc_perm => " AUT_I| PC_PERM ,
Tiport’ => " AUT_| PORT" ,
"l abel’ => " AUT_LABEL’,
' newgr oups’ => ' AUT_NEWGROUPS' ,
' opaque’ => ' AUT_OPAQUE' ,
" pat h’ => ' AUT_PATH ,
"path_list’ => ' - AUT_PATH ,
' process’ => ' AUT_PROCESS',
"priv_effective’ => " ADT_AUT_PRIV_FE',
Tpriv_limt’ => "ADT_AUT_PRIV_L’,
"priv_inherit’ => "ADT_AUT_PRIV_I",
‘return’ => " AUT_RETURN ,
' seq’ => ' AUT_SEQ ,
" socket’ => ' AUT_SOCKET' ,
' socket -inet’ => ' AUT_SOCKET_I| NET' ,
' subj ect’ => ' AUT_SUBJECT ,
"text’ => ' AUT_TEXT,
tid =>"AUT_TID,
“trailer’ => ' AUT_TRAI LER ,
"uaut h’ => ' AUT_UAUTH ,
‘user’ => ' AUT_USER ,
' zonenang’ => ' AUT_ZONENAME'

)i
ny @l ateEntryList = ();

ny $external = $event->get External ();
ny $internal = $event->getinternal ();

unl ess ($external) {

not defined
not defined
not defined

dunmmy token
not used

not defined
not defined
not defined

not defined
not defined
dummy token
dunmmy token
not defined
not defined

not defined
dunmmy token
durmmy t oken
dummy token
dunmmy token

not defined
not defined

not defined

print STDERR "No external object captured for event $eventld\n";

return;

%f ($event Type) {

[eNeN N [=8

[eNeN

new usr/src/lib/libbsm auditxm 3

638
639
640
641
642
643
644
645
646
647
648
649
650

652
653
654
655
656
657

659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687

689
690
691
692

694
695
696

698
699
700
701
702
703

$nameTrans| ati on{ $event | d} = $event|d;
} else {
$nameTr ansl ati on{ $event | d} = $ext er nal - >get | nt er nal Nane();

}

unl ess ($internal) {
print STDERR "No internal object captured for event $eventld\n";
return;

}
ny @ntryRef = $internal->getEntries();
nmy $entryRef;
ny @okenOder =();
ny $firstTokenlndex = 0; # djdj not used yet, djdj BUG
needs to be used by translate table

if ($internal->isReorder()) { # prescan the entry list to get the token orde
nmy @ nput O der;
foreach $entryRef (@ntryRef) {
ny ($intEntry, $entry) = @entryRef;
push (@nputOrder, $intEntry->getAttr(’ order’));

-

; # wal k down the inputOrder |ist once

1, # discover next in line

0; # who should point to next in line
= 0; $i <= $#inputOder; $i++)

for ($j = 0; $j <= $#inputOder; $j++) {
if ($k == $inputOrder[$j]) {
if ($k == 1
$first Tokenl ndex = $j;
} else {
$t okenOr der [$1]

})
$I =9,
| ast;

}
$k++;

= "&(sel fReference[$j])";

}
$tokenOrder[$I] = " NULL';

}
else { # default order -- input order same as output
my $i;
my $; .)
for ($i 0; $i < $#entryRef; $i++) {
s+ 1

ny $j
$t okenOrder[$i] = "&(sel fReference[$j])";

}
$t okenOr der [$#entryRef] = " NULL';

ny $sequence = 0;

foreach $entryRef (@ntryRef) {
ny ($intEntry, $entry) = @entryRef;
ny $entryld = $entry->getAttr(’'id);

ny ($extEntry, $unusedEntry, $tokenld) =
$external - >get Entry($entryl d);
ny $opt = $extEntry->getAttr (' opt’);

if ($opt eq 'none’) {

if (defined ($doc->get Token($tokenld))) {
if (defined ($tokenType{ $t okenl d})) {

$t okenl d = $t okenType{ $t okenl d};

el se {

new usr/src/lib/libbsm auditxm

704
705
706
707
708
709
710
711
712
713
710
714
715
716
717
718

720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762

763 }
__unchanged_portion_onitted_

print STDERR "token id $tokenld not inplenmented\n";

}

el se {
print STDERR "token = $tokenld is undefined\n";
$tokenld = "error’;

}
ny ($xlate, $jni) =
f or mat Tabl eEnt ry (', $tokenld, $eventid, '', 0, O,
$t okenOr der [$sequence], " NULL', '', S$onmit);
$t okenOr der [$sequence], ' NULL', $onit);
push (@l ateEntryList, $xlate);

el se {
ny $dataType = $extEntry->getAttr(’type’);
$dat aType =~ s/\s+//g; # renove bl anks (char * => char*)

ny $enunGoup =
i z

($dat aType =~ /"msgll) {
$enunr oup = $dat aType;
$enunroup =~ s/*nsg\s*//i;
$enuntroup = "${pfx_adt}_" $enunG oup;
}
nmy $required = ($opt eq 'required’) ?2 1 : O;
nmy $tsol = O;
ny $tokenld = $intEntry->getAttr(’token’);
ny $token;
ny $t okenName;
ny $tokenFormat = $intEntry->getAttr(’format’);
if (defined ($tokenFormat)) {
$t okenFormat = "\ " $t okenFormat\"";
}
el se {

$t okenFormat = " NULL’;

if (defi ned ($token = $doc- >get Token($token|d))) {

$tsol = (lc $token->getUsage() eq "tsol’) ? :
if (defined ($tokenType{$tokenld})) {
$t okenName = $t okenType{ $t okenl d};

el se {
print STDERR "token id $tokenld not inplenmented\n";

el se {
print STDERR
"$tokenld is an uninplenmented token ($entryld in $eventld)\n";
$t okenNane = ' AUT_TEXT ;

ny ($xlate, $jni) =

f or mat Tabl eEnt ry($ent ryld, $tokenNanme, $eventld, $dataType, $required,

$t sol , $t okenOr der[$sequence] $t okenFor mat ,
$enurTGroup, $onit);
push (@l ateEntryList, $xlate);

}
$sequence++;

}
$x| at eEvent Tabl e{ $event1d} = [\ @l ateEntryList, $event Type, $firstTokenl ndex

$event Header] ;

